

VBA for Beginners

An Introduction to Learn VBA Programming with Tutorials and Hands-On Examples

Text Copyright © Light Bulb Publishing

All rights reserved. No part of this guide may be reproduced in any form without permission in writing from the publisher except in the case of brief quotations embodied in critical articles or reviews.

Legal & Disclaimer

The information contained in this book and its contents is not designed to replace or take the place of any form of medical or professional advice; and is not meant to replace the need for independent medical, financial, legal or other professional advice or services, as may be required. The content and information in this book has been provided for educational and entertainment purposes only.

The content and information contained in this book has been compiled from sources deemed reliable, and it is accurate to the best of the Author's knowledge, information, and belief. However, the Author cannot guarantee its accuracy and validity and cannot be held liable for any errors and/or omissions. Further, changes are periodically made to this book as and when needed. Where appropriate and/or necessary, you must consult a professional (including but not limited to your doctor, attorney, financial advisor or such other professional advisor) before using any of the suggested remedies, techniques, or information in this book.

Upon using the contents and information contained in this book, you agree to hold harmless the Author from and against any damages, costs, and expenses, including any legal fees potentially resulting from the application of any of the information provided by this book. This disclaimer applies to any loss, damages or injury caused by the use and application, whether directly or indirectly, of any advice or information presented, whether for breach of contract, tort, negligence, personal injury, criminal intent, or under any other cause of action.

You agree to accept all risks of using the information presented in this book.

You agree that by continuing to read this book, where appropriate and/or necessary, you shall consult a professional (including but not limited to your doctor, attorney, or financial advisor or such other advisor as needed) before using any of the suggested remedies, techniques, or information in this book.

Table of Contents

1. Introduction

2. Scope

3. Getting Started

3.1 VBA Program Demonstration

4. Elementary VBA Concepts

4.1 The need for VBA

4.2 Macros

4.3 Modules

4.4 Procedures

4.5 Statements and Comments

4.6 Keywords

5. Writing a simple VBA Application

5.1 Writing your first Module

5.2 Basic Message Box Usage

5.3 Saving VBA Programs

6. Data Types

6.1 Numeric Data Types

6.2 Non-Numeric Data Types

7. Variables and Constants

7.1 Variables

7.2 Constants

8. User Interaction

8.1 Displaying Variables’ Content

8.2 Input Box

9. Accessing Sheets Programmatically

10. Operators

10.1 Arithmetic Operators

10.2 Comparison Operators

10.3 Logical Operators

10.4 Concatenation Operators

11. Control Structures

11.1 Decision Making

11.2 Loops

11.3 Control Statements

12. Arrays

12.1 For-Each Loop

12.2 Array Re-Dimensioning

13. Strings

13.1 String Manipulation

14. Date & Time

14.1 Date

14.2 Time

15. Procedures

15.1 Sub Procedure

15.2 Functions

15.3 Pass by Value and Pass by Reference

15.4 Organizing your Procedures

16. Introduction to GUI Programming

16.1 Getting Started

16.2 Buttons

16.3 Text Box

16.4 Combo Box

16.5 Label

17. Programming Examples

17.1 Fahrenheit/Celsius conversion

17.2 Factorial

17.3 Prime or Composite

17.4 Sum and Average

17.5 Simple GUI Calculator

18. Final Words

1. Introduction

Microsoft Excel
 is a spreadsheet application developed by
 Microsoft
 and is a part of
 Microsoft Office
 package. It is available for Windows, Linux, macOS, iOS and Android operating systems.
 VBA
 , a short for
 Visual Basic for Applications
 is an event driven programming language used within
 Microsoft Office
 products such as
 Microsoft Word, Microsoft Excel, Microsoft Access, etc
 . to perform certain tasks. Beyond MS Office, VBA is also supported by software products of other companies such as
 AutoCAD, LibreOffice, WordPerfect, CorelDraw, etc
 .

Visual Basic for Applications is based on Microsoft’s event driven programming language Visual Basic 6
 . In 1998, stable version of Visual Basic 6 was released and support for the same was discontinued in 2008. However, VBA remained popular and Microsoft kept working on it. In 2010, VBA was upgraded to Version 7 (VBA 7). The latest stable release Version 7.1 happened in 2013 and is supported by Microsoft Office 2013 (or Microsoft Office 15)
 and MS Office versions released after MS 2013
 . The latest version of MS Office at the time of writing this book is Microsoft Office 2019
 .

2. Scope

VBA applications can be written inside most Microsoft Office products. However, as the title of this book suggests, we will only learn to write VBA applications for Microsoft Excel. This tutorial is meant for someone who is comfortable with Microsoft Office, especially with Microsoft Excel. Some previous programming knowledge is preferred but not required. Since VBA is an event driven programming language, if you are totally new to programming, the learning curve will be slightly steeper for you. If you have good programming experience, you will really enjoy this book and if you know Visual Basic, learning VBA will be an absolute cakewalk.

This book will teach you the basics of VBA for Excel and in the end, you will be able to write simple VBA applications for Microsoft Excel.

3. Getting Started

To begin learning VBA, you should have Microsoft Excel installed on your computer (VBA is not supported on mobile versions for MS Excel). Microsoft Excel is shipped with Microsoft Office. If you do not have it installed on your computer, you will have to purchase it (Visit https://products.office.com/en-us
 for more information). At the time of writing this book, a month long trial version of Microsoft Office is available at

https://products.office.com/en-us/try
 .

If you already have Microsoft Excel, make sure that the Version is 2013 or later. We will be using Microsoft Office 2016 on a Windows machine for demonstrating examples in this book. If you have Microsoft Office 2013 or later on Windows, Linux or macOS, the examples demonstrated here will work just fine. So, let us get started!

Open Excel and enable Developer mode
 . To do so, click File -> Options
 , select Customize Ribbon
 .

[image:]

Under Main Tabs Ribbon
 , check Developer
 and click OK

 .

A Developer
 tab will now appear on the main ribbon, click that.

[image:]

VBA programs will be written in an application called Visual Basic
 editor
 . To open it, click Visual Basic
 under the Developer Tab. Alternatively, you can hit Alt + F11
 while a spreadsheet is active to access Visual Basic editor. It shall look something like this:

[image:]

If you have followed so far and managed to launch the Visual Basic (VB) editor application as shown above, you are good to go!

3.1 VBA Program Demonstration

Excel spreadsheet is where you will be adding GUI components (such as buttons) and VB editor is where you will be writing the programs. Let us write a simple program to display text in a
 Message Box
 after the user clicks a Button
 . You need not understand any of this; you will learn all the steps mentioned in this chapter step by step as this book progresses. For now, simply follow the procedure. With this, you will learn how to execute a program and perhaps appreciate the beauty of VBA programming and what it can do within Excel.

Under Developer Tab, click Insert -> Command Button
 (under ActiveX Controls
)

[image:]

This will give you the ability to draw a Command Button anywhere on the spreadsheet. To do so, determine the area on the spreadsheet where you want to draw the button, hold down left mouse click, drag the cursor to draw and release the mouse button. This will draw a Command Button as shown below:

[image:]

Let us set this button’s properties. Right-Click
 on this button, click Properties
 .

[image:]

A Properties editor will pop up like this:

[image:]

Over here, you can set different properties of this button such as variable name, displayed text, font of the displayed text, etc. For now, we will only change the displayed text which presently says CommandButton1
 in the spreadsheet. Let us change it to Click Me
 ; the Caption
 field needs to be edited to reflect changes in the displayed text. Go ahead and change the Caption
 field from CommandButton1
 to Click Me
 . An important thing to note here is, this will only change the displayed text and not the variable name of the button which will remain as CommandButton1
 (We will learn more about different properties and what they mean as we make progress). Once the Caption is set, close the Properties Box and the button will now look like this:

[image:]

Now, let us display a message box with some text when the user clicks this button. Make sure Design Mode
 is checked and double click on the button to launch the VB editor; this will automatically take you to the appropriate function which will handle the button click event:

[image:]

Add this line before End Sub
 to pop up a Message Box
 and display a message in it:

 MsgBox ("Hi, Your first VBA program is a success!")

The code should look more or less like:

[image:]

Click the small play button as shown in the following screenshot:

[image:]

This will do a dry run of the code you have just written and if there are no mistakes in your code, you will see something like this:

[image:]

If you are able to see this message, your dry run was a success. Remember, this is the desired output that we want when a user clicks that button. To check if the button click event works, go
 back to the spreadsheet, make sure that the Design Mode
 has been unchecked and click on the button which says Click Me
 . You should see the same output:

[image:]

If you have successfully executed this demo program, congratulations!

4. Elementary VBA Concepts

Now that we have seen how to get started with Excel VBA and have also run a demo VBA application, let us start learning the basics of VBA programming.

4.1 The need for VBA

The purpose of introduction of VBA programming was to automate tasks in Excel and other applications. Excel by itself is a powerful spreadsheet software where you can perform various computations and data manipulations. With the help of VBA, you can push this functionality even further. For example, if you had a file containing student data such as marks scored in each subject in a well-defined form perhaps in a CSV format and let’s say you wanted to calculate the total and allot grades to students. Normally, you would open this CSV file as a spreadsheet in Excel, set formulas to the appropriate cells and get the total marks and so on. On the other hand, using VBA, you can write code to automate all this – the moment you select the data file, data will be fetched from the CSV file, computations will be made and decisions will be taken. This is just an example and you can do a lot more. As you go through this book, you will learn several concepts that will help you write useful VBA applications.

4.2 Macros

A macro is a set of instructions to be executed to carry out a certain task. For example, in Section 3.1
 , we ran a demo VBA application where a message was displayed upon clicking a button. The code that handles button click events in that application is a macro
 . There’s also a feature called Record Macro
 which records user’s actions such as keystrokes and mouse clicks in order and
 replays them whenever needed. The idea behind this functionality is to automate a task which involve static or near static user interaction. However, we will not be focusing on that feature as we would learn to write VBA applications from scratch.

4.3 Modules

In programming and software development terminology, a module is a part of an application which is used to perform a task or a group of tasks. For example, consider a photo editing software. Such a software will be able to open an image file from the disk, provide various option to carry out image manipulation, save the file back to the disk. From a programmer’s perspective, it is much easier to work with such an application if it was divided into distinct modules. In this case, there could be a module which is used to load an image from the disk and save it back and a module to perform image manipulations.

In VBA, a module is a part of an application. This is where you will be writing functional code most of the times (although not going to be necessary always; demo program in Section 3.1
 was not written with modules). An application can have more than one modules.

Here’s how you would insert modules:

Open Visual Basic editor and locate the project section where all your sheets are listed:

[image:]

Right-click on project title, mouse over on Insert
 , select Module
 :

[image:]

You will notice that a new module gets inserted under your project:

[image:]

If you had more than one modules, they all would get listed one after the other as follows:

[image:]

Double clicking on a module name will open a code editor window where you can write code for that particular module.

4.4 Procedures

A procedure is a block of code that is executed as a whole. This block of code can be re-used thus eliminating the need to write the same code again and again. For example, if there are different sets of numbers and their average needs to be calculated for each set. You could write a procedure once and simply use that for every set. In VBA, procedures can be written in two ways – functions
 and sub-procedures
 . There are dedicated chapters in this book for functions and sub-procedures; for now, you only have to understand the key difference – functions return a value while sub-procedures do not.

4.5 Statements and Comments

A statements is used to perform an action. For example, if you want to add two numbers, there will be a statement which will make use of operators and perform arithmetic addition. In VBA, one statement is written on one line. Example:

 Dim number as Integer

 Dim name as String

 X = A + B

Comments are ignored by the compiler and are usually used to describe the code. Comments start with a single quote (‘)
 or with a keyword called REM
 . Example:

 ‘This is a comment.

 REM This is also ignored by the compiler.

Note:
 VBA is a case sensitive language. Which means the words “VBA” and “vba” are treated differently
 .

4.6 Keywords

Keywords are reserved words which cannot be used as identifier names. Here’s a list of all VBA keywords:

5. Writing a simple VBA Application

At times, terms such as macros, procedures, VBA programs, VBA applications are interchangeably used. Let us address these concepts specifically wherever possible to avoid confusion. There are more than one ways of writing a VBA program. We will learn keep learning about different methods through the course of this book. To begin with, let us learn about Modules
 .

Let us insert a module
 in our project, write a sub-procedure
 (also called Sub
) and call it.

5.1 Writing your first Module

Open a blank workbook and open Visual Basic code editor (Alt + F11
). Insert a new module as shown in Section 4.3
 . Double-click on the module or right-click and select View Code
 . This will open a code editor window like the one shown below:

[image:]

Since this is a new module, there is no code present in it. Let us write a sub-procedure in this module. The general syntax of a sub-procedure is as follows:

 Sub <Procedure Name> (<Parameters>)

 ‘Statements …

 … …

 … …

 End Sub

Example:

 Sub demo_sub()

 ‘Just a comment.

 End Sub

A sub-procedure block starts with the keyword Sub
 , followed by the name of the sub-procedure and an optional parameter’s list. End Sub
 keywords are used to end a sub procedure block. Let us write a sub procedure called First Sub
 and put a comment inside it. This is how it should look like:

[image:]

This is a block of inactive code sitting inside a module. There are two ways of running this code. First method is where you run this Sub from the Visual Basic editor itself. To do so, click anywhere inside the Sub’s code and click the play button
 ([image:]
) from the toolbar on the top or press F5

 .

The second method is where you run this sub from the workbook. To do so, go to the workbook, under Developer
 menu, click Macros
 or press Alt + F8
 :

[image:]

You will see a list of all the sub-procedures in a window like this:

[image:]

As seen, our sub-procedure FirstSub
 gets listed. To run a sub, click on the name of the sub in this list and click Run
 . If you run FirstSub
 , you will notice that nothing significant happens. This is because, there is no code inside our sub except for one comment.
 Let us learn how to display text using a message box and use it in our sub.

5.2 Basic Message Box Usage

A message box is used to give a message to the user. For example, when you try to close a file without saving it, you see a prompt which says something like – “Do you want to discard changes?”
 OR “Do you want to close this file without saving?”
 . The application which raises these prompts does so using a Message Box
 . Similarly, we can use a message box in VBA to prompt messages to the user. There is an inbuilt function called MsgBox
 which is used to invoke a message box. The syntax of MsgBox
 is as follows:

 MsgBox(prompt[,buttons][,title][,helpfile,context])

Going into the details of MsgBox
 at this stage can complicate matters. For now, let us learn only the necessary syntax to display simple text on the screen. Here is how you display text using a message box:

 MsgBox(<text>)

 Eg:

 MsgBox(“Message Box Demo”)

Let us use this code in FirstSub
 to display text. This is how the code should look like:

Sub
 FirstSub
 ()

'This is our first sub-procedure

MsgBox
 (
 "Hello World!!!"
)

End
 Sub

Let us run this sub using any of the methods explained in Section 5.1
 . This is what you will see:

[image:]

5.3 Saving VBA Programs

VBA Programs need not be saved separately and will be saved when the workbook is saved. However, any workbook containing macros should not be saved as a normal Excel Workbook
 . If you do so, all the codes will be lost. When saving, you have to select this type – Excel Macro-Enabled Workbook
 as shown in the figure below:

[image:]

As an exercise, you can open new workbooks, insert modules, sub procedures, try displaying different messages and get comfortable with all that we have learned so far. Being able to write a sub inside a module and execute it successfully is a stepping stone of VBA programming. If you have followed the concepts so far, it is great news! You are ready to dwell into further programming concepts. If you have problems in executing a procedure, it is strongly recommended that you go through previous chapters again.

6. Data Types

A data type is used to specify the type of data we are dealing with. VBA has numeric and non-numeric data types.

