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Dynamic Programming Based Operation of Reservoirs
Applicability and Limits

Dynamic programming is a method of solving multi-stage problems in which decisions at

one stage become the conditions governing the succeeding stages. It can be applied to the

management of water reservoirs, allowing them to be operated more efficiently.

This is one of the few books dedicated solely to dynamic programming techniques used

in reservoir management. It presents the applicability of these techniques and their limits

in the operational analysis of reservoir systems. In addition to providing optimal reservoir

operation models that take into account water quantity, the book also examines models

that consider water quality. The dynamic programming models presented in this book

have been applied to reservoir systems all over the world, helping the reader to appreciate

the applicability and limits of these models. The book also includes a model for the

operation of a reservoir during an emergency situation. This volume will be a valuable

reference to researchers in hydrology, water resources and engineering, as well as to

professionals in reservoir management.
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Preface

The second half of the twentieth century can clearly be iden-

tified as an epoch having a strong, lasting imprint on our

paradigms and methods of resource use and management.

Ideas, compassions, and concepts which dominate our think-

ing and debates have emerged and evolved during the last four

or five decennia. Nothing manifests this better than the

so-called Brundtland Report (WCED, 1987). Ever since its

publication, the term and concept of sustainable development

cannot be missed in any declaration or framework issued or

developed in seeking better conditions for humans and the

environment alike. The recent millennium was a welcome

opportunity to summarize this process and endorse principles

and set new objectives. As far as the ethical, political, and

practical aspects of water resources management are con-

cerned, the large intergovernmental environmental conferences

like the United Nations Conference on Environment and

Development (UN, 1992) and the World Summit on

Sustainable Development (WSSD, 2002) can be mentioned

along with the formulation of UN Millennium Development

Goals (MDGs, 2000) and the Millennium Ecosystem

Assessment (2005). Beyond these general conferences and

assessments, where water took a substantial part of the

agenda, the world water fora (Marrakech, 1997; The Hague,

2000; Kyoto, 2003; Mexico City, 2006) and the Bonn

Conference on Freshwater 2001 provided the broadest plat-

forms for stakeholder dialogue involving ministerial, NGO,

scientific, professional, and other interest groups, and indige-

nous people participation. The impacts of these conferences

were analyzed by, among others, Bogardi and Szöllösi-Nagy

(2004).

Besides these events, the World Water Vision (Cosgrove

and Rijsberman, 2000) and the first issue of the World Water

Development Report (2003) can be mentioned as the key

documents, summarizing the process of assessing the avail-

ability, use, and protection of this precious resource.

Irrespective of considerable successes in putting water issues

on the international agenda (such as the Group of 8 meeting

in Evian in 2003), we are far from having secured the

‘‘breakthrough’’ towards achieving the water related MDGs

and other global objectives.

A book like the present one, focusing on one methodolog-

ical concept and its use in a particular form of water resources

management, namely the application of dynamic program-

ming (DP) in the operational analysis of reservoirs, would

certainly be overcharged if not only the principles and the

history of the idea of sustainable development, MDGs, envi-

ronmental awareness and protection, and biodiversity, but

also water supply, food and energy security, disaster mitiga-

tion or participatory processes, public–private partnerships,

and other key issues of the present water debate were pre-

sented and discussed in the full context of their historic evo-

lution. Yet these two lines of thought, the conceptual one

describing our changing world views, and the more focused

methodological development of management techniques – in

this case the application of DP – are closely intertwined.

Resource limitations and increasing demand pose the ques-

tion of human and ecosystem survivability and reveal the

urgent need for better tools and methods to match resources

and demand at a certain point in space and time on the

practical governance (management) scale.

Even if we concentrate only on the subject (and the inherent

self-limitations) of this book, a 50-year-long saga unfolds.

While storing water is certainly among the very first actions

of human civilization (aptly proven by remnants of dams from

antiquity) the 1950s (and the following three decades) experi-

enced the strongest boom ever in dam building. Almost three-

quarters of the dams of the worldwide total of approximately

40 000 were built between 1950 and 1980 (Takeuchi, 2002).

The storage capacity thus created in many parts of the world –

while not uncontroversial in its environmental impacts and

other side effects – has certainly contributed to avoiding

worst-case-scenario prophecies of food shortage at global

scale.

However, building dams alone could not and cannot solve

the problem. Half a century ago we paid more attention to

sound engineering of the structures than to efficient

xi



management of the then new facilities, or to erosion control in

the upstream watersheds. Consequently, the potential of

many reservoirs was not exploited to the full. Instead of

refining operational rules, saving water, and saving storage

space from being lost to siltation, more and more new dams

were built. No wonder that, with growing environmental

awareness and international eco-advocacy, the Hamletian

question ‘‘to build or not to build?’’ was answered more and

more by choosing the latter option. The creation of theWorld

Commission on Dams (WCD), its report Dams and

Development (2000) and the subsequent reactions of profes-

sional associations like ICOLD and ICID mark this process.

In the meantime much less attention was given to the less

dramatic, but nevertheless crucial question: ‘‘Do we operate

our reservoirs well?’’ The answer to this silent question would

have been and, regrettably enough, would still be no rather

than yes. While the first part of this ‘‘double no,’’ not to build

new dams and not to use the existing ones to their fullest

potential, could be seen as ideologically biased; the second

‘‘no’’ is actually unforgivable, irrespective of one’s position as

pro or contra dams. Improving the performance of existing

reservoirs and complex reservoir systems would not only

provide more water for more beneficial uses, but could also

mitigate environmental impacts and significantly reduce the

need for new dams. Thus a proactive approach to improve

reservoir operation would ultimately ease, if not eliminate, the

urgency of some ‘‘build or not to build’’ dilemmas.

Do we have themeans to implement the necessary improve-

ments? It is the conviction of the authors that the answer must

be a resounding yes, an opinion that we believe is broadly

shared by the respective scientific community.

Almost parallel to the previously described dam-building

boom systems analysis, operations research (OR) techniques

have emerged as new intellectual tools with which to analyze

complex systems. The introduction of digital computational

technology and what we today call information technology

opened the door for wide-scale, practically relevant applica-

tions. As far as dynamic programming, the OR method with

the biggest potential to improve reservoir operation, is con-

cerned, the year 2007 has special significance. It marks the

50th anniversary of the pioneering paper by Bellman (1957)

formulating and proving the optimality criterion of this

appealing decomposition technique. This book is dedicated

to observing this anniversary. Yet there is no real ground for

celebration beyond commemorating a significant scientific

achievement. This milestone could and should be taken as

an opportunity to review why 50 years in the emerging infor-

mation society, with its fast knowledge transfer mechanisms,

thousands of papers, articles, lectures and conference presen-

tations, and dozens of successful case studies, did not suffice

to ensure a wide-scale breakthrough of DP based methods

into real-world reservoir system operation.

The advent of desktop computational development in the

1980s and 1990s brought the opportunity for research groups

to prove that DP and its derivative methods are not only

exciting scientific tools, but potent techniques to be applied

in improved reservoir operational management worldwide.

This book confirms this peak, as most of the references orig-

inate from the last two decades.

There is an inherent and acceptable time lag between scien-

tific discovery and development and ‘‘real-world’’ application.

However, the students of the 1980s and 1990s are already in

management positions, thus the question needs urgent atten-

tion: why have we only a handful of real practical applications

like the DP based operational analysis of the reservoir system

in the strategic plans of ‘‘Eau 2000’’ and ‘‘GEORE’’ of Tunisia

(Bogardi et al., 1994).

This book emerges from the concern of those actively

involved in the development of DP based operational

methods for reservoir systems.Many of the practically relevant

case studies, tests of DP and stochastic dynamic programming

(SDP), were carried out between 1985 and 1998 at the Asian

Institute of Technology, Bangkok, Thailand, and later at the

then Wageningen Agricultural University, the Netherlands,

under the supervision and guidance of the second author. It is

however due to the enthusiasm and dedication of the first

author that this present book came into being. He not only

initiated but also carried out themost overwhelming part of the

work, which provides a comprehensive account of the applic-

ability of DP based methods to derive sophisticated and yet

practically relevant rules for real-world reservoir systems, oper-

ating under real-world conditions and constraints.

This work, while reflecting the entire related literature, is

reliant on results published in several reports, papers, disserta-

tions, and master theses prepared in the late 1980s and 1990s by

several members of the above-mentioned research groups. The

authors wish to acknowledge the implicit intellectual input

and active assistance of Dr. Saisunee Budhakooncharoen,

Professor Huang Wen Cheng, Dr. M.D.U.P. Kularathna,

and Dr. Darko Milutin. The works of He Qing, Anne

Verhoef, Dr. Bijaya Prakash Shrestha, and Dr. Dinesh Lal

Shrestha are also reflected in this book. Furthermore, collabo-

ration with Professor RicardoHarboe, Dr. GunaNidi Paudyal,

and Professor Ashim Das Gupta as co-authors of papers and

co-supervisors of some of these theses is greatly appreciated.

The aim of this book goes beyond providing the reference

for our claim that DP based techniques can and should be

applied for the improved operation of reservoir systems, even

under conditions of changing objectives, constraints and

hydro-climatic regimes as has been demonstrated recently by
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Brass (Brass, 2006). We feel that, next to its contribution to

bridging the gap between development and method applica-

tions, the book could be used as special reading for graduate

students specializing in water resources management. In this

context, this book can be seen as an extension of DP related

methods and reservoir system operation supplementing the

excellent textbook of Daniel P. Loucks and Eelco van Beek,

Water Resources Systems Planning and Management (Loucks

and Beek, 2005).

It is our paramount objective to contribute to the education

of competent water resourcesmanagers. This book is intended

to be an eye-opener for those bearing managerial responsibil-

ities at present, and a source of inspiration and knowledge for

the coming generation of water resources managers.
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1 Water resources management

1.1 GENERAL

The water resource has a major influence on human activities.

It is a major input in almost all sectors of human endeavor.

Water serves essential biological functions and no human can

survive in its complete absence. Water’s contributions to

human welfare include its role as a basic element of social

and economic infrastructure. Also important are water’s nat-

ural attributes that contribute to human aesthetic enjoyment

and general psychological welfare. But water also has negative

impacts on human well-being. Floods, inundations, and water-

borne diseases are also associated with water.

Water has played a major role in socio-economic develop-

ment due to the magnitude and widespread occurrence of

its positive and negative impacts. The quality of human life

is directly dependent on how well these resources are man-

aged. Water management activities are intended to enhance

the positive contributions of water or control its negative

impacts.

Ancient civilizations grew up in the river valleys of the

Tigris and Euphrates, Nile, Indus, Yellow River, etc., where

there was plenty of water. Water management activities, par-

ticularly irrigation, played a central role in the development of

these civilizations. In those days the planning and manage-

ment of the water resources were primarily for single uses. The

continuing growth of the human population, especially since

the nineteenth century, together with rapid industrial develop-

ment and rising expectations of a better life necessitated more

complex and consistent water resources management. These

competing demands and uncontrolled use, along with the

pollution of water, have made it a scarce resource.

Water resources problems are going to be more complex

worldwide in the future (Simonovic, 2000). Population

growth, climate variability, regulatory requirements, project

planning horizons, temporal and spatial scales, social and

environmental considerations, transboundary consider-

ations, etc., all contribute to the complexity of water resources

planning and management problems. Traditional engineering

has gradually been overchallenged by the multitude of

claims, constraints, and opportunities. Since the Second

World War, systems analysis has emerged as one of the

tools for solving such complex water resources management

problems (Dantzing, 1963; Hillier and Lieberman, 1990;

Loucks et al., 1981).

Systems analysis can generally be defined as a group of

methods developed for identifying, describing, and screening

a system, its performance and behavior under different con-

ditions and with different goals to be pursued. It provides a

decision maker with a broad information base about the

system and gives the opportunity of estimating the system

behavior to compare several feasible alternatives. In its pro-

cess, a variety of initial assumptions, objectives, constraints,

and decision variables are specified and their influence on the

system operation is evaluated. Hence, systems analysis tech-

niques can be very valuable tools for solving planning and

operating tasks in water resources management based on the

systematic and efficient organization and analysis of relevant

information.

There are a number of terms which are used synonymously

with the systems approach; these include systems engineering,

operations research, operations analysis, management sci-

ence, cybernetics, and policy analysis. Hall and Dracup

(1970) defined systems engineering as the art and science of

selecting, from a large number of feasible alternatives involv-

ing substantial engineering content, that particular set of

actions which will accomplish the overall objectives of the

decisions makers, within the constraints of law, morality,

economics, resources, political and social pressures, and

laws governing physical life and other natural sciences.

Together with the determination of physical elements of a

system, the operation policy of the system is equally impor-

tant in finding the best performance of the system to serve its

purpose. The operation policy of a water resources system can

be defined on a short-term or a long-term time base. This

1



classification implies not only the time base (e.g., hourly or

daily for short-term and monthly or seasonal for long-term

operation) but also the uncertainty of the system and its

components. For short-term operation, uncertainty may be

neglected, and all the phenomena can be considered as deter-

ministic. However, for long-term operation the stochasticity,

inherent both in a system and in its environment, must not be

neglected. The complexity of a system itself, together with the

uncertainty of all the phenomena involved including the goals

to be achieved, raises the need for effective methods for deriv-

ing such operation policies that would provide an expected

‘‘optimal’’ response of the system under a number of different

conditions. A variety of methods in systems analysis or oper-

ations research have been developed for analyzing water

resources systems. In general, systems analysis implies two

basic strategies in operational assessment: simulation and

optimization approaches.

Simulation is used to analyze the effects of proposed man-

agement plans: achievement regarding system performance is

evaluated based on selected sets of decisions. By definition,

the simulation method does not claim that a particular com-

bination of decisions represents the optimal one. The diffi-

culty inherent in this approach is the large number of feasible

operation plans (combinations of decisions) to be checked. If

simulation alone were used, the search for the ‘‘best’’ solution

might not only be very tedious, but also could lead to alter-

natives far from the optimal one.

Optimization models are used to narrow down the

search for promising combinations of decision variables.

Optimization eliminates all the undesirable operation plans

and proposes policies which are close to the global optimal

solution. However, optimization usually relies on a very sim-

ple representation of a water resources system. Therefore,

optimized alternatives may be further refined by applying

simulation techniques. The most frequently used optim-

ization techniques in water resources management can be

classified into three major groups: (1) linear programming

(LP), (2) dynamic programming (DP), and (3) nonlinear pro-

gramming (NLP). This general classification, in addition to

simulation models, represents the basic methods used in plan-

ning andmanagement of water resources systems (Yeh, 1985).

An extremely large number of simulation and optimization

models providing a broad range of analysis capabilities for

evaluating reservoir operations have been built over the past

several decades. Wurbs (1993) sorted through these numer-

ous models and reached a better understanding of which

method might be the most useful in various types of deci-

sion support situations. Since most of the water resources

systems display considerable nonlinearities and sequential

nature, operational assessment – especially in the case of

reservoirs – is usually based on DP. The more so, since DP

lends itself to a relatively easy incorporation of stochasticity

(Loucks et al., 1981).

1.2 ROLE OF RESERVOIRS

According to Takeuchi (2002), there are presently nearly

40 000 large reservoirs in the world impounding approxi-

mately 6000km3 of water and inundating an aggregate area

of 400 000 km2.Recent surveys show that this number increases

at a rate of approximately 250 new reservoirs each year. These

figures clearly reflect the fact that reservoirs, irrespective of

their interference in the aquatic ecosystem of the respective

watercourse, have a firmly established position in our striving

to harness and manage the available water resources.

The history of man-made reservoirs can be traced back to

antiquity. Perhaps at the beginning the ‘‘water reservoir’’ was

nomore than a huge tank to store water during the wet season

for use during the dry season. Today, with the development of

civilization, reservoirs can be found all over the world. The

reservoirs can serve single or multiple purposes including

hydropower generation, water supply for irrigation, indus-

trial and domestic use, flood control, improvement of water

quality, recreation, wildlife conservation, and navigation.

The effective use of reservoir systems has become increasingly

important. Next to the exigence of the rational use of a

limited resource, a better-managed reservoir may make the

physical extension of the system – to add new reservoirs –

unnecessary. The operation of a single reservoir for a single

function does not present many analytical problems, but the

same is not true when a reservoir fulfils a number of poten-

tially conflicting objectives or where several reservoirs are

operated conjunctively. Through a global review of perform-

ance of dams/reservoirs, the World Commission on Dams

(2000) presented an integrated assessment of when, how, and

why dams/reservoirs succeed or fail in meeting development

objectives.

Reservoir construction was most intensive during the

period 1950–70 in many well-developed regions where river

runoff was finally almost fully regulated. Subsequently, the

rates of reservoir construction have decreased considerably

although they are still high in those countries with rich natural

resources of river runoff. This is caused partly by the increas-

ing role of hydropower engineering where there are liquid and

solid fuel deficits. In addition, reservoirs provide the greater

part of the water consumed by industry, power stations, and

agriculture. They are the basis for large-scale water manage-

ment systems regulating river runoff as well as protecting

populated areas from floods and inundations.
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1.3 OPTIMAL RESERVOIR OPERATION

Reservoirs have to be best operated to achieve maximum

benefits from them. For many years the rule curves, which

define ideal reservoir storage levels at each season or month,

have been the essential operational tool. Reservoir opera-

tors are expected to maintain these pre-fixed water levels

as closely as possible while generally trying to satisfy

various water needs downstream. If the levels of reservoir

storage are above the target or desired levels, the release

rates are increased. Conversely, if the levels are below the

targets, the release rates are decreased. Sometimes opera-

tion rules are defined to include not only storage target

levels, but also various storage allocation zones, such as

conservation, flood control, spill or surcharge, buffer, and

inactive or dead storage zones. Those zones also may vary

throughout the year and the advised release range for each

zone is provided by the rules. The desired storage levels and

allocation zones mentioned above are usually defined based

on historical operating practice and experience. Having only

these target levels for each reservoir, the reservoir operator

has considerable responsibility in day-to-day operation with

respect to the appropriate trade-off between storage levels and

discharge deviations from ideal conditions. Hence, such an

operation requires experienced operators with sound judg-

ment. Needless to say, predetermined operation rules have

proven to be quite inflexible when dealing with unexpected

situations.

To counteract the inefficiency in operating a reservoir sys-

tem only by the ‘‘rule curves,’’ additional policies for opera-

tion have now been incorporated intomost reservoir operation

rules. These operation guidelines define precisely when condi-

tions are not ideal (e.g., when maintenance of the ideal storage

levels becomes impractical), and the decisions to be made for

various combinations of hydrological and reservoir storage

conditions. For some reservoir systems, this type of operation

policy has already taken over the rule curves and is acting as the

principal rule for reservoir operation.

Over the past several decades, increasing attention has been

given to systems analysis techniques for deriving opera-

tion rules for reservoir systems. As the references reveal, the

1980s and 1990s were the most productive period in this

respect. As a result, a variety of methods are now avail-

able for analyzing the operation of reservoir systems. In

general, these techniques lead to models which can be classi-

fied into two categories: optimization models and simula-

tion models. Simulation models can effectively analyze

the consequences of various proposed operation rules and

indicate where marginal improvements in operation policy

might be made. However, the simulation technique is not

very appropriate in selecting the best rule from the set of

possible alternatives.

Optimization models can eliminate the clearly undesirable

alternatives. Yeh (1985) reviewed the state-of-the-art of the

mathematical models developed for reservoir operations. The

alternatives that are found to be most promising based on

optimization methods can then be further analyzed and

improved using simulation techniques.

Although both optimization and simulation can be, and at

times are, used independently to analyze an operational pro-

blem, they are essentially two complementary methods. In

fact, optimization and simulation are used conjunctively to

derive and to assess alternative operating strategies of single

andmultiple reservoir systems (e.g., Jacoby and Loucks, 1972;

Mawer and Thorn, 1974; Gal, 1979; Karamouz and Houck,

1982, 1987; Stedinger et al., 1984; Tejada-Guibert et al., 1993;

Harboe et al., 1995; Liang et al., 1996).

Linear programming (LP) and dynamic programming

(DP) have been the most popular among the optimization

models in deriving optimum operation rules for reservoir

systems. Linear programming is concerned with solving

problems in which all relations among the variables are

linear, both in the constraints and in the objective function

to be optimized. The fact that most of the functions encoun-

tered in problems with reservoir operation are nonlinear has

been the main obstacle to the successful and practically rele-

vant use of LP in this area. Although linearization techniques

can be employed, this might not be satisfactory. The degree

of the approximation required in the linearization process

can seriously affect the reliability associated with this techni-

que. However, LP has been used in optimal reservoir oper-

ation and the following are some applications: Gablinger and

Loucks (1970), Roefs and Bodin (1970), Gilbert and Shane

(1982), Shane and Gilbert (1982), Palmer and Holmes (1988),

Randall et al. (1990), Reznicek and Simonovic (1990, 1992).

Due to this favorable coincidence the authors are convinced

that dynamic programming and its derivative techniques

have a superior applicability to serve as the basis for the

operation of real-world reservoir systems. Hence this book

is dedicated to exploring this potential. More than two dec-

ades after the large-scale introduction of DP based reservoir

operational studies, the time has come to review the develop-

ment and to outline, supported with practical case studies,

the vast field of applicability of DP based rules in reservoir

system operation.

Dynamic programming, a method that breaks down a

multidecision problem into a sequence of subproblems

with few decisions, is ideally suited for time-sequential

decision problems such as deriving operation policies for

reservoirs.
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1.4 CONVENTIONAL DYNAMIC

PROGRAMMING

Dynamic programming is a technique used for optimizing a

multistage process. It is a ‘‘solution-seeking’’ concept which

replaces a problem of n decision variables by n subproblems

having preferably one decision variable each. Such an

approach allows analysts to make decisions stage-by-stage,

until the final result is obtained. Hence the original problem

needs to be decomposed into subproblems and each subpro-

blem is referred to as a stage. This decomposition could be

defined either in space or in time. Each stage is characterized

by different system states expressed by the numerical value of

selected state variable(s). Transition of the state from one

stage to the next is expressed by a particular course of action

(or the decision what to do), which is represented by a decision

variable. Changes of the system’s state influenced by the

decision taken at the previous stage are described by the

state transformation equation. This transition of the state is

possible only if certain rules are followed: both system state

and decision variable can take values within particular

domains. These limits form a set of constraints which must

be met at every stage during the optimization process.

The computational routine for deriving the optimal policy

follows Bellman’s recursive equation (Eq. 1.1), which is

described diagrammatically in Figure 1.1. This can be solved

by either moving forward (forward DP) or moving backward

(backward DP) stage by stage.

For every state s at stage j the optimal policy is given by

(subscripts denote backward computational procedure)

f �j sj
� �
¼

min
max CSjXj

þ f �jþ1 sjþ1
� �n o

xj

; (1:1)

where

CSjXj
¼ costs or contribution of the decision Xj given state Sj

at the actual stage,

f �jþ1 ¼ accumulated suboptimal costs (or contribution) for

following stages jþ 1, jþ 2, . . . , N,

N ¼ total number of stages,

sj ¼ system state at stage j,

sjþ 1¼ t(sj, xj) ¼ state transformation equation,

j ¼ stage, and

xj ¼ decision taken at stage j.

In other words the above equation reflects Bellman’s

principle of optimality. Generally, the DP procedure starts

by setting the objective function’s value (cost or benefit) at the

initial stage to zero, or any other arbitrary value. Subsequently,

suboptimal policy derived at the last computational stage is

actually the global optimum of the problem. The optimal

policy can then be derived as a set of decisions, each of which

is taken at a subsequent stage with respect to the corresponding

suboptimal decisions derived at the preceding stage.

It is essential to point out that DP models require problem-

specific formulations. This is due to differences that appear

among the variety of problems that can be solved using DP:

objective functions can have different forms; some problems

have one and some of them can have several state variables;

state transformation equations are not the same in all cases;

decision variables can vary among different problems, etc.

1.5 INCREMENTAL DYNAMIC

PROGRAMMING

Simultaneous derivation of operation policies for all the res-

ervoirs in a multi-reservoir system is important, because the

optimum conditions of the system cannot be investigated by

considering reservoirs in isolation. In conventional DP, the

state variables (reservoir storage) are normally discretized.

Dense discretization is preferred over a coarse one to obtain

an operation policy close to the global optimum. These two

factors, simultaneous investigation of all the reservoirs of the

system (state variables) and dense discretization of these state

variables, exponentially increase the total number of state

variables to be considered. This phenomenon is termed the

‘‘curse of dimensionality’’ of DP problems.

Larson (1968) introduced incremental dynamic program-

ming (IDP), a successive approximation method, to overcome

high dimensionality problems. This chapter presents the IDP

technique. Several applications of the IDP technique in reser-

voir management are presented in subsequent chapters.

Incremental dynamic programming is one of the techniques

used in alleviating the problems of excessive time and com-

puter storage requirements. The general scheme of IDP proce-

dure is concisely presented in Figure 1.2. IDP uses the recursive

equation of DP to search for an improved trajectory starting

with an assumed feasible solution, which can be visualized as a

trial trajectory. The improved trajectory is then sought within

the pre-specified range, defined as the ‘‘corridor.’’

Figure 1.1 Basic structure of dynamic programming
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The computation cycle is complete when the search process

has converged to the optimal trajectory according to a pre-

specified convergence criterion. New iteration steps are

needed as long as the convergence criterion is not satisfied.

In the next iteration the locally improved trajectory obtained

from the previous iteration serves as the new initial trial

trajectory.

The IDP procedure begins with selection of a trial trajec-

tory. A trajectory is the sequence of admissible transforma-

tions of the state vectors throughout the entire period of

consideration. It also defines the initial value of the objective

function. A trajectory is feasible if it satisfies all constraints. It

is optimal if it is associated with the best possible achievement

of the objective criterion of the system performance.

The basic idea behind the selection of an initial trajectory is

to provide, for the search process for the optimal trajectory,

both a starting point and a region called the ‘‘corridor’’

around the trial trajectory. The initial trial trajectory should

therefore be feasible since it serves as the first approximation

of the optimal trajectory.

The next step of the IDP procedure after determining an

initial trial trajectory is construction of a corridor around it as

shown in Figure 1.3.

The corridor specifies the values of state variables to be

considered at each time step in the optimization process. For a

given corridor, the difference between adjacent values of a

state variable is the width of corridor. In general, a corridor

for a single-reservoir system consisting of three state variables

is defined symmetrically around the trial trajectory of state

variable Sj as follows:

UBC ¼ Sj þ�; (1:2)

Figure 1.3 Construction of the corridor for IDP

Figure 1.2 Incremental dynamic programming optimization

procedure
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LBC ¼ Sj ��; (1:3)

where

UBC ¼ upper bound of corridor,

LBC ¼ lower bound of corridor,

� ¼ half corridor width, and

Sj ¼ state variable at the beginning of stage j based on the

initial policy (first trial).

However, nonsymmetrical corridors may result if any of the

boundaries of the corridor exceed the feasible state space of

the system.

After the construction of a corridor around the trial trajec-

tory, an improved trajectory and the corresponding objective

function value within the corridor are sought. This is done by

using the recursive equation of the conventional DP algorithm

restricting computations of the state transformations to pre-

fixed values of state variables within the pre-specified corridor.

Convergence behavior of the IDP algorithm to reach the

global optimum is an essential issue. Selection of the feasible

initial trial trajectory is entirely an arbitrary process. But in

standard practice the initial corridor width is a coarse one.

This technique follows the principle of choosing the initial

corridor width sufficiently large to cover a considerable

range of potential storage volume for the first cycle of the

IDP procedure. The corridor width is decreased progressively

as the iteration proceeds (Turgeon, 1982).

In general, the larger the initial corridor width around the

initial trajectory, the smaller the number of iterations required

to reach the optimal solution. Use of a large corridor width in

earlier iterations is to ensure that the improved trajectories for

such iterations are really obtained. Moreover, since the initial

trajectory for any later iteration is the improved trajectory

compared to the preceding one and it is closer to optimality,

smaller corridor widths can be used in later iterations to

search for the optimal trajectory.

The iterative process is then continued until a convergence

criterion, explained later, is fulfilled. The objective function

value obtained after termination of the IDP is considered as

the optimum value. To ensure that the final solution is a true

optimum value, a fewmore sets of IDP computation runs with

different initial corridor widths may be attempted and the

results compared to check whether the solution obtained

remains the same.

According to the IDP procedure, each iteration of search

for the improved trajectory results in a trajectory which is

associated with a better value of the objective function

than that of the trajectory for the preceding iteration. The

convergence of the IDP solution exhibits a monotonic

nature. Thus, a point convergence cannot be attained unless

the cycle of computation is allowed infinitely. Therefore, the

convergence criteria should be defined to limit the computer

time used.

The iterative process of IDP is repeated until there is no

further significant improvement of objective function value.

As a criterion to terminate the computation, the following

expression can be applied. That is, whenever

OFi �OFi�1ð Þ
OFi�1ð Þ � 0:0001 (1:4)

then the computation cycle should be terminated.

Here, OFi is the objective function’s value with respect to

the set of constraints for iteration, i¼ 1, 2, 3, . . .

Instead of searching for the optimal solution over the

entire state-space domain as in the classical DP, only three

states of storage volume are involved in the analysis at any

iteration in the case of a single reservoir. Similarly, IDP can

tackle multiunit reservoir systems by taking a limited state

space for every individual reservoir in the system. Thus, this

technique can overcome the problem of dimensionality.

Computer storage and computer time requirements can be

reduced considerably.

1.6 STOCHASTIC DYNAMIC

PROGRAMMING

Stochastic dynamic programming (SDP) is very common in

reservoir operation. Since uncertainty is the inherent charac-

teristic of water resources systems, it is often inadequate to opt

for deterministic decisionmodels, at both planning and opera-

tional stages.

The stochastic nature of inflows can be handled by two

approaches: an implicit or an explicit approach. In the implicit

approach, a time series model is used to generate a number of

synthetic inflow sequences. The system is optimized for each

streamflow sequence and operating rules are found by multi-

ple regression. During the optimization the synthetic data

series are considered as deterministic series. The implicit

approach optimizes the system operation under a large num-

ber of streamflow sequences, at the expense of computer time.

The explicit approach considers the probability distribu-

tion of the inflows rather than specific flow sequences. This

approach generates an operation policy comprising storage

targets or release decisions for every possible reservoir storage

and inflow state combination in each time step, rather than a

mere single schedule of reservoir releases.

Future states or outcomes of any stochastic process such as

rainfall and streamflow cannot be predicted with certainty.

However, based on past performance, probability associated

6 WATER RESOURCES MANAGEMENT



with any particular outcome may be estimated. Hydrological

uncertainty of streamflows is explicitly taken into considera-

tion in the explicit SDP models. These models incorporate

discrete probability distributions in the optimization process.

They describe the extent of uncertainty of future occurrences

of streamflows and correlations of streamflows in time and

space that may be present among streamflow time series to

different reservoirs of the same water resources management

system.

Assuming that the unconditional steady-state probability

distributions for monthly streamflows are not changing from

one year to the next, a Markov chain could be defined for

streamflow. Since there are 12months in a year there would be

a lag-one Markov chain with 12 transitional probability

matrices. The elements of it could be denoted as Pj
p;q, the

probability of occurrence of a streamflow class q in month

( jþ 1) given a streamflow state p in month j. In the model

presented, first order (lag-one) Markov chains are used

to estimate the discrete conditional (transition) probabilities

that represent the stochasticity inherent in streamflows.

Discrete transition probabilities are estimated for a number

of representative inflow values for each month, using the

available historical streamflow records.

In a DP formulation of a reservoir operational problem,

time periods are often considered as stages. The stored vol-

umes of water in reservoirs at the beginning of the time

periods represent the state of the system. The decisions to be

taken at each stage are the quantities of water to be released.

These can be implicitly identified by specifying the storage

volumes at the next stage (identifying the storage volumes at

the end of the time step considered). To incorporate the

markovian nature of the streamflow, it is also defined as a

state variable in SDP formulations. Therefore, a SDP formu-

lation of a reservoir operational problem will have a two-

dimensional state space representing the storage volumes

and inflows to the reservoirs.

Use of SDP requires discretization of state variables and

representation of them by a finite number of characteristic

values. Sets of characteristic (representative) storage volumes

and streamflows are chosen to cover the entire range of pos-

sible storage volumes and streamflows.

The domain of inflows, which must be wide enough to

represent the entire range of potential inflows, is divided into

a certain number of intervals or classes. These intervals or

classes could be equally spaced or of variable size. In general,

averages of the inflows that fall into these intervals are chosen

as discrete values to represent inflow classes. The values rep-

resent the entire interval in the subsequent computations.

Means and variances of inflows during each month can be

used to checkwhether they are reproduced by the discretization.

If they are found to be not reproducing these statistics satisfac-

torily, a trial-and-error selection of the class margins and repre-

sentative values may be used. Frequency diagrams can be of

help in the selection procedure.

Interval (Sj,min, Sj,max) is divided intoNS� 1 equally spaced

storage intervals, where Sj,min and Sj,max are the minimum and

maximum limits of live storage of the reservoir at the begin-

ning of month j. NS is the number of reservoir space classes.

Then the boundary values of these equally spaced intervals are

used as discrete values of storage.

The backward stochastic dynamic programming algorithm

(Loucks et al., 1981) is used for optimizing reservoir opera-

tion. The forward algorithm has no sense in the case of SDP,

as the expectation over the future states has to be considered.

The SDP optimization process derives the optimum operating

strategy of the reservoir from Bellman’s backward recursive

relationship:

Fn
j ðSjÞ ¼

Opt

Xj
B Sj;Sjþ1; Ij
� �

þ
P
q
Pj
p;q � Fn�1

jþ1 ðSjþ1Þ
( )

;

(1:5)

where

B(Sj, Sjþ 1, Ij) ¼ cost or contribution of the decision Xj given

state Sj at the initial stage,

Fn�1
jþ1 ¼ accumulated suboptimal cost (or contribution) by opti-

mal operation of the reservoir over the last n� 1 stages,

Ij ¼ inflow during period j,

Pj
p;q ¼ transition probabilities of inflows (defined previously),

Sj ¼ system state at stage j,

Sjþ 1¼ t(Sj,Xj) ¼ state transformation equation,

j ¼ stage, and

Xj ¼ decision taken at stage j.

The outline of the SDP procedure is displayed in Figure 1.4.

The SDP procedure starts by initiating the values of the

objective function at the last stage (a month in the future) to

zero, or any other arbitrary value, for each combination of the

discrete values of the two state variables at some time step in

the future. Thereafter the process continues by traversing

backwards along the temporal stages (i.e., months). The opti-

mization consists of a number of iterations, each having 12

monthly stages representing one annual cycle. Usually one

iteration cycle comprises 12 stages (months) of computation

but more refined temporal stages (decades, etc.) can also be

envisaged. The aggregate of the objective function’s expect-

ation grows by setting its value at the beginning of each

iteration (i.e., a year) to the respective accumulated value of

the objective function at the end of the last stage of the

previous iteration. After a few iterations, the increase in

value for any state over a period of one year becomes constant
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and independent of the state. This is the expected annual

return from the operation of the system.

There are two criteria that determine the convergence.

(a) Stabilization of the expected annual increment of the

optimum value obtained by Bellman’s recursive formula

(Loucks et al., 1981).

During continued backward computation of the SDP algo-

rithm, the optimum expected return for all possible initial

states will be determined for each stage (month). When the

expected return for a period of one year becomes constant for

all state transformations in each stage (month), the conver-

gence criterion of constant expected annual objective achieve-

ment is satisfied.

(b) Stabilization of the operation policy (Chow et al., 1975).

At each stage (month) of the SDP algorithm, an operation

policy for that stage is determined. After continuing backward

Discretize inflow to reservoir and compute inflow
transition probability matrices for each stage

Discretize storage space of reservoir

Compute benefit for all feasible
state transformations

Next cycle

Stop

Yes

No

Convergence
criteria satisfied?

Formulate table of decisions for all sets of conditions
(storage and inflow classes in each stage)

Optimize benefit for remaining stages

Repeat, starting at last
stage and proceeding

towards first

Start

Perform recursion

 + ∑ Pp,q  × Fj
 

+
 

1 (Sj
 

+
 

1)
Xj

Fj  (Sj ) = Opt n (Sj 
,Sj +1,Ij)B j

q

n – 1

Figure 1.4 Flow diagram for the stochastic dynamic programming model
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computation for a couple of annual cycles, a stable operation

policy can be obtained. This implies that once stabilized the

operation policy for a specific month will not change from

year to year. When this condition is reached the convergence

criterion of stabilization of the operation policy is achieved.

Operation policy designated by SDP is a set of rules specify-

ing the storage level at the beginning of the next month for

each combination of storage levels at the beginning of the

current month and inflow during the current month. Due to

the discrete nature of the SDP algorithm, the number of state

transformations in any stage shows an exponential growth

with increase of the number of state variables. A polynomial

growth of the number of state transformations at each stage

can be noted with increase of the number of state discretiza-

tions. This is reflected in the excessive computer time and

memory requirements necessary to run a SDP model with a

comparatively fine discretization of state variables.

1.7 DYNAMIC PROGRAMMING IN

RESERVOIR OPERATIONS

Dynamic programming is an approach developed to solve

sequential, or multistage, decision problems; hence the name

‘‘dynamic’’ programming. But this approach is equally appli-

cable for decision problems where the sequential property is

induced solely for computational convenience.

The DP technique is efficient in making a sequence of

interrelated decisions. It is based on Bellman’s principle

of optimality (Bellman, 1957): ‘‘An optimal policy has the

property that whatever the initial state and the initial deci-

sions are, the remaining decisions must constitute an optimal

policy with regard to the state resulting from the first deci-

sion.’’ That implies a sequential decision process in which a

problem involving several variables is broken down into a

sequence of simpler problems, each having preferably a single

variable. DP is very well suited to studying reservoir opera-

tional problems. Since its development, the number of appli-

cations of DP in studying reservoir operational problems has

increased enormously. The DP technique is not restricted to

any particular problem structure. It can handle nonlinear

objective functions and nonlinear constraints. For most res-

ervoir problems, if DP is applied to determine reservoir

releases, the state variable is storage, the decision variable is

release and the stage is represented by time period.

Hall and Buras (1961) were the first to apply the DP tech-

nique in water resources systems analysis. They used DP to

solve a problem of capacity allocation among several reservoir

sites. Yakowitz (1982) presented state-of-the-art reviews with

extensive lists of references on DP and its applications for

several water resources problems and Yeh (1985) did the

same for optimal reservoir operation. Models developed for

solving reservoir operation problems can be classified by

how they characterize the streamflow process. One group of

models, called deterministic models, uses a specific sequence

of streamflow – either historical or synthetically generated – in

deriving operation rules. The other group of models, called

stochastic models, uses a statistical description of the stream-

flow process instead of a specific streamflow sequence.

1.7.1 Deterministic dynamic programming based

reservoir operation models

Meier and Beightler (1967) illustrated the applicability of DP

in optimizing branched multistage systems in water resources

planning. Hall and Shepard (1967) developed a DP-LP tech-

nique for optimizing a reservoir system in which the multiple-

reservoir system is decomposed into a master-problem and

subproblems. Themaster-problem could be seen as the task to

be solved by a system coordinating agency and the subprob-

lems by single-reservoir managers. In that work the subprob-

lems were solved by DP. The schedule of releases and energy

production were reported to the system coordinating agency

which was modeled by LP.

Larson (1968) introduced the concept of incremental

dynamic programming (IDP), putting DP into an iterative

context. IDP uses the incremental concept for the state vari-

ables. Only a limited state space is considered for a given

iteration run. It starts with a feasible initial solution, which

can be visualized as a trajectory along the subsequent stages.

Traditional DP is then applied in the neighborhood of this

trajectory. At the end of each iteration step an improved

trajectory is obtained, which is used as the trial trajectory

for the next iteration step.

Considering only a limited state space vastly reduces com-

puter time and memory requirements. However, the major

setback of using this technique is the possibility of ending up

at a local optimum (Turgeon, 1982). That can be avoided by

starting with large increments to define the imaginary corridor

around the actual trajectory and reducing them gradually as

the iteration proceeds. Another way to avoid getting trapped

at a local optimum is to repeat the iteration with different

initial conditions. Finally, both approaches, i.e., varying

increments and different starting solutions, can be coupled

(Nandalal, 1986).

Heidari et al. (1971) systematized the use of IDP and

referred to it as discrete differential dynamic programming

(DDDP). Nopmongcol and Askew (1976) analyzed the differ-

ence between IDP and DDDP and concluded that DDDP is a

generalization of IDP.
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Trott and Yeh (1973) developed a method to determine the

optimal planning of a reservoir system with cascade and

parallel reservoir configurations. The policy was obtained by

decomposing the original problem into a series of subprob-

lems of one state variable each and by applying Bellman’s

method of successive approximations in such a manner that

the series of optimizations over the subproblems converge to a

solution of the original problem. Each subproblem was ana-

lyzed using the DDDP technique.

Murray andYakowitz (1979) developed a successive approx-

imation dynamic programming technique using differential

dynamic programming principles, constraining a sequential

decision variable as applicable to multireservoir control prob-

lems in some cases. This approach is known as the constrained

differential dynamic programming (CDDP) algorithm.

Karamouz and Houck (1987) formulated two dynamic

programming models, one deterministic and one stochastic,

to generate operating rules for a single reservoir. The deter-

ministic model comprises a deterministic dynamic program,

regression analysis, and simulation. The stochastic model is a

stochastic dynamic program. It describes streamflow with a

discrete lag-one Markov process. It was concluded that the

deterministic model generated rules were effective in the oper-

ation of medium to very large reservoirs. The stochastic

dynamic programming generated rules were more effective

for the operation of small reservoirs.

Harboe (1987) applied DP to a system of reservoirs in

which low-flow augmentation was the main purpose. The

objective function used in the optimization is to maximize

the minimum flow. A sequential optimization starting from

upstream and considering one reservoir at a time is employed.

The optimum results of one reservoir are used as the inputs

to the downstream reservoir. The local optimum obtained was

very close to the global optimum due to the high cross-

correlation among monthly flows at different locations in

the basin.

1.7.2 Stochastic dynamic programming based

reservoir operation models

Under real-world conditions the time sequence of the stream-

flow time series or demands is not known in advance.

Therefore, deterministic optimization models are often inade-

quate for effective water resources systems analysis due to

the uncertainties inherent in the prediction of hydrological,

economic, and other factors. The stochastic nature of the

inflows can be handled by two approaches: implicit or explicit.

In the implicit approach, a time series model is used to gen-

erate a number of synthetic inflow sequences. The system is

optimized for each streamflow sequence and the operating

rules are found by multiple regression. During the optimiza-

tion the synthetic data series are considered as deterministic

series.

Although the implicit approach can be easily adopted for

single-reservoir optimization, numerous difficulties are encoun-

tered in applying it to multireservoir systems. The difficulty of

obtaining a computationally manageable algorithm which

derives the optimal results becomes much more severe when

the streamflows into each reservoir are interdependent. In such

a situation, complicated synthetic streamflow-generating mod-

els are used to obtain the cross-correlated streamflows into

each of the reservoirs. The implicit approach optimizes the

system operation under a large number of streamflow sequen-

ces, at the expense of computer time. It is therefore employed

only for long-range planning purposes.

The explicit approach considers the probability distribu-

tion of the inflows rather than specific flow sequences. This

approach generates an operation policy comprising storage

targets or release decisions for every possible reservoir storage

and inflow state in each time step, rather than a mere single

schedule of reservoir releases.

Young (1967) proposed an implicit stochastic approach to

optimize the operation of a single reservoir. He combined

Monte Carlo simulation for synthetic streamflow generation,

deterministic DP optimization, and regression analysis to

derive the operating strategy which was expressed in terms

of release as a function of initial storage volume in the reser-

voir and inflow during the time step.

Harboe et al. (1970) used deterministic DP to derive the

optimal operation policy of a single reservoir serving multiple

purposes: water supply, energy generation, flood and water

quality control downstream of the reservoir. The last two

purposes were considered as maximum storage and minimum

downstream release constraints respectively, whereas the tar-

get water supply was incorporated as a parameter into the

optimization procedure. By varying the level of the water

supply target, successive DP optimizations were applied to

obtain a family of the optimal operating trajectories with

respect to the maximization of the firm energy production.

The authors stressed the efficiency of the developed algorithm

and suggested that it could easily be implemented as the

optimization core of an implicit stochastic DP methodology.

Opricović and Djordjević (1976) presented an implicit SDP

based algorithm for optimal long-term control of a single

multipurpose reservoir with both direct and indirect users.

The approach takes into account the fact that water already

used for one purpose (direct user) can be utilized by another

user located further downstream (indirect user). The devel-

oped optimization method maximizes the total benefit earned

from the delivered water by applying DP at each of the three
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levels of the adopted hierarchical decomposition of the prob-

lem. At the first level, the temporal distribution of reservoir

releases is optimized. This is followed by the optimization of

the allocation of available releases to direct users in each time

interval. At the third level, the release volumes already used by

direct users are distributed to indirect users.

Karamouz and Houck (1982) proposed an iterative

approach which combined deterministic DP, multiple regres-

sion, and simulation to derive a general operating rule for a

single water supply reservoir. Although not entirely conform-

ing to the general definition, the method was essentially an

implicit stochastic optimization approach. One iterative cycle

consisted of deterministic DP optimization over the available

historical inflow record, the subsequent derivation of the

general linear release rule by means of multiple regression,

and the final step which included the simulation of the reser-

voir operation according to the defined operating rule over a

long synthetic sequence of reservoir inflows. The principal

idea behind the developed method was to start iterations

without any further limitations on the feasible release decision

space except those determined by the capacities of the reser-

voir’s outlets and spillways. However, the decision space was

narrowed down in DP optimization as the iterations pro-

ceeded by using the general release rule defined in the previous

cycle. The width of the reduced feasible decision space was

corrected by a lower/upper bound factor, the value of which

was adjusted at the end of each iteration with respect to the

objective function achievement obtained by simulation. The

approach has been applied to 48 test cases involving both

annual and monthly temporal discretization. In all of the

cases, the average annual objective function achievement

obtained by simulation over a synthetic inflow record showed

improvement over iterations, clearly outperforming the initial

iteration outcomes obtained without restricting the release

domain.

Karamouz and Houck (1987) derived monthly operating

rules for a set of 12 different single-reservoir test cases using

their iterative DP model (Karamouz and Houck 1982) and an

explicit SDP optimization model. The explicit SDP model

used the lag-one Markov chain representation of river flows

and the derived optimal operation policy was given in terms of

the storage volume at the beginning of the following month as

a function of initial storage and inflow at the present time step.

The two models were compared based on the objective func-

tion achievement derived by simulation over a long synthetic

set of river flows. The results of the 12 test cases indicated that

the explicit SDPmodel resulted in better operation policies for

smaller reservoirs whereas the iterative DP proved to be more

effective for medium to very large reservoirs. Relatively poor

performance of SDP on large reservoirs was attributed to

the inability to use finer state discretization as the size of

the storage state space was increasing, which would, in turn,

impose the well-known dimensionality difficulties associated

with SDP.

The sampling stochastic dynamic programming approach

(SSDP), first used by Araujo and Terry (1974) for the oper-

ation of a hydro system can also be categorized as an implicit

stochastic approach. SSDP was used by Dias et al. (1985) for

the optimization of flood control and power generation

requirements in a multipurpose reservoir. What differentiates

SSDP from other implicit stochastic approaches is that the

whole set of synthetic 12-month-long streamflow scenarios

were simultaneously considered in the optimization process.

The approach is said to be very efficient in describing river

flow processes and in coupling such a streamflow representa-

tion with DP optimization. Kelman et al. (1990) included the

best inflow forecast as a hydrological state variable in the

SSDP algorithm. In their approach, a historical time series

of streamflow forecasts was employed to develop the required

conditional probability distributions. Kelman et al. (1988)

applied SSDP for planning reservoir operations in a hydro-

electric system operated by the Pacific Gas and Electric

Company (PG&E) on the North Fork of the Feather River

in California, USA.

Faber and Stedinger (2001) compared SSDP models

employing the National Weather Service’s (NWS) ensemble

streamflow prediction (ESP) forecasts to SSDP models based

on historical streamflows and snowmelt volume forecasts.

The SSDP optimization algorithm, which is driven by indi-

vidual streamflow scenarios rather than aMarkov description

of streamflow probabilities, allows the ESP forecast traces to

be employed intact, thus taking full advantage of their rich

description of streamflow variability and the temporal and

spatial interrelationships captured within the traces.

Butcher (1971) used explicit SDP to derive an optimal long-

term operating strategy for a single multipurpose reservoir.

The optimization model was developed for a monthly tempo-

ral discretization assuming that monthly flows were serially

correlated. The objective was to maximize the expected

annual monetary return gained from irrigation water supply

and energy production, and the potential benefit from recrea-

tional use of the reservoir. The optimal release policy was

expressed as a function of the reservoir state given as

the storage volume of the reservoir at the beginning of the

month and the inflow during the preceding month.

