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Preface

In the European Union, the issue of carbon has risen to
the top of the political agenda. The current aspiration
is to provide zero carbon buildings in the foreseeable
future, which might prove to be more challenging then
initially anticipated. Although energy is the dominant
factor due to its role in tackling the most urgent
sustainability issue — climate change — some of the
other equally important issues concerning sustainable
building design and engineering have also been

addressed in this book:

* health and well-being (i.e. the provision of
acceptable thermal comfort for occupants and
good indoor air quality while maintaining
adequate (day)lighting and indoor ambient noise
levels);

* adaptability to climate change (i.e. improving the
capacity of buildings to operate successfully under
various climate change scenarios);

* operational performance of buildings (i.e. post-
occupancy evaluation of various aspects of

building design).

All of these challenges cross the boundaries of traditional
disciplines and professional routes. The next generation
of professionals will require an ability to work more
closely with different disciplines and professionals if
these challenges are to be met. The subjects covered and
the depth to which they are analysed are more than
sufficient to meet various syllabus requirements of
undergraduate and multidisciplinary postgraduate
courses in building services engineering, architecture and
facility management. Furthermore, the aim of this book
is to challenge the ‘silo mentality’ approach to building
design, while promoting awareness of the technical
options available to engineers and architects and their
suitability for various building-related applications. As
such, this book is essential reading for both young and
experienced professionals looking to broaden their
knowledge.
We hope that you will find this book very useful.

Dr Dejan Mumovic, University College London, UK
Dr Mat Santamouris, University of Athens, Greece
September 2008
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Introduction: Setting the Scene

Dejan Mumovic and Mat Santamouris

The aim of this introduction is twofold:

1 Set the scene and show that each building with
its surrounding represents a complex built
environment system.

2 Highlight that sustainable building design and
engineering requires an integrated approach to
energy, health and the operational performance of

buildings.

It was Winston Churchill who once famously remarked
that: “We make our buildings, and afterwards they
make us.” For example, in the case of university
campuses built during the 19th century, it is absolutely
conceivable that in the minds of the architects there
was a link between outward expressions of grandeur
and the importance of the learning that was going on
within. One of the many examples could be the main
University College London (UCL) building designed
by William Wilkins, a leading architect of the Greek
Revival in England (see Figure I.I.1). With steps
leading up to an enormous Corinthian portico
reminiscent of the British Museum and a dome behind,
this building expressed the underlying character and
value system fostered by UCL at that time.

Designing buildings in order to make some kind of
statement is as important today as ever before.
However, instead of grand architectural gestures, the
new generation of buildings will have to show the
extent to which both the client and, more importantly,
the government (through standards and building
regulations) take seriously the commitment to
transform each of our countries into low carbon
economies.

Within just a few hundred metres of the previously
mentioned Wilkins building lies a relatively new
addition to the UCL campus — the School of Slavonic
and East European Studies (see Figure 1.1.2). The client
(UCL) required a low-energy, naturally ventilated and

naturally lit building with low cost in use. Partially due
to the reduced summer night cooling potential caused
by the London urban heat island, and partially because
the UK design guidelines required the use of a near-
extreme weather year for the design of naturally
ventilated buildings, this building designed by award-
winning architects Short & Associates (Short et al,
2004) employed passive downdraught cooling
operating from the top of a central well (see Chapter 20
on sustainable cooling techniques for more details). As
the world’s first passive downdraught-cooled public
building in a city centre, theoretically speaking, it
employs an extremely energy efficient way of
maintaining comfort within the urban heat island. It
also demonstrates the UCL commitment to reduce the
carbon footprint of its own buildings.

This example indicates that clients increasingly
require building professionals to provide advice on
sustainability. Many large organizations, such as UCL
in this case, have been developing sustainability
commitments in an attempt to become ‘socially
responsible’. Some of the large organizations have set
up objectives and targets relating to measurable
environmental performance concerning issues such as
waste, water consumption and carbon emission.

However, the major driver to considerable change
in the construction and refurbishment of buildings is
still government commitment to sustainability issues.
For example, in the UK, changes are implemented
through various mechanisms such as:

*  Building Regulations (England, Wales and Northern
Ireland) or Building Standards (Scotland). Part L
(Energy) of the Building Regulations is concerned
with the prevention of carbon emission from
buildings. In the recent document on future
development of the Building Regulations for
England and Wales (DCLG, 2007), it has been
predicted that until 2013 the standard is likely to



Figure 1.1.1 Wilkins building

continue to be set with reference to the sources of
emission, such as space heating, water heating and
lighting contained in the 2006 Building
Regulations Part L (Energy) with the option of
adopting low and zero carbon (LZC) technologies.
The step to zero carbon in 2016 is likely to include
emissions from other sources (principally electrical

Figure 1.1.2 School of Slavonic and East
European Studies
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appliances), which would result in the need for
significant renewable generation capacity as well as
other LZC systems.

Energy Performance of Buildings Directive. This
European Union (EU) directive requires buildings
to obtain two energy ratings: an operational rating
and an asset rating (EU, 2002). It also requires
public buildings to display their certificates
showing the energy efficiency of the building and
requiring inspections for air-conditioning systems.
Furthermore, the member states have to ensure
that meters and systems measure customers’ actual
energy consumption both accurately and
frequently. This might result in the increased use of
smart meters that provide frequent or real-time
information on actual energy consumption.
Climate Change Bill. The UK has become the first
country to set legally binding targets to reduce
carbon emissions by 60 per cent by 2050. The bill
introduces ‘carbon budgets’, which will be set every
five years that cap emissions, and promotes greater
energy efficiency with more consumers generating
their own energy. Furthermore, it introduces a new
statutory body, the Committee on Climate
Change, to provide expert advice and guidance to
government on achieving its targets.

Local planning policies. In recent times, local
government in London has driven a more
progressive carbon agenda through its planning
process than the UK government through its
regulations. To stabilize the global carbon
emissions at 450 parts per million (ppm) on a
contraction and convergence basis means that
London has to limit the total amount of carbon
dioxide that Londoners produce between now and
2025 to about 600 million tonnes (Greater
London Authority, 2007). This implies a target
of stabilizing London and the UK’s emissions at
60 per cent below 1990 levels by 2025. Achieving
this reduction will be extremely challenging,
realistically requiring the establishment of a carbon
pricing system and further EU and UK legislation.
The current London Plan (Greater London
Authority, 2008) requires new developments to
make the fullest contribution to the mitigation
of, and adaptation to, climate change by
incorporating energy efficiency and renewable
energy measures, targeting, in particular, heating



and cooling systems within developments.
Developments are expected to reduce their energy
needs in the first instance and then supply that
energy efficiently with a proportion from
renewable sources.

To complicate the issue further, the buildings are often
complex bespoke systems that are difficult to control,
with little feedback available on their real operation and
actual performance. Evidence to date suggests the gap
between ‘as designed’ and ‘in use’ performance can be
very large (Bordass et al, 2001). This has considerable
implications for the previously mentioned regulatory
programme as the closer standards get to zero carbon
the more important the gap will become. The
implications of this for the required research effort over
the coming years are considerable since building
professionals must not only select new technology at
the design stage (e.g. opting for electrically driven heat
pumps instead of low-temperature water heating
systems), but also ensure that a huge change in
construction practices (i.e. improved airtightness,
thermal bridging, etc.) takes place (DCLG, 2007). This
presents a considerable challenge in the wide-ranging
implications for all parts of the industry and its supply
chains.

Even if the building engineering community had
the answers on all technical issues, a building may be
built to the most advanced sustainable standards, but if
the occupants are not using it in a sustainable way, then
the benefits may not be apparent. For example, it is
very likely that in the next decade electrically driven
heat pumps will provide the lowest carbon-emitting
space heating in the UK, while also providing cooling
to prevent summertime overheating. However, the
increased use of comfort cooling by occupants may
mean that heat pumps provide no net reduction in
carbon emissions. Therefore, the time has come when
we need to engage the building occupants, owners and
facility managers in operating their buildings in a
sustainable and more environmentally responsible way.

The importance of the facility manager in ensuring
a building’s services are used to their optimum cannot
be overemphasized. Working on an extensive study on
winter air quality, thermal comfort and acoustic
performance of newly built secondary schools in
England (Mumovic et al, 2008), one of the editors has
attempted to provide an insight into the attitude of
facility managers, teachers and pupils regarding the
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ventilation performance in classrooms. Almost 50
per cent of schools have been equipped with state-of-
the-art Building Management Systems (BMS),
providing them with an opportunity to balance energy
consumption and ventilation requirements to some
extent. However, in the opinions of the research team,
none of the facility managers or the caretakers were
fully conversant with the BMS.

This raises an important issue: training the relevant
people (at least caretakers and facility managers) how to
use, in this specific case, the ventilation system
effectively. The teachers also did not receive any
information on how to use the ventilation systems most
appropriately. The information on the building services
systems, including logbooks, was usually ‘buried’ within
dozens of thick folders, and even then included no
guidelines about how to get the most out of the system.