6.1 Numeric Data Types

The following table shows the available numeric data types:

	
Data Type

	
Range/Notes

	
Byte

	
0 to 255 (0x00h to 0xFFh in HEX)

	
Integer

	
-32,768 to 32,767

	
Long

	
-2,147,483,648 to 2,147,483,648

	
Single

	
-3.402823E+38 to -1.401298E-45 (negative values included)

1.401298E-45 to 3.402823E+38 (only positive values)

	
Double

	
-1.79769313486232e+308 to -4.94065645841247E-324

(negative values included)

4.94065645841247E-324 to 1.79769313486232e+308

(only positive values)

	
Decimal

	
+/- 79,228,162,514,264,337,593,543,950,335

(without decimal places)

+/- 7.9228162514264337593543950335

(upto 28 decimal places).

	
Currency

	
-922,337,203,685,477.5808 to 922,337,203,685,477.580
 7

6.2 Non-Numeric Data Types

The following table shows the available non-numeric data types:

	
Data Type

	
Range/Notes

	
String

	
1 to 65,400 characters for Constant String

0 to 2 billion characters for Variable String

	
Boolean

	
True or False

	
Date

	
January 1, 100 to December 31, 9999

	
Object

	
Generic Data Type. No Fixed Range

	
Variant

	
Generic Data Type. Can be as large as a double in case of a numeric variant and as large as a string of variable length.

7. Variables and Constants

7.1 Variables

A variable is an identifier used to store data. When a variable is declared, a memory space is allotted to it and this memory space has a unique address. It would be inconvenient to use memory addresses every time we want to access data. Hence, there is a concept of variables. In other words, a variable is a name given to a memory location. Variables can be declared using the Dim
 keyword as follows:

 Dim <variable name> As <data type>

 Eg:

 Dim num As Integer

 Dim name As String

 Dim today As Date

Multiple variables of the same data type can be declared by separating them using commas as shown below:

 Dim <variable 1>, <variable 2>, …… <variable n> As <data type>

 Eg:

 Dim x, y, z As Integer

In the above example, three integers x, y and z are declared using a single statement and would achieve the same purpose as three separate declarations as follows:

 Dim x as Integer

 Dim y as Integer

 Dim z as Intege
 r

7.1.1 Variable Assignment

The equal to sign (=) is used to assign values to variables. This is also known as the assignment operator. Syntax:

 Dim <variable name> As <data type>

 <variable name> = <value/expression/constant>

 Eg:

 Dim number as Integer

 number = 100

In the previous example, when number
 is declared, it will not have any significant value. In the next statement, it has been assigned a numeric value of 100
 . Now, the variable number
 will hold 100
 .

Notes:

	
Keywords (mentioned in Section 4.6
) cannot be used as variable names.

	
A variable name can contain alphanumeric characters but cannot start with a number.

	
The only special character allowed in a variable name is an underscore (_).

	
The maximum length of a variable name is 255 characters.

	
Always use meaningful variable names. For example, it makes a lot of sense to use a variable named age to store the age of a person rather than something random. This is just a good programming practice and not really a rule.

	
When assigning a value to a variable, the value should be of the same data type. For example, you cannot assign a string value to a variable of integer type.

7.2 Constants

A constant is a name given to a memory location. Unlike variables, the value of a constant remains the same through the execution of the script. A constant is initialized at the time of declaration. Instead of Dim
 , Const
 keyword is used to declare a constant as follows:

 Const <constant name> As <data type> = <value>

 Eg:

 Const name As String = “Sarah”

 Const age As Integer = 25

Note:
 Constants are read-only
 values. If you try to change the value of a constant after initialization, an error will be encountered. Rest of the rules of declaring constants are the same as that of variable declaration.

8. User Interaction

In Section 5.2
 , we have seen how to use Message Box
 is a very basic manner. In this section, we will learn different ways of interacting with the user.

8.1 Displaying Variables’ Content

As we have seen, the MsgBox
 function displays the specified text inside a Message Box
 . This text is usually a string but not strictly limited to a string. You can even display a variable by specifying the variable name in place of <prompt>
 . Consider the following code where we try to display an integer variable x
 whose value has been set to 60
 .

Sub
 MBDemo
 ()

Dim
 x
 As
 Integer

x
 =
 60

MsgBox
 (
 x
)

End
 Sub

This is what you will see when you run this macro:

[image:]

As seen, the contents of the variable x
 are displayed inside a message box. With this approach, we can display only one variable at a time which is quite unrealistic. To display multiple variables inside a single message box, there is a different way.

We already know that a string can be displayed inside a message box. Now we just have to find a way to put all the variables we want to display inside a single string and display that string. To do this, we need to use concatenation operator
 , given by ampersand symbol (&)
 . When this operator is inserted between two variables, constants or expressions, the result will be a concatenation of the values.

Here is an example – consider two words “Jacob” and “Kling”
 . If we use concatenation operator (&) in between these two words like this – “Jacob” & “Kling”,
 the result will be a concatenated string – “JacobKling”
 .

Here is a code snippet which shows how to go about this example while writing the code:

 Dim FirstName As String

 Dim LastName As String

 Dim Name As String

 ‘Set FirstName and LastName

 FirstName = “Jacob”

 LastName = “Kling”

 ‘Concatenate FirstName and LastName, assign to Name

 Name = FirstName & Last Name

 ‘Display Name using a message box

 MsgBox (Name
)

The variable Name
 will now hold “JacobKling”
 . If you want to insert a space between FirstName
 and LastName
 , you can append space to FirstName
 and then append LastName
 as follows:

 Name = FirstName & “ “ & LastName

The concatenation operator will work with variables, constants and constant expressions. In the above statement, space (“ “)
 is a constant expression while FirstName
 and LastName
 are variables. You could use all constant expressions and the result would be the same. For example, the following statement would still result in “JacobKling”
 :

 Name = “Jacob” & “Kling”

Let us take a programming example, set different variables, concatenate their contents into a single string variable and display using message box:

Sub
 VariablesDemo
 ()

'Declare Variables

Dim
 Name
 As
 String

Dim
 Address
 As
 String

Dim
 Age
 As
 Integer

Dim
 Weight
 As
 Double

Dim
 Occupation
 As
 String

Dim
 Data
 As
 String

'Set Variables

Name
 =
 "Gina Plum"

Address
 =
 "Los Angeles, CA"

Age
 =
 29

Weight
 =
 126.75

Occupation
 =
 "Accountant"

'Concatenate everything and store in Data

Data
 =
 "Name: "
 &
 Name
 &
 " Address: "
 &
 Address
 &
 " Age: "
 &
 Age
 &
 " Weight: "
 &
 Weight
 &
 " Occupation: "
 &
 Occupation

MsgBox
 (
 Data
)

End
 Su
 b

Output:

[image:]

If you want to display something on a new line, you can insert a new line character given by Chr (10)
 . Chr
 is a function which returns (you will learn more about return values in the functions chapter) the specified ASCII character (0 to 255). In this case, we ask for ASCII character 10 which happens to be a new line character (also known as \n in trivial programming languages such as C and C++).

In the above programming example, we will modify the following line:

Data = "Name: " & Name & " Address: " & Address & " Age: " & Age & " Weight: " & Weight & " Occupation = " & Occupation

To this:

Data = "Name: " & Name & Chr(10) & "Address: " & Address & Chr(10) & "Age: " & Age & Chr(10) & "Weight: " & Weight & Chr(10) & "Occupation: " & Occupation

Rest of the code shall remain the same and this is how the new output will look like:

[image:]

8.2 Input Box

An Input Box
 is used to prompt the user to enter values through the keyboard. Once the user enters a value and presses OK
 or hits Enter
 , these values are returned and need to be saved in a variable. If the user presses Cancel
 , an empty string is returned.

An Input Box can be invoked using the InputBox
 function and the syntax is:

InputBox(prompt[,title][,default][,xpos][,ypos][,helpfile,context])

Out of all these parameters, only prompt
 is the mandatory field and rest all are optional. We will be using prompt
 and title
 most of the time. The prompt
 parameter is usually used to give user a message, for example – “Enter your name: “
 and the title
 parameter is used to set the title of the Input Box
 . A variable is required to receive the returned value and hence the following syntax looks more practical:

 <variable> = InputBox (<prompt>, <title>)

 OR

 <variable> = InputBox(<prompt>
)

Example:

 Dim name as String

 name = InputBox(“Enter your name: “, “Name”)

In this example, an input box prompts “Enter your name: “
 message to the user. The title of this box will be Name
 . Once the user enters a value through the keyboard, it will be returned and saved in the string variable name
 . Here is how the input box will look like:

[image:]

Let us write a program to prompt the user to enter different values and display whatever the user has entered:

Sub
 UserInputDemo
 ()

'Declare all variables

Dim
 name
 As
 String

Dim
 address
 As
 String

Dim
 age
 As
 Integer

Dim
 data
 As
 String

'Prompt the user to enter name

name
 =
 InputBox
 (
 "Enter your name: "
 ,
 "Name"
)

'Prompt the user to enter address

address
 =
 InputBox
 (
 "Enter your address: "
 ,
 "Address"
)

'Prompt the user to enter age

age
 =
 InputBox
 (
 "Enter your age: "
 ,
 "Age"
)

'Concatenate all inputs and save in data for displaying

data
 =
 "Name: "
 &
 name
 &
 Chr
 (
 10
)
 &
 "Address: "
 &
 address
 &
 Chr
 (
 10
)
 &
 "Age: "
 &
 age

'Display data using MsgBox

MsgBox
 (
 data
)

End
 Su
 b

The program invokes an input box at three different times to prompt the user to enter name, address and age. Here are the 3 instances:

[image:]

[image:]

[image:]

Output:

[image:]

Note:
 When you read numeric values from the user and perhaps use them to perform numeric operations, there is always a chance that these input values may not result in the same type as intended. Hence it is always advisable to use conversion functions such as CInt()
 for Integer
 conversion and CDbl()
 for conversion to Double
 .

 Eg:

 Dim x As Integer

 x = InputBox(“Enter x:)

 x = CInt(x)

 ‘OR Convert directly at the time of input

 x = CInt(InputBox(“Enter x:))

9. Accessing Sheets Programmatically

An Excel Sheet can be accessed programmatically using the Cells
 function. You can read as well as write values from and to the cells of a sheet. A cell of a sheet is can be uniquely identified using its corresponding row and column. Refer to the following screenshot:

[image:]

The syntax of Cells function for reading data:

‘Read data from a cell into a variable:

<variable> = Cells (<row> , <column>)

Eg:

Dim name As String

name = Cells (3 , 5)

In this example, we are reading from a cell which is present at third
 row
 and fifth
 column
 into a string variable called name
 . If no data is present at this cell, an empty string will be returned. If there was a numeric
 value in this cell and we were trying to read it as a string
 , the read value would still be a string
 . If we wanted this value to be of numeric type, the variable where the read value
 is saved (name
 in this case) should have been of numeric type such as integer, double, etc.

The syntax of Cells function for writing data:

 Cells (<row> , <column>) = <constant/variable/expression>

 Eg:

 Cells (1, 2) = “Nikki”

In this example, we write a string “Nikki”
 to the cell present at first row and second column.

Note:
 The Cells function will read/write from/to the active sheet. If you have multiple sheets, the name of the sheet must be specified as follows:

 <Sheet>.Cells (<row> , <column>)

 Eg:

 Sheet3.Cells (3, 4)

Consider the following sheet:

[image:]

There is a list of processors and their corresponding clock speeds. We will read these values using the Cells functions and display the fetched values using a message box. We will skip cells at (1, 1) and (1, 2) as these cells contain strings “Processor”
 and “Speed (In Ghz)”
 respectively. Here is the code
 :

Sub
 ReadCellDemo
 ()

'Declare 3 strings for storing processor names

Dim
 Processor1
 As
 String

Dim
 Processor2
 As
 String

Dim
 Processor3
 As
 String

'Declare 3 doubles for storing clock speeds

Dim
 Speed1
 As
 Double

Dim
 Speed2
 As
 Double

Dim
 Speed3
 As
 Double

'Fetch processor names using Cells function

Processor1
 =
 Cells
 (
 2
 ,
 1
)

Processor2
 =
 Cells
 (
 3
 ,
 1
)

Processor3
 =
 Cells
 (
 4
 ,
 1
)

'Fetch clock speeds using Cells function

Speed1
 =
 Cells
 (
 2
 ,
 2
)

Speed2
 =
 Cells
 (
 3
 ,
 2
)

Speed3
 =
 Cells
 (
 4
 ,
 2
)

'Display all using message box

MsgBox
 (
 Processor1
 &
 " - "
 &
 Speed1
 &
 Chr
 (
 10
)
 &
 Processor2
 &
 " - "
 &
 Speed2
 &
 Chr
 (
 10
)
 &
 Processor3
 &
 " - "
 &
 Speed3
 &
 Chr
 (
 10
))

End
 Sub

Output:

[image:]

In order to demonstrate how to write to a cell, let us copy data from one sheet to another. This will cover read and write together. Consider the following sheet:

[image:]

As seen this data is present in Sheet1
 . Let us write a script to copy all the cells with meaningful data to Sheet2
 :

Sub
 ReadCellDemo
 ()

'Declare 3 strings for storing processor names

Dim
 Processor1
 As
 String

Dim
 Processor2
 As
 String

Dim
 Processor3
 As
 String

'Declare 3 doubles for storing clock speeds

Dim
 Speed1
 As
 Double

Dim
 Speed2
 As
 Double

Dim
 Speed3
 As
 Double

'Fetch processor names using Cells function

Processor1
 =
 Cells
 (
 2
 ,
 1
)

Processor2
 =
 Cells
 (
 3
 ,
 1
)

Processor3
 =
 Cells
 (
 4
 ,
 1
)

'Fetch clock speeds using Cells function

Speed1
 =
 Cells
 (
 2
 ,
 2
)

Speed2
 =
 Cells
 (
 3
 ,
 2
)

Speed3
 =
 Cells
 (
 4
 ,
 2
)

'Display all using message bo
 x

MsgBox
 (
 Processor1
 &
 " - "
 &
 Speed1
 &
 Chr
 (
 10
)
 &
 Processor2
 &
 " - "
 &
 Speed2
 &
 Chr
 (
 10
)
 &
 Processor3
 &
 " - "
 &
 Speed3
 &
 Chr
 (
 10
))

End
 Sub

Once you run this script, you will realize that all the data has been copied from Sheet1
 to Sheet2
 :

[image:]

Note:
 This sheet copying example is only for demonstration purpose and was viable because there were a limited number of cells. If a sheet had 1000 cells and you wanted to copy to another sheet, you would have to write 1000 statements which is not quite reasonable for such an application. In Control Structures
 chapter, you will learn more about looping through the sheet programmatically.

10. Operators

An operator is a symbol (or a group of symbols) that performs a specific operation on the supplied operands. VBA offers Arithmetic operators, comparison operators, logical operators and concatenation operators. We will take a look at each category of operators one by one.

10.1 Arithmetic Operators

Arithmetic operators are used to perform mathematical/ arithmetic operations such as addition, division, multiplication, division, etc.

	
Operator

	
Description

	
Sample Usage

	
Explanation

	
+

	
Addition

	
a + b

	
Adds the given operands, returns sum of the operands.

	
-

	
Subtraction

	
a - b

	
Subtracts operand on the right from the one on the left, returns difference of the operands.

	
*

	
Multiplication

	
a * b

	
Multiplies operands and returns their product.

	
/

	
Division

	
a / b

	
Divides the operand on the left by the one on the right and returns the quotient.

	
Mod

	
Modulus

	
a Mod b

	
Performs division and returns the remainder. Valid only for integer type operands.

	
^

	
Exponential

	
a ^ b

	
Raises the power of the operand on the left by a factor of operand on the right
 .