Loucks et al. (1981) elaborated the explicit SDP approach

for the optimization of single-reservoir operation. Stochasticity

of inflows represented by the first order Markov chain was

explicitly incorporated into the optimization procedure by con-

sidering inflows to the reservoir as an additional state variable.
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Thus, the procedure assumed a two-state (i.e., reservoir storage

at the beginning of and inflow to the reservoir during a time

step) variable SDP optimization problem with the decision

to be taken being the reservoir storage at the end of a stage.

The objective was to minimize the total expected sum of the

squared deficit of the release from the respective demand and

the squared deviation of the storage from the constant storage

target. For each time step, the resulting steady-state operation

policy was derived in the form of the final reservoir storage

volume as a function of the initial storage and the present

inflow. The technique was demonstrated on a simple hypo-

thetical example considering two within-year time periods

and a discrete two-class representation for both inflow and

reservoir storage variables.

Maidment and Chow (1981) developed two SDP optimiza-

tion models for a single-reservoir operation problem. The

temporal discretization was set to monthly time steps and

the authors distinguished between two different representa-

tions of inflow stochasticity. One model assumed that the

monthly river flows were serially correlated and that the

stochasticity of subsequent monthly flow processes was

described by inflow transition probabilities (i.e., Markov

chain) whereas the second approach considered monthly

flows as independently distributed. The objective for both

models was to maximize the expectation of the annual net

benefit gained from the releases allocated for energy genera-

tion and irrigation water supply. The resulting steady-state

release strategies were given as a function of the storage

volume of the reservoir at the beginning of a month and the

inflow during the preceding month.

Stedinger et al. (1984) compared the simulation results

based on different operation policies derived for the High

Aswan Dam on the River Nile by five SDP based optimiza-

tion models. Apart frommodels that used the previous period

inflow as the hydrological state variable, the authors pro-

posed approaches that utilized the best forecast of the current

period inflow instead. They concluded that the use of the best

inflow forecast instead of the inflow during the preceding time

period resulted in significant improvements in the operation

of the reservoir.

Goulter and Tai (1985) used SDP to model a small hydro-

electric system. The variation in the number of stage iterations

and the computer time required to reach steady-state condi-

tions with changes in the number of storage states was inves-

tigated in this study.

Shrestha (1987) applied SDP to derive optimal operation

policies for different configurations of a hydropower system

during the planning stage. Simulation of the system operation

was carried out based on the SDP based optimum policy

to evaluate the system performance. Finally, the optimum

system configuration was selected by comparing the perform-

ance values obtained for the different configurations.

Bogardi et al. (1988) investigated the impact of varying the

number of storage and inflow classes on the operational per-

formance of SDP for both single and multiple reservoir sys-

tems. The results indicated that by simply increasing the

number of storage classes beyond certain limits the system

performance would not improve much. These results comply

with the ‘‘law of diminishing returns.’’ Emphasis should rather

be placed on the ‘‘synchronization’’ of the number and size of

storage and inflow classes, in order to check whether any

improvement could be obtained.

Laabs and Harboe (1988) presented three models based on

DP, including a deterministic model, an independent prob-

ability model, and a Markov model, for finding Pareto-

optimal operation rules for a single multipurpose reservoir.

In the independent probability model, the inflow probabilities

of each time step are considered. Inflow transitional prob-

abilities are considered in the Markov model. The Markov

model includes several objective functions and weights for

each objective as needed in a compromise programming ana-

lysis of multiobjective decision making. A number of Pareto-

optimal operation rules were generated. The final selection of

the optimal policy can be done only after simulations with

these operation rules have been performed and a multiobjec-

tive selection criterion applied to the results.

Shrestha et al. (1990) studied the effect of the number of

discrete characteristic states and the impact of varying the

definition of these characteristic states on SDP model per-

formance. Four real-world cases have been analyzed from

different hydrological regimes. It has been found that varying

the definition of inflow state discretization renders only mar-

ginal changes in the model performance. The factors which

could have a direct bearing on the adequate level of storage

state discretization are identified as: the hydrological regime

in which the system is located (due to the differences in inflow

state distribution), the type of system constraints, and the

degree of severeness of system constraints.

Huang et al. (1991) compared four explicit SDP optimiza-

tion models using the operation of the Feitsui Reservoir in

Taiwan as a case. The four models were devised upon the

assumption that a streamflow process could be modeled

as being either serially correlated or independent, and that

the consideration of reservoir inflow as an additional state

variable could use either the forecast of the present period

streamflow or the known observation of the past period flow.

Each model was formulated for a 36-period annual cycle

and utilized the same objective function, which was to max-

imize the expectation of the annual energy generation. The

authors found that the best performance of the reservoir
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resulted from the use of the model which assumed serial

correlation of river flows, and the previous time step inflow

as an additional state variable. However, they recognized that

their findings were applicable to the particular case they used,

and stressed that the model which used the present time

step inflow forecast as a serially correlated hydrological

state variable did outperform the other three models when a

perfect forecast was assumed available. An additional advan-

tage of SDP models based on the present inflow forecast is

that they derive operation policies which specify the optimum

achievement of the objective criterion expectation for the

given inflow forecast state. Thus, any failure to maintain

the optimal operating strategy is due only to the imperfect

inflow forecast.

Ratnayake (1995) presented a SDP model to maximize the

expected on-peak hydro-energy generation from a reservoir

system. The optimization is subject to deterministic con-

straints on mass balance, maximum and minimum reservoir

storage, flood control reserve space in the reservoir, maximum

release, and a soft constraint on downstreamwater requirements

for irrigation and salinity intrusion control. The max-min type

objective function used is: maximize
Rj

�
minimize

j
� Ej

�� �
whereEj

is on-peak energy generation in period j, Rj is release from

reservoir during period j and � is an operator for calculating

expected values over stochastic inflows. The application of the

model to reservoirs in theChaoPhrayaRiver system inThailand

resulted in optimistic estimates of the system capability. This is

because the calculation is based on the expected value in the

objective function, which does not effectively consider the crit-

ical drought periods.

A number of studies have dealt with the choice of the

hydrological state variable in SDP. For instance, Karamouz

and Vasiliadis (1992) used the present time step inflow fore-

cast as an additional state variable in one of their SDPmodels.

In another model, Vasiliadis and Karamouz (1994) adopted

both the present period inflow and the next period inflow

forecast as hydrological state variables. The latter also applied

the Bayes theory to account for the uncertainty of inflow

forecasts while updating the inflow transition probabilities

during the SDP optimization process. The Bayes–SDP

model was found to bring improvement in the operation of

the test case as compared to the classical SDP model, which

utilized only the present period inflow as a hydrological state

variable. In another study, Tejada-Guibert et al. (1995) found

that, as compared to deterministic DP or no-hydrological-

state-variable SDP models, the operation of the case study

system improved if the operation policies were derived by

SDP models which used either the present period inflow or

the past period inflow in combination with the best forecast

of the forthcoming snowmelt runoff as hydrological state

variables. Vedula and Kumar (1996), in their SDP model,

utilized both the present period inflow and rainfall forecasts

as stochastic state variables.

A quantitative basis for a variety of reservoir operational

decisions, from the perspective of both project planning and

operation, can be achieved through simulation and optimiza-

tion methods coupled with stochastic analysis. The most

effective strategy for analyzing many reservoir operation

problems will involve a combination of both optimiza-

tion and simulation. Bogardi et al. (1995) developed a model

called ‘‘ShellDP’’ based on stochastic dynamic programming

and simulation techniques for analyzing multiunit reservoir

systems. The model is applicable during both design and

operational stages of a reservoir system. The model was suc-

cessfully used to derive optimal operation policies for the

reservoirs in the water supply system of Tunis. Ampitiya

(1995) applied the ShellDP package to derive optimal oper-

ation policies for reservoirs in the complex Mahaweli water

resources scheme in Sri Lanka. In this study, the software was

modified to include the objective of hydro-energy generation

optimization. Nandalal and Ampitiya (1997), Nandalal

(1998), and Nandalal and Sakthivadivel (2002) used this

modified model to derive operation policies for reservoirs in

several water resource development schemes in Sri Lanka.

1.8 DEVELOPMENTS IN DYNAMIC

PROGRAMMING

In stochastic dynamic programming models of reservoir con-

trol problems, the continuous state space typically is discre-

tized and the optimal value function is computed at the

state space grid points. Values of the optimal value func-

tion between these discrete grid points can be obtained by

interpolation. Discretization of the state space for high-

dimensional problems, which may arise due to the large num-

ber of reservoirs in the system or multiple state variables for

each reservoir, results in a prohibitively large computational

requirement. To overcome this difficulty Fan et al. (2000)

developed a regression dynamic programming approach for

approximating the optimal value function using penalized

regression splines fitted over a subset of the full state space

grid. Selection of the subset of state space grid points was

made based on statistical methods of experimental design,

one of which is Latin hypercube sampling. The regression

dynamic programming approach was demonstrated using a

hypothetical reservoir system.

For systems with a large number of state variables, e.g.,

a large number of reservoirs in a system and multiple fore-

casts on streamflow, the computational requirement of dynamic

1 .8 DEVELOPMENTS IN DYNAMIC PROGRAMMING 13



programming is prohibitive. Fan et al. (2001) developed a

regression dynamic programming approach to efficiently

solve stochastic and nonlinear models of reservoir control

problems. The ‘‘curse of dimensionality’’ was alleviated using

clever sampling schemes based on statistical methods of exper-

imental design for state space representation. Furthermore, the

optimal value function was efficiently approximated using

penalized regression splines. Stochastic, multiple-reservoir con-

trol problems of two and seven dimensions were solved using

the regression dynamic programming approach.

Chandramouli andRaman (2001) developed a dynamic pro-

gramming based neural network model for optimal multireser-

voir operation. In the model, multireservoir operating rules

were derived using a feed-forward neural network from the

results of three state variables’ dynamic programming algo-

rithm. The training of the neural network was done using a

supervised learning approach with the back-propagation algo-

rithm. A multireservoir system called the Parambikulam Aliyar

Project system was used for this study. The performance of the

new multireservoir model was compared with the regression-

based approach used for deriving the multireservoir operating

rules from optimization results and the single-reservoir dynamic

programming–neural network model approach. The multireser-

voir model based on the dynamic programming–neural network

algorithm gave improved performance.

Tilmant et al. (2002) compared reservoir operation policies

obtained from fuzzy and nonfuzzy explicit stochastic dynamic

programming. They formulated two models to study the res-

ervoir operation problem for the Mansour Eddahbi Dam in

Morocco. The first one is a classical stochastic dynamic pro-

gramming (SDP) model in which the objective function

stresses energy maximization with particular volumes being

released for irrigation. The second model is a fuzzy stochastic

dynamic programming (FSDP) model in which both hydro-

power generation and irrigation are considered as fuzzy

constraints aggregated by the weighting method. System per-

formance was estimated from simulations based on continu-

ous reoptimization models using the cost-to-go function

generated by the SDP algorithm and themembership function

generated by the FSDP algorithm. Results indicated that,

despite major differences in the mathematical representation

of operating objectives and/or constraints, both formulations

yielded similar measures of system performance.

Teixeira and Marino (2002) developed a forward dynamic

programming model to solve the problem of reservoir opera-

tion and irrigation scheduling. The typical scenario for appli-

cation of the model is composed of a system of two reservoirs

in parallel supplying water to as many as three irrigation

districts. Two models are coupled. The interseasonal model

defines seasonal deliveries from the reservoir system. The

intraseasonal model uses area and water allocations generated

from the interseasonalmodel to produce an irrigation schedule

for the individual farms in one of the irrigation districts in the

reservoir system. Crop evapotranspiration, reservoir evapora-

tion, and inflows are forecast. Upon availability of the current

values, the forecast is updated and the model runs to generate

a more precise irrigation schedule. This feature permits the

application of the model for real-time operation of the irriga-

tion district. At the end of the season, the intraseasonal model

is updated. The forward DP model was applied to a real

watershed with a planning horizon of two years for the inter-

seasonal model and six months for the intraseasonal model.

Reservoir operation involves a complex set of human deci-

sions depending upon hydrological conditions in the supply

network, including watersheds, lakes, transfer tunnels, and

rivers. Water releases from reservoirs are adjusted in an

attempt to provide a balanced response to different demands.

When a system involves more than one reservoir, computa-

tional burdens have been a major obstacle in incorporating

uncertainties and variations in supply and demand. A new

generation of stochastic dynamic programming was devel-

oped in the 1980s and 1990s to incorporate the forecast and

demand uncertainties. The bayesian stochastic dynamic pro-

gramming (BSDP) model and its extension, the demand

driven stochastic dynamic programming (DDSP) model, are

among those models (Karamouz and Mousavi, 2003).

Recently, a fuzzy stochastic dynamic programming model

(FSDP) (Mousavi et al., 2004) was also developed for a single

reservoir to model the errors associated with discretizing the

variables using fuzzy set theory. In this study the DDSP and

the FSDP models were extended and simplified for the com-

plex system of the Dez and Karoon Reservoirs in the south-

western part of Iran. The simplified models are called

condensed demand driven stochastic programming (CDDSP)

and condensed fuzzy stochastic dynamic programming

(CFSDP). The optimal operation policies developed by the

CDDSP and the CFSDP models were simulated in a classical

model and a fuzzy simulation model, respectively. The case

study was used to demonstrate the advantages of implementing

the proposed algorithm, and the results show the significant

value of the proposed fuzzy based algorithm.

Kumar and Baliarsingh (2003) presented a new algorithm,

folded dynamic programming, to overcome the curse of dimen-

sionality inherent in dynamic programming. Incremental DP,

discrete differential DP, DP with successive approximation,

and incremental DP with successive approximation are some

of the algorithms evolved to tackle this curse of dimensionality

for DP. But in all these cases it is difficult to choose an initial

trial trajectory, to get at an optimal solution, and there is no

control over the number of iterations required for convergence.
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The proposed foldedDP, an iterative process, does not need an

initial trajectory to start and thus overcomes these difficulties.

In the folded DP algorithm, the entire storage state space at

each time period is divided into four equal state increments to

form five grid points. The developed algorithm was applied

to a hypothetical reservoir system. Operation policy obtained

using the folded DP algorithm compared well with that of the

IDP algorithm.

Umamahesh and Chandramouli (2004) presented a fuzzy

dynamic programming (FDP) model developed for optimal

operation of amultipurpose reservoir. Themodel is applied to

derive the ten-daily operation policy of the HirakudReservoir

on the River Mahanadi in India. The objectives of the reser-

voir, namely, irrigation, hydropower, and flood control are

considered as fuzzy. The objective function of the FDPmodel

is to maximize the minimum expected satisfaction level of the

fuzzy objectives. The level of satisfaction of an objective

(membership grade) is a function of reservoir release for irri-

gation and hydropower, and initial reservoir storage for flood

control. The reservoir is simulated using the operation policy

derived from the FDP model and the performance of the

reservoir is evaluated. The model not only considers uncer-

tainty due to the variability of inflows, but also considers the

uncertainty caused by imprecisely defined objectives.

Mousavi et al. (2004) introduced a new way of incorporat-

ing fuzzy logic concepts to better capture and manage some

uncertainties in applying SDP formulations for reservoir

operation. Their model, which is called fuzzy-state stochastic

dynamic programming (FSDP), takes into account both

uncertainties due to the random nature of hydrological vari-

ables and imprecision due to variable discretization. In the

model, fuzzy transition probabilities for stochastic hydrolog-

ical state variables are calculated by defining a fuzzy Markov

chain. These fuzzy probabilities are derived based on the fuzzy

frequency concept considering different frequencies for differ-

ent points of a class interval. To show the effectiveness of the

proposed method, FSDP was applied to the Zayandeh-Rud

river–reservoir system in Isfahan, central Iran. A comparison

with a demand-driven stochastic dynamic programming

model shows the robustness of the FSDP solutions with

respect to the type of discretization scheme used in calculating

the transition probabilities.
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2 Incremental dynamic programming in
optimal reservoir operation

Very often reservoirs are built and operated to satisfy water

quantity requirements such as irrigation or drinking water

consumption, hydropower production, etc. Operation of

these reservoirs is vital tomaximize benefits andDP in various

forms can be applied for this purpose. This chapter illustrates

the applicability of several different forms of incremental

dynamic programming (IDP) in the derivation of optimal

operation patterns for different reservoir systems.

2.1 IDP IN OPTIMAL RESERVOIR

OPERATION: SINGLE RESERVOIR

Dynamic programming can be applied to derive optimal oper-

ation policies for a single reservoir. Use of conventional DP in

this task is one possibility. This section shows the applica-

tion of IDP for two reservoir systems: (a) the Kariba Reservoir

in Zambia and Zimbabwe, and (b) the Ubol Ratana Reservoir

in Thailand, based on the analysis of Budhakooncharoen

(1986, 1990). The IDP technique, which considers only a

limited state space at a time, has lower computer storage

requirements.

2.1.1 Application of IDP to the Kariba Reservoir

The Kariba Reservoir is a single-unit water resource system

that utilizes the water resource of the Zambezi River to

produce hydroelectric energy. The Zambezi River rises in

northern Zambia. After flowing through Angola, it forms

the boundary between Zambia and Zimbabwe. Finally, it

passes through Mozambique to discharge into the Indian

Ocean north of Beira. Figure 2.1 shows the Zambezi River

basin. The catchment area of the basin up to the Kariba Dam

is about 665 600 km2. The Kariba Reservoir is shared and

operated by CAPCO (Central African Power Corporation).

The Kariba project was completed in two stages. In the first

stage, a dam across the Kariba Gorge on the Zambezi River

was constructed with a 608MW underground hydroelectric

power station on the south bank. The power station started

operations in March 1962. In the second stage, a 592MW

underground power plant was constructed on the north bank

bringing the total installed capacity to 1200MW. The second

stage was completed in 1977. Power from the Kariba hydro-

power stations is supplied to Zambia and Zimbabwe, which

share equally the available generating power and cost of

operation. Salient features of the dam and reservoir are

given in Table 2.1. Characteristic curves for the Kariba

Reservoir are given in Figure 2.2.

The adopted operational rule curve of theKariba Reservoir

in Figure 2.3 shows the sequence of preferable water levels

to be kept in different time periods in the annual cycle

(Budhakooncharoen, 1990). According to it, the reservoir

should be pre-emptied in February in order to accommodate

the expected flood flows during March and April.

The study was carried out based on Zambezi River flow

data at the Kariba Reservoir fromOctober 1961 to September

1985. Mean annual flow at this location is 54 689� 106m3.

During this period, aminimumannual inflowof 23729� 106m3

in the hydrological year 1972 and a maximum annual

inflow of 97902� 106m3 in the hydrological year 1977 were

observed.

The optimum operation of the Kariba Reservoir to maxim-

ize hydro-energy generation was developed based on the IDP

technique.

IDP MODEL FORMULATION

Formulation of the IDP model for a system comprising a

single reservoir with hydropower generation facility shown

in Figure 2.4 is given below.

The system is operated on a monthly basis and the reservoir

begins and ends its operation cycle with a given amount of

water stored. The forward algorithm of dynamic program-

ming is used in the optimization.

16



OBJECTIVE FUNCTION

The objective function of the IDP model is to maximize total

hydro-energy generation over a prespecified time period:

OF ¼Maximize
XT
j¼1

Ej; (2:1)

where

Ej ¼ 9.81�QjHjtj/10
6 (MWh),

ELj ¼ elevation of reservoir water level during period j (m),

Hj ¼ELj�TWL (m),

hj ¼ reservoir water level at beginning of period j (m above

datum),

Qj ¼ discharge through turbine during period j (m3/s),

TWL ¼ tail water level (m above datum),

tj ¼ time in period j (h), and

� ¼ overall generation efficiency (¼ 0.75).

STAGES, STATE, AND DECISION VARIABLES

The state of the system is described by water available in the

reservoir at the beginning of any time step. Consecutive time

steps are identified as stages. The decision variable is water

released from the reservoir. The maximization is subjected to

constraints in storage volume and release.

Figure 2.1 Kariba Reservoir and Zambezi River basin

Table 2.1. Salient features of the Kariba dam, reservoir, and

power house

Description

Reservoir

Normal high-water level 488.5m above Kariba datum

Normal storage capacity 64 880� 106m3

Minimum water surface level 475.5m above Kariba datum

Minimum storage capacity 50� 106m3

Dam

Type Double curvature/mass

concrete

Height 128m

Length at crest 617m

Width at crest 24.4m

Spillway

Type Radial gate

Gate 6 Nos. 9.1m� 9.45m

Maximum discharge capacity 9400m3/s

Power house

Average net head 86m

Turbine discharge 277.6m3/s

Turbine 12 Nos. Francis

Installed capacity 1200MW

2.1 SINGLE RESERVOIR 17



STORAGE VOLUME CONSTRAINT

The system is operated on a monthly basis. Since operation

policy is derived for annual cycles,

S1 ¼ STþ1; (2:2)

where

S1 ¼ storage volume at beginning of first period (first month)

(106m3),

STþ 1 ¼ storage volume at end of last period (last month)

(106m3), and

T ¼ total number of time steps (months).

For all other months reservoir storage belongs to the set of

admissible storage volume:

Smin � Sj � Smax; (2:3)

where

Sj ¼ storage volume at beginning of period j (106m3),

Smin ¼ allowable minimum storage volume (106m3), and

Smax ¼ allowable maximum storage volume (106m3).

RELEASE CONSTRAINT

The capacity of hydropower generators sets a maximum limit

to reservoir release. Since a minimum release request is not

considered, the minimum release is set to zero. The release

during any month should be within this feasible release range:

0 � Rj � Rj;max; (2:4)

where

Rj ¼ reservoir release during period j (�Qj) (10
6m3), and

Rj,max ¼ maximum allowable release through turbines in

period j (106m3).

STATE TRANSFORMATION EQUATION

The state transformation equation based on the principle of

continuity is as follows:

Sjþ1 ¼ Sj þ Ij � Ej � Rj �Oj; (2:5)

where

Ej ¼ evaporation from reservoir during period j (106m3),

Ij ¼ inflow to the reservoir during period j (106m3), and

Oj ¼ spillage water during period j (106m3).

Oj ¼Max [Sjþ Ij�Ej�Rj�Smax, 0].

Other variables are as defined before.

RECURSIVE EQUATION

The deterministic backward optimization procedure begins at

some known point in the future and proceeds backward in

time to the present.

The recursive equation of deterministic DP for estimating

the maximum energy output is

F �j ðSjÞ ¼Max
Rj

EjðSj;RjÞ þ F �jþ1ðSjþ1Þ
h i

; (2:6)

where maximum energy output at stage j associated with the

particular state Sj, given the suboptimal energy generation

from future stages, F �jþ1ðSjþ1Þ. The decision Rj identified in

the course of maximization transforms the system from state

Sj into state Sjþ1.

The model was run for four different cases, an average year

(1966), two dry years (1972 and 1981), and a wet year (1968).

The operation over a 23-year period (1962–84) is also included.

EFFECT OF INITIAL CORRIDOR WIDTH

ON CONVERGENCE BEHAVIOR

The model was run for six different initial corridor widths. In

all of these cases, the procedure of IDP started with the same

Figure 2.2 Characteristic curves of the Kariba Reservoir

Figure 2.3 Rule curve of the Kariba Reservoir

Figure 2.4 Single-reservoir configuration
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initial trial trajectory. The historical record of the Kariba

Reservoir operation for water years from 1962 to 1984 was

heuristically selected as the initial trial policy.

The total 23-year energy generation and the number of

iterations of IDP to converge to the optimal results for differ-

ent initial corridor widths are given in Table 2.2.

These results indicate that the initial corridor width has not

much effect on the optimal result. It has a rather high effect on

the rate of convergence to the optimum point. The larger the

initial corridor width, the fewer the iterations required to

converge to the optimal solution. The rate of convergence

to the optimal result for an initial half corridor width of

1000� 106m3 is shown in Figure 2.5.

Table 2.2. Effect of initial corridor width: Kariba Reservoir

Initial half corridor

width (106m3)

Optimal energy generation for

water years 1962–84 (106MWh)

Difference from

maximum value (%)

Number of iterations for

converging to optimal solution

100 208.72 0.80 324

200 208.71 0.81 173

300 208.69 0.82 127

1000 210.41 0.00 55

2000 207.40 1.43 33

3000 200.45 4.73 16

Figure 2.5 Rate of convergence in IDP for initial half width of

1000� 106m3

Table 2.3. Maximum energy generation: Kariba Reservoir

Water year

Installed capacity

of hydropower

plant (MW)

Maximum energy

generation (MWh)

1966 (average year) 600 4 730 400

1968 (wet year) 600 4 730 400

1972 (dry year) 600 4 730 400

1981 (dry year) 1200 6 977 739

1962–84 1200 210 408 600

Figure 2.6 Optimal operations to maximize energy generation of the Kariba Reservoir by IDP
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MAXIMUM ENERGY GENERATION

Maximum energy generation was obtained based on the single

objective function of maximizing energy output without consid-

ering the actual energy demand. This amount of energy produc-

tion indicates themaximumhydropower potential of the system.

It is revealed that the optimal energy outputs obtained for

different initial corridor widths do not vary significantly. In

order to reduce the number of iterations to converge to the

optimal solution, the initial corridor width of 1000� 106m3

was heuristically applied. This version also gave the best

solution compared to the others as shown in Table 2.2.

Figure 2.6 displays the optimal operation of the reservoir to

maximize hydropower output by applying the historical oper-

ation as the initial trial trajectory. The optimal energy outputs

are summarized in Table 2.3.

2.1.2 Application of IDP to Ubol Ratana Reservoir

The multipurpose Ubol Ratana Project uses the water resour-

ces of the Nam Pong River in Thailand to generate hydro-

electric energy and supply irrigation water. It protects

downstream areas from floods while used for fishery, naviga-

tion, and recreation.

The Ubol Ratana Dam is built across the Nam Pong River

at Tambon Kok Soong, Amphoe Ubol Ratana, approxi-

mately 50 km north of the city of Khon Kaen as shown in

Figure 2.7. Its construction was completed in 1965. The total

catchment area above the dam is about 14 000 km2.

The salient features of the dam, reservoir, and power house

are summarized in Table 2.4. Characteristic curves of the

Ubol Ratana Reservoir are shown in Figure 2.8.

Under the Ubol Ratana Project, the Nong Wai irrigation

system distributes the water released through the hydropower

plant for cultivation on both banks of the Nam Pong River.

The Nong Wai diversion weir shown in Figure 2.7 is of ogee

shape. It is a reinforced concrete weir of height 5.9m and crest

length 125.4m. The weir height can be augmented by 0.6m by

pumping air into a rubber weir fixed onto the top of the

concrete weir. The cultivation area on the left bank is about

19 580 ha while that on the right bank is about 22 000 ha. The

flood mitigation system of the Nong Wai irrigation project

consists of an emergency spillway, 3.5m high and 240m long.

This spillway is able to release a discharge of 1000m3/s. The

reinforced concrete weir (Nong Wai weir) itself is able to

release a maximum of 1500m3/s.

The rule curve of the Ubol Ratana Reservoir derived by a

simulation technique is shown in Figure 2.9. The rule curve

shows the minimum water level that should be maintained at

the end of each calendar month.

Water above the rule curve level is released for provision of

maximum flood retention volume. If the reservoir level is

below or at the rule curve level, only the water to satisfy

downstream requirements is recommended to be released as

long as the resource is available.

If the reservoir level rises above the rule curve level, all

inflowing water is released at a rate up to the permissible

downstream flow of 400m3/s unless the operation rules for a

flood event have to be applied. As far as the conditions such

as head, capacity of the penstock and the turbines allow, all

water release is utilized to generate electric energy.

The study was based on an observed flow record from 1966

to 1988. Mean annual inflow in the river is 2240� 106m3 with

a minimum observed annual inflow of 850� 106m3 in the

hydrological year 1981 and a maximum annual inflow of

5900� 106m3 in hydrological year 1978. Downstream flood-

ing could not be avoided in this year.

Table 2.4. Salient features of the Ubol Ratana dam, reservoir,

and power house

Description

Reservoir

Normal high-water level 182.0m MSL

Normal storage capacity 2264� 106m3

Minimum water surface level 175.0m MSL

Minimum storage capacity 502� 106m3

Maximum flood level 186.6m MSL

Water surface area 401 km2

Dam

Type Rockfill/clay core

Height 35.1m

Elevation at crest 188.1m

Length at crest 855m

Width at crest 6m

Maximum width (at base) 125m

Spillway

Type Radial gate (Orifice)

Gate 4 Nos. 12.0m� 7.8m

Maximum discharge capacity 3500m3/s

Sill level 171m MSL

Penstock

Number 3 units

Dimensions 4.5m� 4.5m

Maximum discharge 210m3/s

Power house

Type of power house Underground

Type of turbines Kaplan, vertical shaft

Number of turbines 3 units

Installed capacity 8.3MW

Design head 16m
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Figure 2.7 Ubol Ratana Reservoir system
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The model presented for the Kariba Reservoir is also used

for the derivation of the optimal operation pattern for the

Ubol Ratana Reservoir. The model was run for four different

hydrological years, average year (1971), wet year (1978), dry

year (1981) and long-term operation from water year 1966

to 1988.

EFFECT OF THE INITIAL CORRIDOR WIDTH

ON THE CONVERGENCE BEHAVIOR

The IDP model is applied to derive the optimal operation to

maximize the total energy generation of the Ubol Ratana

hydropower plant. The historical record of the Ubol Ratana

Reservoir operation served heuristically as the initial trial tra-

jectory in the IDP process. The improved trajectory is sought

within the range of a predefined corridor for each iteration.

To study the effect of initial corridor width upon the con-

vergence behavior of IDP, the model was run for five different

initial corridor widths starting with the same initial trial tra-

jectory. The historical record of the Ubol Ratana Reservoir

operation from water year 1966 to 1988 was considered as the

initial trial policy.

Total energy production over the period of 23 years and the

number of iterations of IDP to converge to the optimal result

for different initial corridor widths are shown in Table 2.5.

The effect of initial half corridor width on the convergence

behavior of IDP in the case of the Ubol Ratana Reservoir is

similar to that of the Kariba Reservoir. From these results, it

is obvious that the initial corridor width does not affect the

optimal value of the objective function. However, it affects

the rate of convergence to the optimum point. The larger the

initial corridor width, the smaller the number of iterations

required to converge to the optimal solution.

MAXIMUM ENERGY GENERATION

The optimal energy outputs of the Ubol Ratana hydropower

plant obtained for different initial corridor widths of IDP are

almost identical. To reduce the computation effort to achieve

the optimal solution, the initial corridor width of 80� 106m3

was applied subsequently. This corresponds to approximately

3.13% of the normal storage capacity, 2559� 106m3.

The optimal operation policies to maximize hydropower

output of the Ubol Ratana Reservoir by applying historical

operation as the initial trial trajectory are illustrated in

Figure 2.10. The optimal solutions were derived based on

the single objective of maximizing energy generation without

considering the other objectives of the reservoir system, with

the exception of the flood control constraint by preventing the

water level rising beyond 182.0mMASL. The optimal energy

outputs are summarized in Table 2.6.

The energy production of the Ubol Ratana Reservoir

obtained with the IDP model is significantly higher than

that of the historical record. This is because historical oper-

ation was carried out without an optimization technique,

which relies on the knowledge of inflows and demands

imposed on the operation.

2.1.3 Applicability of IDP for a single reservoir

The two examples show the applicability of the IDP technique

in the derivation of an optimum operational strategy for a

system comprising a single reservoir. The possibility to reduce

Figure 2.8 Characteristic curves of the Ubol Ratana Reservoir

Figure 2.9 Rule curve of the Ubol Ratana Reservoir

Table 2.5. Effect of initial corridor width: Ubol Ratana

Reservoir

Initial half

corridor width

(106m3)

Optimal energy

generation for

water years

1966–1988 (MWh)

Number of

iterations for

converging to

optimal solution

10 1 558 831 147

20 1 559 663 80

30 1 559 304 55

40 1 558 684 52

80 1 559 361 49
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the corridor width in successive iterations finally results in a

small discretization step size for the state variable. This is an

advantage of the IDP technique since solution of the same

optimization problem with that discretization step size using

the conventional DP technique would require a considerable

amount of computer storage and time.

2.2 IDP IN OPTIMAL RESERVOIR

OPERATION: MULTIPLE-RESERVOIR

SYSTEM

In a multiple-reservoir system, it is necessary to obtain an

operation policy for all the reservoirs simultaneously, because

the optimum condition of the system cannot be investigated

by considering reservoirs in isolation. This requirement,

which implies the ‘‘curse of dimensionality,’’ prohibits the

use of conventional DP for a multiple-reservoir system. The

IDP technique is considered to be a suitable method to over-

come the high dimensionality problem.

APPLICATION OF IDP TO THE MAHAWELI

WATER RESOURCES SYSTEM

Application of the IDP technique to derive optimal operation

policies for a multiple-reservoir system is presented in this

section based on the work of Nandalal (1986).

MAHAWELI WATER RESOURCES SYSTEM

The Mahaweli Water Resources Development Scheme is a

multipurpose water resources scheme that harnesses the

hydroelectric and irrigation potential of the Mahaweli Ganga

(River) in Sri Lanka. The scheme comprises a complex net-

work of regulating reservoirs and diversion structures built on

the main stem of the Mahaweli River as well as on its tribu-

taries and diversion routes.

As the schematic diagram of the Mahaweli system in

Figure 2.11 illustrates, there are three reservoirs on the main

stem of the Mahaweli River namely the Victoria, Randenigala

and Rantembe Reservoirs. Each of these reservoirs has a

power plant. These reservoirs serve the purposes of power

generation and flow regulation for irrigation. The Caledonia

Table 2.6. Maximum energy generation: Ubol Ratana Reservoir

Water year

Maximum energy

generation (MWh)

Percentage

of wet year

Historical energy

generation (MWh)

Percentage

of wet year

1971 (average year) 88 305 73 82 828 69

1978 (wet year) 120 274 100 93 988 78

1981 (dry year) 42 676 35 34 517 29

1966–88 1 559 361 — 1 143 552 —

Mean annual (1966–88) 67 798 56 49 720 41

Figure 2.10 Optimal operation policies to maximize energy generation of the Ubol Ratana Reservoir
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Reservoir, Talawakelle power plant, and Kotmale Reservoir

are located on Kotmale Oya (Creek), a major tributary of the

Mahaweli River. Downstream of the Kotmale Reservoir is the

Polgolla Barrage, which plays a vital role in this water resources

system. It is used for an interbasin water transfer from the

Mahaweli River to the adjacent Amban Ganga Basin via a

diversion tunnel. The diverted water is used to generate power

at a power station at Ukuwela before being collected in the

Bowatenna Reservoir. The Bowatenna Reservoir is used as

a regulating reservoir for diverting irrigation water to irrigation

systems H, IH, and NW while serving the purpose of power

generation by downstream discharges. The Moragahakanda

Reservoir, which is located downstream of the Bowatenna

Reservoir, is also amultipurpose structure that provides hydro-

power generation and flow regulation for irrigation. Major

diversion points of the system are Polgolla, Bowatenna,

Elahera, Angamedilla, Minipe, and Kandakadu. The Minipe

Anicut (weir) diverts water to both the right and left bank

canals in order to fulfil the requirements of systems B, C, and E.

A canal from Minipe is envisaged to feed system D1 also

from the water available at Minipe. The features of the

components of the Mahaweli water resources system are

given in Table 2.7.

IDP MODEL FORMULATION

The IDP model formulated for a serially linked two-reservoir

system, a subsystem of the Mahaweli system is shown in

Figure 2.12. Due to the small size of the Rantembe Reservoir,

the Rantembe power plant is assumed to be a run-of-the-river

power plant (Nandalal, 1986).

The system is operated on a monthly basis and the reser-

voirs begin and end their yearly operational cycle with a given

amount of water stored. The forward algorithm of dynamic

programming is used in the optimization.

OBJECTIVE FUNCTION

The objective function is to maximize the total energy gener-

ation from the three power plants over a pre-specified time

period. That is:

OF ¼Maximize
XN
j¼1

TEPj; (2:7)

Figure 2.11 Schematic diagram of the Mahaweli system
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where

TEPj¼
P3
i¼1

9:81� � �Qi;j �Hi;j � tj=10
6 (MWh), total energy

production,

ELi,j ¼ elevation of reservoir i during period j (m),

Hij ¼ELi,j�TWLi,j (m),

N ¼ number of periods (¼ 12, months in a year),

Qi,j ¼ release from reservoir i during period j (m3/s),

TWLi,j¼ tailwater level of power station i during period j (m),

tj ¼ time in period j (h), and

� ¼overall efficiency¼ 0.75 (turbinesþ generatorsþ
transmission).

Reservoir storages and releases are assumed to be the state

variables and decision variables, respectively. This maximiza-

tion is subject to constraints on reservoir storages and releases.

Storage constraints and release constraints are identical

with those for the single-reservoir case (Eq. 2.3 and Eq. 2.4).

State transformation equations, which are expressed by the

principle of continuity, are as follows.

For the upstream reservoir,

S1;jþ1 ¼ S1;j þ I1;j � E1;j � R1;j �O1;j: (2:8)

For the downstream reservoir,

S2;jþ1 ¼ S2;j þ I2;j � E2;j � R2;j þ R1;j þO1;j �O2;j: (2:9)

For the run-of-the-river plant,

R3;j ¼ R2;j þ I3;j þO2;j �O3;j: (2:10)

Where

Ei,j ¼ evaporation from reservoir i during period j, i¼ 1, 2

(106m3),

Ii,j ¼ incremental inflow to reservoir i during period j, i¼ 1, 2

(106m3),

I3,j ¼ incremental inflow to runoff river plant (106m3),

Oi,j ¼ spill from reservoir i during period j, i¼ 1, 2 (106m3),

O3,j ¼ spill over run-of-the-river plant (106m3),

Ri,j¼ release from reservoir i during period j, i¼ 1, 2 (106m3),

R3,j ¼ release through run-of-the-river plant (106m3), and

Si,j ¼ storage of reservoir i at beginning of period j, i¼ 1, 2

(106m3).

In the DP formulation of this problem there exist 12 stages,

a state vector Sj having two values Sij, and a decision vector

Rj having two values Ri,j, whereas R3,j is defined as a function

of inflows and upstream releases.

The DP recursive equation, which is used to determine the

deterministic optimum solution within each corridor, can be

expressed as

F �jþ1ðSjþ1Þ ¼Max
Rj

TEPjðSj;Sjþ1Þ þ F�j ðSjÞ
h i

; j ¼ 1; 2; . . . ;N;

(2:11)

where F*
jþ 1(Sjþ 1) is the maximum total of the objective func-

tion value from stage 1 to stage jþ 1, when the state at stage

jþ 1 is Sjþ 1.

CONSTRUCTION OF CORRIDORS FOR A

TWO-STATE VARIABLE IDP MODEL

A corridor composed of three values of the state variable

is constructed around the initial trajectory whenever possible.

In general, the corridor is defined symmetrically around the

trial trajectory of state variables as described in the following.

For a two-reservoir system, the state of the system in stage

j is defined by the storage volumes of the two reservoirs at

the beginning of the period j (S1j, S2j). Then the three boun-

dary points of the corridor with regard to S1j can be defined

as (S1j��1), S1j, and (S1jþ�1). Similarly, the three boun-

dary points for S2j can also be defined as (S2j��2), S2j,

(S2jþ�2), where �1 and �2 are the half corridor widths

for state variables 1 and 2 respectively. These imply the iden-

tification of nine points in the two-dimensional storage

space as shown in Figure 2.13. However, asymmetrical corri-

dors may result if the boundaries of the corridors exceed the

minimum or maximum limits of live storage capacities.

Larger corridor widths are used for the initial cycles, which

ensures that the optimal trajectories are obtained within a

small number of iterations. Since the initial trajectory for

any later cycle is the optimal trajectory for its preceding

cycle and thus closer to optimality than the initial one, smaller

corridor widths can be used for later cycles to search for the

Figure 2.12 System configuration: Victoria, Randenigala, Rantembe subsystem
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optimal trajectory. In this study, the corridor widths were

halved after each cycle.

After the construction of a corridor around the trial trajec-

tory, the optimal trajectory and the corresponding objective

function value within the corridor are sought. This is done by

means of a conventional dynamic programming algorithm,

but restricting the computations of the state transformations

to only those values of the state variables defined by the

corridor. The calculation steps in the procedure are presented

in Figure 2.14.

TESTS FOR CONVERGENCE

As indicated previously, the optimal trajectory for a given

corridor width is obtained iteratively. The improvement of

the return from trajectories of subsequent iterations decreases

as the iterations progress. The convergence criterion can be

expressed as

�i ¼
F �i � F �i�1
�� ��
F �1 � F �0
�� �� ; i ¼ 1; 2; . . . ; I; (2:12)

where

F*
i ¼ return from optimal trajectory for the ith iteration of

given cycle (i¼ 0, 1, 2, . . .), and

I ¼ maximum number of iterations per cycle.

If, during any of the intermediate cycles, the iterative pro-

cess yields a value of �i which does not represent a significant

improvement in the return, that is

�i � e; i ¼ 1; 2; . . . ; I; (2:13)

the computational cycle will be terminated. The next cycle

starts with a smaller (half-size) corridor considered around

the optimal trajectory of the completed cycle. After the final

iteration of each cycle, the following test will be made in order

to determine the convergence of the algorithm toward the

optimal solution.

l �
F �j � F �j�1

��� ���
F �j�1

; (2:14)

where

F*
j ¼ return from the optimal trajectory for the jth cycle

(j¼ 1, 2, 3, . . .).

l is an arbitrary convergence criterion which terminates the

IDP procedure once the above criterion is satisfied. The tra-

jectory which yields the optimum return is identified as

the solution of the optimization problem. In the present

study, e and l were assigned the values of 0.001 and 0.0001

respectively.

APPLICATION OF THE IDP MODEL TO THE

MAHAWELI WATER RESOURCES SYSTEM

The model was run for the average year (average of inflows

for 32 years) for the Victoria, Randenigala, and Rantembe

subsystem.

EFFECT OF THE INITIAL CORRIDOR WIDTH

The model was run for three different initial corridor widths.

The same initial trial trajectory was assumed in all these

cases. The initial trial trajectories and the resultant optimal

trajectories for the Victoria Reservoir and the Randenigala

Reservoir are presented in Figure 2.15 and the total annual

energy generation is given in Table 2.8. The rates of con-

vergence to the optimal result are shown in Figure 2.16.

From these results it is obvious that the initial corridor

width has not much weight on the optimal result but rather

on the rate of convergence. Further, the larger the initial

corridor width, the smaller the number of iterations required

to converge to the optimum solution.

Figure 2.13 Corridor points for two-reservoir case

Table 2.8. Effect of initial corridor width in IDP

Half corridor width

(106m3)

Annual energy

generation (MWh)

30 1 464 990

40 1 465 174

50 1 465 064
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EFFECT OF INITIAL TRIAL TRAJECTORY

Themodelwas run four times, each time the calculations starting

fromoneof the trial trajectories1, 2,3, and4shown inFigure2.17

with the same initial half corridor width. All four solutions

converged to the same optimal trajectory as shown in the same

figure. The rates of convergence to the optimal result are as

shown in Figure 2.18. The optimum results obtained from the

model for different initial trial trajectories are given in Table 2.9.

Establish initial trial trajectory and its return 

Begin the first cycle with the initial trial trajectory 

Begin the first iteration of the cycle

Set current optimal 
trajectory as trial

No

No

No

Stop

Start

Yes

No

Last Cycle?

Last
Cycle?

Last
Iteration?Yes

Yes

Convergence of
algorithm fulfilled?

Set current optimal 
trajectory as trial

Find the optimal
trajectory and its return
within current corridor

Begin next iteration
with current

corridor width 

Begin next cycle
with a reduced
corridor width 

Construct a corridor
around the trial trajectory 

Current optimal
trajectory

represents the
optimal solution of

the problem

Current optimal
trajectory

represents a near
optimal solution

Yes

Figure 2.14 Incremental dynamic programming procedure
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Figure 2.17 Effect of initial trial trajectory in IDP procedure

Figure 2.18 Rate of convergence for different initial trial trajectories

in IDP procedure

Table 2.9. Effect of initial trial trajectory in IDP

Trial trajectory

number

Initial

corridor

width

Number of

iterations for

convergence

Optimum

annual energy

generations

(106m3) (MWh)

1 40 20 1 465 174

2 40 46 1 465 174

3 40 19 1 465 174

4 40 27 1 465 174

Figure 2.15 Effect of initial corridor width in IDP

Figure 2.16 Rate of convergence for different initial corridor widths

in IDP procedure
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It is obvious from Figure 2.17 that the closer the initial trial

trajectory is to the optimum result, the quicker is the conver-

gence. As apparent from the above results, the convergence

behavior of the model to the global optimum can be con-

cluded as satisfactory.

The application of the IDP technique to the Mahaweli

subsystem shows its suitability to derive optimum operational

patterns simultaneously for two reservoirs in a system. It

further presents the impact of different corridors as well as

their widths on the rate of convergence to the optimum result

and the optimum value in the IDP technique.
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3 Stochastic dynamic programming in
optimal reservoir operation

Uncertainty involved with water resources systems promotes

the use of stochastic dynamic programming (SDP) in the

derivation of optimum operation policies for reservoirs. The

SDP procedure derives the optimal, expectation oriented,

long-term operational strategy for reservoirs. A general

description of the SDP technique is given in Section 1.6.

3.1 SDP IN OPTIMAL RESERVOIR

OPERATION: SINGLE RESERVOIR

This section provides an SDP based model applicable in the

operation of a single reservoir as shown in Figure 3.1 (He

et al., 1995).

OBJECTIVE FUNCTION

The objective is to maximize the expected annual energy gen-

eration from the reservoir:

OF ¼Maximize �
XT
j¼1

EPj

( )
; (3:1)

where

EPj ¼ energy generation by power plant at period j (MWh)

¼ 9.81� ��Qj� (ELj�TWL)/106, j¼ 1, 2, . . . , T,

ELi ¼ average water surface elevation of reservoir during

period j (m),

Qj ¼ release from reservoir during period j (m3/s),

Sj ¼ storage in reservoir at beginning of period j (106m3),

TWLi ¼ normal tail water level of power plant (m),

T ¼ number of periods within annual cycle ¼ 12,

� ¼ overall efficiency of power plant (0.75 was used), and

� ¼ denotes expectation.

STAGES, STATE, AND DECISION VARIABLES

The state of the system is described by water available in the

reservoir at the beginning of any time step and inflow level at

the present time period. Consecutive time steps are identified

as stages. The decision variable is storage volume at the end of

the time period. The optimization is subject to constraints on

reservoir storage and release.

STORAGE VOLUME CONSTRAINT

The storage of the reservoir during any stage must be within

the limits of minimum and maximum live storage capacity:

Smin � Sj � Smax; j ¼ 1; 2; . . . ;T; (3:2)

where

Sj ¼ storage volume at beginning of period j (106 m3),

Smin ¼ allowable minimum storage volume (106 m3), and

Smax ¼ allowable maximum storage volume (106 m3).

RELEASE CONSTRAINT

The release from the reservoir at any stage is subject to the

constraints of maximum and minimum limits. The capacity

of hydropower generators sets a maximum limit to reservoir

release:

Rmin � Rj � Rmax; j ¼ 1; 2; . . . ;T; (3:3)

where

Rj ¼ reservoir release during period j (106 m3),

Rmax¼maximum allowable release through turbines in period

j (106 m3), and

Rmin¼minimum release from reservoir during period j (106m3).

STATE TRANSFORMATION EQUATION

The state transformation equation based on the principle of

continuity is as follows:

Sjþ1 ¼ Sj þ Ij � Ej � Rj �Oj; (3:4)

where

Ej ¼ evaporation from reservoir during period j (106 m3),

Ij ¼ inflow to reservoir during period j (106 m3), and

Oj ¼ spillage water during period j (106 m3),

Oj ¼Max[Sjþ Ij�Ej�Rj�Smax, 0].

Other variables are as defined before.
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RECURSIVE EQUATION

The recursive equation for SDP optimization is the following:

Fn
j ðk; pÞ ¼ max

l
Bk;p;l;j þ

X
q

Pj
p;q � Fn�1

jþ1 ðl; qÞ
( )

; (3:5)

where

k ¼ storage state space values of reservoir at beginning of

period j,

l ¼ decision space values of storage state of reservoir at

beginning of period jþ 1,

p ¼ inflow state space values of inflow states during period j,

q ¼ inflow state space values of inflow states during period

jþ 1,

Fn
j ðk; pÞ ¼ accumulated expected energy generation by opti-

mal operation of reservoir over last n stages in

GWh (when storage class at beginning of period j

is k and inflow class during period j is p),

Bk,p,l,j¼ energy generation when reservoir changes from state k

to state lwhen inflow class is p in period j (GWh), and

Pj
p;q ¼ transition probabilities of inflows as defined by

Eq. (3.6).

The transition probability Pj
p;q is the probability that the

inflow to the reservoir at period jþ 1 falls in state q given

that at period j the streamflow to the reservoir was in state p.