Even at this stage it is obvious that buildings are
actually complex built environment systems. However,
there is more. Although building occupants are not
passive recipients of the indoor/outdoor thermal
environment, but play an active role in creating their
thermal environment by behavioural adjustments such
as adjusting clothing and rescheduling activities (van
Hoof, 2008), nevertheless, living in high-density urban
areas, such as London, may be an important risk factor
for heat-related mortality and morbidity. For example,
the effects of the 2003 heat wave were greatest in
London and many of the summer excess deaths that
occurred during the August heat wave event may be
attributable to the urban heat island effect (Greater
London Authority, 2007). Furthermore, recent studies
have shown that the costs of poor indoor environment
for the employer, the building owner and for society as
a whole are often considerably higher than the cost of
the energy used in the same building. It has also been
shown that good indoor environmental quality can
improve overall work and learning performance, while
reducing absenteeism (see Chapter 14 for more details).
This has led to the development of another EU
standard: pr EN 15251, Indoor Environmental Input
Parameters for Design and Assessment of Energy
Performance of Buildings Addressing Indoor Air
Quality, Thermal Lighting and

Acoustics. This standard is applicable mainly in non-

Environment,

industrial buildings where the criteria for indoor
environment are set by human occupancy and the
production or process does not have a major impact on
indoor environment.
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After reading this brief introduction, we hope that
you are convinced that sustainable building design and
engineering require an integrated approach to energy,
health and the operational performance of buildings.
The following chapter will attempt to answer how to
actually create sustainable, healthy and viable
communities with positive neighbourhood identities.
Of significant importance to this book, it takes
architectural and building service engineers out of their
comfort zone and into the deep waters of urban
planning and social geography: highly recommended.
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Building Sustainable Communities:
Combining Social and Physical Perspectives

Gemma Moore, Irene Perdikogianni, Alan Penn and Mags Adams

Introduction

Sustainability has moved from a goal to a necessity in the
urban environment. The recent focus of urban planning
and urban regeneration practice has been to create
sustainable, healthy and viable communities with
positive neighbourhood identities. Visions of thriving,
mixed-use, economically stable and socially inclusive
cities with clean, green, safe neighbourhoods have been
presented as the possible future of many urban areas.
However, how to actually create such areas and
communities is not entirely clear. Realistically, an answer
to this question can only be reached using empirical
evidence drawn from the functioning of an urban area
and its dwellers’ experience of everyday life within it.
Understanding what makes a city sustainable therefore
requires a dialogue between a huge variety of researchers.
Engineers, geographers, architects, planners, designers,
ecologists and sociologists all conduct research in an
effort to better understand the sustainable cities and
communities. Multidisciplinary research can help us to
analyse how sustainability of the urban environment is
framed, while disciplinary knowledges can complement
each other in producing a perspective of the subject. This
chapter describes both the process and outcomes of
developing a conceptual and methodological framework
to investigate sustainable communities within a
multifarious research team: combining social and
physical perspectives.

Historically the social and physical infrastructures
of the city have co-evolved and are interdependent; yet

we do not fully understand their interaction (see
Hommels, 2000). On the other hand, earlier studies
conducted by academics such as Martin (1972) or
Hillier and Hanson (1984) suggested that the way in
which the physical environment of a city or a
neighbourhood is arranged forms new possibilities for
the way in which people choose to live and work.
However, to date, the focus of research has either been
on individual perceptions and attitudes towards specific
‘places’ or on more generalized design features of urban
areas. In this chapter we describe multidisciplinary
research that marries these two approaches. Focusing
on Clerkenwell in London, UK, as a case study of a
vibrant urban community, we present a new way of
thinking about contemporary urban communities. To
illustrate the wide range of complex interactions
between the physical, social and economic processes of
the urban mechanism, our study combines quantitative
analysis of Clerkenwell’s street layout (incorporating
information on its usage and the historical formation
and transformation of the urban fabric of the area) with
qualitative information on perceptions and behaviours
of city centre residents.

Background: What is a sustainable
community?

The concept of a sustainable community is inherently

a spatial construct, focusing on place-based

communities. Sustainable communities is now central
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to UK developmental policy; for instance, Living Places
(ODPM, 2002), Sustainable Communities Plan
(ODPM, 2003) and Planning Policy Statement 1I:
Delivering Sustainable Development (ODPM, 2004a) all
refer to this notion, presenting an intertwining of the
discourses of sustainable development and sustainable
communities. The governments definition of a
sustainable community clearly embodies the key
principles of sustainable development; it states that
sustainable communities are ones which:

... meet the diverse needs of existing and future residents,
their children and other users, contribute to a high quality
of life and provide opportunity and choice. They achieve
this in ways that make effective use of natural resources,
enhance the environment, promote social cohesion and
inclusion, and strengthen economic prosperity. (ODPM,

2004b, p35)

Within urban spatial policy, the government promotes
that a sustainable community has seven essential,
balanced and integrated components (an active and
cohesive community; well run in terms of governance; is
environmentally sensitive; is a well-designed built
environment; is well connected; has a thriving economy;
and is well serviced), which should underpin planning
and design processes.

The definition of a sustainable community
describes a particular ‘type’ of neighbourhood, with a
well-designed  built
employment opportunities, and a certain degree of

environment, a range of
social interaction and social cohesion that facilitates
Nevertheless, the

involves a

social order. formation of a

neighbourhood
experience with a physical space; therefore, the defined

social-psychological

spatial area of a neighbourhood can be seen as subject to
how people use and feel about the built environment.
The geographer Doreen Massey has explored and
strived to explain the complexities of this relationship
throughout her work (see Massey, 1994). Massey argues
that a person’s development of place is an ongoing
formation of social relations, interconnections and
movements. Both Jacobs (1961) and Lynch (1960,
1984) have been instrumental in exploring spatial
layouts and components that influence the prosperity of
neighbourhood life (i.e. central points; clear flows in
and out; places for people; a visual identity; shared open
spaces; common eye on space; detailed design features).
In particular, the street combined with the social activity

that takes place on its frontage emerges as one key
element of analysis in this stream of research. For Jacobs
(1961), Appleyard (1981) and Sennett (1994), street
layout and its properties affect the possibility and form
of encounters between people. In contrast Barton et al
(2003) put people at the heart of creating sustainable
neighbourhoods and communities. Barton suggests that
while urban form can influence patterns of movement
and interaction, so too can factors such as the way in
which schools are designed or the existence of local
associations. Barton looks at the social, economic and
environmental factors that influence people’s quality of
life, and illustrates that to understand how sustainable
communities can actually be achieved and maintained is
a multifaceted, complex issue requiring an approach
that is likewise multifaceted and complex.

A multidisciplinary
research strategy

As multidisciplinary work thrives, innovative methods of
data collection and measurement are slowly emerging
within and between many disciplines. We outline an
excellent example of how methodologies can be
moulded and experimented with. VivaCity2020: Urban
Sustainability for the 24 Hour City is a large
multidisciplinary research project within the Engineering
and Physical Sciences Research Council (EPSRC)
Sustainable Urban Environments (SUE) consortium,
aiming to develop an in-depth understanding of human
behaviour in urban environments and to create new
innovative tools and techniques to support sustainable
design decision-making. A research strategy was
developed to explore both the more experiential side of
city centre living alongside the collection of quantitative
data on the urban layout and form.

Example case study

An area within Clerkenwell in the London Borough of
Islington, to the north-east of central London, was
selected as a case study area. Clerkenwell is one of
16 wards located within the London Borough of
Islington (see Figure 1.1). Parts of the ward (including
Clerkenwell Green, the historical heart of the area) are
designated as conservation areas by Islington Council,
meaning that special planning policy applies to protect
the diverse character of the ward. This area is
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Source: based on OS Master Map, Ordnance Survey

Figure 1.1 Map of Clerkenwell, Islington, London'

residentially diverse, incorporating social housing
alongside privately owned flats and houses, and is
economically diverse with a variety of shops,
workshops, wholesale, offices and entertainment
facilities. The area was selected as an example of a
diverse and viable urban neighbourhood.?

An examination of the way in which this area has
evolved and been transformed throughout its history
clearly shows that its diverse character, protected under its
current status as a conservation area, is an outcome of
Clerkenwell’s lack of economic success. This paradox in its
development could be better understood in comparison
with its adjacent thriving central business district: the City
of London. The latter has developed and redeveloped its
buildings over the years, and in doing so has readjusted
the alignment of streets, amalgamated blocks and
subdivided blocks, and radically changed its structure to
accommodate new economic needs. Clerkenwell’s spatial

structure originated as an area of low-lying land traversed
by the (now obsolete) River Fleet outside the walls of the
City of London, used for the major cattle market for the
city, and is broken up by a series of larger monastic
properties and mansions (Pink, 2001). It prohibited its
redevelopment following similar City of London urban
development mechanisms. Although 19th-century road
improvement programmes constructed ‘bypasses’ in the
area, such as Farringdon Road and Clerkenwell Road, to
take people and traffic through the area on larger-scale
trips, Clerkenwell remained a marginal area in the larger
processes of change within the city as a whole
(Perdikogianni and Penn, 2005).

