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Foreword
Robert D. Holt

The word “theory” in its broadest sense has to
do with a framework of conceptual constructs that
help explain or interpret phenomena in a particu-
lar domain (Pickett et al. 2007). The discipline of
ecology has in some of its branches robust theory
that is not particularly mathematical (Scheiner and
Willig 2011). More narrowly construed, however,
“theoretical ecology” pertains to the use of mathe-
matical and computational models to explore eco-
logical questions, ranging from individual behavior,
through the intertwined complexities of communi-
ties, to even global-scale phenomena. This is the
sense in which Robert May used the term in crafting
the series of advanced texts titled “Theoretical Ecol-
ogy,” an influential lineage of volumes now stretch-
ing back nearly half a century. A historian of ecology
could glean much insight into the development of
ecology at its conceptual core by carefully perusing
the contents of these volumes, starting with the first
edition in 1976, and now manifest in the current
fourth edition. May himself has played a central role
in the maturation of theoretical ecology, and even in
this volume nearly all the chapters cite one or more
of his many papers and books.

As noted by the editors, comparing the table
of contents of the timely and authoritative book
you have before you, with the 1976 first edition,
is quite revealing. They both start with a focus
on single species dynamics and interactions among
a small number of species, then build to multi-
species ensembles before ending with applications,
and are all written by leading authorities. But it is
instructive to ponder the differences in emphases,

reflecting maturation of our discipline. In the cur-
rent volume there is much more emphasis than in
1976 on the key role the internal structures of popu-
lations play in their dynamics, and on stochasticity,
lags, and transient dynamics—all crucial ingredi-
ents in bringing to bear theory on important applied
questions. There is much more emphasis in the cur-
rent volume on aspects of ecological complexity that
can be rendered as networks, on interactions among
species, on parasites inflicting hosts, and on flows of
individuals across space. A central theme in many
chapters is elucidating the relationship between net-
work structure, and the stability and robustness of
ecological systems—an abiding theme in May’s own
research contributions.

In 1976, one chapter was on schistosomiasis; now,
emphasis is placed on the community context of
infectious disease. Applied issues (e.g., schistosomi-
asis as a case study) in 1976 were somewhat loosely
tied to ecological theory, but in the present volume,
issues such as the role of diversity in infectious
disease dynamics, abiotic drivers of interspecific
interactions, and the quest for early warning sig-
nals of impending radical change, squarely build on
other areas of ecological theory. The 1976 volume
nodded towards evolution, for instance, with dis-
cussions of bionomic strategies and sociobiology;
the current volume includes themes such as adap-
tive dynamics as tools for examining trait evo-
lution in a community context. One could well
imagine that the fusion of ecology and evolution
will become a central theme in yet future editions
of this renowned text (see Pásztor et al. 2016 for a
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perceptive synthesis, grounding ecological theory
on Darwinian principles).

In the final chapter in this volume, the editors
reflect on likely “Areas of Current and Future
Growth,” specifically noting seasonal drivers
of dynamics, ecosystem issues, coupled social-
ecological systems, and grappling with the many
dimensions of change in the world. In closing, I
want to return to Robert May’s own closing chapter
in the third 2007 edition of Theoretical Ecology (co-
edited with Angela McLean), titled “Unanswered
questions and why they matter,” which mulls on
the consequences of the current largest driver of
change on the planet—ourselves. May remarks on
the startling singularity of our point in time, when
over a few generations our species has burgeoned in
numbers, with corresponding impacts on the planet.
May cites an estimate that will reach 9 billion by
2050; the modal projection of today’s demographic
models worrisomely is even higher, at 9.8 billion.
Back in 1800, well within the lifespan of many forest
trees still standing, there were only 1 billion or so
of us. May then remarks that by some estimates, we
have already exceeded the “ecological footprint”
of sustainability, and ends with reflections on “the
aspiration of optimizing the preservation of our
evolutionary heritage.” The ethical goal of passing
on to future generations some of the richness of

biodiversity on our planet mandates a clear and
rigorous understanding of the factors that govern
their persistence and spatial arrangements and
temporal fluxes, in the first place.

The ideas summarized in this splendid volume,
carrying on the grand tradition Robert May estab-
lished starting in 1976—from coexistence theory, to
network analyses, to embracing stochasticity and
lags, to grounding theory on an underpinning of
key individual traits and subtle issues of population
structure—are essential ingredients needed for such
understanding. All active ecologists, from students
to seasoned practitioners, would benefit from read-
ing and digesting the chapters in this volume, and I
applaud the editors and authors on the fruits of their
labors.
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CHAPTER 1

Introduction
Gabriel Gellner, Kevin S. McCann, and Emily J. Champagne

1.1 This book and its predecessors

First of all, we are absolutely honored to take over
the next installment in this excellent series, Theoret-
ical Ecology: Principles and Applications, first started
by Lord Robert May (editions I and II), and most
recently with the excellent update approximately a
decade ago with both Lord May and Dr. Angela
McLean (edition III). We were also pleased as this
eminent series allowed us to easily garner a signifi-
cant set of major players in theoretical ecology.

In some real sense, the chronology of this book
series (1976 to the present), forms a snapshot of
the history of theoretical ecology led by arguably
theoretical ecology’s most broadly impactful theo-
retician, Robert May. The first two books, Theoretical
Ecology I and Theoretical Ecology II (TE1 and TEII),
were replete with the theory of the times, reflected
in much filled population ecology, competition,
predator-prey interactions, and the occasional
heavily researched area of these earlier times (e.g.,
island biogeography, succession). In these earlier
books, species interactions are often functional
group dependent (e.g., plant-arthropod, herbivore
plant) as opposed to the more general consumer-
resource theory, that has both looked generally
at consumptive interactions (as C-R theory), and
catalogued specific functional results to produce a
more general theory for antagonistic interactions
(see the excellent book by Murdoch, Briggs,
and Nisbet 2013). In this respect, although May
and McLean’s TEIII differed significantly from
the first two, it did not cover the more general

consumer-resource theory. It did, though, start
to venture heavily into the applied aspect of
theoretical and quantitative ecology with chapters
on infectious disease, fisheries, food production,
and associated ecology, conservation biology and
climate change. While some of these have been
around historically, collectively it does represent
that theoretical/conceptual movement over the
last twenty years towards the integration of fun-
damental and applied theory. Indeed, it is clear that
applied issues can help push fundamental theory
more solidly into species area. As an example, and
discussed in the final chapter, current theory and
empirical data are starting to really wrestle with
seasonality (a longstanding issue that has never
truly picked up steam) as climate change is altering
seasons and the life histories of players within it
(e.g., phenology). As such, the push to unpack
seasonally integrated theory is growing because of
looming climate change. To expand on the historical
accounts of ecology in TEIII, this edition comes
at the heels of increased use of and exposure to
theoretical models for practicing ecologists. Trends
over the last decade have shown major shifts
towards data-driven multi-disciplinary ecology,
and especially increased research addressing
anthropogenic influences (McCallen et al. 2019).
Theoretical ecology is more accessible than ever
with the growing use of statistical software,
machine learning and open-source data, and the
new generation of technologically savvy ecologists
are well-poised to take advantage. With recent shifts

Gellner, G., McCann, K. S., and Champagne, E. J., Introduction In: Theoretical Ecology: Concepts and Applications. Edited by: Kevin S. McCann and Gabriel Gellner,
Oxford University Press (2020). © Oxford University Press.
DOI: 10.1093/oso/9780198824282.003.0001
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in ecology towards unified theories, knowledge of
emerging and foundational concepts at a theoretical
scale will only become more important.

1.2 This book: Themes and directions

Similar, to the other books in this series, we have not
made any attempt to cover all of the developed and
emerging areas in theory. It is not that we would not
want to, but rather that such a task is impossible
to accomplish. Here, we decided to unpack some
of the areas of growth during the last twenty years
and include areas that were not covered in the pre-
vious books but have blossomed to play a signifi-
cant role in theoretical ecology (e.g., energy flows,
meta-community and meta-ecosystems, body size,
network ecology, trait dynamics). Nonetheless, we
still included a section of applied theory as it has, if
anything, only increased in theoretical ecology, and
looks poised to increase even more dramatically in
the coming decades. For this reason, we followed
May and McLean (2007) and included a brief final
chapter highlighting current growth areas and areas
we believe are on the cusp of taking off (e.g., season-
ally motivated theory referred to previously). Curi-
ously, while in the May and McLean (2007) book, we
did not include a chapter on socio-ecological theory
or food production. Both areas are currently grow-
ing massively. We do think there is excellent work
in this area and no doubt believe that the next ver-
sion of Theoretical Ecology (TEV) will have a well-
developed chapter on each of these critical topics. In
line with the previous contributions in this series,
this book is written for upper level undergraduate
students, graduate students, and researchers seek-
ing synthesis and the state of the art in growing
areas of interest in theoretical ecology.

In picking topics, we leaned towards areas
that we feel have developed strongly in the last
twenty years, which were not yet covered in
TEIII and were not fully covered elsewhere (e.g.,
macroecological theory is covered here tangentially
but is well discussed numerous books and reviews;
see Brown, 1995). As an example, we included
a chapter by Chesson on competition. While
multispecies coexistence has long been around
and was in the original three TE’s, Chesson’s work
represent a major generalization of all these results
and has been picked up by theory and empirical

ecologists alike. Similarly, ideas from researchers
like Peter Yodzis (e.g., Yodzis and Innes, 1992) and
Kooijman (Kooijman and Kooijman, 2000) have
pushed using body size and metabolism as a major
unifying empirical idea in theory—an area that has
grown significantly in ecology (e.g., from consumer-
resource theory or predator-prey theory to whole
networks). These ideas have allowed for energetic
interpretations for the dynamics (e.g., stability,
cycles) and structure (e.g., the shape of biomass
of Eltonian pyramids) of populations, communities
and ecosystems. In a sense, this energetic approach
has been used as a constraint-based approach to
ecology where researchers are moving towards
whole food web perspectives, as Robert May so
famously did (May, 1973), but the more modern
movement has begun to consider this under plausi-
bly biological constraints not just May’s “statistical
universes.” As such, this area, which is related to
macro-ecology, appears in several of the chapters.

The book starts with several chapters that are
collectively more about the building blocks for
understanding dynamics of interacting species in
time and space. Chesson, as discussed previously,
uses longstanding Lotka–Volterra models to
flesh out the mechanisms behind coexistence in
Chapter 2. His work, as always, takes you to the
core of the mechanisms that yield coexistence and
make for an apt starting point; bridging the past
to the future in an area that has resonated through
the history of ecology. Similarly, Gellner et al. use
Chapter 3 to look at the role energy and biological
lags play in the dynamics of consumer-resource
interactions. This chapter briefly reviews C-R theory
but pays special emphasis to the potentially critical
role of lags in the dynamics of ecological systems.
Here, too, like Chesson we focus on the general rules
that have come out of the theory that ultimately
can be used as building blocks for understanding
higher order species interactions. Like the previous
two chapters, both areas within which resides
much historical work, Karen Abbott does a
wonderful job of revisiting the role of stochasticity
in ecological dynamics giving the reader an intuitive
understanding, by using pseudo-potentials, of how
stochasticity operates on deterministic systems,
and along the way paves us a theoretical means
to understand how transients may play out in
ecology (see Hastings et al., 2018 for an interesting



OUP CORRECTED PROOF – FINAL, 8/4/2020, SPi

I N T R O D U C T I O N 3

perspective on transients in ecology). This chapter
is followed by de Roos, who elegantly lays out how
stage structure plays out in the dynamics and struc-
ture of ecological systems. As de Roos points out
in Chapter 4, nature is replete with stage structure
and yet much of community and food web theory
ignore this at their peril. Interestingly, while Gellner
and McCann argue that even basic theory suggests
a role for lags, de Roos and work with colleague
Lennart Persson and others has long understood
that lags are critical (Roos and Persson, 2013). De
Roos does a nice job of unpacking this relatively
complex area in a simple and coherent manner.

The next five chapters are representative of a
large growth area in theoretical ecology in the
last few decades, much of this work extending
theory beyond simple species interactions to whole
networks. This area arguably has grown for several
reasons. One, after showing that simple equilibrium
community matrix models in ecology predicted that
diversity, all equal, beget instability, Robert May
argued for research on the dynamics of intermediate
dimension species interaction models. Similarly,
over the last few decades, research has pushed
the role of networks and connectivity in science.
In ecology—a world of vast and wildly complex
connections—network theory has risen to play
a significant research role and is undoubtedly
here to stay in ecology. We start these whole
systems approaches with Chapter 6, by Allesina
and Grilli, which reviews a number of really
nice developments in the matrix theory that have
ultimately originated from May’s work. Effectively,
Allesina and Grilli have drawn from a large bed
of matrix theory to put together a very complete
picture of the answers behind community matrices
that may be composed of a suite of underlying
species interactions (e.g., competition, predation,
or mutualism). The work of Allesina and others
in the past decade, or so, has done much to
reinvigorate this area first brought to bear by
May (1973).

Following this chapter, in Chapter 7, Bascompte
and Fererra examine mutualistic networks in
ecology, an area of substantial growth in ecology
over the last few decades and one where Bascompte
and colleagues have played a significant role. For
background work on the theory of mutualism at the

interaction and community-level, which has also
grown, see Bronstein (2015) for an empirical and
theoretical update. We then move to Chapter 8, by
Kondoh and colleagues, on how communities and
food webs respond structurally and dynamically
in a variable world. This is an area of recent
growth, and here Kondoh embraces variation in
multi-species interactions, rather than assumes
communities and food webs are static through time
(e.g., accepts the idea that things like interaction
strengths are far from static). It is interesting
to note that modern developments have both
further explored the dynamical understanding of
equilibrium matrices first championed by May,
while also simultaneously developing theory of
how systems respond to stochasticity—an issue that
has long been clear to empiricists. Uli Brose follows
the Kondoh chapter and represents a lot of work
that has attempted to use body size as a core trait
that determines system structure and ultimately
dynamics. This constraint-based ecology, as dis-
cussed earlier, has been in a lot of bioenergetically-
driven theory. This is an idea that has forefathers,
like Yodzis and Kooijman, and one that was not
in the previous three TE volumes. Finally, these
five chapters are capped off by Sonia Kéfi who
reviews network ecology in general. As discussed,
this has been an enormously active area, one that
integrates with a lot of the previously mentioned
areas (e.g., mutualistic networks, food webs), but is
more concerned with the topological structure and
not as directly concerned with dynamics.

The next two chapters represent areas of theoreti-
cal development that have only modest attachment
to historical ideas. Very recently, researchers have
pushed for following the dynamics of traits as they
allow models/theory to be posed at a variety of
scales from individual variation to species variation.
While the body-size theory has been around for a
while and is somewhat of an example of a trait-
driven model, this research more directly follows
traits rather than is parameterized by a trait. Some
of this research push came out of strong empirical
research programs that have found that individual
variation was ubiquitous in systems. Again, this
is another example of embracing variation both in
tracking it and recognizing that systems “adapt”
rapidly within a changing context. Klausmeier,
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Kremer, and Koffel use their Chapter 11 to outline
both how trait models can be embedded in the
classical species interactions and also unpacking
some of the implications of this trait-based research.
In a sense, this trait-based dynamic research is
related to the view of the complex adaptive system
perspective put forth by Kondoh et al. That is, that
systems change, behavior changes, traits change
and in turn the interactions are continuously
re-embedded within a changing matrix. Overall,
the issue of directional change in a changing world
is a theme that modern theory, perhaps pushed by
global change, has moved considerably towards.
The Klausmeier et al. chapter is then followed
by Gravel and Massol and takes on the growth
of meta-ecology. Here, by meta-ecology, I refer
to the outgrowth from meta-population ecology
(represented in the earlier TE books) where theory
has first considered meta-community ecology and
more recently extended to meta-ecosystem theory.
This area considers the critical role that spatial
connectivity, through dispersal and movement
across space, plays on the dynamics of populations
to whole ecosystems.

Finally, as with the last TE book by May and
McLean, we turn to applied theory. This area has
grown and continues to grow daily. We use the final
few chapters to give a taste from applied theoretical
ecology starting with the disease ecology, an area
that has been in all TE books representing its long-
standing place in ecological theory, before turning to
climate change and the general problem of predict-
ing collapse within a changing world (often called
early warning signals in ecology).

Perkins and Rohr continue the long-standing
narrative on disease ecology with a review of the
effects of host diversity on diseases, as well as
the current understanding around the coexistence
of multiple strains or pathogens within a host
community. Since much of the existing body of
research on ecology focuses on single-pathogen,
single-host systems, this branch of research could
elucidate implications for public health, and
policy in the face of global changes. Perkins and
Rohr end by arguing for the implementation of
underutilized aspects of ecological theory. Similarly,

in a very well executed chapter, Vasseur ties
longstanding ideas from ecological theory (e.g.,
the role of carrying capacity, a surrogate from
productivity) to synthesize and forecast the role
temperature may play in population community
models. Finally, work like that reviewed and
synthesized by Vasseur on climate has been front
and center in ecological theory, often suggesting
for the potential of heightened instability and/or
collapse in populations or communities. Since the
last book, this emphasis on collapse, with clear
empirical examples from the field emerging (e.g.,
dead zones increasing globally) has led to the
development of theory predicting such collapse.
Here, in a very clearly elucidated Chapter 15, John
Drake and colleagues walk us through the still
developing theory for early warning signals (EWS).
EWS, an area that is used by scientists of all ilk (e.g.,
physics) revealing the intersecting applications
of mathematics in many areas of science. Drake
also visits the empirical and experimental data
that is also rapidly being developed as the theory
blazed through some of the major journals in
science.

This book, in a greatly simplified sense, shows
that ecological theory has thoroughly embraced
complexity. The complexity of understanding the
role of a noisy (and changing) abiotic world on a
wildly connected Earth, where species connections
defy longstanding spatial boundaries and aspects
of the ecological hierarchy mix together to produce
the diversity and functioning of ecosystems. It is
worth noting that as we take over this series and
reflect on where theoretical ecology has been and is
going, that the fingerprints of Robert May’s career
as a theoretical ecologist are everywhere in this
book and in the modern literature. His vision as a
researcher, and his curiosity in so many realms of
this endeavor have led him to be an enormously
impressive force, not only in ecology but also in the
influence ecology now plays on multiple disciplines
like economics and human health. While still a
young science, the work and efforts of Robert May
have catapulted ecology into a modern era, where
it is being taken very seriously, and is playing a role
in structuring the development of humankind.
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CHAPTER 2

Species coexistence
Peter Chesson

2.1 Introduction

How do we explain the remarkable diversity of
living species on Earth? This question has long
been an inspiration and a challenge to biologists.
The structure and behavior of organisms, and the
relationships between species, ever arouse wonder;
but the questions of how and why can be enor-
mously complex. Although the complexity of an
organism reveals itself over time to the careful
observer (Lawton 1999), the how and why of
species diversity requires knowing the details of the
interactions between species and the implications
of these interactive relationships for the dynamics
of populations, microevolution, and speciation.
This web of relationships and its consequences is
one of the most complex questions ever subject to
scientific investigation.

Mathematical theory has long had prominent
roles in sorting out the logical consequences of
the interactions between species and generating
hypotheses about diversity maintenance (Scudo
and Ziegler 1978; Kingsland 1985). In this chapter,
an important part of this endeavor is discussed,
specifically how the interactions between species
affect their ability to coexist. Species diversity at
any one locality on Earth, in most fundamental
terms, is the outcome of three key processes:
speciation, immigration, and extinction. Species
coexistence is about persistence of species in the
presence of others, interacting with each other. But
persistence is never forever, and so this question is
really about how extinction is delayed. Moreover,
it can also be about how immigrants establish
(Shea and Chesson 2002), and how speciation is

fostered by the interactions between individual
organisms, both within and between species
(Chesson and Huntly 1997). Species coexistence
is thus a key question in the quest to explain the
diversity of life.

There are many sorts of interactions between
species. They include predator-prey relationships
(Terborgh and Estes 2010; Chapter 3, this book)
where one species is food of another, mutualistic
relationships (Bronstein 2015; Chapter 7, this
book) where each partner to the relationship
provides something that another needs, and they
can be competitive relationships (Birch 1957),
where the interaction may be indirect through
the effects that each species has on their shared
environment. For any given species, its natural
enemies (predators, herbivores, parasites, and
diseases), have direct negative effects on its ability
to persist, as do its competitors. In contrast,
resources, such food species, water, and places
to live, have direct positive effects (Andrewartha
and Birch 1984). Local communities of organisms
are generally considered to have a web of inter-
actions, as illustrated in highly simplified form in
Figure 2.1. Foodweb theory (Williams and Martinez
2000; Rossberg et al. 2006; Rossberg 2013) is an
approach to understanding this web of interactions
by studying who eats whom, as depicted by the
downward dashed arrows in the figure. A food
web can be envisaged as a set of intertwining food
chains, where individual chains show pathways
of energy and materials between trophic levels
(feeding levels), e.g., the path R3 → N2 → P1 → Q1

in Figure 2.1 consisting of four trophic levels.

Chesson, P., Species coexistence In: Theoretical Ecology: Concepts and Applications. Edited by: Kevin S. McCann and Gabriel Gellner, Oxford University Press (2020).
© Oxford University Press.
DOI: 10.1093/oso/9780198824282.003.0002
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R3 R4

N3N2

P2
P1

Q1

N1

R2
R1

Figure 2.1 Idealized food web diagram. The letters R, N, P, and Q
correspond to guilds in different trophic levels, with each subscripted
letter being a species in that guild. The general expectation is that
these trophic levels would represent plants, herbivores, carnivores, and
a “top predator,” but the development in the text does not adhere
strictly to this interpretation. Curved arrows indicate effects of one
species on another, defining feedback loops.

In his seminal work, “Homage to Santa Rosalia
or Why Are There So Many Kinds of Animals?”
G. E. Hutchinson (1959) pointed out that food
chains tend to be short: mostly less than five trophic
levels to very rarely ten trophic levels (Briand
and Cohen 1987). But local communities often
have hundreds if not thousands of species. To get
such high numbers, one needs to understand the
determinants of the average numbers of species
per trophic level. Thus, Hutchinson’s analysis has
argued for focusing on how species in the same
trophic level coexist with one another, potentially
competing with one another for shared resources
and interacting with each other indirectly through
shared natural enemies, as depicted in Figure 2.1.
Studies of species coexistence generally have this
focus on species within the same trophic level with
similar ecology. Using terminology originating with
(Root 1967; Simberloff and Dayan 1991; Fauth et al.
1996), they belong to the same guild. In Figure 2.1,
different letters are intended to identify different
guilds, and in this chapter the N guild is intended
as the guild of focus, although it will often be
assumed that this guild has only two species. The R
guild and the P guild are then respectively resources
and natural enemies of the N guild. The notation
N2, R1, etc., will do double duty as the name of the
species and its density (numbers per unit area) at a
specific locality.

Coexisting ecologically similar species have
generally been regarded as requiring explanation,

and the key, either implicitly or explicitly, to
how high local diversity can be possible. More
scientifically, lab systems and simple ecological
models suggest that it is difficult for similar species
to coexist (Hardin 1960; Roughgarden 1989). Yet,
we see in nature many similar species persisting
together over time in the same locality (Hubbell
2001). Species coexistence studies thus tend to
focus on the detailed relationships between similar
species that allow them to coexist (Saavedra et al.
2017). Although one might attempt to study entire
food webs, and there is much theory and empirical
work that does (Martinez et al. 2006, Amarasekare
2008; Berlow et al. 2009), these studies generally
concern broad patterns and properties that allow
the entire food web to persist. This chapter focuses
on how members of the same guild can coexist
stably (Chesson 2000b), which means that species
show average tendencies to recover when they are
perturbed to low density. As is shown here, this
outcome depends on differences between species in
how they interact with their shared environment. In
contrast, the neutral theory of community ecology
holds that species in the same guild have no
important ecological differences (Hubbell 2001).
Under neutral theory, species in the same guild to do
not coexist stably, but instead ecological drift occurs:
species’ relative abundances change at random, and
perturbations to low density are equally likely to be
followed by further losses as they are by gains.

2.2 Models

Species interactions start at the level of the individ-
ual organisms. An organism modifies its environ-
ment, for instance, by consuming resources, and
these environmental changes then affect other
individuals. The links in Figure 2.1 show potential
effects of consuming food resources. Species N2

consumes R3, but so do the other N species.
This consumption by N2 potentially reduces the
abundance of R3, in turn affecting the ability of indi-
viduals of N2 to continue to obtain it (intraspecific
competition), and also the abilities of individuals of
both N1 and N3 to obtain it (interspecific competi-
tion). To understand species coexistence, we must
consider the flow on effects of such competition to
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the growth of a species’ population. An individual
organism contributes to population growth through
births and deaths depending on its circumstances
at any given time, t. The average contribution of an
individual per unit time to growth of the population
is denoted ri(t) and is termed the per capita growth
rate. In the simplest case, without any interactions,
ri(t) would equal a constant, r0

i , but with competitive
interactions, ri(t) would be reduced relative to a
maximum value, r0

i , depending on the densities of
each species competing with Ni. If each individual
of Nj on a unit of area reduces ri(t) by a proportion
αij of its maximum value r0

i , then we see that ri(t) is

ri(t) = r0
i

⎛
⎝1 −

n∑
j=1

αijNj

⎞
⎠ . (2.1)

Box 2.1 Two-species coexistence in the Lotka–Volterra model

In the single-species case, the Lotka-Volterra competition
Equation (2.1) specializes to the single-species logistic equa-
tion (May 1974),

ri(t) = r0
i (1 − αiiNi). (B2.1.1)

Thus, Ni must converge on its “carrying capacity,” Ki, the
single-species equilibrium, which, by definition, is the value
of Ni for which the growth rate, Equation (B2.1.1), is 0.
Thus,

Ki = 1/αii. (B2.1.2)

Species Ni rises to Ki but cannot rise above it. Moreover, Ni
and must fall towards Ki if initially above it because there
ri(t) < 0. The question is whether other species will make
ri(t) < 0 at all densities of species i and drive it extinct. In
the case of just one other species, the system is driven by the
pair of equations

ri(t) = r0
i

(
1 − αiiNi − αijNj

)
, i = 1, 2, j �= i, (B2.1.3)

which is just a shorthand for

r1(t) = r0
1 (1 − α11N1 − α12N2)

r2(t) = r0
2 (1 − α21N1 − α22N2).

(B2.1.4)

Because over time Nj must head towards 1/αjj or below, in
the long run

ri(t) ≥ r0
i

(
1 − αij

αjj
− αiiNi

)
. (B2.1.5)

The right-hand side of this inequality can only be positive if
αij

αjj
< 1, (B2.1.6)

for only then is 1 − αij/αjj > 0. In that case ri(t) is positive
over the range 0 < Ni < N∗

i,min, where

N∗
i,min =

(
1 − αij

αjj

)
Ki. (B2.1.7)

Hence Ni must increase until it is at least N∗
i,min, and remain

there, defining a minimum density for Ni, in the presence of
Nj, as a fraction of its carrying capacity.

The species coexist if (B2.1.6) applies for both species as i
with the other as j, i.e., if α12 < α22 and α21 < α11. Figure
2.2a illustrates this outcome, showing how each species rises
above its N∗

i,min in the presence of the other species. This
ability to increase from low density in the presence of the
other species means that the species satisfy the invasibility
criterion for species coexistence (Turelli 1978). The presence
of a minimum positive density means they coexist in the
sense of permanence, which is generally implied by invasibil-
ity in the two species case (Kang and Chesson 2010; Chesson
2018).

Thus, ri(t) is a linear decreasing function of the
densities of all species. The per capita effect of
Nj on ri(t) is the competition coefficient, αij (more
generally, “the interaction coefficient”), which is
assumed to be either positive or zero. This is the
Lotka–Volterra competition model (Chesson 2018)
named after the ecological theory pioneers Alfred J.
Lotka and Vito Volterra (Scudo and Ziegler 1978).
In many accounts, the equation for ri(t) is written
with αij/Ki replacing αij, where Ki is the carrying
capacity (Box 2.1), but then the meaning of the αij

changes and the results become more complex and
unintuitive (Chesson 2000a).

Equation (2.1) gives the contribution of an indi-
vidual, on average, to population growth, and so the
total growth of the population is found by multiply-
ing this individual-level contribution by the number
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of individuals per unit area (the density) to give
ri(t)Ni(t). In standard calculus notation, this total
growth rate is

dNi

dt
= r0

i

⎛
⎝1 −

n∑
j=1

αijNj

⎞
⎠ Ni, (2.2)

where it is understood that Ni and Nj are functions
of time, even though t is not explicitly indicated on
the right-hand side. Note that ri(t) = (dNi/dt) /Ni,
which is the usual definition of the per capita
growth rate.

Figure 2.2 gives the range of different predictions
that the equations can have when the N guild has
just two species. In Figure 2.2a, we see the species
coexisting: they each converge on a positive value.
However, in b one particular species dominates, and
the other is driven extinct, while in c, the species
with the smaller initial density is driven extinct,
a case of contingent competitive exclusion. In this

simple two-species Lotka–Volterra model, these
outcomes are all equilibrium outcomes: the system
settles on an equilibrium, i.e., values of the densities
at which the growth rates of all species are zero, as
discussed in Boxes 2.1 and 2.2, and these equilibria
are stable in the sense that if the densities are moved
away from equilibrium, they move back over time.

Observations from nature, however, never look
like Figure 2.2, because in nature populations
fluctuate. Smooth change does not occur. So, what is
the reality of these equations and their predictions?
The traditional response is that settling on an
equilibrium in a model means that the population
fluctuates about the equilibrium in reality (May
1974). Adding more realism to a model, for instance,
by adding environmental fluctuations, supports
this view in some circumstances, but not in others,
as we will see (Section 2.6 Role of environmental
variation). For now, however, we can simply

(c) K1

K2

N
1,

 N
2

0

t

(b)
Kj

N
i, 

N
j

N∗
j,min

0

t

(a)
K2
K1

N
1,

 N
2

N∗
2

N∗
1

N∗
2,min

N∗
1,min

0

t

Figure 2.2 Density against time for two-species Lotka–Volterra. The quantities K1, K2, Kj are the carrying capacities, N∗
1,min, N∗

2,min, N∗
j,min, the

minimum long term densities of the species in the presence of the other, and N∗
1 and N∗

2 are the densities in the two-species joint equilibrium.
(a) Coexistence and convergence on the joint equilibrium, α21 < α11, α12 < α22; (b) exclusion of Ni by Nj, which rises to carrying capacity,
αij > αjj, αji < αii; (c) contingent exclusion with solid (N1(0) low, N2(0) high) and dashed lines (N1(0) high, N2(0) low) illustrating dependence of
the outcome on the initial conditions, α21 > α11, α12 > α22.
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Box 2.2 Isoclines, equilibrium, and outcomes

Figure 2.3 plots the species’ densities against each other
(curved lines) as they change over time for the same sce-
narios as Figure 2.2, but for a range of different initial
points, (N1(0), N2(0)). In Figure 2.3a (coexistence), all these
trajectories converge on a central equilibrium point defined
by zero growth rates for both species. In Figure 2.3b, there
is a dominant species, and no central equilibrium point.
Instead, the system converges on the boundary equilibrium
where Nj is at carrying capacity and Ni = 0. In Figure 2.3c,
the central equilibrium point is unstable: all trajectories move
away from it to one or other of the boundary equilibria,
depending on the starting location of the trajectory.

The diagonal straight lines are the 0-growth isoclines,
which define for each Ni a line of densities for which ri(t) =
0. Thus, setting Equations (B2.1.4) to zero and rearranging
gives

α11N1 + α12N2 = 1 (B2.2.1)

and
α21N1 + α22N2 = 1,

which define respectively the 0-growth isoclines for N1 and
N2. As shown in the figures, trajectories cross N2’s isocline
horizontally, and N1’s vertically. Moreover, a species has
positive growth above its isocline, and negative growth
below it. From these rules, it is possible to determine where
the trajectories must go, and the outcomes depicted in these
figures by rigorous argument.

The intersection of the isoclines defines zero growth for
both species and hence an equilibrium point,

(
N∗

1, N∗
2

)
, for

the system (Figures 2.3a,c), as the simultaneous solution of
equations (B2.2.1):

N∗
1 = α22 − α12

α11α22 − α12α21
, N∗

2 = α11 − α21

α11α22 − α12α21
.

(B2.2.2)

In the case of coexistence, an algebraic rearrangement of
these formulae leads to the expressions,

N∗
1 = N∗

1,min

1 − ρ2
, N∗

2 = N∗
2,min

1 − ρ2
. (B2.2.3)

Thus, when coexistence occurs, the equilibrium values are
inflated by the common multiple 1/

(
1 − ρ2) over the min-

imum values defined by invasion analysis (Box 2.1). Further
meaning comes from rewriting N∗

i,min in terms of overall
interaction, ρ, and average fitness ratios (Section 2.3) to give

N∗
1 = 1 − ρκ2/κ1

1 − ρ2
K1, N∗

2 = 1 − ρκ1/κ2

1 − ρ2
K2. (B2.2.4)

Thus, the equilibrium density of a species is an increasing
function of its average fitness ratio. Moreover, the species
with the larger average fitness has the higher density in the
joint equilibrium, not absolutely, but relative to its carrying
capacity.

note that when a model predicts convergence on
a stable equilibrium, small environmental fluctua-
tions would lead to fluctuations about the equilib-
rium (May 1974; Ripa et al. 1998), although large
environmental fluctuations potentially destroy this
picture.

The various outcomes in Figure 2.2 for the
two-species case are determined quite simply and
intuitively by the relationships between the com-
petition coefficients, α (Table 2.1). Key is whether
a species restricts its own growth more than it
restricts the growth of the other species. If it does,
it cannot become abundant enough to drive the
other species extinct. Species Nj, ( j is either 1 or 2),
restricts its own growth according to its intraspecific
competition coefficient, αjj, and restricts the growth
of the other species, Ni, according to its interspecific

competition coefficient αij. Thus, the key question is
whether,

αij < αjj, (2.3)

is true for Ni and Nj. When condition (2.3) holds,
there is a well-defined positive minimum value,
N∗

i,min, that species i maintains in the presence of Nj

(Box 2.1). These results now lead to a fundamental
conclusion: stable coexistence occurs when the
relationship (2.3) holds for both species in a two-
species interaction

(
j = 1, 2, i �= j

)
, (Table 2.1, upper-

left cell). Moreover, as we will now see, this
condition is also necessary for stable coexistence
in the two-species Lotka–Volterra model.

When inequality (2.3) is violated, Nj can prevent
Ni from increasing from low density. Then, if Nj is
at its carrying capacity, Kj, the density it achieves
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(a)

1/α22

1/α12

1/α211/α11

N
2

N1

0

(c)

1/α12

1/α22

1/α111/α21

N
2

N1

0

(b)

1/αii

1/αji

1/αjj1/αij

N
i

Nj

0

Figure 2.3 Phase space plots for two-species Lotka–Volterra. Thin curved lines are the trajectories of the community over time for a range of
different starting values. Dashed lines are the 0-growth isoclines. In all cases, the isocline for Ni ends at 1/αii on the Ni axis. (a) Coexistence and
convergence on the central equilibrium point, α21 < α11, α12 < α22; (b) exclusion of Ni by Nj and convergence on the boundary equilibrium(
1/αjj, 0

) = (
Kj, 0

)
, αij > αjj, αji < αii; (c) contingent exclusion and divergence from the central equilibrium to boundary equilibria,

α21 > α11, α12 > α22.

when present alone, Ni will have negative growth,
and head to extinction. In this way, Nj can keep Ni

out of the system. Whether Nj can drive Ni extinct
from other initial densities depends on whether
αii > αji, i.e., whether Ni restricts its own growth
more than it restricts the growth of Nj. If it does,
then Nj can exclude Ni at low density, but Ni cannot

prevent Nj from increasing from low density.
The ultimate outcome (Box 2.2), is that Nj will
exclude Ni regardless of what their initial densities
are (Table 2.1, lower left and upper right, and
Figure 2.2b). If each species affects the other more
strongly than itself (α11 < α21 and α22 < α12), each
species can prevent the other from increasing
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Table 2.1 Outcomes in two-species Lotka–Volterra competition.

α21 < α11 α21 > α11

α12 < α22 Stable equilibrial coexistence N1 excludes N2

α12 > α22 N2 excludes N1 The first to arrive excludes the second

Boundary cases

αij = αjj, αji < αii: Nj excludes Ni;

αij = αjj, αji > αii: Ni excludes Nj;

α21 = α11, α12 = α22: neutral coexistence.

from low density. The outcome is contingent
competitive exclusion: whichever species has
the initial density advantage excludes the other
(Figure 2.2c). However, because the concept of an
“initial” time for a community is rarely meaningful
in nature, this case is better interpreted as meaning
that the first species to colonize excludes the other.

2.3 Overall interaction and average
fitness differences

Whether a species limits its own growth more
than it limits the growth of the other species is
determined by the overall amount of interaction
that the two species have, and how much they differ
in their adaptation to their common environment,
i.e., their relative average fitnesses, as species.
These quantities can be calculated from the relative
limitation ratio

γij = αij

αjj
, (2.4)

which measures just how much Nj limits Ni com-
pared with how much it limits itself. In particular,
the condition γij < 1 is just a restatement of inequal-
ity (2.3). Overall interaction is the geometric mean
relative limitation ratio (Chesson 2012),

ρ = √
γijγji, (2.5)

combining relative limitation of Ni by Nj and
relative limitation of Nj by Ni. Interspecific and
intraspecific interactions are evenly balanced if
ρ = 1, while ρ < 1, means intraspecific interactions
are dominant, and ρ > 1 means that interspecific
interactions are dominant.

Relative average fitness, κ j/κ i, measures inequal-
ity in relative limitation as

κj

κi
=

√
γij/γji, (2.6)

with a value larger than one meaning that Nj gets
the better outcome from the relationship.

Naturally, the relative limitation ratios, γ ij, can be
recovered from relative average fitness and overall
interaction,

γij = κj

κi
ρ, (2.7)

allowing an especially informative restatement of
the condition (2.3) for Ni to avoid exclusion by Nj as

κj

κi
ρ < 1. (2.8)

This means that the ability of Nj to exclude Ni

depends on how much fitter Nj is than Ni multiplied
by how much they interact. If they do not interact
much, then naturally Nj has to be quite a lot fitter
than Ni to exclude it. Requiring inequality (2.8) to
hold for j = 1, 2, i �= j, leads to the coexistence
condition,

ρ <
κ1

κ2
<

1
ρ

, (2.9)

i.e., that the relative average fitness must lie
between the interaction measure, and its reciprocal
for coexistence to occur, which is exactly equivalent
to the previous conditions, α11 > α21 and α22 > α12

(Chesson and Kuang 2008). The κ ratio and ρ also
determine how abundant the coexisting species are
relative to their carrying capacities. In particular,
the species with the larger average fitness has the



OUP CORRECTED PROOF – FINAL, 6/4/2020, SPi

12 T H E O R E T I C A L E C O L O G Y

0
10–1

100
A

ve
ra

g
e 

fi
tn

es
s 

ra
ti

o
 κ

1/
κ

2

N2 excludes N1

N1 excludes N2

Contingent exclusionCoexistence

101

0.5

> 1

1
ρ

ρ
κ1

κ2

1.5 2

> 1ρ
κ2

κ1

<< ρ
κ2

κ1
ρ
1

<<ρ
κ2

κ1
ρ
1

Figure 2.4 Coexistence region in the two-species Lotka–Volterra model in terms of ratios of average fitness and overall interaction. Coexistence,
contingent exclusion, and determinate exclusions are the indicated regions bounded by the curves. Note that the ratios of average fitness are on
the log-scale, which makes the diagram symmetric in the two species, as it should be because κ1/κ2 = 10 is an equivalent advantage to species 1
as κ1/κ2 = 10−1 is to species 2. Note that 100 = 1.

higher equilibrium density relative to its carrying
capacity (Box 2.2).

Coexistence condition (2.9) and its converses lead
to a convenient graphical representation of coexis-
tence and exclusion conditions (Figure 2.4) reveal-
ing the tension between the amount of interaction,
ρ, and the average fitness ratio κ1/κ2. For small
ρ, the species can differ widely in average fitness
yet still coexist. For ρ near 1, but still less than 1,
the coexistence region narrows towards equality.
Then, only if the species have very similar average
fitness is it possible for them to coexist. For ρ > 1,
no coexistence is possible because inequalities (2.9)
cannot both be satisfied. Instead, the region between
the lines of Figure 2.4 for ρ > 1 is defined by the
inequalities

1
ρ

<
κ1

κ2
< ρ, (2.10)

and there ρκ j/κi > 1, regardless of which species
is j and which is i. This is the region of contingent
exclusion. The dominance of interspecific compe-
tition over intraspecific competition in this region
means that whenever Ni is too low relative to Nj,
it becomes overwhelmed by total interspecfic com-
petition, αijNj, and must head towards extinction.
Outside this region, but with ρ > 1, one of the two

species has such a large disadvantage in average
fitness that no initial advantage in density can save
it from ultimate exclusion.

The magnitude of ρ defines the strength of
coexistence in two senses. Small values mean that
the range of average fitness ratios allowing coexis-
tence is high. It also means that for any given aver-
age fitness ratios, the rate at which species recover
from low density is high because from Box 2.1,
inequality (B2.1.5), this recovery rate approaches
r0

i

(
1 − αij/αjj

) = r0
i

(
1 − ρκj/κi

)
for low Ni.

2.4 Competition for resources

How do species compete? MacArthur’s (1970)
resource-competition model, provides one concept
(Box 2.3). It focuses on the lower two trophic levels,
N and R, of Figure 2.1, where the members of the
N guild interact by competition for the resource
species R. In this model, overall interaction, ρ,
can be understood as overlap between species
in resource consumption, as illustrated in Figure
2.5. There, the “utilization function,” cil, defining
the per capita rate at which Rl is consumed by
species Ni, is plotted against l for each of two N
species. The resource label l is assumed to indicate
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Box 2.3 Density dependence from resources

Under MacArthur’s (1970) resource-competition model,
growth rates of N species are simply linear increasing func-
tions of their resources, the members of the R guild:

ri(t) = 1
Ni

dNi

dt
=

nR∑
l=1

vlcilRl − μi. (B2.3.1)

The quantity cilRl is the total consumption per unit time
of resource l, by an individual of species Ni, on average,
and the parameters vl give the values of the resources,
for example as food energy. The final parameter, μi, is the
resource maintenance requirement, i.e., the total amount of
resource that must be consumed per unit time to balance
metabolic losses and ultimate death. More generally, there
is a conversion constant from resource value to consumer in
these equations, but it has no effect on the results and so
has been omitted (Chesson 2018).

Dynamics of the resources are given by their per capita
growth rate equations,

1
Rl

dRl

dt
= rR

l

(
1 − αR

l Rl

)
−

n∑
j=1

Njcjl, (B2.3.2)

showing how the resources regenerate according to the
logistic model through the term rR

l

(
1 − αR

l Rl
)
, and experi-

ence mortality from the N guild through the sum of the Njcjl.
Note that as (B2.3.1) and (B2.3.2) are per capita growth,
they both imply that NjcjlRl units of Rl are consumed by the
entire Nj population per unit time.

Whenever the joint equilibrium, found by equating
(B2.3.1) and (B2.3.2) to zero, is positive for all N and R
species, and is unique, it is globally stable (Case and Casten
1979; Chesson 2018), i.e., it is approached asymptotically
from all nonzero initial values of the N and R species.
Uniqueness requires that the utilization functions be linearly
independent (Chesson 1990), i.e., the utilization function of
no species can be formed by linearly combining the utilization
functions of other species. This means that when there are
just two N species, these functions cannot be proportional
like those in Figure 2.5b.

If resources were not consumed, they would rise to their
carrying capacities, KR

l = 1/αR
l . Thus, substituting KR

l for Rl
in (B2.3.1) gives the maximum benefit from resources,

hi =
∑

l
cilvlK

R
l , (B2.3.3)

which is achieved in the absence of competition. However,
because resources are consumed, the actual benefit from
resources is lower. To understand how much, MacArthur

(1970) assumed that R dynamics are much faster than N
dynamics. This means that the N guild can be treated as
fixed in (B2.3.2), and Rl converges on the slowly changing
N-dependent equilibrium

R∗
l (N) = KR

l

⎛
⎝1 −

n∑
j=1

Njcjl/rR
l

⎞
⎠. (B2.3.4)

Substituting R∗
l (N) for Rl in (B2.3.1) gives

ri(t) =
⎡
⎣hi −

n∑
j=1

σ R
ij Nj

⎤
⎦ − μi, (B2.3.5)

where the term in [] is the actual benefit from resources
as a reduction from its maximum value, hi, due to resource
competition. The quantity σ R

ij is a constant, given as

σ R
ij =

∑
l

cil
vlKR

l

rR
l

cjl, (B2.3.6)

and measures the strength of the feedback loops from
Nj through each resource l, to Ni. This quantity naturally
includes the maximum total value, vlKR

l , of each resource,
and how rapidly resources regenerate, rR

l .
The growth rates (B2.3.5) are Lotka–Volterra competition

equations because they are linear decreasing functions of
the N densities, but they give specific formulae for the
parameters based on an explicit mechanism of competition.
Comparing the standard form (2.1) with (B2.3.5) gives the
formulae

r0
i = hi − μi and αij = σ R

ij /
(
hi − μi

)
. (B2.3.7)

Of most importance, ρ and the κ ’s can now be defined
explicitly in terms of resource competition parameters. From
(B2.3.7) and (2.5),

ρij =
σ R

ij√
σ R

ii

√
σ R

jj

. (B2.3.8)

Note that σ R
ij is symmetric in i and j, which means that ρ ij is

too. Thus, when dealing with guilds of just two species, the
subscripts are not necessary. The average fitnesses, κ , are
defined in absolute terms as

κi = hi − μi√
σ R

ii

, (B2.3.9)

continued
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Box 2.3 Continued

which is the maximum net resource benefit to Ni, divided

by
√

σ R
ii , a measure of its sensitivity to resource competition

(Chesson 2018).
The validity of the Lotka–Volterra competition equations

(B2.3.5) as an adequate description of the dynamics of the
N guild, depends on two things. First is the assumption that
the R guild has much faster dynamics than the N guild.
Second is the implicit assumption that R∗

l (N) is positive and
therefore a valid Rl density for the relevant N range. The
more limited goal of correct predictions about coexistence

and exclusion within the N guild is much less restrictive, only
requiring Rl to be positive at the joint equilibrium of N and
R. This means that an R species should only be included
in the calculations of the coefficients (B2.3.3) and (B2.3.6)
if it has positive density at the joint equilibrium. With this
exclusion, the conclusions are valid due to the fact that the
joint equilibrium is globally stable. The only complication is
that as parameter values are changed, care must be taken
in the calculation of key quantities such as the κ ’s and ρ’s
to be sure that only R species present at the equilibrium are
included (Abrams 1998; Chesson 2018).

something meaningful, such as resource species
body size, allowing resources to be arranged along
a linear axis. These utilization functions define
the resource niches of the species both in terms of
how species are affected by their environment (the
upward arrows in Figure 2.1, the “response niche”
sensu (Chesson 2000a)), and how they affect it (the
downward arrows in Figure 2.1, the “effect niche”
sensu (Chesson 2000a)) because cil determines
both the reward to Ni from Rl and the cost to
Rl from Ni. Thus, the overlap of the curves in
Figure 2.5 is a graphical indication of niche overlap.
Figure 2.5a shows partial overlap between the two
N species, with N1 focusing on smaller resource
species relative to N2, perhaps because N2 has a
larger body size than N1, allowing it to consume
larger food species (Morton and Law 1997; Leaper
and Huxham 2002). In Figure 2.5b the curves
are in direct proportion to each other, meaning
that resource niche overlap is complete, but with
different heights depicting N2 as a generally faster
consumer of resources than N1.

Box 2.3 now shows that overall interaction, ρ,
measures niche overlap in terms of the resource
utilization functions. A value of 1 means complete
overlap, and that interspecific competition for
resources is as important as intraspecific com-
petition. A value of zero means no overlap, and
correspondingly no interspecific competition.
Overlap cannot be greater than 1, as one would
intuitively expect for an overlap measure. However,
a modified MacArthur model, with different effect

and response niches, does allow overlap to be
greater than 1 (Chesson 2018). In the calculation
of ρ, resources are weighted by how easily they can
be reduced by consumption and by their values
to the consumer species (Box 2.3). For instance, a
slowly regenerating resource would be reduced
sharply by increases in consumer density and
would corresponding sharply reduce the growth
rates of the species in the N guild. Thus, it would
have high weight, and more still if it were also
valuable.

The average fitness κ reflects the ability of a
species to harvest resources above its maintenance
requirement, which is the rate of resource consump-
tion needed to achieve zero per capita growth. Thus,
larger consumption leads to positive growth, and
smaller consumption to population decline. Finally,
there is a timescale adjustment in the measurement
of κ reflecting the sensitivity of the species to
competition. This adjustment explicitly involves
the overall magnitude of the species’ utilization
function, but can be reflective of such issues as life
history, for instance, with slower, low-metabolism
species being less sensitive, and so less responsive
to changes in resource density (Chesson 2018).

The bottom line here is that niche overlap ρ

measures how similar the species are in their use
of resources, without regard to how well they are
able to meet their resource needs. Thus, it does not
compare the efficiency of resource consumption
between N species or how much competition
they can tolerate. The average fitnesses include
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Figure 2.5 Utilization functions depicting resource niches. The two curves are cjl against l, the resource, for j = 1 and j = 2, and represent the
resource niches of these two members of the N guild. (a) partial overlap (ρ < 1). (b) full overlap (ρ = 1).

this missing information. Dissimilarity in resource
use, “resource partitioning”(Schoener 1974), gives
a low value of ρ and therefore a broad range of
average fitness ratios compatible with coexistence,
as shown at the left end of Figure 2.4. In this
case, strong and weak competitors can coexist. In
very simple terms, ρ measures how similar the
species are in their use of the environment, and
the average fitnesses measure their abilities in
making use of it. Dissimilarity in use of environment
favors coexistence, but dissimilarity in ability
favors exclusion. This conclusion continues to
hold as we add more dimensions of a species’
niche to the discussion, including natural enemies
and the physical environment. Although the key
features of the story do not change as the situation
becomes more complex and elaborate, in these more
complex situations we can come to see how different
components of the niche interact with each other.

2.5 Role of natural enemies

Natural enemies (guild P, standing for predators
and herbivores, parasites and pathogens, in
Figure 2.1) can create density feedback loops with
very similar effects to feedback loops through
resources. Holt (1977) termed these effects apparent
competition, but to Nicholson (1937) they were
simply a form of competition. To understand these
effects in terms of Figure 2.1, we can trace out
feedback loops from N2 to P1, and then back to
each of N1, N2, and N3. A high value of N2 allows

P1 to build up in abundance, meaning that it
can then inflict more damage on N2 (intraspecific
apparent competition), as well as on N1 and N3

(interspecific apparent competition). Box 2.4 now
shows how such effects contribute to the coefficients
αij in a long-timescale interpretation of Equation
(2.1). Niche overlap ρ and average fitnesses κ are
extended to include natural enemy effects. Most
important, the two-species coexistence condition
(2.9), as graphed in Figure 2.4, still applies. In
particular, coexistence is strongest with small
values of niche overlap, and similar average fitness.

Key quantities defining natural enemy effects are
the attack rates, aim, which give the per capita rate
at which each Pm kills Ni. They define the natural
enemy niche, see Figure 2.6. Just as with resources,
species may partially overlap with respect to which
natural enemies affect them, see Figure 2.6a, or fully
overlap, as in Figure 2.6b. Of most importance, par-
titioning of natural enemies can occur exactly in
parallel with partitioning of resources, thereby pro-
moting coexistence (Chesson and Kuang 2008). With
both resource and natural enemy niches, two mech-
anisms of coexistence potentially occur in a given
setting, with a key question being their interactions.

Niche relationships under joint resource and
natural enemy niches can be considered by
grouping panels in Figures 2.5 and 2.6 in various
combinations. For instance, Figure 2.5a with Figure
2.6b gives partial resource overlap, with complete
natural enemy overlap, while Figure 2.5b with
Figure 2.6a gives the opposite scenario. Overall
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Box 2.4 Modeling the effects of natural enemies

MacArthur’s resource-competition equations from Box 2.3
can be expanded to include the P guild, the natural enemies
of the N guild, as well (Chesson and Kuang 2008). Equation
(B2.3.1) becomes,

ri(t) = 1
Ni

dNi

dt
=

nR∑
l=1

vlcilRl −
nP∑

m=1

aimPm − μi. (B2.4.1)

Thus, natural enemies increase the mortality rate of the con-
sumer species in proportion to natural enemy abundances at
the attack rates aim for natural enemy Pm on Ni. The dynamics
of the predators are defined by the equation

1
Pm

dPm

dt
= rP

m

(
1 − αP

mPm

)
+

n∑
j=1

wNjajm, (B2.4.2)

where w is the unit value of consumer species to the predator,
assumed to be same for each consumer species. The natural
enemies are also assumed to have logistic dynamics in the
absence of the focal N guild. This means they must be
supported additionally by species outside the focal N guild. If
this expanded model has a unique equilibrium with positive
densities for all N, R, and P species, it is globally stable
(Chesson 2018).

These augmented equations once again allow reduction
to Lotka–Volterra-competition form for the N guild by equat-
ing (B2.4.2) to zero, solving for an equilibrium natural enemy
density, P∗

m(N), in terms of the N species, and substituting it
and R∗

l (N) from Box 2.3 into Equation (B2.4.1) to give

ri(t) =
⎛
⎝hi − ηi −

n∑
j=1

σijNj

⎞
⎠ − μi (B2.4.3)

Here ηj is minimum mortality from natural enemies. Mortality
above the minimum is accounted for in σij = σ R

ij +σ P
ij , with

σ P
ij =

∑
m

aim
wKP

m

rP
m

ajm, (B2.4.4)

summarizing feedback from Nj to Ni through each of the
natural enemy species. The weights wKP

m/rP
m reflect the

ability of Pm to increase in response to consuming species
of the N guild.

These new Lotka–Volterra competition equations would
accurately describe the dynamics of the N guild, with the
same caveats about resource extinctions as in Box 2.3, if both
the R guild and the P guild had fast dynamics relative to the
N guild. Although such an assumption might be adequate
for a P guild of pathogens and parasites, it is not likely to
be adequate if it includes predators or herbivores. However,
like the equations of Box 2.3, these equations still provide
accurate conclusions about coexistence of the species in the
N guild, with same caveats about getting the resources right.
There is no similar concern about natural enemy species
because their alternative hosts or prey outside the N guild
prevent their extinction.

Table 2.2 Critical summary quantities in the three-level
Lotka–Volterra model.

σ R
ij = ∑

l
cil

vlK
R
l

rRl
cjl density-dependent feedback through

resources, species j to species i

σ P
ij = ∑

m
aim

wKP
m

rPm
ajm density-dependent feedback through

natural enemies, species j to species i

ρ = σ R
ij +σ P

ij√
σ R

ii +σ P
ii

√
σ R

jj +σ P
jj

niche overlap through resources and
natural enemies

hi = ∑
l

cilvlKR
l maximum harvesting rate

ηi = ∑
m

aimKP
m minimum mortality from natural enemies

κi = hi−ηi−μi√
σ R

ii +σ P
ii

species i’s average fitness

ρR = σ R
ij√

σ R
ii

√
σ R

jj

overlap through resources

ρP = σ P
ij√

σ P
ii

√
σ P

jj

overlap through natural enemies

uR
i =

√
σ R

ii√
σ R

ii +σ P
ii

relative strength of intraspecific resource
competition

uP
i =

√
σ P

ii√
σ R

ii +σ P
ii

relative strength of intraspecific apparent
competition

niche overlap ρ can be calculated for any pair of
species Ni and Nj in terms of overlap ρP (natural
enemies alone), and overlap ρR (resources alone),
according to the formula,

ρ = uR
i uR

j ρR + uP
i uP

j ρP, (2.11)

(Chesson 2018), where the coefficients uR
i and uP

i
measure respectively the relative strengths of
resource and apparent competition for Ni on a
scale of 0 to 1 as given in Table 2.2. This means
that ρ might be determined mostly by ρR or
mostly by ρP independently of what the ρR and
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Figure 2.6 Attack rates depicting natural enemy niches. The two curves are ajm against m, the natural enemy, and for j = 1 and j = 2, and
represent the natural enemy niches of two members of the N guild. Natural enemies come from the P guild. (a) partial overlap (ρ < 1). (b) full
overlap (ρ = 1).

ρP values are. For instance, ρ would equal ρP in
the event that resource densities were unaffected
by consumption, for example, if they regenerated
extremely rapidly. On the other hand, ρ would
equal ρR if natural enemies did not increase in
response to increases in the N species because
they were supported primarily by alternative prey
even though causing substantial mortality to the
N guild.

The relative strengths have the property,

uR
i uR

j + uP
i uP

j ≤ 1, (2.12)

with equality to 1 when both species have the
same relative apparent competition strength
(Chesson 2018). In this case, the overlap measure
ρ is intermediate between ρR and ρP. As a
consequence, the strength of coexistence is similarly
intermediate between the two. If ρR and ρP are
approximately equal to each other, then the overall
ρ value is just their approximate common value,
e.g., Figure 2.5a with Figure 2.6a or Figure 2.5b
with Figure 2.6b. In the first case coexistence is
strongly promoted, but in the second, coexistence
would not be possible because their niches overlap
completely. In contrast, combining Figure 2.5a with
Figure 2.6b means that the coexistence promoting
effect of resource partitioning in Figure 2.5a would
be undermined by strong natural enemy overlap
in Figure 2.6b. Then, coexistence would be nearly
impossible if apparent competition were strong
relative to resource competition. On the other hand,

strong resource competition relative to apparent
competition would promote coexistence because
ρ would be close to ρR, which would be small.
Combining Figure 2.5b with Figure 2.6a would lead
to the opposite pattern with coexistence by natural
enemy partitioning being undermined by strong
resource competition. Figure 2.7 shows how these
various scenarios play out.

When N guild species differ in relative apparent
competition strength, the species can be considered
to partition the major interactions that affect them,
with one species being more affected by natural
enemies and the other by resources (“partitioning
between resource and natural enemy niches”).
In that case, the sum of the weights according
to inequality (2.12) would be strictly less than 1.
This means in particular that there could be com-
plete natural enemy niche overlap and complete
resource niche overlap (Figure 2.5b combined with
Figure 2.6b), and yet a region of coexistence would
be possible. The relative strengths, would, however,
have to be very different for a strong effect.
Moreover, although, natural enemy partitioning
and resource partitioning readily extend beyond
two species to give multispecies coexistence, that
possibility does not exist when partitioning is
between resource and natural enemy niches, not
within them (Chesson 2018).