This can be expressed as

Pj
p;q ¼ probðIjþ1 ¼ qjIj ¼ pÞ; (3:6)

also

0 � Pj
p;q � 1:0; for all p and q; j ¼ 1; 2; . . . ; 12; (3:7)

X
q

Pj
p;q ¼ 1:0; for all p; j ¼ 1; 2; . . . ; 12; (3:8)

where

Ij¼ inflow to reservoir during period j (106 m3), j¼ 1, 2, . . .,T.

The absolute and monthly indices used to denote the stages

of the recursive optimization process are displayed in

Figure 3.2. The outline of the SDP procedure is displayed in

Figure 1.4. Convergence criteria given in Section 1.6 are used

in the model.

APPLICATION OF SDP TO THE KARIBA

RESERVOIR

The model has been applied to the Kariba Reservoir consid-

ering monthly time steps. Varying inflow classes with equal

occupancy frequencies and 33 storage classes with equal size

were used in the study. It used inflows over the period from

1961 to 1984. Table 3.1 presents the results obtained from the

model. In the simulation, the historical inflow time series have

been used strictly relying on the SDP based operation policies.

3.2 SDP IN OPTIMAL RESERVOIR

OPERATION: MULTIPLE-RESERVOIR

SYSTEM

The applicability of the SDP technique for optimizing the

operation of two-unit reservoir systems is presented based

on an SDPmodel developed for the serially linked two-reservoir

system displayed in Figure 3.3 (Kularathna, 1992).

OBJECTIVE FUNCTION

The objective is to maximize the expected annual energy gen-

eration from the system:

OF ¼Maximize �
XT
j¼1

X2
i¼1

TEPi;j

" #( )
; (3:9)

Figure 3.1 System configuration for SDP model: single reservoir

Figure 3.2 Graphical display of the indices used in the SDP model

description

Figure 3.3 System configuration for SDP model: multiple-reservoir

system

Table 3.1. Operational performance of the Kariba Reservoir

Expected SDP based annual energy 8679GWh

Simulated mean annual energy 8502GWh

Minimum annual energy 6157GWh

Mean utilized storage volume as %

of available reservoir capacity

58.7%
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where

TEPi,j ¼ energy generation by power plant i at period j

(MWh)

¼ 9.81� ��Qi,j� (ELi,j�DWLi,j)/10
6; i¼ 1, 2;

j¼ 1, 2, . . . , T,

DWLi,j ¼ average downstream water level of power plant i

during period j (m)

¼ max½TWL1;EL2j�; i ¼ 1; j ¼ 1; 2; . . . ;T;
TWL2; i ¼ 2; j ¼ 1; 2; . . . ;T;

�
ELi,j ¼ average water surface elevation of reservoir i during

period j (m),

Qi,j ¼ release from reservoir i during period j (m3/s),

Si,j ¼ storage in reservoir i at beginning of period j (106 m3),

TWLi ¼ normal tail water level of power plant i (m),

T ¼ number of periods within annual cycle ¼ 12,

� ¼ overall efficiency of power plant (0.75 was used), and

� ¼ denotes expectation.

The optimization is subject to constraints on reservoir storage

and release.

STORAGE CONSTRAINT

The storage of the reservoirs during any stage must be within

the limits of minimum and maximum live storage capacity.

SMINi;j � Si;j � SMAXi;j; i ¼ 1; 2; j ¼ 1; 2; . . . ;T;

(3:10)

where

SMINi,j ¼ minimum storage of reservoir i at beginning of

period j (106 m3), and

SMAXi,j ¼ maximum storage of reservoir i at beginning of

period j (106 m3).

RELEASE CONSTRAINT

The releases from each reservoir are subject to the constraints

ofmaximum andminimum limits. This is due to themaximum

capacities of outlets and the compulsory releases, if any:

RMINi;j � Ri;j � RMAXi;j; i ¼ 1; 2; j ¼ 1; 2; . . . ;T;

(3:11)

where

Ri,j ¼ release from reservoir i during period j (106 m3),

RMINi,j ¼ minimum release from reservoir i during period

j (106 m3), and

RMAXi,j ¼ maximum release from reservoir i during period

j (106 m3).

STATE TRANSFORMATION EQUATIONS

State transformation equations according to the principle of

continuity are presented in the following.

For the upstream reservoir:

S1;jþ1 ¼ S1;j þ I1;j � E1;j � R1;j �O1;j; j ¼ 1; 2; . . . ;T:

(3:12)

For the downstream reservoir, since the releases and spills of

the upstream reservoir become additional inflows:

S2;jþ1 ¼ S2;j þ I2;j � E2;j � R2;j þ R1;j þO1;j �O2;j;
j ¼ 1; 2; . . . ;T:

(3:13)

For both reservoirs:

Oi;j ¼ Ri;j � RMAXi;j; if Ri;j � RMAXi;j and

Si;j � SMAXi;j; i ¼ 1; 2; j ¼ 1; 2; . . . ;T;
(3:14)

Ri;j ¼ RMAXi;j; when Ri;j � RMAXi;j;
i ¼ 1; 2; j ¼ 1; 2; . . . ;T;

(3:15)

and

Oi;j ¼ 0:0; when Ri;j � RMAXi;j; i ¼ 1; 2; j ¼ 1; 2; . . . ;T;

Si;jþ1 � SMAXi;jþ1

(3:16)

Si;jþ1 ¼ Si;j; i ¼ 1; 2; j ¼ T; (3:17)

where

Ei,j ¼ losses (principally evaporation) from reservoir i during

period j (106 m3),

Ii,j¼ incremental inflow to reservoir i during period j (106 m3),

Oi,j ¼ spill from reservoir i during period j (106 m3), and

Ri,j ¼ release from reservoir i during period j (106 m3).

Other variables are as defined before.

RECURSIVE EQUATION

The recursive equation for SDP optimization is the following:

Fn
j ðk; pÞ ¼ max

l
Bk;p;l;j þ

X
q

JPj
p;q � Fn�1

jþ1 ðl; qÞ
( )

; (3:18)

where

k ¼ storage state space consisting of representative values of

joint storage states of reservoirs at beginning of period j,

l ¼ decision space consisting of representative values of joint

storage states of reservoirs at beginning of period jþ 1,

p ¼ inflow state space consisting of representative values of

joint inflow states during period j,

q ¼ inflow state space consisting of representative values of

joint inflow states during period jþ 1,

Fn
j ðk; pÞ ¼ accumulated expected energy generation by opti-

mal operation of system over last n stages in GWh

(when storage class at beginning of period j is k

and inflow class during period j is p),
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Bk,p,l,j ¼ energy generation when system changes from state k

(reservoir 1 and reservoir 2 at states k1 and k2) to

state l (reservoir 1 and reservoir 2 at states l1 and l2)

when inflow class is p (p1 to reservoir 1 and p2 to

reservoir 2) in period j (GWh), and

JPj
p;q ¼ joint transition probabilities of inflows as defined by

Eq. (3.19).

The joint transition probability JPj
p;q is the probability that the

inflows to reservoir 1 and reservoir 2 at period jþ 1 fall in states q1
and q2 (represented by state vector q) given that at period j the

streamflows to reservoirs 1 and 2 were in states p1 and p2 (repre-

sented by state vector p) respectively. This can be expressed as

JPj
p;q ¼ probðI1;jþ1 ¼ q1; I2;jþ1 ¼ q2jI1;j ¼ p1; I2;j ¼ p2Þ;

(3:19)

also

0 � JPj
p;q � 1:0; for all p and q; j ¼ 1; 2; . . . ; 12;

(3:20)

X
q

JPj
p;q ¼ 1:0; for all p; j ¼ 1; 2; . . . ; 12;

(3:21)

where

Ii,j ¼ inflow to reservoir i during period j (106 m3), i¼ 1, 2;

j¼ 1, 2, . . . , T.

The absolute and monthly indices used to denote the stages of

the recursive optimization process are displayed in Figure 3.2.

The outline of the SDP procedure is displayed in Figure 3.4.

Convergence criteria given in Section 1.6 are used in the model.

3.2.1 Application of SDP to the Mahaweli

water resources system

Applicability of the model is shown based on the

Victoria–Randenigala–Rantembe reservoir subsystem of the

Mahaweli Development Scheme given in Figure 2.11. The

Rantembe Reservoir, due to its negligible storage capacity,

is treated as a run-of-the-river power plant (Nandalal, 1986).

The objective function is to maximize the expected energy

generation. The analysis is based on historical (37-year-long)

monthly streamflow data at each reservoir and at the Minipe

diversion. No irrigation demand constraints were considered

in order to permit a comparison with the IDP based deter-

ministic optimum. In the case of the deterministic optimum

solution, it was found that a feasible solution does not exist

when the available demand series are considered as constraints.

Therefore, the SDP based optimization also was performed

without demand constraints.

The operation policy designated for a reservoir by the

model is a set of rules specifying the storage level at the

beginning of the next month for each combination of storage

levels at the beginning of the current month and the inflow

during the current month. This optimization model produces

an output consisting of 12 operation policy tables for the 12

months of the year. As an example, the operation policy table

obtained for a month using four inflow classes and seven

storage classes for each reservoir is displayed in Table 3.2.

The numerical values used to identify the different inflow and

storage levels are presented in Tables 3.3 and 3.4, respectively.

Once operational strategies have been defined, simulations

are carried out to assess and to incorporate the effects of the

reservoir’s performance into the operation of the system as a

whole. The simulations are carried out over the total historical

record of inflow using different SDP based operation policies

derived using different state discretization levels. The per-

formance indicators used to assess the simulated operation

are the following:

(a) average annual energy generation,

(b) annual firm energy,

(c) average annual water shortage,

(d) probability of failure months (the probability that the

irrigation demand cannot be satisfied as a result of a

reservoir level being lower than or equal to the minimum

operation level).

The simulation results are summarized in Table 3.5. It also

includes results of the deterministic optimum operation. The

tabulated computer time is for the IBM 3083 mainframe com-

puter at the Asian Institute of Technology in Thailand in 1986.

These time requirements are clearly no longer representative.

However, they still reflect the ratio in time requirement for IDP

and SDP including the role of refining discretization.

Table 3.5 indicates that the computational time of an SDP

model increases polynomially (for a fixed state space dimen-

sion) with the increase of state discretization levels

(NI1�NI2�NS1�NS2 in Table 3.5). Although the memory

requirements increase, they are well within the maximum

memory limits of most modern personal computers. An

improvement of the objective achievement can be noted

when refining the storage discretizations. However, as dem-

onstrated by Bogardi et al. (1988), the performance with

respect to the refinement of state discretizations will eventu-

ally have a diminishing improvement as explicitly indicated

by the increase of simulated annual energy generation. The

SDP based policy No. 4 (Table 3.5) is observed to be the

best policy for this water resources system when considering

the annual firm energy generation. In terms of energy
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Figure 3.4 SDP Flow diagram for two-reservoir case
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Table 3.2. SDP based operation policy for the Victoria and Randenigala Reservoirs for the month of October
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Table 3.3. Inflow class discretization of the operation policy of Table 3.2

Inflow class Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep.

1 V 93.5 155.1 146.2 67.2 34.7 25.6 41.2 47.0 87.5 79.3 102.7 99.3

R 24.9 32.0 76.8 61.0 24.7 13.5 12.7 14.0 10.6 8.3 10.7 8.6

2 V 93.5 155.1 146.2 67.2 34.7 25.6 41.2 47.0 87.5 79.3 102.7 99.3

R 43.1 68.2 161.9 118.0 89.9 36.3 26.8 33.9 24.2 21.8 22.5 23.7

3 V 93.5 155.1 146.2 67.2 34.7 25.6 41.2 47.0 87.5 79.3 102.7 99.3

R 65.3 98.2 295.2 177.6 157.5 71.1 43.0 66.1 39.8 38.0 34.5 43.1

4 V 93.5 155.1 146.2 67.2 34.7 25.6 41.2 47.0 87.5 79.3 102.7 99.3

R 89.7 141.2 447.0 255.7 248.0 106.1 59.7 96.3 67.6 54.9 58.2 57.1

5 V 176.2 279.2 381.8 200.5 106.2 48.4 80.9 166.7 280.8 223.4 236.6 261.2

R 24.9 32.0 76.8 61.0 24.7 13.5 12.7 14.0 10.6 8.3 10.7 8.6

6 V 176.2 279.2 381.8 200.5 106.2 48.4 80.9 166.7 280.8 223.4 236.6 261.2

R 43.1 68.2 161.9 118.0 89.9 36.3 26.8 33.9 24.2 21.8 22.5 23.7

7 V 176.2 279.2 381.8 200.5 106.2 48.4 80.9 166.7 280.8 223.4 236.6 261.2

R 65.3 98.2 295.2 177.6 157.5 71.1 43.0 66.1 39.8 38.0 34.5 43.1

8 V 176.2 279.2 381.8 200.5 106.2 48.4 80.9 166.7 280.8 223.4 236.6 261.2

R 89.7 141.2 447.0 255.7 248.0 106.1 59.7 96.3 67.6 54.9 58.2 57.1

9 V 304.5 429.7 710.2 313.0 169.9 75.6 131.0 260.5 440.1 312.1 365.7 422.4

R 24.9 32.0 76.8 61.0 24.7 13.5 12.7 14.0 10.6 8.3 10.7 8.6

10 V 304.5 429.7 710.2 313.0 169.9 75.6 131.0 260.5 440.1 312.1 365.7 422.4

R 43.1 68.2 161.9 118.0 89.9 36.3 26.8 33.9 24.2 21.8 22.5 23.7

11 V 304.5 429.7 710.2 313.0 169.9 75.6 131.0 260.5 440.1 312.1 365.7 422.4

R 65.3 98.2 295.2 177.6 157.5 71.1 43.0 66.1 39.8 38.0 34.5 43.1

12 V 304.5 429.7 710.2 313.0 169.9 75.6 131.0 260.5 440.1 312.1 365.7 422.4

R 89.7 141.2 447.0 255.7 248.0 106.1 59.7 96.3 67.6 54.9 58.2 57.1

13 V 402.4 657.5 1113.9 485.1 287.2 110.9 195.7 376.9 723.9 500.3 542.6 687.3

R 24.9 32.0 76.8 61.0 24.7 13.5 12.7 14.0 10.6 8.3 10.7 8.6

14 V 402.4 657.5 1113.9 485.1 287.2 110.9 195.7 376.9 723.9 500.3 542.6 687.3

R 43.1 68.2 161.9 118.0 89.9 36.3 26.8 33.9 24.2 21.8 22.5 23.7

15 V 402.4 657.5 1113.9 485.1 287.2 110.9 195.7 376.9 723.9 500.3 542.6 687.3

R 65.3 98.2 295.2 177.6 157.5 71.1 43.0 66.1 39.8 38.0 34.5 43.1

16 V 402.4 657.5 1113.9 485.1 287.2 110.9 195.7 376.9 723.9 500.3 542.6 687.3

R 89.7 141.2 447.0 255.7 248.0 106.1 59.7 96.3 67.6 54.9 58.2 57.1

V and R indicate the inflows of the Victoria and Randenigala Reservoirs respectively

Table 3.4. Storage classes of the operation policy of Table 3.2

Class Vic. Rand. Class Vic. Rand. Class Vic. Rand. Class Vic. Rand.

1 34.0 295.0 13 148.0 778.0 25 377.0 585.0 37 605.0 390.0

2 34.0 390.0 14 148.0 875.0 26 377.0 682.0 38 605.0 488.8

3 34.0 488.8 15 262.0 295.0 27 377.0 778.0 39 605.0 585.0

4 34.0 585.0 16 262.0 390.0 28 377.0 875.0 40 605.0 682.0

5 34.0 682.0 17 262.0 488.8 29 490.0 295.0 41 605.0 778.0

6 34.0 778.0 18 262.0 585.0 30 490.0 390.0 42 605.0 875.0

7 34.0 875.0 19 262.0 682.0 31 490.0 488.8 43 720.0 295.0

8 148.0 295.0 20 262.0 778.0 32 490.0 585.0 44 720.0 390.0

9 148.0 390.0 21 262.0 875.0 33 490.0 682.0 45 720.0 488.8

10 148.0 488.8 22 377.0 295.0 34 490.0 778.0 46 720.0 585.0

11 148.0 585.0 23 377.0 390.0 35 490.0 875.0 47 720.0 682.0

12 148.0 682.0 24 377.0 488.8 36 605.0 295.0 48 720.0 778.0

49 720.0 875.0

Vic. and Rand. indicate the storage volumes of the Victoria and Randenigala Reservoirs respectively



generation and average water shortage this policy is negligibly

inferior when compared to policy No. 3. The underachieve-

ment with respect to energy generation and the average water

shortage are 0.07% and 1.18% respectively. However, the

overachievement in terms of firm energy (33%) confirms the

acceptance of policy No. 4 as the best policy. A comparison

of this policy with the deterministic optimum reveals that

it has achieved 89.9% of the deterministic optimum energy

generation.

3.3 SOME ALGORITHMIC ASPECTS OF

STOCHASTIC DYNAMIC PROGRAMMING

The previous sections reveal the great potential of SDP in

optimal reservoir operation. SDP, which can handle non-

convex and nonlinear discrete variables, generates an oper-

ation policy comprising storage targets, release decisions

for all the possible reservoir storages, and inflow states in

each period rather than a mere single schedule of reservoir

releases. It is a flexible model that could be adjusted easily to

various problem environments. Due to its inherent merits,

SDP has been well received as a long-term reservoir optimi-

zation model.

However, many applications of SDP indicate that certain

algorithmic aspects of it have to be studied further to facilitate

the application of the SDP model to real-world reservoir

operational problems.

He et al. (1995) studied algorithmic aspects of SDP based

on its application to several real-world reservoir operational

problems. The study focused on the following aspects of

the SDP model: (a) the Markov inflow transition probabi-

lity matrix and its role in SDP models; (b) the influence of

different decision variables and inflow state variables on

performance of the SDP model; and (c) the suitability of the

different inflow serial correlation assumptions.

3.3.1 Markov inflow transition probabilities

Application of the SDP technique for the optimization of

reservoir operations is based on the idea that the policies will

converge to a ‘‘steady-state’’ policy after several iterations

of the recursive relation. The steady-state policy achieved

in this way will be the global optimum. In several applica-

tions of the SDP technique in reservoir operation opti-

mizations (e.g., Nandalal, 1986; Budhakooncharoen, 1986;

Kularathna, 1992, etc.), one convergence criterion given in

Section 1.6, that is the stabilization of the expected annual

increment of objective function value, could not be realized.

In those studies only the stabilization of the operation pol-

icy after a few iteration cycles was reported to have been

achieved.

PROBLEMS IN SDP CONVERGENCE BEHAVIOR

In the SDP model, the inflow process, I, is usually assumed

to be a ‘‘Markov process’’ (or ‘‘Markov chain’’). In general, a

Markov process describes only one-step dependence, called a

first order process, or exhibits lag-one serial correlation

(Markov assumption). An SDP model is the application of the

‘‘principle of optimality’’ of dynamic programming (Bellman,

1957) to the Markov sequential decision process.

As an example, consider the version of the SDP model

presented in Section 3.1. In that model, time period is defined

as the stage. Storage volume at the beginning of the time

period and inflow level at the present time period are state

variables. Storage volume at the end of the time period is

defined as the decision variable. Markov transition proba-

bilities of the inflow (from the present time period to the

Table 3.5. Simulation results of the Victoria–Randenigala–Rantembe reservoir subsystem according to SDP based policies

Policy

No.

Number of state

discretization

Average annual

energy (GWh)

Annual firm

energy (GWh)

Average annual

shortage at Minipe

(106 m3)

Probability of failure

monthsa (%)

Size of DP

program

(bytes)

CPU

time (s)

1 4� 4� 4� 4¼ 256b 1265.9 150.8 93.1 5.4 112 544 38

2 4� 4� 5� 5¼ 400 1274.3 153.1 85.5 5.4 172 660 94

3 4� 4� 6� 6¼ 576 1284.0 123.1 84.1 5.4 260 108 195

4 4� 4� 7� 7¼ 784 1283.0 164.3 85.1 5.4 383 396 365

Deterministic optimum 1427.5 67.8 552.0 38.1 319 328 274

a Failure to satisfy the irrigation water demands
b NI1�NI2�NS1�NS2
NIi and NSi are respectively the number of inflow discretizations and the number of storage discretizations for the ith reservoir

38 SDP IN OPTIMAL RESERVOIR OPERATION



subsequent time period) are incorporated into the recursive

relation to derive optimal values.

The optimization process starts with a set of initial values

F1
T k; pð Þ. Due to the characteristics of the Markov sequential

decision process, after a large number of iterations of the

recursive relation (Eq. 3.5) the ‘‘steady state’’ for each period

in successive years will finally be reached. It is independent of

the initial state.

There are two criteria marking convergence of the steady

state: (i) stabilization of the policy; and (ii) stabilization of the

expected annual increment of the objective values. The inter-

pretation of the two criteria is presented in Section 1.6.

However, experimental evidence shows that often the second

criterion of convergence cannot be achieved.

REASONS FOR THE VIOLATION OF SDP

CONVERGENCE CRITERIA

The behavior of the policy convergence after many iterations

is the resulting performance of the Markov transition proba-

bility matrix incorporated in the recursive relation that con-

verges to its steady-state probabilities. Howard (1960) proved

that the policies would converge to the global optimum if the

associated Markov transition probability matrices were

‘‘ergodic.’’ Stationarity means that the probability distribu-

tion of the inflow process is not changing over the time cycle

(Loucks et al., 1981). This is the condition necessary to ensure

that the policies will become stable after a certain number of

iterations (the first convergence criterion).

A Markov chain is said to be ergodic if all the members in

the chain form a single recurrent chain. Immaterial of the

starting point, the process would end making jumps among

all the members in the chain. In other words, ergodicity

implies that the final state of the system is independent of

the initial state (Howard, 1960). This condition ensures that

the stable policies will be the global optimum.

In practice, the transition probabilities are usually esti-

mated from observed inflow records. This is done by counting

the number of times the observed data transit from state Ij� 1

in period j� 1 to Ij in period j. This simple method is suitable

when the number of inflow classes is small. However, it has

the drawback of limiting the accuracy of the SDP model.

When the number of inflow classes is larger than 3 or 4, a

difficulty arises. For example, if the inflows of subsequent

periods are discretized into 10 classes, the number of elements

to be estimated in a matrix during a period is 10� 10¼ 100. In

practice, historical reservoir inflow time series are seldom

longer than 50 years. For developing countries, a 30-year

record is considered as a long record. A large number of

elements will remain void if 30 years of monthly inflow data

are used to estimate 12 matrices (each with 100 elements) in a

year. This would cause real danger of losing the ergodicity of

the matrices. These zeros are ‘‘artificial’’ in the sense that they

are due to the small size of the sample.

In the SDP model, the problem is more aggravated as there

are T (e.g., 12 with a monthly time period) Markov inflow

transition probability matrices in one year cycle. The optimal

policies are produced after many cycles (years) of iterative

calculation. Therefore, it is not easy to judge whether the

ergodicity requirement is satisfied by looking at the combina-

tion of T matrices. For example, some vectors that do not

communicate in the matrix of transitions from October to

November may communicate in the matrix of November to

December.

One definite sign of the combination matrices having ergo-

dicity is that the second criterion for steady-state policy, that

is a constant value of annual increment of objective function,

can be achieved.

The importance of the ergodicity property of Markov

chains has been disregarded in their application in the SDP

model. The problem stated at the beginning of this section,

that is the difficulty in achieving the second convergence

criterion in many SDP applications, can be explained by the

above discussion. For those cases, stable policies can be

reached after a few iteration cycles while the annual increment

of the objective function value converges to more than one

constant (instead of one). The failure to converge to a single

constant in the annual increment of objective value is due to

the violation of ergodicity of the Markov inflow processes. At

this time, although the first convergence criterion (i.e., stable

policies) is obtained, the set of stable policies is separated into

more than one group, which have no communication among

each other. Each group obtains its optimum with respect to

the initial state when the reservoir operation starts.

The cause of ergodicity violation can be traced back to the

large number of zero-elements in the estimated transition

probability matrices. Therefore, an important point obtained

from this analysis is that, in applying SDP model, the number

of zero-elements in the reservoir inflow transition probability

matrices should be kept within a limit to guarantee that the

derived policies will be a global optimum.

Therefore, an approach to satisfy the ergodicity requirement

is needed while keeping the computing effort requirements at a

reasonable level. The method of deriving inflow transition

probabilities by distribution fitting involves a considerably

large amount of computing effort. This suggests the necessity

of finding an alternative method to smooth out the zero-

elements in the matrices derived from the simple tabulating

method. Therefore, the elimination of zero-elements while

maintaining the performance of the derived optimal operation

policies is of interest.
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SENSITIVITY ANALYSIS OF MARKOV INFLOW

TRANSITION PROBABILITIES

The impact of transition probability matrices on reservoir

operational performance is presented based on the Kariba

Reservoir and the Mahaweli reservoir system. Several hypo-

thetical transition probability matrices reflecting different

flow regimes are used.

The sensitivity is carried out for both systems based on the

following steps:

(a) set up SDP models,

(b) create several sets of extremely different inflow transition

probability matrices and incorporate them into the SDP

model to derive several sets of operation policies, and

(c) simulate with the historical inflow time series according to

the derived sets of policies and compare the resulting

performance.

Table 3.6 presents the SDPmodels used to derive operation

policies for the two reservoir systems. The versions of SDP

model with the recursive relations described in Eq. (3.5)

and Eq. (3.18) were used for the Kariba Reservoir and the

Mahaweli reservoirs, respectively.

The observed original transition probabilities (ORG) and

some modified forms, namely, modified transition probabil-

ities (MDF), average transition probabilities (AVG) and

modified average transition probabilities (AVM) have been

adopted in the SDP models to derive respective optimal oper-

ation policies.

Original transition probabilities are derived from the his-

toric inflow series. Modified transition probabilities are

obtained from the ORG version by overemphasizing the max-

imum probability (or probabilities) occurring in every line.

Average transition probabilities are assumed to characterize a

hypothetical uniform frequency distribution of inflow class

transitions. Modified average transition probabilities com-

bine the principles of MDF and AVG. Zero-elements are

kept zero at the beginning and at the end of each row.

Internal sequences of three or more zero-elements remain as

such, while a uniform frequency distribution is assumed row-

wise over the nonzero and imbedded single or double zero-

elements of the ORGmatrices. Table 3.7 shows a few example

lines of these inflow transition probabilities calculated for the

Kariba Reservoir.

In the subsequent simulation, the historical inflow time

series are used ‘‘strictly’’ relying on the SDP based operation

policies obtained according to the different sets of transitional

probabilities. The optimum operation policies are determined

using the expected system performance based on discrete

storage and inflow states. Therefore, it is possible that in

some periods the actual releases resulting from the continuity

equation will be out of their feasible range (e.g., release less

than 0 or larger than the downstream channel capacity). In

such instances, corrections (i.e., over-ruling the SDP optimum

operation policy) are required in the simulation model. The

releases are made equal to the nearest feasible value and the

Table 3.6. SDP model setups for the Mahaweli and Kariba reservoir systems

Mahaweli system: Victoria

and Randenigala Reservoirs Kariba Reservoir

Objective Maximize expected annual energy generation

Constraint Irrigation demand —

Inflow discretizations Equal size intervals 4� 4

¼ 16 combinations

Equal occupancy varying

number of classes (from 2 to 8)

Storage discretizations 7� 7¼ 49 combinations 33 classes

Time step length One month One month

Table 3.7. Example of modifications of the Markov inflow

transition probabilities of the Kariba Reservoir

ORG 0.500 0.250 0.250 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.333 0.000 0.333 0.000 0.333

0.000 0.000 0.000 0.000 0.000 0.000 0.333 0.670

. . . . . .

MDF 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.333 0.000 0.333 0.000 0.333

0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

. . . . . .

AVG 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125

0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125

0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125

. . . . . .

AVM 0.333 0.333 0.333 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.200 0.200 0.200 0.200 0.200

0.000 0.000 0.000 0.000 0.000 0.000 0.500 0.500

. . . . . .
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consequent final storage is defined by the continuity equation.

The final storage (or the closest discrete value) obtained is

used as the initial storage for next time step.

The operation performances of the Kariba and Mahaweli

systems are shown in Table 3.8 and Table 3.9, respectively.

The expected annual energy outputs shown are obtained from

the SDP optimization. They are the expected gains for the

different sets of inflow transition probabilities considered and

do not represent the real gain of the reservoir operation. The

simulated mean annual energy outputs are obtained from the

real-time operational model for the given time period. Those

results are based on the operation policies derived from differ-

ent sets of inflow transition probabilities. The performance

based on ‘‘ORG policy’’ is observed to be better than the

others. That operation has the largest average energy output,

least standard deviation, and largest minimum energy output.

The differences among mean annual energy outputs appear to

be very limited (less than 2%). The standard deviations and

the minimum energy output seem to be more sensitive for

assumed changes in the inflow regime. However, the variation

among the simulated performances of the reservoir system for

different sets of assumed transition probability matrices is

observed to be very much limited.

Table 3.8 also presents the mean utilized reservoir storage

volumes, their standard deviations and the minimum storage

drawdowns. Themean utilized reservoir storage volume related

to ‘‘AVG policy’’ is much smaller than the value from ‘‘ORG

policy’’. The ‘‘AVG policy’’ is derived based on the assumption

that the reservoir inflow transition probabilities are uniform.

This implies that there is a moderate (not low and not high)

incoming inflow. If this assumption is valid, the reservoir stor-

age capacity needed to regulate the over-year inflow is low.

Therefore, decisions (the storage volumes at the end of each

time period) made by the SDP model lead to a smaller mean

utilized reservoir storage volume.

Table 3.9 shows the performance of the Victoria and

Randenigala Reservoirs in the Mahaweli system. In the SDP

model, the objective of maximizing energy generation is sub-

jected to the constraint of irrigation requirements. When both

the inflow to the reservoir and the initial reservoir storage are

very small it may not be possible to make a decision (reservoir

storage at the end of the period) that falls into the feasible

region. This occurs as the irrigation demand is introduced to

the system as a constraint that has to be satisfied always. Zeros

represent these cases in the operation policy tables. Since the

optimization does not hold for the whole set of decisions in the

annual cycle, the expected annual energy output is not obtained.

Table 3.9 presents the simulated mean annual energy out-

puts corresponding to the operation policies derived for differ-

ent sets of inflow transition probabilities. The mean utilized

reservoir storage volumes, their standard deviations, and the

minimum drawdown of the reservoir storages are also given in

the table. Except the indices referring to reservoir storage

volume, most of the performance indices referring to the objec-

tive function (energy generation) display little variation among

different sets of policies derived from different inflow series.

These results are similar to those for the Kariba Reservoir.

The Mahaweli system serves two purposes: energy gener-

ation and irrigation supply. The irrigation requirement is set

as a constraint in the SDP model. In Table 3.9, the perform-

ance indices referring to irrigation supply are also presented.

They display little variation among different policies derived

from different sets of inflow series.

These results show that for the given inflow and storage

discretizations, a limited impact of the different transition

probabilities can be detected as far as the objective functions

Table 3.8. Operational performance of the Kariba Reservoir

ORG MDF AVG AVM

Indices referring to energy output

(1) Expected annual energy (GWh) 8679 9164 9291 8967

(2) Simulated mean annual energy (GWh) 8502 8355 8494 8478

(3) Standard deviation of (2) (GWh) 847 1226 914 996

(4) Minimum annual energy (GWh) 6157 4606 5383 5358

Indices referring to reservoir

(5) Mean utilized storage volume as %

of available reservoir capacity

58.7% 57.5% 44.4% 50.6%

(6) Standard deviation of (5) 26.6% 26.9% 24.2% 26.0%

(7) Minimum storage drawdown as %

of available reservoir capacity

0.0% 0.0% 0.0% 0.0%
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are concerned. This fact implies that the inherent inaccu-

racy in estimating the transition probabilities is unlikely to

have a considerable impact on the SDP based operational

performance of reservoir systems. This ‘‘insensitivity’’ phe-

nomenon may be interpreted from the following two aspects.

(a) The transition probability matrices with large variations

may derive similar steady-state policies. As mentioned before,

the SDP optimization process is an iteration of the Bellman

recursive relation with incorporated transition probability

matrices (Eq. 3.5). Each row of the transition probability

matrix is associated with an expected objective value of a

feasible region. The optimal decision for each state is selected

from the whole set of feasible decisions for that state by

comparing the expected value of those decisions. It is clear

from the behavior of Markov chains that the influence of the

initial transition probabilities is decreasing along the itera-

tions. After many cycles the decisions are mainly weighted

by the steady probabilities of the transitions.

However, the foregoing discussion does not imply that all

the transition probability matrices with the same steady prob-

abilities will always derive the same steady-state policy. Two

transition probability matrices with large variation at the start

of the optimization process may be deformed to have less

variation along the path of optimization iterations. Thus,

they may derive similar optimal policies at the end.

(b) The derived operation policies, which vary to a certain

extent, may satisfy the purpose of the reservoir system to

similar standards.

Water reservoirs are expensive long-life investment pro-

jects. Once they have been built, they are often operated for

decades. Therefore, when designing reservoirs the uncertainty

of the future supplies, flows, qualities, costs, benefits, and so

on has to be considered. While the forecast for the future

conditions is never perfect, well-designed reservoirs need to

be sufficiently flexible to permit their adaptation to a wide

range of possible future conditions. Nowadays, many profes-

sionally designed reservoirs have to a certain extent built-in

robustness for dealing with future uncertainties. Therefore,

policies which vary to a certain extent from the optimal poli-

cies may not cause much worse performance of reservoir

systems.

In the two case studies presented, the operation policies

derived from transition probability matrices ‘‘AVG’’ vary

from the policies derived from the matrices ‘‘ORG’’. This

Table 3.9. Operational performance of the Mahaweli system

ORG MDF AVG AVM

Indices referring to energy output

(1) Mean annual energy (GWh) 1390 1364 1342 1384

(2) Standard deviation of (1) 308 302 311 321

(3) Minimum annual energy (GWh) 841 838 774 730

Indices referring to reservoir

(4) Mean utilized storage volumes as % of available reservoir capacity

Victoria 80.1% 89.1% 42.4% 65.6%

Randenigala 91.2% 89.1% 86.5% 91.5%

(5) Standard deviation of (4)

Victoria 6.6% 7.8% 11.3% 8.0%

Randenigala 10.2% 10.0% 11.8% 9.9%

(6) Minimum storage drawdown as % of available reservoir capacity

Victoria 20.6% 36.5% 4.7% 20.6%

Randenigala 44.8% 44.8% 33.7% 44.8%

Indices referring to irrigation shortage

(7) Time-based reliabilitya 86.2% 85.9% 84.6% 86.2%

(8) Quantity-based reliabilityb 95.9% 95.9% 95.5% 95.7%

(9) Repairabilityc (month) 1.57 1.64 1.64 1.47

(10) Vulnerabilityd (106 m3) 60.5 61.6 62.0 59.6

a % of time steps with fulfilled irrigation demand
b % of accumulated irrigation demand met
c Average duration of an irrigation failure (shortage) event
d Average accumulated irrigation shortages per failure
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can be detected from the indices referring to the reservoir

storage level (policy is a set of decisions defining the reser-

voir storage at the end of each time period). However, the

differences among the performance indices referring to the

key concerns of the reservoir systems (energy output and

irrigation supply) are limited.

A METHODOLOGY TO ELIMINATE ZEROS IN

TRANSITION PROBABILITY MATRICES

As presented previously, the large number of zero-elements in

the transition probability matrices due to the limited length of

inflow record are the cause of the violation of the second

convergence criterion of the SDP model. Therefore, when

using the SDP model, it is safer to make sure that most of

the elements in each row in the transition probability matrices

are nonzero.

It can be easily seen that a transition probability matrix is

ergodic (irreducible) if more than half the elements in each

row are nonzero. This can be proved by the reduction to

absurdity. Assume an n� n nonergodic matrix having more

than n/2 nonzero elements in each row. This matrix can be

divided into at least two groups of rows (each nonergodic

matrix is reducible and can be reduced to at least two non-

communicating groups of rows). These two groups of rows do

not have nonzero elements at the same column. Therefore,

these groups of rows form amatrix with more than n columns.

This is in contradictionwith the given fact that thematrix is an

n� n matrix.

The results of the sensitivity analysis presented previously

reveal that the inherent inaccuracy in estimating the transition

probability matrices is unlikely to have a considerable impact

on the SDP based operational performance of reservoir sys-

tems. Therefore, it is proposed that some zeros in the transi-

tion probability matrices may be easily smoothed out by a

reasonably small value. The following example applied to the

Kariba Reservoir illustrates this.

The method aims to make most of the elements in the tran-

sition probability matrices nonzero. When a row is empty, a

uniform frequency distribution is assumed row-wise. When

more than half the elements of a row are nonzero, the row

is kept unchanged. Otherwise, each zero in the row is replaced

by 0.01 while the nonzeros in the row are accordingly reduced

slightly to maintain the sum of the row to 1.0. Table 3.10

shows an example of how a given transition probability

matrix is transformed into a new transition probability matrix

by smoothing out the zeros according to the method.

The simulated reservoir operation performance based on

the policy derived by incorporating the new transition prob-

ability matrices (after partially smoothing out zeros) in the

SDPmodel is compared with that from the original transition

probability matrices.

Table 3.11 shows the average annual performance indices

from the simulated reservoir operation concerning both res-

ervoir storage and energy output. The similarity in the per-

formance indices for reservoir storage can be interpreted as

the similarity of the operation policies derived from both

‘‘ORG’’ and ‘‘NEW’’ transition probability matrices. Their

performance indices referring to the energy output are also

similar.

3.3.2 State and decision variables

For any DP type of model, the careful choice of state and

decision variables is crucial to the success of the model. There

are two versions of stationary SDP models that have been

applied in reservoir operation optimization. One is the model

having release as the decision variable, with previous inflow

and initial storage as state variables. The other is the model

having final storage as the decision variable, with present

inflow and initial storage as state variables. This section

presents an insight into the roles of different decision variables

Table 3.11. Simulated performance after smoothing

ORG NEW

Indices referring to energy output

(1) Expected annual energy (GWh) 8679 8693

(2) Simulated mean annual energy

(GWh) 8502 8493

(3) Standard deviation of (2) (GWh) 847 847

(4) Minimum annual energy (GWh) 6157 6157

Indices referring to reservoir

(5) Mean utilized storage volumes as

% of available reservoir capacity 58.7% 58.8%

(6) Standard deviation of (5) 26.6% 26.7%

(7) Minimum storage drawdown as

% of available reservoir capacity 0.0% 0.0%

Table 3.10. Example of the smoothing method

ORG 0.500 0.250 0.250 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.333 0.000 0.333 0.000 0.333

0.000 0.000 0.000 0.000 0.000 0.000 0.330 0.670

. . . . . .

NEW 0.480 0.240 0.230 0.010 0.010 0.010 0.010 0.010

0.010 0.010 0.010 0.313 0.010 0.323 0.010 0.313

0.010 0.010 0.010 0.010 0.010 0.010 0.310 0.630

. . . . . .
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and state variables in the SDP model and compares their

relative performances during reservoir operation.

COMPARISON OF MODELS WITH DIFFERENT

DECISION AND INFLOW STATE VARIABLES

This section compares the performance of several different

SDP models. These models, which differ in the choice of

inflow state variables and decision variables, are given below.

Model 1

State Initial storageþPresent inflow

Decision Final storage

Fn
j ðk; pÞ ¼ Opt

l

Bk;p;l;j þ
X
q

Pjþ1
p;q � Fn�1

jþ1 ðl; qÞ
" #

(3:22)

Model 2

State Initial storageþPrevious inflow

Decision Final storage

Fn
j ðk;mÞ ¼ Opt

l

X
p

Pj
m;p Bk;p;l;j þ Fn�1

jþ1 ðl; pÞ
n o" #

(3:23)

Model 3

State Initial storageþPresent inflow

Decision Current release

Fn
j ðk; pÞ ¼ Opt

r
Bk;p;r;j þ

X
q

Pjþ1
p;q �Fn�1

jþ1 ðl; qÞ
" #

(3:24)

Model 4

State Initial storageþPrevious inflow

Decision Current release

Fn
j ðk;mÞ ¼ Opt

r

X
p

Pj
m;p Bk;p;r;j þ Fn�1

jþ1 ðl; pÞ
n o" #

(3:25)

where

k ¼ storage state space values of reservoir at beginning of

period j,

l ¼ decision space values of storage state of reservoir at

beginning of period jþ 1,

m ¼ inflow state space values of inflow states during period

j� 1,

p ¼ inflow state space values of inflow states during period j,

q ¼ inflow state space values of inflow states during period

jþ 1,

r ¼ decision space values of release state during period j,

Transition probabilities are defined as in Eq. (3.6).

Figure 3.5 shows the number of storage state space, inflow

state space, and release state space values at different periods.

The four SDP formulations are compared by applying them

to theKaribaReservoir system. Initially the optimumoperation

policies were derived and then the system operations were simu-

lated according to the derived policies. The comparison is made

based on the performance indices obtained from the simulation.

EXPERIMENTS FOR COMPARISON

OF THE MODELS

The objective of the models is to maximize the expected

annual energy generation from the system. The stage of the

models is the time period (one month). The optimization is

subjected to physical constraints of the reservoir system

(e.g., storage constraints, release constraints, etc.). The

whole reservoir storage is discretized into 42 classes of equal

size, each of 1579� 106 m3. For the models in which policies

are defined as optimal releases (Model 3 andModel 4), release

levels up to twice the monthly release capacity of the turbines

are to be optimized. They are discretized into 6 classes with

equal size, each having an interval of about 1575� 106 m3.

The monthly inflows are discretized into varying numbers

of classes (2 classes for August, September, October, and

November; 3 classes for December and July; 4 classes for

January and June; 6 classes for February and May; 8 classes

for March and April) with equal occupancy frequencies. The

median of each inflow class is defined as the representative

value of that class. Uniform frequency distribution is assumed

row-wise for the empty rows if they occur in the inflow tran-

sition probability matrices. Empty rows may occur due to the

limited length of the observed historical inflow time series.

For all the SDP based optimizations, both convergence cri-

teria have been obtained.

In the subsequent simulations, the historical inflow time

series were used ‘‘strictly’’ relying on the derived SDP based

operation policies subjected to the physical constraints of the

reservoir system. The following three experiments have been

carried out based on the models.

EXPERIMENT 1

Derive optimal operation policies for the reservoir system

using the four SDP models based on 24 years (1961–84) of

historical inflow time series. Then simulate the performance

Inflow
Storage

m

j – 1 j + 1

r

j

k

p

l

q

Period
Release

Figure 3.5 Number of inflow, storage, and release state space

discretizations
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of the reservoir system according to the derived operation

policy sets using the last 12 years (1973–84) of historical

inflow time series. Assume that the perfect forecast is available

at the beginning of each time period.

EXPERIMENT 2

Derive optimal operation policies for the reservoir system

using the four SDP models based on 12 years (1961–72) of

historical inflow time series. Then simulate the performance

of the reservoir system according to the derived operation

policy sets using the last 12 years (1973–84) of historical

inflow time series. Assume that the perfect forecast is available

at the beginning of each time period.

EXPERIMENT 3

Derive optimal operation policies for the reservoir system

using the four SDP models based on 12 years (1961–72) of

historical inflow time series. Then simulate the performance

of the reservoir system according to the derived operation

policy sets using the last 12 years (1973–84) of historical

inflow time series using the imperfect inflow forecast at the

beginning of each time period. The inflows are forecast by

using the regression equations derived by Budhakooncharoen

(1986) for this case study system. The regression equations

obtained from that study are shown in Table 3.12.

The three computer experiments are summarized in

Table 3.13.

In Experiment 1, the part of the historical inflow series

(1973–84) that has been employed for deriving the optimal

policies is used to simulate the performance of the system.

This enables the difference between system performance val-

ues obtained from the steady-state solution of SDP and that

from simulation to be observed. SDP relies on a discrete

representation of input states while simulation uses actual

inflow series.

In Experiment 2, the first 12 years of the historical

inflow series are employed to derive optimal policies. The

second 12 years of the historical inflow series are used to

simulate the performance of the system according to the

derived policies. This corresponds to the situation that exists

in reality if the system is operated based on a perfect inflow

forecast.

The derivations of optimum operation policies in

Experiment 2 and Experiment 3 are similar. But in the imple-

mentation of the derived policies in the operation simulations,

the forecast inflow data are used in Experiment 3 while

observed inflow data are used in Experiment 2. Nevertheless,

when simulating the operation, the inflows used in the continu-

ity equation are still the actual inflows. In Experiment 3, the

models whose derived policies can be implemented with known

previous inflow (Model 2 and Model 4) will perform the same

way as in Experiment 2. Variation from Experiment 2 occurs

only in those models whose derived policies have to be imple-

mented using inflow forecast data.

Table 3.12. Multiple regression analysis of the Kariba Reservoir inflow (Budhakooncharoen, 1986)

Multiple regression equation: xj ¼ A1xj�1 þ A2xj�2 þ A3xj�3 þ A4;

where R2 is the determination coefficient

Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep.

A1 0.8773 0.3269 �0.8018 0.7772 0.8494 0.3063 1.0595 0.5854 0.6720 0.3446 0.4389 0.2915

A2 0.2070 0.4326 3.5237 �0.5743 0.2684 0.4652 �0.2041 �0.0272 �0.1394 0.1413 �0.1464 0.0385

A3 �0.2469 �0.1821 2.0885 �3.2355 0.6903 0.7587 �0.3044 0.0612 0.0088 0.0068 0.0727 0.0057

A4 310.48 780.55 �2288.14 6967.94 899.77 1734.72 2845.72 2081.14 604.85 �166.32 602.65 752.66

R2 0.382 0.192 0.227 0.353 0.441 0.431 0.843 0.841 0.896 0.970 0.924 0.637

Table 3.13. Summary of the three computer experiments

Experiment 1 Experiment 2 Experiment 3

Inflow time series used to derive release

policy

1961–84 1961–72 1961–72

Inflow time series used to simulate system

operation

1973–84 1973–84 1973–84

Type of forecast available at beginning

of each period (during simulation)

Perfect forecast Perfect forecast Imperfect forecast
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ANALYSIS OF THE RESULTS AND DISCUSSION

Each experiment derives one SDP based optimal policy con-

taining 12 tables (for 12 months). Out of the large number of

policies derived, the policy tables for the month of May from

Experiment 2 are presented in Table 3.14 for all fourmodels as

an example. Table 3.14a, Table 3.14b, Table 3.14c, and

Table 3.14d refer to the policies from Model 1, Model 2,

Model 3, and Model 4, respectively. Note that the policies

from Experiment 3 are the same as those from Experiment 2.

The values in Table 3.14a and Table 3.14b are the targeted

storage classes in the reservoir at the end of the month. The

values in Table 3.14c and Table 3.14d are the targeted release

classes during the month.

The simulated performance is presented based on the fol-

lowing three aspects: (a) average reservoir storage; (b) average

release through turbine; and (c) average energy generation.

The energy generation, being the objective of the optimiza-

tion, is the most important performance index. The release

through turbine is directly proportional to the energy gener-

ation. Reservoir storage shows the behavior of the reservoir

very clearly.

Table 3.15 presents the average annual performance indices

regarding the reservoir storage, the release through turbines,

and the energy generation from Experiment 1. It presents

simulated mean, standard deviation, and minimum value for

each of the three performance indices. For energy generation

the expected annual gain obtained from the SDP based opti-

mization is also included. To make the comparison easy,

values corresponding to reservoir storage, turbine release,

and energy generation are presented as percentages of the

reservoir capacity, the average annual inflow, and the gener-

ation capacity, respectively.

Tables 3.16 and 3.17 present the average annual perform-

ance indices from Experiment 2 and Experiment 3,

respectively.

In Table 3.14 the particular structure of the policy tables for

models with release as the decision variable (Table 3.14c and

Table 3.14d) attracts attention. It is noticeable that most of

the decisions are Class 1, 3212� 106 m3, which is close to the

capacity of the turbines (3937� 106 m3). The decision changes

to the value of one class larger (4818� 106 m3) only if both

initial storage and inflow are very large, or to the value of one

class smaller (1606� 106 m3) only if both initial storage and

inflow are very small. This structure of the policy table can be

explained as follows. The objective of the optimization is to

generate as much energy as possible. The maximum energy

that a hydropower plant can generate is the capacity of its

generators. The amount of energy generation is proportional

to the release through the penstocks. Corresponding to the

capacity of the generators there is an imaginary capacity

release (Rc). Therefore, optimal decisions can be seen as

attempts to approach Rc.

In contrast to Table 3.14c and Table 3.14d, models with

storage as the decision variable (Table 3.14a and Table 3.14b)

have policy tables that show large variations in the decisions.

