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Although each of these boats is rather large, from a distance their motion can
be analyzed as if each were a particle.



Kinematics of a Particle

CHAPTER OBJECTIVES

m To introduce the concepts of position, displacement, velocity,
and acceleration.

m To study particle motion along a straight line and represent this
motion graphically.

m To investigate particle motion along a curved path using different
coordinate systems.

m To present an analysis of dependent motion of two particles.

m To examine the principles of relative motion of two particles
using translating axes.

12.1 Introduction

Mechanics is a branch of the physical sciences that is concerned with the
state of rest or motion of bodies subjected to the action of forces.
Engineering mechanics is divided into two areas of study, namely, statics
and dynamics. Statics is concerned with the equilibrium of a body that is
either at rest or moves with constant velocity. Here we will consider
dynamics, which deals with the accelerated motion of a body. The subject
of dynamics will be presented in two parts: kinematics, which treats only
the geometric aspects of the motion, and kinetics, which is the analysis of
the forces causing the motion. To develop these principles, the dynamics
of a particle will be discussed first, followed by topics in rigid-body
dynamics in two and then three dimensions.
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Historically, the principles of dynamics developed when it was
possible to make an accurate measurement of time. Galileo Galilei
(1564-1642) was one of the first major contributors to this field. His
work consisted of experiments using pendulums and falling bodies. The
most significant contributions in dynamics, however, were made by
Isaac Newton (1642-1727), who is noted for his formulation of the
three fundamental laws of motion and the law of universal gravitational
attraction. Shortly after these laws were postulated, important
techniques for their application were developed by Euler, D’Alembert,
Lagrange, and others.

There are many problems in engineering whose solutions require
application of the principles of dynamics. Typically the structural
design of any vehicle, such as an automobile or airplane, requires
consideration of the motion to which it is subjected. This is also true
for many mechanical devices, such as motors, pumps, movable tools,
industrial manipulators, and machinery. Furthermore, predictions of
the motions of artificial satellites, projectiles, and spacecraft are based
on the theory of dynamics. With further advances in technology, there
will be an even greater need for knowing how to apply the principles
of this subject.

Problem Solving. Dynamics is considered to be more involved
than statics since both the forces applied to a body and its motion must
be taken into account. Also, many applications require using calculus,
rather than just algebra and trigonometry. In any case, the most
effective way of learning the principles of dynamics is to solve problems.
To be successful at this, it is necessary to present the work in a logical
and orderly manner as suggested by the following sequence of steps:

1. Read the problem carefully and try to correlate the actual physical
situation with the theory you have studied.

2. Draw any necessary diagrams and tabulate the problem data.
3. Establish a coordinate system and apply the relevant principles,
generally in mathematical form.

4. Solve the necessary equations algebraically as far as practical; then,
use a consistent set of units and complete the solution numerically.
Report the answer with no more significant figures than the accuracy
of the given data.

5. Study the answer using technical judgment and common sense to
determine whether or not it seems reasonable.

6. Once the solution has been completed, review the problem. Try to
think of other ways of obtaining the same solution.

In applying this general procedure, do the work as neatly as possible. Being
neat generally stimulates clear and orderly thinking, and vice versa.
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12.2 Rectilinear Kinematics: Continuous
Motion

We will begin our study of dynamics by discussing the kinematics of a
particle that moves along a rectilinear or straight-line path. Recall that a
particle has a mass but negligible size and shape. Therefore we must limit
application to those objects that have dimensions that are of no
consequence in the analysis of the motion. In most problems, we will be
interested in bodies of finite size, such as rockets, projectiles, or vehicles.
Each of these objects can be considered as a particle, as long as the motion
is characterized by the motion of its mass center and any rotation of the
body is neglected.

Rectilinear Kinematics. Thekinematics of a particle is characterized
by specifying, at any given instant, the particle’s position, velocity, and
acceleration.

Position. The straight-line path of a particle will be defined using a
single coordinate axis s, Fig. 12-1a. The origin O on the path is a fixed
point, and from this point the position coordinate s is used to specify the
location of the particle at any given instant. The magnitude of s is the
distance from O to the particle, usually measured in meters (m) or
feet (ft), and the sense of direction is defined by the algebraic sign on s.
Although the choice is arbitrary, in this case s is positive since the
coordinate axis is positive to the right of the origin. Likewise, it is negative
if the particle is located to the left of O. Realize that position is a vector
quantity since it has both magnitude and direction. Here, however, it is
being represented by the algebraic scalar s since the direction always
remains along the coordinate axis.

Displacement. The displacement of the particle is defined as the
change in its position. For example, if the particle moves from one point
to another, Fig. 1215, the displacement is

As=s"—5

In this case As is positive since the particle’s final position is to the right
of its initial position,i.e.,s" > s. Likewise, if the final position were to the
left of its initial position, As would be negative.

The displacement of a particle is also a vector quantity, and it should be
distinguished from the distance the particle travels. Specifically, the
distance traveled is a positive scalar that represents the total length of
path over which the particle travels.

I
~
O ]
= |
Position
(a)
(0]

QO O
.
s’ |

Displacement
(b)
Fig. 12-1
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Velocity. If the particle moves through a displacement As during the
time interval Az the average velocity of the particle during this time
interval is

_As
?)m.g = Tt

If we take smaller and smaller values of At, the magnitude of As becomes
smaller and smaller. Consequently, the instantaneous velocity is a vector
defined as v = AIimo(As/At), or

fratt

(5) =i (12-1)

Since Atz or dt is always positive, the sign used to define the sense of the
velocity is the same as that of As or ds. For example, if the particle is
moving to the right, Fig. 12-1¢, the velocity is positive; whereas if it is
moving to the left, the velocity is negative. (This is emphasized here by
the arrow written at the left of Eq. 12-1.) The magnitude of the velocity
is known as the speed, and it is generally expressed in units of m/s or ft/s.

Occasionally, the term “average speed” is used. The average speed is
always a positive scalar and is defined as the total distance traveled by a
particle, s7, divided by the elapsed time Ar; i.e.,

ST

(‘vsp)a\'g . E

For example, the particle in Fig. 12-1d travels along the path of length s,
in time Az, soits average speed is (vy,),,, = s7/At, butits average velocity
is v,y = —As/At.

Average velocity and
Average speed

(d)
Fig. 12-1 (cont.)
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Acceleration. Provided the velocity of the particle is known at
two points, the average acceleration of the particle during the time
interval Aris defined as

_Av
Gave =3

Here Av represents the difference in the velocity during the time interval
At ie, Av = v' — v, Fig. 12-1e.

The instantaneous acceleration at time t is a vector that is found by
taking smaller and smaller values of Ar and corresponding smaller and
smaller values of Av, so thata = Al,ig,l()(Av/At). or

(5) a== (12-2)

Substituting Eq. 12—1 into this result, we can also write

-

o

%)

() Y

Both the average and instantaneous acceleration can be either positive or
negative. In particular, when the particle is slowing down, or its speed is
decreasing, the particle is said to be decelerating. In this case, v’ in Fig. 12-1f
is less than v, and so Av = »" — v will be negative. Consequently, a will also
be negative, and therefore it will act to the left, in the opposite sense to v.
Also, notice that if the particle is originally at rest, then it can have an
acceleration if a moment later it has a velocity v'; and, if the velocity is
constant, then the acceleration is zero since Av = v — v = 0. Units
commonly used to express the magnitude of acceleration are m/s” or ft/s”.

Finally, an important differential relation involving the displacement,
velocity, and acceleration along the path may be obtained by eliminating
the time differential dr between Egs. 12-1 and 12-2, which gives

5) ads = vdv| (12-3)

Although we have now produced three important kinematic
equations, realize that the above equation is not independent of
Egs. 12-1 and 12-2.

Acceleration

(e)

—
| B E
~ N
ol PR
v v

Deceleration
()
Fig. 12-1 (cont.)
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Constant Acceleration, @ = a,. When the acceleration is
constant, each of the three kinematic equations a. = dv/dt, v = ds/dt,
and a.ds = v dv can be integrated to obtain formulas that relate a,., v, s,
and .

Velocity as a Function of Time. Integrate a, = dv/dt, assuming
that initially v = vy when r = 0.

v t
/dv — /ac dt
(I J0

B = Dy ar (70
Constant Acceleration

(5) (12-4)

Position as a Function of Time. Integratev = ds/dt = v, + ad,
assuming that initially s = sq when t = 0.

5 !
/ds - /(vo + a.t) dt
So 0

s=5+ vt + %act2
Constant Acceleration

(5) (12-5)

Velocity as a Function of Position. Either solve for ¢ in
Eq. 12-4 and substitute into Eq. 12-5, or integrate v dv = a, ds, assuming
that initially v = vyats = ;.

v s
/ vdv = / a.ds
v So

0

v? = v§ + 2a.(s — s;)

(5) (12-6)

Constant Acceleration

The algebraic signs of s, vy, and a,, used in the above three equations,
are determined from the positive direction of the s axis as indicated by
the arrow written at the left of each equation. Remember that these
equations are useful only when the acceleration is constant and when
t = 0,5 = 55, v = vy. A typical example of constant accelerated motion
occurs when a body falls freely toward the earth. If air resistance is
neglected and the distance of fall is short, then the downward acceleration
of the body when it is close to the earth is constant and approximately
9.81 m/s* or 32.2 ft/s*The proof of this is given in Example 13.2.
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¢ Dynamics is concerned with bodies that have accelerated motion.

» Kinematics is a study of the geometry of the motion.
¢ Kinetics is a study of the forces that cause the motion.
¢ Rectilinear kinematics refers to straight-line motion.
o Speed refers to the magnitude of velocity.

» Average speed is the total distance traveled divided by the total
time. This is different from the average velocity, which is the
displacement divided by the time.

» A particle that is slowing down is decelerating.
» A particle can have an acceleration and yet have zero velocity.

e The relationship ads = vdv is derived from a = dv/dt and
v = ds/dt, by eliminating dt.

During the time this rocket undergoes rectilinear
motion, its altitude as a function of time can be
measured and expressed as s = s(1). Its velocity
can then be found using v = ds/dt, and its
acceleration can be determined from a = dv/dr.

Procedure for Analysis

Coordinate System.
e Establish a position coordinate s along the path and specify its fixed origin and positive direction.
e Since motion is along a straight line, the vector quantities position, velocity, and acceleration can be

represented as algebraic scalars. For analytical work the sense of s, v, and a is then defined by their
algebraic signs.

e The positive sense for each of these scalars can be indicated by an arrow shown alongside each kinematic
equation as it is applied.

Kinematic Equations.

e If a relation is known between any two of the four variables a, v, s, and ¢, then a third variable can be

obtained by using one of the kinematic equations, a = dv/dt, v = ds/dt or ads = v dv, since each
equation relates all three variables.*

e Whenever integration is performed, it is important that the position and velocity be known at a given
instant in order to evaluate either the constant of integration if an indefinite integral is used, or the limits
of integration if a definite integral is used.

e Remember that Egs. 12-4 through 12-6 have only limited use. These equations apply only when the
acceleration is constant and the initial conditions are s = syand v = vy when s = 0.

*Some standard differentiation and integration formulas are given in Appendix A.
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n EXAMPLE 1

The car on the left in the photo and in Fig. 12-2 moves in a straight
line such that for a short time its velocity is defined by
v = (31> + 2t) ft/s, where ¢ is in seconds. Determine its position and
acceleration when t = 3s. Whenr = 0,5 = 0.

| av
5 —_—

Fig. 12-2

SOLUTION

Coordinate System. The position coordinate extends from the fixed
origin O to the car, positive to the right.

Position. Since v = f(t), the car’s position can be determined from
v = ds/dt, since this equation relates v, s, and t. Noting that s = 0
when ¢ = 0, we have*

ds ~
(5) v:E=(3t'+2t)
s I
/ ds = / (3% + 2ndt
0 0
s !
s| =9+ 7
0 0
s=£f+£
Whent = 35,
s = (3 + (3)* = 36ft Ans.

Acceleration. Since v = f(t), the acceleration is determined from
a = dv/dt, since this equation relates a, v, and .

(B) a=%=-{%(3t2+2t)
=6t+2
Whent = 35,
a=6(3)+2=20ft/s*—> Ans.

NOTE: The formulas for constant acceleration cannot be used to solve
this problem, because the acceleration is a function of time.

*The same result can be obtained by evaluating a constant of integration C rather

than using definite limits on the integral. For example, integrating ds = (31> + 2t)dt

yields s = £ + ¢* + C. Using the condition that at r = 0, s = 0, then C = 0.
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EXAMPLE | 12.2 n

A small projectile is fired vertically downward into a fluid medium with
an initial velocity of 60 m/s. Due to the drag resistance of the fluid the
projectile experiences a deceleration of a = (—0.4v%) m/s”, where v is in
m/s. Determine the projectile’s velocity and position 4 s after it is fired.

SOLUTION

Coordinate System. Since the motion is downward, the position
coordinate is positive downward, with origin located at O, Fig. 12-3.

Velocity. Here a = flv) and so we must determine the velocity as a
function of time using « = dv/dt,since this equation relates v, a,and 1.
(Why not use v = vy + a?) Separating the variables and integrating,
with v = 60 m/s when ¢ = 0, yields

dv
dt

/ dv = /dt
60 m/s —0.4v 0
Ly
-04\ -2/ |
L[L _ ] _,
08[v*  (60)°
1 -1/2
v = {[(60)2 + O.St] }m/s

Here the positive root is taken, since the projectile will continue to
move downward. When r = 4 s,

v = 0559m/s| Ans.

+1) a=—=—04" Fig. 12-3

Position. Knowing v = f(t), we can obtain the projectile’s position
from v = ds/dt, since this equation relates s, v, and . Using the initial
condition s = 0, when 7 = 0, we have

ds 1 e
(+1) g S [(60)2 - 0.8t]
s 1 1 -1/2
/ds=/[ ,,+0.81] dt
0 o L(60)
2 1 1/2]1
= + 0.

* 0.8[(60)2 08’] s

o= T
04 L0y 60

s =443 m Ans.

Whent = 45,
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H EXAMPLE [12:3

During a test a rocket travels upward at 75 m/s, and when it is 40 m
from the ground its engine fails. Determine the maximum height sp
reached by the rocket and its speed just before it hits the ground.
While in motion the rocket is subjected to a constant downward
acceleration of 9.81 m/s* due to gravity. Neglect the effect of air
resistance.