Natural enemies affect, not just niche overlap
ρ, but also average fitnesses, κ (Box 2.4), which is
especially important when natural enemies might
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Figure 2.7 Niche overlap ρ as a function of relative strength of apparent competition. The relative strength of apparent competition, uP
1, for N1, is

given on the scale of
(
uP

1

)2
because on that scale the change in ρ is linear for uP

1 = uP
2. The case uP

1 = uP
2 is given by the solid line

(ρR = ρP = 0.2, coexistence strength invariant in uP
1), long-dash upward sloping line (ρR = 0.2, ρP = 1, coexistence strength decreasing in uP

1),
short-dash downward sloping line (ρR = 1, ρP = 0.2, coexistence strength increasing with uP

1), and mixed-dash slightly downward sloping line
(ρR = 0.95, ρP = 0.9, coexistence strength weak and almost invariant in uP

1). The mixed dash curved line is the case where N1 and N2 are
oppositely affected by natural enemies and competition equivalent to (c1l/a1m) / (c2l/a2m) = 10, with ρR = ρP = 1, and shows that stable
coexistence depends on intermediate relative strength of apparent competition.

affect some species more strongly than others. In
particular, this will be the case for partitioning
between resource and natural enemy niches, which
means that the effects of natural enemies on
average fitness must be considered too. Naturally,
natural enemies reduce average fitness (Box 2.4),
and if the species are differentially sensitive to
apparent competition, the average fitness of the
more sensitive species is reduced more. Thus, for
partitioning between resource and natural enemy
niches, the more sensitive species will also have
its average fitness reduced by natural enemies,
with the potential that the average fitness ratio
would be pushed outside the coexistence region
unless compensated for in some way. There is a
common hypothesized way in which compensation
could happen: a competition-defense tradeoff (Viola
et al. 2010; Mortensen et al. 2018). Under this
hypothesis, one species would be more sensitive
to apparent competition because it would not be
well defended against natural enemies but would
have a low maintenance requirement making it
tolerant of natural enemies. The other species would

not be sensitive to apparent competition because it
invests in defenses, leading to a high maintenance
requirement. As a result, average fitness need not
be dissimilar, allowing coexistence to occur when
differential sensitivity of the species to resource and
apparent competition leads to a low value of ρ.

2.6 Role of environmental variation

Species can differ in their times of most intense
resource uptake (Hutchinson 1961; Armstrong and
McGehee 1976; Abrams 1984; Klausmeier 2010;
Chesson et al. 2013; Li and Chesson 2016), thus par-
titioning resources in time. In terms of MacArthur’s
resource-competition model, the utilization func-
tions are time-dependent (Box 2.5):

cil(t) = cilEi(t), (2.13)

where cil is the temporal average of cil(t), and Ei(t)
is a multiplicative deviation from this average
reflecting temporal change in the physical envi-
ronment, such as diurnal and seasonal variation, or
random variation reflecting the unpredictability of
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Box 2.5 Modeling the effects of temporal variation

When resource consumption varies over time, MacArthur’s
resource-competition equations (Box 2.3) are simply modi-
fied to have the utilization functions, cil, change with time:

ri(t) =
nR∑

l=1

vlcil(t)Rl(t) − μi, (B2.5.1)

(Li and Chesson 2016). To understand trends in population
growth, ri(t) must be integrated over time. Because, ri(t) =
(1/Ni) dNi/dt = d ln Ni/dt, the time integral is

ln Ni(T) − ln Ni(0) =
∫ T

0
ri(t)dt. (B2.5.2)

Thus, the trend in ln Ni over the time interval (0, T) is
determined by the average growth rate,

ri = 1
T

∫ T

0
ri(t)dt, (B2.5.3)

which satisfies the formula,

ri = 1
T

nR∑
l=1

∫ T

0
vlcil(t)Rl(t)dt − μi. (B2.5.4)

Letting T → ∞, the average covers the full range of fluctu-
ations that can occur.

For analytical conclusions, resource dynamics are now
assumed both faster than the consumer dynamics and the
dynamics of environmental change, i.e., faster than the
fluctuations in the cil(t). Expressing Rl(t) in terms of the
Nj(t), following Equation (B2.3.4), and substituting back in
(B2.5.4),

ri =
⎛
⎝hi −

n∑
j=1

σ R
ij Nj

⎞
⎠ − μi. (B2.5.5)

The overbars mean the temporal average, as in Equation
(B2.5.4). They are averages over the now time-dependent
maximum harvesting rate, hi(t), and density-weighted feed-
back loop strength, σ R

ij (t)Nj(t). Because the average of a
product is the product of the averages, plus their covariance
(Chesson et al. 2005),

σ R
ij Nj = σ R

ij · Nj + cov
(
σ R

ij , Nj

)
. (B2.5.6)

The covariance in (B2.5.6) is a complication that can be
avoided by assuming that the timescale of the dynamics of
the N guild is long relative to the timescale of environmental

change. Then σ R
ij (t) and Ni(t) no longer have any temporal

covariance, and (B2.5.5) reduces to

ri =
⎡
⎣hi −

n∑
j=1

σ R
ij · Nj

⎤
⎦ − μi (B2.5.7)

(Li and Chesson 2016). Invasibility analysis, as discussed in
Box 2.1, now shows that the two-species coexistence region
is once again defined by inequalities (2.9), with ρ and κ now
defined as in Table 2.3.

To see how temporal niches and resource niches combine,
they first must be distinguished with the model

cil(t) = cilEi(t). (B2.5.8)

This means that each species has periods of lower and
higher foraging activity, but there is no specific time when
a species focuses on one food type versus another. With this

model, it follows that feedback loop intensity σ R
ij splits into

a product, σ̂ R
ij · EiEj, with σ̂ R

ij being feedback intensity for
average utilization functions. We can now define a measure
of overlap between species in foraging activity equivalent to
overlap in resource use as ρE (Table 2.3). Then niche overlap
ρ splits into the product of two separate overlaps

ρ = ρR · ρE. (B2.5.9)

Table 2.3 Critical quantities for the effects of temporal variation.

Quantity Description

hi =
nR∑

l=1
cilvlKR

l Average harvesting rate

σ R
ij =

nR∑
l=1

cilcjl
vlK

R
l

rRl
Average feedback from Nj to Ni

ρ = σ R
ij√

σ R
ii ·

√
σ R

jj

Overall niche overlap

κi =
(

hi − μi

)
/

√
σ R

ii Average fitness

σ̂ R
ij =

nR∑
l=1

cil
vlK

R
l

rRl
cjl Feedback from Nj to Ni not accounting

for temporal variation

ρR = σ̂ R
ij√

σ̂ R
ii

√
σ̂ R

jj

Resource overlap not accounting for
temporal variation

ρE = EiEj√
E2

i ·
√

E2
i

Temporal overlap
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weather (Chesson et al. 2004; Levine and Rees 2004;
Klausmeier 2010; Chesson et al. 2013; Kelly et al.
2013; Schwinning and Kelly 2013; Holt and Ches-
son 2014; and Li and Chesson 2016). The tempo-
ral pattern of Ei(t) for a species then represents its
temporal niche. In some cases, such patterns can
be related directly to specific temporal variation in
environmental factors, for example, temperature,
or moisture (Chesson et al. 2013; Holt and Ches-
son 2014). The assumption here is that environmen-
tal variation can be modelled as stationary, i.e., as
having well-defined means and variances that do
not change on some longer timescale. Although it
is now possible to develop ecological theory with
nonstationary variation and so take into account
long-term environmental change (Chesson 2017), it
is beyond the scope of this chapter.

Box 2.5, now gives a long-timescale version of
Lotka–Volterra dynamics applicable to a variable
environment, with coexistence conditions given
once more by inequalities (2.9) in terms of
niche overlap and species average fitnesses. To
obtain this particular version of Lotka–Volterra
dynamics, three timescales are treated as dis-
tinct. First, resources are assumed to have rapid
dynamics, followed on a longer timescale by

environmental change, and finally dynamics of
the species in the N guild. With environmental
variation, average fitnesses involve a mean over
time of environmental states. Most important, niche
overlap, ρ, is the product of resource overlap and
temporal overlap:

ρ = ρRρE. (2.14)

This result means that the joint partitioning of
resources and time leads to a joint niche overlap
smaller than either separate overlap alone. For
instance, if they were both .5 separately, the joint
overlap would be just a quarter, and the oppor-
tunities for coexistence would be dramatically
increased. Note that if there were only one resource,
ρR = 1, temporal partitioning (ρE < 1) could pro-
mote coexistence alone (Figure 2.8), and it could
do so even if the variation in the environment
were random (Li and Chesson 2016). This outcome,
therefore, is contrary to the equilibrium prediction
that with a single resource only one N species could
persist in the long run. More generally, it is contrary
to the idea that adding environmental variation to a
deterministic model leads to fluctuations about the
equilibrium predicted by the deterministic model.
Instead, these results show that the number of
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Figure 2.8 Coexistence with temporal niches in a stochastic environment. Simulation of MacArthur’s resource-competition model in an
environment fluctuating stochastically, but independently affecting N1 and N2, showing long-term stable coexistence on a single resource, and thus
depending only on temporal partitioning. Solid line, N1; dashed line, N2; thin dotted line, R.
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species predicted to persist in the long run can
in fact increase when environmental variation
causes fluctuations in resource uptake. Although
differing greatly from the deterministic prediction,
this outcome is in line with the classical prediction
of Hutchinson (1961), although not exactly as he
envisioned it (Li and Chesson 2016).

2.7 Discussion

The question of species coexistence hinges on why
the most fit species in a guild does not increase
in density until it squeezes the other species out.
At the simplest level, the most fit species cannot
do this when the species differ sufficiently in the
way they use the environment, generating greater
density feedback within species than between
species. Models help us get into the key details.
In the two-species Lotka–Volterra competition
model, coexistence is very simply determined by
an intuitive and fundamental idea: if each species
limits itself more than it limits the other species,
neither species can drive the other extinct, and they
coexist. This idea is simply expressed in terms of
the interaction coefficients as αij < αjj, or in terms
of their ratio, the relative interaction coefficient, as
γij < 1. In the multispecies case, a species Ni can
be driven extinct by the collective action of the
other species, but this collective action can never be
more than the sum of their relative interactions, γ ij,
with Ni (Box 2.6). Thus, multispecies coexistence
is guaranteed when these sums are less than 1
for each Ni. However, this conservative criterion
does not account for reduction of the collective
action of a group of species by their negative
interactions with each other, i.e., by indirect
effects (Chesson 2018). Box 2.6 shows how such
indirect effects can be fully accounted for by
generalizations of the relative interaction coefficient
and niche overlap. Although these fundamental
concepts extend, their exploration in the multi-
species case is as yet quite limited (Chesson 2018).

Relative limitation ratios measure the ratio of
density feedback, between species versus within
species, and mechanistic models allow these
coefficients to be specified in terms of the relation-
ships between ecological niches, specifically niche
overlap and average fitnesses. Niche overlap is
based on measuring the association between species

of the density feedback loops, and thus depends on
how much two species share the same mediators
of feedback, here being specific resources, natural
enemies, and foraging times. Average fitnesses
involve various density-independent aspects of
the niche, not directly involved with feedback
loops, such as the maintenance requirements in
the MacArthur models, in addition to traits that
are involved with feedback, such as resource
uptake rates. Similarity of average fitnesses involves
tradeoffs: performing well in one aspect of the
niche coincides with performing poorly in another
(Tilman and Snell-Rood 2014). Tradeoffs can
naturally arise with foraging traits in animals,
such as beaks and teeth (Dayan and Simberloff
2005), optimized for only narrow size ranges of
food resources. In plants, tradeoffs can arise from
architecture optimized for different kinds of light,
water, and nutrient conditions or specific soil
layers and properties (Schwinning and Sala 2004;
Mayfield and Levine 2010; Tilman and Snell-Rood
2014). Already mentioned is tradeoffs in life-history
traits, such as individual growth and maintenance
requirements as in the competition-defense tradeoff
(2.5 Role of natural enemies, previously mentioned).

In the two-species case, there is a simple bottom
line: if species have low niche overlap, i.e., do not
interact very much, tradeoffs do not have to be
very precise, that is species do not have to have
similar average fitnesses to coexist. But if niche over-
lap is high, these tradeoffs are highly constrained.
In multispecies cases, this same conclusion is true
when there is little structure to the matrix of niche
overlaps, for example in the case of diffuse inter-
actions where niche overlaps are similar for differ-
ent pairs of species (Chesson 2000a; Chesson 2018).
Low niche overlap is generally favorable to coexis-
tence in the multispecies case, but coexistence can
also involve high niche overlaps for some species,
with indirect effects having key roles in coexistence
(Box 2.6). For example, strong negative effects of
Nj on Ni can be counteracted by strong negative
effects of Nk on Nj when Nk and Ni have little
direct interaction, i.e., low pairwise niche overlap
(Chesson 2018).

Multiple mechanisms of coexistence can be con-
sidered in terms of how different components of
the niche contribute to niche overlap. Overall niche
overlap is a linear combination of separate overlaps
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Box 2.6 Multispecies guilds

With more than two species in the N guild, new issues arise,
but previous concepts are preserved in extended form. The
relative limitation ratios, γij = αij/αjj, remain key to coexis-
tence (Chesson 2018), but now the requirement γij < 1, for
each Ni and Nj, is not sufficient. A partial generalization is
the requirement

n∑
j=1, j �=i

γij < 1, (B2.6.1)

which means that Ni maintains a minimum positive density in
the long run, just as γij < 1 implies in the two-species case
(Box 2.1). If (B2.6.1) is true for all Ni, they all coexist (Chesson
2018). Unlike the two-species case, however, (B2.6.1) for
each Ni is not a necessary condition. It is merely sufficient,
because the left-hand side of (B2.6.1) is the sum of the
effects that other species would have on Ni if they were at
their carrying capacities. Interactions between the species,
however, means that these other species will generally be
below their carrying capacities in the long run, diminishing
their overall effects on Ni. Such interactions between species
that modify their effects on another species are termed
“indirect effects.”

A full accounting for indirect effects is available for
the Lotka–Volterra equations derived from MacArthur’s
consumer-resource model, for any of the forms discussed
in this chapter. It is most informatively expressed in terms
of average fitnesses κ and niche overlaps ρ. For multiple
species, there is a matrix P of ρ’s, one for each pair of species:

P =

⎛
⎜⎜⎜⎜⎜⎝

1 ρ12 · · ρ1n

ρ21 1 · · ρ2n

· · · · ·
· · · · ·

ρn1 ρn2 · · 1

⎞
⎟⎟⎟⎟⎟⎠

, (B2.6.2)

where self-overlaps are ρii = 1. The ith row, ρi = (ρi1,
ρi2, . . . ρin), of P, with ρii = 1 omitted, gives the overlap
of each species with Ni. The submatrix, P{−i}, obtained by
deleting the ith row and column of P, describes the overlaps
between the members of the N guild excluding Ni, and the
column vector κ {−i} consists of their average fitnesses. In
these terms, the two-species requirement γij < 1, for Ni
to increase from low density, is given as ρκ j/κi < 1, and
generalizes to

ρi

(
P{−i})−1

κ{−i}/κi < 1, (B2.6.3)

where
(
P{−i})−1

is the inverse of the matrix P{−i} and

accounts for indirect effects under the assumption that the
N guild comes to a positive equilibrium without Ni (Chesson
2018). If these other guild members do not interact with
each other, and therefore have only direct effects on Ni,
P{−i} is the identity matrix and (B2.6.3) is equivalent to
(B2.6.1). This criterion (B2.6.3) leads to a generalization, γ̂i,
of γij, defining the collective relative limitation of Ni with its
multiple competitors,

γ̂i = ρi

(
P{−i})−1

κ{−i}/κi. (B2.6.4)

Just like the two-species case, r0
i

(
1 − γ̂i

)
defines the rate at

which Ni increases from low density, while the other guild
members are at the equilibrium they have in its absence.
Finally, it is possible to define a collective overlap measure,
or a collective overall interaction measure, for a given species
Ni with its competitors. This measure combines the pairwise
overlaps from ρ i adjusting for indirect effects to give,

ρ̂i =
√
ρi

(
P{−i})−1

ρ′
i , (B2.6.5)

where ρ′
i is the transpose of ρi.

To apply these results, the equations rj(t) = 0, j �= i, can
be solved simultaneously to give the joint equilibria of the
other guild members in terms of Ni, just as Rl (Box 2.3) and
Pm (Box 2.4) were solved in terms of the N guild previously.
On substituting back into Equation (2.1) using the parameter
relationships αij = αjjγij = (

1/Kj
)
ρijκj/κi, an equation for

ri(t) in logistic form is obtained:

ri(t) = r0
i

(
1 − γ̂i

) [
1 −

(
1 − ρ̂2

i

1 − γ̂i

)
Ni

Ki

]
. (B2.6.6)

This equation defines the feedback from Ni to itself pass-
ing through the entire N guild. It defines an equilibrium
value

N∗
i =

(
1 − γ̂i

1 − ρ̂2
i

)
Ki, (B2.6.7)

which is the value of Ni at the joint equilibrium of the entire
guild, as a direct generalization of the two-species formulae
(B2.2.4). A critical question is when Equation (B2.6.6)
is valid. Strictly speaking, it only applies when the dynamics
of Ni are indeed slow relative to the other species. Here this
means, r0

i is much less than the maximum growth rates of
the other species, which can apply only to one member of
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the N guild. Also, it requires the equilibria of other members
to be positive as functions of Ni, which necessary restricts
the range of Ni values for which it makes sense. Indeed, if the
other species do not have a joint equilibrium in the absence
of Ni, then (B2.6.6) is not valid for Ni near zero. However,
as a result of indirect effects, it is possible for (B2.6.7) to be
positive for each Ni even when some subsets of the N guild
do not have positive joint equilibria (Chesson 2018). Indeed,
(B2.6.6) always has the correct interpretation of defining the
joint equilibrium (B2.6.7), implying also that (B2.6.6) always
validly defines feedback from Ni to itself through all of the N
guild near the equilibrium whenever all species have positive
densities at the joint equilibrium.

These formulae give insight into how a positive joint
equilibrium comes about. Most important, a positive value
for all species at the joint equilibrium means globally stable
coexistence (Chesson 1990). At a coarse level, this formula
reveals that coexistence in the multispecies case involves the
same issues as the two-species case, with small overlaps
and similar κ ’s favoring coexistence. At a subtler level, the
detailed structure of the matrix P is important, as this deter-
mines the kinds of indirect effects revealed by

(
P{−i})−1

,
to expect, with the potential that specific patterns in the P
matrix combine with average fitness patterns to allow coex-
istence when neither overlaps nor average fitness differences
are necessarily small (Chesson 2018).

of resource and natural enemy niches. Most com-
monly, this means that coexistence strength for the
combined mechanisms is intermediate between the
strengths of the separate mechanisms. In particular,
high natural enemy overlap may cause exclusion
even though the species partition resources,
because high natural enemy overlap increases niche
overlap overall. This finding is at odds with an
intuitive view of natural enemies as promoting
coexistence because they reduce the effect of
competition (Connell 1970). However, when
resources are partitioned, the effect of competition
is to cause greater within-species than between-
species density dependence, which is undermined
by natural enemies that are not partitioned. On the
other hand, when natural enemies are partitioned,
they promote coexistence.

The combination of resource partitioning and
temporal partitioning seriously contrasts with
the combination of resource partitioning and
natural enemy partitioning because with temporal
and resource partitioning the joint overlap is the
product of the separate overlaps. Hence, the joint
overlap is always smaller than either separate
overlap, and indeed, the two mechanisms strongly
reinforce each other. Similar reinforcement has
been observed in models of temporal variation
in recruitment coupled with resource partitioning
(Chesson 1994), and in also models of spatial parti-
tioning coupled with natural enemy partitioning
(Stump and Chesson 2015). What distinguishes
these models? In these models with reinforcement,

each time or spatial location defines its own
density feedback loops through resources or natural
enemies. As a consequence, the number of ways
in which species differ becomes the product of
the separate ways in which they differ. However,
resources and natural enemies are assumed here in
section 2.5 to operate independently, and it is the
similarity of the union of the resource and natural
enemy niches that counts in ρ, not their product.

The approach to species coexistence in this
chapter using Lotka–Volterra models has permitted
a unified quantitative treatment of the different
mechanisms, resource partitioning, natural enemy
partitioning and temporal partitioning. The basic
ideas of feedback loops, density dependence,
tradeoffs, average fitnesses and niche overlap
appear in one form or another in many different
modeling frameworks, often tailored to specific
guilds of organisms (Tilman 1982; Bonsall et al.
2002; Amarasekare 2003; Kuang and Chesson 2010;
Muller-Landau 2010; Letten et al. 2017; Wilson
et al. 1999), or specific kinds of environment
(Connolly and Roughgarden 1999; Chesson et al.
2004; Klausmeier 2010). It has not been possible
to consider all the different mechanisms proposed
for species coexistence, with spatial mechanisms
(Chesson 2000b; Hart et al. 2017), including spatial
partitioning (Amarasekare 2003), being an impor-
tant class of mechanisms omitted, although they
are the subject of Chapter 12. Temporal partitioning
discussed here has been mostly developed in the
literature under the heading of “the storage effect,”
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because under this mechanism, a population can
be regarded as storing the gains of favorable
periods to fuel future growth (Li and Chesson 2016).
Another important class of temporal mechanisms
require nonlinearities in per capita growth rates, not
available in Lotka–Volterra models (Armstrong and
McGehee 1980; Chesson 1994; Yuan and Chesson
2015; Kuang and Chesson 2008; Miller et al. 2011).
Multispecies coexistence, through the complexity
of indirect effects, adds another dimension to the
study of species coexistence. Box 2.6 provides one
approach from models based on the key concepts
of niche overlap and average fitnesses, but these
concepts are not so well defined for multispecies
models outside the MacArthur framework used
here (Chesson 2018), which has spawned alternative
approaches (Barabas et al. 2016; Grilli et al. 2017;
Saavedra et al. 2017; Levine et al. 2017).

Although stochastic temporal variation promotes
coexistence in the models considered here, other
outcomes are possible. For example, having main-
tenance requirements, rather than resource uptake
rates, fluctuate over time in these models causes
population fluctuations with no coexistence
promoting effect (Chesson and Huntly 1997; Li
and Chesson 2016). Population fluctuations are
inevitable due to environmental fluctuations and
other factors, and if too severe in small populations
can lead to extinctions (May 1974).

In general, even though a coexistence mechanism
may be present, extinction eventually occurs
(Danino et al. 2018). Thus, species coexistence
should not be taken literally as forever. Instead,
it is about delaying the inevitable species losses,
whether the mechanism of extinction is severe pop-
ulation fluctuations, climate change, evolutionary
change, invasion of other species or some other
cause. But also, species coexistence mechanisms are
key to community assembly (HilleRisLambers et al.
2012) and reassembly (Ignace and Chesson 2014),
the processes by which newly arriving species may
colonize a locality, entering the local community,
and sometimes causing exclusion of previous
residents. Finally, species coexistence mechanisms
are at the heart of ecological speciation, the process
by which segments of a population may develop
different niches with a genetic basis, ultimately
becoming reproductively isolated (Nosil 2012). In
these ways, species coexistence mechanisms are a

key component of the explanation of the amazing
diversity of life on Earth.
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CHAPTER 3

The synergistic effects of interaction
strength and lags on ecological
stability
Gabriel Gellner, Kevin S. McCann, and Christopher Greyson-Gaito

3.1 Introduction

Theoretical ecologists have developed a relatively
deep understanding of how growth rates and inter-
action strengths influence population dynamics
(May 1975, 1976) to whole food webs (May 1973a;
Rooney et al. 2006; Allesina and Tang 2012; Gellner
and McCann 2016). At the same time, mathematical
biologists, including ecologists, have historically
examined the role of lags on the stability of simple
to more complex models generally concluding that
delays are often destabilizing (e.g., Blythe, Nisbet,
and Gurney 1982.; De Roos and Persson 2001)
but not always (e.g., see Beddington and May
1975). Nonetheless, while lags have been explored
mathematically (Cooke and Grossman 1982) and
frequently in stage-structured ecological modules
(De Roos and Persson 2001), little work has looked
at the synergistic role of interaction strength and
lags in food webs and ecosystems. This is all the
more surprising because nature is replete with
lags (see Box. 3.1 for examples). In this chapter, we
explore the interaction between growth rates (i.e.,
r, per capita maximal growth) and lags as well as
interaction strength where interaction strength will
be defined as a flux-based metric that is strongly
related to a consumer’s numerical response or
growth rate (see Box. 3.2).

Here, we will concentrate largely both on the
classical eigenvalue defined metric of stability
and the more empirical coefficient of variation
(hereafter CV) metric asking the empirical question
of how growth rates, or a related flux-based metric
of interaction strength (hereafter IS) (Nilsson and
McCann 2016) influence the relative stability of
models (e.g., we will experimentally manipulate
growth rate and/or IS and follow a given stability
metric seeing where the system is more or less
stable). Recent work has argued cogently that
multiple metrics of stability can yield different
answers and so where appropriate we will comment
on alternative stability metrics (Donohue et al.
2013; Arnoldi, Loreau, and Haegeman 2016).
Nonetheless, our goal is to compare modern results
to classical results and so we will largely stick to
the classical longstanding eigenvalue metric for
simplicity and clarity. It is perhaps appropriate to
reflect on the role of lags in ecological models in this
series historically edited by Robert May since lags
were one of the areas May explored (May 1973b,
1975, 1976; Beddington and May 1975) although
research on lags in general did not take off near as
much as his work on IS and stability (May 1973).

Here, we argue that like May’s work on inter-
action strength, which has yielded considerable

Gellner, G., McCann, K. S., and Greyson-Gaito, C., The synergistic effects of interaction strength and lags on ecological stability In: Theoretical Ecology:
Concepts and Applications. Edited by: Kevin S. McCann and Gabriel Gellner, Oxford University Press (2020). © Oxford University Press.
DOI: 10.1093/oso/9780198824282.003.0003
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Box 3.1 Lags in models and nature

(a)

(b)

(c)

Undamped Resource
Consumer
Resource

Undamped Consumer
Bi

om
as

s

time

0.4
–0.4

–0.3

–0.2

–0.1

0.0

0.5 0.6 0.7 0.8 0.9 1.0 1.1

0.4

0.1
0.0

0.2
0.3
0.4
0.5

0.5 0.6 0.7 0.8 0.9 1.0 1.1

Peak to peak lag

La
g

Attack rate

Re
(λ

do
m

)

Figure B.3.1.1 A) Calculations of implicit lag on oscillatory solutions follow Bulmer (Bulmer 1974). We do the same calculations on
oscillatory decay (solid curves) by using the eigenvector expansion depicted by dashed curves (Hirsch, Smale, and Devaney 2004). Note the
eigenvector expansion peaks and valleys (solid decaying solutions) line up perfectly with eigenvectors expansion suggesting Bulmer (1974)
calculations on approximation are valid. B) Maximum eigenvalue response to changing maximum attack rate. Ultimately high attack rates
yield less stable population dynamic responses. C) Lag changes with changing attack rate. Note, lags tend to increase with declining stability.

Bulmer, M. G. (1974). A statistical analysis of the 10-year cycle in Canada. Journal Animal Ecology 43: 701.

Lags, or delays as defined in much mathematical literature,
are responses to conditions that occurred sometime in the
past. As a result of this definition, discrete mathematical
models are an example of explicitly lagged models whereby
this year’s population density (Nt+1) is a function of last
year’s (Nt). Similarly, the delayed logistic model—a contin-
uous model—embodies a lag in the response to carrying
capacity:

dN/dt = rN (1 − N (t − τ) /K) , (B.3.1)

since here the response to density dependence occurs τ

years ago.
Ecological systems are replete with lagged influences. This

year’s breeding density is a function of last years’ breeding
density. Ontogeny imposes lags to maturity; indeed, lags
exist between all different life history stages and so stage
structure in populations drive lagged effects—an area well
known by population biologists (see Chapter 5 by Andre de
Roos). Starvation takes time, and so this form of mortality,
is lagged relative to previous resource conditions. Similarly,

continued
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Box 3.1 Continued

consumers or predators grow at a rate lagged relative to
their resource/prey conditions. At the ecosystem scale, the
process of decomposition delays nutrient returns back to the
grazer food web. These delays can depend on how labile or
recalcitrant the dead material is, and so can be either quick or
extremely long lags. There are lags in the response to abiotic
conditions, good spring conditions, for example, can alter
plant productivity over the course of a growing season (note,
phenology shifts due to global change are generally shifts to
lags that can be important for dynamics). In summary, we
have only scratched the surface here, but lagged effects are
ubiquitous in nature.

In the previous section we discussed two types of lagged
mathematical models, discrete and delayed ordinary differ-
ential equations (e.g., delayed logistic model). In both cases,
these mathematical equations explicitly model a lag. We
refer to these types of lags in theory as explicit lags.

Nonetheless, the nature of dynamic responses to condi-
tions are such that many of our models have within them
implicit lags. A classic example of this comes from
the consumer-resource model as discussed in the text. For
sustained oscillations lags are calculated following Bulmer
(1974). Figure B.3.1.1 outline how we measure implicit lags
for decaying oscillations (Figure B.3.1.1A). Effectively we
use eigenvector expansion to approximate the oscillation
(dashed curves) that show synchronicity with the decaying
solution thus allowing us to use Bulmer (1974) on the expan-
sion. Figure B.3.1.1B,C then show the maximum eigenvalue
response of the consumer to increasing maximum attack
rates (Figure B.3.1.1B) in the Rosenzweig-MacArthur model
and the associated calculated implicit lag response (Figure
B.3.1.1C). Note, that depending on the parameter condi-
tions that this lagged response changes. See main text for
discussion.

research and significant increases in our under-
standing of diversity and stability (Allesina and
Tang 2012, 2015; Gellner and McCann 2016; Maser,
Guichard, and McCann 2007; McCann 2000; Rooney
et al. 2006), there exists similar unexplored potential
in furthering our understanding of the dynamical
implication of lags on growth and interaction
strength. The subtle aspect of lags in mathematical
models, and indeed in nature, is that they may be
embedded implicitly in the dynamics (see Box. 3.1).
As an example, in well-studied consumer-resource
(hereafter C-R) models like the Rosenzweig–
MacArthur model, when a consumer population
rises and falls in an oscillation, it does so with
a lag to the resource dynamics (Figure 3.1B in
Box 3.1). This lag is not explicitly written into the
equation of the model but rather is an outcome of
the dynamics of the rate equations. Implicit lags,
perhaps because they are so deeply intertwined
in the dynamics and hard to tease apart, have not
been well explored mathematically, or theoretically,
although we recognize and consider their effects
frequently in time series analysis of empirical results
(Turchin and Taylor 1992).

This chapter largely seeks to review existing
theoretical literature and motivate the notion

that biological lags, both explicit and implicit,
are relevant and are ultimately needed to complete
a stability theory that allows a full understanding
of population dynamics in populations to whole
ecosystems. Further, we argue that beneath much
of what we have already learned about the role
of growth and interaction strengths on ecological
stability, lies a very important role for lags. A role
that promises to develop potent ways of under-
standing how feedbacks at different timescales
(e.g., consumer-resource versus whole ecosystem
feedbacks) may ultimately influence the stability
of nature’s complex networks. Understanding
lags, since we are altering them considerably in
a changing world (e.g., phenology; see Edwards
and Richardson 2004; Cleland et al. 2007), is critical.

In what follows, we start from simple population
models and review how biomass growth rates (r) in
population models interact with lags (discretely
modeled or delayed) to promote population
overshoots (i.e., where population densities show
damped oscillations or sustained oscillations thus
overshooting the equilibrium) and variation-driven
population dynamic instability. We then use the
simple ideas from the simplest case of an implicit
lag—a C-R model (see Box. 3.1)—arguing that the
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similarity between the experimental results of the
single dimensional population dynamic model
(with an explicit lag) and C-R dynamics (with a
single implicit lag) are not coincidence—lags are
interacting in both cases with growth rates (flux-
based interaction strengths in the (C-R) model)
in a similar manner to produce instability. This
interaction between growth rates (and interaction
strength) and lag is therefore expected and funda-
mental in that we can then consider how nature
may operate to exaggerate this lag effect (hereafter,
called lag excitation) or interfere with this lag effect
(hereafter, lag interference). We then highlight
some theoretical examples of the interactions
between interaction strength and lags revisiting
old results in terms of the potential roles lags are
likely playing. We end by arguing there is much
room for future theoretical and empirical results
in unpacking the role of lags across scales in the
dynamics and stability of whole ecological systems.

3.2 Population models: The interactive
role of growth and lags

To explore the role of lags it is informative to start
with the simplest building block of food webs and
ecosystems, the population model without struc-
ture. Here, let us review how growth rates influence
stability in a number of population models both
unlagged and lagged. Note, that growth rates in
a population model are akin to the positive inter-
action strengths in consumer-resource interactions
(see Box. 3.2) and so, this will allow us to create a
coherent perspective on lags (through growth rates)
from population model to whole ecosystem models.

Let us start with the most basic and common of
population models. The logistic population model
(e.g., dN/dt = rN (1 − N/K) and ask how maximum
growth rate, r, impacts the stability (return times,
eigenvalues) of the model. It is simple to solve for
the eigenvalue of the equilibrium at K (carrying
capacity) to see that the return time is −r (Figure
3.1A). This suggests that the population, N, returns
to the carrying capacity after a tiny perturbation
at rate, −r. Larger r means faster return time. The
system becomes more stable with increased growth.
Metrics of non-local stability from a stochastic

version of this model (e.g., continuous random
normally distributed perturbations where we
follow the coefficient of variation) yield similar
answers (Figure 3.1B). In this latter case, the rapid
returns tighten the noisy dynamics around the
equilibrium. The point being increased growth
rates broadly stabilize these dynamics. From the
perspective of lags, there are no lags in this very
simple model. A system without lags, at least the
very simple single dimensional system, has the
property that growth rate decreases return times
and bounds dynamics more tightly around K. Note,
one can devise structured stochasticity that may
defy this result, but it is a very non-generic form
of stochasticity that would do this—the answer of
increased stability is quite robust.

While we have shown this with the simple
logistic other forms of unstructured population
models of single dimension that contain a carrying
capacity yield the same result (Gellner and McCann
2016). Thus, in summary, our first main point is
that in unlagged population models, increased
growth rate is only stabilizing. From a stability
perspective, then, there is no cost to growth rate
in these simple models without lags. This is a very
simple result, but it is very informative from the
perspective of lags. As an example, one might
conjecture that even in any higher dimensional
model (e.g., food web) that have no lags (implicit
or explicit; Box. 3.1), then increased growth rates, or
increased interaction strengths (see Box. 3.2 which
equates growth rates with flux-based interaction
strengths) ought to drive increased stability as
well (i.e., remove oscillations). If we imagine the
multi-species case without lags, we have to be
careful though as there is at least one caveat. That
is, in the multi-species case, increasing growth
rates to a consumer without lags may not drive
oscillatory instability if our result from the simple
continuous logistic are general, but it still may
lead to the suppression of one or a few resources
to extremely low and therefore non-persistent
densities. In this case, we might expect the return
time away from the equilibrium to be quite rapid
(e.g., C rebounds rapidly due to the high growth
rates until C is very close to its equilibrium value)
and then the dynamics slow down enormously once
the resource equilibrium is close to the suppressed
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Box 3.2 Growth rates and a simple flux-based metric of interaction strength

In a simple population model (dN/dt = rN − (
rN2) /K; see

mass balance Box Figure B.3.2A), r, the per maximum per
capita growth rate governs the flux rate into the biomass
pool (i.e., positive rN term). Effectively this tells us the
growth potential of this population N. Similarly, a consumer-
resource (C-R) model, the growth potential for the consumer
is eCF(R); where F(R)is the functional response (e.g., type II
is amaxR/ (R + R0)); e is conversion efficiency of resource

N K
–

“growth”
rN

“growth”
ef(R) –f (R)

–m

rN2

rR R

C

K
–

rR2

(a) (b)

Figure B.3.2.1 Mass balance models showing underlying fluxes
for a standard population model A) and a consumer-resource
model. B) Growth rate fluxes into population model are similar to
the numerical response flux of the consumer resource interaction in
that both are the “growth” terms of the underling dynamical
system.

Cleland, E., Chuine, I., and Menzel, A. et al. (2007). Shifting plant
phenology in response to global change. Trends in Ecology and
Evolution 22: 357–65.

biomass into consumer biomass; amax is the maximal attack
rate; R0 is the half saturation density. This is shown in the
mass balance diagram for the consumer-resource model (see
Box B.3.2B) as an influx term akin to the rN term of the
population model. Note, flux-based interaction strength has
frequently been linked to the coupling terms (i.e., the nega-
tive functional response in the C-R mass balance model and
the positive numerical response term discussed previously).
There have been variants on the appropriate form from
total biomass flux to per capita but nonetheless all of these
metrics, in a sense, encapsulate the growth potential of the
consumer in a manner that is consistent with the growth
potential of r in the population models. Here, we define
interaction strength as the following:

ISCR = eF(R)
CR

ISRC = F(R)
CR .

By making the previous per coupling term (i.e., CR), this
interaction strength metric effectively defines interaction
strength as the expected instantaneous frequency of C-R
collisions in unit space. Doing this, makes the relationship
to maximum growth rate, r, clear. For example, following the
positive interaction strength of a type I functional response in
a model experiment means that we follow the key consumer
growth parameters, eamax—both terms that drive the size of
the flux into the following consumer box as r does for the
population model.

near zero resource equilibrium value (this is a
case where different stability metrics may yield
different answers as warned by (Arnoldi, Loreau
and Haegeman 2016; Donohue et al. 2016). So, even
here, under the assumption of no lags, one would
expect instability with large interaction strengths,
though it would occur not by wild oscillations but
by the complete loss of an interior equilibrium (i.e.,
an R pushed to zero densities and a bifurcation).
Nonetheless, our conjecture from the single species
models without lags suggests we would see strong
stabilization with increased interaction strengths
(i.e., no oscillation) until a species nears a bifurcation
point signaling the loss of an entire equilibrium
(e.g., via a transcritical bifurcation). This result
occurs, for example, in multispecies models with
subsidies whereby oscillations are suppressed but

suppression drives instability (Huxel and McCann
1998; Takimoto, Iwata, and Murakami 2002).
We argue later that multiple resources being
out-of-phase can effectively remove the lag as seen
by a generalist consumer and this may in fact be
what is going in a constant or out-of-phase seasonal
subsidies.

The next question we consider is what do
lags do to the previous simple models? Lags, as
discussed in Box. 3.1 enter either through the
application of discrete equations or through a
delayed differential equation model. Either way,
the lag suddenly drives a very different dynamic
response. Figure 3.2A shows the response of
increasing r for the discrete Ricker model which is
similar in biological assumptions to the continuous
logistic model but with a lag of one (May 1975,
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Figure 3.1 A) Maximum real eigenvalue (estimate of return time) from continuous deterministic logistic model with changes in the intrinsic
growth rate (r). B) Coefficient of variation for continuous stochastic logistic model with changes in the intrinsic growth rate (r).

1976; Levin and May 1976). Generally, all discrete
models explicitly have a lag. For low to moderate
growth rates (i.e., r), the population stability is
increased as before, but for higher growth rates the
population stability is decreased (Figure 3.2A,B).
Indeed, at some point the equilibrium becomes
unstable and produces wild cycles and even chaos
(Figure 3.2B), the variation in these non-equilibrium
dynamics grow in size with increases in r. Note, the
point at which increases in r become destabilizing
(identified in Figure 3.2A) is also the point where
the eigenvalues for the discrete model become
negative (but absolute value less than 1) suggesting
fluctuating decay to the equilibrium. A similar
answer occurs for delayed logistic models with
the eigenvalue becoming complex (meaning the
population density overshoots on its way to the
equilibrium in discrete models; (May 1973b)). Thus,
lags in simple population models are inspiring
instability for strong maximal growth rates. The
result can be phrased as follows: a lag plus
increased growth rate ultimately drives instability,
delaying return times and ultimately inspiring
wildly varying population fluctuations. Stochastic
results measuring CV readily yield the same

qualitative answer under these same conditions
(Figure 3.2C).

Note, research has recently phrased this first
stabilizing phase dominated by negative real
eigenvalues and increasing stability as non-
excitable dynamics (growth rates do not inspire
fluctuations only quicker return times) and the
overshooting dynamic phase (i.e., both oscillatory
decay and fluctuations) as excitable dynamics
(growth rates tend to inspire increased overshot
and fluctuations and so growth excites dynamics).
These results suggest that we may expect similar
responses in systems with implicit lags (e.g., the
base building block of all food webs, the C-R interac-
tion). We now go beyond a single population model
by adding a consumer. This increase in dimension
effectively allows us to add a single implicit delay
to the logistic model via the consumer response—
that is, the consumer can now have an implicit
lagged response to resource growth as discussed
previously, although the extent to which it expresses
itself will depend on the parameters as discussed
in Box. 3.1. This time, we will investigate how a
flux-based interaction strength metric (defined in
Box. 3.2; also see (Nilsson and McCann 2016), that
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Figure 3.2 A) Maximum real eigenvalue (estimate of return time) for different growth rate (r) values from discrete Ricker model, which is a
discrete analog to the continuous logistic model. Discrete eigenvalues are stable when |λ| <1 and fluctuating decay when negative. B) Bifurcation
diagram (i.e., local maxima and minima on the attractor) across the same range in growth rates (r), C) Coefficient of variation for discrete
stochastic Ricker model with changes in the intrinsic growth rate (r). Note, CV directionally consistent with eigenvalue.

is qualitatively similar to how r influences stability
in single population models. We expect similarities
to the previous lagged population model.

3.3 Consumer-Resource models: The
interactive role of IS and lags

To keep our synthesis consistent, we ask how
altering consumer growth potential, or similarly
interaction strength (e.g., increasing e and a) alter
the stability of C-R interactions. Figure 3A–3D
shows the response for the simple type I, and II
functional response for both maximum eigenvalue
and a stochastically forced case where we measure
CV. All show the characteristic bi-phasic stability
responses as already predicted and all transition
at precisely the point the eigenvalues switch
from real to complex. The result thus suggests
again the following: lag plus relatively high growth
rates (here, high ISCR) yields increasingly less stable
dynamic outcome. The implicit lag expressing itself
with the onset of complex eigenvalues and overshoot
dynamics.

Box. 3.1. discusses this latter result of lags express-
ing themselves to different extents with changing
C-R population dynamics (see Figure B.3.1.1). Here,
the implicit lag (calculations discussed in Box 3.1)
reveals itself effectively with the onset of oscillatory
decays and starts off at exactly ½. After which,
as attack rate increases the lag decreases until
becoming the familiar ¼ lag at the Hopf bifurcation
(Figure B.3.1.1B,C). After the Hopf, and the creation
of sustained oscillations, the lag grows (here via
further increases in maximum attack rate, a). Again,
this suggests that there is a complex interplay
between interaction strength (also growth rate
of numerical response) and lag. It is beyond this
scope of this chapter but is tempting to argue
that for weak decays the consumer population is
relatively slow in terms of growth potential and
unresponsive, so it weakly tracks the resource
driving a large lag. This lag decreases as the
decaying oscillatory overshoot gets stronger right
until it becomes sustained oscillations (at the Hopf),
after which increased attack rates drive stronger
oscillations with more overshoot and again leads
to increasing lags. To our knowledge, no one has
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Figure 3.3 A) Maximum real eigenvalue for continuous deterministic Rosenzweig–MacArthur consumer – resource model with a Type I foraging
response. B) Coefficient of variation for continuous stochastic Rosenzweig-MacArthur model with a Type I foraging response. C) Maximum real
eigenvalue for continuous deterministic Rosenzweig–MacArthur model with a Type II foraging response. D) Coefficient of variation for continuous
stochastic Rosenzweig–MacArthur model with a Type II foraging response.

tracked this interplay between interaction strength
and lag and it potentially is a very interesting result
that requires more thought. As a starting point, we
argue that both lag and interaction strength work
together to produce oscillations, and therefore,
altering either (i.e., increasing interaction strength
or increasing lags) has the potential to drive cycles.
Similarly, then, muting either may act to stabilize.

Recent slow-fast separation of timescales poten-
tially shed some light on this issue. Kooi and Pog-
giale (2018) examined a Rosenzweig–MacArthur
consumer-resource model by making the timescale
of the consumer slow (overall dynamics are a scaler
of a small rate, ε such that dC/dt = εF (C, R))
relative to the resource. This effectively reduces the
numerical response (growth rate of the consumer,
or interaction strength as defined here) and the
mortality or loss rate simultaneously and does
so without altering the isoclines. In a sense, this
is a mathematical experiment, where we hold
the “energy flux” (i.e., isoclines) constant while we
change the response ability of the consumer. The
rate, ε, when small or near 0 dramatically reduces
the ability for the consumer to “track” to changes

in resources. As they vary ε, they are effectively
increasing the implicit lag of the consumer and this
eventually produces a canard explosion or wild
oscillatory dynamics. As such, the lag (and not
the change in energy flow) through the interaction
produces wild oscillations. This is far from a proof
that implicit lags are operating but it is an enticing
model experiment using elegant mathematics
suggesting that the implicit lag plays a large role in
the oscillatory dynamics. The non-responsiveness
of the consumer, or the lagged response, contributes
to instability in and of itself.

To this point, we have considered very simple
scenarios between lags and growth or interaction
strength and our answer to this is simple, lags
inspire or play a role in producing instability in
population and consumer-resource interactions.
These results importantly allow us to ask new
questions that could provide major insights into
how nature operates to maintain relatively stable
systems or how nature may under some conditions
inspire fluctuating dynamic outcomes. Since nature
is replete with lags, and a lag in of itself is pivotal
to the dynamics, the previous considerations on
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lags behooves us to consider how multiple lags
can interact to alter dynamics. Two obvious cases
emerge: i) lag excitation where lags interact with
each other to further excite the population dynamics
(e.g., two consumer-resource oscillations in food
chain coupled to produce chaotic dynamics), and
ii) in contrast there may be situations where
multiple lags can interact to effectively mute
lags (lag interference) or even cancel each other
out entirely (lag cancellation; or complete lag
interference). To our knowledge, this latter idea
is not well considered in the theoretical literature
and given the enormous number of natural lags in
real ecological systems this is a surprising hole in
theory. We now motivate some possible example of
both cases.

3.4 Lag excitation and lag interference

While largely undiscussed in ecological theory to
our knowledge, mathematicians and engineers
have employed delays to understand how to
control dynamical outcomes in many applied
systems. This interest has led to examples of where
the addition of delays in dynamical systems can
excite period-doubling to chaos or, under the proper
conditions, do the exact opposite—that is, drive
period-doubling reversals to stable equilibria (e.g.,
see Xu and Chung, 2003 results on the van der
Pol-Duffy Oscillator). In an interesting and rare
ecological example, MacDonald (1986a) showed
using a mathematical eliminant technique that
proved in two-species interactions that two lags
under certain constraints can cancel each other out
to generate a stable equilibrium. Although complete
lag cancellation is extreme, the more continuous
version of lag interference (whereby a lag mutes or
reduces the effect of another lag or lags) remains
a more general possible outcome in dynamical
systems. Ecological theory has a reasonably long
history of considering lags (Caswell 1972; Levin
and May 1976; May and Oster 1976), but the ideas of
MacDonald (1986a) seem to have not played much
of a role in this theory. As an example, the literature
has yet to ask what ecological structures and
conditions yield lag interference in stage structured
interaction, food webs or whole ecosystems (i.e.,
enhanced stability)?

To understand the role of delays, it is interesting
to note that engineers have developed an area com-
monly referred to as “control theory,” the objective
of which is to regulate systems dynamics via what
they sometimes refer to as feedback stabilization
or lag stabilization (e.g., Fiagbedzi and Pearson
1986). One of the major results of control theory
with respect to lag stabilization occurs from delayed
feedback loops whereby the scale of the delayed
feedback (i.e., a lagged response of the outputs
feedback) interferes with the lags in the main
system. A review of control theory is beyond
this chapter but presents a potentially enticing
perspective for looking for biological structure
within feedbacks that may help govern the stability
of complex food webs and ecosystems. Curiously,
this control perspective is metaphorically consistent
with nutrient feedbacks, via decomposition, that
can show lagged response back into the green world
food chain that can enhance stability in the classical
food chain (to be discussed further). We now look
at some existing results within the framework
that lags, explicit or implicit, may be exciting or
inhibiting other lags dynamically.

3.5 Asynchrony as a form of lag
interference?

Rooney et al. (2006b) found that under certain
conditions, a large mobile top predator that coupled
into separate energy pathways, or channels, could
make a food web very top heavy without the usual
cost of instability (Rip and McCann 2011). They
also showed through simulation techniques that
this stabilization result tended to occur because
the pathways fell out of phase with each other
allowing the top consumer to effectively surf these
waves in time and space. Recalling that single C-R
interaction, when oscillating or showing oscillatory
decay, has a consumer roughly ¼ lagged behind
resource dynamics then in this situation, all else
equal, we have a consumer behaviorally responding
potentially to two different lags. If these resources
are completely out-of-phase (i.e., lag each other by
½; see Figure 3.4) then we have what wave theory
in physics calls complete destructive interference
(Figure 3.4)—the waves cancel each other out. Given
a generalist predator that consumes across these
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Figure 3.4 A) Two resources are completely out-of-phase (i.e., lag
of 0.5) summing together to produce no resource oscillations (red
curve is summed waves) for a consumer that perfectly consumes them
according to density. This wave interference is called destructive
interference (or lag cancellation) in wave theory. B) Two resources are
in phase (i.e., lag of < 0.5) such that they sum together to produce
more resource oscillations (i.e., amplify the summed wave; red curve is
summed waves). This wave interference is called constructive
interference (or lag excitation) in wave theory. The consumer would be
“excited” if it consumed according to resource density in the
latter case.

out-of-phase prey then the impact of the implicit
consumer lag is muted or entirely canceled if it can
switch from one prey to another effectively surfing
the resource waves perfectly in time (Figure 3.4).
Note, consistent with this literature we define
interference here as the destructive case where
two difference resources sum to lower or equal
variance as one of the resources (Figure 3.4A;
note, Figure 3.4B is constructive interference where
resources add up to more variation together). The
issue is more complex if we have a consumer
playing a role in driving how out-of-phase these
two resources are but nonetheless the consumer,
when faced with resources that are out-of-phase,
tends to gain same stability from this destructive
resource interference (McCann and Rooney 2009).

A second arguably more interesting result occurs
in the ecosystem models championed by the theo-
retician Donald DeAngelis (DeAngelis 1992; DeAn-
gelis et al. 1989) where ecosystem level feedbacks
can drive both stability and instability relative to
classical food web theory that ignores these larger
scale feedbacks. As discussed previously, this is sim-
ilar to the negative feedback controls discussed by
engineers interested in maintaining stability in auto-
mated machines. Here, though, nature under certain
conditions appears to be able to create its own con-
trol feedback.
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Figure 3.5 Bifurcation of the resource density (R) across a range of
average nutrient inputs (Nave). When a food chain contains a detrital
recycling (open boxes) they bifurcate to cycles at higher productivity
(Nave) than communities without detrital recycling (solid boxes),
highlighted in section (a) in blue. The amplitude of resource cycles
expands further, and densities reach closer to zero, in communities
with a detrital motif, highlighted in section (b) in pink.

As an example, McCann (2011) showed that
relative to a simple N-C-R interaction without an
ecosystem feedback (Figure 3.5; R dynamics shown)
that an ecosystem model that has a detrital feedback
(i.e., D recycles nutrients back to N) can interfere
with the R dynamics in a manner that promotes
the stability of the C-R interaction. Let us start with
the case that the N-C-R model is producing cycles
(Figure 3.5; redrawn from McCann 2011) and then
use the same parameter values (for parameter
matching technique see McCann 2011), but now for
a model with detrital recycling. If we consider a low
detrital recycling rate, dD (Figure 3.5A), then we see
that the inclusion of the detritus feedback stabilizes
the cycle relative to N-C-R case. Effectively what
is happening here is that as R goes down from C
overconsumption the nutrients are recycled back
into N with a lag that makes the correlation between
N and R negative. In other words, the detrital lag
means that when R is declining N is increasing—
note, this mean N is adding growth to R to reduce
its decline relative to the N-C-R case. Similarly, the
lag also means that as R is increasing N is low and so
it reduces the growth rate of R and therefore reduces
the overshoot of C and mutes the rise of R. Thus,
this detrital feedback mutes the cycle relative to the
N-C-R case—the detrital lag under low recycling
rates acts like a feedback control of engineering.
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Now, if we continue to increase the recycling rate,
dD, we effectively alter this feedback and can reverse
the result driving lag excitation of the C-R oscilla-
tion (Figure 3.5B). In this case as R declines N is now
also declining approximately in tandem with R. This
positive correlation magnifies the R decline while
the increasing R stage is fueled further by an increas-
ing and high N that increases the overall growth
of the C-R interaction. Thus, under high recycling
rate the nutrients have fallen into phase with R
and “excited” the C-R interaction (Figure 3.5B). This
excitation means that the C-R cycle is now larger
than the N-C-R case, so we have arguably lag exci-
tation. This result appears to quite robustly occur
although more work is required (DeAngelis 1992;
McCann 2011). Food web theory has largely ignored
ecosystem models and more work bridging these
areas remains.

3.6 Summary

Populations, consumer-resource interactions and
whole systems show that generally strong growth
rates, and strong interactions, lead to instability
(May 1973b; Rip and McCann 2011; Gellner and
McCann 2016). A close look at these results
suggest that lags play an important role such
that without lags growth rates do not manifest as
instability. Indeed, in simple continuous logistic
population models, without a lag, increased
growth rates only increase stability (reduced return
times and reduced CV). Here, we have looked
at population, consumer-resource and food web
literature and suggested that underneath many
results lie an important role for lags of different
lengths (both explicit and implicit in the models) to
generate instability when coupled to strong growth
rates or strong energy fluxes through interactions.
Despite an early theoretical focus on explicit lags
(Wangersky and Cunningham 1957; May 1973b;
Levin and May 1976; MacDonald 1986a). the role
lags play in food webs and species interactions
remains not well understood. Specifically, we argue
here that the notion that multiple lags can interfere
with each other (lag interference) to mute dynamic
instabilities, or exaggerate each other, to further
destabilize and excite dynamics (lag excitation)
seems little considered since MacDonald (1986).

Research has argued that weak interactions can
often re-route energy away from strong interactions
to mute and stabilize their influence in food webs
(May 1973a; McCann, Hastings, and Huxel 1998).
This has led to the search for food web structure that
harbors weak interactions that may play a major role
in stabilizing ecosystems—structures that produce
weak interactions include metabolic constraints
(Otto, Rall, and Brose 2007), spatial compartments
(McCann, Rasmussen, and Umbanhowar 2005;
Rooney et al. 2006), omnivory (Emmerson and
Yearsley 2004; Gellner and McCann 2012), gener-
alists (Gross et al. 2009), and weak feedback loops
(Neutel et al. 2002), note these feedbacks operate
akin to the control theory discussed previously).
If lags can interfere or excite interactions altering
stability, then further research on the role of lags
may point to novel structures that play a role in
mediating stability and the maintenance of diversity
of complex ecosystems.
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CHAPTER 4

Non-equilibrium dynamics
and stochastic processes
Karen C. Abbott

4.1 Introduction to stochasticity
and transients

The concept of the equilibrium is central in ecology
(May 1974) (see Glossary for definitions of italicized
words and phrases). As species interact, indirect
effects and nonlinear feedbacks are ubiquitous,
and it is instructive to consider if and how
these processes settle out—how they equilibrate.
For example, understanding how the interactions
between a focal species and its resources, natural
enemies, mutualists, and competitors jointly govern
its population size is a useful way to distill a lot
of ecological complexity into a single, concrete
prediction. However, the equilibrium is largely a
theoretical construct (DeAngelis and Waterhouse
1987; Ives 1995): it constitutes the hypothetical
outcome that we would expect if a collection of
interactions and feedbacks were allowed to play
out undisturbed and in a constant environment.
Because real populations rarely, if ever, experience
such undisturbed, constant conditions, we must
recognize that the dynamics we observe in nature
and in many experiments often reflect something
other than the equilibrium state (Bjørnstad and
Grenfell 2001; Hastings 2001, 2004).

Dynamics that occur before a system has equi-
librated are called transient dynamics, and they are
observed when the initial conditions—the state of
the system at the start of an experiment or at the
beginning of an observation window—are away

from the equilibrium conditions (Hastings 2004).
This can occur for two non-mutually exclusive
reasons. First, the system may have been disturbed
and has not yet had time to return to equilibrium.
This is the case if a natural population or community
was perturbed away from equilibrium before obser-
vations began, or when an experiment is initiated
in a non-equilibrium state (Figure 4.1a) (Briggs
and Borer 2005). Another way initial conditions
and equilibrium conditions can differ is if the
equilibrium has recently changed, due for example
to global change, and the system has not yet fully
tracked this change (Figure 4.1b) (Davis 1986). In
addition, an ecological system may be away from
equilibrium simply because it is subject to continual
stochastic perturbations that prevent it from ever
fully and permanently settling onto an equilibrium
(Figure 4.1c) (Higgins et al. 1997; Lande et al. 2003;
Vellend et al. 2014).

Despite all the reasons for ecological systems
to exist away from equilibrium, ecological theory
is strongly grounded in quantitative methods for
characterizing equilibrium behaviors. The staple of
theoretical ecology is linear stability analysis, which
classifies the dynamics of an ecological system
that is close to, but not exactly at, equilibrium.
It is based on a linear approximation to the true
dynamics near equilibrium (usually written in
the form of a Jacobian matrix), and determines
whether this approximation exhibits exponential
decay in the size of the displacement from

Abbott, K. C., Non-equilibrium dynamics and stochastic processes In: Theoretical Ecology: Concepts and Applications. Edited by: Kevin S. McCann and Gabriel Gellner,
Oxford University Press (2020). © Oxford University Press.
DOI: 10.1093/oso/9780198824282.003.0004
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Figure 4.1 Three reasons we might see non-equilibrium dynamics. (a) The system state (here, the size of a particular population) was perturbed
away from equilibrium and has not yet returned during the course of our observations. (b) The system was at equilibrium, but the equilibrium
changed and the system has not finished tracking this change. (c) The system is as much at equilibrium as it ever will be; stochasticity is continually
exciting transient cycles rather than allowing the system to settle onto the equilibrium density marked by the gray line.

equilibrium—meaning the system is approaching
the equilibrium and thus the equilibrium is called
stable—or exponential growth in the displacement
from what would then be labeled an unstable equi-
librium. Details can be found in textbooks such as
Otto and Day (2007). The key point is that the linear
approximation that forms the basis of this analysis is
only valid when the system is close to equilibrium,
and thus its results only provide information about

the system around equilibria. It tells us whether
a population or community near an equilibrium
point will approach that point or move away, and
how quickly; the analysis tells us almost nothing
about what it will do in all other circumstances.