Methodology

Thirty-four Clerkenwell residents took part in a photo
survey, a sound walk and a semi-structured one-to-one
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interview in order to produce data on their perceptions
of their local environment. An interview date was
scheduled with each participant and approximately two
weeks earlier a disposable camera (27 exposure, 35mm
film, 400ISO with flash), a photo survey log sheet, a
return envelope and detailed instructions were sent out.
Participants were asked to take photographs of their
local area (incorporating both positive and negative
aspects), noting the time, date, location and a short
description of the photograph on the log sheet provided
(the photo survey). Not wanting to be too prescriptive
in telling participants what to photograph, the
instructions simply stated: “We would like you to take
photos that record both the positive and negative
aspects of your area.” This gave participants the freedom
to take photographs of whatever they wanted at times
and locations convenient to themselves. Cameras were
returned to the research team after a week; the
photographs were developed and catalogued according
to the log sheet. At an agreed time, the researchers
arrived at each participant’s home. Participants were
asked to complete a short questionnaire with general
background information (personal data, household
details,
morphology and health details); they were also invited

characteristics, residence local ~ urban
to identify a ten-minute walking route around their
local area and to mark it on a large-scale map, centred
on their home, supplied by the researchers. This map
was then used as the basis for a sound walk of the local
area. A sound walk is a walk around an area where the
senses are directed towards the sounds that are heard,
rather than the more commonplace sights that are
viewed. On return to the participant’s home, a semi-
structured interview was conducted by one of the
researchers. The interview was based upon a number of
general questions about the urban environment, made
specific to the resident’s locality. Participants were asked
to refer to their photographs and the sound walk at any
stage during the interview.

This study also focused on assembling, describing,
representing and analysing the multiple aspects of the
physical and functional city. These were conceptualized as
interdependent layers within the urban system and by
using a geographical information system (GIS). An
integrated spatialized database was created, bringing
together primary data collected through observation-
based surveys (of the use of buildings and public space)
and pedestrian flow (on streets within the study area’s
boundaries). Physical space was considered to be the

common framework for this study; hence, it was
suggested that a comparative statistical analysis of this
data with topological properties of the streets be made,
considering the urban area as a spatial network. The land-
use data gathered through on-site observation revealed
the detailed activities that the buildings within the area
accommodate. This enabled the investigators to identify
any ‘attractional inequalities’ that may exist. This process
was undertaken at a variety of spatial scales (the study area
as whole, selected sub-areas, streets, and individual
buildings or blocks) and was sensitive to temporal
differences in usage. It was also acknowledged that each
factor can be affected by and simultaneously have an
effect on any other, both spatially and temporally.

The street morphology of the study area was
analysed to identify regularities and irregularities in street
layout that could account for any observed functional
patterns. The analysis was enabled by a spatial model
that represented all streets and public spaces as a line
matrix of direct access in order to get from every location
to every other possible location, following the rule of
creating the longest and fewest lines (axial map)® (see
Hillier, 1999, for details). The produced axial map was
analysed in relation to its ‘topological’ properties by
translating the line matrix into a graph and measuring
the topological properties of the graph. All of the (axial)
lines were differentiated or weighted in relation to their
position in the global network. The measure of
integration (developed during several empirical studies)
quantified the syntactic properties of (axial) lines by
measuring their mean topological distance (depth) from
every other (axial) line considering the (urban) system as
a whole* (see Figure 1.2).

Pedestrian flow was observed on 132 predefined
locations by a group of 16 trained observers.
Pedestrians passing by each location for a five-minute
period were counted. The locations on main streets
were observed for 2.5 minutes. Pedestrians were
classified as locals working within the area and tourists
based on their dress code, distinguishing between men
and women. Overall, pedestrians were observed
periodically in nine pre-decided time slots between
8.00 am and 8.00 pm during one weekday and one
weekend day. For the land-use survey, the study area
was divided into 12 sub-areas and data was collected
through observation for each building and open space
by a group of seven trained observers. Uses of the
ground floor, first floor, the main use above first floor
and the number of floors for all 3618 premises were
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Source: based on OS Master Map, Ordnance Survey

Figure 1.2 Axial map of Clerkenwell overlaid on the surveyed retail and wholesale within study area

recorded. Some additional information on the names
and the opening hours of the retail and commercial
premises was also recorded for capturing the temporal
aspect of city life. The land uses were classified using an
adaptation of the National Land-Use Database
(NLUD) Classification.’ Detailed multilevel land-use
maps were created for the study area.

Investigating the role of space in
the construction of place

We have combined physical and social perspectives in
order to explore the degree that space and spatial
structure affects the way in which the area is used and
experienced today by people who choose to live within it.

The term spatial structure describes the way in
which streets and public space are built in the overall

street network. The land-use map for the ground floor
use for all premises and open space revealed that there
are a variety of uses within Clerkenwell, with an
underlying structure in the way that these are
assimilated within the overall spatial pattern. There is a
clear spatial separation of residential and more mixed-
use environments. There are mono-functional
residential sub-areas in the north of the study area with
a limited range of other uses (i.e. newsagents, local
shops or pubs) often located on street corners, whereas
the mixed-functional sub-areas were located in the
southern sector of the case study area with a higher
number of offices and retail uses. This structural
separation of different uses can also be observed in a
detailed examination of the area. Streets such as
Exmouth Market, a thriving a semi-pedestrianized street
full of restaurants, cafés and sandwich bars, is located
next to Farringdon Road, dominated by housing blocks
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(largely rented) and commercial offices. This mix of
different uses is not arbitrary; but one needs to change
direction to find different spatial qualities. The axial
map described in Figure 1.2 captures this by attributing
different topological values for every change of
direction. This framework describes that these two
streets are one axial line (or step) away. In other words,
residential and retail uses co-exist in Clerkenwell;
however, they are located one step away (Figure 1.3).
The same pattern of spatial separation between the
different land uses is reinforced by the density of
pedestrian flow observed in these environments. Streets
such as Exmouth Market, as emerged from the observed
predefined locations, attracted a high number of
pedestrians (total daily mean per hour adult flow n =
1635), while the north end of Farringdon Road
attracted a smaller number of pedestrians (daily mean

Source: based on OS Master Map, Ordnance Survey

per hour adult flow n = 467). The repetition of these
phenomena in several empirical studies suggested that
attributed topological values of streets (if we represent
the street system as an axial map) have an effect on how
different land and building uses are assimilated within
urban systems, initiating a feedback process from land
uses to the street system with the aid of pedestrian flows.
Shops and restaurants occupy strategic locations that
feature easy access and thus are well connected with the
rest of the system (these are on streets with high global
and local integration values). This is because they seek
to benefit from passers-by since people tend to move on
streets that are well connected to the rest of the street
system (small mean distance from all other streets and,
thus, a high integration value). On the other hand,
residential uses benefit from privacy, so they tend to
form quieter zones in more secluded areas (streets with

Figure 1.3 Around Exmouth Market: The axial map is overlaid on shops, restaurants and houses located on the ground floor
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low global or local integration values). If we think of this
as an eternal dynamic feedback process, then we
understand that the busy areas become busier and the
quiet ones become quieter (Hillier, 1996).

Previous empirical findings have shown that a
substantial proportion of people movement patterns in
cities are generated by the structure of the street system
itself (Hillier et al, 1993). The correlation analysis
between the pedestrian flow and topological measures —
namely, the local integration values of all street axial
lines, suggested that instead of one entity, Clerkenwell is
a structured system of smaller sub-areas. The strict
localism of pedestrian movement patterns suggests that
Clerkenwell is a fragmented system of six sub-areas that
function as independent urban systems within the city
and, as a whole, are relatively poorly related to one
another (Figure 1.4). This spatial structure is, on the one

Source: based on OS Master Map, Ordnance Survey

hand, at the root of Clerkenwell’s failure to redevelop
(remaining a marginal area in the general process of
change); but at the same time it is itself a major factor
since it is considered a ‘well-working’ diverse area that
maintains its local residential, employment and leisure
activities, as well as social and economic networks.

