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Radical Post-Modernism (RPM) marks the resurgence of a critical architecture that 
engages in a far-reaching way with issues of taste, space, character and ornament. Bridging 
high and low cultures, it immerses itself in the age of information, embracing meaning 
and communication, embroiling itself in the dirty politics of taste by drawing ideas from 
beyond the narrow confines of architecture. It is a multi-dimensional, amorphous category, 
which is heavily influenced by contemporary art, cultural theory, modern literature and 
everyday life. This title of 2 demonstrates how, in the age of late capitalism, Radical 
Post-Modernism can provide an architecture of resistance and contemporary relevance, 
forming a much needed antidote to the prevailing cult of anodyne Modernism and the 
vacuous spatial gymnastics of the so-called digital ‘avant-garde’.

•	 Contributions from: Sean Griffiths, Charles Holland, Sam Jacob, Charles Jencks 	
and Kester Rattenbury.

•	 Featured architects: ARM, Atelier Bow Wow, Crimson, CUP, FAT, FOA, Édouard 
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Sustainable design and ecological building are the most significant global challenges for the design profession. 
For architects to maintain a competitive edge in a global market, innovation is key; the design of new 
processes, technologies and materials that combat carbon emissions and improve the sustainable performance 
of buildings are paramount. Many contemporary practices have responded by setting up multidisciplinary 
internal research and development teams and collaborative research groups. This title offers insights into how 
a wide range of established and emerging practices are rising to these challenges. In pursuit of integrated 
sustainability and low-energy building, material and formal innovation and new tools and technologies, it will 
illustrate that the future of architecture is evolving in an exchange of ideas across disciplines. Incorporating 
the creation of new knowledge about ecological building within the profession, it also identifies the 
emergence of a collective will to seek out new routes that build in harmony with the environment.

•	 Contributors include: Robert Aish, Peter Busby, Mary Ann Lazarus, Andrew Marsh, Hugh Whitehead 
and Simos Yannas.

•	 Features: the GXN research group at 3XN; Advanced Modelling Group at Aedas; Foster + Partners’ 
Specialist Modelling Group; the Adaptive Building Initiative, Hoberman Associates and Buro Happold; 
Biomimicry Guild Alliance, HOK and the Biomimicry Guild; and the Nikken Sekkei Research Institute.
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Plans to regenerate East London and transform the capital are integral to the vision of the London 
2012 Olympic and Paralympic Games. This title brings into focus notions of regeneration within 
the specific context of London: what does the term actually mean, how has it been applied and is 
it being applied? Historical overviews of large-scale interventions from the past are combined with 
case studies of new and planned schemes, and explorations of how change and rejuvenation can 
retain or enhance the city’s unique sense of place and identity. Looking beyond the Games, the 
title will look at the direction in which regeneration is going in a post-recession economy. How 
can a long-established, highly protected and even cherished city, like London, continue to renew 
and expand? Unlike Chinese or Middle Eastern cities, London is constrained by a wide range of 
factors from heritage protection and geography to finance and democratic accountability; yet the 
city continues to grow, change and develop, either incrementally or through big, dramatic leaps, 
like the Olympic Park and King’s Cross. In this way, London provides a fascinating case study of 
how a developed, Western city can negotiate and greet the pressures for change.

•	 Contributors: Michael Batty, Peter Bishop, Matthew Carmona, Murray Fraser, Matthew 
Gandy, Robert Harbison, Peter Murray Austin Williams

•	 Architects: Sir Terry Farrell, Richard McCormac,
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Editorial
Helen Castle

Many of us glaze over at the very mention of the word ‘mathematics’. It brings 
to mind too many years of forced learning in stuffy classrooms. Moreover as 
‘creatives’, many designers feel themselves to be entitled to be free from the 
strictures of such a highly demanding and logical discipline. In his introduction 
(see pp 8–17), guest-editor George L Legendre compares mathematics to 
‘plumbing’ – the essential but unappealing system underlying architectural 
thought. Certainly, it is the more humdrum application of mathematics in 
operational processes that architects have had an ongoing problem with, 
even today when algorithms enable scripting and the design agility that it 
brings. When acknowledging this deep ambivalence to the discipline, it is also 
necessary to recognise the enduring romance that architecture has had with one 
particular branch of mathematics – geometry. This is a wholly natural affinity, 
as geometry is the most visual manifestation of mathematics. It is a liaison that 
has held sway across continents and time, most apparent in ancient temples, 
Renaissance churches, Islamic structures and contemporary digital surfaces; 
it reached perhaps its point of greatest infatuation with ‘sacred geometry’ in 
15th-century Italy, when certain numbers and patterns were attributed as having 
symbolic divine qualities. 

So why this sudden interest in ‘plumbing’ in 2? There has been what 
Antoine Picon so aptly phrases an ‘estrangement’ between architecture and 
mathematics for several centuries (see pp 28–35). The onset of computation 
has, however, offered us the chance not only to reconnect architecture with 
geometry and pursue the possibilities of non-Euclidean geometries, but also to 
realise the opportunities that other branches of mathematics, such as calculus 
and algorithms, afford. This places an important emphasis on looking beneath 
the surface, providing architects with a fuller understanding of the processes 
and software that they use and solving problems from the baseline. George L 
Legendre exemplifies this approach, not only disseminating an understanding 
of the discipline through his teaching at Harvard Graduate School of Design, 
but also rigorously working with parametric analytic equations across the design 
process in his London-based practice IJP Corporation (see pp 44–53). This 
requires an aptitude and stringency that is not possible for most practices to 
embrace, but it also recognises a real need to question the given and problem 
solve at a higher level. 1

Text © 2011 John Wiley & Sons Ltd. Image © Steve Gorton
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IJP with John Pickering, F01(b), 2009
top: Projective sculpture (detail). F01(b) 
features two overlapping cylinders inversed 
relative to the same centre. The resulting 
figure is encased in a translucent box 
which crops the infinite surfaces produced 
by a transformation known as inversion.

IJP with RSP Architects Planners 
and Engineers, Henderson Waves, 
Singapore, 2008
opposite: The tallest pedestrian bridge in 
Southeast Asia is located in the Southern 
Ridges area of Singapore. The 304.8-metre 
(1,000-foot) long footbridge was designed 
with a single periodic equation. The doubly 
curved parts of the deck form a tapestry 
of 5,000 modular boards, each varying by 
a single degree every few metres and all 
tapered to measure.

IJP with RSP Architects Planners 
and Engineers, Henderson Waves, 
Singapore, 2008
above: Study model of structure. 



7

About the Guest-Editor
George L Legendre

George L Legendre’s fusion of design, mathematics and computation took off 
in print starting with IJP: The Book of Surfaces (AA Publications, 2003). Part 
publisher’s spread and part mathematical surface, this playful manifesto was closely 
followed by the Henderson Waves project (2004–8), in which his newly minted, 
eponymous office IJP deployed similar principles to design and tender the tallest 
pedestrian bridge in Southeast Asia. The contractor borrowed the book’s original 
notation to identify the project’s parts – bridging the gap between theory and 
practice. Since graduating from Harvard, Legendre’s work has been defined by the 
full-time decade he spent in academia. An Assistant Professor of Architecture at 
the Harvard Graduate School of Design (GSD) from his mid-20s, he has been a 
visiting professor at ETH Zurich and Princeton University, and master of Diploma 
Unit 5 at the London-based Architectural Association School of Architecture, 
where he undertook for eight years (alongside Lluís Viu Rebès) the intense 
educational experiments for which the place was famed. He returned to Harvard in 
2008 as a visiting design critic before being appointed Adjunct Associate Professor. 

Freely inspired by analytic mathematics, computer programming, the literary 
pranks of Oulipo and other less highbrow forms of automatic writing, the work 
of IJP is closely identified with the emergent computational avant-garde. While 
cherishing this brotherly affiliation, IJP’s attachment to traditional values of 
instrumentation and artistic probity has been equally important. To date the 
office has won a competition to cover a central London street with glass (with 
Adams Kara Taylor), and completed Henderson Waves (with RSP) in Singapore. 
In 2011, the practice was a finalist of the MoMA-PS1 design competition. The 
influential weekly Building Design recently elected the firm as one of the top five 
practices in the UK led by principals under the age of 40. The work of the firm has 
been featured on the cover of AA Files, the RIBA Journal, Mondo Arc Perspective + 
and Icon Magazine among others. A regularly published lecturer and essayist, in 
addition to IJP: The Book of Surfaces, Legendre is also the author of Bodyline: the 
End of our Meta-Mechanical Body (AA Publications, 2006) and a critical essay, ‘JP’s 
Way’, in Mohsen Mostafavi’s Mathematical Form: John Pickering and the Architecture 
of the Inversion Principle (AA Publications, 2006). His next research piece, Pasta 
by Design (see pp 100–1 of this issue) will be published by Thames & Hudson in 
September 2011. 1

Text © 2011 John Wiley & Sons Ltd. Images: p 6(t) © IJP and John Pickering; pp 6(b), 7 © IJP 
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Figure 1. Fdecomite, Laughing Cow Inverted
Humorous deployment of projective 
geometry in the graphic space of a 
famous food brand, instantly recognisable 
among French schoolchildren past 
or present. This piece is based on a 
projective transformation known as 
inversion (developed in the 1820s); that 
is, scaling relative to a fixed point, but 
with a variable coefficient.
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The Mathematics of 
Sensible Things 

Introduction
George L Legendre

Architecture and Mathematics have constantly 
balanced between two extremes: an experiential 
dimension often imbued with contemplative 
connotations, and the quest for operative 
techniques that do not necessarily present a spatial 
meaning. Hence the ambiguity we find ourselves 
in today, faced simultaneously with architecture’s 
estrangement from mathematics and the spectacular 
diffusion of computational tools.
— Antoine Picon, ‘Between Intuition and the Quest for 
Operative Techniques’, public lecture, Symposium on 
‘Mathematics in Space’, Harvard Graduate School of 
Design, 5 March 2010

Over the past 15 years, architecture has been profoundly 
altered by the advent of computation and information 
technology. Design software and numerical fabrication 
machinery have recast the traditional role of geometry in 
architecture and opened it up to the wondrous possibilities 
afforded by topology, parametric surface design and other 
areas of mathematics. From the technical aspects of scripting 
code to biomorphic paradigms of form and its association 
with genetics, biology, phylogeny and other branches of 
natural science, the impact of computation on the discipline 
has been widely documented.1 What is less clear, and has 
largely escaped scrutiny so far, is the role mathematics itself 
has played in this revolution.

While our design culture has firmly embraced the 
innovations of computing, it has decidedly less time for the 
formulated thought lying at the very root of the breakthrough. 
There are several reasons behind this paradox. Mathematics 
is a deeply abstract discipline, and as such it is easily 
misunderstood. On a personal level, mathematics is likely 
to summon memories of hard graft, frustration and perhaps 
even of failure. Critically for designers (at first glance at 
least), the instrumentality of computation seems easier to 
grasp than that of mathematics, which good design software 
will render ‘transparent’ anyway. This transparency comes 
at a price. The underlying essence of formulated thought 
is often wrongly perceived to be no better than plumbing, 
and as such unworthy of being separated from the higher-



10

Figure 2. Fdecomite, Third 
Stellation of Cuboctahedron
A cuboctahedron, also 
known as a dymaxion 
according to Buckminster 
Fuller, is a uniform 
polyhedron with a specific 
number of faces.

Figure 3. George L Legendre, Self Portrait As Photoshop Filter, 2006
The mapping rotates the complex coordinates of a pixel by an amount proportional to 
the square of its distance from the origin to produce a swirl. Mathematics is typically 
pervasive under the software hood – in this case, matrix algebra applied to a pixel grid.
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level functionality of design computing that has ultimately 
smothered it. As a result, in our software-saturated design 
environments the formulated syntax of mathematics is all too 
easily amalgamated with the functionality of digital tools, which 
mathematics enable – but also predate by thousands of years.

At this critical juncture in time, it is therefore important for 
us architects, designers, computational designers, historians 
and engineers to tease the mathematics out of our respective 
disciplines, not to show how it is done – a hard and futile 
challenge for the reader – but to reflect on the shared roots 
of our process, and the multiple ways these roots shape our 
practices and intellectual agendas while helping us define new 
directions. Strangely neglected since the onset of the digital 
design era, the impact of mathematics on contemporary 
creativity may now be explored in its own terms.

Dualities
Mathematics, as Amy Dahan-Dalmedico reminds us in the 
historical account that opens this issue (see pp 18–27), 
is hardly a ‘stable and well-defined’ object. In effect, the 
term applies to a greatly diverse collection of practices and 
‘cognitive constructions’ spanning various practical, historical 
and philosophical contexts. Wading through this collection 
of theoretical and applied reflections on mathematics 
in space, we are indeed struck by the many themes our 
subject can simultaneously embody, by the many dualities 
it is apt to represent. Duality is a ‘native’ concept in its own 
right, designating a state of equivalence between objects 
in projective geometry, such that a given transformation 
involving two terms will remain valid if we swap them around 
(replacing a point with a line and a line with a point in the 
plane, for instance, as established by Jean-Victor Poncelet’s 
1822 Principle of Duality).2 

Hence, for the historian Antoine Picon (see pp 28–35), 
the relationship of architecture to geometry since the 18th 
century reflects alternate polarities of ‘hubris’ and ‘restraint’ 
in relation to a formal, conceptual, and even mystical 
design project. For Amy Dahan-Dalmedico, geometry can 
be understood either as a realistic practice rooted in human 
perception and the world itself, or as a Platonist realist 
collection of concepts totally independent of the human mind. 
For Dennis Shelden and Andrew Witt, recent developments in 
digital computation posit the emergence of a higher geometry 
at once continuous and discrete – until the very distinction is 

itself abolished (see pp 36–43). In Bernard Cache’s account 
of the work of French mathematician Girard Desargues (pp 
90–9), projective geometry represents a practical expedient 
to determine metric relationships, as well as an embodiment 
of Gottfried Leibniz’s mystical monad. And so on. Throughout 
the 16 essays and projects collected here, we are presented 
with a productive tension between mathematics understood 
as an autonomous set of questions and speculations (a ‘well-
ordered ceremonial’), and mathematics as an open, problem-
solving-oriented force of creation and praxis. 

Which Mathematics? 
Mathematics is a broad topic that we must necessarily 
restrict, for the purpose of brevity and coherence, to the 
subject of geometry. As Martha Tsigkari, Adam Davis, and 
Francis Aish of Foster + Partners’ Specialist Modelling 
Group demonstrate in their thoughtful essay on the ‘invisible’ 
mathematics of environmental performance (pp 54–7), the 
formal and perceptual aspects of architecture best abetted 
by geometry are not the only game in town; but they are 
the primary one. Compare, for the sake of argument, two 
structures as far apart in scope and scale as Foster + 
Partners’ Swiss Re Building (the Gherkin) and Philippe 
Morel’s Universal House (see p 122). Regardless of emphasis 
(algorithmic or otherwise) and despite the occasional claims 
to the contrary, the overwhelming geometric implications of 
any structured design process will not go away – so we may 
as well discuss them seriously. 

Far from being a bonus or a side-effect, architectural 
geometry is a discipline in its own right, forming a long and 
complex continuum subdivided into distinct historical 
segments with vastly different instrumental priorities. What 
distinguishes these segments, qualitatively speaking, is less 
what they do, than how they do it; and in this sense, the key 
difference between contemporary architectural geometry and, 
say, that of Andrea Palladio (1508–80), is not only that we no 
longer believe in the ideal figure of the circle, but that when we 
do use it we choose to construct it with Cartesian or polar 
(parametric) coordinates, rather than with a ruler and a compass.

The difference is not only technical. As the consolidation 
of symbolic algebra and its emancipation from the figures 
of geometry began around the middle of the 16th century, 
the Renaissance architect (born in 1508) whose villas 
embody the ultimate expression of classical geometry lies 

Far from being a bonus or a side-effect, 
architectural geometry is a discipline in its own 
right, forming a long and complex continuum 
subdivided into distinct historical segments 
with vastly different instrumental priorities.
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on the wrong side of modernity by a couple of decades. The 
algebraists of the 16th and 17th centuries set out the future 
innovations of analytic and differential geometry, this new 
geometry of symbols and operators rather than lines and 
figures, which subtends our contemporary understanding 
of mathematics in space and, of course, enables the recent 
innovations of computation. With the notable exceptions of 
Desargues’s projective transformations profiled by Bernard 
Cache, and to some extent (though not exclusively), Mark 
Burry’s analysis of ruled and developable surfaces in the 
work of Antoni Gaudí and Félix Candela (see pp 80–9), 
analytic geometry is, in all its subsequent forms, the brand 
of mathematics discussed here. Hence the architectural, 
engineering and computational proposals illustrating our 
theme (as well as most geometry produced and consumed 
today in the world at large) can be said to be calculated rather 
than figured, and written rather than drawn. 

Sadly no trained architect since Desargues in the 17th 
century has managed to contribute disciplinary knowledge 
to mathematics, but the movement across the (increasingly 
wide) boundary between geometry and architecture has 
nonetheless been continuous. In the 18th century, a further 
seismic shift towards calculus, detailed by Antoine Picon in 
his account of the turbulent relationship between geometry 
and architecture, alienated our profession’s narrowly intuitive 
dimensional sensibility, leading to a protracted estrangement 
from mathematics, only weathered today, thanks in part to 
the advent of computation, which has imbued the relationship 
with a new lease of life.

Mathematics or Computation?
The relationship between computation and architectural 
geometry looms large in the collective argument exhumed 
in this issue. To explore the terms of a fair and mutual 
rapport, this collection of essays departs from the habitual 
emphasis on computational morphogenetic design that 
has dominated theoretical discourse in the last one and 
a half decades. The simplistic notions that computation 
constitutes an ‘automation’ of mathematics (a probable 
side effect of the introduction and popularity of early CAD 
systems), or conversely that mathematics is only a slower, 
static expression of computational activity, must be dispensed 
with. As Fabian Scheurer and Hanno Stehling demonstrate in 

Figure 4. Euclidean geometry at work
The applied mathematics of space in the 
17th century consists in bisecting the 
triangle and other Euclidean concerns. From 
L’Ecole des arpenteurs où l’on enseigne 
toutes les pratiques de géométrie qui sont 
nécessaires à un arpenteur (The Survey 
School where all Manners of Geometry 
Needed by Surveyors Are Taught), Thomas 
Moette (Paris), 1692.

Figure 5. Analytic geometry at work
The applied mathematics of space in 
the 19th century is no longer concerned 
with drawn figures: all steps are now 
written (and calculated). From Charles 
Dupin, Applications de géométrie et 
de mécanique à la marine, aux ponts 
et chaussées etc. pour faire suite 
aux développements de géométrie 
(Application of the Latest Developments 
in Geometry and Mechanics to Marine 
Engineering and all Manners of 
Infrastructure), Bachelier (Paris), 1822.



13

Figure 6. Omar Al Omari, Superficial Thickness I, Diploma Unit 5 		
(Learning Japanese), Architectural Association, London, 2004
Analytic geometry at work. Parametric periodic curves subjected to a ‘thickening’ 
function that reproduces the inflections of a calligrapher’s brushstroke.
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Figure 7. Omar Al Omari, Superficial Thickness II, 			 
Diploma Unit 5 (Learning Japanese), Architectural Association, London, 2004
Periodic pleating. Discontinuous parametric surfaces are subjected to a ‘pleating’ 
function that produces a highly controlled instance of superficial depth.
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their masterful analysis of the applied relationship between 
mathematics and theoretical computer science (pp 70–9), 
the relative transparency of mathematics when subsumed 
under the interface of standard software is merely an 
illusion. The essential issues of representation, abstraction 
and reduction of data are still very much there, and must 
be disentangled through a careful interplay of mathematical 
and computational resources, driven to a large extent by the 
unforgiving bottlenecks of machinic performance and physical 
materiality. Scheurer and Stehling’s essay outlines in great 
detail the interdependence of the two realms when faced with 
problems of increasing complexity, while reaffirming their 
respective specificities. 

In a similar vein, Dennis Shelden’s and Andrew Witt’s 
article demonstrates how recent developments in computation 
have re-actualised established yet hitherto exceptional 
non-Euclidean configurations, usually treated in general and 
simplistic form, and turned them into something applicable 
to architecture, ‘and indeed [to] everyday experience’. 
Recalling Felix Klein’s and David Hilbert’s famous theoretical 
consolidations of geometry in the 19th century (also 
mentioned by Amy Dahan-Dalmedico), Shelden and Witt 
suggest that the recent breakthroughs of computing may 
demand a similar approach; that innovation may bring about 
a further generalisation of historical precedent, that the 
feedback loop between the development of technology and 
the history of mathematics is still up and running, and hence 
that the relationship between them is alive and well, despite 
the more cautious prognoses spelled out by historian of 
science Dahan-Dalmedico at the close of her article.

Praxis
This issue would not be relevant without an applied survey 
of what mathematics can actually do for practice. More than 
efficiency or technique, mathematics in design is ultimately 
about individual authority. When it comes to solving problems 
and creating new things, working with mathematical concepts 
and equations, rather than with the standard modelling 
software disseminated by the industry, implies a direct 
recourse to generative symbols and marks. Writing forms 
and processes in this manner requires an authorial mindset. 
Modelling software being generally built by ‘chunking’, or 
consolidating lower-level steps into higher-level ones – like 

Figure 8. Omar Al Omari, 
Superficial Thickness II, 
Diploma Unit 5 (Learning 
Japanese), Architectural 
Association, London, 2004
Periodic Pleating. Detail of 
material model.

Figure 9. Ema Bonifacic, Suk-Kyu Hong and Jung Kim, Degenerate Weave, Diploma 
Unit 5 (Engineering the Immaterial), Architectural Association, London, 2003
The iterative summation of a complex periodic function causes a weave of indicial 
threads to veer into a hyperactive, disorderly pattern. 
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Figure 10. Ema Bonifacic, Suk-Kyu Hong and Jung Kim, 
Degenerate Weave, Diploma Unit 5 (Engineering the 
Immaterial), Architectural Association, London, 2003
Detail of thickened parametric threads.

Figure 11. Ema Bonifacic, Suk-Kyu Hong and Jung Kim, Degenerate Weave, Diploma 
Unit 5 (Engineering the Immaterial), Architectural Association, London, 2003
The woven arrangement of indicial threads veers into a hyperactive, disorderly pattern. 
Threads that used to be parallel are now secant (the intersections are flagged in red). 

In all these projects the material considerations 
and an intimate knowledge of physical 
behaviour go hand in hand with a rigorous 
mathematical formalisation, abetted by the 
latest computational facilities.
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a pyramidal structure – to work with commercial software is 
to work at the top of the pyramid, where the interaction is 
intuitive but the decisions have already been made. To write 
equations, on the other hand, is to work, if not at the bottom 
of the pyramid, at least pretty down low, where most of the 
room lies but little if anything is predefined. Hence to design 
with mathematics in 2011 is not to design free of software, a 
futile if not wholly impossible claim in an age where software 
is the only idiom available. To work with mathematics is to 
work without interface, and the difference matters: like any 
channel of communication, the interface conveys as much 
as it fashions the message itself, ultimately undermining the 
authority of the designer.

The pattern-oriented design strategies devised by Daniel 
Bosia’s Advanced Geometry Unit (AGU) at Arup (pp 58–65) 
provide a strong survey of the incredible creativity and 
pragmatic application, in different contexts and at different 
scales, of non-linearity, branching, recursion, complex 
proportional relationships and mathematical parametricism 
in practice. In all these projects the material considerations 
and an intimate knowledge of physical behaviour go hand 
in hand with a rigorous mathematical formalisation, abetted 
by the latest computational facilities. Similar concerns about 
spatial and organisational patterns, networks and scaling 
animate Michael Weinstock’s masterful study of territorial 
growth and self-organisation (pp 102–7), reconciling the 
latest heuristic paradigms of flow and network topologies with 
a time-honoured progressivist model of city growth, where the 
mathematics of space operate at a large scale.3 

Another line of argument unfolds in Scheurer and 
Stehling’s practice, designtoproduction, where such issues are 
taken at the other end of the spectrum to the micro-level of 
component fabrication, resulting in ground-breaking structures 
in collaboration with architect Shigeru Ban. Tsigkari, Davis 
and Aish at Foster + Partners use projective geometry, 
chaotic/probabilistic algorithms and statistical analysis to 
calibrate the environmental performance of some of the 
largest buildings erected by the practice in the last decade. 
And Adams Kara Taylor (AKT) research associates Panagiotis 
Michalatos and Sawako Kaijima have devised an application 
of topology optimisation theory to facilitate an intuitive yet 
rigorous approach to structural scheme design in the early 
parts of the design process (pp 66–9). 

Similar concerns abound in our own work at the London-
based IJP (see the articles pp 44–53, 100–1 and 118–21). 
IJP explores the deployment of parametric analytic equations at 
all stages of the design and construction process, from scheme 
design to tender; and at all scales, from urban infrastructure 
to numerically fabricated installations. Over the past six 
years it has developed a unique body of knowledge about 
periodic equations, variously consistent with the constraints 
of numerical fabrication machinery (some better suited to 
sheet cutting, others to lamination). This direct mathematical 
approach to practice has already inspired a new generation of 
outstanding young architects, including Max Kahlen (see his 
Rising Masses project on pp 108–11) and Ana María Flor Ortiz 
and Rodia Valladares Sánchez (The Hinging Tower, pp 112–
17), who studied under myself at the Architectural Association 
in London and Harvard University’s Graduate School of Design 
(GSD), and whose recent final theses are in part reproduced in 
this issue. Among other things, these school projects for a new 
type of global high-rise building demonstrate the application of 
periodic equations and Fourier summations to the production of 
building diagrams while pointing to many new future directions.

In March 2010, Bernard Cache, Amy Dahan-Dalmedico, 
Antoine Picon, Dennis Shelden and myself participated in a 
conference on a related subject that I convened at Harvard, 
during which many ideas presented in this issue were initially 
discussed. The variety, scope and strength of this collection of 
projects and essays testify to the continued vitality of mathematics 
in space, an age-old discipline finding itself at a defining moment 
of acute re-actualisation and renewed relevance. 1
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a Biological Paradigm for Architecture, John Wiley & Sons (London), 2010; 
Michael Hensel, Achim Menges and Michael Weinstock, AD Emergence: 
Morphogenetic Design Strategies, May/June 2004.
2. Jean Victor Poncelet, Traité des propriétés projectives des figures, 
Bachelier (Paris), 1822.
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Figure 12. Ema Bonifacic, Suk-Kyu 
Hong and Jung Kim, Degenerate 
Weave, Diploma Unit 5 (Engineering 
the Immaterial), Architectural 
Association, London, 2003
Thanks to the multiple intersections, 
half of the form is becoming potentially 
self-structural. The other half is 
removed, and the remainder laminated 
into a self-supporting structure that 
shares the morphological characteristics 
of half and whole.
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Amy Dahan-Dalmedico

Figure 1. Fdecomite, Perfect Colouring 
of Zv2 on the Riemann Sphere
The Riemann sphere (or extended 
complex plane in algebra and analysis) 
is the sphere obtained from the complex 
plane by adding a point at infinity.
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The Paris-based scientific historian Amy Dahan-Dalmedico 
asks why a knowledge of numbers, algebra and abstract 
forms should be key to our understanding of the sensible 
world. As she reveals, mathematics, like the world itself, has 
shifted and fluctuated over time since its earliest origins in 
ancient Egypt. Evolving and morphing as a discipline, it has 
covered a diverse range of practices and theories.

Figure 2. Fdecomite, With a 
Little Help from my Polyhedron
Building the origami version of 
five intersecting tetrahedra is 
a real puzzle. The Wenninger 
model is of great help for 
assembling all parts in the right 
order. The term ‘polyhedron’ 
refers to a solid with flat faces.

Throughout its long history, the bond between mathematics 
and the sensible world has always fluctuated between three key 
philosophical attitudes: representation, construction and simulation. 
Beyond the immediate notions summoned by these simple terms, 
deeper meanings emerge, constantly shifting and reconfiguring one 
another at key moments of the history of mathematics.

Mathematics are not a stable and well-defined object, but 
rather a plurality of objects, practices, theories, cognitive and 
collective constructions, which have a history and great diversity. 
Scientific theories speak of neurons, atoms, celestial bodies, but 
also of numbers, groups or functions, most of them couched in 
the language of mathematics. Hence mathematics is applied to 
the natural world, to its forms, to space and to reality at large. 
Why does the knowledge of abstract objects, such as numbers or 
algebraic structures, help us better understand, control and master 
the sensible world and its forms? Several philosophical responses 
are conceivable, which have more or less always coexisted, and are 
the focus of this introductory essay to the subject.

Geometry originated in Egypt and Mesopotamia with the 
survey of land, until the Greeks assumed that an interest could be 
taken in exact forms that are only vaguely represented by objects: 
thus no longer a tree trunk, for instance, but a cylinder; no longer 
the edge of a plank, but a truly straight line; or an absolutely flat 
plane without dents or bumps, and so on. Geometry manipulated 
these ideal forms and around 300 bc built an impressive edifice 
out of them, Euclid’s Elements, demonstrating the necessarily true 
properties of exact forms. Philosophy seized on this and declared 
that reality was an imperfect image of this exact world: the tree 
trunk became a defective cylinder, and the plank an adulterated 
plane. With Galileo, geometry entered the world and became 
reality itself. The totality of nature became a geometric edifice, an 
edifice we could learn to see. According to this realist point of view, 
mathematical objects really exist and the ‘great book of the universe 
[…] is written in the language of mathematics’.1 In this sense, 
applied mathematics is verified by experience and constitutes an 
inherent and indispensable part of the empirical sciences.
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By contrast, a large number of mathematicians, notably 
the prestigious members of Bourbaki, the Paris-based 
collective which developed highly abstract and theoretical 
mathematics from 1930 to 1970, defended a so-called 
Platonist realism, rooted in the belief that a mathematical 
reality exists independently of the human mind. The fact that 
mathematicians often reach the same results with similar objects 
through separate paths greatly incites them to believe in the 
independent existence of these objects. Hence, statements about 
mathematical objects such as Euler’s theorem (the number of 
vertices and edges minus the number of faces of the polyhedron 
is equal to 2), seem to present themselves to mathematicians 
who merely ‘discover’ their properties.

A further philosophical divide opposes Platonist realism 
to a tradition of Constructivist philosophy of mathematics. 
Constructivism posits that all truth is constructed, without 
reference to whatever it conforms to. For Austrian philosopher 
Ludwig Wittgenstein, for example, the mathematical 
understanding of a statement does not exist outside of its proof, 
and in this sense the mathematician is merely an inventor (as 
opposed to a discoverer) who establishes connections and forms 
descriptions, but does not describe real facts.2 

Mathematics is certainly characterised by an impressive 
coherence, seemingly superhuman, that distinguishes it 
from other human practices. Practitioners of mathematics 
frequently express a strong subjective sense of discovery or of 
the exploration of a terra incognita that is already extant and 
consistent. However, while the universality of mathematical 
objects does speak in favour of some kind of realism, the 
discoveries of logic in the 20th century have made this position 
difficult to defend. In 1931, Kurt Gödel showed that any 
coherent axiomatic system, a system without contradictions, 
features propositions that cannot be proven true or false; 
while other mathematical results from set theory reinforce the 
sentiment of the ‘unreality’ of the world of mathematics.

For the proponents of a Platonist realist view, 
mathematical objects are figments of the human imagination, 
and mathematical theories principally useful fictions. The 
philosopher Hartry Field went as far as proposing that 
mathematical theories are literally false since their objects do 
not really exist. Yet what characterises a fiction is not so much 
its logical status (whether it is true or false), but its cognitive 
function. As representations whose purpose is less to provide an 
accurate description of reality than to help us imagine possibly 
unreal situations, fictions are assisting our imagination, and that 

is where their scientific pertinence lies, science being more than 
a mere collection of facts. To produce theories we must envision 
hypotheses and explore their consequences; we must build 
models of phenomena, and formulate idealisations. Imagining 
is not only representing an unreal situation, but simulating 
it; all simulations must be represented in a hypothetical ‘as if ’ 
mode, which fiction and imagination support. Thus, in constant 
interaction with one another, representing, constructing and 
simulating form three inseparable moments of mathematical 
activity: to represent an object, other objects must be 
constructed from it; to construct an abstract object (a function, a 
transformation), we must represent it; and to simulate an object, 
we must elaborate fictitious representations which mobilise 
more constructions at will.

Figure 3. M de Genssane, La Géométrie Souterraine ou Traité de géométrie 
pratique appliqué à l’usage des travaux des mines (Subterranean Geometry or 
Applied Geometry Treatise Intended for All Manners of Mining Works), 1776 
Works such as this treatise of applied geometry by a well-known French mining engineer 
in the 18th century disseminated the emerging paradigm of analytic geometry.
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Figure 4. Cara Liberatore, Where the Truly Formless 
Lives, Superficial Spaces, Harvard Graduate School 
of Design, Cambridge, Massachusetts, 2010
Analytic geometry at work: a coarse quadruple 
parametric ripple with sectional parametric curves. 
This warm-up piece was submitted in response to a 
question on form and formlessness.
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Figure 5. Stefano Rabolli-Pansera, Stereotomic Self-Portrait, Diploma Unit 5 
(Engineering the Immaterial), Architectural Association, London, 2003 
Descriptive geometry at work, submitted in response to an undergraduate 
design brief on self-representation. The Mongean representation of the drawing 
plane demonstrates a technique unchanged since the late 18th century.

Figure 6. Matthew Chan, Stereotomic Self-Portrait, 
Diploma Unit 5, Architectural Association, London, 2003
Several successive derivations of stereotomic projection 
(projective geometry applied to stone cutting) result 
in a highly articulated prismatic object recording, in 
metaphorical and narrative terms, an argument between 
the author and his girlfriend. 