With so many common ways for populations
and communities to exist far from equilibrium
(Figure 4.1), it is tempting to conclude that linear
stability analysis is of no use. However, decades



OUP CORRECTED PROOF – FINAL, 7/4/2020, SPi

42 T H E O R E T I C A L E C O L O G Y

of theoretical insights that are based on linear
stability analysis reveal that this would be wrong.
Foundational ideas like the roles of inter- and
intraspecific competition in species coexistence, the
paradox of enrichment, and the burnout of host-
parasite cycles were derived using linear stability
analysis and have proven robust (Nicholson and
Bailey 1935; MacArthur and Levins 1967; Rosen-
zweig 1971). Still, there are clearly limits to what
classic theoretical approaches can do, and theory
for non-equilibrium contexts remains profoundly
underdeveloped in ecology.

Without an adequate understanding of non-
equilibrium phenomena, we risk misinterpreting
empirical observations and experiments. For exam-
ple, when a particular species’ or community’s
equilibrium changes in response to warming, the
system may not take a straight path from the
old, pre-warming equilibrium to the new one.
Instead, the initial transient change could be in the
opposite direction from the eventual equilibrium
change, and proper interpretation of the effects
of warming requires researchers to distinguish
between initial and long-term responses (Gilbert et
al. 2014). Similarly, an understanding of whether a
degraded ecosystem is in an alternative stable state
or a long transient is vital to determining if and
how recovery to the more desirable pre-collapse
state is possible (Frank et al. 2011). With continued
development of non-equilibrium theory, our ability
to properly interpret data and design experiments
to avoid the pitfalls of conflating equilibrium
and non-equilibrium systems will continue to
improve.

Possible applications for non-equilibrium theory
are vast, but this chapter will focus on two specific
challenges in the study of non-equilibrium systems:
quantifying stability, and predicting regime shifts.
The central message is that stochasticity and tran-
sient dynamics actually reveal much more about
the system being studied than we would other-
wise see (Coulson et al. 2004; Boettiger 2018). This
is in stark contrast to the common sentiment that
stochasticity and transients obscure our ability to
understand underlying interactions and feedbacks.
Progress toward meeting the two key challenges has
come from refining how we study and interpret the
hypothetical construct of an undisturbed system in

a constant environment, not by setting this construct
aside. Fortuitously, theoretical ecology’s long his-
tory with equilibrium dynamics sets us up well for
a future of better understanding non-equilibrium
dynamics.

4.2 Challenge 1: Stability in stochastic
ecological systems

Many basic and applied ecological question can be
framed as questions about stability, in some form.
“Stability,” indeed, takes many forms; ecologists
mean many different things when using that word
(Grimm et al. 1992; Grimm and Wissel 1997). We
may consider a population to be stable when its
size has small temporal variance, when its range
boundaries are relatively constant, or when it has a
low risk of extinction. We may consider a commu-
nity to be stable when its species composition, total
biomass, or function is fairly constant, or resists
change, or returns quickly to its previous state
following perturbation (Ives and Carpenter 2007).
The proliferation of ways to quantify stability (Ives
and Carpenter 2007) and words used to describe
these measures (Grimm and Wissel 1997) reflects
the reality that ecological stability is a multi-faceted
problem, and different facets are more important
in different contexts and for different questions.
The key to success is to choose a stability metric
carefully, and to think critically about what it can
and cannot tell you about your system.

4.2.1 Why is this a challenge for
non-equilibrium systems?

Linear stability analysis gives a clear and direct
measure of stability, in terms of whether and how
quickly a system will return to an equilibrium state
after a small, isolated perturbation. Because it only
applies in the immediate neighborhood of the equi-
librium, it is a very localized measure of stability
(“local” here meaning nearby in state space). The
challenge is that the dynamics of real systems are
likely to explore areas of state space that are not
local to an equilibrium point. By definition, this
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is the situation for non-equilibrium systems. It is
still useful to think about the stability of various
ecological states, but the familiar local measures
of stability won’t be very informative. Instead, we
need to think about stability in a more global way.
Across all of the state space that a system’s dynamics
are likely to cover, what states or configurations are
most stable—most strongly attracting, most likely,
or most persistent? For all its virtues, linear stability
analysis has nothing to offer us here.

The potential function, which provides a global
quantification of stability, solves this problem in
some situations (see e.g., Dennis et al. 2016). The
potential function is the “landscape” in the familiar
analogy depicted in Figure 4.2. If we imagine the
current state of the system as a ball, the landscape
describes its dynamics through time—i.e., how
the ball will roll. Peaks on the landscape occur
at unstable equilibrium states and wells occur at
stable equilibria. A ball exactly at equilibrium (dark
circles in Figure 4.2) will not roll; it will remain at
equilibrium indefinitely unless perturbed. A ball
that is away from equilibrium (light colored circles)
will roll until it reaches a stable equilibrium at the
base of a well. In this framework, the landscape
itself—the black curve in Figure 4.2—is the potential
function. Because it maps the movements of a ball
at any point in the state space, it provides global
information about which states are most likely, and
how readily a perturbation will cause the system to
switch from one state to another (Beisner et al. 2003).

Population density
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l h
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t

Figure 4.2 Illustration of a potential function for a hypothetical
population. The x-axis is the one-dimensional state space and the
y-axis gives the height of the potential function, U. Dark balls are
situated at equilibrium points and will not roll unless perturbed. Light
balls are not at equilibrium and will roll downhill toward stable
equilibrium states. The steepness of the slope indicates how quickly
stable equilibrium will be approached, and the depth of each well
indicates how much perturbation is needed for the ball to exit to
another well.

Mathematically, the potential function is the
function U(N) that satisfies dN

dt = − dU
dN , where N is a

vector of state variables (e.g., the list of population
densities for all species present) and dN

dt = f (N)

is a differential equation model describing the
deterministic skeleton (that is, the dynamics we
would predict in the absence of perturbations). The
potential has been evoked in two ways in ecology:
it has been used in its formal mathematical sense
(e.g., Livina et al. 2010; Dennis et al. 2016), and it has
been used as an analogy (e.g., Scheffer and Carpen-
ter 2003; Beisner et al. 2003). The latter is more com-
mon, because while the ball-rolling-on-a-landscape
analogy is broadly useful, the function U(N) itself
frequently does not exist for multi-species models
(Guttal and Jayaprakash 2008, 2009; Dennis et al.
2016). Any system whose dynamics are influenced
by something besides a strict “downhill” pull
lacks a potential function. For example, consumer-
resource systems have a tendency to oscillate, as the
consumer population grows in response to a high
resource population, causes the resource to crash,
then crashes itself in response, allowing the resource
population to recover and restart the cycle (Mur-
doch et al. 2003). Even when a stable equilibrium
point exists—so that in the absence of additional
perturbations these cycles would get smaller in
amplitude through time until both consumer and
resource populations level out—the approach to
equilibrium is not strictly “downhill”. Instead of
rolling straight to the equilibrium, like in Figure
4.3a, the system approaches the equilibrium point
by spiraling toward it, as in Figure 4.3b. Because
the potential function U(N) can only describe
downhill movement, not circulatory movement,
such a function does not exist for systems like 4.3b.
Oscillations due to consumer-resource and other
interactions are ubiquitous (Elton 1924; Hanski
et al. 1993; Kendall et al. 1998, 1999; Barraquand
et al. 2017; Myers 2018), so it is not surprising that
potential functions do not exist for most ecological
systems with two or more state variables.

This is unfortunate, because the shape of this
landscape gives us exactly the kind of global
information about stability that we want for
understanding non-equilibrium systems. From it,
we can extract many of the facets of stability that
we care about: risk of extinction, distribution of
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Figure 4.3 Comparison of systems that do (a) and do not (b) have a potential function. The x, y-plane is the 2-dimensional state space, and the
z-axis gives the height of the landscape that the potential function is supposed to map. In both panels, there is a stable equilibrium point at the
base of the well, where consumer and resource coexist. In (a), this equilibrium is approached directly—the ball rolls straight downhill, meaning that
consumer and resource densities change concurrently to map a straight path from initial conditions to stable equilibrium. In (b), the species
undergo damping oscillations toward equilibrium. The landscape in (a) would represent a true potential, since dynamics proceed strictly downhill;
the landscape in (b) would not. The dynamics shown in (b) are typical of consumer-resource systems.

states we expect to see and how readily the system
can shift between them, how strongly a system
near a particular equilibrium will resist changing if
perturbed, and more (Xu et al. 2014, Dennis et al.
2016). So, what can we do when we’re studying
a non-equilibrium system that doesn’t have a
potential function?

4.2.2 A way forward

As it turns out, the true potential function, U(N) as
defined previously, is not the only mathematical
object that provides us with a global view of
dynamics that can be used to understand stability
in stochastic and other non-equilibrium systems.
Related formalisms, such as the quasi-potential
(Freidlin and Wentzell 2012), offer a promising
response to the challenge (Zhou et al. 2012, Nolting
and Abbott 2015).

The quasi-potential (Figure 4.4), which can be
found numerically (Cameron 2012; Moore et al.
2015, 2016) even when a true potential function
does not exist, shares much of the same intuitive
interpretation as the potential. Both describe the
tendency of the system state to move toward wells
that represent stable ecosystem configurations.
Unlike dynamics on a true potential, however,
this downhill gradient in the quasi-potential only
partially describes how the system will change.

Another set of rules, which we can derive after
computing the shape of the quasi-potential surface
(Nolting and Abbott 2015), describes any circulation
at constant quasi-potential elevation. If Figure 4.3b
represents a consumer-resource system spiraling
toward a stable equilibrium point at the bottom
of the bowl, the quasi-potential surface describes
the steepness of the bowl and thus represents net
downward movement, whereas the circulatory
component represents the counterclockwise move-
ments of the ball.

The quasi-potential represents stochastic, non-
equilibrium dynamics by using information about
the system’s deterministic interactions and feed-
backs, which drive the system toward a stable
equilibrium, to derive a measure of how “difficult”
it is for stochasticity to push the system against
this flow (i.e., uphill). The height of the quasi-
potential surface at any particular point in the state
space, relative to the height of the deepest trough,
measures how much of a push from stochasticity
would be needed for the ball to move up to this
spot. Therefore, an equilibrium in a deeper well is
more stable, in the stochastic sense. In fact, well
shape and barrier height have long been recognized
as better descriptors of stochastic stability than that
provided by linear stability analysis (Holling 1973),
but they haven’t been used frequently as stability
metrics since they were previously unquantifiable
for most ecological models.
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Figure 4.4 (a) An example of a quasi-potential for a
consumer-resource model. The x, y coordinates give the ecosystem
state (here, the population densities of the two species) and wells
correspond to alternative stable states. The surface describes the
tendency of the state to “roll downhill” with respect to the z-axis.
Both wells have a stable equilibrium at the base, but the shallower
well is much less stable in the sense that a much more modest
“uphill” perturbation is needed for the system to transition from the
shallow to the deep well than vice versa. (b) The same quasi-potential,
shown from a different viewpoint. The white trace shows one
realization of a stochastic version of this model, beginning in the top
corner, traveling into the shallower well, then eventually transitioning
to the deeper well. Notice that the populations spiral toward the
stable state at the base of this well. The system’s full dynamics are
therefore due to the combined effect of the downhill tendency
represented in the surface itself, an additional circulatory component
that causes the populations to spiral, and stochastic perturbations.

Model from Steele and Henderson 1981.

Extending beyond the strict definition of the
potential (i.e., U(N) such that dN

dt = − dU
dN ) and

considering its generalized counterparts affords

us many benefits. First, it extends a powerful
visualization tool for understanding stochastic
dynamics (i.e., the ability to map surfaces like
the one pictured in Figure 4.4) to a substantially
broader range of applications (systems that lack
a potential, including those with limit cycles and
other non-point attractors). Second, it allows us to
measure the stability of different states (different
wells or other points in state space) that considers
the possibility of large perturbations rather than
purely local ones. In other words, it offers a global
view of stability not given by linear stability
analysis. As a consequence, comparing quasi-
potential heights at different equilibria gives a
far superior measure of relative stability than
comparing dominant eigenvalues (Nolting and
Abbott 2015). For instance, a stable equilibrium
point would be considered only weakly stable in
the local sense if linear stability analysis reveals
a slow return rate following a small perturbation.
However, this slow return rate simply reflects that
a (quasi-)potential well has relatively flat curvature
right at its base. If this same well is very deep, the
equilibrium will be very stable in the global sense—
a system in this well is very likely to stay there.
In a system that is dominated by non-equilibrium
dynamics, due for example to stochasticity, the local
curvature of the base of the well (the information
given by linear stability analysis) is much less
relevant than the shape of the entire well (the infor-
mation given by the potential and its extensions).

While progress toward applying the quasi-
potential and related approaches to ecology is
exciting, these methods are currently fairly limited.
The computational methods for deriving a quasi-
potential are only fully developed for systems with
very simple noise structures (Nolting and Abbott
2015), and computation becomes cumbersome with
larger numbers of species. Methods for discrete-
valued state variables (e.g., numbers of individuals,
rather than a continuous measure of popula-
tion density) are currently under development
(A. Strang, unpublished work). Applications to
discrete time systems would also be very useful.
Despite its infancy, this approach is promising and
continued work on extending the concept of the
potential to a wider range of systems should be
fruitful.
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4.2.3 Lesson from Challenge 1: Non-equilibrium
dynamics strengthen ecological understanding

When a system is at, or near, a stable equilibrium,
we only have the opportunity to observe the
location of that equilibrium. In non-equilibrium
systems, we are given the opportunity to observe
dynamics over a broad region of state space. The
stable equilibria are still there and, given a long
enough window of observation, we should still
see them. We’ll also see how the system moves
between them and what it does when it’s far from
equilibrium. Obviously, non-equilibrium dynamics
reveal a lot more about the system. The trick is to
find ways to interpret and analyze this information,
and doing so will generally require less reliance on
local, equilibrium-focused descriptors.

4.3 Challenge 2: Predicting regime shifts

The possibility that an ecological system can shift
suddenly and unexpectedly from its historical state
to a new and very different state, perhaps with
no imminent shift back, is a great cause for alarm
(Scheffer et al. 2001; Beisner et al. 2003; Scheffer
2009). Ecologists have largely sought to understand
this phenomenon through the analysis and appli-
cation of deterministic models that have alterna-
tive stable states (multiple stable equilibria under a
single set of conditions, as in Fig. 4.5a) (May 1977;
Scheffer and Carpenter 2003). Understanding and
predicting regime shifts that occur when one of
these stable states disappears (Figure 4.5b) is the
subject of Chapter 15. Regime shifts of this type are
caused by changes in the equilibrium characteristics
of a system in response to changing conditions.
So, what about regime shifts in non-equilibrium
systems?

4.3.1 Why is this a challenge for
non-equilibrium systems?

Regime shifts can occur when a system crosses a
local bifurcation or “tipping point” at which one
stable state disappears or loses stability (Figure
4.5b), when a disturbance causes a system that was
in one regime (e.g., at equilibrium) to enter another
dynamical regime (Figure 4.5c; the transition in

Figure 4.4b is another example of this type), or
when a long transient dynamic ends and either
another transient or the equilibrium dynamics
begin (Figure 4.5d) (Beisner et al. 2003; Scheffer and
Carpenter 2003; Sharma et al. 2015). Regime shifts
caused by non-equilibrium phenomena—long
transient dynamics and stochastic perturbations—
can occur in completely different ways than regime
shifts caused by local bifurcations. Early warning
signals associated with an approach to bifurcation,
or post-hoc explanations for a regime shift that are
predicated on the notion that a local bifurcation
was crossed, will not apply to transient and
stochasticity-related regime shifts (Boettiger and
Hastings 2013, Dutta et al. 2018). Therefore, an
entirely different approach is needed for these
situations (Boettiger and Hastings 2012, Hastings
et al. 2018).

4.3.2 A way forward

Some regime shifts due to transient dynamics
are highly predictable (Hastings et al. 2018).
Consider long transients caused by a saddle—a
type of unstable equilibrium point (Box 4.1). At
any equilibrium, stable or unstable, the system
by definition does not change (its rate of change
is 0); it follows that the dynamics near, but not
right at, any equilibrium will change but will do
so slowly (rate of change is close to 0). Therefore,
escape from an unstable equilibrium from very
nearby is expected to be slow. Saddles are an
interesting type of unstable equilibrium because
although they are ultimately repelling (the system
state will change to move away from the saddle),
they are attracting in some direction (Cushing et
al. 1998; Henson et al. 1999). For example, most
consumer-resource systems have saddle points
at total extinction (both consumer and resource
abundance = 0) and at the resource species’ carrying
capacity in the absence of the consumer (Murdoch
et al. 2003). Usually if the consumer and resource
can coexist, these points are unstable; however, both
are temporarily attracting. When consumer density
is high and resource density is low, the consumer
will crash—this moves the system toward total
extinction. However, because this extinction state is
unstable, once the system is near it (i.e., once the
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Figure 4.5 Three different ways that regime shifts can occur. (a) Equilibrium population size plotted against an important driver (here, intrinsic
growth rate) for a hypothetical population. This system has two tipping points (bifuractions) at which a stable equilibrium state (solid line)
disappears. (b) An example of a regime shift caused by changing conditions (gradual increase in growth rate from 0.3 to 0.4 over the time frame
plotted) that drive the system across a tipping point. The gray lines show the equilibria given the current conditions (taken from panel (a) and
replotted on the lower x-axis), and the black line is a time series. The system had been in one regime (the lower stable equilibrium) and shifts to
another (the upper stable equilibrium) as the bifurcation is crossed. (c) An example of regime shifts caused by stochastic perturbations. Even though
conditions aren’t changing (the growth rate is held constant at 0.25 here, which has three equilibria shown by the gray lines), the system is
switching stochastically between the two stable regimes. (d) An example of a regime shift due to a long transient ending. Again, growth rate is held
constant at 0.25. The initial state of the system is near the unstable equilibrium (a saddle). Because the dynamics are slow near this equilibrium, the
system state can remain near it for a meaningful amount of time. When it eventually converges to a stable state, we see a shift from the transient
regime to the upper stable regime.

consumer population has crashed), the system
will then move away. With consumers scarce, the
resource species will grow toward its carrying
capacity. This is the other saddle. Again, this is
ultimately unstable so rather than fully converging
on the resource’s carrying capacity, the system will
again move away after this approach.

What happens next depends on the consumer-
resource system’s equilibrium dynamics. In some
cases, the consumer and resource can ultimately
coexist at a stable point equilibrium and the
system will next tend to approach this equilibrium,
provided no new perturbations change its course.
In these systems, the dynamics near the saddles are
unambiguously transient dynamics. In other cases,
consumers and resource coexist in a stable limit
cycle at equilibrium, in which overexploitation at
high consumer and resource densities causes a crash
in both species, followed by sequential transits by
the saddle points at two-species extinction and

at the resource’s carrying capacity as described
previously, before recovery to high densities
and another crash to restart the cycle. In this
latter situation, the limit cycle itself represents
the equilibrium dynamics of the system. If the
system lingers near the saddles as a natural part
of this cycle, it is unclear whether the dynamics
near these saddles ought to be labeled as transient
dynamics. However, semantics aside, if transits past
the saddles are slow enough that we might mistake
them for stable equilibria in time series data, it can
be useful to think of them as transient states on
timescales shorter than the duration of a full cycle
(Ludwig et al. 1978; Hastings et al. 2018).

Transits past saddle points have been called
“saddle fly-bys” in the literature (e.g., Cushing et al.
2003), although we recently proposed (Hastings
et al. 2018) to call them “crawl-bys” to emphasize
that they can be quite slow relative to the time it
takes to switch from one saddle to another (Box 4.1).
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Box 4.1 Introduction to saddle points
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Figure B4.1 Illustrations of a two-species saddle point (see Box 4.1 text for details.)

A saddle point—labeled “A” in both following diagrams—is
an equilibrium point that is attracting from some directions
but ultimately repelling, much like a marble rolling on a
horse’s saddle would first roll downhill toward the center of
the seat (the center is at first attracting), but then roll off
the side (ultimately repelling). Both panels in Figure B4.1
illustrate a two-species saddle point, using the ball-on-a-
landscape framework (left) or as a vector field, where gray
arrows depict the speed and direction of change in two-
dimensional state space (right). If the system is exactly at the
saddle point, A, it will remain there because the saddle is an
equilibrium. If the system is exactly aligned with the direction
from which the saddle is attracting (point B), it will approach
A and then stay there. However, in real-world systems subject
to stochasticity, neither of these hypothetical cases is likely.
Instead, we are more likely to see something like the dynam-
ics from point C, in which the system first moves toward the
saddle but, after this approach, moves away in a different

direction. (Where the system goes next after moving away
depends on what other phenomena exist in the state space.
It may approach a stable equilibrium point, another saddle,
or something else like a stable limit cycle. It could even loop
back to move past this same saddle again. These diagrams
don’t extend far enough out into state space for us to know
what the particular system depicted here will do next.)

There are two important aspects of saddle points to
note here. First, it is significant that the system approaches
the saddle even though it is ultimately unstable. Second,
notice that the landscape on the left flattens out as it
approaches the saddle. This is necessary because the surface
must be perfectly flat at the saddle point itself (since it is an
equilibrium). As a result, the dynamics near the saddle are
slower than dynamics elsewhere in state space, where the
surface is steeper. This slowing down can keep the system in
a transient state near the saddle point for extended periods
of time (e.g., Figure 4.5d).

Therefore, a cycling system like this shows repeated
shifts between regimes, each regime corresponding
to one of the saddles. The dynamics within each
of these regimes are transient, because although
the system is relatively static for a meaningful
time period, it is not actually at equilibrium
and will eventually leave even without any
external perturbation. Even though these are
non-equilibrium regimes, if we know where the
saddles are in consumer-resource state space and

we understand the process that drives the system
toward and then away from these saddles, we know
the cause of, and can predict the timing of, the
shifts.

Our ability to predict the specific timing and
nature of regime shifts depends on their underlying
cause. When regime shifts are due to stochastic
perturbations that bump a system from one regime
to another (as in Figure 4.5c), the timing of any
specific shift is random. However, we can still make
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Figure 4.6 Example time series for the prey population in a stochastic predator-prey model. Both time series show two regimes (one near the
prey’s carrying capacity at 2.5, corresponding to the top gray line, and one corresponding to predator-prey coexistence, lower gray line) with
stochastic shifts between them. In (a), both of these regimes are stable. In (b), the equilibrium at the prey’s carrying capacity is a saddle and
coexistence is stable. Model from Freedman and Wolkowicz 1986.

strong predictions about the expected frequency of
shifts and the states the system will shift between.
If we have a quasi-potential, we can compute the
expected transition rates from one well to another
directly from the depth of the current well, the
height of the intervening peak, and the intensity
of stochastic perturbations being exerted on the
system (Bouchet and Reygner 2016; Nolting and
Abbott 2015). Thus, even when the exact timing of
regime shifts is fundamentally unpredictable, an
understanding of the global stability properties of
a system gives us direct insight into the expected
frequency of shifts.

In addition to knowing how often stochastic
regime shifts occur, it is crucial to understand
which regimes the system is likely to be switching
between. A common assumption, whether made
implicitly or explicitly, is that shifts will occur
between stable states (wells). Thus, knowing the
locations and shapes of these wells is important.
Also important, though frequently neglected, is
knowing the location and characteristics of saddles
for the reasons mentioned previously. Stochastic
perturbations that place a system near a saddle, or
at a state from which the saddle is attracting, may
stay in the vicinity of that saddle for a meaningful
amount of time (Cushing et al. 1998; Henson et al.
1999; Abbott and Nolting 2017). Generally speaking,
when the flat area around a saddle point on the
(quasi-)potential landscape is broader and less
steep, the stochastic dynamics should stay in the
vicinity of the saddle longer (Cushing et al. 1998).
That is, a ball can be jostled around the plateau for
longer before eventually rolling back into a well.

Recognizing this role of saddles is again hugely
insightful. Stochastic dynamics like those depicted
in Figure 4.6, where a system is clearly switching
between two regimes (marked by horizontal lines),
are usually attributed to the presence of two stable
equilibria. In fact, in the equilibrium worldview,
this is the only reasonable explanation. However,
only Figure 4.6a fits this paradigm. In Figure 4.6b,
only one of the regimes is stable and the other
is a saddle. Failing to consider the importance of
non-equilibrium dynamics would prevent us from
understanding the regime shifts in Figure 4.6b.

These are just examples, and they only scratch
the surface. Not all transients are caused by
slow transits past a saddle, and not all systems
will include a saddle amidst the regimes visited
in stochastic regime shifts (Hastings et al. 2018).
Other situations will require other approaches. Nev-
ertheless, these examples illustrate that even for
non-equilibrium systems, it can still be possible to
derive a basic understanding of which regimes will
likely appear, the relative frequency with which we
should observe different regimes and, crucially, the
expected rate at which regime shifts should occur.
Although research on non-equilibrium regime shifts
has lagged behind efforts to understand bifurcation-
based regime shifts, continued work should pay off.

4.3.3 Lesson from Challenge 2: Unstable
equilibria can reveal a lot about non-equilibrium
dynamics

The influence of unstable equilibria is often
dismissed as negligible. Although a system that is
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precisely at an unstable equilibrium would hypo-
thetically remain there until perturbed, perturba-
tions of course abound. With the possible exception
of an unstable extinction state, we generally pay
little attention to unstable equilibria.

However, the examples here reveal that when we
expand to consider non-equilibrium dynamics, both
unstable and stable equilibria can have an influ-
ence. Even though a non-equilibrium system is, by
definition, not at any of these equilibria, knowing
where they are in state space is enormously impor-
tant. So too is knowing from which, if any, states
they are (even transiently) attracting. Conveniently,
standard off-the-shelf methods—starting with lin-
ear stability analysis itself!—is what we need to
make many of these characterizations (Cushing et
al. 1998). We simply have to consider a bit more
carefully which aspects of a system’s equilibrium
behavior are informative, and not de facto ignore
states that are not asymptotically stable.

4.4 Building on these lessons to confront
future challenges

Although most standard theoretical approaches
emphasize the role of deterministic density depen-
dence in creating and maintaining equilibrium
dynamics, it is widely recognized that ecological
processes are inherently stochastic and that
transient dynamics are likely common over relevant
time scales. Our ability to interpret experimental
and observational data accurately relies on the
completeness of our theory, so it is important
to continue to grow non-equilibrium theory to
complement the large body of equilibrium-based
theory in ecology. The examples in this chapter
show how new insights can arise when classic
ideas (stability and regime shifts) are reframed
in a non-equilibrium way. The examples also
revealed two general lessons: that non-equilibrium
dynamics strengthen ecological understanding,
and that unstable equilibria can have a strong and
predictable influence on non-equilibrium dynamics.
These lessons show that although intuition may
suggest that stochasticity and transient phenomena

should obscure ecological understanding, they can
actually strengthen it when viewed through the
appropriate lens (Boettiger 2018).

To build on these lessons and continue to expand
our understanding of non-equilibrium systems, we
must increase our comfort with non-equilibrium
concepts and embrace the mindset that stochastic
and transient dynamics are tractable rather than
hopelessly unpredictable. This change is likely
to occur naturally over time, as more ecologists
confront non-equilibrium problems and our catalog
of successes continues to grow. For theoretical
ecologists, investing effort in the study of stochastic
models and methods for their analysis, and gaining
a deep understanding of the dynamical structures
that drive stochastic and transient dynamics, should
be fruitful. For empirical ecologists, consider-
ing non-equilibrium explanations for observed
dynamics will lead to more robust study designs,
hypothesis tests, and sensitivity analyses.

To meet the quantitative challenges involved
in studying non-equilibrium systems, interdisci-
plinary research is likely to be key. Non-equilibrium
systems figure prominently in subdisciplines of
physics (Kamenev 2011; Bressloff and Newby 2014),
mathematics (Ludwig 1975; Kuehn 2015), and
chemistry (Ge and Qian 2010), and many of the
examples used in this chapter build directly on
results from other fields (e.g., Freidlin and Wentzell
2012; Cameron 2012). Deep cross-disciplinary
communication is notoriously difficult, making it
challenging to identify research and researchers in
other fields with close connections to problems in
ecology. The reverse is also true: it is difficult for
researchers in other fields to deeply understand the
nature of ecological questions because we tend to
communicate our questions through framing
that will be unfamiliar. Despite these challenges,
research that crosses disciplinary boundaries will
likely pay off here, as it does elsewhere in ecology.

The equilibrium has long been a central paradigm
in ecology, and it continues to serve us well. Expand-
ing our use of non-equilibrium concepts will be
an important avenue to new insights that comple-
ment and extend what we gain from equilibrium-
based theory.



OUP CORRECTED PROOF – FINAL, 7/4/2020, SPi

N O N - E Q U I L I B R I U M DY N A M I C S A N D S TO C H A S T I C P R O C E S S E S 51

References

Abbott, K. C. and Nolting, B. C. (2017). Alternative
(un)stable states in a stochastic predator-prey model.
Ecological Complexity 32(Part B): 181–95.

Barraquand, F., Louca, S., Abbott, K. C. et al. (2017). Mov-
ing forward in circles: Challenges and opportunities
in modelling population cycles. Ecology Letters 20(8):
1074–92.

Beisner, B. E., Haydon, D. T., and Cuddington, K. M. (2003).
Alternative stable states in ecology. Frontiers in Ecology
and the Environment 1(7): 376–82.

Bjørnstad, O. N. and Grenfell, B. T. (2001). Noisy clock-
work: Time series analysis of population fluctuations in
animals. Science 293(5530): 638–43.

Boettiger, C. (2018). From noise to knowledge: How ran-
domness generates novel phenomena and reveals infor-
mation. Ecology Letters 21(8): 1255–67.

Boettiger, C. and Hastings, A. (2012). Quantifying limits to
detection of early warning for critical transitions. Journal
of the Royal Society Interface 9(75): 2527–39.

Boettiger, C. and Hastings, A. (2013). No early warning
signals for stochastic transitions: Insights from large
deviation theory. Journal of the Royal Society Interface
280(1766): 20131372.

Bouchet, F. and Reygner, J. (2016). Generalisation of the
Eyring–Kramers transition rate formula to irreversible
diffusion processes. Annales Henri Poincaré 17(12):
3499–532.

Bressloff, P. C. and Newby, J. M. (2014). Path integrals and
large deviations in stochastic hybrid systems. Physical
Reviews E 89: 042701.

Briggs, C. J. and Borer, E. T. (2005). Why short-term
experiments may not allow long-term predictions
about intraguild predation. Ecological Applications 15(4):
1111–17.

Cameron, M. K. (2012). Finding the quasipotential for non-
gradient SDEs. Physica D 241(18): 1532–50.

Coulson, T., Rohani, P., and Pascual, M. (2004). Skele-
tons, noise and population growth: The end of an
old debate? Trends in Ecology and Evolution 19(7):
359–64.

Cushing, J. M., Costantino, R. F., Dennis, B., Deshar-
nais, R. A., and Henson, S. M. (2003). Chaos in Ecol-
ogy: Experimental Nonlinear Dynamics. Oxford: Academic
Press/Elsevier.

Cushing, J., Dennis, B., Desharnais, R. A., and Costantino,
R. F. (1998). Moving toward an unstable equilibrium:
Saddle nodes in population systems. Journal of Animal
Ecology 67(2): 298–306.

Davis, M. B. (1986). Climatic instability, time lags, and
community disequilibrium. In J. Diamond and T. J.
Case (eds.), Community Ecology, pp. 269–84. New York:
Harper & Row.

DeAngelis, D. L. and Waterhouse, J. C. (1987). Equilibrium
and nonequilibrium concepts in ecological models. Eco-
logical Monographs 57(1): 1–21.

Dennis, B., Assas, L., Elaydi, S., Kwessi, E., and Livadiotis,
G. (2016). Allee effects and resilience in stochastic popu-
lations. Theoretical Ecology 9(3): 323–35.

Dutta, P. S., Sharma, Y., and Abbott, K. C. (2018). Robust-
ness of early warning signals for catastrophic and non-
catastrophic transitions. Oikos 127(9): 1251–63.

Elton, C. S. (1924). Periodic fluctuations in the number of
animals: Their causes and effects. Journal of Experimental
Biology 2(1): 119–63.

Frank, K. T., Petrie, B., Fisher, J. A. D., and Leggett, W. C.
(2011). Transient dynamics of an altered large marine
ecosystem. Nature 477: 86–9.

Freedman, H. I. and Wolkowicz, G. S. K. (1986). Predator-
prey systems with group defence: the paradox of
enrichment revisited. Bulletin of Mathematical Biology
48(5/6):493–508.

Freidlin, M. I. and Wentzell, A. D. (2012). Random Per-
turbations of Dynamical Systems, volume 260 of A Series
of Comprehensive Studies in Mathematics. 3rd edition.
Heidelberg: Springer.

Ge, H. and Qian, H. (2010). Non-equilibrium phase transi-
tion in mesoscopic biochemical systems: From stochastic
to nonlinear dynamics and beyond. Journal of the Royal
Society Interface 8(54): 107–16.

Gilbert, B., Tunney, T. D., McCann, K. S. et al. (2014).
A bioenergetic framework for the temperature depen-
dence of trophic interactions. Ecology Letters 17(8):
902–14.

Grimm, V. and Wissel, C. (1997). Babel, or the ecological
stability discussions: An inventory and analysis of ter-
minology and a guide for avoiding confusion. Oecologia
109(3): 323–34.

Grimm, V., Schmidt, E., and Wissel, C. (1992). On the
application of stability concepts in ecology. Ecological
modelling 63(1–4): 143–61.

Guttal, V. and Jayaprakash, C. (2008). Changing skewness:
An early warning signal of regime shifts in ecosystems.
Ecology Letters 11(5): 450–460.

Guttal, V. and Jayaprakash, C. (2009). Spatial variance and
spatial skewness: leading indicators of regime shifts in
spatial ecological systems. Theoretical Ecology 2(1): 3–12.

Hanski, I., Turchin, P. V., Korpimaki, E., and Henttonen,
H. (1993). Population oscillations of boreal rodents: Reg-
ulation by mustelid predators leads to chaos. Nature
364: 232–5.

Hastings, A. (2001). Transient dynamics and persistence of
ecological systems. Ecology Letters 4(3): 215–220.

Hastings, A. (2004). Transients: The key to long-term eco-
logical understanding? Trends in Ecology and Evolution
19(1): 39–45.



OUP CORRECTED PROOF – FINAL, 7/4/2020, SPi

52 T H E O R E T I C A L E C O L O G Y

Hastings, A., Abbott, K. C., Cuddington, K. et al. (2018).
Transient phenomena in ecology. Science 361(6406):
eaat6412.

Henson, S. M., Costantino, R. F., Cushing, J. M., Dennis,
B., and Desharnais, R. A. (1999). Multiple attractors,
saddles, and population dynamics in periodic habitats.
Bulletin of Mathematical Biology 61(6): 1121–49.

Higgins, K., Hastings, A., Sarvela, J. N., and Botstord, L.
W. (1997). Stochastic dynamics and deterministic skele-
tons: Population behavior of Dungeness crab. Science
276(5317): 1431–5.

Holling, C. S. (1973). Resilience and stability of ecological
systems. Annual Review of Ecology and Systematics 4: 1–23.

Ives, A. R. (1995). Measuring resilience in stochastic sys-
tems. Ecological Monographs 65(2): 217–233.

Ives, A. and Carpenter, S. R. (2007). Stability and diversity
of ecosystems. Science 317(5834): 58–62.

Kamenev, A. (2011). Field Theory of Non-Equilibrium Sys-
tems. Cambridge: Cambridge University Press.

Kendall, B. E., Prendergast, J., and Bjørnstad, O. N. (1998).
The macroecology of population dynamics: Taxonomic
and biogeographic patterns in population cycles. Ecology
Letters 1(3): 160–4.

Kendall, B. E., Briggs, C. J., Murdoch, W. W. et al. (1999).
Why do populations cycle? A synthesis of statistical
and mechanistic modeling approaches. Ecology 80(6):
1789–805.

Kuehn, C. (2015). Multiple Time Scale Dynamics. New York:
Springer.

Lande, R., Engen, S., and Sæther, B. E. (2003). Stochastic
Population Dynamics in Ecology and Conservation. Oxford:
Oxford University Press.

Livina, V. N., Kwasniok, F., and Lenton, T. M. (2010).
Potential analysis reveals changing number of climate
states during the last 60 kyr. Climate of the Past 6(1):
77–82.

Ludwig, D., Jones, D., and Holling, C. S. (1978). Qualitative
analysis of insect outbreak systems: The spruce bud-
worm and forest. Journal of Animal Ecology 47(1): 315–32.

Ludwig, D. (1975). Persistence of dynamical systems
under random perturbations. SIAM Review 17(4):
605–40.

MacArthur, R. H. and Levins, R. (1967). The limiting
similarity, convergence, and divergence of coexisting
species. American Naturalist 101(921): 377–85.

May, R. M. (1974). Stability and Complexity in Model Ecosys-
tems. Princeton: Princeton University Press.

May, R. M. (1977). Thresholds and breakpoints in ecosys-
tems with a multiplicity of stable states. Nature 269:
471–7.

Moore, C. M., Stieha, C. R., Nolting, B. C., Cameron, M.
K., and Abbott, K. C. (2015). QPot: Quasi-potential anal-
ysis for stochastic differential equations. https://cran.r-
project.org/web/packages/QPot/index.html.

Moore, C. M., Stieha, C. R., Nolting, B. C., Cameron, M.
K., and Abbott, K. C. (2016). QPot: An R package for
stochastic differential equation quasi-potential analysis.
The R Journal 8(2): 19–38.

Murdoch, W. W., Briggs, C. J., and Nisbet, R. M. (2003).
Consumer-Resource Dynamics. Princeton: Princeton Uni-
versity Press.

Myers, J. H. (2018). Population cycles: Generalities, excep-
tions and remaining mysteries. Proceedings of the Royal
Society B 285(1875): 20172841.

Nicholson, A. J. and Bailey, V. A. (1935). The balance of
animal populations. Part I. Proceedings of the Zoological
Society of London 105(3): 551–98.

Nolting, B. C. and Abbott, K. C. (2015). Balls, cups, and
quasi-potentials: Quantifying stability in stochastic sys-
tems. Ecology 97(4): 850–64.

Otto, S. and Day, T. (2007). A Biologist’s Guide to Math-
ematical Modeling in Ecology and Evolution. Princeton:
Princeton University Press.

Rosenzweig, M. L. (1971). Paradox of enrichment: Desta-
bilization of exploitation ecosystems in ecological time.
Science 171(3969): 385–7.

Scheffer, M., Carpenter, S., Foley, J. A., Folke, C., and
Walker, B. (2001). Catastrophic shifts in ecosystems.
Nature 413: 591–6.

Scheffer, M. (2009). Critical Transitions in Nature and Society.
Princeton: Princeton University Press.

Scheffer, M. and Carpenter, S. R. (2003). Catastrophic
regime shifts in ecosystems: linking theory to observa-
tion. Trends in Ecology and Evolution 18(12): 648–56.

Sharma, Y., Abbott, K. C., Dutta, P. S., and Gupta, A. K.
(2015). Stochasticity and bistability in insect outbreak
dynamics. Theoretical Ecology 8(2): 163–74.

Steele, J. H. and Henderson, E. Q. (1981). A simple plank-
ton model. American Naturalist 117(5): 676–91.

Vellend, M., Srivastava, D. S., Anderson, K. M. et al.
(2014). Assessing the relative importance of neutral
stochasticity in ecological communities. Oikos 123(12):
1420–30.

Xu, L., Zhang, F., Zhang, K., Wang, E., and Wang, J. (2014).
The potential and flux landscape theory of ecology. PLoS
ONE 9(1): e86746.

Zhou, J. X., Aliyu, M. D. S., Aurell, E., and Huang, S.
(2012). Quasi-potential landscape in complex multi-
stable systems. Journal of the Royal Society Interface 9(77):
3539–53.

https://cran.rproject.org/web/packages/QPot/index.html
https://cran.rproject.org/web/packages/QPot/index.html


OUP CORRECTED PROOF – FINAL, 8/4/2020, SPi

CHAPTER 5

The impact of population structure on
population and community dynamics
André M. de Roos

5.1 Introduction

In a book on theoretical ecology a chapter on
structured population models will inevitably,
but perhaps unjustly, stand out, as so much of
current theory in population ecology is based on
unstructured rather than on structured models.
Every student in ecology will, at some point, have
studied the seminal models for competition and
predation introduced by Lotka (1925) and Volterra
(1926). Far fewer students, however, will have
encountered structured population models, such
as the age-structured model introduced by Sharpe
and Lotka (1911) or the age-structured matrix model
proposed by Leslie (1945). Text books in general
ecology (Begon et al. 2005) discuss unstructured
population models in quite some detail, while even
text books in theoretical ecology (Yodzis 1989)
may devote only a few subsections to structured
models.

The term structured population models itself is
used rather loosely for a wide variety of different
models. For the purpose of this chapter, the term
hence needs a more precise definition, as it is
simply impossible to discuss all types of structured
population models. Unstructured population
models effectively treat all individuals in the
population as identical, such that it is only necessary
to keep track of the total population abundance, in
terms of the number of individuals, their density, or
their total biomass. But the birth and death rates that

ultimately determine the changes in the number
of individuals in a population are never the same
for all individuals. An individual always starts
out life as a juvenile, incapable of reproduction or
replication, whatever species the individual belongs
to. Birth and death rates thus vary with the age
of the individual, its developmental stage, spatial
location or its genotype, among many other factors.
In a very general sense, any population dynamic
model that takes differences between individuals
into account can be referred to as structured.
However, in this chapter, I will restrict myself
to discussing models that account for differences
between individuals resulting from the develop-
mental process that individuals go through during
their life history. “Ontogenetically structured
population models” would be an appropriate name
for this class of models, referring to the ontogeny or
individual life history that the models are aimed to
capture. Instead, in the literature ontogenetically
structured population models are indicated as
age-structured, stage-structured, size-structured or
physiologically structured population models. In
what follows, I will use the general term structured
population model and in particular the abbreviation
SPM to indicate models that account for differences
between individuals arising from their ontogeny
and thereby explicitly exclude models that account
for the spatial, genetic, behavioral or any other type
of structure of a population.
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5.2 State concepts in SPMs

All SPMs have at their core a model representation
of the individual life history. This life history re-
presentation may be more or less detailed and more
data-driven or more model-based, but structured
population models in effect are based on data or
assumptions about the individual life history. They
translate this individual-level representation to
the population level by bookkeeping operations.
Population dynamics, therefore, truly emerges
from the individual life history processes. In
contrast, unstructured population models are
based on mathematical functions that describe
the population dynamic processes themselves as
a function of population-level quantities such
as densities or biomasses. Unstructured models
are thus based on population-level assumptions.
Structured and unstructured population models
can therefore also be classified as individual-based
versus population-based approaches of modelling
ecological dynamics.

The first step when modelling any system, be it
a community, a population, or an individual, is to
identify the quantities that characterize the state of
the system. These state variables have to be cho-
sen such that they capture all relevant informa-
tion about the history of the system to determine
its dynamics and hence its future. In unstructured
population models the choice of the state of the
system only requires a choice between representing
populations by their numerical densities or their
biomass. The state of the system is then determined
by the (numerical or biomass) abundance of all the
populations that the unstructured model accounts
for. The dynamics of the system, that is the growth
of the populations and their interactions, subse-
quently has to be specified (modelled) dependent on
the state variables (abundances of all populations).
In SPMs the choice of the state of the system is more
complex, because the basis of such models is formed
by a representation or model of the individual life
history, whereas the aim of the SPM is to describe the
changes in populations. To capture these different
levels of biological organization Metz and Diek-
mann (1986) introduced the distinction between the
state of an individual, also referred to as individual
or i-state, the state of the population, referred to as

population or p-state, and the state of the environ-
ment that the individuals live in (environmental or
E-state).1

The concepts of i-, p-, and E-state are fundamental
and powerful (Metz and Diekmann 1986; Metz and
de Roos 1992; Caswell and John 1992; Caswell 2001).
To formulate a SPM, we have to start asking the
question which characteristics, quantities or traits
of the individual organism play the most impor-
tant role in its life history and have the largest
impact on its birth and death rate. Is it the age
of the individual? Then the i-state would be made
up by individual age and we would end up with
an age-structured model. More often, however, the
body size of an individual is the most important
life history trait of an individual, such that body
size is the appropriate choice for the i-state and
a size-structured population model would result.
Given a choice of the individual state, the choice
of the population or p-state is rather straightfor-
ward as the distribution, be it a discrete distribution
or a continuous density function, over all possible
i-states.

More important than the choice of the p-state,
is arguably the choice of the environmental or
E-state. This choice forces us to consider which
factors have an influence on the individual’s repro-
duction, mortality, and development, apart from
its own traits. Are there no factors other than the
individual state variables (age or size) influencing
the life history processes (reproduction, mortality
and development)? In that case, the individual is
apparently living in a constant environment, its life
history is independent of any external factors and
in particular independent of population density.
Abiotic factors like temperature that vary over time
can influence the individual life history and hence
be part of the environmental state. But temperature
is generally not changed by the individuals in a
population themselves and their life history will
hence unfold in a time-varying environment, but
again, independent of any population impact.
However, if individuals would compete with
other individuals for example for nesting sites, the

1 For clarity I use environmental or E-state, even though
from a system theory point of view the use of “state” is not
appropriate (Metz and de Roos 1992).
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reproductive success of an individual will depend
on how many competitors there are around. In this
case, the environmental or E-state would have
to include as an E-state variable the number of
individuals in the population that are competing
for the nest sites. As yet another example, if the life
history processes depend on food availability in the
environment and the individuals of the population
together are capable of depleting this food avail-
ability through their foraging, food density would
be an appropriate choice as E-state variable.

These last two examples of possible E-states both
give rise to a feedback of the population on the
individual life history, in other words, they involve
density dependence. However, the first example,
competition for nest sites, is a direct form of density
dependence, whereas, in the second example,
competition for food, the density dependence
operates indirectly through a quantity (food
density) other than population abundance itself, but
whose dynamics is influenced by the population.
The premise of distinguishing the i-, p-, and E-state
is that density dependence or population feedback
always operates through the E-state. Vice versa, if
the environment (E-state) is unaffected by the pop-
ulation the life history of an individual unfolds in a
way that is independent of other individuals in the
environment.

The extensive discussion of the individual and
environmental state emphasizes the need to
carefully think about the biology of the system
we want to study when formulating a SPM.
What individual traits influence the individual life
history? What are the most important elements
of the environment that individuals are facing
during their life? Given their basis in individual
life history and combined with the concept of
environmental or E-state, SPMs allow for a faithful
representation of the ecology of the system in a
population dynamic model. Many examples of
structured population models in the literature,
however, account for density dependence by simply
making the individual birth, death or development
rate a function of the (numerical) abundance of
the population. This is obviously a simplifying
assumption, which may not correctly reflect how
density dependence operates mechanistically in the
modelled ecological system (except when density

dependence operates through some form of direct
competition for example for nest sites or through
interference competition) and which may thus lead
to misleading results. In short, one form of density
dependence is not necessarily the same as the other,
often the devil is in the details.

5.3 Types of structured
population models

A SPM can either describe the changes in the state
of a population continuously through time or can
describe the state of the structured population at
discrete points in time only. Similarly, the indivi-
dual state variable that is adopted in the model
can be continuous or discrete. For example, with
age as a continuous i-state variable every individual
in the population will be characterized by its age,
which may adopt any positive value. Alternatively,
all individuals can be grouped into a limited num-
ber of distinct age classes. Often, four different types
of SPMs are recognized based on the choice between
discrete and continuous representation of the time
and the i-state variable in the model (Caswell et al.
1997 see Table 5.1).

For each of these four types of SPMs, a differ-
ent mathematical framework is used to formulate
the model: matrices, integral projection equations,
ordinary or delay differential equations, and partial
differential equations.

Matrix models (Caswell 2001) classify individuals
in discrete stages on the basis of their i-state variable
(age or size). If k such stages are distinguished,
the population state is a vector (n1(t), . . ., nk(t))T

representing the number of individuals in each of
the stages. The model then describes the dynamics
of the structured population using a population
projection matrix A by:
⎛
⎜⎜⎝

n1(t + 1)

...
nk(t + 1)

⎞
⎟⎟⎠ = A

⎛
⎜⎜⎝

n1(t)
...

nk(t)

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

a11 . . . a1k
...

. . .
...

ak1 . . . akk

⎞
⎟⎟⎠

⎛
⎜⎜⎝

n1(t)
...

nk(t)

⎞
⎟⎟⎠

(5.1)



OUP CORRECTED PROOF – FINAL, 8/4/2020, SPi

56 T H E O R E T I C A L E C O L O G Y

Table 5.1 Types of structured population models (adapted from Caswell et al. (1997) with references to
monographs about them).

Time dynamics

Discrete Continuous
In

d
iv

id
u

al
st

at
e

re
p

re
se

n
ta

ti
o

n Discrete Matrix models (Caswell 2001) Stage-structured models (Murdoch et al.
2003)

Continuous Integral projection models
(Ellner et al. 2016)

Physiologically structured population
models (de Roos and Persson 2013)

Each of the elements aij of the population projection
matrix A describes the number of individuals that
will be in stage i at time t + 1 per individual in stage
j at time t.

In integral projection models (IPMs; Rees
et al. 2014; Ellner et al. 2016) individuals are
characterized by a continuous i-state variable z,
often referring to the individual body size. The
population state in IPMs is a density function n(t, z)
representing the density of individuals with i-state
z at time t. The integral of n(t, z) over the interval
from a to b:

b∫

a

n (t, z) dz

equals the number of individuals with an i-state in
the interval [a, b]. IPMs describe the dynamics of the
population with an integral equation, which in its
simplest form can be written as:

n (t + 1, z) =
∫

�

(
F

(
z, z′) + S

(
z′) G

(
z, z′)) n

(
t, z′) dz′

(5.2)

In this equation the function G(z, z′) represents
the probability that an individual with i-state z′
at time t will have i-state z at time t + 1, S(z′) is the
probability that an individual with i-state z′ at time
t survives till time t + 1 and the function F(z, z′)
models the density of offspring with an i-state z
produced between time t and t + 1 by an individual
with i-state z′. The interpretation of the function
F(z, z′), and similarly the function G(z, z′), is
analogous to the interpretation of n(t, z) in that
the integral

b∫

a

F
(
z, z′) dz

equals the number of offspring with an i-state in the
interval [a, b] produced between time t and t + 1 by
an individual with i-state z′ at time t.

Continuous-time stage-structured models can
be described by a system of ordinary or delay-
differential equations (Nisbet and Gurney 1983;
Murdoch et al. 2003). For example, consider a
model with only 2 stages, juveniles and adults
with densities J(t) and A(t) at time t, respectively.
The population dynamics can then be described
by a system of two ordinary differential equations
(ODEs; see for examples de Roos et al. 2007;
Schreiber and Rudolf 2008):

dJ
dt

= βA − γ J − μJ

dA
dt

= γ J − μA
(5.3)

In these ODEs the parameter β represents the per
capita reproduction rate (fecundity) of an adult indi-
vidual, γ the per capita maturation rate of a juvenile
individual and μ the per capita mortality rate of
juveniles and adults. This formulation in terms
of ODEs, however, assumes that every juvenile
individual, irrespective how long time they have
spent in the juvenile stage, has a probability per unit
time to mature equal to γ . The probability distribu-
tion for the juvenile stage duration τ then follows
an exponential distribution with a mean equal
to 1/γ .

Alternatively, the dynamics of the population
can be described by a system of delay-differential
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equations (DDEs; see for examples Nisbet and
Gurney 1983; de Roos and Persson 2003):

dJ
dt

= βA(t) − βA (t − τ) e−μτ − μJ(t)

dA
dt

= βA (t − τ) e−μτ − μA(t)
(5.4)

This formulation assumes that all individuals that
are born at time t all mature at the same time after
exactly τ time units. The juvenile stage duration is
therefore for all individuals the same. The recruit-
ment rate to the adult stage at time t therefore equals
the birth rate τ time units prior, βA (t − τ), multi-
plied by the probability that an individual survives
its juvenile period, e−μτ .

Like IPMs physiologically structured population
models (PSPMs) also characterize an individual by
a continuous i-state variable, for example, the indi-
vidual body size s. The population state is, in that
case, a density function n(t, s) representing the den-
sity of individuals with body size s at time t. The
integral

s2∫

s1

n (t, s) ds

equals the number of individuals with a body size
in the range s1 to s2. Classically, in a PSPM the popu-
lation dynamics is described by a partial differential
equation (PDE) of the form:

∂n (t, s)
∂t

+ ∂g(s)n (t, s)
∂s

= −μ(s)n (t, s) (5.5)

in which the function g(s) represents the growth rate
in body size of an individual with size s and μ(s)
represents the mortality rate of such an individual.
To complete the model specification the PDE has to
be supplemented with a boundary condition of the
form:

g(sb) n (t, sb) =
∞∫

sb

β(s)n (t, s) ds (5.6)

Here it is assumed that newborn individuals have
a size at birth equal to sb and the function β(s)
represents the rate at which offspring is produced
by an individual with body size s. The boundary
condition matches the total rate at which offspring
is produced by the population (right-hand side of
the equation) to the rate at which individuals enter

the possible body size range at the lower end (left-
hand side of the equation). The partial differential
equation (5.5) with its boundary condition (5.6) is
often referred to as the McKendrick–von Foerster
equation. However, with body size as i-state vari-
able it was first studied by Bell and Anderson (1967)
and introduced into ecology by Sinko and Streifer
(1967, 1969).

The equations presented previously for matrix,
integral projection, stage-structured, and physiolog-
ically structured population models are the simplest
representatives of these four types of SPMs. More
complex examples of matrix models can be found
in Caswell (2001), of IPMs in Ellner et al. (2016 for
IPMs), of stage-structured models in Murdoch et al.
(2003), and of PSPMs in Metz and Diekmann (1986)
and de Roos and Persson (2013). These four types of
SPMs, however, differ not just in their mathematical
formulation, but also in some subtle, more biologi-
cal aspects.

Data-driven or function-based life history model:
Discrete-time SPMs (matrix and IPMs) are formu-
lated in terms of quantities that can be directly mea-
sured in experiments or collected empirically. The
matrix elements aij in Equation (5.1), for example,
are identical to or constructed from (i) the i-state of
an individual at time t + 1 given its i-state at time
t, (ii) its survival probability and (iii) the number
of offspring it produces between time t and t + 1.
These quantities are all directly measurable. The
model of the individual life history in discrete-time
SPMs is therefore often data-driven, consisting of
generalized linear or additive models fitted to the
life history observations.

In contrast, continuous-time SPMs are formulated
in terms of rates of change, more specifically the
vital rates, i.e., the reproduction, development and
mortality rate. These vital rates are not directly mea-
surable and can only be inferred indirectly from
the quantities that discrete-time SPMs use directly
as input: the i-state of individuals at time t + 1
given their state at time t, their probability to sur-
vive and the number of offspring they produce dur-
ing this time interval. A continuous-time SPM is
therefore usually formulated by choosing a priori
specific functional forms for the vital rates as func-
tions of the i-state of the individual and possibly
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the environmental state. For example, a common
assumption in PSPMs with body size as i-state vari-
able is that growth in body size follows von Berta-
lanffy growth with growth rate,

g(s) = K (s∞ − s)

in which g(s) represents the rate of change in
body size s, s∞ is the ultimate size an individual
can reach, and the parameter K characterizes
how rapidly this ultimate size is approached.
Appropriate values for the parameters in these
vital rate functions are subsequently inferred
from experimental or empirical observations.
Furthermore, these functions for the vital rates often
have a mechanistic basis. Many continuous-time
size-structured models are, for example, based on
an underlying model for the energy acquisition
and use of an individual. The assumptions about
energy acquisition and use implemented in such
a dynamic energy budget model (Kooijman 1993;
Kooijman 2010; Lika and Nisbet 2000) then translate
into functional forms of the individual growth rate
in body size and reproduction rate as a function of
body size and food availability in the environment.
With a mechanistic basis for the vital rate functions
the model for the individual life history is also easily
extended to conditions for which measurements are
not directly available. So it is rather straightforward
to make the rates in a dynamic energy budget
model temperature dependent using established
rules for the scaling of physiological rates with
temperature (Kooijman 2010; Lindmark et al. 2019).
In discrete-time, data-driven SPMs accounting for
temperature dependence in the life history model
requires demographic observations of individuals
at different temperatures.

Linear and non-linear models: The dynamics
of linear population models is independent of
the population state itself, whereas in non-linear
models the population state has an influence on
the dynamics. Linear, density-independent SPMs
always lead in the long run to exponential growth of
the population, irrespective of the type of SPMs that
is used. In principle, all four different types of SPMs
also allow for density dependence in population
dynamics, but they differ in how they account for
such density dependence. A good example of how
density dependence tends to be incorporated in

data-driven, discrete-time SPMs is provided by
Childs et al. (2011), who present a density depen-
dent integral projection model (IPM) for Soay sheep.
The life history model in this IPM is constructed by
fitting generalized linear and additive models to
observations of survival, fecundity and changes
in body size at three different densities of the
population. This results in a phenomenological
representation of density dependence, which does
not specify the mechanism by which such density
dependence occurs. It also does not consider
whether the population density (to which all
individuals contribute equally) is an appropriate
measure for the strength of the density dependence
or that individuals in different stages contribute to
a different extent to this density dependence.

In contrast, continuous-time SPMs tend to be far
more explicit and mechanistic about the form of
density dependence. For example, the model for
cannibalistic interactions in a single fish population
analysed by Claessen et al. (2000) models explicitly
the basic resource that all cannibalistic individuals
compete for, the impact of each of the cannibal-
istic individuals on this basic resource dependent
on its body size, the mortality imposed by can-
nibalistic individuals of particular body sizes on
smaller-sized conspecifics and the energy gains that
cannibalistic individuals derive from eating their
conspecifics. Density dependence thus occurs in this
model through different mechanisms, exploitative
competition for a shared resource and cannibalism,
and both mechanisms are explicitly accounted for
in the model in a functional, non-phenomenological
manner.