10.2 Comparison Operators

Comparison operators are used to compare two operands and determine things like whether one operand is greater than the other, whether the operands are equal, and so on. The result of the comparison can either end up in Boolean True or Boolean False
 . These operators are also known as relational operators.

	
Operator

	
Description

	
Sample Usage

	
Explanation

	
=

	
Equal To

	
a = b

	
Returns True if the values of the operands are equal, False otherwise.

	
<>

	
Not Equal To

	
a <> b

	
Returns True if the values of the operands are not equal, False otherwise.

	
<

	
Less Than

	
a < b

	
Returns True if the value of the left operand is less than the value of the operand on the right, False otherwise.

	
>

	
Greater Than

	
a > b

	
Returns True if the value of the left operand is greater than the value of the operand on the right, False otherwise.

	
<=

	
Less Than OR Equal To

	
a <= b

	

Returns True if the value of the left operand is less than
 OR equal to
 the value of the operand on the right, False otherwise.

	
>=

	
Greater Than OR Equal To

	
a >= b

	

Returns True if the value of the left operand is greater than
 OR equal to
 the value of the operand on the right, False otherwise
 .

10.3 Logical Operators

Logical operators are used to carry out logical AND
 , logical OR
 , logical NOT
 and logical XOR
 . These operators return either Boolean True or Boolean False
 .

	
Operator

	
Sample Usage

(Considering a and b are expressions)

	
Explanation

	
And

	
a And b

	
Compares both expressions, returns True if both expressions evaluate to True, returns False otherwise.

	
Or

	
a Or b

	
Compares both expressions, returns True if both expressions evaluate to True, returns False otherwise.

	
Not

	
Not a

	
If the supplied expression is True, this operator will invert it to False and vice-versa.

	
Xor

	
a Xor b

	
Also known as Exclusive-Or. Returns True only if one of the supplied expression is True, returns False otherwise.

Logical operators are usually used alongside comparison operators, although not a compulsion. For example, consider x = 5
 and y = 23
 ; x > 0 will return True
 and y < 20 will return False
 . Following will be the results if we combine these two expressions using logical operators:

(x > 0) And (y < 20)
 →
 Result will be
 False
 as only one condition is True.

(x > 0) Or (y < 20)
 →
 Result will be
 True
 as one of the conditions is
 True.

Not (x > 0)
 →
 Result will be
 False
 as True value resulting from x > 0 will be inverted..

(x > 0) Xor (y < 20)
 →
 Result will be
 True
 as exactly one condition is True.

10.4 Concatenation Operators

We have already seen how the concatenation operator – &
 can be used to concatenate values of any data type to a string. There is another concatenation operator given by the plus sign (+)
 ; however, this operator (+)
 can only be used to concatenate two strings. An error will be returned if you try to concatenate numeric data types to a string.

Comparison and Logical operators will be better explained in the Control Structures
 chapter of this book. Let us write a script to demonstrate the use of Arithmetic operators. Here is a script that accepts two integers from the user and displays their sum, difference, product, quotient, modulus and exponential value:

Sub
 OperatorsDemo
 ()

'Declare the required variables

Dim
 x
 ,
 y
 ,
 sum
 ,
 difference
 ,
 product
 ,
 modulus
 ,
 exp
 As
 Integer

Dim
 quotient
 As
 Double

Dim
 str
 As
 String

'Ask the user to enter 2 values

x
 =
 InputBox
 (
 "Enter the value of x: "
 ,
 "x"
)

y
 =
 InputBox
 (
 "Enter the value of y: "
 ,
 "y"
)

'Make sure the values are of Integer types

x
 =
 CInt
 (
 x
)

y
 =
 CInt
 (
 y
)

'Perform all arithmetic operations

sum
 =
 x
 +
 y

difference
 =
 x
 -
 y

product
 =
 x
 *
 y

quotient
 =
 x
 /
 y

modulus
 =
 x
 Mod
 y

exp
 =
 x
 ^

 y

'Put all the values inside a string using &

str
 =
 "x = "
 &
 x
 &
 Chr
 (
 10
)
 &
 "y = "
 &
 y
 &
 Chr
 (
 10
)
 &
 "x + y = "
 &
 sum
 &
 Chr
 (
 10
)
 &
 "x - y = "
 &
 difference
 &
 Chr
 (
 10
)
 &
 "x * y = "
 &
 product
 &
 Chr
 (
 10
)
 &
 "x / y = "
 &
 quotient
 &
 Chr
 (
 10
)
 &
 "x Mod y = "
 &
 modulus
 &
 Chr
 (
 10
)
 &
 "x ^ y = "
 &
 exp
 &
 Chr
 (
 10
)

MsgBox
 (
 str
)

End
 Sub

Input:

[image:]

[image:]

Output:

[image:]

Now, let us fetch two values from a sheet and perform the same computations, write the values back to the appropriate cells. Consider the following sheet:

[image:]

The value of x
 is present at A2 (2, 1)
 and the value of y
 is present at B2 (2, 2)
 . Sum will be placed at C2, Difference at D2, and so on
 .

Here is the script:

Sub
 OperatorsDemoSheet
 ()

'Declare the required variables

Dim
 x
 ,
 y
 ,
 sum
 ,
 difference
 ,
 product
 ,
 modulus
 ,
 exp
 As
 Integer

Dim
 quotient
 As
 Double

'Read values of x and y from the sheet

x
 =
 Cells
 (
 2
 ,
 1
)

y
 =
 Cells
 (
 2
 ,
 2
)

'Make sure the values are of Integer types

x
 =
 CInt
 (
 x
)

y
 =
 CInt
 (
 y
)

'Perform all arithmetic operations

sum
 =
 x
 +
 y

difference
 =
 x
 -
 y

product
 =
 x
 *
 y

quotient
 =
 x
 /
 y

modulus
 =
 x
 Mod
 y

exp
 =
 x
 ^
 y

'Write the values to the sheet

Cells
 (
 2
 ,
 3
)
 =
 sum

Cells
 (
 2
 ,
 4
)
 =
 difference

Cells
 (
 2
 ,
 5
)
 =
 product

Cells
 (
 2
 ,
 6
)
 =
 quotient

Cells
 (
 2
 ,
 7
)
 =
 modulus

Cells
 (
 2
 ,
 8
)
 =
 exp

End
 Sub

Output:

[image:]

11. Control Structures

When a block of code starts executing, statements starting from the first statement to the last one are executed one by one. In simple terms we can say that the statements are executed sequentially. If we do not want it to happen, we can make use of control structures. Control structures are programming constructs that are used to obtain control over the execution of a program. VBA offers control structures in the form of decision making constructs and loops.

11.1 Decision Making

Decision making control structures are available in the form of if-else and select-case constructs. We will take a look at each one of these.

11.1.1 If-Else

The If/Else constructs are written in blocks. The If/Else block starts with If/Else statements respectively and ends with End If/End Else statements respectively. The general syntax of If statement is:

 If (<condition>) Then

 ‘Statements to be executed if <condition> is True

 …

 …

 …

 End If

The If statement
 needs to be supplied a <condition>
 which should be a Boolean expression
 . This <condition>
 can either evaluate to Boolean True
 or Boolean False
 . If it evaluates to True,
 the statements inside the If
 block will be executed one by one. If the Boolean expression evaluates to False
 , the If
 block will be skipped and the execution control will jump to the ElseIf
 or Else
 blocks if present. If no ElseIf
 or Else
 blocks are present, the script will continue to executed from the statement which follows the If
 block.

For example, consider an integer variable Z
 having a value of 5
 . If we supply this Boolean expression – (Z > 0)
 , it will evaluate to true and the statements within that particular If
 block will be executed.

An If
 block may be optionally followed by ElseIf
 blocks or Else
 block. Let us see how the Else
 construct works first and then we will take a look at ElseIf
 construct. If an Else
 block is present immediately after an If
 block and if the supplied <condition>
 of the If
 block evaluates to False
 , the statements within the If
 block will be ignored and the execution control will jump to the Else
 block thereby executing all the statements present in the Else
 block.

Here is the general syntax of If-Else construct:

If (<condition>) Then

 ‘Statements to be executed if <condition> is True

 …

 …

 …

 Else

 ‘Statements to be executed if <condition> is False

 …

 …

 …

 End I
 f

Consider the previous example where Z
 has a value of 5
 and the supplied condition is a Boolean expression (Z < 0)
 this time. This expression will evaluate to False
 . Let us assume there is an If
 and an Else
 block here. Because the condition evaluates to False
 , the If
 block will be skipped and the Else
 block will be executed.

Having covered If and Else constructs, let us now see how the ElseIf
 construct works. ElseIf
 is used when we want to check for different conditions. When using ElseIf
 construct, there needs to be a mandatory If
 block, as many ElseIf
 blocks and an optional Else
 block. Like the If
 statement, the ElseIf
 statement also needs to be supplied with a condition. All the ElseIf
 blocks must follow the If
 block.

Here is the general syntax of If-Else construct:

If (<condition 1>) Then

 ‘Statements to be executed if <condition 1> is True

 …

 …

 …

 ElseIf (<condition 2>) Then

 ‘Statements to be executed if only <condition 2> is True

 …

 …

 …

 ElseIf (<condition 3>) Then

 ‘Statements to be executed if only <condition 3> is True

 …

 …

 …

 .

 .

 .

 ElseIf (<condition n>) Then

 ‘Statements to be executed if only <condition n> is True

 …

 …

 …

 Else

 ‘Statements to be executed if all the conditions are False

 …

 …

 …

 End If

If the condition of the If
 block evaluates to False
 , the condition of the immediate ElseIf
 block will be checked. If it evaluates to True
 , statements inside that ElseIf
 block will be executed and rest all blocks will be ignored. If it evaluates to False
 , the condition of the next ElseIf
 block will be checked and so on. If none of the conditions evaluate to True
 , the Else
 block will be executed if it is present; If not, the script will continue to execute normally after the end of the If
 block.

Note:
 In one If-ElseIf-Else
 block which begins with an If
 statement and ends with an End If
 statement, only one block will be executed if the condition is met and rest all blocks will be ignored (even if their conditions appear to be True
). This is because, the execution control moves sequentially. In simple words, the conditions will be checked in a sequential order and when any one condition evaluates to True
 , that block is executed
 and the execution control will come out of the If-ElseIf-Else
 block thereby ignoring other blocks.

Let us write a script to accept one integer from the user and check if it is positive, negative or zero.

Sub
 PositiveNegativeZero
 ()

Dim
 number

'Ask the user to enter an integer

number
 =
 InputBox
 (
 "Enter an integer: "
 ,
 "Input"
)

number
 =
 CInt
 (
 number
)

'Check if the number is positive

If
 (
 number
 >
 0
)
 Then

MsgBox
 (
 "The number: "
 &
 number
 &
 " is Positive."
)

'Check if the number is negative

ElseIf
 (
 number
 <
 0
)
 Then

MsgBox
 (
 "The number: "
 &
 number
 &
 " is Negative."
)

'If the number is neither positive nor negative, it is zero.

Else

MsgBox
 (
 "The number: "
 &
 number
 &
 " is Zero."
)

End
 If

End
 Sub

Output:

Negative Number

[image:]

[image:]

Zero

[image:]

[image:]

Positive Number

[image:]

[image:]

11.1.2 Select-Case

The Select-Case
 construct works like the switch-case
 construct in programming languages like C/C++, Java, Python, etc. When a condition can lead to multiple outcomes, you may have to write multiple if-else statements, perhaps a lot of them would have to be nested. In order to avoid that, we use the Select-Case
 construct which provides a simplified method of testing a variable for multiple cases.

The general syntax of Select-Case construct is:

Select Case <expression>

 Case <constant expression 1>:

 ‘Statements…

 …

 …

 Case <constant expression 2>:

 ‘Statements…

 …

 …

 Case <constant expression n>:

 ‘Statements…

 …

 …

 Case Else:

 ‘Statements…

 …

 …

End Select

The Select-Case block begins with Select Case <expression>
 and ends with End Select
 . Inside the block, there are could be multiple Case <constant expression>
 blocks and an optional Case Else
 block. An <expression>
 must be specified with the Select Case
 statement and a <constant expression>
 must be specified with the Case
 statements. This <expression>
 will be evaluated and a matching <constant expression>
 will be looked for in the Case statements
 . This process is known as testing for cases
 . If a matching case is found, that particular Case block
 will be executed and the remaining case blocks will be ignored. If no matching expression is found, the Else
 case block is executed if present.

Let us try and understand this concept with the help of an example. Let us write a program to take an integer as an input from the user and check if it is odd or even.

Sub
 SelectDemo
 ()

Dim
 number

'Ask the user to enter an integer

number
 =
 InputBox
 (
 "Enter an integer: "
 ,
 "Input"
)

number
 =
 CInt
 (
 number
)

'Take Mod 2 to check if odd or even

Select
 Case
 (
 number
 Mod
 2
)

'If the remainder is 0, the number is even

Case
 0
 :

MsgBox
 (
 "The number: "
 &
 number
 &
 " is Even."
)

'If the remainder is 1, the number is odd

Case
 1
 :

MsgBox
 (
 "The number: "
 &
 number
 &
 " is Odd."
)

End
 Select

End
 Su
 b

Output:

Even Number

[image:]

[image:]

Odd Number

[image:]

[image:]

11.2 Loops

Loops are used in programming to run the same piece of code over and over again until a condition is met. Applications of loops are many. For example, you could use loops to count the number of names in a file, count the number of files in a directory, determine file size by counting the bytes of a file, etc. VBA offers while, do while, do until, for and for each
 loops. We will learn all of them except for each
 loop which will be covered in the Arrays
 chapter.

Normally, a counter variable is used to keep track of the number of times a loop should execute. A counter variable is declared, initialized and incremented/decremented accordingly. Of course, this is the simplest way of using a counter variable and there are many more things you could do with it.

11.2.1 While loop

The general syntax of a While loop is:

 While <condition>

 ‘Statements…

 …

 …

 Wend

A while loop must be given a <condition>
 . This condition should evaluate to a Boolean True
 or False
 similar to the ones we had seen in if-else
 constructs. As long as the given condition evaluates to True
 , the statements inside the While
 block will go on executing. The Wend
 statement marks the end of a While loop block
 . When the execution control reaches the while statement, the given condition is checked. If the condition evaluates to Tru
 e
 , the statements inside the block are executed one by one. Each instance of a loop block execution is known as an iteration
 . When the execution reaches the end of the block, the control jumps back to the While statement and the condition is checked again. If it evaluates to True
 again, the statements are executed again. This process will go on continuing until the condition becomes False
 . If the condition never evaluates to False
 , the loop will go on executing indefinitely and is also known as an infinite loop
 .

11.2.2 Do While loop

There are two ways to write a do-while loop:

Syntax 1:

 Do
 While <condition>

 ‘Statements…

 …

 …

 Loop

Using this syntax, the loop block begins with Do While
 statement and ends with a Loop
 statement. In this method, the loop works exactly like a while loop where the condition is checked at the beginning.

Syntax 2:

 Do

 ‘Statements…

 …

 …

 Loop While <condition>

Using this syntax, the loop block begins with Do
 statement and ends with a Loop While
 statement. In this method, the condition
 is checked at the end of the loop block and as a result, the loop is guaranteed to execute at least once
 even if the stated condition is False
 .

11.2.3 Do Until loop

A Do-Until
 loop keeps executing as long as the given condition is False
 . The moment the condition becomes True
 , the loop stops executing. Again, there are two ways of writing a Do-Until
 loop:

Syntax 1:

 Do
 Until <condition>

 ‘Statements…

 …

 …

 Loop

Using this syntax, the loop block begins with Do Until
 statement and ends with a Loop
 statement. In this method, the condition is checked at the beginning and if it evaluates to False
 , the loop block is executed.