SOLUTION

Coordinate System. The origin O for the position coordinate s is
taken at ground level with positive upward, Fig. 12—4.

Maximum Height. Since the rocket is traveling upward,
vy = +75m/s whens = 0. At the maximum height s = sz the velocity

3= 4 vg = 0. For the entire motion, the acceleration is a. = —9.81 m/s’
ﬁ,_\B—- (negative since it acts in the opposite sense to positive velocity or
Ly positive displacement). Since a, is constant the rocket’s position may
be related to its velocity at the two points A and B on the path by using
Eq. 12-6, namely,
(+T) sz = v%l + zac(sB - SA)
0 = (75m/s)* + 2(—9.81 m/s*)(sy — 40 m)
52 sg = 327 m Ans.
Velocity. To obtain the velocity of the rocket just before it hits the
ground, we can apply Eq. 12-6 between points B and C, Fig. 12-4.
vy =75m /st
] A& (+T) v%,’ = UZB + 2a.(s¢c — sp)
=0+ 2(-9.81 m/s’)(0 — 327 m)
dajm Al 0T ve = —80.1m/s = 80.1 m/s | Ans.
g 5
C__J0 The negative root was chosen since the rocket is moving downward.
Similarly, Eq. 12-6 may also be applied between points A and C,i.e.,
Fig. 124
+h Ve = v + 2a(sc — s4)
= (75m/s)* + 2(—9.81 m/s*)(0 — 40 m)
ve = —80.1m/s = 80.1m/s | Ans.

NOTE: It should be realized that the rocket is subjected to a deceleration
from A to B of 9.81 m/s* and then from B to C it is accelerated at this
rate. Furthermore, even though the rocket momentarily comes to rest
at B (vg = 0) the acceleration at B is still 9.81 m/s> downward!
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EXAMPLE [12:4

A metallic particle is subjected to the influence of a magnetic field as
it travels downward through a fluid that extends from plate A to
plate B, Fig. 12-5.1f the particle is released from rest at the midpoint C,
s = 100 mm, and the acceleration is a = (4s) m /sz, where s is in
meters, determine the velocity of the particle when it reaches plate B,
s = 200 mm, and the time it takes to travel from C to B.

SOLUTION

Coordinate System. Asshown in Fig. 12-5, s is positive downward,
measured from plate A.

Velocity. Since a = f(s), the velocity as a function of position can
be obtained by using v dv = a ds. Realizing that v = O at s = 0.1 m,

we have 7 Tl i
_ FEvrrernn ' 100 mm
+) vdv = ads AERRRRARNRAR
v s LU giddt!! 200
/vdv=/ 4s ds ::Hll‘(l'll: i
3T AR
‘ 3 OI:‘ I:‘;111&|||
1 4. UL |ttt okl
2 0 2 01m 1 )
v = 2(s* = 0.01)2m/s (1)
Ats = 200 mm = 0.2 m,
vg = 0.346 m/s = 346 mm/s | Ans.

The positive root is chosen since the particle is traveling downward,
i.e.,in the +s direction.

Time. The time for the particle to travel from C to B can be obtained
using v = ds/dt and Eq. 1, where s = 0.1 m when ¢ = 0. From
Appendix A,

(+1) ds = vdt
2(s2 = 0.01)'2dr

5 ds 7
f @ 00P / 24
01(s” — 0.01) 0

In(Vs* — 001 +5) s

=2t
0.1 0

In( Vs> = 001 +5) + 2303 = 2
Ats = 02m,
In( V/(0.2)> — 0.01 + 0.2) + 2.303

t= 5 = 0.658s Ans.

NOTE: The formulas for constant acceleration cannot be used here
because the acceleration changes with position, i.e.,a = 4s.

1
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EXAMPLE | 12.5

A particle moves along a horizontal path with a velocity of
v = (3 — 6r)m/s, where ¢ is the time in seconds. If it is initially
located at the origin O, determine the distance traveled in 3.5 s, and the
particle’s average velocity and average speed during the time interval.

SOLUTION
s=-40m| s5=6.125m Coordinate System. Here positive motion is to the right, measured
p—— from the origin O, Fig. 12-6a.
/- v o ' Distance Traveled. Since v = f(r), the position as a function of time
t22g t=0s t=35s may be found by integrating v = ds/dt witht = 0,5 = 0.
(a) (5) ds = vt
= (37 - 60 dt
s !
/ds = ‘/(3r2 — 61) dt

0 0
s=( =3m (1)
v (m/s) In order to determine the distance traveled in 3.5 s, it is necessary
v =36t to investigate the path of motion. If we consider a graph of the
i@ velocity function, Fig. 12-6b, then it reveals that for 0 < 7 < 2 s the
(0,0) (25.0) velocity is negative, which means the particle is traveling to the left,

and for 7 > 2s the velocity is positive, and hence the particle is
traveling to the right. Also, note that ¥ = 0 at + = 2 s. The particle’s

(1's, =3 m/s) position when r = 0, r = 25, and + = 3.5s can be determined from
(b) Eq. 1. This yields
Fig.12—6 SI,=0= 0 S|,=-_)s= —4.0m S|,=3.55= 6.125 m

The path is shown in Fig. 12-6a. Hence, the distance traveled in 3.5 s is
sp =40+ 4.0 + 6.125 = 14.125m = 14.1m Ans.

Velocity. The displacement fromt = 0tor = 3.5s1is
As = s|,—35s = §|,—¢ = 6.125m — 0 = 6.125m
and so the average velocity is
Vwg = 3 T 3550 1.75m/s — Ans.

The average speed is defined in terms of the distance traveled sy. This
positive scalar is

(vsp)a\/g =—=—= 4.04 m/S Ans.

NOTE: In this problem, the accelerationisa = dv/dt = (6t — 6) m/s”,
which is not constant.
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It is highly suggested that you test yourself on the solutions to these
examples, by covering them over and then trying to think about which
equations of kinematics must be used and how they are applied in
order to determine the unknowns. Then before solving any of the
problems, try and solve some of the Fundamental Problems given
below. The solutions and answers to all these problems are given in the
back of the book. Doing this throughout the book will help immensely
in understanding how to apply the theory, and thereby develop your

problem-solving skills.

. FUNDAMENTAL PROBLEMS

F12-1. [Initially, the car travels along a straight road with a
speed of 35 m/s. If the brakes are applied and the speed of
the car is reduced to 10 m/s in 15 s, determine the constant
deceleration of the car.

F12-1

F12-2. A ball is thrown vertically upward with a speed of
15 m/s. Determine the time of flight when it returns to its
original position.

T °
F12-2

F12-3. A particle travels along a straight line with a
velocity of v = (4t — 3)m/s, where t is in seconds.
Determine the position of the particle when 1= 4s.
s = Owhent = 0.

F12-4. A particle travels along a straight line with a speed
v = (0.5 — 8 m/s, where 7 is in seconds. Determine the
acceleration of the particle whenr = 2.

F12-5. The position of the particle is given by
s = (2F* — 8 + 6) m, where ¢ is in seconds. Determine the
time when the velocity of the particle is zero, and the total
distance traveled by the particle when ¢t = 3's.

F12-5

F12-6. A particle travels along a straight line with an
acceleration of @ = (10 = 0.2s) m/s’, where s is measured
in meters. Determine the velocity of the particle when
s =10mifv = Sm/sats = 0.

——
>

F12-6

F12-7. A particle moves along a straight line such that its
acceleration is a = (4 — 2)m/s%, where ¢ is in seconds.
When ¢ = 0, the particle is located 2 m to the left of the
origin, and when 1 = 25, it is 20 m to the left of the origin.
Determine the position of the particle when t = 4 s.

F12-8. A particle travels along a straight line with a
velocity of » = (20 — 0.055%) m/s, where s is in meters.
Determine the acceleration of the particle at s = 15 m.
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o] [pRostems

12-1. A baseball is thrown downward from a 50-ft tower
with an initial speed of 18 ft/s. Determine the speed at
which it hits the ground and the time of travel.

12-2. When a train is traveling along a straight track at
2 m/s, it begins to accelerate at a = (60 » %) m/s*, where v
is in m/s. Determine its velocity » and the position 3 s after
the acceleration.

Prob. 12 -2

12-3. From approximately what floor of a building must a
car be dropped from an at-rest position so that it reaches a
speed of 80.7 ft/s (55 mi/h) when it hits the ground? Each
floor is 12 ft higher than the one below it. (Note: You may
want to remember this when traveling 55 mi/h.)

*12-4. Traveling with an initial speed of 70 km/h, a car
accelerates at 6000 km/h? along a straight road. How long
will it take to reach a speed of 120 km /h? Also, through
what distance does the car travel during this time?

12-5. A bus starts from rest with a constant acceleration
of 1 m/s’. Determine the time required for it to attain a
speed of 25 m /s and the distance traveled.

12-6. A stone A is dropped from rest down a well, and in
1 s another stone B is dropped from rest. Determine the
distance between the stones another second later.

12-7. A bicyclist starts from rest and after traveling along
a straight path a distance of 20 m reaches a speed of
30 km/h. Determine his acceleration if it is constant. Also,
how long does it take to reach the speed of 30 km /h?

®4]12-8. A particle moves along a straight line with an
acceleration of a = 5/(3s'? + 5% m/s%, where s is in
meters. Determine the particle’s velocity when s = 2 m, if it
starts from rest when s = 1 m. Use a numerical method to
evaluate the integral.

12-9. [Ifit takes 3 s for a ball to strike the ground when it is
released from rest, determine the height in meters of the
building from which it was released. Also, what is the
velocity of the ball when it strikes the ground?

12-10. The position of a particle along a straight line is
given by s = (1.5 — 13.5:> + 22,51 ft, where ¢ is in
seconds. Determine the position of the particle whent=6s
and the total distance it travels during the 6-s time interval.
Hint: Plot the path to determine the total distance traveled.

12-11. If a particle has an initial velocity of v, = 12 ft/s to
the right, at s, = 0, determine its position when r = 10, if
a = 2 ft/s” to the left.

#12-12. Determine the time required for a car to travel
I km along a road if the car starts from rest, reaches a
maximum speed at some intermediate point, and then stops
at the end of the road. The car can accelerate at 1.5 m/s>
and decelerate at 2 m/s.

12-13. Tests reveal that a normal driver takes about 0.75 s
before he or she can react to a situation to avoid a collision.
It takes about 3 s for a driver having 0.1% alcohol in his
system to do the same. If such drivers are traveling on a
straight road at 30 mph (44 ft/s) and their cars can
decelerate at 2 ft/s”, determine the shortest stopping
distance d for each from the moment they see the
pedestrians. Moral: If you must drink, please don’t drive!

v, = 44 ft/s
ﬁ
—
Prob. 12-13
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12-14. A caris to be hoisted by elevator to the fourth floor
of a parking garage, which is 48 ft above the ground. If the
elevator can accelerate at 0.6 ft/s, decelerate at 0.3 ft/s’,
and reach a maximum speed of 8 ft /s, determine the shortest
time to make the lift, starting from rest and ending at rest.

12-15. A train starts from rest at station A and accelerates
at 0.5 m/s? for 60 s. Afterwards it travels with a constant
velocity for 15 min. It then decelerates at 1 m/s” until it is
brought to rest at station B. Determine the distance between
the stations.

*12-16. A particle travels along a straight line such that
in 2 s it moves from an initial position s, = +0.5m to a
position sz = —1.5m. Then in another 4 s it moves from s,
to sc = +2.5m. Determine the particle’s average velocity
and average speed during the 6-s time interval.

12-17. The acceleration of a particle as it moves along a
straight line is given by a = (2t — 1) m/s? where ¢ is in
seconds. If s = 1 m and » = 2m/s when 1 = 0, determine
the particle’s velocity and position when 1 = 65s. Also,
determine the total distance the particle travels during this
time period.

12-18. A freight train travels at » = 60(1 — ¢ ) ft/s,
where ¢ is the elapsed time in seconds. Determine the
distance traveled in three seconds, and the acceleration at
this time.

Prob. 12-18

12-19. A particle travels to the right along a straight line
with a velocity v = [5/(4 + s)] m/s, where s is in meters.
Determine its position when 7 = 6 sif s = Sm when 7 = 0.

*12-20. The velocity of a particle traveling along a straight
line is v = (3% — 61) ft/s, where ¢ is in seconds. If s = 4 ft
when ¢ =0, determine the position of the particle when t=4s.
What is the total distance traveled during the time interval
t=0to t=45s? Also, what is the acceleration when (=2 s?

12-21. If the effects of atmospheric resistance are
accounted for, a freely falling body has an acceleration
defined by the equation a = 9.81[1 — »? (10 %] m/s%,
where v is in m/s and the positive direction is downward. If
the body is released from rest at a very high altitude,
determine (a) the velocity when ¢ = 55, and (b) the body’s
terminal or maximum attainable velocity (as r— =).

12-22. The position of a particle on a straight line is given
bys = (r* — 9% + 151) ft, where ¢is in seconds. Determine
the position of the particle when 1 = 6s and the total
distance it travels during the 6-s time interval. Hint: Plot the
path to determine the total distance traveled.

12-23. Two particles A and B start from rest at the origin
s =0 and move along a straight line such that
a, = (6t — 3)ft/s*and ay = (12t> — 8) ft/s’, where ¢ is in
seconds. Determine the distance between them when
= 4 s and the total distance each has traveledinr = 4 s.

*12-24. A particle is moving along a straight line such
that its velocity is defined as » = (—4s?) m/s, where s is in
meters. If s =2 m when ¢ = 0, determine the velocity and
acceleration as functions of time.

12-25. A sphere is fired downwards into a medium with an
initial speed of 27 m/s. If it experiences a deceleration of
a = (—61) m/s* where tis in seconds, determine the distance
traveled before it stops.

12-26. When two cars A and B are next to one another,
they are traveling in the same direction with speeds v, and
v, respectively. If B maintains its constant speed, while A
begins to decelerate at a,, determine the distance d between
the cars at the instant A stops.

A
| -
I

d {

Prob. 12-26
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12-27. A particle is moving along a straight line such that
when it is at the origin it has a velocity of 4 m/s. If it begins
to decelerate at the rate of = (—1.52 %) m/s%, where v is
in m/s, determine the distance it travels before it stops.