Figure 7. Harold Tan, Stereotomic Self-Portrait, Diploma 
Unit 5, Architectural Association, London, 2003
In this particular narrative, the deployment of stereotomic 
projection to subtract portions of matter from a solid 
cube offers a metaphor of the application of colour 
inversion within the cubic red-green-blue (RGB) space 
of the additive light colour model (a slice of which we 
casually experience when using the ‘colour-picker’ of 
digital imaging software).
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In conclusion, is mathematical realism independent of 
sensible reality? Is mathematics to be found in the world, or 
in our minds and imagination? The argument is without a 
doubt impossible to settle and, unless one is a philosopher, a 
bit of a waste of time: the question of mathematical realism is 
a metaphysical problem, forever unanswerable or irrefutable. 
The development of the neurosciences has hardly made a 
difference in this regard. For the defenders of an ideal (or 
Platonist) realism, the brain may possess structures that give it 
access to the independent universe of mathematics. For those 
who envision a realism inscribed in sensible reality, mathematics 
is simply in the world, and since our brains are tailored by the 
process of evolution to understand the world, we are naturally 
drawn to doing mathematics.

The historian not directly immersed in creative 
mathematical activity (nor prone to making philosophical 
statements) will contend that the historical and cultural contexts 
are key to the emergence of certain concepts. Mathematics 
being a human construction inscribed in a temporal dimension, 
it is difficult to conceive of a mathematical reality out of time 
and out of touch with its surroundings. And since the very 
essence of cultural facts is to emerge among small human 
groups and amalgamate in larger families while preserving 
their specificity, mathematics aspires to working with universal 
structures, which is one of its lasting characteristics. It is 
also unbelievably diverse. Because of the hegemony of the 
form inherited from Greek mathematics, it took some time 
to recognise the great diversity of forms of mathematical 
expression. Yet, strikingly, such diverse forms are comparable, 
and it is possible to rigorously reinterpret the mathematical 
knowledge of one civilisation within the context of another.

Furthermore an understanding of mathematical reality 
inscribed in history, space, time and culture imbues the work 
needed to reconstruct and analyse mathematical practices with 
veritable meaning. Thinking, for example, of complex numbers 
as eternal members of a Platonic heaven of mathematical ideas, 
leads us to conceptualise the development of this key concept as 
a series of increasingly accurate approximations of its present-
day formulation, always presumed to be its perfect embodiment. 
Such a deterministic history may be useful to the mathematician 
and the student, but it does not take into account the highly 
contingent aspects of the formation of mathematical knowledge, 
with its generally chaotic course and winding paths of discovery. 
The historians of mathematics with a finite amount of time 
to dedicate to each phase of history cannot embrace all of 

the meanderings of mathematical practice as it historically 
developed. They must compromise between a dimension of 
historicity proper to mathematical knowledge and mathematics’ 
potential objectivity and universality.

A (Very) Brief History of the Mathematics of Space
With the notable exception of Archimedes’ treatise ‘On 
Spirals’ (225 bc), the mathematics of Greek antiquity was only 
concerned with immobile objects contemplated in a sort of 
universe of ideas. The Ancients did use some analogous curves 
to explore intractable problems (for example, the duplication 
of the cube), but discounted such findings as unworthy of what 
they would have hoped to obtain using a ruler and a compass.

The 17th century witnessed the concurrent birth of 
infinitesimal calculus and the science of movement, bringing 
radically different conceptions of mathematics to a head. 
Concerned with methodological rigour and the need for 
generality, René Descartes did not see curves as spatial 
realities for their own sake, but as the set of solutions to a 
given equation. For Isaac Newton, on the other hand, all 
measurements were a function of time. A curve derived through 
the Newtonian Method of Fluxions was a reality that moved 
and animated. The tension opposing the two titans of the 17th 
century was not only a matter of temperament, or a historical 
fluke. It expressed the very nature of mathematics, torn between 
two opposed yet inseparable trends: on the one hand we have 
rigour, an economy of means and an aesthetic standard. On the 
other, a will to conquer and the desire to force one’s way down 
new paths. From the latter’s point of view, mathematics should 
not only be a well-ordered ceremonial, but a tool for controlling 
and creating things.

Geometry’s original aim was the measurement of angles, 
lengths and surfaces, but from the Renaissance onwards, artistic 
curiosity began to represent the real to better understand it. 
For the geometers of the 19th century, a period witnessing the 
explosion of a realist understanding of the discipline, descriptive 
geometry was essentially a graphical procedure for tackling 
numerous real practical problems. In 1822, however, Jean-Victor 
Poncelet explored the properties of figures remaining invariant 
by projection with the systematic help of infinite or imaginary 
elements, endowing projective geometry with a far greater 
degree of abstraction and generality. Many more developments 
were to come. Working independently during the first decades 
of the 19th century, Nikolai Lobachevski and János Bolyai 
reached the conclusion (already intuited by CF Gauss after 
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1813) that a geometry of space did ‘exist’ and conform on many 
points to Euclidean geometry, with the exception of the so-
called Fifth Postulate (through a point outside of a line pass an 
infinity of parallels to that line). By the middle of that century, 
numerous constructions of Euclidean models of non-Euclidean 
geometries provided these discoveries with intuitive support 
and accelerated their ultimate acceptance. In 1872, studying 
the properties of figures left invariant by a given class of 
transformations, Felix Klein reorganised the body of all known 
geometries. By identifying curves in space with binary quadratic 
forms, Klein advocated the merger of geometry and algebra, 
now an established tendency of contemporary mathematics.

After the prodigious development of geometry in the 
19th century, the time had come to rebuild the foundations of 
mathematics, which the advent of non-Euclidean geometries 
had shaken. A powerful research movement converged 
towards the axiomatisation of geometry, led by David Hilbert 
and his Foundations of Geometry (1899).3 Beginning with 
undefined objects whose nature hardly mattered – points, 
lines, planes or chairs, tables or spoons – Hilbert specified 
relations between them through axioms, or given rules, 
no longer seeing the elements of geometry as intuitively 
realistic objects, but as variables of a formal language (or 
their symbols). The Foundations owes its radical novelty to 
its capacity to integrate the general with the technical and 
mathematical philosophy with practice. Hilbert was the first 
to fully consider space as a mathematical concept, rather 
than as the site of our experience, declaring geometry a 
formal science rather than a set of propositions about ‘reality’, 
and breaking, for the first time, the bond between this 
foundational discipline and the sensible world. 

In stark contrast to the Hilbertian project, the Frenchman 
Henri Poincaré dedicated himself to what he called 
‘problems that are formulated’ as opposed to ‘problems that 
we formulate’. Scorning problems artificially fabricated 
by mathematicians, Poincaré privileged above all the large 
questions arising in the natural sciences, such as the study 
of celestial mechanics, which led him to develop qualitative 
methods for the study of dynamic systems. By combining local 
and general points of view, such methods explored the relative 
relationships and general behaviour of trajectories, their 
stability and complexity, allowing one to look for mathematical 
solutions even when they were not quantifiable. From these 
new methods, other mathematicians have been able to develop 
current theories of complexity and chaos. 

Recent Developments
Today the image of mathematics ruled by structures and the 
axiomatic method is a matter of the past. In a technological 
environment characterised by the omnipresence of computers, 
a different set of domains – those precisely excluded by the 
axiomatic and structuralist programme – have acquired an 
increasing importance: discrete mathematics, algorithms, 
recursive logic and functions, coding theory, probability 
theory and statistics, dynamical systems and so on. When the 
disciplinary hierarchy is upset in such a way, the role of past 
mathematicians must be re-evaluated, and mathematics’ own 
methodology re-examined. With the recent advance of the 
science of chaos, for example, mathematics eclipsed by the 
Hilbertian heritage, such as Poincaré’s qualitative methods, have 

Figure 8. George L Legendre, Mono-Linear Klein Bottle, 2003
Ribbing along the direction of the warp emphasises the cross-section of the bottle’s tubular 
body and its variable girth, from thin neck to thick midriff. Ribbing along the other way 
enhances the perception that the bottle turns in on itself. The weft outlines the notional 
continuity between interior and exterior for which the Klein bottle is famed.
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Figure 11. Evariste Galois, Ecrits et 
mémoires Mathématiques (Collected 
Writings on Mathematics), fragment from 
unpublished manuscript, 1832
Galois made significant contributions to the 
emergence of algebraic structures in the 
19th century. 

Figure 9. George L Legendre, High-Rise Sketch, 2011
Analytic geometry at work: a parametric circle swept 
along a periodic curve.

Figure 10. Mark Lewis, George L Legendre, Richard Liu and Kazuaki 
Yoneda, Parametric Seed, Option Studio Rising Masses II, Harvard 
Graduate School of Design, Cambridge, Massachusetts, 2010
The deployment of the arcsine function discretises and ‘straightens out’ a 
translated solid with a smooth, periodic profile. The seed was eventually 
developed into a high-rise proposal by Richard Liu and Kazuaki Yoneda.
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Figure 12. Fdecomite, 
Connex Labyrinth 
Connex labyrinth with 26 
choices at each node.
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Figure 13. Rob Scharein, Chart of the unpredictable states of the Lorenz attractor, 2007 
The Lorenz attractor is a non-linear dynamic system simulating the two-dimensional flow of 
fluid for given temperature, gravity, buoyancy, diffusivity, and viscosity factors.

regained an important position. Similarly, the experimental 
method is no longer regarded as an antinomy to mathematics. 
While in the 1950s or 1960s structure was the emblematic 
paradigm of science, the notion of model is more typical of 
today’s knowledge, even if it is premature to affirm that it will 
ultimately prevail.

In the 1980s, under the joint influence of technological 
progress and the increased awareness of the social dimension 
of mathematical practice, questions emerged in the community 
that, a few years earlier, would have been deemed totally 
incongruous. A new type of demonstration heavily reliant on the 
computer, such as the four-colour theorem by K Appel and W 
Haken (1986), called into question the very nature of proof in 
mathematics: how could a human mind grasp a demonstration 
which filled nearly 400 pages and distinguished close to 1,500 
configurations by means of long automatic procedures? Starting 
from computer-generated proofs, the discussion soon moved 
to other types of demonstrations, either unusually expansive 
or mobilising an extremely complex architecture of conjectures 
stemming from various domains – the work of Edward Witten 
on knot theory and string theory (after 1997) comes to mind. 

The computer’s contribution to mathematical research was 
not, however, a new development; the evolutionary pattern of 
exploring results using the machine was already established 
and irreversible. A large number of conjectures emerging from 
extensive computational activity had been used for years before 
they could be rigorously proved, as was the case, for instance, 
with the topological properties of the Lorenz attractor. The 
founders of the journal Experimental Mathematics4 summed up 
this trend unequivocally: ‘The role of computers in suggesting 
conjectures and enriching our understanding of abstract 
concepts by means of examples and visualisation is a healthy and 
welcome development.’5

From the 1980s onwards the increasingly pressing theme 
of the social dimension of mathematics gradually brought the 
discipline back to earth. As the great mathematician William 
Thurston wrote: ‘Mathematical knowledge and understanding 
[are] embedded in the minds and in the social fabric of the 
community of people thinking about a particular topic …. 
In any field, there is a strong social standard of validity and 
truth ….’6 Similarly, René Thom claimed that ‘rigour can be 
no more than a local and sociological criterion’.7 When called 
upon to check Andrew Wiles’s proof of Fermat’s theorem in 
2001, several mathematicians recognised that the social and 
institutional dimension of the confidence vested in them were 
at least as decisive a factor as the rigour of the verification 
they could perform. Hence, advocated since the 1960s by 
both philosophers and historians of science, the sociological 
dimension of mathematics eventually caught up with those 
thinkers so far least amenable to it. 1
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Figure 1. Philibert De L’Orme, The Good Architect, from Le 
Premier Tome de l’Architecture de Philibert De L’Orme (Paris), 1567
Restraint is clearly among the characteristics of the good architect.
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Architecture and 
Mathematics

The introduction of calculus-based mathematics in the 18th century 
proved fatal for the relationship of mathematics and architecture. As 
Antoine Picon, Professor of History of Architecture and Technology 
at Harvard Graduate School of Design, highlights, when geometry 
was superseded by calculus it resulted in an ensuing estrangement 
from architecture, an alienation that has persisted even with the 
widespread introduction of computation. It is a liaison that Picon 
characterises as having shifted between hubris and restraint.

Antoine Picon

Between Hubris
and Restraint
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Until the 18th century, following the Renaissance’s 
preoccupations with perspective and geometry, the relations 
between mathematics and architecture were both intense and 
ambiguous. Mathematics was sometimes envisaged as the 
true foundation of the architectural discipline, sometimes as 
a collection of useful instruments of design. Mathematics 
empowered the architect, but also reminded him of the limits 
of what he could reasonably aim at. Inseparably epistemological 
and practical, both about power and restraint, the references to 
mathematics, more specifically to arithmetic and geometry, were 
a pervasive aspect of architecture.

Towards the end of the 18th century, the diffusion of 
calculus gradually estranged architecture from mathematics. 
When they looked for foundations, 19th-century architects 
like Eugène-Emmanuel Viollet-le-Duc were more interested 
by the sciences of life than by the new calculus-based 
mathematics of their time. While arithmetic and geometry 
remained highly useful practical tools, they gradually lost their 
aura of cutting-edge design techniques.

This estrangement has lasted until today, even if the 
computer has enabled architects to put calculus to immediate 
use. Actually, today’s situation is quite paradoxical insofar 
that under the influence of digital tools architecture has 
never used so many mathematical objects, from Bézier curves 
to algorithms, while remaining indifferent to the question 
of its relation to mathematics. A better understanding of 
the scope and meaning that mathematics used to have for 
architects might very well represent a necessary step in order 
to overcome this indifference. The purpose of this article is to 
contribute to such an understanding.

Mathematics as Foundation 
From the Renaissance onwards, the use of mathematical 
proportions was widespread among architects who claimed 
to follow the teachings of Roman architect and engineer 
Vitruvius. This use was clearly related to the ambition to 
ground architecture on firm principles that seemed to possess 
a natural character. For the physical world was supposed to 
obey proportions, from the laws governing the resistance 
of materials and constructions to the harmonic relations 
perceived by the ear.

The interest in proportions was related to the intuitive 
content that arithmetic and geometry possessed. As we 
will see, the strong relation between mathematics and the 
intuitive understanding of space was later jeopardised by the 
development of calculus. But it bore also the mark of two 
discrepant points of view.

Proportion could be first interpreted as the very essence of 
the world. Envisaged in this light, proportion possessed a divine 
origin. The 17th-century French theologian and philosopher 
Jacques Bénigne Bossuet gave a striking expression of this 
conception when he declared in one of his treatises that God 
had created the world by establishing the principles of order 
and proportion.1 In this perspective, proportion was about 
power, about the demiurgic power of creation, and the architect 
appeared as the surrogate of God when he mobilised, in his 
turn, this power to plan his buildings.

Following Spanish Jesuit Juan Bautista Villalpandus’s 
detailed reconstruction of the Temple of Jerusalem based on 
an interpretation of Prophet Ezekiel’s vision and published 
between 1596 and 1604, the large array of speculations 
regarding the proportions dictated by God to the builders of the 
temple stemmed from the belief that architectural design was 
ultimately an expression of demiurgic power. Historian Joseph 
Rykwert has shown how influential these speculations were on 
the development of the architectural discipline in the 16th and 
17th centuries.2 Through the use of proportions the architect 
experienced the exhilaration of empowerment.

But proportion could also be envisaged under a different 
point of view, a point of view adopted by Renaissance theorist 
Leon Battista Alberti for whom the purpose of architecture 
was to create a world commensurate with the finitude of man, 
a world in which he would be sheltered from the crude and 
destructive light of the divine. In this second perspective, 
proportion was no longer about the hubris brought by unlimited 
power, but about its reverse: moderation, restraint. Philosopher 
Pierre Caye summarises this second attitude by stating that the 
aim of architects like Alberti was to rebuild something akin to 
Noah’s Ark rather than to emulate the Temple of Jerusalem.3 It 
is worth noting that such a conception was to reappear much 
later with Le Corbusier and his Modulor, which was inseparable 
from the attempt to conceive architecture as the core of a totally 
designed environment that would reconcile man within his 
inherent finitude.4

Exhilaration of power on the one hand, and the restraint 
necessary to protect man from the unforgiving power of 
the divine on the other: the reference to mathematics in the 
Vitruvian tradition balanced between these two extremes. 
Such polarity was perhaps necessary to give proportion its full 
scope. Now, one may be tempted to generalise and to transform 
this tension into a condition for mathematics to play the role 

Figure 2. Juan Bautista Villalpandus, Chart of the proportions of the entablature of 
the Temple of Jerusalem, from El Tratado de la Arquitectura Perfecta en La Última 
Visión del Profeta Ezequiel (Rome), 1596–1604 
The architectural discipline was supposed to emulate the creative power of the Divinity 
by following those very rules of proportion that were constitutive of the Creation and 
that had been dictated by God to the builders of the Temple of Jerusalem.
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of a basis for architecture. Another way to put it would be 
to say that in order to provide a truly enticing foundational 
model for architecture, mathematics must appear both as 
synonymous with power and with the refusal to abandon 
oneself to seduction of power. For this is what architecture is 
ultimately about: a practice, a form action that has to do both 
with asserting power and refusing to fully abandon oneself to it. 
On the one hand the indisputable presence of the built object 
is synonymous with the permanence of power; on the other 
the same built object opposes its opacity, and a certain form of 
instability, at least if we are to follow Peter Eisenman’s analyses, 
to the sprawling domination of power.

To conclude on this point, one may observe that this 
polarity, or rather this balance, has been compromised today. 
For the mathematical procedures architects have to deal with, 
from calculus to algorithms, are decidedly on the side of power. 
Nature has replaced God, emergence the traditional process of 
creation, but its power expressed in mathematical terms conveys 
the same exhilaration, the same risk of unchecked hubris as in 
prior times. What we might want to recover is the possibility for 
mathematics to be also about restraint, about stepping aside in 
front of the power at work in the universe.

It is interesting to note how the quest for restraint echoes 
some of our present concerns with sustainability. The only thing 
that should probably not be forgotten is that just like the use 
of mathematics, sustainability is necessarily dual; it is as much 
about power as about restraint. Our contemporary approach 
to sustainability tends to be as simplistic as our reference to 
mathematics, albeit in the opposite direction.

Tools for Regulation and/or Invention 
Let us turn now to mathematics as tools. From an 
architectural standpoint, the same mathematical principle 
can be simultaneously foundational and practical. Vitruvian 
proportion corresponded both to a way to ground architecture 
theoretically and to a method to produce buildings. In this 
domain also, a duality is at work.

This second duality has to do with the fact that tools may 
be seen as regulatory instruments enabling coordination and 

control, giving precedence to standardisation upon invention. 
Until the 18th century, most uses of mathematics and 
proportion had in practice to do with coordination and control 
rather than with the search for new solutions. But tools can be 
mobilised to explore the yet unknown; they can serve invention. 
From the Renaissance on, the geometry used for stone-cutting, 
also known as stereotomy, illustrates perfectly this ambivalence.

On the one hand, from Philibert De L’Orme to Gaspard 
Monge, this geometry of a projective nature was seen by its 
promoters as a means to exert greater control on architectural 
production. But this ambition was accompanied with the 
somewhat contradictory desire to promote individual invention. 
De L’Orme epitomises this contradiction. Besides major 
architectural realisation like the castle of Anet or the Tuileries 
royal palace, his main legacy was the first comprehensive 
theoretical account of the geometric methods enabling designers 
to master the art of stereotomy. Until De L’Orme, this art was 
a secret transmitted from master mason to apprentice, a secret 
based on recipes and knowhow. De L’Orme was actually the first 
to understand some of the underlying projective principles at 
work in such a practice. For the architect, the aim was twofold. 
First, he wanted to achieve a better control of the building 
production. It is not fortuitous that De L’Orme was the first 
architect to be entrusted with major administrative responsibility 
by the crown. But the objective was also to invent. The best 
demonstration of this art of invention was in his eyes the variation 
of the Montpellier squinch that he designed for Anet. The 
identification of the true regulatory principles at work in a given 
practice could lead to truly innovative combinations.5

Control and invention, these two objectives were also on 
the agenda of mathematician Gaspard Monge, the inventor 
of descriptive geometry. Descriptive geometry actually 
derived from the geometry used for stereotomy that had 
been explored by De L’Orme at the dawn of the French 
Renaissance. For Monge, descriptive geometry was both 
about standardisation and invention.6

In a similar vein to the hypothesis concerning mathematics 
as a theoretical foundation for architecture, the following 
can be proposed: in order to provide truly enticing tools 
for designers, mathematics must be about both control and 
invention. Today, what might be often lacking is not so much 

Figure 3. Le Corbusier, Unité d’Habitation de Firminy, France, 1946–52
Le Corbusier’s objective is to place man within a totally designed environment.

Figure 4. Philibert De L’Orme, geometrical construction of the squinch of Anet, 
from Le Premier Tome de l’Architecture de Philibert De L’Orme (Paris), 1567 
For De L’Orme, mathematics, and geometry in particular, was the foundation of 
architectural invention.
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Figure 5. Claude Navier, Study of the bending of elastic curves, 
from Résumé des Leçons (…) sur l’Application de la Mécanique à 
l’Etablissement des Constructions et des Machines (Paris), 1826
Navier’s work marks the triumph of calculus in the science of constructions. 

. . . calculus would also be instrumental in the 
development of economic theory by providing the 

means to study the circulation of goods and capitals.
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the capacity of mathematics to be on the side of invention, 
but rather its contribution to the framing and standardisation 
of design problems. In contemporary cutting-edge digital 
practices, mathematical entities and models are most of the time 
mobilised in a perspective that has to do with emergence, with 
the capacity to amaze, to thwart received schemes.

One of the best examples of this orientation lies in the 
way topology has been generally understood these days. What 
has most of the time retained the imagination of designers are 
topological singularities, what mathematician René Thom has 
dubbed as ‘catastrophes’. This explains the fascination exerted 
on architects by topological entities like the Möbius strip or 
the Klein bottle. This interpretation of topology is at odds with 
what mathematicians consider as its principal objective, namely 
the study of invariance. Whereas architects are usually interested 
in extreme cases that allow surprising effects to emerge, the 
mathematicians’ perspective is almost opposite. It has to do with 
conservation rather than sheer emergence. It might be necessary 
to reconcile, or at least articulate these two discrepant takes on 
the role of mathematics to fully restore their status.

The Calculus Breaking Point 
The end of the 18th century clearly marks a breaking point 
in the relationship between architecture and mathematics. 
Until that time, arithmetic and geometry had been a constant 
reference for the architect, as foundational knowledge as 
well as practical tools, as empowerment and as incentive for 
restraint, as a means of control and standardisation as well as a 
guideline for surprising invention.

In all these roles, mathematics had a strong link with spatial 
intuition. Arithmetic and geometry were in accordance with 
the understanding of space. This connivance was brought to 
an end with the development of calculus and its application 
to domains like strength of materials. First, calculus revealed 
the existence of a world that was defi nitely not following 
the rules of proportionality that architects had dwelt upon 
for centuries. Galileo, for sure, had already pointed out the 
discrepancy between the sphere of arithmetic and geometry and 
domains like strength of materials in his Discorsi e dimostrazioni 
matematiche intorno a due nuove scienze (Discourses and 
Mathematical Proofs Regarding Two New Sciences) published 
in 1638. But such discrepancy became conspicuous to architects 
and engineers only at the end of the 18th century.

The fact that some of the operations involved in calculus 
had no intuitive meaning was even more problematic. It meant 
that the new mathematics were like machines that possessed a 
certain degree of autonomy from intuitive experience. A century 
later, nascent phenomenology would return to this gap and 
explore its possible philosophical signifi cation.

Among the reasons that explain such a gap, the most 
fundamental lies in the fact that calculus has generally to 
do with the consideration of time instead of dealing with 
purely spatial dimensions. What was the most puzzling, 
like the so-called infi nitely small, were actually elementary 
dynamic processes rather than static beings. Calculus’s most 
striking results were by the same token related to dynamic 
phenomena like hydraulics and the study of fl ows. Later 
on, calculus would also be instrumental in the development 
of economic theory by providing the means to study the 
circulation of goods and capitals.

Another reason explaining the growing gap between 
architecture and mathematics was the new relation between 
theory and practice involved in the transition from arithmetic 
and geometry to calculus. In the past, mathematical formulae 
were seen as approximate expressions of a higher reality 
deprived, as rough estimates, of absolute prescriptive power. 
One could always play with proportions for they pointed 
towards an average ratio. The art of the designer was all 
about tampering with them in order to achieve a better 
result. As indicators of a higher reality, formulae were an 

Figure 6. IJP, Klein Bottle 
An intriguing topological singularity.

Figure 7. Galileo Galilei, Animal bones, from Discorsi e dimostrazioni 
matematiche intorno a due nuove scienze, 1638
The example is used by Galileo to illustrate how strength is not proportional 
to size, contrary to what proportion-based theories assumed.
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Figure 9. Michael Weinstock, Drosophilia Wing Development, 2010
The emergence of small complex anatomical organisations makes possible the 
emergence of ever larger and even more complex organisations. Complexity 
builds over time by a sequence of modifications to existing forms.

Figure 8. Jenny Sabin + Jones LabStudio, 
Branching Morphogenesis, 2008
Complex organisation is today found at 
every level of living organism, from macro- 
to microstructures. Computer simulation 
is instrumental in the exploration of such 
complex organisational patterns.

Figure 10. Michael Weinstock, Architectural and urban forms in Mesopotamia
The organic property of emergence is supposed to apply to both the natural 
and the human realms.
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expression of power, as average values that could be tampered 
with; they went along with the notion of restraint.

In the new world of calculus applied to domains like strength 
of materials or hydraulics, mathematics no longer provided 
averages but firm boundaries that could not be tampered with. 
From that moment onwards, mathematics was about setting 
limits to phenomena like elasticity, then modelling them with 
laws of behaviour. Design was no longer involved. Theory set 
limits to design regardless of its fundamental intuitions.7

As a consequence, 19th-century architects became far less 
interested in the new mathematics of their time than in history, 
anthropology and the biological sciences. Theorists like Viollet-
le-Duc or Gottfried Semper are typical of this reorientation. 
Despite claims to the contrary made by architects like Le 
Corbusier, this indifference to mathematics was to remain 
globally true of modern architecture.

The Ambiguities of the Present 
Today the computer has reconciled architecture with calculus. 
For the first time, architects can really play as much with time 
as with space. They can generate geometric flows in ways 
that transform architectural forms into sections or freezes of 
these flows. But this has not led so far to a new mathematical 
imaginary. To put it in the historical perspective adopted here, 
mathematics appear neither as foundational nor as tools.

Various reasons may account for this situation. First, the 
mathematical principles are very often hidden behind their 
effects on the screen. In many cases the computer veils the 
presence of mathematics. This is a real issue that should be 
overcome in the perspective of truly mastering what is at stake 
in computer-aided design.

Second, one has the disturbing nature of the underlying 
mathematical principles mobilised by design. In computer-aided 
design, one no longer deals with objects but with theoretically 

unlimited series of objects. One deals also with relations. This 
is what parametric design is about: considering relations that 
can be far more abstract than what the design of objects usually 
entails. Scripting and algorithmics reinforce this trend. With 
algorithmics, one sees the return of the old question of the lack 
of intuitive content of some operations.8

However, the main reason may have to do with the 
pervasiveness of a new kind of organicism, vitalism or, rather, 
materialism, a materialism postulating an animated matter, 
a matter marked by phenomena like emergence, a matter 
also in which change is as much qualitative as quantitative.9 
Mathematics serves this new materialism, but is not seen as the 
most profound layer of it. This might result from the fact that 
the polarities evoked earlier have not been reconstituted.

In architecture, today’s mathematics is about power and 
invention. Restraint and control through the establishment 
of standards have been lost so far. The reconstitution of this 
polarity might enable something like the restoration of an 
essential vibration, something akin to music. Architects need 
mathematics to embrace the contradictory longing for power 
and for restraint, for standardisation and for invention.

To achieve that goal, one could perhaps follow a couple of 
paths. One has to do with parametricism, but parametricism 
understood as restraint and not only as power, and also 
parametricism as having to do with the quest for standards 
and not only of invention.

Another path worth exploring is simulation. Simulation 
goes with the new importance given to scenarios and events. In 
this perspective, architecture becomes something that happens, 
a production comparable to a form of action, an evolution 
that lies at the core of today’s performalist orientation.10 
Mathematics and architecture might meet again in the name 
of action, under the aegis of an ethics prescribing when to use 
power and when to adopt restraint. 1

1. Jacques Bénigne Bossuet, Introduction à la Philosophie, 
ou de la Connaissance de Dieu, et de Soi-Mesme, R-M 
d’Espilly (Paris), 1722, pp 37–8.
2. Joseph Rykwert, On Adam’s House in Paradise: The Idea 
of the Primitive Hut in Architectural History, Museum of 
Modern Art (New York), 1972.
3. Pierre Caye, Empire et Décor: Le Vitruvianisme et la 
Question de la Technique à l’Age Humaniste et Classique, J 
Vrin (Paris), 1999.
4. See Christopher Hight, Architectural Principles in the Age 
of Cybernetics, Routledge (New York), 2008, pp 55–69.
5. Philippe Potié, Philibert De L’Orme: Figures de la Pensée 
Constructive, Parenthèses (Marseilles), 1996.
6. Joël Sakarovitch, Epures d’Architecture: De la Coupe 
des Pierres à la Géométrie Descriptive XVIe-XIXe Siècles, 
Birkhäuser (Basel), 1998.

7. See Antoine Picon, L’Invention de l’Ingénieur Moderne: 
L’Ecole des Ponts et Chaussées 1747–1851, Presses de 
l’ENPC (Paris), 1992, pp 498–505.
8. Antoine Picon, Digital Culture in Architecture: An 
Introduction for the Design Professions, Birkhäuser (Basel), 
2010.
9. Michael Weinstock, The Architecture of Emergence: The 
Evolution of Form in Nature and Civilisation, John Wiley & 
Sons (Chichester), 2010.
10. Yasha Grobman and Eran Neuman (eds), Performalism: 
Form and Performance in Digital Architecture, Tel Aviv 
Museum of Art (Tel Aviv), 2008.

Text © 2011 John Wiley & Sons Ltd. Images: p 31(b) © Antoine Picon; 
p 33(b) © IJP; p 34(t) © Jenny E Sabin; p 34(b) © Michael Weinstock

Notes



36

Continuity 
and Rupture

Dennis R Shelden
Andrew J Witt

Figure 1. A medial surface 
discretised by parallelepipeds
The medial surface represents a class of 
surfaces that synthesise global topology 
with local discretisation.
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There is currently a disjoint between the enthusiasm 
that is expressed for geometry in architecture 
and the disparate manner in which it is applied 
spatially. Dennis R Shelden and Andrew J Witt 
of Gehry Technologies here seek to address this by 
reconnecting theory and practice with developments 
in modern mathematics.

It can be argued that architecture’s contemporary embrace of 
the geometries of modern mathematics has occurred derivative 
of, but largely removed from, the corresponding evolution 
in the foundational basis of space and shape that these 
advances propose. As algorithmic design has emerged through 
application of a collection of discrete geometric techniques, 
the contemporary language of form has become a disparate 
archipelago of geometries with unique topological signatures, 
collectively instantiated into space but otherwise disconnected 
from any unifying framework. 

The project featured here is twofold. First, it seeks 
to reconnect the theory and discourse of contemporary 
architectural form to its origins in the development of 
modern mathematics, and in doing so bring to light the 
radical implications these theoretical developments offer to 
the epistemology of form. From the basis of this emergent 
theoretical foundation, a framework for the examination of form 
is proposed that reveals the distinct topologies of contemporary 
architectural form as aspects of a synthetic and unifying 
problematic. As a central example, the framework is applied 
to the oppositions of continuous and discrete topologies, and 
demonstrates that these apparently contrary signatures can be 
seen as duals, co-emerging from a common origin.

Space and Shape
From antiquity until the present, architecture has been founded 
on the principles, constructs and, to no small extent, the 
ontologies of the Euclidean and Cartesian systems. Often used 
interchangeably, these systems both individually and in concert 
make specific assertions on the nature of geometry and its 
relationship to space. Euclid’s Elements1 establish geometry 
through assertions on constructions of shapes – the lines and arcs, 
their measurements, angles and intersections – without directly 
referencing a spatial medium. They establish ‘shape as construction’.

The Cartesian system declares shape as an algebraic 
function on points in real numbered coordinate space (Rn). 
The fact that the Euclidian constructions hold when described 

as coordinates is one of the remarkable achievements of the 
Cartesian system. However, no less remarkably, the Euclidean 
axioms do not presume or require the presence of any space, real 
numbered or other, to be complete. 

The nature of space, in which the constructions occur and 
the axioms hold, has been debated throughout the history of 
spatial ontology,2 and specifically whether space is absolute, 
discrete from geometries it contains, or relational, sufficiently 
defined by relationships between spatial phenomena. Despite 
the complexity of Descartes’s position,3 and Euclid’s silence 
on the topic, the Euclidean/Cartesian system has become 
identified with geometry as functions on points in three-
dimension, real numbered space, and of ‘shape as occupancy’ 
of three-dimensional space. This containing space is presumed 
Euclidean: linear, continuous, absolute and singular; there is 
only one such space in which all shape occurs. 

Shape grammar theory, as established by George Stiny,4 
provides an important counterpoint to this largely pervasive 
view of design shape as occupancy of point set topology. 
This work re-prioritises shape over space, and re-establishes 
an axiomatic system of shape as an algebraic topology of 
shapes and their parts. As with the Euclidean elements, shape 
grammars form a complete system of shape description whose 
closure is independent of any containment space. While much 
of the application of this system has been concerned with 
developing substitution grammars of Euclidean transformations 
implicitly deployed in the context of a Euclidean spatial 
medium, the shape grammar system has demonstrated 
applicability to problems involving non-Euclidean elements and 
their transformations as well. 