The combination of different wuses (retail,
commercial, residential and services) and networks
within the built environment was a key element of
residents’ perception of their local area. The functionality
of the neighbourhood was a crucial facet for residents
when describing Clerkenwell. The provision of shops,
restaurants, offices, doctors, pubs and transport within
their wider neighbourhood was commonly referred to as
a positive aspect of the area, with participants noting the
convenience of having such amenities and facilities
within close proximity of their home. This is illustrated

Figure 1.4 The identified sub-areas within Clerkenwell’s boundaries
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by quotes from one participant, Luke,® who used the
word convenient to describe Clerkenwell and was
subsequently asked to elaborate further:

It’s close to work, close to transport; it means I don’t have to
use any tubes, trains to get to work, I can walk to work.
Friends live close and that means I can get to my friends.
And even if they don’t live close, it’s easy for them to get
here. Easy for friends and family to get round. There are
loads of facilities around. When they come over it’s always
nice; we've got hundreds of restaurants to pick [from] when
we want to go and eat. We've got shops, we can go and buy
something to make at home. We've got absolutely
everything else that you need; so its just convenient, that’s
it... Is fun. Fun, cause there’s just so many things to do
around here. It makes ... your life easier when things are
convenient and you can get people together and there’s
loads of things to do round here. It just, you know if, if
you're bored with one thing there’s always something else to

do. (Luke)

Luke’s quotes illustrate the advantages that ‘co-existence’
can bring — multiple facilities in close proximity — raising
issues such as convenience, accessibility and diversity.
Alongside the benefits of having a multitude of shops
and restaurants within the wider local neighbourhood,
he, like many other participants, points out the degree of
ease with which it is possible for people to reach the
neighbourhood from other locations or for him to access
elsewhere. In describing neighbourhood life, many
participants took photographs of, and described in
depth, specific aspects of the built environment that were
significant to them. These included physical aspects
(facilities, amenities, places to use, places to visit), visual
aspects (things to see — i.e. views and architectural
features) and social aspects (people — i.e. neighbours,
groups and commuters). For instance, the quotes below
from one participant, Ben, demonstrate this. In
explaining the photographs he took as part of the photo
survey, Ben expresses his delight at being able to have
access to pubs and bars within his neighbourhood.
Interestingly, like many other participants, Ben not only
raises the issues of provision, but also the benefits
brought about by having diversity in choice:

And then I also took pictures of nice places and, and sort
of things to do, which is another thing that Clerkenwell’s
great for. I used to live in Bermondsey and there was
nothing to do, and there were no bars really at all, sort of

All Bar One and a Brown’s and one or two locals, the sort
of ... very soulless chain bars which just are all the same
wherever you go. And what I love about Clerkenwell is its
kind of diversity of ... venues, and so it’s got lots of kind
of interesting little pubs. (Ben)

Despite the positive aspects of convenience and
vibrancy brought about by the wider spatial
connections, participants spoke of the disadvantages
that come with living in such a mixed-use area:

They're the pluses, these are the absolute negatives, this lot
here [referring to his photographs], it says itself, doesn’t it?
That's an incredible amount of pollution down the
alleyway ... there’s always people throwing up everywhere
around this area. (Colin)

The quote from Colin succinctly captures what many
referred to: the localized, direct, negative impacts of the
urban spatial system. Local door-step issues, such as
rubbish, fly-tipping, anti-social behaviour, vomiting
and noise, were all mentioned as aspects of urban living
that residents disliked. Noise was predominately
mentioned; particular sounds (such as traffic, drunken
behaviour, people and sirens) became a noise nuisance
to participants when they ‘invaded’ the participants
homes at particular times of day (i.e. late evening or
early morning). The quotes below from Clive are used
as an example to explain the auditory and visual
experience of having non-residential neighbours ‘one
step away . Clive lives very near to Exmouth Market:

CLIVE: And, the final one is early morning deliveries,
which is an absolute pig.

INTERVIEWER: What time early morning?

CLIVE: Its normally between 5.30 and 6.30 in the
morning and its early morning deliveries and those kind
of metal things on the front of the shops. They’re sort of
rolled up and make a hell of a racket.

INTERVIEWER: The shutters.

CLIVE: The shutters, and then they put the goods in and
then they drive off. And invariably, I suppose once every
three months, somebody leaves their van with the keys in
and it gets nicked, and that happens quite regularly. You
always hear: ‘Oi, get out of my van’, and then you hear
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avan go ‘EEEEr’ down the road and you come out half an
hour later and you see there’s food all over the road
because it’s come out of the back of the van and the thief
has made off with it and it happens quite regularly in
Exmouth Market. And that I, would say, is the major

noise issue.

All participants spoke in depth about the interactions
and conflict brought about from the differing needs of
multiple uses (i.e. working times, access, services and
deliveries). When the differing uses impact upon the
direct locality, these are predominantly referred to as
disadvantages of urban living. Despite the noted
disadvantages, all participants had something positive to
say about living in Clerkenwell. For most, the benefits
of living in the city centre (the wider spatial issues of
accessibility and proximity to neighbouring amenities)
outweighed the negatives (localized problems such as
crime, pollution, rubbish, etc.). Some commented upon
the relationship between the benefits and disadvantages,
noting that the negative aspects came hand in hand with
the positives — what Healey (2006, p130) describes as
the conflicts within ourselves. For example, when asked
to describe the quality of the environment in
Clerkenwell, Linda and her partner responded thus:

INTERVIEWER: How would you describe the

environmental quality of the area?
LINDA: Not bad, I suppose, not bad.

LINDA’S PARTNER: I think, I think, I can see, I can see
it could ... be a lot worse. I don’t think it’s as bad as it
could be, but it’s not good either you know... It's what I
would expect to live in an area like this; it’s safe and ... it’s
central and almost the same; the advantages contradict the
disadvantages.

LINDA: So, it’s noisy and polluted.
LINDA’S PARTNER: Yeah.

LINDA: So it’s not good. But just ... you can’t have it, you
can’t have a lively central area with clean air and calm; it
just doesn’t exist. So it’s one or the other.

Reflecting upon both the benefits and disadvantages of
their local area enabled participants to consider the
exchanges and trade-offs that they make within the

urban environment. Participants commented upon
compromising with the negative aspects to appreciate
the benefits. The quote by another participant, Tina,
clearly illustrates this: Tina spoke in detail about
tolerating the negative aspects of city living
(particularly the noise brought about by living next
door to commercial premises), while recognizing the
overall benefits brought about by the wider
neighbourhood:

But now I've actually ... come to appreciate living in, sort
of in London and all that it offers, you know, cause I can
sort of, you know, I'm close; I like going to exhibitions and
this and that, so ... I'm ... on the spot; I dont have to
make big tube journeys or anything, and, as I say, I've ...
sort of learned to tolerate. It’s not that I like the traffic and
the, you know, various noises and stuff, and I don’t like the
commercial neighbours, you know I get fed up of them;
but I've kind of seemed to overcome, able to tolerate it

somehow. (Tina)

The participants’ accounts of their experience of urban
living alongside the detailed analysis of the urban form
illustrate the complex interconnection and interaction
between spatial scales and context for creating
successful ‘places’ where people like to live and work.
There is a clear difference between perceptions of the
wider neighbourhood and the immediate locality. The
relationships and interactions between these scales
appear to be largely ignored, to date, in urban research;
but as we have demonstrated, this has numerous
implications for how we can make vibrant sustainable
communities in which people choose to participate.

Reflections on processes
and outcomes

Understanding and assessing certain qualities or issues
within the built environment is often a difficul,
intangible process. Multidisciplinary projects can give
rise to exciting research opportunities, innovations in
methodologies and wide-ranging analytical approaches.
Within this chapter we present a project that explores
sustainable communities through combining different
disciplinary approaches.

The multdisciplinary and interdisciplinary turn is
now well recognized across disciplines; but further
debate is necessary to fully understand the impact of
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moving in this direction, for researchers, for knowledge
transfer and for academic disciplines themselves.
However, within this chapter we highlight that through
combining varying approaches and accounts, a
comprehensive knowledge base for certain urban issues
can be constructed. Making connections between
residents’ perceptions of the urban environment and
the physical layout assisted understandings of the trade-
offs made by city residents living in urban areas.
Understanding how the identity of a neighbourhood is
formed is extremely important in appreciating the
functioning of this area as an urban system; our
evidence in the case study of Clerkenwell reinforces this
suggestion. Furthermore, our findings suggest the
understanding  the
interconnection and interaction between spatial scales

importance  of complex
and context for creating successful ‘places’ where people
like to live and work. For instance, a city centre
resident’s local environment could be the house in
which they live, the surrounding neighbourhood or
even the city itself. There is a complex interconnection
between each of these environments — a house in an
urban area does not exist in isolation. It is part of a
wider neighbourhood, which is in itself part of the city
network. Perceptions of each may also vary (and, in
turn, influence each other). We have found that these
spatial scales are particularly noticeable in people’s
accounts of their experiences and the trade-offs that
they make in order to live in the city centre.

Considerations

This chapter has described both the processes and
of developing a

outcomes conceptual and
methodological framework to investigate sustainable
communities within a multifarious research team
combining social and physical perspectives. From our
experience we would like to raise a number of aspects

for consideration for future research within this field:

e There is a need to understand urban communities
both from a physical and social perspective (i.e.
what it means to co-exist in shared mixed-use spaces
and how places can be made out of such spaces).