The above-mentioned feature of ‘‘stability’’ is achieved for

the policy with release as decision variable only when

release is the direct target of optimization (e.g., to satisfy

downstream water requirements or to satisfy energy require-

ments, etc.). The feature of ‘‘stability’’ would occur in the

policy with storage as the decision variable if storage were

the direct target of optimization. For example, if water level

in a reservoir is important, the objective of optimization

could be minimizing the deviation from a target storage

level at each time period. Thus the derived policy would

have the feature that many decisions (storage) in each table

were equal to the unique value of the target (or the discre-

tized value closest to that target) for that time period. The

more robust the reservoir system is, the more decisive will be

the target values.

The ‘‘stability’’ of the policies defined with release as deci-

sion variable intuitively explains the following three aspects of

the simulation results in this study.

(a) As Tables 3.16 and 3.17 present, with respect to models

with the previous inflow as a state variable (Model 2 and

Model 4), the performance indices do not change. Model 1

performs considerably worse in Experiment 3 than in

Experiment 2, as expected. However, the performance of

Model 3 in Experiment 3 is unexpectedly close to the perform-

ance in Experiment 2.

This unexpected result can be explained with policy

Table 3.14c. For a wide range of initial storage values (from

11 105� 106 m3 to 52 166� 106 m3), the release decisions

are independent of the present inflow values. The errors in

the present inflow forecast only affect the release decision

in a very few cases (the top-right and bottom-left triangles),

and the maximum deviation in decision is only one class.

Therefore, the (simulated) operation based on this type of

policy is insensitive to the errors in the inflow forecast.

(b) Tables 3.16 and 3.17 reveal that the models with

release as a decision variable (Model 3 and Model 4) differ

very little from each other with respect to all three simu-

lated performance indices (reservoir storage, turbine release,

and energy generation). In contrast, models with storage as

a decision variable (Model 1 and Model 2) show a much

larger difference between them with respect to performance

indices.

In Table 3.14c (Model 3) and Table 3.14d (Model 4), for

a wide range of initial storage values (from 12 684� 106 m3

to 52 166� 106 m3), the optimal decisions (release) are
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Table 3.15. Simulated average annual performance (Experiment 1)

Model 1 Model 2 Model 3 Model 4

Indices for storage as % of reservoir capacity
(1) Mean utilized storage 62.3% 63.7% 68.0% 67.2%

(2) Standard deviation of (1) 29.8% 21.1% 28.1% 28.4%
(3) Minimum drawdown 7.0% 24.7% 10.6% 11.0%

Indices for releases as % of annual inflow
(4) Mean annual release 70.7% 66.5% 70.3% 70.1%
(5) Standard deviation of (4) 7.3% 8.1% 4.7% 5.2%

(6) Minimum annual release 51.3% 47.4% 57.6% 57.7%

Indices for energy as % of power capacity

(7) Expected mean annual energy output 93.5% 86.6% 91.7% 91.4%
(8) Standard mean annual energy output 90.8% 85.5% 91.0% 90.7%
(9) Standard deviation of (8) 11.4% 11.3% 8.3% 9.0%

(10) Firm annual energy output 62.0% 59.4% 73.3% 73.8%

Table 3.16. Simulated average annual performance (Experiment 2)

Model 1 Model 2 Model 3 Model 4

Indices for storage as % of reservoir capacity
(1) Mean utilized storage 61.8% 59.8% 66.5% 66.0%
(2) Standard deviation of (1) 30.2% 21.1% 29.6% 29.2%
(3) Minimum drawdown 6.2% 22.0% 8.2% 11.1%

Indices for releases as % of annual inflow

(4) Mean annual release 69.8% 64.5% 69.9% 69.7%
(5) Standard deviation of (4) 7.9% 7.2% 6.0% 6.2%
(6) Minimum annual release 48.4% 50.4% 55.6% 54.6%

Indices for energy as % of power capacity
(7) Expected mean annual energy output 92.7% 87.7% 91.0% 91.1%
(8) Standard mean annual energy output 89.6% 82.4% 90.3% 90.0%

(9) Standard deviation of (8) 11.9% 10.0% 10.1% 10.2%
(10) Firm annual energy output 58.6% 62.7% 67.1% 66.5%

Table 3.17. Simulated average annual performance (Experiment 3)

Model 1 Model 2 Model 3 Model 4

Indices for storage as % of reservoir capacity
(1) Mean utilized storage 66.3% 59.8% 66.3% 66.0%
(2) Standard deviation of (1) 22.5% 21.1% 29.3% 29.2%
(3) Minimum drawdown 19.6% 22.0% 10.4% 11.2%

Indices for releases as % of annual inflow

(4) Mean annual release 67.2% 64.5% 69.9% 69.7%
(5) Standard deviation of (4) 5.1% 7.2% 6.3% 6.2%
(6) Minimum annual release 58.8% 50.4% 54.7% 54.6%

Indices for energy as % of power capacity
(7) Expected mean annual energy output 92.7% 87.7% 91.0% 91.1%
(8) Standard mean annual energy output 86.4% 82.4% 90.3% 90.0%

(9) Standard deviation of (8) 7.5% 10.0% 10.2% 10.2%
(10) Firm annual energy output 73.3% 62.7% 66.66% 66.5%
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independent of both the present and the previous inflow

values. The differences in the present or the previous inflows

only affect the release decisions in a very few cases (the top-

right and bottom-left triangles). The maximum deviation in

decision is one class. In contrast, Table 3.14a (Model 1) and

Table 3.14b (Model 2) show that the optimal decisions (final

storage) for the operation are strongly determined by the

initial storage values and the inflow values. A small variation

in the inflow value can lead to a different decision. Therefore,

whether the previous or the present inflow is used as a

state variable strongly influences the decisions during opera-

tions (and hence, the performance indices). Comparing the

structures of Table 3.14c and Table 3.14d with those of

Table 3.14a and Table 3.14b, it can be concluded that the

policies derived from models with release as a decision varia-

ble (Model 3 and Model 4) are much less sensitive to varia-

tions in the initial storage and inflow than policies derived

from models with storage as a decision variable (Model 1 and

Model 2).

(c) Tables 3.15 to 3.17 (particularly Table 3.17, when the

imperfect inflow forecast is adopted as a guide during oper-

ation simulation) indicate that the reservoir performances

obtained from the models with release as a decision variable

(Model 3 and Model 4) are better than those obtained

from the models with storage as a decision variable (Model

1 and Model 2). Model 3 and Model 4 result in larger mean

values and smaller fluctuations in energy generation, in

both annual and monthly performance indices. These results

can be related to the ‘‘stability’’ of policy Table 3.14c and

Table 3.14d.

From this discussion, it can be concluded that the models

with release as the decision variable considerably outperform

the models with storage as the decision variable. If the ‘‘right’’

decision has been made regarding the decision variables, the

different choices of inflow state variables would not much

affect the performance of the system. However, in reality the

selection of the ‘‘right’’ decision variable cannot always be

realized. For example, for multipurpose reservoir systems,

sometimes more than one objective has to be optimized at

the same time. Some objectives might be directly related to

release and others might be directly related to storage. As has

been shown in the case study, when storage is selected as a

decision variable, models become sensitive to the choice of

inflow state variable.

In Experiment 3, a simple linear regression model

(Budhakooncharoen, 1986) with considerable errors (see

Table 3.12) forecasts the inflow. Even so, the Model 1 based

simulation still performs better than the Model 2 based

simulation that depends on the previous inflow. This makes

the model with present inflow as a state better than the

model with previous inflow as a state. Although it cannot be

concluded from the current results that this type of model

with present inflow as a state will always outperform the

type of model with previous inflow as a state, it does illus-

trate that the policy derived from Model 1 can sustain

errors in the inflow forecast. Besides, in real-time operation,

having large amounts of up-to-date information regarding

rainfall, river channel flow, ground water and catchment area

characteristics, etc., a good inflow forecast can be easily

produced.

3.3.3 Inflow serial correlation assumptions

Serial correlation or autocorrelation means that the value of

the stochastic variable under consideration at one time period

is correlated with the values of the stochastic variable at ear-

lier periods. The correlation between an observation at a

certain time period with an observation k time periods earlier

is called the kth order serial correlation.

The serial assumption for the stochastic inflow sequences

is an important issue in reservoir operation optimization.

In SDP models, the serial correlation assumption is used

to describe the inflow sequence. The stochastic nature of

the inflow sequence is a generally observed fact. However,

the choice of the serial correlation assumption is an unsol-

ved controversy in the literature of reservoir operation

optimization.

When the SDP model was first introduced into reservoir

operation, the inflow sequence was assumed as a Markov-I

process. Later, the independence assumption was also used in

SDPmodels. TheMarkov-I assumption is more popular than

the independence assumption. But supporters of the use of

each of these assumptions have presented arguments to favor

one above the other. These arguments are often supported by

experimental results on reservoir operation optimization

either for different real problems or with different SDP

model setups (e.g., different discretization, different decision

or state variables, different objectives, etc.). Thus the results

are not often comparable. The discussion on which inflow

assumption is the best remains undecided.

This section presents the influence that different inflow

serial correlation assumptions have on the performance of

SDP models. To obtain an overview of the problem, besides

models with the Markov-I and the independence assump-

tions, another twomodels are presented. Onemodel considers

the serial correlation one step further than the Markov-I

assumption: the SDP model with Markov-II assumption.

The other model interprets the inflow process even more

simply than the independence assumption does: the model

with the assumption that the inflow is deterministic.
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THE FOUR SERIAL CORRELATION

ASSUMPTIONS AND THEIR MODELING

COMPLEXITIES

Many river flow time series exhibit serial correlation. That is,

high flows follow high flows and low flows follow low flows.

This phenomenon is particularly evident for short time inter-

vals. Annual and seasonal flows (the total flow amount of an

entire period) are seldom highly correlated, while monthly,

weekly, and especially daily or hourly flows generally exhibit

high serial correlations.

For the application of the SDPmodel in the optimization of

reservoir operation, the inflow serial correlation is interpreted

by transition probabilities. These transition probabilities are

coupled with the recursive relation of DP to derive expect-

ation-oriented optimal values. The formulations for the SDP

models with Markov-II, Markov-I, independence, and deter-

ministic inflow serial correlation assumptions are given in this

section. The modeling and computational complexities of

these models are analyzed. In all four models, the present

inflow is selected as the inflow state variable.

MARKOV-II INFLOW PROCESS ASSUMPTION

The Markov-II assumption takes lag-two and lag-one serial

correlations of the inflow process into consideration. The

transition probability of the Markov-II process can be char-

acterized as

Pjþ1ðIjþ1jIj; Ij�1; Ij�2; . . .Þ ¼ Pjþ1ðIjþ1jIj; Ij�1Þ: (3:26)

The SDP model with Markov-II assumption can be formu-

lated with the following recursive relation:

Fn
j ðk;m; pÞ ¼ Opt

l

Bk;p;l;j þ
X
q

Pjþ1
m;p;q � Fn�1

jþ1 ðl; p; qÞ
" #

:

(3:27)

Time notations and variables presented in Section 3.3.2 are

used.

The transition probabilities,Pjþ1
m;p;q ¼ Pjþ1 Ijþ1jIj; Ij�1

� �
, of a

Markov-II process can be represented as a three-dimensional

array. Figure 3.6 shows a graphical illustration of such a

three-dimensional array.

MARKOV-I INFLOW PROCESS ASSUMPTION

TheMarkov-I assumption takes the lag-one (first order) serial

correlation of the inflow process into consideration. The tran-

sition probability of theMarkov-I process can be expressed as

Pjþ1ðIjþ1jIj; Ij�1; Ij�2; . . .Þ ¼ Pjþ1ðIjþ1jIjÞ: (3:28)

The SDP model with Markov-I assumption can be formu-

lated with the following recursive relation:

Fn
j ðk; pÞ ¼ Opt

l
Bk;p;l;j þ

X
q

Pjþ1
p;q � Fn�1

jþ1 ðl; qÞ
" #

: (3:29)

The transition probabilities, Pjþ1
p;q ¼ Pjþ1 Ijþ1jIj

� �
, of a

Markov-I assumption can be represented as a two-dimen-

sional array as shown in Figure 3.7. It can be considered as a

special case of the transition probabilities of a Markov-II

process that each layer along the axis of Ij� 2 has a unique

probability distribution.

INDEPENDENCE OR RANDOM INFLOW

PROCESS ASSUMPTION

The inflow process is considered as exhibiting no serial

correlation with inflows of the previous time periods with

the independence or random inflow process assumption.

That is, the probability is independent of the previous

inflow station:

Pjþ1ðIjþ1jIj; Ij�1; Ij�2; . . .Þ ¼ Pjþ1ðIjþ1Þ: (3:30)

Figure 3.7 Graphical illustration of the two-dimensional (Markov-I)

transition probabilities
Figure 3.6 Graphical illustration of the three-dimensional (Markov-

II) transition probabilities
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The SDP model with the independence inflow assumption

can be formulated with the following relation:

Fn
j ðk; pÞ ¼ Opt

l
Bk;p;l;j þ

X
q

Pjþ1
q � Fn�1

jþ1 ðl; qÞ
" #

: (3:31)

The transition probabilities resulting from the independ-

ence inflow assumption can be represented as a one-dimen-

sional array as shown in Figure 3.8. It can be considered as a

special case of the transition probabilities of the Markov-I

assumption that each line along the axis of Ij has a unique

probability distribution.

DETERMINISTIC INFLOW PROCESS

ASSUMPTION

The deterministic assumption assumes that there is a prede-

termined inflow Ij, for each time period j, thus:

Pjþ1ðIjþ1jIj; Ij�1; Ij�2; . . .Þ ¼ PjðIjÞ ¼ 1:0: (3:32)

The mean inflow value of a time period j (e.g., the average

value of inflows of the month over a number of years) is used

as Ij.

The (deterministic) model with the deterministic inflow

assumption can be expressed in the following recursive

relation:

Fn
j ðkÞ ¼ Opt

l
Bk;p;l;j þ Fn�1

jþ1 ðlÞ
h i

; (3:33)

where F n
j kð Þ is the (sub)optimal value of the recursive equa-

tion at stage n (period j) as a function of Sj.

The deterministic assumption may be considered as a spe-

cial case of the independence inflow process assumption. In

that case the inflow of each time period is discretized into only

one class and thus the occurrence probability is 1.0.

Next, the complexities involved in the modeling of these

four types of models are discussed and compared with each

other.

First, consider theMarkov-II assumption. FromFigure 3.6

it can be seen that if the inflow is divided into m classes

for each time period, then the total number of transition

probabilities is equal to m3. These m3 transition probabilities

of the inflow process have to be estimated from historical

inflow data. To estimate such a large number of transition

probabilities (parameters), not onlymany calculations have to

be performed, but more importantly a large estimation error

may occur on the transition probabilities. The transition

probability, Pjþ 1(Ijþ 1 j Ij, Ij� 1), is calculated as given below.

Pjþ 1(Ijþ 1 j Ij,Ij� 1) ¼ occurrence frequency of Ijþ 1, at time

period jþ 1 given the inflows are Ij and Ij� 1 at time period

j and j� 1, respectively.

If the total number of available historical observation data

is not very large, say fewer than l/2�m3, then most of the

transition probabilities will be zero as there are not enough

occurrences. Thus, it requires a large number of historical

observation data to obtain a reasonably accurate estimation

of the transition probabilities. This is however a big difficulty,

because historical inflow data covering more than 30 or 40

years are scarcely available. Also, consider the computational

complexity of an SDPmodel with the Markov-II assumption.

Equation (3.26) indicates that the number of evaluations is

proportional to m3.

Second, consider the Markov-I assumption. From

Figure 3.7 it is clear that if the inflow is divided intom classes,

then the total number of transition probabilities is equal to

m2. Thus, the number of transition probabilities to be estim-

ated is a factor of m less than that with the Markov-II

assumption. Consequently, with the same amount of histor-

ical inflow data, the estimation of the transition probabilities

will be more accurate than the estimation of the Markov-II

transition probabilities. Furthermore, from Eq. (3.28) it can

be seen that the number of evaluations is proportional to m2.

Thus, the computational complexity of a SDP model with the

Markov-I assumption is a factor m less than that of a SDP

model with the Markov-II assumption.

Similar analysis can be made for the SDP model with the

independence inflow assumption and the (deterministic)

model with the deterministic inflow assumption. The number

of transition probabilities to be estimated is m for the inde-

pendence assumption (Eq. 3.30) and is 1 for the deterministic

inflow assumption (Eq. 3.32).

BEST SERIAL CORRELATION ASSUMPTION

TheMarkov-I assumption has been adopted bymany research-

ers to model the inflow. The independence inflow process

assumption has also been used by some researchers (Su and

Deininger, 1974; Laabs and Harboe, 1988; Huang et al., 1991).

However, the simpler model with the independence inflow

process assumption has never enjoyed the same popularity

that the Markov-I assumption has in the application of SDP

in reservoir operation. The independence assumption was

criticized as too simple to describe the stochasticity of inflow

time series accurately. However, this argument is not sufficient

to decide which inflow assumption should be used in the SDP

Figure 3.8 Graphical illustration of the one-dimensional

(independence) transition probabilities
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models. In fact, it is important to have an inflow assumption

that reflects the real nature of inflows. It is also very important

not to make the model unnecessarily complicated. The best

model should be the simplest model which still ‘‘sufficiently’’

reflects the reality. The term ‘‘sufficient’’ depends on the appli-

cation. For SDP models applied to reservoir operation optimi-

zation, amodel is sufficiently good if it produces approximately

the same performance as the best (complicated) models.

The modeling and computational complexity of SDP mod-

els decrease by a factor m from Markov-II, Markov-I, inde-

pendence inflow to deterministic inflow assumption as shown

previously.

With respect to the errors in the SDP model caused by the

inflow assumption, two types of errors can be distinguished.

One is when the model is too simple to describe those proper-

ties of the natural phenomena that are important for the

decision. The other is when the set of historical samples is

too small. The error caused by a small sample set increases as

the complexity of the model increases (the number of param-

eters to be estimated increases). The difficulty in making a

good choice among the serial correlation assumptions is

mainly due to the difficulty in determining the appropriate

interchange between these two types of errors.

The question about which serial correlation assumption

gives the best SDP model cannot be easily answered. It

depends on many factors, and thus there may be no single

best SDPmodel. It depends on the situation to which the SDP

models are applied. Therefore, this problem is further ana-

lyzed through several case studies.

The SDP models have been mainly applied in reservoir

operations for their long-term management. The time period

usually is a month or half a month or so. For this level of time

it is not uncommon to have systems with low serial correlation

for many time periods within a year. To illustrate this, the

monthly serial correlation coefficients of the three available

inflow time series from the systems Kariba and Victoria/

Randenigala are listed in Table 3.18.

From the serial correlation coefficients in Table 3.18, the

following facts can be observed. For many months, the inflow

series of the Kariba system is highly serially correlated (both

lag-one and lag-two). The inflow series of the Mahaweli

(Victoria/Randenigala) system can be considered as moder-

ately serially correlated.

INVESTIGATION OF SUITABILITY OF

CORRELATION ASSUMPTIONS

This section presents five experiments carried out to investi-

gate the pros and cons of the four serial correlation assump-

tions based on the Kariba Reservoir and the Victoria/

Randenigala Reservoirs. Table 3.19 gives a summary of the

five experiments. Detailed design and the results of each

experiment are presented subsequently.

EXPERIMENT A: KARIBA SYSTEM OPERATION

BASED ON MODELS WITH RELEASE AS

DECISION VARIABLE

In this experiment the Kariba Reservoir, which has relatively

high inflow serial correlation coefficients (see Table 3.18) is

selected as the case study.

The experiment aims to screen the performance of the SDP

models with the four different inflow assumptions:Markov-II

(Eq. 3.27), Markov-I (Eq. 3.29), independence (Eq. 3.31), and

deterministic (Eq. 3.33). Based on the conclusion of

Section 3.3.2, the release (which is more directly related to

the objective of energy generation) is selected as the decision

variable. The decision variable in Eqs. (3.27), (3.29), (3.31),

and (3.33) can now be specified as Rj.

In this experiment the structure of the SDPmodel is similar

to the model described by Eq. (3.24), except for different

inflow assumptions. The stage is the time step, which is one

month. The objective is to maximize the expected annual

energy generation. The optimization is subjected to the phys-

ical constraints of the reservoir system (e.g., storage con-

straints, release constraints, etc.). The reservoir storage is

discretized into 42 classes with equal size. Release levels up

to twice the monthly release capacities of the penstocks are to

be optimized. They are discretized into 6 classes with equal

size. For the three stochastic inflow assumptions the monthly

inflows are discretized into varying numbers of classes (from

2 to 8, according to the discretization range of the 24 years

historical monthly inflow; 1961–84) with equal occupancy

Table 3.18. Serial correlation coefficients of the three case

study systems

Kariba Victoria Randenigala

Month lag-one lag-two lag-one lag-one

1 0.36 0.07 0.22 0.22

2 0.39 0.22 0.29 0.07

3 0.10 0.42 0.50 0.36

4 0.52 0.11 0.39 0.21

5 0.65 0.45 0.51 0.53

6 0.53 0.55 0.68 0.55

7 0.89 0.31 0.31 0.44

8 0.92 0.82 0.55 0.49

9 0.93 0.79 0.19 0.36

10 0.97 0.97 0.07 0.11

11 0.94 0.88 0.01 0.05

12 0.79 0.77 0.54 0.33
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frequencies. For the deterministic inflow assumption, the

monthly inflows are ‘‘discretized’’ into one class. The median

of each inflow class is the representative value of that class.

With the derived SDP based optimal operation policies, the

performances of the reservoir system were simulated with the

12 years (1973–84) historical inflow time series. Perfect

forecasting is assumed to be available at the beginning of

each time period. The simulations ‘‘strictly’’ rely on the

derived optimal operation policies, as long as the physical

constraints of the reservoir system are not violated.

Table 3.20 presents the simulated average annual perform-

ance indices from Experiment A.

Table 3.19. Key points of the design of experiments

Experiment A Experiment B Experiment C Experiment D Experiment E

Case study Kariba Kariba Kariba Kariba Victoria/Randenigala

Inflow assumption

of model

(a) Markov-II

(b) Markov-I

(c) Independence

(d) Deterministic

(a) Markov-II

(b) Markov-I

(c) Independence

(d) Deterministic

Markov-I if

(i) 0.0

(ii) 0.5

(iii) 0.75

(iv) 0.9

(v) 1.0

Otherwise

independence

(a) Markov-I

(b) Independence

(a) Markov-I

(b) Independence

Decision variable Release Final storage Final storage Final storage Final storage

State variable Present inflow,

initial storage

Present inflow,

initial storage

Present inflow,

initial storage

Present inflow,

initial storage

Present inflow,

initial storage

Objective Max. expected

annual energy

Max. expected

annual energy

Max. expected

annual energy

Max. expected

annual energy

Max. expected

annual energy

Constraint — — — — Irrigation demand

Simulation According to

policy based on

perfect forecast

According to

policy based on

perfect forecast

According to

policy based on

perfect forecast

According to

policy based on

imperfect forecast

According to

policy based on

perfect forecast

Table 3.20. Simulated average annual performance (Experiment A)

Markov-II Markov-I Independence Deterministic

Indices referring to energy as % of power capacity

(1) Expected mean annual energy output 91.3% 91.7% 96.6% 95.6%

(2) Simulated average annual energy output 91.0% 91.0% 90.6% 90.0%

(3) Standard deviation of (2) 8.3% 8.3% 10.0% 9.4%

(4) 95% confidence interval for mean energy (86.5%, 95.5%) (86.5%, 95.5%) (85.2%, 96.0%) (84.9%, 95.1%)

(5) Minimum annual energy output 73.7% 73.3% 69.6% 70.0%

Indices referring to storage as % of reservoir capacity

(6) Average utilized storage 68.1% 68.0% 65.2% 67.1%

(7) Standard deviation of (6) 27.7% 28.1% 29.4% 30.0%

(8) Minimum drawdown 11.9% 10.6% 8.6% 10.8%

Indices referring to release as % of annual inflow

(9) Average annual release 70.3% 70.3% 70.3% 69.6%

(10) Standard deviation of (9) 4.7% 4.7% 6.0% 5.5%

(11) Minimum annual release 60.7% 57.6% 57.6% 57.7%
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Simulated performance is presented according to the fol-

lowing three aspects: (a) energy generation, (b) reservoir stor-

age, and (c) releases through the turbine. For each of the three

performance indices, the simulated mean, the standard devia-

tion, and the minimum value are presented. For energy gen-

eration, the expected annual gain obtained from the SDP

based optimization is also presented. The ‘‘expected annual

energy output’’ itself does not tell much about the real per-

formance of the system. However, the difference between the

expected value (item 1 in Table 3.20) and the simulated value

(item 2) shows how far the optimization model is from the real

nature of the problem being optimized.

According to the results, although the ways of inflow being

considered differ very much for the four optimization models,

the simulated performances based on the four derived ‘‘opti-

mal’’ policies differ very little. For example, for the objective

value of annual energy output (item 2), the smallest simulated

energy output from the deterministic inflow assumption is

only 1% less than the largest output from Markov-II and

Markov-I assumptions.

The present result can be understood by recalling the con-

clusion of Section 3.3.2 regarding the influence of the decision

variable of SDP. When the variable directly related to the

objective of the optimization is selected as the decision vari-

able, the model becomes insensitive to the way in which the

inflow is considered. In this situation, simpler models (either

the SDP model with independence inflow or even the deter-

ministic model based onmean value of inflow) would perform

almost as well as the more complicated models that consider

inflow serial correlations.

EXPERIMENT B: KARIBA SYSTEM OPERATION

BASED ON MODELS WITH STORAGE AS

DECISION VARIABLE

This experiment also aims to screen the performance of the

SDP models with the four different inflow assumptions:

Markov-II (Eq. 3.27), Markov-I (Eq. 3.29), independence

(Eq. 3.31), and deterministic (Eq. 3.33). As in Experiment A,

the Kariba Reservoir is selected as the case study in this

experiment. The final storage is chosen to be the decision

variable in the present experiment. Therefore, the decision

variable in Eqs. (3.27), (3.29), (3.31), and (3.33) can now be

specified as Sjþ 1. The balance setup of the SDP models and

the path of subsequent simulations remain the same as in

Experiment A.

Table 3.21 presents the simulated average annual per-

formance indices from Experiment B. Similar to Table 3.20,

they are presented according to the following three aspects:

(a) energy generation, (b) reservoir storage, and (c) releases

through the turbine.

From the results of the present experiment, the influence of

the SDPmodel with different inflow assumptions can bemuch

better detected than from Experiment A.

First, the policy derived from the model with the determin-

istic inflow assumption leads to a considerably worse per-

formance of the reservoir system as compared with that

from the models with the stochastic inflow assumption. For

example, the simulated mean annual energy output (item 2)

resulting from the model with the deterministic inflow

assumption is about 12% lower than that of the models with

stochastic inflow assumptions. The fluctuation or standard

Table 3.21. Simulated average annual performance (Experiment B)

Markov-II Markov-I Independence Deterministic

Indices referring to energy as % of power capacity

(1) Expected mean annual energy output 93.0% 93.7% 99.9% 99.2%

(2) Simulated average annual energy output 90.9% 90.8% 90.9% 80.1%

(3) Standard deviation of (2) 11.3% 11.4% 12.9% 17.8%

(4) 95% confidence interval for mean energy (84.8%, 97.0%) (84.6%, 97.0%) (83.9%, 97.9%) (70.5%, 89.7%)

(5) Minimum annual energy output 62.2% 62.0% 58.4% 48.7%

Indices referring to storage as % of reservoir capacity

(6) Average utilized storage 62.4% 63.3% 62.0% 52.9%

(7) Standard deviation of (6) 29.5% 29.8% 30.9% 6.0%

(8) Minimum drawdown 8.5% 7.0% 3.1% 43.7%

Indices referring to release as % of annual inflow

(9) Average annual release 70.7% 70.7% 70.7% 63.4%

(10) Standard deviation of (9) 7.3% 7.3% 8.5% 14.5%

(11) Minimum annual release 51.2% 51.3% 48.6% 38.2%
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deviation of annual energy generation (item 3) is almost 50%

higher than that for the other three models. The firm annual

energy output (item 4) is about one-quarter less than that of

the other three models.

This result clearly illustrates the drawback of the model

with the deterministic inflow assumption in deriving reser-

voir operation policies. The deterministic model based on

the mean value of inflows seems too simple to represent the

nature of reservoir inflows sufficiently. In general, a deter-

ministic model is probably a good tool to screen the best

performance a system could have if the historical inflow

observations (which are already known) repeat in the future.

If the issue is to derive reservoir operation policies, the

deterministic model probably may function better within

the framework of the so-called ‘‘implicit’’ type stochastic

approach.

Second, the policy derived from the SDP model with the

Markov-II assumption does not show much improvement in

the reservoir system performance as compared with that

of the model with the Markov-I assumption. Compare the

two columns of performance indices corresponding to the

Markov-II and Markov-I assumptions. It seems that except

for the unimportant indices referring to the reservoir mini-

mum drawdown (item 8), the differences of all the indices are

less than 1%.

This result indicates that the improvement resulting from

the model with theMarkov-II assumption does not justify the

additional complication of the model. Generally, SDPmodels

with second or higher order inflow serial correlation assump-

tions are not practical. The difficulty lies in the estimation of

the three-dimensional inflow transitional probabilities. The

availability of observed data of inflow time series for over

40 years is scarce. Such a limited length of historical inflow

time series is bound to result in considerable errors in the

estimation of three-dimensional inflow transition prob-

abilities. Those errors may significantly diminish the merit

of the Markov-II based model even when it better reflects

the characteristics of the inflow.

When comparing the performance between the Markov-I

and independence inflow assumptions, a firm conclusion is

somewhat difficult to draw based on the present results. The

objective values of mean annual energy outputs (item 2)

resulting from both assumptions are almost similar. The

model with the Markov-I assumption leads the system to

slightly better performance in the sense of the standard devia-

tion of annual energy output (item 3) and firm annual energy

output (item 4). However, as compared with the model with

the deterministic inflow assumption, the model with the inde-

pendence assumption does not vary considerably from the

model with the Markov-I assumption.

EXPERIMENT C: KARIBA SYSTEM OPERATION

BASED ON MODELS WITH MARKOV-I AND

INDEPENDENCE ASSUMPTIONS

The experiment aims to obtain additional insight into the

performance of the SDP models with the Markov-I and inde-

pendence assumptions based on the Kariba system.

Table 3.18 shows that the correlation coefficients of the

Kariba inflows are high for some months and low for the

others. The idea of using a model with the Markov-I assump-

tion for the months with high correlation coefficients and the

independence assumption for the months with low correlation

coefficients may be a reasonable choice for such a system. This

type of model can reflect the serial correlation of the inflow

time series for the months when the serial correlation is high. It

also can avoid the unnecessary additional parameter estimation

errors for the months when the serial correlation is low.

To investigate this idea, five models are set up in the present

experiment. For each model a critical point (cp) is defined.

They are (i) 0.0, (ii) 0.5, (iii) 0.75, (iv) 0.9, and (v) 1.0. For the

months with lag-one serial correlation coefficients larger than

or equal to the critical point, the Markov-I transition proba-

bilities will be coupled into the recursive relation of the SDP

model (Eq. 3.29). For the months with lag-one serial correla-

tion coefficients smaller than the critical point, the independ-

ence probabilities will be coupled into the recursive relation of

the SDPmodel (Eq. 3.31). ConsiderModel (iii) (Table 3.19) as

an example. There are 6 months (from month 7 to month 12)

whose lag-one correlation coefficients are larger than 0.75 (see

Table 3.18). Therefore, for those 6 months the Markov-I

transition probabilities and for the remaining 6 months the

independence probabilities will be coupled into the recursive

relation. Similarly, for Model (ii) there will be 9 months (from

month 4 to 12) with Markov-I transition probabilities and

3 months with independence probabilities. For Model (iv)

there will be 4 months (from month 8 to 11) with Markov-I

transition probabilities and 8 months with independence

probabilities. Model (i) with 0.0 as critical point is the model

with the Markov-I assumption for all the 12 months in a year.

Model (v) with 1.0 as critical point is the model with the

independence assumption for all the 12 months in a year.

The balance setup of the SDP models and the procedure

adopted in the subsequent simulations are the same as in

Experiment B. Table 3.22 presents the simulated annual per-

formance indices from Experiment C.

Table 3.22 shows that the variations among the simulated

performances resulting from the five models are very limited.

For the indices for storage, gradual minor changes can be

observed from the model with the Markov-I inflow assump-

tion (cp¼ 0.0) to themodel with the independence assumption

(cp¼ 1.0), with the increase of critical point value. For the
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indices for energy and release, a very small jump at the critical

point 0.9 can be detected. The standard deviations (items 3 and

10) are smaller and the minimum values (items 5 and 11) are

bigger at the critical point 0.9 when compared with the two

neighboring points, 0.75 and 1.0. This can be interpreted as a

positive sign for the idea of using a model with the Markov-I

assumption for themonthswith high correlation coefficients and

the independence assumption for the months with low correla-

tion coefficients. However, the improvement is too small to

justify the additional complications involved with the model.

EXPERIMENT D: KARIBA SYSTEM OPERATION

BASED ON IMPERFECT FORECAST

From the results of both Experiments B and C, it seems that

the model with the Markov-I assumption leads the Kariba

system to a slightly better performance when perfect forecast-

ing is available (as used in the experiments). However, the

policy derived from the model with the Markov-I inflow

assumption is likely to be more sensitive to the accuracy of

inflow forecasting. In real-time operation when the inflow

forecasting is not perfect, the trade-off between the two SDP

models with the Markov-I and independence inflow assump-

tions may be different.

The present experiment aims to obtain insight into the

performance of SDP models with the Markov-I and inde-

pendence inflow assumptions when the inflow forecasting is

not perfect during operation simulation. The reservoir system

in consideration is still the Kariba system.

The setup of the SDP models is the same as the two models

(Markov-I and independence) in Experiment C. The path of

subsequent simulations differs from Experiment C. The

derived optimal policies are implemented at the beginning of

each time period with forecast inflow instead of the actual

inflow. The inflows are forecast according to the readily avail-

able regression analysis of Budhakooncharoen (1986).

Table 3.23 presents the simulated annual performance indices

from Experiment D.

Table 3.23 shows that the differences between all the simu-

lated performance indices resulting from the twomodels (with

Markov-I and independence assumptions) become even

smaller, as compared with those when perfect inflow forecast-

ing is available (see Table 3.22, the models withMarkov-I and

independence assumptions). As for the simulated mean

annual energy output (item 2), the model with the independ-

ence assumption slightly outperforms the model with the

Markov-I assumption. As for the firm annual energy output

(item 4), the model with the Markov-I assumption slightly

outperforms the model with the independence assumption.

The standard deviations of mean annual energy output (item

3) are the same for the two models. The impression obtained

from Table 3.23 is that, when the inflow forecasting is not

perfect, it is difficult to identify the most suitable model (with

Markov-I or independence assumptions) for the Kariba sys-

tem with respect to energy production.

From the results of Experiments B, C, and D, it can be

observed that the model with the Markov-I assumption

Table 3.22. Simulated average annual performance (Experiment C)

cp¼ 0.0

Markov-I cp ¼ 0.50 cp ¼ 0.75 cp ¼ 0.90

cp ¼ 1.0

Independence

Indices referring to energy as % of power capacity

(1) Expected mean annual energy output 93.7% 93.7% 95.3% 97.3% 99.9%

(2) Simulated average annual energy

output

90.8% 90.8% 91.6% 91.0% 90.9%

(3) Standard deviation of (2) 11.4% 11.44% 12.3% 12.1% 12.9%

(4) 95% confidence interval for mean

energy

(84.6%, 97.0%) (84.6%, 97.0%) (84.3%, 97.7%) (84.4%, 97.6%) (83.9%, 97.9%)

(5) Minimum annual energy output 62.0% 62.0% 58.6% 61.9% 58.4%

Indices referring to storage as % of reservoir capacity

(6) Average utilized storage 63.3% 63.3% 62.3% 62.2% 62.0%

(7) Standard deviation of (6) 29.8% 29.8% 30.2% 30.5% 30.9%

(8) Minimum drawdown 7.0% 7.0% 5.8% 4.5% 3.1%

Indices referring to release as % of annual inflow

(9) Average annual release 70.7% 70.7% 70.8% 70.8% 70.7%

(10) Standard deviation of (9) 7.3% 7.3% 8.1% 7.9% 8.5%

(11) Minimum annual release 51.3% 51.3% 48.4% 51.4% 48.6%
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leads the Kariba system to a slightly better performance when

perfect forecasting is available (as defined in Experiments B

and C). However, when considering the additional complexity

of the SDP model with the Markov-I assumption, the

improvement does not seem to be substantial. Besides, in

real-time operation, when the inflow forecasting is not perfect,

the small improvement of the model with the Markov-I

assumption will diminish. From these points of view, the

SDP model with the independence inflow assumption can be

termed a more suitable one than the SDP model with the

Markov-I assumption for a system like Kariba with high

inflow serial correlation coefficients for many months but

with short observed inflow data.

EXPERIMENT E: MAHAWELI SYSTEM

OPERATION

This experiment aims to compare the model with the Markov-I

assumption with the model with the independence inflow

assumption. In the experiment, the two-unit reservoir system of

Victoria/Randenigala, whose inflow time series has a low serial

correlation compared with Kariba, is selected as the case study.

The setup of the SDP models is similar to that described in

Section 3.3.1 (Table 3.6), except for the different inflow

assumptions. The recursive relations of the two models are

defined as in Eq. (3.29) and Eq. (3.31), respectively, while the

decision variable in the equations is final storage Sjþ 1. The

stage is the time step, which is one month. The objective is to

maximize the expected annual energy generation subject to

the constraints of satisfying downstream irrigation require-

ments. The 32 years (1949–80) of available observed inflow

data record is used to obtain statistical parameters of the

stochastic inflow. Four inflow classes and seven storage

classes with equal size intervals have been considered for

both reservoirs in cascade, thus yielding 4� 4¼ 16 inflow

class combinations and 7� 7¼ 49 storage class combinations.

The median of each inflow class is the representative value of

that inflow class. In the subsequent simulations the historical

inflow time series have been used ‘‘strictly’’ relying on the

derived optimal operation policies, as long as the physical

constraints of the reservoir system are not violated. During

the simulation, perfect forecasting is assumed to be available

at the beginning of each time period. Table 3.24 presents the

simulated performance indices from Experiment E.

The simulated performance is presented in two aspects:

(a) energy generation, and (b) irrigation supply. For energy

generation, the simulated mean, the standard deviation, and

the minimum value are presented. The optimization of this

system does not hold for the whole set of decisions in the

annual cycle due to the constraint of irrigation demands (see

Section 3.3.1). Therefore, the expected annual energy output

is not obtained. The table presents the performance indices of

reliability (both time-based and quantity-based), repairabil-

ity, and vulnerability for the irrigation supply.

The performance indices of energy output in Table 3.24

indicate that the model with the Markov-I inflow assumption

leads to slightly better system performance (e.g., larger mini-

mum annual energy, item 4) compared with the independence

assumption. However, the indices of irrigation supply imply

that the model with the independence inflow assumption leads

to slightly better system performance (e.g., smaller reparability

Table 3.23. Simulated average annual performance (Experiment D)

Markov-I Independence

Indices referring to energy as % of power capacity

(1) Expected mean annual energy output 93.7% 99.9%

(2) Simulated average annual energy output 86.6% 87.1%

(3) Standard deviation of (2) 7.4% 7.4%

(4) 95% confidence interval for mean energy (82.6%, 90.6%) (83.1%, 91.1%)

(5) Minimum annual energy output 76.5% 73.6%

Indices referring to storage as % of reservoir capacity

(6) Average utilized storage 67.1% 66.2%

(7) Standard deviation of (6) 24.2% 24.7%

(8) Minimum drawdown 14.8% 14.3%

Indices referring to release as % of annual inflow

(9) Average annual release 67.2% 67.7%

(10) Standard deviation of (9) 4.6% 4.2%

(11) Minimum annual release 60.4% 61.0%

3.3 SOME ALGORITHMIC ASPECTS OF SDP 57



in item 7 and vulnerability in item 8) compared with the other.

Where the most important indices (mean annual energy and

reliability of irrigation supply) are concerned, there is hardly

any difference between the two models.

The results from the experiment show that the two SDP

models (with Markov-I and independence assumptions) lead

the Victoria/Randenigala system to almost equal utilization

of water in the reservoirs when perfect inflow forecasting is

available. Therefore, the SDP model with the independence

inflow assumption can be considered to be better than the

SDP model with the Markov-I assumption due to its simplic-

ity in modeling.

3.3.4 Summary of observations

The analysis of the characteristics of a Markov chain and the

convergence behavior of the SDP model show that the large

number of zero elements in transition probability matrices

seems to be the cause of failing to satisfy the convergence

criterion, stabilization of expected annual increment of the

objective function value, in the SDP model. The study shows

that the substitution of these zeros with reasonably small

values is a suitable method to overcome the above problem.

The study carried out to investigate the influence of differ-

ent decision variables and inflow state variables on the per-

formance of the SDP model, based on several versions of the

SDP model, shows that the variable directly related to the

objective of optimization is to be preferred as the decision

variable. The choice of the inflow state variable considerably

affects the operation of the system if the selected decision

variable is not directly related to the objective of optimization.

The suitability of different inflow serial correlation assump-

tions in the SDP model has been examined through models

formulated based on Markov-I, Markov-II, independence,

and deterministic inflow assumptions. The analysis indicated

that the SDP model becomes insensitive to the above inflow

assumptions if the selected decision variable is directly related

to the objective of optimization. A comparison among the

above assumptions has been made based on the complexity

involved in the computations, the length of inflow time series

available, time step length considered in optimizations, and

errors possible in inflow forecast.

Table 3.24. Simulated performance (Experiment E)

Markov-I Independence

Indices referring to energy as % of power capacity

(1) Simulated average annual energy output 52.5% 52.2%

(2) Standard deviation of (1) 11.6% 11.6%

(3) 95% confidence interval for mean energy (49.0%, 56.0%) (48.7%, 55.7%)

(4) Minimum annual energy output 31.7% 28.2%

Indices referring to irrigation supply

(5) Time-based reliabilitya 86.2% 86.2%

(6) Quantity-based reliabilityb 95.9% 96.0%

(7) Repairability (month)c 1.57 1.47

(8) Vulnerability (106 m3)d 60.5 56.1

a % of time-based steps with fulfilled irrigation demand
b % of accumulated irrigation demand met
c Average duration of an irrigation failure (shortage) event
d Average accumulated irrigation shortage per failure
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4 Optimal reservoir operation for water quality

Whena flowing river is dammed andbecomes an impoundment,

two major changes occur. First, creating an impoundment

greatly increases the time required for water to travel the dis-

tance from the headwaters to the discharge at the dam. Second,

thermal or density and therefore chemical stratification may

take place. Both have a marked effect on water quality. Both

the increased detention time and thermal stratification in an

impoundment change the characteristics of thewater discharged

at a given geographical location from what they were when the

stream was free flowing. Some effects of impoundments

improve water quality; others deteriorate it. This also implies

the possibility of using the reservoirs for control of the quality of

water besides merely satisfying the quantity requirement.

The increased emphasis on water quality accents the need for

formulation of methodologies for operating reservoirs for con-

trol of water quality. Considering reservoir dynamics while

applying optimization techniques for operational decisions ena-

bles policies for a reservoir accounting for the quality of water

supplied besides satisfying quantity requirements. The assump-

tion of complete instantaneous mixing of water in a reservoir

throughout its entire volume is an over-simplification compared

to the real behavior of reservoirs that undergo mixing and

stratification cycles. This chapter presents models that assume

complete mixing in reservoirs while deriving optimum opera-

tion policies when quality aspects are of interest.

There have been relatively few studies of optimum reservoir

operation in which water quality has been considered.

However, due to the increasing demand for water of good

quality, consideration of the quality aspects in reservoir oper-

ation optimization has become very important.

Verhaeghe and Tholan (1983) analyzed an optimal water

allocation problem satisfying both quantity and quality objec-

tives. The objective was to minimize the economic losses that

occur due to water shortages and poor water quality. Salinity

characterized the water quality. The same problem, allocation

of water from a river to three irrigation areas via reser-

voirs, was formulated into four problems having different

schematizations. To analyze those four problems, four differ-

ent techniques and combinations thereof were applied. The

techniques used were linear and nonlinear programming,

dynamic programming (DP), and the Lagrange multipliers

method. Complete mixing of water was assumed to occur in

the reservoirs in their study. In the model developed based on

the conventional DP technique, the volume and salt concen-

tration in the reservoir at the end of a particular time period

were treated as two state variables.

Even the modeling of a conservative variable like salt con-

centration in the reservoir release is complex. The assumption

of complete mixing of water in the reservoir throughout the

year reduces the complexity involved with a stratified reser-

voir (which is the real case) to a certain extent. In such a

problem, besides the continuity equation for water quantity,

another continuity equation for salt exists. The continuity

equation for the quantity and the continuity equation for

the salt content of water in the reservoir are to be maintained.

The salt concentration in the reservoir at each point in time is

nonlinearly related to the volume and flow variables in the salt

balance equation as given in Eq. (4.4).

The use of reservoir outlet works incorporating selective

withdrawal structures is a primary method for controlling the

quality of release. The optimum operation of these selective

withdrawal structures is beneficial. To analyze such a pro-

blem, the DP technique may be applicable because of the

sequential decision nature of the problem and the ability of

DP to handle system nonlinearities conveniently.

Fontane et al. (1981) and Labadie and Fontane (1986)

presented a technique for solving high-dimensional DP prob-

lems that condition optimal solutions on the one-dimensional

objective space rather than the multidimensional state space.

In this approach, a one-dimensional DP formulation in object-

ive space replaces a high-dimensional DP problem involving

the usual discretization of the state space.

They showed how the problem of determining optimal

selective withdrawal structure operations could be solved
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over an objective space without the need to include the orig-

inal state variables (vectors of average salt concentration

and/or volume of layers of the reservoir) in the DP optimal

value function. This, termed the objective-space DP approach,

could reduce the original multidimensional problem to a one-

dimensional DP problem.

Crawley and Dandy (1989) and Dandy and Crawley (1990,

1992) adopted an approach combining optimization and sim-

ulation techniques to derive operation policies for a system

of reservoirs when water quality (salinity) was an important

consideration in the system operation. They formulated a

model that simulates salinity in a reservoir and it was run

with an optimization model that considers only the quantity

requirement, in an iterative fashion.

Their optimization (quantity) model is based on the linear

programming technique. The quality model assumes com-

plete mixing of water in the reservoir. This is a simplification

compared with the real behavior of stratification occurring in

reservoirs. The results indicated that improved operation

policies with respect to reducing the cost involved (due to

water of poor quality) could be derived from the methodology.

A number of studies have examined the use of reservoirs for

control of downstream water quality (Jaworski et al., 1970;

Orlob and Simonovic, 1981; Simonovic and Orlob, 1981,

1984). In all cases, water quality in the reservoir was not

modeled. The regulation of streamflows needed to assimilate

or dilute waste loads has been studied.

4.1 IDP BASED MODELS IN RESERVOIR

OPERATION FOR QUALITY

This section presents two optimization models developed by

Nandalal (1995) for optimum operation of a reservoir when

both quantity and quality of water supplied from it are of

interest. The models are based on the IDP technique. One

model considers only releases while the other model considers

both inflows and releases in the improvement of the quality of

water supplied from the reservoir. Inflow manipulation is

achieved by diverting (bypassing) inflows before they reach

the body of the reservoir. Outflowmanipulation includes release

of excess water of (relatively) high salinity from the reservoir at

appropriate times to flush (cleanse) the reservoir. Nonlinear salt

balance constraints are included in both optimization models.

4.1.1 Optimization Model 1: controlling

discharges only

In this case, only discharges from the reservoir can be mani-

pulated. Complete mixing is assumed to occur in the reservoir.

The system is as shown in Figure 4.1. The reservoir is operated

on a monthly basis. Rates of inflow, outflow, and spill for the

reservoir are constant during each time period. The forward

algorithm of DP is used in the optimization procedure. The

general scheme of the IDP procedure presented in Section 1.5

is used in the formulation of the model.

The objective function used in the model is to minimize the

weighted summation of the squared deviation of release sal-

inity and reservoir salinity from their respective target levels

over the total period considered. Downstream quantity

demand is treated as a constraint.

OF ¼Minimize
XN
j¼1

W1ðCrel;j � Ctrg;jÞ2 þW2 Cres;jþ1 � Ĉtrg;j

� �2h i
;

(4:1)

where

Ctrg,j ¼ target release salinity during period j (ppm),

Ĉtrg,j ¼ target reservoir salinity during period j (ppm),

Crel,j ¼ average salinity of release during period j (ppm),

Cres,jþ 1 ¼ average salinity of reservoir at end of period j (ppm),

N ¼ number of periods,

W1, W2 ¼ weightages, and

j ¼ time period (1, 2, . . . , N).