In the last half-decade, the available descriptions of 
architectural form have radically expanded beyond the 
Euclidean to include new geometries: the non-Euclidean, the 
fractal, the procedural and the parametric. The existence of such 
geometries has been supposed over the past three centuries, but 
prior to digital computation they could be treated only in their 
most general forms and through their most simplistic examples, 
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largely inaccessible to anyone beyond topologists. These 
geometries are no longer seen as monstrous or pathological, 
devised to challenge the limits of the Euclidean, but rather 
as generalisations of the classic geometries, formalisms of 
utility and applicability to architecture, and indeed of everyday 
experience. Collectively they can be seen as positing a view of 
‘shape as space’; moreover as connections via mappings among 
a disparate network of Euclidean, non-Euclidean and more 
general topologies.

The most visible examples are the tensor manifolds of 
non-uniform rational b-spline (NURBS) surfaces. These 
geometries occur as R2 x R3 mappings between two or more 
distinct topological spaces: an intrinsic two-dimensional 
parametric space, and the containing three-dimensional space 
outside the surface. The extrinsic space contains the shape as 
points of occupancy, while the intrinsic space – the space of the 
surface – is the basis by which its shape is described, measured 
and traversed, and the perspective from which its continuity 
emerges. Its signature as a continuous surface emerges from 
both its real numbered Cartesian intrinsic and extrinsic 
structures, and by the specifi c coordinate relationships defi ned 
across its mapping. By extension to alternative dimensions, the 
two- and three-dimensional Euclidean and non-Euclidean 
shapes including points, lines, curves, surfaces and volumes are 
described. This mapping is itself a space – the product space of 
the intrinsic and extrinsic – and an instance in the space of the 
family of all similarly structured mappings. This framework 
extends directly to the parametric, wherein shapes are instances 
of geometric functions driven from spaces of discrete parametric 
values. The spaces are not atomic, but in turn disaggregate into 
subspaces of individual parameters, subshapes and their products. 
As shapes aggregate through their combinatorics, so do their 
individual connected spaces connect into larger networks. Shape 
exists in – and as – this network of spatial connection.

In the purely digital realm, both intrinsic and embedding 
spaces are by necessity Euclidian – real numbered coordinate 

Figure 2. Gehry Partners, Walt Disney 
Concert Hall, Los Angeles, 2002 
The enclosure detailing connects features 
from two distinct mappings between 
2-D and 3-D space: the ruling lines of 
the global developable surface, and a 
patterning of lines in the unfolded surface 
space, injected back into 3-D space as 
geodesic curves.

Figure 3. The tangent developable surface
The tangent developable surface is a 
locally continuous surface that has a global 
singularity at the edge of regression.
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systems within the machine. However, this manifold structuring 
applies in a formally rigorous manner when extended to a much 
wider spectrum of embedding topologies. Manifolds can be 
embedded into any topological space where locally continuous 
measurement by real numbered coordinates holds. This broad 
class of admissible embedding topologies includes the affine, 
vector and tensor spaces among many others. We can in fact 
rigorously consider manifolds that bridge from the digital into 
the ‘worldly’ topologies and transformations of physical space. 
The measurements and mappings, historically the realm of craft, 
are now conducted through increasingly sophisticated machines 
providing direct and continuous transformation between 
numerical coordinates and physical location. 

What emerges is a view of space and shape that is a radical 
expansion of the Cartesian system. Space and shape are no 
longer distinct, but synonymous. Shapes emerge from, within 
and as a system of spatial networks of heterogeneous dimension 
and signature, no longer inert but active and dynamic, 
continuously created, connected and destroyed by design. 
Within this system, Euclidean geometries and spaces take a 
natural place as the restricted class of linear transformations in 
the more general class of differentiable mappings. The 
Euclidean re-emerges locally within the network as a 
regularising structure wherever Cartesian product spaces of 
independent real variables and their linear transformations occur. 

In the context of such an expanding constellation of 
interconnected space, the notion of a singular and privileged 
containing space loses hold as a necessary or even relevant 
construct. Special relativity dictates that the container view 
of space cannot hold, but we do not need to recourse to the 
very large, very small or very fast to witness the efficacy of the 
relational space–time view. At the scale of human experience, we 
may arbitrarily select a containing Euclidean space worldview 
– of specific dimensionality, measured by a specific coordinate 
system, etc, and normalise shape by its embedding into this 
arbitrarily privileged frame. But this reductionism erases the 

syntactic structure of shape that can only be seen through its 
nature as the connective tissue in and among the relational spaces 
in which shape participates, both generating and inhabiting. 

This evolution of the spatial fabric presupposed by 
contemporary geometry, of shape as space, and of space as 
relational, localised and connected, is arguably the central 
ontological advance of contemporary form-making and 
associated architectural description. Most significant for 
design is the migration of form’s locus, which emerges not 
simply as the occupancy of any specific Cartesian space, nor 
its numerical description, but resides in and as the connection 
between spatial frames – the intrinsic and the extrinsic, 
the Euclidean and non-Euclidean, the continuous and the 
discrete, the digital and the physical.

Continuous Maps and Their Epistemic Limits
The new geometries are uneasily classified as either continuous 
or discrete, a dichotomy whose simple and axiomatic 
distinction in the classical view – between the real and the 
integer – no longer so simply holds. The non-Euclidean shapes 
are intrinsically continuous, but can demonstrate folds and 
singularities in the embedding space. The procedural shapes of 
subdivision surfaces may be extrinsically continuous but arise 
out of discrete intrinsic operations. Parametric shapes may be 
both continuous in state space and their extrinsic instantiation, 
but may exhibit singularities in either, and no longer maintain 
any topological similarity between intrinsic and extrinsic views.

The impulse to equate continuous maps to complete 
definitions of architectural elements is compelling because 
it has proven so germane to problems of constructability, 
rationalisation and parametric control (Figure 2). If one 
understands the surface as a purely functional space, problems 
of design rationalisation become more precise and tractable. 
Unfortunately the lure of such problems has kept recent 
applications of mathematical approaches within architecture 
focused on technical problems of surface resolution and 

Figure 4. Mathematical models from 
Institut Henri Poincaré, Paris, France, 
late 19th century
Models illustrating three possible cubic 
ruled surfaces. These surfaces each 
demonstrate remarkable singularities 
in the form of self-intersections. The 
geometry and formal structure of the 
self-intersections may not be immediately 
obvious from the standard analytic 
representation of these surfaces.
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modularisation, rather than on broader questions of spatial 
structure and design coherence. Fascinating as issues of surface 
differential geometry are, the more fundamental formal issues 
play out at the scale of the global surface – that is, how surfaces 
enclose and partition spaces, how one circulates among them, 
and resolution of spatial connectedness and separation. How 
can we bridge the gap between the mathematics of continuous 
discretisation and the syntax of architectural spaces?

To answer, we must consider why the functional definition 
of surface geometry has become so distinct from the topological 
one. It follows from the axiomatisation of mathematics in the 
19th century. During this time the mathematician Felix Klein 
was preoccupied with the question of unifying a multiplicity 
of theoretical geometries. Klein’s ambition was to classify the 
varieties of surfaces through the sets of maps or functions that 
left these surfaces invariant.5 Continuous maps themselves form 
a space which can be transformed, and these second-order sets 
of transformations can themselves also be transformed, and so 
on, creating an infinitely nested sequence of continuous function 
sets that indirectly describe the properties of the first set of 
surfaces. Klein’s proposal for a unified classification of surfaces 
through their nested invariant functional meta-behaviour is 
known as the Erlangen programme.

While the Erlangen programme opened profound new 
understandings in the mathematics of geometric group theory, 
it also effectively divorced geometry from spatial intuition: 
since facts about commutative algebra became facts about the 
surface itself, spatial visualisation became superfluous to the 
mathematical study of surfaces. By distancing geometry from 
visualisation, Klein’s Erlangen programme lay the seeds of the 
divorce between geometry and design. 

This split is fundamental because continuous 
mathematical functions, algebraically expressed, often obscure 
rather than reveal spatial or topological facts. The local, closed, 
analytic representation of the surface does not communicate 
its key spatial properties – the moments of self-intersection, 
self-tangency, the way it partitions space. Consider, for 
example, the functional expression of the tangent developable 

surface s(u,v)=c(u) + v(c’(u)) (Figure 3).6 The function is by 
definition continuous, but it is difficult, a priori, to observe 
that such a surface has a singularity, precisely at the curve of its 
generation. Thus for designers, a purely functional approach 
obscures as much as it illuminates.

What designers need are descriptors of shape and space that 
encompass, but move beyond, notions of functional continuity to 
include singularities, ruptures and exceptional conditions. What 
we need are richer descriptions of topology that embed also 
implicit logics of construction and concurrent local discretisation 
that emerge organically from the global topology itself. Of 
course the tools we have are new, but this synthetic ambition for 
deductive relationships of local parts to global whole is a 
fundamental tension within the project of design itself (Figure 4).

Continuous Maps and the Topological Exceptions of the Gothic
The dialectic between global continuity and local discontinuity 
forms a clear thread within design history, emerging from 
material laws of aggregation and deformation. Certain 
designers strive for perfect and unobstructed continuity, and 
others for punctuated discontinuity. The tension is illustrated 
in the topological exceptions of Gothic vaults – moments 
where continuity is frustrated by ruptures in the logic of 
module propagation itself. Gothic builders attempted to 
build complex vault surfaces with modules – bricks – with no 
explicit mathematical relationship to the vault geometry. The 
divergence of each successive row of aggregation from the ideal 
design surface accumulated to the point of system rupture – 
the necessary introduction of a distinct material and module. 
As the logic of discrete material confronts the desire of global 
continuous expression, the need for more integrated descriptors 
of shape emerges (Figure 5). 

Semantic Descriptors of Global Ruptures
Mathematics seduces with its promise of rigorous synthesis to 
otherwise contradictory systems of rules. To control the logic 
of ruptures, architects need a semantic set of descriptors that 
are not merely parametric but topological, which represent, 

Figure 5. Amiens Cathedral, Amiens, 
France, 13th century
left and opposite top: As systems of one 
logic are sequentially propagated along 
surfaces of a divergent logic, ruptures 
inevitably occur. Such ruptures are 
common in Gothic design, for example 
here in the vaults of Amiens Cathedral.
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Figure 6. Curve skeletons of closed curves
The curve skeletons (below) of various 
closed curves (above). The skeleton 
metaphor is apt; the skeleton represents a 
sort of minimum distribution or circulation 
network for the interior of the shape. It 
also represents the locus of singularities as 
a boundary is continuously and uniformly 
offset. This shape descriptor, which is 
broadly applicable in design analytics, was 
first described by Harold Blum in his 1967 
paper ‘A Transformation for Extracting New 
Descriptors of Shape’.

Figure 7. Skeletal subdivision of Paris 
housing, late 19th century
Curve skeletons arise naturally in 
discretisations and packings, and as such 
recur in unexpected contexts. For example, 
the packing of regularly shaped apartments 
into irregular block shapes in Paris’s 
urban plan induces a curve skeleton that 
is legible in the plan even if the original 
designers did not intend it.
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essentialise and make operative the basic tensions of contrary 
and contested conditions in design. In this context we mention 
two constructs – the curve skeleton and the medial surface 
– that suggest generative topological tools and semantic 
descriptors of shape.

Computer vision scientists began the search for such 
semantic descriptors to distil shapes to their computer-readable 
fundamentals. In the 1960s, interest in syntactic structure for 
the human senses produced operators that would take any 
shapes and automatically generate information about their 
fundamental spatial or topological configuration. A pioneer 
among these researchers was Harry Blum, of the US Air Force 
Research Laboratories. During the 1960s, Blum devised a 
construct which, given a particular shape, would generate a 
second encoded shape that would distil the key formal features 
of corners, changes in curvature and general configuration. This 
second, encoded shape often indirectly revealed features of the 
first shape that were difficult to detect directly. Blum called his 
shape descriptor the ‘curve skeleton’ (Figure 6).7 

The significance of Blum’s curve skeleton for design is 
that one can deductively calculate the topological singularities 
of a broad range of shapes, surfaces and spaces from a non-
analytic description of global shape. Instead of operating on the 
functional notation of the shape, it operates on the shape itself, 
regardless of its notational representation. The curve skeleton 
appears in many contexts – as a diagram of circulation, as an aid 
to smooth subdivision, as an emergent property of circle and 
shape packings. 

The urban form of Paris is an example of the surprising uses 
of the curve skeleton. In post-Haussmann Paris, designers pack 
regularly shaped apartments into irregularly shaped city blocks. This 
quasi-uniform packing – not unlike the packing of stones in a Gothic 
vault – must be reconciled with the irregular block shapes of the 
global urban plan. The solution is remarkable: the curve skeleton, 
this essential diagram of shape, appears not as a planned 
structure but as an emergent trace, an inevitable consequence of 
uniform packing within a non-uniform boundary (Figure 7).

Figure 8. Medial surfaces generated from sets of curves
The surface is generated so that there is always a wall 
between two distinct curves. Remarkably, the logic 
of discretisation for these surfaces follows directly 
from the diagram of their circulation, namely the 
curves here indicated in red. They could in fact be 
seen as generalisations of hyperbolic paraboloids. 
Thus one may generate designed spaces of a given 
circulation logic that, at the same time, are also 
simply discretisable into flat panels. In addition, the 
discretisation has a direct connection to the implicit 
logic of self-intersection of the surface.

Architecture is the design of a felicitous 
relationship of parts to whole, a 
synthetic project of multi-objective 
invention. The promise of mathematics 
is that those diverse relationships and 
constraints can be made conceptually 
or notationally explicit, and their 
manipulation can be precise.
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Curve skeletons can be generalised from planimetric to surfacial 
constructs. Applying the logic of the curve skeleton to a collection 
of curves in space produces a surface wall between each pair of 
curves in the set; a configuration called a ‘medial surface’ (Figure 
8). The medial surface is the precise surface that would induce a 
given set of circulation paths around and through it.

The curve skeleton, and to some extent the medial surface, 
are nearly self-dual: they can represent either circulation paths, or 
the surfaces and walls that enclose circulation paths. From wall 
boundaries the skeleton describes a circulation path through them. 
Conversely, from a circulation path the skeleton will describe 
walls that induce that circulation. The curve skeleton thus 
represents something fundamental about space and circulation, a 
reciprocity between the singularities that structure both. 

What is more, for medial surfaces there is post-rational 
surface discretisation; their definition guarantees that they are 
rationalisable in a quad-dominated way. In fact, there is an 
elegant connection between the global and local forms of these 
medial surfaces since the joint lines between different surfacial 
domains extend continuously from one to the next. Medial 
surfaces thus represent a sort of synthesis of continuity and 
rupture, in one simple descriptor.

With these curve skeleton diagrams and medial surfaces, 
the topological properties of space – connectivity, passage, edge 
and rupture – follow directly from the connective paths of the 
designed promenade. These surfaces represent a deductive 
relationship between parts and whole. Our contemporary 
opportunity is to broaden the connection of mathematics to 
architecture beyond intensive application of continuous surface 
functions to a disciplinary project that is more synthetic and 
spatially specific. In short, we can broaden our vision beyond 
analysis and generative procedures to design.

Conclusion
Architecture is the design of a felicitous relationship of parts 
to whole, a synthetic project of multi-objective invention. The 
promise of mathematics is that those diverse relationships and 

constraints can be made conceptually or notationally explicit, 
and their manipulation can be precise. A logic of continuous 
maps is an aspiration towards that comprehensive quality 
– a precise description of the local, topologically global and 
structurally recursive. But these maps, limited as they are by 
the semantics of their symbolic notation, hold the seed of their 
own rupture, particularly when iteratively applied. Continuous 
maps can fold, intersect with themselves, exhibit singularities; 
what is continuous from one point of view or notational 
representation may not be so from another. The identification 
of these ruptures, both at the local scale and at the global, 
topological scale, becomes key to understanding space itself and 
the descriptive, analytic and designed project of architecture 
– the description of the thing itself, beyond its multiple 
notational representations. In particular, architecture can begin 
to move beyond empty ideological distinctions that rest on 
notational distinctions, beyond simple dichotomies between 
pre-rationalisation and post-rationalisation, towards a more 
profound and codetermined logic of space. What is required is 
a more synthetic approach of global–local reciprocity, and an 
embedded logic of mathematical design. 1
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IJP EXPLAINED
PARAMETRIC MATHEMATICS 
IN PRACTICE

Mathematics provides the underlying principles for  
IJP Corporation, the London-based practice, led by 2 
Guest-Editor George L Legendre. Eschewing 
packaged software, IJP develops its own equations, 
while its spatial model is underwritten by mathematical 
surfaces. Legendre describes the pervasive infl uence of 
the discipline across the offi ce’s output.

George L Legendre
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Figure 1. IJP with John Pickering, F01(b), London, 2009
In this project, IJP explored the parametric deployment of a simple 
homothetical (scaling) transformation known as inversion, to 
which the Wolverhampton-based artist John Pickering has devoted 
several decades of work. IJP determined the analytic equations 
of the transformation and used them to invert, under Pickering’s 
guidance, a pair of ordinary cylinders into an intricate aggregation 
of (partial) cycloid surfaces.
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Figure 2. IJP, Asymptotic Box, Parametric equations, 2004–10
The Asymptotic Box© is an implicit 3-D surface derived by analytic 
means. A blob trying to pass itself off as a box, this curious surface 
is produced by raising a periodic product to a (very) high exponent 
in order to deform an ordinary pliant surface into a ‘near box’. There 
are algebraic limits to this kind of game, as infinite tangents are 
inadmissible. Hence the term ‘Asymptotic’, whereby the box tends 
towards orthogonality – without reaching it.
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Since its inception in 2004, the London-based practice IJP 
Corporation has been using a mathematical knowledge model 
as a blueprint for the design of novel structures. Proposals 
that are drastically different in size and scope follow the same 
instrumental premises. This is evident in F01(b) (2009), a 
collaboration with the artist John Pickering; in the Art Fund 
Pavilion (2009); Yeosu 2012 Thematic Pavilion (2009); the 
Shenzhen Museum of Contemporary Art and Planning (2007), 
with architect Max Kahlen; and the Henderson Waves Bridge 
(2004–9) with RSP Architects, Planners and Engineers. 
Bypassing the conveniences of modelling software in favour of 
elemental mathematics, these projects share a common basis 
of analytic geometry. Rather than simply consuming software, 
IJP produces the very material software is made of – raw 
equations – usually taken for granted under the hood, and hence 
maintains a far greater amount of control over what it designs 
and manufactures. In this sense, the office turns its back on a 
dazzling technological design agenda, preferring to work at an 
infra-technological level, where a symbolic language common to 
all computational design processes exists.

IJP’s model of spatial cognition is based on the notion 
of mathematical surface. In analytic terms, all mathematical 
parametric surfaces form and deform in direct response to 
numerical relations they hold in their midst. To the observer 
who knows what to look for, the conformation of a parametric 
surface exhibits the traces of these internal motions as markedly 
as the plump figure of midlife will subsume the sharper 
inflections of a youthful physique. Parametric surfaces surge 
upwards because of a genetic antecedent of linearity, a pattern of 
linear growth exhibited to some degree by one of the dependent 
relations they quite literally incorporate. They undulate by 
peaks and depressions because of a periodic internal makeup, 
pointing to the presence of cyclical behaviours in one of their 
three respective antecedents. Finally, they spiral up and down 
under the confluence of linearity, periodicity and transposition. 
Each term follows a distinct pattern and determines the overall 
form of the surface in tandem with the other two, through a 
composite process yielding the most complex results.

Variable Densities
A commitment to mathematics is not consistent with a bias 
towards a given style or Gestalt. For IJP, variable curvature is 
not a matter of architectural vocabulary, but a heuristic device, 
an operative tool to conceptualise space. The office develops 
plain boxes, for instance, while remaining equally committed 
to meeting the challenge of continuity, which gets surprisingly 
tricky where mundane conditions of orthogonality (or proper 
tectonic corners) are concerned. Hence the tendency is to 
avoid discontinuous, piecemeal assemblies where each side 
of a notionally continuous envelope is dealt with separately, 
considering instead alternative holistic options such as plotting 
circles or ellipses with only four points, raising periodic 
expressions to a high exponent (IJP’s trademark Asymptotic 
Box©), or substituting Fourier summations for ordinary 
periodic functions, all of which involve bona fide blobs 
(successfully) trying to pass themselves off as a box.

For reasons related to the programmatic requirements 
spelled out by the organising body of the open international 
competition for a new temporary art space sited by the Light 
Box Art Museum in Surrey, UK, the Art Fund Pavilion (2009) 
is the exception to the rule. Here the overriding issue is the 
differential filtering of natural daylight, so the emphasis is 
kept on each individual side, and the practical possibility of 
redistributing its indexical threads without altering the form 

Figure 3. IJP, The Art Fund Pavilion, Woking, Surrey, 2009
This lightweight structure is clad with a prefabricated timber lattice of highly 
variable, side-specific density. A single room enclosed by four rigid panels of 
extruded acrylic, the Art Fund Pavilion may be endlessly reconfigured into a 
temporary support space for the neighbouring Light Box contemporary art museum 
for which it was commissioned. The pavilion is designed to be assembled and 
taken apart in 72 hours by a team of just two. View of laser-cut model. 

Figure 4. IJP, The Art Fund 
Pavilion, Woking, Surrey, 2009
Schematic plan. On busy nights, the 
short ends of the timber honeycomb 
(and the acrylic panels behind) 
swing open to let visitors overflow 
through the space.
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Figure 5. IJP with John Pickering, 
F01(b), London, 2009
Study diagram of intersection between 
the solid and reticular portions of the 
model. The multiple intersections of 
surface threads establish a material 
continuity between discrete figures in 
space and enhance the cohesiveness – 
and stability – of the final piece.

Figure 6. IJP with John Pickering, 
F01(b), London, 2009
Close-up view. The figure is 
encased in a translucent box that 
crops the infinite surfaces produced 
by the transformation. The rapid-
prototyped silicate and engraved 
acrylic give the finished model a 
light and reflective quality.  

Geometry and algebra, the study of figures and that 
of symbols, separated more than 400 years ago; as 
noted in the introduction to this issue, this separation 
lies at the root of mathematical modernity, and 
reminds us that unlike art history, or even technology, 
progress in mathematics is extremely fast paced.
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itself. The proposal consists of a single room with four walls 
and a roof. This temporary structure is meant to support 
its host institution by variously housing cultural seminars, 
temporary exhibitions or fundraising events. It is orientated like 
a traditional artist’s studio for a maximum intake of northern 
daylight, and its envelope is made of pliant parametric surfaces 
extruded into a honeycomb, behind which a lightweight 
thermal barrier of acrylic panels marks the boundary of the 
exhibition space proper.

Each of the pavilion’s walls is designed by altering the 
sequence of a numerical range through the deployment of 
equations. The rhythm of the south-facing studs follows a 
periodic distribution that aggregates proximate threads to 
within an inch of one another, closing the honeycomb and 
blocking direct sunlight. On the north side, the distribution 
is precisely inversed. ‘Stitching’ overlapping edges secures 
the water-tightness of contiguous walls, whereas pulling the 
edges apart produces zipper-shaped entrances and exits at the 
opposite corners of the room. The materiality of the honeycomb 
is based on a lattice of flat, CNC-cut profiles of shallow 
radii meeting at a right angle, and the profiles are notched to 
maximise adherence without chemical bonding. The completed 
honeycomb is dense, stiff and so redundant structurally that 
other forms of support, including steel posts or panel frames, 
are unnecessary. In this project it is the curtains that carry the 
3.6-metre (12-foot) high wall, frame and roofing material, 
and not the other way around. High ranges are always used 
to solve parametric surface equations offering the opportunity 
of experimenting with the sturdiness of redundant lattices at 
drastically different scales, from a single room like the Art Fund 
Pavilion, to a 2.4-metre (8-foot) wide, 152.4-metre (500-foot) 
tall high-rise building.

Curvature as Fragmented Flatness
From small installations to extra-large infrastructure, this 
mathematical knowledge model migrates seamlessly across 
scales and contexts. Working, for instance, with the brand of 
geometry pioneered by the British sculptor John Pickering has 
uncovered unexpected forms of tectonic efficiency. Based on a 
projective transformation known as inversion (or scaling relative 
to a fixed point, but with a variable coefficient), Pickering’s art 

is an exercise in absolute reduction. IJP has worked on three 
short projects in collaboration with the artist, resulting initially 
in the production of licensed similes of his original artwork with 
state-of-the art software and numerically controlled fabrication, 
with a view to soliciting a grant from the Arts Council in order 
to rebuild them as large-scale installations in a gallery. The first 
two pieces re-created at his behest closely follow his working 
blueprint, canning Pickering’s manual approach into a scripting 
routine and exporting the result to a rapid-prototyping device. 
As such, the resulting pieces are little more than copies (or 
forgeries, depending on one’s point of view) of the original.

The third instalment of the collaboration, on the other 
hand, an installation titled F01(b) commissioned by Pickering 
for his own collection, disregards the manual two-dimensional 
strategy favoured by the artist, using instead the parametric 
equations of a relatively simple homothetical transformation 
in space. Developing F01(b) through equations rather than 
drawings was not only a matter of re-evaluating the Modernist 
sensibility of the previous installations, but of taking a 
profoundly different approach that involved a shift from 
figures to symbols, in line with an argument more at home 
in the 17th century than in the 21st. Geometry and algebra, 
the study of figures and that of symbols, separated more than 
400 years ago; as noted in the introduction to this issue, this 
separation lies at the root of mathematical modernity, and 
reminds us that unlike art history, or even technology, progress 
in mathematics is extremely fast paced. Hence, rather than 
recasting the static geometry favoured by the artist in a new 
technical idiom, deploying the analytic equations of inversion 
in F01(b) opens up the possibility of a contemporary re-
evaluation of his modus operandi itself.

F01(b) has two parts, both made of overlapping cones 
inversed relative to the same centre. For purely formal reasons, 
the top part is solid and the bottom reticular. The resulting 
figure is encased in a translucent box that crops the infinite 
surfaces produced by inversion, and the choice of materials 
(rapid prototyping and engraved acrylic) give the finished 
model a light and reflective quality. Critically F01(b) secretes 
an exciting discovery. Inversion is a transformation: it does 
not create anything new, it just alters what is already there. 
In this context circles invert (mostly) into circles, and spheres 
(mostly) into spheres. Planes invert into spheres too. However, 
unlike the standard polar variety (which must be rationalised 
through triangulation if it is to be built), these spheres are 
made of flat quadrilaterals. When the right conditions are met, 
standard primitives such as planes, cones or cylinders invert into 
non-standard surfaces, such as spheres, cycloids or cross-caps, 
without the need to rationalise, triangulate or develop the result. 

Inverse Configurations
An operative shift from geometry to algebra – and the 
surprising tectonic properties uncovered in F01(b) – are wont 
to accelerate the cycle of design experimentation, making it 
possible to deploy the principle of inversion to full-blown 
building scale. As the point of convergence of the Yeosu 
2012 World Expo, the form of IJP’s Thematic Pavilion is 
simple, yet memorable, involving a simple spherical form 

Figure 7. IJP, The Art Fund Pavilion, Woking, Surrey, 2009
Model of northwest corner, with zip-up entrance.
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topped with a large circular opening; in turns sea creature, 
beached monster or fishing basket, the form brings to mind 
disparate but related associations. The pavilion sits near the 
geographic centre of the area defined by the six public access 
points of the fair. The programme is housed on circular floor 
plates distributed around a large atrium, and the interiors are 
naturally lit through windows and internal openings. The large 
circular oculus pours ambient daylight levels throughout the 
building (perceived at the end of the public exhibition route, 
this gigantic opening looms over the visitor like a rising orb). 
On the ocean side, the Floating Island extends the pavilion to 
create an artificial shoreline, further extended underwater by a 
man-made Marine Life reef.

The mathematical subtleties of inversion help resolve the 
complementary demands of the brief by providing a common 
spatial blueprint that unites the two main features of the 
proposal – the spherical exhibitions volume and the fanning 
surface dedicated to marine life. The two figures are derived 
by inverting two primitives relative to the same centre, but 
with a different coefficient. The inverse figures intertwine 
in a seemingly continuous way about a single focal point, 
coinciding with a public observatory. The fanning outline of 
the Marine Reef illustrates how a closed primitive positioned 
next to the centre of the transformation will invert into an 
open superficial expanse for the same geometric reason that 
a circle passing though the centre of inversion will map onto 
an (infinite) straight line. The principle of continuity between 
solid and reticulated form established in F01(b) carries over 
seamlessly to this project, where the very same superficial 
geometry is given alternate material expressions above and 
below the variable flood line. 

Material Efficiencies
Ultimately, the key question raised by the deployment of 
analytic mathematics in design is whether it produces material 
efficiencies. The surface of discrete analytic mathematics does 
not actually exist: what the parametric formulas produce is 
only a discrete array of indexical threads grouped in two sets, 

notated I and J (after which IJP is named). This conceptual 
model ensures a stable transition to materiality: if the threads 
are two-dimensional, they are used to define centre lines for 
laser-cut material profiles. If the indexical threads are not two-
dimensional, they are used to print double-curved members in 
depth (the threads are effectively laminated from the ground 
up with rapid prototyping, stereo-lithography or casting). 
Eventually all morphogenetic results can be traced back to 
fundamental issues of algebraic modulation; there are various 
machinery-consistent equations, in other words some better 
suited to sheet-cutting, others to lamination.

IJP’s first built project (in collaboration with RSP), the 
Henderson Waves Bridge is a project commissioned by 
the Urban Redevelopment Authority (URA), Singapore, 
following an open international competition. It involves an 
infrastructural intervention with a complex structure and a 
simple brief: to link two ridge summits with a continuous 
plane on the southern coast of the island of Singapore. The 
equation that was used here offers a direct application of IJP’s 
research in periodicity1 where, like the rhetorical algebra of 
medieval Arabia, it is narrated without symbols. The ‘parametric 
pillow’ is the product of three space-relations: the first may be 
diagrammed as an oblique plane; the second is more complex 
and produces a flowing periodic oscillation; and the third (and 
most intricate) represents a product of periodic out-of-phase 

Figure 9. IJP, Yeosu 2012 Thematic Pavilion, Yeosu, South Korea, 2009
Model seen from the northwest. Side view of Floating Island and Marine Life reef. 

Figure 10. IJP, Yeosu 2012 Thematic Pavilion, Yeosu, South Korea, 2009
Ground-floor plan of the pavilion showing the entrance lobby, the Floating Island and 
the Marine Life reef that surrounds it.

Figure 8. IJP, Yeosu 2012 Thematic Pavilion, Yeosu, South Korea, 2009
Masterplan. IJP’s Thematic Pavilion features an elementary spherical form 
sitting on the edge of the sea, and topped with a large circular opening. It is 
located on the geographic centre of the boundary defined by the six public 
access points of the Yeosu 2012 World Fair.
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Figure 11. IJP, Yeosu 2012 Thematic Pavilion, Yeosu, South Korea, 2009
Partial mathematical formulation. Such worksheets (greatly simplified here 
for purposes of publication) lie at the heart of the office’s methodology. 
The upper half of the sheet features the parametric surface calculations 
that are the true engine of the process; the lower, a read-only illustration of 
the result. For designers skilled in this methodology, visualising the act of 
‘writing form’ is not strictly necessary, but it is useful in helping to alleviate 
the abstraction of the process.
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Figure 12. IJP and RSP Architects 
Planners and Engineers, Henderson 
Waves, Singapore, 2008
Location plan of the bridge and timber 
end-works by IJP (competition stage). 
The project begins with a timber 
pathway linking the springing point 
of the bridge to the busy vehicular 
loop on Mount Faber –shown in the 
lower-right corner of the plan. The 
project continues with the bridge 
itself and concludes with a ramp that 
connects the bridge to another existing 
circular path, winding its way around 
the summit of Telok Blangah Hill (in 
the upper-left corner of the plan). The 
entrance pathway, bridge deck and 
connecting ramp are given the same 
steel and timber treatment and can 
hardly be distinguished.

Figure 13. IJP and RSP Architects 
Planners and Engineers, Henderson 
Waves, Singapore, 2008
View of the central span and 
completed deck in May 2008.
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oscillations spreading in perpendicular dimensions. In space, the 
pillow resembles an egg-crate-like arrangement of peaks and 
depressions. As the ranges vary, it divides like a cell into two, 
three, or N swelling bulges, as if held in place by knots.

The structural considerations driving this morphogenetic 
process determined a comparatively rational scheme that 
leverages the structural integrity of the surface’s indexical 
threads, a scheme formulated as a succession of arches 
and catenaries, behaving like a dual, differentiated beam. 
In terms of structural expression, the bridge systematises 
and amplifies the problem of converting selected indexical 
threads into centre lines of material members with structural 
roles. Named after the ubiquitous index I (reappearing here 
as a steel beam), the iThreads provide the physical edge 
and lateral stability of the surface form. Along the other 
dimension, the J threads fulfil the gravitational demands 
of the structure, and the piles sit at both ends of each span 
where the surface self-intersects and the section of the 
structure is reduced to a single beam.

The timber deck presents a subtler challenge. Largely in 
evidence in its completed form, the recurrence of kinks along 
its surface indicates that it is discontinuous. To accommodate 
wheelchair access, the deck is bent, sheared, oblique and 
punctuated with thresholds that break its continuity at regular 
intervals. Every flight and threshold is computed by a specific 
variant of the equation, and the numbers collected from 160 
different formulas in a spreadsheet. At competition stage, 
this super-surface was envisioned as a thin timber veneer 
stretched over the steel members, peeling off the structure to 
provide seating and playing areas. Eventually the form of the 

veneer was given by the same overall equation, with minor 
adjustments for the seating areas, which required their own 
custom calculations. The 1,500-square-metre (16,145-square-
foot) expanse of tropical hardwood is the fulcrum of 
Henderson Waves. Its double-curved areas form a tapestry of 
5,000 modular boards, each varying by a single degree every 
few metres and all tapered to measure. 