Syntax 2:

 Do

 ‘Statements…

 …

 …

 Loop Until <condition>

Using this syntax, the loop block begins with Do
 statement and ends with a Loop Until
 statement. In this method, the condition is checked at the end of the loop block and as a result, the loop is
 guaranteed to execute at least once
 even if the stated condition is True
 .

11.2.4 For loop

The For
 loop is feature rich as compared to the previously discussed loops. It allows for the counter variable to be initialled and incremented/decremented in the For
 statement itself. The loop block begins with a For
 statement and ends with a Next
 statement. The general syntax is:

For <counter variable> = <begin> to <end> (Step <increment/ decrement>)

‘Statement…

…

…

Next

The statement For <counter variable> = <begin> to <end>
 serves as counter variable initialization as well as condition. Consider this statement – For counter = 1 To 10
 . This means the variable counter
 is initialized to 1
 and the loop should run until counter becomes 10
 . The counter variable can either be incremented/ decremented inside the loop or in the For
 statement itself.

The Step <increment/decrement>
 statement is optional but is quite useful. This statement will increment
 or decrement
 the counter variable according to the specified value. For example, Step 2
 will increment the variable by 2
 while Step -1
 will decrement the value by 1
 .

Here are a few examples that make use of different loops and fill the first row of a sheet
 :

Sub
 WhileDemo
 ()

'Declare an integer which serves as a counter

Dim
 i
 As
 Integer

'Initialize counter variable to 1

i
 =
 1

'Loop while i is less than or equal to 10

While
 (
 i
 <=
 10
)

'Fill first row with 1 to 10

Cells
 (
 1
 ,
 i
)
 =
 i

'Increment i by 1

i
 =
 i
 +
 1

Wend

End
 Sub

Sub
 DoWhileDemo
 ()

'Declare an integer which serves as a counter

Dim
 i
 As
 Integer

'Initialize counter variable to 1

i
 =
 1

'Loop while i is less than or equal to 10

Do

'Fill first row with multiples of 2

Cells
 (
 1
 ,
 i
)
 =
 2
 *
 i

'Increment i by 1

i
 =
 i
 +
 1

Loop
 While
 (
 i
 <=
 10
)

End
 Sub

Sub
 DoUntilDemo
 ()

'Declare an integer which serves as a counter

Dim
 i
 As
 Integer

'Initialize counter variable to 1

i
 =
 1

'Loop until i becomes 10

Do

'Fill first row with multiples of 3

Cells
 (
 1
 ,
 i
)
 =
 3
 *
 i

'Increment i by 1

i
 =
 i
 +
 1

Loop
 Until
 (
 i
 >
 10
)

End
 Sub

Sub
 ForDemo
 ()

'Declare an integer which serves as a counter

Dim
 i
 As
 Integer

'Loop until i becomes 10

For
 i
 =
 1
 To
 10
 Step

 1

'Fill first row with multiples of 10

Cells
 (
 1
 ,
 i
)
 =
 10
 *
 i

Next

End
 Sub

Output:

While Example:

[image:]

Do While Example:

[image:]

Do Until Example:

[image:]

For Example:

[image:]

11.3 Control Statements

Control statements in VBA are used to terminate the execution of loops. Normally, a loop would go on executing as long as a condition is met or not met. Using control statements, we can come out of the loops even if the condition is met. There are two control statements in VBA – Exit For
 and Exit Do
 . Exit For
 is used to come out of a For
 loop while Exit Do
 is used to come out of Do-While
 and Do-Until
 loops.

11.3.1 Exit For

If the Exit For
 statement is encountered inside a For
 loop, it will be terminated and the execution control will come out of the For
 loop even if the condition of the loop happens to be true. Here’s an example – consider we are writing multiples of 2 to a sheet:

 Dim i as Integer

 For i = 1 to 10 Step 1

 Cells (1, i) = 2 * i

 Next

However, we want to terminate this loop if the number we are writing also happens to be a multiple of 5. The code would look like this:

 Dim i as Integer

 For i = 1 to 10 Step 1

 If ((2*i) Mod 5 = 0)

 Exit For

 End If

 Cells (1, i) = 2 * i

 Nex
 t

11.3.1 Exit Do

An Exit Do
 statement when encountered inside a Do-While
 or a Do-Until
 loop will terminate the execution of the loop even if the condition is met in case of a Do-While
 loop or if the condition is not met in case of a Do-Until
 loop. Here’s an example – consider we are writing multiples of 3 to a sheet:

 Dim i as Integer

 Do

 Cells (1, i) = 3 * i

 i = i + 1

 Loop While (i <= 10)

However, we want to terminate this loop if the number we are writing also happens to be a multiple of 4. The code would look like this:

Dim i as Integer

 Do

 If ((i * 3) Mod 4 = 0)

 Exit Do

 Cells (1, i) = 3 * i

 i = i + 1

 Loop While (i <= 10)

12. Arrays

An array is a collection of elements
 . People with a programming background must be familiar with arrays. In trivial programming languages such as C/C++, Java, Python, etc., an array is defined as a collection of elements of the same data type. In VBA, an array can hold elements of different data types. It can be looked at as more of a list. However, it is also possible to declare an array of a particular data type if needed. In order to declare an array, the following syntax is used:

 ‘For generic elements (Variant type)

 Dim <Array Variable> (<Size - 1>)

 Eg:

 Dim list(5)

 ‘For a particular data type

 Dim <Array Variable> (<Size - 1>) As <Data Type>

 ‘Array of 10 integers.

 Dim numbers(9) As Integer

Each element of an array can be accessed using its index
 which runs from 0
 to (size – 1)
 . For example, if we have an array of 5 numbers, the first number will be present at index 0 and the last element will be present index 4. If you count elements from 0 to 4, they will be 5 in number. In order to access an element of an array using its index, we need to make use of the access operator (). If we have an array called values
 and if we want to access its 7
 th
 element, we do it this way – values (7)
 .

Let us try and understand the concept of arrays with an example. Consider we have an integer array called numbers
 of size 5 and is declared as:

 Dim numbers(4) As Integer

Each element of this array is set to a value as follows:

 numbers (0) = 67

 numbers (1) = 23

 numbers (2) =

 175

 numbers (3) = 11

 numbers (4) = 88

This is how the array is going to look like in the system:

[image:]

Variant type arrays can be initialized using the Array
 function as follows:

 Dim <Array Variable>

 <Array Variable> = Array (<values separated by comma>)

Let us initialize the numbers array using the Array
 function. Note that we will have to declare the array as a variant this time and not as integer. Here is the code snippet:

 Dim numbers

 Number = Array (67, 23, 175, 11, 88)

Let us write a simple program to read values from the first row of a sheet (from cells A1 to J1), store them in an array and write the same values to the second row. In simple terms we are copying row 1 to row 2 using arrays. I have populated the first row of a sheet with some sample values:

[image:]

Here’s the code:

Sub
 ArrayDemo
 ()

'Declare an array of 10 elements

Dim
 first_row
 (
 9
)
 As
 Integer

'Declare loop counter variable

Dim
 i
 As
 Integer

'Loop from 0 to 9, copy values from sheet to array

For
 i
 =
 0
 To
 9

first_row
 (
 i
)
 =
 Cells
 (
 1
 ,
 i
 +
 1
)

Next

'Loop from 0 to 9, copy values from array to sheet

For
 i
 =
 0
 To
 9

Cells
 (
 2
 ,
 i
 +
 1
)
 =
 first_row
 (
 i
)

Next

End
 Sub

Output:

[image:]

Note:
 If you want to determine the first and the last index of an array, you can use these functions – LBound(<array>)
 for first index and UBound(<array>)
 for last index. In simpler words, these functions mean lower bound and upper bound
 .

12.1 For-Each Loop

In Section 11.2
 , we learned about different loops barring the For-Each
 loop. It was excluded on purpose as array concepts are needed to understand it’s working. The For-Each
 loop is different than the other loops. This loop allows us to use an iterating variable
 to iterate through an array. In the previous programming example, we have used a loop counter variable which served as an index of the array. Using a for-each, you can access all the elements of an array one by one with the help of an iterating variable (without using array indices). The loop will run as long as there is at least one element in the array. Syntax:

 For Each <Iterating Variable> In <Array>

 ‘Statements…

 …

 …

 Next

 Example:

 For Each Item in My_Array

 MsgBox(Item)

 Next

In the above example, there is an array called My_Array
 and we have used an iterating variable called Item
 . During every iteration, each element from My_Array
 will be fetched into the variable Item
 starting from the element at index 0 to the last index.

Let us take a programming example similar to the previous one. I have populated the sheet again with sample values in the first column.

[image:]

Using For
 loop, we will fetch these values into an array, write these values to the third column using For-Each
 loop. Here’s the code:

Sub
 ForEachDemo
 ()

'Declare an array of 10 elements and an integer variable

Dim
 column
 (
 9
),
 i
 As
 Integer

'Loop from 0 to 9, copy values from sheet to array

For
 i
 =
 0
 To
 9
 Step
 1

column
 (
 i
)
 =
 Cells
 (
 i
 +
 1
 ,
 1
).
 Value

Next

'Initialize i to 0 to go through rows of Column 1 of the sheet

i
 =
 0

'Use For Each to iterate through the array, copy to third column

For
 Each
 x
 In
 column

Cells
 (
 i
 +
 1
 ,
 3
).
 Value
 =
 x

i
 =
 i
 +
 1

Next

End
 Su
 b

Output:

[image:]

12.2 Array Re-Dimensioning

There could arise a situation where in you might have to change the size of an already declared array. You can do this using the ReDim
 keyword and the process is known as Re-Dimensioning.

Syntax:

 ReDim <Array>(New Size)

 Example:

 Dim arr(4) As Integer

 …

 …

 ‘Somewhere later in the program

 ReDim arr(9) As Integer

In the above example, we have an array arr
 of 5 elements. Later in the program, we change the size of this array to 10 elements
 using the ReDim
 statement. When an array is re-dimensioned, any data that was previously present in that array will be lost. If you want to change the dimension of an array without losing the data, you have to use the Preserve
 keyword as follows:

 ReDim Preserve <Array>(New Size)

Example:

 Dim arr(4) As Integer

 …

 …

 ‘Somewhere later in the program

 ReDim Preserve arr(9) As Integer

In this example, the array arr
 of size 5 was declared. It was re-dimensioned later using the Preserve
 keyword. This would make sure that the elements present at indices 0 to 4 would remain unaltered and new locations from indices 5 to 9 would be added.

13. Strings

A string is a sequence of characters. We have worked with strings already through the course of this book. But that was limited to assigning values to string variables and using them. In this section, we will learn strings in a little more detail and study string manipulation.

We have seen how to declare strings before but let us recall the syntax and take a look at a few examples:

 Dim <variable name> As String

 Eg:

 Dim first_name, last_name As String

When assigning values to strings, the string value should be enclosed within double quotes as follows:

 <string variable> = “<string value>”

 Eg:

 first_name = “Rachel”

 fast_name = “Logan”

It is also possible to declare an array of strings as follows:

 Dim <array variable>(Size – 1) As String

 Eg:

 Dim names(9) As String

In the above example, an array of 10 strings is declared; names(0)
 will be the first string, names(1)
 will be the second one and so on until names(9)
 .

13.1 String Manipulation

String manipulation is done using several inbuilt functions offered by VBA. We will take a look at the important ones
 .

13.1.1 Length of a string

The Len
 function is used to find the length of a string. Syntax:

 <variable> = Len(<string variable>)

 Eg:

 x = Len(name)

This function accepts one parameter in the form of a string and returns the length of that string.

13.1.2 Reversing a string

You can reverse a string using a function called StrReverse
 . Syntax:

 <variable> = StrReverse(<string variable>)

 Eg:

 Var1 = StrReverse(name)

This function accepts one string as a parameter and returns its reverse.

13.1.3 Compare two strings

In order to compare two strings, you can use the StrComp
 function. This function accepts two strings as parameters and another optional parameter called Compare
 which sets the mode of comparison. By default, the mode of comparison is binary. This is a slightly advanced concept and hence we will not cover it. Syntax:

 <variable> = StrComp(<string 1>, <string 2>)

 Eg:

 Result = StrComp(str1, str2)

Here is how the function works:

 If str1 < str2, the function will return -1.

 If str1 = str2, the function will return 0.

 If str1 > str2, the function will return 1.

13.1.4 Case conversion

A string can be converted to lower case or upper case using Lcase
 and Ucase
 functions respectively. Syntax:

 ‘Convert all characters to lower case

 <variable> = Lcase(<string variable>)

 ‘Convert all characters to upper case

 <variable> = Ucase(<string variable>)

 Eg:

 Name = Lcase (Name)

 Name = Ucase(Name)

13.1.5 Search for a string

A string can be searched for inside another string using InStr
 and InStrRev
 functions. InStr
 function searches from left to right and InStrRev
 function searches from right to left.

InStr Syntax:

 <variable> = InStr([start,] <string 1>,<string 2> [,compare])

This function requires two mandatory parameters – <string 1>
 and <string 2>.
 <string 2>
 is the string to be searched inside <string 1>
 . In addition to these mandatory parameters, there are two optional parameters – <start>
 and <compare>
 . The <start>
 parameter specifies the location from where the search should begin while <compare>
 specifies the mode of comparison. If you do not specify where to begin search from, it will start from the beginning
 of the string. If the given string is found, the function returns the location of the first occurrence of the string. If not, 0 is returned.

InStrRev Syntax:

 <variable> = InStr(<string 1>,<string 2> [,start] [,compare])

This function requires two mandatory parameters – <string 1>
 and <string 2>.
 <string 2>
 is the string to be searched inside <string 1>
 . In addition to these mandatory parameters, there are two optional parameters – <start>
 and <compare>
 . The <start>
 parameter specifies the location from where the search should begin from the end of the string while <compare>
 specifies the mode of comparison.

Here is a script that accepts one string from the user and performs various operations on it:

Sub
 StringDemo
 ()

Dim
 str
 ,
 u_str
 ,
 l_str
 ,
 rev_str
 As
 String

'Ask the user to enter a string

str
 =
 InputBox
 (
 "Enter a string: "
 ,
 "Input"
)

'Perform various string operations

Dim
 length
 As
 Integer

'Fetch length of the string

length
 =
 Len
 (
 str
)

'Reverse the string

rev_str
 =
 StrReverse
 (
 str
)

'To Upper case

u_str
 =
 UCase
 (
 str
)

'To Lower case

l_str
 =
 LCase
 (
 str
)

'Display everything

MsgBox
 (
 "String: "
 &
 str
 &
 Chr
 (
 10
)
 &
 "Length: "
 &
 length
 &
 Chr
 (
 10
)
 &
 "Reverse: "
 &
 rev_str
 &
 Chr
 (
 10
)
 &
 "Upper case: "
 &
 u_str
 &
 Chr
 (
 10
)
 &
 "Lower case: "
 &
 l_str
)

End
 Su
 b

Output:

[image:]

[image:]

Let us take another programming example to demonstrate string search:

Sub
 StringSearchDemo
 ()

Dim
 str
 ,
 substr
 As
 String

Dim
 location
 As
 Integer

'Ask the user to enter a string

str
 =
 InputBox
 (
 "Enter a string: "
 ,
 "Input"
)

'Ask the user to enter search word

substr
 =
 InputBox
 (
 "Enter the string to be searched: "
 ,
 "Input"
)

'Use InStr to search

location
 =
 InStr
 (
 str
 ,
 substr
)

If
 (
 location
 <>
 0
)
 Then

MsgBox
 (
 "The string has been found at: "
 &
 location
)

Else

MsgBox
 (
 "The given string could not be found"
)

End
 If

End
 Sub

Output:

[image:]

[image:]

[image:]

14. Date & Time

In VBA, there is a special data type called Date
 for dealing with date values. However, a Variant
 data type can also be used. In certain cases, a string can also be used to store date as long as it is in a proper format. Time is best stored as Variant
 or String
 and there is no dedicated data type. For both date and time, there are plenty of in-built functions which help us in dealing with date-time values. We will be taking a look at some of the most useful ones.