Deterministic or stochastic individual develop-
ment: The four types of SPMs differ in the extent to
which they can and do represent variation between
individuals that at one particular time have the
same i-state value (for example, individuals that are
born at the same time with the same i-state). Individ-
ual development in PSPMs is always deterministic
and hence variation will never arise between two
individuals born with the same i-state at the same
time. At the other extreme, the premise of IPMs is
that individuals with the same current i-state will
exhibit variation in their i-state at the next time
step. Matrix and continuous-time stage-structured
models can account for variation in individual



OUP CORRECTED PROOF – FINAL, 8/4/2020, SPi

T H E I M PA C T O F P O P U L AT I O N S T R U C T U R E 59

development, more specifically individual stage
duration, but can also be formulated to exclude
any such variation (see de Valpine et al. 2014 for
an excellent discussion of this topic). The two
systems of differential equations (5.3) and (5.4)
exemplify how different formulations can capture
either an exponential distribution of the juvenile
stage duration or a fixed juvenile stage duration in
an otherwise identical stage-structured population
model. Different implementations may thus differ
in the individual life history that SPMs represent,
and the model results should hence also be carefully
interpreted in the light of such possible differences.

Ecological complexity and mathematical
tractability: Matrix models, IPMs, stage-structured
models and PSPMs differ in the level of complexity
in the life history and the ecological interactions
of individuals that they can and tend to handle.
In matrix models, IPMs and stage-structured
models individuals are usually distinguished
from each other by a single trait, commonly age,
size, or stage (but see Caswell et al. 2018 for a
recent synthesis of age x stage classified matrix
models). The majority of matrix models and
IPMs model a single population in a density-
independent setting (but see Table 1 in Rees et
al. 2014 for exceptions). These models are hence
more geared toward demographic analysis, that
is to studying the growth rate and structure of a
population in relation to the rates of individual
reproduction, development and mortality, as well
as the sensitivity of population growth rate and
structure in response to changes in these vital
rates. In contrast, virtually all continuous-time
stage-structured models and PSPMs are non-linear
or density dependent. In PSPMs individuals are
furthermore frequently characterized by more than
a single i-state variable (e.g., de Roos et al. 1990;
Persson et al. 1998; Claessen et al. 2000; de Roos et
al. 2002). Continuous-time SPMs are hence more
geared toward analyzing the interactions between
individuals of the same or different species. The flip
side of the complexity that the different model types
can handle is the ease of their analysis. To analyze
linear, density-independent matrix models the
substantial power of linear algebra can be brought
to bear. This allows for numerous, demographic
aspects to be studied using matrix models. For

IPMs something similar holds, as following their
formulation and parameterization these models
are usually discretized into a large matrix model
for analysis. Non-linear, continuous-time SPMs
are by comparison more difficult to analyze and
in practice often studied only with numerical
simulations of the dynamics at particular parameter
values. A more powerful and more complete
analysis of model dynamics is possible using the
theory on bifurcations in non-linear dynamical
systems (Kuznetsov 1998). Bifurcation analysis is
however up to now only used to a limited extent
to assess the generality and robustness of observed
dynamics in ecological models. Methods for bifur-
cation analysis of continuous-time stage-structured
models in terms of delay-differential equations
(Engelborghs et al. 2002) and PSPMs (Kirkilionis
et al. 2001; Diekmann et al. 2003; de Roos 2008)
have been developed in recent years as well. These
methods form the basis for a recently developed
software package to analyze bifurcations in the
ecological and evolutionary dynamics of PSPMs
(de Roos 2018a), which only requires as input the
functions describing development, reproduction
and mortality of individuals throughout their life
history and functions describing the interactions of
these individuals with their environment.

Summarizing, both discrete- and continuous-time
SPMs have at their core a model representation of
the individual life history, but as discussed previ-
ously, they differ in a number of aspects, including
in how they represent the life history. The different
types of SPMs therefore also serve different pur-
poses and have different strengths and weaknesses.
It would be quite ridiculous to claim that one par-
ticular framework is better than the other, each of
the four types of SPMs is better at something than
the others. Roughly speaking, matrix and integral
projection models are better suited to analyse life
history observations, infer their implications and
explore the consequences of variability of individ-
ual development between otherwise identical indi-
viduals on population growth. On the other hand,
continuous-time SPMs, in particular PSPMs, allow
for mechanistic representations of individual-level
processes, like energetics and in particular the inter-
actions of an individual organism with its environ-
ment, including individuals of the same or other
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populations. They are therefore better suited to ana-
lyse how particular mechanisms or aspects of the
life history or ecology of an individual would affect
the population and community dynamics.

5.4 Ecological consequences of changing
population structure

Recent years have seen two prominent develop-
ments in the field of structured population mod-
elling: first, integral projection models (IPMs) have
become more and more popular with an increasing
number of new applications (see Rees et al. 2014;
Ellner et al. 2016 for examples). Second, physiolo-
gically structured population models (PSPMs) have
been used to analyze the consequences of onto-
genetic development as a fundamental life history
process for population dynamics and community
structure (de Roos and Persson 2013). These latter
studies have revealed the importance of the popula-
tion composition or size-structure and the changes
therein with changing ecological conditions for the
dynamics and persistence of species. In this section
I will provide a summary of the highlights of this
newly emerging body of ecological theory and a
discussion of how this body of theory adds to or
contrasts with predictions of unstructured models.

As pointed out in an earlier section physiolo-
gically structured population models (PSPMs) can
account for substantial complexity in individual
life history and the ecological interactions of the
individual with its environment. A range of life
history and ecological scenario’s has been analyzed
using PSPMs: consumer-resource interactions,
in which consumers forage on a single shared
resource throughout life with consumer repro-
duction occurring continuously (de Roos et al.
1990; de Roos et al. 2008; de Roos et al. 2013) or
as discrete pulses in time (Persson et al. 1998; de
Roos and Persson 2001); consumers exploiting
multiple resources throughout life (Schellekens
et al. 2010; Nakazawa 2011; van Leeuwen et al.
2013; Wollrab et al. 2013; Nakazawa 2015) or
adaptively switching between different resources
(de Roos et al. 2002); dynamics and community
structure of cannibalistic (Claessen et al. 2000) and
tritrophic systems with one (de Roos and Persson
2002) or multiple size-selective predators (de Roos

et al. 2008); among others. This variety might
lead one to expect a lot of rather specific insights
into dynamics and community structure, but
surprisingly some very general understanding has
emerged.

5.4.1 Juvenile and adult-driven
population cycles

Most PSPMs studied to date characterize
individuals by their body size and use a model
of individual energetics to describe the somatic
growth and reproduction of individuals at different
body sizes. In these dynamic energy budget (DEB)
models energy assimilation from food equals
energy allocation to growth, reproduction and
metabolic maintenance. DEB models generally
predict growth rate and ultimate body size to be
determined by food availability (Kooijman and
Metz 1984; Kooijman 2010; Persson et al. 1998; Lika
and Nisbet 2000), as is representative for the growth
patterns of invertebrate and ectotherm vertebrate
species. Only one energy budget model has been
published that considers growth in structural mass
(excluding energy reserves) and ultimate size to
be genetically determined (de Roos et al. 2009;
de Roos and Persson 2013), which would better
reflect the growth patterns of mammals and birds.
Growth in total body mass (including reserves)
and reproduction, however, are in all DEB models
dependent on food availability and on individual
body size. Individuals at different body sizes
may hence respond differently to changes in food
availability, which has implications for population
dynamics.

Consider, for example, a scenario in which small,
juvenile individuals are more efficient foragers than
adults in the sense that there are low food densities
at which adults have a negative energy balance
while juveniles can still ingest sufficient food to
meet their metabolic maintenance requirements.
Reproduction will then halt at low food densities
that allow juvenile growth in body size to continue.
In consumer-resource systems this type of juvenile-
adult asymmetry leads to cycles in population
density with reproduction only occurring when
juvenile biomass is low and stopping as soon as
the increasing density of juveniles suppresses food
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availability to too low levels (see Figure 5.1, left
panel). The intraspecific interactions among differ-
ently sized consumers thus cause the reproduction
to become pulsed in time. Furthermore, as a result of
these reproduction pulses the (juvenile) population
becomes dominated by a single cohort of individ-
uals that is born within a short period of time.
Alternatively, when small, juvenile individuals have
higher maintenance requirements per unit biomass
than adults, population cycles also emerge as a

consequence of juvenile-adult asymmetry. In this
case, adults reproduce continuously, but juvenile
growth slows down when adult density becomes
too high (see Figure 5.1, right panel). High adult
densities hence slow down the juvenile maturation
rate, leading to a decrease in adult density and in
reproduction. In turn, the decrease in reproduction
causes the juvenile density to decline and the cyclic
dynamics to restart. Besides the difference between
pulsed and continuous reproduction juvenile- and
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Figure 5.1 Population cycles emerge as a consequence of consumer life history. Top: Two types of population cycles emerge as a consequence of
the consumer life history, when either juvenile (left) or adult (right) consumers can withstand lower resource densities. Panels show densities of
juvenile (thick solid line), adult (thick dashed line) and resource biomass (thin solid line) as well as daily biomass production through reproduction
(dotted line). Bottom: Changes over time in population size distribution in the two types of population cycles shown in the top panels.

Panels redrawn with permission from de Roos and Persson (2013, Figures 9.2 and 9.3, respectively).
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adult-driven cycles (Figure 5.1) differ from each
other in a range of aspects, including the amplitude
of the cycles, the duration of the juvenile period
and the adult lifespan (de Roos and Persson 2003;
de Roos and Persson 2013).

These population cycles are caused by the
asymmetry in the energetics between juveniles
and adults. The ingestion rate and maintenance
requirements of an individual determine, together
with the efficiency with which ingested food is
assimilated and converted into new tissue, how
much new biomass an individual of a particular
body size produces at a given food density
through growth and reproduction. Because of
the juvenile-adult asymmetry there are food
densities at which either juveniles or adults are
just staying alive without contributing to consumer
population growth. The asymmetry may be only
stage-dependent or may occur between any two
individuals with a different body size, the two types
of cycles show up irrespectively and occur with both
continuous and pulsed reproduction of consumers
(Persson et al. 1998; de Roos and Persson 2003; de
Roos and Persson 2013; Persson and de Roos 2013).
Population cycles due to within-stage or between-
stage interactions have been extensively studied in
continuous-time stage-structured models as well
(Gurney et al. 1980; Nisbet and Gurney 1982; Nisbet
and Gurney 1983; Gurney and Nisbet 1985). They
are also referred to as “single-generation” cycles,
because throughout a cycle the population is domi-
nated by a single generation of individuals (Gurney
and Nisbet 1985). The juvenile- and adult-driven
cycles shown in Figure 5.1 are in essence equivalent
to single-generation cycles, although in continuous-
time stage-structured models the single-generation
cycles have not been linked to the energetic
asymmetry between individuals in different stages.

5.4.2 Biomass overcompensation

The occurrence of juvenile- or adult-driven
population cycles, originating from the asymmetry
in energetics between juveniles and adults or more
generally between individuals of different body
sizes, is one of the two general findings that have
emerged from the analysis of PSPMs, in which
individuals are characterized by their body size. The

second general finding is the occurrence of biomass
overcompensation (de Roos et al. 2007; de Roos and
Persson 2013), which term refers to the phenomenon
that the biomass of a particular size-class of
individuals or of the entire population increases as
opposed to decreases with an increase in mortality
experienced by the individuals (see Figure 5.2).
Biomass overcompensation is also a consequence of
the asymmetry in energetics between individuals
in different stages or with different body sizes.
Consider for example that juvenile consumers are
more efficient foragers than adults and hence have
a more positive energy balance (see Figure 5.2, top-
left and bottom row). This would imply that at
low food availability adult reproduction is very
limited or even stops, whereas juvenile growth
and maturation can still progress. In a consumer-
resource equilibrium at low consumer mortality
adult reproduction would hence constitute a more
severe bottleneck in consumer life history which
contributes more to controlling the population at
equilibrium than juvenile growth and maturation.
If consumer mortality would be slightly higher,
the total consumer biomass in equilibrium will be
lower and resource density will consequently be
higher. Because of the reproduction bottleneck, the
higher resource density leads to a larger, relative
increase in the rate at which newborn consumers
are produced, than in the rate at which juveniles
mature and recruit to the adult stage. This difference
in response between the recruitment rate to and the
maturation rate out of the juvenile stage exceeds the
increased loss rate due to the higher mortality and
thus leads to a higher equilibrium biomass density
of juvenile individuals despite the higher mortality
they experience.

Analysis of simple size-structured population
models have revealed that even a little bit of asym-
metry between juveniles and adults is sufficient to
result in biomass overcompensation or juvenile- or
adult-driven population cycles (de Roos et al. 2013;
Persson and de Roos 2013). These analyses have
also shown that the two most important conditions
for symmetry in energetics between juveniles and
adults to occur are: (i) mortality is size- and stage-
independent and (ii) the mass-specific, per-unit
biomass production rate of new biomass through
somatic growth and reproduction is the same for
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Panels redrawn with permission from de Roos and Persson (2013, Figure 3.5 and 3.6), and de Roos et al. (2007, Figure 1).

individuals of all body sizes (de Roos et al. 2013).
The latter condition holds when the quantity

g(s, R) + β(s, R)sb

s
(5.7)

is independent of body size s, where g(s, R) and
β(s, R) equal the growth rate in body size and the
fecundity, respectively, at size s and resource density
R. Only when these symmetry conditions hold, will
an increase in individual mortality leave the popu-
lation size distribution unchanged, and will the life
history processes not result in population cycles. In
other words, only in case of ontogenetic symmetry
in energetics will population structure not play a
role whatsoever and will the results of PSPMs be

equivalent to the results of unstructured popula-
tion models for species interactions. The insights
from those unstructured population models there-
fore apply under these limiting conditions of onto-
genetic symmetry in energetics.

Biomass overcompensation does not refer to a
temporary or transient increase in the biomass of a
particular stage but is an equilibrium phenomenon.
It, moreover, can occur irrespective of the type of
increase in mortality, whether this increase is the
same for all individuals, or whether only specific
stages or size classes experience the increased
mortality (Figure 5.2, bottom row). Effectively, it
is the increase in equilibrium food density that
causes the biomass overcompensation, while the
increased mortality is only the means to increase this
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equilibrium food density and this occurs irrespec-
tive of whether the mortality increase is stage- or
size-dependent or not. Abrams (Abrams and Mat-
suda 2005; Abrams 2009) was the first to propose
that population density could increase with increas-
ing mortality and dubbed this the “Hydra” effect.
Biomass overcompensation resembles the Hydra
effect but differs from it in some important aspects
(Schröder et al. 2014). Most importantly, the Hydra
effect deals with the number of individuals in a
population and does not distinguish between small
juveniles and large adults. In contrast, biomass
overcompensation deals with stage-specific or total
population biomass and comes about because of
an increase in energetic efficiency of consumers at
higher mortality levels. Maintenance requirements
play a crucial role in this higher efficiency at higher
mortality rates (de Roos 2018b). In consumer-
resource systems at low consumer mortality most
of the resource ingested by consumers is spent
on maintenance costs for all consumers together
and only little is used effectively for either juvenile
growth and maturation or for adult reproduction.
With an increase in consumer mortality the loss
to maintenance requirements is smaller and the
ratio between effective production and ingestion,
either the reproduction rate per unit of ingested
resource by adults or the maturation rate per
unit of ingested resource by juveniles, increases.
This increased efficiency subsequently leads to
overcompensation in either juvenile or adult
biomass. The two life history elements that are
sufficient for such overcompensation to occur
are differences between juveniles and adults and
significant energy requirements to cover metabolic
maintenance costs (de Roos 2018b).

5.4.3 Community consequences of
biomass overcompensation

In unstructured models of ecological communities,
a competitor or a predator of a particular focal pop-
ulation only changes its density, usually in a nega-
tive manner. In PSPMs, however, competitors and
predators of a focal population not only change
its overall density but also its population struc-
ture. Furthermore, competitors or predators may
not affect all individuals in the focal population

equally but only have an impact on a subset of them.
For example, predation mortality tends to be much
higher for smaller than for larger sized individuals
of a prey population. Because of biomass overcom-
pensation predation on a specific size range of prey
individuals may result in an increase in the biomass
of this particular size class of prey (cf. Figure 5.2,
bottom-middle panel). In contrast to the negative
impact of predators on their prey population that
is intuitively expected on the basis of unstructured
models, size-selective predators can change the size-
structure of their prey population and thus have a
positive effect on the availability of their own prey.
Through this positive feedback, biomass overcom-
pensation in a prey population has ramifications for
the persistence of species at higher trophic levels
that feed on the prey as it gives rise to the presence
of alternative stable community states or facilita-
tion among predators. These effects are absent in
case of ontogenetic symmetry and hence quite dis-
tinct from existing unstructured theory about basic
trophic modules.

Consider for example a tritrophic food chain
consisting of a basic resource, a consumer or prey
and a predator population. Unstructured popu-
lation models predict the occurrence of a unique
community equilibrium under all conditions,
whereby the length of the food chain increases
with the productivity of the basic resource and
decreases with the mortality rate of the top predator
(Oksanen et al. 1981). Alternative stable states
therefore do not occur (McCann and Yodzis 1995).
In contrast, if the prey population is size-structured
and predators would only forage on juvenile
prey, biomass overcompensation in juvenile prey
would lead to the occurrence of alternative stable
community states, one with and one without
predators, for certain ranges of basic resource
productivity or predator mortality rates (Figure 5.3).
Biomass overcompensation in juvenile prey occurs
when juveniles have a greater energy efficiency,
because they have higher ingestion rates relative to
their energetic needs. When predators are absent
and juvenile prey do not experience increased
mortality relative to adults, the prey population is
then dominated by adults, while juvenile biomass
is relatively low due to low adult population
fecundity (Figure 5.2; bottom-middle panel). If a
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Figure 5.3 Emergent Allee effect for predators in a stage-structured
food chain. Changes in equilibrium biomass of basic resource
(bottom), juvenile (middle, solid lines) and adult prey (middle, dashed
lines), and top predator (top panels) with increasing predator mortality
in excess of background levels. Predators forage exclusively on juvenile
prey. Stable equilibria are indicated with solid or dashed lines,
unstable equilibria with dotted lines. For mortality rates between
0.023 and 0.044, one unstable and two stable equilibria co-occur.

Panels redrawn with permission from de Roos and Persson (2013,
Figure 4.4).

predator that selectively feeds on juvenile prey is
present, though, the predation mortality it imposes
on juvenile prey causes an overcompensatory
increase in juvenile prey biomass (Figure 5.2;
bottom-middle panel). In an equilibrium with
predators the juvenile prey biomass is therefore
higher as opposed to lower than in an equilibrium
without predators (Figure 5.3). This change in the
size-structure of the prey population induced by
predation mortality allows for the occurrence of
alternative community states with and without
predators. As a consequence, once present the
predator may persist at higher mortality rates
than those for which it would be able to invade
an equilibrium community state from which it is
absent. The phenomenon that predators through
predation change the size-structure of their prey
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Figure 5.4 Emergent facilitation between generalist and
stage-specific predators in a stage-structured food chain. Invasion
dynamics of a generalist (top, solid lines) and a stage-specific predator
of juvenile prey (top, dashed lines) into an equilibrium of resource,
juvenile (bottom, solid lines), and adult prey (bottom, dashed lines).
Generalist and specialist predators forage equally on both juvenile and
adult prey and exclusively on juvenile prey, respectively. Invasion of
juvenile-specialized predators at t = 300 into the prey-only
equilibrium is unsuccessful, despite the high initial density, whereas
generalist predators can invade successfully even from low density
(t=1500). Generalist predator invasion allows for subsequent,
successful invasion of specialist predators from low density (t = 2200).

Panels redrawn with permission from de Roos and Persson (2013,
Figure 5.1).

population and thus promote their own food
availability has been termed an emergent Allee
effect because it is based on purely exploitative
predation of prey (de Roos and Persson 2002), in
contrast to most mechanisms causing Allee effects.

Biomass overcompensation in prey populations
may also lead to positive effects among predators
of the same prey that differ in the range of body
sizes of prey they select, a phenomenon referred to
as emergent predator facilitation. This facilitation can
occur between stage-specific predators that forage
on two entirely different stages of prey or between
a generalist predator that forages on all prey stages
and a stage-specific predator foraging on either
juvenile or adult prey only (Figure 5.4). For example,
in case juveniles have a greater energy efficiency due
to higher ingestion rates relative to their energetic
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needs, the increase in juvenile biomass with
mortality is independent of the size-selectivity of the
mortality (Figure 5.2; bottom panels). Analogous to
how the increase in juvenile biomass with juvenile
mortality forms the basis of the emergent Allee
effect discussed previously, the increase with either
stage-independent or adult-specific mortality forms
the basis of emergent facilitation. Through this
juvenile biomass overcompensation a generalist
predator can increase the food availability for a
predator foraging on juvenile prey only and allow
this juvenile-specialized predator to invade under
conditions that do not allow for its invasion in
the absence of the generalist predator (Figure 5.4).
Persistence of the predator feeding only on juveniles
may then crucially depend on the presence of
the generalist predator. If juvenile and adult prey
individuals feed on different resources, predator
facilitation may also be bidirectional, in that both
predators need each other to persist (mutual
predator facilitation) (de Roos and Persson 2013).

Ontogenetic asymmetry between juveniles and
adults of the same species may not only come about
through intrinsic differences in energetic efficiency
between the stages but may also arise because
the stages feed on different resources that have
different productivities. Schreiber and Rudolf (2008)
showed that alternative stable states could occur in
case the juveniles and adults of a consumer species
feed on different resources. The alternative commu-
nity states differ in that they are either dominated by
juveniles, in case juvenile resource is in short supply
and maturation is more resource limited than
fecundity, or by adults if adult resource is in short
supply and consequently fecundity is more resource
limited than maturation. Gradual changes in either
juvenile or adult resource supply can in this case
lead to abrupt regime shifts. For example, a gradual
increase in juvenile resource supply will induce an
abrupt shift from a juvenile-dominated consumer-
resource equilibrium at low juvenile resource
supply to an adult-dominated consumer-resource
equilibrium at high juvenile resource supply.
A predator feeding only on juvenile consumers
will be able to establish itself in the consumer-
resource equilibrium occurring at low juvenile
resource supply (Figure 5.5). Once established,
the predator will keep the juvenile biomass
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Figure 5.5 Emergent predator exclusion in a stage-structured food
chain with different resources for juvenile and adult prey. Changes in
equilibrium biomass of basic resources (bottom), consumer (prey,
middle), and juvenile-specialized predator (top panels) with increasing
maximum density of resource 1, foraged on by juvenile consumers.
Solid lines refer to juvenile consumer biomass or their exclusive
resource 1; dashed lines to adult consumer biomass or their exclusive
resource 2. Consumers experience a complete niche shift from
resource 1 to resource 2 at maturation. Stable equilibria are indicated
with solid or dashed lines; unstable equilibria with dotted lines.

Panels redrawn with permission from de Roos and Persson (2013,
Figure 6.6).

constant when productivity of the juvenile resource
increases, while juvenile resource density and adult
consumer biomass increase, and adult resource
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density decreases with this change in productivity
(Figure 5.5). The ratio between juvenile and
adult consumer biomass therefore decreases,
which will lead to an abrupt shift to the adult-
dominated consumer-resource equilibrium at high
productivity of the juvenile resource. In this adult-
dominated equilibrium state the juvenile biomass
density is too low for the juvenile-specialized
predator to survive. In contrast to unstructured
food chain models, which predict that increasing
productivity of the basic resource increases the
density of the top predator, the ontogenetic niche
shift in the prey makes the predator go extinct
with increasing productivity of the resource that
its main prey, juvenile consumers, is foraging on.
This phenomenon is also referred to as emergent
predator exclusion (Persson and de Roos 2013).

These examples of consequences of ontogenetic
asymmetry in energetics between juveniles and
adults for community structure represent only
three of the many possible feeding modules. The
phenomena are considered emergent (emergent
Allee effect, emergent facilitation and emergent
predator exclusion) because they arise as a
consequence of the life history processes of the
prey, in particular the biomass overcompensation
that results from the ontogenetic asymmetry in
energetics between juvenile and adult prey, whereas
the community effect occurs at the higher trophic
level of the predators exploiting this prey. In all
feeding modules analyzed so far, the changes in
size distribution that predators induce in their prey
population readily give rise to the occurrence of
alternative stable states (de Roos and Persson 2013).

5.5 Interfacing theory and data

A current trend in theoretical ecology is that mod-
els are to an increasing extent required to have a
tight link to empirical and experimental data. This
is especially true for structured population models
as they necessarily include more detail and hence
require more assumptions about the individual life
history than unstructured population models. How-
ever, unlike the other types of structured popula-
tions models PSPMs also offer a larger scope for
confronting model predictions with empirical or

experimental data. PSPMs are built on a function-
based life-history model, in which the life history is
shaped by environmental variables that in turn are
influenced by the dynamics of the population abun-
dance and composition. Model predictions about
the individual life history are therefore to a con-
siderable extent shaped by this population feed-
back on life history and only loosely related to the
underlying model assumptions. As a consequence,
PSPMs generate virtually independent predictions
at both the individual as well as the population
level that can be confronted with data to determine
the relevance of the generated model results (de
Roos and Persson 2001). For example, if an equi-
librium state occurs under certain conditions in a
size-structured population model, the model not
only generates predictions about the total popula-
tion abundance or biomass, but also about its size-
distribution, whether it is stunted or not, and about
the ratio of juveniles and adults in the population.
In addition to these population level predictions, the
model also generates predictions about the shape of
the growth curve as a function of age that the indi-
viduals follow in the equilibrium state, about the
duration of their juvenile period and the maximum
size they reach in their life.

Persson et al. (2007) used this predictive capacity
of PSPMs at both the individual and population
level to test whether the abrupt changes in the fish
community of Lake Takvatn (Norway) following a
short period of culling of the dominant fish species
in the lake, Arctic char (Salvelinus alpinus), repre-
sented a shift between two alternative stable states
of the fish community. Before the experimental
manipulation the fish community was dominated
by Arctic char, ever since brown trout (Salmo
trutta), a predator of juvenile Arctic char, had gone
extinct decades earlier. Because the high density
of Arctic char in the lake meant that individual
char only reached medium body sizes around
20 cm, it was decided in view of the importance
of char for sport fisheries to cull the population
during a period of four years. This short-term
manipulation of the char population resulted in a
reduction in the density of Arctic char and an unex-
pected recovery of the brown trout population
(Figure 5.6, top-left panel), which has by now
persisted for over 20 years (Persson et al. 2013). In
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Figure 5.6 Confronting model predictions of the fish community dynamics in Lake Takvatn with empirical data. Top, left: Changes in the
abundance (catch per unit effort defined as capture per gill net per 24 hours) of brown trout (open circles, dashed line) and Arctic char (closed
squares, solid line) in Lake Takvatn, 1980–2006. Heavy fishing of Arctic char took place from 1984 to 1989 (hatched area). Thin, solid curves
starting in 1991 represent trend lines. Top, middle: Size distribution of Arctic char in Lake Takvatn in 1980 (predator absent; black bars and hatched
convex hull) and 1994 (predator present; grey bars and filled convex hull). Top, right: Prey size-distribution in the two alternative stable community
states with (grey bars and filled convex hull) and without predators (black bars and hatched convex hull) as predicted by a generic tritrophic
food-chain model of a basic resource, a size-structured consumer and a top-predator foraging on small-sized consumers only (see de Roos and
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Top-left, top-middle, top-right and bottom-left panels redrawn and adapted with permission from de Roos and Persson (2013 Figure 4.17, 4.19,
4.10 and 4.18, respectively) using data from Persson et al. (2007).
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this new community state predation of brown trout
prevents severe intraspecific competition among
char, such that individual growth in body size is no
longer limited by strong density dependence and
individuals reach larger sizes (sometimes up to 50
cm; Figure 5.6, bottom-left panel). Due to their larger
sizes and the reduced intraspecific competition the
total reproduction rate of the Arctic char population
has increased leading to an increase in density of
Arctic char smaller than 15 cm. In the presence of a
dominant brown trout population, the density of
both small and large Arctic char individuals was
therefore substantially higher than in the absence
of predators (Figure 5.6, top-middle panel), even
though Arctic char smaller than 15 cm constitute
the main prey of brown trout. The experimental
observations regarding the change in individual
growth curves and population size-distribution are
in line with the qualitative predictions of a generic
tritrophic food-chain model of a basic resource,
a size-structured consumer and a top-predator
foraging on small-sized consumers only (see de
Roos and Persson 2013, pp. 136–45), even though
the latter model is not specifically parameterized
for the Arctic char-brown trout interaction and
comparison between modelled and observed size
distributions is difficult because of the difference in
catchability of individuals of different body sizes.
On the basis of a confrontation of seven different
model predictions with the empirical data Persson
et al. (2007) argued that the fish communities before
and after the culling of Arctic char represented
two alternative stable states, brought about by an
emergent Allee effect in brown trout.

5.6 On generality and model specificity

A chapter on SPMs can not ignore the question
whether or not the model results derived from a
SPM are general or not and in particular whether
they are more or less general than results from
unstructured population models. Theoretical results
are only relevant if they apply to a range of
systems and situations. Unstructured population
models are often considered more general than
structured models, as the latter make more
explicit and more system-specific assumptions
about the individual life history (Holling 1966;

May 2001; Evans et al. 2013). The background
for this view is two-fold: First, unstructured
population models tend to be based on fewer
assumptions and often involve fewer functions
and parameters and are therefore considered to
apply to a wider variety of systems. This view
is inspired by May’s (2001) plea for a strategic
modelling approach that “sacrifices precision
in an effort to grasp at general principles . . . to
provide a conceptual framework for the discussion
of broad classes of phenomena”. As a second
reason, for unstructured population models it is
often possible to derive analytical results, whereas
structured population models can often only be
analyzed using numerical techniques. Numerical
results are considered less general, as they depend
on the particular values of the model parameters
for which the results have been derived.

It can, however, also be argued that unstructured
population models poorly represent ecological sys-
tems, as they consider all individuals identical and
thus model populations essentially as collections
of elementary particles. Unstructured models have
even inspired classic textbooks in ecology to define
population dynamics as “the variations in time and
space in the sizes and densities of populations,”
where population density is defined as “the num-
bers of individuals per unit area” (Begon et al. 2005;
Turchin 2013). This perspective again emphasizes
changes in numbers of individuals and neglects
differences between them. Therefore, in the current
ecological paradigm population dynamics arises
only as a consequence of two processes: individual
reproduction and mortality. And yet, life history is
the most fundamental feature that sets individual
organisms apart from elementary particles in
physics or molecules in chemistry. Individual
development throughout life history constitutes
an essential and uniquely ecological process.
Furthermore, individual development is unlike
other factors, such as for example spatial hetero-
geneity or genetic variability, that may be argued to
influence population dynamics. The impact of both
spatial heterogeneity and genetic variability can
be controlled and even eliminated by choosing an
appropriate, experimental setup. In fact, some of the
most classic ecological experiments (Tilman 1982)
have been carried out in well-stirred chemostats or
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using parthenogenetic species (McCauley and Mur-
doch 1990). In contrast, individual development
can never be eliminated by any experimental
design, as it is in fact the first process that invariably
takes place after the birth of an individual, before
reproduction and mortality will ever occur. In
my opinion, individual development is therefore
also a constituent part of population dynamics
just like reproduction and mortality. Structured
population models are based on this premise
that not only reproduction and mortality, but also
individual development shapes the dynamics of a
population and that the population is not equivalent
to just the number of its individuals, but that the
composition or structure of the population (the
distribution of the individuals over the possible
individual states) is equally important, a fact that
is supported by numerous ecological studies (e.g.,
Olson et al. 2001; Klemetsen et al. 2002). I therefore
in general do support May’s plea for a strategic
modelling approach, but at the same time argue
that ignoring individual development in population
and community models may be an unjustified
oversimplification.

5.7 Outlook

Undoubtedly, the individual life history of a species
plays a very important role in its ecology and its
evolution. Nonetheless, current ecological theory,
in particular theory about population interactions
and community dynamics, accounts only to a
limited extent for the influence of life history as it
is mostly based on unstructured models. Similarly,
evolutionary theory about individual life history
is often based on a density-independent, fitness-
maximization principle and mostly ignores the
ecological interactions that shape an individual’s
life history. Analysis of evolutionary dynamics
within an ecological context involving intra- and
interspecific interactions is possible using the
framework of Adaptive Dynamics (Metz et al. 1996;
Dieckmann 1997), but only few adaptive dynamics
studies up to now have considered more detailed
life histories. Physiologically structured population
models (PSPMs) offer ample possibilities to address
general questions about the consequences of indi-
vidual life history on ecological and evolutionary
dynamics, in particular facilitated by the recent

development of software for their analysis (de Roos
2018a). These developments allow for addressing
exciting and novel ecological and evolutionary
questions in the years to come. However, as a cau-
tionary closing note it is important to consider the
desired complexity of a PSPM. When formulating a
PSPM one often has a particular ecological scenario
or system in mind that one wants to capture in
the model. It is then quite easy to give in to the
natural tendency to tailor the model more and
more to this ecological situation, by incorporating
an increasing amount of detail (something I also
do too often). However, making more detailed
assumptions greatly limits the generality of the
model predictions. I therefore advocate a certain
middle ground of model complexity, in which
certain qualitative features of the individual life
history are captured by the model with reference
to a range of ecological systems, while all the time
carefully weighing the benefits of incorporating
further aspects of a life history against the costs of
a decrease in generality of its results. Furthermore,
once a particular pattern emerges from a PSPM with
detailed assumptions the generality of the pattern
and its mechanistic causes can be investigated
by simplifying the PSPM, while preserving the
elements that are involved in generating the pattern.
For example, juvenile and adult-driven population
cycles were first described as results from a model
that mimicked in quite some detail the foraging of
roach (Rutilus rutilus) on zooplankton. Later studies,
however, with much more simplified models (de
Roos and Persson 2003; Persson and de Roos 2013)
revealed that these cycles occurred commonly
whenever there is a competitive asymmetry
between juveniles and adults. Similarly, biomass
overcompensation was first found in a consumer-
resource model, in which the consumer population
was characterized by a complete size distribution
(de Roos and Persson 2002), but was later on
shown to also occur in stage-structured models
(de Roos et al. 2007; de Roos 2018b), provided
that juvenile and adult individuals differ in their
energetic requirements, i.e., there is asymmetric
competition for resources between them, and
metabolic maintenance costs require a significant
amount of energy. I would argue that this approach
of model simplification is necessary and greatly
benefits the generality of the developed theory.
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CHAPTER 6

Models for large ecological
communities—a random matrix
approach
Stefano Allesina and Jacopo Grilli

6.1 Introduction

The pioneering work of Lotka (1956) and Volterra
(1926) launched a concerted effort to mathematize
the dynamics of natural populations. Since then,
much progress has been made in the analysis of
models describing a single population or a few
interacting populations. The simple models by
Lotka and Volterra have been enriched by con-
sidering life histories, size-structured populations
(Tuljapurkar and Caswell 2012), and their diffusion
in space (Cantrell and Cosner 2004); current models
often include complex, nonlinear functional forms
(Arditi and Ginzburg 2012), difference and partial
differential equations, time lags, external forcing
due to varying environmental conditions, and
stochasticity (Lande et al. 2003). Because of the great
interest in the mathematics of population dynamics,
ecologists have played a fundamental role in the
development of this field in the last fifty years,
including seminal applications of chaos (May 1976;
Hastings et al. 1993) and bifurcation theory (Scheffer
et al. 2009) to natural phenomena.

The analysis of simple ecological communities
paid off, leading to modern coexistence theory
(Chesson 2000), the concepts of limiting similar-
ity and niche partitioning (Abrams 1983), trophic
cascades (Pace et al. 1999), and a wealth of other fun-
damental ideas in ecology and evolutionary biology.

Analyzing larger ecological communities, how-
ever, has proven more difficult. When the number
of interacting populations in a community is greater
than three, the study of the dynamical system
becomes prohibitively difficult, leaving ecologists
to rely on large numerical simulations, rather
than attempting to understand the system using
mathematical analysis.

In this chapter, we review classic and more recent
studies that attempted to build a mathematical
framework for understanding the dynamics of
large ecological communities. In particular, we are
going to focus on the use of random matrices to
describe ecological problems. A random matrix is
a matrix whose elements are random variables.
As such, instead of studying a given matrix,
results obtained using the methods reviewed here
describe the “typical behavior” of an entire class
of matrices whose entries are sampled from some
given distribution.

The use of random matrices in ecology dates back
to the seminal work of May (1972), who shook long-
held beliefs by proving that a sufficiently large or
complex ecological community would not be able
to recover from perturbations. May’s work has been
extended by numerous studies, refining the original
formulation of a “random ecosystem” to include
a statistical description of the way species interact
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(e.g., consumption, competition, mutualism), food
web structure, meta-population dynamics, and
many other features of natural communities.

As we will see, random matrix theory is
particularly suited for the task of modeling large
ecological communities, by virtue of three facts: i)
it typically considers very large (infinite) matrices,
and as such is a good starting point for studying
highly speciose communities; ii) many results are
“universal,” i.e., hold for a wide range of para-
meterizations, meaning that a single result we can
shed light on a variety of ecological problems,
sometimes quite distant from each other; iii) the
theory is currently experiencing a vigorous growth
in mathematics, with new results being produced
at a very fast pace—by studying increasingly
sophisticated models, new ecological questions can
be addressed with this toolbox.

To set the stage for the chapter, we describe May’s
original contribution in some detail. We then review
the history of random matrix theory, and discuss
what it means to solve a problem in this area. We
show how classic results in random matrices inform
ecological theory, and review applications using
more sophisticated, structured random matrices.
We list other areas of ecology that can benefit from a
random matrix approach, and conclude with a list of
open problems whose solution would considerably
advance our understanding of large ecological
communities.

6.2 May’s stability criterion

In the late 1960s, computing became cheap and
powerful enough to allow numerical explorations
of a variety of natural phenomena. In 1970, two
researchers from the Biological Computer Labora-
tory at the University of Illinois, Mark R. Gard-
ner and W. Ross Ashby, investigated whether and
when a “large” dynamical system would be stable
(Gardner and Ashby 1970). Importantly, they con-
sidered systems in which each of the S “agents”
in a community are randomly connected with only
a fraction of the other agents, and the interactions
between the agents are encoded in a matrix. They
called the proportion of realized connections (i.e.,
the proportion of nonzero elements in the matrix)

the “connectance” of the system—a term that is still
used today. For their results, presented in a sin-
gle page in Nature, they considered random matri-
ces of size 4, 7, and 10, and varied the number
of nonzero coefficients (all sampled independently
from a uniform distribution ranging from –1 to 1)
to probe the effect of the size and connectance of
the matrix on its “stability” (i.e., whether all the
eigenvalues of the matrix had negative real part,
see Box 6.1). They measured the probability of sta-
bility of a matrix given its size and connectance,
and found a striking result: when crossing a critical
level of connectance, systems rapidly moved from
being “almost certainly stable” to “almost certainly
unstable,” with a sudden transition.

While Gardner and Ashby thought of airports,
social networks and neural systems when writing
their manuscript, their results were about to shake
community ecology at its core.

In the post-World War Two era, community ecol-
ogy was greatly influenced by cybernetics, thermo-
dynamics, and information theory (McIntosh 1980).
Using these tools, theoretical ecologists attempted
to make sense of the networks of ecological inter-
actions between species which had been appearing
with increasing frequency in the literature. Follow-
ing the observations by Elton and Odum, Robert
H. MacArthur (1955) proposed the idea that the
multiplicity of pathways connecting resources to
consumers in complex ecological networks would
buffer these systems against fluctuations: if one
of the channels bringing energy from producers
to a given species were to go dry, other channels
would take its place, thereby mitigating the effect
of environmental fluctuations on the dynamics of
populations (Kingsland 1995). This theory was in
good agreement with observation (McCann 2000):
rich ecosystems are less prone to invasion than
those encompassing only a handful of species, and
the fluctuations in population abundances seem to
be more constrained in richer ecosystems.

In 1972, the work of Robert M. May challenged
these beliefs, through the first application of random
matrix theory in ecology (May 1972). May recog-
nized that the work of Gardner and Ashby was
relevant for the study of the local asymptotic stabil-
ity of ecological communities around equilibrium,
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Box 6.1 Local asymptotic stability

The dynamics of an ecological community are often described
using a system of nonlinear differential equations:

dxi(t)
dt

= fi (x(t)) , (6.7)

where xi is the density of species i at time t, and x(t) is
the vector collecting the densities of all of the species. The
function f i details how the growth of species i is affected
by the species in the community. In general, this system of
equations can lead to very complicated dynamics, but here
we concentrate on the simplest case: equilibrium dynamics.
An equilibrium x∗ is a vector of densities such that:

dxi

dt

∣∣∣∣
x∗

= fi
(
x∗) = 0∀i. (6.8)

A given system might have a multitude of equilibria. When
the system is resting at an equilibrium point, it will remain
there unless it is perturbed away from it. Local stability
analysis is a method to probe whether a system that is
perturbed infinitesimally away from an equilibrium will even-
tually return to it, or rather move away from it. The analysis
is based on the Jacobian matrix of the system J, whose
elements are defined as:

Jij = ∂ fi (x)

∂xj
. (6.9)

Each element of this matrix is therefore a function, whose
value depends on x. When we evaluate the Jacobian matrix

at an equilibrium point x∗, we obtain the so-called “com-
munity matrix” M:

M = J|x∗ . (6.10)

Note that, although each system has a unique Jacobian
matrix, there are as many community matrices as there
are equilibria. The community matrix details the effect of
increasing density of one species on the growth rate of any
other species around the equilibrium point.

The most notable property of the community matrix is that
its eigenvalues determine the stability of the equilibrium x∗:
if all the eigenvalues have negative real part, then the system
will eventually return to the equilibrium after sufficiently
small perturbations; conversely, if any of the eigenvalues
have positive real part, the system will move away from the
equilibrium whenever perturbed. Therefore, depending on
the sign of the “rightmost” eigenvalue of M, λ1, we can
determine the stability of x∗:

Re (λ1)

{
< 0 → x∗ is stable
> 0 → x∗ is unstable

(6.11)

Local asymptotic stability means that the equilibrium is
stable with respect to infinitesimal perturbations (“local”),
and that returning to the equilibrium could take a long
time (“asymptotic”). Ecologists have also studied stronger
forms of stability (e.g., “global stability,” meaning that all
trajectories lead to the same equilibrium).

(Box 6.1) and, in another very short article in Nature,
proved that sufficiently large and connected eco-
logical systems would inevitably be dynamically
unstable.

May considered an unspecified system of first-
order, nonlinear differential equations describing
the interactions between a set of S species. Such a
system would be difficult to study for sufficiently
large S: depending on the parameters and the initial
conditions, the trajectories of the community could
end up in one of many dynamical attractors, leading
to fixed points, limit cycles, or chaos. The difficulty
of this problem is compounded by the fact that
there is no universally accepted, canonical set of
equations describing interacting populations, and
that even for a specific functional form, measuring
empirically all the parameters needed to investigate

the dynamics of a large community is unfeasible
from a practical standpoint.

May’s brilliant intuition was to jump over these
difficulties altogether, and assume that an unspeci-
fied dynamical system is resting at an equilibrium
point. Around the equilibrium, dynamics can
be approximated using a linear system of equa-
tions, making the mathematical analysis straight-
forward.

Suppose that a system of S species is resting at the
equilibrium x∗ (with every component x∗

i > 0, a con-
dition known as “feasibility”). If unperturbed, the
system would remain at the equilibrium point for-
ever. But what if it were slightly perturbed? Would
it go back to the equilibrium, or rather move away
from it? In the case of an infinitesimal perturbation
�x(0), we can track the evolution of the perturbation
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in time by approximating the dynamics using a
linear system of equations:

d�x(t)
dt

= M�x(t), (6.1)

where M is the “community matrix” of the system
at equilibrium (see Box 6.1). Inspecting the eigenval-
ues and eigenvectors of M is sufficient to determine
the stability of x∗: for each direction encoded by an
eigenvector of M, the system moves towards the
equilibrium if the corresponding eigenvalue has a
negative real part, while it moves away from it if the
real part of the eigenvalue is positive; the magnitude
of the real part of the eigenvalue measures the speed
at which the system approaches or moves away
from the equilibrium, while the imaginary part mea-
sures the oscillations of the trajectory. Therefore, an
equilibrium point is stable if all the eigenvalues of
the corresponding community matrix have negative
real part, and is unstable otherwise.

Of course, to determine exactly the community
matrix M, one would need to know the functional
form, measure all of the parameters and initial
conditions, and compute the equilibrium x∗—this
becomes impossibly daunting when communities
are large. May took a different route, and modeled
M as a random matrix.

The diagonal elements of M measure “self-
regulation” (e.g., density dependence due to finite
resources). Suppose species are not interacting with
each other at all: then the matrix M would only
have nonzero coefficients on the diagonal, and
therefore the system would be stable if, and only
if, all the diagonal coefficients were negative (the
eigenvalues of M would be exactly its diagonal
elements). When we add the interactions between
species, the element Mij measures the effect of
species j on i around the equilibrium. Naturally, not
all species affect each other directly. May first set the
proportion of interacting species to C (connectance),
and, whenever two species interacted, he then
sampled the interaction strength from a distribution
with mean 0 and variance σ 2. These rules define
the community matrix as a random matrix with
Mii = −d, measuring the strength of self-regulation,
and Mij being zero with probability (1 − C), and
sampled independently from a distribution X with
mean zero and variance σ 2 otherwise. With this

definition in place, one can probe how the size of
the matrix S, the connectance C, and the variance σ 2

influence the stability of the system.
In Figure 6.1, we plot the eigenvalues of such

a matrix: the eigenvalues are approximately uni-
formly distributed in a circle, and therefore know-
ing the center and radius of the circle is sufficient
to determine the stability of the system. Because
the matrix M has −d on the diagonal, the circle is
centered at (−d, 0); for stability the radius r needs
to be small enough, so that r − d < 0 (all eigenval-
ues would then fall in the negative half-plane). By
applying a simple result from random matrix theory
(discussed later), May computed the radius to be
r ≈ √

SCσ 2, thereby providing a simple criterion for
the stability of the system:

√
SCσ 2 < d. (6.2)

If the stability criterion is satisfied, then the system
is almost surely stable, while if it is not, it almost
surely unstable (Figure 6.1). This result sheds light
on the numerical experiment of Gardner and Ashby,
who had found a sharp transition from stability to
instability when varying connectance: May’s result
showed that changing the size of the system or the
variance of the nonzero coefficients would have a
similar effect (Figure 6.1).

By proving this simple result, May challenged the
notion that more complex ecological communities
would be intrinsically more stable: take a stable
community, and increase its size, connectance, or the
variance of the interaction strengths—eventually,
the system will cross a critical level, and become
unstable. This argument set in motion the so-called
“complexity-stability” debate, which populated the
literature for the following decades (McCann 2000):
fundamentally, May showed that complex systems
are not stable because they are complex, but rather
that if they are stable it is despite being complex.

May’s work is a good illustration of three paradig-
matic aspects of random matrix theory. First, by
using random matrices, May was able to show that
for the stability of a random ecological community
constructed as detailed earlier, only two quantities
matter: the strength of the self-regulation, −d, and
the “system’s complexity,”

√
SCσ 2 —changing the

size, connectance, or variance has the same effect
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Figure 6.1 Left: location of the eigenvalues of a 1000 × 1000 matrix with connectance 0.2, nonzero coefficients sampled independently from a
normal distribution with mean zero and variance σ 2 = 1, and diagonal coefficients d = −5. The eigenvalues are approximately uniformly
distributed in a circle with center (d, 0) and radius

√
SCσ 2. Right: starting with S = 500, C = 0.2, σ 2 = 1, and d = −10, we vary either the size

(+), connectance (◦) or the variance (×), and for each parameterization we produce 500 random matrices. The y-axis reports the probability of
stability measured as the proportion of the matrices that were stable for a given parameterization. The x-axis reports the corresponding

√
SCσ 2.

As predicted by May’s stability criterion, whenever this quantity approaches d, the probability of stability rapidly decreases from about 1 to about 0.
The transition is sharper for larger matrices.

on the stability of the system, so that two random
matrices with the same “complexity” have the same
stability properties. Second, May did not specify the
distribution X from which the interactions are sam-
pled, but rather only considered its mean and vari-
ance. This result, as many others in random matrix
theory, is in fact “universal”: it applies to any dis-
tribution X with the same mean and variance, irre-
spective of its shape. As such, May’s result describes
a very large class of random matrices, rather than
any specific matrix. Third, the result only applies to
large systems (technically, what matters is that SC
is sufficiently large)—the result is useful to under-
stand the behavior of large and dense, rather than
small and sparse, systems.

In the following sections, we will show how this
first result can be extended by considering more
complicated models of random matrices.

6.3 Random matrices

A random matrix is simply a matrix whose coeffi-
cients are random variables, rather than fixed quan-
tities. A random matrix ensemble is a probability

distribution over the possible matrices that can be
produced by sampling random matrices.

Provided with a (diagonalizable) matrix, finding
its eigenvalues and eigenvectors is a mechanical
process, and there are many algorithms that one can
use to solve this problem. Random matrix theory
studies the probability distribution over the eigen-
values and eigenvectors of a matrix ensemble, often
describing their typical behavior.

While the study of random matrices in statistics
dates back ninety years (Wishart 1928), their use
in the sciences was brought to the fore by Eugene
Wigner, who, in a series of papers in the 1950s,
modeled the energy spectra of heavy atomic nuclei,
where a large number of neutrons and protons inter-
act in a complex way (Wigner 1967). In quantum
physics, the energy levels for these nuclei can be
seen as the eigenvectors of the Hamiltonian oper-
ator, which can be expressed as a (large) symmet-
ric matrix. Instead of calculating the energy levels
from first principles, Wigner attempted to describe
them statistically using random matrices, with great
success (reviewed in Dyson 1962). Freeman Dyson’s
description of the problem is fitting for ecology as
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well—just substitute the word “nucleus” with “eco-
logical community,” and “particles” with “species”:

what is here required is a new kind of statistical mechan-
ics, in which we renounce exact knowledge not of the
state of a system but of the nature of the system itself.
We picture a complex nucleus as a “black box” in which
a large number of particles are interacting according to
unknown laws. (Dyson 1962)

Since then, random matrices have been used
in many branches of physics: from solid state
physics to quantum chromodynamics, from optics
to quantum gravity. Beyond physics (and ecology),
the use of random matrices has been instrumental in
numerical analysis (Wishart 1928), number theory
(Hughes et al. 2000), control theory (Chow et al.
1975), and theoretical neuroscience (Sompolinsky
et al. 1988).

The objective of random matrix theory is to
study the properties of (typically large) random
matrices: the distribution of eigenvalues, eigen-
vectors, and the spacing between eigenvalues
have all received much attention. For ecological
applications, the distribution of the eigenvalues
(called the “empirical spectral distribution,” ESD)
of random matrices is the property that has found
the most applications. Simply put, this density
function measures the probability of observing an
eigenvalue with a given value. For simple cases,
the full distribution can be derived, while for more
complicated random matrices, one can concentrate
on finding its support (i.e., the region where there is
a non-zero probability of observing an eigenvalue,
in the limit of large matrices), which is still relevant
for the study of stability (Box 6.1). In Box 6.2 we list
the main mathematical tools that are used to derive
the spectral density or its support analytically:
we include a brief description and pointers to the
primary literature.

Often, the spectral density is characterized by few
(i.e., a finite number in the limit of large matri-
ces) outliers, which appear as isolated eigenvalues.
These outliers might have a strong effect on stability,
and, interestingly, can be computed very easily from
the structure of the matrix. We analyze these cases in
the following sections.

While identifying the spectral distribution is a
well-defined problem for matrices of any size, very

often random matrix theory is developed in the limit
of large (infinite) sized matrices. This choice turns
out to be convenient because random matrix ensem-
bles are often self-averaging: the relative fluctuations
around the average behavior becomes smaller and
smaller as the size increases. When this property
holds, the spectrum of large matrices converges to
the average behavior. Moreover, a large class of
random matrix ensembles are universal: the spectral
density, in the limit of large sizes, depends only on
a few moments of the probability distribution from
which the matrix elements are drawn. For instance,
the spectral density of a symmetric matrix with
independent elements depends only on the mean
and variance of the distribution, and not on further
moments (skewness, kurtosis, etc.).

In the following sections, we describe the spectral
density of random matrices of increasing complex-
ity. In all cases, solving the density provides directly
applicable ecological insight, by highlighting which
parameters determine the shape of the distribu-
tion, and therefore which properties of the eco-
logical community are important for determining
dynamics.

6.4 Fundamental results

In this section, we briefly review some of the most
fundamental laws in random matrix theory. For
a more rigorous mathematical introduction to the
topic, we recommend the book by Bai and Silver-
stein (2010). For a more hands-on approach, we
suggest instead the book by Livan et al. (2018).

Diagonal elements: before listing some of the laws
for random matrices, we discuss the special role
played by self-regulation in determining stability.

The sum of the diagonal elements of a matrix
(its trace) is also the sum of its eigenvalues:∑

iMii = tr (M) =∑iλi. As such, adding a constant
diagonal to a matrix results in a shift of all its
eigenvalues: if M′

ii = Mii + d, then the eigenvalues
of M′ are the same as those of M, all shifted of d.
This means that, for any system, we can always
achieve stability by increasing self-regulation to
all species, and therefore illuminates the special
role self-regulation played in May’s contribution.
Because the effect of adding a constant diagonal is
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Box 6.2 Tools for solving random matrix problems

The main object of study of random matrix theory is the
spectral density, which can be formally defined as

μ (λ) = E

(
1
n

n∑
i=1

δ (λ − λi)

)
, (6.12)

where {λ1, λ2, . . ., λn} are the eigenvalues of a random
matrix of size n, E (· ) is the average over the random
matrix ensemble and δ(·) is the Dirac delta function. This
formula holds for Hermitian matrices, which have only real
eigenvalues, but can be extended to the non-Hermitian case
(Sommers et al. 1988). While this definition is formally
correct, it is not directly usable for computing the spectral
density.

It is convenient to define

G(z) = E

(
1
n

n∑
i=1

1
z − λi

)
= E

(
1
n

tr(zI − M)−1
)

,

(6.13)

which is more amenable to analytical treatment. One can in
fact compute the spectral density (using Livan et al. 2018):

μ (λ) = 1
π

lim
ε→0+ ImG (λ + iε) (6.14)

The complex function G(z) is called resolvent and is the
central object of study of random matrix theory.

Method of moments

The average of the spectral density (i.e., the average eigen-
value) is simply given by the expectation of tr(M)/n. Similarly,
we have that the k-th moment of the spectral density is
given by

E
(
λk
)

:=
�

dλμ (λ) λk = E

(
1
n

n∑
i=1

λk
i

)
= 1

n
E
(

tr
(
Mk
))

.

(6.15)

By computing all these moments one can reconstruct the
spectral density. For a review of the application of the
method of moments to random matrices see Kirsch and
Kriecherbauer (2016).

Replica method and cavity method
Statistical mechanics studies systems with a large number of
interacting degrees of freedom from a probabilistic point of
view. It can be shown (Livan et al. 2018) that the resolvant

can be computed as the correlation function of continuous
degrees of freedom whose interactions is defined by a
random matrix. This correspondence allows to use standard
techniques borrowed from statistical mechanics of disor-
dered systems. In particular, the resolvant can be written as

G(z) = 1
n
E

(
tr(zI − M)−1

)
= 1

n
∂

∂z
E
(
log det (zI − M)

)

=:
2
n

∂

∂z
E
(
log Z(z)

)
(6.16)

The statistical mechanics analogy comes from the fact that,
using the properties of the Gaussian integral, Z(z) can be
interpreted as a partition function

Z(z) :=
√

det (zI − M) =
∫

dnxe− 1
2 x·(zI−M)·x (6.17)

Averaging Z over the randomness of the matrix M would
be a relatively simple problem: we could exchange the
average over M with the integral over x in Equation 6.17,
compute the average of the exponential and then integrate
over x. Unfortunately, in Equation 6.16, it appears the
average of log Z instead of Z. The replica method exploits
the formula

log Z = lim
n→0

Zn − 1
n

, (6.18)

where Z is the partition function, to calculate the average
of log Z (which is a complicated problem), by reducing the
problem to the calculation of Zn (with integer n, which is
much easier). This is equivalent to averaging over n copies
of the system (from which the name replicas). This method
has been applied to compute the spectral density of different
random matrix ensembles (Kanzieper 2001; Livan et al.
2018) and to the non-Hermitian case (Sommers et al. 1988).

The cavity method assumes that the random matrix has
a tree structure (there are no loops) to write consistency
equation for the derivatives of log Z. While this method
is only exact under the assumption of a tree structure, it
provides the correct result also for large dense random
matrices. The cavity method has been successfully applied
for a broad range of random matrix ensembles (Rogers et al.
2008; Rogers and Castillo 2009; Grilli et al. 2016; Gibbs et al.
2018).

Free probability

Free probability studies random variables when multipli-
cation is not commuting (e.g., for matrices, where AB is
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generally different from BA). Since random matrices are
not commuting, the spectral density of the sum of two
random matrices is not given by a simple convolution of the
spectral densities of the two. Free probability allows to write
the resolvant of the sum as a proper combination of the
resolvants of the two matrices (Mingo and Speicher 2017;
Livan et al. 2018). For standard random variables, the cumu-
lant generating function of a sum of two random variables
is the sum of the two cumulant generating functions. In
free probability the role of the cumulant generating function
is replaced by the so-called R-transform. The R-tranform is
a complex function R(z) that can be obtained from the
resolvant as

R(z) = G−1(z) − 1
z

. (6.19)

The R-transform of the sum of two matrices A + B is simply
the sum of the two resolvants,

RA+B(z) = RA(z) + RB(z). (6.20)

Similarly, free probability can be applied to obtain the spec-
tral density of the product of random matrices (Mingo and
Speicher 2017).

Non-Hermitian matrices

Non-Hermitian matrices have complex eigenvalues. The
spectral density needs therefore to be defined over the
complex plane

μ (x, y) = E

(
1
n

n∑
i=1

δ (x − Re (λi)) δ (y − Im (λi))

)
.

(6.21)

Given the presence of the product of two Dirac delta func-
tions, we cannot use translate directly the formula for the
resolvant to the non-Hermitian case. One way to define
a resolvant which applies to the non-Hermitian case is to
introduce quaternions. Quaternions are a number system
that extends complex numbers. An important feature of
quaternions is that the algebra is not commutative. A quater-
nion q can be written as q = z + wj, where z and w are
complex numbers. The properties j2 = −1 and ij = −ji fully
define the algebra of quaternions.

The quaternionic resolvant is defined as the quaternionic
function (Rogers 2010),

G(q) = 1
n

E

( n∑
i=1

(q − λi)
−1

)
, (6.22)

where q is a quaternion and the λs are complex eigenvalues.
The spectral density can be obtained as (Rogers 2010),

μ (x, y) = 1
2π

lim
ε→0+

(
∂

∂x
+ i

∂

∂y

)
G
(
x + iy + εj

)
.

(6.23)

trivial, in most articles using random matrices the
diagonal is taken to be 0.