The Relational Body
IJP’s methodology is no different from a traditional approach 
based on precedent, otherwise known as ‘type’, but with the 
proviso that its types are abstract rather than figurative, and 
invisible rather than conspicuous. Its commitment to typological 
reduction goes hand in hand with a rejection of traditional 
modes of composition, as the traditional understanding of 
form begins and ends with what is, from the standpoint of its 
mathematical model, an unnecessary premise: the separation of 
the whole into parts. Parametric surfaces are naturally inured 
to this mode of thought because their constitutive parts are 
not fragments, in the sense that a cornice would constitute a 
fragment of an elevation, but relationships. 

Relationships act as parts only in a loose, strictly functional 
sense, inasmuch as they can be manipulated independently to 
alter a whole. Their role is neither ‘pure’ nor distinct, and the 
combined impact they visit on the body muddles their respective 
areas of influence. A form shaped by modulation has no discrete 
limbs; one cannot chop it off into pieces nor indulge in the 
permutation and scaling of parts to which parametric ‘invention’ 
is often reduced. Consider, for instance, the parametric seed of 
the pillow that in time hatched into Henderson Waves. What 
exactly is it made of?

This common surface is obtained by composing one linear 
transformation with two periodic ones. The three relations 
determine the motions that shape it in breadth, width and 
depth, and clarify – if their interplay can be unravelled – why 
it looks the way it does. The symmetries of the pillow can be 
traced back to periodic cycles with identical beginnings and 
ends; its upright stance will be traced back to a linear range 
increase. And the pillow’s subsequent cell-like division into two, 
three or more swellings reflects the number of phases fed to a 
periodic function.

None of these surfaces looks like the pillow itself. None 
resembles the form, yet all jointly determine it. Had they not 
been there, the form could not have been produced because it 
cannot be modelled simply by deforming other, ready-made 
surfaces, however sophisticated the software may be. Had 
they not been identified as antecedents, it could not have been 
retrospectively read. With their dependent functions, variable 
parametric surfaces are both a means to complexity and the way 
out of its mystifying embrace. They are, in other words, the 
ultimate objects of knowledge. 1

Notes
1. See George Liaropoulos-Legendre, IJP: The Book of Surfaces, AA 
Publications (London), 2003, pp 2, 8.

Text © 2011 John Wiley & Sons Ltd. Images: pp 44-5, 48 © IJP and John Pickering, 
photography by Stefano Graziani; pp 46, 47(t), 50(t&b), 51, 52(t), 53 © IJP; pp 47(b), 
49, 50(c) © IJP, photography by Stefano Graziani; p 52(b) © IJP; photo by MHJT

Figure 14. IJP and RSP Architects Planners and Engineers, 	
Henderson Waves, Singapore, 2008
Timber deck of the main span under construction. This central arch spans 
57 metres (187 feet), and rises to more than 6 metres (19.6 feet) at its 
apex. Too large to be prefabricated off-site and craned into position, it was 
assembled on a makeshift platform directly above Henderson Road, then 
raised into position by a battery of hydraulic jacks. The centre-lines of the 
steel members shown (central arch, edge member, mid-height member 
and curved ribs) are determined by a single set of parametric equations.
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The wavy forms of the louvres wrapping 
around the building are shaped to reduce 
solar radiation on the facade depending 
on orientation. The exposure of the 
more vulnerable east and west facades 
is therefore reduced by minimising the 
shading devices’ angle based on year-
round insolation measurements.

Foster + Partners, Al Raha Beach, Plot 
801, Abu Dhabi, 2007
The seemingly intuitive form of the 
building is in fact based on a sustainable 
environmental strategy that relies on a 
series of passive controls, permitting for 
natural ventilation cooling and minimisation 
of solar gains while allowing views out.
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A Sense of 
Purpose
Mathematics and 
Performance in 
Environmental 
Design

Mathematics in design is most often associated with 
its visual manifestation in geometrical surfaces and 
elements. The finely tuned ambient qualities of a 
space, necessary for environmental performance, may 
not be so apparent, but can involve the application 
of many branches of mathematics. Martha Tsigkari, 
Adam Davis and Francis Aish of Foster + Partners’ 
Specialist Modelling Group bring this to the fore 
by describing how at Al Raha Beach development 
in Abu Dhabi and the City of Justice in Madrid 
environmental considerations were interpreted 
through analytical numerical data.

Specialist 
Modelling 
Group, Foster + 
Partners

Close-up of the angular 
variation of the louvres, as 
seen from different viewpoints.
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Foster + Partners, City of 
Justice, Madrid, 2007
The facades of both court 
buildings bear shading 
devices optimised to balance 
solar performance with views 
to the exterior.

Discussions of mathematics in architecture 
often concern the perception of numeric 
and geometric relationships as embodied 
in patterns of structure and material. A 
similar dialogue within environmental 
design suggests maths is the means of 
logically elucidating our perception of 
what we unconsciously sense as optimum 
performance, rather than a driving force 
directly and visibly discernible to us 
through the form of things.

Where design follows environmental 
considerations, perception becomes a very 
small part of sensible interaction with 
architecture. Building occupants are 
seldom aware of the various complex 
factors affecting their comfort and what 
they might do to improve or otherwise 
manipulate it. Of all the ambient qualities 
which affect our occupation of architecture 
– temperature, air flow, lighting – only 
some rise to the level of conscious 
awareness. When these qualities are given 
priority in design, the performance of 
architecture is less perceptible because it is 
operating more directly on our senses; this 
is also the way mathematics is 
experienced in the context of the natural 
environment. Patterns and forms found in 
the natural world are understood more in 
terms of experience than in the logic or 
principles by which they were created. 
Beauty in nature is largely driven by 
mathematics that do not necessarily have 
a direct visual manifestation in the form 

itself, but rather in the way that form 
performs within its context.

The manipulation of the environment 
through design involves many branches 
of mathematics: the projective geometry 
of light transmission, the chaotic 
and probabilistic maths of weather 
patterns, and the statistical algorithms 
required to make analysis legible and 
obtain discrete building components 
from continuous distributions. Such an 
approach always favours pragmatism 
over mathematical ‘purity’. Yet the 
results thus produced have a profound 
effect on the experience of architecture 
precisely because of the fundamental 
sensory experiences concerned.

This indirect employment of 
mathematical analysis in design promotes 
a spatial experience in which any visually 
recognisable effects of an analytical 
process are subordinate to an unconscious 
perception of comfort. Where entasis in 
the classical orders employs geometry 
in a subtle way to make things appear 
as they should be, environmental design 
employs mathematics to produce a similar 
sense of fitness for purpose. Both of these 
applications rely on commonalities of 
perception. However, where the former is 
an analytic approach to visual aptness, 
the latter – because of contingencies of 
site, climate and culture – is necessarily 
differentiated and synthetic. While the 
visceral sense of comfort produced 

through this approach will be similar 
between designs, the visual and physical 
manifestations may vary considerably. 
Situated along the continuum between 
pure and applied mathematics, this 
approach could be conceived as the 
application of analytical mathematical 
processes as an exact science, distorted 
to provide a responsive synthetic solution. 
The selection of significant weather 
data, for instance, may be a probabilistic 
function, while the embodiment of an 
environmental mediator based on this 
data may take the form of an optimisation 
algorithm, approximating a continuous 
distribution through discrete iterations.

The Al Raha Beach development in 
Abu Dhabi is a characteristic example 
of a building driven by environmental 
considerations which, interpreted through 
analytical numerical data, inform its shape. 
The interaction of the elements (sun and 
wind) with the parametric model began 
a form-finding exercise that sought to 
balance performance-driven optimisation 
with more intuitive aesthetic criteria. The 
building’s undulating louvre system is an 
example of this process and is designed to 
minimise solar gain in response to facade 
orientation, while maximising views out. 
An optimisation problem at its core, the 
exercise varied the slope angle of constant-
length louvres around the facade to allow 
no more than a maximum amount of 
radiation to hit the building. The derived 
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far left: Each orientation requires a different 
shading configuration, according to the 
optimisation algorithm used. The 
west-facing and east-facing shades are 
asymmetrical due to the intended hours of 
occupation and the differences between 
morning and evening solar radiation, as 
obtained from historical weather data.

left: Shading is optimised for each bay in 
a three-step process. First, sample points 
on the facade directly behind each shade 
are projected onto a virtual pyramidal 
shade across each month, day and hour as 
required by occupancy. Historical weather 
data is used, associating each point of 
solar incidence with a radiation value. 
Second, different apertures are tested 
along three axes. Each aperture’s fitness is 
determined by the total radiation blocked, 
factored against the visible area through 
the aperture. Finally, the aperture which 
provides the optimal ratio of radiation 
blocked to obscured area is selected as the 
louvre for that bay.

Sample points around the facade 
evaluate the range of different sun 
directions and intensities throughout 
the year and use the results to drive 
the louvres’ slope angle.

script sorted the resulting angles based 
on set theory and morphed the shading 
system accordingly.

A study for the facades of the City of 
Justice in Madrid produced a dramatically 
different appearance to the Al Raha Beach 
development, yet was based on very 
similar underlying principles. As with that 
project, the facades of the court buildings 
minimise incident solar radiation on the 
facade, above a threshold value based 
on historical weather data. Instead of 
a single-dimensional optimisation, the 
City of Justice facades have a three-
dimensional solution space: edges of the 
pyramidal shading device were tested for 
possible degrees of aperture along three 
independent axes. The optimal shading 
device would offer the best ratio of shading 
performance to the area of opening, in 
order to promote views out from the 
judicial offices behind.

Despite the obvious differences of 
appearance between the two projects, 
each responds to the continuity of the 
sun’s path over the days and seasons 
as continuity of transition across 
neighbouring bays of the facade. The 
numerical relationships governing the 
cycle of the sun’s travel and the intensity 
of its rays underlie the sensible experience 
of the buildings. 1

Text © 2011 John Wiley & Sons Ltd. Images © Foster + 
Partners
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long Form and Algorithm

Daniel Bosia
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Computer algorithms and scripting provide engineers and 
architects with the opportunities to design in a nonlinear way. 
This is a matter of learning from nature’s evolutionary and 
nonlinear processes rather than mimicking them. Daniel Bosia 
describes how Arup’s Advanced Geometry Group (AGU) has 
developed a method that uses abstract genetic algorithms to 
create rational and systematic organisations of space, which are 
structured and rational to construct and assemble.

Figure 1. Shigeru Ban and Arup AGU, Forest 
Park Pavilion, St Louis, Missouri, 2005 
Form-found model of the pavilion showing 
synclastic and anticlastic curvature 
inversion of the reciprocal grid.
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Figure 2. Arup AGU, Weave Bridge, University 
of Philadelphia, Pennsylvania, 2009 
Interior view of the Weave Bridge with its 
interlacing steel structure and timber and 
glazed infill panels.

Figure 3. Shigeru Ban and Arup AGU, Forest 
Park Pavilion, St Louis, Missouri, 2002
Physical model of the pavilion made of wooden 
plats and simple pin connections.

Pattern is deeply embedded in our very 
consciousness. It governs the rhythms of life 
from our own heartbeats to cosmological 
events such as the alternation of day and 
night and the succession of seasons.
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Figure 4. Alvaro Siza and Eduardo Souto 
de Moura with Arup AGU (Cecil Balmond, 
Daniel Bosia, Charles Walker and Lip Chiong), 
Serpentine Gallery Pavilion, Kensington 
Gardens, London, 2005
Interior of the 2005 pavilion with its reciprocal 
‘woven’ pattern of flat timber beams.

Figure 5. Matthew Ritchie with Arup AGU 
(Daniel Bosia and Nicolas Sterling) and 
Aranda/Lasch, The Morning Line, Seville 
Biennial of Contemporary Art, Seville, 2008
Fractal geometries of The Morning Line ‘anti-
pavilion’ at Seville.

Pattern can be found everywhere we look in the world, from our 
own molecular structure to the spiralling and branching forms 
of nature. Pattern is deeply embedded in our very consciousness. 
It governs the rhythms of life from our own heartbeats to 
cosmological events such as the alternation of day and night 
and the succession of seasons. From the origins of mankind, 
through civilisations, we have learned to recognise patterns in 
nature, their rhythms and hierarchies. We have learned to count, 
measure and abstract the archetypes of the forms we experience. 
This has helped us find order and structure within the chaotic 
complexities of the world around us.

However, a tendency towards variation and deviation from 
a condition of stability, regularity and constancy is at the very 
essence of our survival. We have learned that evolution of one 
pattern to the next, transition from a condition of stability to 
another, is what ensures the fitness of any system in space and 
time. We have learned to appreciate the non-linearity of nature’s 
systems, based on recursion, cumulative processes of growth, 
evolution and feedback. We have understood that they are 
multilayered and multidimensional, because they contain the 
whole history of their genesis and transformation in time.

New Systems of Organisation and Tooling
In an era of new humanism, contemporary designers are faced 
with the opportunity of exploring new systems of organisation, 
far reaching beyond classical and static forms. The focus is 
on the processes that govern the genesis and transformation 
of these systems and the structure of their parts. Designing 
is organising space, establishing networks of programme 
and circulation, structuring of form from deep within. It is 
a nonlinear process like those that govern nature, but it does 
not mimic nature, it learns from it, promoting the emergence 
of new organisations. The starting point is often arbitrary 
and irrational, but the outcomes are structured and organised, 
providing surprising new answers. What emerge are not static 
forms but dynamic systems, expressions of simple and rigorous 

recursive processes. They are complex not complicated, rich in 
their varied ramifications and intrinsic patterns. Non-linearity 
produces multiple outcomes, not single answers, requiring a 
more critical and selective evaluation than in the traditional 
approach. Evolution is at the core of this forensic research where 
the answers are not locked into stylistic mindsets, but selected 
on the basis of their fitness.

The power of computers has enabled us to articulate new 
organisations and configurations of space based on simple rules, 
properties and proportional relationships where complexity 
is generated by the recursive repetition of simple processes. 
We have crafted our own working tools, scripting them from 
basic principles, compiling them from numeric recipes that 
we call computer algorithms. We have been able to generate 
what commercial software could not offer: forms that are based 
on different conceptual processes. We have coded routines 
that simulate growth, subdivision, erosion in their basic form 
and crossbred them to create hybrid recipes. In doing this we 
have multiplied the outcomes and discovered new worlds of 
different solutions. We have combined generative algorithms 
with procedures that test for efficiency so that engineering is no 
longer a process of post-rationalisation, and the intelligence of 
new solutions is inherent in their very creation.

Manifestation of the Process
Arup’s Advanced Geometry Unit (AGU) was set up as a 
research-based design group striving to create exciting new built 
architectural forms and solutions by examining the structural 
dynamics of everything from geometric shapes and patterns 
to naturally occurring phenomena. The following examples of 
the group’s work demonstrate a process taking from abstract 
geometric algorithms to rational and systematic organisations 
of space that are structured and rational to construct and 
assemble. It is apparent from these projects how simple 
geometric constructs find rational applications, how geometric 
symmetries, hierarchies and proportions present advantages in 
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Figure 7. Arup AGU, Torre Reforma, 	
Mexico City, 2007 
View from below of the Torre Reforma with its 
aperiodic three-dimensional glazing pattern 
that forms the external facade and also 
internal atria.

Figure 6. Anish Kapoor with Arup AGU, Tall 
Tree and the Eye, Royal Academy of Arts, 
London, 2009
Fractal reflections of the Royal Academy 
courtyard into the Tall Tree and the Eye 
installation.

Figure 8. Anish Kapoor with Arup AGU, Tall 
Tree and the Eye, Royal Academy of Arts, 
London, 2009
The 70-sphere installation in the courtyard of 
the Royal Academy.
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Figure 9. Toyo Ito & Associates with Arup 
AGU, Taichung Opera House, Taiwan, 2007 
Rapid prototype model of the Taichung Opera 
House concrete structure.

Figure 10. Arup AGU, Pedro and Inês 
Bridge, Coimbra, Portugal, 2007 
View of the central ‘floating’ square with 
the folded balustrade pattern.

London, here the reciprocal nature of the grid is expressed in 
the timber beams never lining up axially, but passing each other 
in an interlocking, weaving pattern. The mortice and tenon 
joint adopted produces a constantly moving cascading effect 
which ripples across the structure, breaking the linearity of the 
Cartesian grid and expressing its reciprocal non-linear nature.

Tiled Networks
The Morning Line installation (Seville Biennial of 
Contemporary Art, 2008), designed with Matthew Ritchie and 
Aranda/Lasch, is a structure that is simultaneously expandable 
and reducible to a series of modular units. It can evolve in space 
and time as it travels through different venues. It is based on the 
tetrahedron, the simplest and most rigid solid in nature, which, 
if truncated at its vertices generates the basic unit of a fractal 
geometric system. By mapping two-dimensional drawings onto 
the surface of the truncated tetrahedron, the unit transforms 
from a solid to a structural ‘knot’ in space, which, tiled, produces 
a complex network in space, a ‘three-dimensional drawing’. 

A scheme for Torre Reforma, designed by AGU (2007), is a 
three-dimensional aperiodic tiling system used to generate the 
basic framework of a 200-metre (660-feet) tall tower in Mexico 
City. Based on four tetrahedral tiles, capable of subdividing in 
self-similar copies of themselves, this particular tiling system 
displays fractal properties that establish a hierarchy of primary, 
secondary structure and tertiary cladding pattern. The tiling is 
also aperiodic, such that the order of the same four basic tiles 
never repeats, ensuring a continuous variation of the patterns 
across the facades. Because of its three-dimensional nature, the 
tiling also creates the geometry of the internal atria and floors. 

Packed Networks
In the Tall Tree and the Eye at the Royal Academy of Arts, 
London (2009), designed with Anish Kapoor, 70 mirror 
polished spheres, each with a thickness of 1.5 millimetres 
(0.06 inches) and a diameter of 1 metre (3 feet), are stacked 

the construction of real structures. As lines become steel beams 
and surfaces materialise into glass and aluminium cladding 
panels, the rigours of geometry translate in highly structured 
and efficient constructions. The outcomes are often unexpected 
and new in their appearance, sometimes even revolutionary 
in setting new trends. Although every project is unique, all 
are derived using a common method based on the rigorous 
application of algorithmic processes of space and form-making.

Woven Networks
The Weave Bridge at the University of Pennsylvania in 
Philadelphia (2009) is a coiling in space of six strands of steel 
interlocking to form a rigid three-dimensional braided structure 
which unwinds into the landscape forming paths, balustrades 
and bleachers around the university sports fields. Differing 
from traditional warren trusses which linearly span enclosing 
space, the structure of the Weave Bridge spirals around a 
square cross-section without corner members. The result is a 
dematerialisation of the prismatic envelope of the bridge and 
the opening of the view towards the fields and the city beyond.

The Forest Park Pavilion in St Louis, Missouri, designed 
with Shigeru Ban (2002), is a structural weave of straight 
timber elements interwoven in what is known as a ‘reciprocal 
network’. This allows the creation of a large span with relatively 
short transportable beams and simple, economic, overlapping 
connections. It is a simple geometric pattern where every 
element of the grid spans onto another until the perimeter 
is reached. The order in which the beams are overlapped 
determines whether the curvature of the grid is synclastic or 
anticlastic, and the point at which the beams meet and their 
thickness dictates the radius of curvature. 

With a very different reading to the St Louis pavilion, 
the Serpentine Gallery Pavilion of 2005, designed by Alvaro 
Siza and Eduardo Souto de Moura with Arup AGU (Cecil 
Balmond, Daniel Bosia, Charles Walker and Lip Chiong), 
is also a reciprocal grid. Located in Kensington Gardens, 
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Figure 11. Arup AGU, Pedro and Inês 
Bridge, Coimbra, Portugal, 2007 
View of the bridge from below, showing the 
‘cut-and-shift’ forming the ‘fl oating’ square.

Figure 12. Toyo Ito & Associates with 
Arup AGU, Serpentine Gallery Pavilion, 
Kensington Gardens, London, 2002
Interior of the pavilion showing the 
dynamism of the algorithmic pattern.

Figure 13. Toyo Ito & Associates 
with Arup AGU, Serpentine Gallery 
Pavilion, Kensington Gardens, 
London, 2002
Interlocking pattern of panels 
forming the pavilion deriving from 
geometric construction.
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Figure 14. Diagrams illustrating the 
algorithmic genesis of the different 
projects
Illustration showing how the projects take 
their form from simple recursive processes.

to a height of 14 metres (46 feet). The piece is based on the 
observation that the refl ection of perfectly refl ective tangent 
spheres into each other generates infi nite fractal patterns (a 
tetrahedron of spheres, for example, creates a Sierpinski-type 
gasket). The refl ection becomes increasingly complex and rich 
when people and surrounding buildings are introduced into the 
space and when the packing is carried out in an irregular form.

Smooth Surface Networks
The Taichung Opera House, designed with Toyo Ito & 
Associates (2007), consists of a single smooth concrete surface 
dividing space in two  regions A and B, never connecting, 
but constantly fl owing into each other. Organised in a three-
dimensional chequerboard of alternating A and B voids, the 
surface is the structure to a three-storey building where vertical 
support seamlessly merges into horizontal diaphragms. The 
surface is also a grid of seamlessly smooth lines fl owing from 
one end of the building to the other, providing the underlying 
grid of its reinforcement and shuttering patterns.

Folded Networks
The Pedro and Inês Bridge in Coimbra, Portugal (2007) 
questions the traditional concept of crossing a river in a straight 
linear trajectory, subverting the two-dimensional balance of 
forces typical of classical arching bridge structures. It does this 
through the introduction of a disruption at its midspan, a ‘cut-
and-shift’ move which splits the deck into two, pushing the 
supports towards the outer edges of the bridge. The structure 
remains perfectly balanced in its three-dimensional form, 
acquiring lateral stability through the spreading of its supports. 
Spatially the cut-and-shift move generates an unexpected 
event at the midspan; a ‘fl oating’ square hangs suspended over 

the water where people meander and pause. The balustrade is 
a three-dimensional folding of four shapes of coloured glass 
animating the bridge with refl ections and shades of light. 

Proportional Networks
The Serpentine Gallery Pavilion of 2002, designed with Toyo 
Ito & Associates, is based on a network of lines that originates 
from connecting the half point to the third point of each side 
of the square plan. The recursion and extension of this rule 
generates a complete network which folds from the roof of 
the pavilion to the walls to form a rigid structure. The pattern 
of the facade is a simple polygonal chequerboard of glass and 
aluminium panels. The hierarchies and regularities of the 
geometric pattern facilitate the segmenting of the structure in 
panels that are easily transportable and buildable on site like 
interlocking pieces of a puzzle. It is also apparent that within 
the chaotic array of lines in space there is an underlying order 
of simple proportions, a dynamic pattern that follows the 
concentric lines of its geometric genesis.

In the past few years the AGU has demonstrated, through built 
projects, that new spaces and structures can be formed by the 
introduction of systems of organisation not previously explored 
in architecture or engineering. By employing a mathematically 
rigorous method, recursive algorithms have been coded in 
computer applications as the new tools of the designer and 
used to promote the emergence of a rich world of new spatial 
networks where habitable space, circulation, structure and 
pattern can be found. 1

Text © 2011 John Wiley & Sons Ltd. Images: pp 58-9 © Arup, photo Tristan Simmonds 
(AGU); pp 60-1, 62(b), 63-5 © Arup; p 62(t) © Peter Macdiarmid/Getty Images
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Heatherwick Studio, British Pavilion, Shanghai, China, 2010 
Close-up of the spike distribution.
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Intuitive 
Material 
Distributions 

Panagiotis Michalatos and Sawako Kaijima 
describe how the Optimisation Design team at 
Adams Kara Taylor (AKT) work with mathematical 
algorithms to develop interactive software 
applicatons that help inform structural behaviour 
in the early parts of the design process. This is 
exemplified by the project-specific software they 
developed for Thomas Heatherwick’s British 
Pavilion at the 2010 Shanghai Expo.

Panagiotis 
Michalatos and 
Sawako Kaijima, 
Adams Kara 
Taylor (AKT)
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Panagiotis Michalatos and Sawako Kaijima (Adams 
Kara Taylor/AKT), TopoStruct software, 2008
Screen capture of the TopoStruct software for structural 
optimisation.

Different combinations of boundary conditions and forces 
give rise to a variety of structural forms and patterns, 
some familiar from living organisms or typical steel 
structures and others more unexpected.

The pavilion is constructed from 60,000 7.5-metre 
(24.6-foot) long acrylic rods suspended in a timber 
frame structure.

Heatherwick Studio, British Pavilion, Shanghai, China, 2010
Screen captures from software made for a spike 
distribution study at AKT for the British Pavilion at the 
Shanghai Expo.
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The applied research of the Optimisation 
Design team at Adams Kara Taylor (AKT) 
focuses on the development of interactive 
software applications that induce intuition 
towards specific counter-intuitive design 
problems, often related but not limited to 
the understanding of structural behaviour. 
Intuition is considered as insights gained by 
practice (play) and feedback (observation) 
which makes possible informed decisions in 
the context of a specific design problem.

The process involves effective 
abstraction of the problem, development and 
implementation of mathematical algorithms 
in order to extract a set of pre-solutions; 
that is, semi-determinate results that 
operate as design hints in the early stages 
of the design process rather than definite 
outcomes. In addition, close attention to 
interface design enhances the accessibility 
of often-complicated algorithms as well as 
the intuitive understanding of their inner 
workings. Hence more than any specific 
algorithms used, the controls and observables 
that make up the digital design environment 
constitute the ingredients for an intuitive 
approach to the problematic of structure.

One aspect of architectural design that is 
often opaque to many architects, especially 
during the early stages of development, is the 
question of structural behaviour, because in 
many cases it is difficult to think of structure 
without definite geometry. With the aim 
of achieving a closer and yet not super-
determined relationship between design and 
structure, the work seeks to describe the 
structural aspects of design as continuous 
material distributions in space.

TopoStruct is one application that has 
been developed based on the theory of 
topology optimisation (by Martin Philip 
Bendsøe and Ole Sigmund), a methodology 
that produces optimal geometric and 
material distributions in space with respect 
to structural behaviours. The application 
allows those with little prior knowledge of 
engineering to acquire some understanding 
of the physics of structure. In fact, after 
interacting with the software for some time, 
users tend to anticipate the results as if they 
have gained this intuitive understanding of 
the underlying principle. 

However, the importance of the software 
does not lie only in the particular method 
itself but in its potential to alter an architect’s 
perception of material and structure. 

Design is often seen as an articulation of 
solid elements within an empty space or a 
manipulation of clear-cut boundaries in the 
form of surfaces. A more abstract concept of 
structure and material is instead introduced 
here where some regions of space are solid 
and some empty, but the boundaries between 
them are diffused. In this case materiality 
gradients traverse the design space, carrying 
material information and endowing space 
with some structural behaviour, although of a 
very exotic ‘could observe and discuss’ kind. 
These properties are encoded in scalar and 
tensor fields which act on the design and give 
hints about material density and directionality 
without imposing a specific formal 
expression. The latter, the interpretation 
of the material fields, will be part of the 
designer’s decision-making process. Here, 
the question of what to design is transformed 
into what are the properties of the space itself 
in which we embed a design artefact. Such 
a conceptual shift can be useful in the early 
stages of design as it gives clues about the 
behaviour of material distributions and the 
structural patterns that emerge within them. 

A similar line of thought is followed in 
the research by AKT’s optimisation design 
team on the discretisation of surfaces using 
tensor fields that are related to material and 
structural information. Here, rather than the 
distribution of material density, the quest is 
the abstraction of a patterning exercise to 
one of controlling vector fields and hence 
directionalities in space.

All of these methods often require a 
statistical intuition of the design domain 
properties. This was the case with the 
development at AKT of project-specific 
software for several design problems. For 
example, for Thomas Heatherwick’s British 
Pavilion at the 2010 Shanghai Expo, an 
interface was created for the early stages 
of design through which could be observed 
and discussed the properties and problems 
of different distribution methods for the 
pavilion’s 60,000 spikes, seen both as 
individual elements and as a continuum with 
statistical and smoothly varying aspects. This 
ability to operate intuitively at the borderline 
of the discrete and the continuum is critical 
for projects that are geometrically hyper-
fragmented and work at multiple scales. 1

Text © 2011 John Wiley & Sons Ltd. Images: pp 66-7, 68(tr) © 
Hufton + Crow; p 68(tl) © AKT; p 68(b), 69 © Sawako Kaijima / 
Panagiotis Michalatos

Generation of structural patterns over plates and shells, 
driven by material and structural properties.
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Lost in 
Parameter 
Space?

Fabian Scheurer
Hanno Stehling
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Rather than eradicating the need for mathematics in architectural 
practice, computation has intensified it. As Fabian Scheurer 
and Hanno Stehling of designtoproduction explain, the uneven 
flow of a complex design from computer-aided design (CAD) to 
computer-aided engineering (CAE) and through to computer-aided 
manufacturing (CAM) necessitates an understanding of abstract 
mathematical concepts that facilitate communication, precision and 
an accurate assessment of quality throughout the process.

Figure 1. Shigeru Ban, Centre Pompidou, Metz, France, 2010
The roof surface as triangle mesh (left) and as NURBS 
surface (right). Only the latter allowed for the fabrication of 
smoothly curved girders, but its definition took some help from 
specialists who usually work for the automotive industry.
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A few years ago the introduction of ever more powerful 
computer-aided design (CAD) systems seemed to 
have almost eradicated mathematics from architectural 
practice. At least when looking at the curricula of 
architecture schools one could have the impression that 
this subject – anyway unloved due to its ‘uncreative’ 
formal rigidity – was happily replaced by CAD courses 
and the belief that somewhere in the background the 
software would take care of all the calculations. Under 
this cover, even highly sophisticated mathematical 
concepts like non-uniform rational b-splines (NURBS) 
managed to sneak into architecture, understood by very 
few but happily applied nevertheless. 

Recently this seems to have changed again. 
Architects have suddenly shown an increasing interest 
in mathematics1 and its abstract concepts. Surprisingly 
at first glance, the very same process of digitalisation 
that once marginalised mathematics in architecture 
now actuates its re-establishment. On closer inspection, 
however, this is a consequent progression: it turned out 
that the complex shapes unleashed by digital design tools 
did not smoothly flow down the process chain from CAD 
to computer-aided engineering (CAE) to computer-aided 
manufacturing (CAM) until automatically materialising 
inside some digital fabrication machines, and that the 
implementation of a passably seamless digital workflow 
requires more than the flick of a button in the designer’s 
CAD software. To understand why this is the case we 
need to take a look at mathematics and the closely related 
theory of computation.

First of all, architectural design is a process of 
communication. It is a long way from the designer’s 
initial idea to the built result, necessitating means 
to describe a design in ways that give sufficient and 
unambiguous instructions to the builders. 

Traditionally and despite all digitalisation, this is 
still achieved mainly by 2-D drawings. Mathematically 
speaking, the projection of a three-dimensional object 
onto a two-dimensional sheet of paper is a mapping 
transformation that must be set up carefully in order 
to deliver not only correct but also meaningful results. 
Ideally, a projection plane is defined so that most of the 
object’s edges keep their length and inscribed angles, 
allowing measurements in the drawing to give valid 
information about the real thing. 

Unfortunately, such a projection plane does not 
now exist for a complex shape with no planar faces. 
Subsequently, any 2-D plan might transport parts of the 
topology (how certain features are related to each other) 
but no reliable metrics any more (how far those features 
are from each other). This loss of information, in the end, 
makes it impossible to reconstruct the 3-D object based 
on a set of 2-D drawings – the traditional language of 
architecture becomes insufficient.

Luckily, CAD systems have evolved from a stage 
where they merely were simulating 2-D drawing boards. 

Nowadays CAD models can – contrary to a sheet of 
paper – unambiguously store the actual 3-D information 
of an object. Consistent 2-D plans can then be derived 
from those 3-D models on request. So complex designs 
consequently have to be modelled in three dimensions 
before they are flattened to drawings; the model becomes 
the core of communication.

Abstraction
A model, by definition, is always an abstraction of reality. 
Building a model means reducing the infinite complexity 
of the real world to a level where it can be described with 
manageable effort. What is obvious in the workshop of 
a model builder sometimes gets forgotten when almost 
infinite digital storage space is at hand: a perfect model 
does not contain as much information as possible, but as 
little as necessary to describe the properties of an object 
unambiguously. Any extra bit would be meaningless for 
the given purpose and only impede comprehensibility. 
In information theory, this is known as ‘Kolmogorov 
complexity’ or ‘descriptive complexity’: the complexity of 
an object is defined by the length of the shortest possible 
description. While modelling starts with gathering data, 
it is far more important to then throw away everything 
that turns out to be superficial. This task requires quite 
some (human!) intelligence, because it involves finding 
patterns and defining general cases.

This is easily done for planar faces and regular 
grids: details can be defined once and then multiplied; 
local changes do not induce re-evaluations of the 
whole structure. But again, the fun stops as soon as the 
shapes get curvy.

Abstracting Shape
A straightforward approach to describe a non-planar 
shape would be to define a large number of points – 
for instance by laser-scanning a physical model – and 
connect them by straight lines to form a mesh. Meshes 
are an easy way to define complex shapes, but they have a 
severe disadvantage: the planar facets of a mesh can only 
approximate a curved shape, which is usually acceptable 
for rendering an image, but certainly is not for digital 
fabrication as the approximation errors quickly exceed 
the machine precision (typically some 1/10 millimetre 
for large-scale fabrication equipment) and are duly and 
visibly reproduced.

Fortunately, there is a mathematical model for 
precisely describing curved surfaces. Developed in the 
1950s and 1960s, the computational complexity of 
NURBS meant it took almost 50 years until they started 
their impressive career in architecture. NURBS allow 
the precise definition of complex shapes through control 
points. When used properly, significantly fewer control 
points are needed for a NURBS surface than vertices for 
a similar mesh, while at the same time NURBS allow 
the precise calculation of all in-between points on the 
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Figure 2. Planar projection
Simple 3-D objects with planar faces (left) can be unambiguously described 
by a small set of 2-D plans preserving lengths and angles for all edges 
running parallel to the projection planes. For curved surfaces (right), this 
approach fails because no projection plane would preserve the metrics.