Reservoir storage and release are assumed to be the state

variable and the decision variable, respectively. The minim-

ization is subject to constraints in storage volume, release, and

conservation of salt.

STORAGE VOLUME CONSTRAINT

The storage volumes at the beginning of the first period and at

the end of the last period are fixed. For all the other periods

the volume belongs to the set of admissible storage volumes:

Smin � Sjþ1 � Smax; j ¼ 1; 2; . . . ;N� 1; (4:2)

where

Sjþ 1 ¼ storage volume at end of period j (106m3), and

Smax and Smin ¼ maximum and minimum storage volumes of

reservoir (106m3).

RELEASE CONSTRAINT

Maximum release from the reservoir is limited to the allow-

able release through the outlet. Minimum release is specified

Sj Cres,j

Ij Cin,j Rj Crel,j Demj

Oj

Reservoir

Flow direction
Demand center

Figure 4.1 System configuration: Optimization Model 1
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by downstream irrigation demand, which is an implicit object-

ive to be satisfied in the operation of the reservoir.

Rmin;j � Rj � Rmax; j ¼ 1; 2; . . . ;N; (4:3)

where

Rj ¼ release during period j (106m3),

Rmax ¼ maximum allowable release through outlet (106m3),

and

Rmin,j ¼ irrigation demand during period j (106m3).

CONSERVATION OF SALT

The constraint that represents the conservation of salt in the

reservoir is

Sjþ1Cres;jþ1 ¼ SjCres;j þ IjCin;j � RjCrel;j �OjCo;j; (4:4)

where

Cin,j ¼ average salinity of inflow during period j (ppm),

Co,j ¼ average salinity of spill during period j (ppm),

Crel,j ¼ average salinity of release during period j (ppm),

Cres,j ¼ average reservoir salinity at beginning of period

j (ppm),

Ij ¼ inflow during period j (106m3), and

Oj ¼ spill during period j (106m3).

Other variables are as defined before. Evaporation terms do

not enter the salt balance as it is assumed that no salt is

contained in the evaporating liquid.

The following equations are used to assess salinity in the

reservoir at the end of period j. Derivation of these equations

is described in Section 4.1.4.

If the reservoir volume is changing during period j,

Cres;jþ1 ¼
1

ðQj þ bÞ IjCin;j � ½IjCin;j � Cres;jðQj þ bÞ� Sjþ1
Sj

� ��ðQjþbÞ=b
" #

;

(4:5)

if the reservoir volume is constant during period j,

Cres;jþ1 ¼
1

Qj
IjCin;j � ½IjCin;j � Cres;jQj� exp �

Qj

Sj

� �� �
; (4:6)

and the average salinity of spill during period j is

Co;j ¼
IjCin;j

Qj
þ Sj

Q 2
j

½IjCin;j � Cres;jQj� exp �Qj

Sj

� �
� 1

� 	
; (4:7)

where

Qj ¼ total outflow (total of release and spill) during period j,

and

b ¼ change of reservoir storage during period j.

STATE TRANSFORMATION EQUATION

Based on the principle of continuity of the reservoir,

Sjþ1 ¼ Sj þ Ij � Rj � Ej �Oj; (4:8)

whereEj is the evaporation during period j (106m3). The other

variables are as defined above.

RECURSIVE EQUATION

The DP recursive equation is formulated as

F �jþ1ðSjþ1Þ ¼Min
j

SQDj þ F �j ðSjÞ
n o

; (4:9)

where

F �jþ1ðSjþ1Þ ¼ minimum accumulated value of objective func-

tion from stage 0 to stage jþ 1, when state at

stage jþ 1 is Sjþ 1, and

SQDj ¼ W1ðCrel;j � Ctrg;jÞ2 þW2 Cres;jþ1 � Ĉtrg;j

� �2j k
¼ weighted summation of squared deviation of release

salinity and reservoir salinity from their respective

target levels.

4.1.2 Optimization Model 2: controlling both

inflows and discharges

Both inflows and releases can be controlled in the improve-

ment of the quality of water supplied from reservoirs while

satisfying quantity demand. The system is as shown in

Figure 4.2. Provision to divert part of the inflow to a bypass

whenever necessary has been introduced in this system.

Complete mixing is assumed to occur in the reservoir through-

out the year. The reservoir is operated on a monthly basis.

Rates of inflow, outflow, diversion, and spill for the reservoir

are constant during each time period. The forward algorithm

of DP is used in the optimization procedure. The general

scheme of the IDP procedure presented in Section 1.5 is used

in the formulation of the model.

The objective function is the same as that in Optim-

ization Model 1 (Eq. 4.1). Reservoir storage is the state vari-

able while release and diversion are the decision variables.

The minimization is subjected to storage volume and release

constraints presented under Optimization Model 1 (Eq. 4.2

and Eq. 4.3). The diversion from the inflow is constrained by

an allowable limit:

Sj Cres,j

Ij Cin,j Rj Crel,j Demj

Oj

Dj

Reservoir
Flow direction
Demand center
Diversion weir

Figure 4.2 System configuration: Optimization Model 2
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0 � Dj � Dmax; j ¼ 1; 2; . . . ;N; (4:10)

where

Dmax¼maximum allowable diversion from inflow in a month

(106m3), and

Dj ¼ total diversion made during period j (106m3).

Diversion during a certain month is always less than or equal

to the inflow in that month:

0 � Dj � Ij; j ¼ 1; 2; . . . ;N: (4:11)

CONSERVATION OF SALT

The constraint that represents the conservation of salt in the

reservoir is

Sjþ1Cres;jþ1 ¼ SjCres;j þ ðIj �DjÞCin;j � RjCrel;j � Co;jOj:

(4:12)

Equations (4.5)–(4.7) are used to assess the salinity in the

reservoir at the end of period j and the salinity of the spill

during period j.

STATE TRANSFORMATION EQUATION

Based on the principle of continuity of the reservoir,

Sjþ1 ¼ Sj þ Ij �Dj � Rj � Ej �Oj: (4:13)

RECURSIVE EQUATION

The DP recursive equation is the same as Eq. (4.9) presented

under Optimization Model 1.

4.1.3 Simulation model: completely mixed reservoir

A simulation model was formulated to simulate reservoir oper-

ation according to a prespecified release pattern described

below. The reservoir is assumed to be completely mixed

throughout the year. The simulation model uses Eqs. (4.4)–

(4.8) in the regulation of the reservoir. Furthermore, the simu-

lation procedure considers constraints for reservoir storages

and releases as given in Eq. (4.2) and Eq. (4.3), respectively.

This model furnishes end of month reservoir salinities and

monthly average release salinities. The two optimization mod-

els are compared with results obtained from this simulation

model.

In the release pattern adopted in the simulation model, the

primary operation criterion is to make mandatory releases

(downstream demands) only. However, if this criterion is

strictly followed it is inevitable that the reservoir storage

reaches maximum volume before the end of the period in

certain months. If this happens, then the excess volume of

water has to spill. In such instances the above policy to release

only demand is over-ruled. The excess volume of water is

released through the outlet subject to maximum allowable

release. If it exceeds the maximum limit, the additional vol-

ume spills. The monthly demand is not totally satisfied only if

there is not enough water in the reservoir. However, in such

cases water available in the reservoir is supplied to satisfy the

demand at least partly. This operation pattern is designated as

‘‘standard release policy.’’

4.1.4 Model of salinity in a reservoir

For a reservoir that is completely mixed, the continuity equa-

tion (salt balance equation) is

dðSCÞ
dt

¼ ICin �QC; (4:14)

where

C ¼ instantaneous salinity in reservoir at time t,

S ¼ instantaneous volume of storage in reservoir at time t,

I ¼ rate of total inflow,

Cin ¼ average salinity of total inflow, and

Q¼ rate of total outflow including irrigation supply and spill;

i.e.,

S
dC

dt
þ C

dS

dt
¼ ICin �QC: (4:15)

If the rates of inflow and outflow are assumed to be constant,

then

dS

dt
¼ b (4:16)

and

S ¼ aþ bt; (4:17)

where a and b are constants.

Therefore, substituting Eq. (4.16) and Eq. (4.17) into

Eq. (4.15) gives

ðaþ btÞ dC
dt
þ Cb ¼ ICin �QC: (4:18)

By rearranging:

dC

dt
¼ ICin �QC� bC

aþ bt
¼ ICin � CðQþ bÞ

aþ bt
: (4:19)

Rearranging and integrating the above equation from time

tj to tjþ 1:

The salinity in the reservoir changes from Cres, j to Cres, jþ 1

while the storage changes from Sj to Sjþ 1.
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ZCres;jþ1

Cres;j

dC

ICin � CðQþ bÞ ¼
Ztjþ1
tj

dt

ðaþ btÞ ;

1

ðQþ bÞ

ZCres;jþ1

Cres;j

dC

½ICin=ðQþ bÞ � C� ¼
1

b

Ztjþ1
tj

dt

ða=bþ tÞ ;

ZCres;jþ1

Cres;j

dC

½ICin=ðQþ bÞ � C� ¼
ðQþ bÞ

b

Ztjþ1
tj

dt

ða=bþ tÞ ;

�ln ICin

ðQþ bÞ � C

� �
j

Cres;jþ1

Cres;j

¼ ðQþ bÞ
b

ln
a

b
þ t


 �
j

tjþ1

tj

;

ln
ICin=ðQþ bÞ � Cres;jþ1
ICin=ðQþ bÞ � Cres;j

� �
¼ �ðQþ bÞ

b
ln

a=bþ tjþ1
a=bþ tj

� �
;

ICin � Cres;jþ1ðQþ bÞ
ICin � Cres;jðQþ bÞ ¼

aþ btjþ1
aþ btj

� ��ðQþbÞ=b
¼ Sjþ1

Sj

� ��ðQþbÞ=b
;

ICin � Cres;jþ1ðQþ bÞ ¼ ½ICin � Cres;jðQþ bÞ� Sjþ1
Sj

� ��ðQþbÞ=b
:

At the end of the time period the salinity in the reservoir is

Cres;jþ1 ¼
1

ðQþ bÞ ICin � ½ICin � Cres;jðQþ bÞ� Sjþ1
Sj

� ��ðQþbÞ=b" #

For the special case where the volume of the reservoir is not

changing (i.e., b¼ 0):

The continuity equation, Eq. (4.14),

dðSCÞ
dt

¼ ICin �QC;

i.e.,

S
dC

dt
þ C

dS

dt
¼ ICin �QC:

If the storage is constant,

S ¼ A ð¼ a constantÞ ! dS

dt
¼ 0;

A
dC

dt
¼ ICin �QC:

By rearranging,

dC

ðICin=Q� CÞ ¼
Q

A
dt:

Integrating the above equation from time tj to tjþ1 with the

change in salinity from Cres,j to Cres,jþ1:

ZCres;jþ1

Cres;j

dC

ðICin=Q� CÞ ¼
Q

A

Ztjþ1
tj

dt;

�lnðICin=Q� CÞ j
Cres;jþ1

Cres;j

¼ Q

A
ðtjþ1 � tjÞ:

If tjþ 1� tj¼�t, then:

ln
ICin � Cres;jþ1Q

ICin � Cres;jQ

� �
¼ �Q�t

A
;

ICin � Cres;jþ1Q

ICin � Cres;jQ
¼ exp �Q�t

A

� �
;

ICin � Cres;jþ1Q ¼ ½ICin � Cres;jQ� exp �
Q�t

Sj

� �
:

At the end of the time period the salinity in the reservoir is

Cres;jþ1 ¼
1

Q
ICin � ½ICin � Cres;jQ� exp �

Q�t

Sj

� �� �
: (4:20)

SPILLED SALT LOAD

During spill there is a constant volume of water in the reser-

voir (ignoring the effect of surcharge). Therefore, Eq. (4.20)

can be used to determine the spilled salt load and hence the

average salinity of the spilled water.

Let

Ls ¼ spilled salt load during the time period,

Os ¼ volume of spill per unit time during the time period

(assumed constant), and

Co ¼ average salinity of spill during the time period.

Then

Ls ¼
Ztjþ1
tj

OsC dt

¼
Ztjþ1
tj

ðOs=QÞ ICin � ½ICin � Cres;jQ� exp �
Q�t

Sj

� �� �
dt

¼ Os

Q
ICin�tþOsSj

Q2
½ICin � Cres;jQ� exp �

Q�t

Sj

� �
� 1

� �
;

(4:21)

but Co¼Ls/(Os�t)

Co ¼
ICin

Q
þ Sj

Q2�t
½ICin � Cres;jQ� exp �

Q�t

Sj

� �
� 1

� �
:

(4:22)

4.2 THE JARREH RESERVOIR IN IRAN

The Jarreh Reservoir, built to irrigate 13 000 ha, is one of

the projects coming under the water resources develop-

ment plan for the Shapur–Dalaki River basin in Iran. The

Shapur–Dalaki River basin is located in southwest Iran (long.

528 200, 508 450 E; lat. 308 020, 288 450 N) as shown in

Figure 4.3. The uplands of the basin are mountainous with

a maximum elevation of 3000m above MSL. The altitude
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decreases to about 20 m at the confluence of the Shapur and

Dalaki Rivers on the coastal plain. Total drainage area is

approximately 10 000 km2, of which the Shapur River and

its tributaries drain 4110 km2 of the northern region and the

Dalaki River and its tributaries drain 5800 km2 of the south-

ern region. The rivers join to form the Helleh River, which

debouches into the Persian Gulf.

The climate of the Shapur–Dalaki basin is classified as arid

(Shiati, 1991); average annual rainfall is below 20 percent of

total annual potential evaporation. The degree of aridity is

lower only in higher parts of the basin, where precipitation is

relatively high.

Except in occasional wet years, most precipitation is con-

fined to the winter months in this basin. The dry season lasts

from April to October. Total annual rainfall decreases south-

wards towards the coastal plains and the Persian Gulf. Mean

value varies between 600mm in the upper part of the basin to

less than 200mm along the coast. Rainfall occurs mainly

during the six months of November to April with a peak in

midwinter.

In the basin, a great variation of mean temperature is

observed over the year. Mean annual values range between

16 8C in the highest (northern) part of the basin and 24 8C in

the southwestern coastal plain. The maximum and minimum

temperatures occur in July/August and January/February,

respectively. Frosts are common in the interior, but rare on

the coastal plain. Daily variation in temperature is very high

in all parts of the basin. Annual potential water evaporation is

high and its mean value is about 2000mm. Mean yearly

relative humidity in the area is around 55%, and follows a

clear seasonal trend.

Average annual flows in the Shapur and Dalaki Rivers

are about 530� 106m3/year and 425� 106m3/year respec-

tively. Variation of flows from year to year is considerable.

The discharge mainly occurs during winter, and reaches a

maximum in February.

The Shapur and Dalaki Rivers primarily originate from

karstic springs, which yield water of excellent quality. Further

downstream they pass through large areas with salt domes

and saline erodible formations. As a consequence, they

become increasingly contaminated by salts. Severe erosion

of these scarcely vegetated and soft materials results in very

high salt content of this water.

The high salt content of the water forms an obstacle to its

use for irrigation. Average total dissolved solids in the Shapur

River, where the Jarreh Reservoir is built are 3700–4000 ppm

in summer and 2130–2444 ppm in winter.

Agriculture has been practised for centuries in this basin.

The inland basins filled with fertile alluvial soils and parts of

the coastal plain are intensively cultivated. The steep hills and

mountains and the saline parts of the coastal plains are used

for grazing, mainly with sheep.

However, shortage of water, salinity of water, and adverse

chemical and physical soil properties are found to impede the

agricultural development of the alluvial plains. According

to Yekom Consulting Engineers (1980), out of 86 000 ha

of irrigable lands, about 46 000 ha could be irrigated through

implementation of several water resources development pro-

jects within this basin. The high salinity – of sodium chloride

type – only allows farmers to grow crops such as date palm,

barley, wheat, and alfalfa that have sufficient tolerances to

salinity.

Figure 4.3 The Shapur–Dalaki basin
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The Shapur and Dalaki Rivers possess a regime of flash

floods in winter. During summer drought, their flow falls to

very low values. Therefore, only a storage dam could regulate

the flow of the river needed to create the conditions necessary

for developing agricultural resources. In addition, salinity can

be regulated and improved by careful management of such

reservoirs.

The Jarreh storage dam to irrigate about 13000 ha is one

of the projects. The location of this reservoir is shown in

Figure 4.3. The behavior of the salt-affected Jarreh Reservoir

is of great concern. Catchment management measures to

reduce salinity are less effective in this sparsely vegetated

basin since the existence of salt formations hampers plant

growth. Shiati (1991) showed that the Jarreh Reservoir could

regulate and reduce the salt concentration of the irrigation

water to a range between 1500 and 2400ppm from a range

between 900 and 4000ppm. Careful management of the reser-

voir may further improve the quality of the water released. This

chapter presents a comprehensive study carried out on the

operation of the Jarreh Reservoir for the improvement of

water quality.

The irrigation demands (Shiati, 1991) to be supplied from

the Jarreh Reservoir are given in Table 4.1. Effective storage–

surface area–elevation relationships of the Jarreh Reservoir

are shown in Figure 4.4. The salient features of the dam and

the reservoir are summarized in Table 4.2.

4.3 APPLICATION OF THE MODELS TO

THE JARREH RESERVOIR

Discharge and salinity of the Shapur River at the Jarreh

Reservoir dam site are shown for the period 1975–89 in

Figure 4.5. As it shows, salinity of the river is strongly influ-

enced by long-term variations in streamflow in addition to its

seasonal variations. For example, the high annual discharge

Figure 4.4 Characteristic curves of the Jarreh Reservoir

Table 4.1. Monthly irrigation demands (for 13 000 ha)

Month Jan. Feb. Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Irrigation demand (106m3/month) 17.5 23.0 34.0 26.5 19.5 22.0 26.5 30.0 27.0 22.0 10.5 12.0
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of 1982 (discharge 1127� 106m3, 2.12 times the median)

averaged 1500 ppm whereas the discharge of 1984, a dry

year (discharge 280� 106m3, 0.54 times median), averaged

2180 ppm in salinity. Consequently, flood flows (winter

period) are generally less saline and low flows (summer

period) remain highly saline. For the recorded period the

salinity of the river water varies between 750 and 4200 ppm.

The Shapur River is characterized by high variability of

both discharges and salinity. In wet years when the river flows

are high, average salinity of inflow is low and the reservoir

could be flushed out improving the quality of impounded

water. On the other hand, a dry year causes a considerable

deterioration of quality, and a series of consecutive dry years

will deteriorate the quality even more.

4.3.1 Optimization Model 1: controlling

discharges only

The JarrehReservoir has a total storage capacity of 470� 106m3

and a dead storage capacity of 75� 106m3. The allowable

release through the reservoir is limited to 150� 106m3 in a

month. The target release and reservoir salinities are set to

1000ppm. The release and reservoir salinities were always

higher than this value. The monthly irrigation demands are

given in Table 4.1. The period considered in a single optim-

ization is 15 years, the total number of stages being 180 (12

months� 15 years).

COMPARISON OF COMPONENTS IN

THE OBJECTIVE FUNCTION

The objective function used in the model (see Eq. 4.1) has two

parts. They are:

(a) to minimize the deviation of release salinity from a target;

and

(b) to minimize the deviation of reservoir salinity from a

target.

Different weights given to the two components show their

impact on the final aim of reducing release salinity.

(a) W1¼ 1.0, W2¼ 0.0, only release salinity is considered.

(b) W1¼ 0.5, W2¼ 0.5, both release salinity and reservoir

salinity are considered with equal importance.

(c) W1¼ 0.0, W2¼ 1.0, only reservoir salinity is considered.

Table 4.3 presents the monthly average release salinities

obtained based on the IDP model.

Table 4.2. Salient features of the Jarreh dam and reservoir

Reservoir

Normal high water level (retention level) 205.0mMSL

Normal storage capacity 470.0 (106m3)

Minimum water surface level 167.5mMSL

Minimum storage capacity (dead storage) 75.0 (106m3)

Maximum flood level 209.3mMSL

Water surface area (at normal retention level) 19.5 km2

Dam

Type Concrete arch dam (double curvature)

Elevation at crest 210.5m MSL

Length at crest 215.0m

Minimum thickness of dam (at elevation 205.0mMSL) 3.0m

Maximum thickness of dam (at elevation 125.0mMSL) 11.0m

Spillway

Number of spillways: 3 (two morning glory and one overflow spillway)

Morning glory spillway (right bank) Maximum capacity 1200.0m3/s

Sill elevation 205.0m MSL

Morning glory spillway (left bank) Maximum capacity 1200.0m3/s

Sill elevation 205.0mMSL

Overflow spillway Maximum capacity 1650.0m3/s

Sill elevation 205.0mMSL

Total discharge at 209.3m MSL 4400.0m3/s

Source: Yekom Consulting Engineers (1980)
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Differences observed among the above three objective func-

tions are almost negligible. Thus, the improvements obtainable

in quality of the releasewater, by considering the quality of either

the release or the reservoir, or both, in the objective function, are

similar. The second alternative that gives equal weight to the two

components is used in the subsequent analysis.

Release salinities obtained from Optimization Model 1

were compared with that obtained from a reservoir operation

Figure 4.5 River discharges and salinities: 1975–89

Table 4.3. Comparison of different objective functions

Weights

OF value/106
Total release

(106m3)

Total spill

(106m3)

Monthly average salinity (ppm)

W1 W2 Reservoir Release

1.0 0.0 134.5 8043 89 1832 1828

0.5 0.5 132.2 8090 47 1820 1815

0.0 1.0 133.4 8089 46 1821 1816
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simulation model, which adopts ‘‘standard release policy’’ and

assumes complete mixing of water throughout the year.

Table 4.4, which compares the two operations, indicates

that the IDP optimum operation results in an improved oper-

ation pattern. This is the best release pattern for improving

quality of water when only release could be manipulated.

Note that the optimization model runs with perfect knowl-

edge of inflows. Spill has been reduced in the IDP based

optimization compared with the simulation. This reduced

spill has been used to flush the reservoir whenever possible,

thereby improving the quality of water in both the reservoir

and the releases. The increase in release (that includes scour/

flush volume) indicates this.

The end of month reservoir salinities and monthly average

release salinities for these two cases are compared in

Figure 4.6 and Figure 4.7, respectively. These figures indicate

that the IDP based optimum operation is superior to simula-

tion throughout the total period of 15 years.

Table 4.4. Comparison of IDP optimum operation with simulation

Operation OF value/106

Total release

(includes scour)

(106m3)

Total spill

(106m3)

Monthly average

salinity (ppm)

Reservoir Release

OptimizationModel 1 132.2 8090 47 1820 1815

Simulation (Standard

release policy)

166.2 7263 729 1939 1939

Figure 4.6 Reservoir salinity: comparison of IDP optimum operation with standard release policy

Figure 4.7 Monthly average release salinity: comparison of IDP optimum operation with standard release policy
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Average monthly inflows and average monthly releases

(obtained from the IDP model) are compared with demands

in Table 4.5. Additional releases represent the amount of

water released beyond the downstream demand. This addi-

tional volume of water is used for flushing (or scouring) the

reservoir. Table 4.5 indicates that the flushing of the reservoir

occurs mainly in autumn and early winter (Sep.–Dec.) when

the quality of water in the reservoir is poor (Sep.–Nov.). This

is followed by a significant improvement in the quality of

water in the reservoir due to high inflows of good quality in

winter and early spring (Dec.–Mar.). Although flushing con-

tinues through winter till early spring, the quantity is less

compared with that in autumn.

IMPACT OF QUALITY IN THE

OBJECTIVE FUNCTION

Comparison of release salinity obtained from the IDP model

with release salinity obtained from an optimizationmodel that

considers only downstream quantity requirements is presented

next. This comparison is designed to examine the effectiveness

of the inclusion of quality considerations into the optimization

model. A modified version of OptimizationModel 1 consider-

ing only the downstream quantity demand was used at this

step. The objective function is to minimize the squared devia-

tion of release from the demand over the total period; i.e.,

OF ¼Minimize
XN
j¼1
ðRj �DemjÞ2: (4:23)

Optimization was carried out with the same set of inflow

data (15 years, from 1974 to 1989). The model has the same

storage volume constraints (Eq. 4.2) as in Optimization

Model 1. But release is only limited by the maximum allow-

able amount in Eq. (4.3). The state transformation equation is

the same as in Optimization Model 1 (Eq. 4.8). The results

presented in Table 4.6 and Figure 4.8 show the effectiveness of

including quality considerations in the optimization on the

improvement of quality.

Inclusion of quality in the model changes the operation

policy. According to the changed policy, increased releases in

autumn and early winter (to flush the reservoir) and reduced

releases in the summer are observed.

4.3.2 Optimization Model 2: controlling both

inflows and discharges

Optimization Model 2 controls both inflows and outflows in

the improvement of supply water quality. It was run employ-

ing the same set of data and other parameters used in

Optimization Model 1.

EFFECT OF ALLOWABLE MAXIMUM

DIVERSION

An important feature of the model is the ability to divert

inflows (or bypass inflows) in addition to manipulation of

releases. However, the maximum quantity of water that

could be diverted in a month may be limited due to practical

considerations such as capacity of diversion structures, canals,

etc. The influence of the diversion limit on the improvement of

supply water quality obtained based on the model is presented

in Table 4.7 for several allowable diversion limits.

Release salinity and reservoir salinity improve with an

increase of the allowable diversion limit. This is due to the

increase in total volume of water diverted and total salt load

Table 4.5. Releases of IDP optimization

Month

Average monthly

inflow (106m3)

Average monthly

release (106m3) Demand (106m3)

Average of addi-

tional releases

(106m3)

January 90.75 50.21 17.50 32.71

February 105.41 37.42 23.00 14.42

March 91.23 52.72 34.00 18.72

April 57.44 32.51 26.50 6.01

May 25.77 23.55 19.50 4.05

June 13.33 22.22 22.00 0.77

July 9.76 26.55 26.50 0.05

August 10.55 30.42 30.00 0.42

September 10.85 46.36 27.00 19.36

October 17.28 63.23 22.00 41.23

November 30.26 89.11 10.50 78.11

December 97.63 64.52 12.00 52.52

4 .3 APPLICATION OF THE MODELS TO THE JARREH RESERVOIR 69



diverted. Note that the total release has been decreased. This

implies that the diversion of poor quality inflows has a strong

influence on the improvement of quality in the reservoir and

the releases.

But the improvements diminish with an increase in the

diversion limit as shown in Figure 4.9. For the Jarreh

Reservoir, increasing the allowable diversion limit above

40� 106m3/month is not influential in reducing the concen-

trations of release or reservoir salinity significantly.

The analysis of diversions shows that when the allowable

diversion limit is 80� 106m3/month, the maximum diversion

observed was only 79.5� 106m3/month. Thus, a further

increase in the allowable diversion limit would not be effective

Table 4.6. Comparison of two optimizations: effect of inclusion of quality

IDP model

(objective function)

Total release (includes

scour) (106m3) Total spill (106m3)

Average salinity (ppm)

Reservoir Release

Quantity only 7438 684 1915 1913

Quantity and quality 8090 47 1820 1815

Table 4.7. Effect of allowable maximum diversion

Allowable diversion

106m3/month OF value/106
Total release

(106m3)

Total spill

(106m3)

Diversion Mean salinity (ppm)

Volume (106m3) Salt load 106 kg Reservoir Release

10 97.7 6793 47 1315 3356 1706 1703

20 79.8 5929 47 2189 5302 1638 1636

30 74.0 5506 47 2617 6134 1611 1608

40 71.0 5348 47 2780 6442 1595 1593

50 69.0 5226 47 2899 6670 1590 1586

60 68.0 5166 47 2972 6807 1578 1576

70 67.5 5141 47 2997 6847 1576 1574

80 67.4 5132 47 3006 6853 1575 1573

Figure 4.8 Monthly average release salinity: effect of including quality considerations in the optimization model

Figure 4.9 Objective function value for different allowable diversion

limits
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in improving quality for this set of data. However, from these

observations it is apparent that the limitation on the allowable

diversion affects the reductions in the reservoir and release

salinities.

An analysis of release from the reservoir for different diver-

sion limits indicates that most of the time optimum releases

from the reservoir are the same. But the number of times the

reservoir is flushed (cleansed) by larger winter flows is greater

when the diversion limit is low compared with when the

diversion limit is high. The model attempts to improve the

quality of water by flushing the reservoir more, when the

diversion is more restricted. However, this is less effective

than diverting poor quality inflows. The analysis shows that

inflow is mostly diverted during the summer low-flow period

during which water quality is poor.

The monthly average release salinity distributions obtained

from the two optimization models and the operation simula-

tion with the standard release policy are compared in

Figure 4.10. In Optimization Model 2 the allowable diversion

was limited to 80� 106m3/month.

Release salinities obtained from the IDP optimum operation

with diversions are observed to be the lowest throughout the

total period. The above results suggest that the diversion of part

of the inflows before entering the reservoir is the best manage-

ment option for reducing the salinity level in the releases.

COMPARISON OF OPTIMUM DIVERSIONS

WITH CUT-OFF DIVERSIONS

Bypassing inflows of poor quality above a prespecified (cut-

off) level are effective in improving the quality of water

released from a reservoir. Table 4.8 and Figure 4.11 compare

the optimum operation obtained from Optimization Model 2

with standard release policy based operation simulation

incorporating bypassing inflows having salinity above several

cut-off levels.

The total quantity of diversions made in Optimization

Model 2 with maximum diversion constrained to 10� 106m3/

month is close to that in the simulation with cut-off at

2500 ppm. But the mean reservoir and release salinities

obtained from Model 2 are observed to be less. About 32%

of the time the diversions were more than 10� 106m3/month

in the simulation with cut-off level at 2500ppm. In certain

months diversion quantity even rose to 22� 106m3/month.

This requires larger diversion structures and canals, etc.

Figure 4.10 Monthly average release salinity: comparison of models

Table 4.8. Comparison of optimum diversions with cut-off level diversions

Alternative OF value 106
Total release

(106m3)

Total spill

(106m3)

Total diversion

(106m3)

Mean salinity (ppm)

Reservoir Release

Cut-off at 3000 ppm 147.7 7000 703 297 1884 1884

Cut-off at 2800 ppm 135.0 6740 702 564 1846 1847

Cut-off at 2500 ppm 107.2 6166 689 1194 1756 1756

Model 2: max. diversion

10� 106m3/month

97.7 6793 47 1315 1706 1703

Model 2: max. diversion

80� 106m3/month

67.4 5132 47 3006 1575 1573
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Therefore, the IDP based (Model 2) optimum operation with

allowable diversion limited to 10� 106m3/month is superior to

diverting inflows having salinity concentration above a cut-off

level of 2500ppm.

Among the alternatives compared in Table 4.8, the

improvements obtained from Model 2 with allowable diver-

sion limited to 80� 106m3/month are apparently the best.

Even though the total number of diversions is more in this

operation, it does not risk violating the satisfaction of down-

stream quantity demand, since downstream quantity demand

is treated as a constraint in the optimization model. Scrutiny

of the results indicated that most of the diversions are in the

summer when the inflows are of poor quality. Flushing the

reservoir was observed to take place in winter when the inflows

are substantial. However, note that it is not worth increasing

the diversion capacity above 40� 106m3/month as presented in

Figure 4.9. The improvements obtained in performance hardly

warrant increasing the diversion capacity twofold.

IDP Optimum Operation with Diversion – Maximum 80 × 106 m3

IDP Optimum Operation with Diversion – Maximum 10 × 106 m3

Mixed Reservoir Simulation – Cut-off 2500 ppm

Mixed Reservoir Simulation – Cut-off 2800 ppm

Mixed Reservoir Simulation – Cut-off 3000 ppm
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Figure 4.11 Monthly average release salinity: comparison of cut-off level with Optimization Model 2
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5 Large-scale reservoir system operation

5.1 USE OF DYNAMIC PROGRAMMING IN

MULTIPLE-RESERVOIR OPERATION

In general, straightforward optimization of multiple-reservoir

system operation with DP and SDP does not achieve the

accuracy level relevant for real-world applications. The analy-

sis of multiple-reservoir system operation imposes significant

dimensionality problems due to the inevitable introduction

of three inherent computational difficulties:

(a) Increase in dimensionality of the problem is reflected in

the number of state and decision variables necessary to

describe a multiple-reservoir system and its operation.

(b) Operation of complex reservoir systems involves multiple,

and often noncommensurate objectives. Often these can-

not be approximated by a single, clearly defined surrogate

objective or criterion.

(c) Additional difficulties arise when it is necessary to consider

stochasticity, which is an inherent feature in the operation of

reservoir systems. Although it is common to reduce this

aspect to river flow uncertainty only, the problem does not

seem to be significantly alleviated because multiple reser-

voirs imply consideration of multiple, independent or cross-

correlated, stochastic inflow processes.

Although regarded as a very promising stochastic optimiza-

tion technique, SDP is still hampered by well-known dimen-

sionality restrictions and the resulting huge computational

requirements imposed when applied to multiple-state–multiple-

decision problems. In general, and this was also reported byYeh

(1985), systems analysts have opted for one of the following

three remedies, or combinations thereof, to overcome these

difficulties:

(a) Decomposition of the system into smaller and simpler

subsystems thus reducing the complex problem to a set

of tractable tasks (e.g., decomposition based on physical

or functional structure of the system, multilevel hierarchical

decomposition, etc.) (Bogardi and Milutin, 1995; Bogardi

et al., 1995; Ampitiya et al., 1996).

(b) Aggregation of the system, or parts thereof, into a com-

posite system thus allowing a straightforward application

of the optimization procedure and the subsequent disag-

gregation of the derived composite operating strategy

into control policies of individual system elements

(Kularathna and Bogardi, 1990; Kularathna, 1992).

(c) Replacement of discrete state, decision or objective func-

tion domains by their continuous approximations and

subsequent application of complex mathematical meth-

ods to derive the optimal solution.

This section presents both deterministic and stochastic DP

based applications in operational analyses of complex reser-

voir systems. Note that the deterministic optimization models

present an integral part of implicit stochastic optimization

techniques.

5.1.1 Decomposition based methodologies

Various decomposition approaches seem to be the most fre-

quent means used to alleviate dimensionality problems in

operational analysis of large-scale systems. Yeh (1985), for

instance, observed that the majority of methods devised for

dimensionality reduction involved some type of decomposition

of the system into smaller and simpler subsystems, and the

subsequent use of iterative procedures to find a solution to

the complex problem. The advantage of decomposition is that

it allows a large, unsolvable for a straightforward approach,

problem to be reduced to a series of small tractable tasks.

Furthermore, unlike continuous function approximation tech-

niques, decomposition methods usually employ less compli-

cated mathematical theories and, perhaps their most

important characteristic, their computational complexity

increases at a lower rate with the number of decomposed

system elements. In general, decomposition based optimization
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approaches reach a local rather than the global optimum.

Nevertheless, numerous studies have shown that near-optimal

solutions derived by decomposition techniques could provide

significant improvements in the operation of the systems

in question. Thus, this technique has the potential for real-

world use.

Heidari et al. (1971) introduced discrete differential

dynamic programming (DDDP) to solve the deterministic

optimization problem of a four-reservoir system. In essence,

DDDP could be understood as an extension of IDP (Larson,

1968) to a multidimensional problem. Chow et al. (1975)

analyzed the computer time and memory requirements for

classical DP and DDDP and proposed the methodologies to

estimate them. With regard to the necessary computer stor-

age, they concluded that DDDP required substantially less

data space than DP. Although a significant reduction in state

and decision space size was evident, DDDP retained exponen-

tial growth in the number of system transitions with respect to

the number of state variables. Aware of the fact, Nopmongcol

and Askew (1976) proposed a decomposition approach named

multilevel incremental dynamic programming (MIDP) to solve

the same problem. The search for the optimal operational

strategy of a multiple-reservoir system was carried out through

several stages denoted as ‘‘one-at-a-time’’, ‘‘two-at-a-time’’,

‘‘three-at-a-time’’, etc. The core of the approach was that, at

each stage, a set of individual IDP problemswas solved, each of

them having one, two, and three reservoirs taken into consid-

eration, respectively. The search at each stage included all

possible combinations of reservoirs (i.e., all single units, all

pairs of reservoirs, all triplets, etc.). The procedure was termi-

nated when no improvement of the objective function was

observed at two consecutive levels. The convergence to the

same result obtained by Heidari et al. (1971) was already

observed after the second MIDP level (i.e., ‘‘two-at-a-time’’).

Trott and Yeh (1973) proposed a method to resolve the

dimensionality problems inherent in operational analyses of

multiunit reservoir systems with both serial and parallel con-

nections. The sample system consisted of six water supply

reservoirs with a single demand point located immediately

below the lowest reservoir. The objective was to maximize

the firm water supply at the demand location. They applied

Bellman’s method of successive approximations (Bellman,

1957; Bellman and Dreyfus, 1962) and used IDP to solve the

decomposed, one-dimensional problems. The deterministic

problem having six state variables was broken down into six

problems having only one state variable and five equality

constraints each. Thus, while optimizing the operation of a

chosen reservoir, the operation policies of the remaining five

reservoirs were kept constant as derived beforehand. Iterative

cycles comprising six IDP runs were repeated until a stable

benefit was observed in consecutive iterations. The prerequi-

site for starting the iterative procedure was to first select six

independent and feasible operating strategies for each reser-

voir. The method was tested with three different sets of initial

operating strategies. All trials converged towards the respec-

tive benefits falling within the 0.05% range of each other.

Turgeon (1980) applied two iterative decomposition tech-

niques to optimize the long-term operation of a multiple-

reservoir hydropower system consisting of a number of inde-

pendent rivers, each with one or more serially connected

reservoirs. Both approaches assumed that river flows were

uncorrelated random processes. The first decomposition tech-

nique, named ‘‘one-at-a-time’’, broke down a system into a set

of single-reservoir subsystems whose operations were optim-

ized by SDP. The second, the ‘‘aggregation/decomposition’’

method, split up an n-reservoir system into n subsystems hav-

ing two elements each. One of the elements corresponded to a

selected single reservoir while the second described the hypo-

thetical reservoir created by aggregating the remaining n� 1

reservoirs into a single unit. Thus, the SDP optimization was

in this case applied to a two-reservoir operation problem. The

application of the former approach resulted in a local optimal

operating strategy for each power plant, whereas the latter

derived the global suboptimal operation policies for n indi-

vidual reservoirs. The two models were compared on a pilot

six-reservoir system and the ‘‘aggregation/decomposition’’

model derived better system returns in terms of the operating

costs accumulated over the simulation period.

As a supplement to the previous work, Turgeon (1981)

proposed an algorithm to derive monthly operating strategies

for a hydropower system consisting of multiple, serially

linked, reservoirs. The optimization was based on SDP con-

sidering monthly inflows to reservoirs as independent random

processes. Basically, the approach decomposed an n-reservoir

system into n� 1 subsystems having two elements each.

The elements of an ith subproblem were reservoir i and the

respective hypothetical reservoir generated from all the

remaining reservoirs situated downstream of i (i.e., reservoirs

iþ 1, iþ 2, . . . , n). The suboptimal operating strategy of

reservoir i for a particular month defined the release policy

as a function of its storage and the total amount of energy

available in all downstream reservoirs. The main advantages

of the algorithm were said to be the fact that it was not an

iterative procedure, and that the computational requirements

increased only linearly with the number of reservoirs.

To optimize the operation of a multiple-reservoir hydro-

power systemArchibald et al. (1997) exploited a similar aggre-

gation/decomposition idea. The method was devised to be

applicable to any connected and acyclic reservoir network

provided that the water released from any reservoir in the
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system directly and instantaneously enters at most one other

reservoir. Consequently, the operating strategy for a reservoir

could be determined by an SDP based model formulated for

that reservoir and a two-dimensional representation of the rest

of the system. Namely, given a particular reservoir, the remain-

ing part of the system could be divided into a subset of reser-

voirs whose releases can reach the selected one, and a subset of

the remainder of the system. To reduce the dimensionality of

the optimization problem, aggregation was used to represent

each of the subsets by a single hypothetical reservoir. The

approach was tested on several reservoir systems, the largest

containing 17 reservoirs. To evaluate their method, the authors

derived the true optima for smaller test cases (i.e., having three

and four reservoirs) by applying the equivalent full optimiza-

tion models. In addition to substantial savings in processing

time, the proposed decomposition/aggregation method was

found to provide solutions close to the real optima.

Tai andGoulter (1987) developed an iterative algorithm for

the optimization of a Y-shaped three-reservoir hydropower

system (i.e., two parallel upstream reservoirs were serially

connected to the third reservoir situated downstream). Only

the downstream reservoir had hydroelectric generation facili-

ties and the two upstream reservoirs served as storage regu-

lation structures for the downstream one. The core of the

method was a single-reservoir SDP based optimization

model given in Loucks et al. (1981). Monthly inflows were

assumed to be serially correlated and the first order Markov

chain was used to describe transition probabilities between

different inflow classes in consecutive months. Prior to start-

ing the iterative procedure, the operation of the downstream

reservoir was optimized using the historical inflow record to

derive inflow transition probabilities. This step provided the

initial release targets for the two upstream reservoirs. The

operating strategies of each of the two upstream reservoirs

were optimized separately for the previously derived release

targets. Subsequently, the estimated releases from the upstream

reservoirs were used as additional inflows to the downstream

reservoir in a repeated optimization of its operation. For this

purpose, a new set of transition probabilities was calculated,

considering the changes in the inflow record. These iterative

cycles were repeated until the stability of the overall system

return was registered. The results obtained in the application of

the methodology to the case study system showed close sim-

ilarity to the observed historical system return. Slightly lower

system benefits derived from the model are said to be the

consequence of the limited precision of the SDP procedure,

which was mainly due to the computational limitations on

storage and inflow discretization.

Hall and Buras (1961) applied a three-level, DP based

approach to solve a planning problem of capacity allocation

among a number of reservoir sites. To reduce the dimension-

ality, they decomposed the original problem into three deter-

ministic, hierarchically arranged, subproblems. At the first

level, the objective was to identify a group of reservoir sites

and their respective capacities by maximizing the overall sys-

tem return. The second level optimization derived the optimal

allocation of available releases among different uses for each

of the selected reservoirs. Ultimately, using the former results,

the water available for a particular use was optimally distrib-

uted among individual users. The solution to the overall

problemwas sought in a stepwise hierarchical manner starting

from the first level. The results derived at a higher computa-

tional level were used as constraints at the immediate lower

optimization level.

A major contribution to hierarchical multilevel decomposi-

tion approaches comes from Haimes (1977, 1982). The meth-

odology is based on the decomposition of a complex system

into smaller subsystems categorized into different levels of

hierarchy. The principal idea behind the approach is to allow

separate modeling and analysis at different decomposition lev-

els. The information obtained at a certain decomposition level

can then be further transmitted and used while analyzing the

subsystems at the higher level of hierarchy. In general, hier-

archical multilevel decomposition allows conceptual simplifi-

cation of complex system modeling, which can result in a

reduction of dimensionality. In addition, the analyst generally

has to develop simpler computational and programming pro-

cedures and sometimes can even use the existing models.

5.1.2 Approaches based on aggregation/

disaggregation principles

To solve high-dimensional optimization problems, aggrega-

tion/disaggregation aims to develop auxiliary models which

are reduced in their complexity and which, at the same time,

provide good approximations of the original problem. In

most of the reported applications, a multiple-reservoir system

was aggregated into a hypothetical single reservoir and the

subsequent optimization was carried out for this simplified

composite representation of the system. It is also quite com-

mon for aggregation/disaggregation methods to be used in

combination with some decomposition principles to alleviate

computational difficulties in optimization of complex reser-

voir system operation (Turgeon, 1980, 1981, and Archibald

et al., 1997 in Section 5.1.1).

Rogers et al. (1991) presented the general concepts of aggre-

gation/disaggregation methods and reviewed the respective

applications in operations research. The authors emphasized

several reasons in favor of using an aggregation/disaggrega-

tion modeling approach:
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(a) It provides quick insight into the overall system structure

and performance.

(b) A possible lack of reliable microlevel data may prohibit

the development of a detailed model but, if the corre-

sponding macrolevel data are available, it can also moti-

vate the formulation of an aggregate model to analyze the

problem on a larger scale.

(c) It enables analysts to obtain results at different levels of

detail.

(d) The inherent computational burden can be significantly

reduced.

Regardless of the mathematical programming and modeling

techniques used in a particular application, a general formu-

lation of an aggregation/disaggregation methodology com-

prises four principal steps. The first step involves the

identification of pertinent data for aggregation and the sub-

sequent process of combining them. This is followed by the

creation of a composite model, which provides the reduction

in complexity relative to the original model. Subsequently the

analysis is carried out on the composite model and, at the final

stage, the results derived for the hypothetical composite

model are disaggregated into the respective components of

the original problem. Although aggregation/disaggregation

methods prove to be powerful tools for the dimensionality

reduction of large-scale problems, they do require particular

effort to be put into careful selection of the principles to be

employed at each of the modeling stages in order to minimize

the error induced by the simplification of the problem

representation.

Saad and Turgeon (1988) proposed the principal compo-

nent analysis (PCA) technique to reduce the number of state

variables in the analysis of long-term multiple-reservoir oper-

ation problems. The PCAmethod was said to be applicable to

problems where strong correlation between inflows to two or

more reservoirs (or between reservoir storage states) could be

detected. The procedure started by generating a set of syn-

thetic streamflow sequences. Implicit SDP optimization fol-

lowed to derive optimal operating strategies upon each

generated inflow record. Subsequently, the PCA method was

used to analyze the resulting policies and the achieved state

variable values to find out whether the problem could have

been modeled with fewer state variables. If so, the optimal

operation policy for the reduced problem was derived by

explicit SDP. The authors tested the applicability of the algo-

rithm on a five-reservoir hydropower system on the La

Grande River in Canada. In this particular case, the authors

managed to reduce the original stochastic optimization prob-

lem of ten state variables to a four-state variable problem

which was then solvable by DP.

Further improvements of the PCAmethod were reported in

Saad et al. (1992), where the authors used censored-data

statistical analysis to identify the parameters needed for

PCA. The censored-data method provides the means to ana-

lyze a sample of observations for which it is known that the

existing lower and/or upper bounds, if recorded a substantial

number of times, can result in a biased estimate of the sam-

ple’s probability distribution.With regard to the PCAmethod

applied to a reservoir operation problem, these lower and

upper bounds are the minimum and maximum storage vol-

umes in the reservoirs observed from the sequence of deter-

ministic optimizations performed over the set of synthetic

streamflow sequences.

Using the same hydropower system as a case study, Saad

et al. (1994) proposed a disaggregation approach based on the

theory of neural networks. Initially, a five-reservoir system

was aggregated into a single hypothetical reservoir whose

operation was optimized by means of SDP. The composite

operating strategy was subsequently disaggregated into indi-

vidual reservoir policies using a feed-forward back-propaga-

tion neural network. The training of the neural network had

been previously carried out over a large set of equally prob-

able operating scenarios. To provide the training set, the

authors generated a series of synthetic flow scenarios, which

were further used to optimize the operation of the system

assuming deterministic flow conditions. The application of

the approach to the La Grande River hydropower system

proved more efficient than the PCA method reported by

Saad and Turgeon (1988).

Kularathna (1992) used aggregation/disaggregation meth-

odology coupled with SDP based optimization to derive the

operating strategy for theMahaweli water resources system in

Sri Lanka and that work is described in Section 5.2.7 in detail.

The case study system consisted of three subsystems having

three interlinked reservoirs each. First, each subsystem was

represented by a single hypothetical composite reservoir. In

the subsequent step the optimal operation policies were

derived for the simplified system of three hypothetical reser-

voirs. Ultimately, the resulting operation policies of the com-

posite reservoirs were decomposed into control rules of their

respective individual reservoirs. The author found that the

devised SDP based aggregation/disaggregation optimization

approach produced a set of reservoir operating strategies

which resulted in system performance very close to the deter-

ministic optimum obtained by IDP. This work also included

the application of two different decomposition techniques,

i.e., the sequential and iterative decomposition algorithms,

in optimization of multiple-reservoir systems operation.

In addition, a comparison of explicit and implicit SDP

optimization approaches was carried out on a reduced,
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three-reservoir subsystem. The conclusion drawn was that the

explicit SDP model outperformed the implicit one. Such an

outcome was put down to the inaccuracies incurred by the

adopted streamflow generation model and the regression

analysis.

5.1.3 Approaches based on continuous approximations

of discrete functions

The basic idea behind this group of approaches is to tackle

DP’s curse of dimensionality by using a continuous rather

than discrete representation of the objective function in

order to allow a coarser discretization of the state space.

This in turn enables the analyst to opt for a straightforward

application of the chosen DP optimization approach, thus

simultaneously considering all state variables of a multiple-

state problem. Most of the reported studies have shown sig-

nificant reductions in the number of discrete state values

necessary to achieve acceptably low error levels of the objec-

tive function approximation. However, due to the fact that all

state variables are considered simultaneously, the computa-

tional load imposed by these methodologies still increases

exponentially with the number of state variables.