Symmetric matrices—Wigner’s semicircle law: a
Wigner matrix is an S × S random matrix X where
all the coefficients Xij in the upper-triangular part
(i.e., i < j) are independent, identically distributed
random variables, and Xij = Xji (i.e., the matrix is
symmetric). The diagonal coefficients Xii have mean
zero and finite variance, while the off-diagonal
elements have mean zero and unit variance
(E
[
Xij
] = 0, E

[
X2

ij

]
= 1). Then, as S → ∞, the

empirical spectral distribution of M/
√

S (i.e., of
the matrix in which all the coefficients have been
divided by the

√
S ) converges almost surely to the

Wigner’s semicircular distribution:

μ (λ) =
{

1
2π

√
4 − λ2 if λ ∈ [−2, 2]

0 otherwise.
(6.3)

Importantly, we have not defined the distribution of
the Xij: as long as the coefficients have mean zero,
and unit variance, the result holds (universality).

This result can be used to approximate the leading
(“rightmost”) eigenvalue of a random symmetric
matrix. If the size of the matrix is S, the diago-
nal coefficients are zero, and the upper-triangular
coefficients are sampled independently from a dis-
tribution with mean zero and variance σ 2, then
λ1 ≈ 2

√
Sσ 2. Note that the result holds when the size

of the matrix is infinite; for finite matrices, fluctu-
ations can lead some eigenvalues to fall outside of
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the semi-circle, which is another problem studied in
random matrix theory (Tao and Vu 2012).

Non-symmetric matrices—circular law: take a non-
symmetric, S × S random matrix in which all
coefficients Xij are i.i.d. random variables with

E
[
Xij
] = 0 and E

[
X2

ij

]
= 1. Then, as S → ∞,

the ESD of X/
√

S converges to the circular law:

μ (λ) =
{

1
π

if (Re (λ))2 + (Im (λ))2 ≤ 1
0 otherwise.

(6.4)

This result can be used to calculate the radius of the
eigenvalue distribution of the matrices studied by
May: when the off-diagonal coefficients Mij are 0
with probability 1 − C and are sampled indepen-
dently from a distribution with mean 0 and vari-
ance σ 2 with probability C, we have that E

[
Mij
] = 0

and E
[
M2

ij

]
= Cσ 2. This means that if we were to

divide the coefficients of M by
√

Cσ 2 we would
recover the unit variance, and the matrix would
follow the circular law when S is large. Armed with
this, we can calculate the radius: if the radius of
M/

√
SCσ 2 converges to 1 when the matrix is large,

then the radius of M is approximately
√

SCσ 2. For
stability, we need a sufficiently negative diagonal
(
√

SCσ 2 − d < 0), yielding May’s stability criterion.
Bivariate distribution—elliptic law: in ecological

communities, the effect of species i on j and that of
j on i are typically not independent: in the case of
competition between species, we expect them both
to be negative; for consumption, if one is positive,
the other is negative, and so forth. A more refined
model of a random matrix would therefore sample
interactions in pairs from a bivariate distribution.
The elliptic law can be applied to this case.

Take a non-symmetric, S × S random matrix in
which the pairs of coefficients (Xij, Xji) are sampled
independently from a bivariate distribution defined
by a vector of means m = (0, 0)t and a covariance

matrix 	 =
(

1 ρ

ρ 1

)
. Then, as S → ∞, the ESD of

X/
√

S converges to the elliptic law:

μ (λ) =
⎧⎨
⎩

1
π(1−ρ2)

if (Re(λ))2

(1+ρ)2 + (Im(λ))2

(1−ρ)2 ≤ 1

0 otherwise.
(6.5)

Note that, when ρ = 0, the elliptic law reduces to
the circular law. Using the elliptic law, Allesina and
Tang (2012) were able to extend May’s criterion
to ecological networks with different mixtures of
interaction types (Box 6.3).

Covariance matrices—Marchenko–Pastur’s law: the
last law we are going to consider in this section
deals with covariance matrices, which often appear
in both ecological and statistical literature.

Take a p × n rectangular matrix X, with p < n and

i.i.d. coefficients with E
[
Xij
] = 0 and E

[
X2

ij

]
= 1.

When n → ∞, the ratio p/n → y (i.e., the number
of rows and columns grow proportionally). Then
the eigenvalue distribution of the scaled covariance
matrix S = 1

n XX′ converges to:

μ (λ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2πλy

√((
1 + √

y
)2 − λ

) (
λ − (1 − √

y
)2)

if
(
1 − √

y
)2 ≤ λ ≤ (1 + √

y
)2

0 otherwise.
(6.6)

Small-rank perturbations of random matrices: all the
basic results listed previously consider matrices
whose coefficients have mean zero. Clearly, this is
rarely the case in ecological systems, and therefore
for applications we need to incorporate the
possibility of nonzero means. While in general one
cannot compute the distribution of the eigenvalues
of a sum of two matrices M = A + B from the
eigenvalues of the two matrices, this calculation
is possible whenever A has small-rank (i.e., few
nonzero eigenvalues, or a finite amount in the
limit of infinitely large sizes) and B is a large
random matrix. In this case, the distribution of
the eigenvalues of B will be composed by a bulk,
defined by the spectrum of B, and (possibly) a few
outlier eigenvalues, matching closely the nonzero
eigenvalues of A (a correction is needed when the
coefficients of B are correlated, (O’Rourke and
Renfrew 2014)).

Applications to stability: Figure 6.2 shows numeri-
cal examples for the laws examined in this section,
while Box 6.3 and Box 6.4 report two examples
showing how these tools can be used to assess the
stability of ecological systems.
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Box 6.3 Stability criteria for correlated entries

The original result by Robert May (1972) applies to a com-
munity with random interaction types: the elements Mij
and Mji are sampled independently, and therefore one can
have arbitrary combinations of signs. For instance, given
a connectance C, a fraction C2/4 of the interactions is
expected to be mutualistic (corresponding to a (+, +) pair),
a fraction C2/4 competitive (a (−, −) pair) and a fraction
C (1 − C) /2 commensalistic (a (+, 0) pair). It is therefore
natural to ask what is the effect of having a single interac-
tion type represented, or having different types in arbitrary
proportions.

The effect of interaction types (which translate into con-
straints on the signs of the elements of the community
matrix) is, unexpectedly, remarkably simple (Allesina and
Tang 2012). The spectrum of the corresponding random
matrix depends only on three key parameters: the mean, the
variance and the correlation between off-diagonal elements.
Note that different interaction types influence the value
of mean, variance and correlation. For instance, mutualis-
tic interactions correspond to positive mean and positive
correlation, competitive interactions produce negative mean
and positive correlation, while antagonistic interactions are
characterized by a negative correlation.

More formally, we can consider the following model. With
probability C an interaction between two species is present.

If the interaction is not present the corresponding pair of
coefficients (Mij, Mji) is set to (0, 0), otherwise, (Mij, Mji)
is sampled from a bivariate distribution X with identical
marginal means μ, marginal variances σ 2 and correlation
ρ. The diagonal elements are set to −d.

Since the spectrum of random matrices is universal, it
does not depend on the choice of the bivariate distribu-
tion X, but only on C, d, μ, σ and ρ. It is simple to
observe that

E
[
Mij
] = Cμ,

E
[
M2

ij

]
= C

(
σ 2 + (1 − C ) μ2

)
,

E
[
MijMji

] = ρσ 2 + (1 − C ) μ2. (6.24)

The bulk of eigenvalues is therefore described by the elliptic
law centered in −d − E

[
Mij
]
. There is also an outlier

eigenvalue, which takes value −d + SE
[
Mij
]
. The condition

for stability reads then

−d + max

⎧⎨
⎩SE

[
Mij
]

, −E
[
Mij
]+

√
SE
[
M2

ij

]⎛⎝1 + E
[
MijMji

]

E
[
M2

ij

]
⎞
⎠
⎫⎬
⎭.

(6.25)

6.5 Structured random matrices

In the previous section, we have discussed the prop-
erties of random matrices without any underlying
structure: the pairs of entries (Mij, Mji) were all
sampled independently from the same distribution.
Real ecological networks are quite distant from
this idealized case. For example, empirically we
find that some species interact with few others
(specialists) and others with many (generalists).
Similarly, often species can be organized into groups
such that interactions are frequent within groups,
and infrequent among groups (modularity)—for
example, in a stratified lake we find that benthic
organisms tend to interact with other bottom-
dweller organisms, while pelagic species with other
organisms that are close to the surface. Moreover,

ecological networks are often structured by species’
traits—the adage of “big fish eat small fish” being
one example.

All these features translate into peculiar organiza-
tions of ecological interactions, collectively known
as “network structure.” Historically, applications of
random matrices to ecology have been criticized
exactly because of this fact: the lack of structure
made it difficult to see how the highly idealized
cases described previously would fare once more
complications had been included. Recent progress
in the mathematics of random matrices opened the
door to the study of “structured random matrices,”
and in this section we provide a few pointers to
contemporary work in this area. All these results
can be seen as special cases—as of today, there is
not a general theory of structured random matrices,
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Figure 6.2 Top-left: Wigner’s Semicircle Law: the plot shows the histogram of the eigenvalues of a symmetric matrix M with 500 rows and
columns, diagonal elements Mii = −45, and off-diagonal elements sampled independently from a standard normal distribution. The histogram is
well-described by the semicircle law (line). Top-right: Elliptic Law. The plot shows the eigenvalues of a matrix M of size 500 with diagonal elements
equal to zero, and off-diagonal elements sampled in pairs. With probability C, the pair (Mij, Mji) is sampled from a bivariate normal distribution with
means zero, unit variances and correlation −0.75; with probability 1 − C both coefficients are zero. The eigenvalues are approximately uniform in
an ellipse in the complex plane. Bottom-Left: Marchenko-Pastur Law. The histogram of the singular values of a 1000 × 500 random matrix with
entries sampled independently from a standard normal follows the distribution studied by Marchenko and Pastur. Bottom-right: Small-rank
perturbation of a random matrix. A random matrix, as those studied by May (S = 500, C = 0.2, σ 2 = 1, d = −12), follows the circular law. When
we add to this matrix another matrix of rank three (small circles), we can calculate the location of the bulk (large circle), and the three outliers.
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Box 6.4 The stability of random competitive communities

To show how fundamental results in random matrix the-
ory can be used to solve ecological problems, we are
going to consider a simple case: we have S species,
competing for shared resources. In particular, the matrix
A accounts for the interactions between the species.
Each species is characterized by a growth rate, ri,
and dynamics following the Generalized Lotka–Volterra
model:

dxi(t)
dt

= xi

⎛
⎝ri +

∑
j

Aijxj

⎞
⎠ (6.26)

The Jacobian of the system evaluated at the equilibrium
x∗ is simply Mij = Aijx∗

i . When the interactions are sym-
metric (Aij = Aji) we have that, if the equilibrium is feasible
(x∗

i > 0∀i), then it is stable if and only if A is stable.
Now suppose that Aii = − d, while the upper triangular

coefficients Aij (with j > i) are sampled independently from
a uniform distribution between −1 and 0 and the lower
triangular coefficients have correlation ρ with the upper
triangular. Which is the minimum value of d needed for
stability?

To solve the problem we need to recognize that the
eigenvalues of the matrix M, with elements Mij = Aijx∗

i ,
defines the stability of a feasible fixed point x∗. We can
therefore translate this problem into a random matrix theory
problem. Given a random matrix A and a positive random
vector x∗, what is the distribution of eigenvalues of the
matrix M?

It turns out that the solution can in fact be obtained
analytically using the cavity method (Gibbs et al. 2018) in
the case ρ = 0. In particular, the support of eigenvalues is
given by the solution λ of

�
dxP(x)

x2

|λ − xd| = 1, (6.27)

where P(x) is the distribution of the population abundance.
Remarkably, one can easily observe that the community
matrix M is expected to be stable if and only if A is
stable. This result can be extended, via numerical analysis,
to the case ρ �= 0, showing, somewhat unexpectedly, that
the results obtained in the linear case apply trivially to a
relevant non-linear scenario (the GLV equations), provided
the existence of a fixed point.

but rather a collection of results for particular cases.
On the bright side, all of these examples have direct
ecological relevance.

Food webs: when analyzing aquatic food webs, a
striking pattern emerges: the size of an organism
is a strong determinant of its diet. This notion has
been encoded in the “cascade” model (Cohen et al.
1986) for food web structure, in which species are
ordered by size (or trophic level) and each species
can feed on the preceding—but not subsequent—
species. The random matrix that would arise in this
case is special in that all of the positive interactions
(effects of prey on predators) would be confined
to the lower-triangular part of the matrix, while
the negative ones to the upper-triangular part. As
shown in Figure 6.3, this structure greatly alters
the spectrum of the matrix, which does not simply
follow the elliptic law. The spectrum is composed
of a bulk of eigenvalues (in an ellipse) and a few
outlier eigenvalues lying close to a circumference
in the complex plane. Importantly, as demonstrated
by Allesina et al. (2015), the orientation of the out-
lier eigenvalues depends on the relative strength

of positive and negative interactions: if negative
interactions are stronger than the positive ones, then
stability is enhanced; if the reverse is true, then
the outlier eigenvalues determine stability, and the
system will oscillate widely.

Degree distribution In natural ecosystems, some
species establish many more interactions than
others. In a random-matrix context, this amounts
to studying matrices in which the location of the
nonzero coefficients is determined by the adjacency
matrix A of the underlying ecological network
(where Aij = 1 stands for an interaction between
species i and j), where the degree distribution is
broad. Much progress has been made in this area
for the case in which the nonzero coefficients are
i.i.d. random variables. In this case, the eigenvalues
still fall in a circle in the complex plane, but the
density is not uniform (as in the circular law), but
rather concentrated around the origin (Figure 6.4).
Yan et al. (2017) derived a stability criterion for the
case of heterogeneous degrees, and in mathematics
Cook et al. (2018) proved independently a more
general case.
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Figure 6.3 Left: When species are consuming each other such that large bodied species prey upon smaller-bodied ones, the random matrix is
structured. The negative coefficients (open circles, size proportional to their strength) are confined to the upper-triangular part of the matrix, while
the positive ones (filled circles), to the lower-triangular part. Right: This pattern strongly influences the spectrum of the random matrix, which is
now composed of a bulk of eigenvalues falling in an ellipse, and a few outlier eigenvalues that are located close to a circumference (line in the
plot). The whole spectrum can be derived using the methods developed in Allesina et al. (2015).
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Figure 6.4 Left: In natural communities, some species interact with very many other species (generalists), while others with very few (specialists).
If we build a random matrix in which each species establishes a different number of interactions, and the interactions are sampled independently
from a distribution with mean zero and unit variance (Left: positive interactions represented by filled circles, negative by open circles; the size of the
circle is proportional to interaction strengths), then the eigenvalues still fall in a circle in the complex plane, but the distribution is not uniform
(Right). The radius of the circle can be found using the results of Cook et al. (2018).
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Figure 6.5 Left: Species are divided into two groups of different sizes, and interactions only connect species across groups (bipartite structure);
when species interact, the coefficients are sampled from a bivariate normal distribution with means zero, unit variances, and correlation −0.75.
Right: in this case, the spectrum departs dramatically from the elliptic law, but the location of the eigenvalues can be computed applying the
method developed by Grilli et al. (2016).

Block-structured matrices One of the most
studied concepts in networks is that of modularity
(Newman and Girvan 2004): often, nodes in
complex networks can be grouped such that the
bulk of interactions are found between members
of the same group, and few interactions connect
nodes across groups. In ecology, the idea that a
modular structure would be conducive to stability
was already highlighted in May’s original study
(May 1972), but it was only recently that new results
in random matrix theory allowed for a thorough
calculation (Grilli et al. 2016). The spectrum of
block-structured matrices can differ dramatically
from that of unstructured ones (Figure 6.5). For
species divided into two groups, Grilli et al. (2016)
showed that an organization in modules can be
either stabilizing or destabilizing, depending on the
moments of the distribution of interaction strengths.

Species abundances In the Generalized Lotka–
Volterra model (Box 6.4), the community matrix
takes a particularly simple form: Mij = Aijx∗

i , where
Aij is the effect of species j on the growth of i and
x∗

i is the equilibrium value of species i. In matrix
form, we can write M = D (x∗) A, where D(·) defines
a diagonal matrix given a vector. Previously, we

have studied M directly as a random matrix. How-
ever, one could define A as a random matrix of
species interaction, x∗ as a (positive) random vector
of species abundances at equilibrium, and study
their product M using new methods in random
matrix theory. For a given definition of the interac-
tion matrix A, one can then probe how the distribu-
tion of species abundances (x∗) influences stability.
This calculation was recently performed by Gibbs
et al. (2018), who found that if A is stable, then
almost any species-abundance distribution has no
effect on stability. The same conclusion was found
by Stone (2018) using a different method.

Spatial networks Finally, so far we have consid-
ered “closed” ecological communities, in which
new species cannot enter the system. Using a
random-matrix approach, Gravel et al. (2016)
have studied the case in which several ecological
communities are linked by dispersal, resulting in a
stabilization of the “meta-ecosystem” when disper-
sal is intermediate. Interestingly, the mathematical
treatment of this problem has strong parallels
with the case in which we let self-regulation vary
among species. The results of Barabás et al. (2017)
showed that food webs cannot have stable equilibria
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unless the majority of species exhibit strong self-
regulation, again finding that intermediate levels
of self-regulation were the most conducive to
stability.

The previous examples show that the random-
matrix approach to ecological dynamics illustrated
in this chapter is experiencing a rapid growth, and
that many special cases of ecological network struc-
ture have been solved. While tackling arbitrary eco-
logical network structures is still beyond what can
be accomplished with current mathematical tools,
these results provide a solid foundation upon which
more complex results can be built.

6.6 Other applications

In the previous sections, we dealt with the problem
of the local asymptotic stability of large ecologi-
cal communities, which was historically the first
application of random matrix theory in ecology.
However, many other ecological problems can be
expressed using matrices, eigenvalues and eigen-
vectors. Here we briefly introduce some of the eco-
logical problems where a random-matrix approach
could yield interesting insights.

Spread of diseases in contact network: two seemingly
distant ecological problems turn out to have the
same mathematical formulation, and random matri-
ces can help make sense of them both.

Take n individuals, with each being in one of two
states: S, susceptible to a disease, or I infected with
the disease and infectious. If the individuals can
recover and become susceptible again, we speak of
an S-I-S model. In the simplest model of this kind,
infected individuals randomly transmit the disease
to susceptible individuals. A more refined model
is one in which the contacts between individuals
are encoded in a network, or equivalently in its
adjacency matrix A. An infected node/individual
can transmit to the nodes it connects to, and these
to their neighbors, and so forth. One of the main
questions in this setting is to determine whether an
epidemic outbreak will occur, and how the proba-
bility of an epidemic is mediated by the structure
of the contact network. Under simple assumptions,
the possibility of an epidemic depends on the largest
eigenvalue of the matrix A, the transmission rate

among neighboring individuals, and the recovery
rate (Pastor-Satorras et al. 2015). If we think of A as
a (structured) random network, then we can write
criteria for the epidemic threshold reminiscent of
May’s stability criterion.

Metapopulation persistence: now turn to a land-
scape in which there are n patches of suitable habi-
tat, and in each patch the species of interest is either
present or absent. The patches are connected by
dispersal, with colonization turning empty patches
into occupied ones, and (local) extinctions playing
the opposite role. Then we can think of patches as
“susceptible” to colonization or already “infected,”
drawing a parallel with the S-I-S system presented
previously. The parallel runs much deeper than one
would imagine: the formula derived by Hanski and
Ovaskainen (2000) for the survival of a metapopu-
lation is exactly the same as that of Van Mieghem
et al. (2009) for the occurrence of epidemics, with the
network of dispersal playing the role of the contact
network for disease spread.

Exploiting this parallel, Grilli et al. (2015)
derived the conditions for the persistence of a meta-
population in a “random fragmented landscape,”
in which patches of suitable habitat are randomly
arranged in a d-dimensional landscape.

Feasibility: biological models need to be robust: if
the nature of an outcome relies on the “fine-tuning”
of parameters, then the relevance for biology is
very limited, as biological parameters are known to
vary quite substantially in time, space, and among
individuals and populations. When examining pop-
ulation dynamics and coexistence of ecological
communities, one can ask for which range of
parameters would we expect coexistence, a type of
calculation known as sensitivity analysis (Barabás
et al. 2014).

When considering the Generalized Lotka–
Volterra model described in Box 6.4, a question on
sensitivity and robustness would be to ask for which
subspace of matrices A and growth rates r would
a feasible equilibrium exist (i.e., an equilibrium x∗
such that all species have positive density). The
simplest case is that in which we are provided with a
fixed matrix A, and we want to measure the space of
growth rates leading to feasibility (Rohr et al. 2014).
Because the scaling of the growth rates does not
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matter (only their relative strengths), we can assume
that they lie on a unit (hyper-)sphere (

∑
r2

i = 1 ),
in which case the problem becomes equivalent to
measuring a solid angle in S dimensions. Similarly,
one can fix the growth rates, and let the matrix be
random, and measure the probability of feasibility
in this setting (Stone 2016). Finally, one can let both
the growth rates and the matrix be random, and
measure the expected region of coexistence using
random matrix theory (Grilli et al. 2017).

In fact, one can go a step further, and investigate
how many species would coexist under Lotka–
Volterra dynamics when all of the parameters are
sampled from given distributions (Serván et al.
2018). Taking the parameters to be random allows
one to identify the main drivers of species richness,
abundance distribution, and dynamics (Barbier
et al. 2018).

Network structure: ecologists are building larger
and larger networks to describe the interactions
between species. Networks are complex objects, and
are difficult to characterize using a few values. The
wealth of network metrics that has been proposed
over the years is a testament to the difficulty of
this problem. In physics and mathematics, spectral
graph theory is becoming a standard way to examine
large networks (Van Mieghem 2010). Basically, each
network can be mapped to a matrix, and the eigen-
values and eigenvectors completely characterize the
matrix (and thus, the network). In practice, a cursory
examination of the eigenvalues of the adjacency
matrix of a network (or other matrices associated
with the network, such as the Laplacian) can yield
insights on the large-scale structure of the network,
including the presence of modules, a hierarchical
organization, and the degree distribution.

Clearly, random matrix theory would allow to
predict the typical spectrum of networks possessing
a given set of properties, providing a framework
to characterize large-scale patterns in ecological
networks.

6.7 Open problems and conclusions

We have shown that a random matrix approach can
yield important insights in theoretical ecology. In
this area, random matrices can serve two main

purposes: i) be used to produce cogent null-models
for ecological network structure; ii) identify which
parameters matter the most for the dynamics of
large communities. Notably, this approach com-
plements the classic analysis of small ecological
systems, by providing a means to examine large
communities using a new mathematical toolbox.

We have illustrated some of the basic results in
the theory of random matrices, and showcased a
number of applications using structured random
matrices. The vast number of results might give the
illusion of a senescent subfield, in which all that
could be done has been done already, and what
has not been done is either incredibly difficult or
impossible to do. This characterization would be
very far from reality: new tools are appearing in the
mathematical literature at a very fast pace, and most
of them have direct applicability in ecology and
biology in general. Moreover, several fundamental
problems are still outstanding.

Take the circular law: we have mentioned in pass-
ing that for this result to hold the number of nonzero
coefficients per row/column must be sufficiently
high (i.e., should go to infinity when the size of
the matrix goes to infinity). In many biological net-
works, even when we consider a large number of
nodes, the number of interactions per species will be
capped: when S → ∞, SC → k. What happens to the
spectrum in this case? In Figure 6.5 we show that,
when each species entertains the same number of
interactions (five in the Figure), then the spectrum,
rather than describing a circle in the complex plane,
resembles a diamond. Moreover, one can show that
in this case the result is not universal: different
distributions of the nonzero coefficients (say all with
mean zero and unit variance) will yield different
spectra. As of today, a characterization of this case
is completely open.

Similarly, extending the results on structured
random matrices to more complex cases would
also be needed for applications. For example,
in Figure 6.6 we draw the spectrum of a tri-
trophic system, in which producers are consumed
by herbivores, and carnivores consume herbivores
and other carnivores. Though the spectrum looks
reasonably simple, its actual shape is unknown at
the moment.
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Figure 6.6 Top: When each species interacts with a small, fixed number of other species, the spectrum departs strongly from the circular law,
leading to an interesting diamond shape in the complex plane. The exact shape of the spectrum, and the effect of the distribution of coefficients on
the shape are an open problem in random matrix theory. Bottom: More complex cases of structured random matrices have not been studied yet. For
example, the panels show the structure (Left) and spectrum (Right) of a tri-trophic system, in which species are either producers, herbivores, or
carnivores. The spectrum looks reasonably simple to study, and yet its characterization is an open problem.

In summary, random matrices provide theoret-
ical ecologists with a new, vast toolbox to tackle
problems dealing with highly speciose ecological
communities. Though the application of random
matrix theory to ecology dates back to the seminal

work of May, all the other results presented here
were derived in the past seven years. As such, this
research area is moving at a very fast pace, and
has the potential to influence many sub-discipline
of ecology and biology in general.
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CHAPTER 7

A structural theory of mutualistic
networks
Jordi Bascompte and Antonio Ferrera

7.1 Introduction

Mutualistic interactions among free-living species
such as those between plants and their animal
pollinators or seed dispersers have shaped much
of biodiversity on Earth. Ironically, however,
mutualism did not play a major role in the theo-
retical agenda until recently. The first theoretical
approaches to mutualistic interactions considered
those interactions as ill-behaved, leading towards
runaway dynamics with abundances growing to
infinity (e.g., May 1981). A second round of models
attempted to bring biological realism by considering
density-dependence effects as a way to stabilize
mutualism. These models focussed on pairs of
highly specific interactions, mimicking work on
iconic interactions such as those between senita cac-
tus and its pollinating seed-eating moth and looked
at mutualism from the point of view of consumer-
resource dynamics (see, e.g., Holland et al. 2002).
An alternative way to stabilize the dynamics of
mutualistic systems was by considering the mutu-
alist interaction embedded within other interaction
types (Ringel et al. 1996). These authors already
showed that, in this broader context, mutualism
may stabilize ecological interactions, thus reversing
the conclusion of the earlier models that seem to
suggest mutualism should be rare in nature.

In parallel, a different generation of models was
studying the role of spatial structure in gene flow
and local adaptation of mutualistic interactions

(Nuismer et al. 2004). This work showed that spatial
structure affects the outcome of local interactions,
maintains allelic polymorphism, and leads to trait
mismatching. This theoretical approach was key to
the development of the geographic mosaic theory
of coevolution, which sustains that the outcome of
species interactions changes across habitat patches
as a function of the set of copollinators inhabiting
each of these patches. This results in some
patches acting as truly coevolutionary hotspots
and others acting as coevolutionary coldspots
(Thompson 2005).

The concept of diffuse coevolution (Iwao and
Rausher 1997) and the discussion about the degree
of specialization of pollinators (Waser et al. 1996)
started moving into the community context of
plant-animal interactions. Specifically, Iwao and
Rausher (1997) presented a set of conditions for
coevolution to be pairwise, rather than diffuse.
Namely, susceptibilities to different herbivore
species should be uncorrelated, the presence
of a herbivore should not affect the amount of
damage caused by another herbivore, and the
impact of one herbivore on plant fitness should
not depend on the absence or presence of other
herbivores. These authors proceeded by presenting
an experimental design to partition the total effect of
one herbivore on plant fitness into components that
can be understood as pairwise or diffuse. Waser
et al. (1996), in a highly influential paper, asked
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whether plant-pollinator interactions are eminently
specialized (as many authors assumed at the time)
or generalist. They concluded that the large majority
are eminently generalized and came up with an
explanation.

Delving deeper into the structure of interactions,
Bascompte et al. (2003) described the community-
wide patterns in plant-animal mutualistic networks
(Figure 7.1). Mutualistic interactions amongst free-
living species are organized in a nested pattern,
with specialist plants, for example, interacting with
proper subsets of the animals that more generalist
plants interact with (see also Vázquez and Aizen
(2004) for an equivalent result). This was received
with interest by some evolutionary biologists as it
helped dispelling the idea that coevolution among
free-living species has to lead to either highly

specific one-on-one interactions or highly diffuse
assemblages intractable to analysis (Thompson
2005). Specifically, despite the complexity of these
networks, they can be described by an apparently
simple rule.

Bascompte et al. (2003) already discussed the
potential implications of this community-wide
pattern for community robustness and coevolution,
but these were quite speculative ideas. More formal
explorations had to wait for the development of a
conceptual framework similar to the one existing for
predation and competition. The first such attempt
came up three years after in the context of a similar
analysis of weighted networks for which there was
empirical information not only on who-interacts-
with-whom, but on the strength of this interaction
(Bascompte et al. 2006a).

Figure 7.1 The interactions of mutual benefit between fruiting plants and their seed dispersers shape complex networks of mutual dependencies.
The feasibility and persistence of these communities, the topic of this chapter, depend on the balance between competition within sets and
mutualism between sets. Drawing by J. Pérez-Rojas illustrating a subset of a seed-dispersal community in Nava de las Correhuelas, Cazorla, South
East Spain compiled by P. Jordano (network M_SD_021 from www.web-of-life.es). Bird species are, from left to right, Turdus merula, Turdus iliacus,
and Sitta europaea. Plant species are, from left to right, Crataegus monogyna, Taxus bacatta, and Paeonia officinalis.

www.web-of-life.es
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In what follows, we provide a chronological
account of the major steps in building a theory of
mutualistic networks. The purpose is threefold.
First, it will provide a short summary of a fast-
growing field. Second, it may help to link different
approaches to better understand to what degree
conclusions depend on their assumptions and
limitations. Third, it will illustrate a structural
stability approach to community ecology.

7.2 A purely dynamic stability approach
to mutualistic networks

7.2.1 Early models

Bascompte et al. (2006a) reported that mutualistic
networks are built from weak and asymmetric links
among species. Indeed, the majority of interactions
are really weak with only a few strong ones. In such
rare cases, the strong dependence of a plant on an
animal was accompanied by a much weaker depen-
dence of the animal on that plant. They then pro-
ceeded by exploring the dynamical implications of
these patterns. This was the starting point of a series
of community models of mutualistic networks that
have been refined through the last few years. The
approach followed by the authors was quite sim-
plistic. Their model included two sets of species that
interacted via mutualism, but lacked interspecific
competition among species within a set, assumed
linear functional responses, and, more importantly,
considered that all animal species interacted with all
plant species. The model, an extension of the two-
species mutualistic model by Robert May and others
(May 1981; Ringel et al. 1996), read as follows:

dN(P,A)

i
dt

= r(P,A)

i N(P,A)

i −
(
β

(P,A)

0

)
i

(
N(P,A)

i

)2

+
S(A,P)∑
j=1

γ
(P,A)

ij N(P,A)

i N(A,P)

j , (7.1)

where N(P)

i and N(A)

j represent the abundances of

plant i and animal j, respectively; r(P,A)

i are the

growth rates of plant/animal i;
(
β

(P,A)

0

)
i

are the

intraspecific competition coefficients for plant/
animal i; γ

(P,A)

ij represent the per-capita effect of
the mutualistic interaction of animal/plant j on

plant/animal i in the limit of very small biomasses,
and S(P,A) is the number of plant/animal species.
Here, we will be using the notation of Bastolla et al.
(2009) (see also Table 7.1).

For the sake of analytical simplification, Bas-
compte et al. (2006a) further assumed a mean field
assumption in which all species within each set are

equivalent to one another (r(P,A)

i = r(P,A),
(
β

(P,A)

0

)
i
=

β
(P,A)

0 , γ (P,A)

ij = γ (P,A)). This simplified system has
a non-trivial coexistence solution that will be both
feasible (i.e., all species have positive abundances)
and locally stable (i.e., the system will return to the
solution after an infinitesimally small perturbation
of the densities; Figure 7.2) if, and only if:

γ (P)γ (A) <
β

(P)

0 β
(A)

0

S(P)S(A)
, (7.2)

provided that all parameters are positive. Positive
growth rates can be assumed for facultative
mutualism as those describing pollination and seed
dispersal.

The previous condition is quite similar to May’s
condition for the stability of a randomly built model
ecosystem (May 1972), which can be written as:

γ <
1√
SC

, (7.3)

where γ , S, and C are the average interaction
strength, number of species, and connectivity (i.e.,
fraction of realized interactions), respectively.

7.2.2 Adding non-linear functional responses

As noted, the previous result appears in the context
of a highly simplified model. The first highlighted
omission was the lack of a saturating functional
response representing that the benefits to mutualists
saturate with the densities of their mutualistic part-
ners, a point made by Holland et al. (2006) and later
explored in more detail in Okuyama and Holland
(2008). Their model can be written as:

dN(P,A)

i
dt

= r(P,A)

i N(P,A)

i −
(
β

(P,A)

0

)
i

(
N(P,A)

i

)2

+
S(A,P)∑
j=1

γ
(P,A)

ij N(P,A)

i N(A,P)

j

1 + ∑
kh(P,A)

ik γ
(P,A)

ik N(A,P)

k

. (7.4)
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Table 7.1 Symbols used in this chapter.

Symbol Description

N(P,A)

i Abundance density of (Plant/Animal) species i

r(P,A)

i Growth rate of (Plant/Animal) species i

β (P,A) Competition matrix for Plants/Animals, with elements
(
β (P,A)

)
ij(

β
(P,A)

0

)
i

Intraespecific competition for (Plant/Animal) species i,
(
β

(P,A)

0

)
i
= β

(P,A)

ii

ρ (P,A) Interspecific niche overlap coefficient for mean field Plants/Animals competition matrix.

ρ̃(P,A) Effective Interspecific niche overlap coefficient for effective mean field Plants/Animals competition matrix

γ (P,A) Mutualist matrix for Plants/Animals, with elements
(
γ (P,A)

)
ij

C(P,A) Effective competition matrix for Plants/Animals

p(P,A)

i Effective growth rate of (Plant/Animal) species i

S(P,A)

i Number of (Plant/Animal) species

S̄(P,A)

i Expected biodiversity scale for (Plant/Animal) set.

I Identity matrix

h(P,A) Handling time for Plants/Animals.

λ1(B) Highest eigenvalue of matrix B ordered as R (λ1) ≥ R (λ2) ≥ · · · ≥ R (λn), where R (λi) is the real part of eigenvalue λi

σ̄ (B) Highest singular value of matrix B, ordered as σ̄ = σ1 ≥ σ2 ≥ · · · ≥= σ

Figure 7.2 This cartoon illustrates the concept of linear stability, which has been central to the development of theoretical ecology, including some
of the results here discussed on mutualistic networks. In this mechanical analogy, the ball rests at an equilibrium both in the left and the right. The
scenario on the left depicts an unstable solution: the ball will roll away following an infinitesimally small perturbation. The scenario on the right, in
turn, depicts a stable solution: the ball will return to its original equilibrium after suffering such a small perturbation. Global stability extends this
definition for the case of any arbitrary perturbation (not just infinitesimally small). Note that, in this approach, one assesses the stability of a
solution given an arbitrary set of parameter values and assumes that perturbations only affect the state variable (i.e., the density of the population),
but not any parameter such as growth rates. This is a particular dimension of stability that will be complemented by the one of structural stability.

Note that, although this looks somewhat different
to the original equations appearing in Okuyama
and Holland (2008), both models are completely
equivalent. The non-linear term on the right-hand
side (RHS) represents the saturation of the beneficial
effects of mutualism on population growth. It

corresponds to a Holling type II functional response,
which for a two-species case reads f (N1, N2) =
(γ N1N2) / (1 + hγ N2) . The constant h represents
a handling time and in the large N limit bounds
the maximum contribution from mutualism to
the growth rates of N1 to 1/h, preventing it
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from diverging. The summation factor in the
denominator of the third term in Equations (7.4)
incorporates the total density of species that interact
with mutualist i, while the hik corresponds to a
species dependent handling time. Consequently,
1/hik now yields the maximum benefit for species i
of the mutualistic interactions with species k.

In a first paper, Holland et al. (2006) used a
simplified version of Model (7.4) that still assumed
equivalence amongst all species within a set as in
Bascompte et al. (2006a). In that work, the authors
claimed that non-linear functional responses were
enough to ensure community persistence, thus
downplaying the role of network structure. While
this result is generally correct, this does not mean
Condition (7.2) does not play a role in their model,
though. What Holland et al. (2006) missed is that
there are two qualitatively different sets of solutions
(what later on will be called weak and strong
mutualistic regimes), and that Condition (7.2)
represents the boundary between such solutions
(Bascompte et al. 2006b).

The comment by Holland et al. (2006) and the sub-
sequent response by Bascompte et al. (2006b) played
an important role in further expanding the theory
of mutualistic networks in the direction of bringing
more realism. The follow-up by Okuyama and
Holland (2008) was based on a numerical simulation
of the full Model (7.4) to find its stable equilibrium
points and analyse their resilience. Resilience is
defined as the rate of return to the equilibrium
following an infinitesimally small perturbation.
Denote by R (λi) the real part of eigenvalue λi of
the Jacobian matrix, computed at the equilibrium
solution. The system’s resilience is then deter-
mined by the highest such R (λi) —the system’s
spectral abscissa as defined later on. Through that
approach, Okuyama and Holland (2008) found
that although resilience is largely independent of
nestedness in general, nestedness slightly increase
resilience when mutualistic strengths are small and
asymmetric and connectivity is small. This is the
set of conditions observed in nature in most cases
(Bascompte et al. 2006a). Most of their simulations,
though, seem to take place in a region of parameter
space where strong mutualism, and hence nonlinear
response, ought to hold. In this regime, they find
that community resilience is enhanced by increasing

species richness and connectivity, and through
strong, symmetric interaction strengths of highly
nested networks. The fact that only a minor set
of simulations are run in the weakly coupling
regime, however, makes it difficult to compare with
other research which has centered on the weakly
interacting regime. This will become clearer later on.

7.2.3 Adding interspecific competition
within sets

The model by Bastolla et al. (2009) originally arose as
an attempt to incorporate both non-linear functional
responses—as in Holland et al. (2006) and Okuyama
and Holland (2008)—and interspecific competition,
while at the same time remaining within an
analytical framework as in Bascompte et al. (2006a).
The addition of competition is important, as the
effects of network structure on mutualistic networks
should be understood as affecting the relative
balance between competition and facilitation. The
model subsequently became the field standard for
studies of mutualistic networks (e.g., James et al.
2012; Suweis et al. 2013). It reads as follows:

dN(P,A)

i
dt

= r(P,A)

i N(P,A)

i −
S(P,A)∑

j=1

β
(P,A)

ij N(P,A)

i N(P,A)

j

+
S(A,P)∑

k=1

γ
(P,A)

ik N(P,A)

i N(A,P)

k

1 + h(P,A)
∑S(A,P)

l=1 γ
(P,A)

il N(A,P)

l

,

(7.5)

where symbols are as in the previous equation (see
also Table 7.1), and the handling times h(P,A) are
taken to be the same for each set of species. As with
the previous two papers, the functional response is
given by a Holling Type II term.

Direct competition between species i and j is indi-
cated by −β

(P,A)

ij N(P,A)

i N(P,A)

j for plants and animals,

respectively, and the competition matrices β
(P,A)

ij are
assumed to be of mean field form for both sets. This
means that all interspecific competitive interactions
are assumed to be of equal intensity within each set.
Likewise, all intraspecific competitive interaction
coefficients are assumed to be equal and normalized
to β

(P,A)

ii = 1 for all species. That is,

β
(P,A)

ij = ρ(P,A) +
(

1 − ρ(P,A)δij

)
, (7.6)



OUP CORRECTED PROOF – FINAL, 6/4/2020, SPi

98 T H E O R E T I C A L E C O L O G Y

weak mutualism strong mutualism

mutualistic strength

Figure 7.3 As mutualistic strength is increased, the weak mutualistic regime loses stability and a new solution, the strong mutualism, becomes
stable. In this transition some species may become extinct. Both Bascompte et al. (2006a) and Bastolla et al. (2009) focussed on the weak regime,
while the conditions considered in posterior papers sometimes correspond to the strong regime.

where δij is the Kronecker’s Delta (1 if i = j, 0
otherwise). We defer to Section 7.3.1 for a discussion
about the ecological implications of this choice.

Bastolla et al. (2009) found two different types of
analytical solutions to Equations (7.5) (Figure 7.3).
The first one, referred to as weak mutualism and the
focus of Bastolla et al.’s result, is characterized by
small equilibrium biomasses N � 1/hγ . In that
regime, we may expand the (1 + hγ N)−1 factor
in the denominator of the functional response in
powers of hγ N. The linear response regime is then
analytically recovered as a valid approximation,
corresponding simply to the zeroth order term
in the series expansion. The second type of fixed
point, referred to as strong mutualism, corresponds
to equilibrium biomasses N of order 1/hγ . In this
case, the previously mentioned power expansion
can not be performed, but it is still possible to obtain
analytical expressions by using the fact that the
handling time h is small compared with the typical
intrinsic time of growth 1/r (whence terms of order
hr may be neglected with respect to hγ N).

In the weak mutualism regime, and using the
linear functional response approximation, the fixed
point equations for the plant set (for instance) can
be rewritten at the dominant order in h as

∑
j

C(P)

ij N(P)

j = p(P)

i , (7.7)

with an equivalent expression for the animals. Note
that these equations are formally equivalent to

those corresponding to the fixed points of a purely
competitive system. Therefore, the matrix C(P)

ij will
be referred to as the effective competition matrix for
plants, whereas p(P)

i will be denoted as the effective
growth rates for the plant set. At order zero in h, they
are given by:

C(P)

ij = β
(P)

ij −
∑

kl

γ
(P)

ik

(
β

(A)

kl

)(−1)

γ
(A)

lj , (7.8)

p(P)

i = r(P)

i +
∑

kl

γ
(P)

ik

(
β

(A)

kl

)(−1)

r(A)

l . (7.9)

The use of the effective competition framework is
one of the key insights that can be found of Bas-
tolla et al. (2009). Two important points should be
emphasized here. The first one is that, as is clear
from these two expressions, this formalism is a con-
ceptual extension of the direct competition matrix which
allows us to incorporate the indirect competitive effects
generated by the mutualistic interaction into the common
framework of competition theory. The second point is
that a direct implication of this approach would
seem to be that the direct competition matrix should
only account for competitive effects arising from lim-
iting factors not explicitly present in the model (e.g.,
sunlight, water, and nutrients). Indeed, if the compet-
itive effects generated by the mutualistic interac-
tion were incorporated into the direct competition
matrix, they would be accounted for twice as would
become apparent when constructing the effective
competition matrix.
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We may now proceed to the analysis of the
dynamical stability of the solutions. If the mutu-
alistic network is fully connected, it may be seen
that a necessary condition for the local stability of a
fully feasible system is that the relation,

γ
(P)
0 γ

(A)
0 < β

(P)
0 β

(A)
0

(
ρ(A) + 1 − ρ(A)

S(A)

)(
ρ(P) + 1 − ρ(P)

S(P)

)
,

(7.10)

must be satisfied. This generalizes the result by
Bascompte et al. (2006a) represented by Equation
(7.2), becoming identical in the limit of vanishing
interspecific competition. Notice that for non-null
interspecific competition parameters ρ(P,A), the
maximum value of mutualistic interaction strengths
in the weak mutualism regime do not need to
vanish for large communities (large S(P) and S(A))
as was the case for systems where competition
is not present (see Condition (7.2)). In this large
community limit, the interaction strengths are now
limited by

γ
(P)

0 γ
(A)

0 < β
(P)

0 β
(A)

0 ρ(A)ρ(P). (7.11)

Crucially, note how in the simultaneous limit of
large S(P,A) and ρ(P,A) → 0 the weak mutualism
regime tends to become unstable. We will come back
to this result later on. For mutualistic interactions
stronger than Equation (7.10) the weak mutualism
fixed point is not stable, at which point the strong
mutualism fixed point becomes stable.

7.3 A structural stability approach to
mutualistic networks

An important aspect of the paper by Bastolla et al.
(2009), beyond the previous study of dynamic sta-
bility of weak and strong mutualistic regimes, is
that it built on the concept of structural stability
which had previously been used by Bastolla and
colleagues in the analysis of exclusively competitive
communities (Bastolla et al., 2005a,b).

The concept of structural stability has formed part
of the general study of the behavior of dynamical
systems for quite some time (Wiggins, 1990, see
Box 7.1 for a general definition and a historical
perspective). In the context of this chapter, structural
stability is defined in a narrower sense as follows.
A system will be considered structurally stable
against changes in the components of the vector

of growth rates for as long as it shows continuous
existence of solutions which remain simultaneously
dynamically stable and fully feasible (Roberts 1974;
Vandermeer 1975; Rohr et al. 2014; Stone 2016). The
incorporation of this important concept constitutes
a turning point in the study of mutualism.
Indeed, structural stability provides an interesting
framework to address the limits on the number of
coexisting species and the robustness of mutualistic
communities.

In order to put structural stability in context, con-
sider that robustness in ecology has been tradition-
ally treated through two main approaches, each
with its own limitations as we will see later on.
Numerical simulations usually parametrize a model
and measure the fraction of initial species surviv-
ing a certain number of iterations. Analytical meth-
ods, on the other hand, have mainly relied on the
concept of local (asymptotic) stability. As already
noted, this essentially finds a solutions of the model
for an arbitrary choice of parameter values, and
looks at whether the system will return to this equi-
librium after an infinitesimally small perturbation
of the state dynamical variable (densities). Obvi-
ously however perturbations may also affect the
parameters of the model, such as growth rates or
mutualistic interaction strengths. Hence, the picture
provided by looking only at perturbations of the
dynamical variables is incomplete.

7.3.1 Preliminary work on the limits to the
number of coexisting species in purely
competitive systems

An important set of papers by Ugo Bastolla and col-
laborators laid the foundations for a new approach
to mutualistic networks (Bastolla et al. 2005a,b).
In the first of these papers, the authors addressed
the case of purely competitive communities and
tried to develop a natural scale in the number of
coexisting species that the system can pack before
becoming destabilized by environmentally induced
fluctuations in the growth rates. Since the formalism
presented in those papers will constitute an integral
part of later developments, it pays to look at it in
some detail in order to understand their power and
limitations.

Bastolla et al. (2005a,b) started by studying a
purely competitive system with a Competition
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Box 7.1 Structural stability

A system is said to be structurally stable if its dynamical
behavior (i.e., limit cycles, character and number of its fixed
points, etc) is not altered by a smooth change on the value
of its parameters or structure of the model itself (Wiggins
1990). Structural stability has a long tradition in several fields
of research. Most notably, it is at the core of René Thom’s
Catastrophe Theory (Thom 1994) and in its arguably most
successful derivation, namely the study of tipping points in
complex systems (Scheffer et al. 2001). In developmental
biology, Alberch (1989) and Goodwin (1990) championed
a structuralist approach that shifted the emphasis from a
functional, historical explanation to an internalist explana-
tion based on dynamical principles. Thus, Alberch would
answer the question of why the limb of tetrapods has
remained invariant for such a long evolutionary time by
saying that such a structure is simply the one compatible with
a broader range of developmental conditions (Alberch 1989:
Figure 7.4).

Morphogenetic parameter X1

M
or

ph
og

en
et

ic
 p

ar
am

et
er

 X
2

sp1

sp2

ED

FC

B

A

Figure 7.4 The figure represents the structuralist approach in
developmental biology championed by Pere Alberch and
colleagues. It depicts an ideal morphogenetic space with dots in
the circles representing the individuals of a hypothetical
population. Although the morphogenetic parameters may change,
this will not result in a change in phenotype as long as the values
are constrained to each of the domains, e.g., A and D. Only when
the morphogenetic change pushes the individual towards the
threshold (e.g., from D to E), there is a resulting change in
phenotype. Under this structuralist view, some structures or
phenotypes are more evolutionary conserved than others because
they are compatible with a broader range of developmental
conditions. Some populations, such as number 1, are close to the
boundary and therefore more prone to experience an abrupt
change in phenotype. Redrawn from from Alberch (1989).

In turn, control engineers had been developing the con-
cept of a “robust plant,” i.e., a plant able to function within
the specified tolerance levels in spite of unknown noise and
disturbances that may affect either the plant’s input, or its
inner workings, or both, at least from the 70s. In this regard,
it is fascinating that some of the most outstanding figures in
that field of engineering soon turned to ecology as a fertile
ground in which their ideas could be put to test, obviously
not from the point of view of an operator controlled plant,
but rather considering it as a natural system that ought
to be robust “by construction” in order to withstand the
inevitable environmental perturbations. For instance, Siljak
(1978, 1991), Vidyasagar (1981), and Kaszkurewicz and
Bhaya (2000), to name but the most salient examples, ded-
icated entire chapters in their books to studying the system
described by the Lotka–Volterra equations. From a physical
perspective, Ilya Prigogine also discussed the implications of
structural stability for such ecological models in the context
of innovation and the appearance of new species into the
system (Prigogine 1980). Furthermore, it is important to
realize that these authors come from a field in which complex
systems formed by a large number of coupled units are com-
mon, hence they were also equipped with the tools to study
the network perspective. It bears noting, however, that in
their case the paramount demand on the system was that it
maintained dynamical stability in the face of the external dis-
turbances, without much concern for its feasibility. This being
said, the criteria developed for instance by Siljak (1991)
around the concept of connective stability are several steps
beyond the standard results ensuring global dynamical sta-
bility that have been used in Ecology for quite sometime now.

The factor that ended up dooming these efforts into a
relative and undeserved obscurity was first and foremost a
lack of contact with practitioner ecologists. This had the twin
effects of, on one hand setting the problem up in terms of
species configurations that in many cases felt very contrived
from the ecological perspective. And on the other hand, for
the most part the mathematical apparatus involved was also
alien for a typical ecologist, and evolved in directions that
kept increasing the intellectual distance between the two
fields. On top of this, mainstream ecological theory was very
much aligned with the concept of linear stability (Justus
2014: Figure 7.2). Some worth mentioning exceptions are
ecologists that long ago noted that the conditions for sta-
bility are not sufficient and that one should also look at the
conditions for feasibility (Roberts 1974; Vandermeer 1975;
Case 1990).
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Matrix assumed to be of mean field form. This
approximation is expected to hold when there is
a set of nutrients on which all species are simultane-
ously dependent in the same fashion. The essence
of the mean field approximation rests in assuming
that all species are strictly equivalent to each other.
Specifically, all interspecific interactions β ij have
the same value and all intraspecific interactions
are also equal to one another—and normalized to
βii = 1. A direct implication of these two facts is that
a mean field competition matrix for S species has
actually only two different eigenvalues. Namely, the
largest one (λ1) with multiplicity one and λ2 with
multiplicity S − 1. One has, in particular,

λ1 = Sρ + (1 − ρ) (7.12)

and

λ2 = λ3 = · · · = λn = 1 − ρ. (7.13)

Furthermore, since the number of species (hence
the trace of β, Tr(β)) is fixed, one can extract one
eigenvalue from the other. Hence for a fixed number
of species there is actually only one eigenvalue left
as a free parameter in the model. This is a key
observation: for a fixed number of species the mean field
assumption reduces all the degrees of freedom normally
associated to a matrix to just one, ρ. Thus in the mean
field approximation either ρ or the value of any of
the two distinct matrix eigenvalues can be used to
completely characterize the dynamics of the sys-
tem represented by the matrix. We note also that
Equation (7.12) is equivalent to

ρ = λ1 − 1
S − 1

. (7.14)

We now go back to Bastolla et al. (2005a,b). The
authors first take advantage of the previously
mentioned property of mean field matrices to
develop a coexistence condition for a set of
competing species under environmentally induced
changes in the growth rates ri. In particular, let
us consider the distribution of growth rates ri

comprising the growth rates vector r, its average
value 〈r〉 and second momentum

〈
r2〉 = (1/S)

∑
ir

2
i .

Then an inequality can be found which sets a limit
in the maximal variance allowed in the distribution
of the ri under external perturbations: in order to

maintain full feasibility (i.e., Ni > 0 for all species),
this variance must be below a certain ratio which
can be expressed solely in terms of S and ρ.
Namely,

〈
r2〉 − 〈r〉2

〈r〉2 ≤ λ2

λ1
= 1(

S/S̄ + 1
) , (7.15)

where we have substituted the expressions for
λ1 and λ2 previously and we have defined the
quantity,

S̄ = λ2

ρ
= 1 − ρ

ρ
. (7.16)

S̄, which is fixed solely by ρ, provides a good nat-
ural scale for the expected biodiversity associated
to a competitive system with a mean field compe-
tition matrix. If the number of species S is much
larger than S̄, the allowed variability in r becomes
very small and the condition of coexistence becomes
rather stringent—the ecosystem is tightly packed and
consequently not very robust under environmentally
induced variations in the vector of growth rates r.
On the other hand, if S is much smaller than S̄, the
allowed range of variation in growth rates becomes
large and the coexistence condition is not a stringent
factor. In this case, we say that the system is loosely
packed and very robust against perturbations in the
vector of growth rates (see Bastolla et al. 2005a,b).
For this reason we will refer to S̄ as the predicted
biodiversity scale.

The most salient characteristic of the previous
expressions is that ρ increases as λ1 grows towards
its maximum possible value, S (equivalently, S̄
decreases to zero as ρ grows towards 1). Conversely,
ρ decreases as λ1 decreases towards 1 (S̄ increases
to become very large as ρ decreases towards 0).
Hence, the largest λ1 is, the smallest is the associated
biodiversity scale of the system.

After examining the exact mean field case
the authors in Bastolla et al. (2005a,b) turn to
study matrices C̃ that are not necessarily of mean
field type. Again, a coexistence condition under
perturbations to the growth rates can be found
and expressed by an inequality. Also as before, this
expression places an upper limit on the allowed
variability of the growth rates in terms of a ratio
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Box 7.2 Extension to nearly mean field matrices

Let us examine the case where the competition matrix C̃
is not necessarily of mean field type any more. Note that
for technical reasons, however, we will still assume C̃ii = 1.
Likewise, the matrices at hand will still be required to be
symmetric, positive definite, and with strictly positive ele-
ments. In this case, it can be shown that in order to ensure
coexistance of all species, the vector of growth rates has
to satisfy (Equation 7.29 in Bastolla et al. (2005a) after
neglecting extinction thresholds):

S∑
α=2

(rα)2

(
r1

)2
κα ≤ 1, (7.35)

where rα is the component of r along the eigendirection
associated to λα . Here we have called κα = λ1/λα , the
“condition coefficient” corresponding to λα . Note how
each component along the different eigendirections of
the competition matrix is multiplied by its corresponding
condition coefficient.

To simplify this expression, we now substitute all the
condition coefficients by the smallest one, κ2, and use the

fact that
∑S

α=2(r
α)2 = ‖r‖2 − (

r1)2
. Thus, we obtain,

∑
i r2

i − (
r1)2

(
r1

)2
≤ λ2

λ1
, (7.36)

where ri is now the growth rate of species i. This inequality
shows that unless λ2/λ1 
 1,r needs to be largely parallel

to the Perron vector of C in order to ensure coexistence of all
species.

An important issue must be brought up at this point,
however. Let us assume that Equation (7.35) is tight. Then
the inequality resulting by substituting all the sα by s2 will
still be tight if and only if all the sα are at least approximately
equal. That is, Inequality (7.36) will be tight if and only if the
condition

λ2 
 λ3 
 · · · 
 λn (7.37)

is satisfied. Indeed, let us imagine that this is not the case,
and that there are large differences between the λα ‘s and
λ2. Then, we will generally have 1/κ2 = λ2/λ1 � λn/λ1 =
1/κn. But, if 1/κ2 � 1/κn, the RHS of (7.36), which is
1/κ2, will in fact be much larger than what the sum∑

α=2(r
α)2/

(
r1)2

is really allowed to be if it is to satisfy
Inequality (7.35).

Equivalently, if Relation (7.37) is not satisfied, then the
Expression (7.35) places a much tighter limit on the vari-
ability of r than Equation (7.36). Thus, in this case the RHS
of (7.36), which is supposed to set the upper limit to the
variability of r, would in fact never be attainable by the
LHS. It follows then that in this circumstance Expression
(7.36), although still necessary, ceases to provide a sufficient
condition to ensure coexistence of all species in the system.
We conclude then that the RHS of (7.36) will faithfully
represent the allowed variance in the distribution of ri while
maintaining full feasibility only if Relation (7.37) holds.

of quantities which can be computed from C̃ (see
Box 7.2 for some more details of this derivation).
This time around, though, the condition on the
growth rates can be written in terms of the allowed
variability in the modulus of r with respect to its
component, r1, along the principal (Perron) vector
of the competition matrix C̃ —the competition load of
the system in the original notation or the structural
vector as generalized later on. This reads now,

∑
i r2

i − (
r1)2

(
r1

)2 ≤ λ2

λ1
. (7.17)

We must note at this point that, for this inequality to
be meaningful, C̃ must be such that the condition,

λ2

(
C̃

)

 λ3

(
C̃

)

 · · · 
 λn

(
C̃

)
(7.18)

is satisfied. That this expression must hold is dic-
tated because if this were not the case then the
Inequality (7.17) would cease to be tight, in which
case it would not be a sufficient condition to ensure
coexistence of all species any longer (see Box 7.2 for
a lengthier discussion of this issue).

We may now define a parameter analogous to the
mean field niche overlap parameter ρ, the “equiva-
lent mean field inter-specific competition” ρ̃

ρ̃ = λ1
(
C̃

) − 1
S − 1

, (7.19)

which the reader should compare to Equation (7.14).
In other words, ρ̃ behaves as if it was the inter-
specific competition parameter of an (equivalent)
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mean field matrix. With this definition Condition
(7.18) becomes

λ2

(
C̃

)

 λ3

(
C̃

)

 · · · 
 λn

(
C̃

)

 1 − ρ̃. (7.20)

where we have used Tr
[
C̃

]
= S. Again, as in the

exact mean field case, a typical scale of biodiversity
for the system S̄ may be defined in terms of ρ̃

S̄ = 1 − ρ̃

ρ̃
. (7.21)

Provided then that λ2 
 1 − ρ̃, as per Condition
(7.20) again, one may rewrite inequality (7.17) as

∑
i r2

i − (
r1)2

(
r1

)2 ≤ 1

S/S̄ + 1
, (7.22)

and we again have a relation between the maximal
variability in r and the number of species present
in the system as was the case for exact mean field

matrices. Again, the larger is λ1

(
C̃

)
the larger is

ρ̃. Therefore the smaller ρ̃ is, the larger both S̄ and
the allowed variance in the growth rates vector
with respect to the structural vector are. Hence, the
smaller the typical number of species that can stably
coexist in a purely competitive system, and the less
robust the system is.