Figure 3. Abstracting a circle
A circle is unambiguously defined by only three points. After discovering 
the shape behind those 30 points we can throw away 27 of them (90 per 
cent of the data) and still have the same figure defined in the drawing. 
Additionally, the geometric definition of a circle lets us now identify the 
exact location of infinitely many more points than the 30 we started with.

Figure 4. Shigeru Ban, Centre Pompidou, Metz, France, 2010
The roof during erection. The structure is composed of six 
layers of double-curved girders that were precisely pre-cut on a 
computer-controlled machine.
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Figure 5. ALA Arkitekter AS, Kilden Performing Arts Center, 
Kristiansand, Norway, due for completion 2012
The facade towards the waterfront is clad by straight oak 
boards, only twisted around their longitudinal axis. 

Figure 6. ALA Arkitekter AS, Kilden Performing Arts Center, 
Kristiansand, Norway, due for completion 2012
The facade’s shape is defined by a ruled surface with a straight 
upper and a curved lower edge. For the intended prefabrication 
concept all generatrices had to be aligned with the building axes, a 
demand that could not be met with the default ‘loft’ method found 
in standard CAD packages (left), but needed a custom NURBS-
definition (right).
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surface. In this respect, a mesh can be abstracted by a 
NURBS surface like a polygon can be abstracted by 
a circle. But finding a proper NURBS representation 
for a given mesh or point-cloud requires quite a bit of 
knowledge of the underlying mathematical methods.

So it is more efficient to work with NURBS from 
the beginning, which is exactly what modern 3-D 
modelling software offers. But modelling a free-form 
surface means more than just tweaking control points; 
in order to come up with something buildable in 
the end, it means understanding the mathematical 
concepts behind those surfaces and relating them to 
the material world.

Abstracting Material
Curved surfaces have many geometrical properties 
that directly influence the options to actually build 
them (like developability and curvature radii). Most 
CAD programs can visualise those surface properties, 
but the designer has to interpret the colourful images 
and either match the design to the available material 
or find a suitable material for the given design. 
Speaking from experience, the latter approach is 
chosen far too often, frequently resulting in awkward 
and inefficient solutions. 

For the development of smart solutions, the 
properties of both shape and material have to be known 
in detail. And, in order to precisely describe them in 
a 3-D model, the mathematics behind their physical 
behaviour have to be known too. If, for example, a curved 
surface is to be clad with thin strips of wood, it is easy to 
map a ‘pinstripe’ texture to the respective NURBS model 
and render a realistic looking but physically wrong image. 
In order to find out what really happens, one needs to 
base the stripe pattern on the bending characteristics of 
real-world wood strips. Only with this knowledge is it 
possible to create a valid geometry for all the slats on the 
surface and tell a fabricator how many to order and how 
to pre-cut them. Also, it enables the designer to optimise 
both surface and pattern for fabrication as well as for 
visual impression.

Abstracting Detail
Architectural design does not stop at defining an overall 
shape; a large number of components have to be joined 
to create a building. And, as soon as the underlying grid 
becomes non-regular, both components and joints must 
be adjusted to the geometrical situation at every grid 
position, rendering every piece unique. To save designers 
from manually modelling thousands of components, 
the concept of ‘parametric modelling’ was introduced: 
instead of describing the final result as a model, the 
process of modelling itself is described. A sequence of 
instructions (an algorithm) generates output (a detailed 
model) based on input (a set of parameters). By varying 
the input values, different output can be generated.

Abstraction in this context means to systematically 
develop a general solution suiting all individual 
components. This usually starts with finding the 
extreme cases – for example, the joints with extreme 
angles or the members with highest loads – and 
developing a parametric solution that can handle 
those as well as all intermediate cases. But since 
the (conflicting) requirements usually define a 
multidimensional solution space it is not always obvious 
whether all occurring cases are within the boundaries. 
Verifying the validity of a parametric solution might 
still require testing every single case. So, the challenge 
of building a parametric model is to untangle the 
interdependencies created by different requirements 
and find a set of rules that is as simple as possible 
while remaining flexible enough to accommodate every 
occurring case. In other words: to pinpoint the view to 
the exact level of abstraction where no important point 
is lost and no one gets distracted by unnecessary detail.

Reduction
Reduction, in contrast to abstraction, is not about 
reducing the amount of information but rather about 
finding the optimal way to transport it, hence rewriting 
the description without altering the content.

In the CAD domain, reduction can happen on 
different levels. Low-level reduction is about optimal 
descriptions of single geometric entities that save 
resources such as memory and disk space.

Fortunately, reduction on this level happens deep 
within the CAD system. It is higher-level reduction 
that is more interesting to the designer. Here we 
are mainly talking about two different procedures: 
elimination of redundancies and optimisation of 
descriptions and processes.

Normalisation
Redundancies (information that is present more than 
once) increase the weight of the model without adding 
detail and, more importantly, lead to update anomalies: 
the model can become inconsistent if only parts are 
updated. In database theory, the process of eliminating 
such anomalies is called normalisation. But it comes 
at a price: while changing information (writing) 
is made safer and quicker, extracting information 
(reading) becomes more complicated and generally 
slower, because it must be compiled from several spots 
throughout the dataset. Therefore, databases that are 
significantly more read than written are often kept 
partly redundant on purpose.

Carried over to CAD, this means that when creating 
1,000 parametric components on one reference surface it 
could be sufficient to save one single point per entity and 
define a set of geometric operations to re-create its actual 
shape. However, this might render the model unusable 
as those operations have to be repeated on every 
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information request. So the shortest possible description 
is not necessarily the best one. It might be worthwhile 
to keep some redundancies while carefully respecting 
update consistency.

Parametric modellers like McNeel’s Grasshopper 
generally produce largely normalised models. When 
setting up a model, the user builds a hierarchical graph 
rooted in the input geometry. Grasshopper achieves a 
great deal, representing the graph visually and letting 
the user interact with it in a fairly intuitive way. Still, 
designers should be aware that the resulting geometry 
at every stage is volatile and immediately dependent 
on the input. While this eliminates the risk of update 
anomalies it also suppresses the possibility of deliberate 
redundancies or manual intervention.

Refactoring
The second flavour of high-level reduction could be 
described as cleaning up a model. Again, it can be rooted 
in computer science, where it is known as refactoring; 
that is, changing the source code of a program 
without changing its functionality in order to ensure 
maintainability and extensibility. This can be mapped 
directly to CAD: by throwing away superficial parts and 
simplifying parametric dependencies, a model can be kept 
sleek and efficient. This is especially important when it is 
used by more than one party.

However, it is important to note that reduction is 
irreversible: once we reduce a circle’s description from 
three points to centre and radius, there is no way to get 
our initial points back – the information is retained, 
but not its history. This means that designers have to 
make sure the parts they eliminate are truly superficial; 
otherwise reduction becomes further abstraction that 
affects the functionality of the model.

Algorithms
Theoretical computer science is definitely unlisted 
on the average architecture student’s agenda. But 
when parts of the design are delegated to computer 
programs (as in computational optimisation) or new 
computational tools are developed within a design 
process (as in parametric modelling), some knowledge 
about algorithms becomes key to understanding their 
influence both on the process and its result.

Determinism
First and foremost, contrary to a design problem, an 
algorithm has to be well defined. Since computers 
cannot guess based on experience and intuition, every 
step in a computer program has to be completely and 
unambiguously determined by the previous steps. Any 
decision making on how to proceed has to be already 
embedded in the program, and randomness is only 
simulated by numerical methods. Even computer 
programs that seem to exhibit experience (like expert 

systems) or random behaviour (like evolutionary 
systems) are running on deterministic hardware that can 
only switch currents on or off in a silicon chip (non-
deterministic algorithms do exist, but they are mainly 
of interest for computational theory due to the lack of 
appropriate non-deterministic hardware).

Thus, defining an algorithm to solve a class of 
problems means to already know a general solution for 
those problems and describe a step-by-step process to 
derive an output from the given input. The first step 
usually is to assert that the input matches the problem 
specifications and can be processed (so the range of 
allowed inputs – the so-called ‘parameter space’ – 
has to be already well defined). From there on, the 
algorithm deterministically proceeds step by step, until 
it presents always the same final result for the same 
given input. Incidentally, evolutionary methods are no 
exception to this rule; they merely lift it to a different 
level of abstraction. The evolutionary method as such 
has to be well defined and deterministic, only the 
results are probabilistic.

Termination
Unfortunately it is not at all given that even a 
deterministic algorithm will eventually deliver a 
result. As soon as an algorithm contains some sort of 
loop it becomes hard to prove that it never gets lost 
in perpetual orbit for any given input. Consequently, 
parametric modellers like Grasshopper do not allow 
loops in their models. The data-flow diagram set up 
by the user always forms a directed loop-free graph 
assuring that data passes through without ever reaching 
the same point twice. On the other hand, iteratively 
executing the same step many times or even recursively 
calling an algorithm from within itself are very powerful 
and indispensable methods for efficient programs. 
And as a matter of fact, loops are used in parametric 
models, albeit only within the encapsulated components 
provided by the modeller and carefully hidden from the 
user to rule out infinite loops. 

Computational Complexity
Sometimes even finite loops are too much. There are 
problems that can be solved by perfectly well-defined 
and provably terminating algorithms – only it takes far 
too long to wait for the result. A striking example is 
the so-called ‘Travelling Salesman Problem’ of finding 
the shortest route through all cities on a given list. An 
algorithm just has to generate all possible permutations 
of the listed cities, calculate the respective route lengths 
and find the shortest one. Since the number of cities 
is finite, so is the number of routes that can therefore 
be tested in finite time by a deterministic algorithm. 
The only problem is that for n cities the number of 
permutations accounts to ½×(n-1)!, a term that grows by 
the factorial (that is, the product of all positive integers 
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Figure 9. Shigeru Ban, Heasly Nine Bridges Golf Club, Yeoju, 
South Korea, 2010
The timber roof structure is defined by a regular tri-fold grid that 
is vertically projected to a curved surface. Girders are created on 
every projected grid line. Their orientation follows the surface, 
rendering them curved and twisted. The girders intersect at almost 
7,500 crossing points.

Figure 7. Shigeru Ban, Heasly Nine Bridges Golf Club, Yeoju, South Korea, 2010
To allow for continuous girders in all three directions, they are split into five layers 
with two lap joints at every crossing. The complete roof contains some 3,500 
curved timber components with almost 15,000 lap joints. Even though many 
parts are similar, 467 individual components with over 2,000 different joints had 
to be described in detail. This was only possible by formally describing the whole 
structure in a parametric system that automatically generated the detailed models 
from a reference surface and some numerical parameters.

Figure 8. Reducing a circle
A circle can be unambiguously described by three points. However, 
if the notation is changed into one centre point plus normal vector 
and radius, the description size can be reduced from nine values 
(three points at three coordinates each) to seven values (two points 
and a number), saving 22 per cent.
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Figure 10. Curved beams in the Kilden facade
All timber beams are derived by projecting straight 
lines onto offsets from the same reference surface. 
The shortest possible description of each beam 
would therefore only contain one line, a width, 
a surface offset distance and a reference to the 
original surface. But the laborious offset and 
projection operations would have to be repeated 
whenever information about the beam geometry is 
needed. So it is reasonable to save the projected 
beam edges in the model, as long as they are 
updated when the reference surface changes.

Figure 12. Schematic view of a genetic algorithm (GA)
Evolutionary methods seem to find surprisingly good results in vast 
solution spaces by chance, but they are based on completely deterministic 
algorithms. Notably the encoding of an individual’s properties into a 
genome, the recombination of genomes during reproduction, and the 
selection based on a quantifiable fitness measure have to be formally well 
defined and unambiguous. Virtual dice are tossed at some steps of the 
algorithm to draw decisions, but this is also part of the predefined recipe.

Figure 13. The Travelling Salesman Problem
For three cities A, B and C, the six permutations would be 
[ABC], [ACB], [BCA], [BAC], [CBA] and [CAB]. If we assume 
that neither starting city nor travelling direction matter, those 
three routes are effectively the same. So for three cities, there 
is only one possible route. But that changes quickly for n>3.

Figure 11. Parametric Grasshopper model
Parametric models describe the relations between different parts of a model as a graph 
where each node defines a (geometric) entity. The properties of one entity can be passed 
on to dependent entities, influencing their behaviour. This visually explains the flow of 
data and the hierarchy of entities in the model. Shown here is a parametric model that 
takes two curves and a number and generates three different NURBS surfaces.
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when and why these errors occur can help to improve 
the construction sequence instead of just readjusting the 
tolerance settings when Boolean intersection fails again.

Quality
As we have seen, complex shapes can only be handled 
if digital or even parametric models are an integral part 
of the architectural design and communication process. 
Digital models, which aim at describing and simulating 
aspects of real objects, need to be set up carefully, with 
the right focus and the appropriate level of abstraction 
to deliver meaningful results. Especially when using 
parametric models, the hierarchic dependencies within 
complex structures have to be thoroughly untangled 
and precisely described in formal algorithmic and 
mathematic notations; only then can the output be rebuilt 
automatically upon changing the input parameters. But 
when a specific design is just one out of a myriad of 
possible instances a parametric machine can produce, 
what is the appropriate level to discuss the quality of 
design? Clearly, meaningful evaluation cannot stop at 
the skin-deep layer of the output’s visible appearance. 
Nevertheless, today’s architectural discourse rarely dives 
below this level, even though designers are gradually 
becoming programmers who design their own, highly 
sophisticated tools. 

We think it is about time to discuss the quality of 
the processes instead of merely reviewing the end results 
that can be generated in endless variations. If we do not 
want to get lost in parameter space, we need to assess 
and understand the quality of the algorithmic machines 
we design, not the designs they produce. Which are the 
defining parameters of a model? Where and how does 
abstraction strike and why are certain things included 
and others left out? How are algorithms conceived and 
rules defined? What are the quantifiable – and therefore 
optimisable – measures for the quality of a design and 
how are they weighed against each other? What defines 
the quality of an algorithm and how does it reflect in 
its output? And finally, how can we communicate and 
discuss complex architectural structures in a meaningful 
way – not between digital machines but between the 
human minds assembled in a project team? Because in 
the end ‘designing’ means drawing decisions and taking 
the responsibility, not delegating them to a machine. 
Only this prevents algorithmic design, which is largely 
based on formal descriptions, from itself becoming 
formalistic. 1

Note
1. See, for example, Helmut Pottmann, Andreas Asperl, Michael 
Hofer and Axel Kilian, Architectural Geometry, Bentley Institute 
Press (Exton), 2007. Also Jane Burry and Mark Burry, The New 
Mathematics of Architecture, Thames & Hudson (London), 2010.

Text © 2011 John Wiley & Sons Ltd. Images: pp 70-3, 74(t), 77(t&br), 78 © 
designtoproduction Zurich/Stuttgart; p 74(b) © Hans Olaf Omnes, AF Gruppen; p 
77(bl) © Blumer Lehman AG

less than or equal to a number) of the list length. For 
n=16 there already are ½×1×2×3×4×5×6×7×8×9×10×11×
12×13×14×15 = 653,837,184,000 alternatives to check, 
which at a rate of one million routes per second takes 
about 7.5 days; and one single extra city would raise the 
waiting time to four months.

The amount of resources consumed by an 
algorithm in relation to the number of inputs is called 
‘computational complexity’. As the travelling salesman 
problem shows, the computational complexity of most 
problems does not scale linearly with the number of 
inputs. In particular, computational simulations like 
finite element analysis (FEA) and computational fluid 
dynamics (CFD) are not easily scalable, which makes 
it practically impossible to simulate large models in 
reasonable time, for example to use the results as fitness 
measures for evolutionary optimisation. Buying faster 
processors will only help momentarily; building leaner 
models and applying smarter methods is a much more 
sustainable approach.

Precision
It is a still common misconception that digital models 
are infinitely precise. Truth is that every computational 
operation on real numbers is subject to slight errors due 
to the fact that those numbers are stored as a combination 
of a whole number and an exponent, with finite precision 
(this is called ‘floating point’ to illustrate that the position 
of the radix point depends on the variable exponent). 
While these imprecisions can be neglected in most 
cases, they can add up and become relevant especially 
in complex geometric operations. Because of the finite 
number of digits available for both integral and fractional 
part, floating point errors are also dependent on the 
operands’ magnitudes, which is why the exact same 
operation might succeed at the model origin [0,0,0] but 
fail at [1015,1015,1015]. 

Furthermore, many fundamental geometric 
operations – like finding the intersection of two 
NURBS surfaces – utilise numerical approximation, 
which ultimately destroys the notion of infinitely 
precise CAD models. This is also the reason for CAD 
modellers to provide a tolerance setting. Increasing 
the tolerance can help working with imprecise input 
geometry, but will also lower the resulting quality. 
While decreasing it raises precision, it also elevates the 
barrier for geometric operations to succeed and boosts 
computation time.

While this impreciseness is inherent to geometric 
operations, it is notably not so to their formal description; 
formally defined models are precise until they are 
rendered into geometry. So the transition from formal 
relations to geometric operations is an important one that 
should be commenced carefully.

Of course, error-bound geometric operations are 
impossible to avoid in CAD modelling, but knowing 
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Geometry 
Working 
Beyond 
Effect
With the onset of fully fledged file-to-
factory design techniques, why should 
architects want to restrict themselves to the 
prescribed limits of descriptive geometry? 
In this article Mark Burry looks at a 
specific set of geometries – doubly ruled 
surfaces – that have been most explicitly 
developed by ‘structural artists’ Antoni 
Gaudí, Vladimir Shukhov and Félix 
Candela. He asks whether the application 
of doubly ruled surfaces like these might 
help us to make a significant distinction 
between architecture and sculpture.

Mark Burry

Figure 1. Félix Candela’s use of several 
hyperbolic paraboloids used in combination
The development of four intersecting ‘hypars’ 
with curved edges. Candela used this process 
for engineering his structural shells made from 
relatively lightly reinforced concrete. He was 
the first to determine through calculation that 
the entire shell was in compression: in ordinary 
circumstances hyperbolic paraboloid roof forms 
do not experience significant tensile stress.
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Plastic arts traditionally describe the work of the sculptor and the 
way they manage material through shaping or modelling. Shaping 
implies a reductive process: from a block of stone, for example, 
material is chiselled roughly, finely, and abraded to release the 
artifice. Modelling implies the reverse: lumps of pliable material 
are cajoled and caressed to the satisfaction of the artist. Were both 
processes to lead to an identical outcome – same shape and form 
– the critical nuances around the creative route taken, the haptic 
and tactile qualities of the resulting artefact, and the meanings 
ascribed to the choice of material would ultimately influence their 
relative levels of appreciation. 

For the sculptor, the role of mathematics such as descriptive 
geometry would most likely be seen as a highly deliberate gesture 
not necessarily occasioned around thoughts of facilitating the 
object’s making, nor as a means to provide a greater economy of 
means. Sculpture is typically smaller than the scale of architecture 
and the sculptor has not been presented with the quandary that 
architects have been faced with since the primitive hut: a means 
to understand their design and communicate it to others, not least 
the builder in order to realise the project. 

Up until the end of the 19th century, descriptive geometry 
typically engaged students for a sixth of their architectural 
training. The emphasis on geometry as part of the architect’s 
skill set became more sophisticated from the Renaissance up 
until the modern epoch of iron and steel construction: the earlier 
congruence between architecture and engineering design thinking 
fell away as each profession charted quite different paths to 
practice. Typically, it is the engineer who is called upon to engage 
with the mathematics of architecture.

Descriptive geometry from the 16th century onwards was 
especially stimulated by the need to fragment increasingly 
complex overall design composition into pieces of stone sized 
to be practical as much for the needs of the quarry master and 
the stonemason as for the capability of the contractor to raise 
each worked piece perfectly into place. Descriptive geometry 
allows the general description of the composition to be more 
readily templated so that individual components could be worked 
without physical reference to each other. 
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This particular skill, stereotomy (from the Greek 
words for stone and cutting), would have been a principal 
point of difference between how Michelangelo would have 
approached sculpting the Pietà in St Peter’s, Rome (1499), 
and crafting the Medicean-Laurentian Library in Florence 
(commenced in 1523). With the exceptions of a relatively 
few schools of architecture worldwide, since early in the 
20th century most have reduced any emphasis on descriptive 
geometry in their curricula due to a combination of the 
increased technical specialisation away from the hands-on 
involvement of the architect, two generations of rationalist 
ideology favouring the orthogonal, vertical and planar, and 
the advent of advanced computation especially for engineers. 
As a force of destiny, together they have further distanced the 
designer from any role as stereotomer. 

Where there is evidence of a healthy presence of descriptive 
geometry retained in departments (for example in certain 
schools in Spain and in Budapest), far from being defended 
from any unspoken accusation of being an anachronism, its role 
is actively promoted as an enabler of different types of 
conversations around spatiality, as a tool to cement a strong 
sense of the architectural tradition in the emerging architect, 
and as a philosophical link back to the Greeks. This exception is 
not the rule, however, so the almost palpable contemporary 
interest in a return to the mathematics of architecture begs 
many questions, for whereas once there may have been an 
overriding pragmatic advantage for geometry to help colour the 
description of architectural components, there is not that need 
today. With the quest for machines that will print full-scale 
buildings well advanced at the time of writing, and computer 
numerically controlled (CNC) robot cutters and routers already 
capable of making any shape or form to order directly from the 
designer’s computer file, why would any architect bother to restrict 
themself to a protocol based on particular sets of geometries? 

This article looks at one set of geometries – doubly ruled 
surfaces, and proposes that their attendant facilitation for 
construction purposes, even if obviated by file to factory 
production may yet point to a useful distinction between 
the fundamentals of architecture (Vitruvian trinity) and the 
aesthetic priorities of sculpture. In making this claim it will 
self-contradict, showing how taking up such geometries has 

thus far blurred the distinction between architects, engineers 
and sculptors. The emergence of the term ‘structural artists’ to 
describe engineers such as Pier Luigi Nervi (1891–1979), Félix 
Candela (1910–97), Frei Otto (1925–), Heinz Isler (1926–2009) 
and Peter Rice (1935–92) points to a more common outcome, 
one where consideration of particular geometries signals a 
rethink of rather artificial professional boundaries.1

Ruled Surfaces and Developable Surfaces
Ruled surfaces can be considered as a principal component of 
a particular definition of the mathematics of space. For any 
ruled surface, a single straight line lying on that surface will pass 
through a given point also lying on that surface. Every point on 
that surface will have at least one line passing through it that 
lies on the surface. Ruled surfaces include the plane, cones and 
cylinders as well as hyperbolic paraboloids and hyperboloids of 
revolution. Some ruled surfaces such as cones and cylinders are 
also described as developable surfaces; that is, surfaces that can 
be flattened out onto a plane without distortion or stretching 
of any kind, although cutting may be required. As children we 
recall making conical wizards’ hats starting out from a sheet of 
paper by removing a sector from a cut-out disc. Making a cone 
in this way is possibly the most haptic means of all to manifest 
the conceptual spatial leap from two to three dimensions. And 
examining the stiffness of the cone made in this way relative 
to the flaccidity of the paper disc is a perfect lesson in imbuing 
materials with greater strength through the application of 
geometry – more with no more. 

In three-dimensional space, all developable surfaces are 
ruled surfaces, but not all ruled surfaces are developable surfaces. 
Doubly ruled surfaces, a subset of ruled surfaces, have at once 
a geometrical simplicity and a visual sophistication: they have 
two straight lines lying on the surface passing through any 
point on the surface, and the surfaces are doubly curved. They 
are not commonly used in architecture, and usually in the 
role performing more engineering-oriented tasks than from 
purely visual motivation, but their aesthetic ranges from the 
subtle way they direct light across their surfaces to their ready 
describability, both in terms of representation and fabrication. 
Used well they point to an intellectual scope that re-engages 
curious minds with the compositional power of geometry. ‘Used 

Figure 2. Parameters of a 
hyperbolic paraboloid
A hyperbolic paraboloid is a 
saddle-shaped doubly ruled 
surface that has a convex curve 
as a section across one axis and 
a concave curve in the other.
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well’ here refers to the language implicit in their use extending 
beyond their practical advantages, which will be spelt out in 
more detail further on. The three doubly ruled surfaces are 
not mathematically complex. In terms of parametricisation for 
hyperboloids of revolution and hyperbolic paraboloids via their 
mathematical formulae these are respectively:

Hyperboloid of revolution

x2     y2     z2

— + — - — = 1,
a2     a2     c2

Hyperbolic paraboloid

      y2     x2

z = — - —
      b2     a2

Who has Used Doubly Ruled Surfaces 	
Architecturally and How Well?
Given their structural advantages remarkably few architects 
and engineers have made the use of doubly ruled surfaces as 
prominent elements within their compositional repertoire. I will 
identify three who have done so with aplomb in the order of 
their application: Catalan architect Antoni Gaudí (1852–1926), 
Russian polymath engineer Vladimir Shukhov (1853–1939) and 
Spanish/Mexican architect-engineer Félix Candela. Their uses 
of doubly ruled surfaces were very singular relative to each other, 
but all have important points in common that are summarised 
at the end of this article.

Antoni Gaudí 
With one minor exception, Gaudí first applied doubly ruled 
surfaces to his design for the Colònia Güell Chapel near 
Barcelona based on his renowned hanging model (developed 
1898–1906) from which only the crypt went on to be 
constructed (1906–12/14), at which point the project was 
abandoned. The crypt is a remarkable space despite its minor 
role for what should have eventuated as an extraordinary 
chapel towering above amid the pine trees surrounding it. In 
addition to the hanging model used as an analogue parametric 
performance design tool, there were many other innovations. 

Figure 3. Geometric description 
of hyperboloids
At its simplest, a hyperboloid of 
revolution of one sheet can be 
circular, obtained by revolving 
a hyperbola around a central 
axis. An elliptical hyperboloid is 
a non-uniformly scaled circular 
hyperboloid – it cannot be 
obtained by rotating a hyperbola.

Figure 4. Model of hyperbolic paraboloid
A parametrically variable analogue model of a 
hyperbolic paraboloid.

Figure 5. Model of hyperboloid of revolution
A parametrically variable analogue model 
of a hyperboloid of revolution. The most 
recognisable hyperboloids of revolution are 
cooling towers of power stations.
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Figure 7. Antoni Gaudí, Colònia 
Güell Chapel porch undercroft, Santa 
Coloma de Cervelló, Catalonia, Spain, 
construction 1906–1912/14
In terms of doubly ruled surfaces, this 
building, at the middle stage of Gaudí’s 
career, was his launching point. He uses 
singly ruled surfaces such as helicoids and 
hyperbolic paraboloids for both structural 
wall elements and decorative elements that 
assert the muscularity of the rib vaulting 
supporting the main staircase landing 
above and so forming the crypt’s porch.

Figure 6. Geometry of an amalgam 
of doubly ruled surfaces
Diagram indicating the geometry of 
an amalgam of all three doubly ruled 
surfaces: hyperboloids of revolution, 
hyperbolic paraboloids and planar 
fragments. Gaudí used them exclusively 
for the Sagrada Família Church 
ceiling vaults and windows, which are 
supported by helicoidal columns.
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Despite the spatial complexity of the space, Gaudí employed an 
absolute minimum of materials both in quantity and selection. 
Principally, there are only five: naturally occurring hexagonal 
basalt prisms for the main columns, brick in various grades, 
cement, glass and recycled steel. Even if reinforced concrete 
had been used invisibly, the bravado of the structural outcome 
would still command awe. That it was executed entirely in 
Catalan vaulting (sandwich layers of structural tiles and special 
cement) held aloft by twisting helicoidal columns axially 
aligned off the vertical to correspond with the forces calculated 
from the hanging model all helps make this such a timeless 
building, despite missing the church it was designed to support. 
High-quality brick is used only at points of structurally critical 
performance, with a series of material downgrades to the level of 
clinkered waste from over baking at the brick kilns used as infill.

In terms of doubly ruled surfaces this building, at the middle 
stage of Gaudí’s career, was his launching point. He used singly 
ruled surfaces such as helicoids and doubly ruled hyperbolic 
paraboloids for both structural walls and decorative elements 
that assert the muscularity of the rib vaulting supporting the 
main staircase landing above and so forming the crypt’s porch.

With the inauguration of the Sagrada Família Church 
as a consecrated basilica on 7 November 2010, for the first 
time visitors could see the amalgam of hyperboloids of 
revolution, hyperbolic paraboloids and planar fragments that 
form the ceiling vaults and windows supported by helicoidal 
columns. All that Gaudí designed during his last 12 years is 
composed of the three doubly ruled surfaces (planes used to 
the minimum) with the helicoid being the sole representative 
of singly ruled surfaces.

As Gaudí wrote nothing of significance about his 
architecture during his career that spanned almost half a 
century, we do not know exactly why he devoted himself 
to doubly ruled surfaces to the virtual exclusion of all 
other geometry. With their implementation as core to the 
description and production of the building we can cite them 
as evidence of the holism of Gaudí’s design approach. We 
have seen their description facilitated by the straight lines 
describing the surfaces in two directions, we have seen the 
reinforcement rods aligned to the same straight paths allowing 
them to perform optimally, and now we have seen their effect 

on light which Gaudí describes as gliding along the surfaces. 
Though untested technically, it seems that the reverberation of 
the giant interior is positively enhanced by their presence on 
over 90 per cent of the surfaces.

Vladimir Shukhov
Unlike Gaudí, Shukhov is a relatively obscure figure despite 
his extraordinary range of talents that include being the first 
engineer to understand structural shells sufficiently well to 
calculate their performance. He was a prolific inventor and 
many of his structures survive today. He was responsible for 
the first ocean-going oil tanker and indeed designed tanks 
to contain liquids using half the material used previously. 
He also produced the world’s first doubly curved steel lattice 
roof structure for the pavilions at the ‘All Russia’ exhibition 
in Nizhny Novgorod (1897). A search for material about 
him reveals articles on ‘Shukhov the engineer’, ‘Shukhov the 
architect’ and ‘Shukhov the photographer’. He was the genuine 
polymath for his time.

What he is probably best known for are his various 
communication towers and pylons made from a series of 
hyperboloids of revolution stacked on top of each other. By 
selecting directrices that are not equidistant with respect to the 
collar he was able to taper the towers as they rose in height. 
This is to say the directrix above the collar is closer to the 
collar than the one below it, such that the diameter of the top 
collar is proportionally smaller than the one below. At first 
sight they are improbable structures, with their diaphanous 
appearance seeming far too delicate for the task in hand. 
Although hyperboloids of revolution are inefficient spaces at 
an architectural scale (Gaudí used them at a component scale), 
they are superbly efficient structural systems with every element 
working at its optimum. All the vertical elements are in straight 
lines, taking load transfers axially, while the horizontal rings 
– some of which are also grid shell trussed – are obviously 
optimised through being circular. His most famous is the 
Shukhov Tower in Moscow (1922) that still stands 160 
metres (525 feet) in height. We are more familiar with thin-
wall concrete cooling towers, which are also hyperboloids of 
revolution exploiting the same properties that Shukhov had 
been the first to identify.

Figures 8 and 9. Antoni Gaudí, Temple 		
Sagrada Família, Barcelona, 1883–ongoing
The ceiling of Temple Sagrada Família, fully completed in 2010.
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Figure 10. Vladimir Shukhov, Shabololvka 
(Shukhov) Tower drawing, Moscow, 1919
A series of truncated hyperboloids of 
revolution that stack up on each other; 
each element could be made at ground 
level and be hoisted-up into position.

Figure 11. Vladimir Shukhov, Shabololvka 
(Shukhov) Tower drawing, Moscow, 1919
By selecting directrices that are not 
equidistant with respect to the collar, 
Shukhov was able to taper his towers 
as they rose in height. This is to say the 
directrix above the collar is closer to the 
collar than the one below it, such that the 
diameter of the top collar is proportionally 
smaller than the one below.

Félix Candela
Candela’s story is also a fascinating one, but relative to the 
contribution he made, he too has less written about him than 
one might expect. He was born in Spain but exiled to Mexico at 
the age of 26 at the conclusion of the Spanish Civil War (1936–
9) having worked as a military engineer for the Republicans. 
The first half of his professional career was in Mexico where he 
established himself as an architect–engineer–builder, and for the 
second half he was based in the US. 

Principally he is known for the form that many of 
his structures take: one or more hyperbolic paraboloids, 
remembered for their beauty and economy of means, and 
not so much for their actual geometry. Publications on 
Candela have an engineering bias and it is through those 
resources that we gain an insight into Candela’s favourable 
disposition to the ‘hypars’, as they have become known. It 
seems quite clear that Candela sought a rich mixture of 
constructional logic, extraordinary structural performance 
and a compelling aesthetic that seems to work at any 
scale. Many of his pioneering structures were made only 
centimetres thick as he was the first to exhaustively calculate 
that the entire shell was in compression: in ordinary 
circumstances hyperbolic paraboloid roof forms do not 
experience significant tensile stress.

According to David Billington, Candela wrote that the 
hyperbolic paraboloid ‘is the only warped surface whose 
equation is simple enough to permit stress calculation by 
elementary mathematics’.2 In terms of structural shells 
made from relatively unreinforced concrete, Candela was 
a key member of the first echelon. He found his niche as a 
mathematician while studying architecture in Madrid, and 
this talent provided his route.

Developability
Developable surfaces present fascinating opportunities for 
architects and engineers interested in ‘affordable complexity of 
form’. Their mathematical appeal and their practical benefits 
may seem at odds with an equivalent postulation around doubly 
ruled surfaces, however. Let us consider the practical advantage 
that makes full use of their geometry, such as a conical roof. 
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Figure 12. Vladimir Shukhov, Shabololvka 
(Shukhov) Tower, Moscow, 1922 
Interior view showing a series of hyperboloids 
of revolution stacked on top of each other.