*12-28. A particle travels to the right along a straight line
with a velocity v = [5/(4 + s)] m/s, where s is in meters.
Determine its deceleration when s = 2 m.

12-29. A particle moves along a straight line with an
acceleration a=2v"* m/s*,where visinm/s.If s=0,2=4m/s
when 1= 0, determine the time for the particle to achieve a
velocity of 20 m/s. Also, find the displacement of particle
whent=2s.

12-30. Asa train accelerates uniformly it passes successive
kilometer marks while traveling at velocities of 2 m/s and
then 10 m/s. Determine the train’s velocity when it passes
the next kilometer mark and the time it takes to travel the
2-km distance.

12-31. The acceleration of a particle along a straight line
is defined by a = (2t — 9) m/s, where ¢ is in seconds. At
t=20,5s= 1mand v = 10m/s. When ¢t = 9s, determine
(a) the particle’s position, (b) the total distance traveled,
and (c) the velocity.

*12-32. The acceleration of a particle traveling along a
. - I, :
straight line is a = 2 s m/s?, where s is in meters. If v = 0,

s=1m when =0, determine the particle’s velocity at s =2 m.

12-33. At = 0 bullet A is fired vertically with an initial
(muzzle) velocity of 450 m/s.When r = 3 s, bullet B is fired
upward with a muzzle velocity of 600 m/s. Determine the
time ¢, after A is fired, as to when bullet B passes bullet A.
At what altitude does this occur?

12-34. A boy throws a ball straight up from the top of a
12-m high tower. If the ball falls past him 0.75 s later,
determine the velocity at which it was thrown, the velocity
of the ball when it strikes the ground, and the time of flight.

12-35. When a particle falls through the air, its initial
acceleration @ = g diminishes until it is zero, and thereafter
it falls at a constant or terminal velocity v . If this variation
of the acceleration can be expressed asa = (g/v*)(v% — v?),
determine the time needed for the velocity to become
v = v;/2. Initially the particle falls from rest.

*12-36. A particle is moving with a velocity of v, when
s = 0 and ¢ = 0. If it is subjected to a deceleration of
a = —kv’, where k is a constant, determine its velocity and
position as functions of time.

12-37. As a body is projected to a high altitude above the
earth’s surface, the variation of the acceleration of gravity
with respect to altitude y must be taken into account.
Neglecting air resistance, this acceleration is determined
from the formula a = —g,[R*/(R + y)*], where g, is the
constant gravitational acceleration at sea level, R is the
radius of the earth, and the positive direction is measured
upward. If gy = 9.81 m/s”> and R = 6356 km, determine the
minimum initial velocity (escape velocity) at which a
projectile should be shot vertically from the earth’s surface
so that it does not fall back to the earth. Hint: This requires
thatv = Qasy — «.

12-38. Accounting for the variation of gravitational
acceleration a with respect to altitude y (see Prob. 12-37).
derive an equation that relates the velocity of a freely falling
particle to its altitude. Assume that the particle is released
from rest at an altitude y, from the earth’s surface. With
what velocity does the particle strike the earth if it is
released from rest at an altitude y, = 500 km? Use the
numerical data in Prob. 12-37.
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s

12.3 Rectilinear Kinematics: Erratic i ot H

. 0 ="4fl ¢ = s

Motion T
[ Tde ey U3 = dr|

When a particle has erratic or changing motion then its position, velocity, [
and acceleration cannot be described by a single continuous mathematical I:' i
function along the entire path. Instead, a series of functions will be [ 5 53
required to specify the motion at different intervals. For this reason, it is
convenient to represent the motion as a graph. If a graph of the motion o 0 s r !
that relates any two of the variables s,, a, t can be drawn, then this graph @)

can be used to construct subsequent graphs relating two other variables
since the variables are related by the differential relationships v = ds/dt,
a = dv/dt, or ads = v dv. Several situations occur frequently.

The s-t, v—t, and a-t Graphs. To construct the v—t graph given
the s— graph, Fig. 12-7a, the equation v = ds/dt should be used, since it
relates the variables s and ¢ to ». This equation states that

S
dt §
slopeof .
s—t graph velocity
Fig. 12-7
For example, by measuring the slope on the s— graph when t = ¢, the
velocity is »,, which is plotted in Fig. 12-7b. The v—t graph can be v
constructed by plotting this and other values at each instant. _dv _dv
% = drlr =094 dl|fz

The a-t graph can be constructed from the v—¢ graph in a similar \

. . _dv
manner, Fig. 12-8, since | =%‘f| 4 /HB= dl|t;

dv
=
dt
slope of .
= acceleration
v—t graph t

Examples of various measurements are shown in Fig. 12-8a and plotted
in Fig. 12-8b.
If the s—r curve for each interval of motion can be expressed by a a
mathematical function s = s(7), then the equation of the v—t graph for
the same interval can be obtained by differentiating this function with

respect to time since v = ds/dt. Likewise, the equation of the a—t graph . -
for the same interval can be determined by differentiating v = v(7) since 2 = . pA

a = dv/dr.Since differentiation reduces a polynomial of degree n to that o i 0 5!
of degree n — 1, then if the s—¢ graph is parabolic (a second-degree curve), ®)

the v—r graph will be a sloping line (a first-degree curve), and the a—¢

graph will be a constant or a horizontal line (a zero-degree curve). Fig. 12-8
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(b)
Fig. 12-9

(b)
Fig. 12-10

If the a—r graph is given, Fig. 12-9a, the v—t graph may be constructed
using a = dv/dt, written as

Av = /adr

change in _ area under

velocity a—t graph

Hence, to construct the v—t graph, we begin with the particle’s initial
velocity vy and then add to this small increments of area (Av) determined
from the a-t graph. In this manner successive points, v, = v, + Av, etc.,
for the v—r graph are determined, Fig. 12-9b. Notice that an algebraic
addition of the area increments of the a—t graph is necessary, since areas
lying above the ¢ axis correspond to an increase in » (“positive” area),
whereas those lying below the axis indicate a decrease in v (“negative”
area).

Similarly,if the v—r graph is given, Fig. 12-10a, it is possible to determine
the s— graph using v = ds/dt, written as

As = /vdt

area under

displacement = v—t graph

In the same manner as stated above, we begin with the particle’s initial
position s, and add (algebraically) to this small area increments As
determined from the vt graph, Fig. 12-105.

If segments of the a—r graph can be described by a series of equations,
then each of these equations can be integrated to yield equations
describing the corresponding segments of the v—t graph. In a similar
manner, the s—¢ graph can be obtained by integrating the equations
which describe the segments of the v—¢ graph. As a result, if the a—¢
graph is linear (a first-degree curve), integration will yield a v—r graph
that is parabolic (a second-degree curve) and an s— graph that is cubic
(third-degree curve).
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The v-s and a-s Graphs. If the a-s graph can be constructed,
then points on the v-s graph can be determined by using v dv = a ds.
Integrating this equation between the limits v = vyats = syand v = v,
at s = s;, we have,

- v)) = / ads
S

0
area under
a-s graph

Therefore, if the red area in Fig. 12-11a is determined, and the initial
velocity v, at s, =0 is known, then v, = (2[%ads + v§)'?
Fig. 12-11b. Successive points on the v—s graph can be constructed in this
manner.

If the v—s graph is known, the acceleration a at any position s can be
determined using a ds = v dv, written as

- (%)
a ds

velocity times
acceleration = slope of
v—s graph

Thus, at any point (s, v) in Fig. 12-12a, the slope dv/ds of the v-s graph is
measured. Then with v and dv/ds known, the value of a can be calculated,
Fig. 12-12b.

The v-s graph can also be constructed from the a—s graph, or vice
versa, by approximating the known graph in various intervals with
mathematical functions, v = fis) ora = g(s), and then using a ds = v dv
to obtain the other graph.

a H

--L)]a ds = é—(v,z )

ap

S

(a)

vy

Yo

51
(b)
Fig. 12-11

%SQ\/

v

vy

—s—
(a)

a = v(dv/ds)

—s—
(b)
Fig. 12-12
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EXAMPLE [12:6

A bicycle moves along a straight road such that its position is described
by the graph shown in Fig. 12-13a. Construct the v—t and a— graphs
for0 =t = 30s.
s (ft)
50 e 10
s =20t - 100
Si=F
100 }—
10 30 '©
(a)
v (£/5) SOLUTION
v-t Graph. Since v = ds/dt, the v—t graph can be determined by
o differentiating the equations defining the s—¢ graph, Fig. 12-13a. We have
'3 v=20
= { 0=1<10s; s = (Hft v=$=(2t)ft/s
ds
10s <= 30s; s = (20t — 100) ft v=;=20ft/s
t(s)
10 30 The results are plotted in Fig. 12-13b. We can also obtain specific
values of v by measuring the slope of the s— graph at a given instant.
(b) For example, at 1 = 20 s, the slope of the s—¢ graph is determined from
the straight line from 10 s to 30 s, 1i.e.,
As 500 ft — 100 ft
s v T e =10s | 0/®
a (ft/s") a-t Graph. Since a = dv/dt, the a-t graph can be determined by
differentiating the equations defining the lines of the vt graph.
This yields
2 dv 2
0=t<10s; v = 2nft/s a=;=2fl/s‘
10 <t =30s; v = 20ft/s a=d—1:=0
t
10 30 ) The results are plotted in Fig. 12-13c.
(©) NOTE: Show that @ = 2 ft/s* when ¢ = 5 s by measuring the slope of
Fig. 12-13 the v-r graph.




12.3  RECTILINEAR KINEMATICS: ERRATIC MOTION 23

EXAMPLE |H2:7 u

The car in Fig. 12-144 starts from rest and travels along a straight a(m/s)
track such that it accelerates at 10 m/s” for 10 s, and then decelerates ﬁ
at 2m/s% Draw the v-r and s—¢ graphs and determine the time ¢’
needed to stop the car. How far has the car traveled? 10
SOLUTION ,
v-t Graph. Since dv = adi, the v-t graph is determined by ' ¢
integrating the straight-line segments of the a-t graph. Using the 0 7B | t(s)
initial condition v = 0 when 1 = 0, we have -2
v i
0=r<10s; a=(10)m/s% fdv = /lOdt, v = 10t (a)
0 0

When = 10s, » = 10(10) = 100 m/s. Using this as the initial
condition for the next time period, we have

v t
10s<t=t5a= (-2 m/sz;/ dv = / =2dt,v = (=2t + 120) m/s

100 m/s 10s
When ¢ = 1" we require v = 0. This yields, Fig. 12-14b, v (m/s)

t"=60s Ans. 7= 10
A more direct solution for ' is possible by realizing that the area Sl =20+ 120
under the a— graph is equal to the change in the car’s velocity. We
require Av = 0 = A + A,, Fig. 12-144. Thus

0 = 10m/s*(10s) + (—2m/s)(t" — 10s)
" =60s Ans. (s

: . . 10 t=60
s-t Graph. Since ds = vdr, integrating the equations of the v—¢

graph yields the corresponding equations of the s—¢ graph. Using the (b)
initial condition s = 0 when t = 0, we have

5 I3
0=t=10s; v = (10)m/s; /ds= /lOtdt, s = (5)m
0 0
When = 10s, s = 5(10)> = 500 m. Using this initial condition,
4 {
10s=¢t=60s;v = (-2t + 120)m/s;/ ds = / (=2t + 120) dt
I

500 m 0s s (m)
s — 500 = —F + 120 — [—(10)> + 120(10)]

s = (—f + 1201 — 600)m 000
When t' = 60 s, the position is S/= 5¢
= — 2 — = ; 500 —(—
5= (60" + 120(60) ~ 600 = 3000m Ans. v, NPT
The s—t graph is shown in Fig. 12-14c.
{
NOTE: A direct solution for s is possible when " = 60 s, since the 10 60 ®)
triangular area under the v-r graph would yield the displacement (©)
As = s — 0froms = 0tot" = 60s. Hence,
Fig. 12-14

As = 3(60 s)(100 m/s) = 3000 m Ans.
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EXAMPLE [12.8

v (ft/s)
=025 +10
50 v =50
10
200 400

(a)

(b)
Fig. 12-15

s (ft)

s (ft)

The v—s graph describing the motion of a motorcycle is shown in
Fig. 12-15a. Construct the a—s graph of the motion and determine the
time needed for the motorcycle to reach the position s = 400 ft.

SOLUTION

a-s Graph. Since the equations for segments of the v—s graph are
given, the a—s graph can be determined using a ds = v dv.

0=s < 200ft v = (0.2s + 10) ft/s

d d
a= v‘—v = (0.2s + 10)—(0.2s + 10) = 0.04s + 2
ds ds

200 ft < s = 400 ft; v = 50 ft/s

dv d
= vds = (SO)dS(SO) =0

The results are plotted in Fig. 12-15b.

Time. The time can be obtained using the v—s graph and v = ds/dt,
because this equation relates v, s, and t. For the first segment of
motion, s = 0 when t = 0, so

ds

ds
=s5< ; = (0.2s + S3 =— = —
0 =5 < 200ft v = (025 + 10) ft/s dt = 525 + 10

t s
/dr _ / ds
0 0 025 + 10
t=(35In02s + 10) = 5In10)s

At s = 200 ft, t = 51n[0.2(200) + 10] — 51n 10 = 8.05 s. Therefore,
using these initial conditions for the second segment of motion,
200 ft < s = 400 ft; v = 50 ft/s; dr=£=£

v 50

! s
d.
/ dr=/ £,
805s 2()()m50

) 5
-— 1 =—_; — _+ d
t — 8.05 %0 4; t (50 405)3
Therefore, at s = 400 ft,

400
t= 5 + 405 =120s Ans.

NOTE: The graphical results can be checked in part by calculating slopes.
For example, at s = 0, a = v(dv/ds) = 10(50 — 10)/200 = 2 m/s”.
Also, the results can be checked in part by inspection. The v-s graph
indicates the initial increase in velocity (acceleration) followed by
constant velocity (a = 0).