The reader should now compare Equations (7.19)
and (7.20) with their exact mean field counterparts,
Equations (7.13) and (7.14). It becomes readily
apparent that the former equations amount to
requesting that C̃ be a weak perturbation around
an exact mean field matrix. The result of this
exercise seems inescapable: the extension of the mean
field results to a non-exactly mean field system C̃ is
meaningful only if C̃ is sufficiently close to being mean
field to begin with. Only under this proviso may we
fully characterize the system solely in terms of ρ̃

as in the exact mean field case. In particular, the
existence of a biodiversity scale describable by a
single parameter, as embodied by the Identification
(7.21), only makes sense for matrices that are weak
perturbations around the mean field limit.

Lastly, it is not hard to use the previous
developments to obtain an estimate for the maximal
number of species that can coexist given a certain
level of environmental variability 0 ≤ 
 ≤ 1. For
matrices that are weak perturbations around the
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Figure 7.5 The figure sketches the underlying structural stability
approach used by Bastolla and colleagues both in the original
competitive systems (Bastolla et al. 2005a,b) and its extension to
mutualistic networks (Bastolla et al. 2009). The axes represent some
idealized conditions (e.g., values of growth rates in parameter space).
This approach assumes that there is a certain level of environmental
stochasticity the system has to cope with (grey circle). As more species
are packed, the range of conditions (volume of parameter space)
compatible with their stable coexistence shrinks. At some point,
one can not pack more species (thirty in this example) as the range of
conditions compatible with their coexistence is smaller than the range
of environmental variability. The analytical approach estimates this
maximum number of species or biodiversity scale.

mean field case, and for large S, the expression is
(neglecting threshold populations; Bastolla et al.
(2005a,b)):

Smax ≤ 1 + S̄
(

1 − 





)
∼ S̄

(
1 − 





)
, (7.23)

where the last step is valid only for large commu-
nities. For large competitive overlap close to unity
(S̄ → 0) or large environmental variability (
 → 1),
only one species can survive in the long run. If both
the overlap and the environmental variability are
small, on the other hand, the maximal number of
species can be rather large (Figure 7.5). Note how
S̄ sets again the scale for the maximum number of
allowed species, provided of course that 
 is fixed. We
will come back to this comment.

We conclude therefore that the meaningfulness of
the generalization beyond the exact mean field of
the concept of typical biodiversity scale S̄ entirely
depends on the relevant matrix being close enough
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to a mean field form. Furthermore, it should be clear
that the process by which the results on S̄ are
obtained is completely equivalent in a formal sense
to first defining an “equivalent mean field matrix”

Cemf
ii = 1, Cemf

ij = ρ̃, with ρ̃ given by Equation (7.19),

then substituting C by its approximation Cemf.
Hereafter, the process of substituting a competition
matrix by its related equivalent mean field form will
be referred to as “performing an equivalent mean
field approximation.”

7.3.2 Limits to the number of coexisting species
in systems with competition plus mutualism

The core idea behind Bastolla et al. (2009) is the
extension of the structural results on the biodiver-
sity of competitive systems as described previously
to the more complex setting of two groups of species
interacting by way of direct competition within sets
plus mutualism between sets. The key insight here
is that this can be done, at least in some cases,
by using the effective competition formalism pre-
viously described and performing an equivalent
mean field approximation to the effective compe-
tition matrices. Furthermore, this framework will
allow us to compute the net effect of the mutualistic
interaction on biodiversity.

Indeed, note that as it is clear from Equations
(7.9), the effective competition matrix becomes
the direct competition matrix if we set λ(P,A) = 0.
To obtain explicit analytical expressions, Bastolla
et al. (2009) considered, in line with the previous
approach, direct competition matrices of mean field
type as in Equation (7.6). Thus, we start from the
baseline limit to the number of coexisting species
defined by Equation (7.16) with ρ = ρ(P)—for plants
for instance. We can then incorporate mutualism
between plants and animals and quantify the new
limit to biodiversity. First, both for the case when γ

is mean field itself and for small γ we compute the
effective competition matrix including the effect
of mutualism. Next, we perform a mean field
approximation to it. Lastly, for a given value of
environmental noise, the maximum eigenvalue of
the effective competition matrix will then provide
a limit to biodiversity through Equations (7.19),
(7.21), and (7.23).

Let us first consider a fully connected mutualis-
tic network where all plants interact with all ani-
mals. Note that in this case performing a mean field
approximation to the effective competition is fully
justified since the mutualist matrices are also of
mean field type. The effective interspecific competi-
tion ρ̃

(P)
mut is related to the direct competition without

mutualism as follows:

ρ̃
(P)
mut = ρ(P) − a(P)

1 − a(P)
, (7.24)

where a(P) is a parameter defined in Bastolla et al.
(2009) which is proportional to the strength of
mutualistic interactions. Stable solutions exist for
a(P) < ρ(P), whence ρ̃

(P)
mut must be smaller than

ρ(P). This means that mutualism always reduces
the effective interspecific competition in a fully
connected plant-animal network, hence one should
expect to find that fully connected competitive plus
mutualistic networks allow for higher biodiversity
than their purely competitive counterparts. The
predicted maximum number of plant species in
the presence of mutualism, S̄(P)

mut indeed becomes
(Bastolla et al. 2009):

S̄(P)
mut = 1 − ρ̃

(P)
mut

ρ̃
(P)
mut

= S̄(P)

1 − a(P)/ρ(P)
, (7.25)

which is strictly greater than S̄(P), proving that fully
connected mutualistic networks increase the num-
ber of coexisting species by reducing the effective
interspecific competition. The reader should note
that ρ̃

(P)
mut has been defined so far only for the fully

connected case.
One can now proceed to asses how the mutualistic

effect is shaped by the structure of the network
when departing from the extreme of a fully con-
nected case. The effective competition matrix in the
previous case contained constant terms describing
an average identical effect of one species on another.
Now, however, the elements of the effective compe-
tition matrix C(P)

ij are different and can be written as
(Bastolla et al. 2009):

C(P)
ij(

1 − ρ(P)
) = δij + 1

S̄(P)
+ R

(
1

S(A) + S̄(A)
n(P)

i n(P)
j − n(P)

ij

)
,

(7.26)
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where δij is the Kronecker’s Delta as before, R is the
mutualism-to-competition ratio (Supplementary
Equation 22 in Bastolla et al. 2009), and n(P)

i ,

n(P)

j , and n(P)

ij are the number of interactions of
plant species i, of plant species j, and the shared
interactions between both species, respectively.
Importantly, the RHS of Equation (7.26) decreases
with the nestedness of the mutualistic network.
Indeed, a nested network maximizes the overlap
in interactions between any two species i and j
(term −n(P)

ij in Equation 7.26) in relation to the

number of interactions of both species (terms n(P)

i

and n(P)

j in Equation 7.26). As a consequence, under
visual inspection nestedness reduces the effective
interspecific competition ρ̃ for a given distribution
of number of interactions across plant species and
fixed parameters. Since according to Definition
(7.21) the predicted biodiversity scale for plant
species increases with decreasing ρ̃, the model
predicts that the more nested the matrix is, the
higher the typical biodiversity scale.

To explicitly quantify the increase in biodiversity
due to the nested architecture of mutualistic
networks (from the baseline of an exclusively
competitive system), Bastolla et al. (2009) first
defined a normalized effective competition matrix

B(P)

ij = C(P)

ij /

√
C(P)

ii C(P)

jj to ensure unit diagonal
entries, as required by the previous formalism.
They then computed the derivative of the first
eigenvalue of this normalized matrix with respect to
the mutualism-to-competition ratio in the vicinity
of γ = 0. By using Equations (7.19) and (7.21), this
is immediately translated into the derivative of the
expected biodiversity scale (or equivalently, via
Equation (7.23), the derivative of the maximum
number of coexisting species) with respect to γ

around γ = 0. The result is that, around γ = 0, the
typical scale biodiversity supported by the system
generally increases as γ grows.

This analysis shows that while mutualism
always increases the expected number of coexisting
species in fully connected networks, its effect is
variable in structured networks. Thus, mutualism
may increase the effective competition and reduce
biodiversity for low nestedness if the number of
shared interactions is quite low. Mutualism can also

decrease biodiversity if direct competition is strong
so that the predicted maximum number of species
in the absence of mutualism, S̄(A) and S̄(P), are small.
The architecture of mutualistic networks, therefore,
highly conditions the sign and magnitude of the
effect of mutualism on the number of coexisting
species. Nestedness maximizes the number of
species given a fixed number of interactions.

To fully understand the relationship with later
results, it is important to note the key limitations
of Bastolla et al. (2009)’s approach. These can be
divided in two types. The first one encompasses
potential problems with the applicability of the
results of Bastolla et al. (2005a,b) in the context of
effective competition matrices due to the technical
requirements involved. The second one has to do
with limitations of the approach used in Bastolla
et al. (2005a,b) itself that are inherited by Bastolla
et al. (2009).

Regarding the first limitation, and as was noted,
the extension developed in Bastolla et al. (2005a,b) of
the competitive load formalism to a general matrix
B non strictly mean field requires that B be symmet-
ric, with non-negative elements, and defined posi-
tive. Note that prima facie the normalized effective
competition matrices B(P,A) need not satisfy some
of these requirements. An extension to the non-
symmetric competition matrices case of the main
Inequality (7.36) was however carried out later on
in Rohr et al. (2013) and also in Rohr et al. (2014). It
ensured positive definitness via the use of CTC and
imposed non-negative elements of CTC. As could
have been expected, the essential features of (7.21)
carry out to this more general setting.

The second limitation of Bastolla et al. (2009)
stems from the fact that, as discussed previously,
the approach followed by Bastolla et al. (2005a,b)
to establish the biodiversity scale S̄ beyond
the pure mean field case is only meaningful
when the matrices analysed are themselves weak
perturbations around the mean field. This does not
hamper the internal logic of the paper since, on
one hand, in the the fully connected mutualistic
case the mutualistic matrices were also mean field
themselves. On the other hand, the perturbative
expansion of λ1(B(P)) for less than fully connected
networks is carried out in the vicinity of γ = 0.
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In this regime, it is sensible to expect that the
mutualistic matrices will act as a small perturbation
around the mean field competition matrices.
Nonetheless, it is still important to keep in mind
that the regime covered by the authors corresponds
to that of very weak mutualistic interaction acting
as a small perturbation to the direct competitive
matrices of mean field type. One could argue,
however, that these weak dependencies are in
agreement with the pattern observed in nature as
noted previously (Bascompte et al. 2006a).

The paper by Bastolla et al. (2009) was followed
by several papers. Allesina and Tang (2012) and
Suweis et al. (2013) focussed on the local stability
of the mutualistic model, while James et al. (2012)
re-examined the limits on the number of coexisting
species. We will next briefly describe these papers.

Allesina and Tang (2012) explored the local
stability of nested mutualistic networks using
a random matrix approach. Specifically, they
extended May (1972)’s approach (threshold for
stability provided by Equation (7.3)) to incorporate
more realistic interaction arrangements between
species. The yardstick against which to establish
which configurations are more stable than others is
as follows: assume that we order the eigenvalues of
the community matrix A by their real parts such that
λ1 < λ2 < . . . < λn < 0, where the λi refers only to the
real part of the respective eigenvalue. We will refer
to λn as the spectral abscissa. Under the logic that
λn < 0 is a necessary condition for local stability,
the authors use the size of the spectral abscissa as
the criterium to compare the stability of different
systems. Thus, they assume that a system a with a
spectral abscissa λa

n is more stable than system b if
λa

n <λb
n. Applying this criterium, the authors find

that for random matrices, the pure predator-prey
case increases the stability of the network, whilst the
mutualist/competitive random mix decreases its
stability.

They then proceed to study purely mutualistic
(i.e., no competition present) bipartite networks,
both with and without nested structure. In this
context the authors found that weak interaction
strengths increase local stability (compatible with
Equation (7.2), and for obvious reasons) while
nestedness tends to decrease local stability. The
latter result needs some explanation and it seems at

odds with related work finding a stabilizing role of
network structure.

There are two issues at work here. First, and
crucially, Allesina and Tang (2012) consider only
mutualism but not competition. However, we
already know from Equation (7.11) that mutualism
without the presence of interspecific competition
tends to destabilize the weakly interacting regime
for large systems. In other words: mutualism must
be understood as a mechanism to compensate for
competition. That this destabilizing effect should be
even more pronounced if the architecture is nested
should come as no surprise since nestedness is,
essentially, a mechanism to enhance the mutualistic
effect of countering competition.

Second, from a conceptual point of view there is
the issue that the spectral abscissa of the community
matrix is, generally speaking, not the sole factor
determining the stability of the system. Indeed, it is
important here to distinguish between two different
concepts: the necessary condition for local stability
on the one hand, and the size of the maximal per-
turbation that the system can absorb before loosing
local stability (the so-called distance to instability) on
the other hand. It is of course the case that negativity
of λn is a necessary condition for local stability.
But it is however wrong to generally assume that
the value of the spectral abscissa gives a correct
measurement of the system’s distance to instability.
Indeed, that this is generally not the case has been
known to control engineers for quite some time (see
Hinrichsen and Pritchard (2005), Section 5.4), and in
fact λn coincides with the distance to instability only
for the case of normal matrices. It follows then that
the qualitative ordering criterium stated previously,
“System a is more stable than System b if λa

n < λb
n,”

turns out to be correct only if matrices A and B are
normal. Note however that this is generally not the
case for the random matrices used by the authors in
their computations.

The second manuscript building from Bastolla
et al. (2009) was that by Suweis et al. (2013). These
authors focused mostly (although not exclusively)
in the weakly interacting regime. The first main
conclusion of their work was that although nested
networks remain stable, they tend to be less resilient
than the equivalent randomization. This means
that the networks take more time to recover from
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a perturbation. This seems to differ from the
previous result by Okuyama and Holland (2008)
that, as noted, reported that although resilience
is largely independent of nestedness in general,
nestedness does increase resilience (albeit the effect
is small) when mutualism strengths are small and
asymmetric and connectivity is small. Although
apparently different, the two sets of results are
perhaps not that different as Suweis et al. (2013)
coincide with Okuyama and Holland (2008) in
that it is when mutualistic strengths are small that
network architecture has a major effect. For strongly
interacting systems the effect of structure vanishes.
Keep in mind also, that for these large values we
may have already entered the strong mutualistic
regime, a problem that we will see again in relation
to the paper by James et al. (2012). On the other
hand, the fact that Okuyama and Holland (2008)
had a rather small set of simulations in the weakly
coupled regime makes the comparison of the
detailed results difficult (as previously mentioned).

While nested networks may remain less resilient
but still stable, Suweis et al. (2013) imply a higher
difference in abundances between the most general-
ists and the most specialists species, and they show
that it is the abundance of the rarest species which
determines the resilience of the community. Note,
however, that this result is obtained only in the limit
in which both interspecific competition and mutu-
alistic interaction are very small when compared
to intra-specific self-limitation (i.e., well below 5%
in relative value). Furthermore, the same caveats
exposed regarding the spectral abscissa and the dis-
tance to instability apply here, although in this case
the authors correctly coach their result in terms
of the system’s resiliency (i.e., its rate of return to
equilibrium), rather than in terms of whether the
system is locally stable (i.e., whether it will return
to the equilibrium point following an infinitesimally
small perturbation).

Since they posit that nested mutualistic networks
have higher spectral abscissas (controlled by the
rarest species) and are less resilient than non-nested
networks, Suweis et al. (2013) then move to propose
that the optimization principle by which nested net-
works would ultimately arise is that of maximizing
species abundances. Under this point of view, the
network architecture would not be generated by

optimal stability considerations, and whatever asso-
ciated stability the network may have it would be
a consequence of the system’s tendency to increase
species abundances (Suweis et al. 2013). This consi-
tutes a very intriguing possibility. Note that, under
a similar argument, Bastolla et al. (2009) had shown
that a nested network would automatically arise if
new species entering the community tend to interact
with partners in a way that minimizes their compet-
itive loads—hence maximizing their abundances.

Turning now to the numerical study by James
et al. (2012), these authors claimed that nestedness
does not necessarily increase the number of coexist-
ing species, thus challenging the result by Bastolla
et al. (2009). This apparent contradiction can be
traced back to two problems with their approach,
one regarding the correct analytical expression for
the maximum number of species, the other with the
confounding effect of parametrization of the model.
We next explain briefly these two points, which in
turn, lead to further refinements of the framework
of structural stability and additional insight into the
role of network structure.

Regarding the choice of the right equation, James
et al. (2012) missguided their criticism by incor-
rectly applying the expression for the biodiversity
scale, Equation (7.25), obtained for the fully con-
nected case, to obtain the maximum allowed biodi-
versity Smax of empirical, sparse networks. Indeed,
to obtain a general formula for the maximum biodi-
versity in the effective competition framework for
non-fully connected systems, one needs to take into
account that the growth rate vector components
must now be taken from the effective growth rates
vector. Furthermore, note that S̄ only sets the scale
for Smax provided that the environmental variability

 is fixed. Otherwise, Smax is also a function of the
variability of the effective growth rates components
(see Equation (7.23) and subsequent discussion).
The effective growth rates are similar across species
in fully connected networks since they have the
same number of interactions. Real networks, how-
ever, show a strong heterogeneity in the number
of interactions across species, and therefore in the
components of their vector of effective growth rates.
Rohr et al. (2013) showed that once using the right
expressions for non-fully connected, real networks,
the predicted upper bound of biodiversity is much
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closer to the observed values. In the process, Rohr
et al. (2013) expanded Bastolla et al.’s (2009) method
(originally requiring symmetric competitive matri-
ces with positive elements) to the general case of
asymmetric effective competition matrices.

The second pitfall of James et al. (2012)’s approach
has to do with the effect of parametrization. As
shown by Rohr et al. (2014), depending on the choice
of parameter values, one can show that nestedness
increases persistence, nestedness decreases persis-
tence, and nestedness does not affect persistence.
Conclusions that arise from studies that use arbi-
trary values in intrinsic growth rates are not about
the effects of network architecture on species coex-
istence, but about which network architecture max-
imizes species persistence for that specific choice of
parameter values. James et al. parametrized growth
rates from the same distribution across all species.
However, as was already noted in the Supplemen-
tary Material of Bastolla et al. (2009: Section 6.2) and
then again by Pascual-García and Bastolla (2017),
growth rates in feasible systems are negatively cor-
related with the mutualistic degree. As a conse-
quence, James et al.’s approach produced unfeasible
equilibria with much higher probability for mutu-
alistic than for competitive systems, which is at the
heart of their conclusion that mutualism reduces the
number of coexisting species.

From a geometric point of view, the previous
problem stands from realizing that there are two
important interrelated aspects. One is the range of
parameter values compatible with the stable persis-
tence of all species (structural stability) for a given
architecture. The second aspect is how close a given
choice of parameter values puts the system to the
boundary of this fully feasible domain. This distinc-
tion was clearly made by the late developmental
biologist Pere Alberch in his phenotype-genotype
maps (Alberch, 1989, Figure 4). Therefore, the idea
to disentangle properly the two effects (role of net-
work architecture and that of parameterization) is
to find the center of this feasibility domain and then
explore its volume.

7.3.3 Robustness of mutualistic networks

Rohr et al. (2014) were interested in studying the
role of network structure in the robustness of the
network in the face of perturbations of the growth

rates. The authors used again model (5) of Bastolla
et al. (2009) but now adding a trade-off between the
strength of the mutualistic interaction (i.e., the per-
capita effect of a species on the per-capita growth
rate of their mutualistic partners) and the number
of partners a species has—as already suggested in
Bastolla et al. (2009). This mutualistic trade-off mod-
ulates the extent to which species that interact with a
few others do so strongly, while species which inter-
act with many partners do it weakly, an observa-
tion justified on empirical grounds (Margalef 1968;
Vázquez et al. 2007). Rohr et al. (2014) assume that
the trade-offs take the form γij = (

γ0yij
)
/
(
kδ

i

)
, where

yij = 1 if species i and j interact and zero otherwise;
ki is the number of interactions of species i; γ 0

represents the level of mutualistic strength, and δ

corresponds to the mutualistic trade-off. As for the
community matrix, this is taken to be, in its most
general form,

Bnl :=

⎡
⎢⎢⎣

β
(P)

ij − γ
(P)

ij

1+h
∑

kγ
(P)

ik Ak

− γ
(A)

ij

1+h
∑

kγ
(A)

ik Pk
β

(A)

ij

⎤
⎥⎥⎦ , (7.27)

where as in previous work the authors assume
that the direct competition matrices are of mean
field type. Note that as h → 0 we recover the linear
functional response regime—which we will denote
as Bl.

Rohr et al. first proceed to investigate the
conditions which any feasible equilibrium point
needs to satisfy in order to be globally stable in
the space of positive densities. Global stability of
a solution within a given domain D determines
whether a system returns to the equilibrium after a
perturbation of the variables of any given magnitude,
with the requirement only that the perturbation
does not take the system outside the domain D.
As such, it is a more general concept than that of
local stability. These conditions had been solved
for Lotka–Volterra equations in the linear response
regime, but not in general. In the linear response
regime, it is well known that the system will be glob-
ally stable under quenched (this is very sudden and
time-independent) perturbations provided that Bl

is diagonally stable (Goh 1977; Takeuchi et al. 1978).
That is, there is a diagonal matrix D with positive
elements such that DBl +BT

l D is positive definite. In
this regard, the authors state a conjecture asserting
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that any matrix of the form Bl is locally stable if and
only if it is also diagonally stable. If the conjecture
holds, establishing global stability becomes equiv-
alent to establishing local stability. Since the direct
competition matrices are defined positive, it follows
that Bl must be locally stable in a neighborhood
around γ0 = 0 by continuity. The authors then find
by numerical simulations that local stability is
maintained all the way up to a critical value γ0 = γc.
The exact critical value will depend on the value of
the interspecific competition strength ρ, but roughly
speaking, one may take γc ∼ ρ. Hence, if the conjec-
ture is valid, we have that weak mutualist solutions
in the range 0 ≤ γ0 � γc are all globally stable.

The authors then proceed to examine the
dynamical stability in the non-linear case of density-
dependent functional responses. This boils down to
showing that the stability conditions for the linear
case also hold when considering Bnl instead of Bl.
But note how Bnl differs from the equivalent matrix
containing all interaction terms in the linear case
(Bl) only in the off-diagonal block with Bnl having
a decreased mutualistic strength with respect to the
linear response form. This implies that the critical
value of mutualistic strength for the nonlinear
Lotka–Volterra system is larger or equal than the
critical value for the linear system. Therefore, the
critical value γ c derived from the linear Lotka–
Volterra system is already a sufficient condition to
grant the global stability of any feasible equilibrium
in the nonlinear case, which converges to the
result by Bascompte et al. (2006a) discussed in
Equation 7.2.

Once the global dynamical stability of solutions
is stablished, Rohr et al. (2014) studied whether a
given stable solution is feasible. Obviously, the con-
ditions that ensure either the former or the latter sta-
tus are not the same. They proceed by analytically
estimating the center of the feasibility domain by
generalizing to the non-symmetric case the formal-
ism for symmetric competition matrices developed
in Bastolla et al. (2005a,b). The shift from symmet-
ric to non-symmetric matrices is accomplished by
switching from the spectral decomposition of sym-
metric competition matrices to the Singular Value
Decomposition (SVD) of the effective competition
matrices for both plants and animals. Note how in
Bastolla et al. (2005a,b) the competitive load vector,

corresponding to the principal (Perron) vector of the
symmetric competition matrix, was at the center of
the feasibility domain. The direct translation of this
result into the SVD formalism is that two structural
vectors, corresponding now to the two different prin-
cipal (Perron) singular vectors—the right one and
left one—of each effective competition matrix C(P,A),
will lie at the center of the domain. These struc-
tural vectors therefore correspond to a direct gener-
alization of the competitive load vector of Bastolla
et al. (2005a,b).

In the process, the authors obtain a generalization
of the coexistance inequality previously obtained
for symmetric non-mean field matrices by Bastolla
et al. (2005a,b) to the non-symmetric, SVD based
case. This now reads,

∑S
k=1 < uk

eff | peff >< vk
eff | peff > − < u1

eff | peff >< v1
eff | peff >

< u1
eff | peff >< v1

eff | peff >

≤ σ2
σ1

, (7.28)

where
{

uk
eff

}
,
{

vk
eff

}
correspond to the left and right

singular basis of the relevant effective competition
matrix, peff is the vector of effective growth rates,
u1

eff , v1
eff are the two structural (Perron) vectors of the

effective competition matrix, and σ 1, σ 2 its highest
and second highest singular values. The reader may
note how the previous inequality is a direct general-
ization of the symmetric case previously described.
Note how if peff is collinear with either u1

eff or v1
eff , its

corresponding solution will automatically be fully
feasible. Furthermore, any solution with a vector
of effective growth rates possessing minimal sum
of angles subtended with these two vectors (i.e,
bisecting them) will lie at the center of the feasibility
domain for each set of species and will be able
to tolerate the strongest deviation before leaving
the feasibility domain, namely, before one or more
species go extinct.

Once the center of the feasibility domain has been
located, the authors determine the boundaries of
the domain by numerically perturbing the vector
of effective growth rates from its value at the center
of the domain and quantifying the amount of vari-
ation tolerated by the solution before one species
goes extinct (Figure 7.6). Thus, the main steps in
this procedure, given a matrix Bl will be: i) switch



OUP CORRECTED PROOF – FINAL, 6/4/2020, SPi

110 T H E O R E T I C A L E C O L O G Y

Animals’ tolerated conditions

Pl
an

ts
’ t

ol
er

at
ed

 c
on

di
tio

ns

Figure 7.6 A structural stability approach to measuring robustness in mutualistic networks. This is directly related to the interpretation in
development biology illustrated in Figure 7.4. Here, parameter space is represented by two idealized axis representing conditions for both plants
and animals (e.g., growth rates). Some network structures, e.g., the nested structure on the right may have a wider range of parameter
combinations compatible with the stable coexistence of all species. In order to quantify this, however, one has to account for the confounding factor
of having the system close to a boundary. Redrawn from Rohr et al. (2014).

to the effective competition matrix formalism, ii)
determine the corresponding structural vectors
and centers of the feasibility domain for each set
of species, iii) establish by numerical simulations
the size of the full feasibility domain by computing
the maximal angle subtended by a perturbed vector
of effective growth rates with the central directions
before loosing species, and iv) finally transform
back from the effective competition to the Bl frame
to obtain the results in the ecologically meaningful
set of growth rates.

With these methods to estimate both the global
stability and feasibility of the mutualistic model,
Rohr et al. (2014) explored the role of network
architecture in modulating the range in parameter
space compatible with both feasibility and global
stability (all species persisting in a stable way).
Specifically, they used the partial fitted values from
a binomial regression of the fraction of surviving
species on nestedness (N), mean mutualistic
strength (γ̄ ), and mutualistic trade-off (δ), while
controlling for the deviations from the structural
vectors of intrinsic growth rates (η(A),η(P)). These
partial fitted values are the contribution of network
architecture to the logit of the probability of
species persistence, and in turn, these values are
positively proportional to the size of the feasibility
domain. Through this procedure, Rohr et al.

(2014) concluded that network architecture had a
large influence of structural stability. In particular,
the structure that maximizes structural stability
corresponds to: i) a maximal level of nestedness,
ii) a small (sub-linear) mutualistic trade-off, and
iii) a high level of mutualistic strength within the
constraint of any feasible solution being globally
stable (Equation 7.2). Interestingly enough, this net-
work architecture maximizing structural stability
corresponds to the structure found in the majority
of mutualistic networks. Specifically, in eighteen out
of twenty-three networks (P = 0.004, binomial test),
the observed network architectures induce more
than half the value of the maximum net effect on
structural stability. The architecture of mutualistic
networks, therefore, tends to maximize the range of
parameter space—-structural stability—for species
coexistence (Rohr et al. 2014).

The key limitation of Rohr et al. (2014) is that
Inequality (7.28) is, much like its predecessor (18),
only tight when σ2 
 σ3 
 · · · 
 σn (the reader
should remember Condition (7.20) in this regard).
That is, (7.28) is tight when all subdominant singular
values are approximately equal and we are close
to the mean field situation. In the present work,
however, and unlike that of Bastolla et al. (2009), this
fact does not limit the paper conclusions. This is due
to the fact that Rohr et al. (2014) do not use the value
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of the RHS of the inequality to find the maximal
value that the LHS can take while ensuring full
feasibility. Rather, they start by recognizing that the
LHS of Equation (7.28) implies that the structural
vectors play a privileged role in defining the center
of the feasibility domain, and then use exclusively
the LHS to find that center. They subsequently find
the maximal values of the deviation from this cen-
ter, not from the inequality itself, but rather from
numerical simulations. Hence whether the RHS is
tight or not is ineffectual.

An analysis of structural stability equivalent to
that by Rohr et al. (2014) was done by Grilli et al.
(2017). Essentially, they found that the structure
of empirical mutualistic networks has a positive
effect on feasibility. Although their results indicate
that this is mainly driven by the number and mean
strength of interactions, nestedness contributes to
feasibility and may be relevant in the cases where
interaction strengths are constrained. Interestingly,
these authors did not only estimate the size of the
feasibility domain, but also its shape. Indeed, the
structure of mutualistic networks was also found
to affect the shape of this feasibility domain in the
sense of making it more heterogeneous: the volume
of parameter space is larger in some directions and
smaller in others. This means that, even when
the total volume may be larger than expected
for a random matrix, the system may be more
susceptible to certain directions of perturbations
(Grilli et al. 2017). From a methodological point
of view, these interesting findings are based on
the analysis of random matrices, so it is worth
considering the potential limitations of such an
approach. As already noted by the authors, the
properties of random S × S matrices are valid only
in the large S limit (i.e., read S � 104). Since such
large networks do not occur in the real world, the
authors validate their analytical predictions for
smaller networks by performing a large number
of simulations over a large number of randomized
parametrizations. In this way, the large S predictions
are recovered on average even for networks in which
S is not large. The downside of this procedure,
though, is that the variability across individual
runs must necessarily still be rather large for
networks with S as low as fifty or one hundred. As
a consequence, the conceptual case for considering

the random model as a null hypothesis would seem
somewhat weak (in this sense note that this criticism
may also be applied to Allesina and Tang (2012)
previously mentioned). One interesting possibility
that deserves further attention in this regard is that
nestedness could be a way to achieve a feasible
domain volume equal or larger than the average
random case while at the same time avoiding the
variability necessarily associated to small random
networks.

Similarly to the paper by Allesina and Tang
(2012), Valdovinos et al. (2016) also reported a
negative effect of nestedness on species persistence
(i.e., fraction of initial species persisting at the end
of the numerical simulations after perturbing the
system). It must be emphasized again, though, that
they include competition only at the plant level.
Pollinator species do not compete amongst them
for any other external resources in their model. As
explained previously, however, one would indeed
expect nestedness to decrease persistence in these
conditions and for large systems (see comments
following Equation (7.11)). The authors then show
that by including adaptive foraging they recover
the positive effect of nestedness on persistence. In
other words, it is possible that adaptive foraging
may have a positive effect on the system’s stability
by reducing excessive niche overlap, much like the
introduction of trade-offs does. Thus, this result
goes precisely along the same direction as the
suggestion in Bastolla et al. (2009)’s Supp. Mat.
that trade-offs in the species interactions ought
to be introduced in order to further stabilize the
system.

Lastly, the paper by Pascual-García and Bastolla
(2017) tries to answer both the comment by James
et al. to Bastolla et al. (2009) and to Rohr et al. (2014).
They do so both on analytical grounds and with an
extensive set of numerical simulations. Their main
conclusion would seem to reconcile at some extent
the differing results of James et al. (2012) and of
Rohr et al. (2014) by stating that nested mutualistic
networks indeed increase structural stability, but
only if the direct competition parameter ρ is below
a critical value ρc.

From the analytical point of view, Pascual-García
and Bastolla (2017) start by introducing a new
version of the coexistence condition. This states that
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in order to have positive abundances in a purely
competitive system, with a strictly nonnegative
competition matrix which has unit diagonal
elements (Cii = 1), every species i must satisfy as
a sufficient condition (after neglecting extinction
thresholds),

ηi(p) = 1 − pi

p1v1
i

≤ 1(
S/S̄ + 1

) , (7.29)

where the ηi are called the vulnerability factors
(guild superscripts are omitted here). This expres-
sion can be seen to also hold under a more general
definition of the equivalent mean field competition
parameter, valid also for the case of competition
matrices whose diagonal elements have not been
normalized to unity,

ρ̃ = 1
S − 1

(
λ1(C)

Tr(C)/S
− 1

)
. (7.30)

The authors employ this latter expression for ρ̃, but
this does not seem to change the conceptual land-
scape. Standard equivalent mean field identification
(see Section 7.3.1),

S̄ = 1 − ρ̃

ρ̃
(7.31)

and condition,

λi 
 Tr(C)

S
(1 − ρ̃) ∀i ≥ 2 (7.32)

must be employed to obtain (7.29). The paper then
follows the expected scheme of an equivalent mean
field approximation as discussed earlier in this
chapter. Assuming direct competition matrices of
mean field form with parameter ρ, the effective
competition matrix C for each set of species is
computed. Subsequently, its first eigenvalue λ1

is analytically calculated in order to perform an
equivalent mean field approximation to C by
computing an equivalent niche overlap ρ̃ via
Equation (7.30). Having obtained ρ̃ we can now
compute the associated biodiversity scale S̄ = S̄ (ρ̃)

as per Equation (7.31). From Equation (7.29) then,
for C close enough to being mean field (so that (7.32)
holds and the inequalities are tight) this should
provide us with a good approximation to the scale
of biodiversity supported by the original system. As
usual in the standard equivalent mean field scheme,
S̄ decreases as ρ̃ increases.

After computing C and λ1(C) and substituting
their values into (30) an expression for ρ̃ (denoted
as ρeff in the paper) is finally reached:

ρ̃ ≈ ρ + ξ
(
ρ − ρc) , (7.33)

where both ξ and ρc are positive parameters that
may be computed from the effective competition
matrix C. This expression constitutes the main ana-
lytical support to the authors claim that “Mutu-
alism supports biodiversity when direct competi-
tion is weak.” Note how only if the direct compe-
tition parameter ρ is such that ρ < ρc then ρ̃ < ρ and
mutualism decreases ρ̃, whereas if ρ >ρc we will
always have ρ̃ < ρ. According to these comments,
one would then expect that in the latter case mutual-
ism will decrease the scale of biodiversity supported
by the system.

The limitations in the paper by Pascual-García
and Bastolla (2017) are, as expected, mostly inher-
ited from the equivalent mean field substitution
approach. First, as already discussed several times,
not only the accuracy of the approach, but also
the correctness of associating a biodiversity scale
as per Identification (7.31) critically depend on the
matrices under consideration (the effective compe-
tition matrices in this case) being weak perturba-
tions around the mean field direct competition. In
particular Condition (7.32) must hold for this set of
Inequalities (7.29) to be not just tight (hence both
necessary and sufficient to ensure coexistence), but
also correct in the sense that it is only if (7.32) holds
that S̄, as already defined, appears in the RHS of
(7.29). Thus the concept of the predicted biodiver-
sity scale itself as embodied by (7.31), holds any
meaning only for matrices C which are approxi-
mately of mean field type, strictly nonnegative and
symmetric. It is only in this case that Equation (7.32)
is justified, S̄ is meaningful, and the inequalities
are tight.

This limitation is compounded by the fact that the
expression used to compute λ1(C) (provided in the
original text following it, Equation (7.24)) is valid
only for matrices C for which all rows have equal
row sum, as is the case if C is mean field. It is well
known however that, unless the system is fully con-
nected, nested matrices are characterized by having
not just large, but the largest possible variability in
row sums (Mahadev and Peled 1995). It follows that
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any real impact that a nested arquitechture would
have on the dynamics must necessarily be largely (if
not completely) diluted before the given approach
becomes valid, or else we will be lead astray by
an erroneous determination of λ1. Hence, if correct,
the result would be valid only in the immediate
vicinity of direct mean field competition matrices,
where γ 
 0.

7.4 Concluding remarks

The previous development tried to navigate across
the recent papers on the structural stability of
weakly interacting mutualistic networks by relating
the different contributions and separating what
could be considered a core of common conclusions
from the particular limitations due to the either the
assumptions or the approach of each work.

A first conclusion at this stage in the develop-
ment of the field is that requiring dynamical sta-
bility under external perturbations seems to push
the system in a direction in configuration space
which is opposite to that required to maintain full
feasibility under those same perturbations. To see
how this comes about, let us start by defining q as
the ratio of interspecific competition to mutualistic
interaction strength, i.e., q(P,A) = ρ(P,A)/γ (P,A). We
may then rewrite Condition (7.11) for dynamical sta-
bility of large ecosystems in the weakly interacting
regime as

q(P)q(A) > 1. (7.34)

Assuming to simplify the discussion that q(P) = q(A)

= q, this expression clearly establishes a limiting
value qlim = 1 such that for q ≤ qlim the system
will loose its dynamical stability. Let us then use q
as a proxy to measure the system’s distance to insta-
bility (akin to the spectral abscissa λn in the work
of Allesina and Tang (2012)). Then, it follows that
qlim → 0 as ρ → 0 and q → qlim as γ → ρ. The first
of the two results coincides with Allesina and Tang
(2012): mutualism tends to destabilize the system in
the absence of interspecific competition. The second
result, however, implies that even if one starts in
the regime γ � ρ (q � 1), increasing the mutualistic
strength tends to decrease the resistance of dynami-
cal stability to external perturbations. Note that this
essentially coincides with Suweis et al. (2013) if one

assumes that lowering q is akin to lowering the
system’s resilience, a not altogether unreasonable
point of view. This last result, however, is in marked
contrast with the conclusions of both Bastolla et al.
(2009) and Rohr et al. (2014). Namely, that if γ � ρ

then increasing γ together with increasing nested-
ness, which is in essence a mechanism to enhance
mutualism, increases the ability of the system to
maintain full feasibility, and increase its biodiver-
sity even in the presence of external perturbations.
Network architecture has a major effect when mutu-
alistic strengths are small. Note that the analytical
results in Bastolla et al. (2009) are constrained to
the q≫ 1 egime, but the simulations in Rohr et al.
(2014) hold all the way down to q → qlim.

In light of the previous considerations, we end
up with the following summary. It would appear
that the final state of the system will be a compro-
mise between two conflicting tendencies. At q � 1
dynamical stability is ensured. The system’s pri-
ority in this regime is to ensure its full feasibility
and enhance its biodiversity, and to that end both
mutualism and nestedness are beneficial (Bastolla
et al. 2009; Rohr et al. 2014). In this domain of small
mutualistic strength, network architecture becomes
more relevant. As q decreases, however, dynamical
stability constraints become a relevant factor. The
system is close to being destabilized (Valdovinos
et al. 2016), or looses resilience (Suweis et al. 2013)
by the combination of mutualism plus nestedness.
Hence, mechanisms designed to lessen the impact of
nestedness on the dynamical stability of the system
come into play. These may correspond to either the
trade-offs suggested in Bastolla et al. (2009) and
explored in Rohr et al. (2014), or their more sophis-
ticated equivalent, the adaptive foraging explored
by Valdovinos et al. (2016). Whether these mech-
anisms alone will suffice to maintain the system
stable while simultaneously optimally persistent all
the way down to q = qlim is unclear at the moment.
Finally, if γ grows beyond the γ c associated to qlim,
the weakly coupled system looses its dynamical
stability (Rohr et al. 2014), giving rise to the strong
mutualist regime (Bastolla et al. 2009).

Some of the caveats associated to this synthe-
sis have been abundantly mentioned previously.
On the side of the dynamical stability, the spectral
abscissa (and much less so q, for obvious reasons) is
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not a proper measurement of the system’s distance
to instability. Furthermore, in all likelihood, such
a measure will need to include not just the lowest
eigenvalue/singular value, but some combination
of the smallest and the largest. On the side of the
system’s feasibility, it is clear that the available ana-
lytical results for non-fully connected networks are
only valid in the vicinity of γ 
 0, i.e., q ≫ 1, and
mean field direct competition matrices. It is evident
that more work is needed in this direction. Finally,
note also that a critical assumption behind these
analytical developments is that of a mean field direct
competition matrix. How much real competitive
systems depart from this is still unclear, but more
attention is now being placed to this topic (Barabás
et al. 2016; Levine et al. 2017; Saavedra et al. 2017).

More importantly from a conceptual standpoint,
the previously expressed view is predicated on the
assumption that maintaining both full feasibility
and dynamical stability is of paramount importance
to the system. However, only a better knowledge of
all the relevant factors involved in the system’s
dynamical stability will, eventually, assess the
appropriateness of such an assumption. Likewise,
it would be foolhardy to assume that the concept of
structural stability, as it now comprises the system
constantly maintaining full feasibility, has reached
its definitive form; after all, one may wonder
whether it is that costly to the system to loose a
rare specialist species. It follows, therefore, that we
need to better understand the impact in the system
of not maintaining either dynamical stability or
full feasibility or both, but instead maintaining the
average total biomass.

One advantage of the structural approach here
developed is that it allows to translate trophic
interactions into the framework of competitive
theory. Another advantage is that it is an approach
that is well suited as a framework to study
global environmental change as this is large and
directional (rather than infinitesimally small)
and it affects growth rates and interaction strengths
besides affecting species densities (Justus 2008).
This may serve to reconcile a growing body of
empirical evidence showing effects of global
environmental change on species interactions (e.g.,
Tylianakis et al. 2008).
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CHAPTER 8

A data-driven approach to complex
ecological systems
Michio Kondoh, Kazutaka Kawatsu, Yutaka Osada,
and Masayuki Ushio

8.1 Interspecific interactions and
ecological dynamics

8.1.1 Population dynamics and interspecific
interactions

What causes the population dynamics we observe in
nature? Why can so many species coexist despite the
theoretically predicted instability of many-species
system? How will an ecological community respond
to ongoing climate change and other anthropogenic
disturbances? These questions encompassing eco-
logical dynamics are all relevant to, and therefore
will not be fully answered without understanding
interspecific interactions, which are the major driv-
ing force of population dynamics.

There are two kinds of “interspecific interactions”
that must be clearly distinguished to avoid unneces-
sary confusion (Goldberg 1996); namely, individual-
level and population-level interactions. The former
are represented by the various behaviors of
individuals, including killing, chasing, and food
or shelter provisioning to individuals of another
species. In comparison, the latter are a causality

between the population density of different species.
They are not directly observable, rather, inferred
through changes inferred through changes to
population density. The presence of interactions
at the individual level does not necessarily means
the presence of interactions at the population level,
although population-level, dynamic interactions are
based on individual-level, behavioral interactions
(Hassell and May 1985; Tilman 1987; Sutherland
1996; Anholt 1997; Fryxell and Lundberg 1998).

Population dynamics are the dynamical changes
in the population density of a species, which are
driven by the three processes, birth, death, and
migration:

xt+1 = xt + (
birth

) − (
death

) ± (
migration

)
(8.1)

where xt is the population density of species X
at time t. These three processes are influenced by
behavioral and physiological states of species X
and other species. If any of the three processes of
species X are influenced by the existence or density
of species Y at time t, the future density of species
X density (xt+1) should be affected by the current

Kondoh, M., Kawatsu, K., Osada, Y., and Ushio, M., Theoretical ecology, concepts, and applications: A data-driven approach to complex ecological systems
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density of species Y (yt). In mathematical terms,
this is expressed as: xt+1 = fx

(
xt, yt

)
. Any terms in

function f x that represent the effect of yt are called
interspecific interactions from species Y to X. An
interspecific interaction is a causal relationship
between the density of coexisting species, making
it essential to understand a community as a
system.

An interspecific interaction between a pair of
species may be studied by evaluating how one
species responds to forced changes in the density
or presence/absence of the other species. Inspired
by theoretical studies of Lotka (1925) and Volterra
(1926), the Russian biologist, Georgii Frantsevich
Gause conducted a series of experiments using
small organisms, including protozoa and yeast.
The author compared the population dynamics of
these two species cultivated separately and in a
mixed population (Gause 1934). In the experiments
using protozoa, Paramecium aurelia in a separated
culture persisted for more than three weeks,
but when placed in a mixed population with
P. caudatum its numbers declined within a week.
By analyzing the time-series data in light of the
Lotka–Volterra model, Gause showed that the
population growth rate of P. caudatum decreased
with increasing P. aurelia density. The author
concluded that this decline in population growth
is caused by competition for the resource bacteria,
Bacillus pyocyaneus. A well-controlled manipulative
experiment allowed the interspecific interaction
to be identified, and the quantification of its
impact on community dynamics. However, the
same approach is not directly applicable to studying
natural communities, which are usually open,
subject to continuous disturbances of different
types, and unlikely to remain around the stable
equilibrium.

This chapter is separated into four sections. In
the remaining part of this Section 8.1, we explain
the link between interspecific interactions and
ecological dynamics. In Section 8.2, we identify the
fundamental difficulties in studying interspecific
interactions and their consequences in dynamics
empirically, especially in the field. In Section 8.3,
we propose a data-driven approach that could be

provided by using nonlinear dynamical theory as an
alternative to traditional theories. In Section 8.4, we
review some intriguing properties of interspecific
interactions revealed by the recent studies with the
modern data-driven approaches.

8.1.2 Community dynamics and interspecific
interactions

Interspecific interactions drive community dynam-
ics. When species X influences the density of species
Y, it is considered to be the transmission of an
“effect” from the former to the latter (Wootton
1994; Higashi and Nakajima 1995). Therefore, the
affecting and affected species, X and Y, are referred
to as donor and recipient species, respectively. For
some types of interactions (prey-predator interac-
tions, for example), two interacting species might
act as both recipient and donor species at the same
time. When there are more than three species,
transmissions of interspecific effects might become
more complicated, as such effects are further
transmitted to other species through interspecific
interactions. When this type of indirect transmission
of effects occurs among species that are not directly
interacting, it is called an indirect effect. In the
presence of indirect effects, the structure of the
interaction network (or who interacts with whom)
determines the paths through which an effect
spreads over the community, contributing towards
determining endogenous community dynamics
(May 1973; Chen and Cohen 2001; Kondoh 2003; de
Ruiter et al. 1995, 2005) and community responses
to exogenous disturbances (Higashi and Nakajima
1995; Brose et al. 2005; Montoya et al. 2009; Novak
et al. 2011; Tunny et al. 2017).

The structure of the interspecific interaction net-
work affects the dynamics of the endogenous com-
munity. A good example derives from theoretical
studies of random communities. Consider a com-
munity consisting of S species, any pairs of which
are interacting with probability C (connectance).
The dynamics of species i is given as an ordinary
differential equation describing the growth rate of a
population, dxi/dt = Fi (X), where X is a vector rep-
resenting the community state, or a set of densities
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for each species, {x1, x2, x3, . . . , xS}. If the system is at
an equilibrium, i.e., F

(
X∗) = 0, the local dynamics

around the equilibrium can be approximated as
linear dynamics, dX/dt = A· X, where A is an S × S
Jacobian matrix evaluated at equilibrium, in which
each element describes the partial derivatives with
respect to the density of species j, Aij = [

∂Fi/∂Xj
]

X∗ .
Using random network theory, it is predicted that
an equilibrium, X*, is asymptotically stable if the
product of species richness (S) and connectance
(C) is smaller than a threshold value, α2/σ 2, where
interaction strength is assumed to follow a normal
distribution, N(0,σ 2), and α represents the strength
of self-regulation force (May 1973). In other words,
if network complexity (SC) is large enough, the
addition of a small perturbation to the system will
grow and shift the system away from the original
state; otherwise, the system state will eventually
return to the original equilibrium.

The prediction of destabilizing complexity
contradicted the expectations of ecologists, leading
to the so-called complexity-stability debate over
the last few decades (McCann 2000; Landi et al.
2018). Many theoretical studies have been carried
out, some of which confirm the controversial
prediction, while others overturned it. Yet, this
debate also provides a very general insight, that
is, the complexity-stability effect of demographic
interactions could be changed, or even reversed, by
adding small modifications to the model setting,
such as functional responses, interaction types,
and density dependence (May 1973; Allesina
and Tang 2012; Mougi and Kondoh 2012, 2016;
Mougi 2017; Kawatsu and Kondoh 2018). Allesina
and Tang (2012) showed that the sign structure
of an interaction could shift the position of the
instability threshold. An antagonistic community
is where interacting species generate positive
and negative effects on each other, and it is
more stable and has a higher instability threshold
compared to competitive networks, followed by
a mutualistic community, in which interacting
species enhance each other. Kawatsu and Kondoh
(2018) theoretically showed that the way that the
interaction strength responds to density changes is
a key determinant of the complexity-stability effect.
If negative interspecific effects are more density
dependent than positive interspecific effects,

then increasing complexity stabilizes community
dynamics. In comparison, if negative effects are
less density dependent, the complexity-stability
relationship becomes negative. The high sensitivity
of the complexity-stability relationship to the
detailed model settings of interaction strength
confirms that interspecific interactions are an essen-
tial component for understanding endogenous
community dynamics.

Theory also predicts that the way that individual
species respond to perturbations is influenced by
the interaction network (Yodzis 1996; Brose et al.
2005; Montoya et al. 2009; Novak et al. 2011; Tunny
et al. 2017). For example, let us consider the question
of how the density of a given prey responds to a
small increase in the density of its predator. If prey-
predator pairs are isolated from the surrounding
ecosystem and are at an equilibrium (which is not
realistic), an increase in predator density should
always cause prey density to decrease. However,
this relationship might be no longer true if the pair is
embedded in a larger community network (Yodzis
2000). An increase in predator density often leads
to an increase in prey density, according to sim-
ulations, as the community surrounding the pair
provides an indirect effect and could reverse the
net effect from negative to positive. Similarly, the
community response to the removal of a species
is dependent on the interaction network structure
(O’Gorman and Emmerson 2009). Consider a key-
stone predator for which the suppression of a com-
petitive resource species allows the coexistence of
many resource species. A theoretical study showed
that the keystone effect could be altered if embed-
ded in a larger community network and how it is
altered is related to the community that surrounds
the community module of the keystone species and
its resource species (Brose et al. 2005). These exam-
ples demonstrate that understanding the dynamics
of an isolated interacting species pair is different to
understanding their dynamics when embedded in a
larger ecosystem.

Thus, how do we test the theoretically predicted
effects of interaction networks on community sta-
bility and responses to external disturbances
under natural conditions? One possible approach
is to invest effort towards obtaining a detailed
understanding of actual interspecific interactions
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and structures of interaction networks. In fact,
several studies have been conducted along this line
in the last two decades. There have been attempts to
describe the realistic shapes of functional responses
(Spalinger and Hobbs 1992; Vucic-Pestic et al. 2010),
to identify the many types of existing interactions
and to describe their structure as a single phe-
nomenon (Pocock et al. 2012; Kéfi et al. 2016),
and to evaluate the interaction strength and its
arrangement within a community (de Ruiter et
al. 1995). However, despite intensive studies on
individual interactions and their organization, few
empirical studies have determined the full structure
of the community network and related it to the
observed dynamics (but see Ushio et al. 2018).
Difficulty in accomplishing this objective arises
from the very nature of interspecific interactions,
the diversity in behavioral mechanisms, scale-
dependency, and spatiotemporal variability, as we
will explain below.

8.2 Nature of population-level
interspecific interactions

8.2.1 Diversity in behavioral mechanisms

Measuring interspecific interaction has been a major
challenge in ecology (Berlow et al. 1999; Wootton
and Emmerson 2005), partly due to the diversity of
behavioral mechanisms behind given interspecific
interactions (Scharf et al. 2008; Kawatsu and Kishi
2018). Some of the diverse behaviors that might
give rise to population-level interactions include
exploitative competition, interference, predation,
herbivory, parasitism, and various forms of mutual-
istic interactions, such as shelter or food provision,
seed dispersal, pollination, and protection against
predators. Furthermore, new kinds of interactions
are continuously discovered, such as ecosystem
engineering (i.e., environmental modifications by a
species that affects resource availability for another
species; Erwin 2008) and the interspecific transmis-
sion of information (Lima 1998; Goodale et al. 2010;
Farine et al. 2015). An ecological community can be
viewed as a network of direct contact and informa-
tion mediated interactions (Takabayashi and Dicke
1996; Yoneya and Takabayashi 2014), where a donor

species might affect its recipient species through
multiple mechanisms (Scharf et al. 2008).

Given the diversity of individual-level interac-
tions, their population-level integration, which
is an interspecific demographic interaction, is
not likely to be static, but should be inherently
dynamic and condition dependent (Bronstein
1994). This is because any factors that change the
relative strength of different behavioral mech-
anisms can induce variability to population-
level interactions. In addition, scale-dependency
might arise from any interactions that induce
spatial or temporal variability of population-level
interactions. Interspecific interactions might be
continuously modified by biological processes, such
as physiological state, ontogenetic niche shift, and
evolution, which cause interspecific interactions to
vary temporally.

8.2.2 Scale dependency of interspecific
interactions

Population-level interactions are scale-dependent
(de Roos et al. 1991; Wootton and Emmerson
2005), as most main driver of population dynamics
varies depending on spatial and temporal scales.
For example, the relative importance of migration
(immigration or emigration) in population dynam-
ics (Hanski 1994; Nathan et al. 2008) should be
greater at a smaller spatial scale, because a larger
area has shorter boundary length and the expected
proportion of individuals that cross the boundary
should be smaller. As a result, the demographic
impact of a given species on another species
should vary with changing spatial or temporal
scales. A good example of this is the interaction
between barnacles and mussels in rocky intertidal
systems (Kawai and Tokeshi 2006). Two different
interactions might occur between the two species;
namely, competition for limited resources and space
and facilitation through weakening physiological
stresses. However, the relative contribution of the
two interactions depends on its spatial scale;
specifically, competition has a dominant effect at
a local scale, while facilitation has a dominant effect
at a larger spatial scale, where continuous local
extinctions and colonization occur.
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The spatial and temporal heterogeneity of the
environment is another source of scale dependency
(Wootton and Emmerson 2005), with ecologists
showing that such spatial variations of environ-
ments promote the stable coexistence of competing
species (Amarasekare 2003, 2008). Consider mutu-
ally connected local habitats with environmental
heterogeneity, in which two species are competing
for limited resources. Even in the case that those
two species are unable to coexist in the same local
habitat, they might coexist for a long period at
a larger spatial scale, with inferior-to-superior
relationship of the competition differing across
different environments (Amarasekare 2003). Thus,
the strength of interspecific competition might be
scale-dependent in heterogeneous environments.
Local competitive exclusions in individual local
habitats represent strong competition in the same
habitat. However, at a larger spatial scale, the
two species are spatially segregated, and their
encounters are less frequent, suggesting weakened
competition (Shoemaker and Melbourne. 2016; Hart
et al. 2017). Such spatial segregation of competing
species provides another reason that the strength of
competition is dependent on spatial scale.

A similar argument should apply to the case
where competing species are temporally segregated
for temporal variations of limiting resources (Levins
1979; Carothers and Jaksic 1984). Consider two
species that compete for limited resources and
cannot coexist at the same time. However, if the
two species have different phenology or differ
in the timing of resource use, they might coexist
over a longer time scale. Some theories and
empirical studies demonstrate that such temporal
niche partitioning facilitates the coexistence of
competitors (Schoener 1974; Albrecht and Gotelli
2001; Richards 2002). Temporal scale-dependency
of interspecific interactions might contribute to
the coexistence of species, as well as spatial
scale-dependency.

8.2.3 Dynamic nature of interspecific
interactions

Interspecific interactions vary with time and space,
because of migration, behavioral/physiological

plasticity, ontogenetic niche shifts, and evolutionary
processes.

Movement, a major driver of population dynam-
ics, is an essential source of the spatiotemporal
variation of interspecific interactions. Most animal
organisms move around to search for resources and
reproductive partners. Bears broaden their range
of activities in fall to intensify foraging effort in
preparation for hibernation (inner-habitat move-
ment; Noyce and Garshelis 2011). Predator fishes
move between benthic and pelagic habitat in a lake
food web (inter-habitat movement or migration;
vander Zanden and Vadeboncoeur 2002). These
movements affect the encounter rates of interacting
species, altering the interaction strength at the
population level. Furthermore, movement should
influence the spatial scale at which interspecific
interactions are transmitted to a third species.
The presence of widely moving organisms, for
example, mediates indirect interactions between
species that are spatially segregated (Takimoto
et al. 2009).

Behavioral and physiological plasticity also influ-
ence the spatiotemporal variability of interspecific
interactions. For example, organisms often modify
their foraging and defense behavior in response to
changing densities of its potential prey and predator
species. The predatory fish Poecilia reticulatus
modifies its attack times on Drosophila and tubificid
worms depending on relative availability of these
prey species (Mardoch et al. 1975). Grasshoppers
hide themselves in the presence of actively hunting
spiders (Schmitz 2008). Tadpoles develop plastic
morphological defenses in response to an increase in
predation risk (Kishida and Nishimura 2004). This
adaptive plasticity alters the strength of interactions
and might modify dominant interspecific interac-
tions, both spatially and temporally, in the commu-
nity. In most cases, behavioral (or physiological)
processes appear to cause changes in interspecific
interactions over shorter time scales compared to
demographic and evolutionary processes, resulting
in local adaptations. Yet, this does not mean that the
spatial scale of interactions caused by behavioral
processes is limited to local ones. Massive and
pulsed migration of interacting resource easily
spreads to the community dynamics at a broad
spatial scale (allochthonous subsidy; Polis et al.
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1997). Furthermore, engineering in the environment
surrounding a given species might noticeably alter
resource availability for another species (ecosystem
engineering; Hastings et al. 2007).

Temporally regular events, such as seasonal
changes or developmental stages also drive
spatiotemporal changes in interspecific interactions.
One such example is ontogenetic niche shifts,
which are changes in resource or habitat use due
to metamorphosis or migration between habitats
during development (Nakazawa 2015). Ecologists
have demonstrated that behavioral, morphological,
and physiological changes experienced by an
organism during its life history lead to changes in
its interactions with other species, including access
to food resources and predation risks. Insects and
amphibians that exhibit major changes in their
niche after metamorphosis are good examples
of this phenomenon. Adult fishes tend to have
a broader range of prey than larval fishes, due
to relaxed mouth-size constraints (Olson 1996).
In the presence of ontogenetic niche shifts, the
interactions of focal species with other species tend
to vary with the proportion of individuals present at
different developmental stages. Consequently, if the
length of each developmental stage is flexible with
environmental conditions, then so are interspecific
interactions (Takimoto 2003; de Roos et al 2002).
If the ontogenetic niche shifts of individuals
are synchronized, the timing of interspecific
interactions might be subject to abrupt and massive
changes.

Evolutionary processes also modify interspecific
interactions (Yoshida et al. 2003; Hairston Jr. et
al. 2005). Recent studies have shown that rapid
evolution, which influences interspecific interac-
tions, arises at the time scale of ecological process.
For example, laboratory microcosm experiments
demonstrated that algal prey rapidly evolve defen-
sive traits in response to increased rotifer density,
to weaken the strength of trophic interactions with
rotifers (Hairston Jr. et al. 2005; Kasada et al. 2014).
The time scale of evolutionary process of organisms
with short generation time, such as microbes, might
match to the time scale of ecological processes
of long generation time organisms (King et al.
2016). Furthermore, the evolutionary modification

of interspecific interactions could provide insights
on how interspecific interactions are responding
to ongoing anthropogenic environmental changes
(Winder and Schindler 2004).