14.1 Date

The first function to be learned in this section is date()
 which returns the current system date in a format specified in your date/time/time zone settings. In some versions of Excel, the date()
 function can automatically change to Date
 . As mentioned earlier, you can store date in a variable of type Date, Variant or String. We will only look at Date and Variant. This is how you do it:

 Dim <variable> as Date

 Dim <variable> as Variant

You can fetch the current system date and store it in a variable as follows:

 Dim dt as Date

 dt = date ()

14.1.1 Date Conversion

A function called CDate
 is used to convert an expression to Date
 type. The expression should be a valid date expression such as – May 18, 2019, 22 May 2019, 22/05/2019, 05-22-2019
 , etc. In other words, anything in widely accepted date formats such as
 MM/DD/YYYY, YYYY-MM-DD
 , etc. can be used. Fancy dates such as 2nd
 June, 2019 will not be valid and also wrong dates such as 31st
 April, 2020. Syntax:

 <variable> = CDate()

 Example:

 Dim dt1, dt2, dt3 As Date

 dt1 = CDate(“25 May 2019”)

 dt2 = CDate(“June 3 2019”)

 dt3 = CDate(“04/19/2019”)

14.1.2 Date Validity

Dates can be written in various acceptable format. If you want to check if a given date is valid, you can use the IsDate
 function. This function will not only check for the acceptable format, but will also check the actual validity of the date taking into consideration which month has how many days. The function returns a Boolean True or False. Syntax:

 <variable> = IsDate(<expression>)

 Example:

 Dim date_validity as Boolean

 date_validity = IsDate(“14 April 2018”)

 …

 …

 If (IsDate(“12/12/1999”) Then

 MsgBox(“Valid!”)

 Else

 MsgBox(“Not Valid!”)

 End I
 f

14.1.3 Retrieve Day, Month, Year

There are different functions to retrieve Day, month, year, week day and month name from a given date. Here are the functions:

	

Day(<date>)
 returns the day as an integer (1 to 31)

	

Month(<date>)
 returns the month as an integer (1 to 12)

	

Year(<date>)
 returns the year as an integer

	

Weekday(<date>)
 returns the week day as an integer (1 to 7)

	

WeekdayName(<weekday, 1 to 7)
 returns the name of the week day as a string.

14.1.4 Date Manipulation

A given date can be manipulated by adding or subtracting day, month, year or time to/from it. To do this, there is a function called DateAdd
 . This function returns a Date after performing the requested manipulation. Syntax:

 <variable> = DateAdd(<interval>, <number>, <date>)

DateAdd
 function accepts 3 mandatory parameters – interval, number and date
 . Interval specifies the time interval to be manipulated, number specifies by how much the interval should be manipulated and date
 is the date which we are trying to manipulate. The interval parameter accepts the following values in string format:

	

“d”
 – day

	

“m”
 – month

	

“y”
 – year

	

“yyyy”
 – year

	

“w”
 – weekday

	

“ww”
 – week

	

“q”
 – quarter

	

“h”
 – hour

	

“m”
 – minutes

	

“s”
 – seconds

Consider you want to add 5 years to a date. You would write the function as:

 DateAdd(“yyyy”, 5,<date>)

Example:

 Dim dt1, dt2 As Date

 Dt1 = “January 6, 2014”

 Dt2 = DateAdd(“yyyy”, 5, dt1)

If you want to subtract, the number will be negative. For example, if you want to subtract 6 months from a date, here’s what the code would look like:

 DateAdd(“m”,-6,<date>)

Example:

Dim dt1, dt2 As Date

Dt1 = “November 11, 2018”

Dt2 = DateAdd(“m”, -6, dt1)

14.1.5 Date Difference

The difference between two given dates can be determined using a function called DateDiff
 . This function essentially subtracts one date from the other and returns the difference as per the specified interval. Syntax:

 <variable> = DateDiff(<interval>, <date 1>, <date 2>)

All three parameters are mandatory. Interval specifies how would we want to determine the difference – days, months, years, etc. <date 2>
 is the date from where <date 1>
 will be subtracted. The interval parameter accepts the following values in string format:

	

“d”
 – day

	

“m”
 – month

	

“y”
 – year

	

“yyyy”
 – year

	

“w”
 – weekday

	

“ww”
 – week

	

“q”
 – quarter

	

“h”
 – hour

	

“m”
 – minutes

	

“s”
 – seconds

Example:

 Dim d1, dt2 As Date

 Dim years as Variant

 dt1 = “01/02/2016”

 dt2 = 03/04/1996”

 years = DateDiff(“yyyy”, dt2, dt1)

Here is a simple program that uses various date functions that we just discussed
 :

Sub
 DateDemo
 ()

'Declare date variables

Dim
 today
 ,
 later_date
 As
 Date

Dim
 today_day
 ,
 today_month
 ,
 today_year
 ,
 today_weekday
 As
 Integer

Dim
 today_weekday_name
 ,
 today_month_name
 ,
 msg
 As
 String

'Retrieve today's date

today
 =
 Date

'Retrieve today's day

today_day
 =
 Day
 (
 today
)

'Retrieve today's month

today_month
 =
 Month
 (
 today
)

'Retrieve today's year

today_year
 =
 Year
 (
 today
)

'Retrieve today's weekday

today_weekday
 =
 Weekday
 (
 today
)

'Retrieve today's weekday name

today_weekday_name
 =
 WeekdayName
 (
 today_weekday
)

'Retrieve today's month name

today_month_name
 =
 MonthName
 (
 today_month
)

'Add 90 days to today

later_date
 =
 DateAdd
 (
 "d"
 ,
 90
 ,
 today
)

'Display everything

msg
 =
 "Today's date: "
 &
 today
 &
 Chr
 (
 10
)
 &
 "Day: "
 &
 today_day
 &
 Chr
 (
 10
)
 &
 "Month: "
 &
 today_month
 &
 Chr
 (
 10
)
 &
 "Year: "
 &
 today_year
 &
 Chr
 (
 10
)
 &
 "Weekday Name: "
 &
 today_weekday_name
 &
 Chr
 (
 10
)
 &
 "Month Name: "
 &
 today_month_name
 &
 Chr
 (
 10
)
 &
 "90 days from today, the date will be: "
 &
 later_date

MsgBox
 (
 msg
)

End
 Sub

Output:

[image:]

Let us take these concepts a step further and write a program to accept date of birth from the user and calculate the exact age in completed years and months based on today’s date. Make sure that your system date is correct as the date() function retrieves today’s date from the system date. Here is the program:

Sub
 AgeScript
 ()

'Declare date variables

Dim
 today
 ,
 DOB
 As
 Date

Dim
 DOB_str
 As
 String

Dim
 years
 ,
 months
 As
 Long

'Prompt the user to enter date of birth

DOB_str
 =
 InputBox
 (
 "Enter your D.O.B: "
 ,
 "Date of Birth"
)

'Check if it is a valid date

If
 IsDate
 (
 DOB_str
)
 Then

'Convert the date in string format to date format

DOB
 =
 CDate
 (
 DOB_str
)

'Fetch todays date and calculate difference

today
 =
 Date

years
 =
 DateDiff
 (
 "yyyy"
 ,
 DOB
 ,
 today
)

months
 =
 DateDiff
 (
 "m"
 ,
 DOB
 ,
 today
)

months
 =
 months
 -
 (
 years
 *
 12
)

'Display age

MsgBox
 (
 "Your age is: "
 &
 years
 &
 " years and "
 &
 months
 &
 " months"
)

Else

MsgBox
 (
 "Please enter a valid date."
)

End
 If

End
 Sub

Output:

[image:]

[image:]

14.2 Time

There is no special data type for time and time variables are usually declared as Variant. There are a few inbuilt functions in VBA for dealing with time values.

14.2.1 Current Time

Current time can be retrieved using two functions – Now()
 and Time()
 . Now()
 function returns the date and time whereas Time ()
 function returns only the time. Both these functions depend on system time and hence making sure that your system time is correct is a good idea.

 Example:

 Dim current_time as Variant

 current_time = Time ()

14.2.2 Retrieve Hour, Minute and Second

Hour, minute and second can be retrieved using Hour (<time>)
 , Minute(<time>)
 and Second(<time>)
 functions respectively. These functions accept a mandatory parameter <time>

 .

Example:

 Dim current_time as Variant

 Dim hour, minute, second as Integer

 current_time = Time ()

 hour = Hour(current_time)

 minute = Minute(current_time)

 second = Second(current_time)

14.2.3 Working with time variables

As mentioned earlier, time variables can be declared as variant. The time value can be set using a proper time format such as HH:MM:SS AM/PM
 for 12-hour format or HH:MM:SS
 for 24-hour format. Here are a few examples:

 Dim time1, time2 As Variant

 time1 = “11:05:34 AM”

 time2 = “21:56:12”

Time can also be set as string and then converted to proper type using TimeValue(<time in string>)
 function. For example:

 Dim tm As Variant

 Dim time_str As String

 time_str = “09:44:17”

 tm = TimeValue(time_str)

Here is a program that demonstrates the use of some of the time functions:

Sub
 TimeDemo
 ()

'Declare required variables

Dim
 time_now
 ,
 current_time
 ,
 converted_time
 As
 Variant

Dim
 time_str
 As
 Strin
 g

'Fetch time

time_now
 =
 Now
 ()

current_time
 =
 Time
 ()

'Set some time value as string

time_str
 =
 "05:27:37 pm"

'Convert to time

converted_time
 =
 TimeValue
 (
 time_str
)

'Display everything

MsgBox
 (
 "Time using Now function: "
 &
 time_now
 &
 Chr
 (
 10
)
 &
 "Current Time: "
 &
 current_time
 &
 Chr
 (
 10
)
 &
 "Time as string: "
 &
 time_str
 &
 Chr
 (
 10
)
 &
 "Converted to Time format: "
 &
 converted_time
)

End
 Sub

Output:

[image:]

15. Procedures

A procedure is a piece of code which does a certain task. This block of code normally sits idle unless invoked. VBA offers procedures in two forms – Sub-Procedures (or Subs) and Functions
 . We have written several Sub Procedures throughout the coding examples in this book. In this section we will learn both these concepts in detail.

15.1 Sub Procedure

A sub-procedure when activated executes the block of code and does not return any value. The general syntax of writing a sub procedure is:

 Sub <sub procedure name> (<parameter list>)

 ‘Statements…

 …

 …

 End Sub

Whatever coding examples we have seen so far, we had written sub procedures which we getting listed as macros. We used to execute these sub procedures by running them as macros
 . All this was possible because those subs we not accepting any parameters as input and rightly so because there was no way that we could pass parameters directly while running them as Macros
 . When a sub procedure has a list of parameters, it will not get listed as a Macro
 and can only be invoked by another sub-procedure or a function
 .

15.1.1 Sub Procedure Parameters

Parameters is a set of values that a sub procedure accepts. A sub procedure can have more than one parameters, some of them could be mandatory and some of them can be optional. If there are multiple parameters, they have to be separated using commas. The general syntax of writing a sub that accepts parameters is:

 Sub <procedure name> (<param 1> As <data type>, …. <param n as <data type>)

 ‘Statements…

 …

 …

 End Sub

Let us write a sub that accepts 3 integers and displays their sum.

 Sub sum (x As Integer, y As Integer, z As Integer)

 Dim sum As Integer

 sum = x + y + z

 MsgBox(“Sum = “ & sum)

End Sub

This code will sit idle just like any other macro unless called and it will not get listed in macros either. A sub with parameters can only be called from another sub procedure or another function
 . We will learn about calling a sub procedure in the next section.

If you want a parameter to be optional
 , you can prefix the keyword Optional
 to the variable name. For example, if you want to make z optional in the above example, the definition will look like:

 Sub sum (x As Integer, y As Integer, Optional z As Integer
)

Note
 : Optional parameters should either be at the beginning or at the end and when using optional parameters, necessary changes in the code must be made at a logical level.

15.1.2 Calling a Sub Procedure

A sub procedure can be called as follows:

 <sub procedure name> <parameters in order separated by comma>)

 Example:

 ‘Calling sum from the previous section

 sum 56, 23, 76

The parameters to be passed should be in the exact order as they appear in the sub procedure definition. Let us write 2 subs – FindSum
 and FindProduct
 to display the sum and the product of the parameters respectively. Both subs will accept 3 parameters each. In FindProduct
 , the third parameter would be optional. Let us write another sub – InvokeSubs
 to call the two subs. Consider the following code:

'Sub to display sum of 3 parameters

Sub
 FindSum
 (
 x
 As
 Integer
 ,
 y
 As
 Integer
 ,
 z
 As
 Integer
)

'Declare a variable to store sum

Dim
 sum
 As
 Integer

'Add all 3 parameters and assign to sum

sum
 =
 x
 +
 y
 +
 z

'Display sum

MsgBox
 (
 "Sum = "
 &
 sum
)

End
 Sub

'Sub to display product

Sub
 FindProduct
 (
 x
 As
 Integer
 ,
 y
 As
 Integer
 ,
 Optional
 z
 As
 Variant
)

'Declare a variable to store product

Dim
 product
 As
 Integer

'Multiply all 3 parameters and store in product

product
 =
 x
 *
 y
 *
 z

'Display produc
 t

MsgBox
 (
 "Product = "
 &
 product
)

End
 Sub

'Sub to invoke other subs

Sub
 InvokeSubs
 ()

'Invoke FindSum

FindSum
 5
 ,
 7
 ,
 2

'Invoke FindProduct

FindProduct
 10
 ,
 20

End
 Sub

If you try to call FindSum
 or FindProduct
 from Macros
 , you will realize that these to subs are not listed at all:

[image:]

The only sub that is getting listed is InvokeSubs
 . This is because it accepts no parameters. Let us recall from the code how we are calling FindSum and FindProduct:

'Invoke FindSum

FindSum
 5
 ,
 7
 ,
 2

'Invoke FindProduct

FindProduct
 10
 ,
 2
 0

We are passing 5, 7 and 2
 to FindSum
 , so 14
 should be displayed as the sum. FindProduct
 accepts two mandatory parameters and one optional parameter, so we are passing two parameters – 10
 and 20
 whose product should be displayed as 200
 . Let us see what happens when we run this program.

Output:

[image:]

[image:]

Sum is correctly displayed as 14
 while product is displayed as 0
 when it should have been 200
 . Let us see what is happening in the FindProduct
 sub. We are calculating the product as:

'Multiply all 3 parameters and store in product

product
 =
 x
 *
 y
 *
 z

We know that x
 and y
 are mandatory but z
 is optional. When z
 is not passed, it is considered as 0
 . Hence we are seeing a wrong product. It is mentioned in a note in Section 15.1.1
 that when optional parameters are involved, necessary steps must be taken to make the script logically correct
 .

If you want to find out whether an optional parameter is passed, you can use the IsMissing
 function. This function will return a Boolean True
 value if the parameter you are checking is not passed and a Boolean False
 value if the parameter you are interested in has been passed. Syntax:

 IsMissing(<parameter>)

 Example:

 If (IsMissing(z)) Then

 ‘Statements

 …

 …

 End If

Note
 : IsMissing
 function will only work with Variant
 type parameters.