* Building sustainable communities requires a
coordinated joined approach involving a range of
academics and practitioners (i.e. engineers,
planners and sociologists).

¢ Combined
complement each other in producing a larger
perspective and richer understandings of
sustainability within the built environment.

* People other than official ‘experts’ may have

disciplinary ~ knowledge  can

insights into research, particularly with regard to
social and physical aspects. In the context of
research within specific geographical areas,
residents may be considered ‘local experts’ about
aspects of their neighbourhood and its conditions.

*  DPutting people in groups representing different
academic disciplines, professions or expertises does
not necessarily guarantee interdisciplinary practices —
integration of different domains of research and
forms of knowledge requires thoughtful and
strategic facilitation.

The ability of designers to make more sustainable
decisions relies upon their having accurate and relevant
information to do so. Although the social accounts
outlined in this chapter are very different from the
analysed physical urban form, combined together, they
provide a detailed comprehensive knowledge base on the
current conditions within the case study area. We urge
that decision-makers take a holistic approach when
exploring sustainability in the built environment,
thinking about the wider relationships and connections
between the physical environment and society. Effective
sustainable decisions require designers to consider a range
of knowledge and understandings (i.e. disciplinary,
academic, professional, expert and lay) to be used at
different stages of the design process. We highlight that
local residents have valuable understandings of their local
environment that would be beneficial to urban designers
if they were listened to. However, key deliberations about
building design often do not adequately involve local
people. This requires the use of various targeted
and  public

Recruitment is a time-consuming process; but with effort

recruitment engagement  practices.
a diverse range of participants can be mobilized. We argue
that using a combined qualitative (social) and
quantitative (physical) methodology would give built
environment designers a better understanding of a given
environment or building. For instance, we have illustrated
that residents’ perceptions of their environment may be
significantly improved by addressing door-step localized
issues such as noise, rubbish and fly-tipping at the design
stage by providing mechanisms for preventing or
minimizing the impact of such issues.



BUILDING SUSTAINABLE COMMUNITIES: COMBINING SOCIAL AND PHYSICAL PERSPECTIVES 17

Acknowledgements

This study forms part of the EPRSC-funded
Sustainable Urban Environment Consortium Project
VivaCity 2020: Urban Sustainability for the 24 Hour
City (grant reference GR/518380/01). The authors
acknowledge the support and contribution of all of
their colleges involved in work package 2 and 4 (see
www.vivacity2020.eu/).

Notes

1 This map is based on data provided through EDINA
UKBORDERS with the support of the Economic and
Social Research Council (ESRC) and Joint Information
Systems Committee (JISC) and uses boundary material
that is copyright of the Crown.

2 For further exploration of the location and wider context
of the case study area, please use the search terms ‘UK,
London, Farringdon Road’ in online maps such as
Google™ Maps.

3 The axial map is based on Ordnance Survey Master Map
data courtesy of Ordnance Survey for the EPSRC-funded
project VivaCity2020.

4 Global integration (or radius n integration — INT R(N))
measures the mean depth (distance) of all axial lines in a
plan from the line in question and then normalizes this
for the number of lines that are present in the plan. Local
integration (or integration radius 3, INT R (3)) accounts
for the relationship between each line and all other lines
restricted to two changes of direction away from it (Hiller
and Hanson, 1984).

5 NLUD Classification Version 3.2.

6 The participant names quoted within this chapter are
pseudonyms that were given to each participant.
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ENERGY AND BUILDINGS






Introduction: Towards Zero

Carbon Buildings

Dejan Mumovic and Mat Santamouris

Chapter 2 gives an overview of building physics and
highlights the importance of energy-saving houses to
sustainable building engineering and design. Several
forms of energy-saving buildings, such as low-energy
houses, 3 litre houses, passive houses, zero-energy
houses, energy self-sufficient houses and plus-energy
houses have been outlined.

Chapter 3 defines various energy rating indexes
(operational rating, calculated rating, design rating,
asset rating and tailored rating) used for the assessment
and prediction of energy use in buildings and describes
both heating and cooling energy monitoring
procedures. The implications of European Union (EU)
Directive 2002/91/EC on the energy efficiency of
buildings are discussed. For example, the introduction
of the energy performance certification of buildings has
resulted in the development of various methodologies
(i.e. diagnostic tools) that may assist facility managers
and energy monitoring professionals to detect faults or
malfunctions in the energy behaviour of buildings. It is
believed that energy consumption monitoring will
contribute to the development of building energy
performance classification and more comprehensive
energy benchmarking systems.

Chapter 4 defines energy modelling as the key
element of the broader discipline called building
simulation, a domain that, apart from thermal aspects,
also studies (day)lighting, moisture, acoustics, airflow and
indoor air quality. After an overview of various aspects of
energy modelling, the need for full co-disciplinary energy
modelling is highlighted, allowing heating, ventilating
and air-conditioning (HVAC) system experts, control
system developers and architectural designers to add
model components to a shared multi-domain responsive
energy model during full concurrent real-time
collaborative design of all systems.

Chapter 5, in a straightforward, no-nonsense way,
describes various strategies in which the energy
consumption of buildings can be reduced at design
stage. This chapter discusses ways to reduce energy for
heating (i.e. optimize the building envelope), reduce
energy for cooling (i.e. optimize the use of natural
climate features), reduce energy for lighting (i.e.
integrate daylight with artificial light), reduce energy
for equipment/processes and investigate the use of
renewable and integrated energy sources.

Chapter 6 investigates the use of renewable and
integrated energy sources. It clearly states that the
challenge is to find renewable energy supply solutions
that are socially equitable and environmentally
acceptable, and that meet needs at reasonable cost. It has
been argued that there is no global best renewable energy
solution for cities; systems have to be designed to suit the
city, regional, national and international context.

As growing environmental awareness has focused
human attention on the utilization of renewable
energies, Chapter 7 offers one of the possible solutions —
built

Interestingly, the idea of using a reverse heat engine as

heat pumps for urban environments.
a heat pump was proposed by James Thomson and his
brother William Thomson (later to become Lord
Kelvin) in the middle of the 19th century; but it was
only during the 20th century that these practical
devices came into common use. What does the 21st
century bring to electrically driven heat pumps?
Finally, Chapter 8 explains that the life cycle of a
building as well as of other systems (processes, services,
etc.) is similar to the lifetime of biological organisms. In
the same way that biological organisms originate,
reproduce and, finally, die, buildings are constructed,
used, demolished and disposed of. This chapter discusses
both positive and negative aspects of the life cycle
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assessment (LCA) of buildings, including the most
important one: LCA cannot take into account or predict
future changes in current technology or demand.

Last but not least, at the end of Part II of the book
we have included three case studies:

o Chapter 9, Energy and Environmental Monitoring.
The aim of this chapter is to guide researchers
along a practical methodology for energy and
environmental monitoring studies to address fully
the specific research questions under investigation
and underpinned by benchmark methods, and to
recognize the potential for wider supplementary
research that can add considerable value to the
original monitoring study. The topics are
illustrated via a case study of 29 dwellings in
Milton Keynes, UK.

o Chapter 10, Energy Modelling. There are two
principal approaches that can be used to forecast

the energy use and CO, emissions of a particular
sector of the economy — namely, top down or
bottom up. The aim of this case study is to describe
in detail the development of DECARB, a
physically based model of the UK housing stock
that is capable of forecasting the energy use and
CO, emissions attributable to this sector, under a
range of possible futures.

Chapter 11, Energy Efficient Refurbishment of
Buildings. A Policy Context. The aim of this case
study was to investigate the effects of German
climate change policy on the reduction of carbon
emissions from existing dwellings. The first part of
this chapter reviews the policy landscape in
Germany and the second part investigates the
German CO, reduction programme in practice.
The latter consists of a detailed calculation of the
energy consumption for space heating and
domestic hot water services of a building.



Energy Efficiency and Thermal Envelope

Jurij Krope and Darko Goricanec

Energy efficiency of buildings

Since ancient times people have dealt with the problem of
constructing buildings with adequate thermal comfort.
The crucial question was how to make a house warm in
winter and cool in summer. Early literature in this field
considers the concept of the Socratic House and provides
a hypothetical description of such a building. The essence
of Socrates’s studies was the influence of solar motion
upon the shape, material and construction of a building.

This relationship has been continuously conserved
throughout the centuries. In order to realize these ideas
and technical solutions, the European Union (EU) has
accepted and legislated several directives on the energy
efficiency of buildings. They are obligatory for EU
member states.

If we review the German regulation EnEV, 2002
(Deutsche Regulative EnEV, 2002), we discover that
the energy efficiency of a building depends upon total
energy consumption for a building’s operation (i.e. the
sum consumption of energy for electricity, heating and
warming clean water).