8.3 How to study interspecific
interactions in nature

8.3.1 Identifying population-level interactions

Given the important role of interspecific interactions
as a driver of community dynamics, it is neces-
sary to identify and quantify (e.g., determining
the sign and strength) interspecific interactions
to understand community dynamics. However,
population-level interactions (not individual-level
interactions) are not visible, with direct observation
being impossible in most cases (Freilich et al.
2018). This raises the question of how to document
condition-dependent interspecific interactions to
understand the consequences of these interactions
on dynamics. Thus, we present a brief review of the
two typical major methodologies used to identify
and quantify interspecific interactions in the field: i)
direct observations of behavioral interactions, and
ii) manipulative field experiments. Based on this
review, we identify the inherent difficulties of these
methodologies.

8.3.2 Identification of interactions based on
behavior by individuals

It is possible to use visible behavioral interactions
to identify interspecific interactions in the field
(see Clare 2014 for its modern form using eDNA).
Indeed, this method is very popular for easily
visible interactions, such as prey-predator inter-
actions, pollination, and seed-dispersal. Behavior-
based identification of interactions are investigated
using several methods, including the direct field
observations of interactive behaviors or their marks
and indirect investigations, such as stomach content
analysis, fecal analysis and biotracer analysis (e.g.,
stable isotopes and fatty acids; Layman et al.
2012; Kelly and Scheibling 2012). These methods
often provide strong evidence for interspecific
interactions that take place at the individual level.
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However, of note, two major difficulties exist
when translating individual-level interactions to
demographic interactions. First, it is not straight-
forward to translate the magnitude of individual
behavior to that of demographic effects. For
example, when conducting diet analyses, such
as stomach content analysis and fecal analysis,
it may be possible to estimate the proportion of
prey species eaten, but it might not be possible to
estimate the absolute magnitude of demographic
effects. In addition, there is a risk of error in esti-
mating the strength of interactions due to different
rates of information accumulating among species
(e.g., digestive efficiency varies between diets and
dynamically changes within an individual or a
species). Second, while many types of behavioral
interactions exist in nature, we usually do not
know a priori which is the most important behavior
driving population dynamics. Thus, to evaluate
the demographic effect appropriately, multiple
interactions must be recorded to understand
community dynamics and to translate the identified
behavioral interactions to demographic effects in a
comparable way (Kéfi et al. 2016). However, this is
an extremely difficult task to complete, especially in
systems with many species.

Direct observation of individual-level interac-
tions often needs major labour effort, especially
when interacting species are not abundant in a
given survey area. If the observation probabilities
of species X and Y are independent and are
represented by small values of PX and PY,
respectively, then the encounter rate between the
two species will be as low as PX × PY. Moreover,
an important demographic interaction could be
overlooked when using direct observations, as less
frequent behavior is not necessarily less important
in driving demographic interactions. For example,
an interspecific interaction that is essential for
reproduction might only be observed during a
limited period of a species’ life history. This issue
could be overcome by using appropriate, long-
lasting marks of target interactions that might
also accumulate, such as feces and biotracers.
However, fecal and biotracer analyses only provide
information of trophic interactions, and do not
capture all facets of interspecific interactions. In
addition, long-lasting marks tend to obscure the

timing that the interaction occurred, which could be
disadvantageous when tracing temporally varying
interactions.

8.3.3 Manipulative field experiments

To evaluate a population-level effect between
species, manipulative field experiments could be
used (Paine 1966). When two species interact at
the population level, a change to the density of
the donor species should, by definition, alter the
density of the recipient species. Thus, interspecific
interactions could be quantified by measuring the
magnitude of change in population density of
recipient species after manipulating the abundance
of donor species. The best-known manipulative
field experiment is the intertidal community
experiments conducted by Paine (1966, 1969).
In these experiments, Paine artificially removed
starfish, the top predator of the system, from
the intertidal community and showed that this
action resulted in a rapid increase in Mytilus, and
the decline (almost to extinction) of most benthic
algae, chitons, and limpets. This dramatic change
was attributed to Mytilus being released from the
predation pressure of starfish, which increased
competition for space or food.

There are, however, some major limitations
in using a manipulative experiment to study
population-level interactions between species
(Wootton and Emmerson 2005). First, the observed
response might be caused by indirect effects that
are not easily distinguished from direct interactions
(Bender et al. 1984; Yodzis 1996). To quantify the
interaction strength of species pairs accurately,
the variables that might cause indirect effects,
such as interspecific interactions other than the
target interaction and population densities of other
species, should be carefully controlled. Additional
experiments or observations and careful considera-
tion by experts are required to explain the actual
(behavioral) mechanism that causes the demo-
graphic effect identified. Second, a population-level
interaction often exhibits condition-dependency
(see Sections 8.2–8.3; Bronstein 1994); consequently,
it might change with the experimental setting being
used. To obtain a complete understanding of the
interaction, the evaluation should be conducted



OUP CORRECTED PROOF – FINAL, 28/5/2020, SPi

A D ATA - D R I V E N A P P R O A C H TO C O M P L E X E C O L O G I C A L S YS T E M S 123

under a variety of environmental settings, which
is extremely effort demanding. Third, demographic
interactions might be scale-dependent, with it being
difficult to evaluate population-level interactions
(see Section 8.2.2). Because considerable time
is required to detect or quantify interspecific effects
after manipulative perturbations, the temporal scale
of the identified interaction is accordingly limited,
which might be a strong limitation when interaction
strength or sign rapidly change over time (Deyle et
al. 2016b; Ushio et al. 2018). Fourth, the greatest
problem when using manipulative experiments is
the difficulty in simultaneously evaluating multiple
interactions of the same system. Ecological theory
shows that the organization of the interaction
network and its re-organization in response to
external perturbations are essential for elucidating
ecological dynamics. To understand such responses,
temporal changes of multiple interactions must
be evaluated simultaneously. If the dynamics of
individual interactions or species are estimated
separately, a knowledge gap exists.

8.4 Modern data-driven approach
to interspecific interactions

8.4.1 Estimating population-level interactions
from time-series data

In this section, a time-series data-driven approach is
proposed as an alternative and/or complement to
traditional interpretations based on individual-level
interactions or manipulative experiments. Previous
studies have attempted to use ecological time-series
data to infer population-level interactions (e.g., Ives
et al. 2003; Turchin 2003). However, these studies
tended to be based on simplified assumptions,
such as that dynamics is close to an equilibrium
state or follows a specific dynamic model, like
the Lotka–Volterra equation. Consequently, it was
difficult to apply these studies to real, complex
ecosystems, as we do not know which interactions
are the major drivers of ecological dynamics. Thus,
an approach is needed that facilitates the model-
free analysis of community dynamics by capturing
the real ecological system as a nonlinear dynamic
system that is not at equilibrium. The objective is to
extract as much information as possible from real

ecological data, such as identifying population-level
interspecific interactions, estimating their signs and
magnitudes, and evaluating dynamic properties
(such as stability).

An ecological community is a multivariate
dynamic system; thus, an ecological time-series
could be regarded as the dynamic output of specific
mechanisms behind the system. Such time-series
form a unique set of states and trajectories in a
multi-dimensional space, where each coordinate
represents the density of each species in the
community. The set of rules describing which
states becomes which state in the next step (the
geometric set of state vectors) is called an attractor.
An important property of dynamical ecosystems
with interacting species is that time-series data of
single species contains the dynamical information of
other species interacting with it. Using this property,
the theory of nonlinear dynamical systems suggests
that one could reconstruct a shadow version of the
original attractor (i.e., an attractor topologically
identical to the original one; Takens’ theorem;
Takens 1981). More specifically, a shadow attractor
could be reconstructed by projecting the original
attractor to a state space with E dimensional
time-delayed coordinates of an observed species
X, in which a state vector contains E time-lagged
species states or densities. In other words, {xt,
xt – τ , . . ., xt – (E – 1)τ }, where xt is the population
density of the species X at time t and τ is the time
steps to use delayed coordinates. This procedure
is called state-space reconstruction (SSR) and, by
choosing a sufficiently large E (E ≥ 2D + 1, where
D is the true dimension of the original attractor;
Whitney 1936; Takens 1981), the shadow attractor
preserves the essential dynamical properties of the
original attractor, such as neighbor points and their
trajectories.

Takens’ theorem and the related SSR theories
(Takens 1981; Sauer et al. 1991; Deyle and Sugihara
2011) form the basis of a promising framework
called empirical dynamic modelling (EDM). EDM
is a tool used to analyze interspecific interactions
from observed ecological time-series data (Sugihara
et al. 2012; Deyle et al. 2013, 2016b; Ye et al. 2015a,
2015b; Ushio et al. 2018). The EDM framework
consists of various analytical tools based on
two fundamental techniques, simplex projection
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(Sugihara and May 1990) and S-map (sequential
locally weighted global linear map, Sugihara 1994).
These two tools implement similar algorithms to
forecast nonlinear time series by using information
about the behavior of the nearest neighbours
of a target point in a reconstructed attractor.
That is, trajectories of nearest neighbours should
be similar to those of the target point (if state
space is appropriately reconstructed), allowing the
future of the target to be predicted. Then, based
on simplex projection and S-map, the two tools
[Convergent Cross Mapping (CCM, Sugihara et al.
2012) and multivariate S-map (Dixon et al. 1999;
Deyle et al. 2016b)] were developed. These tools
allowed (population-level) interspecific interactions
in ecological communities to be identified and
quantified from time-series data alone.

8.4.2 Convergent cross mapping and
multivariate S-map

CCM is a technique used to identify population-
level interactions (causality) from the time-series
data of focal donors and recipient species (Sugihara
et al. 2012). Consider a simple two-species (X and Y)
system. According to Takens’ theorem and extended
theorem by Sauer et al. (1991), the two attractors
reconstructed from either X alone or Y alone map
one-to-one to the original attractors, as they are
involved in the same dynamic system. Therefore,
the two reconstructed attractors should also map
one-to-one to each other. Thus, it follows that one
could identify the interaction between X and Y by
testing the one-to-one mapping of reconstructed
attractors (cross-mapping). In practice, the one-
to-one mapping of two reconstructed attractors
is checked by looking at whether the cross-map
skill (i.e., forecasting skill by cross-mapping) of
the donor-species state from the recipient-species
improves when the number of reference data
is increased (i.e., the time-series data used to
reconstruct recipient species attractor; Sugihara et
al. 2012). This practice is based on the expectation
that, as the number of time-series data increases,
the points that are reconstructed in the recipient
attractor become denser. As a result, we are able to
find the states of recipient-species that are closer to

the focal time point from the reference data, leading
to the improvement (or convergence) of the cross-
mapping skills. The convergence of the cross-map
skill (which is the origin of the CCM) is a criterion
used to distinguish true demographic effects from
the correlation that might arise without causalities.
For example, if the dynamics of two variables are
forced by the same external factors, they might be
correlated with each other, but the cross-map skill
should not converge, as the reconstructed manifolds
do not map one-to-one with each other. The CCM
is a useful tool for detecting “true” demographic
causality in ecological communities.

The EDM framework also provides a prac-
tical method (i.e., the multivariate S-map) for
quantifying the time-changing effects of inter-
specific interactions in terms of partial deriv-
atives, ∂[recipient-species’ density]/∂[donor-
species’ density] (Sugihara 1994; Dixon et al. 1999;
Deyle and Sugihara 2011; Deyle et al. 2016b). The
multivariate S-map is an extension of the S-map
(Sugihara 1994), which is another fundamental
EDM tool that facilitates nonlinear forecasting
by leveraging information about the behavior of
nearest neighbours. In the S-map procedure, a linear
model C is sequentially generated to predict the
future value of a target time point t* from observed
time series data (Sugihara 1994; Deyle et al. 2013).
More specifically, a linear model that predicts the tp

future density of species X becomes:

xt∗+tp = Ct∗· Zt∗T, (8.2)

where Zt* is an E + 1 dimensional row vector
that combines a time independent constant z
with the state vector Xt*, i.e., {z, xt, xt -τ , . . .,
xt – (E – 1)τ } (T indicates the transpose) and Ct*

is also an E + 1 dimensional coefficient vector
{c0, c1, . . ., cE}. Because the value of z is usually
set to 1.0, c0 corresponds to the model intercept.
The coefficient vector Ct* is obtained as the
SVD (singular value decomposition) solution to
the equation, Bt∗ = At∗· Ct∗, in which Bt* is an
n-dimensional of the value wi·xti+tp (n is the number
of points in the reconstructed attractor) and At* is
an n × (E + 1) dimensional matrix of wi·Zti. Note
that, in the S-map procedure, an ith element of Bt*

and At* is weighted by the value wi, which is based
on the distance between Xti and Xt* as:
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wi = exp
(

−θ
‖Xti − Xt∗‖

d

)
, (8.3)

where d is the average distance from target point
t*. Parameter θ determines the nonlinearity of the
reconstructed attractor, because the points closer
to the target are given greater weighting when
θ > 0 (Sugihara 1994; Deyle et al. 2016b). Impor-
tantly, the obtained Ct* is approximated to
coefficients (or Jacobian) at target time t* for each
column in the Zt*. Of note, an interspecific effect is
defined as the magnitude of change in the density
of the recipient species caused by a change to the
density of the donor species. Thus, the magnitude of
the interspecific interaction could be estimated by
using the multivariate attractor, including causal
variable(s) instead of time-delayed coordinates
(Deyle et al. 2016b).

8.4.3 Application of EDM to interaction
network studies

EDM tools have been applied to ecological
time series for a variety of purposes, including
forecasting ecological dynamics, determining
causal variables, and inferring mechanisms that
drive ecological dynamics (Deyle et al. 2013; van
Nes et al. 2015; Ye et al. 2015a,b; Deyle et al.
2016a,b; McGowan et al. 2017; Nakayama et al.
2018; Ushio et al. 2018; Kawatsu and Kishi 2018).
The applications (the CCM and multivariate S-map
method) that facilitate the identification and quan-
tification of interactions represent potential tools to
study population-level interspecific interactions in
ecological systems.

Important properties of interspecific interactions
are scale-dependency and spatiotemporal vari-
ability. The multivariate S-map method allows
one to track temporally varying population-level
interactions, which are defined for a given scale
of an ecological community (Deyle et al. 2016b).
Application of the multivariate S-map method to
the time series of marine and lake communities (the
Baltic Sea mesocosm and Sparkling Lake; Beatrix
et al. 2003; Benincà et al. 2008; Benincà et al. 2009;
Figure 1) led to biologically reasonable estimations
of interaction strength. For example, the influence
of a prey (nanoflagellates) on a predator (calanoid

copepods) was estimated to be positive through
time (i.e., prey-predator interaction), while the
influence of a second grazer (rotifers) on calanoid
copepods was estimated to be negative through
time (i.e., competition). In the Baltic Sea mesocosm,
for example, the intensity of competition between
two predators, rotifers and calanoid copepods (mea-
sured as ∂[calanoid density]/∂[rotifer density])
strengthened as the intensity of food limitation
(measured by ∂[calanoid density]/∂[nanoflagellate
density]) strengthened, supporting ecological
theory (Figure 8.1b,c).

As shown in Section 8.3, multiple individual-
level interactions might simultaneously give
rise to population-level interspecific interactions.
EDM tools could be used to identify multiple
individual-level mechanisms underlying observed
population-level interactions. For example, EDM
was used in experiments to investigate competition
between two bean beetles, Callosobruchus chinensis
and C. maculatus. These experiments were used
as a model system to study interspecific com-
petition and its effect on population dynamics
(Figure 8.2). Although two types of interactions
(resource competition and reproductive interfer-
ence) are the two major drivers of population
dynamics (Bellows and Hassell 1984; Ishii and Shi-
mada 2008; Kishi et al. 2009; Kishi 2015), it is difficult
to distinguish their relative importance in driving
community dynamics through manipulative exper-
iments or observation of individual-level behaviors
alone (Scharf et al. 2008). Kawatsu and Kishi (2018)
used the multivariate S-map method and lagged
CCM, which is a type of CCM that accounts for
delayed responses (Ye et al. 2015b) in the time
series. Using two studies that performed laboratory
competition experiments (Ishii and Shimada 2008;
Kishi et al. 2009), the authors successfully identified
which interaction drive population dynamics. This
insight was made possible by looking at how the
timing of the two interactions affects population
dynamics. Reproductive interference directly affects
adult individuals of the same (due to the increased
mortality) and/or next generation (due to reduced
fecundity). In comparison, resource competition
occurs among larvae; thus, its effect is observed in
the number of adults present in the next generation.
Thus, it is possible to determine which interaction
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Figure 8.1 Dynamic interactions in the Baltic Sea mesocosm Axes are in normalized units. (a) Fluctuating interaction strength estimated by the
multivariate S-map method. Black solid line, black dashed line and gray solid line indicate ∂ (calanoids)/∂ (nanoflagellate), ∂ (calanoids)/∂ (rotifer),
and ∂ (calanoids)/∂ (picocyanobacteria), respectively. (b) The abundance of nanoflagellate (an index of food abundance) and ∂ (calanoids)/∂ (rotifer)
(an index of competition). (c) ∂ (calanoids)/∂ (nanoflagellate) (an index of food limitation) and ∂ (calanoids)/∂ (rotifer). Dotted lines indicate the 0.05
quantile regressions. (d) Interaction network of the Baltic Sea mesocosm. All figures are reproduced from Deyle et al. (2016b).

is the major driver of population dynamics by
estimating when interspecific effects take place
(Kawatsu and Kishi 2018).

Researchers have recently become interested
in applying EDM to more species-rich, natural
ecological communities. Ushio et al. (2018) used
EDM to a twelve-year dataset containing fortnightly
observations of a natural fish community consisting
of fifteen dominant species in Maizuru Bay, Japan.
The study detected fourteen interspecific interac-
tions between the dominant species by CCM, and
showed that the fourteen interspecific interactions,
which were calculated by the multivariate S-map

method, fluctuated in a manner consistent with
nonlinear dynamic systems, even in a natural
fish community (Figure 8.3a,b). In addition, the
authors developed a method to measure time-
varying stability based on local Lyapunov stability
(“dynamic stability” in Ushio et al. 2018; Figure
3c) for the dynamics in non-equilibrium nonlinear
systems (such as natural ecological communi-
ties). The results showed that both interspecific
interactions and community stability changed
through time. Moreover, causal inference (CCM)
between the fluctuating stability of the community
and interspecific interactions demonstrated the
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Figure 8.2 Bean-beetle experimental systems and their interactions Callosobruchus chinensis and C. maculatus are involved. (a) Schema of bean
beetles’ competition in which reproductive interference (RI) at adult stage and resource competition (RC) at larval stage occur. C. chinensis won in
Kishi et al. (2009) and C. maculatus won in Ishii & Shimada (2008). Arrow widths indicate the strength of interaction (either RI or RC). (b, c)
Interaction strengths (S-map coefficients) in the experiment in Ishii & Shimada (2008). Interaction strengths were significantly different from zero
only at four-weeks lag, suggesting that delayed interactions such as RC plays a major role in driving the dynamics in the experiment. (d, e)
Interaction strengths in the experiment in Kishi et al. (2009). Interaction strengths from C. chinensis to C. maculatus (e) at no time-lag were
significantly negative, suggesting that RI plays an important role in driving community dynamics in the experiment. All figures are reproduced from
Kawatsu & Kishi (2017) with permission from John Wiley and Sons.

dominance of weak interactions and higher species
diversity. These findings supported theoretical
suggestions that these phenomena are mechanisms
that drive community dynamics (McCann et al.
1998; Bascompte et al. 2005; Downing et al. 2014),
being associated with higher dynamic stability
and smaller population fluctuations in natural fish
community.

Population-level interactions have either positive
or negative effects. Because traditional commu-
nity ecology focuses on competition and trophic
interactions as the major drivers (Menge and
Sutherland 1976; Kotler and Holt 1989), negative
interspecific effects tend to be detected; however,
studies on mutualistic interactions are increasing
(Morales-Castilla et al. 2015). However, knowledge
remains limited about their relative proportions and

strength in nature. Two empirical studies show that
positive interactions are as abundant as negative
ones. In the lake ecosystem, cyclopoids tend to
have a positive demographic effect on calanoids,
despite both species supposedly competing over
the same resources (Deyle et al. 2016b). In a coastal
fish community, eight out of fourteen identified
interactions were positive when averaged over
the twelve-year observation period (Ushio et al.
2018). This is an interesting finding that cannot
be achieved by traditional approaches; yet, the
generality of this finding should be examined in
the future by applying a similar analysis to other
ecosystems.

Both Deyle et al. (2016b) and Ushio et al. (2018)
empirically confirmed that temporal fluctuations
and context dependency are the rule of interspecific
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Figure 8.3 Fluctuating interactions and dynamic stability of a natural ecological community (a) Fluctuating interaction strengths of a natural fish
community in Maizuru Bay, Japan. Fourteen interactions were detected and quantified using 12-year fortnightly observational data, CCM and the
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stability index was sequentially computed based on the eigenvalues of the time-varying Jacobian shown in a. Smaller stability indicates more stable
condition, and community dynamics are mainly stable in summer and unstable in winter. All figures are 35 reproduced from Ushio et al. (2018).

interactions. In the lake ecosystem, the interspecific
effect of cyclopoids on calanoids fluctuates between
positive and negative, with the negative effect
being associated with predatory fish abundance,
possibly because fish mediate mutualism between
the two grazers. The interactions identified in the
coastal ecosystem also fluctuated; some interactions
showed switches in their signs. Further, there
was a clear seasonal pattern in which weak inter-
actions became more dominant during summer
compared to winter. The major causes of these
fluctuations require examination in the future. Yet,
the conditions driving these fluctuations might
not be limited. For instance, the experimental
study of Kawatsu and Kishi (2018) showed that
demographic interspecific interactions change
depending on conditions, even in an experimental
system where identical pairs of bean beetle species
are reared. Such state-dependency might be a
common characteristic of interspecific interactions.

8.5 Conclusion and future directions

Interspecific interactions are the main driver of com-
munity dynamics; consequently, identifying and
quantifying them is an essential part of studying
community dynamics. However, population-level
interactions are scale- and condition-dependent,
exhibiting spatiotemporal variation, making it diffi-
cult to capture them fully through effort-demanding
traditional methods, such as behavior-based ap-
proaches and field manipulative experiments.
Here, we show that combining long-term moni-
toring data, which inherently contains dynamic
mechanistic information, and sophisticated time-
series analysis tools, which allow information
to be extracted from the data, could serve as a
powerful approach for identifying and quantifying
interspecific interactions in real ecosystems.

This approach is ideal because, regardless of
the actual mechanism involved, it facilitates the
correct detection and quantification of population-
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level interactions that give rise to the ecological
dynamics in question. Thus, we do not need to
know or assume which behavior actually drives
population dynamics. For example, if available
time-series data of the dynamics of the target
population has a small spatial scale or short
temporal scale (e.g., the time interval is sufficiently
short to fall within the lifetime of an individual)
and is mainly driven by migration, the interaction
detected by the time-series analysis would be the
one arising from the modification of migration. In
contrast, if the available time-series data has a large
spatial scale or long temporal scale, then changes to
the population would be mainly driven by birth and
death processes; thus, the interaction detected by
the same method would be the one arising from the
modification of birth-death processes. The impor-
tant point is to start with the observed ecological
dynamics to be explained and to make minimal
assumptions that the system is a deterministic
dynamical system. By so doing, it is possible to
avoid making a priori assumptions about the major
driver of dynamics, behavioral/physiological basis
of interaction, functional shape of demographic
interactions, and so on. Thus, the data of ecological
dynamics reveals the causes of ecological dynamics.

As the present approach provides limited infor-
mation about the actual individual-level mech-
anisms behind population-level interspecific
interactions, linking them remains challenging.
For instance, population-level interactions might
be caused by multiple individual-level interactions
and their combinations simultaneously. Time-series
data contain information on the affecting variables,
effect size, and its sign, but do not contain infor-
mation on the type of behavioral/physiological
mechanism causing the interaction. In contrast,
the behavior-based approach has an advantage
in studying the behavioral/physiological basis of
individual-level interactions. Therefore, combining
the behavioral-based approach and data-driven
approach represents a promising way to investigate
individual-level mechanisms of a population-
level interactions (Kawatsu and Kishi 2018).
Specifically, basic information such as donor
species and effect sign, could help with identifying
the exact behavioral/physiological basis of focal
demographic interactions.

Of note, the presented approach has some
limitations because it is data-driven. First, time-
series data must be sampled with equal intervals
and must satisfy some stationarity. In other words, it
must be a process for which moments, such as mean
and variance, do not change over time (Chang et al.
2017). Thus, if applying the data-driven approach
to non-stationary time-series data, the data must
be transformed to be stationary, as in traditional
time-series analysis (Box et al. 1994; Hsieh et al.
2008). Another serious limitation is the quality
and quantity of the time-series being analyzed. For
example, at least 35–40 data points are required for
EDM analysis (Sugihara et al. 2012); however, more
points are needed depending on the observation
and process noises of dynamic systems (Chang et
al. 2017). Also, it might be difficult meet the time-
series length requirement for long-term, wide area
ecological studies. To avoid these limitations, it
would be useful to leverage time-series data from
similar dynamic systems, as natural replicates.
It might also be possible to combine time-series
data that are different but dynamically similar, to
generate single, longer time series data (Hsieh et al.
2008; Clark et al. 2015; Kawatsu and Kishi 2018).

The usefulness of time-series analysis in studying
ecological systems demonstrates that ecological
monitoring data contain far more information than
previously thought. An appropriate analysis of the
temporal changes of population densities helps
forecasting, conducting causality tests, and evaluat-
ing effect sizes. Given the increasing importance
of understanding ecological systems, long-term
monitoring of ecosystems is important because
sufficient volumes of time-series data are required
to identify interactions with other species. However,
the amount of information that can be obtained from
the data depends on the analytical technique. For
example, when examining temporal correlations in
the density of two populations, pseudo-correlation
might lead to incorrect interpretations (e.g., mirage
correlation; Sugihara et al. 2012). In addition to long-
term monitoring data, a sophisticated technique is
required that allows us to extract more ecological
information than previously thought possible.
For example, a causality test that allows causal
relationships to be detected from time-series data,
such as CCM, could inform us of what drives
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the dynamics of populations observed in nature.
Evaluation of spatial and temporal variability of
interspecific interactions and their influence on
dynamic stability could provide greater insights
on why species are able to coexist. Such information
could provide us strategies to cope with ongoing
biodiversity loss and its impact on humanity.
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CHAPTER 9

Trait-based models of complex
ecological networks
Ulrich Brose

9.1 Modeling complex ecological
networks

Most natural communities comprise between
dozens and hundreds of species that are engaged
in hundreds to thousands of interactions. These
interactions weave complex networks and couple
most of the species in a community within pathways
of few links. This pattern of species interwoven in
networks of interactions has often been described
by Darwin’s classic description of natural commu-
nities as entangled banks. Over many decades, the
more detailed description and quantitative mod-
eling of this entangled-bank type of communities
has been restricted to few food-web ecologists
and some naturalists. However, the accelerating
effects of global change on ecological communities
have created a rising demand to provide a mecha-
nistic and predictive understanding of ecosystem
responses that also includes a realistic level of
natural diversity (i.e., the number of species in a
community) and complexity (the number of links
or the linkage density in a community).

For a long time, this demand has mainly been
addressed by two types of ecological modeling. The
first type is represented by simplified community
models that ignore the coupling of species by their
interactions. This approach creates direct links
between global change parameters and community
variables such as diversity or abundance distri-
butions. Despite some success in relating causes

and effects, this approach has remained limited
in the possibility to predict future changes as it
can only assume constant and static community
and interaction structures, because they are not
explicitly included in these models and thus
cannot change. The second type of approach
employs interaction modules of few species and
low complexity to model population dynamics. The
range in complexity of these models ranges from
simple consumer-resource pairs to food chains or
omnivory motifs. These models provide substantial
mechanistic insight into the processes that drive
natural communities, but they cannot predict
community patterns in diversity or abundance
distributions.

Hence, these two types of ecological modeling
have been leaving a substantial gap that needed to
be filled by ecological network models. These mod-
els include the full diversity of natural communities
in terms of the number of species and the variety of
interactions between them. Therefore, they combine
mechanistic modeling of species’ interactions with
potential predictions of community patterns such as
diversity and abundance distributions. While this
approach offers a desirable combination of mech-
anistic understanding with community-level pre-
dictions, it has been hampered for decades by the
requirement to provide an adequate set of parame-
ters for each population and each interaction. A typ-
ical set of population model parameters includes

Brose, U., Trait-based models of complex ecological networks In: Theoretical Ecology: Concepts and Applications. Edited by: Kevin S. McCann and Gabriel Gellner,
Oxford University Press (2020). © Oxford University Press.
DOI: 10.1093/oso/9780198824282.003.0009
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at least growth rates, maximum feeding rates, and
death or metabolic rates for each population as well
as parameters of interaction strength and assimi-
lation rates for each interaction. Tedious measure-
ments of these parameters are certainly possible for
species modules such as predator-prey pairs or food
chains, but the higher diversity (i.e., the number of
species) and complexity (i.e., the number of inter-
actions between species) of natural communities
prevents any systematic measurements of species
and interaction parameters for network models. For
instance, the food web of the Antarctic Weddell Sea
(Jacob et al. 2011) comprises 488 species and 16,220
feeding links between (Figure 9.1). The requirement
of two parameters per interaction and at least three
parameters for each species renders a systematic
empirical parametrization of a food-web model for
this community impossible.

The initial solution for this chronic hunger for
parameters was establishing random parameteri-
zation protocols. Analyses of random interaction
networks have provided substantial insights into
how network structure constrains the dynamics and
survival of populations. For instance, classic net-
work analyses showed that increases in the diversity
(the number of nodes) or complexity (the connection
probability between pairs of species) of networks
cause a destabilization of the dynamics (May 1972)
that can potentially lead to extinctions. Counter to
the prior paradigm, this suggests that higher diver-
sity and complexity in natural communities does
not lead to higher stability. However, the classic
modeling results also showed that the destabilizing
effects of diversity and complexity could be ame-
liorated by decreasing strengths of the interactions
between the species (May 1972).

The central question that has been arising was
thus how natural communities can maintain their
stability and structural integrity despite their high
diversity and complexity. Some seminal studies
identified the characteristics of natural communities
that are responsible for their stability. The main
findings showed that the network structure and
interaction strengths of the links are not random.
First, natural food webs are not well described by
random network structures, as they do not engage
randomly in their interactions. Interestingly, this
non-random structure of the natural food webs
provides a substantial increase in stability when

Figure 9.1 The food web of the Antarctic Weddell Sea (Jacob et al.
2011) with 488 species and 16,220 feeding interactions. This includes
autotrophs such as phytoplankton at the base (red nodes), herbivores
such as zooplankton (orange nodes) and predators across multiple
trophic levels (yellow nodes). The complex structure of this food web
includes a high number of interaction modules (e.g., food chains) that
are interwoven.

compared to random networks (Yodzis 1981). This
finding has triggered a quest for the non-random
rules that govern who interacts with whom in
natural communities and yield the non-random
network structures. Specifically, structural niche
models showed that species in natural communities
are hierarchically ordered and higher ranked
species predominantly feed on lower ranked species
(Cohen and Briand 1984; Williams and Martinez
2000). Secondly, the strengths of interactions are
also non-randomly distributed across the species
of the network, which yields an additional gain in
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stability compared to random networks (De Ruiter
et al. 1995).

These results suggest that non-random network
structures and interaction strengths need to be
taken into account when modeling ecological
networks. The centrally important question was,
thus, how to predict realistic network structures and
interaction strengths while avoiding unrealistically
labor-intensive measurements of these parameters
in natural communities. The use of easily accessible
species traits offers a potential solution for this
problem. In natural communities, many aspects
of food-web structure and interaction strengths are
strongly linked to the average body masses of the
species (Peters 1983; Emmerson and Raffaelli 2004;
Woodward et al. 2005; Brose et al. 2006a; Brose
2010). Therefore, body mass has been used as a
primary trait to predict the model parameters of
network structure and population dynamics. In the
following, this approach is described in more detail.

9.2 Allometric population models

In classic models, the dynamics of population
densities are driven by the parameters of growth,
feeding and either death (models of population
abundance) or metabolism (models of population

biomass). Interestingly, these parameters follow
power-law relationships with the species body
masses (see Figure 9.2 for an example), which are
referred to as allometric scaling relationships (Peters
1983). The allometric scaling of metabolic rates were
subsequently explained by the fractal structure of
the species’ physiological transport networks (West
et al. 1999), which was more recently intensively
debated. Irrespective of the mechanistic processes
that are considered responsible, most approaches
consider power-laws as the most appropriate
relationships (but see Chapter 10 on allometries that
are more complex). As metabolic rates provide the
fuel for most other organismal process, a dominance
of three-quarter power-law scaling relationships
for most biological processes including those of
the population-dynamic models was generally
assumed (Brown et al. 2004). Consequently, these
allometric scaling relationships were used to
parameterize a generic bioenergetic population
dynamic model (Yodzis and Innes 1992). The
approach is based on general scaling relationships
of a biological rate such as the metabolic rate with
body mass (Figure 9.2, grey data points fitted by the
black regression line). Subsequently, the regression
model can be used to predict the biological rate
of species based on their body masses, which
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Figure 9.2 The relationship between metabolic rates and body mass (plot on the left, grey dots, arbitrary data) is often well described by a
power-law relationship (black line). This relationship can be used to predict the metabolic rate of a species based on the body mass as shown for
the mouse and the fox as examples (dashed lines). As many of the metabolic rates deviate from the regression line (residual variation), there is a
discrepancy between the allometric predictions of metabolic rates (dashed lines) and the real metabolic rates (dotted lines). The allometric
approach is thus trading generality across species and ease of application against accuracy in predicting metabolic rates of specific species. This
approach can thus be used to generate general relationships across species (and body-mass classes), whereas detailed predictions of specific
species’ rates (and population dynamics) suffer from uncertainty. The allometrically-predicted metabolic rates can parameterize consumer-resource
models such as that of the interaction between fox and mouse (plot on the right, size of the metabolic rate arrows corresponds to y-axis values of
their predicted metabolic rates). Similar allometric approaches can be used to predict other physiological rates (e.g., death rate, maximum feeding
rate) or interaction parameters (e.g., attack rates), which yields fully-parameterized population dynamic models.
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parameterizes a population dynamic model (see
Figure 9.2 for an example).

Initially, this allometric population dynamic
model was used to generalize dynamics according
to dimensionless consumer-resource body-mass
ratios across species pairs that differ substantially
in their masses from bacteria to whales (Yodzis
and Innes 1992). These generalized dynamics were
subsequently used to understand the stability
of populations embedded in small modules.
These studies showed the biologically reasonable
conditions for chaotic dynamics in tri-trophic
food chains (McCann and Yodzis 1994) and how
they could be stabilized by the addition of an
omnivorous link between the top and intermediate
species (McCann and Hastings 1997). This solution
to preventing extinctions by unbounded population
oscillations was later extended to a general result
that weak trophic interaction links in small
modules can generally withdraw energy out of
strongly oscillating chains, which creates increased
probabilities of population persistence (McCann
et al. 1998). In consumer-resource interactions, as
the most simple building blocks of modules as
well as complex food webs, population stability
is generally undermined by any process that
increases the energy flux from the resource to the
consumer relative to the consumer loss rates (Rip
and McCann 2011). Hence, stabilizing processes
in enriched systems with strong oscillations thus
increases the consumer loss rates (relative to the
energy flux from the resource to the consumer) and
prevents a pattern of top-heaviness (high consumer-
to-resource biomass ratio). These approaches
employed small modules of interaction populations
to gain highly general mechanistic insights in
processes that govern population stability and
persistence. Nevertheless, these results still required
scaling up to the diversity and complexity that
characterizes natural communities.

9.3 Allometric models of complex
communities: The Yodzis and Innes
approach

Classic food-web studies illustrated the pattern that
the stability of these complex networks is much

higher than that of random networks due to nat-
ural food-web structures (Yodzis 1981) and natu-
ral distributions in interaction strengths across the
links (De Ruiter et al. 1995). However, one centrally
important question remained: why do natural com-
munities possess network structures and interac-
tion strength distributions that beget stability? This
pattern of naturally stable networks becomes even
more astonishing when considering that the likeli-
hood of these stable configurations is extremely low
(Gross et al. 2009) and that it requires systematic
correlations between interaction strength parame-
ters (Brose 2010). This patterning in the organiza-
tion of natural communities required a structuring
principle based on first principles, which was found
to lay in the constraints of consumer and resource
body masses on interaction strengths and food-web
structure. Allometric rules yield non-random distri-
butions of interaction strengths across the links of
complex food webs, which increase their stability
(Emmerson and Raffaelli 2004). The explanation for
this pattern is that predator-prey interactions are
subject to very simple yet highly general constraints
that predators need to outpace, overwhelm, and
ingest their prey (Brose 2010). These general prin-
ciples cause that across different ecosystem types
predators are systematically larger than their prey
(Brose et al. 2006a). Implementing this general pat-
tern of predator-prey body-mass ratios caused a
substantial increase in the probability of population
persistence from ~40% under random body-mass
distributions to more than 90% under natural body-
mass distributions (Brose et al. 2006b). This result
indicated that the non-random pattern of predators
being systematically larger than their prey might be
an explanation of why natural food webs are con-
strained into patterns of interaction structures that
beget stability. Moreover, the body-mass structure
of natural food webs also turned negative relation-
ships between their diversity (i.e., the number of
species or nodes of the networks) or complexity (i.e.,
connectance or the connection probability between
any pair of species in the network) and stability into
neutral to slightly positive relationships (Brose et al.
2006b; Rall et al. 2008). Eventually, this implies that
the diversity and complexity of natural communi-
ties does not undermine their stability as suggested
by earlier theoretical studies.
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These results opened up possibilities for a realistic
understanding of the dynamic processes in complex
natural food webs. The modeling approach required
defining the network structure of who eats whom
(the binary links of the network) and a population
dynamic model. In the first approaches, the
structure of the networks followed the niche
model (Williams and Martinez 2000) that ordered
species along an arbitrary niche axis and imposed
systematic feeding niches of predators feeding
predominantly on lower ranked species. These
niche-model networks were combined with the
allometric population dynamic model (Yodzis and
Innes 1992) to yield dynamic complex networks
(Brose et al. 2006b; Rall et al. 2008). In addition
to direct effects of the predator-prey body-mass
ratios, implementations of these models also
showed the stability of the complex networks’
profits from the compartmentalization (Stouffer
and Bascompte 2011) and the relative frequency of
some food-web modules (Stouffer and Bascompte
2010). Most of these stabilizing effects of food-
web architecture and body-mass structure can be
related to decreasing interaction strengths from
the base to the top of the food webs (Kartascheff
et al. 2009), which is explained by the combination
of decreases in per unit biomass feeding rates
with body mass (Rall et al. 2012), and increases
in body mass along the trophic levels of complex
food webs (Riede et al. 2011). This explanation
for the strong body-mass effects is consistent with
the principle of decreasing energy fluxes relative
to consumer loss rates along trophic levels (Rip
and McCann 2011), which links the dynamic
stability of complex food webs to mechanisti-
cally understood consumer-resource population
dynamics.

9.4 More complex allometries

The allometric models of natural food webs sug-
gested that the dynamics of these complex
systems are highly dependent on the interaction
strength pattern that are quantified by functional
responses. The original bioenergetics model of
population dynamics (Yodzis and Innes 1992)
included some simplifying assumptions such as

an inverse allometric scaling of handling time and
attack rate, which is not supported by empirical data
(Vucic-Pestic et al. 2010; Rall et al. 2012). Instead,
empirical data suggested that handling time is well
approximated by a power law scaling with predator
body mass, whereas attack rates follow hump-
shaped relationships with predator-prey body-mass
ratios. This pattern is consistent with the notion
that predators have an optimal prey size that yields
maximal attack rates. These attack rates decrease
towards predator-prey body-mass ratios that are
smaller or larger, which causes a hump-shaped
relationship between attack rates and predator-prey
body-mass ratios (Brose et al. 2008; Kalinkat et al.
2013). These hump-shaped relationships between
attack rates and predator-prey body-mass ratios
were implemented in a bioenergetic population
dynamic model that kept the other traditional
power-law scaling relationships to show that it
correctly predicts the body-mass ratios of natural
predator-prey pairs (Kalinkat et al. 2013). This result
suggested that the network structure of natural
food webs and the population dynamics of their
predator-prey pairs could be successfully predicted
by the same model. This opened up a fundamental
possibility to use the body masses of the species in a
community to predict their interaction topology
(who eats whom) as well as the dynamics of
their population densities. However, the centrally
important question was whether such an extremely
reductionist approach of predicting food-web
structure and population dynamics by body mass as
a single super trait could be adequate in predicting
empirical patterns. While the tests of these models
are still in their infancy, one pioneering study used
the allometric-trophic network approach to predict
the interactions and their strengths in a small
module of three predators and one basal species
(Schneider et al. 2012). Despite the simplicity of
this approach that was based on body masses as
the only species traits, the predictions of the model
were highly consistent with laboratory experiments
that systematically removed the species to measure
their interaction strengths (Schneider et al. 2012).
These results illustrate that body masses can act
as the dominant traits in natural food webs that
organize their structure as well as their interaction
strengths.
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9.5 Modeling the temperature-
dependence of network dynamics

Many of the effects of body masses on population
dynamics go through their allometric constraints
on the physiological rates of metabolism, growth
and feeding as described by classic allometric
scaling relationships (Peters 1983; Yodzis and
Innes 1992) and the Metabolic Theory of Ecology
(West et al. 1997; Brown et al. 2004). As ambient
temperature has been used as the second important
driver variable of metabolic scaling relationships
(Gillooly et al. 2001), it has also been implemented
in population dynamic models to analyse its effects
on population stability (Vasseur and McCann
2005; Gilbert et al. 2014). Consistent with the
principle of energy flux (Rip and McCann 2011),
the effects of temperature on population stability
are highly dependent on the relative strength
in the changes in metabolism and consumption
of the predators (Vasseur and McCann 2005;
Fussmann et al. 2014). Interestingly, a meta-study
showed that the increases in feeding with warming
are systematically much lower than those in
metabolism (Fussmann et al. 2014). Hence, the
energy loss rates of predators (metabolic rates) are
more accelerated under warming than their energy
gains (feeding rates). This yields predictions of
increasing population stability (smaller oscillations)
but predator extinctions at high temperatures due
to starvation, which were confirmed by laboratory
experiments (Fussmann et al. 2014). These results
were confirmed for simulations of tri-trophic food
chains, where the detrimental effects of warming
could be counteracted by nutrient enrichment
(Binzer et al. 2012). Interestingly, these results
obtained for small food-web modules can also
provide an explanation for the increased extinction
rates in complex food webs under warming (Binzer
et al. 2016). Together, the studies on empirical
temperature scaling relationships, population
dynamics in small food-web modules and complex
food webs have provided a systematic and generic
insight into how the warming of natural ecosystems
is likely to change the diversity and composition
of natural species communities. This is providing
an example how to address the consequences of
global change drivers for the structure, dynamics

and stability of complex natural communities by
combining trait-based, allometric food web models
with empirically derived effects of the global change
driver on the network nodes and links.

9.6 Outlook

The trait-based approach to model complex ecolog-
ical networks illustrated in this chapter provides a
flexible toolbox to address theoretical and applied
questions. This flexibility includes accounting
for non-linear or other more complex scaling
relationships between the species’ biological rates
and their traits, such as body mass. For instance,
the hump-shaped scaling between predator-prey
body-mass ratios and attack rates was included in
the functional response of the models (Kalinkat
et al. 2013). Similarly, curved or hump-shaped
relationships between metabolic rates and body
mass (Kolokotrones et al. 2010; Ehnes et al. 2011)
could be included in the models. Additionally, also
rates that change during the time series such as
adaptive foraging rates can be realized with limited
effort (Kondoh 2003; Heckmann et al. 2012). This
flexibility in the model structure concerning how
species traits affect the biological rates creates a
broad applicability as it allows dovetailing the
model to the specificications of the system studied.

Future studies could thus systematically include
other important species traits such as their
movement type, the species’ functional groups,
and the dimensionality of the interactions. There
are substantial differences in the realized maximum
and exploratory speeds between species of different
movement types (running, flying, swimming) and
functional groups such as predators, herbivores,
and decomposers (Hirt et al. 2017a,b). The maxi-
mum speed is realized during the chases of attack
and escape, whereas the much slower exploratory
speed characterizes the search behavior of preda-
tors. Hence, both types of speed and their variation
across species of different movement types and
functional groups could have strong implications
for the dynamics of complex food webs.

In addition to species traits, ecosystem charac-
teristics can also have profound consequences for
species interactions. For instance, the dimensionality
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of the ecosystem, 2D or 3D, has a strong effect
on the attack rates of predator-prey interactions,
which has severe knock-on effects on their dynamic
stability (Pawar et al. 2012). Future studies
could thus implement these effects of interaction
dimensionality in models of complex communities
to understand their consequences for community
patterns and dynamics.

Natural communities do not only comprise
numerous trophic interactions, they can include
even more non-trophic interactions that contribute
substantially to the structure of the entangled bank
(Kefi et al. 2015). These non-trophic interaction can
change the structure and strength of the food-web
links substantially (Kefi et al. 2012), which can have
substantial impact on the community dynamics
up to changes between alternative stable states
(Kefi et al. 2016a,b). Ultimately, the combination
of different types of interaction networks, such as
those formed by trophic and non-trophic interac-
tions, compose multilayer or multiplex networks
(Pilosof et al. 2017) that could also be parametrized
by species traits. This is opening up an exciting
research agenda of realistically modeling natural
communities while accounting for the full complex-
ity of their interaction structures.

Many of the modeling approaches described in
this chapter have focused on understanding how
processes and traits drive population dynamics
and persistence in complex food webs. Some more
recent studies have started to use the biomass
fluxes through the links of the food webs (De
Ruiter et al. 1994) to calculate ecosystem functions
(Barnes et al. 2018). For instance, the sum over
all biomass fluxes to herbivores and carnivores
characterizes the ecosystem functions herbivory
and carnivory, respectively (Barnes et al. 2018).
Similarly, the strength of the flow in nutrients from
abiotic pools into plants can also be used to calculate
primary production in complex ecological networks
(Wang and Brose 2018). Using the approach of trait-
based energy flux calculations (Barnes et al. 2018),
these studies have shown that primary production
and other ecosystem functions in complex food
webs are driven by the maximum trophic level
(or maximum body mass) that is realized in the
network (Wang and Brose 2018) and the diversity of
the animal community (Schneider et al. 2016). This

novel application of quantitative food-web analyses
allows for more detailed and mechanistic analyses
of how community structure and diversity drive
ecosystem functioning.

The combination of trophic interactions between
species with their spatial processes of trait-based
movement between different habitat patches can
greatly modify the stability of food-web modules
(McCann et al. 2005) or complex networks (Gravel
et al. 2016). Despite the tremendous importance of
spatial processes for ecological patterns, the study
of trait-based food webs is still in its infancy. Most
studies coupling trophic dynamics with movement
between habitat patches have been restricted to
interaction modules of few species such food chains
or omnivory motifs (Koelle and Vandermeer 2005;
Amarasekare 2007; Liao et al. 2017). These studies
have shown that trait-based dispersal abilities of
species can modify their coexistence probabilities
substantially (Amarasekare 2006), which can
increase the length of food chains (Holt 2002) and
the species diversity of the food webs (Amarasekare
2008). A more systematic combination of complex
food webs with trait-based dispersal functions is
thus likely to be a fruitful avenue for an improved
understanding of natural community structures
and ecosystem functions (Massol et al. 2011).

The research directions outlined above offer
great possibilities to improve our understanding
of dynamic processes in the complex networks that
characterize natural communities. The body mass
and temperature constraints on species interactions
and their population dynamics represent first steps
towards achieving realistic models of complex
ecological networks. However, only the systematic
improvement of these models by including effects
of other species traits, non-trophic interactions
and spatial processes is likely to yield accurate
models that would allow for realistic forecasting
of ecological dynamics (Petchey et al. 2015). Despite
arguably being quite complex, these ecological
network models will close the lingering gap
between mechanistic models of simple food-web
modules and community models without species
interactions. Eventually, these models enable the
study of global change effects on populations,
communities and ecosystem functioning while also
accounting for the indirect effects between species
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that are coupled by their interactions. In a world
challenged by global change, these trait-based
network models can provide a mechanistic and
predictive understanding of ecosystem responses
that also includes a realistic level of natural diversity
and complexity.
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CHAPTER 10

Ecological networks:
From structure to dynamics
Sonia Kéfi

10.1 Brief introduction

Ecological systems are undeniably complex, includ-
ing many species interacting in different ways with
each other (e.g., predation, competition, facilitation,
parasitism). One way of visualizing, describing,
and studying this complexity is to represent these
complex systems as networks. Ecological networks
can be of different types, depending on the nature
of the nodes and links involved, but in the most
common case, nodes are typically species and
links are interactions between these species. For
example, food webs are networks of who eats whom
among the species of a community. Mutualistic
networks are networks of mutualistic interactions
between species, such as networks of plants and
their pollinators.

The study of these networks entails describing
their structure, i.e., the way the nodes are connected
to each other, understanding the rules governing
this structure, and assessing how network struc-
ture drives ecological dynamics. Studies on differ-
ent types of ecological networks have suggested
that they exhibit structural regularities, i.e., com-
mon structural properties, which in turn affect net-
work dynamics and resilience to perturbations.

Although the use of networks to represent eco-
logical communities dates back to the early stages of
the discipline, in the last two decades data has been
collected at a faster rate and better resolution. Simul-
taneously, metrics are continuously developed to
better characterize network structure, and numerical

simulations of mathematical models have allowed
investigating how network structure and dynamics
are related. This has led to rapid progress in
our understanding of ecological networks. We
are reaching a more comprehensive and realistic
description of ecological communities and their
complexity. Combined with mathematical model-
ing, ecological network studies have contributed to
the understanding of the mechanisms underlying
the emergence of current ecological communities
(species assemblages, species traits, and network
structure), and of the response of ecological
communities to natural gradients and to ongoing
and future global change.

After defining networks in general, and ecological
networks more specifically, this chapter presents
recent results regarding the structure of different
types of ecological networks, and what is known
about their dynamics and resilience. Recent devel-
opments and challenges related to the study of
ecological networks are highlighted. Understand-
ing what precisely makes ecological systems stable
remains one of the greatest challenges of ecology in
the current context of global change. Addressing
some of the current limitations of ecological
networks could help improve our understanding
and prediction ability of ecological communities.
In particular, ecological network theory needs to
further integrate different interaction types in the
same framework (i.e., multi-layer networks) and to
better account for the variability of these multi-layer
networks in space and time.

Kéfi, S., Ecological networks: From structure to dynamics In: Theoretical Ecology: Concepts and Applications. Edited by: Kevin S. McCann and Gabriel Gellner,
Oxford University Press (2020). © Oxford University Press.
DOI: 10.1093/oso/9780198824282.003.0010
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10.2 What is a network?

Because of the explosion of information due to the
Internet and the telecommunications in the nineties,
as well as the improvement of computer power, a
field targeting the study of complex systems and
their emergent properties has boomed: network
science (Watts and Strogatz 1998; Albert et al.
1999, 2000; Barabási and Albert 1999). Networks
have since then been used at an accelerated rate
in many different disciplines, including physics,
social sciences, and biology (see Newman 2010 for
an overview).

Networks (or graphs) are abstract representations
of a system describing its components, the
nodes (or vertices) and the relationships between
them, the links (or edges) (Figure 10.1 left panel;
Newman 2010). This network representation allows
describing a large variety of systems with a common
language.

In a unipartite network, all nodes are of the same
type (e.g., species) and links (e.g., species interac-
tions) can occur between any pairs of nodes (Figure
10.1 left panel). Food webs are often represented
as unipartite networks (e.g., de Ruiter et al. 1995).
A bipartite network is a particular type of network
in which the nodes can be divided in two disjoint
groups such that each link connects a node from
one group to a node of another group (nodes have
“colors”; Figure 10.1 middle panel, here with white
and black nodes) but links among nodes of the
same type do not occur. A typical example of bipar-
tite networks are plant-pollinator networks, with

the nodes being either plants or pollinators, and
the links being the pollination interactions (Jordano
1987). This can be generalized to multipartite net-
works, where more than two types of nodes can
be considered, e.g., plants, pollinators, and herbi-
vores, with pollination links between pollinators
and plants, and herbivory links between herbivores
and plants (e.g., Pocock et al. 2012). Real systems are
often interconnected in many different ways, mak-
ing it difficult to describe these systems with a single
network. To account for this source of complexity, a
new framework is currently developing in network
science, focusing on the study of multilayer networks,
a set of layers, each containing a network (Figure
10.1 right panel; Boccaletti et al. 2014; Kivelä et al.
2014; Pilosof et al. 2017). In ecology, such layers can
correspond to different interaction types between
a given set of species, different snapshots in time
(each layer is a network snapshot taken at a different
moment in time), or different locations in space
(each layer is a network evaluated at a different
location in space).

The links that connect the nodes of a network
can be directed (Figure10.2A1) or undirected (Figure
10.2A2). For example, pollination interactions are
typically directed from a pollinator (the source of
the interaction) to a flower (the target of the inter-
action). Note that feeding interactions are directed
as well and can be represented as arrows going
from predators to their prey (i.e., from the source
to the target of the interaction) or as arrows going
from prey to their predator when they are assumed
to represent the flows of matter in the food web—
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link

unipartite bipartite

node

layer 2 layer 3

intralayer link

interlayer link

Figure 10.1 Examples of unipartite (left), bipartite (center), and multilayer (right) networks. Links that connect nodes within a layer are intralayer
links whereas links that connect nodes across layers are interlayer links (dashed lines).
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both representations can be found in the ecological
literature. Other networks have undirected links,
such as species co-occurrence networks (if species
i is at the same location of species j, species j is also
at the same location as species i).

A network is often represented by its adjacency
matrix (Figure 10.2A2, B2). For a network of N
nodes, the adjacency matrix has N rows and N
columns with Aij = 0 if j has no effect on i, and
Aij �= 0 otherwise. Links can be binary (pres-
ence/absence or 0/1; we then talk about qualitative
or topological networks) or weighted (measure of
frequency or strength of the interaction; we then talk
about quantitative networks). These values are the
elements of the adjacency matrix. In an undirected
network Aij = Aji and the matrix is symmetric

(Figure 10.2B2). In a directed network Aij can be
different from Aji; in a binary food web data set for
example, A12 would be 1 if species 2 is a predator of
species 1, but A21 would then be 0 (Figure 10.2A2).

Networks are one way of describing complex sys-
tems, visualizing and quantifying their structure, as
well as evaluating the relationships between struc-
ture and dynamics. Their framework provides a
common language to describe diverse complex sys-
tems and a set of tools to analyze them. A number
of choices need to be made when we represent a
system as a network (such as the level of description
chosen for the nodes, the type of links included,
etc.); these choices determine the type of informa-
tion that can be extracted, the type of questions that
can be explored, and the type of tools that can be
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Figure 10.2 Typical representations of unipartite networks (on the left; using two simple 4-node networks as an illustration), with their
corresponding adjacency matrix (on the right). Example of a directed (top row) and of an undirected (bottom row) network. In this example, all
species are represented along the rows and columns. In case of directed links, the matrix elements contain information about who affects whom;
here columns represent the species seen as a predator and the rows the species seen as a prey. This means that Aij = 1 if species j is a predator of
species i. Row i corresponds to the incoming links of species i (in orange in panel A2) and column i contains the outgoing links of species i (in green
in panel A2). In case of undirected links, the adjacency matrix is symmetric (the white upper right cells contain identical information as the dashed
bottom left cells in panel B2).
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used. The first steps are therefore to decide what are
the nodes and links in the system of interest and to
collect the corresponding data. The following part
presents the types of networks commonly studied
in ecology.

10.3 Networks in ecology

Because of their inherent interconnectedness, eco-
logical communities can quite naturally be described
as networks, in which nodes typically represent
species, individuals, or spatial locations, and
links can indicate interactions between species or
individuals as well as flows of energy, nutrients or
individuals between locations (Table 10.1). Because
topological networks (i.e., networks with only
presence-absence information on the link, but no
quantitative information on the strength of the
link; see Section 10.2) are easier to assemble from
empirical data, the bulk of published ecological
networks are described by binary (rather than
weighted) adjacency matrices (Figure 10.2A2, B2).

10.3.1 Interaction networks

Although different types of networks are used
in ecology (see e.g., Borrett et al. 2014: Table 1),
the ones that are the most widely used are so-
called interaction networks in which the nodes
are species and the links represent interactions
between these species (Figure 10.3). Any type of

interaction between two species may be considered
to build such a network: trophic (i.e., feeding; Figure
10.3A) or non-trophic (e.g., competition, mutualism,
facilitation, interference; Figure 10.3B,C). Food webs
are networks of who eats whom in an ecosystem
(Pimm 1982; Cohen et al. 1993) and have been the
most common type of ecological networks studied
so far in ecology (Berlow et al. 2004; Ings et al. 2009).
Networks describing other interaction types have
been investigated as well, such as host-parasitoid
(Henri and Van Veen 2011), host-parasite (Lafferty
et al. 2006), plant-plant facilitation (Verdú and
Valiente-Banuet 2008), competition (Soliveres et al.
2015) and mutualistic networks. These latter have
attracted increasing attention in the last two decades
(e.g., pollination and seed dispersal; Jordano 1987;
Bascompte et al. 2003; Jordano et al. 2003; Olesen
et al. 2008).

Typical data sets of such interaction networks
contain the lists of the species present in a given
community and a list of the interactions between
these species (i.e., filling in the adjacency matrix of
Figure 10.2A2, B2). This can be done based on direct
observations (e.g., observation of the consumption
of an individual of one species by the individual of
another species, observation of the visit of a polli-
nator on a given flower), indirect observations (e.g.,
gut content analysis to infer trophic links, pollen
analysis to infer pollination links, stable isotopes,
meta-barcoding, environmental DNA) or inference
(based on traits, abundance, or similarity to another
species whose diet is known).

Table 10.1 Typical types of ecological networks studied.

Network Node Link E.g., of references

Interaction network species, group of species Inter-specific interaction
(competition, predation,
parasitism, mutualism, etc.)