Murray and Yakowitz (1979) introduced constrained dif-

ferential dynamic programming (CDDP) to operational anal-

yses of multiunit reservoir systems under deterministic

hydrological conditions. The proposed approach was actually

a variation of IDP applied to all reservoirs of the system

simultaneously. In order to avoid discretization of state and

decision variables, the authors assumed that the objective

function could be described by its continuous quadratic

approximation. Therefore, the major task was to solve a

quadratic programming problem at each stage, i.e., to mini-

mize the quadratic function of multiple variables, subject

to a set of imposed constraints. As a comparison to other

approaches and to present the advantages of the method,

CDDPwas used to derive optimal policies for three character-

istic multiple-reservoir system configurations: a four-reservoir

system introduced by Larson (1968) and also used by Heidari

et al. (1971) and Nopmongcol and Askew (1976); a four-

reservoir system used by Chow and Cortes-Rivera (1974),

and a hypothetical ten-reservoir system. Finally, as the main

features of the algorithm, the authors emphasized fast con-

vergence of CDDP, no need for discretization of state and

decision space, and low computer storage, memory, and pro-

cessing time requirements.

A similar idea was utilized by Foufoula-Georgiou and

Kitanidis (1988) who introduced gradient dynamic program-

ming (GDP) as a tool to solve optimal control problems of

multiple-reservoir systems. In essence, GDP is backward

moving DP carried out through temporal stages. The GDP

approach allows simultaneous consideration of all system

state variables by using the cubic hermite polynomial approx-

imation of the objective function over state and decision

space. The requirement of this approach is that the first deriv-

atives of the interpolation polynomials must be continuous

and known at each grid node. The method was tested on both

deterministic and stochastic optimization problems for a

four-reservoir system. In addition, the GDP algorithmwas com-

pared with the standard discrete DP procedure on a single-

reservoir optimization problem. The results showed that the

highly sophisticated mathematical procedure employed in

GDP contributed to a significant reduction of the required

state discretization level needed to achieve the acceptable

accuracy of the results. In their earlier paper, Kitanidis and

Foufoula-Georgiou (1987) compared the convergence rates of

classical discrete DP and GDP and showed that, with the

decrease of the state discretization interval, the GDP proce-

dure converged more rapidly than conventional DP. The

authors further expressed their belief that solutions to multi-

ple-reservoir optimization problems should be sought in

appropriate, case-dependent, interpolation-based numerical

techniques rather than in discrete decomposition approaches.

It is, however, arguable whether such an approach could be

generally applicable since the computational load associated

with GDP still increases exponentially with the number of

state variables involved. Thus, and the obvious advantages

GDP offers notwithstanding, the respective application of the

method to very large reservoir systems would inevitably lead

to the prohibitive increase of dimensionality, the well-known

drawback of DP.

Johnson et al. (1993) proposed a high order piecewise poly-

nomial approximation of the objective functions to allow a

coarse discretization of the state space in multidimensional

DP optimization problems. They used a piecewise cubic spline

approximation of the objective function over the intervals

created by state discretization. The coefficients of the cubic

polynomials were derived upon the condition that they had to

interpolate the objective function at each grid point of the

state space. In addition, the first and second derivatives of the

splines defined over the neighboring discretization intervals

were required to be equal at the interval boundaries, thus

providing the second-degree continuity of the approximation

functions. The latter condition allowed the use of the quasi-

Newton optimization algorithm to locate the extreme of

the objective function approximation. The authors tested

their approach on the same four-reservoir system used by

Foufoula-Georgiou and Kitanidis (1988). They also carried

out a comparison of the computation error and processing

time requirements between their model, a piecewise linear
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approximation based model andGDP by Foufoula-Georgiou

and Kitanidis (1988). A general conclusion was drawn that

both the cubic spline model and GDP provided substantial

processing time savings and error reduction as compared to

the piecewise linear approximation model. The cubic spline

based DP model was also found to achieve only a slightly

smaller error for the same processing time than GDP. Tejada-

Guibert et al. (1993) compared the same cubic spline DP and

piecewise linear DP approaches on the two-reservoir Shasta/

Trinity system in California and arrived at similar conclu-

sions. Additional experiments showed that the proposed

approach was successful in reducing the execution time for

systems containing up to five reservoirs. However, a further

increase in the number of reservoirs would have made the

analysis susceptible to the curse of dimensionality for the

number of state transitions still increased exponentially with

the number of reservoirs in the system.

5.2 DECOMPOSITION METHOD

Decomposition approaches are very frequently used to alle-

viate dimensionality problems in operational analysis of

large-scale systems. This chapter presents decomposition

methods based on the principle of breaking down a multi-

ple-reservoir system into individual reservoir units and a sub-

sequent iterative determination of the individual reservoir

operation policies. The three decomposition models devel-

oped are (a) sequential downstream-moving decomposition,

(b) iterative downstream-moving decomposition, and (c) iter-

ative up-and-downstream-moving decomposition. The mod-

els are applied to a multipurpose multiunit reservoir system in

northern Tunisia (Milutin, 1998) and a multipurpose multi-

unit reservoir scheme in the Mahaweli river system in Sri

Lanka (Kularathna, 1992).

5.2.1 Tunis water resources system

The Tunis water resources system analyzed in this study com-

prises seven reservoirs and a diversion weir located in the

northern part of Tunisia as shown in Figure 5.1. However,

note that the figure shows all reservoirs, including those

planned and also those outside the system analyzed (which

are not linked to each other with an interbasin transfer pipe-

line). In addition to water supply as their primary purpose, all

of the seven reservoirs serve for flood protection, and some of

them also have hydropower generation facilities. However,

this presentation concentrates only on the long-term opera-

tional aspects of water supply, thus taking no account of flood

protection and energy generation purposes. As Figure 5.2

reveals, the reservoirs interact by means of both serial and

parallel interconnections. The available release from a reser-

voir may be distributed both to the local water users within its

own basin, as well as towards remote users situated in other

basins. The complexity of feasible water allocation patterns is

reflected in the fact that one reservoir may provide water for a

number of demand centers while, at the same time, a single

demand may be supplied by more than one reservoir. The

envisaged reservoir/demand links, together with the active

storage capacities of the seven reservoirs are given in

Table 5.1.

Time series ofmonthly inflow volumes for the seven reservoirs

cover a period of 44 years (i.e. 1946–89). The average annual

inflow to the entire system is estimated at 963.834� 106m3/

year and the total active storage of the seven reservoirs

amounts to 1000.7� 106m3. Great variability of inflows

under the prevailing semi-arid climatic conditions tends to

constrain the utilization of the available resources. The mag-

nitude of river flow variability can be observed from

Tables 5.2 and 5.3. The two tables compile the historical

mean incremental inflow data on monthly and annual scales

for individual reservoirs as well as the respective total flow

Table 5.1. Reservoir capacities and the associated demand targets

Reservoir In operation since Capacity (106m3) Targeted demand centers

Joumine 1983 121.3 BI, IMA, BLI, TU, TO, NA, MO, SO, SF

Ben Metir 1954 44.2 BE, JE, MB, TU

Kasseb 1968 72.2 TU

Bou Heurtma 1976 102.5 IBH

Mellegue 1954 89.0 INE, IBH

Sidi Salem 1981 510.0 IAEA, TU, TO, NA, MO, SO, SF, IBV, IMSC

Siliana 1988 61.5 ISI, IAEA, TU, TO, NA, MO, SO, SF, IBV, IMSC

All demand centers abbreviations starting with ‘‘I’’ refer to irrigation demand
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availability for the entire system. Namely, the coefficient of

variation of mean incremental annual inflows for the seven

reservoirs varies between 0.481 for Kasseb and 0.968 for

Siliana. On the system level, this statistical parameter is esti-

mated at 0.465. As to the seasonal flow variability, the major

portion of the system inflow (i.e., 84.6%) arrives in the period

October–April, whereas the remaining 15.4% of the total is

distributed over the period May–September. The three driest

months on record are June, July, and August, jointly contri-

buting only 6.3% of the total mean annual system inflow.

Figure 5.1 Tunis water supply system

Table 5.2. Reservoir mean monthly incremental inflows (period 1946–89) (106m3/month)

Reservoir Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug.

Joumine 0.967 4.799 12.295 24.033 30.715 28.052 20.357 8.145 2.852 0.543 0.110 0.093

Ben Metir 0.287 0.864 2.925 6.825 8.974 9.445 7.224 4.189 0.920 0.303 0.181 0.187

Kasseb 0.682 1.551 3.699 7.956 11.104 8.136 6.935 4.897 1.643 0.687 0.587 0.512

Bou Heurtma 0.792 2.023 5.955 14.513 18.830 19.477 15.344 9.734 2.977 0.995 0.680 0.694

Mellegue 24.965 34.384 12.574 10.395 9.351 9.490 12.170 16.396 15.302 13.975 5.262 11.594

Sidi Salem 10.587 21.818 25.553 53.054 88.203 76.697 68.194 45.242 19.533 7.563 4.567 8.176

Siliana 3.456 5.610 3.431 3.690 5.164 5.157 5.548 4.484 2.496 1.282 1.049 1.732

System 41.736 71.049 66.432 120.466 172.341 156.454 135.772 93.087 45.723 25.348 12.436 22.988
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In addition to inflow variability, the efficient exploitation

of the available water is further limited by water losses, mainly

due to evaporation. For instance, the mean monthly elevation

losses due to evaporation estimated for the entire system vary

between 24mm/month in January and 172mm/month in July

(Table 5.4).

The total estimated demand imposed upon the system is

469.504� 106m3/year. This amounts to 48.7% of the mean

annual inflow to the system. However, the unfavorable tem-

poral and spatial distribution of demands and available

inflows still poses a considerable obstacle for successful oper-

ation of the system. For instance (see Table 5.5), the driest

three-month period from June to August is characterized by

the total system demand of 210.155� 106m3, which is 44.7%

of the total annual demand. On the other hand, the mean

available inflow volume in the same period reaches only

60.772� 106m3, which amounts to 6.3% of the mean annual

inflow into the system given in Table 5.2. These figures clearly

reveal that Tunisia has no other options but storage and

interbasin transfer to meet its water demands.

Water demand imposed upon the system is partitioned

among 18 individual demand centers shown in Table 5.5.

There are four distinct water uses considered: drinking water

demands of various municipal areas; a specific drinking water

demand of large tourist centers along the Mediterranean coast;

irrigation demands; and a recharge of one natural lake (Lac

Ichkeul) located in the north of the country. The major water

users in the system are the drinking water demand TU, the

tourist centers’ water demand TO, the requirement for the

natural lake recharge BLI and the IAEA, IBV, IMSC, IBH,

and ISI irrigation demands. These eight demand centers con-

stitute 94.1% of the total demand imposed upon the system.

As Table 5.1 reveals, a considerable number of the demand

centers receive water from more than one reservoir. Namely,

in four cases there are two reservoirs supplying a demand

center (i.e., irrigation water demands IBH, IAEA, IBV, and

IMSC), whereas five demand centers (i.e., drinking water

demands NA, MO, SO, SF, and the tourist centers’ water

requirement TO) receive water from three reservoirs, and

only one user (i.e., drinking water demand TU) gets water

Table 5.3. Basic statistics of the annual inflows for the seven reservoirs (period 1946–89)

Reservoir Range (106m3/year) Mean (106m3/year) � (106m3/year) Cv (–)

Joumine 20.100–300.720 132.959 79.494 0.598

Ben Metir 3.740–111.480 42.325 22.537 0.532

Kasseb 7.840–141.580 48.389 23.264 0.481

Bou Heurtma 9.360–245.320 92.015 48.494 0.527

Mellegue 53.640–804.850 175.859 125.335 0.713

Sidi Salem 152.778–1300.359 429.188 234.077 0.545

Siliana 7.520–201.960 43.099 41.715 0.968

System 335.261–2504.679 963.834 448.020 0.465

Figure 5.2 Seven-reservoir Tunis system
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from five reservoirs. These ten demands amount to 86.5% of

the total annual demand. The remaining eight demand centers

depict the reservoirs’ local users (NB 13.5% of the total

demand imposed upon the system): irrigation schemes IMA,

INE, and ISI; drinking water demands BI, JE, BE, and MB;

and water requirements for recharge of Lac Ichkeul (BLI).

The largest reservoir in the system, Sidi Salem, is situated

on the Medjerdah River and represents the backbone of the

seven-reservoir system. Its capacity amounts to 51.0% of the

total system active storage while, on an average annual scale,

its incremental inflow reaches 44.5% of the total inflow to the

system. Sidi Salem also regulates and utilizes any excess

release that may originate from the three reservoirs situated

directly upstream: Kasseb, Bou Heurtma, and Mellegue. The

users associated with this reservoir include almost all of the

major demand centers in the system. Some of the associated

demand centers are located immediately downstream of the

reservoir (i.e., IAEA, TU, and IBV), whereas the rest of them

(i.e., TO, NA, MO, SO, SF, and IMSC) get water via the

Medjerdah–Cap Bon Canal, which departs from the

Medjerdah River at diversion weir El Aroussia downstream

of Sidi Salem, as shown in Figure 5.2.

Siliana is a small reservoir located on the river Siliana in the

Medjerdah basin. Although the inflow to this reservoir is poor

(i.e., 4.5% of the total annual inflow into the system), the list

of potential Siliana users is long: ISI, IAEA, TU, TO, NA,

Table 5.4. Estimated mean monthly elevation losses due to evaporation (mm/month)

Reservoir Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug.

Joumine 132 66 34 27 25 22 36 47 105 159 227 204

Ben Metir 111 72 44 33 31 31 53 64 99 130 162 152

Kasseb 111 55 29 22 21 18 30 40 89 135 191 172

Bou Heurtma 79 51 25 22 20 20 32 33 61 99 131 125

Mellegue 99 57 32 21 21 25 46 61 99 132 166 155

Sidi Salem 120 77 48 36 33 34 57 69 107 141 176 164

Siliana 88 59 34 25 20 22 33 42 75 114 148 129

Average 106 62 35 27 24 25 41 51 91 130 172 157

Table 5.5. Monthly water demands for the 18 demand centers in northern Tunisia (106m3/month)

Demand Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug.

TU 4.634 4.538 4.305 4.181 4.529 4.048 4.515 4.691 4.977 5.234 5.734 5.738

MO 0.101 0.090 0.082 0.079 0.069 0.065 0.084 0.094 0.100 0.110 0.129 0.128

NA 0.116 0.099 0.086 0.081 0.080 0.073 0.090 0.098 0.108 0.119 0.145 0.150

SO 0.290 0.275 0.252 0.229 0.205 0.190 0.250 0.264 0.274 0.296 0.355 0.372

SF 0.762 0.654 0.626 0.567 0.544 0.484 0.615 0.675 0.715 0.739 0.766 0.801

BI 0.245 0.233 0.217 0.215 0.231 0.197 0.220 0.239 0.250 0.250 0.278 0.289

JE 0.108 0.103 0.092 0.090 0.096 0.084 0.096 0.099 0.104 0.106 0.105 0.130

BE 0.136 0.125 0.120 0.119 0.105 0.108 0.128 0.128 0.137 0.147 0.166 0.162

MB 0.039 0.036 0.034 0.034 0.030 0.031 0.037 0.037 0.039 0.042 0.047 0.046

IMA 0.172 0.188 0.228 0.000 0.000 0.138 0.644 0.489 0.934 1.132 0.771 0.714

BLI 0.122 0.609 1.913 3.874 4.741 4.147 2.943 1.211 0.352 0.063 0.015 0.011

TO 1.624 1.459 0.914 0.777 0.716 0.765 1.138 1.211 1.388 1.531 1.892 2.077

IAEA 2.881 2.131 1.391 0.000 0.000 0.235 2.287 4.820 7.488 9.350 10.001 7.519

IBV 1.250 0.627 0.305 0.002 0.002 0.003 0.154 0.768 1.813 2.736 3.089 2.715

IMSC 12.784 5.420 2.258 0.606 0.505 2.020 6.586 7.675 13.132 21.709 26.502 25.250

INE 0.204 0.079 0.060 0.000 0.000 0.000 0.070 0.119 0.224 0.487 0.654 0.585

IBH 20.154 10.369 6.283 0.000 4.363 6.611 7.790 16.018 10.660 16.661 21.693 13.170

ISI 2.360 1.308 0.676 0.000 0.042 0.975 0.862 1.770 4.286 5.619 6.227 5.380

Total 47.982 28.343 19.842 10.854 16.258 20.174 28.509 40.406 46.981 66.340 78.578 65.237
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MO, SO, SF, IBV, and IMSC.Nevertheless, themain purpose

of Siliana is to provide water for the local irrigation scheme

ISI. To a certain extent, Siliana is expected to compensate for

any potential supply shortage that may occur in the operation

of other reservoirs supplying the common demands on the list

of Siliana’s users. Thus, part of the Siliana release may also be

conveyed through the Medjerdah–Cap Bon Canal.

Unlike Siliana, the Joumine Reservoir can contribute sig-

nificantly to the supply of all the associated demand centers. It

is located on the Joumine River in the far north of the country.

This is the only reservoir in the system which is not located in

the immediateMedjerdahRiver basin. Its mean annual inflow

amounts to 13.8% of the total system water resources. In

addition to the three local users (BI, IMA, and BLI),

Joumine plays an important role in providing water for the

remaining remote demand centers (TU, TO, NA, MO, SO,

and SF) which it supplies jointly with other reservoirs from

the system. The remote users get water allocated from

Joumine via a pipeline, which at its end discharges into the

Medjerdah–Cap Bon Canal.

The Bou Heurtma Reservoir serves primarily for irrigation

water supply of its local demand IBH. It is located on the Bou

Heurtma River, a tributary of the Medjerdah, with a mean

unregulated inflow to the reservoir of 9.5% of the total annual

inflow into the system. Furthermore, BouHeurtma can accom-

modate and regulate any excess release that may be produced

by its upstream counterpart Ben Metir. In addition to its con-

sumptive demand IBH, Bou Heurtma may contribute to regu-

late the inflow to Sidi Salem.

The Mellegue Reservoir is located on the Mellegue tribu-

tary of the Medjerdah River. The mean unregulated inflow to

Mellegue amounts to 18.2% of the total system inflow.

However, this is the reservoir with by far the lowest reservoir

volume factor among all the reservoirs in the system. Its

capacity hardly reaches 50.6% of the respective mean annual

inflow. As a comparison, the next highest volume factor is

that of Joumine (0.912), whereas the highest one is related to

Kasseb: 1.492. As to the associated water users, Mellegue

provides water for the local irrigation scheme INE and, jointly

with Bou Heurtma, covers the IBH irrigation demand. Like

Bou Heurtma, Mellegue can also contribute to the increase of

Sidi Salem’s inflow during the peak demand periods.

The Kasseb Reservoir is situated on the Kasseb River in the

Medjerdah basin. Its mean annual incremental inflow is at the

level of only 5.0% of the total system inflow. The sole purpose

of this reservoir is to provide drinking water for the TU

demand center. Any excess release from Kasseb may be used

to cover the supply shortage of Sidi Salem.

Ultimately, BenMetir is the smallest reservoir in the system

with equally small incremental inflows (i.e., only 4.4% of the

total system inflow). It is located on the El Lil River in the

immediate basin of the Bou Heurtma River. Ben Metir con-

tributes primarily towards drinking water supply of its local

users JE, BE, andMB and provides water for the TU demand.

Since it is located upstream of Bou Heurtma, if any surplus

water is available, BenMetir is expected to compensate for the

potential shortage of Bou Heurtma’s water deliveries.

There are a number of water conveyance (transfer) struc-

tures in the system. The capacities of major conveyance struc-

tures are given in Table 5.6.

5.2.2 System decomposition: Tunis system

The three decompositionmethods described in the subsequent

three sections are based on the principle of breaking down a

multiple-reservoir system into individual reservoir units and a

subsequent iterative determination of the individual reservoir

operation policies. To derive the operation policies of individ-

ual reservoirs, each of the methods employs the same iterative

six-step optimization/simulation procedure, which involves:

(1) estimation of the inflow into a reservoir;

(2) evaluation of the demand imposed upon a reservoir;

(3) stochastic dynamic programming based optimization of

the operation of a reservoir;

(4) simulation of the reservoir’s operation according to the

derived SDP policy;

(5) the total releases obtained by simulation are allocated to

individual users; and

(6) estimation of the expected unmet demands and the

expected total supply deficits associated with the opera-

tion of the reservoir in question.

With regard to the relative flexibility of the basic decomposition

principles, there generally exist a number of possible reservoir

orderings which comply with the imposed decomposition rules.

However, the operational analysis of the Tunis system has been

limited to only three alternative reservoir sequences, each

Table 5.6. Capacities of the existing water conveyance

structures

Water conveyance structure

Capacity

(m3/s) (106m3/month)a

Medjerdah–Cap Bon Canal (MCB) 16.0 42.163

Joumine–MCB pipeline 4.0 10.541

Kasseb–Tunis pipeline 1.1 2.899

Ben Metir–Tunis pipeline 1.0 2.635

aEstimated assuming the average number of days in a month to

be 30.5
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exemplifying a distinct decomposition approach. What distin-

guishes these three decomposition approaches fromone another

is the way they address the problem of modeling the interaction

among serially linked reservoirs. Sections 5.2.3 to 5.2.5 intro-

duce the three employed decomposition approaches and present

their respective applications to the Tunis system.

5.2.3 Sequential downstream-moving decomposition:

Tunis system

The ordering of individual reservoirs generally follows the

direction of river flows in the river basin(s). Within each

iteration, the analysis starts from the uppermost reservoir in

the system. Thereafter, the selection of reservoirs proceeds in

the downstream direction until all the reservoirs have been

taken into consideration, which completes one iterative cycle.

Such cycles are then repeated until a satisfactory stabilization

of the total system return has been achieved.

Figure 5.3 presents the general flow chart of the applied

sequential downstream-moving decomposition (SDD) and

the symbolic representation of the decomposed Tunis system

according to this approach. Both figures utilize the same

notation, which is described with the introduction of the

main SDD decomposition features. The definition of reser-

voir ordering is based on two principles:

(a) Reservoirs are initially clustered into cascade levels (K)

to distinguish between subsets of reservoirs with respect

Figure 5.3 Sequential downstream-moving decomposition flow chart and Tunis system
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to the sequence upon which those subsets will be entering

the principal iterative cycles (I). According to the SDD

approach, the cascade level ordering is guided by the

descending arrangement of their respective indices K.

The total number of cascade levels is represented by the

parameter M in Figure 5.3.

(b) Reservoir selection order (L) within a cascade level can be

defined by any rules imposed by the analyst. These may

include firm water allocation schemes, water quality

requirements, or some empirical rules based, for instance,

on operating or environmental issues.

The reservoir ordering for the case study system in the SDD

decomposition approach is: Joumine, BenMetir, Kasseb, Bou

Heurtma, Mellegue, Sidi Salem, and Siliana. The choice of

the Joumine–Ben Metir–Kasseb ordering in cascade K¼ 3 is

generally an arbitrary one. On the other hand, the Bou

Heurtma–Mellegue ordering in cascade K¼ 2 is determined

by the priority BouHeurtma has towards supplying their joint

irrigation demand IBH. The Sidi Salem–Siliana sequence in

cascade K¼ 1 is solely based on the superior size, water avail-

ability, and principal role Sidi Salem exhibits in the system.

The adopted decomposition methodology relies on the iter-

ative analyses of individual reservoir operations to arrive at

the operating strategy of the entire system. The approach

maintains the interactions among reservoirs within its itera-

tive process. The SDD decomposition utilizes three principles

to this end. Namely, upon completing the analysis of the

operation of a reservoir, three distinctive pieces of informa-

tion are made available for further analyses:

(a) Within one iterative cycle, the estimated expectations of

monthly demands, which have not been covered so far,

are regularly updated after each reservoir’s operating

strategy has been derived by optimization and appraised

by simulation. That is, the operation of the next reservoir

in the sequence is analyzed with respect to the updated

expectation of the system’s demand records. For instance,

being the first in the optimization sequence, Joumine

faces the entire TO demand. Upon estimating the

expected monthly allocation of Joumine resources to

this demand, any of the expected unmet monthly TO

requirements are to be associated with Sidi Salem, the

next reservoir in sequence, to supply this demand.

Ultimately, the operation of Siliana is optimized taking

into account the expected remaining part of the TO

demand which could not have been covered by Joumine

and Sidi Salem.

(b) The aggregate of the expected monthly estimates of all the

unmet demands associated with a particular reservoir is

regarded as the total expected supply deficit of that

reservoir. In the subsequent iteration cycle, the monthly

estimates of a reservoir’s supply deficits are used as an

additional, hypothetical demand imposed upon the reser-

voirs situated directly upstream of the reservoir in ques-

tion. Consequently, the upstream reservoirs’ operating

strategies derived in the succeeding iteration would be

altered to try to release additional water to increase the

inflow into the downstream reservoir in those periods

when the operation of the downstream reservoir exhibits

supply shortage. With regard to the Tunis system, for

example, the total consumptive demand imposed upon

Ben Metir is increased by the expected supply deficit of

Bou Heurtma estimated in the preceding iteration.

Similarly, the previous iteration supply deficit of Sidi

Salem is associated with Kasseb, Bou Heurtma, and

Mellegue (being covered by more than one reservoir, the

expected supply deficit of Sidi Salem is also subject to

demand updating as described in the previous point).

(c) Upon allocating water to all the associated users, the

remaining part of the total reservoir release, if any, is

considered as a supplementary inflow to the reservoir

located immediately downstream. For instance, Bou

Heurtma’s incremental inflows are increased by the non-

utilized releases from Ben Metir estimated in the same

iterative cycle and, similarly, Sidi Salem makes use of the

additional inflow originated from excess releases from

Kasseb, Bou Heurtma, and Mellegue, all obtained in the

same iteration.

5.2.4 Iterative downstream-moving decomposition:

Tunis system

Iterative downstream-moving decomposition (IDD) is essen-

tially a variation of the SDD approach. Consequently, reser-

voir ordering in IDD is also determined based on the two

principles related to the cascade level definitions and within-

cascade reservoir sequences. In addition, the interactions

among the serially connected reservoirs and demand updating

are defined in the same way as within the SDD approach. The

flow chart of the IDD decomposition and the Tunis system

are given in Figure 5.4. The notation used to describe the

IDD decomposition is identical to the one introduced in

Section 5.2.3, with the only addition being the cascade attrib-

ute D whose role is clarified in the following passage.

The formulation of the IDD approach brings about an

improvement to the way the SDD decomposition deals with

the cases where several reservoirs in parallel are serially linked

to one reservoir situated downstream of them. In SDD the

analyses of the operation of all the reservoirs on one cascade

level are completed before proceeding to the next downstream
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cascade level. Thus, if the upper cascade level contains a

number of reservoirs which can contribute to the increase of

the inflow to one of the reservoirs on the lower cascade level,

the optimization of the operation of the downstream reservoir

is carried out only after the analyses of all of its direct

upstream counterparts have been completed. Since the inter-

actions among serially connected reservoirs are approximated

by the exchange of information about the expected supply

deficits of the downstream reservoir obtained in the preceding

iteration and the time series of nonutilized flows from the

upstream reservoirs derived in the present iterative cycle, it is

obvious that the estimation of the expected supply deficit of

the downstream reservoir can repeatedly be updated after

completing the analysis of the operation of each of the

upstream reservoirs. In other words, the time series of the

excess flows from the first analyzed upstream reservoir can

be used to make the initial update of the downstream reser-

voir’s operation policy and, in turn, to re-evaluate its expected

Figure 5.4 Iterative downstream-moving decomposition flow chart and Tunis system
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supply deficits. Thereafter, the updated expected supply def-

icits are used as additional hypothetical demand imposed

upon the next upstream reservoir. This process is repeated

for each of the upstream reservoirs which are serially con-

nected to the downstream one.

According to the IDD decomposition, the sequence upon

which the reservoirs enter the computational process within

one iterative cycle is: Joumine, BenMetir, Kasseb, Sidi Salem,

Bou Heurtma, Sidi Salem, Mellegue, Sidi Salem, Siliana. The

operation of Sidi Salem is derived in three consecutive steps

following the optimization of Kasseb, Bou Heurtma, and

Mellegue. This process is controlled by the introduction of

the cascade level attributeD identifying the reservoir from the

immediate downstream cascade level whose operation is to be

repeatedly optimized following the analysis of each of the

reservoirs from the present cascade level (e.g., the value of D

for cascade level K¼ 2 is D(2)¼ 1, which points to Sidi Salem

whose index in the immediate downstream cascade is L¼ 1).

5.2.5 Iterative up-and-downstream-moving

decomposition: Tunis system

Iterative up-and-downstream-moving decomposition (UDD)

departs from the former two decomposition methods in the

sense that the adopted reservoir sequence generally follows

the direction opposite to the direction of river flows. On the

other hand, the common feature among the three is the prin-

ciple of breaking down a complex system into individual

reservoirs by identifying reservoir subsets at different cascade

levels with the subsequent determination of within-cascade

reservoir analysis orders. However, unlike the SDD and

IDD methods, the UDD decomposition analyzes the individ-

ual reservoir operations by starting from the lowest cascade

level and thereafter proceeding upstream along the cascade

levels. In addition, any of the existing serial reservoir links are

modeled by an iterative up-and-down progression within the

respective subset of reservoirs. The flow chart of the UDD

decomposition is depicted in Figure 5.5. The case study system

(Tunis system) decomposition according to this method is

presented in Figure 5.6. The general cascade level and reser-

voir position notation used in the UDD decomposition is

identical to the one given for the former two methods. Some

additional system decomposition attributes, i.e., the parame-

ter U identifying the number of upstream reservoirs serially

linked to a particular reservoir and the vector of indices V of

the respective upstream reservoirs, are described below.

The individual reservoir operation analysis within one iter-

ation of the UDD decomposition starts from the lowest cas-

cade level in the system. The information interchange between

two subsequent iterations is, unlike in SDD and IDD

approaches, the set of time series of nonutilized flows from

the reservoirs. These records are used as additional inflows

into the respective downstream reservoirs in serially linked

reservoir clusters, if any. If the reservoir whose operating

analysis has just been completed is serially linked to any

number of reservoirs from the upstream cascade level (i.e.,

the attribute U for the reservoir is not zero), the process

continues by advancing to the upstream cascade level to ana-

lyze the operation of those reservoirs, V, which are linked to

the reservoir in question. The operations of those reservoirs

are then optimized and simulated taking into account the

expected monthly supply deficits of their downstream coun-

terparts. Upon completing the upstream cascade analyses, the

process returns to the downstream reservoir where it hasmade

an advance in the upstream direction. At this point, the optim-

ization and simulation of the operation of this reservoir are

carried out once again. This is done to update its operating

strategy by taking into account the additional inflow time

series obtained in the analyses of the reservoirs from the

upstream cascade level. Once such an iterative up-and-down

analysis is completed for a serially linked cluster, the process

continues with the next reservoir in the presently lowest cas-

cade whose analysis has not been completed yet. Similarly to

the other two decomposition methods, the UDD decomposi-

tion also observes the demand updating principle in addition

to the exchange of information about the nonutilized releases

and the expected monthly supply deficits.

Perhaps the best way to clarify this description is to apply

the UDD principles to the case study system (Figure 5.6).

Thus, the reservoir sequence in an iteration of the UDD

decomposition is: Joumine, Sidi Salem, Kasseb, Bou

Heurtma, Ben Metir, Bou Heurtma, Mellegue, Sidi Salem,

and Siliana. It can be clearly seen that the iterative process of

the analysis of serially linked reservoirs is recursive. Namely,

the outer cluster with the Sidi Salem Reservoir as the down-

stream one contains two serially linked reservoirs: Bou

Heurtma and Ben Metir. Therefore, upon reaching Bou

Heurtma in the process of analyzing Sidi Salem’s upstream

counterparts, the analysis is held up until the Bou

Heurtma–Ben Metir serial link is completed. This is indicated

by different shading patterns used to identify the respective

reservoir clusters (Figure 5.6) and by the flow chart of the

recursive part of the algorithm given in Figure 5.5.

5.2.6 Comparison of the three decomposition

alternatives: Tunis system

This section presents the outcomes of the optimization and

the respective simulation analyses of the long-term operation

of the Tunis system executed for the three alternative

86 LARGE-SCALE RESERVOIR SYSTEM OPERATION



decomposition approaches. The three SDP based decompo-

sition models share a number of common features.

The number of characteristic discrete storage representations

is set to 25 for each reservoir in the system. Table 5.7 displays

the adopted discrete storage representations for individual res-

ervoirs. It should be noted here that the sequential downstream-

moving decomposition (SDD) was also tested using 48 storage

classes (i.e., achieving a 50% reduction of the respective class

sizes obtained with 25 discrete storage representations) produc-

ing almost no improvement of the system’s operation as com-

pared to the adopted coarser discretization level.

Monthly reservoir inflows are represented by the respective

sets of discrete flow values. The maximum allowed number of

discrete inflow classes is set to 12. Inflow discretization varies

Figure 5.5 Iterative up-and-downstream-moving decomposition flow chart
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from reservoir to reservoir and from month to month. The

number of discrete inflow representations is defined as a

linear function of the reservoir’s capacity and the range of

inflow observations in that particular month. Upon defining

the inflow classes for each month, the stochasticity of

monthly inflows into reservoirs is described by transition

probabilities estimated for their respective discrete represen-

tations based on the 33-year-long policy determination inflow

subsets.

The objective function used in optimization of the opera-

tion of individual reservoirs is to minimize the expectation of

the annual aggregate of the squared deviation of a monthly

release from the respective target.

The adopted simulation alternative within each of the three

decomposition approaches assumed full compliance with

the derived SDP policies, thus allowing no policy violations.

The individual reservoir operation policies derived by SDP

within each of the three decomposition approaches are

defined for each month within an annual cycle. They are

given in the form of a table indicating the class index of the

recommended final storage volume as a function of the class

indices of the initial storage volume and inflow for that

particular month. An abridged example of a typical SDP

policy table is presented in Table 5.8 (note that storage vol-

ume decreases with the increase of the storage class index

whereas inflow volume increases with the increase of the

inflow class index).

Table 5.9 presents the number of iterations required to

achieve stabilization of the termination criterion (i.e., the

expected annual supply deficit of the entire system). The

UDD is the fastest among the three models. According to

the estimates of the expected annual supply deficit of the

entire system, the policies derived by the three decomposition

models result in virtually identical system performances. The

obtained values show that the expected annual water supplies

vary between 95.8% (SDD and UDD) and 95.9% (IDD) of

the annual demand.

The estimated expected annual deficits of individual

demands show that SDD and IDD models outperform

UDD by a narrowmargin as presented in Tables 5.9 and 5.10.

K = 3
N(3) = 1

K = 2
N(2) = 3

K = 1
N(1) = 3

Mellegue

Bou
Heurtma

Ben
Metir
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EI Aroussia
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diversion weir

river course and direction of flow
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L = 1
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Figure 5.6 Iterative up-and-downstream-moving decomposition of

the Tunis system

Table 5.7. Discrete storage representation for individual reservoirs (106m3)

Class Joumine Ben Metir Kasseb Bou Heurtma Mellegue Sidi Salem Siliana

1 130.0 57.2 81.9 117.5 120.0 555.0 70.0

2 127.4 56.2 80.3 115.3 118.1 543.9 68.7

3 122.1 54.3 77.2 110.8 114.2 521.7 66.0

4 116.8 52.4 74.1 106.4 110.3 499.6 63.3

. . . . . . . . . . . . . . . . . . . . . . . .

22 21.9 17.8 17.5 26.1 40.7 100.4 15.2

23 16.6 15.9 14.4 21.7 36.8 78.3 12.5

24 11.3 14.0 11.3 17.2 32.9 56.1 9.8

25 8.7 13.0 9.7 15.0 31.0 45.0 8.5
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The simulation shows that the system is likely to fail more

severely during dry summer months (i.e., June–August) when

the imposed demand for water is at its peak. However, the

derived SDP policies manage to reduce the magnitude of

supply deficits in these months by ‘‘spreading’’ the inevitable

shortage over the remaining nine months of an annual

cycle. The largest ‘‘share’’ of this shortage is associated with

the immediate neighboring months (i.e., April–May and

September–October).

Table 5.11 shows, however, that the three decomposition

models achieve similar performances of the system on the basis

of different operation policies. The only reservoir whose SDP

policies do not differ from one model to another is Joumine.

This is because, in all of themodels, Joumine is the first reservoir

to be considered in the computational process, thus always

having the same input sets of hydrologic and demand variables

irrespective of the chosen decomposition model.

5.2.7 Sequential downstream-moving decomposition:

Mahaweli system

This section presents the application of SDD to theMahaweli

water resources system in Sri Lanka. The system is described

in detail in Section 2.2.1.

Sequential optimization is initiated with the optimization

of the uppermost reservoir subsystem, which consists of

Caledonia, Talawakelle, andKotmaleReservoirs. For this opti-

mization, the SDP model described in Section 3.2 is used with

necessary modifications. The power plant of the Talawakelle

Reservoir is considered as a run-of-the-river power plant due to

the small storage capacity of the Talawakelle Reservoir.

Simulation of the operation of the same subsystem using

available historical monthly streamflow records is carried

out according to the operation policies derived by optim-

ization and the optimal diversion policy of the Polgolla

Barrage as described in Section 5.3 (q.v.). It results in an

operation pattern of the reservoir subsystem, monthly diver-

sions and releases at Polgolla. These diversions and releases

become the upstream inflows to the Ukuwela–Bowatenna–

Moragahakanda and Victoria–Randenigala–Rantembe reser-

voir subsystems respectively.

The operation of the two downstream reservoir subsystems

is then optimized individually, considering inflows con-

tributed by the Polgolla Barrage in addition to the inflows

within the respective subsystems. In the optimization of the

Victoria–Randenigala–Rantembe subsystem, the Rantembe

power plant is considered as a run-of-the-river power plant

due to the small storage capacity of the Rantembe Reservoir.

After formulating operation policies by optimization, the

operations of two downstream subsystems are then simulated

Table 5.9. Comparison of the three decomposition alternatives

Decomposition

method

Number of

iterations

Expected annual supply deficit

of entire system (106m3)

SDD 6 19.736

IDD 3 19.117

UDD 2 19.786

Table 5.8. An example of a typical SDP based operation

policy table

Initial storage class

Inflow class

1 2 3 4 5

1 6 6 1 1 1

2 7 6 2 1 1

3 8 7 3 1 1

4 9 8 4 2 1

. . . . . . . . . . . . . . . . . .

22 24 23 19 18 15

23 24 23 20 19 16

24 25 24 21 20 17

25 25 25 22 20 17

Table 5.10. Expected annual deficits of individual demand

centers for SDD, IDD, and UDD models (106m3/year)

Demand center

Expected annual deficit (106m3)

SDD IDD UDD

TU 0.293 0.294 0.288

MO 0.022 0.022 0.023

NA 0.024 0.024 0.025

SO 0.065 0.065 0.066

SF 0.163 0.163 0.182

BI 0.065 0.065 0.065

JE 0.054 0.054 0.050

BE 0.052 0.051 0.050

MB 0.021 0.023 0.019

IMA 0.137 0.137 0.137

BLI 1.088 1.088 1.088

TO 0.282 0.282 0.283

IAEA 0.142 0.142 0.116

IBV 0.100 0.090 0.134

IMSC 5.524 5.413 5.810

INE 0.007 0.003 0.003

IBH 5.681 5.536 5.785

ISI 5.656 5.664 5.662
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independently using available historical flow records and the

derived operation policies.

The mathematical formulation of the sequential optimiza-

tion approach (consisting of three SDP based optimization

models) is presented in detail for the Mahaweli system. The

objective function is to maximize the expected energy gener-

ation. Using the usual notation (Section 3.2) and the super-

scriptsN¼ 1, 2, and 3 to represent the CTK, UBM, and VRR

subsystems respectively (Figure 2.11), and the subscripts

i¼ 1, 2, 3 to represent the three reservoirs/power plants

(starting from the upstream) in each subsystem:

For the CTK subsystem,

Maximize �
XT
j¼1

X3
i¼1

TEPi;j

 !( )
; (5:1)

where

TEPi;j ¼ 9:81� ��R1
i;j�ðEL1

i;j �DWL1
i;jÞ� tj=10

6ðMWhÞ;
i ¼ 1; 2; 3; j ¼ 1; 2; . . . ; 12: (5:2)

State transformation equation for the Caledonia reservoir:

S1
1;jþ1 ¼ S1

1;j þ I11;j � E1
1;j � R1

1;j �O1
1;j; j ¼ 1; 2; . . . ; 12: (5:3)

State transformation equation for the assumed run-of-the-

river power plant at Talawakelle:

R1
2;j ¼ R1

1;j þO1
1;j þ I12;j; j ¼ 1; 2; . . . ; 12: (5:4)

State transformation equation for the Kotmale reservoir:

S1
3;jþ1 ¼ S1

3;j þ I13;j � E1
3;j � R1

3;j þ R1
2;j �O1

3;j;

j ¼ 1; 2; . . . ; 12;
(5:5)

Qp;j ¼ R1
3;j þO1

3;j þ IPj; j ¼ 1; 2; . . . ; 12: (5:6)

Where

Qp,j ¼ inflow volume at interface point (Polgolla Barrage)

during period j (106m3),

IPj ¼ incremental inflow to Polgolla Barrage during period j

(106m3).

In addition to the constraints imposed by the release and

storage limits of the reservoirs, optimization is subject to the

following constraint:

Qp;j � Q�p;j; (5:7)

Q�p;j ¼ optimum inflow at Polgolla obtained by three-

composite-reservoir optimization model (106m3) (in

Section 5.3.2).

For the SDP models of the downstream subsystems, the

same form of the objective function is used. The downstream

irrigation water demands are considered as constraints. The

upstream (simulated) inflows are defined as in the following.

For the UBM system:

Qu;j ¼ DðQs
p;jÞ; j ¼ 1; 2; . . . ; 12; (5:8)

where

Qs
p;j ¼ inflow at Polgolla in period j obtained by simulating

(superscript s indicates this) CTK subsystem accord-

ing to its optimum operation policies (106m3),

D(.) ¼ representation of diversion policy at Polgolla, and

Qu,j ¼ inflow entering UBM subsystem across interface point

at Polgolla in period j (determined according to the

Polgolla diversion policy) (106m3).

For Ukuwela power plant:

R2
1;j þO2

1;j ¼ Qu;j; j ¼ 1; 2; . . . ; 12: (5:9)

For Bowatenna Reservoir:

S2
2;jþ1 ¼ S2

2;j þ R2
1;j þO2

1;j þ I22;j � E2
2;j � R2

2;j �O2
2;j �DBj;

j ¼ 1; 2; . . . ; 12;
(5:10)

Table 5.11. SDD, IDD, and UDD models: relative number of different decisions in monthly policy tables (%)

SDD vs. IDD SDD vs. UDD IDD vs. UDD

Reservoir min mean max min mean max min mean max

Joumine 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Ben Metir 1.0 5.0 14.0 1.3 11.6 40.0 4.0 14.4 39.3

Kasseb 0.0 1.8 7.2 0.7 6.3 16.0 0.7 5.9 14.7

Bou Heurtma 1.1 8.6 21.0 6.0a 22.4a 40.0a 7.0a 20.5a 51.3a

Mellegue 1.3 3.4 6.3 0.8 4.8 13.1 0.0 5.1 14.7

Sidi Salem 0.0 4.8 20.7 1.6 14.7 40.7 3.2 14.5 46.7

Siliana 0.0 0.6 4.0 0.0 3.0 10.7 0.0 2.7 6.7

a Some months are excluded from the comparison because the respective policies have different numbers of inflow classes
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where

DBj ¼ diversion demand at Bowatenna in period j (106m3).

For Moragahakanda Reservoir:

S2
3;jþ1 ¼ S2

3;j þ I23;j � E2
3;j � R2

3;j �O2
3;j þ R2

2;j þO2
2;j;

j ¼ 1; 2; . . . ; 12; (5:11)

R3;j þO3;j þ IEj � DEj; j ¼ 1; 2; . . . ; 12; (5:12)

where

IEj ¼ incremental inflow to Elahera diversion during period j

(106m3), and

DEj ¼ diversion demand at Elahera in period j (106m3).

For the VRR subsystem:

Qv;j þQu;j ¼ Qs
p;j; j ¼ 1; 2; . . . ; 12; (5:13)

Qv,j¼ inflow entering VRR subsystem across interface point

at Polgolla in period j (106m3).

For Victoria Reservoir:

S3
1;jþ1 ¼ S3

1;j þ I31;j � E3
1;j � R3

1;j �O3
1;j þQv;j;

j ¼ 1; 2; . . . ; 12:
(5:14)

For Randenigala Reservoir:

S3
2;jþ1 ¼ S3

2;j þ I32;j � E3
2;j � R3

2;j �O3
2;j þ R3

1;j þO3
1;j;

j ¼ 1; 2; . . . ; 12:
(5:15)

For Rantembe Reservoir:

R3
3;j ¼ R3

2;j þO3
2;j þ I33;j; j ¼ 1; 2; . . . ; 12; (5:16)

R3
3;j þO3

3;j þ IMj � DMj; j ¼ 1; 2; . . . ; 12; (5:17)

where

IMj ¼ incremental inflow to Minipe during period j (106m3),

and

DMj ¼ diversion demand at Minipe in period j (106m3).

The following general equations apply to all three models:

SN
i;jþ1; ¼ SN

i;1; j ¼ 12; N ¼ 1; 2; 3;

i 2 IN; I1 ¼ f1; 3g;
I2 ¼ f2; 3g; I3 ¼ f1; 2g;

(5:18)

ON
i;j ¼ RN

i;j � RMAXN
i;j; RN

i;j � RMAXN
i;j;

N ¼ 1; 2; 3; i ¼ 1; 2; 3; j ¼ 1; 2; . . . ; 12;
(5:19)

RN
i;j ¼ RMAXN

i;j; RN
i;j � RMAXN

i;j;

N ¼ 1; 2; 3; i ¼ 1; 2; 3; j ¼ 1; 2; . . . ; 12;
(5:20)

and

ON
i;j ¼ 0; RN

i;j � RMAXN
i;j; N ¼ 1; 2; 3; i ¼ 1; 2; 3;

j ¼ 1; 2; . . . ; 12;

SN
i;jþ1 � RMAXN

i;jþ1; N ¼ 1; 2; 3; i 2 IN;

j ¼ 1; 2; . . . ; 12;

(5:21)

ELN
i;j ¼SEN

i SN
i;j þ SN

i;jþ1

� �
=2

h i
;

UWLN
i ;

N ¼ 1; 2; 3; i 2 IN;

j ¼ 1; 2; . . . ; 12;

N ¼ 1; 2; 3; i =2 IN;

j ¼ 1; 2; . . . ; 12;

(5:22)

DWLN
i;j ¼ max

j
TWLN

i ;EL
N
iþ1;j

k
; N ¼ 1; 2; 3; i ¼ 1 2 IN;

j ¼ 1; 2; . . . ; 12;

TWLN
i ; N ¼ 1; 2; 3; i ¼ 1 =2 IN;

j ¼ 1; 2; . . . ; 12;
(5:23)

where

UWLN
i ¼ upstream water level of (run-of-the-river) power

plant i of the subsystem N (m),

DWLN
i,j ¼ average downstream water level of power plant i in

subsystem N during month j (m), and

TWLN
i ¼ normal tail water level of power plant i in

subsystem N (m),

ELN
i,j ¼ average water surface elevation of reservoir i in

subsystem N during month j (m),

SEN
i ¼ represents the relationship between the water surfaces.

In the case of an objective function which minimizes the

expected sum of squared deviations of water supply from

demand, the demands are not considered as constraints. The

results of the sequential optimization model obtained by using

different diversion policies at Polgolla and Bowatenna are pre-

sented in Tables 5.12 and 5.13. These diversion policies consider

different combinations of diversion capacity at Polgolla and

the minimum release limits of Polgolla and Bowatenna. In this

analysis, objective functions of maximization of expected energy

generation and minimization of expected squared deviation of

(supply�demand) were considered separately.

Results obtained by using the energy objective have outper-

formed those obtained by using the squared deviation objective.

5.2.8 Iterative upstream-moving decomposition:

Mahaweli system

In this model, optimization of the system, which consists of

three subsystems, is carried out using an iterative approach.
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As indicated in Figure 5.7, the iteration starts with the opti-

mization of two downstream subsystems considering no

inflows from Polgolla (i.e., considering only the incremental

inflows into the downstream reservoirs) followed by two

independent simulation runs. Historical monthly inflows

and the operation policies derived in the optimization process

are used in this simulation. Two time series of water shortages,

one for each subsystem are thereby determined.

In the next step, the operation of the upstream subsystem

consisting of Caledonia, Talawakelle, and Kotmale (CTK)

Reservoirs is optimized. The shortages of two downstream

subsystems determined in the previous step are considered as

water demands for this system. Operation of the CTK sub-

system is then simulated according to the formulated opera-

tion policies and historical inflows. This results in a time series

of inflows at Polgolla Barrage. Diversions and downstream

releases at Polgolla are determined according to several differ-

ent diversion policies. The whole procedure is then repeated

considering the new time series of diversions and spillages at

Polgolla also as inflows to the two downstream subsystems.