F12-9. The particle travels along a straight track such that
its position is described by the s—t graph. Construct the v—¢
graph for the same time interval.

s (m)

108 4

s=057¢

+ t(s)
6 8 10

F12-9
F12-10. A van travels along a straight road with a velocity
described by the graph. Construct the s—t and a—t graphs
during the same period. Take s = 0 when 7 = 0.

v (ft/s)

="

t t(s)
20

F12-10

F12-11. A bicycle travels along a straight road where its
velocity is described by the v—s graph. Construct the a—s
graph for the same time interval.

v(m/s)

v=025s

10

40 s (m)

F12-11
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. FUNDAMENTAL PROBLEMS

F12-12. The sports car travels along a straight road such
that its position is described by the graph. Construct the v—¢
and a-t graphs for the time interval 0 = ¢ = 10s.

s (m)
2254
= . .
75
=34
0 — 1 (s)
5 10
F12-12

F12-13. The dragster starts from rest and has an
acceleration described by the graph. Construct the v—¢
graph for the time interval 0 = r = ¢’, where ¢’ is the time
for the car to come to rest.

a(m/s’)

2 o

t
0 t(s)

~ 10+

F12-13

F12-14. The dragster starts from rest and has a velocity
described by the graph. Construct the s—¢ graph during the
time interval 0 == 15s. Also, determine the total
distance traveled during this time interval.

v (m/s)

v=30¢
1501 —

~v=—15¢+225

15 '®

w4+

F12-14
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“leropiems

12-39. A freight train starts from rest and travels with a
constant acceleration of 0.5 ft/s’. After a time 1’ it
maintains a constant speed so that when ¢ = 160 s it has
traveled 2000 ft. Determine the time 1" and draw the v—¢
graph for the motion.

*12-40. A sports car travels along a straight road with an
acceleration-deceleration described by the graph. If the car
starts from rest. determine the distance s’ the car travels
until it stops. Construct the v—s graph for0 = 5 = s'.

a (ft/s?)
6
1000 i
s (ft)
-4 4
Prob. 12-40

12-41. A train starts from station A and for the first
kilometer, it travels with a uniform acceleration. Then, for
the next two kilometers, it travels with a uniform speed.
Finally, the train decelerates uniformly for another
kilometer before coming to rest at station B. If the time for
the whole journey is six minutes, draw the v—t graph and
determine the maximum speed of the train.

12-42. A particle starts from s = 0 and travels along a
straight line with a velocity v = (2 — 4t +3) m /s, where tis in
seconds. Construct the v—t and a-t graphs for the time
interval 0 = ¢ = 45,

12-43. If the position of a particle is defined by
s = [2sin (7 /5)t + 4] m, where ¢ is in seconds. construct the
s—t,v-t,and a—t graphs for 0 = r = 10s.

*12-44. An airplane starts from rest, travels 5000 ft down
a runway, and after uniform acceleration, takes off with a
speed of 162 mi/h. It then climbs in a straight line with a
uniform acceleration of 3 ft/s until it reaches a constant
speed of 220 mi/h. Draw the s—, v—t, and a— graphs that
describe the motion.

12-45. The elevator starts from rest at the first floor of
the building. It can accelerate at 5 ft/s” and then decelerate
at 2 ft/s%. Determine the shortest time it takes to reach a
floor 40 ft above the ground. The elevator starts from rest
and then stops. Draw the a-t, v, and s-t graphs for the
motion.

40 ft

Prob. 12-45

12-46. The velocity of a car is plotted as shown. Determine
the total distance the car moves until it stops (r = 80 s).
Construct the a—f graph.

v(m/s)

((s)
40 80

Prob. 12-46



12-47. The v—s graph for a go-cart traveling on a straight
road is shown. Determine the acceleration of the go-cart at
s = S0 mand s = 150 m. Draw the a-s graph.

v (m/s) E

100 200 #m)

Prob. 12-47

*12-48. The v-t graph for a particle moving through an
electric field from one plate to another has the shape shown
in the figure. The acceleration and deceleration that occur
are constant and both have a magnitude of 4 m/s> If the
plates are spaced 200 mm apart, determine the maximum
velocity v,,,, and the time ¢’ for the particle to travel from
one plate to the other. Also draw the s—¢ graph. When
t = t'/2 the particle is at s = 100 mm.

12-49. The v—t graph for a particle moving through an
electric field from one plate to another has the shape shown
in the figure, where 1" = 0.2s and v,,, = 10m/s. Draw
the s—¢ and a-t graphs for the particle. When 1 = ¢'/2 the
particle is at s = 0.5 m.

Smax

L .

Pmax

t'/2 v

Probs. 12-48/49
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12-50. The v—t graph of a car while traveling along a road
is shown. Draw the s—r and a—t graphs for the motion.

v (m/s)

20

1(s)
5 20 30

Prob. 12-50

12-51. The a—t graph of the bullet train is shown. If the
train starts from rest, determine the elapsed time ¢’ before it
again comes to rest. What is the total distance traveled
during this time interval? Construct the v—1 and s—r graphs.

a(m/s) e
a=0.1s
e A= -GS
;0 7'\i i
Prob. 12-51
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*12-52. The snowmobile moves along a straight course
according to the v—t graph. Construct the s—t and a—t graphs
for the same 50-s time interval. When ¢ = 0,5 = 0.

v (m/s)

.

12

t(s)
30 50

Prob. 12-52

12-53. A two-stage missile is fired vertically from rest with
the acceleration shown. In 135 s the first stage A burns out
and the second stage B ignites. Plot the v—r and s—t graphs
which describe the two-stage motion of the missile for
0=1t=20s.

As
A
a(m/s?) g
[
25T
18
} } t(s)
15 20
Prob. 12-53

12-54. The dragster starts from rest and has an
acceleration described by the graph. Determine the time ¢'
for it to stop. Also, what is its maximum speed? Construct
the v—r and s—¢ graphs for the time interval 0 = ¢ = (',

a (ft/s?)

_L

80

t(s)
5

LI

a=-t+5

Prob. 12-54

12-55. A race car starting from rest travels along a straight
road and for 10 s has the acceleration shown. Construct the
v—t graph that describes the motion and find the distance
traveled in 10s.

a (m/s?)

==

)

I
|-

-

t(s)
6 10

Prob. 12-55



*12-56. The v— graph for the motion of a car as if moves
along a straight road is shown. Draw the a—t graph and
determine the maximum acceleration during the 30-s time
interval. The car starts from rest at s = 0.

12-57. The v-t graph for the motion of a car as it moves
along a straight road is shown. Draw the s—t graph and
determine the average speed and the distance traveled for
the 30-s time interval. The car starts from rest at s = 0.

v (ft/s)
—— TN
®, @,
60
v=t+30
40 v =04
r(s)
10 30

Probs. 12-56/57

12-58. The jet-powered boat starts from rest at s = 0
and travels along a straight line with the speed described
by the graph. Construct the s— and a—t graph for the time
interval 0 = ¢ = 50s.

v (m/s) ﬁ
v=48(10 =
757 ""—
\
. v=—3+150
T Y 1(s)
25 50
Prob. 12-58
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12-59. An airplane lands on the straight runway, originally
traveling at 110 ft/s when s = 0. If it is subjected to the ﬂ
decelerations shown, determine the time ¢’ needed to stop

the plane and construct the s—¢ graph for the motion.

a (ft/s?)
5 15 20 ¢
t(s)
. |
-8
Prob. 12-59

*12-60. A car travels along a straight road with the speed
shown by the v—f graph. Plot the a—f graph.

12-61. A car travels along a straight road with the speed
shown by the v—f graph. Determine the total distance the
car travels until it stops when 1 = 48 s. Also plot the s—¢
graph.

v (m/s)
6
=1 1
V=5 by —v=—5(t—48)
t(s)
30 48

Probs. 12-60/61
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12-62. A motorcyclist travels along a straight road with
the velocity described by the graph. Construct the s— and
a-t graphs.

v (ft/s)
150
50
v '= 24
t(s)
5 10
Prob. 12-62

12-63. The speed of a train during the first minute has
been recorded as follows:

1(s)
v (m/s) 0

0 20 40 60

16 21 24

Plot the vt graph, approximating the curve as straight-line
segments between the given points. Determine the total
distance traveled.

*12-64. A man riding upward in a freight elevator
accidentally drops a package off the elevator when it is
100 ft from the ground. If the elevator maintains a
constant upward speed of 4 ft/s, determine how high the
elevator is from the ground the instant the package hits
the ground. Draw the vt curve for the package during the
time it is in motion. Assume that the package was released
with the same upward speed as the elevator.

12-65. Two cars start from rest side by side and travel
along a straight road. Car A accelerates at 4 m/s> for 10 s
and then maintains a constant speed. Car B accelerates at
5m/s? until reaching a constant speed of 25 m/s and then
maintains this speed. Construct the a—t, v—t, and s—t graphs
for each car until r = 15 s. What is the distance between the
two cars when t = 15s?

12-66. A two-stage rocket is fired vertically from rest at
s = 0 with an acceleration as shown. After 30 s the first
stage A burns out and the second stage B ignites. Plot the
v-t graph which describes the motion of the second stage
for0 =1=60s.

12-67. A two-stage rocket is fired vertically from rest at
s = 0 with an acceleration as shown. After 30 s the first
stage A burns out and the second stage B ignites. Plot the
s—t graph which describes the motion of the second stage
for0 =t = 60s.

a(m/s?) B
A
15
et

9

a=0017

30 60 t(s)

Probs. 12-66/67

*12-68. The a-s graph for a jeep traveling along a straight
road is given for the first 300 m of its motion. Construct the
v-s graph. Ats = 0,v = 0.

a (m/s?)

lo—o

200 300 ° ™

Prob. 12-68



12-69. The v—s graph for the car is given for the first 500 ft
of its motion. Construct the a—s graph for 0 = s = 500 ft.
How long does it take to travel the 500-ft distance? The car
startsat s = Owhent = 0.

v (ft5)

F=r

60

v=01s+ 10

10

.~ s (ft)

Prob. 12-69

12-70. The boat travels along a straight line with the speed
described by the graph. Construct the s—¢ and a-s graphs.
Also, determine the time required for the boat to travel a
distance s = 400 mif s = 0 when 7 = 0.

v (m/s)
801
v = 0.25--
2 _
‘/v =4s
204 —l"
1 v s (m)
100 400

Prob. 12-70
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12-71. The v—s graph of a cyclist traveling along a straight
road is shown. Construct the a-s graph.

v (ft/s)
159
~v=—-0045+19
v=01s+5
54
T s (ft)
100 350
Prob. 12-71

*M12-72. The a-s graph for a boat moving along a straight
path is given. If the boat starts at s = 0 when » = 0,
determine its speed when it is at s = 75ft, and 125 ft,
respectively. Use a numerical method to evaluate v at
s = 125 ft.

a (ft/s?)
a=5+6(s— 10)3
5
100 s (ft)
Prob. 12-72
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Position

(a)

Displacement

(b)

Velocity

(c)

Fig. 12-16

12.4 General Curvilinear Motion

Curvilinear motion occurs when a particle moves along a curved path.
Since this path is often described in three dimensions, vector analysis will
be used to formulate the particle’s position, velocity, and acceleration.*
In this section the general aspects of curvilinear motion are discussed, and
in subsequent sections we will consider three types of coordinate systems
often used to analyze this motion.

Position. Consider a particle located at a point on a space curve
defined by the path function s(z), Fig. 12-16a. The position of the particle,
measured from a fixed point O, will be designated by the position vector
r = r(7). Notice that both the magnitude and direction of this vector will
change as the particle moves along the curve.

Displacement. Suppose that during a small time interval Ar the
particle moves a distance As along the curve to a new position, defined
byr’ = r + Ar, Fig. 12-16b.The displacement Ar represents the change
in the particle’s position and is determined by vector subtraction; i.e.,
Ar =r' —r.

Velocity. During the time Az, the average velocity of the particle is

Ar

vu\'g - E

The instantaneous velocity is determined from this equation by letting
Ar— 0, and consequently the direction of Ar approaches the tangent to
the curve. Hence, v = A],il“,(,(Ar/A’) or

ar

vzdr

(12-7)

Since dr will be tangent to the curve, the direction of v is also tangent to
the curve, Fig. 12-16¢. The magnitude of v, which is called the speed, is
obtained by realizing that the length of the straight line segment Ar in
Fig. 12-16b approaches the arc length As as Ar—0, we have
v = AI'i_ngo(Ar/Az‘) - Al,ig}(,(As/At),or

ds
v = &t (12-8)

Thus, the speed can be obtained by differentiating the path function s with
respect to time.

*A summary of some of the important concepts of vector analysis is given in Appendix B.
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Acceleration. If the particle has a velocity v at time ¢ and a velocity

'

v/ = v + Avatr + Ar, Fig. 12-16d, then the average acceleration of the
particle during the time interval Ar is

-\
e = 3

where Av = v’ — v. To study this time rate of change, the two velocity
vectors in Fig. 12-16d are plotted in Fig. 12-16¢ such that their tails are
located at the fixed point O' and their arrowheads touch points on a
curve. This curve is called a hodograph, and when constructed, it describes
the locus of points for the arrowhead of the velocity vector in the same
manner as the path s describes the locus of points for the arrowhead of
the position vector, Fig. 12-16a.

To obtain the instantaneous acceleration, let At— 0 in the above
equation. In the limit Av will approach the tangent to the hodograph, and
soa = _\l,iLno(Av/At), or

dv
= — 12-9
g dt | ( )

By definition of the derivative, a acts tangent to the hodograph,
Fig. 12-16f. and, in general it is not tangent to the path of motion,
Fig. 12-16g. To clarify this point, realize that Av and consequently a must
account for the change made in both the magnitude and direction of the
velocity v as the particle moves from one point to the next along the path,
Fig. 12-16d. However, in order for the particle to follow any curved path,
the directional change always “swings” the velocity vector toward the
“inside™ or “concave side” of the path, and therefore a cannot remain
tangent to the path. In summary, v is always tangent to the path and a is
always tangent to the hodograph.

(d)

(e)

Hodograph

()

Acceleration ! path

(2)
Fig. 12-16



34

7
<

CHAPTER 12 KINEMATICS OF A PARTICLE

I

Position

(a)

Y

v=ud+ ot ek

#

Velocity
(b)

Fig. 12-17

Vv

12.5 Curvilinear Motion: Rectangular
Components

Occasionally the motion of a particle can best be described along a path
that can be expressed in terms of its x, y, z coordinates.

Position. If the particle is at point (x, y, z) on the curved path s
shown in Fig. 12-17a, then its location is defined by the position vector

L’r =xi +yj + 2k (12-10)

When the particle moves, the x, y, z components of r will be functions of
time;i.e.,x = x(1), y = y(), z = z(1), so that r = r(s).