The construction of new buildings should therefore
be considered from the new total building performance
(TBP) point of view, which represents physiological,
psychological, sociological and economic perspectives,
with an emphasis upon the following aspects of
building performance: visual, spatial, thermal, air
and building
www.ctbp.bdg.nus.edu.sg).

TBP represents the new paradigm for buildings,
encompassing a systematic approach from the very

uality, acoustic integrit see
q ¥s grity

beginning of construction, appropriate methodology and

interdisciplinary  cooperation (between architects,

engineers and builders) throughout all stages of
construction, which enables different demands to be met
in order to achieve the desired performance of the building.
The following interactions are of particular importance
(Tabunchikov and Brodatch, 2005, pp33-38; Kwak Wai
et al, 2000):

e choice of location;
e architecture;
* interior;
*  daylighting of space;
e  placement of optical bodies;
e choice of material;
e construction of facades;
e final treatment; and
* technical solutions, including choices dealing with:
— the heat source (is it possible to use renewable
energy sources?);
— the heating system, ventilation and air
conditioning; and
— the control system.

This is the optimal way to achieve minimal energy
consumption and the energy efficient construction of a
building. A basic requirement of energy efficiency is to
reduce heat losses through the building envelope and to
exploit solar energy, which yields a real effect only if
there is good thermal protection and if exploiting heat
from inner sources.

When calculating gains from solar energy, the
orientation and thermal characteristics of transparent
surfaces, together with the possible effect of shading,
the angle of incidence of sunlight and dirt on windows
all have to be taken into account.
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Gains from inner energy sources are due to heat
released by the operation of electrical machines and
devices inside the building, heat released by humans
(around 100W, depending upon physical activity), the
dishwasher (1kWh/person), the washing machine
(0.76kWh/person) and the stove (0.20kWh/person). A
fraction of inner heat gains is lost on evaporation
(=25W/person) and cold water (-5W/person).

A building’s heat losses are the consequence of
transmission and ventilation heat losses. Transmission
heat losses are caused by heat transfer through non-
transparent building elements (wall, floor, ceiling, etc.)
and transparent building elements (windows and special
types of building envelopes), whereas ventilation heat
losses are due to the heat exchange between the rooms
inside the building and its surroundings. To reduce
transmission heat losses, the shape factor of the building,
representing the ratio between the surface area and the
volume of the building, should be as small as possible.
The most appropriate types of buildings are therefore
square-, circle-, elipse- and octagon-shaped buildings.

Energy-saving buildings

Energy-saving buildings represent a new trend in the
context of sustainable and quality architecture; besides
their low consumption of energy due to their excellent
thermal envelope, they provide a high level of comfort
and pleasure. Today, there are several forms of energy-
saving buildings:

* low-energy houses;

¢ 3 litre houses;

e passive houses;

*  zero-energy houses;

*  energy self-sufficient houses;
*  plus-energy houses.

Low-energy house

Low-energy houses are buildings with annual thermal
loads below 80kWh/m?a (8 litres of light fuel oil/m? of
residential area/year), in line with the new European
rules, determining the highest annual consumption of
energy for heating (e.g. in Germany) as:

%3(26+13-fo) (1)

Table 2.1 Allowed heat loads

Country Q/A q
(kWh/m?Za) (W/m?)
SLO 45 + 40 f 6+5.33f
G 26+ 13 f; 225+ 1.6 f
A 24.55 + 81.82 f 3.11 + 1036 £,
LEB 13.64 + 45.45 f; 1.73 +5.76 f;
PEB 4.1+13.64 f 0.5+ 1.73 f;

Notes: SLO = Slovenia; G = Germany; A = Austria; LEB = low-energy
house; PEB = passive house.
Source: Novak (2005, p21)

where £ — the building shape factor (f = A/ V) — is the
ratio between the outside surface area of building
construction and the external volume of heated space
in the building.

For some other countries the values are given in
Table 2.1.

The basic requirements that allow for the
construction of a low-energy building are:

*  compact construction;

* adequate thermal insulation;

¢ controlled ventilation;

* adequate choice of heating system;

* airtight building envelope;

* thermally insulated windows;

* inclusion of active (solar collectors) or passive
(glass surfaces on the southern side of the building)
solar heating.

3 litre house

The annual consumption of energy for heating a 3 litre
building is 30kWh/m?a, when the airtightness is
n, <1h™. A conventional heating system without heat
bridges is the most appropriate, with a built-in
ventilation system for recovering the heat of used air or

a solar collector for heating clean water.

Passive house

Passive houses feature architecture where heating
occurs through a heat pump together with solar
collectors, and where the heat of used air from inside
rooms is recovered (see Figure 2.1).



In a passive house, the heating season is usually
shorter compared to a classical house: the heating season
is shortened from 225 days to approximately 150 days.
Additional heating is only needed for a period of 30 to
50 days; the rest of the time the gains of solar energy and
inner sources are sufficient (Passiv House Institut, 2004,
www.igpassivhaus.at).

The basic requirements for constructing a passive
house are as follows:

e asouth—north location;

*  transparent glass surfaces on the southern side;

*  heat transfer coefficient of glass panes with frames
of U< 0.8W/m?K;

*  heat transfer coefficient of non-transparent elements
of U< 0.15W/m?K;

*  construction without thermal bridges;

* appropriate ventilation nEOPPHSO.Gh*] and
airtightness;

* ventilation system with recovery of heat from used
air;

*  a heating system connected with the solar system
and the heat pump;

*  average value of the heat transfer coefficient of the
external envelope of U < 0.2W/m?K.

The annual consumption of heat is less than
15kWh/m?a, which equals approximately to 1.5 ’litres
of light fuel oil/m?*/year. Total consumption of primary
energy is less than 120kWh/m?%a, the annual
consumption of electricity is <18kWh/m?a, and the
heat losses are <10W/m?.

Fresh Waste
air  air

Solar cells

Cold
air
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Figure 2.1 The architecture of a passive house
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Zero-energy house

Zero-energy houses are insulated with a 40 to 60cm
thick layer of thermal insulation material. There are no
thermal bridges or conventional heating systems, and
these houses actively and passively exploit solar energy.
Zero-energy houses feature a heat depositor and are not
dependent upon the public electrical grid. The heat and
electrical energy needed is entirely produced through
solar energy.

Energy self-sufficient house

Energy self-sufficient houses generate energy for heating,
cooking, water heating and the operation of home
appliances through active utilization of solar energy. These
houses are not connected to the public electrical grid.

Plus-energy house

A plus-energy house has all the characteristics of a self-
sufficient house but also uses all available means of energy
conservation.

Currently, the comparison of different types of
energy-saving buildings shows that the passive house is
optimal. A passive house is a consistently built low-energy
house with technical improvements in the building
envelope and in the house technique. Zero-energy
buildings, energy self-sufficient buildings and plus-energy
buildings require additional improvements that are not
economically viable considering the current prices.

Construction materials

Several building materials are eco-friendly and, due to
their properties, help to conserve energy while heating.
Therefore, when choosing the materials and the
technology, it is worth taking into account the following:

* The chosen building technology should be
standardized and tested.

¢ The construction should include natural and eco-
friendly materials.

e The thermal building envelope should satisfy the
standards of a passive house.

e The building should be airtight and diffusion permissive.
Prefabrication of structural elements ensures
quality and shortens the construction time.
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Table 2.2 Use of energy for producing materials

Material Cellulose Cork Coconut  Mineral Perlite Wood Expanded Polyurethane
fibres wool wool polystyrenel

Energy

(kWh) for 8.3 80 12 15-85 12-24 50-70 40-90 50-60

U= 0.4W/m?K

Calculations show that when using artificial and ~ Next:

inorganic building materials, more harmful gases are N

emitted to the air by the production of materials than are 1_1 i Ax; n 1 3)
saved with the passive house in 30 years — and this is the U «;

time needed for the building to require renovation. In

addition, use of primary energy for producing different ~ where:

materials differs depending upon the material’s thermal

insulation capability (see Table 2.2). * &, = internal heat convection coefficient (W/m?K);
Wood, straw (which is compressed into bales with ¢ N = number of homogeneous layers of building
polypropylenic strings or wires), reedy plates (which are construction;

hlghly resistant to humidity, but not hlghly thermally L] Ax = thickness of a homogeneous 1ayer (m),
insulative) and clay, from which brick-shaped products
can be made that have a high capability of controlling
humidity and conserving heat, are the most
environment-friendly materials.
Due to their accumulation capability, massive brick,
concrete or silicate brick walls are also appropriate
building materials for conserving heat. However, their
shortcoming is that these materials are cold to the touch,
which is not always pleasant from a comfort viewpoint.

Building envelope

Heat transfer

The basis of energy-saving buildings is an efficient
building envelope with all of the accompanying
construction elements.

To be able to evaluate the energy effect of the building
envelope, there are certain rules of heat transfer based on
three basic modes: conduction, convection and radiation.