Let us modify the FindProduct
 function to handle the situation where the optional parameter z
 is not passed:

Sub
 FindProduct
 (
 x
 As
 Integer
 ,
 y
 As
 Integer
 ,
 Optional
 z
 As
 Variant
)

'Declare a variable to store product

Dim
 product
 As
 Integer

'Check if z has been passed

If
 (
 IsMissing
 (
 z
))
 Then

'Multiply only x and y

product
 =
 x
 *
 y

Else

'Multiply all 3 parameters and store in product

product
 =
 x
 *
 y
 *
 z

End
 If

'Display product

MsgBox
 (
 "Product = "
 &
 product
)

End
 Su
 b

Let us see what is the product now.

Output:

[image:]

Let us call the sub by passing 3 parameters just to make sure that the logic is versatile enough:

'Invoke FindProduct

FindProduct
 10
 ,
 20, 8

Output:

[image:]

15.2 Functions

A function is a block of code that performs certain tasks. It is similar to sub procedures but with one major difference. While sub procedures do not return any value, functions have the ability to return values. This is a very important concept. Excel users who have been using functions such as SUM, AVERAGE, MAX,
 etc. will know how much easier computations become with these in-
 built functions. In this section, we will learn to write our own functions and use them.

The general syntax to write a function is:

 Function <function name> (<parameter list>)

 ‘Statements…

 …

 …

 End Function

 Example:

 Function TestFunction ()

 MsgBox(“This is a test!”)

 End Function

15.2.1 Function Parameters

Just like sub procedures, functions have an option of accepting a set of values as parameters. A function can have any number of parameters. If there are multiple parameters, they have to be separated using commas. The general syntax of writing a function that accepts parameters is:

 Function <procedure name> (<param 1> As <data type>, …. <param n as <data type>)

 ‘Statements…

 …

 …

 End Sub

Let us write a function that accepts 3 integers and displays their product.

 Function product (x As Integer, y As Integer, z As Integer)

 Dim prod As Integer

 prod = x * y * z

 MsgBox(“Product = “ & prod)

End Function

A block of function is an idle code unless invoked. We will learn more about calling a function in the next section.

If you want a parameter to be optional
 , you can prefix the keyword Optional
 to the variable name. For example, if you want to make z optional in the above example, the definition will look like:

 Sub product (x As Integer, y As Integer, Optional z As Integer)

Note
 : Optional parameters should either be at the beginning or at the end. This is because, there is no method to resolve whether or not a parameter is an optional one if it happens to be in the middle. An important thing to note is, in order for your code to work properly when dealing with optional parameters, necessary logical changes need to be made.

15.2.2 Return Values

A function may or may not return a value. We have seen many examples of functions in this book which return a value back to the calling function. For example, we have learnt in Strings
 chapter about various functions that perform string manipulations such as convert to upper case, convert to lower case, find the length of the string, etc. Let us learn how to return a value back to the calling function. Returning a value is quite simple – all you have to do is set the value you want to return to the name of the function
 . I know this may sound a little confusing and may go against all the variable
 concepts you have learnt but the process is not at all complicated. Here is the general syntax of returning a value:

 Function <function name> (<param list>) As <return type>

 ‘Statements…

 …

 …

 <function name> = <value to be returned>

 End Function

Consider the product function from the previous section. Let us modify it to return the product of 3 integers instead of displaying the product in a message box:

Function product (x As Integer, y As Integer, z As Integer) As Integer

 Dim prod As Integer

 prod = x * y * z

 product = prod

End Function

As seen from the code, there is a function called product
 which accepts 3 integers. There is a variable in this function called prod
 which stores the product of these 3 parameters. At the end, we assign prod
 to the name of the function
 which is product
 in this case.

Note:
 While writing the main body of the function, the syntax of the first line goes like this - Function <function name> (<param list>) As <return type>
 .
 If you have noticed, at the end it says As <return type>
 . This part specifies the data type of the value the function is going to return. Setting your return type keeps you safe from type-mismatch error. If you omit it, you may not have problems most of the time, but it is a good programming
 practice to include it. If your function does not return any value, then of course there is no point in specifying a return type.

15.2.3 Calling a Function

A function does not get listed as a macro. Calling a function can be done in two ways – call from within the code or call from the sheet. We will take a look at each one of these methods.

When you call a function from a sub procedure or from another function, it is considered as calling from within the code. Calling from the sheet is the real deal here because this is where you are going to learn to write useful functions (such as SUM, AVERAGE, etc) and call them directly from the sheet itself. Calling a function from the sheet could easily be one of the most important chapters of this book if not the most important.

15.2.3.1 Calling from the code

A function can be called from the code just as you would call a sub procedure. However, when a function returns a value, there must be a variable to receive the value. General syntax is:

 <variable> = <function name> (<parameter list>)

 Example:

 Dim p As Integer

 p = product (5, 7, 3)

In the above example, there is an integer variable called p
 . In the next line of code, we call the function product
 as product (5, 7, 3)
 wherein we pass 5, 7 and 3
 as parameters. This is the point where the function product will get invoked, receive the passed parameters, compute their product and return (integer value 105
) back to the calling function/sub
 .

Notes:

	
If a function is not returning any value, you can call the function as you would call any sub procedure - <function name> <parameters separated by commas>
 , without a variable to receive a value (because the function does not return any value). Such a condition defeats the purpose of writing a function, you could easily accomplish this with a sub-procedure. However, there is one use-case and we will take a look at it in the next section.

	
When a function does not return any value, a NULL value (Nothing
 in case of a variant, empty string in case of a string and 0 in case of an integer) will be returned implicitly and you can still receive it.

	
When you have a variable to receive the implicitly passed value, you may call the function as <variable> = <function name>
 or <variable> = <function name> ().

Let us write a function that does not accept any parameters and returns no value, also try to receive the implicitly returned value is a variable inside the calling sub:

Sub
 InvokeFunction
 ()

'Call TestFunction

TestFunction

'Declare a variable to receive implicitly returned value

Dim
 x
 As
 Variant

'Call the function again, receive the implicitly returned value in x

x
 =
 TestFunction
 ()

MsgBox
 (
 "Inside InvokeFunction. Implicitly returned value x = "
 &
 x
)

End
 Su
 b

Function
 TestFunction
 ()

MsgBox
 (
 "Inside TestFunction. Returning no value."
)

End
 Function

Output:

First Function Call

[image:]

Second Function Fall

[image:]

[image:]

As seen from the output, the value of x
 is NULL and hence cannot be seen.

Let us write a function called Division
 that accepts two parameters of double type, divide them and return their quotient:

Sub
 InvokeDivision
 ()

'Declare a variable to receive the returned value

Dim
 quotient
 As
 Double

'Call the function Division and receive the returned value in quotient

quotient
 =
 Division
 (
 128
 ,
 15
)

'Display Quotient

MsgBox
 (
 "Quotient = "
 &
 quotient
)

End
 Sub

Function
 Division
 (
 x
 As
 Double
 ,
 y
 As
 Double
)
 As
 Double

'Declare a variable to store quotient of division

Dim
 quotient
 As
 Double

'Perform division

quotient
 =
 x
 /
 y

'Return quotient by setting quotient to function name Division

Division
 =
 quotient

End
 Function

Output:

[image:]

Note
 :
 The procedure and rules of dealing with optional parameters with functions are the same as that of dealing with sub-procedure optional parameters
 .

15.2.3.2 Calling from the Sheet

This is one of the most important chapters of this book. As an excel user, you will find it very useful to write a function and call it from the sheet. If you are comfortable in writing sub-procedures and functions and calling them from the code, you are good to proceed. Otherwise, I suggest going through the entire Section 15
 up to this point again and practicing writing and calling a few sub-procedures and functions.

In order to call a function from the sheet, all you have to do is click on any cell, then click inside the formula bar
 , and type = <function name> (<parameters>)
 and hit Enter
 . You will soon see a drop down list of the available inbuilt functions as well as the functions that you have written as soon as you start typing in the formula bar. Even if you do not see a drop down list, make sure to complete your function call. For example, let us write a function that does not accept any parameters and does not return any value:

Function
 SampleFunction
 ()

MsgBox
 (
 "This is just a sample function."
)

End
 Function

Now let us call SampleFunction
 from the sheet:

[image:]

This is what happens when you type the full function name and press Enter
 :

[image:]

The function gets invoked and the statements in it start executing one by one. In this case, we have only one statement inside the function body.

This function does not accept any parameters and does not return any value. A sub-procedure would have done the same job just fine. But, you cannot call a sub-procedure using the formula bar. This is the use-case that we talked about in Section 15.2.3.1 Notes
 .

Let us write a function called FindDifference
 that accepts two Double values, subtracts one from another and returns their difference:

Function
 FindDifference
 (
 x
 As
 Double
 ,
 y
 As
 Double
)
 As
 Double

'Declare a variable to store the difference

Dim
 difference
 As
 Double

'Calculate difference, store in the above variable

difference
 =
 x
 -
 y

'Return difference by setting difference to FindDifference function name

FindDifference
 =
 difference

End
 Functio
 n

Call the function using the formula bar, pass any values to the function:

[image:]

This is what happens when you complete the function call:

[image:]

The returned value goes back to the same cell for which you had entered the function in the formula bar
 . This is Excel 101! This is how your favourite functions such as SUM, AVERAGE, SUMIF, etc
 . work. Now that you have learnt to write your own functions and call them using the formula bar, Congratulations!

If you have values in the sheet, you can directly pass them using their cell number either by typing or clicking on the cell when it comes to entering parameters.

Let us write another function called FindProduct
 which accepts 3 Double parameters, calculates their product and returns it
 :

Function
 FindProduct
 (
 x
 As
 Double
 ,
 y
 As
 Double
 ,
 z
 As
 Double
)
 As
 Double

'Declare a variable to store the product

Dim
 product
 As
 Double

'Calculate product, store in the above variable

product
 =
 x
 *
 y
 *
 z

'Return product by setting difference to FindProduct function name

FindProduct
 =
 product

End
 Function

We will populate the sheet as follows and use values from Cells A2, B2 and C2. Store the product in Cell D2:

[image:]

Let us call the function FindProduct
 , send A2, B2 and C2 as parameters by clicking on them and separating them by commas:

[image:]

You should see the following output:

[image:]

Note:
 If you enter a function that does not exist, you will see an invalid name error
 and the cell will say - #NAME?
 . If you do not call the function correctly – for example, if you try to pass 6 parameters to a function which accepts only 2 parameters, you will receive an invalid value
 error
 and the cell will say - #VALUE!
 . Hence, always be sure to check the function definition before calling.

15.3 Pass by Value and Pass by Reference

This section applies to both sub-procedures and functions. Pass by Value and Pass by Reference are two methods of passing parameters to a function or a sub.

15.3.1 Pass by Value

In this method, we pass the value of the variable. Inside the sub/function which receives the passed value has its own copy of that variable. Hence, any changes made to that variable are not reflected back in the calling function/sub. In order to pass by value, you need to specify the keyword ByVal
 in front of the parameter that is passed by value. For example, consider a function that accepts two strings and makes changes to both. These parameters will be passed by value. Here is the code:

Function
 PassByVal
 (
 ByVal
 x
 As
 String
 ,
 ByVal
 y
 As
 String
)

'Display x and y

MsgBox
 (
 "Inside PssByVal Function. Before changing x and y:"
 &
 Chr
 (
 10
)
 &
 "x = "
 &
 x
 &
 " y = "
 &
 y
)

'Change values of x and y

x
 =
 "Hello"

y
 =
 "How are you"

MsgBox
 (
 "Inside PssByVal Function. After changing x and y:"
 &
 Chr
 (
 10
)
 &
 "x = "
 &
 x
 &
 " y = "
 &
 y
)

End
 Functio
 n

Sub
 InvokePassByVal
 ()

'Declare 2 strings

Dim
 x
 ,
 y
 As
 String

Dim
 z
 As
 Variant

'Set x and y

x
 =
 "Hi!"

y
 =
 "What are you doing?"

'Display x and y

MsgBox
 (
 "Inside PssByVal Function. Before calling PassByVal"
 &
 Chr
 (
 10
)
 &
 "x = "
 &
 x
 &
 " y = "
 &
 y
)

'Call passbyval

z
 =
 PassByVal
 (
 x
 ,
 y
)

MsgBox
 (
 "Inside PssByVal Function. After calling PassByVal"
 &
 Chr
 (
 10
)
 &
 "x = "
 &
 x
 &
 " y = "
 &
 y
)

End
 Sub

Output:

[image:]

[image:]

[image:]

[image:]

As seen from the output screenshots, the values do not change even if they are altered in the function/sub if passed by value.

15.3.2 Pass by Reference

In pass by reference method, a reference of the variable is passed and not the value. Hence, any changes made to that variable in a sub/function will be reflected back to the calling sub/function. In order to pass by value, you need to specify the keyword ByRef
 in front of the parameter that is passed by reference. This method works only with Variant
 data types. For example, consider a function that accepts two strings and makes changes to both. These parameters will be passed by reference. Here is the code
 :

Function
 PassByRef
 (
 ByRef
 x
 As
 Variant
 ,
 ByRef
 y
 As
 Variant
)

'Display x and y

MsgBox
 (
 "Inside PassByRef Function. Before changing x and y:"
 &
 Chr
 (
 10
)
 &
 "x = "
 &
 x
 &
 " y = "
 &
 y
)

'Change values of x and y

x
 =
 "Finland"

y
 =
 "Iceland"

MsgBox
 (
 "Inside PassByRef Function. After changing x and y:"
 &
 Chr
 (
 10
)
 &
 "x = "
 &
 x
 &
 " y = "
 &
 y
)

End
 Function

Sub
 InvokePassByRef
 ()

'Declare 2 strings

Dim
 x
 ,
 y
 As
 Variant

Dim
 z
 As
 Variant

'Set x and y

x
 =
 "Sweden"

y
 =
 "Norway"

'Display x and y

MsgBox
 (
 "Inside InvokePassByRef Sub. Before calling PassByRef"
 &
 Chr
 (
 10
)
 &
 "x = "
 &
 x
 &
 " y = "
 &
 y
)

'Call passbyref

z
 =
 PassByRef
 (
 x
 ,
 y
)

MsgBox
 (
 "Inside InvokePassByRef Sub. After calling PassByRef"
 &
 Chr
 (
 10
)
 &
 "x = "
 &
 x
 &
 " y = "
 &
 y
)

End
 Sub

Output:

[image:]

[image:]

[image:]

[image:]

As seen, when we pass parameters by reference, any changes that we do in the receiving sub/function are reflected back in the calling sub/function.

15.4 Organizing your Procedures

As a developer, you will write a lot of sub procedures and functions to carry out various tasks. It is very important to keep them organized. It is advisable to club all the relevant or interdependent
 sub procedures and functions under one module. Fortunately, there is a way to access a sub/function written in one module from another one. To do so, you have to use the following syntax:

<Module>.<Sub/Function>(<parameters>)

For example, if you want to call a function called Add(<integer>,<integer>)
 which is present in Module1
 from outside Module1
 , you would call it as:

Sum = Module1.Add(545,75)

Notes:

	
If you want to make your sub/function not accessible from outside the module, you can make it private by prefixing the keyword Private
 while writing the sub/function as follows:

Private <Sub/Sunction> <Sub/Function name> (<parameters>)

‘Statements….

End <Sub/Function>

	
If you want to share variables between different subs/ functions within the same module, you can declare them as global variables
 . That is, you have to declare them outside sub/function definitions, preferably at the beginning of the code.

16. Introduction to GUI Programming

So far, we have seen the non-graphical user interface programming part of Excel VBA. The only GUI we interacted with was Excel’s own VBA. By now, you should be able to handle basic VBA programming.