Iteration is continued until convergence to a constant system

return is achieved. An average of four iterations is required to

achieve convergence of these models.

Both objective functions of maximization of expected

energy generation andminimization of expected squared devi-

ation of (supply�demand) are considered separately.

The components of the mathematical formulation of the

iterative optimization approach that are different from the

sequential optimization approach (Section 5.2.7) are given

below.

For the downstream subsystems, equations that corres-

pond to Eq. (5.8) and Eq. (5.13) of the sequential optimization

approach can be expressed as

Qu;jðIÞ ¼ D Qs
p;jðI� 1Þ

h i
;

¼ 0

I � 2; j ¼ 1; 2; . . . ; 12;

I ¼ 1; j ¼ 1; 2; . . . ; 12;
(5:24)

Table 5.12. Results of the sequential optimization model (objective function: maximize energy generation)

Alternative

number

Polgolla

minimum

release (106m3)

Bowatenna

minimum

release (106m3)

Average annual

energy generation

(GWh)

Total annual

firm energy

(GWh)

Average annual

water shortage at

Minipe (106m3)

Average annual

water shortage at

Bowatenna (106m3)

Polgolla diversion policy: divert up to maximum of 75� 106m3

1 0 0 2853.6 625.0 97.8 0.5

2 10 2852.8 636.2 97.8 2.8

3 21 2847.1 650.8 97.8 26.0

4 11.2 0 2849.7 579.7 92.8 5.0

5 10 2849.8 594.0 92.8 12.3

6 21 2843.5 604.1 92.8 34.7

7 20 0 2859.1 557.8 84.7 16.8

8 10 2859.5 577.0 84.7 20.2

9 21 2854.4 593.6 84.7 47.5

10 30 0 2865.0 534.6 80.6 24.6

11 10 2864.8 551.9 80.6 34.7

12 20 2860.4 570.2 80.6 66.0

Polgolla diversion policy: divert up to maximum of 89� 106m3

13 0 0 2804.2 543.4 114.2 4.3

14 10 2804.9 551.4 114.2 10.3

15 21 2803.9 563.8 114.2 17.0

16 11.2 0 2814.9 528.2 102.9 14.8

17 10 2816.1 546.6 102.9 21.2

18 21 2817.6 565.6 102.9 30.1

19 20 0 2810.5 506.9 99.7 22.8

20 10 2812.4 522.0 99.7 32.0

21 21 2814.4 543.3 99.7 46.3

22 30 0 2815.2 516.5 89.3 36.3

23 10 2817.2 532.2 89.3 51.9

24 20 2813.5 551.8 89.3 67.7
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Qu;jðIÞ þQv;jðIÞ ¼ Qs
p;jðI� 1Þ;

¼ 0;

I � 2; j ¼ 1; 2; . . . ; 12;

I ¼ 1; j ¼ 1; 2; . . . ; 12;

(5:25)

where

Qs
p;jðI� 1Þ ¼ inflow at Polgolla in period j obtained by simu-

lating CTK subsystem according to its optimum

operation policies during iteration (I� 1),

Qu,j(I) ¼ inflow entering UBM subsystem across interface

point at Polgolla in period j of iteration I (deter-

mined according to Polgolla diversion policy),

D(.) ¼ representation of diversion policy at Polgolla, and

Qv,j(I)¼ inflow entering VRR subsystem across interface point

at Polgolla in period j of iteration I (determined

according to Polgolla diversion policy).

For the upstream subsystem, the demand constraint that

corresponds to Eq. (5.7) of the sequential optimization can

be expressed as

Qp;jðIÞ � SHs
u;jðIÞ þ SHs

v;jðIÞ for all I; j ¼ 1; 2; . . . ; 12; (5:26)

where SHs
u;jðIÞ and SHs

v;jðIÞ are the water shortages at period j

obtained by simulating the operation of the UBM and VRR

subsystems according to their optimal operation policies dur-

ing the Ith iteration.

The same formulation except for the demand constraints is

applicable when considering the objective function of mini-

mization of the squared deviation of water supply from

demand. The results of the iterative optimization obtained

using several different diversion policies for the Polgolla

diversion are presented in Table 5.14.

It is observed that the alternative solutions 53, 54, and 56 of

the iterative optimization are not practically acceptable as they

are associated with very high water shortages at Bowatenna.

The results of a compromise programming analysis performed

on the results of iterative and sequential approaches of

Tables 5.12, 5.13, and 5.14 are presented in Table 5.15.

Table 5.13. Results of the sequential optimization model (objective function: minimize squared deviation of water supply

from the demand)

Alternative

number

Polgolla

minimum

release (106m3)

Bowatenna

minimum

release (106m3)

Average annual

energy generation

(GWh)

Total annual

firm energy

(GWh)

Average annual

water shortage at

Minipe (106m3)

Average annual

water shortage at

Bowatenna (106m3)

Polgolla diversion policy: divert up to maximum of 75� 106m3

25 0 0 2778.7 633.8 122.8 4.3

26 10 2778.6 644.0 122.8 8.8

27 21 2783.1 660.6 122.8 29.3

28 11.2 0 2775.0 544.4 108.0 11.7

29 10 2776.0 554.3 108.0 19.2

30 21 2780.4 570.4 108.0 41.6

31 20 0 2783.3 558.9 103.3 19.3

32 10 2785.3 569.2 103.3 30.5

33 21 2790.9 584.0 103.3 57.8

34 30 0 2784.2 505.1 91.8 32.4

35 10 2786.7 521.0 91.8 47.0

36 20 2792.2 538.1 91.8 76.3

Polgolla diversion policy: divert up to maximum of 89� 106m3

37 0 0 2732.1 533.7 135.6 6.1

38 10 2733.2 544.4 135.6 10.3

39 21 2733.4 554.3 135.6 16.9

40 11.2 0 2737.7 523.9 128.6 12.0

41 10 2739.3 536.1 128.6 20.1

42 21 2740.3 546.6 128.6 30.6

43 20 0 2736.5 550.4 117.1 24.0

44 10 2738.5 561.3 117.1 34.3

45 21 2740.4 573.0 117.1 46.9

46 30 0 2735.1 538.6 106.6 35.6

47 10 2738.0 551.6 106.6 50.3

48 20 2740.7 563.7 106.6 69.0

5 .2 DECOMPOSITION METHOD 93



The results of Table 5.15 also indicate the suitability of an

objective function which maximizes the expected annual

energy generation to formulate operation policies for this

particular system. The results obtained by using a diversion

policy which diverts water at Polgolla according to the aver-

age annual shortages of the downstream subsystems are found

to be inferior to those corresponding to the diversion policy of

Figure 5.14.

If the weight sets 4, 5, and 7 are excluded from consideration

(since they do not properly represent the practical importance

of the performance criteria of the Mahaweli system), alter-

natives 2 and 8 can be selected as the most satisfactory ones.

Although alternative 8 slightly outperforms 2 in terms of

average annual energy generation (an increase of 0.2%) and

in terms of average annual water shortage at Minipe

(a decrease of 13.4%), the high water shortage at Bowatenna

(an increase of 620%) and the low firm energy generation

(a decrease of 9.3%) make it inferior to alternative 2.

5.3 COMPOSITE RESERVOIR MODEL

FORMULATION

Formulation of a hypothetical composite reservoir instead of

the real multireservoir configuration is a convenient method to

circumvent the ‘‘curse of dimensionality’’ of DP based opera-

tional optimization models. The composite representation of a

serially linked two-reservoir system used by Kularathna (1992)

is displayed in Figure 5.8. The fundamental idea behind the

formulation of a hypothetical composite reservoir instead of

the consideration of A and B reservoirs as individual units is to

reduce the number of state variables and thereby reduce the

computer memory requirement. Thus a larger part of the sys-

tem can be handled in a single SDP model.

The composite reservoir concept can be presented by the

following simplifications:

Qj
c ¼ Qj

a þ � � Qj
b; j ¼ 1; 2; . . . ;N; (5:27)

Sc ¼ Sa þ Sb; j ¼ 1; 2; . . . ;N; (5:28)

where

Qj
c ¼ inflow to composite reservoir in stage j (106m3),

Qj
a, Q

j
b ¼ inflows to reservoirs A and B in stage j (106m3),

Sc ¼ active storage capacity of composite reservoirs (106m3),

Sa, Sb ¼ active storage capacities of reservoirs A and B

respectively (106m3),

N ¼ number of stages, and

� ¼ fraction of reservoir B’s inflow assumed to be regulated

by composite reservoir.

The justification of the above formulation is presented as

follows. Since inflow to A is regulated by both reservoirs, the

inflows toA are assumed to be completely passing through the

Figure 5.7 General structure of the iterative optimization model
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Table 5.14. Results of the iterative optimization model

Alternative

number

Polgolla

minimum

release (106m3)

Bowatenna

minimum

release (106m3)

Average annual

energy generation

(GWh)

Total annual

firm energy

(GWh)

Average annual

water shortage at

Minipe (106m3)

Average annual

water shortage at

Bowatenna (106m3)

Objective function: maximize energy generation

Polgolla diversion according to Figure 5.14

Maximum diversion¼ 75� 106m3/month

Constraints: water demands/downstream shortages

49 0.0 10.0 2858.7 589.9 103.0 2.5

50 11.2 10.0 2851.8 650.5 103.3 5.3

51 20.0 0.0 2844.3 618.2 98.3 8.0

52 20.0 10.0 2845.0 628.7 96.6 14.9

Polgolla diversion according to average annual shortages

Maximum diversion¼ 75� 106m3/month

Constraints: water demands/downstream shortages

53 0.0 10.0 3003.6 806.2 51.5 175.2

54 11.2 10.0 2951.7 696.5 60.9 99.7

55 20.0 0.0 2924.4 601.9 56.5 45.9

56 20.0 10.0 2938.1 622.0 65.0 91.5

Objective function: minimize square deviation of (water supply – demand)

Polgolla diversion according to Figure 5.14

Maximum diversion¼ 75� 106m3/month

57 0.0 10.0 2780.3 720.8 125.6 3.0

58 11.2 10.0 2778.2 569.6 118.8 11.3

59 20.0 0.0 2785.0 558.4 110.3 12.0

60 20.0 10.0 2784.5 579.4 110.3 20.4

Polgolla diversion according to average annual shortages

Maximum diversion¼ 75� 106m3/month

61 0.0 10.0 2796.4 725.4 109.6 33.5

62 11.2 10.0 2790.8 670.9 110.5 32.9

63 20.0 0.0 2784.9 522.9 107.4 19.7

64 20.0 10.0 2787.3 601.2 105.7 34.3

Table 5.15. Results of the compromise programming analysis performed on the results

of iterative and sequential optimization approaches

Set

Weights

Alternatives ranked in

positions 1, 2, and 3a
Annual

energy

Firm

energy

Water shortage

at Minipe

Water shortage

at Bowatenna

1 0.25 0.25 0.25 0.25 2, 3, 1

2 0.20 0.30 0.25 0.25 2, 3, 50

3 0.15 0.25 0.30 0.30 2, 52, 1

4 0.10 0.40 0.25 0.25 3, 50, 58

5 0.00 0.50 0.25 0.25 58, 3, 59

6 0.00 0.30 0.35 0.35 2, 52, 1

7 0.00 0.70 0.15 0.15 58, 54, 59

8 0.10 0.20 0.35 0.35 8, 7, 5

aAlternatives in this table are presented in Tables 5.12, 5.13 and 5.14
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composite reservoir as well. Incremental inflows to B are

regulated only by the reservoir B. Therefore, in the composite

formulation only a fraction of incremental inflows to B will be

considered to pass through the composite reservoir. The frac-

tion � is justified due to the reason that out of the total storage

(SaþSb) of the composite reservoir the inflow component of

B is regulated only by a partial storage volume equal to the

storage of reservoir B.

According to the above formulation, the total inflow to the

composite reservoir will be Qj
a þ � �Qj

b. However, the real

total inflow volume of A and B reservoirs is Qj
aþQj

b. The

leftover volume of water is therefore considered to be added to

the downstream of the composite reservoir through a hypo-

thetical hydropower plant, which has a generating head pro-

portional to the head of the composite reservoir during the

particular time period. This represents the fact that all the

releases of reservoir B are passed through the power plant,

subject to the limitations of the turbine capacities.

The AþB composite reservoir has to be formulated in such

a way that it represents the performance of the real multireser-

voir subsystem fairly accurately. To achieve this similarity

of the output, the performance of the assumed composite

reservoir formulation is calibrated against that of the real

configuration. The calibration is performed by formulating

two optimization models. The first model considers the

real multireservoir configuration of the reservoir system,

while the second model uses the composite configuration.

Optimal operation patterns obtained by the multireservoir for-

mulation are compared with that obtained by the composite

reservoir optimization model formulation. A trial-and-error

procedure is used to determine the parameters of the com-

posite reservoir so as to obtain a performance similar to that

of the multireservoir model. The model parameters include

the inflow factor (�), the head factor (�) (generating head of

hypothetical power plant¼��head of composite reservoir)

and the elevation–storage-area relationships of the composite

reservoir. In the trial-and-error estimation of the parame-

ters, the optimization of the composite reservoir operation is

repeated by changing its parameters until the results of the

composite optimization closely follow that of the multireser-

voir optimization. Comparison of the operation patterns is

based on the monthly and annual energy/release plots of the

two cases.

5.3.1 Analysis of the Mahaweli system based

on three subsystems

TheMahaweli water resources system presented in Section 2.2.1

is used in this section. The operation policy analysis of the

system initially requires an estimation of systemwater demands.

These demands are to be estimated for an adequate time period

upon which the operation policy analysis is to be performed.

Historical monthly hydrological data are available for a period

of 37 years (1949–85). Monthly time steps are considered

throughout the analysis.

There are five major points in the system where water

demands exist for the purpose of supplying the system irriga-

tion areas. As shown in Figure 2.11, these diversion structures

Figure 5.8 Composite representation of a serially linked two-reservoir system
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are located at Bowatenna, Elahera, Angamedilla,Minipe, and

Kandakadu. Diversion water demands at these locations can

be determined based on the irrigation water demands of the

individual irrigation areas.

To mitigate computational burden, the Mahaweli system is

simplified into three interconnected subsystems:

(a) Caledonia–Talawakelle–Kotmale (CTK) reservoir

subsystem,

(b) Ukuwela–Bowatenna–Moragahakanda (UBM) subsystem,

(c) Victoria–Randenigala–Rantembe (VRR) subsystem.

The particular reason for identifying these three subsystems

is that they reduce the number of interface points to a mini-

mum of only one while forming computationally manageable

subsystems. The Polgolla diversion structure acts as the inter-

face point of these three subsystems. Hence the determination

of the optimum diversion strategy for the Polgolla diversion

structure is of utmost importance. It is also an important

operational decision to be made in the actual system opera-

tion as well.

In this study, the operation of the upper Uma Oya Reservoir

(Figure 2.11) was optimized independently of the other system

components. The optimum release pattern obtained by simulat-

ing the operation of this reservoir was considered throughout

the study as part of the incremental inflows to the Rantembe

Reservoir.

5.3.2 Three-composite-reservoir IDP model

The effects of all three subsystems have to be considered jointly

to determine the optimum diversion policy at Polgolla. Since

consideration of the real multireservoir configuration is imprac-

tical due to the dimensionality of the problem, a composite

representation of each subsystem has been used to circumvent

the computational difficulties of the analysis. The approach

converts the real multireservoir configuration into a three-

reservoir system consisting of only three composite reservoirs

interlinked at a common point. The common point in the three-

composite-reservoir corresponds to the Polgolla Barrage.

Initially the three individual composite reservoirs have to

be formulated and calibrated. Calibrations are based on the

deterministic incremental dynamic programming (IDP) tech-

nique using 37 years of available monthly data. The parame-

ters of each of the composite reservoirs are adjusted by a

trial-and-error procedure until their optimal operation pat-

terns yield similar results to those of the corresponding multi-

reservoir optimizations. Two different objective functions:

maximizing energy generation, and minimizing the squared

deviation from the irrigation water demand, are used in

separate calibration runs. The calibration results of the three

composite reservoirs corresponding to squared deviation

objective function are displayed in Figures 5.9–5.11.

Instead of optimizing the real multireservoir system, the

resulting three-composite-reservoir configuration displayed

in Figure 5.12 is considered for a deterministic analysis of

the whole system. The aim of this analysis is to determine an

optimal practically acceptable diversion policy for the Polgolla

Barrage on distributing the inflow at Polgolla towards the two

downstream subsystems. It is based on an IDP based optimi-

zation model for the three-composite-reservoir configuration

having an objective function which minimizes the sum of the

squared deviations of the water supplies from the diversion

Figure 5.9 Calibration of CaledoniaþKotmale (CþK) composite reservoir (objective function: minimization of the squared deviation of

water supply from the irrigation demand). (a) Comparison of annual energy. (b) Comparison of annual flows at Polgolla.
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demands. The time span considered is the 37-year historical

period from 1949 to 1985 on monthly time steps. The stages of

the model are the time periods while the decisions comprise the

monthly releases of the (composite) reservoirs, the diversion

volume at the common interface which represents the Polgolla

Barrage, and diversion volumes at Bowatenna, Elahera, and

Minipe.

Three-composite-reservoir model formulation:

Objective function:

OF ¼Minimize
X37
i¼1

X12
j¼1

TSDi;j

( )
; (5:29)

where

TSDi,j ¼ Sum of squared deviations of irrigation water sup-

ply from demand at Bowatenna, Elahera, and

Minipe respectively in month j of year i.

TSDi;j ¼ ðQBi;j �DBi;jÞ2 þ ðQEi;j �DEi;jÞ2 þ ðQMi;j �DMi;jÞ2;

i ¼ 1; 2; . . . ; 37; j ¼ 1; 2; . . . ; 12;

QBi,j, QEi,j, and QMi,j represent the volumes of water diverted

at the Bowatenna Reservoir, Elahera diversion, and Minipe

diversion respectively in month j of year i (106m3), and DBi,j,

DEi,j, and DMi,j represent the diversion water demands at the

Figure 5.10 Calibration of VictoriaþRandenigala (VþR) composite reservoir (objective function: minimization of the squared deviation of

water supply from the irrigation demand). (a) Comparison of annual energy. (b) Comparison of annual flows at Minipe.

Figure 5.11 Calibration of BowatennaþMoragahakanda (BþM) composite reservoir (objective function: minimization of the squared

deviation of water supply from the irrigation demand). (a) Comparison of annual energy. (b) Comparison of annual flows at Elahera.
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Bowatenna Reservoir, Elahera diversion, and Minipe diver-

sion respectively in month j of year i (106m3).

The continuity equations provide the basis for state trans-

formation equations. Using the superscripts N¼ 1, 2, 3

respectively to represent the composite reservoirs of the

three subsystems CTK, UBM, and VRR, the state transfor-

mation equations are presented in the following.

SN
i;jþ1 ¼ SN

i;j þ INi;j � EN
i;j � RN

i;j �ON
i;j;

N ¼ 1; 3; i ¼ 1; 2; . . . ; 37; j ¼ 1; 2; . . . ; 12;
(5:30)

S2
i;jþ1 ¼ S2

i;j þ I2i;j � E2
i;j � R2

i;j �O2
i;j �QBi;j;

N ¼ 2; i ¼ 1; 2; . . . ; 37; j ¼ 1; 2; . . . ; 12;
(5:31)

SN
i;jþ1 ¼ SN

iþ1;1; N ¼ 1; 2; 3; i ¼ 1; 2; . . . ; 36; j ¼ 12;

(5:32)

ON
i;j ¼ RN

i;j � RMAXN
j ; RN

i;j � RMAXN
j ;

N ¼ 1; 2; 3; i ¼ 1; 2; . . . ; 37; j ¼ 1; 2; . . . ; 12;
(5:33)

RN
i;j ¼ RMAXN

j ; RN
i;j � RMAXN

j ; N ¼ 1; 2; 3;

i ¼ 1; 2; . . . ; 37; j ¼ 1; 2; . . . ; 12;
(5:34)

and

ON
i;j ¼ 0:0; RN

i;j � RMAXN
j ; SN

i;jþ1 � SMAXN
jþ1;

N ¼ 1; 2; 3; i ¼ 1; 2; . . . ; 37; j ¼ 1; 2; . . . ; 12;

(5:35)

Figure 5.12 Real (a) and composite (b) configurations of the macrosystem
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QVi;j ¼ R1
i;j þO1

i;j þ IH1
i;j þ IPi;j �QUi;j;

i ¼ 1; 2; . . . ; 37; j ¼ 1; 2; . . . ; 12;
(5:36)

I1i;j ¼ II1i;j; i ¼ 1; 2; . . . ; 37; j ¼ 1; 2; . . . ; 12; (5:37)

I2i;j ¼ QUi;j þ II2i;j; i ¼ 1; 2; . . . ; 37;

j ¼ 1; 2; . . . ; 12;
(5:38)

I3i;j ¼ QVi;j þ II3i;j; i ¼ 1; 2; . . . ; 37;

j ¼ 1; 2; . . . ; 12;
(5:39)

FEi;j ¼ R2
i;j þO2

i;j þ IH2
i;j þ IEi;j; i ¼ 1; 2; . . . ; 37;

j ¼ 1; 2; . . . ; 12;
(5:40)

FMi;j ¼ R3
i;j þO3

i;j þ IH3
i;j þ IMi;j; i ¼ 1; 2; . . . ; 37;

j ¼ 1; 2; . . . ; 12;
(5:41)

QBi;j � DBi;j; i ¼ 1; 2; . . . ; 37; j ¼ 1; 2; . . . ; 12; (5:42)

QEi;j ¼MinfFEi;j;DEi;jg; i ¼ 1; 2; . . . ; 37;

j ¼ 1; 2; . . . ; 12;
(5:43)

QMi;j ¼MinfFMi;j;DMi;jg; i ¼ 1; 2; . . . ; 37;

j ¼ 1; 2; . . . ; 12;
(5:44)

where

SN
i,j ¼ storage of reservoir N at beginning of month j of year i

(106m3),

INi,j ¼ inflow to reservoir N during month j of year i (106m3),

EN
i,j ¼ losses (mainly evaporation) from reservoir N during

month j of year i (106m3),

RN
i,j ¼ release from reservoir N during month j of year

i (106m3),

ON
i,j ¼ spill from reservoir N during month j of year i (106m3),

RMAXj
N ¼maximum release from reservoir N during month

j (106m3),

SMAXj
N ¼ maximum storage of reservoir N at beginning of

month j (106m3),

IPi,j ¼ incremental inflow to Polgolla Barrage during month j

of year i (106m3),

QUi,j ¼ volume of water diverted at Polgolla into UBM sub-

system during month j of year i (106m3),

QVi,j ¼ volume of water released at Polgolla into VRR sub-

system during month j of year i (106m3),

IINi,j ¼ incremental inflow to composite reservoir N during

month j of year i (106m3),

IHN
i,j ¼ inflow to hypothetical power plant of reservoir N

during month j of year i (106m3),

IEi,j¼ incremental inflows to Elahera diversion during month

j of year i (106m3),

FEi,j ¼ total inflow to Elahera diversion during month j of

year i (106m3),

IMi,j¼ incremental inflows toMinipe diversion during month

j of year i (106m3), and

FMi,j ¼ total inflow to Minipe diversion during month j of

year i (106m3).

Apart from the constraints of storage and release limits, the

following constraints are also imposed:

QUi;j � CAP; (5:45)

TEPi;j � FIRM; (5:46)

where

CAP ¼ maximum monthly diversion capacity of diversion

tunnel at Polgolla (106m3),

FIRM ¼ prespecified monthly firm energy value (GWh), and

TEPi,j¼ total energy production of system in month j of year i

(GWh).

The above optimization model has a separable objective

function consisting of 444 (12� 37) components. Thus it can

be solved using a DP formulation. The monthly time steps (j)

are the stages, formulating a DP problem of 444 stages. The

state variables are the storage volumes of the three composite

reservoirs ðSN
i;j;N ¼ 1; 2; 3Þ. The decision variables of stage j are

the volumes of water diverted at Polgolla (QUj), Bowatenna

(QBj), Elahera (QEj), and Minipe (QMj) and the release deci-

sions of each composite reservoir ðRN
i;j;N ¼ 1; 2; 3Þ. Due to the

dimensionality of the problem, IDP is used to solve the model.

The diversion decision at Polgolla is incorporated into the

model by treating it similarly to a state variable. This is in

addition to the state of the system represented by the storage

volumes of the three composite reservoirs. With each combi-

nation of storage states of the three reservoirs, three values for

the diversion decision at Polgolla are considered. Thus, the

imaginary corridor of this IDP model is formed by 81 (34)

points that represent the states of the system to be accounted

for at each stage.

The Bellman recursive equation for the IDP formulation of

the model can be expressed as

F �jþ1ðSjþ1Þ ¼Min
Dj

TSDjðSj;Sjþ1Þ þ F �j ðSjÞ
n o

; (5:47)

Sj ¼ S1
j ;S

2
j ;S

3
j

n o
;

Dj ¼ QUj;QBj;QEj;QMj;R
1
j ;R

2
j ;R

3
j

n o
;

j ¼ 1; 2; . . . ; 444;

(5:48)
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where

Sj ¼ state of system at stage j,

TSDj(Sj,Sjþ 1) ¼ squared deviation of irrigation water sup-

ply from demands during stage j,

Dj ¼ decisions associated with state transforma-

tion from Sj to Sjþ 1, and

F�jþ1ðSjþ1Þ ¼ minimum total of objective function value

from stage 1 to stage jþ 1, when state at

stage jþ 1 is Sjþ 1.

Due to the large number of discrete state transforma-

tions that have to be considered at each stage, it is not possible

to consider the entire 37-year period in a single optimization

run. Instead, the 37-year period is divided into eleven 3-year

periods and one 4-year period. It is assumed that the com-

posite reservoirs are half-full at the beginning and at the

end of each of these 12 periods. The model is run for five

different values of maximum diversion capacities at Polgolla.

Diversion capacities of 40%, 50%, 60%, 80%, and 100%

of the capacity of the diversion tunnel are considered at this

step. The aggregated results of the analysis are presented in

Table 5.16.

An attempt is made to fit a regression formula between

diversion and inflow at Polgolla based on diversions obtained

from the model for several inflow series at Polgolla. However,

fitting a regression formula to predict diversion at Polgolla

using inflow to Polgolla is not possible based on the results

obtained. Figure 5.13 presents monthly diversions at Polgolla

obtained from the results of the three-composite-reservoir

IDP model. These results correspond to the model run with

a maximum diversion capacity of 75� 106m3/month.

The wide variation of the diversion volume despite the large

number of cases where the diversion volume reaches the upper

limit refers to a poor correlation between the two variables:

inflows and diversions at Polgolla. Thus, to determine the best

diversion policy at the Polgolla Barrage, a diversion policy

which has a close resemblance to the diversion pattern

obtained by the three-composite-reservoir model is employed.

Figure 5.14 displays the diversion policy considered for fur-

ther analysis.

Figure 5.14 indicates a minimum downstream release vol-

ume at Polgolla. The part of the available inflow that is in

excess of this minimum release is to be diverted to the Amban

Ganga basin. A maximum limit for this diversion is also

specified. Any excess over the maximum possible diversion

at Polgolla is to be spilled downstream into the VRR subsys-

tem. In this diversion policy, the best values for the minimum

release volume and the maximum limit on the diversion are

determined by performing a sensitivity analysis using the

three-composite-reservoir IDP model. In the sensitivity anal-

ysis, several different combinations of the two parameters are

used to prespecify several independent diversion policies.

With each of these diversion policies, the three-composite-

reservoir IDP model is run using the available historical

records. As the diversion volume is no longer a decision

variable, the number of states to be considered in each stage

of this model is 27 (33). Due to the reduced computational

load, this model could be run by dividing the 37-year time

series into three 9-year periods and one 10-year period. For

each of these four periods, it is assumed that the composite

reservoirs are half-full at the beginning and also at the end.

Table 5.17 presents results of the sensitivity analysis done

with 15 different combinations of minimum release and diver-

sion capacities at Polgolla. The best alternative combination is

selected based on a multicriterion decision-making technique,

compromise programming (CP). This CP analysis is done

giving different sets of weight factors for the performance

criteria, and maximum monthly diversion capacities of

75� 106m3 and 89� 106m3 at Polgolla resulted as the best.

Therefore, in further analysis of the system using stochastic

optimization models, maximum diversion capacities of only

75� 106m3 and 89� 106m3 are taken into account.

The results of the three-composite-reservoir IDP model

have narrowed the range of operating options that can be

used for diversion at Polgolla. With these rather narrow

Table 5.16. Results of the three-composite-reservoir IDP model

Diversion capacity at

Polgolla (106m3/month)

Average annual

energy generation

(GWh)

Annual firm

energy (GWh)

Average annual

water shortage at

Minipe (106m3)

Average annual

water shortage at

Bowatenna (106m3)

Average annual

water shortage at

Elahera (106m3)

60 2689.78 865.2 47.00 81.41 0.0

75 2663.84 926.4 45.22 66.75 0.0

89 2645.56 870.0 44.87 54.44 0.0

119 2627.05 876.0 44.61 51.11 0.0

149 2617.30 854.4 44.90 49.92 0.0
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Figure 5.13 Monthly diversions at Polgolla based on the three-composite-reservoir IDP model

Figure 5.14 Polgolla diversion policy prespecified for the sensitivity analysis. (a) Diversion, (b) downstream release.
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operation patterns prespecified, the system is further analyzed

in order to formulate operation policies of individual reser-

voirs. Two techniques, sequential optimization and iterative

optimization, are presented in Sections 5.2.7 and 5.2.8, respec-

tively. The principal idea of the sequential and iterative opti-

mization approaches is to analyze the subsystems of the whole

system separately, with the behavior at the interface point

(Polgolla diversion) prespecified. For this purpose it is neces-

sary to formulate SDP based optimization models for the

individual multiunit subsystems. The assessment of the SDP

model formulated for the VRR subsystem is presented in

Section 3.2.

5.4 IMPLICIT STOCHASTIC DYNAMIC

PROGRAMMING ANALYSIS

The dimensionality problems of using an explicit SDP approach

can be avoided to some extent by implicitly incorporating the

hydrological uncertainty. However, this may entail costs in

terms of computational time as well as of the effectiveness of

the resulting operation policies. This section derives an opera-

tion policy by the implicit stochastic approach and assesses its

performance using the Victoria–Randenigala–Rantembe reser-

voir subsystem of the Mahaweli water resources system as the

case study area. A schematic diagramof the reservoir subsystem

is displayed in Figure 5.15. In this analysis, the Rantembe

Reservoir is treated as a run-of-the-river power plant and the

operation policies are derived only for the Victoria and

Randenigala Reservoirs. The analysis consists of generating

several sets of streamflow data, followed by a deterministic

optimization of the reservoir operation for each generated

data set. The resulting optimum operation strategies are used

in the derivation of operation rules using least-squares regres-

sion analysis.

5.4.1 Generation of synthetic streamflow data

Monthly streamflows to Victoria, Randenigala, Rantembe,

and Minipe are generated using the ‘‘LAST’’ computer pack-

age developed by Lane and Frevert (1989) based on a 37-year-

long historical streamflow data set. The upstream flows into

the subsystem, namely, the flows across the Polgolla Barrage,

are obtained by simulating the upstream reservoir subsystem

according to its optimal operation policies. These flows are

considered as deterministic flows in the implicit analysis.

Being a biased hydrological data series estimated by a simu-

lation model, the demand time series at Minipe is also consid-

ered as deterministic. A statistical analysis of the available

historical data reveals that the incremental inflows at Victoria

Table 5.17. Sensitivity analysis results of the three-composite-reservoir IDP model

Alternative

number

Diversion

capacity at

Polgolla

(106m3/month)

Minimum

downstream

release at

Polgolla

(106m3/month)

Average annual

energy generated

(GWh)

Annual firm

energy (GWh)

Average annual

water shortage at

Minipe (106m3)

Average

annual water

shortage at

Bowatenna

(106m3)

Average annual

water shortage at

Elahera (106m3)

1 0.0 2649.6 896.4 46.5 51.4 0.0

2 60.0 11.2a 2648.0 913.2 41.1 57.8 0.0

3 20.0 2651.2 901.2 38.6 61.4 0.0

4 0.0 2620.6 768.0 57.7 26.4 0.0

5 75.0 11.2 2622.3 849.6 47.2 38.2 0.0

6 20.0 2624.9 873.6 44.5 41.6 0.0

7 0.0 2595.8 703.2 67.2 9.2 0.0

8 89.0 11.2 2602.9 734.4 57.7 18.8 0.0

9 20.0 2610.4 783.6 50.6 26.8 0.0

10 0.0 2561.5 580.8 86.3 0.7 0.0

11 119.0 11.2 2576.3 579.6 77.6 3.0 0.0

12 20.0 2588.5 614.4 64.6 8.5 0.0

13 0.0 2520.6 516.0 111.6 0.1 0.0

14 149.0 11.2 2551.4 513.6 94.6 0.3 0.0

15 20.0 2558.6 558.0 80.2 1.1 0.0

aThe minimum downstream release specified for the present operation of the Polgolla Barrage
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and Randenigala are highly correlated. The correlation

between flows at Rantembe and Minipe is also found to be

high. In the data generation process, therefore, while consid-

ering Victoria and Rantembe as key stations, Randenigala

and Minipe are analyzed as substations of Victoria and

Rantembe respectively. For the annual to seasonal disaggre-

gation, all four stations are considered simultaneously. The

total length of generated data sequences is 74 years (two series

each having a length of 37 years generated).

5.4.2 Optimization of system operation

Assuming each of the generated data sets and the original data

set as deterministic streamflow sequences, the system opera-

tion is optimized in a deterministic environment using the

incremental dynamic programming (IDP) technique. The

state transformation equations that are the continuity equa-

tions of the reservoirs are the same as in Section 3.2. The

constraints on minimum and maximum storage limits, mini-

mum and maximum release volumes, and firm energy values

as described in Section 3.2 also apply. The storage volumes of

the two reservoirs represent the state of the system at each

stage. Release volumes from the two reservoirs are the

decisions that are to be made at each stage of the optimization

process. The imaginary corridor that defines the limited state

space considered for this analysis consists of nine points

(Section 2.2.1).

Two different objective functions, namely maximization of

energy generation and minimization of squared deviation of

the water supply from the irrigation demand are considered for

the optimization. However, the downstream water demands

are not considered as constraints because the solution becomes

infeasible when this specific demand series is considered as

constraints. Instead, feasible firm energy constraints, which

are selected by trial-and-error, are imposed for both optimiza-

tions. These firm energy values are selected by gradually

increasing the firm energy constraints of each reservoir until

the solution becomes infeasible.

5.4.3 Regression analysis

Having formulated the deterministic optimum operation pat-

tern for each streamflow sequence, a least-squares multiple

regression analysis is performed (for the 12 months sepa-

rately) to formulate an operation rule for the system.

Thirty-five combinations of independent variables are con-

sidered in a preliminary regression analysis in order to deter-

mine the significant variables to formulate an operation

policy. These independent variables include initial reservoir

storages, inflows of reservoirs corresponding to the current

Figure 5.15 Schematic diagram of Victoria–Randenigala–Rantembe reservoir subsystem
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and previous months, and irrigation water demand as linear

terms. Their cross products and quadratic terms are also

considered. Reservoir releases are considered as the depend-

ent variables. Table 5.18 presents the independent variables

for which the regression analysis is performed. From the

results of the preliminary analysis, the combinations of inde-

pendent variables that are found to be insignificant are

removed and the analysis repeated with the remaining varia-

bles. The whole analysis is performed on the optimization

results obtained by considering the two objective functions

(maximum energy and minimum squared deviation) sepa-

rately. This results in the operation rules expressed by the

regression equations.

For Table 5.18:

Si,j ¼ storage of reservoir i at beginning ofmonth j (106m3),

Qi,j ¼ inflow to reservoir i during month j (106m3), and

DMj ¼ difference between irrigation demand at Minipe and

unregulated incremental inflows to Minipe during

month j (106m3).

The operation rules derived by using an objective function

of minimization of the squared deviation of the irrigation

water supply from the demand can be expressed as

R1;j ¼A1;j�S1;j þ A2;j�S2;j þ A3;j�DMj þ A4;j�ðS1;jÞ2

þ A5;j�ðS2;jÞ2 þ A6;j�S2;j�Q1;j þ A7;j�S2;j

�DMj þ A8;j; j ¼ 1; 2; . . . ; 12;

(5:49)

R2;j ¼B1;j�S2;j þ B2;j�ðS2;jÞ2 þ B3;j�DMj þ B4;j�Q1;j

þ B5;j�Q1;j�1 þ B6;j�Q2;j þ B7;j�ðQ2;jÞ2 þ B8;j

�ðDMjÞ2 þ B9;j; j ¼ 1; 2; . . . ; 12;

(5:50)

where

Ri,j ¼ release from reservoir i during month j (106m3) (i¼ 1

and 2 indicate Victoria and Randenigala Reservoirs

respectively),

Ai,j; i¼ 1, 2, . . . , 8; j¼ 1, 2, . . . , 12 and Bi,j; i¼ 1, 2, . . . , 9;

j¼ 1, 2, . . . , 12 are regression coefficients.

With the use of an objective function of maximization of

energy generation, the following regression equations have

been obtained:

R1;j ¼C1;j�S1;j þ C2;j�Q1;j þ C3;j�Q1;j�1 þ C4;j�DMj

þ C5;j�ðS1;jÞ2 þ C6;j�S1;j�Q1;j þ C7;j�S1;j

�Q1;j�1 þ C8;j�Q1;j�DMj þ C9;j; j ¼ 1; 2; . . . ; 12;

(5:51)

R2;j ¼D1;j�S1;j þD2;j�Q1;j þD3;j�Q2;j þD4;j�DMj

þD5;j�ðS1;jÞ2 þ D6;j�ðQ1;jÞ2 þD7;j�S1;j�Q1;j

þD8;j�S1;j�Q2;j þD9;j�Q1;j�DMj

þ D10;j; j ¼ 1; 2; . . . ; 12;

(5:52)

Ci,j; i¼ 1, 2, . . . , 9; j¼ 1, 2, . . . , 12 and Di,j; i¼ 1, 2, . . . , 10;

j¼ 1, 2, . . . , 12 are regression coefficients.

The regression coefficients of Eq. (5.49) to Eq. (5.52) are

determined with the corresponding ‘‘coefficients of determi-

nation.’’ According to the operation rules of Eq. (5.49) to

Eq. (5.52), the system operation was simulated. The simulated

system performance obtained by these implicit SDP based

operation rules is compared with the simulation performed

according to the explicit SDP based operation policies and

also with the deterministic optimum operation and the histor-

ical operation in Table 5.19.

As the table shows, the IDP models indicate the upper

bounds on the objective achievements for a particular histor-

ical data set. In the case of the squared deviation objective,

objective achievement is indirectly indicated by firm energy

generation. An explicit indication in terms of annual energy

generation is made in the case of the energy objective.

Table 5.19 shows that the explicit SDP based operation policy

formulated by using the energy objective (alternative (5)) out-

performs the implicit SDP based operations (1) and (4).

Although (1) is preferable in terms of the probability of fail-

ure, (5) outranks (1) when considering the other three per-

formance criteria, specially firm energy generation. It can be

seen that the historical operation obtained by simulating the

system using the present rule curves indicates lower annual

energy and firm energy values, although the historical oper-

ation is slightly better in terms of the water shortage and the

probability of failure months.

It can be noted that the model inaccuracies induced by the

implicit stochastic approach are quite significant. These inac-

curacies accrue in the first instance during the data generation

process. Subsequent regression analysis increases the level of

inaccuracy. These inaccuracies could be further enhanced in

the case of a more complex reservoir system.

Table 5.18. Combinations of independent variables selected for

regression analysis of the implicit stochastic approach

Cross products/quadratic terms Linear terms

S1,j S2,j Q1,j Q1,j� 1 Q2,j Q2,j� 1 DMj

S1,j x x x x x x x x

S2,j x x x x x x x

Q1,j x x x x x x

Q1,j� 1 x x x x x

Q2,j x x x x

Q2,j� 1 x x x

DMj x x
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5.5 DISAGGREGATION/AGGREGATION

TECHNIQUES BASED ON DYNAMIC

PROGRAMMING

5.5.1 Disaggregation of composite operation policies

Section 5.3 demonstrates the usefulness of a hypothetical

composite reservoir formulation to mitigate dimensionality

problems in analyzing multireservoir systems. Although the

composite reservoir approach makes the analysis computa-

tionally manageable, it implies an operation policy for the

hypothetical composite reservoir(s) only. Such an operation

policy would be of very little use unless it is disaggregated to

operation policies of the real individual reservoirs.

Three different approaches for the disaggregation of com-

posite operation policies are proposed. Their applicability

is tested by applying the techniques for the case of

Victoria–Randenigala–Rantembe reservoir subsystem of the

Mahaweli water resources system. In order to incorporate the

stochastic nature of the inflows explicitly, the composite

reservoir formulated in place of the Victoria and Randenigala

Reservoirs is optimized using an explicit SDPmodel. The small

downstream reservoir at Rantembe is considered as a run-of-

the-river power plant. Two different objective functions are

considered. Maximization of expected energy generation sub-

ject to the downstream water demand constraints is one of

them. The second formulation is to minimize the expected

sum of squared deviations of water supply from the irrigation

demand at Minipe. The VþR composite reservoir, which has

been calibrated in Section 5.3, is used here in a stochastic

context. Simulated performances of the VþR composite res-

ervoir are compared with the performances of the realistic

V&R two-reservoir system in Table 5.20.

The three disaggregation approaches proposed for disag-

gregating composite policies are:

(a) statistical disaggregation of composite policies,

(b) disaggregation by an optimization/simulation based

approach,

(c) use of a deterministic optimization model in each time

interval of the operation.

STATISTICAL DISAGGREGATION OF

COMPOSITE POLICIES

The statistical disaggregation model of Lane and Frevert

(1989) generates seasonal flows by disaggregating annual

flows to seasonal values. In this approach, key stations (sta-

tions of major importance) are used to generate key and sub-

station flows, preserving the intercorrelations between key and

substations. This model preserves serial- and cross-correlations

between variables on an annual as well as on a seasonal basis.

The LAST statistical disaggregation package originally

formulated for hydrological data generation is applied for

reservoir operation in this work. It is used to determine the

optimum operation of individual reservoirs based on the

operation of a hypothetical composite reservoir. The compo-

site reservoir can be considered as a key station, while the

individual reservoirs correspond to the substations.

Simulating the operation of the composite reservoir using

historical streamflow data according to the SDP based policy,

the optimum operation pattern for the composite reservoir

is obtained (a sequence of monthly storage volumes during

the period for which the historical data are available). This

optimum operation pattern, together with the composite

inflows, is treated as the key station data in the disaggregation

approach.

Table 5.19. Summary comparison of performance of implicit SDP based operation with that of explicit SDP based operation,

deterministic optimum, and historical operation

Alternative

Average annual

energy (GWh)

Annual firm

energy (GWh)

Average annual shortage

at Minipe (106m3)

Probability of

failure months (%)

Objective function: minimize squared deviation

1 Implicit SDP 1232.9 56.4 94.2 5.18

2 Explicit SDP 1203.0 144.7 139.3 9.01

3 IDP 1257.3 248.4 102.2 16.20

Objective function: maximize energy generation

4 Implicit SDP 1088.6 52.7 198.9 12.60

5 Explicit SDP 1283.8 158.4 87.2 5.40

6 IDP 1427.5 164.4 548.0 40.30

7 Historical operation 1258.0 102.8 82.6 5.18
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The actual operation patterns of the individual reservoirs that

are considered as substations are required to implement the

disaggregation approach. As an initial estimate, the historical

operation patterns of the two reservoirs are used for this pur-

pose. The pattern is obtained by simulating the reservoir sub-

system using historical data according to the present rule curves.

Monthly operational data (storage and inflow volumes) of these

key stations and substations are then generated using the LAST

disaggregation model. The statistics of the original and gener-

ated data for the two objective functions considered in the

composite formulation are estimated. These generated data are

used in amultiple linear regression analysis in order to formulate

operation policies for the two individual reservoirs. It is found

that the use of only linear terms as independent variables results

in satisfactory values for R2 (coefficient of determination).

The operation rules derived by the regression analysis can

be presented as follows:

S1;jþ1 ¼A1;j�Sc;jþ1 þ A2;j�Q1;j þ A3;j�S1;j þ A4;j�Q2;j

þ A5;j�S2;j þ A6;j; j ¼ 1; 2; . . . ; 12; (5:53)

S2;jþ1 ¼B1;j�Sc;jþ1 þ B2;j�Q1;j þ B3;j�S1;j þ B4;j�Q2;j

þ B5;j�S2;j þ B6;j; j ¼ 1; 2; . . . ; 12;

(5:54)

where

Si,j ¼ storage volume of reservoir i at beginning of month j

(106m3) (c refers to composite reservoir)

Qi,j ¼ inflow to reservoir i during month j (106m3), and Ai,j

and Bi,j ; i¼ 1, 2, . . . , 6; j¼ 1, 2, . . . , 12, are regression

coefficients.

Regression coefficients of the above equations correspond-

ing to the two objective functions can be obtained.

The performance of this methodology has been tested by

simulating the performance of the V&R system according to

the operation rules indicated by the above equations. The

results of the analysis are presented in Table 5.21.

DISAGGREGATION OF COMPOSITE POLICIES

BY OPTIMIZATION/SIMULATION BASED

APPROACH

The aim of this approach is to determine the operation poli-

cies of individual reservoirs in such a way that they will

reproduce, upon simulation, the simulated optimal operation

pattern of a hypothetical composite reservoir.

The model formulation and the selection of simulated com-

posite outputs to be reproduced in the real operation depend

on the particular system configuration. In this study, how-

ever, the basis of the disaggregation approach is the repro-

duction of monthly flows at Minipe that were obtained using

the composite formulation.

However, a two-reservoir system can be easily analyzed

using the two-reservoir SDP models developed for this study

(Section 3.2). In addition, a two-reservoir system with down-

stream demands can be analyzed without difficulty using even

an iterative model formulation. In such a situation, determi-

nation of composite-reservoir-based flows at Minipe would

not be necessary as the actual downstream demands atMinipe

can be used directly. Nevertheless, the two-reservoir V&R

system is selected in this analysis for the purpose of demon-

strating the applicability of the proposed approach.

The reproduction of VþR composite flows in the realistic

V&R case is attempted by analyzing the V&R two-reservoir

configuration by an iterative optimization model.

Minimization of the expected sum of the squared deviation

of water flow at Minipe from that obtained by the composite

formulation is the objective function. The iterative optimiza-

tion is initiated with the optimization of the downstream

Randenigala Reservoir followed by a simulation run of the

same reservoir according to the optimum policy formulated in

the optimization process. Simulated monthly water shortages

at Minipe are then considered as water demands from the

upstream reservoir Victoria, which is optimized next using

a squared deviation objective function. Simulation of the

upstream reservoir according to the optimum policy

Table 5.20. Comparison of the simulated performance of VictoriaþRandenigala (VþR) composite reservoir with that of the

real Victoria and Randenigala (V&R) two-reservoir system

Objective function/constraints Configuration

Average annual

energy (GWh)

Annual firm

energy (GWh)

Average annual shortage

at Minipe (106m3)

Probability of

failurea months (%)

Maximize energy; demands at

Minipe; firm energy constraints

VþR composite 1280.9 75.0 106.3 5.6

V &R two-reservoir 1263.6 161.9 104.1 5.4

Minimize squared deviation of

supply � demand at Minipe;

firm energy constraints

VþR composite 1271.9 62.5 107.3 5.6

V &R two-reservoir 1203.0 144.7 139.3 9.0

aFailure to satisfy the irrigation water demands
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formulated in the optimization results in a flow series into the

downstream Randenigala Reservoir. With this new inflow

series, the process is repeated until convergence to a constant

system return is obtained. Corresponding operation policies

of the individual reservoirs with which the convergence is

obtained are considered as disaggregated operation policies

for individual reservoirs.

The system operation according to the operation policies

derived using this approach is simulated. A summary of the

simulation results is presented in Table 5.21.

USE OF SINGLE-TIME-STEP OPTIMIZATION

MODEL TO DISAGGREGATE COMPOSITE

POLICY

This approach optimizes the operation strategy of the system

for each time step, subject to the broad operation policy

constraint set by the composite configuration. As in the pre-

vious stochastic models, it is assumed that a perfect stream-

flow forecast is available. The applicability of this approach is

tested by coupling an elementary single-time-step optimiza-

tion model to a simulation model that uses the composite

policy as the basis for simulation.