It is unlikely that a conical roof clad in copper will be made 
from a single giant disc of copper, sector removed, and wound 
round the conical substrate in a single operation. The advantage 
of developability is that subsections of the whole retain the 
geometrical qualities of the parent. From the parent template, child 
templates of individual pieces can be appropriately sized to match 
practical copper-sheet size or maximum size for practical on-site 
manipulation by the plumber, whichever is the major constraint.

Were the roof to be clad with copper over a hyperbolic 
paraboloid substrate the advantages of developability are 
apparently lost; by definition any child of the parent geometry 
will have a degree of double curvature, however small. This can 
be appreciated by holding a piece of cardboard in our hands. 
With a simple manipulation it can be curled around a circular 
template so that opposite edges come together to make a 
cylinder, demonstrably a developable surface. Trying to make a 
hyperbolic paraboloid from the same sheet requires two sets of 
hands. If Actor A passively supports a sheet of card by holding 
it by diametrically opposite corners, while Actor B pulls down 
on both the opposite corners the sheet is curved cylindrically. 
Taken to its limit the sheet will eventually fold diagonally across 
to form two triangles hinged along the crease. Imagine the same 
sheet with both actors active in their role – in the example given 
above Actor A simply holds their corners in position while 
Actor B translates their two corners downwards, inducing the 
curved cylindrical surface. If Actor A pulls their corners up 
while Actor B pulls theirs down with equal force, the stiffness of 
the sheet prevents the double curvature from taking place; the 
sheet stays resolutely planar. The geometrical construct in this 
case is not especially demanding, but the mathematics is 
potentially rather more sophisticated.

Let us extend this experiment a little further. Imagine 
that the sheet of cardboard used in our experiment above 
was soaked in water before attempting to form a hyperbolic 
paraboloid. Whereas our dry sheet would not conform even 
with uniformly applied pressure and the aid of a relatively 
unexaggerated hyperbolic paraboloid former (a ‘mould’ to press 
a material against to make it change geometrical form) as it 
would crease, in contrast the wet cardboard sheet would ‘relax’ 
into the former. The reason for the difference is obvious, of 

course, as the soaking allows the cellulose fibres to stretch as 
well as displace spatially (to a limited degree). 

This material quality of flexibility is available in all sheet 
materials, even the most brittle when applied carefully. For a 
roof built with a substantially robust substrate any metal other 
than lead will not be formed easily, especially in regions where 
the curvature becomes exaggerated – unless it is developable 
or highly flexible. It is very likely to crease, as anyone gift-
wrapping a soccer ball will attest to. Needless to say, our 
copper cladding example needs to be refined a little, as copper, 
like all metals, is malleable, and in fact is one of the most 
malleable of all – hence its traditional use for making cooking 
vessels. To take advantage of the malleability, a former has 
to be provided, and is a major cost if metal is to be stretched 
into a new form. Steel for making car bodies, which is far 
less malleable compared with copper, can also be ‘stretched’ 
into shape by stamping sheet steel over formers, the cost of 
which is eye-wateringly significant but afforded by the large 
number of repeats that the vehicle industry strives for. This is 
not a practical arrangement for the building industry, but let 
us not forget the intrinsic flexibility of rigid sheets of material, 
including steel, within the limits of its molecular structure. 

The physics of these material properties were described 
for the first time in the 17th century. Hooke’s law (1660) 
states that all materials may deform elastically to a limit.3 
The following century this was defined by Thomas Young 
(1773–1829) as the ‘modulus of elasticity’ which, when passed, 
means that the metal will not spring back to its original state 
once the applied load has been removed.4 The yield point in 
a ductile material such as copper allows it to be formed easily 
compared with steel. A material such as glass, notwithstanding 
its debatable property as a super-cooled liquid, has a brittleness 
that leads to snapping immediately once it is pushed beyond 
its modulus of elasticity. The unexpected flexibility of glass 
is first witnessed in the school laboratory when a long glass 
rod is shown to be bendable to a surprising degree, and if left 
to droop between two supports eventually will assume the 
catenary curve. Fibre optics provide the ultimate evidence 
of extreme flexibility of an otherwise brittle material. This is 
where computation enters the arena at an exciting level. 
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Figure 13. Félix Candela, 
L’Oceanogràfic, Valencia, Spain, 1998
A rich mixture of constructional logic, 
extraordinary structural performance and 
a compelling aesthetic that seems to 
work at any scale.

Figure 14. Generic hyperbolic paraboloid 
as Candela would have seen it 
geometrically (referred to as ‘hypars’)
A hyperbolic paraboloid with straight edges 
(directrices) and rulings (generatrices).

Any given material has a modulus of elasticity and a limit. 
If the flexibility of a sheet metal of a particular thickness and its 
elastic limits are built in as a parameter of flexion over length, 
algorithmically, a surface can be tiled with pieces of the chosen 
cladding that will conform to double curvature without creasing 
or snapping. Mathematically this is a demanding optimisation 
task. As a process, the region of greatest curvature has to be 
identified, and a shape calculated that will assume the double 
curvature within its own elastic limits yet be as large as possible 
to limit the overall number of pieces required for the entire 
surface. To make the computation task more demanding still, 
criteria such as searching for a shape as regularly polygonal as 
possible can be added along with a nesting requirement that 
minimises wastage. If the underlying geometry is mathematical 
such as a hyperbolic paraboloid, there is a greater possibility for a 
tessellation to be derived that looks more organised than would 
be the case were this approach to be applied to an extravagantly 
expressive freeform surface, especially one with folds and creases. 
The aesthetic would therefore be the difference between a 
tortoiseshell pattern organised principally around the hexagon, 
for example, conforming to a doubly curved ruled surface, and 
the ordered chaos of a Voronoi diagram which would most likely 
result from tackling a freeform in this way. The designer would 
no doubt appreciate being able to try this in real time, but this 
has yet to be put to test as the computation aspects are still to be 
resolved in terms of performance.

The Natural Calculator Route
Within the blurred boundaries of the discipline, there are 
several practitioners who have sought to establish optimal form 
through inverting their models and allowing gravity to assist 
directly. In this regard, Gaudí’s Colònia Güell Chapel has been 
referred to earlier, and Otto’s work in this field, beginning in 
1925, is especially well known. The Swiss ‘structural artist’ 
engineer Heinz Isler (1926-2009), almost a contemporary of 
Candela, Otto and Nervi, but unlike Candela, felt impelled to 
calculate the geometries that come from the material response 
under gravity; he was the first person to derive the formulae for 
gravity-induced curvature in 3-D. He was a fascinating inventor, 
and based on a chance observation of draped material on site, 
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Figure 15. Hyberbolic paraboloid ‘region’
In actual use, Candela saw the value of 
trimming the hyperbolic paraboloid with 
curved edges as a rich architectural 
opportunity.

hung a wet piece of hemp sackcloth between poles arranged in 
a 4-metre (13-foot) square out in his office yard on a day with 
sub-zero temperatures and, once frozen, inverted the resultant 
stiffened funicular ‘cupola’ and measured it accurately. By his 
own account, using this means of form-finding and a more exact 
effort to measure a pneumatic pillow of latex inflated between 
cramps to each side of the scaled quadrilateral, he was able to 
convert the minute measurements to usable formulae for full-
sized structures.5 By ‘minute measurement’ he claimed that his 
own body heat was inducing otherwise inexplicable distortions to 
his results, obliging him to wear a thick winter coat regardless of 
ambient temperature.

Critical Engagement: Ruled Surfaces Versus Freeform
This article delves into the apparent positive advantages of 
using certain geometries as principal architectural compositional 
strategies, yet fails to explain why architects should bother with 
them in their work today beyond an aesthetic predilection. It has 
shown how doubly ruled surfaces exhibit a more expansive set 
of values relative to singly ruled surfaces and certain developable 
surfaces. Yet despite these qualities, including their unique aesthetic 
appeal, their limited general take-up refers us to a particular 
professional grouping: structural artists. The first part presented 
the enigmatic aspects behind geometrically describing doubly ruled 
surfaces and developable surfaces, examining their architectonic 
suitability. Examples of their use in built work demonstrate the 
relevance of their particular benefits in pre-digitally represented 
architecture, when the representational issues of complex 
architecture placed tough challenges for the builder several orders 
of magnitude above those faced by post-digital constructors today. 
Referring to structural artists’ work, using these surfaces has shown 
them to have aesthetic, structural and constructional advantages 
that distinguish them from other ‘useful’ geometries. The selection 
here inadvertently identifies a professional group neither purely 
architect, nor engineer, nor sculptor. 

The dilemma of ‘why bother with geometrical 
describability when machines can cut/rout/extrude/print 
freeform surfaces with equal facility’ is probably a false one. 
A case might be defensible that postulates that projective 
geometry has mathematical and philosophical value extending 

well into our era of digital design, regardless of automation. 
In avoiding the mathematical consideration of geometry, 
architects might be ‘fiddling’ as sculptors regardless of the 
spatial sophistication, but the maths may afford different 
levels of conversation especially between architect and 
engineer. The burgeoning computational tools for the next 
generation of architects offer all sorts of advantages, such 
as real-time design optimisation alluded to above. Perhaps 
there is a tacit acknowledgement of these advantages 
already, hence the apparent reawakening within the avant-
garde. Tomorrow’s architects might more likely resemble 
yesterday’s structural artists. 1

Notes
1. See DP Billington, The Tower and the Bridge: The New Art of Structural 
Engineering, Princeton University Press (Princeton, NJ), 1983 for his 
discussion on the art of engineering.
2. M Moreyra Garlock and D Billington, Félix Candela: Engineer, Builder, 
Structural Artist, Yale University Press (New Haven, CT), 2008, p 76.
3. Hooke’s law, law of elasticity discovered by the English scientist Robert 
Hooke in 1660, which states that, for relatively small deformations of an 
object, the displacement or size of the deformation is directly proportional 
to the deforming force or load. Under these conditions the object returns 
to its original shape and size upon removal of the load. Elastic behaviour 
of solids according to Hooke’s law can be explained by the fact that small 
displacements of their constituent molecules, atoms or ions from normal 
positions is also proportional to the force that causes the displacement. 
Retrieved from www.britannica.com/EBchecked/topic/271336/Hookes-law.
4. Young’s modulus, numerical constant, named after the 18th-century 
English physician and physicist Thomas Young, that describes the 
elastic properties of a solid undergoing tension or compression in only 
one direction, as in the case of a metal rod that after being stretched or 
compressed lengthwise returns to its original length. Young’s modulus is a 
measure of the ability of a material to withstand changes in length when 
under lengthwise tension or compression. Sometimes referred to as the 
modulus of elasticity, it is equal to the longitudinal stress divided by the 
strain. Retrieved from www.britannica.com/EBchecked/topic/654186/
Youngs-modulus 
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Desargues and
Leibniz: In
the Black Box
A Mathematical Model 
of the Leibnizian Monad
Here Bernard Cache provides a detailed analysis of a paper written in 1636 by 
the French mathematician, architect and engineer, Girard Desargues. Desargues is 
best known as the founder of projective geometry. Cache explains how he initally 
developed this significant concept in response to the very practical problems of 
producing a perspectival drawing. The introduction of projective geometry, though, 
had potentially more far-reaching implications on philosophical thought, informing 
the theory of monads developed by the German philosopher and mathematician 
Gottfried Leibniz in 1714 to explain the metaphysics of simple substances.

Bernard Cache
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Strangely, the short essay on perspective published by Girard 
Desargues in 1636 makes no mention of any notion of 
projective geometry, explicitly at least, before reaching its 
rather contemplative conclusion. This remarkably curious 
text consists of a commentary of a single engraving presumed 
accessible enough for the knowing reader to apply its 
premises to any practical situation, a drawing expressing a 
‘universal way’, in other words – as stated by the title of the 
essay itself: ‘A Sample of the Universal Way of SGDL:1 On 
the Practice of Perspective Without the Assistance of a Third 
Point, Distance Measurement Or Any Other Expedient 
External to the Task at Hand’ (‘Exemple de l’une des manières 
universelles du SGDL. Touchant la pratique de la perspective 
sans employer aucun tiers point, de distance ni d’autre nature qui 
soit hors du champ de l’ouvrage’).2 

The absence of any reference to projective geometry 
confirms the author’s intent to address the material 
constraints of daily practice, primarily the fixed size of the 
board or sheet on which the drawing is laid out. The need to 
resort to ‘third points’ lying beyond the surface of the sheet, 
such as vanishing points, or those mapped from a transversal 
section onto the drawing plane (rabattement), was a frequent 
problem in practice – hence Leon Battista Alberti’s famous 
recommendation that an extra sheet of paper be deployed 
next to the drawing itself.3

To address these two constraints, Desargues advocates 
a new method: ‘The agent, in this instance, is a cage made 
simply of lines,’4 he writes in a rather surprising comment, 
followed by the description of the plan and location of the 
cage, as well as a statement to the effect that ‘the engraving 
itself is like a wood plank, a stone wall, or something like it’ – 
seemingly turning on its head the accepted interplay between 
transparency and opacity advocated by most theoreticians of 
perspective before him. 

In lieu of a solid and opaque body, such as the 
Baptistery of Florence depicted on Filippo Brunelleschi’s 
experimental tablets (1415), Desargues presents the reader 
with a transparent cage. 

Compare this to the very edifice that Flemish 
mathematician and military engineer Simon Stevin 

Figure 1. Girard Desargues, Exemple de l’une des 
manières universelles du SGDL (A Sample of the Universal 
Way of SGDL: On the Practice of Perspective Without the 
Assistance of a Third Point, Distance Measurement Or Any 
Other Expedient External to the Task at Hand’), 1636 
The original 17th-century engraving.

Figure 2. Simon Stevin, A Study in Perspective: top and 
front orthographic views and perspective projection of a 
solid modelled on the Baptistery of Florence 
J Tuning’s edition (1605), Vol III, Book I, prop Xi, problem V.
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Figure 3. Reproduction of Desargues’s original 
layout for the geometric demonstration
On this diagram (culled from the upper-left corner 
of the original engraving), three separate geometric 
constructions overlap onto a single space, and three 
sets of diagonal lines converge towards a single point.

Figure 4. Graphical reorganisation of 
Desargues’s original diagram 
The reorganisation lays out the three separate 
geometric constructions side by side, revealing 
distinct points of convergence for each 
construction.

Figure 6. Homothetical (scaling) transformation 
and conic projection (perspective)
(left) Top: The small square maps onto the large 
one relative to a fixed point on the plane. The 
transformation alters the measurements of the 
original figure, but preserves its angles. Bottom: 
The transformation alters the measurements 
as well as the angles of the original figure, but 
preserves some given dimensional ratios.

Figure 5. The Dimension Scale
(above) Diagram demonstrating the use of the 
Dimension Scale to figure out a length on the 
projection on the picture plane of a line parallel 
to the picture plane, assuming we know its 
elevation (in this instance, halfway up the Y 
axis of the Dimension Scale). 
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(1548–1620) chose to illustrate his own take on the 
problem: the two volumes are nearly identical, with the 
difference that Desargues proposes a wireframe, whereas 
Stevin does not even bother to dot in the hidden edges 
of the solid. Rather than opening a window onto the 
world, Desargues walls us into a windowless black box, 
reminiscent of Gottfried Leibniz’s monad.5 Let us 
examine what this means in practice.

The engraving commented on by Desargues features 
several parts. In the upper left corner we find a greatly 
simplified plan view, consisting of a few simple strokes and 
annotated with measurements (such drawings used to be 
known as géometral, or orthographic, projections). In the 
middle of the engraving we find the perspectival view of 
the cage, drawn over some sort of diagram reproduced, at a 
smaller scale, in the upper left corner of the sheet. 

Desargues’s overlapping of three separate geometric 
constructions onto a single diagram is most certainly 
confusing, hence the importance of pulling this diagram 
apart in order to analyse it. The interpretation of it lays 
out the three constructions side by side, rather than on top 
of one another. Desargues’s method seems to work just as 
well, if not better, with this alternative layout, where, unlike 
what is shown on the original engraving of Sieur Girard 
Desargues de Lyon, the three sets of diagonal lines do not 
converge towards a single point – each construction has a 
distinct point of convergence. 

Let us begin with the central part of the diagram, where 
Desargues hardly innovates at all. Here the lines normal 
to the picture plane converge towards a single vanishing 
point, illustrating the orthogonal projection of the gaze on 
the picture. Desargues says no more than Alberti did on the 
same subject – nothing, that is.

Desargues’s method is based on the commonly 
known (at the time) expedient of transferring points 
from one grid to another, traditionally deployed for the 
purpose of scaling figures (now known as a homothetic 
transformation).6 By extension, applying the same method 
to map a point from an orthogonal grid to another kind of 
grid resulted in a projective transformation. To configure 
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Figure 7. Desargues’s Black Box 
(right) Lateral view indicating the position of 
the ideal observer G (which determines the 
vantage point of the perspective construction), 
the edge of a transversal line in space T1, and 
the profile of the picture plane FF0.

Figure 8
(below) Lateral view demonstrating the 
application of the three geometric expedients 
available to Desargues: internalisation (point 
G0 stays inside the box, left); swapping (points 
F1 and G1 are interchangeable, middle); and 
drawing diagonals (point H1 is obtained by 
intersecting diagonals FG0 and GF0, right).
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this new grid, Desargues needs to locate the vanishing 
point of all lines normal to the picture plane (on a separate 
note, the method does not guarantee that the said lines 
will converge within the extents of the page – especially 
where oblique projection is concerned). 

Once the ‘converging lines’ (those lines normal to 
the picture plane) have been drawn, we need to establish 
dimensions along the ‘transversal lines’, or ‘transversals’ 
(those lines parallel to the picture plane), which Desargues 
calls the ‘Dimension Scale’. 

To figure out a length on the image of a given 
transversal, assuming of course we know its elevation on 
the picture plane, we will report in true length the segment 
of reference on the base of the Dimension Scale, then 
draw two convergent projectors from its endpoints. The 
intersections of these projectors with the image of the 
transversal at the given elevation will give us two points 
– and the distance between these two points, the desired 
length. It is critical to note that the point where these 
projectors come to a focus is not the same as the central 
point where converging lines meet. In other words, the focal 
point of the Dimension Scale does not have to coincide 
with the vanishing point of the scene. The two points 
must be located at the same elevation, but the former will 
move laterally by any amount without altering the reported 
measurements from one transversal line to the next.

Why insist on this particular aspect of Desargues’s 
strategy? Because this is the crux of the originality of 
Desargues’s perspectival method, which implies that the 
Distance Scale7 cannot be understood unless it is radically 
distinguished from those lines converging towards the 
vanishing point of the scene. How does Desargues determine 
the elevation of the image of a transversal line then? What 
exactly is going on here? 

Let us recall Alberti’s Construzione Legittima and his 
section of a tapering cone of vision. For the sake of the 
demonstration, let us imagine that the eye, notated G, 
lies at a distance d from the picture, the section of which 
determines the vertical line FF0. The elevation of observer G 
relative to the ground line is equal to h.

Desargues cunningly prioritises the determination of 
the image of the transversal line T1 , a line located in the 
ground plane at a distance d from the section FF0 , but on 
the side opposite to observer G. Since line T1 and eye G lie 
on two vertical planes symmetrically disposed about section 
FF0 , the ray of vision GT1 will interest section FF0 at its 
midpoint, notated F1. This point will remain the midpoint of 
section FF0 regardless of any fluctuations of distance d taken 
between eye G and the picture F, provided of course that the 
distance between the transversal line T1 and the picture is 
adjusted accordingly. Prefiguring in some way the projective 
method of homogeneous coordinates, the transversal lines of 
Desargues are located at a distance equal to a multiple of the 
distance separating the eye G from the picture F. Following, 
the position of these transversal lines can vary arbitrarily, 
provided the elevation of observer G relative to the ground 
line remains equal to h. 

This is the first benefit of Desargues’s method. 
Notwithstanding the risk of proposing something most 
historians of descriptive geometry would regard as an 
anachronism, we will refer to Desargues’s system as a system 
of homogeneous coordinates. Assuming that height h of 
rectangle GG0F0F is correct, the width of this rectangle 
may vary arbitrarily, given that T1 will always remain 
symmetrical to G about the axis FF0. The maintenance of 
the symmetry between the eye G and any transversal line T1 
opens up three more potential configurations, which, taken 
in tandem, make it possible to determine the height F0F1 
of the image of line T1 relative to G without using a point 
located outside the rectangle itself. These three provisions 
may be summarised as follows:

(a)	 Internalising Moves
All geometric moves will take place within 
rectangle GG0F0F. So long as T1F0=F0G0=d, the 
width of the rectangle (and the correlative position 
of any transversal line in space) will vary as needed, 
but from now on everything takes place indoors. 
Like an inward reflection, the lines meeting the 
boundaries of the back box will bounce back 
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Figure 9. Desargues’s use of the Black Box 
Desargues’s use of the Black Box (and the three geometric 
expedients shown in Figure 8) to determine the image 
(projection) of a line T2 located two times further than the 
observer from the picture plane (but on the opposite side). The 
length of the red dotted line is equal to that of the blue one, 
providing a vivid and accurate visual account of the folding of 
outer space within the confines of the Black Box.

Figure 10 
The same operation as in Figure 9, assuming that the 
transversal line is now located three times further than the 
observer from the picture plane. Here too the length of the red 
dotted line is equal to the length of the blue one.

Figure 11 
The same operation as in Figures 9 and 10, assuming now that 
the transversal line is located at a random distance from the 
picture plane (somewhere between lines T2 and T1). The same 
metrical equivalence between red and blue dotted lines applies, 
and space folds like an accordion.

Figure 12
The full deployment of internalisation, swapping and extra 
diagonals helps determine the image of any transversal line in 
space thanks to a bevy of auxiliary points, two of which are 
strategically located within the Black Box (a’’ and a’’’).
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in, and their image will be determined without 
reference to any external points.

(b)	Swapping Points
Since all moves now take place within the box, points 
F and G are equivalent. The reflected image F1 of 
G0 relative to G is equivalent to the reflected image 
G1 of F0 relative to F. Points F and G may therefore 
be swapped at will, something Desargues himself 
does repeatedly in the course of his explanation 
on how to determine the image of a given point, 
invariably losing his reader who labours under the 
double misapprehension that G represents the 
vanishing point of the scene, and F some kind of 
distance point – or at least an accessory vanishing 
point of sorts. This is why it is critical to distinguish 
G from the vanishing point, as well as to move point 
F away from the left border of the picture. For the 
essential raison d’être of the Distance Scale is to fold 
and unfold itself at will, accordion-like, admittedly 
not the easiest of procedures when it comes to the 
wooden engravings of Desargues’s time, but a mere 
trifle for today’s parametric software routines.

(c)	 Drawing Diagonals 
Since our goal is to determine from within the 
elevation of the image of transversal line T1, which 
happens to coincide with the midpoint of the 
box’s vertical edge, is it not simpler to look for the 
intersection of the box’s two diagonals, leaving aside 
all reflections in F1 or G1? This final provision will 
prove essential when it comes to determining not 
only the image of a given transversal line T1 located 
at distance d from the picture, but that of any 
transversal line in space. 

To figure out the image of a line located two 
times further than transversal T1 (n=2) from the 
plane of the picture, Desargues methodically 
generalises his application. First he takes into 
account the image of a transversal line Tn located n 

times further than transversal T1 from the plane of 
the picture, at a distance dn = n • d. The diagrams 
reproduced here should provide enough evidence 
to shore up the conclusion that the four provisions 
outlined in the case of the transversal line T1 apply 
equally to lines T2 and T3, and by extension, to any 
line Tn. When it comes to multiple transversal lines, 
we note that, if G is the eye of the observer, any 
transversal line Tn located beyond the confines of the 
box will map internally to either F0 or G0, depending 
on the parity of integer n (if n is odd, it will be 
G0; otherwise F0). If F is posited as the eye of the 
observer, the reasoning is precisely reversed. 

The same applies to determining the image of a 
line T3 located three times further than transversal T1 
(n=3) from the plane of the picture.

It is important to note the key role diagonals play in 
the general case where a transversal line Tn is located 
at a random distance from the plane of the picture 
(this distance no longer being a multiple of d). Let us 
for instance determine the elevation of the image of 
transversal line T2. The elevation is set by point h2, located 
on a horizontal line going through point F2, itself the 
intersection of lines GT2 and F0F. Point h2 is also the 
intersection of line GT1 and diagonal FG0. The elevation 
of the image of point a, randomly located between T1 and 
T2, will be found within the diagonal segment h1h2, at the 
intersection with a line passing through eye G and a new 
point a’, located between F0 and T1, at a distance equal to 
the distance between a and T1. 

To remain ‘within the box’, as it were, we will simply 
swap vantage points and look for the elevations of the 
images of any point a between T1 and T2 on the opposite 
diagonal segment GF0, between h1 and i2. Starting with 
point a’’, located directly opposite point a’ about F0, we can 
trace a line a’’G intersecting the horizontal F1G1 in point 
b, from which we can draw another line to point F. This 
line meets segment h1i2 at the desired elevation, notated 
ƒa. Moreover, the line connecting F and b implies that 
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b lies on a sight line originating in F and ending in a’’’’, 
a new point located directly opposite a’ about a vertical 
axis through h1, halfway across rectangle GG0F0F. In the 
end, the inclusion of this vertical axis of symmetry brings 
the number of points available to help us determine the 
image of a transversal line passing through T1 and T2 to a 
staggering six. Critically for Desargues, two of these points, 
a and a’, are located inside the black box. 

At this juncture of our demonstration, the reader will 
probably be subject to mixed emotions of shock and awe. 
Let us dispense with shock first. In essence, none of the 
elementary steps described here is truly complicated. The 
whole thing may perhaps be a little more complex than the 
‘enchanted description of a palace in a novel’ which, upon 
reading the author’s draft Brouillon Project Sur les Coniques,8 
Descartes had admonished Desargues to pursue. But let’s 
face it; this is the stuff of elementary geometry: a few 
lines and their intersections here and there, some scaling 
applications, some symmetry. Yet this is where a 17th-
century reader might have struggled a bit, lest we forget that 
the term ‘symmetry’ had other meanings before 1794, when 
Adrien-Marie Legendre recovered the moniker to designate 
an inversion of spatial orientation, whereby the right-handed 
becomes left-handed.9 

We can think of at least one reader of Desargues 
who must have fully appreciated the awe and power of 
this perspective method – Leibniz himself, who indeed 
might have been surprised to find here something akin 
to his own preoccupations. Leibniz’s monads are some 
kind of individuated atoms,10 combining in nature to 
produce a complete and optimal set of bodies, under God’s 
coordination.11 Monads aggregate into bodies under the aegis 
of a higher monad, vested with the power of soulfulness. 
Given that ‘it has no windows through which to come and 
go’,12 each monad is solely determined by itself. On the basis 
of this purely internal principle,13 a given monad will be the 
locus of changing perceptions,14 independent of any other 
source. When one looks at a moving body, suggests Leibniz, 
God has tuned one’s internal principles of perception in 
harmony with the movement of the moving body, while 

Leibniz’s monads are some 
kind of individuated atoms, 

combining in nature to produce 
a complete and optimal 

set of bodies, under God’s 
coordination. Monads aggregate 
into bodies under the aegis of a 
higher monad, vested with the 

power of soulfulness.



99

blocking all communications between the two monads 
governing the body and the moving body. 

At this juncture, Leibniz calls upon the higher authority 
of perspective: ‘Just like a city considered from different 
vantage points looks different every time, seemingly 
multiplied by perspective; likewise it so happens that 
an infinite multitude of simple substances will produce 
many distinct universes, which are nothing but alternative 
perspectives of a single universe, taken from the vantage 
point of each individual Monad.’15 

How did Leibniz devise the notion of a perception 
ordinated internally by closed, windowless and individuated 
monads, moving independently from one another yet highly 
coherent as a whole? It is precisely on such a double regimen 
of interiority/exteriority that Desargues’s Distance Scale is 
based. It is on a purely internal basis that the vertical 
boundary F0G0 determines the reflected image taken from 
G. Whether the perceived object is located outside in T1, or 
inside in F0, the internal and external procedures will yield 
the same image in F1. Critically, the multiple reflections 
determine how the boundary F0G0 will allow us to calculate 
the image of any point, however remote, or even infinite, by 
folding space over and over. And as for the swapping of the 
viewing points F and G, this expedient cannot fail to 
remind us of Leibniz’s fundamental distinction between 
perception and apperception. 

No model is equivalent to the theory it is meant to 
subtend. Undoubtedly, Leibniz will have devised the 
monad from a multiplicity of models, later surveyed by the 
philosopher Michel Serres.16 Naturally our own conjecture 
ought to account, upfront, for Leibniz’s vague use of 
perspective in his philosophic writings at large. This is a 
tough question indeed, a question requiring us to precisely 
analyse the full extent of the many mathematical domains 
into which Leibniz wandered, specifically as well as relatively 
to one another. Yet moving on from Desargues’s perspective 
to differential calculus, Leibniz may have simply laid to 
rest the precise workings of the practical application of the 
Distance Scale in the safe knowledge that his conception of 
the monad had been properly grounded. 1

1. Sieur Girard Desargues de Lyon.
2. The essay first appeared in English in JV Field and JJ Gray, 
The Geometrical Work of Girard Desargues, Springer (New York, 
Berlin, Heidelberg, London, Paris, Tokyo), 1987, pp 147–60. 
3. Leon Battista Alberti, De Pictura I, 20, 1485. ‘I take a small 
surface …’, specified in Italian as ‘prendo un piccolo spazio’, or 
in Latin as ‘habeo areolam’.
4. See Field and Gray, op cit, p 147. Desargues reverses the 
accepted interplay between opacity and transparency that 
perspective is based on: for him the represented object is a 
wireframe, and his picture plane a screen. Alberti’s picture plane, 
on the other hand, is like a window – or a light veil – and the 
object a solid and opaque mass. 
5. The idea of the monad was first published in his La 
Monadologie (The Monadology) of 1714.
6. In this Desargues is among other things heir to Ptolemy, 
and his use of different coordinate systems in each of his three 
cartography mappings.
7. The Dimension Scale (échelle des mesures) unfolds 
parallel to the picture plane, and its base (the edge along 
which the Dimension Scale meets the ground) offers a ground 
line. The Distance Scale (échelle des éloignements) unfolds 
perpendicularly to the picture plane and records measurements 
extending in depth. Determining exact metric correspondences 
on the Distance Scale using only the Dimension Scale and a 
few elementary planar geometric operations, such as bisecting 
or mirroring a line, is the great innovation of Desargues, who 
manages to determine the exact foreshortening of distances 
in depth without resorting to perspective – as claimed in the 
subtitle of the Universal Way (translator’s note). 
8. Descartes, Letter to Desargues dated 19 June 1639. See 
Field and Gray, op cit, pp 176–7. 
9. Giora Hon and Bernard R Goldstein, From Summetria to 
Symmetry : The Making of a Revolutionary Scientific Concept, 
Springer (New York), 2008. 
10. Leibniz, La Monadologie, article 3. 
11. Ibid, article 55.
12. Ibid, article 7.
13. Ibid, article 11.
14. Ibid, article 14.
15. Ibid, article 13.
16. Michel Serres, Le système de Leibniz et ses modèles 
mathématiques, PUF (Paris), 1968.

Article translated from the original French by George L Legendre
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Pasta by 
Design
George L Legendre, IJP

Guest-editor George L Legendre has 
taken the parametric surface model that 
he developed for buildings through his 
practice, IJP Corporation, and applied 
it to pasta. The result is Pasta by Design, 
publishing in September 2011 by Thames 
& Hudson, which classifies this primo 
piatto into 92 basic topological types.

IJP uses mathematics to design anything 
from pedestrian bridges to contemporary art 
museums. When a neighbour and London-based 
colleague from Italy suggested (over a steaming 
pile of spaghetti all’olio, aglio e peperoncino) 
that the practice look at something like food, 
the blurry outline of a book on pasta gradually 
came into focus. Its concept is simple: to figure 
out the mathematical formulas of one of the 
most popular foods on earth and to use them 
to produce an inventory, guide and culinary 
resource on the subject. 

Pasta by Design explores in depth some 
mathematical aspects of molecular gastronomy. 
Specifically, it offers a magnified view of the 
forming stage of the pasta-making process 
(the mechanical extrusion of a mix of durum 
wheat flour and water into the familiar edible 
shape). Mechanically mass-producing pasta 
is a process dependent on pressure, viscosity, 
precise temperatures, pressure differentials and 
airflow: all these factors determine the material 
properties of the product – as well as its market 
value. Leaving aside the thermodynamic issues 
involved and using a parametric surface model 
originally developed by IJP to model building 
structures, the book explores the geometry 
of pasta through the deployment of algebraic 
equation sets. 

Classifying pasta is a particularly difficult 
task, however Pasta by Design pares down 
the puzzling variety of pasta to 92 types based 
on their unique morphological features. In 
a technical mathematical sense, the criteria 
of differentiation are topological invariants 
involving the edges and surface of each 
sample (such simple properties are common 
to widely different shapes and help understand 
accidental differences), which is described by its 
parametric algebraic equations and illustrated 
with a line diagram and specially commissioned 
photograph.1 

1

Note
1. Pasta by Design by George L Legendre, with photographs 
by Stefano Graziani and a foreword by Paola Antonelli is 
due to be published by Thames & Hudson in September 
2011. The project was completed by IJP in 2009–10. Text, 
phylogenetic chart and mathematics by George L Legendre 
and Jean-Aimé Shu for IJP. Photography by Stefano Graziani. 
Additional illustration by Woonyin Mo Wong for IJP. Layouts 
by Niccolo Marini for KGA. Based on an idea by Marco 
Guarnieri. Original book design by IJP.