Heat flux is determined by the following equation:

O=U-A-(T,~Ty) 2)

where:

¢ U= combined heat transfer coefficient (W/m?K);

¢ A = heat transfer surface area (m?);

* T = inside air temperature (K);

* T, = outside air temperature (K). Figure 2.2 Temperature in a multilayer homogeneous wall



*  a, = external heat convection coefficient (W/m?K);
* A= thermal conductivity of the building element

(W/mK).

It is important to know how to determine the temperature
field within the homogeneous building construction in a
steady state in order to be able to decide on the location
of the melting point (0°C), and the temperatures on the
internal and external surface of the building envelope (see
Figure 2.2). The appropriate equation is:

N

‘I’:%(E’*Tﬂ):A_xl(Tz‘l*ﬂ) @
N
:_Az (11 —Ton ) = g (Top — Tp)-
X2

Thermal bridges

Thermal bridges in building construction increase the heat
losses of a building and the occurrence of condensation
and mould. It is impossible to build a house without
thermal bridges; however, with proper wall construction,
their occurrence can be reduced to a minimum. In
addition to the increased use of energy, the consequences
of thermal bridges include deterioration of indoor air
quality parameters and mould growth, as well as defects in
the building itself after a certain period of time.

Special attention needs to be paid to the contact
between the window jamb and the insulated wall. The in-
building of the window shelf has to be made together with
the insulation of the part of the brick wall below the shelf.

A thermal bridge can also occur at ferroconcrete
bands in the corner, even though an insulation of
appropriate thickness is later inserted from the outside.
There are two possible causes for this: one is of a
geometrical and the other is of a physical nature. The
corner features an interior surface that is substandally
smaller than the exterior surface (for receiving heat) —
and this is the geometrical cause. The physical cause, on
the other hand, lies in the fact that concrete has a much
higher thermal conductivity than brick. To avoid
unnecessary and unpleasant consequences of thermal
bridges, the thermal insulation thickness has to be
increased.

The temperature in non-insulated and insulated
corners of two walls (the outside temperature is —10°C
and inside temperature 20°C) is shown in Figure 2.3.

A ferroconcrete plate also represents a classical
thermal bridge, passing over to the balcony, leading
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Source: Zbasnik Senegac¢nik (2007)

Figure 2.3 Temperature in non-insulated and
insulated corners

away a substantial amount of heat, and almost always
causing mouldiness under the ceiling. The reason for
this is the large surface area of the balcony, acting as a
cooling rib. The problem can be solved by a thermal
separation of the balcony from the ferroconcrete plate.
It can also be insulated from all sides or placed onto
console holders to reduce the cooling surface.

Windows

Windows, providing natural light, ventilation and
weather protection, are a very important component of
office buildings, passive houses, etc.

The energy balance of a building shows that windows
contribute the most to energy loss when non-transparent
parts of a building are well insulated. Thus, technical
solutions for windows are directed towards heat loss
reduction and the search for the possibility of using solar
energy (Aydin, 2006, p109). This is done through the use
of insulated windows, which have the following
properties:

* multilayer composition of insulation glass;
e high degree of spectral light transparency
(t 2 72 per cent);
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U = 3W/m2K U =1.7W/m2K

Source: Umberger et al (2006)

U = 1.3W/m2K U = 0.8W/m2K

Figure 2.4 Heat-insulated windows: The temperature of glass surfaces

e neutral spectral light reflectivity (Re = 99);

e high degree of total light transparency (g =
60 per cent);

¢ low value of heat transfer coefficient: U> 1.3W/m?K.

Heat transfer through an insulation glass is determined

by:

e thermal radiation between glass panes;
e heat conductivity of gas between glass panes;
e convection of gas between glass panes.

On the southern side of the building, where we expect to
have solar energy gains, glass surfaces are recommended to
be as large as possible and, to the contrary, as small as
possible on the northern side. Southern orientation enables
maximum exploitation of solar energy in winter and other
colder seasons, making a 40 per cent contributdon to
heating the building. A deviation of 10° from the
building’s southern orientation worsens the energy
number by 0.1kWh/m?a. Therefore, the recommended
deviation from the south is not more than + 20°.

To better understand the change of U - the value of
heat transfer coefficient of a two-layer glass covered by
insulation — we should know that for a two-layer glass
without insulation, about two-thirds of heat loss are due
to heat radiation (¢ ~ 0.85) and only one is the result of
conduction and convection in the interspaces of the
window. Covering either one of the two glass surfaces by
an insulation film reduces thermal radiation practically
to zero, and any further heat loss is only due to
conduction and convection.

Insulation films should fulfil the following
requirements:

*  high degree of total light transmittance;
*  natural light reflectivity;
¢ low value of radiation.

It is important to know that glass has optical properties
that induce the greenhouse effect. Normally, glass is
highly transparent at wavelengths of sunlight (0.3 < A <
3 pm) and almost opaque for infrared (IR) waves,
which are emitted by a house’s interior objects.

Modern windows installed in energy-saving houses
consist of two or three glass layers with inert gases (such
as argon, krypton, etc.) in the interspaces, and are covered
with thin layers of low emissive film on the inner surfaces
to reduce the long-wave heat radiation transmission.

Low-energy houses use two-layer insulated windows
with U= 1.1 to 1.3W/m’K, while the passive houses have
three-layer insulated windows with U < 0.7W/m?K. This
reduces the temperature difference between the room air
and the window surfaces (see Figure 2.4) and thus ensures
higher comfort. Room air temperature can be lowered by
several degrees. Every 1°C of room temperature reduction
means 6 per cent savings in fuel consumption.

The standard for a passive house requires the surface
temperature to be above 12°C at outside temperature of

-10°C.

Insulation

A heated building loses its thermal energy by
conduction, convection and radiation. To reduce heat
losses, an appropriate thickness and type of insulation
have to be chosen.

One of the basic indicators of good insulation
quality is the low value of its overall heat transfer



coefficient; in addition, other processes and economic
restrictions have to be considered.
The process restrictions are:

e mechanical resistance;

* allowed temperature range;

* life duration;

*  vapour permeability;

* acoustic insulability;

* environmental friendliness;

*  possible harmful effect on health;

e ease of use; and

*  resistance to chemical impacts and insects.

The economic restrictions are:

*  energy savings; and
*  costs.

Contrary to general knowledge, the thermal insulation
of a building is most important in summer and not in
winter. Bearing this in mind and the fact that we are
facing global climate changes, and that newly built
houses are constructed for some 100 years and that fuel
prices will constantly rise, it is recommended that the
building envelope be insulated with at least 30cm thick
insulation.

In practice, several different types of organic or
inorganic insulations can be distinguished (see Table 2.3).

The most popular and widely used insulation
material is glass wool, which is vapour impermeable,
non-inflammable, noise reducing, resistant to chemical
influences, unharmful to health, can be used at
relatively high temperature, is not water absorbing, and
is environment and user friendly.
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A popular insulation is polystyrene foam in the
form of boards, which are light, environment friendly,
easy to build in, economic, water resistant, and resistant
to acids, bases and microbes.

Transparent thermal insulation materials (glass,
different artificial substances, etc.) enable the heat gains
of solar energy radiation.

Properties of thermal insulations

Thermal insulation should have adequate mechanical
properties, be vapour permeable, durable, heat efficient
and properly installed in the framework of constructing
the building envelope.

In residential areas, substantial water vapour is
formed by breathing, sweating, cooking and other
causes. Even though, at a first glance, it appears that
water vapour cannot affect the insulation and state of
health in a room, the proper installation of insulation
layers is of great significance for vapour permeability
and the microclimate. Consequently, it is important to
ensure controlled heat transfer and water vapour from
the rooms to the sourroundings. This can be done in
two ways:

1 the vapour-impermeable but diffusion-closed way;
2 the vapour-permeable and diffusion-open way.

In the first case we tighten the building with foils,
which do not (or only slightly) let through the water
vapour. The effect is similar to a windjacket, which
occasionally has to be opened for the air to get inside.
This is the same with the building, where we need
to open the windows from time to time to let fresh
air in.

Table 2.3 Insulating materials

Inorganic materials

Natural and organic materials

Mineral fibres Foam materials

Plants and animal fibres Foam materials

Slag wool Expanded glass
Glass wool Vermiculite
Rock wool Perlite

Expanded clay

Coconut fibres Polyester foam

Cellulose fibres Extruded polyester
Wood flax Polystyrene foam

Wool Polyurethane foam
Straw Foamy formaldehyde tar
Cotton

Paper

Cork
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In the second case, we build in vapour-permeable
foils that enable water vapour, formed inside the
building, to be evenly transfered throughout the
building envelope, at the same time enabling a proper
exchange of air and odours.

Vapour-impermeable systems prevent the diffusion
of vapour through the walls and insulation from inside
to outside. As a consequence, the space ‘sweats’. It is
vapour
impermeable system in such a way as to prevent the

therefore important to construct the
penetration of water vapour into the insulation, which
is then difficult to dry. Looking at it from the inside,
the vapour blockade needs to come before the
insulation.