The deterministic optimization model formulation is pre-

sented in the following. Optimization for each of the fixed

monthly time intervals (j) is attempted by using two different

objective functions. The elementary optimization procedure

used here is to evaluate all feasible discrete combinations of

decisions for each month separately. For each month of the

total simulation period of 37 years:

ð1Þ Max Zj ¼
X2
i¼1
ðTEPi;jÞ; j ¼ 1; 2; . . . ; 12; (5:55)

ð2Þ Min Zj ¼
Smax
1;jþ1 � S1;jþ1

Smax
l;jþ1 � Smin

1;jþ1

 !2
2
4

þ
Smax
2;jþ1 � S2;jþ1

Smax
2;jþ1 � Smin

2;jþ1

 !2#1=2
; j ¼ 1; 2; . . . ; 12;

(5:56)

where

TEPi,j ¼ energy generation of reservoir i during month j

(GWh),

Si,jþ 1 ¼ storage volume of reservoir i at beginning of month

jþ 1 (106m3),

Si,jþ 1
max ¼maximum storage capacity of reservoir i at beginning

of month jþ 1 (106m3), and

Si,jþ 1
min ¼ minimum storage capacity of reservoir i at beginning

of month jþ 1 (106m3);

subject to:

Sc;jþ1 � ðS1;jþ1 þ S2;jþ1Þ
�� �� � �; j ¼ 1; 2; . . . ; 12; (5:57)

TEPi;j � FIRMi;j; j ¼ 1; 2; . . . ; 12; i ¼ 1; 2; (5:58)

where

� ¼ allowable deviation from prespecified composite policy

(106m3),

Sc,jþ 1 ¼ storage volume of composite reservoir at beginning

of month jþ 1 (106m3) (specified by the composite

policy),

Table 5.21. Comparison of the results of the composite-policy-disaggregation approach

Disaggregation

approach

Objective

function

Average annual

energy (GWh)

Annual firm

energy (GWh)

Average annual

shortage at

Minipe (106m3)

Probability of

failurea months (%)

Statistical Max. energy 1248.0 167.6 94.1 5.4

Min. sq. deviation 1252.3 157.9 91.5 5.2

Optimization and simulation Max. energy 1217.8 165.0 125.9 7.7

Min. sq. deviation 1217.7 171.7 124.5 7.7

Use of a single-time-step optimization Max. energy Deterministic objective function (1)

1185.8 125.8 205.5 13.9

Deterministic objective function (2)

1201.1 123.8 199.6 13.3

Min. sq. deviation Deterministic objective function (1)

1179.3 129.6 216.1 14.9

Deterministic objective function (2)

1195.3 135.8 198.5 13.3

aFailure to satisfy the irrigation demands
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TEPi,j ¼ energy generation at reservoir i during month j

(GWh), and

FIRMi,j¼ firm energy generation of reservoir i during month

j (GWh).

In addition, the constraints on reservoir storage and release

volumes as well as the continuity equations presented in

Eq. (3.10) to Eq. (3.17) also apply. Composite policies derived

by the two different model formulations described in

Section 5.5.1 are used separately in the analysis. Results of

the simulations performed using this technique are also pre-

sented in Table 5.21.

Table 5.21 shows that the statistical disaggregation approach

is preferable over the other two. But the statistical disaggrega-

tion approach of this study is based on the historical operation

pattern obtained by simulating the reservoir system according

to its present operation rule curves. These rule curves are estab-

lished after detailed simulations of the system. They may also

be indicating a ‘‘near optimal’’ operation pattern. This pre-

cludes the possibility of selecting the statistical disaggregation

approach as themost suitable one, since the superior results of it

may be due to the biased ‘‘historical operation.’’ The results of

the single-time-step optimization can be described as unaccept-

able. However, this approach may be improved if the approx-

imate operational behavior of the individual reservoirs is

considered as guidance in the disaggregation approach. The

possibility of performing deterministic optimization over a

longer time span may also improve the resulting performance.

By comparing the results obtained by considering the real two-

reservoir configuration (Table 5.20) with those in Table 5.21, it

can be concluded that the approach based on optimization and

simulation is practically acceptable, as it yields fairly good

results based on an uncomplicated analysis.

The iterative solutions and system decomposition/iteration

are more viable than the composite reservoir, which needs a

lot of calibration, and then disaggregation of the policy.

Judgement and comparison of these two main approaches to

overcome the dimensionality problem are highly desirable for

practical purposes.
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6 Optimal reservoir operation for flood control

Reservoir systems are operated in somewhat uncertain envi-

ronments. The uncertainty is mainly due to forecasting of

expected rainfall caused by events such as typhoons and

resulting river inflows. The problem of optimizing real-time

short-time on-line operation of complex reservoir systems

under uncertainty is very difficult particularly during extreme

events like floods or droughts. Practically no general solution

is available for this type of problem. Thus, it is important to

fully appreciate the problem of real-time reservoir operation

under uncertainty before expedient methods for its solution

can be developed. This section describes how far DP based

operation can be used in the phase of short-term ‘‘emergency’’

operation or how far this type of short-term operation can be

embedded in DP or SDP based rules.

Several operational modes can be employed for a water

resources system. For example, in real-time on-line operation

of a multipurpose reservoir, the importance of a purpose or

particular demandmay vary either periodically with the annual

cycle or randomly due to the occurrence of floods. Real-time

on-line operation may be defined as an interaction between the

operator and the system while the operation is being executed,

and the response time is critical within a definite time step.

Consequently, real-time on-line operation may imply opera-

tionalmode changes to respond to this critical situation. One of

the most challenging decisions inherent in the operation of a

reservoir is to decide when to change release policy and allocate

storage space, for example for the purpose of flood control

instead of for conservation storage, and vice versa. This reser-

voirmanagement problem is frequently encountered in climatic

zones dominated by a marked monsoon or typhoon-borne

rainy season and a subsequent long dry season.

Reservoir operations are normally based upon fixed long-

term operation rules. A sophisticated operation like a SDP

based reservoir operation policy with its inherent slow

response characteristics can hardly account for the swift var-

iability of hydrological conditions like sudden onset floods. A

long-term policy is rigid concerning short-term operation.

The decision whether or not and when to shift the operational

mode from long-term operation to short-term operation and

vice versa is quite crucial. A prolonged mismatch between the

required and the actual reservoir storage level and release

implies an opportunity loss of possibly considerable

proportion.

It is very important to have a premeditated rule about

when to switch the operational mode. The practice based on

simulation-derived operational rule curves contains the pro-

vision to lower the reservoir water level during the typhoon/

high flow season. This may result in reduced storage volumes

if no major inflow events occur. To avoid this type of loss, as

well as to minimize flood damage, the short-term emergency

mode operation should be embedded into an optimization

based long-term policy.

6.1 FEITSUI RESERVOIR PROJECT

IN TAIWAN

The Feitsui Reservoir Project in Taiwan shown in Figure 6.1

has a catchment area of 303 km2. The Feitsui Reservoir of

capacity 406� 106m3 is located on Peishih Creek, a tributary

of the Hsintien River, 30 km southeast of Taipei. The primary

purpose of the Feitsui Reservoir is water supply for 4 million

people living in the Taipei area, while hydro-energy genera-

tion by a power plant of 70MW installed generating capacity

is its secondary purpose. It is expected that with the help of

this reservoir the estimated water demand of the Taipei met-

ropolitan area can adequately be met till 2030.

The current long-term operating strategies of the Feitsui

Reservoir (provided by Sinotech Engineering Consultants

Inc., 1985) are based on rule curves giving the state of the

reservoir as a function of time for an annual cycle. These rule

curves are defined based on 10-day-long time steps. They have

been developed by trial and error methods and tested through

simulations based on historical and synthetic streamflow series.
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Yet these rule curves are only guides, and will not necessarily

ensure the most rational utilization of water resources. Thus,

the problem of how to utilize the water resources more effi-

ciently can still be regarded as an unsolved task.

Though flood control is not an explicit purpose of the

Feitsui Reservoir, it is taken into account in the reservoir

operation during the typhoon season. Operating the system

safely in the typhoon season is a challenging task. A procedure

for switching the operational mode between short-term and

long-term operations is required during a typhoon. The current

short-term operation policy of the Feitsui Reservoir is still

based on the upper limit of the above-mentioned rule curves.

Certainly, it cannot guarantee optimal operation in the case of

actual typhoon events.

Figure 6.1 The Hsintien River basin
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6.2 OPERATIONAL MODE SWITCH SYSTEM

BETWEEN LONG-TERM AND SHORT-TERM

OPERATION

An operational mode switch (OMS) system developed by

Huang (1989) for the Feitsui Reservoir determines whether

or not and when to shift the operation back and forth between

long-term ‘‘normal mode’’ and short-term ‘‘emergency mode’’

during a typhoon attack. Further, it considers stochasticity of

inflows and streamflow forecasts in the development of long-

term/short-term operation policies. The schematic representa-

tion of themethod is shown in Figure 6.2 in which theOMS acts

as a bridge to interlink the long- and short-term operations.

The flow chart of the OMS model for on-line reservoir

operation is given in Figure 6.3. As shown in the figure, the

long-term reservoir operation is based on an operation policy

which is derived by SDP.

During the flood season in Taiwan, the streamflow (base

flow) approaches stationarity because the inherent disturb-

ance in the environment is not significant. Hence, the hydro-

logical models such as Box–Jenkins models are applicable for

long-term forecasts. However, due to the steep topographical

slope and small catchment areas in Taiwan with sudden large

inputs of rainfall from extreme events, Box–Jenkins models

are not appropriate for short-term streamflow forecasts.

Instead, other hydrological models such as rainfall–runoff

models are preferred. The OMSmodel presented is associated

with typhoon events where the base flow is not a significant

proportion of the total flow in the river during the periods of

rainfall. The streamflow series are extraordinarily influenced

by noise. Hence, the attention of the OMS model is directed

principally at forecasting river discharges with a rainfall–

runoff model rather than with Box–Jenkins models.

6.3 DEVELOPMENT OF SDP MODEL FOR

LONG-TERM OPERATION

The explicit stochastic dynamic programming (SDP) model is

used for the derivation of long-term operation policies for the

Feitsui Reservoir system.

6.3.1 Objective function for long-term operation

The primary purpose of the Feitsui Reservoir is water supply

while hydro-energy generation is a secondary purpose. To

utilize the available water resources efficiently, the water

demand is set as a constraint while the maximization of the

expected annual hydropower generation is regarded as

the objective function. Hence, the objective function of the

system is

OF ¼Maximize �
XT
j¼1

EPj

" #
; (6:1)

where

� ¼ expectation operator,

EPj ¼ hydro-energy generation in period j, and

T ¼ number of periods (T¼ 36 for a 10-day basis within

one year).

Reservoir storage and inflow are state variables.

Based on different state variables and inflow transition

probability in SDP, i.e., either current inflow or previous

inflow as state variable to decide the operation policy, and

either conditional or unconditional probabilities of inflow to

obtain the steady-state policy, four different SDP models can

be formulated. Let j refer to the within-year period and n to

the total number of periods considered up to the actual stage.

The indices Sj, Qj, Rj, and Sjþ 1 denote the states of initial

storage, inflow, and release during the time step, and final

storage (initial storage for the next time step), respectively.

PQ( jþ 1)|Q( j) is the probability of inflow Qjþ 1 in period jþ 1,

when the inflow in period j equals Qj. The maximum value of

energy production up to period n associated with the state

variable values Sj and Qj is fj
n. Figure 6.4 indicates the rela-

tionship between these indices.

Accordingly, the recursive backward-moving dynamic rela-

tionships corresponding to different types of SDP can be

expressed as follows:

Figure 6.2 Schematic representation of the operational mode switch

system
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SDP based long-term operation policy

Data generation, if necessary
Seasonal multivariate AR(1) model

Data forecast with Box–Jenkins model,
if necessary standardized form

Long-term operation

Typhoon
warning by

CWB

No

No

Yes

Yes

Short-term operation

Multiobjective analysis

Generation of rainfall by first order
Markov process

continuous rainfall generation

Synthesis of inflow hydrograph by
rainfall–runoff model

Multiple linear regression

Decision making by maximizing the
expected MUF over the simulation

period
OMS model

Short-term operation policy

CWB - Central Weather Bureau
DM - Decision Maker
MUF - Multiattribute Utility Function

OMS - Operational Mode Switch
SDP - Stochastic Dynamic Programming

Estimation of MUF by questioning DM
Multiple MUF

Mode switch by
OMS

Figure 6.3 Flow chart of the OMS model for on-line reservoir operation
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Type 1

f nj ðSj;QjÞ ¼Maximize
Sjþ1

�
EPj þ

X
Qjþ1

PQðjþ1ÞjQðjÞ � f n�1jþ1 ðSjþ1;Qjþ1Þ
�
:

(6:2)

Type 1 assumes that the probability of inflow is conditional,

i.e., correlation between two consecutive inflows exists, and the

current inflows are known perfectly already while deriving the

steady-state operaton policy based on initial reservoir storage,

current inflow, and optimal final reservoir storage target.

Type 2

f nj ðSj;QjÞ ¼Maximize
Sjþ1

EPj þ
X
Qjþ1

PQðjþ1Þ � f n�1jþ1 ðSjþ1;Qjþ1Þ

2
4

3
5:

(6:3)

Type 2 assumes unconditional probability of inflows. That is,

there is no correlation between two consecutive inflows. In the

meantime, perfect knowledge of the current inflows is avail-

able while deriving the steady-state operation policy in terms

of initial reservoir storage, current inflow, and optimal final

storage volume target.

Type 3

f nj ðSj;Qj�1Þ ¼Maximize
Rj

X
Qj

PQðjÞjQðj�1Þ EPj þ f n�1jþ1 ðSjþ1;QjÞ
h i

:

(6:4)

Type 3 assumes that the probability of inflow is conditional

and current inflows are unknown. Previous inflows are

employed as the state variable while deriving the steady-state

operation policy by means of initial reservoir storage, prev-

ious inflow, and optimal release target.

Type 4

f nj ðSjÞ ¼Maximize
Rj

X
Qj

PQðjÞ EPj þ f n�1jþ1 ðSjþ1Þ
h i

: (6:5)

The probabilistic model expressed by Type 4 assumes that the

inflow probability is unconditional. In the model, a single

state variable with reservoir storage is required without con-

sidering inflow.

In real-world situations, Type 1 and Type 2 SDP models

need inflow forecasts to determine releases as current inflows

are unknown. In contrast, Type 3 and Type 4 SDP models

do not require inflow forecasts. The optimal operation policies

derived by a SDPmodel assuming either Sjþ 1 orRj as decision

variable will be the same. In general, the use of Sjþ 1 is preferred

toRj for Type 1 and Type 2 SDPmodels due to simple compu-

tation. In contrast, Rj instead of Sjþ 1 has to be chosen as the

decision variable in Type 3 and Type 4 SDP models, even

though it causes many calculation difficulties. This is due to

the fact that it does not guarantee a constant release through-

out the period, or an announcement at the beginning of the

period of what the release is to be, if the ending storage Sjþ 1

was the decision variable in a Type 3 (or Type 4) SDP model.

That is, streamflow forecasts would still be required in deter-

mining the precise release in real-time operation. It thus would

miss the point in applying the Type 3 (or Type 4) SDPmodel to

avoid the necessity of streamflow forecasts.

6.3.2 Constraints in the model

CONTINUITY

The reservoir storage at the beginning of period jþ 1 can be

expressed by the continuity equation:

Sjþ1 ¼ Sj þ Ij � Rj � Ej; j ¼ 1; 2; . . . ;N; (6:6)

where

Ej ¼ evaporation and seepage from reservoir during period

j (106m3),

Ij ¼ inflow during period j (106m3),

N ¼ total number of periods,

Rj ¼ release including spillage during period j (106m3), and

Sj ¼ initial reservoir storage volume at beginning of period

j (106m3).

Table 6.1 gives the monthly evaporation depth from the

Feitsui Reservoir while the study ignores seepage loss.

STORAGE CONSTRAINT

This constraint ensures that reservoir storage during any

period j must be within the limits

Smin
j � Sj � Smax

j ; j ¼ 1; 2; . . . ;N; (6:7)

where

Smin
j ¼ dead storage of reservoir (106m3), and

Smax
j ¼ total reservoir capacity (106m3).

Figure 6.4 Relationship between variables of SDP
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Table 6.2 gives the values of Smin
j and Smax

j of the Feitsui

Reservoir in different years allowing space for siltation after

construction.

WATER DEMAND CONSTRAINT

To satisfy water demand, the water demand constraint can be

set as

R�j � Rj � Rmax
j ; j ¼ 1; 2; . . . ;N; (6:8)

where

Rmax
j ¼ allowable maximum release from joint release

capacity of spillways, hydropower, and bottom out-

lets during period j (106m3); 9965.5m3/s for Feitsui

Reservoir (Sinotech, 1985), and

R�j ¼ release demand during period j (106m3).

Values of R�j depend on the discharge of Nanshih Creek and

the incremental inflow downstream of the Feitsui Dam. Based

on the historical records, this additional incremental flow (Q�j )

between the gauges and the diversion point for the drinking

water intake can be estimated approximately by the following

equation:

Q�j ¼ 0:1QK
j þ 0:124QF

j : (6:9)

Hence,

R�j ¼WD�QK
j �Q�j if R�j40

¼ 0:0 otherwise;
(6:10)

where

QK
j ¼ streamflow observed at Kueishan Station (Nanshih

Creek) during period j (106m3),

QF
j ¼ streamflow observed at Feitsui Station (Peishih Creek)

during period j (106m3), and

WD ¼ water demand during period j (106m3).

WATER QUALITY CONSTRAINT

This constraint sets a lower limit for the release:

Rmin
j � Rj þQK

j þQ�j ; j ¼ 1; 2; . . . ;N; (6:11)

where

Rmin
j ¼minimum discharge requirement to meet desired water

quality upstream of diversion intake.

HYDRO-ENERGY GENERATION CONSTRAINT

The constraint for firm power generation can also be taken

into account in the reservoir operation, if necessary, i.e.,

Emin
j � EPj � Emax

j ; j ¼ 1; 2; . . . ;N; (6:12)

where

Emin
j ¼ firm hydro-energy requirement during period j accord-

ing to contract between Taiwan Power Company and

Feitsui Reservoir given in Table 6.3, and

Emax
j ¼ allowable maximum hydro-energy production during

period j by power plant. Installed capacity of power

plant in Feitsui Reservoir is 70MW.

Energy production at any period t is dependent on the

effective head and discharge:

EPj ¼ 9:81� � �Qj �H� t=106 ðGWhÞ; (6:13)

where

� ¼ overall efficiency of turbine and generator ¼ 0.75,

Qj ¼ discharge through turbine during period j (m3/s),

H ¼ effective head (m), and

t ¼ time (h).

6.3.3 Discretization of storage spaces and

termination criteria

After having defined the values of Smin
j and Smax

j given in

Table 6.2 and if M discrete values are used to represent the

explicit state variable (storage volume), the interval [Smin
j ,

Smax
j ] may be divided into M� 1 equally spaced subintervals.

In addition to Smin
j and Smax

j , values associated with the corner

points of those subintervals are selected as the possible dis-

crete values of the storage volume.

Related to the termination of computation in SDP, the

steady-state condition is attained if the policies of the same

period of two successive annual cycles are identical and the

Table 6.1. Average monthly evaporation from the Feitsui Reservoir

Month Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Evap. (mm) 13 14 24 33 39 40 59 59 42 27 18 16

Table 6.2. Maximum and minimum storages of the Feitsui

Reservoir

Years 1987–1996 1997–2013 2014–2030

Smin
j (106m3) 47.00 35.44 23.37

Smax
j (106m3) 406.00 385.00 350.00
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annual increment of the objective function’s value between

f n
j ðk; iÞ and f nþT

j ðk; iÞ for all k, i, j are within the allowable

limit given in Eq. (6.14).

ðf nþT
j � f n

j Þ=f nþT
j � 0:001; (6:14)

where,T denotes the number of stages within the annual cycle.

6.3.4 Transition probability of inflows

Inflows are assumed to have the property of a stationary lag-

oneMarkov chain to account for the hydrological uncertainty.

Thus, transition probabilities between subsequent monthly

flows are derived and incorporated into the SDP analysis.

Further, the joint transition probability of streamflows is

considered concerning the joint probability of the occurrence

of discrete streamflow classes at the Feitsui and Kueishan

gauging stations. The range of possible average 10-daily

inflows at each site, Feitsui or Kueishan gauging station, is

divided into only 4 classes individually. That is, 16 joint inflow

classes are considered at each time step.

When calculating the recursive equation of SDP, the recur-

sive values do not increase, i.e., the expected benefit or loss

value in each cycle decays to zero if all the values are zero in a

row of the transition probability matrix. In this study, the

dimension of the joint transition probability matrix is 16� 16,

and only 34 data points (1953–86) are available in each period.

The number of possible transitions without observations (i.e.,

zero-elements in the transitional probability matrix) is exces-

sive, thus it may lead to many zero row vectors. The zero row

phenomenon is a severe defect in SDP, and it arises because of

limited data and/or too many streamflow classes or both.

He et al. (1995) showed that the large number of zero-

elements in transition probability matrices was the cause for

failing to satisfy the convergence criterion, stabilization of

expected annual increment of the objective function value, in

the SDP model. They further showed that the substitution of

these zeros with reasonably small values was a method to

overcome this problem.

6.3.5 Data generation

To retain joint transitional probabilities for streamflows

of Nanshih and Peishih Creeks, the problem of zero rows

as presented previously has to be eliminated. One way to

overcome this difficulty is to generate synthetic stream-

flow data and use them to derive the transitional probability

matrices.

DATA GENERATION WITH CONSTANT

PARAMETERS

The lag-one Box–Jenkins standardized model, ARIMA(1, 0, 0),

is used to generate synthetic time series as long as needed, until

there are no zero-elements in the row vectors of the transition

probability matrices, i.e., at least one of the elements in any row

vector is nonzero.

Based on the standardized model, ARIMA(1, 0, 0) for

example, 100 sequences of the same length as the length of

the historical series (34 years) are generated and then the

desired statistics of each generated series, j¼ l, 2, . . . , 100,

are calculated and compared with historical series.

The assumption of a stationary process in parameters like

mean, variance, skewness, and correlation coefficient is made

in this standardized model. However, the 10-day flows in the

Hsintien River have the characteristic of seasonal periodicity.

That is, different periods have their particular statistics. In

detail, it is possible to generalize the model so that the perio-

dicity in hydrological data is taken into consideration.

DATA GENERATION WITH PERIODIC

PARAMETERS

Assuming that for data generation a Box–Jenkins model with

periodic coefficients will perform better than that with con-

stant coefficients, the above lag-one Markov model has been

modified as a multiseasonal lag-one Markov model. This

study considers two types of simulation models; i.e., the lag-

one univariate autoregressive model given by Thomas and

Fiering (1962) and the lag-one multivariate autoregressive

model proposed by Matalas (1967). The former is considered

for single sites while the latter concerns not only the autocor-

relation but also the cross-correlation between the stream-

flows observed at the Feitsui and Kueishan gauging stations.

SEASONAL UNIVARIATE AR(1) MODEL

(THOMAS–FIERING MODEL)

This model, also known as the Thomas–Fiering model,

requires parameter estimation of mean, variance, and lag-

one serial correlation for each season. Phien and Ruksasilp

Table 6.3. Firm power generation requirement at the Feitsui Reservoir

Month Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Power (GWh) 9.0 8.1 9.0 8.7 9.0 12.4 12.8 12.8 12.4 12.8 8.7 9.0

Source: Huang (1989)
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(1981) recommended the use of the Thomas–Fiering model

for data generation due to its simplicity and efficiency.

SEASONAL MULTIVARIATE AR(1) MODEL

(YOUNG–PISANO MODEL)

Since the joint transition probability of inflows is considered,

the simultaneous behavior of cross-correlation between

the streamflows of Peishih and Nanshih Creeks, recorded at

the Feitsui and Kueishan gauging stations is important.

Therefore, the simultaneous simulation of inflows for deriva-

tion of the joint transition probabilities may be needed.

After running 100 sequences with length equal to 34 years,

the statistics of data generated by the univariate AR(1) model

were compared with the historical record. The data generated

by the univariate AR(1) model can be accepted with preserv-

ation of the mean, standard deviation, skewness, and lag-one

serial correlation at each station. However, the univariate

AR(1) fails to reproduce the statistics of cross-correlation.

On the other hand, the data generated by the multivariate

AR(1) model can preserve the mean, standard deviation,

skewness, lag-one serial correlation, lag-zero cross-correlation,

and lag-one cross-correlation.

The comparison of univariate and multivariate AR(1)

models clearly indicates the superiority of the latter over the

former in the reproduction of the historical statistics. Thus, in

this work multivariate AR(1) is applied to reconstruct the

transition probabilities in terms of the 3400-year generated

data. In this way the complete zero row vectors have been

entirely eliminated.

6.3.6 Comparison among different types of SDP

Out of the four types of SDPmodels (Eqs. (6.2) through (6.5)),

the best one for the Feitsui Reservoir could be found based on

test runs with these different models. However, the most

suitable one may vary from case to case depending on the

circumstances.

Backward-moving stochastic dynamic programming is only

applicable in deriving a steady-state operation policy due to the

consideration of stochastic inflow (Yeh, 1985). Also, transition

probabilities of inflow are assumed to be stationary. A steady-

state solution is reached for each SDP model by applying the

four different recursive equations up to 36� 3 stages.

The expected annual power generation values of the objec-

tive function of the Type 3 SDP (404.0GWh) and the Type 4

models (406.7GWh) are much higher than those of the other

twomodels, Type 1 and Type 2, whose values are close to each

other (306.1 and 308.0GWh, respectively). For SDP models

with more discrete classes in reservoir storage and release, a

higher objective function value could be obtained with more

computation time. The Type 3 SDP model needs about five

times more computation time than the other three models in

deriving the steady-state operation policy, due to considera-

tion of transition probabilities of the inflow for calculation of

the system performance value at each stage. Stochasticity is

considered for both terms in the right hand side of the recur-

sive equation for the Type 3 SDPmodel. Operation policies of

the Type 1 and Type 2 models are observed to be almost the

same. In contrast, the policies of the Type 3 model are close to

those of the Type 4 model.

The policies developed by SDP models are sequential ones.

These policies depend on each initial storage volume and

current inflow for the Type 1 and Type 2 SDP models, on

each initial storage volume and the previous inflow for the

Type 3 SDP model, and on only initial reservoir storage for

the Type 4 model.

The SDP based operation policies are only guidelines.

Once developed, the reservoir operation may be simulated

and evaluated prior to their actual adoption in practice.

Therefore, to study the performances of the derived optimal

operation policies based on the four types of SDP, the

Feitsui Reservoir system was simulated by using the 34-year

(1953–86) historical inflow data. Since the current inflow is not

known before the end of the period, perfect inflow forecasting

(the one able to predict exactly the observed inflow) is assumed

for the Type 1 and Type 2 SDP models during the model

simulation due to the requirement of the current-inflow state

variable. In contrast, the Type 3 SDPmodel relies on inflow of

the previous period instead of the current one. The inflow

requirement is ignored in the Type 4 model.

These simulation results show that the water demand

(26.4m3/s) could be met each year during the simulation

period for all types of SDP models. The average annual gen-

erated energy for all SDP models is very similar. The values

are 250.19GWh (Type 1), 250.29GWh (Type 2), 248.98GWh

(Type 3), and 249.04GWh (Type 4). The expected values of

annual energy generation obtained during the policy develop-

ment stage are very different from the values obtained from

simulations. This is due to consideration of representative

values of streamflow during the SDP policy development

stage compared to the actual historical streamflows applied

in the simulations.

The results indicate that more hydropower would be

generated using the Type 1 and Type 2 models assuming

perfect forecasts of streamflow are available. However, this

is unrealistic since perfect prediction is not possible. In order

to select the most suitable SDP model for the Feitsui

Reservoir among these four competing models, on-line reser-

voir operation coupled with observed/forecast streamflow is

necessary.
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6.3.7 Reservoir operation with Box–Jenkins model

based forecast inflows

The aforementioned simulations assumed that the current

inflows are known. A model in terms of the current inflow

as a state variable would be preferred based on the maximi-

zation of hydropower as the objective function. However, in

real-world operation the current streamflows at the Feitsui

and Kueishan gauging stations are unknown. Consequently,

inflow forecasts are needed for the Feitsui reservoir system if a

Type 1 or Type 2 SDP model is used. Thus, to put Type 1 and

Type 2 SDPmodels into practice, the linking of the SDP and a

forecasting model is required.

In Section 6.3.5, the applicability of the Box–Jenkins model

to forecast inflows was discussed. The standardized

ARIMA(1, 0, 0) model has been fitted and recommended as

an appropriate forecasting model. A more realistic compar-

ison in selecting the most suitable model for the long-term

operation of the Feitsui Reservoir can be achieved by apply-

ing observed inflow (for Type 3) and forecast inflow by the

standardized model (for Type 1 and Type 2) of the Feitsui and

Kueishan gauging stations during the period 1985–6. The

values of average annual generated energy for the SDPmodels

are 284.78GWh (Type 1), 291.76GWh (Type 2), 314.31GWh

(Type 3), and 313.45GWh (Type 4). Note that the inflow

variable is not requested by the Type 4 model.

The Type 3 SDP model, which does not rely on inflow fore-

casts, shows more hydropower generation and higher water

utilization efficiency. The superiority of the Type 3 SDP model

over the Type 1 and Type 2 SDP models in the Feitsui reservoir

system is based not only on the better operating efficiency

obtained, but also on the fact that observed and not forecasted

inflow is used. Though the Type 3 model in deriving operation

policy needs more computation time compared to others, a

powerful computer can tackle it. As compared with the Type 4

model, the Type 3 model performs slightly better.

In order to use the Type 1 (or Type 2) SDP model in real-

time operation, streamflow forecasts are needed, and the

resulting release will become stochastic due to the use of

final storage as the decision variable. The Type 1 SDP

model seems better for flood control, in which the storage

has to be controlled. In contrast, since the state is known at

the beginning of period j in the Type 3 (or Type 4) SDPmodel,

the release can be fixed and the final storage becomes a

random variable. Previous results show that the Type 1 SDP

model performs better than the Type 3 SDPmodel, if a perfect

forecast in streamflows can be made and the release is not

stochastic. In reality, with on-line operation, the Type 3 SDP

model without consideration of inflow forecasts appears to be

better than the other models for water supply and energy

production, where the release is a target. That is, the Type 1

SDP model is preferred if perfect inflow forecasting models

are available. Otherwise, the Type 3 SDP model is more

appropriate. For the Feitsui reservoir system, due to the

inevitable errors existing in forecasting models, the Type 3

SDP model is thus preferred and selected as the most appro-

priate SDP model for on-line long-term operation.

6.4 OPERATIONAL MODE SWITCH

SYSTEM

The operational mode switch (OMS) system developed for

determining the reservoir release in a typhoon-prone area is

presented next. The OMSmodel decides whether and when to

shift the operation back and forth between long-term ‘‘normal

mode’’ and short-term ‘‘emergency mode.’’ Use of this model

is activated upon a typhoon announcement by the Central

Weather Bureau (CWB). The decision criterion to change the

operational mode is in terms of the maximization of the

expected multiattribute utility trading off flood loss, water

shortage, and hydropower production.

The OMS model relies basically on interlinkage of a simu-

lation submodel and a decision submodel as displayed in

Figure 6.5. The functions of various parts in the OMS model

are described in detail as follows.

6.4.1 Simulation model

The simulation model consists of the elements, (a) data col-

lection, (b) rainfall generation, and (c) runoff simulation,

needed to provide the input to the decision model.

Figure 6.5 Block diagram of operational mode switch
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DATA COLLECTION

Data collection involves monitoring of incoming data, such as

location of the typhoon’s eye, wind speed, track and intensity

of the approaching typhoon, observed rainfall, and stream-

flow. Six types of typhoons (Xj) are identified according to

their track and intensity.

RAINFALL GENERATION

Rainfall generation produces a probable distribution of the

areal rainfall in time for the presumed total amount of precip-

itation caused by a typhoon.Rainfall generation is based on the

transitional probability concept of rainfall depth in consecutive

time steps with the assumption of the validity of a first order

Markov chain model to describe this process. Transitional

probability matrices are distinguished according to different

types of typhoons. The generated areal rainfall time series will

then become the input to the runoff simulation model to gen-

erate the hydrograph by use of a rainfall–runoff model.

RUNOFF SIMULATION

Runoff simulation generates the simulated inflow hydro-

graph, which serves as a crucial input both to decide the

reservoir releases either in normal or in emergency mode,

and to determine the operational mode switch. This runoff

simulation can be handled through a rainfall–runoff model.

Two types of rainfall–runoff models, one based on the unit

hydrograph concept and the others of multiple linear regres-

sion type, are used.

6.4.2 Decision model

The decision model is interlinked with the simulation model

through the outputs of the latter as depicted in Figure 6.5.

BAYESIAN REVISION

Bayesian revision utilizes the Bayes theorem to revise the

prior probabilities P(�i) of the possible states of nature (�i).

Theoretically, the posterior probabilities P(�i|Xj), the revision

of the prior probabilities, are estimated by

Pð�ijXjÞ ¼ Pð�iÞPðXjj�iÞ=
Xm
i¼1

Pð�iÞPðXjj�iÞ for givenXj:

(6:15)

Based on routinely available meteorological information pro-

vided by the Central Weather Bureau, Xj is defined as the

observed typhoon type, �i (state of nature) on the expected

total amount of typhoon-borne rainfall and m on the number

of states of nature. Six classes of �i are identified (i.e., m¼ 6)

ranging from 0mm to 1000mm. Furthermore, the likelihood

function, P(Xj|(�i), of the state of nature is defined based on

the on-site historical records.

DECISION MAKING

The decisionmaking element considers the long-term ‘‘normal

mode’’ and the short-term ‘‘emergency mode’’ of operations as

alternative actions in the switch decision. A decision is made

by comparing the multiattribute utilities of the alternative

actions. Selection is made following the principle of maximi-

zation of the expected multiattribute utility, based on the

release policies for the long- or short-term operations over

the entire possible state space as shown in Table 6.4. The

simulation period depends on the length of the generated

rainfall time series.

The utility value denoted by the symbolUwith appropriate

subscripts designates the pay-offs resulting from each combi-

nation of an alternative action and a state of nature. The

utility values associated with the possible states of nature

and alternative actions can be derived by questioning the

real-world decision makers to encompass their preferences

for uncertain outcomes.

In assessing themultiattribute utility function (MUF), pref-

erential independence and utility independence are assumed.

The former implies that the preference trade-offs are not taken

Table 6.4. Decision making under uncertainty

State Posterior probability

Actions

Long-term (1) Short-term (2)

�i (0–100mm) P(�1|Xj) U1 1 U1 2

�i (100–200mm) P(�2|Xj) U2 1 U2 2

�i (200–300mm) P(�3|Xj) U3 1 U3 2

�i (300–400mm) P(�4|Xj) U4 1 U4 2

�i (400–600mm) P(�5|Xj) U5 1 U5 2

�i (600–1000mm) P(�6|Xj) U6 1 U6 2
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into account amongmore than two attributes simultaneously,

while the latter means that when assessing any particular

attribute the decision maker is not influenced by the achieve-

ment level of the remaining attributes. For an n-dimensional

MUF, U(X)¼U(x1, x2, . . . , xn) in which X is a vector with

n individual attributes, the multiplicative form of MUF

under the assumptions of preferential and utility independ-

ence satisfies

1þ kUðXÞ ¼
Yn

i¼1½1þ kkiUiðxiÞ�; (6:16)

where the MUF, U(X), and the single-attribute utility func-

tions, Ui(xi), are scaled from 0 to 1. The scaling factors ki are

also within the range between 0 and 1 while the constant k

satisfies the following condition:

1þ k ¼
Yn

i¼1½1þ kki�: (6:17)

Having defined the MUF, the problem of switch decision

between normal and emergency modes arises. The expected

value of the MUF is determined in terms of release from the

reservoir.

SWITCH DECISION/CHOICE

The release associated with the normal mode (long-term) is

determined by the derived SDP policies according to the

synthetic inflow hydrograph. The period of the hydrograph

(i.e., simulation period) depends on the duration of generated

typhoon-borne rainfall. It has the same duration as the emer-

gency mode (short-term) operation. In real situations, the

actual release within a time interval may be different from

the SDP based target release. It is assumed here that the SDP

policy with the original 10-day basis is also applicable for

hourly operation. As previously shown, the steady state

release policy derived by the Type 3 SDP model with the

inflow of the previous time step as the state variable is appro-

priate for the Feitsui Reservoir.

In contrast, the most common operational strategy for a

regulable flood control reservoir is to keep the outflow at a

constant level. Constant release could ensure the complete

utilization of the available storage capacity and ensure

Smax¼Scap, where Smax is the maximum volume of the flood

that could be stored in the reservoir, and Scap is the reservoir

capacity. The constant release for the emergency mode is

then determined by iteration calculation to ensure the fulfil-

ment of Smax¼Scap. However, the strategy requires that the

inflowing flood waves are known in advance. Since it is

difficult to obtain a completely reliable flood forecasting

model, this principle can be used by repeating the forecas-

ting of the total flood wave during the flood event, and

adjusting the releases according to the criterion of

Smax¼Scap for emergency mode operation. This approach

leads to variable reservoir releases as an adaptive operation

progresses.

The transformation of water release figures with the given

state of nature into theMUF yields a series of utilities for each

alternative. The expected value over the simulation period

depending upon the rainfall duration of a typhoon can be

calculated using

�UðXj�iÞ ¼ �½UðXj�iÞ� ¼
XT
j¼1

Uj ðXj�iÞ=T; for given �i;

(6:18)

where

Uj (X|�i) ¼ multiattribute value at time j for given state of

nature (�i), and

T¼ length of simulation period during typhoon attack, equal

to length of predicted typhoon-borne flood inflow.

Weighing the expected value of each alternative with the

posterior probabilities of the state of nature where the post-

erior probabilities were just updated from the typhoon observ-

ation on the basis of the Bayes theorem, it yields

�UðXÞ ¼
Xm
i¼1

Pð�ijXjÞ �UðXj�iÞ; for given Xj; (6:19)

where

P(�i|Xj) ¼ revision of prior probabilities for given typhoon

class (Xj) based on observation from Central

Weather Bureau, and

m ¼ number of classes of total typhoon-borne rainfall depth

(m¼ 6).

Since the decision criterion of the switch mode is in terms of

the maximization of the expected multiattribute utility, the

switch action associated with themaximum value of themulti-

attribute utility between ‘‘normal mode’’ and ‘‘emergency

mode’’ is then selected.

The operational switch is updated hourly corresponding

to the new observations, either the typhoon condition or

the hourly rainfall and discharge observations. That is, if

the latest typhoon situation is known, given by the Weather

Bureau, revision of the prior probabilities of the state of

nature (possible rainfall caused by typhoons) is required.

The rainfall hyetograph and the inflow hydrograph are

then revised through the ‘‘simulation model’’ within the

OMS system. Thereafter, the MUF for each alternative (long-

term or short-term operation) has to be reassessed based on

the new information to determine the choice for the switch

operation.
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6.5 APPLICATION AND SENSITIVITY

ANALYSIS

The application of the OMSmodel is shown for the operation

of the multipurpose (water supply, hydropower generation,

flood alleviation) Feitsui Reservoir. The reservoir capacity is

406� 106m3 with allowable maximum release of 10 000m3/s.

The reservoir can be completely emptied within 2 days

through the bottom outlets (sluiceway) and additional tunnel

spillway, thus providing the technical option to implement the

recommendations of the different operationmodes; for example,

to pre-empty the reservoir to accommodate a forecast typhoon-

borne flood wave.

(a) Typhoons are classified into six types (Xj) which are the

combinations of three different typhoon tracks, according

to their orientation (westward moving above/below lati-

tude 248Nand northwardmoving) as shown in Figure 6.6

and two different typhoon intensities (remarkable or ordi-

nary). Based on historical records, the state of nature (�i)

for total rainfall caused by the typhoon is also classified

into six groups ranging from 0mm to 1000mm. The like-

lihood function P(Xj|�i) of typhoons is then available

from the historical records.

(b) A first order Markov chain related to the transition prob-

abilities of hourly rainfall is assumed. The individual

transition probabilities of rainfall associated with different

types of typhoon are set up on the basis of historical

events. While running the OMS model, the remaining

rainfall, after deducting the observed rainfall from the

total rainfall, is generated according to the appropriate

transition probability. A corresponding inflow hydro-

graph is then simulated through themultiple linear regres-

sion type of rainfall–runoff model.

(c) Concerning the multiattribute utility function, three

objectives are considered:

(i) to minimize damage loss due to floods;

(ii) to minimize water shortage as a percentage of

demand;

(iii) to maximize profit of power generation.

The single-attribute utility functions have been defined

through the use of a questionnaire and interviews with

the reservoir managers. Table 6.5 and Figure 6.7 summa-

rize the information obtained from the extensive interview

procedures. Notice that
P3

i¼1 ki41:0, which indicates

that the choice of a multiplicative form is appropriate

(Keeney and Raiffa, 1976).

(d) Determine the release for the normal mode by use of SDP

according to the simulated inflow hydrograph while the

release for emergency mode is obtained by iteration,

determining the value of constant release, which max-

imizes peak reduction.

Finally, the substitution of water release figures into the

MUF yields one series of utility values for each alternative.

The expected value over the simulation period can then be

calculated.

The expected value of each alternative is weighted by the

posterior probability of the state of nature, P(Xj|�i), updated

from typhoon observations by means of the Bayes theorem.

Thus, the appropriate switch action associated with the maxi-

mum value of the MUF can be selected.

The ordinary typhoon Nelson, announced by the Central

Weather Bureau at 1400 h on August 21, 1985, was situated at

latitude 24.08 N and longitude 129.18 E, i.e., about 760 km

southeast of Taipei, and moved northwestward with 18 km/h
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Figure 6.6 Classification of typhoons

Table 6.5. Summary of information for evaluating

multiattribute utility function

Xi Worst Best Ui(Xi) ki

X1 1 0 1.276� 0.276 exp(1.531X1) 0.700

X2 1 0 1.749� 0.749 exp(0.848X2) 0.478

X3 0 1 0.127

k � 0.669
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velocity. Following the aforementioned procedure of the

OMS model, in hour 37 (0300 h, August 23, 1985), the oper-

ation shifted to emergency mode with 173.42m3/s release. In

the meantime, the operations performed by the OMS model

had led to a lower storage level with 342� 106m3 to keep

sufficient storage for the possible upcoming peak inflow.

Figure 6.8 gives the results of the switch decision process

during Typhoon Nelson. It shows that the first half-periods

still follow the long-term operations. However, the operation

changes to emergency mode while the typhoon crosses the

catchment of the Feitsui area. The mode returns to normal

mode after hour 51 (1700 h, August 23), when the Feitsui area

is out of the zone influenced by Nelson at that time.

It can be seen from Figure 6.9 that the peak inflows are

concentrated within time intervals 36–47 (0200 h–1300 h) with

the amount up to about 2000m3/s. During these intervals the

operational modes are focused on the emergency mode. The

peak reduction for the Feitsui Reservoir is not significant

within these intervals if the current adopted release policy is

applied. For example, at hours 40–43 the inflows approach

2000m3/s, and the releases are still nearly 1500m3/s. That is,

the peak reduction is only 500m3/s corresponding to the

current policy. In contrast, the efficiency of peak reduction

by the OMS model is specified and it is about 1000m3/s.

Figure 6.10 also shows the superiority of operation by the

OMS model over that by current policy. Obviously, the oper-

ation created by the OMSmodel tends to lower the water level

to maintain sufficient storage before the peak inflows. That is,

the ‘‘safety margin’’ operated by the OMSmodel is larger than

that of the current release policy. Furthermore, operation by

the OMS model yields 0.9901 units of utilities and

3.6949GWh, a much better result than the performance by

the current policy with 0.9582 utilities and 0.9634GWh dur-

ing the simulation period.

Figure 6.7 Utility functions

Figure 6.8 Switch process during Typhoon Nelson (August 21–23,

1985)

Figure 6.9 Reservoir release during Typhoon Nelson
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In fact, the aforementioned OMS operation starts at

330� 106m3. It is expected that operation is quite sensitive

to the actual value of the initial reservoir storage while oper-

ating the OMS process. For example, if the initial storage is

330� 106m3 and the coming typhoon causes heavy rain, a

flood then arises if the operation does not empty the reservoir

in advance. On the other hand, the operation results in a water

shortage if the reservoir is emptied in advance but the fore-

casted typhoon does not bring as much rainfall as expected.

Thus, caution is required.

It is found that the switch operation of the OMS model

is really sensitive to the initial storage. For the case of

47� 106m3, the minimum reservoir storage, there is no occur-

rence of emergency mode operation during Typhoon Nelson,

i.e., the reservoir operations are always kept in the long-term

operation mode due to the very low initial water level.

However, for the case of 406� 106m3, the maximum reservoir

storage, the operation immediately starts in emergency mode

to pre-empty the reservoir leaving more storage space for the

expected flood inflow caused by Nelson. Figure 6.11 presents

the switch process for the typhoon with initial storage

406� 106m3. As Figure 6.12 reveals, the superiority of the

OMS model is clearly seen due to the larger safety margin. It

has been shown that decisions made with the help of the OMS

model are quite reasonable, flexible, and efficient. Table 6.6

also proves the viability of the OMSmodel. Obviously, the use

of the SDP based long-term operation policy, coupled with

the OMS supported emergency operation (Duckstein et al.,

1989) would provide an improvement over the existing oper-

ation rule.

6.6 SOME REMARKS ON OPERATIONAL

MODE SWITCH SYSTEM

Amethodology for an operational mode switch (OMS) model

has been developed for determining the optimal reservoir

release under uncertainty during the typhoon season. The

OMS model encoding the risk attitude of the decision makers

is designed for on-line operation of reservoir systems. It

Figure 6.11 Sensitivity analysis of switch with initial storage

406� 106m3 during Typhoon Nelson

Figure 6.12 Variation of storage with the initial storage of

406� 106m3 during Typhoon Nelson

Table 6.6. Sensitivity analysis, the impact of initial storage (Typhoon Nelson, August 21–23, 1985)

Initial storage (� 106m3) 47 130 230 330 406

MUF by OMS model 0.9538 0.9621 0.9777 0.9901 0.9907

Energy production by OMS model (GWh) 0.0991 0.8772 2.2784 3.6949 3.9926

MUF by present policy 0.9528 0.9532 0.9533 0.9582 0.9723

Energy production by present policy (GWh) 0.0000 0.0365 0.0476 0.9634 2.8645

Figure 6.10 Variation of storage during Typhoon Nelson
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reflects the necessity of short-term operation of reservoir

systems facing the occurrence of an extreme event of short

duration. The OMSmodel would provide an efficient tool for

decision makers to select the mode and operate reservoir

systems during typhoons or under similar conditions.

There are several types of long-term SDP operation policy

in terms of different decision and state variables. The analysts

are responsible to the decision makers for suggesting a reli-

able, simple, and understandable policy. The SDPmodel with

initial reservoir storage and past inflow as state variables and

release as decision variable (Type 3 SDP model) appears to be

the best among all SDP models. However, under different

hydrological regimes this ‘‘truth’’ might not be universal and

also will depend on the characteristics of the particular water

resources system. Considering real forecasts, the Type 3 SDP

model seems to be the best for water supply and energy

production, where the release is a target. On the other hand,

the Type 1 SDP model (initial storage and current inflow as

state variables, and ending storage as decision variable) is

probably better than the others for flood control where the

storage has to be controlled.

The suggested OMS is applicable for the operation of the

multipurpose (flood control, water supply, hydropower gen-

eration) Feitsui Reservoir in Northern Taiwan. Incorporation

of the change of operational mode from a ‘‘normal mode’’

to an ‘‘emergency mode’’ to cope with intermittent typhoon-

borne floods enhances the flood control efficiency of the

reservoir and the downstream reach without jeopardizing its

performance with respect to other purposes. Adoption of the

OMS by decision-making authorities, after further analyses of

past typhoons and model refinement, is a good possibility.

Although uncertainty rules out guaranteeing that the best

outcome is obtained, the decisions made by the OMS model

are quite reasonable, flexible, and efficient. In case studies of

the Feitsui Reservoir, the OMS model generally appears to

provide a better policy than the no-switch, long-term policy

(SDP). Furthermore, it is simple enough to lead to a rapid

transfer of theoretical knowledge into practice.
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Simonović, Z. Kundzewicz, D. Rosbjerg and K. Takeuchi (eds.),
Modeling and Management of Sustainable Basin-Scale Water
Resource Systems, Proceedings of a symposium held at the XXI
General Assembly of the International Union of Geodesy and
Geophysics (Boulder, 1995). IAHS Publ. No. 231, pp. 233–240.

Bogardi, J. J., Milutin, D., Louati, M.E. and Keser, H. (1994). The
performance of a long-term operation policy of multi-unit reservoir
systems under drought conditions. In Proceedings of the VIII IWRA
World Congress: Satisfying Future National and Global Demands,
Cairo, Egypt.
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