Text © 2011 John Wiley & Sons Ltd. Images: p 101(tl) © IJP; p 101 
(tr&b) © IJP, photography by Stefano Graziani



101

above: A notable member of the pasta ripiena (filled 
pasta) family, fagottini (little purses) are made from 
circles of durum-wheat dough. A spoonful of ricotta, 
steamed vegetables or even stewed fruit is placed on 
the dough, and the corners are then pinched together 
to form a bundle. These packed dumplings are similar 
to ravioli, only larger.

left: Typical spread from Pasta by Design. Top to 
bottom: Name and phylogenetic address of the form, 
dimensional information, ranges of the calculation, 
parametric equations, surface plot, two parametric 
graphs (function graphed against another function) and 
a short note on regional provenance and cuisine.

left: The Pasta Table. IJP used real samples to develop the 
mathematics of the project and hence had to purchase kilos of 
common (and less common) pasta from vendors worldwide. For 
ease of use, these samples were placed in test-tube-like glassware, 
labelled, and laid out on a long table. Eventually, the team decided 
to create a permanent installation for the workbench. The ‘tablecloth’ 
of the Pasta Table, a 4-metre (13-feet) long graph of overlapping 
topological relationships between shapes, is included in the book 
under the title ‘The Pasta Family Reunion, Seating Plan’.

above: Detail of the Pasta Table.
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THE METABOLISM 
OF THE CITY 

THE MATHEMATICS 
OF NETWORKS AND 
URBAN SURFACES 

Michael Weinstock

Figure 1. Shanghai
The city covers more than 6,000 square Kilometers 
and a metropolitan population is approaching 
20 million, making it one of the largest and most 
densely populated cities on earth. The velocity 
and quantities of urban metabolism are producing 
environmental problems of great complexity.

The anthropologist Claude Lévi-Strauss described the city 
as ‘a congregation of animals who enclose their biological 
history within its boundaries and at the same time through 
their every conscious action mould and shape it. By both 
its development and its form, it belongs simultaneously 
to biological procreation, organic evolution, and aesthetic 
creation. It is at one and the same time an object of 
nature and a subject of culture; an individual and a group; 
something lived and something dreamed; the supreme human 
achievement.’1 Half of all humans alive today live in cities, 
although the geographical pattern is uneven; in Europe and 
North America, four out of every fi ve people live in cities. 
As the world population continues to grow, existing cities 
are expanding and new cities are being built, connected and 
integrated into the world system. The urbanisation of the 
world is accelerating, and it is thought that within less than 
two generations there will be an additional 2 billion urban 
dwellers, most of whom will be located in Southeast Asia, 
China, India and Africa.2

The expansion of existing cities and the creation of new 
cities to meet this demand is a daunting task. Cities are the 
largest and most complex material forms constructed by 
humans, but they are far more than an immensely extended 
artefact. They are dynamic, spatial and material arrays of 
buildings that are constructed, reworked and rebuilt over time, 
decaying, collapsing and expanding in irregular episodes of 
growth and incorporation. As they grow and develop, their 
systems for the movement of food, material, water, people and 
manufactured artefacts must grow and extend with them.

From this perspective, cities are not static arrays of material 
structures, but are regarded as analogous to living beings, as they 
consume energy, food, water and other materials, excrete wastes 
and maintain themselves down through the generations.

Contemporary mathematical studies of cities that are 
derived from the historical development of the studies of 
metabolism in biology have been focused either on the 
‘allometric’ 3 relations of the physical forms of the urban 
morphology such as the overall shape, compactness and density, 
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How might we best track the accelerating demands of global urbanisation? 
Michael Weinstock, Director of Research and Development at the Architectural 
Association (AA) in London, proposes a mathematical approach to uncovering 
the dynamics of cities. He advocates a dual method that reveals any city’s particular 
metabolism by simultaneously mapping its physical shape – its compactness and 
densities – and its fl ows of energy, information and materials.

or on the relations of energy, information and material fl ows 
and their networks4 with the spatial patterns of the city. The 
hypothesis of this article is that the unifi cation of these two 
approaches, combining the studies of fl ows through networks 
in relation to the physical forms of the city, and how each acts 
upon the other over time, will be a signifi cant step towards 
understanding of the dynamics of cities. 

Networks and Scaling Phenomena
In all living beings, the morphology of the species and their 
metabolism are intricately linked through the fl ow of energy 
and materials. Metabolism is the ‘fi re of life’, the system of 
all living forms that captures energy and materials from their 
environment, transforms it and transports it in fl uids to every 
cell, and excretes changed materials as waste back into the 
environment. Biological metabolism operates through surfaces 
and branching networks that exhibit identical mathematical 
parameters in all living forms, from the smallest microbes 
to giant sequoias, from mice to mammoths. The common 

metabolic characteristics are exhibited in the relations 
between the geometry and overall size of the body plan, the 
internal operating temperature and the mode of existence in 
the environment. Metabolism also determines the relations 
of individuals and populations of forms with their local 
environment. Higher levels of biological organisation emerge 
from metabolic processes, in the relations between species, and 
in the density and patterns of distribution of species across the 
surface of the earth.5

As all biological networks tend to evolve over time, an 
architectural form that maximises fl ow under the constraints 
specifi c to it,6 it follows that similar scaling effects may also 
be demonstrated in the networks of urban systems, cities and 
conurbations. For example, just as the cardiovascular network 
distributes energy and materials to cells in a living form, so it 
seems that urban traffi c networks distribute energy, materials 
and people through a city.7 Biological metabolism functions 
through surfaces and branching networks, and there has been a 
century or more of research into the mathematical parameters 
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common to all living forms. In cities too the operation of 
metabolism occurs through urban surfaces and urban networks, 
and there is a remarkable similarity between the mathematics of 
biological metabolism and urban metabolism.

Although there is wide variation in their individual 
components and chemical processes, the metabolic branching 
networks of all living forms, from the smallest of microbes 
to the very largest blue whale, exhibit the same topological 
scaling properties. Networks for information distribution 
exhibit many similar parameters to the hierarchical branching 
metabolic networks of living forms, and a great variety of other 
culturally produced networks also exhibit comparable ‘scale free’ 
power law characteristics. Scaling is an invariant property of a 
dynamic system in general, most likely to be produced by the 
way in which the systems grow. Both biological and cultural 
networks grow continuously by the addition of new nodes or 
hubs, but these new nodes preferentially attach to nodes that 
are already well connected. In consequence, the topology of 
the whole network has only a few nodes with a high number 
of connections that link to all of the other nodes that have 
progressively smaller numbers of connections. 

Flow patterns are dominated by the highly connected nodes, 
through which the maximum volume and velocity of energy, 
information or material fl ow. These properties characterise 
the evolution of biological systems and of culturally produced 
metabolic systems.8

Most known scaling phenomena observed in biological 
organisms have a relation to body mass – effi cient fl uid energy 
transportation in particular is an essential determinant of 
biological body plan and overall morphology, and the size of 
elements in the metabolic networks of aortas and blood vessels, 
lung branches and tissues, tree trunks and branches, even 
lifespan and heart beats, all of which scale in relation to body 
mass. The scaling is simply expressed as a power law: Y = Y0Mb 

where Y is an observable magnitude, Y0 a constant, and M is the 
mass of the organism. The metabolic exponent b ≈3/4 is found 
across nearly 27 orders of magnitude in life, from molecular 
levels up to the largest organisms,9 in the differing metabolisms 
of ectotherms and endotherms,10 and in the photosynthetic 
metabolisms of plants.11

Scaling phenomena are also evident in cities,12 signifi cantly 
in relation to the number of inhabitants rather than to the 
material mass of the built fabric. Analysis of the large multi-
decade data sets of mature Western cities reveals the space per 
person decreases as the population size increases; with greater 
densities and greater fl ows through transport infrastructures, 
there is a greater diversity of economic and cultural activities 
and the pace of all activities increases accordingly, including 
individual consumption and waste, crimes, pollution and 
diseases. There is also dramatically reduced access to open green 
spaces in high-density cities that correlates to city area more 
strongly than to population size; and in Europe to geographical 
location, in that green space per person increases proportionally 
with latitude, being greater in the northern latitudes than in 
southern-latitude cities.13 

Scaling laws are exhibited by the distribution patterns 
found in many natural and cultural systems, and are considered 
fundamental to statistical physics. The linguist George 
Kingsley Zipf gave his name to the mathematical law that 
accounts for the frequency of occurrence of words within 
written texts14 and is observed in the rank size distributions 
of the largest cities and metropolises of the world, and 
metropolitan areas of the US, which seem to be robust over 
time despite multiple economic and social fl uctuations and 
perturbations. It is argued that as these patterns are also 
insensitive to topography and climate, it is likely that they 
are related to the fl ow and distribution of resources through 
ecological and urban networks.15 

Figure 2. Aerial view at night of south Mumbai
The night image indicates the vehicle fl ow and energy use of one developed 
patch of a city that has a population that has doubled in only 20 years and 
now exceeds 20 million people. The extremely rapid growth is producing 
fragments of dense metropolitan development amongst extremely 
compromised urban environments and severe water shortages.
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Morphology and Surfaces 
The phrase ‘urban metabolism’ was in use almost 50 years ago16 
in reference to a hypothetical city of 1 million people, and 
elaborated in more recent studies of eight metropolitan cities 
across fi ve continents,17 although these studies are focused 
on the quantifi cation and annual totals of fl ows rather than 
the network topology of their architecture and its relation to 
the morphology of the city. There are contemporary related 
analytical studies into the metabolism of discrete patches of 
a city.18 This offers the potential to compare the annualised 
total fl ows of energy and material in and out of different urban 
patches, but without morphological analysis only generalised 
inferences may be made. 

However, in all living forms, metabolism and morphology 
are intricately linked and operate through surfaces and 
networks. Mammalian metabolisms, for example, evolved their 
long intestinal tube with very large numbers of convolutions 
to increase the surface area, and use muscles to accelerate the 
passage of food. The evolution of greater surface areas for 
respiration, the intricate surface foldings of lungs in mammals 
and in birds, produces large surface areas for the exchange 
of gases packed into internal cavities. Enhanced circulatory 
systems were evolved by the development of more complex 
hearts and increased fl uid pressures, as was the oxygen-carrying 
capacity of the blood being circulated. And within the cells, the 
evolution of increased mitochondrial surfaces through multiple 
foldings amplifi ed the energy-processing capacity of cellular 
tissues. Morphology and metabolism are related in plants 
through the spatial organisation of large surface areas to capture 
light and for the exchange of gases, the structural system for the 
deployment of those surfaces, and the internal transportation 
systems for moving fl uids. 

This suggests the consideration of the physicality of the 
city as a porous surface, with buildings and spaces as folds 

Figure 3. Gradient boundaries
The legal and regulatory boundary is often 
defi ned by the original core, so that cities are 
regarded as something quite separate from 
their surrounding territory. All cities have 
administrative boundaries, but cities are very 
rarely physically or energetically contained within 
those administrative boundaries. There is rarely 
a sharp morphological boundary distinction, 
rather an irregular gradation of density.

Figure 4. Ground drawings of cities
Traditional descriptive graphical technique 
depicting the solid–void relationships 
of a city, ascribed to the architect and 
surveyor Giambatistta Nolli,who made the 
famous map of Rome (‘La Pianta Grande 
di Roma’) in 1748 using this technique. 
In this diagram, nine urban patches depict 
urban fi gures of evolved and planned cities 
and reveal differences of building density 
and spatial continuity across the patch.
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and cavities that together comprise the morphology. The 
relation of this porous material surface to its climate and 
environment, and thus to its energy consumption, is amenable 
to mathematical description, and may thus be used for analysis 
of the differentiated material and spatial conditions across 
the urban surface that infl uence and moderate the local 
urban microclimate19 and consequently to its environmental 
performance and energy consumption. It has been argued that 
the urban surface may be modelled with nine parameters: the 
amplitude of the variations in height (rugosity); the proportion 
of open spaces to solid (porosity); the orientation of those open 
spaces to a particular axiality such as wind direction (sinuosity); 
the contained volume relative to surface (compacity); the 
closeness of buildings to each other (contiguity); the ratio of 
built perimeter to horizontal surface cuts (occlusivity); the 
surfaces exposed to the sun (solar admittance); the surface 
material that is not water or grass (mineralisation) and the built 
area proportion to unbuilt (density).20 

This approach is coherent with a recent innovation in 
urban analysis used by urban climatologists: the division of the 
urban surface into strongly differentiated local climate zones, 
each defi ned by the surface cover (built fraction, soil moisture 
and albedo) and its structure (sky view factor and roughness), 
and human activities (anthropogenic heat fl ux). This extends the 
urban patch technique to a mathematical system that describes 
urban and natural landscapes in 19 morphologically and 
climatically differentiated surface ‘zones’ or patches.21 

The urbanisation of the world is accelerating, and with 
it the complexity of the urban environment. Integrated and 
intelligent urban and infrastructural systems will be a critical 
component in the adaptation of expanded human societies 
to impending climatic and ecological changes. It is now 
widely accepted that urban morphology and density, and 
the evolution of transportation technology infl uence both 

Figure 5. Los Angeles
Massive highway infrastructure and the 
horizon-wide extension of low-density 
morphology characteristic of this city that 
extends over 10,000 square kilometers, 
with a population over 15 million.

Figure 6. Topological analysis 
above: This analysis of an urban patch in Shanghai reveals the 
connectivity in the network of spaces, from the private living space, 
the interior spatial organisation of buildings, the semi-public space 
of local context, and across the urban patch to its perimeter. 

Figure 7. Nine parameters for modelling the surface of the city
below: These diagrams show the relation of the urban surface to 
climate and environment, and the mathematical description used 
for analysis of the differentiated material and spatial conditions; 
and when combined with urban climatology, for environmental 
performance and energy use.
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the energy and material fl ows through cities. The study and 
design of infrastructures is conventionally focused on the 
separate physical artefacts of the networks, and in recent 
times there has been strong focus on the architectural renewal 
and implementation of stations, bridges and terminals, but 
much less on the topology and physical architecture of the 
network systems themselves or on the interdependencies 
between differing infrastructural systems and even less on their 
integration. There are no known large-scale studies that couple 
the analysis of urban morphologies, the fl ows and capacities 
of their metabolic system, to the design of the physical 
geometries and engineering of material artefacts that comprise 
integrated urban metabolic systems within a regime of rapid 
climatic and ecological change, rising population and energetic 
constraints. The exponential acceleration of population growth 
and the projected proliferation of new cities requires the 
development of new ‘fl ow’ architectures, of ‘metabolic’ and 
intelligent inhabited urban infrastructural systems that harvest 
and distribute energy, water and materials, that intimately 
connects people and open urban green spaces, and that unites 
rather than divides urban and ecological systems. 1
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Figure 8. Mathematical hypothesis of this article
The combination of the mathematics of fl ows through 
networks and of the mathematics of surface modelling of 
the material forms of the city, and how each acts upon 
the other over time, provide a signifi cant step towards 
modelling the dynamics of cities.
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Rising 
Masses, 
Singapore 
Max 
Kahlen

Rising Masses, a year-long final design 
thesis undertaken at the Architectural 
Association (AA) School of Architecture, 
is for a high-rise building in the centre 
of Singapore’s financial district. It is 
characterised by an extreme thinness that 
is intended to heighten the experience of 
working in such a dense urban context. 
As Max Kahlen of Dyvik & Kahlen, 
Architecture, explains, two mathematical-
based methods were employed in order to 
aid the design of such a thin structure.

Max Kahlen, Rising 
Masses, Singapore, 2008 
Physical model of the 
tower slabs and podium. 
Scale 1:500.
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The site for Rising Masses is located within 
the regimented grid of Singapore’s booming 
office district. It was made available in 2008 
with a tender package that included the 
provision of space for commercial, office 
and residential uses and which specified the 
project brief: a building structure capable 
of operating within the tight margins set by 
developers while aiming to maximise the 
efficiency of the building’s performance ratios.

The articulation of the proposal 
challenges the phenomenon of thinness, 
the main desire at work here. Thinness is 
understood less as the ambition to reduce 
structural members to a minimum than 
it is the search for a spatial experience in 
an extra-thin building that intensifies the 
condition and atmosphere of working and 
living in an extreme urban context. The 
idea is not to scare the user, but to create a 
building of transparency, where minimum 
depth allows internal spaces to span from one 
facade to the other, opening up views on both 
sides. Being inside this space should trigger 
a feeling of floating between the pixellated 
facades of the neighbouring office towers.

Two approaches of mathematical nature 
were deployed to give distinct form to this 
desire. The first is a complex user interface 
that automatically calculates the building 
masses. A matrix processes the constraints 
given by the tendering package (such as 
plot size, floor height, number of floors, plot 
coverage, floor-to-ceiling height and floor area 
ratio) to determine dimensions of maximum 
efficiency. Additional parameters, such as 
the number of buildings and their proportion, 
as well as a periodic function that gradually 
arranges floor-to-floor heights, contribute 
to shaping a building mass of extreme 
dimensions. The final proportions determine 
two 180-metre (590-foot) high slab buildings 
of 6 x 40 metres (20 x 130 feet) each, 
sharing a common podium. The slabs face 
one another and are separated by only 24 
metres (79 feet). They are staggered length-
wise to create an in-between space serving 
as a vertical courtyard of private nature, in 
contrast to the open views onto the adjoining 
neighbourhood from the opposite side. 

Left: Catalogue of forms - scaleless. Right: Calculation 
template to automate the building mass.

Fold-like deformations along the internal facades provide 
stability and space for vertical circulation.

Detail showing two different types of residential units.
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External staircases are placed between the vaulted facade grid 
and the straight inner slab. Both slabs connect at two points 
throughout the overall height. 

Perspective elevation looking through both tower slabs. Vertical section exposing both 6-metre (20-foot) thin slabs in 
contrast to the in-between void and neighbouring buildings.
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The second approach is based on a 
set of periodic functions that aggregate to 
define the gridded facades. Adjacent to the 
in-between courtyard, alongside the inner 
faces, several vertical sinus-shaped folds 
determine cavities with a structural role and 
enable vertical circulation. The outer faces 
of the slabs, on the other hand, remain flat. 
The gridded texture is kept independent of 
the floor arrangement, gradually distributing 
the horizontal members with increasing 
intervals towards the top, in keeping with the 
structural stress patterns of the facades. 

The folds run diagonally on both building 
faces and intersect in two points to provide 
stability to the excessively slender slabs as 
well as to link the circulation paths. The 
cavities between the vaulted facade grids 
and the straight building slabs are open and 
accommodate external staircases. Walking 
along these stairs feels like stepping outside 
the building into the in-between courtyard, 
looking through a cloud of structure that 
hovers beyond the building limits.
Commercial programmes are located in the 
podium. Offices and apartments occupy both 
slabs. The elevator cores are not clustered, 
but distributed equally throughout the length 
of each slab, providing direct access to 
the offices and flats, and external corridors 
alongside the courtyard connect to the 
external staircases to allow interim circulation 
and access of fresh air.

The project reconciles competing notions 
of ‘automatic form’ derived simply from 
the industry performance ratios, a personal 
desire, and the urge of continuity imposed 
by the periodic equations. What this struggle 
produces is a building structure appearing 
at times rigorously efficient and at others 
surprisingly excessive and redundant. The 
external facades reflect the monotony of the 
neighbouring buildings, while the discrete 
break between the two slabs offers a vertical 
territory that allows one to step out into an 
unresolved urban void. In this way, one never 
quite settles on whether the ‘rising masses’ 
are pragmatic or surreal. 1

Text © 2011 John Wiley & Sons Ltd. Images: pp 108, 111(b) © 
Soenne, photography Soenne; pp 109–10, 111(t) © Max Kahlen

Depending on the angle of view, the structure appears either solid 
or transparent, exposing the inner cores.

Overview of the site within Singapore’s office district.
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The 
Hinging 
Tower

For their project for a tower in downtown 
Singapore, which they undertook for the Rising 
Masses Studio at Harvard Graduate School of 
Design (GSD), Ana María Flor Ortiz and Rodia 
Valladares Sánchez adopted a mathematical 
approach. They explicitly used mathematical 
notation as a mechanism of controlling form, in 
a manner that could also harness the possibilities 
of more random and unanticipated influences.

Ana María Flor Ortiz 
and Rodia Valladares 
Sánchez, Rising Masses 
Studio, Harvard Graduate 
School of Design

Ana María Flor Ortiz and Rodia 
Valladares Sánchez, Hinging Tower, 
Rising Masses Studio, Harvard 
Graduate School of Design, 
Cambridge, Massachusetts, 2008
The Hinging Tower aims to 
challenge the ubiquitous skyscraper, 
characterised by mere extrusion and 
the stacking of floors.
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The architectural protocols defined by 
mathematical notation celebrate the 
potential of the unexpected as a way to 
generate areas of opportunity.
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The morphology of the tower dictates the configuration of the circulation 
system and the programmatic pattern.

Within the infinite morphological variation that the diagram offers, the form 
of the tower is shaped by local conditions and the specificities of the site.

The Hinging Tower, a high-rise development 
located on a Modernist corridor of downtown 
Singapore, explores mathematical notation 
as a mechanism to control form, while 
acknowledging the potential of the 
unexpected and the uncertain as key factors 
for finding novel formal solutions.

Through its language of functions, 
the mathematical apparatus becomes the 
ultimate tool that allows the generation of 
the ‘proto-tower’ diagram for the project. 
The combination of equations synthesises a 
system of geometric relations that contains 
the whole spectrum of possible differentiation 
(or variation). In this sense, the integration 
of multiple variables makes the final form 
(iteration) of the tower an organisation 
responsive to local conditions, as well as to 
site and programme specificities. 

The programme requirements feature the 
mixture of residential apartments, offices and 
hotels so common to the urban landscape 
of modern Asian cities. Starting with this 
premise, the project constitutes an attempt to 
challenge the ubiquitous skyscraper, in which 
the form is achieved by a process of mere 
extrusion and stacking of floors. 

The project began with a coiling diagram 
based on the combination of sinusoidal, 
continuous and periodic functions. This initial 
diagram was based on an equation originally 
developed by Myung Min Son, Claude Ballini 
and George L Legendre for the first Rising 
Masses studio at the Architectural Association 
(AA) in London. The next step was to 
introduce a series of ‘deformers’ that bring 
eccentricity and variation in size to the series 
of coils, resulting in a more complex scheme 
based on a three-dimensional curve.

The conceptual leap occurs when, 
in contrast with other parametric trends, 
the formal agenda of the Hinging 
Tower embraces a new ‘coarseness’ or 
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The displacement of the ‘towers’ within the 
tower reveals the coiling effect of the sinusoidal, 
continuous and periodic functions.

Starting with an elemental square plan, 
a mechanism of repetition driven by 
the diagram or mathematical function 
produces a variety of distinctive spaces 
and great organisational potential.

Formally, the Hinging Tower calls for a new 
‘coarseness’ or ‘low-resolution curvature’.

The tower’s parametric surface description or diagram is constructed upon 
a number of variables that increase the spectrum of differentiation and at 
the same time make it more specific to site and programme conditions.

The application of fast Fourier transforms (FFTs) 
reduces discontinuous, complex three-dimensional 
geometries to simple/developable surfaces.
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The intertwining effect brings a double benefit: 
structural strength and circulation flexibility.

Typical tower configuration is inverted by reducing the 
footprint and maximizing the area of the upper levels. 

‘low-resolution curvature’ to optimise 
construction. Hence the introduction of 
fast Fourier transforms (FFTs) allows the 
possibility of a discontinuous, complex 
three-dimensional geometry reduced to 
simple/developable surfaces. 

Along the same lines, the goodness 
of a square plan is acknowledged for its 
programmatic efficiency and simplicity; in 
fact, the mathematical notation of the square 
is equivalent to a ‘coarse’ circle plotted with 
only four points. By providing a catalogue 
of distinctive spaces, qualitatively and 
quantitatively, through the simple repetition 
of the square plan, the diagram of the 
tower aims to generate new organisational 
potentialities capable of producing difference. 
The interlocking areas of the ‘towers’ within 
the tower form the critical moments of 
the production of spatial diversity. The 
morphological configuration of the space 
determines the programmatic pattern of 
the tower that begins to take shape: every 
programme automatically locates itself in the 
most suitable spot.

The process implies some degree 
of uncertainty. It is at this juncture that 
the architect’s imagination, understood 
as the mediation between intuition and 
understanding, comes into play as a critical 
tool, operating to identify new potentials. 
The Hinging Tower exemplifies a speculative 
architectural practice, conscious of its 
position within history and aware of its 
potential as a creative reservoir, probing 
purposefully the unknown for new models 
and opportunities. Mathematics here is the 
way to generate architectural protocols or 
relational systems that comprehend the 
whole spectrum of formal variation. 1

Text © 2011 John Wiley & Sons Ltd. Images © Ana María Flor 
Ortiz and Rodia Valladares Sánchez
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implicit fields© 
MOCAPE Shenzhen PRC

George L 
Legendre 
and Max 
Kahlen

George L Legendre and Max Kahlen for IJP, MOCAPE Shenzhen, China, 2007
Perspective rendering and front view towards the People’s Palace. In this ‘flat-
topped’ version of the original seed, the distribution of adjacent depressions is 
statistically controlled by sampling a sinusoidal path cutting across the field.

During late 2007, guest-editor George L Legendre of IJP Corporation and 
Max Kahlen of Dyvik & Kahlen, Architecture, joined forces to develop a 
competition design for the Museum of Contemporary Art and Planning 
Exhibition (MOCAPE) in Shenzhen. One of the great challenges of the 
brief was the subdivision of a great expanse of programmed spaces. In order 
to tackle this, they created the design concept of ‘natural erosion’ for which 
they developed their own parametric surface model, the implicit field©.
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In the summer of 2007, the announcement 
of an international competition for the 
Museum of Contemporary Art and Planning 
Exhibition (MOCAPE) of Shenzhen (People’s 
Republic of China) marked the final major 
building venture in the newly redeveloped 
city centre of this fast-growing metropolis. 
The requirements included an unusual 
programmatic mixture of art galleries and 
administrative planning offices splashed 
over 88,000 square metres (950,000 
square feet), challenging competitors to 
adapt their ultra-specific working methods 
to the amorphousness and enormity of a 
contemporary socioeconomic brief. 

The joint entry featured here reprised 
the theme of natural erosion, which offers 
a practical way of tackling sprawling 
programmatic masses. Eroding is similar 
to subdividing larger blocks into smaller 
units, with the key difference that here 
subdivision is mathematical, continuous and 
periodic. Specifically, the concept makes use 
of the elastic dimensional properties of a 
parametric surface model known as implicit 
field©. Based on the aggregation of several 
periodic functions, the implicit field© is 

defined by the discontinuities between these 
functions, which are the salient feature of 
this surface and form the basis for a building 
proposal deriving its structure, layout and 
access to natural light from wherever such 
discontinuities occur.

The first step was eliminating all 
curvature from the surface and distributing 
discontinuities across it by sampling three 
periodically shaped troughs. Fine-tuning 
the interval of the sampling revealed more 
of the sine-, cosine- or tangent-shaped 
troughs, producing in return an array of 
punctual, linear or superficial depressions. 
Early on these depressions were seen as a 
freely distributed structural arrangement and 
earmarked as conduits of natural light and 
bending moments, breaking what might have 
been, given its 150-metre (500-foot) long 
side, an implausibly deep building. 

The implicit field© occupies almost 
the entirety of its allotted footprint. The 
dispersal of depressions erodes its mass 
from north to south to produce internal 
and external spaces. The process is 
orientated: on the south side the extra 
sampling results in a porous front suitably 

Structural diagram of the external 
envelope: the gradual merger of 
cones erodes the field to produce 
internal or external spaces.
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George L Legendre and Max Kahlen for IJP, 
MOCAPE Shenzhen, China, 2007
Site plan and detailed floor plans. Space flows 
freely around cones, whose original position 
is statistically calculated to attain sparser 
or denser concentrations of matter. Larger 
programmatic spaces such as exhibition 
galleries fit into the ‘empty’ areas of the plan. 
Smaller offices and workshops colonise the 
interstitial spaces in between.
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Final model (details). George L Legendre and Max Kahlen, Analytic 
Mathematics implicit fi eld©, 2004–7
Worksheet featuring a (simplifi ed) set of 
equations for the project. 

monumental in use and wide enough to 
channel the mass movement of visitors. 

Based on a single three-dimensional 
superfi cial expanse, the 80,000-square-
metre (860,000-square-foot) interior can 
have no extraneous partitions: it is the 
surface itself that must provide them. This 
constraint resulted in the integration of the 
exhibition functions within one open plan, 
strategically subdivided by the only mode 
of partition available: a variable density of 
adjacent discontinuities. On the ground, 
space wraps freely around closed, semi-
open or open depressions creating generally 
differentiated patterns of access and 
circulation. The number and fi nal position 
of the depressions is not predetermined, but 
is statistically calculated to produce average 
amounts of aggregation or dispersal. This in 
turn determines how the space is utilised: 
rooms requiring clear spans and a generous 
programmatic footprint, such as exhibition 
galleries, settle preferably into the ‘empty’ 
areas of the plan, whereas small offi ces, 
ancillary spaces and production workshops 
are likely to colonise the compact interstitial 

spaces nestled between proximate 
depressions, drawing enclosure, fresh air 
and natural light as needed. 

By size and organisational pattern, like 
satellite images of the artifi cial borders of 
large mid-western US states, the MOCAPE’s 
plans look more like geographic regions than 
interior layouts, which in the absence of any 
actual boundary other than the occasional 
occurrence of depressions is what they 
actually are. 

Paradoxically, the level of control that 
comes with such a mathematical approach 
leaves the work vulnerable to the critique that 
it is deterministic, that is a misperception: 
beyond the raw statistical aggregations of 
density versus sparseness, it is not possible to 
precisely determine anything in this museum. 
Critically it is an unusually massive building; 
the variegation of the formula offers an 
unscripted relief from the artifi cial problem 
of composition, as well as from the grim 
sterilities of repetition. 1

Text © 2011 John Wiley & Sons Ltd. Images © George L Legendre 
and Max Kahlen
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SENSE AND 
SENSIBILIA
Since the 1960s, innovation has become one of the 
sole purposes of architecture and membership of the 
avant-garde an underlying motive force. Philippe 
Morel of EZCT Architecture & Design Research 
juxtaposes the ‘sense and sensibilia’ of mathematics, 
now widely adopted by the ‘creative minorities’, 
against the idealism of mid 20th-century modernism.

Philippe Morel 

Figure 1. EZCT Architecture & 
Design Research, Universal House 
and Assembly Element, 2009–11
The concept of a fully generic and 
voxel-based architecture (free of 
topological constraints) comes from 
EZCT’s fi rst investigations, embodied 
in the Studies on Optimisation: 
Computational Chair Design using 
Genetic Algorithm project (2004). 
The current research, which refers 
back to that of Nicholas Negroponte 
and John Frazer, is oriented towards 
a more precise, articulate and 
constructive approach.
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I can think much better about a formula than about a 
geometrical object because I never trust that a geometric 
picture, a drawing, is suffi ciently generic.
— Alain Connes in an Interview by Georges Skandalis 
and Catherine Goldstein, Newsletter of the European 
Mathematical Society, Issue 63, March 2007, pp 27–81

Returning to the Roots of Contemporary Sensibility

A brilliant intuition of the “radical” movement was that 
normality as a shared value no longer existed, that all 
society now constituted a set of creating minorities and 
that the critical and creating methods of the avant-garde 
had become the only practicable ones. The project 
therefore changed its status, lost its methodological 
unity and accepted innovation as the sole purpose of 
creativity. For these intrinsic reasons, the “radical” 
movement refused any stylistic unity, any recognisable 
formal code, to act, on the contrary, as a movement 
which destroyed within it any trace of the old search for 
modern certainties. For this reason, it has always been 
diffi cult, if not impossible, to fi le it under a critical category.
— Andrea Branzi, ‘Le mouvement radical ’, Architectures 
expérimentales 1950–20002 

It is with these words that Andrea Branzi commented 
four decades later on the general philosophy of the Italian 
movements of the second avant-garde. A philosophy that, in 
a pop society with omnipresent technology, recognised that 
the avant-garde had became the new normality. The title 
of this article, ‘Sense and Sensibilia’, evokes the signifi cant 
transformations that were taking place in the early 1960s, and 
is named after John L Austin’s 1962 book of the same title3 
rather than Aristotle’s classic philosophical text (De sensu 
et sensibilibus). Austin’s work reasserts the pre-eminence of 
ordinary language placed against a logical background. This 
language, which moves on the logical ocean that characterises 
Western civilisation, defi nes the current relationship between 
‘sensible things’ and mathematics. These things now shared and 
produced by ‘all the creating minorities’ are a thousand leagues 
away from Modernist productions. As for their mathematics, 
they have evacuated all traces of idealism related to the ‘old 
search for modern certainties’. 