We are familiar with the fact that when air passes
from a space with a higher temperature to a space with
a lower temperature, it emits moisture. To avoid this or
to reduce this possibility to a minimum, the subsequent
rules have to be obeyed:

e Ensure an adequate vapour permeability of thermal
insulation.

e Inamultilayer wall, ensure that each layer, counting
from the inside outwards, is more vapour permeable
than the previous.

This analysis is similar for the roof above a residential attic.

Insulation thickness

Good thermal protection of the building envelope
contributes the most to an efficient use of energy for
heating the building. In deciding on thermal
protection, we take market-accessible technical
solutions and the estimation of their long-term
economic viability as a basis.

When constructing or renovating buildings, it is
worth following the recommendations of the profession,
which are based on economic calculations and
contruction—physical parameters of thermal comfort in
the living environment. The optimum insulation
thickness depends upon climatic conditions, the location
of the building and the heat loads of the house interior.

Taking into account internal heat loads, average day
and average night temperatures (based on a
24-hour/365-day period) at a certain location, the
optimum insulation thickness can be calculated, enabling
the best protection against solar radiation during the
summer and disabling heat losses in the winter.

A classically built house 1is, for instance,
recommended to be thermally insulated in such way
that the external walls attain an overall heat transfer
coefficient lower than 0.4W/m?K.

If we compare the non-insulated brick wall that is
29cm thick with an overall heat transfer coefficient of
1.5W/m?K with a wall insulated with 10cm thick
thermal insulation, the overall heat transfer coefficient
of the latter is only 0.3W/m?K, meaning that the heat
losses are five times less.

Considering the current prices of thermal insulation
materials (e.g. glass wool), a slightly thicker thermal
protection of the building envelope does not represent a
much higher investment; on the other hand, the
building will conform to contemporary standards
regarding the use and costs of energy. Increasing the
thickness of thermal protection from 5cm to 8cm on
the 19cm thick fire-baked brick wall means that the
original price will increase by only about 6 to 7 per cent,
whereas the overall heat transfer coefficient of the wall
will decrease by about 30 per cent.

Usually, we are inclined to build in a thermal
insulation that is too thin, especially at the back plates
facing the ventilated attics and with flat roofs above heated
spaces. The insulation thickness should be between 15cm
to 25cm; with flat roofs it can be somewhat thiner.

If we constrain ourselves to the passive house, we can
find out that its envelope has very good thermal insulation
properties: all of the building elements should have the
overall heat transfer coefficient of U< 0.15W/m?K; often
these values are even lower (U< 0.1W/m?K). The thermal
insulation thickness depends upon the material and
composition of the wall and is normally between 25cm
and 40cm.

If we take glass wool thermal insulation, for
example, with thermal conductivity lower than
0.04W/m?K, we can calculate the overall heat transfer
coefficients for different elements of the passive
building envelope for recommended insulation

thickness (see Table 2.4).

Advanced construction layer

Phase-change materials

The demand for the efficient use of energy encourages
the construction of buildings with very low heat losses
that can only be achieved with the selection of high-
quality materials.
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Table 2.4 Overall heat transfer coefficients of the building envelope for recommended
thickness of glass wool insulation

Building element (construction)

Insulation thickness

Heat transfer coefficient of

(cm) the building envelope
U (W/mZK)
External walls 24-30 0.14-0.12
Ceiling below the non-heated attic 30-40 0.11-0.08
Roof above the heated attic 30-40 0.11-0.08
Floor above the ground 15-20 0.16-0.14
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For this purpose, new materials are being developed in
two ways:

1 materials based on vacuum insulation; and
2 materials that accumulate self-latent energy (phase-
change materials) (see www.corporate.basf.com).

Vacuum-insulating materials do not contain any air or
gas pores and significantly reduce heat leaking. If, with
the use of reflective materials, we also prevent radiation
and additional nano-porosity, we could reach almost
zero conductivity. Phase-change materials (PCMs) are
materials that accumulate energy that is released in the
process of changing aggregate states from solid to liquid
and vice versa.

Microgranulation materials (or ‘special woof”) have
similar characteristics as ice. Ice changes phase when
heated at 0°C and is converted to water. It absorbs a
large amount of heat in the process and this results in
cooling of the surroundings.

Phase-change materials have, for example, been
employed in:

* the conditioning of buildings;

*  heat pump systems;

*  waste heat recovery;

* thermal energy storage;

* the heat depositor of passive houses;

* the construction elements of the building layer, etc.

In practice, we use PCM materials by building them in
the form of micro- or nano-balls into concrete, bricks
or plaster; when they change phase, they absorb a
substantial amount of heat with a consequent
significant rise in temperature.

When ambient temperature around a liquid
material falls, the PCM solidifies, releasing its stored
latent heat. Within the human comfort range of 20°C

to 30°C, some PCMs are very effective. They store 5 to
14 times more heat per unit volume than conventional
storage materials such as water, masonry or rock.

A 15mm thick plaster plate with built-in micro
grains of PCM is, for example, equivalent to a 12cm
thick brick wall or a 9cm thick concrete wall, and it
ensures that heat accumulates during the day, which is
then released during the night when the temperature in
the room falls (see Figure 2.5). As a result, the
consumption of energy needed for heating and
ventilation is minimized. During the summer season,
temperature stability increases and the temperature
inside the building is more pleasant. The temperature
delay is much higher, as shown in Figure 2.6. With
temperature stability, we mark the ability of
construction to maintain stable temperatures in a room
independently of outside changes. In order to achieve
this, the ability of materials to accept and store heat and
to release it when the temperature in the environment
drops is very crucial.

Figure 2.5 A wall with phase-change materials
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Figure 2.6 The time profile of temperature in a wall

Low-energy and passive buildings are becoming a
reality in simple and massive construction. One of the
possibilities for maximizing the heat stability of
building construction is definitively through the use of
phase-change materials. In the same way, we can also
use latent depositors based on PCM in our
heating/cooling systems.

Summary

Any building should be designed and constructed so as
to increase its energy efficiency. The supply of energy to
the building needs to employ innovative solutions that
are technically feasible, are justified in terms of costs,
are acceptable from environmental and social
standpoints, and ensure a conventional level of living
standard and comfort.

Engineering approaches for the economic use of
energy, such as substantive insulation of buildings and
the reduction of thermal bridges, has a limited
influence on energy consumption. It is necessary, in
addition, to apply certain active elements in housing —
the exploitation of solar energy, ambient heat and
wasted heat. Designing such systems requires a special
approach to the problem; considering conventional
energy sources as being economically and ecologically
appropriate is no longer justified.

This chapter points out how important the
integration of all relevant aspects within energy-saving
houses is, with special emphasis on windows, which

contribute to a substantial amount of heat loss and,
consequently, to environmental pollution. Therefore, it
is necessary to encourage new ways of professional
thinking promoted by the political directives of EU
legislation, and to directly influence environmental
standards, which are very important today. In the
process of adopting such directives in EU member
states, a crucial area is the promotion of insulated-
window installation, with clear thinking about
imposing a tax on CO, emissions per tonne or cubic
metre of fossil fuel, cancelling purchase tax or value-
added tax (VAT) for windows with insulated glass, and
offering favourable loans and incentives for such
purposes.
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Energy Monitoring and Labelling
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Introduction

Since Directive 2002/91/EC on the energy efficiency of
buildings was adopted, there has been a strong increase
in the interest in rationalizing energy consumption in
both new and existing buildings. The introduction of the
energy performance certification of buildings has
resulted in the development of various methodologies
(i.e. diagnostic tools) that may assist facility managers
and energy monitoring professionals to detect faults or
malfunctions in the energy behaviour of buildings.
Furthermore, energy consumption monitoring
contributes to the development of building energy
performance classification and more comprehensive
energy benchmarking systems. This chapter defines
various energy rating indexes used for the assessment and
prediction of energy use in buildings and describes both
heating and cooling energy monitoring procedures.

Energy assessment methodologies

The energy classification and the certification of
buildings require an assessment methodology that can
be applied without distinction to new and existing
buildings. To this end, the standard EN 15603: Energy
Performance of Buildings — Overall Energy Use, CO,
Emissions and Definition of Energy Ratings presents
several assessment methodologies enabling one to:

e obtain the same results for different data sets;

*  estimate the missing data and calculate a ‘standard’
energy consumption for air conditioning (heating,
cooling and ventilation), production of domestic
hot water and lighting;

*  assess the effectiveness of possible energy efficiency
improvements.

EN 15603 identifies the end uses to be considered in
order to evaluate the energy performance of new and
existing buildings. The energy performance evaluation
is based on the weighted sum of the calculated or
measured consumptions by primary energy source
(natural gas, oil, electric energy, etc.). According to the
circumstances, we can determine the energy
performance of a building through a calculation model
based on the known building 