GUI designing/programming in Excel VBA is a very rich feature, there is no doubt about it. However, Excel VBA is not really suited for full-fledged GUI programming. There are several reasons why –

	
It does not give you good control over the system

	
Look and feel of the GUI components is not great

	
Not a lot of customization options

	
Excel’s own UI may interfere with your custom UI

	
Excel VBA GUI application runs from within Excel and is not standalone

Having said that, being able to develop a GUI application inside a MS Office application such as Excel is a great thing in itself. This knowledge will also serve as a decent stepping stone of learning to develop proper standalone GUI applications in frameworks such as VB .NET or C# .NET
 . Considering all these points, we will only learn the basics of GUI programming using Excel VBA. To begin with, make sure you have access to the Developer ribbon:

[image:]

In Excel VBA, GUI can be implemented in two ways – using ActiveX Controls
 and using Form Controls
 . ActiveX
 is a framework by Microsoft that implements Component Object Model (COM)
 and Object Linking and Embedding (OLE)
 . ActiveX
 controls can be used to build GUI and other objects and use them in supported languages including VBA. Since ActiveX
 is a different framework altogether, the components are loaded separately in Excel. Consider it as a plug-in for understanding purpose. For whatever reason, if you have a problem with ActiveX
 framework, your components inside Excel will not work even if rest of Excel works fine. But such a scenario will almost never occur. Another point to consider is ActiveX
 works only on Microsoft Windows
 operating systems natively.

Form Controls
 on the other hand are loaded from within Excel
 and do not rely on any other framework. If Excel works fine, Form Controls
 should work fine. ActiveX controls provide much better control over Form Controls and hence we will be using ActiveX controls for learning GUI basics.

16.1 Getting Started

Make sure that you have access to GUI Controls under Insert menu:

[image:]

Click on one control at a time and then click anywhere on the sheet to drop that control. Try this with different controls, ignore any warnings. Make sure you are able to drop controls on the sheet:

[image:]

When the Design Mode
 is on, you will be able to resize these components and move them around. When the design mode is off, this application is like ready to execute, waiting for an event such as button click. If you right click on any of the ActiveX
 components, you will see a properties option, check that out just to get used to it. For example, properties box of a Command Button looks like this:

[image:]

Over here, you can see that many properties of a Command Button such as Caption, position, etc. can be changed. Covering each and every property is beyond the scope of this book and hence only the important ones are covered.

Tip:
 Merge a few cells of a sheet in order to make a clean working area where you can place GUI components in an organized manner.

16.2 Buttons

The primary use of a button in any GUI is button click. That is, something should happen when you click a button. Consider a day-today example that we already know. You open your favourite site, enter your credentials and click Login/Sign-In button. If your credentials are correct, you enter in to your account. If you enter your credentials and sit idle without clicking Login/Sign-In, you will not sign in. From a programmer’s perspective, a button click is an event that can happen at any point of time and there should be a piece of code that handles this event – in this case, signing in to the account. This is a very generic example just to familiarize with the things that we will be dealing with. We will see how to use a button and handle button clicks.

Click Insert
 , Command Button
 under ActiveX Controls
 and click anywhere on the sheet wherever you want to place the button. While the design mode is on, move it and resize it as desired. Turn off design mode by toggling the Design Mode option and make sure that the button is clickable. As of this point, we do not have a code to handle button click and hence nothing should happen when you click that button. Your sheet should look more or less like this:

[image:]

Switch the design mode on, right click on the button, click properties. Give a meaningful name to the button under the (Name)
 field and a meaningful display text under the Caption
 field and close the Properties
 box. I have named it as first_button
 and set the Caption as First Button
 :

[image:]

The button looks like this now:

[image:]

The (Name)
 field in the properties box is particularly important because the button will be accessed programmatically using this name. It is like a variable name for this button.

16.2.1 Button Click

Now, let us write code to handle a button click event. To begin with, we will simply display a message using a message box to make sure everything works fine. All this while we had written subs and functions inside modules. For dealing with GUI, we will write code under Sheet in the Visual Basic editor:

[image:]

If you have multiple sheets, double click on the appropriate one which holds the GUI components. Upon doing so, a code window would pop up just as it would for a module. Select the button (first_button)
 from the first dropdown box and the Click
 event
 from the second one and an empty sub-procedure will be generated for you:

[image:]

This is where you will write the code to handle a button click. Let us use a message box to display some message. The code would look like:

Private
 Sub
 first_button_Click
 ()

'Code
 to
 handle
 button
 click
 goes
 here
 in
 this
 sub.

'Display a message using message box

MsgBox
 (
 "First Button works fine. Carry on!"
)

End
 Sub

Go back to the sheet, make sure that the design mode is off and click on the button. This is what you should see:

[image:]

Single click is one of the many events that a button supports. Covering every event is beyond the scope of this book. Hence, only the important ones are covered
 .

16.2.2 Double Click

To handle a double click, select button from the first dropdown list and DblClick
 from the second one. An empty sub to handle double click will be generated for you automatically. Let us display a different message if and when a user double clicks this button. Here is the code:

Private
 Sub
 first_button_DblClick
 (
 ByVal
 Cancel
 As
 MSForms.ReturnBoolean
)

'Code
 to
 handle
 double
 click
 goes
 here
 in
 this
 sub.

'Display a message using message box

MsgBox
 (
 "You just double-clicked!!!"
)

End
 Sub

Note:
 A single-click and double click cannot be dandled at ones because when you make the first click, the single click event will get triggered. Hence, to demonstrate this feature, remove the sub that handles single click.

Go back to the sheet, make sure that the design mode is off and double-click on the button. This is what you should see:

[image:]

16.2.3 Mouse Move

This is an interesting event. MouseMove
 event will get triggered whenever you hover mouse cursor over the button. To handle a Mouse Move event, select button from the first dropdown list and MouseMove
 from the second one. An empty sub to handle mouse hover will be generated for you automatically. Let us let the user know when he hovers over the button. Here is the code:

Private
 Sub
 first_button_MouseMove
 (
 ByVal
 Button
 As
 Integer
 ,
 ByVal
 Shift
 As
 Integer
 ,
 ByVal
 X
 As
 Single
 ,
 ByVal
 Y
 As
 Single
)

'Code to handle MouseMove goes here in this sub.

'Display a message using message box

MsgBox
 (
 "Mouse just hovered here!!!"
)

End
 Sub

Simply hover over the button and this sub should get triggered. You will see something like this:

[image:]

16.2.4 Usage Suggestions

You will be using button click most of the times. As you have seen, you can assign a sub which can handle button clicks. Which means you can use button clicks as a short cut to activate different subs. For example, let us write 4 subs – add, subtract, multiply and
 divide which will pull two values from the sheet and perform relevant arithmetic operations. There will be 4 different buttons which will execute these subs upon a button click.

This is how I have organized the UI of the sheet:

[image:]

Here is the code:

Private
 Sub
 AddButton_Click
 ()

'Declare a variable to store sum

Dim
 sum
 As
 Double

'Add values form the designated cells

sum
 =
 CDbl
 (
 Cells
 (
 2
 ,
 1
))
 +
 CDbl
 (
 Cells
 (
 2
 ,
 2
))

'Update the appropriate cell

Cells
 (
 5
 ,
 1
)
 =
 sum

End
 Sub

Private
 Sub
 DivideButton_Click
 ()

'Declare a variable to store quotient

Dim
 quotient
 As
 Double

'Multiply values form the designated cells

prod
 =
 CDbl
 (
 Cells
 (
 2
 ,
 1
))
 /
 CDbl
 (
 Cells
 (
 2
 ,
 2
))

'Update the appropriate cell

Cells
 (
 8
 ,
 2
)
 =
 quotient

End
 Sub

Private
 Sub
 MultiplyButton_Click
 ()

'Declare a variable to store product

Dim
 prod
 As
 Double

'Multiply values form the designated cells

prod
 =
 CDbl
 (
 Cells
 (
 2
 ,
 1
))
 *
 CDbl
 (
 Cells
 (
 2
 ,
 2
))

'Update the appropriate cell

Cells
 (
 8
 ,
 1
)
 =
 prod

End
 Su
 b

Private
 Sub
 SubtractButton_Click
 ()

'Declare a variable to store difference

Dim
 diff
 As
 Double

'Subtract values form the designated cells

diff
 =
 CDbl
 (
 Cells
 (
 2
 ,
 1
))
 -
 CDbl
 (
 Cells
 (
 2
 ,
 2
))

'Update the appropriate cell

Cells
 (
 5
 ,
 2
)
 =
 diff

End
 Sub

This is how the sheet looks like after clicking each of the buttons one by one:

[image:]

16.3 Text Box

A text box is a GUI control which allows you to enter text in to it. To insert a text box, click Insert
 under the Developer ribbon, Text Box
 under ActiveX
 control and click anywhere on the sheet to drop the text box. If you exit the design mode and click on the box, you will see that you are able to type inside the box:

[image:]

Switch the design mode on, right click on the text box and click on Properties
 just as you had done for Buttons
 . You will see a properties box where you can change several properties. The important ones for us are – (Name)
 and Text
 . (Name)
 sets the variable name of the text box whereas Text
 sets the text in case you want the text box to have default text.

16.3.1 Setting and Retrieving text

You can set and retrieve the text of a text box programmatically by using the Text
 property of a text box. This property can be accessed using the dot (.) operator as follows:

 ‘Set Text

<text box name>.text = “sample text”

‘Retrieve text in a variable

 <variable> = <text box name>.text

I have inserted one text box and two buttons. One button will set sample text and the other will retrieve whatever text is present in the text box. Here is what the GUI looks like:

[image:]

Here is the code which handles both button clicks
 :

Private
 Sub
 get_text_Click
 ()

Dim
 text
 As
 String

text
 =
 FirstTextBox.text

MsgBox
 (
 "Text inside text box: "
 &
 text
)

End
 Sub

Private
 Sub
 set_text_Click
 ()

'Set sample text

FirstTextBox.text
 =
 "Wow! This works!"

End
 Sub

After clicking both the buttons, this is what you should see:

[image:]

16.3.2 Text Change event

When dealing with buttons, a button click event is of great significance and one of the reasons why buttons exist in the first place. When it comes to a text box, events may or may not play that much of a role as long as you are able to get and set the text. Nevertheless, VBA does offer you the feature of using events with text box. There are a few of them, but we will only be looking at Change
 event. A change event gets triggered when the text inside a text box is changed. Just like a button click, there will be a sub
 which will get activated when text inside that particular text box is changed. In order to write code that should execute when the text inside of a text box is changed, go to the Sheet code, select the desired text box from the first drop down box and Change
 from the second drop down box. Doing this much will generate a sub where you will write the code:

[image:]

Let us write code to copy contents of the text box into one of the cells as the user starts typing inside the text box:

Private
 Sub
 MyTextBox_Change
 ()

'Update Cell A1 as the user types

Cells
 (
 1
 ,
 1
)
 =
 MyTextBox.text

End
 Sub

As you begin to type, you will see that cell A1 gets updated with whatever you type:

[image:]

16.4 Combo Box

A Combo Box
 is a drop down box that lets you select an item out of a list. You may have seen in many software applications as well as on web applications. In order to use a combo box, click Insert
 , Combo Box
 under ActiveX
 controls. Click anywhere on the sheet where you want to drop the combo box. Right click on the combo box, click on properties and a properties box like this should open:

[image:]

Out of the many properties, I have highlighted the most important ones – (Name)
 , Style
 and Text
 . (Name)
 is the name of this Combo Box that will be used in the code and Text
 is the text of the selected item or whatever is presently displayed. A combo box can behave as a text box where in it will let you enter the text. If you want it to be un-editable, you can do so by altering the Style
 property. Style can have these two values – 0 -
 fmStyleDropDownCombo
 or
 2 - fmStyleDropDownList
 . The value 0 –
 fmStyleDropDownCombo
 makes the text of the combo box editable whereas 2 – fmStyleDropDownList
 make the text un-editable.

16.4.1 Adding and Removing Items

There is a function called AddItem(<item>, <index>)
 which adds the given item at the specified index. If no index is specified, the item will be added at the end of the previous collection of items. I have inserted a combo box on to my sheet, named it OurBox
 and it has no items in it presently:

[image:]

Let us write some code to add 7 continents into this box:

Sub
 ComboAdd
 ()

'Add 7 continents

OurBox.AddItem
 (
 "N. America"
)

OurBox.AddItem
 (
 "S. America"

)

OurBox.AddItem
 (
 "Europe"
)

OurBox.AddItem
 (
 "Africa"
)

OurBox.AddItem
 (
 "Asia"
)

OurBox.AddItem
 (
 "Australia/NZ"
)

OurBox.AddItem
 (
 "Antarctica"
)

End
 Sub

Once you execute this sub, you will see that the combo box item list got updated:

[image:]

Items can be removed only by specifying the index which start at 0. A function called RemoveItem(<index>)
 is used to remove an item at the specified index. When you remove an item, the items below that index will be shifted one location up. Let us remove a few items:

Sub
 ComboRemove
 ()

'Remove a few items

OurBox.RemoveItem
 (
 0
)

OurBox.RemoveItem
 (
 1
)

OurBox.RemoveItem
 (
 3
)

End
 Sub

When you execute this sub, you should will see that some items have been removed:

[image:]

16.4.2 Item Change Event

We learned about a text change event in the Text Box section. VBA offers a change event for combo box also. This event gets triggered when an item in the combo box is selected for the first time, when the item is changed or when the text is changed. Go to your sheet code, select your combo box from the first drop down list and Change in the second one and a sub should be generated where you will write code that should get executed when any change happens with the combo box:

[image:]

Let us write a program to show the user what has been selected every time an item is selected:

Private
 Sub
 OurBox_Change
 ()

'Show the user what has been selected

MsgBox
 (
 "You have selected: "
 &
 OurBox.text
)

End
 Sub

Go back to the sheet, click on the combo box and select an item. You should see something like this:

[image:]

16.5 Label

Label is a text label that you can drop anywhere on the sheet. This component is quite significant while designing a user friendly GUI. To inset a label, go to Insert, under ActiveX
 controls, select Label
 and click anywhere on the sheet to place a label. Right click on the label to reveal its properties. You will see many properties here out of which (Name)
 and Caption
 are very important. Caption
 is used to set the text that a label displays and (Name)
 is the variable name of that label.

Using all the GUI controls we have learned, I have built the following UI. There is no code, just a demo UI:

[image:]

Notes:

	
While writing the code for a GUI, make sure you have selected the correct sheet.

	
When the design mode is on, you can move the GUI components around, resize them, change their properties.

	
If you want to call a sub or a function which belongs to a module from a sheet code, you can call it as –

<Module>.<Function/Sub>.

17. Programming Examples

In this section, we will take a look at some programming examples.

17.1 Fahrenheit/Celsius conversion

The formulae to convert between Fahrenheit and Celsius are:

°C = ([°F] − 32) ×
 5
 ⁄
 9

°F = ([°C] ×
 9
 ⁄
 5
) + 32

Let us write a VBA program to convert a given temperature value from Celsius to Fahrenheit and vice-versa. We will write two subs for two conversions. Each sub will first receive input from the user and convert the value using the appropriate formula stated above.