It is thus against this context, today and not only in 
architecture, that we are dealing with mathematics. It is a 
context inseparable from the social transformations that 
were established from 1960 onwards – the trigger for which 
was the hedonistic consumption of goods and services 
developed during the Second World War – and that defi ned 
the theoretical directions taken at this time by architectural 
research. Beyond their apparent incompatibility, this research 
forms an extremely coherent set that can be defi ned as four 
priority ‘topics’: 1) the type and role of permanent avant-
gardism; 2) mass communication as a source of semiotic pop; 
3) the dimensions of the town and its architecture which reach 
the sizes necessary for their autonomisation; 4) the role of 
an idealised language of Modern architecture in the face of 

its ‘vulgar’ versions, and the correspondence between a new 
codifi ed language of architecture and the general codifi cation 
that has appeared in linguistics and information sciences.4 

It is possible to draw up a quick genealogy of these four 
research directions, which were followed and encountered to 
varying degrees by the vast majority of architects active in the 
1960s. The fi rst was the principal motif of the neo avant-gardes 
– led by Archizoom and Superstudio – before they turned their 
attention to the widespread urban condition of global 
megastructures. The second was in the US, which led the fi eld 
of mass communications, and was the object of America’s pop 
architecture that was to culminate in the ‘Learning from Las 
Vegas’ study by Robert Venturi, Denise Scott-Brown and Steven 
Izenour, published as a book in 1972.5 The third was the object 
of the European functionalism critique from neo-regionalism to 
Team X and Aldo Rossi’s Tendenza.6 The fourth was that of 
Peter Eisenman who, in 1963, on fi nishing his doctorate,7 
broached a ‘re-examination of the formal’. It was also, a decade 
later, that of the humanist positivists such as Christopher Alexander.8

Of course it goes without saying that this categorisation has 
in fact never been so clear. Above all, it says nothing about the 
ideological positions taken by the theoretician architects. Despite 
this, for an attentive observer, noticing for example that the 
interest shown by Eisenman in language as such is inseparable 
from a critique of functionalism, this categorisation clarifi es 
that which has happened since 1960, and principally that which 
is understood by ‘Postmodernism’ – a Postmodernism now 
increasingly appearing as an attempt to create a synthesis of the 
various issues of the 1960s mentioned above. It is thus through 
this propensity for summary that it is possible to perceive both 
the multiple interests in current Japanese architecture (neo-
materialism, advanced engineering, information technology and 
electronics) and the architecture of Coop-Himmelb(l)au or Rem 
Koolhaas – the most intentionally synthetic of all. It is also thus, 
although from a different perspective, that we can understand 
the works of FOA or the intricacy of Greg Lynn,9 the generic 

Figure 2. Philippe Morel (curator), ‘Architecture Beyond Form: The 
Computational Turn’, Exhibition at the Maison de l’Architecture et 
de la Ville, Marseille, 22 February to 20 April 2007
The exhibition was a reading of the last 45 years of architecture, starting from 1963 
and Peter Eisenman’s PhD thesis, ‘The Formal Basis of Modern Architecture’.
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nature of which is derived from a different observation to that of 
Koolhaas, but indirectly very well summarised by the personal 
opinion of Anthony Vidler: ‘That in which I am involved is 
another type of identity of the subject, built within self-generated 
spaces by software which knows nothing of the distinction 
between animal and human; an identity which, at least for the 
time being, is more concerned with the morphological and 
topological transformations of an external skin or a shell, than by 
the human dimensions of an interior.’10

The summary of the major themes of the postwar critical 
re-readings of Modernism is therefore the major project of 
Postmodernism. The inherent diffi culty in such a project makes 
it possible to understand both the theoretical infl ation which 
appeared in the 1970s – when architects attempted to link 

everything to the quasi-totality of surrounding theories with 
deliberately funny or sometimes unintentionally grotesque 
connections – and the relative failure of this summary. Since 
1990, the onset of the Internet and information technology has 
made the use of conceptual and practical tools a dominant focus. 
Though it has shared with Postmodernism the theorisation of 
social transformations, apparent in Fredric Jameson’s analysis of 
the Bonaventure Hotel of 1988,11 it has also introduced a new 
preoccupation with ‘deep structure’. This theorisation was partly 
carried out by, among others, Lynn and by Alejandro Zaera-Polo, 
for whom the question of form was in particular the refl ection 
of a reading of the transformations of technological civilisation 
and not the imprisonment within a new mathematical idealism. 
Idealism often only offers an anachronistic update of Modernist 
formal research or a new belief in the participation of architects 
in the advancement of science. It is by the refusal of this 
naive belief that Lynn and Zaera-Polo appear as ‘experienced 
intellectuals’, the latter being ‘those who have understood that 
they are not at the head of a change but in an experienced 
rearguard which measures the difference and the progress of 
technology in relation to the human sphere’.12 

Conversely, it is due to the half-acceptance translated by the 
zealous application of science – an application without any 
scientifi c foundation or fact – that Alexander may be considered an 
‘inexperienced intellectual’; intellectual, considering the 
relationships between the social development and that of the 
sciences within a historical invariance, deducing from the constant 
validity of theorems and algorithms the permanence of sensible 
things. For this belief in the logical continuity which extends from 
the logico-mathematical laws to the acts had, well before Alexander, 
been denounced as the pitfall par excellence of moral philosophy, 
which did not prevent High-Modernism (for example, that of 
Rudolf Carnap in The Logical Structure of the World)13 from running 
aground. A pitfall as noted by Nietzsche in the following terms: 

Socrates and Plato, great doubters and admirable 
innovators were nevertheless incredibly naive in regard 
to that fatal prejudice, that profound error which 
maintains that “the right knowledge must necessarily be 
followed by the right action”. … the contrary position is 
in fact the naked reality which has been demonstrated 
daily and hourly from time immemorial.14

The ‘Visible’ Is Not ‘Sensible’ 
As such, we cannot be anything other than surprised today 
to still see in the many works broadly using algorithms and 
mathematics – and which works can really do without them? 
– a resurgence of an idealism in the style of Alexander. Just 
as the latter’s relational graphs were infl uenced at the time 
by progress in topology and their applications in the form 
of operational research, the frenzied mathematical idealisms 
and biomimicry tendencies of today’s architecture are nothing 
less than a new Zeitgeist. As for the less complex approaches, 
more coolly and visibly logical, although the best remind us 
by their very radicalism that ‘logic is not necessarily as logical 
as all that’, that we ‘use it exactly as we wish’ and that what is 
important ‘is that things are logical, “in a certain way”’,15 the 

Figure 3. EZCT Architecture & Design Research, Seroussi Cupboard, 2005–8 
The fully scripted panel system leads to an entirely automated fabrication process. 
The double-curvature surfaces of the panels are glued on to a light structure. 
Everything is built from standard and cheap wood with vertical T-shape steel 
reinforcements. The algorithms calculate the admissible deformation of the veneer 
wood (which is supposed to be close to zero) and propose different solutions. Due to 
very strict constraints, all stainless-steel hinges were conceived by EZCT.
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majority of them come down to an opportunistic Postmodern 
inclusion of an additional variable: a dose of easy spectacular 
computation and additional effectiveness. 

While for Postmodernism there are no longer any aesthetics 
with an immediate value – ‘the ideologem of elegance and chic, 
of the dear form, is united with its opposite, punk art, trash, 
the sordid and the wretched’16 – the mathematics of sensible 
things becomes foreign to the aim that it is supposed to serve. 
It is then that the Postmodern paradox appears; at each new 
attempt to perceptively approach a thing, the result is invariably 
the distancing from this thing. Such is the Postmodern reality 
which, on the one hand by the exponential rise in the number of 
images in circulation and their importance in scientifi c research 
submerges us in the fi eld of the apparently sensible, and on the 
other by the infl ation in digital data and the not less exponential 
growth in algorithmics of IT programming and mathematical 
methods, freezes all of our immediate perceptions. Although 
this paradox is not, by essence, Postmodern, it has reached a 
degree previously unknown thanks to information technology, 
which has allowed our relationship with the world to enter a 
new era; and as Marshall McLuhan and Quentin Fiore point 
out, not without humour: ‘Beside it, the wheel is a mere hula 
hoop, even though the latter should not be entirely neglected.’17 

The wheel was just a hoop insofar as even in the boldest 
projections it was still only a representation of the world through 
the image of a perpetual movement, a representation broadly 
surpassed today in computer simulations. As observed by the 
epistemologist Franck Varenne, whose recent works on the 
integrative and pluri-formalised simulations in botany constitute 
(using scientifi c practices) a rigorous critique of any mathematical 
idealism, science faces two contradictions. The fi rst, a traditional 
one, is that the researcher ‘still believes he is researching the 
“laws of nature” whilst in practice he is fi rst of all contributing 
to dispersing this kind of representation’;18 the other, specifi cally 
linked to the arrival of information technology and its intrinsic 
possibilities for repetitions identical to virtual experiences, is that 
the latter are often preferable to any ‘real’ experience. 

We should point out an amazing opinion among 
engineers about the use of computer simulation in 
industry – especially in aeronautics: they are more and 
more convinced that in many cases, real experiments are 
superfl uous. They think that a good simulation is far 
better than an experiment on a prototype – apart from 
the fi nancial considerations. Indeed, when you read Von 
Neumann, you see that analogue models are inferior to 
digital models because of the accuracy control limitations 
in the fi rst ones. Following this argument, if you consider 
a prototype, or a real experiment in natural sciences, is it 
anything else than an analogue model of itself? … So the 
possibilities to make sophisticated and accurate measures 
on this model – ie to make sophisticated real experiments 
– rapidly are decreasing, while your knowledge is 
increasing. These considerations are troublesome because 
it sounds as if nature was not a good model of itself 
and had to be replaced and simulated to be properly 
questioned and tested!19

This observation of the change in current scientifi c practices 
throws precious light on that which is known today as the 
mathematics of sensible things. Indeed, added to the 
reductionism which began at the end of the 19th century and 
ended in the logical positivism and attempts at a complete 
axiomatisation (which although proved impossible will 
nevertheless have a holding infl uence, for example with 
Bourbakism in France) is a new distancing of the sensible specifi c 
to information technology. This distancing is no longer based on 
the Modernist abstraction as perceived in the universal grids of 
Piet Mondrian or Mies van der Rohe, but on the contrary on a 
new ‘logical fi guration’. Although stylistic Postmodernism had 
perceived the cultural nature of this fi guration, recognising that 
that which separated it from the void was nothing but its state of 
‘capitalism transformed into image’, it had not really understood 
the computational logic leading to our logical replication of the 
world, the latter inheriting as much from Carnap as from the 
history of scientifi c notation and symbolism, programming 
languages or the development of material technologies20 as from 
Guy Debord or Jameson. It is in this sense that the synthesis of 
Postmodern architecture referred to earlier in this article is no 

Figure 5. Karl Exner, Balance for 
Equation, undated
During the 19th century and until the advent 
of digital computers, scientists searched for 
mechanical techniques to facilitate complex 
calculations. From Uber eine Maschine zur 
Aufl ösung höherer Gleichungen (About a 
machine for the resolution of high-order 
equations), Vienna, 1881.

Figure 4. Proposed connection between Peter Eisenman’s PhD thesis drawings (1963) and Gerrit 
Mariè Mes’ Logic Diagrams (drawn in the 1960s), illustrating the Zeitgeist of the young Eisenman
Mes, a Dutch-born surgeon based in Krugersdorp, South Africa, developed this variation of logic 
diagrams of Martin Gardner in the 1960s: directed and undirected lines, and a combination 
of both (a line without an arrow means that travel may be either way). While being more or 
less opposed to any kind of Zeitgeist, Peter Eisenman’s work is in fact highly related to its 
surrounding visual and epistemological culture – the sign of a rationalist mind. Original image 
from Martin Gardner, Logic Machines and Diagrams, University of Chicago Press, 1958.
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Figure 6. Philippe Morel, Visual and Diagrammatic Representation of the 
Mathematical Subject Classification (MSC) Concerning Geometry, 2005
The diagram was first made to illustrate a lecture entitled ‘Some Geometries’ at 
the ‘Loopholes Between Theory and Practice’ symposium at Harvard Graduate 
School of Design in April 2005. The idea was to show that geometry is not a 
classically homogeneous field, but a very complex and intricate landscape.
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Figure 7. Alessandro Mendini, Straw Chair, 1975
A temporary and self-destroying natural chair.

Figure 8. Italian radicals and German expressionists sharing geometry 
Hermann Finsterlin, Composition with building blocks, 1916, and 
Studio 65, Baby-lonia, 1973. 

more complete than that of the four fundamental forces in 
physics, if it can be or if it is desirable. To complete it we should 
add to Venturi’s irony the complete disillusions of Stanley 
Tigerman,21 but we most of all should add to the work of the 
Austrian and Italian radicals, to the deconstructions of the 1980s 
and to the digital research of the 1990s or the urban and cultural 
theorisations of Koolhaas, a veritable investigation of the 
‘computational logic of late capitalism’. Such an investigation 
would have recourse to algorithms and mathematics beyond an 
umpteenth passive formalism in order to evaluate them on an 
entirely new ‘critical’ base. This goes against the new stylistic 
unity of algorithmic, parametric or biomimetic architecture, or 
calls for this unity, the new ‘recognisable formal code’ which 
retains the ‘trace of the old search for modern certainties’.

De Novo Nature, Life as a ‘Good Simulation’
Broaching the mathematics of sensible things is, in reality, 
the same as dealing with a crucial aspect of a civilisation in 
which all the artefacts and stimuli are becoming mathematical 
productions. With Modernist designers who embodied 
mathematics in physical objects, the problem of the sensible 
remained ‘easy’, but we have to admit that it is very different 
today. Mathematics and logics exist now as a pervasive physical 
and immaterial environment, as ‘a new domestic landscape’, which 
is perfectly exemplifi ed by the annual production of theorems 
estimated in 1976 by Stanislaw Ulam as 200,000.22 Such a 
landscape, or ecosystem, which is inseparable from information 
technology is proof of the omnipresence of information 
technology mentioned above on the subject of a digital nature 
which itself is a better model than the original. Thanks to this 
quality, (computer) simulations are not at all a vulgar pretence; 
this copy which could lead only to the search for the original – a 
quest that is not just romantic but above all reactionary in its 
ignorance of the reality of the facts – is a better original. 

It is in this recognition of the arrival of digital reality, 
a major scientifi c fact, that the entire difference between 
stylistic and literary Postmodernism and scientifi c and effective 
Postmodernism is played out. And this is what Eisenman had 
summarised perfectly in the title of his essay ‘A Matrix in the 
Jungle’ (2003), on this occasion returning to Jameson: 

Several years ago, Fredric Jameson said that the 
computer would be capable of giving us a new nature; 
not an unnatural nature but a nature derived directly 
from computerised algorithm and processes. Such 
a thought means it would no longer be necessary to 
look at nature with the same eyes through which Le 
Corbusier observed the natural shapes of D’Arcy 
Thompson. (It was precisely from the latter’s immense 
body of work that Le Corbusier deduced most of the 
plastic, spiralled shapes and complex proportional 
relationships that produced his ‘Modulor’ system.)23 

In its relationship to things, and more broadly in its relationship 
to the environment, current Postmodernism allows little room 
for hope. Insofar as it is not a language and therefore it ‘does not 
give a representation that can be mobilised by a human spirit (a 
concept)’,24 computer simulation does not lay itself open for the 
linguistic research typical of the Postmodernism of the 1980s 
any more than a ‘re-examination of the formal’ in the manner of 
the young Eisenman, irrespective of the quality of their 
transposition into a computational environment. Furthermore, 
as it is itself experimental proof that nature need not search 
behind the latest copies, but that it is produced afresh by our 
computers, Postmodernism appears as a mirror which, to a 
civilisation whose ‘only purpose is to “know”’, refl ects the image of 
its own knowledge. From this mirror state comes the fact that 
each reproach addressed to this civilisation is invariably referred 
to us as an interrogation of our own choices, at best identical, at 
worst increased, a sensation felt by everyone when, for example, 
we wonder how contemporary technology was able to produce 
such or such a social construction, including architecture. 

In this regard we cannot but recall the paradox of the 
contemporary factory where the staff, workmen or engineers 
work to increase the performance of the robots that make them 
obsolete. This paradox was already present in the 19th century 
in the very term ‘manufacture’ to design that which is more 
than mechanical, a paradox that was regularly brought to light 
by Norbert Wiener25 and many others without ever fi nding 
a satisfactory political response. Furthermore, to say that no 
response is satisfactory, given the rise in importance of today’s 
global, abstract and computational ambient factory which is 
the deep cause of the actual crisis, is of course a euphemism. 
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In this framework, the mathematics of sensible things, which 
have neither the elegance of minimal mathematical equations 
– the Modernist ideal – nor the status of language specifi c to a 
pure syntax, become, as stated by Peter Macapia, ‘dirty’.26 They 
are beta-mathematics, the result of perpetually experimental 
information technologies. 

In fact, the critique of such a ‘deviance’ of mathematics in 
architecture devoid of any preferred stylistic expression appears 
increasingly often in two ways. First, by the expression of an 
impossibility to fi nally reach a rationalism which would connect 
the state of our knowledge and its application in the real, an 
impossibility translated by a language which appears to be 
‘inarticulate, arbitrary and non-dialectic’.

This is the language of the most recent Californian 
architecture which seems to ‘produce repetitions not 
developments’ and of which ‘consequently the resulting 
concentric scribble is (specifi cally through its frustrated 
ambiguity) the sign of an absolute protest, which “globally” 
defeats the logic of the real, by refusing to admit the possibility 
of whatever logic?’27 Second, by accepting a pop and deeply 
experimental computationalism in which all historical discourses 
have been replaced by the gross storage capacities of the now 
more than one million servers and three million computers of 
the Google Grid. This grid, by being our Thucydides, embodies 
the very End of History and henceforth makes the dreams 
of positivist historiography come true. Everything outside 
computer memories is not historical facts but literature and 
dreams. It is thus not a question of rebuilding either history 
or theories, but of recording or producing a new digital reality 
by simulation. Here, logical positivism is accepted, as are the 
resulting technologies that are solving life problems in a way 
‘theorised’ by Andy Warhol:

The acquisition of my tape recorder really fi nished 
whatever emotional life I might have had, but I was 
glad to see it go. Nothing ever caused me any problems 
again, because a problem signifi ed a good recording 
and when a problem turns into a good recording it’s no 
longer a problem.28

At this very moment in our computation-based civilisation, the 
situation is slightly different. On one side life is no more than a 
good recording, but on the other side it is nothing more than 
a good computer simulation; a simulation that effectively and 
physically produces a (synthetic) life.29 We still have a choice. 1

Notes
1. Alain Connes in an Interview by Georges Skandalis and Catherine 
Goldstein, Newsletter of the European Mathematical Society, EMS Publishing 
House (Zurich), Issue 63, March 2007, pp 27–8.
2. Andrea Branzi, ‘Le mouvement radical’, Architectures expérimentales 
1950–2000, collection from FRAC Centre, Editions HYX, June 2003.
3. John L Austin, Sense and Sensibilia, ed GJ Warnock, Oxford University 
Press (Oxford), 1964.
4. I consider these four theoretical directions as an equivalent to the four 
known fundamental interactions in physics: electromagnetism, strong 
interaction, weak interaction and gravitation. As for physics, they ask for 
a theoretical synthesis in the fi eld of architecture and social sciences. My 
research agenda is oriented towards such a synthesis.
5. Robert Venturi (with Denise Scott Brown and Steven Izenour), Learning 
from Las Vegas, MIT Press (Cambridge, MA), 1972, revised 1977.

6. Aldo Rossi, L’architettura della città, 1966. Translated as The Architecture 
of the City, Oppositions Books and the MIT Press (New York), 1984.
7. Peter Eisenman, The Formal Basis of Modern Architecture: Dissertation 
1963, Lars Müller Publishers (Baden), 2006.
8. Christopher Alexander (with Sarah Ishikawa and Murray Silverstein), A Pattern 
Language: Towns, Buildings, Constructions, Oxford University Press (Oxford), 1977.
9. The ‘Intricacy’ exhibition was curated by Greg Lynn at the Institute of 
Contemporary Art, Philadelphia, and ran from 18 January to 6 April 2003. 
Catalogue published by ICA, University of Philadelphia.
10. Anthony Vidler, ‘From Anything to Biothing’, in Cynthia Davidson (ed), 
Anything, MIT Press (Cambridge, MA), 2001.
11. See, for example: Fredric Jameson, The Prison-House of Language: 
A Critical Account of Structuralism and Russian Formalism, Princeton 
University Press (Princeton, NJ), 1972; Postmodernism: Or, the Cultural 
Logic of Late Capitalism, Duke University Press (Durham, NC), 1991; The 
Geopolitical Aesthetic: Cinema and Space in the World System, Indiana 
University Press (Bloomington, IN), 1992.
12. Peter Sloterdijk, ‘La révolution “pluralisée”’, interview with Peter Sloterdijk 
by Arnaud Spire in Regards, No 52, December 1999.
13. Rudolf Carnap, Der Logische Aufbau der Welt, 1928. Translated as The 
Logical Structure of the World and Pseudoproblems in Philosophy, trans RA 
George, University of California Press (Berkeley, CA), 1967.
14. From F Nietzsche, Aurore, Second book, trans Julien Hervier, Gallimard 
(Paris), 1970 (original: Morgenröte – Gedanken über die moralischen 
Vorurteile, 1881).
15. Donald Judd in ‘La petite logique de Donald Judd’ (trans Pascale Haas), 
interview with Catherine Millet in Artpress 119, November 1987.
16. Frederic Jameson, Signatures of the Visible, Routledge (London), 1992.
17. Marshall McLuhan and Quentin Fiore, War and Peace in the Global 
Village, Bantam (New York), 1968, p 34.
18. Franck Varenne, ‘Le destin des formalismes: à propos de la forme des 
plantes – Pratiques et épistémologies des modèles face à l’ordinateur’, 
PhD thesis, Université Lumière – Lyon II, 29 November 2004, p 10. 
Partial content of the thesis is included in Franck Varenne, Du modèle à la 
simulation informatique, Vrin (Paris), 2007.
19. Franck Varenne, ‘What does a Computer Simulation Prove? The Case of 
Plant Modeling at CIRAD’, in N Giambiasi and C Frydman (eds), Proceedings 
of the 13th European Simulation Symposium, Marseille, France, 18–20 
October 2001, SCS Europe Bvba (Ghent), 2001, pp 549–54. 
20. Ray Kurzweil is one of the few with a general and historical overview of 
the problem, as had Marshall McLuhan, Guy Debord and Andrea Branzi in 
different ways from the 1960s. 
21. It seems to me that Tigerman’s irony is the sign of a complete disillusion, 
not only towards any kind of political action but also towards the cynical and 
opportunistic positions of most architects.
22. Stanislaw M Ulam, Adventures of a Mathematician, Scribner’s (New 
York), 1976, p 288.
23. Peter Eisenman, ‘A Matrix in the Jungle’, in Written into the Void: Selected 
Writings 1990–2004, Yale University Press (New Haven, CT), 2007, p 121.
24. Franck Varenne, ‘La simulation conçue comme expérience concrète’, in 
Le statut épistémologique de la simulation, actes des 10èmes journées 
de Rochebrune: rencontres interdisciplinaires sur les systèmes complexes 
naturels et artifi ciels, Editions de l’Ecole Nationale Supérieure des 
Télécommunications (Paris), 2003, pp 299–313.
25. See the talks that mathematician and scientist Norbert Wiener, inventor 
of cybernetics, gave to the unions in the US about the evolution of production 
towards automatic factories.
26. See ‘Turbulent Grid’, arch’it, February 2007, and ‘Dirty Geometry’, Log, 
Issue 10, Summer/Fall 2007.
27. The metaphysical and metaphorical principle of Ferreri ‘is inarticulate, 
arbitrary and non-dialectic, to the point that it produces repetitions, not 
developments and that, consequently the resulting concentric scribble 
is (specifi cally through its frustrated ambiguity) the sign of an absolute 
protest, which “globally” defeats the logic of the real, by refusing to admit 
the possibility of whatever logic?’ Pier Paolo Pasolini, Ecrits sur le cinéma, 
Editions des Cahiers du Cinéma (Paris), 2000, p 199.
28. From Andy Warhol, The Philosophy of Andy Warhol (From A to B & Back 
Again), Harcourt Brace Jovanovich (New York), 1977, pp 26–7.
29. See the work by Craig Venter on synthetic DNA in, among other 
numerous articles, Victoria Gill, ‘“Artifi cial Life” Breakthrough Announced by 
Scientists’, BBC News Science & Environment, 20 May 2010 (www.bbc.
co.uk/news/10132762).

Text © 2011 John Wiley & Sons Ltd. Images: pp 122-3 © Philippe Morel; p 124 © EZCT 
Architecture & Design Research 2008; pp 125(t), 128(b) Courtesy Philippe Morel; pp 
126-7 © Philippe Morel, 2005; p 128(t) © Alessandro Mendini



LESS ANSWERS 
MORE QUESTIONS

Is architecture heading for a ‘procedural mathematic 
cul-de-sac’? Are architects just too ready to settle 
for the ‘well-defi ned certainty of parametricism’, 
having got stuck on a mathematics of pattern? 
Will McLean, Senior Lecturer at the University of 
Westminster, urges designers to open themselves up 
to the wider delights of mathematics and the full 
range of possibilities that the discipline has to offer.

Will McLean

A mathematical proof, the argument 
goes, should not just answer a question, 
it should also provide some insight.

— Simon Singh, ‘Packing Them In’, 
New Scientist, 28 June 1997, pp 20–11 

The realisation that the pre-‘scientifi c 
calculator’ logarithmic table books that I used 
at school were in any way related to specifi c 
curves was a kind of minor revelation. That 
the 19th-century mechanical calculators of 
computer pioneer (and scourge of street 
performers) Charles Babbage2 were 
developed to compute and print these tables 
was yet another. Mathematics to the 
non-mathematician but interested observer is 
a world of infi nite possibilities, which are 
elegantly posed in a mathematical problem 
discussed by Ian Stewart.3 In a column for 
Scientifi c American magazine, Stewart tries 
to solve a problem fi rst posed by Victor Klee 
in 1969, which is, if you lit a match 

COUNTERPOINT

somewhere in a totally refl ective room, no 
matter what shape the room was, would you 
see the light from the match anywhere in that 
room? The answer is perhaps more complex 
than one might imagine and it is indeed 
possible to create darkness (or not to fully 
extend illumination) through a specifi c 
geometric disposition.

Such paradoxes are mathematical fertile 
ground and present a more aberrant and less 
algorithmic precision than the well-defi ned 
certainty of parametricism; this year’s answer 
to everything.

It seems unfortunate that architects 
are generally so easily satiated with such 
deterministic procedural numericism that 
would not seem to enjoy the full potential 
of mathematical exploration. Mathematics, 
David Bergamini’s excellent popular science 
survey of the subject from the late 1960s,4 
reads like a manual of proto-architectural 
projects, which includes the topological 
problem of the seven bridges of Königsberg 
(neatly solved by Leonhard Euler), conic 
sections, statistical chicanery, Boolean 
logic and any amount of relations between 
number and human endeavour. Another 
remarkable book of mathematics, art 
and life is Connections by self-confessed 
Design Scientist Jay Kappraff,5 which while 
extending detailed mathematical concepts, 
genuinely attempts to connect the essence 
of mathematics to proportion, sculpture, 
music and architecture. Architects seem 
to get unnecessarily stuck on a superfi cial 
mathematics of pattern, which is the kind 
of maths which can be printed, etched or 
cast into some willing substrate or crudely 
abstracted into some planned urban 
metropolis, its edges denoted variously in a 
keenly deployed chamfered-edge building, the 
hard landscaping of angular anti-skate bench/
bollard ensembles and the interminable layouts 
of the non-deciduous anti-personnel shrub. 

The useful generalism and eclecticism 
of the architect should employ the full range 
of mathematical possibilities and engage in 
a more thorough exploration of the world 
of mathematical models. We might ask: 
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How would we inhabit the single-surface 
Klein bottle building and where would the 
environmental envelope begin or end, and 
what about the perceptual problematic of the 
skewed perpectival conundrum of the Ames 
room or Ian Stewart’s paradoxical mirrored 
world? Edwin Abbott’s elegant paean to 
dimensionality, Flatland: A Romance of Many 
Dimensions,6 takes us cumulatively through 
the non-dimensional pointland, lineland, 
flatland and three-dimensional spaceland, 
and Thomas F Banchoff takes us Beyond The 
Third Dimension7 into a world of four, five or 
six mathematical dimensions. 

Autodidact geometer Buckminster 
Fuller explored the platonic solids and 
specifically the icosahedron in his quest 
for doing ‘the most with the least’ in the 
enclosures business, and was spurred on 
by his dissatisfaction with the structurally 
unstable but ubiquitous archetype of the 
cube. Architects and designers should learn 
to enjoy more mathematical delights, which 
might suggest organisational nomenclature 
as well as the visual treat. How about the 
self-similarity of Benoît Mandelbrot’s fractal 
world, so neatly captured in Koch’s snowflake 
and the non-integer growth exponents of the 
Sierpinski gasket. 

Alternatively, why not engage in a thought 
experiment and thoroughly immerse ourselves 

Bruce McLean, Will McLean and Mel Gooding, The 
Pythagorean School, 2000
left: A mathematically imperfect model for a school. The 
drawing was etched onto bronze plate and exhibited as a 
part of the exhibition ‘Bruce McLean, Works 1969–1999’ 
at the Talbot Rice Gallery, Edinburgh, in January 2000.

in the elegant complexity of the Navier–
Stokes equations where the mathematics 
of flows will not discriminate between air, 
water, blood or smoke. The mathematics 
of computational fluid dynamics (CFD) is 
not only scaleable and non-discriminatory 
in its viscous medium; it also produces a 
wonderfully interactive graphic interface 
making visible the not always visible eddies 
and turbulence of fluid dynamics. Similarly, 
the algebraic complexity of finite element 
analysis (FEA) has got a whole lot more 
interesting since it became a visual medium 
with a high-speed turnaround structural-
optimisation rendered immediately in colour-
coded stress. 

And while we go about digitising the 
physical world and its behaviour, we should 
also revisit Craig Reynolds’s work on 
simulating human and animal behaviour, 
notably his ‘Boids’ project from 1986,8 which 
neatly modelled the group flocking and 
schooling behaviour of birds and fish. Or 
what about Karl Sims’s Virtual Creatures,9 
where he developed virtual creatures from 
simple digitally modelled blocks and then 
articulated and animated these forms through 
virtual muscles. These models were then 
placed in virtual analytical environments such 
as a CFD program and given a goal, such as 
swimming or moving towards a light source. 

Test assembly of the Pythagorean School, in South 
Acton, in 1999.
right: The photo features Swiss steel fabricator Simon 
Veglio, artist Bruce McLean and designer Mark Boyce.

These genetic algorithmic (GA) based 
developmental models, gifted with simple 
sensing abilities, evolved behaviours, some of 
which were recognisably zoomorphic 
(animal-type motions) while interestingly 
others were not. 

And how about cybernetician Gordon 
Pask’s Random Number Machine built for the 
office of Cedric Price during the development 
of the Fun Palace project in the early 1960s. 
Cedric Price observed: ‘It is surprisingly 
difficult to randomise with one’s own brain 
– try and think of 45 random numbers … 
randomly.’10 As interesting (in architectural 
history terms) as the hyperbolic paraboloid 
frozen music of the Philips Pavilion 
(Brussels, 1958) might be, it is surely the 
subsequent stochastic and granular synthesis 
compositional experiments of Iannis Xenakis 
that are of greater ‘mathematic’ interest.11 A 
composer of international renown is surely 
how Xenakis is remembered and not as the 
truculent job architect for a trade-sponsored 
Expo goody by Le Corbusier.

Architects might spend less time 
parametrically polishing the proverbial and 
usefully employing the rubric of mathematics 
for the positive production of new 
alternatives, employing simple rule-based 
techniques such as John Horton Conway’s 
cellular automata or the predictive statistical 
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Will McLean, Conic Section Model, 2010
Conic section model showing four different curve types 
from the dissection of a single solid.
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Bruce McLean and Will McLean, Abacus, Dalry 
Primary School, North Ayrshire, 2007
One of the artworks that were specially designed for each 
classroom space of Dalry Primary School, fabricated by 
Simon Veglio.

Gordon Pask, Random Number Machine, c 1963
The Random Number Machine, designed by Gordon 
Pask for the office of Cedric Price, and now housed in the 
Cedric Price Archive, Canadian Centre for Architecture 
(CCA), Montreal.

Will McLean/PAL (Performing Arts Labs), Fibonacci 
Podium, 2008
The Fibonacci Podium, where whoever wins, everyone is 
part of an elegant arithmetic progression.



analysis and algorithmic compilation used to 
predict which queue we choose to join, what 
music we buy and the general evolution of 
our purchasing habits. There is a model from 
the 1970s in London’s Science Museum of 
the UK’s economy rendered in plastic tubes, 
and using water and controllable valves for 
computation and statistical analysis of such 
data as our gross domestic product (GDP). 
With increasingly serious computational 
processing power available to anyone with 
a computer, we might begin to ask more 
pertinent questions as to the nature of what 
the designer does and could do, and spend 
our processing power on causation (new 
possibilities) and not on images of saleable 
iterations and no ideas at all.

Why, as designers, is our interest in 
mathematics strictly limited to its artefacts 
and not its use as a genuinely generative 
tool? I am not specifically talking of GA shape 
optimisation, which in application to turbine 
blade design seems useful, but its application 
to the crudely conceived programmatic 
congruence of a building might be less 
relevant. If in prefabricated architecture it is 
possible, as John Frazer suggested, that we 

Will McLean and Bruce McLean, School as a Rule, 1998
Proposal for a self-measuring linear sculpture at 
Lawthorn Primary School in North Ayrshire.

have too often prefabricated the wrong bit, 
then with mathematics it is possible that we 
continue to under-utilise its potential as a 
developmental tool and continue to employ 
the mathematic product as a mere appliqué 
or numerical coordination system. We can all 
enjoy the sequential niceties of the Fibonacci 
sequence without mindlessly rendering it in 
double-curved steel sections and top-of-the-
line curtain walling.

In November 1979 artists Bruce McLean 
and Paul Richards staged and performed 
The Masterwork,12 a kind of multi-headed 
performance artwork at Riverside Studios in 
London. The Masterwork (programmed as the 
‘definitive work in mediocrity’) was subtitled 
An Award Winning Fishknife and was a 
highly choreographed scabrous tale about an 
architect whose major coup de grâce was 
the development of some stonkingly good 
tableware. Over 30 years later, could we 
retitle a contemporary performance of this 
piece as the award-winning ‘parametrically 
designed’ fishknife? Architects, generally 
gifted with little humour or self-doubt, are 
only too willing to redesign dead ends for 
any number of despicable clients and are 

currently indulging in a kind of procedural 
mathematical cul-de-sac while presumably 
the world awaits another masterwork. 1
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