At any instant the magnitude of r is defined from Eq. B-3 in
Appendix B as

r= \/.1(2+y2+;2

And the direction of r is specified by the unit vector u, = r/r.

Velocity. The first time derivative of r yields the velocity of the
particle. Hence,

v=T =L+ Liog + Lk
ar dr o) T W T g%

When taking this derivative, it is necessary to account for changes in both
the magnitude and direction of each of the vector’s components. For
example, the derivative of the i component of r is

doo_de, di
™=t
The second term on the right side is zero, provided the x, y, z reference
frame is fived, and therefore the direction (and the magnitude) of i does
not change with time. Differentiation of the j and k components may be
carried out in a similar manner, which yields the final result,

d
v= 7’; = v + v,§ + vk (12-11)

where

V=% BK,=) V=2 (12-12)
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The “dot” notation x, y, Z represents the first time derivatives of x = x(r),
y = (1), z = z(1), respectively.
The velocity has a magnitude that is found from

v = Vvl + v+ 0?

and a direction that is specified by the unit vector u, = v/v. As discussed
in Sec. 12-4, this direction is always tangent to the path, as shown in
Fig. 12-17b.

Acceleration. The acceleration of the particle is obtained by taking
the first time derivative of Eq. 12-11 (or the second time derivative of
Eq. 12-10). We have

d
a=2=gi+aj+ak (12-13)
dr : -
where
a, =7, =X
a,= b, =3 (12-14)
a=v.=2

Here a,, a,, a. represent, respectively, the first time derivatives of
v, = vy(t), v, = v,(t), v. = v.(t), or the second time derivatives of the
functions x = x(0), ) = y(), z = z(1).

The acceleration has a magnitude

2 9 9
a= Va; + a; + a:

and a direction specified by the unit vector u, = a/a. Since a represents
the time rate of change in both the magnitude and direction of the velocity,
in general a will nor be tangent to the path, Fig. 12-17c¢.

o

(o]

N

a=aitajtak

y

Acceleration

()
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Important Points

e Curvilinear motion can cause changes in both the magnitude and
direction of the position, velocity, and acceleration vectors.

» The velocity vector is always directed tangent to the path.

o In general, the acceleration vector is not tangent to the path, but
rather, it is tangent to the hodograph.

¢ If the motion is described using rectangular coordinates, then the
components along each of the axes do not change direction, only
their magnitude and sense (algebraic sign) will change.

¢ By considering the component motions, the change in magnitude
and direction of the particle’s position and velocity are automatically
taken into account.

Procedure for Analysis

Coordinate System.

e A rectangular coordinate system can be used to solve problems
for which the motion can conveniently be expressed in terms of
its x, y, z components.

Kinematic Quantities.

e Since rectilinear motion occurs along each coordinate axis, the
motion along each axis is found using v = ds/dt and a = dv/dt;
or in cases where the motion is not expressed as a function of
time, the equation a ds = v dv can be used.

e In two dimensions, the equation of the path y = f(x) can be used
to relate the x and y components of velocity and acceleration by
applying the chain rule of calculus. A review of this concept is
given in Appendix C.

e Once the x, y, z components of v and a have been determined, the
magnitudes of these vectors are found from the Pythagorean
theorem, Eq. B-3, and their coordinate direction angles from the
components of their unit vectors, Eqs. B-4 and B-5.
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EXAMPLE | 12.9 n

At any instant the horizontal position of the weather balloon in
Fig. 12-18a is defined by x = (8¢) ft, where ¢ is in seconds. If the
equation of the path is y = x*/10, determine the magnitude and
direction of the velocity and the acceleration when s = 2 s.

SOLUTION

Velocity. The velocity component in the x direction is

d
=x=—(8) = 8ft
v, =X dt() /s —

To find the relationship between the velocity components we will use the
chain rule of calculus. When s = 2s, x = 8(2) = 16 ft, Fig. 12-184,and so

v=y= -(%(xZ/IO) = 2xx/10 = 2(16)(8)/10 = 25.6 ft/s |

When ¢t = 2 s, the magnitude of velocity is therefore

v = V(8 ft/s) + (25.6 ft/s)* = 26.8 ft/s Ans.
The direction is tangent to the path, Fig. 12-18b, where
- 256 v=2681t/s
6, = tan'= = an"'=—— = 72.6° Ans. 9, =72.6°
Uy 8 Bl ——
Acceleration. The relationship between the acceleration components
is determined using the chain rule. (See Appendix C.) We have (b)
. d
ax=vx=E(8)=0
. d _ . o )
ay =1, = E(lxx/lO) = 2(x)x/10 + 2x(x)/10
= 2(8)*/10 + 2(16)(0)/10 = 12.8 ft/s* |
Thus,
a=128ft
a = V(0) + (12.8)* = 12.8 ft/s* Ans. 0, = 90°
The direction of a, as shown in Fig. 12-18c, is B
(c)
12.8
0, = tan-'T = 90° Ans. Fig. 12-18

NOTE: It is also possible to obtain v, and a, by first expressing
y = f(r) = (81*/10 = 6.4+ and then taking successive time derivatives.
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n EXAMPLE [[12:10

For a short time, the path of the plane in Fig. 12-194 is described by
y = (0.001x%) m. If the plane is rising with a constant upward velocity of
10 m/s, determine the magnitudes of the velocity and acceleration of the
plane when it reaches an altitude of y = 100 m.

SOLUTION
When y = 100 m, then 100 = 0.001x* or x = 316.2 m. Also, due to
constant velocity v, = 10 m/s, so

y = v 100m = (10 m/s) ¢ t=10s

Velocity. Using the chain rule (see Appendix C) to find the
relationship between the velocity components, we have

y = 0.001x*

v, =y = %(o.oouz) = (0.002x)% = 0.002xv, (1)
Thus

10m/s

0.002(316.2 m)(v,)

100 m

/y = 0.001x2
> v, = 1581 m/s

/

v

X
The magnitude of the velocity is therefore

@ Ans.

v = Vol +v2 = V(1581 m/s)® + (10m/s) = 18.7m/s

Acceleration. Using the chain rule, the time derivative of Eq. (1)
gives the relation between the acceleration components.

a, = b, = (0.002%)k + 0.002x(¥) = 0.002(v; + xa,)
When x = 316.2m, v, = 1581 m/s, b, = a, = 0,

0 = 0.002[(15.81 m/s)* + 316.2 m(a,)]
a, = —0.791 m/s*

¥ The magnitude of the plane’s acceleration is therefore

®) a=Va+d = V(=019 m/s) + (0m/s>?
= 0.791 m/s”

Fig. 12-19 Ans.

These results are shown in Fig. 12-195b.
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12.6 Motion of a Projectile

The free-flight motion of a projectile is often studied in terms of its
rectangular components. To illustrate the kinematic analysis, consider a
projectile launched at point (xg. yo), with an initial velocity of vy, having
components (vy), and (vy),, Fig. 12-20. When air resistance is neglected,
the only force acting on the projectile is its weight, which causes the
projectile to have a constant downward acceleration of approximately
a, =g =981m/s>org = 322 ft/s>.*

S v,
Yo ™\
(Vn)., v\+ Ny
-(-‘H)l T .
.‘-
Yo
| .\
'—-"n—-l
X
Fig. 12-20
Horizontal Motion. Since a, = 0, application of the constant

acceleration equations, 12-4 to 12-6, yields

() v = vy + a.t v, = (Vo)
(—i;) X = Xy + Vol + —-l_»llltz; X = Xy + (l‘())_‘f
(5) v’ = v + 2a.(x — xp); vy = (Vo)

The first and last equations indicate that the horizontal component of
velocity always remains constant during the motion.

Vertical Motion. Since the positive y axis is directed upward, then
a, = —g. Applying Eqgs. 124 to 12-6, we get

+hH v =10y Toad, vy = (Vg)y — gt
+h Yy =yo T vt + %“"-’21 Yy =y T (o)t — %g’l
2 2 S 2l
+1 v” =g + 2a.y = yo); vy = (Wo)y — 28(y — Yo)

Recall that the last equation can be formulated on the basis of eliminating
the time ¢ from the first two equations, and therefore only two of the above
three equations are independent of one another.

*This assumes that the earth’s gravitational field does not vary with altitude.

Each picture in this sequence is taken
after the same time interval. The red ball
falls from rest, whereas the yellow ball is
given a horizontal velocity when released.
Both balls accelerate downward at the
same rate, and so they remain at the same
elevation at any instant. This acceleration
causes the difference in elevation between
the balls to increase between successive
photos. Also, note the horizontal distance
between successive photos of the yellow
ball is constant since the velocity in the
horizontal direction remains constant.

39
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Gravel falling off the end of this conveyor
belt follows a path that can be predicted
using the equations of constant
acceleration. In this way the location of
the accumulated pile can be determined.
Rectangular coordinates are used for the
analysis since the acceleration is only in
the vertical direction.

To summarize, problems involving the motion of a projectile can have
at most three unknowns since only three independent equations can be
written; that is, one equation in the horizontal direction and two in the
vertical direction. Once v, and v, are obtained, the resultant velocity v,
which is always tangent to the path, can be determined by the vector sum
as shown in Fig. 12-20.

Procedure for Analysis

Coordinate System.

e Establish the fixed x, y coordinate axes and sketch the trajectory
of the particle. Between any two points on the path specify the
given problem data and identify the three unknowns. In all cases
the acceleration of gravity acts downward and equals 9.81 m/s?
or 32.2 ft/s. The particle’s initial and final velocities should be
represented in terms of their x and y components.

e Remember that positive and negative position, velocity, and
acceleration components always act in accordance with their
associated coordinate directions.

Kinematic Equations.

e Depending upon the known data and what is to be determined, a
choice should be made as to which three of the following four
equations should be applied between the two points on the path
to obtain the most direct solution to the problem.

Horizontal Motion.

e The velocity in the horizontal or x direction is constant, i.c.,
vx = (v()),xy and

x = xp + (vg) !t

Vertical Motion.

e In the vertical or y direction only two of the following three
equations can be used for solution.

v, = (Vp)y T+ a.t
Y = Yo + (o)t + 34,
v} = (v)? + 2a .y — yo)

For example, if the particle’s final velocity v, is not needed, then
the first and third of these equations will not be useful.
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EXAMPLE | 12.11 n

A sack slides off the ramp, shown in Fig. 12-21, with a horizontal
velocity of 12 m/s. If the height of the ramp is 6 m from the floor,
determine the time needed for the sack to strike the floor and the
range R where sacks begin to pile up.

A
12
& iR x

Fig. 12-21

SOLUTION

Coordinate System. The origin of coordinates is established at the
beginning of the path, point A, Fig. 12-21.The initial velocity of a sack
has components (v,), = 12 m/s and (v,), = 0. Also,between points A
and Bthe accelerationisa, = —9.81 m/ s2.Since (Vp), = (V4), = 12 m /s,
the three unknowns are (vg),, R, and the time of flight 7,5. Here we do
not need to determine (vg),.

Vertical Motion. The vertical distance from A to B is known, and
therefore we can obtain a direct solution for 7,5 by using the equation

+h ¥g = Ya T (Watap + 3abi
—6m =0+ 0+ 3(—9.81 m/s>)i35
typg = L.11s Ans.

Horizontal Motion. Since 7,5 has been calculated, R is determined

as follows:
(5) Xp = x4 T (Vadag
R=0+ 12m/s(1.115)
R =133m Ans.

NOTE: The calculation for 7,5 also indicates that if a sack were released
from rest at A, it would take the same amount of time to strike the
floor at C, Fig. 12-21.
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EXAMPLE [12:92

The chipping machine is designed to eject wood chips at v, = 25 ft/s
asshown in Fig. 12-22.1f the tube is oriented at 30° from the horizontal,
determine how high, A, the chips strike the pile if at this instant they
land on the pile 20 ft from the tube.

Fig. 12-22

SOLUTION

Coordinate System. When the motion is analyzed between points O
and A, the three unknowns are the height A, time of flight 7,,, and
vertical component of velocity (v,),. [Note that (v,), = (vp),.] With
the origin of coordinates at O, Fig. 12-22, the initial velocity of a chip
has components of

(v9)x = (25 cos 30°) ft/s = 21.65 ft/s —
(Vo)y = (25 sin 30°) fi/s = 12.5 ft/s?

Also, (v4), = (vg); = 21.65 ft/s and a, = —32.2 ft/s*. Since we do
not need to determine (v,),, we have

Horizontal Motion.

(i)) Xy = Xp + (vo)xfol‘
20 ft = 0 + (21.65ft/s)1o,
fon = 0.9238

Vertical Motion. Relating 70, to the initial and final elevations of a
chip, we have

(+1) ya = Yo + Woltos + 30,34
(h — 4ft) = 0 + (125 ft/s)(0.9238 5) + 3(—32.2 ft/s%)(0.9238 5)°
h = 1.81ft .

NOTE: We can determine (v,), by using (v,)y, = (vo), + a.o,.
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EXAMPLE [12.13 H

The track for this racing event was designed so that riders jump off
the slope at 30°, from a height of 1 m. During a race it was observed
that the rider shown in Fig. 12-23a remained in mid air for 1.5 s,
Determine the speed at which he was traveling off the ramp, the
horizontal distance he travels before striking the ground, and the
maximum height he attains. Neglect the size of the bike and rider.

SOLUTION ¥y
Coordinate System. As shown in Fig. 12-23b, the origin of the C
coordinates is established at A. Between the end points of the path AB 30° |

the three unknowns are the initial speed v,, range R, and the vertical

component of velocity (vg),. l'm *
B
Vertical Motion. Since the time of flight and the vertical distance B
between the ends of the path are known, we can determine v,. R
+hH Y = ¥a t (Watap + %ac’}w (b)
— = 300 )+ A 2 )2
Im = 0 + v,sin30°(1.5 s) + 3(—9.81 m/s7)(1.5s) Fig. 12-23
vy = 1338 m/s = 134 m/s Ans.
Horizontal Motion. The range R can now be determined.
(5) xg = x4t (Vailap
R =0 + 13.38 cos 30°m/s (1.5 s)
=174 m Ans.

In order to find the maximum height 4 we will consider the path AC,
Fig. 12-23b. Here the three unknowns are the time of flight 74, the
horizontal distance from A to C, and the height /4. At the maximum
height (ve), = 0, and since v, is known, we can determine h directly
without considering 7, using the following equation.