Sub
 CelsiusToFahrenheit
 ()

'Declare variables to store values

Dim
 deg_c
 ,
 deg_f
 As
 Double

'Ask the user to enter a Celsius value, parse it as double

deg_c
 =
 CDbl
 (
 InputBox
 (
 "Enter the temperature value in degrees celsius: "
 ,
 "Celsius To Fahrenheit"
))

'Convert to Fahrenheit

deg_f
 =
 (
 deg_c
 *
 (
 9
 /
 5
))
 +
 32

'Display in Fahrenheit

MsgBox
 (
 deg_c
 &
 " °C = "
 &
 deg_f
 &
 " °F"
)

End
 Sub

Sub
 FahrenheitToCelsius
 ()

'Declare variables to store values

Dim
 deg_c
 ,
 deg_f
 As
 Double

'Ask the user to enter a Fahrenheit value, parse it as double

deg_f
 =
 CDbl
 (
 InputBox
 (
 "Enter the temperature value in degrees fahrenheit: "
 ,
 "Fahrenheit To Celsius"
))

'Convert to Fahrenheit

deg_c
 =
 (
 deg_f
 -
 32
)
 *
 (
 5
 /
 9

)

'Display in Fahrenheit

MsgBox
 (
 deg_f
 &
 " °F = "
 &
 deg_c
 &
 " °C"
)

End
 Sub

Output:

[image:]

[image:]

[image:]

[image:]

17.2 Factorial

The factorial of a number n
 is given by n!
 where n! = n x (n – 1) x (n – 2) x …. 1
 . Factorials can only be computed of positive numbers and factorial of 0 is 1. The factorial function can also be written as n! = n x (n -1)!
 . Let us write a program to accept an integer from the user and find it’s factorial.

Sub
 Factorial
 ()

'Declare variables to store input and factorial

Dim
 num
 ,
 facto
 As
 Integer

'Initialize facto to 1

facto
 =
 1

'Read an integer from the user, parse as integer

num
 =
 CInt
 (
 InputBox
 (
 "Enter a positive integer: "
 ,
 "Factorial"
))

'Compute factorial using for loop

For
 i
 =
 1
 To
 num

facto
 =
 facto
 *
 i

Next

'Display factorial

MsgBox
 (
 "The factorial of "
 &
 num
 &
 " is "
 &
 facto
)

End
 Sub

Output:

[image:]

[image:]

17.3 Prime or Composite

Let us write a program to check whether the given number is prime or composite. A prime number is the one which is not divisible by any other number. A number which is divisible by other numbers is a composite number. The number 1 is kept out of division because every number is divisible by 1. Here is the code:

Sub
 PrimeOrComposite
 ()

'Declare variables to store input

Dim
 num
 As
 Integer

Dim
 divisible
 As
 Boolean

divisible
 =
 False

'Read an integer from the user, parse as integer

num
 =
 CInt
 (
 InputBox
 (
 "Enter a positive integer: "
 ,
 "Prime or Composite"
))

'Check for divisibility

For
 i
 =
 2
 To
 num
 -
 1

If
 ((
 num
 Mod
 i
)
 =
 0
)
 Then

divisible
 =
 True

End
 If

Next

If
 (
 divisible
 =
 True
)
 Then

MsgBox
 (
 "The number "
 &
 num
 &
 " is composite."
)

Else

MsgBox
 (
 "The number "
 &
 num
 &
 " is prime."
)

End
 If

End
 Su
 b

Output:

[image:]

[image:]

17.4 Sum and Average

There will be 10 numbers in a sheet. Let us write a program to read these numbers in to an array and find the sum and average. Here is what the sheet looks like:

[image:]

Sub
 Avg
 ()

'Declare array of 10 doubles

Dim
 arr
 (
 10
)
 As
 Double

'Declare variable to store sum and average

Dim
 sum
 ,
 av
 As
 Double

'Initialize sum to 0

sum
 =

 0

'Run the loop from 1 to 10, read values from the sheet

'Also compute sum

For
 i
 =
 0
 To
 9

arr
 (
 i
)
 =
 Cells
 (
 1
 ,
 i
 +
 1
)

sum
 =
 sum
 +
 arr
 (
 i
)

Next

'Find average

av
 =
 sum
 /
 10

'Display average

MsgBox
 (
 "Sum: "
 & sum &
 “ Average: "
 &
 av
)

End
 Sub

Output:

[image:]

17.5 Simple GUI Calculator

Let us design a simple calculator that is capable to performing addition, division, subtraction and multiplication. We shall focus on one at a time operation and not chain of operations because it will get complicated. To start with, I have designed the GUI of the calculator as follows:

[image:]

[image:]

Buttons of digits have been named as – button_0, button_2, …. button_9
 . The dot button has been named as button_dot
 . Operator buttons have been named as – button_eq, button_plus,
 button_minus, button_mul, button_div and button_clear
 . The text box will hold the output of the operations we perform and is named as value_textbox
 .

Here is the code:

'Declare variables that will be shared by all the subs

Dim
 val
 As
 Double

Dim
 operator_status
 As
 Boolean

Dim
 op
 As
 Integer

'Compute sub to carry out computation based on the selected operator

Sub
 compute
 ()

Select
 Case
 op

Case
 1
 :

val
 =
 val
 +
 CDbl
 (
 value_textbox.text
)

Case
 2
 :

If
 (
 val
 <>
 0
)
 Then

val
 =
 val
 -
 CDbl
 (
 value_textbox.text
)

Else

val
 =
 CDbl
 (
 value_textbox.text
)

End
 If

Case
 3
 :

val
 =
 val
 *
 CDbl
 (
 value_textbox.text
)

Case
 4
 :

If
 (
 val
 <>
 0
)
 Then

val
 =
 val
 /
 CDbl
 (
 value_textbox.text
)

Else

val
 =
 CDbl
 (
 value_textbox.text
)

End
 If

End
 Select

End
 Sub

'Update text box with current value

Sub
 update_textbox
 ()

value_textbox.text
 =
 val

End
 Sub

'Clear everything. Reset state of the calculator

Sub
 clear_all
 ()

val
 =
 0

value_textbox.text
 =
 ""

operator_status
 =
 False

End
 Sub

'Append digits to the text bo
 x

Sub
 add_to_textbox
 (
 digit
 As
 String
)

If
 (
 StrComp
 (
 digit
 ,
 "."
)
 =
 0
)
 Then

If
 (
 InStr
 (
 value_textbox.text
 ,
 "."
)
 =
 0
)
 Then

value_textbox.text
 =
 value_textbox.text
 &
 digit

End
 If

Else

value_textbox.text
 =
 value_textbox.text
 &
 digit

End
 If

End
 Sub

'Button 0 Click event

Private
 Sub
 button_0_Click
 ()

If
 (
 operator_status
)
 Then

value_textbox.text
 =
 ""

End
 If

add_to_textbox
 (
 "0"
)

operator_status
 =
 False

End
 Sub

'Button 1 Click event

Private
 Sub
 button_1_Click
 ()

If
 (
 operator_status
)
 Then

value_textbox.text
 =
 ""

End
 If

add_to_textbox
 (
 "1"
)

operator_status
 =
 False

End
 Sub

'Button 2 Click event

Private
 Sub
 button_2_Click
 ()

If
 (
 operator_status
)
 Then

value_textbox.text
 =
 ""

End
 If

add_to_textbox
 (
 "2"
)

operator_status
 =
 False

End
 Sub

'Button 3 Click event

Private
 Sub
 button_3_Click
 ()

If
 (
 operator_status
)
 Then

value_textbox.text
 =
 ""

End
 If

add_to_textbox
 (
 "3"
)

operator_status
 =
 False

End
 Sub

'Button 4 Click event

Private
 Sub
 button_4_Click
 ()

If
 (
 operator_status
)
 Then

value_textbox.text
 =
 ""

End
 I
 f

add_to_textbox
 (
 "4"
)

operator_status
 =
 False

End
 Sub

'Button 5 Click event

Private
 Sub
 button_5_Click
 ()

If
 (
 operator_status
)
 Then

value_textbox.text
 =
 ""

End
 If

add_to_textbox
 (
 "5"
)

operator_status
 =
 False

End
 Sub

'Button 6 Click event

Private
 Sub
 button_6_Click
 ()

If
 (
 operator_status
)
 Then

value_textbox.text
 =
 ""

End
 If

add_to_textbox
 (
 "6"
)

operator_status
 =
 False

End
 Sub

'Button 7 Click event

Private
 Sub
 button_7_Click
 ()

If
 (
 operator_status
)
 Then

value_textbox.text
 =
 ""

End
 If

add_to_textbox
 (
 "7"
)

operator_status
 =
 False

End
 Sub

'Button 8 Click event

Private
 Sub
 button_8_Click
 ()

If
 (
 operator_status
)
 Then

value_textbox.text
 =
 ""

End
 If

add_to_textbox
 (
 "8"
)

operator_status
 =
 False

End
 Sub

'Button 9 Click event

Private
 Sub
 button_9_Click
 ()

If
 (
 operator_status
)
 Then

value_textbox.text
 =
 ""

End
 If

add_to_textbox
 (
 "9"
)

operator_status
 =
 False

End
 Sub

'Button Clear Click event

Private
 Sub
 button_clear_Click
 ()

clear_all

End
 Su
 b

'Button / Click event

Private
 Sub
 button_div_Click
 ()

operator_status
 =
 True

op
 =
 4

compute

update_textbox

End
 Sub

'Button . Click event

Private
 Sub
 button_dot_Click
 ()

If
 (
 operator_status
)
 Then

value_textbox.text
 =
 "0"

End
 If

add_to_textbox
 (
 "."
)

operator_status
 =
 False

End
 Sub

'Carry out pending computations

Sub
 equals
 ()

compute

update_textbox

operator_status
 =
 True

val
 =
 0

End
 Sub

'Button eq Click event

Private
 Sub
 button_eq_Click
 ()

equals

End
 Sub

'Button - Click event

Private
 Sub
 button_minus_Click
 ()

operator_status
 =
 True

op
 =
 2

compute

update_textbox

End
 Sub

'Button x Click event

Private
 Sub
 button_mul_Click
 ()

If
 val
 =
 0
 Then

val
 =
 1

End
 If

operator_status
 =
 True

op
 =
 3

compute

update_textbox

End
 Sub

'Button + Click event

Private
 Sub
 button_plus_Click
 ()

operator_status
 =
 True

op
 =

 1

compute

update_textbox

End
 Sub

The calculator will work fine as long as you perform one operation at a time as it is not designed to handle chain of different operations. When you use this calculator, click Clear
 first and then start your calculations. Sample output:

[image:]

18. Final Words

Visual Basic for Applications is a language for running micro applications from within an application. I have covered the basics in this book for you to get started with VBA. With these basics, you should be able to automate tasks in Excel. Unfortunately, you cannot write standalone applications using VBA. However, the syntax of VBA is very similar to that of VB .NET. If you are comfortable with VBA, I strongly suggest you go ahead and learn VB.NET. With that, you will be able to write standalone applications for Windows. Those interested in developing GUI applications can learn C# .NET alongside VB .NET.

If this was your first ever programming experience and are interested in learning different programming languages, I suggest you start with C and Python. Then move to C++, Java, C#, VB.NET, etc.

If you enjoyed this book as much as I’ve enjoyed writing it, you can subscribe* to my email list for exclusive content and sneak peaks of my future books.

Visit the link below:

http://eepurl.com/du_L4n

OR

Use the QR Code
 :

[image:]

(*Must be 13 years or older to subscribe)

OEBPS/Image00080.jpg

OEBPS/Image00079.jpg

OEBPS/Image00082.jpg

OEBPS/Image00081.jpg

OEBPS/Image00084.jpg

OEBPS/Image00083.jpg

OEBPS/Image00085.jpg

OEBPS/Image00001.jpg

OEBPS/Image00076.jpg

OEBPS/Image00078.jpg

OEBPS/Image00077.jpg

OEBPS/Image00004.jpg

OEBPS/Image00005.jpg

OEBPS/Image00002.jpg

OEBPS/Image00003.jpg

OEBPS/Image00091.jpg

OEBPS/Image00090.jpg

OEBPS/Image00093.jpg

OEBPS/Image00092.jpg

OEBPS/Image00095.jpg

OEBPS/Image00094.jpg

OEBPS/Image00075.jpg

OEBPS/Image00000.jpg

OEBPS/Image00073.jpg

OEBPS/Image00087.jpg

OEBPS/Image00074.jpg

OEBPS/Image00086.jpg

OEBPS/Image00071.jpg

OEBPS/Image00089.jpg

OEBPS/Image00072.jpg

OEBPS/Image00088.jpg

OEBPS/Image00069.jpg

OEBPS/Image00070.jpg

OEBPS/Image00067.jpg

OEBPS/Image00068.jpg

OEBPS/Image00066.jpg

OEBPS/Image00064.jpg

OEBPS/Image00065.jpg

OEBPS/Image00062.jpg

OEBPS/Image00063.jpg

OEBPS/Image00060.jpg

OEBPS/Image00061.jpg

OEBPS/Image00058.jpg

OEBPS/Image00059.jpg

OEBPS/Image00056.jpg

OEBPS/Image00057.jpg

OEBPS/Image00055.jpg

OEBPS/Image00053.jpg

OEBPS/Image00054.jpg

OEBPS/Image00051.jpg

OEBPS/Image00052.jpg

OEBPS/Image00049.jpg

OEBPS/Image00050.jpg

OEBPS/Image00047.jpg

OEBPS/Image00124.jpg

OEBPS/Image00048.jpg

OEBPS/Image00123.jpg

OEBPS/Image00046.jpg

OEBPS/Image00125.jpg

OEBPS/Image00044.jpg

OEBPS/Image00116.jpg

OEBPS/Image00045.jpg

OEBPS/Image00042.jpg

OEBPS/Image00118.jpg

OEBPS/Image00043.jpg

OEBPS/Image00117.jpg

OEBPS/Image00040.jpg

OEBPS/Image00120.jpg

OEBPS/Image00041.jpg

OEBPS/Image00119.jpg

OEBPS/Image00038.jpg

OEBPS/Image00122.jpg

OEBPS/Image00039.jpg

OEBPS/Image00121.jpg

OEBPS/Image00036.jpg

OEBPS/Image00037.jpg

OEBPS/Image00033.jpg

OEBPS/Image00127.jpg

OEBPS/Image00034.jpg

OEBPS/Image00126.jpg

OEBPS/Image00031.jpg

OEBPS/Image00129.jpg

OEBPS/Image00032.jpg

OEBPS/Image00128.jpg

OEBPS/Image00029.jpg

OEBPS/Image00131.jpg

OEBPS/Image00030.jpg

OEBPS/Image00130.jpg

OEBPS/Image00027.jpg

OEBPS/Image00133.jpg

OEBPS/Image00028.jpg

OEBPS/Image00132.jpg

OEBPS/Image00035.jpg

OEBPS/Image00102.jpg

OEBPS/Image00026.jpg

OEBPS/Image00101.jpg

OEBPS/Image00104.jpg

OEBPS/Image00103.jpg

OEBPS/Image00105.jpg

OEBPS/Image00022.jpg

OEBPS/Image00023.jpg

OEBPS/Image00020.jpg

OEBPS/Image00096.jpg

OEBPS/Image00021.jpg

OEBPS/Image00018.jpg

OEBPS/Image00098.jpg

OEBPS/Image00019.jpg

OEBPS/Image00097.jpg

OEBPS/Image00016.jpg

OEBPS/Image00100.jpg

OEBPS/Image00017.jpg

OEBPS/Image00099.jpg

OEBPS/Image00024.jpg

OEBPS/Image00025.jpg

OEBPS/Image00113.jpg

OEBPS/Image00112.jpg

OEBPS/Image00115.jpg

OEBPS/Image00114.jpg

OEBPS/Image00011.jpg

OEBPS/Image00012.jpg

OEBPS/Image00009.jpg

OEBPS/Image00107.jpg

OEBPS/Image00010.jpg

OEBPS/Image00106.jpg

OEBPS/Image00007.jpg

OEBPS/Image00109.jpg

OEBPS/Image00008.jpg

OEBPS/Image00108.jpg

OEBPS/Image00111.jpg

OEBPS/Image00006.jpg

OEBPS/Image00110.jpg

OEBPS/Image00015.jpg

OEBPS/Image00013.jpg

OEBPS/Image00014.jpg