(vc),z‘ = (UA);2~ + 2a,[yc — yal
0% = (13.385in 30° m/s)* + 2(—=9.81 m/sH)[(h — 1 m) — 0]
h =328m Ans.

NOTE: Show that the bike will strike the ground at B with a velocity
having components of

(p), = 11.6m/s—, (vp), = 8.02m/s|
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. FUNDAMENTAL PROBLEMS

F12-15. If the x and y components of a particle’s velocity
are v, = (321) m/s and v, = 8m/s, determine the equation
of the pathy = filx). x = 0andy = Owhen = 0.

F12-16. A particle is traveling along the straight path. If
its position along the xaxis is x = (8/) m, where ¢ is in
seconds, determine its speed when t = 2s.

y=0.75x

x =8t

4m

F12-16

F12-17. A particle is constrained to travel along the path.
If x = (4)ym, where 7 is in seconds, determine the
magnitude of the particle’s velocity and acceleration when
t=05s.

¥ = dx

x=(4)ym
F12-17

F12-18. A particle travels along a straight-line path
y = 0.5x. If the x component of the particle’s velocity is
v, = (2*) m/s, where ¢ is in seconds, determine the magnitude
of the particle’s velocity and acceleration when 1 = 4 s,

Pl

y=05x

F12-18

F12-19. A particle is traveling along the parabolic path
y = 0.25x% If x = (2*) m, where ¢ is in seconds, determine
the magnitude of the particle’s velocity and acceleration
whent = 2s.

y = 0.25%

-

F12-19

F12-20. The box slides down the slope described by the
equation y = (0.05x*) m, where x is in meters. If the box has
x components of velocity and acceleration of v, = =3 m/s
anda, = —1.5m/s>at x = 5 m,determine the y components
of the velocity and the acceleration of the box at this instant.

F12-20
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F12-21. The ball is kicked from point A with the initial F12-25. A ball is thrown from A. If it is required to clear
velocity v, = 10 m/s. Determine the maximum height £ it the wall at B, determine the minimum magnitude of its
reaches. initial velocity v,.

F12-22. The ball is kicked from point A with the initial
velocity vy = 10m/s. Determine the range R, and the
speed when the ball strikes the ground.

y
B
B =
v
4 3° 8 ft
3ft
l .
F12-21/22 I
12 ft I
F12-23. Determine the speed at which the basketball at A F12-25
must be thrown at the angle of 30° so that it makes it to the

basket at B.

y —‘\?
v T
30°, 3m F12-26. A projectile is fired with an initial velocity of
A vy = 150 m/s off the roof of the building. Determine the
range R where it strikes the ground at B.

10 m
F12-23

F12-24. Water is sprayed at an angle of 90° from the slope

at 20 m/s. Determine the range R. y

vy = 150m/s

150 m

F12-24 F12-26



46 CHAPTER 12 KINEMATICS OF A PARTICLE

- PROBLEMS

12-73. The position of a particle is defined by
r = {5(cos 20)i + 4(sin 21)j } m, where ¢ is in seconds and
the arguments for the sine and cosine are given in radians.
Determine the magnitudes of the velocity and acceleration
of the particle when 1 = 1 s. Also, prove that the path of the
particle is elliptical.

12-74. The velocity of a particle is v= {3i+ (6 —20)j } m/s,
where ¢ is in seconds. If r = 0 whenr = 0. determine the
displacement of the particle during the time interval
r=1stor=3s.

12-75. A particle, originally at rest and located at point
(3 ft. 2 ft, 5 ft), is subjected to an acceleration of
a = {6ri + 127’k } ft/s>. Determine the particle’s position
(x,y,z)atr = 1s.

*12-76. The velocity of a particle is given by » =
{16¢% +4% + (5t + 2)k } m/s, where t is in seconds. If the
particle is at the origin when 1 = 0, determine the magnitude
of the particle’s acceleration when 1 = 2 s. Also, what is the x,
¥, z coordinate position of the particle at this instant?

12-77. The car travels from A to B, and then from B to C,
as shown in the figure. Determine the magnitude of the
displacement of the car and the distance traveled.

| 2km

AT SR

3km

Prob. 12-77

12-78. A car travels east 2 km for 5 minutes, then north
3 km for 8§ minutes, and then west 4 km for 10 minutes.
Determine the total distance traveled and the magnitude
of displacement of the car. Also, what is the magnitude of
the average velocity and the average speed?

12-79. A car traveling along the straight portions of the
road has the velocities indicated in the figure when it arrives
at points A, B, and C. If it takes 3 s to go from A to B, and
then 5 s to go from B to C, determine the average
acceleration between points A and B and between points A
and C.

Prob. 12-79

*12-80. A particle travels along the curve from A to Bin 2.
It takes 4 s for it to go from B to C and then 3 s to go from C
to D. Determine its average speed when it goes from A to D.

D
.

B ,

— .o

Prob. 12-80



12-81. 'The position of a crate sliding down a ramp is given
by x=(0.25/) m,y = (1.5%) m, z = (6 - 0.75¢?) m, where ¢ is
in seconds. Determine the magnitude of the crate’s velocity
and acceleration when t =2 s.

12-82. A rocket is fired from rest at x = 0 and travels
along a parabolic trajectory described by y? = [120(10%)x] m.

If the x component of acceleration is a, = (le) m/s%, where

{ is in seconds, determine the magnitude of the rocket’s
velocity and acceleration when (= 10s.

12-83. The particle travels along the path defined by
the parabola y = 0.5x%. If the component of velocity
along the x axis is v, = (5¢) ft/s, where ¢ is in seconds,
determine the particle’s distance from the origin O and
the magnitude of its acceleration when ¢ = 1s. When
t=0,x=0,y=0.

v

—y =05

/0

Prob. 12-83

*12-84. The motorcycle travels with constant speed v
along the path that, for a short distance. takes the form of a
sine curve. Determine the x and y components of its velocity
at any instant on the curve.

Vo
e s
7 ,\—csm(llx)

T o~—T—
-— L—-L Lc—l

Prob. 12-84
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12-85. A particle travels along the curve from Ato Bin 1.
If it takes 3 s for it to go from A to C, determine its average
velocity when it goes from B to C.

20m

S
o

Prob. 12-85

12-86. When a rocket reaches an altitude of 40 m it begins
to travel along the parabolic path (v — 40)> = 160x, where
the coordinates are measured in meters. If the component of
velocity in the vertical direction is constant at v, = 180 m/s,
determine the magnitudes of the rocket’s velocity and
acceleration when it reaches an altitude of 80 m.

(v — 407 = 160x

Prob. 12-86
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4 slots due to the motion of the slotted link. If the link moves corresponding angle 6, at which the ball must be kicked in
with a constant speed of 10 m/s, determine the magnitude order for it to just cross over the 3-m high fence.
of the velocity and acceleration of peg A when x = 1m.

. 12-87. Pegs A and B are restricted to move in the elliptical 12-90. Determine the minimum initial velocity v, and the
1

/"O—l-

3m

.l

6m |

Prob. 12-90
Prob. 12-87

#*12-88. The van travels over the hill described by
y = (—1.5(107% & + 15)ft. If it has a constant speed of
75ft/s, determine the x and y components of the van’s

velocity and acceleration when x = 50ft. . o
12-91. During a race the dirt bike was observed to leap

up off the small hill at A at an angle of 60° with the
horizontal. If the point of landing is 20 ft away, determine
y the approximate speed at which the bike was traveling just
before it left the ground. Neglect the size of the bike for

15 ft Ly =(~15(107%) % + 15) ft the calculation.

12-89. It is observed that the time for the ball to strike the
ground at B is 2.5 s. Determine the speed v, and angle 6, at
which the ball was thrown.

S0m 1
Prob. 12-89 Prob. 12-91



*12-92. The girl always throws the toys at an angle of 30°
from point A as shown. Determine the time between
throws so that both toys strike the edges of the pool B
and C at the same instant. With what speed must she throw
each toy?

25m

4m

Prob. 12-92

12-93. The player kicks a football with an initial speed of
vy =90 ft /s. Determine the time the ball is in the air and the
angle 6 of the kick.

12-94. From a videotape, it was observed that a player
kicked a football 126 ft during a measured time of 3.6 seconds.
Determine the initial speed of the ball and the angle # at
which it was kicked.

e 4

126 ft l

Probs. 12-93/94
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12-95. A projectile is given a velocity v, at an angle ¢
above the horizontal. Determine the distance d to where
it strikes the sloped ground. The acceleration due to
gravity is g.

*12-96. A projectile is given a velocity v, Determine the
angle ¢ at which it should be launched so that d is a
maximum. The acceleration due to gravity is g.

Probs. 12-95/96

12-97. Determine the minimum height on the wall to
which the firefighter can project water from the hose, so
that the water strikes the wall horizontally. The speed of the
water at the nozzle is v = 48 ft/s.

®12-98. Determine the smallest angle 6, measured above
the horizontal, that the hose should be directed so that the
water stream strikes the bottom of the wall at B. The speed
of the water at the nozzle is v = 48 ft/s.

ve = 481t /s

3 ft

30 ft

Probs. 12-97/98
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12-99. Measurements of a shot recorded on a videotape
during a basketball game are shown. The ball passed
through the hoop even though it barely cleared the hands of
the player B who attempted to block it. Neglecting the size
of the ball, determine the magnitude w», of its initial velocity
and the height A of the ball when it passes over player B.

K

ff

-

{ l 10 ft

25 fit s fie]

Prob. 12-99

#*12-100. It is observed that the skier leaves the ramp A at
an angle 6, = 25° with the horizontal. If he strikes the
ground at B, determine his initial speed v, and the time of
flight 1,p.

12-101. It is observed that the skier leaves the ramp A at
an angle 0, = 25° with the horizontal. If he strikes the
ground at B, determine his initial speed v, and the speed at
which he strikes the ground.

Nmﬁiy .
DDA

Probs. 12-100/101

12-102. A golf ball is struck with a velocity of 80 ft/s as
shown. Determine the distance d to where it will land.

Prob. 12-102

12-103. The ball is thrown from the tower with a velocity
of 20 ft/s as shown. Determine the x and y coordinates to
where the ball strikes the slope. Also, determine the speed
at which the ball hits the ground.
y

20ft/s
5

4
 Ta— R

NV

X

20 -]

Prob. 12-103

*12-104. The projectile is launched with a velocity v.
Determine the range R, the maximum height A attained,
and the time of flight. Express the results in terms of the
angle 0 and v,. The acceleration due to gravity is g.

Prob. 12-104



12-105. Determine the horizontal velocity v, of a tennis
ball at A so that it just clears the net at B. Also, find the
distance s where the ball strikes the ground.

Bk
I i D 751t
c : ||3‘f( l

f— s—F 211t

e

Prob. 12-105

12-106. The ball at A is kicked with a speed v4 = 8 fi/s
and at an angle 6, = 30°. Determine the point (x,y) where
it strikes the ground. Assume the ground has the shape of a
parabola as shown.

12-107. The ball at A is kicked such that 6, = 30°. If it
strikes the ground at B having coordinates x = 15 ft,
y = —9 ft, determine the speed at which it is kicked and the
speed at which it strikes the ground.

Probs. 12-106/107
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*12-108. The man at A wishes to throw two darts at the
target at B so that they arrive at the same time. If each dart
is thrown with a speed of 10 m/s, determine the angles 0,
and #;, at which they should be thrown and the time
between each throw. Note that the first dart must be thrown
at O (= 0p), then the second dart is thrown at 6,

Prob. 12-108

12-109. A boy throws a ball at O in the air with a speed v,
at an angle 6. If he then throws another ball with the same
speed vy at an angle 6, < 6;, determine the time between
the throws so that the balls collide in midair at B.

X

Prob. 12-109
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12-110. Small packages traveling on the conveyor belt fall
off into a I-m-long loading car. If the conveyor is running at a
constant speed of vo = 2 m/s, determine the smallest and
largest distance R at which the end A of the car may be
placed from the conveyor so that the packages enter the car.

Prob. 12-110

12-111. The fireman wishes to direct the flow of water
from his hose to the fire at B. Determine two possible angles
6, and 6, at which this can be done. Water flows from the
hose at v, = 80 ft/s.

\Lg.

Va

35 ft |

Prob. 12-111

*12-112. The baseball player A hits the baseball at
vy = 40 ft/s and 6, = 60° from the horizontal. When the
ball is directly overhead of player B he begins to run under
it. Determine the constant speed at which B must run and
the distance d in order to make the catch at the same
elevation at which the ball was hit.

U,|=40ft/s \

R 15 ft N

Prob. 12-112

12-113. The man stands 60 ft from the wall and throws a
ball at it with a speed vy = 50 ft/s. Determine the angle 6 at
which he should release the ball so that it strikes the wall at
the highest point possible. What is this height? The room
has a ceiling height of 20 ft.

60 ft
Prob. 12-113
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12.7 Curvilinear Motion: Normal and
Tangential Components

When the path along which a particle travels is known, then it is often
convenient to describe the motion using n and ¢ coordinate axes which act
normal and tangent to the path, respectively, and at the instant considered
have their origin located at the particle.

Planar Motion. Consider the particle shown in Fig. 12-24a, which
moves in a plane along a fixed curve, such that at a given instant it is at
position s, measured from point O. We will now consider a coordinate
system that has its origin on the curve, and at the instant considered this
origin happens to coincide with the location of the particle. The ¢ axis is
tangent to the curve at the point and is positive in the direction of
increasing s. We will designate this positive direction with the unit vector
u,. A unique choice for the normal axis can be made by noting that
geometrically the curve is constructed from a series of differential arc
segments ds, Fig. 12-24b. Each segment ds is formed from the arc of an
associated circle having a radius of curvature p (rho) and center of
curvature O'. The normal axis n is perpendicular to the r axis with its
positive sense directed toward the center of curvature O, Fig. 12-24a.
This positive direction, which is always on the concave side of the curve,
will be designated by the unit vector u,. The plane which contains the n
and r axes is referred to as the embracing or osculating plane, and in this
case it is fixed in the plane of motion.*

Velocity. Since the particle moves, s is a function of time. As indicated
in Sec. 12.4, the particle’s velocity v has a direction that is always tangent
to the path, Fig. 12-24¢, and a magnitude that is determined by taking the
time derivative of the path function s = s(7), i.e., v = ds/dt (Eq. 12-8).
Hence

vV = u, | (12-15)

where

[v=5s] (12-16)

*The osculating plane may also be defined as the plane which has the greatest contact
with the curve at a point. It is the limiting position of a plane contacting both the point and
the arc segment ds. As noted above, the osculating plane is always coincident with a plane
curve; however, each point on a three-dimensional curve has a unique osculating plane.

Position

(a)

Radius of curvature

(b)

o

Velocity
(c)

Fig. 12-24
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To better understand these results, consider the following two special
cases of motion.

1. If the particle moves along a straight line, then p — = and from
Eq. 12-20, a, = 0. Thus ¢ = a, = ¥, and we can conclude that the
tangential component of acceleration represents the time rate of
change in the magnitude of the velocity.

2. If the particle moves along a curve with a constant speed, then
a, == 0and a = a, = v*/p. Therefore, the normal component
of acceleration represents the time rate of change in the direction of
the velocity. Since a, always acts towards the center of curvature,
this component is sometimes referred to as the centripetal (or center
seeking) acceleration.

As a result of these interpretations, a particle moving along the curved
path in Fig. 12-25 will have accelerations directed as shown.

Change in
direction of
velocity
e 1 /
Increasing s
speed 7 ~.a

'
Change in
magnitude of
velocity

Fig. 12-25

Three-Dimensional Motion. If the particle moves along a space
curve, Fig. 12-26, then at a given instant the ¢ axis is uniquely specified;
however, an infinite number of straight lines can be constructed normal
to the tangent axis. As in the case of planar motion, we will choose the
positive n axis directed toward the path’s center of curvature O'. This
axis is referred to as the principal normal to the curve. With the n and ¢
axes so defined, Egs. 12-15 through 12-21 can be used to determine v
and a. Since u, and u,, are always perpendicular to one another and lie in
the osculating plane, for spatial motion a third unit vector, u,, defines the
binormal axis b which is perpendicular to u, and u,,, Fig. 12-26.

Since the three unit vectors are related to one another by the vector
cross product, e.g.,u, = u, X u,, Fig. 12-26, it may be possible to use this
relation to establish the direction of one of the axes, if the directions of
the other two are known. For example, no motion occurs in the u,
direction, and if this direction and u, are known, then u, can be
determined, where in this case u, = u, X u,, Fig. 12-26. Remember,
though, that u,, is always on the concave side of the curve.

As the boy swings upward with a
velocity v, his motion can be analyzed
using n—t coordinates. As he rises, the
magnitude of his velocity (speed) is
decreasing, and so «, will be negative.
The rate at which the direction of his
velocity changes is a,, which is always
positive, that is, towards the center of
rotation.

b osculating plane

Fig. 12-26
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Acceleration
(f)
Fig. 12-24 (cont.)

Acceleration. The acceleration of the particle is the time rate of
change of the velocity. Thus,

a=v=1du + oy (12-17)

In order to determine the time derivative u,, note that as the particle
moves along the arc ds in time dt, u, preserves its magnitude of unity;
however, its direction changes, and becomes u;, Fig. 12-24d. As shown in
Fig. 12-24¢, we require u; = u, + du,. Here du, stretches between the
arrowheads of u, and u;, which lie on an infinitesimal arc of radius u, = 1.
Hence, du, has a magnitude of du, = (1) df, and its direction is defined by
u,. Consequently, du, = dfu,, and therefore the time derivative becomes
u, = 6u,. Since ds = pd#, Fig. 12-24d, then § = §/p, and therefore

ul = 0“" = _u" = ;ull

Substituting into Eq. 12-17, a can be written as the sum of its two
components,

a = au, + au, (12-18)
where
a =" or a;ds = vdv (12-19)
and
o
a, = — 12-20
o ( )

These two mutually perpendicular components are shown in Fig. 12-24f.
Therefore, the magnitude of acceleration is the positive value of

a=Va+a (12-21)
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n Procedure for Analysis

Coordinate System.

e Provided the path of the particle is known, we can establish a set
of n and r coordinates having a fixed origin, which is coincident
with the particle at the instant considered.

¢ The positive tangent axis acts in the direction of motion and the
positive normal axis is directed toward the path’s center of
curvature.

Velocity.

e The particle’s velocity is always tangent to the path.

e The magnitude of velocity is found from the time derivative of
the path function.

V=3

Tangential Acceleration.

e The tangential component of acceleration is the result of the time
rate of change in the magnitude of velocity. This component acts
in the positive s direction if the particle’s speed is increasing or in
the opposite direction if the speed is decreasing.

e The relations between «,, v, f and s are the same as for rectilinear
motion, namely,

a,=v ads=wvdv

e If 4, is constant, a, = (a,),, the above equations, when integrated,
yield
s =59+ vyt + %(a,)(.t2
V=17 + (al)('

v’ 1)(2, + 2(a).(s — sg)

Normal Acceleration.

e The normal component of acceleration is the result of the time
rate of change in the direction of the velocity. This component is
always directed toward the center of curvature of the path, i.e.,
along the positive n axis.

e The magnitude of this component is determined from

-

— v"

a, = 7
Motorists traveling along this cloverleaf : A
interchange cxﬁcricngcc B sl e If the path is expressed as y = f{x), the radius of curvature p at
acceleration due to the change in direction any point on the path is determined from the equation
of their velocity. A tangential component [+ (d '/dx)2]3/2
of acceleration occurs when the cars’ o= +
speed is increased or decreased. | d*y /dx*|

The derivation of this result is given in any standard calculus text.
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EXAMPLE [12:14 H

When the skier reaches point A along the parabolic path in Fig. 12-274,
he has a speed of 6 m/s which is increasing at 2 m/s>. Determine the
direction of his velocity and the direction and magnitude of his
acceleration at this instant. Neglect the size of the skier in the calculation.

SOLUTION

Coordinate System. Although the path has been expressed in terms
of its x and y coordinates, we can still establish the origin of the n, t axes
at the fixed point A on the path and determine the components of v
and a along these axes, Fig. 12-27a.

Velocity. By definition, the velocity is always directed tangent to
the path. Since y = 554%, dy/dx = 15x, then at x = 10 m, dy/dx = 1.
Hence, at A, v makes an angle of § = tan~'l = 45° with the x axis,
Fig. 12-27b. Therefore,

vy =6m/s 45°F Ans.

.. . ) LY
The acceleration is determined from a = u, + (v*/p)u,. However, it |
is first necessary to determine the radius of curvature of the path at A
(10 m, 5 m). Since d*y/dx*> = 15, then

_ [+ @/t [0+ (G5x)? ]

P 2 2 = 28.28 m
|d.)‘/dx.| I%l x=10m
The acceleration becomes
. v?
a, = du, + 711,,
(6 m/s)’
=2u, + ——
YT 2828 m ™ ®
= {2u, + 1.273u, } m/s*
As shown in Fig. 12-27b,
n
a=V@em/s) + (1273 m/s)? = 237 m/s? 1273 m /&2
' 90°
2 A
= -l = 9 450
¢ =N gy T ] Z—
Thus, 45° + 90° + 57.5° — 180° = 12.5° so that, J 2m/s?
a=23Tm/s® 125°> Ans. !
NOTE: By using n, t coordinates, we were able to readily solve this . ®)
Fig. 12-27

problem through the use of Eq. 12-18, since it accounts for the
separate changes in the magnitude and direction of v.
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EXAMPLE [12:15

A race car C travels around the horizontal circular track that has a
radius of 300 ft, Fig. 12-28. If the car increases its speed at a constant
rate of 7 ft/s% starting from rest, determine the time needed for it to
reach an acceleration of 8 ft/s>. What is its speed at this instant?

e e—

Fig. 12-28

SOLUTION

Coordinate System. The origin of the n and ¢ axes is coincident with
the car at the instant considered. The ¢ axis is in the direction of
motion, and the positive n axis is directed toward the center of the
circle. This coordinate system is selected since the path is known.

Acceleration. The magnitude of acceleration can be related to its

componentsusing a = Va? + a2. Herea, = 7 ft/s% Since a, = v*/p,
the velocity as a function of time must be determined first.

v=17 t (at)ct

v=0+ Tt
Thus
vt (T .
—— e ——— ‘] ft <
a, p 3 0.163¢ ft/s

The time needed for the acceleration to reach 8 ft/s* is therefore
a=Va+ a:

8 ft/s? = V(7 ft/s?) + (0.1634)?

Solving for the positive value of ¢ yields
0.1637 = V(8 ft/s?)? — (7 ft/s?)>

t=487s Ans.
Velocity. The speed at time 1 = 4.87 s is
v ="Tt="T487) = 34.1 ft/s Ans.

NOTE: Remember the velocity will always be tangent to the path,
whereas the acceleration will be directed within the curvature of the path.
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EXAMPLE [M2016 ﬂ

1n Y
> 4

The boxes in Fig. 12-294 travel along the industrial conveyor. If a box
as in Fig. 12-29b starts from rest at A and increases its speed such that
a, = (0.2f) m/s*, where  is in seconds, determine the magnitude of its
acceleration when it arrives at point B.

SOLUTION

Coordinate System. The position of the box at any instant is defined
from the fixed point A using the position or path coordinate s,
Fig. 12-29b. The acceleration is to be determined at B, so the origin of
the n, t axes is at this point.

Acceleration. To determine the acceleration components a, = ¥
and a, = v*/p, it is first necessary to formulate v and # so that they
may be evaluated at B. Since vy, = 0 when 7 = 0, then

a=b=02 (1)
v t
/dv = /0.2tdt
0 0
v = 0.17 @)

The time needed for the box to reach point B can be determined by
realizing that the position of B is sz = 3 + 27(2)/4 = 6.142m,
Fig. 12-29b, and since s, = 0 when 7 = 0 we have

ds
dt

6.142 Iy
/ ds = / 0.172dt
0 0

6.142m = 0.0333r3
1y = 5.690s

v=—=0.17"

Substituting into Egs. 1 and 2 yields
(ap), = by = 0.2(5.690) = 1.138 m/s>

vg = 0.1(5.69)* = 3.238 m/s

At B, pg = 2 m, so that

B 1.138m/s?

The magnitude of ag, Fig. 12-29¢, is therefore o
C

ap = V(1.138 m/s)? + (5242 m/s?)? = 536 m/s> Ans. Fig. 12-29
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. FUNDAMENTAL PROBLEMS

F12-27. The boat is traveling along the circular path
with a speed of v = (0.0625¢%) m/s, where ¢ is in seconds.
Determine the magnitude of its acceleration when 7 = 10s.

t

v = 0.0625¢
40m n

(&)
F12-27

F12-28. The car is traveling along the road with a speed
of v = (2s)m/s, where s is in meters. Determine the
magnitude of its acceleration when s = 10 m.

v=(25) m/s

F12-28

F12-29. If the car decelerates uniformly along the curved
road from 25m/s at A to 15m/s at C, determine the
acceleration of the car at B.

F12-29

F12-30. When x = 10 ft, the crate has a speed of 20 ft/s
which is increasing at 6 ft/s>. Determine the direction of the
crate’s velocity and the magnitude of the crate’s acceleration
at this instant.

F12-30

F12-31. If the motorcycle has a deceleration of
a, = —(0.001s) m/s* and its speed at position A is 25 m/s,
determine the magnitude of its acceleration when it
passes point B.

F12-31

F12-32. The car travels up the hill with a speed of
v = (0.2s) m/s, where s is in meters, measured from A.
Determine the magnitude of its acceleration when it is at
point s = 50 m, where p = 500 m.

F12-32
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| | PROBLEMS

12-114. A car is traveling along a circular curve that has a
radius of 50 m. If its speed is 16 m/s and is increasing
uniformly at 8 m/s’, determine the magnitude of its
acceleration at this instant.

12-115. Determine the maximum constant speed a race
car can have if the acceleration of the car cannot exceed
7.5 m/s® while rounding a track having a radius of curvature
of 200 m.

*12-116. A car moves along a circular track of radius
250 ft such that its speed for a short period of time
0=1t=4ds, is v=23(t+ > ft/s, where ¢ is in seconds.
Determine the magnitude of its acceleration when 1 = 3s.
How far has it traveled inr = 3 s?

12-117. A car travels along a horizontal circular curved
road that has a radius of 600 m. If the speed is uniformly
increased at a rate of 2000 km/h?, determine the magnitude
of the acceleration at the instant the speed of the car is
60 km /h.

12-118. The truck travels in a circular path having a radius
of 50 m at a speed of » = 4 m/s. For a short distance from
s = 0, its speed is increased by # = (0.055) m/s>, where s is
in meters. Determine its speed and the magnitude of its
acceleration when it has moved s = 10 m.

Prob. 12-118

12-119. The automobile is originally at rest at s = 0. If its
speed is increased by © = (0.05:%) ft/s>, where ¢ is in
seconds, determine the magnitudes of its velocity and
acceleration when 1 = 18 s.

#12-120. The automobile is originally at rest s = 0. If it
then starts to increase its speed at ¥ = (0.05¢%) ft/s*, where
tis in seconds, determine the magnitudes of its velocity and
acceleration at s = 550 ft.

300 ft

prs-

Gy

N

Probs. 12-119/120

12-121.  When the roller coaster is at B, it has a speed of
25 m/s, which is increasing at @, = 3 m/s>. Determine the
magnitude of the acceleration of the roller coaster at this
instant and the direction angle it makes with the x axis.

12-122. If the roller coaster starts from rest at A and its speed
increases at ¢, = (6 — 0.06s)m/s”, determine the magnitude
of its acceleration when it reaches B where sz = 40 m.

v
" I
-~y 100x

SRS
mﬂ'k‘%k‘

Probs. 12-121/122
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15 m/s while making a turn on a circular curve from A to B. after which its speed is defined by » = (25 — 0.155) m/s.
If it takes 45 s to make the turn. determine the magnitude of Determine the magnitude of the car’s acceleration when it
the boat’s acceleration during the turn. reaches point B, where s = 51.5mand x = 50 m.

. 12-123. The speedboat travels at a constant speed of 12-125. The car passes point A with a speed of 25 m/s
12

12-126. If the car passes point A with a speed of 20 m/s
and begins to increase its speed at a constant rate of
a, = 0.5m/s%, determine the magnitude of the car’s
acceleration whens = 100mandx = 0.

Probs. 12-125/126

Prob. 12-123

12-127. A train is traveling with a constant speed of
14 m/s along the curved path. Determine the magnitude of
the acceleration of the front of the train, B, at the instant it
reaches point A (y = 0).

*12-124. 'The car travels along the circular path such that
its speed is increased by a, = (0.5¢) m/s% where ¢ is in
seconds. Determine the magnitudes of its velocity and
acceleration after the car has traveled s = 18 m starting
from rest. Neglect the size of the car.

/\ v (m)

x (m)

Prob. 12-124 Prob. 12-127
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*12-128. When a car starts to round a curved road
with the radius of curvature of 600 ft, it is traveling at
75 ft/s. If the car’s speed begins to decrease at a rate of
v = (-0.06/%) ft/s? determine the magnitude of the
acceleration of the car when it has traveled a distance of
s =700 ft.

Prob. 12-128

12-129. When the motorcyclist is at A, he increases his
speed along the vertical circular path at the rate of
¥ = (0.31) ft/s%, where ¢ is in seconds. If he starts from rest
at A, determine the magnitudes of his velocity and
acceleration when he reaches B.

12-130. When the motorcyclist is at A, he increases his
speed along the vertical circular path at the rate of
v = (0.04s) ft/s*> where s is in ft. If he starts at v, = 2 ft/s
where s = 0 at A, determine the magnitude of his velocity
when he reaches B. Also, what is his initial acceleration?

3000 607

Probs. 12-129/130

12-131. At a given instant the train engine at E has a
speed of 20 m/s and an acceleration of 14 m/s* acting in the
direction shown. Determine the rate of increase in the
train’s speed and the radius of curvature p of the path.

Prob. 12-131

*12-132. Car B turns such that its speed is increased by
(a)g = (0.5¢" m/sz. where ¢ is in seconds. If the car starts
from rest when 6 = 0°, determine the magnitudes of its
velocity and acceleration when the arm AB rotates # = 30°.
Neglect the size of the car.

12-133. Car B turns such that its speed is increased by
(a)y = (0.5¢") m/s* where ¢ is in seconds. If the car starts
from rest when # = 0°, determine the magnitudes of its
velocity and acceleration when 1 = 2 s. Neglect the size of
the car.

Probs. 12-132/133
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12-134. A boat is traveling along a circular curve having a
radius of 100 ft. If its speed at r = 0 is 15 ft/s and is
increasing at © = (0.8) ft/s* determine the magnitude of
its acceleration at the instant 1 = 5's.

12-135. A boat is traveling along a circular path having a
radius of 20 m. Determine the magnitude of the boat’s
acceleration when the speed is v = Sm/s and the rate of
increase in the speed is ¥ = 2 m/s%

*®12-136. Starting from rest, a bicyclist travels around
a horizontal circular path, p = 10m, at a speed of
v = (0.09¢ + 0.1¢) m/s, where ¢ is in seconds. Determine
the magnitudes of his velocity and acceleration when he has
traveled s = 3 m.

12-137. A particle travels around a circular path having a
radius of 50 m. If it is initially traveling with a speed of 10 m/s
and its speed then increases at a rate of ¥ = (0.05 v) m/s?,
determine the magnitude of the particle’s acceleraton four
seconds later.

12-138. When the bicycle passes point A, it has a speed
of 6 m/s, which is increasing at the rate of ¥ = 0.5 m/s%
Determine the magnitude of its acceleration when it is at
point A.

= X
b }Zl"(zo)

/
750 m
/

Prob. 12-138

12-139. The motorcycle is traveling at a constant speed of
60 km /h. Determine the magnitude of its acceleration when
itis at point A.

Prob. 12-139

*12-140. The jet plane travels along the vertical parabolic
path. When it is at point A it has a speed of 200 m /s, which
is increasing at the rate of 0.8m/s>. Determine the
magnitude of acceleration of the plane when it is at point A.

/_v = 04x?

10 km

I-—Skm—-'

Prob. 12-140

12-141. The ball is ejected horizontally from the tube with
a speed of 8 m/s. Find the equation of the path, y = flx),
and then find the ball’s velocity and the normal and
tangential components of acceleration when + = 0.25 s.

Prob. 12-141
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12-142. A toboggan is traveling down along a curve which
can be approximated by the parabola y = 0.01x>
Determine the magnitude of its acceleration when it reaches
point A, where its speed is v, = 10 m/s, and it is increasing
at the rate of ¥, = 3 m/s%

—p—

Prob. 12-142

12-143. A particle Pmoves along the curve y = (x> — 4)m
with a constant speed of 5 m/s. Determine the point on the
curve where the maximum magnitude of acceleration
occurs and compute its value.

*12-144. The Ferris wheel turns such that the speed of the
passengers is increased by © = (41) ft/s’, where ¢ is in

seconds. If the wheel starts from rest when 6 = 0°

determine the magnitudes of the velocity and acceleration
of the passengers when the wheel turns = 30°.

5
0*“»}3‘
>N

el
[

Prob. 12-144

12-145. If the speed of the crate at A is 15 ft/s, which is
increasing at a rate » =3 {t/s? determine the magnitude of
the acceleration of the crate at this instant.

y

Yy,

10 ft —

Prob. 12-145

12-146. The race car has an initial speed v, = 15 m/sat A.
If it increases its speed along the circular track at the rate
a, = (0.4s) m/sz. where s is in meters, determine the time
needed for the car to travel 20 m.Take p = 150 m.

Prob. 12-146

12-147. A boy sits on a merry-go-round so that he is
always located at r = 8 ft from the center of rotation. The
merry-go-round is originally at rest, and then due to rotation
the boy’s speed is increased at 2 ft/s* Determine the time
needed for his acceleration to become 4 ft/s>.

*12-148. A particle  travels along the path
y=a + bx + cx? where a, b, ¢ are constants. If the speed
of the particle is constant, » = v, determine the x and y
components of velocity and the normal component of
acceleration when x = 0.
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12-149. The two particles A and B start at the origin O and
travel in opposite directions along the circular path at
constant  speeds vy = 0.7m/s and vz = 1.5m/s,
respectively. Determine in ¢t = 25, (a) the displacement
along the path of each particle, (b) the position vector to each
particle, and (c) the shortest distance between the particles.

12-150. The two particles A and B start at the origin O and
travel in opposite directions along the circular path at
constant speeds v, = 0.7 m/s and vy = 1.5 m/s, respectively.
Determine the time when they collide and the magnitude of
the acceleration of B just before this happens.

y

B

N 10

vp=15m/s

vy =0Tm/s
Probs. 12-149/150

12-151. The position of a particle traveling along a curved
path is s = (3t — 412 + 4) m, where ¢ is in seconds. When
t = 2 s, the particle is at a position on the path where the
radius of curvature is 25 m. Determine the magnitude of the
particle’s acceleration at this instant.

*12-152. If the speed of the box at point A on the track is
30 ft/s which is increasing at the rate of =5 ft/s?,determine
the magnitude of the acceleration of the box at this instant.

y

Prob. 12-152

®12-153. A go-cart moves along a circular track of radius
100 ft such that its speed for a short period of time,
0=r1r=4s, is v=0601 —¢")ft/s. Determine the
magnitude of its acceleration when + = 2 s. How far has it
traveled in r = 2 s? Use a numerical method to evaluate the
integral.

®12-154. The ball is kicked with an initial speed
vy = 8 m/s at an angle 0, = 40° with the horizontal. Find
the equation of the path, y = fix), and then determine the
ball’s velocity and the normal and tangential components of
its acceleration when r = 0.25 s.

Prob. 12-154

12-155. The race car travels around the circular track with
a speed of 16 m/s. When it reaches point A it increases its
speed at @, = (G0'*) m/s%, where v is in m/s. Determine the
magnitudes of the velocity and acceleration of the car when
it reaches point B. Also, how much time is required for it to
travel from A to B?

v

Prob. 12-155
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*12-156. A particle P travels along an elliptical spiral
path such that its position vector r is defined by

= {2cos(0.1ni + 1.5sin(0.10)j + 20k } m, where ¢ is in
seconds and the arguments for the sine and cosine are given
in radians. When ¢t = 8 s, determine the coordinate direction
angles a, B, and vy, which the binormal axis to the osculating
plane makes with the x. y, and z axes. Hint: Solve for the
velocity vp and acceleration ap of the particle in terms
of their i, j, k components. The binormal is parallel to
vp X ap. Why?

AL
/

Prob. 12-156

12-157. The motion of a particle is defined by the
equations x = (2t + )m and y = () m, where [ is in

seconds. Determine the normal and tangential components
of the particle’s velocity and acceleration whenr = 2 s.

12-158. The motorcycle travels along the elliptical track at
a constant speed v. Determine the greatest magnitude of
the acceleration if a > b.

Prob. 12-158

12.8 Curvilinear Motion: Cylindrical

Components

Sometimes the motion of the particle is constrained on a path that is best

described using cylindrical coordinates. If motion is restricted to the plane,

then polar coordinates are used.

Polar Coordinates.

We can specify the location of the particle
shown in Fig. 12-30a using a radial coordinate r, which extends outward
from the fixed origin O to the particle, and a transverse coordinate 0,

which is the counterclockwise angle between a fixed reference line and r
the r axis. The angle is generally measured in degrees or radians, where 0
1 rad = 180°/7r. The positive directions of the r and 6 coordinates are o

defined by the unit vectors u, and u,, respectively. Here u, is in the

Position

direction of increasing r when 6 is held fixed, and u, is in a direction of (a)
increasing 6 when r is held fixed. Note that these directions are

perpendicular to one another.

Fig. 12-30
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Position

(a)

uu\%',: Au,
10

r

A0
(b)

Velocity

(c)

Fig. 12-30 (cont.)

KINEMATICS OF A PARTICLE

Position. At any instant the position of the particle, Fig. 12-30a, is
defined by the position vector

r=ru, (12-22)

Velocity. The instantancous velocity v is obtained by taking the time
derivative of r. Using a dot to represent the time derivative, we have

v=rF=iu +ra,

To evaluate u,, notice that u, only changes its direction with respect to
time, since by definition the magnitude of this vector is always one unit.
Hence, during the time At a change Ar will not cause a change in the
direction of u,; however, a change Af will cause u, to become uj, where
u, = u, + Au,, Fig. 12-30b. The time change in u, is then Au,. For small
angles A# this vector has a magnitude Awu, = 1(A#) and acts in the uy
direction. Therefore, Au, = Afuy, and so

= i ﬂ— li .A_o
i, = Jim = (dim gy )

u, = fu, (12-23)

Substituting into the above equation, the velocity can be written in
component form as

‘ v = vu, + vguy (12-24)
where
V=7
! . 12-25
| Vg rf ( )

These components are shown graphically in Fig. 12-30c. The radial
component v, is a measure of the rate of increase or decrease in the
length of the radial coordinate, i.c., r; whereas the transverse component
vy can be interpreted as the rate of motion along the circumference of a
circle having a radius r. In particular, the term 6 = d6/dt is called the
angular velocity, since it indicates the time rate of change of the angle 6.
Common units used for this measurement are rad/s.

Since v, and v, are mutually perpendicular, the magnitude of velocity
or speed is simply the positive value of

v = VP + (rf) (12-26)

and the direction of v is, of course, tangent to the path, Fig. 12-30c.
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Acceleration. Taking the time derivatives of Eq. 12-24, using
Eqgs. 12-25, we obtain the particle’s instantaneous acceleration,

a=v= 'fll, + ’.'I‘I, + ;'éuf; + r(').u” + réﬁ()

To evaluate g, it is necessary only to find the change in the direction of
u, since its magnitude is always unity. During the time Az, a change Ar
will not change the direction of u,, however, a change Af will cause u, to
become wj, where uj; = u, + Auy, Fig. 12-30d. The time change in u is
thus Au,. For small angles this vector has a magnitude Aw, =~ 1(A#) and
acts in the —u, direction; i.e., Auy = —A#fu,. Thus,

o Aw (A0
W= 0 ar \aroa /W
u, = —6u, (12-27)

Substituting this result and Eq. 12-23 into the above equation for a, we
can write the acceleration in component form as

a=au, + aguy (12-28)
where
a, =7 — r@®
& - ; 12-29
ag = ro + 2r0 ( )

The term 6 = d*0/dr* = d/dud6/dr) is called the angular acceleration
since it measures the change made in the angular velocity during an
instant of time. Units for this measurement are rad/s>.

Since a, and a, are always perpendicular, the magnitude of acceleration
is simply the positive value of

a= V(- r6> + (ré + 2i6) (12-30)

The direction is determined from the vector addition of its two
components. In general, a will not be tangent to the path, Fig. 12-30e.

(d)

Acceleration

(e)

69
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The spiral motion of this girl can
be followed by using cylindrical
components. Here the radial
coordinate r is constant, the
transverse coordinate 6 will
increase with time as the girl
rotates about the vertical, and her
altitude z will decrease with time.

Cylindrical Coordinates. If the particle moves along a space
curve as shown in Fig. 12-31, then its location may be specified by the
three cylindrical coordinates, r, 6, z. The z coordinate is identical to that
used for rectangular coordinates. Since the unit vector defining its
direction, u_, is constant, the time derivatives of this vector are zero, and
therefore the position, velocity, and acceleration of the particle can be
written in terms of its cylindrical coordinates as follows:

rp = ru, + zu,
m, + rfu, + fu, (12-31)
(F — réMu, + (r6 + 2i)u, + 7u. (12-32)

Il

¥

a

Time Derivatives. The above equations require that we obtain the
time derivatives r, 7, 6, and 6 in order to evaluate the r and 6§ components
of v and a. Two types of problems generally occur:

1. [If the polar coordinates are specified as time parametric equations,
r = r(f)and 6 = 6(r), then the time derivatives can be found directly.

2. [If the time-parametric equations are not given, then the path r = f(0)
must be known. Using the chain rule of calculus we can then find the
relation between i and 6, and between 7 and 6. Application of the
chain rule, along with some examples, is explained in Appendix C.

Procedure for Analysis

Coordinate System.

e Polar coordinates are a suitable choice for solving problems when
data regarding the angular motion of the radial coordinate r is
given to describe the particle’s motion. Also, some paths of motion
can conveniently be described in terms of these coordinates.

e To use polar coordinates, the origin is<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>