(Jordano 1987; Dunne 2006;
Lafferty et al. 2006; Verdú and
Valiente-Banuet 2008)

Social network Individuals Social contact (Hasenjager and Dugatkin 2015)

Spatial network (metacommunity,
metapopulation, metaecosystem)

Local population/habitat
fragment

Transfer of matter, individuals
(dispersal), resources

(Hagen et al. 2012)

Co-occurrence network Individuals, species Co-occurrence in the same
locality or physical contact
(spatial overlap)

(Araújo et al. 2011;
Morueta-Holme et al. 2016)
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Source

Trophic Positive non-trophic Negative non-trophic(C)(B)(A)

Target

Figure 10.3 Example of three interaction networks for the Chilean web, which counts more than 100 species of the intertidal coast of central
Chile, as well as feeding interactions (on the left), positive non-feeding links (such as facilitation for recruitment or refuge provisioning; in the
middle) and negative non-feeding links (such as competition for space or predator interference; on the right) between these species. Nodes are
organized vertically by trophic level (primary producers at the bottom and predators at the top) and horizontally randomly. Figure from Kéfi et al.
(2015). The size of the nodes is proportional to the trophic degree of the species (i.e. how many feeding links the species has). The same species are
represented in each network but the links represent a different interaction type in each of the three panels.

10.3.2 Toward multi-layer interaction networks

Traditionally, different interaction types have been
studied in isolation from each other, and ecological
networks most often contain information about
a single interaction type at a time (Berlow et al.
2004; Ings et al. 2009; Kéfi et al. 2012). However,
because species interact with each other in many
different ways in nature, there has recently been
a growing interest in the literature devoted to
the description and understanding of networks
combining different interaction types (e.g., Melián
et al. 2009; Olff et al. 2009; Pocock et al. 2012; Kéfi
et al. 2015). Furthermore, ecological network data
is typically a snapshot of a community in time and
space. Most ecological networks are, therefore, static
descriptions of a given community, and very few
studies have analyzed their temporal and spatial
variability (Olesen et al. 2008; Trøjelsgaard and
Olesen 2016). This requires obtaining different
snapshots of an ecological community at different
times or at different locations, thereby building
multi-layer networks (Figure 10.1 right panel). Such
multi-layer networks—in which layers represent
either different interaction types, different times,
or different locations—represent a new avenue of
research in interaction networks (Pilosof et al. 2017).

Describing temporal and spatial variations in
ecological networks—the changes in species but
also in links—may provide insights into the
mechanisms that generate these networks and their
structure, as well as the mechanisms that provide
resilience to ecological communities.

10.3.3 Other types of ecological networks

Spatial networks

In a spatial network, nodes (e.g., habitat patches)
are locations in space (Figure 10.4). The links define
the connections among the patches due to dispersal,
nutrient flows, or other processes (Dale and Fortin
2010). Links can be directional or bidirectional. They
can be binary or accounting for e.g., geographi-
cal distances between the patches. Nodes can have
additional attributes such as the size or the shape
of the patch. Patches can be classified as sinks or
sources (depending on the population growth rate
locally). So far, most work has been done on meta-
populations, although recent theory has included
the meta-community (McCann et al. 2005) as well
as the meta-ecosystem concepts (Gravel et al. 2016).
[See Chapter 12 of this book for more details about
these types of networks.]
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Figure 10.4 Example of ecological networks in space. Patches: habitat fragments, each of them containing a whole network of interactions.
Connections between patches are due to species dispersal.

Figure from Hagen et al. (2012).

Co-occurrence networks

Co-occurrence networks use data to infer the pres-
ence of a link between two species. Nodes are
species, and a link is present when two species are

found in the same site (Araújo et al. 2011; Morueta-
Holme et al. 2016) or if two individuals were found
next to each other in space more frequently than
expected by chance (Saiz and Alados 2011).



OUP CORRECTED PROOF – FINAL, 6/4/2020, SPi

E C O L O G I C A L N E T W O R K S : F R O M S T R U C T U R E TO DY N A M I C S 149

Because data collection of species interactions
requires extensive efforts, co-occurrence networks
have sometimes been used to reconstruct interaction
networks. The development of the methods to
do such reconstructions has a long history and
keeps being refined (Sanderson and Pimm 2015),
but the intuitive idea is that significantly positive
species associations could be considered evidence
of positive interactions, while significantly negative
associations are assumed to reflect negative
(competitive) interactions (Morueta-Holme et al.
2016). Therefore, in these networks, links have signs,
plus or minus respectively, for positive or negative
spatial associations. Limitations regarding the use of
significant spatial associations as proxies for species
interactions have recently been discussed in the
literature (e.g. Barner et al. 2018; Freilich et al. 2018).
Indeed, there are many reasons why we may not be
able to reconstruct species interactions from species
spatial associations, in particular because species
interactions are not the only process driving species
co-occurrence.

10.3.4 Broad questions asked in
ecological networks

One of the long-lasting challenges in ecology is
to understand how and why so many species can
coexist in an ecosystem but also how and when
these communities are stable, especially in the face
of current global change. Robert May demonstrated,
in the early seventies, that model communities
with many species were in general less stable than
model communities with fewer species (May 1973).
In other words, the more complex an ecological
community (i.e., with many species and links), the
less likely it is to be stable, according to May’s model
analyses.

These results stimulated decades of research on
ecological networks to decipher how the diverse
and complex communities observed in nature
could persist. At least part of the answer lies in
the fact that, in May’s communities, the location
and the intensity of the links between the species
were picked randomly. Indeed, the challenge for
ecologists has been to find out in which ways

natural communities differ from random ones,
and how these non-random structural properties
contribute to the dynamics and stability of complex
ecological communities. [See Chapter 6 in this
book for more information on May’s approach
and recent developments]. This paved the way for
numerous studies on the structure of ecological
communities, especially food webs. Are there
structural regularities or universal patterns in
ecological networks? What are the drivers of species
interactions and network structure (e.g., relative
roles of traits, habitat and phylogeny)?

In the nineties, there was a shift of interest from
identifying the cause of the emergence and mainte-
nance of species diversity to investigating the con-
sequences of this diversity for ecosystem function-
ing (Loreau 2010). This happened because of the
increasing awareness of the growing species extinc-
tion rates, which raised the questions of the abil-
ity of ecological communities to maintain the ser-
vices they provide to human populations despite
the loss of species. What are the consequences of
the observed network structures in terms of species
diversity, community functioning, and stability to
perturbations (e.g., species extinctions, habitat frag-
mentation, climate change)?

To sum up, different network types are studied
in ecology, the most common ones so far being
networks of interactions between species, among
which feeding interactions have attracted the most
attention so far (i.e., food webs). Lots of studies have
been devoted to the description of the structure of
these networks. The following parts present general
structural measures of networks before focusing on
the structure of ecological networks.

10.4 Quantifying networks structure

Fundamental network descriptors are the number
of nodes (S), the number of links (L), and the con-
nectance (fraction of realized links, i.e., L/S2). Topo-
logical properties of networks can be divided in local
(from a single node perspective, i.e., a node and
its nearest neighbors) and global properties (from
the whole network perspective, i.e., describing the
structure of the entire network). Here are a few



OUP CORRECTED PROOF – FINAL, 6/4/2020, SPi

150 T H E O R E T I C A L E C O L O G Y

properties commonly used in ecological networks
(see Dunne 2006; Newman 2010; Delmas et al. 2019
for more thorough reviews).

10.4.1 Local network descriptors

A key property of a node is its degree, i.e., its number
of links with other nodes in the network. For a
directed network, the sum of the adjacency matrix’s
rows and columns provides the incoming and outgo-
ing degrees ki = ∑

j Aij, kout
i = ∑

j Aji (see Figure
10.5A2). For an undirected network, the degree of a
node is the sum over either the rows or the columns:
ki = ∑

j Aji = ∑
i Aji. In-degree (i.e., the number of

resources in a food web) is also called the generality,
and the out-degree (i.e., the number of consumers
in a food web) is also called vulnerability in the
ecological literature. The total degree of a node is the
sum of its in- and out-degrees. Species with a high
degree are generalists whereas species with a low
degree are specialists (e.g., Memmott et al. 2004).

A convention is to refer to species that do not
eat other organisms as “basal” species. In food
webs, those are typically primary producers.
A species’ trophic level indicates how many nodes
away along the food chain a given species is from
basal species. Basal species are at trophic level one,
and their consumers are at higher levels (Figure
10.5A1). While this is straight-forward in food
chains, calculating a species trophic level is more
challenging in complex food webs where consumers
can eat species that belong to different trophic
levels, and where trophic levels are therefore not
necessarily discrete. In complex food webs, several
measures of trophic levels have been proposed in
the literature. For example, the prey-averaged trophic
level of a species is calculated as one plus the mean
trophic level of all of the species resources, where
the trophic level of a resource is the chain length
from the resource to a basal species (Williams and
Martinez 2004).

Centrality describes the ability of a particular node
to influence other nodes in the network. Centrality is
one of the ways of measuring how important a given
node is in a network. There are several measures
of centrality (e.g., degree centrality, closeness
centrality, betweenness centrality). For example,

betweenness centrality assumes that a node is more
central if many shortest paths pass through the
node (see Section 10.4.3 for a definition of shortest
path).

10.4.2 Quasi-local network descriptors
(intermediate description level)

Motifs are unique n-node sub-graphs of a network
(“recurrent, significant patterns of interconnection”
(Milo et al. 2002)); they are sometimes referred to
as the “building blocks” of a network. The rela-
tive frequency of different n-node sub-graphs, or
modules, contains information about the structure
of the overall network. A question is whether cer-
tain modules are over- (or under-) represented in
a given network (Milo et al. 2002), i.e., more (or
less) frequent than expected in a random network.
Motifs are over-represented modules, and they rep-
resent typical relationships between the nodes of the
network. These motifs differ among network types
(Milo et al. 2002). An example of a typical three-
species motif in food webs in the tritrophic food
chain (where species A eats species B which eats
species C) (Stouffer et al. 2007).

The clustering coefficient is the probability that any
two neighbors of a given node are themselves con-
nected by a link. For a node i of degree ki, the local
clustering coefficient is Ci = 2Li

ki(ki−1)
where Li is the

number of links between the ki neighbors of node
i. Ci is between 0 and 1. Ci measures the local link
density. Ci = 0 means that there are no links between
i’s neighbors, Ci = 1 means that all i’s neighbors link
to each other. This metrics informs about whether
species are organized in small connected subsets
of species.

10.4.3 Global network descriptors

The degree distribution, pk, provides the probabil-
ity that a randomly selected node in the network
has degree k. pk = Nk

N with Nk the number of nodes
with degree k and

∑
k

pk = 1 (see Figure 10.5A3).

While the degree of a species provides information
about how generalist the species is, the degree dis-
tribution shows how degree values (i.e., how the
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Figure 10.5 Cartoon representation of a few network properties. A. Example of a simple directed network. On the right, TL indicates the trophic
level of the nodes. A2) in-, out- and total degree of each node of network A1. In orange, 0 is the in-degree of node 1 obtained by summing the
elements of row 1 of the adjacency matrix on Figure 10.2A2. In green, 0 is the out-degree of species 4 obtained by summing the elements of
column 4 of the adjacency matrix in Figure 10.2A2) Number of nodes, Pk, whose degree is k in network A1. B. Example of a path (in purple) and of
the shortest path (in red) between node 1 and 4 in a non-directed network. C. Caricature representation of a modular (C1), nested (C2) or random
(C3) matrix (black squares represent an interaction between a pair of species).

number of links) are spread among the species of
the community. In steeper distributions, there is a
larger disparity between the degrees of the different
species. The degree distribution allows identifying
important species such as keystone species, whose
extinctions could have disproportionate effects on
the whole community (Solé and Montoya 2001).

A path is a route that runs along the links of a
network visiting each node only once (Figure 10.5B,
purple path). The path’s length is the number of
links the patch contains, i.e., the number of links

separating two nodes. The shortest path is the path
between two nodes with the fewer number of links
(dij or d) (Figure 10.5B, red path). It can be used
as a measure of distance between two nodes. In an
undirected network dij = dji, but not in a directed
network. The average path length is the average dis-
tance between all pairs of nodes in the network. We
talk about a cycle when the path has the same start
and end node.

A community is a group of nodes that are more
connected to each other than to other nodes outside
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the community (Figure 10.5C1). In other words, a
community is a locally dense connected sub-graph
in a network. The objective of community detection
is to estimate the number and the size of the com-
munities in a network.

Modularity is metric which has been proposed to
achieve partitioning a network in non-overlapping
groups of highly interacting nodes (i.e., in com-
munities). Modularity is defined by comparing the
density of links between the nodes of a given group
to the density of links between the same nodes
in a randomly rewired network (Newman 2006).
A modularity close to 0 indicates that there is no
significant community structure. A higher modu-
larity implies a better partition of the network. The
idea is therefore to find the partition of the network
that maximizes modularity. A series of algorithms
exist to achieve that (Fortunato 2010; Fortunato and
Hric 2016).

Another approach to find groups of nodes in a
network consists in gathering nodes that are the
most similar in terms of their connectivity patterns:
nodes of the same group are not necessarily more
connected with each other than with the rest of
the network but they share the same connectivity
pattern, i.e., they are connected to similar partners
in similar ways. In particular, a class of models
called Stochastic Block Models is dedicated to such
task (Newman and Leicht 2007; Daudin et al. 2008).
While the modularity analysis finds subsets of inter-
dependent groups of nodes, the Stochastic Block
Model approach identifies nodes that play a similar
role in the network.

Nestedness was originally defined in the context
of island biogeography; it measures patterns of how
generalists and specialists interact (Bascompte et al.
2003). In a nested network, the links of specialist
nodes are subsets of the links of more generalist
nodes (Figure 10.5C2).

10.4.4 Extensions to multilayer networks

Metrics quantifying the structure of multilayer
networks are on their way to be developed in
ecology (Melián et al. 2009; Fontaine et al. 2011;
Pocock et al. 2012; Kéfi et al. 2016). Recent advances
in network science have produced tools to study

community structure in time developing networks
(Mucha et al. 2010), spatial networks (Miele et al.
2014) and more generally multi-layer networks
(Boccaletti et al. 2014; Kivelä et al. 2014; Pilosof
et al. 2017). The idea is then to use the information
contained in the different layers of the network to
quantify structure. For example, groups identified
using the Stochastic Block Model approach on a
multiplex network would identify species that have
a similar connectivity patterns in all the different
layers. Such an approach applied on the Chilean
web identified fourteen groups of species that were
similar in terms of their feeding, facilitation, and
competition links (Kéfi et al. 2016).

10.5 Structural properties of
ecological networks

Food webs and the study of their structure have
a long history in ecology, but they have recently
attracted a renewed interest with the emergence
of improved data and the arrival of new statistical
tools (see Chapter 2 in Pascual and Dunne 2006 for
an overview and historical perspective on this). One
of the old questions in the study of food web struc-
ture has been to determine whether there are univer-
sal patterns (across ecosystem types and geograph-
ical locations), and if so, to identify the processes
that drive these patterns. It turns out that there
are common structural properties, but that these
differ from other interaction types. The next part
presents some of these common properties identi-
fied for the most commonly studied interaction net-
works, namely food webs and mutualistic networks
(Ings et al. 2009).

10.5.1 Food webs

Compared to other networks, food webs tend to be
species poorer, have a relatively high connectance,
a low clustering coefficient (Dunne et al. 2002), a
short path length with the average mean distance
between two species being two links (Williams et al.
2002), and they tend to be disassortative (Newman
2002), i.e., have a low probability that nodes with
a high degree connect to other nodes with high
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degrees. Discussions about whether there are scale-
invariant properties (i.e., properties which do not
depend on the number of species) in food webs
are still ongoing (see Chapter 2 in Pascual and
Dunne 2006).

Food webs, moreover, tend to be organized into
communities, i.e., groups of species that interact
preferentially with each other and less with the
rest of the network (Moore and William Hunt 1988;
Krause et al. 2003; Rezende et al. 2009).

The distribution of interaction strengths was
found to be non-random, with strong top-down
effects of consumers on their resources at lower
trophic levels and strong bottom up effects of
resource on their consumers at higher trophic
levels (de Ruiter et al. 1995). Moreover, food
webs are characterized by many weak and a few
strong interactions (McCann et al. 1998), and weak
interactions tend to be concentrated in long loops
(Neutel et al. 2002).

There does not seem to be a consensus about
what food web degree distributions look like, but
they tend to differ from what is expected in random
networks (i.e., a Poisson distribution), and they tend
to have heavy tails that decay faster than power
laws (e.g., truncated power laws or exponentials)
(Camacho et al. 2002; Dunne et al. 2002; Jordano
et al. 2003; Montoya et al. 2006).

The niche model

Interestingly, relatively simple models are able to
generate realistic structures of food webs. The niche
model is one such model that is frequently used
(Williams and Martinez 2000). The niche model has
two key parameters: the number of species and the
connectance (i.e., the fraction of realized links) of the
web. Each species is assigned a uniformly random
niche value (ni), which determines its position along
a line (Figure 10.6). Each species is then assigned a
feeding range ri. The center of this feeding range ci

is chosen to be smaller than the species niche value
ni (see next part for the interpretation of this, e.g., in
terms of body size). A species consumes all species
found in its feeding range (i.e., in that segment of
the line). The feeding range therefore determines
the width of species trophic niches. This relatively
simple model is able to produce food web structures

0 ri

ci

ni 1

i

Figure 10.6 Diagram of the niche model. Species niche values, ni,
are represented by a triangle. Ci is the center of the feeding range of
species i (typically smaller than ni) and ri is its width. Species i is
assumed to eat all the species whose niche value end up in its feeding
range. Figure redrawn from Williams and Martinez (2000).

comparable to those observed in data (Williams and
Martinez 2000). Variations as well as updates of the
niche model have been proposed (Allesina et al.
2008; Williams et al. 2010).

Body size and food web structure

Body size is a fundamental trait of organisms,
related to many activities and biological rates
(Brown et al. 2004). Predators (excluding pathogens,
parasites, and parasitoids) have been found to be
one to three orders of magnitude larger than their
prey in terms of body size (Woodward et al. 2005;
Brose et al. 2006a). Body size is thereby a strong
driver of food web structure: it creates a hierarchical
structure, in which species consume prey smaller
than themselves.

In the niche model previously mentioned (Figure
10.6), the niche space of the community is collapsed
into a single axis, and studies have explored the eco-
logical meaning of such a single niche dimension.
Because it creates a hierarchical ordering of feeding
niches, body size is a candidate for this single niche
dimension (Williams and Martinez 2000) and has
been extensively used to parametrize dynamical
food web models (see upcoming Section 10.6 on
dynamics and Chapter 9 of this book; Yodzis and
Innes 1992; Brose et al. 2006a).

While predators are usually larger than their prey,
parasitoids and pathogens are typically smaller than
their host (Brose et al. 2006a). This breaks down the
organizing principles on which e.g., the niche model
is based. Extensions of the niche model have been
suggested in the literature to account for both feed-
ing and parasitic interactions (Warren et al. 2010).



OUP CORRECTED PROOF – FINAL, 6/4/2020, SPi

154 T H E O R E T I C A L E C O L O G Y

10.5.2 Mutualistic webs

Plant-animal mutualistic networks have been
mostly described as bipartite webs, with two types
of nodes—plants and animals—and links between
these two groups. They have been shown to be
highly structured.

One common property is the heterogeneity in the
number of connections per species: most species
have a few connections while a few have a large
number of links (specialists vs generalists) (Jordano
et al. 2003). As a consequence, degree distributions
are heavy-tailed but with a truncation because of
physical constraints on the number of interactions
per species (e.g., due to morphological or phenolog-
ical mismatch between the interaction partners), the
so-called “forbidden links” (Jordano et al. 2003).

Species traits are known to play a key role in
whether species can and do interact (Bartomeus
et al. 2016). Trait mismatch may for example explain
many forbidden links. For instance, short-tongued
pollinators cannot reach the nectar in long-corolla
flowers, and therefore pollinate them (Nilsson 1988;
Stang et al. 2006; Olesen Jens M. et al. 1991).

Plant-animal mutualistic networks moreover
tend to be more nested than expected by chance
(Bascompte et al. 2003). This means that specialists
interact with a subset of the species with which more
generalist species interact. There is therefore a core
of generalist plants and animals that interact with
each other and concentrate a large number of inter-
actions in the web. This also means that specialist
species interact with the most generalist ones. They
are also asymmetrical, so that if a plant depends
strongly on an animal species, the animal depends
weakly on the plant (Bascompte et al. 2006). [See
Chapter 7 of this book for more detailed information
about mutualistic networks and their structure.]

To conclude, the last decades of studies of eco-
logical network’s structure suggest that food webs
and mutualistic networks have specific structural
properties. Among others, food webs seem to be
more modular while plant-pollinators tend to be
more nested than expected by chance. A question
that these results raise is: what are the functional
consequences of the observed structures? The next
part presents results of dynamical models investi-
gating the consequence of network structural prop-
erties for their dynamics.

10.6 From the structure to the dynamics
of ecological networks

What are the consequences of the structural prop-
erties of ecological networks in terms of species
coexistence, productivity and communities’ ability
to respond to perturbations? In the seventies and
the years after, the concept of stability was domi-
nated by the local stability analysis used by Robert
May in his influential book and papers (May 1973).
During the nineties, the questions about stability
were increasingly transformed into questions about
the response of ecological communities to pertur-
bations: loss of species, changes in environmental
conditions such as climate or habitat fragmentation,
for example.

Stability can be assessed using a purely structural
approach, i.e., without dynamics, informed solely
by network structure. The principle is to evaluate
the impact of the removal of nodes on the net-
work’s integrity. If the removal of a single node
can have a limited effect, the removal of several
could break the network. Co-extinction analysis (or
“knock-out” simulations) consists in sequentially
removing species (one at a time) in a network and
counting the number of secondary extinctions fol-
lowing the loss of each species. A classical rule in
food webs for example is to assume that all species
that have no resource anymore go extinct as well.
Such an approach can be used to assess network
robustness. This can be done in several ways, e.g., by
looking at the shape of the extinction pattern curve
(displaying the fraction of secondary extinctions as
a function of the fraction of primary extinctions)
(Memmott et al. 2004), or by evaluating the frac-
tion of primary species loss that leads to at least
50% of total species loss (Dunne et al. 2002). Such
simulations suggest that food webs are much more
robust to random species extinctions than to tar-
geted extinctions of well-connected species (Dunne
et al. 2002). Dunne et al. (2002) moreover found
that food web robustness increases with increasing
connectance. In plant pollinator networks, the order
of pollinator loss has an effect as well on plant
extinctions, but not as importantly as in food webs
(Memmott et al. 2004).

Shifting from a structural to a dynamical descrip-
tion of ecological networks allows addressing the
question of how food web structure relates to
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ecosystem stability in a richer way. Dynamical
simulations have long been limited to ecological
configurations with a few species (e.g., study of
modules of interactions), assuming that populations
are close to, or at, equilibrium (e.g., linear stability
analysis) and that relationships between species are
linear (e.g., Type I functional response in Lotka–
Volterra models). These studies have considerably
improved our understanding of the drivers of
community dynamics and stability. Only recently
has the improvement in computer power allowed
relaxing these simplifying assumptions, and in
particular simulating the dynamics of species-rich
ecological networks. Extensions of Lotka–Volterra
equations to multi-species communities have been
mapped to food web data to investigate the role
of food web structure and interaction strengths
on species persistence (e.g., de Ruiter et al. 1995),
but these typically still assume linear relationships.
Yodzis and Innes (1992) developed a bioenergetic
model of population dynamics with nonlinear
functional responses. This can be combined with
either food web data or generative models of
complex food webs (such as the niche model) to run
dynamical simulations of food webs with a realistic
structure (e.g., Brose et al. 2006b). In such complex
nonlinear models, one issue is the parametrization
of the model, but allometric scaling of many
biological rates to species body masses can be used
to parametrize these models. [See Chapter 9 of this
book for more details about trait-based models.]

These dynamical models have proven to be useful
to explore the dynamical constraints on network
structure as well as the structural constraints
on dynamics (Brose et al. 2006b; Thébault and
Fontaine 2010; Stouffer and Bascompte 2011; Kéfi
et al. 2016). For example, it has been argued that
the organization of food webs in communities
contributed to reduce the spread of perturbations
by containing them within the communities,
thereby increasing food webs’ ability to withstand
perturbations (Thébault and Fontaine 2010; Stouffer
and Bascompte 2011). de Ruiter and colleagues
(1995) showed that taking empirical interaction
strength values into account increased the local
stability of ecological communities in comparison
with random interaction strength values. The
importance of body size has also been highlighted
in studies which have shown that size structured

food webs have a higher persistence (i.e., a
higher fraction of species surviving at the end of
simulations; Brose et al. 2006b; Otto et al. 2007).
Exploration of predator–prey body mass ratios in
the nonlinear dynamics of complex food webs has
shown that increasing predator–prey body mass
ratios increased persistence up to a saturation
level that is reached when predators are ten to
one hundred times larger than their prey. These
body mass ratios are consistent with those observed
in empirical data (Brose et al. 2006b; Otto et al.
2007). This suggests that the body mass structure of
natural food webs could enhance their stability.

The fact that mutualistic networks tend to be more
nested than expected by chance seems to increase
species persistence and community resilience,
evaluated as the speed of return to equilibrium
after a perturbation (Bastolla et al. 2009; Thébault
and Fontaine 2010). [See Chapter 7 for more
information.]

Dynamical models have only recently started
investigating ecological networks simultaneously
including several interaction types (e.g., Goudard
and Loreau 2008; Gross 2008; Melián et al. 2009;
Allesina and Tang 2012; Kéfi et al. 2012, 2016; Mougi
and Kondoh 2012; Sauve et al. 2014; Lurgi et al. 2016;
Miele et al. 2019), showing that the presence, the
relative abundance and the structure of the different
interaction types could affect species diversity,
community dynamics, functioning and response to
environmental perturbations.

In summary, the combination of empirical pat-
terns and dynamical models has revealed that not
only the complexity but also the structure of the
links were important determinant of the stability
of ecological networks. While both data and mod-
els have so far focused on single layer networks,
the description and analysis of ecological networks
with multiple layers has gained recent interest.

10.7 Challenges

Ecological networks are a fast-expanding topic in
the ecological literature with interesting promises
toward improving our understanding of the drivers
of community dynamics and resilience but also a
number of challenges ahead. Here is a selection of
a few of them.
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Improving the quality of the data as well as the
number of ecological data sets available is key for
detecting network structure and inferring dynam-
ics. The change in data quality across the years has
hindered the description of network structure, and
especially the identification of possible universal
patterns (Dunne 2006).

The vast majority of the data sets currently
available are presence/absence data and do not
include interaction strengths. Early on, Yodzis
(1981) showed that incorporating realistic interac-
tion strengths (i.e., studying structured interaction
matrices) increased the stability of May’s commu-
nity matrices. More recent research suggested that
the non-random pattern of strong and weak links is
important for stability (de Ruiter et al. 1995; Neutel
et al. 2002). Moreover, interaction strengths are
known to vary in time and with environmental
and biological context. One path forward is to
start getting beyond presence/absence data in
ecological networks and to attempt at getting a
better understanding of interaction strengths, their
drivers, structure and dynamics (see Berlow et al.
(2004) for a review on this point).

A number of species, species groups or ecosystem
compartments have been neglected in ecological
networks, notably parasites and detritus that are
nonetheless known to play a fundamental role in
many ecosystems (Moore et al. 2004; Lafferty et al.
2006). Further research in that direction is needed
and has started to emerge.

Studying networks combining different inter-
action types would contribute to a more com-
prehensive but also a more complex view of
ecological communities (Kéfi et al. 2012). It is more
generally time to go beyond the snapshot analysis
of ecological networks, describing ecological
communities at an arbitrary temporal and spatial
scale. The importance of considering communities
within a spatial context has been highlighted (Holt
2002; McCann et al. 2005; Amarasekare 2008) and
is particularly relevant to understand the effects
of spatial perturbations such as habitat loss or
fragmentation. Most published food webs are
constructed from summary data, ignoring possible
important seasonal and ontogenetic changes. The
assumption of constancy of food web structure

is indeed often violated. A number of studies
have explicitly investigated temporal changes
in networks (Winemiller 1990; Woodward et al.
2002; Olesen et al. 2008; McLaughlin et al. 2010;
Pilosof et al. 2013), but lots of work along these
lines remains to be done. To achieve this, research
in ecological networks can benefit from network
studies outside of ecology, but it can also contribute
to it, by providing novel insight due to our
mechanistic understanding of ecological systems.

Because network data collection is time consum-
ing and can be expensive, learning how to infer
interactions from proxies is a promising avenue of
research (e.g., Bartomeus et al. 2016). One way to
do that is to build minimal mathematical models
of network assembly that succeed in creating
networks with a realistic structure. The niche model
is probably the most successful such model for
food webs (Williams and Martinez 2000). Similar
approaches have been proposed for mutualistic
interactions as well (Saavedra et al. 2009). Another
way consists in identify biological properties that
determine whether an interaction between two
species is likely to take place or not. This question
has for example been explored by searching
for correlations between structural patterns and
biological attributes. For example, the abundance of
interacting species can help estimate the probability
of interactions between two species (Vázquez et al.
2009). Certain traits can determine species that can
or cannot interact (Bartomeus et al. 2016). In food
webs, body size is an important driver of trophic
interactions (Woodward et al. 2005), but traits can
also constrain the possibility of an interaction to
happen (Jordano et al. 2003; Olesen Jens M. et al.
2011). Closely related species often share similar
traits, so phylogeny can also help predict species
interactions (Ives et al. 2006).

Finally, the role of evolution in shaping ecological
network organization still remains largely open
(Loeuille and Loreau 2005; Guill 2010). Models of
network assembly that incorporate evolutionary
processes have started shedding light on how
evolution may affect the organization of food
webs (Loeuille and Loreau 2005; Guill 2010) but
also of mutualistic and competitive communities
(Loeuille 2010).
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10.8 Conclusion

After decades of work on the topic, understand-
ing the emergence and persistence of complex
ecological systems remains a puzzle. Ecological
networks are indeed difficult to measure and
model. The manipulation of large systems in nature
is often impossible; the modeling of simplified
ecological systems may not be scalable to larger,
more realistic ones; and the modeling of complex
systems has its own challenges, in particular
because of the number of parameters needed.
Work of the last decades has provided increasing
ecological network data of increasing quality and
extent. Moreover, plausible structure, nonlinear
relationships, realistic interaction strengths and trait
dependencies have been incorporated in ecological
network models, which start providing a more
realistic picture—and therefore understanding—
of the relation between the structure of ecological
networks on the one hand and their dynamics and
stability on the other hand. This may eventually
help predicting the consequences of biodiversity
loss and understanding the steps needed to preserve
ecological communities in a rapidly changing
world. There are clearly still many gaps to bridge
before ecological models become truly predictive,
but they can already help us identify important
stabilizing and destabilizing factors for ecological
communities.
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CHAPTER 11

Trait-based ecological and
eco-evolutionary theory
Christopher A. Klausmeier, Colin T. Kremer, and Thomas Koffel

11.1 Overview of trait-based ecology
and evolution

11.1.1 Why trait-based ecology?

Ecological systems are complex, consisting of a
diversity of organisms whose growth, reproduction,
and interactions are often nonlinear. Furthermore,
these processes occur over multiple scales of organi-
zation and in environments that are heterogeneous
in space and time. Theoretical ecologists have
long pursued ways to simplify this complexity by
identifying, describing, and exploring the essential
features that drive ecological processes and
patterns (Levin 1992). One such approach, trait-
based ecology, offers a potent way of studying
the theoretical underpinnings of diversity, while
balancing reductionism and reality. This emerging
paradigm unites new and old ideas behind a
common focus: that by reducing our representation
of individuals, populations, or species to their most
essential characteristics—functional traits—we can
better understand ecological systems.

Trait-based approaches cut across organization
scales from the behavioral and physiological up to
the population, community, and ecosystem levels,
making it possible to study a range of fundamental
questions. For example, the performance of a
population of individuals within a given ecological
setting might be revealed by considering the traits
of an average individual, such as its life history,

behavior, and physiology. Similarly, the distribution
of an entire species across a range of environments
might be understood by considering its mean
trait values, across individuals and populations
(although trait variation also matters; Violle et al.
2012; Enquist et al. 2015). Traits can also be used
to characterize a range of interactions between
species, yielding insights into coexistence, trophic
interactions, and ultimately the diversity and com-
position of entire communities. In turn, representing
whole communities using features of their collective
trait distributions, rather than focusing in detail on
the identity of their constituent species, can reveal
general patterns of succession (e.g., Terseleer et al.
2014) and the influence of climate (e.g., Wieczynski
et al. 2019). Critical properties of ecosystems (pro-
ductivity, stability, etc.) may also be related to the
traits (or functions) of the communities they support
(e.g., Díaz and Cabido 2001; Roscher et al. 2012;
Polley et al. 2013). Finally, trait-based approaches
have the potential to integrate ecological and evo-
lutionary perspectives, due to their common focus
on functional traits (or phenotypes) and measures
of fitness. This makes it possible to consider both
the ecological consequences of evolutionary trait
change and the capacity of ecological forces to
impose selection and drive evolution.

Trait-based approaches are valuable to ecological
theory, offering both qualitative and quantitative
insights. Qualitatively, trait-based studies can

Klausmeier, C. A., Kremer, C. T., and Koffel, T., Trait-based ecological and eco-evolutionary theory In: Theoretical Ecology: Concepts and Applications. Edited by:
Kevin S. McCann and Gabriel Gellner, Oxford University Press (2020). © Oxford University Press.
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uncover the mechanisms that drive ecological pro-
cesses, informing the structure of the equations used
to develop a model or theory. Quantitatively, these
studies also provide the parameters of equations by
measuring rates, efficiencies, and other key traits.
Consequently, trait-based theories are often inher-
ently mechanistic, due to their focus on function;
this contrasts with other theoretical techniques for
modeling diverse communities such as constructing
random community matrices or interaction net-
works (May 2001; Allesina and Tang 2012; Barbier
et al. 2018). To avoid biologically non-sensical
results, many ecological theories invoke one or
more tradeoffs (Kneitel and Chase 2004). Often these
tradeoffs represent reasonable assumptions, which
may nevertheless lack a strong empirical founda-
tion. Trait-based studies have the potential to pro-
vide new and quantitative insights into the tradeoffs
that constrain the strategies used when competing
for resources, avoiding predation, timing reproduc-
tion, etc. (Edwards et al. 2011). Furthermore, in an
era where ecologists are increasingly challenged to
quantitatively predict how species, communities,
and ecosystems will respond to environmental
change, a focus on species traits is essential. Trait-
based approaches are being used to anticipate shifts
in species distributions, community composition,
and ecosystem function driven by environmental
change (Suding et al. 2008; Thomas et al. 2012). They
can also be used to predict which species are likely
to become harmful invaders outside their native
ranges (Van Kleunen et al. 2010; Drenovsky et al.
2012), and to identify alternative targets for conser-
vation, such as focusing on the preservation of func-
tional biodiversity. Collectively, these examples give
an indication of the value of trait-based approaches
both for advancing basic theory as well as testing
and applying theory in real ecological systems.

11.1.2 What are traits?

Traits can be defined as measurable properties of
individual organisms; we are particularly interested
in functional traits, those that affect performance
and ultimately fitness (McGill et al. 2006; Violle
et al. 2007). There are many different kinds of traits,
reflecting the chemical composition, physiology,
morphology, genetics, and behavior of organisms.

Traits determine how a given individual functions
within its environment (e.g., its capacity to tolerate
temperature or toxins) as well as how it interacts
with other individuals or species (e.g., its ability to
compete for resources or escape from predators).
Traits may characterize how an organism is affected
by its environment (often called “response” traits),
how it influences its environment (“effect” traits),
or both (Díaz and Cabido 2001; Lavorel and Garnier
2002; Violle et al. 2007). Mathematically, traits can be
characterized as discrete, categorical, continuous, or
even function-valued (Gomulkiewicz et al. 2018).

Numerous reviews have identified the functional
traits most relevant to different groups of organisms
(e.g., phytoplankton, Litchman and Klausmeier
2008; zooplankton, Litchman et al. 2013; plants,
Westoby et al. 2002; Reich et al. 2003; insects, Poff
et al. 2006), while considering relationships among
traits, and how traits inform our understanding
of ecology. Some of these studies categorize traits
according to their type (life history, behavioral,
physiological, morphological) and ecological func-
tion (reproduction, resource acquisition, predator
avoidance). Given the vast number of possible traits,
it is often useful to organize them into hierarchies,
recognizing that the value of “high level” traits is
determined by combinations of a large number of
lower level traits. For example, while size might
strongly influence an individual’s fitness, size itself
is the product of other traits, ranging from how
an individual develops and forages, to the level
of individual genes. Establishing the relationships
between traits across such hierarchies, including
eventually bridging the genotype/phenotype gap,
remains an active and important area of research.

11.1.3 Historical survey of trait-based theories

The foundations of trait-based ecology long predate
its emergence as an identifiable paradigm. Even
the very earliest attempts to use mathematics to
describe and study ecological processes invoked
relationships that depended on parameters repre-
senting the traits of populations and species. For
example, logistic growth (Verhulst 1845) depends
on a population’s intrinsic growth rate and strength
of intraspecific competition, and predatory-prey
dynamics (Lotka 1920, Volterra 1926) are governed
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by traits including the growth rate of the prey,
and the attack rate, conversion efficiency, and
mortality rate of the predator. Corresponding efforts
to parameterize such models engaged empiricists
in quantifying these, and many other traits across
different species and under different conditions.
Lotka (1920) explicitly identified some parameters Q
with “the character of each species”, what we would
now call their traits, and noted that these would
change over time. Elsewhere (Lotka 1912, 1934), he
suggested that within-species trait variation could
be modeled as a distribution of phenotypes, whose
evolution would be subject to the same processes
that determine population dynamics. However, this
remained only a signpost for future work, because
Lotka and others took these traits as constants to
focus on population dynamics.

These traditional ecological models lay a solid
foundation for trait-based approaches, by linking
model parameters with the traits of organisms.
Trait-based approaches take this one step further, by
focusing on traits as key model outputs rather than
just inputs. That is, traits are not fixed parameters
but dynamic variables subject to change, typically
by some adaptive processes. This opens up a whole
new range of questions that can be addressed.

Optimization theory was one of the first trait-based
theories in ecology and evolution (Parker and May-
nard Smith 1990), with many notable, broad fields
of application. Life history theory addresses questions
such as optimal clutch size and the timing of life
history events, assuming trade-offs between demo-
graphic traits such as survival, growth and repro-
duction (Stearns 1992, Roff 2002). r/K selection is an
example linking suites of traits to the environment
(MacArthur and Wilson 1967). Optimal foraging the-
ory is another a well-developed field (Stephens and
Krebs 1986), where traits are the effort spent forag-
ing on different resources. These traits are typically
assumed to be optimized on a rapid, behavioral
timescale. Classic results include the marginal value
theorem for patch use (Charnov 1976), the zero-one
rule for substitutable resources (Emlen 1966), and
the μ/f rule for balancing foraging gains and preda-
tor risk (Gilliam and Fraser 1987). Eco-physiology
addresses resource allocation to different physiolog-
ical systems (e.g., Bazzaz and Grace 1997; Klaus-
meier et al. 2004).

Although optimization theory is a central
organizing theory in many areas of ecology
and evolution, it has been criticized on various
grounds (summarized in Maynard Smith 1978).
One limitation of optimality approaches is that they
assume that the payoff depends only on the strategy
played by an individual. However, for ecological
interactions that occur within and between species,
the payoff of a strategy often depends on what strat-
egy other individuals are playing. Game theory was
designed to investigate such situations, originally in
economics (Von Neumann and Morgenstern 1944;
Nash 1951) and later imported to biology (Maynard
Smith and Price 1973), where it became a standard
approach to studying animal behavior (Maynard
Smith 1982). The concept of an optimum strategy
is replaced by the evolutionarily stable strategy (ESS),
a strategy that cannot be improved on once it is
adopted by an entire population. Many applications
of game theory in behavioral ecology consider a
discrete set of strategies, so the payoffs can be
assembled in a matrix, but continuous strategy
spaces are also possible.

Another body of trait-based theory, concerning
competition for a spectrum of substitutable resources,
dominated community ecology theory in the
1970s. Species differ in their resource utilization
curves, which are related to a trait such as body
or beak size, averaged at the species level. This
underlying mechanistic model is then translated
into a Lotka–Volterra competition model, where
a species’ carrying capacity depends on its trait
and the competition coefficients depend on the
difference in species’ traits. MacArthur and Levins
(1967) first used such a model to examine limiting
similarity: how similar two resident species must be
to prevent an intermediate species from invading.
This approach was soon extended to a large number
of species evenly spaced along the trait axis.
Roughgarden (1972, 1979) showed that an unlimited
number of species can coexist in an idealized
deterministic setting, but May and MacArthur
(1972) found a limit to diversity in randomly
varying environments. This result was criticized on
mathematical (Turelli 1978) and ecological grounds
(Abrams 1983), and the theory of limiting similarity
fell out of fashion by the 1980s. Despite this history,
these one-dimensional Lotka–Volterra models are
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still widely used in trait-based eco-evolutionary
modeling. We now know much more about the
conditions that lead to continuous species packing
versus a discrete number of coexisting species
(Barabás et al. 2012).

One reaction to the disenchantment with this
niche-based Lotka–Volterra theory was a shift
to more mechanistic models of competition that
explicitly include the resources for which species
compete (Tilman 1982), although, the niche-based
Lotka–Volterra was originally formulated as an
explicit resource-consumer model (MacArthur
1970; Chesson 1990). Extended to include appar-
ent competition through shared predators and
stressors, this contemporary niche theory employs a
graphical approach to determine community struc-
ture based on Zero Net Growth Isoclines (ZNGIs),
which summarize the response of organisms to the
environment, and impact vectors, which summarize
the effect of organisms on the environment (Chase
and Leibold 2003). Because these models are more
mechanistic, the species parameters have direct
ecological meaning, so can be considered traits.
A common form of trait-based analysis of these
models involves depicting a large number of
species’ ZNGIs and impact vectors, which can
be used to determine community structure along
environmental gradients (Tilman 1982; Chase and
Leibold 2003). Recently we have extended this
approach using ZNGI and impact vector envelopes
to consider a continuum of strategies (Koffel et al.
2016). However, these graphical approaches restrict
the number of limiting factors to two or three,
capping the diversity that can emerge.

In the late 1980s and 1990s, two independent
groups—one American (Brown and Vincent 1987),
one European (Metz et al. 1996)—proposed a trait-
based theoretical framework that allows for the
emergence of community structure, termed adaptive
dynamics (Geritz et al. 1998). These approaches com-
bine ideas from evolutionary game theory and com-
munity ecology. In particular, they show how game
theory’s payoff can be identified with Darwinian fit-
ness, which is described as the per capita population
growth rate in a community ecological model. This
general formulation provided analytical tools that
could be applied to arbitrary ecological interactions

(i.e., not restricted to Lotka–Volterra models), which
led to a flood of applications (Section 11.2.3).
The original formulation of adaptive dynamics
makes a number of restrictive assumptions, such
as a separation of time scales between ecology
and evolution, small mutations, and asexual
populations; however, it can be seen as a particular
case within a constellation of closely related
theoretical frameworks (Abrams 2001; Section 11.3).

One other framework from the 1980s and 1990s
worth mentioning is that of community assembly
theory. In this purely ecological framework, species
from a finite or infinite regional species pool are
repeatedly introduced to a local community (Post
and Pimm 1983; Rummel and Roughgarden 1985;
Law and Morton 1993; Morton and Law 1997). Upon
successful invasion, the new state of the community
is computed and another random species is intro-
duced from the regional species pool. Three out-
comes are possible: the community is uninvasible,
a recurrent assembly cycle occurs, or community
assembly continues indefinitely along different
trajectories (Morton and Law 1997). Furthermore,
alternative outcomes are possible for a given set of
parameters (Law and Morton 1993). Although any
model of species interactions could be used, Lotka–
Volterra models are typical; many applications
employ trait-based models of competition (Rummel
and Roughgarden 1985) or food web assembly
(Morton and Law 1997) to define species interac-
tions. The community assembly framework shares
many similarities with adaptive dynamics—trait-
based formulations of interactions, use of invasion
criteria, separation of time scales between invasions,
and uninvasible states as a long-term outcome—but
these literatures have remained largely separate.

11.1.4 Overview of rest of chapter

Clearly, there is a rich history of trait-based theo-
retical approaches in ecology and evolution. In the
rest of this chapter, we describe how trait-based
models are set up and analyzed from the perspec-
tive of adaptive dynamics, and survey applications
(Section 11.2). Next, we discuss other trait-based
modeling frameworks and the connections between
them (Section 11.3). We then consider the extension
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of these frameworks to multiple traits and spatial
and temporal heterogeneity (Section 11.4). Finally,
we conclude in Section 11.5 by considering direc-
tions for future research.

11.2 Basic ideas

In this section we outline the basic principles
of trait-based theory, considering both density-
independent and density-dependent models, feed-
backs between ecological/environmental condi-
tions and trait values, and how optimization and
evolutionary approaches offer insights into the
dynamics and equilibria of such models. Finally,
we conclude by describing a range of phenomena
uncovered by applying trait-based theory.

Before we start, some words about terminol-
ogy. With their focus on functional traits, trait-
based approaches are, by design, phenotypic
approaches. The hierarchical level at which trait
variation occurs—within-individual plasticity,
within-species genetic variation, or between-species
differentiation—is a secondary concern and often
ignored. While this is a strength of the approach
because it can allow greater generality, it can lead
to confusing use of terminology. Here, we will
use the term strategy to refer to the trait values
of an individual, or of a population or species,
when intraspecific trait variation is negligible. For
frameworks that are explicitly ecological, we refer
to different species as such, but for more general
frameworks we use the term populations.

11.2.1 Density-independent models with traits
and optimization theory

Exponential growth has been called the first law
of population dynamics (Turchin 2001; Pásztor
et al. 2016). Such density-independent models
form the basis of the simplest approach to trait-
based modeling—optimization theory—and are
fundamental to understanding more realistic
density-dependent models. We begin with the
simplest case of an unstructured population i in
a constant environment in continuous time, with
population density Ni and growth rate ri:

dNi

dt
= riNi (11.1)

The solution of this equation is Ni(t) = Ni(0)erit,
which approaches zero if ri < 0 and grows to infinity
if ri > 0 (assuming no dispersal limitation, that is
Ni(0) > 0). Equilibrium is possible only when ri = 0,
which is infinitely unlikely in the absence of any
density-dependent stabilizing mechanism.

Simple as exponential growth may be, we can
begin to get ecological insights by considering how

a population’s growth rate ri

(
�xi; �E

)
depends on its

traits �xi and the environment �E (Geritz et al. 1998).
In general, the environment is a multidimensional
vector that represents all of the abiotic and biotic
factors that affect a population’s growth rate, such
as resource levels, temperature, and the density of
directly interacting species (assumed to be constant
in the density-independent case). How ri depends
on traits and the environment is the domain of
functional and physiological ecology and is a key
element in developing mechanistic trait-based mod-
els, including species distribution models (Kearney
and Porter 2009).

The critical values of the traits and environmen-
tal factors where ri

(
�xi; �E

)
= 0 separate population

growth from extinction (Maguire 1973). This can
be easily visualized in two dimensions (e.g., two
environmental variables, two traits, or one of each),
which we call Zero Invasion Plots (Figure 11.1).
Figure 11.1A illustrates the classical case of a popu-
lation with fixed trait values that requires two essen-
tial resources, such as nitrogen and phosphorus for
plants, so that �E = (R1, R2). Both resources are
required for growth, which leads to the L-shaped
ZNGI (Tilman 1982). Figure 1B shows a hypothetical
situation for a fixed environment where positive
growth occurs for a range of values of each trait. This
region also depends on an interaction between these
traits (such that the viable range of trait 1 depends
on the value of trait 2 and vice versa). Figure 1C
shows the interaction between a single trait and one
environmental factor. Ahorizontal slice through this
figure determines the fundamental niche of a popu-
lation with particular trait values. A vertical slice
determines what we call the fundamental commu-
nity for a particular environment: species with trait
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Figure 11.1 Zero Invasion Plots. A: two environmental factors (a ZNGI). B: two traits. C: one environmental factor and one trait. Gray shading
denotes positive fitness.

values outside the fundamental community cannot
persist even in isolation, so would not be expected
to occur absent facilitation.

Now, consider multiple populations, which
could represent different species (or, alternatively,
different strategies within a species) inhabiting
the same environment, governed by Equation
(11.1), and growing (i.e., ri > 0). Although these
populations do not interact and each has the
potential to grow to infinity due to the lack of
density dependence, we can still determine the
outcome of “competition” among these populations
by considering the relative abundance of each
population, pi = ni/

∑
jnj. Using the quotient rule,

we find the dynamics of pi to be

dpi

dt
= pi

(
ri −

∑
j
rjpj

)
= pi (ri − r̄) , (11.2)

where r̄ is the abundance-weighted average growth
rate. This is known as the replicator equation
(Hofbauer and Sigmund 1998). As can be seen from
the second form of Equation (11.2), a population i
with an above-average growth rate (ri > r̄) increases
in relative abundance and one with a below-average
growth rate decreases. Thus, in the long term,
the population with the highest growth rate will
dominate the community (pi → 1), while the relative
abundance of all others will decline to zero. This
justifies the use of the word fitness as a synonym for
the per capita growth rate, ri. If multiple populations
have equal fitness, we say they are neutral, because
their relative abundance is determined only by
initial conditions.

Instead of a finite number of populations, we now
consider a continuum of populations, ordered by
their strategy x, which also determines their fitness,
r(x). Generalizing the results from the replicator,
Equation (11.2), we know that the population with
the strategy conveying the greatest fitness will
dominate the community in the long term. We can
use elementary calculus to find the optimal strategy,
x*, which maximizes fitness given r(x). If x is one-
dimensional, we find the maximum by setting the
fitness gradient, dr

dx , equal to zero and solving for x.
To be a local maximum, we require the second
derivative of fitness to be negative, d2r

dx2 < 0 (Figure
2A). Since there can be multiple local maxima, we
have to compare the fitness of all local optima as
well as at the ends of the trait space to find the
global optimum x* (Fig. 2B–C).

So far, we have focused on continuous-time
models with unstructured populations, which can
be described by a single variable such as population
size or density. However, the theory of structured
populations (those with e.g., age-, stage-, or size-
structure) is well developed, and provides ways
to calculate the asymptotic population growth
rate r once a stable population structure has been
reached. In a discrete-time matrix model, it is
the logarithm of the dominant eigenvalue of the
Leslie–Lefkovitch matrix (Caswell 2001). Extensions
to temporally variable environments also exist:
Floquet exponents for periodic systems (Klausmeier
2008) and Lyapunov exponents for aperiodic
systems (Metz et al. 1992). Thus, the population
growth rate r can be optimized while accounting
for all the biological processes contributing to a
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Figure 11.2 Finding local and global maxima on fitness landscapes. A) A single, global optimum. B) Two local optima separated by a fitness
minimum. C) A boundary optimum.

population’s success, such as individual growth,
survival, and reproduction.

11.2.2 Density-dependent models with traits

Density dependence and limiting factors

It has long been recognized that at least some per
capita vital rates must depend on population density
for populations to not to grow to infinity (Turchin
2001). While this density dependence is often
modeled as a direct effect of density on per capita
growth rate, as in the logistic equation, it is often
useful to explicitly consider the limiting factors
such as resources or predators that mediate density
dependence (Chase and Leibold 2003; Meszéna
et al. 2006). One important consequence of this
environmental feedback loop is the competitive
exclusion principle: no more species can coexist at
equilibrium than there are shared limiting factors
(Levin 1970). This sets an upper limit on the
diversity that can be maintained in a community,
a limit that remains valid in trait-based models.

In particular, when there is only one limiting
factor, such as a resource R, stable coexistence is
impossible, and a single population will out-
compete all others. The break-even resource
level R* of a population i, where its net growth
gi = 0, is a simple metric that identifies the best
competitor: the population with the lowest R*

will exclude all others. This is known as the R*-
rule (Tilman 1982). Thus R* combines various
physiological parameters into a single metric of
competitive ability. In a trait-based setting, the R*-
rule provides a “pessimization” principle analogous
to the optimization principles applied to fitness
previously (Metz et al. 2008). When R* is expressed

as a function of traits, calculus can again be used to
minimize R*, and identify the optimal trait values
for a given environment (Klausmeier et al. 2004).

If species interacted only through a single limiting
factor, ecological communities would be much eas-
ier to understand, yet lack diversity, rendering them
far less interesting. Luckily this is not the case. When
there is more than one limiting factor and popula-
tions have differential responses and effects on those
factors, then stable coexistence becomes a theoreti-
cal possibility. The prototypical species-based com-
petition model is the Lotka–Volterra model, which
can be written as

⎧⎪⎨
⎪⎩

dN1

dt
= (r1 − α11N1 − a12N2) N1 = g1N1

dN2

dt
= (r2 − α21N1 − a22N2) N2 = g2N2

(11.3)

where ri are maximum growth rates and αii and αij

are intra- and interspecific competition coefficients,
respectively. The five possible outcomes of com-
petition are: i) species 1 outcompetes 2, ii) species
2 outcompetes 1, iii) species 1 and 2 coexist, iv)
either species 1 or 2 excludes the other depending
on initial conditions (founder control), and v) neutral
coexistence. Note that in Equation (11.3), we have
introduced gi to represent the per capita growth rate
(fitness) of a population, which now combines the
maximum exponential growth rate, r, with density
dependence.

Invasion analysis

Invasion analysis is a powerful approach to under-
standing coexistence between two populations
(Chesson 2000). The idea is to ask whether each
population (termed the invader) can invade a
monoculture of the other (termed the resident) at
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its equilibrium or other long-term attractor. The
invader is assumed to be sufficiently rare that it
has no effect on its own per capita growth rate or
the residents’. This results in density-independent
growth of the invader, which is characterized by
its invasion fitness, ginv(Eres). Here the resident
at its attractor determines the environment, Eres,
experienced by the invader (consisting of limiting
factors, possibly including its own density).
Negative invasion fitness means that the invasion
fails, while positive invasion fitness means that it
succeeds. If one population has positive invasion
fitness but the other has negative, then the first
excludes the second (Lotka–Volterra cases i–ii); if
both populations have negative invasion fitness,
there is founder control (Lotka–Volterra case iv).
Finally, if each population has a positive invasion
fitness (i.e., they are mutually able to invade), then
we say that the two populations stably coexist (as in
Lotka–Volterra case iii). However, because invasion
fitness focuses on the boundaries of the phase space,
it does not give us any information on the nature of
coexistence in this mutual invasibility case.

The main advantage of invasion analysis is that
it is easier to calculate invasion rates than to solve
for the coexistence attractor and determine its stabil-
ity. However, invasion analysis has a few potential
shortcomings. First, if there are multiple coexistence
equilibria, then the lack of mutual invasibility does
not imply that coexistence is impossible (Namba
and Takahashi 1993; Priklopil 2012). However, it can
be argued that such locally stable coexistence would
be vulnerable to stochastic events and that mutual
invasibility is more relevant to natural systems. Sec-
ond, when the resident has multiple attractors, a
positive invasion rate does not necessarily imply
that the invader persists. Instead the invader can
shift the resident from one of its attractors to the
other, which then repels the invader, termed the
“resident strikes back” scenario (Mylius and Diek-
mann 2001). Third, it is unclear how to extend inva-
sion analysis to more than two species (Saavedra
et al. 2017). Nonetheless, invasion analysis remains
a key tool for understanding competition and forms
the basis of many trait-based eco-evolutionary mod-
eling approaches to follow.

How to set up density-dependent trait-based
models

Having discussed species-based density-dependent
models previously, let us now describe how to set
up a trait-based model in four easy steps, focusing
on non-structured populations for simplicity. First,
start with a mechanistic species-based model and
identify groups of populations that are functionally
similar, which we call guilds. Populations within a
guild share the same fitness function, which will
depend on the same trait(s), but specific trait values
may differ between populations. If two populations
do have identical trait values, or strategies, they will
be selectively neutral (e.g., Lotka–Volterra case v).
As an example, one might model predators and prey
as two separate guilds (although this decision is part
of the art of modeling). Let G be the number of
guilds.

Second, generalize the model to encompass NG

populations in guild G, indexed by subscripts. For
example, let NG,i be the density of the population
with the ith strategy in guild G. Any terms that rep-
resent interactions between populations or between
populations and environmental factors should
be replaced by a sum over populations, making
no distinction between intra- and inter-specific
interactions.

Third, make some model parameters functions
of traits (this is the identity function if those
parameters are directly considered traits). Together,
the model then consists of a set of differential
equations of the form dNG,i

dt = gG(xG,i; �E( �N, �x))NG,i,
one for each population in each guild. Note
that the fitness function gG of a particular guild
now depends on the strategy of the focal pop-
ulation, xG,i, as well as environmental factors
�E. These in turn depend on the strategies and
densities of the rest of the community. Specifically,
�x = (�x1, �x2, . . . , �xG) and �xG = (xG,1, xG,2, . . . , xG,NG)

describe the set of all traits across guilds, and across
populations/strategies within a guild, respectively.
Densities are described similarly as �N = ( �N1, �N2, . . . ,
�NG) and �NG = (NG,1, NG,2, . . . , NG,NG). See Boxes
11.1 and 11.2 for examples of how to set up trait-
based models.
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The final step in setting up a trait-based model
is to define a source of trait variation. This choice
largely distinguishes various trait-based modeling
frameworks, which we compare in Section 11.3.
For pedagogical reasons, we will describe adaptive
dynamics (which assumes variation arises from
small, infrequent mutations) and adaptive statics
(adaptive dynamics at equilibrium, without the
assumption of small mutations); however, different
trait-based approaches often give similar results
(see Section 11.3).

It is important to keep in mind that there is usu-
ally no unique way of deriving a trait-based model
from a species-based one. All of the four steps (iden-
tifying guilds, generalizing to multiple populations,
making parameters functions of traits, and defining
a source of variation) are ultimately determined by
the ecological mechanisms identified as relevant by
the modeler in that particular context. For example,
a trait-based model designed to study the evolu-
tion of cannibalism would look different from the
competition model derived in Box 11.1, even if both
arose from the same single-population model. Simi-
larly, trait-based models studying the emergence of
food webs might lump prey and predators into a
single guild, unlike Box 11.2.

Box 11.1 Trait-Based Lotka–Volterra competition

A classic example of a trait-based model arises from the
Lotka–Volterra competition model. In it, there is a single
guild of competitors and no explicit environmental factors
aside from the abundance of competitors. Start with the
single-population logistic equation

dN
dt

= (r − αN) N

To make it into a trait-based model, we add subscripts
for each population i, sum interactions over strategies
j = 1, . . . ,N , and make model parameters r = r (xi) and
α =α

(
xi, xj

)
functions of the focal population’s trait xi and

the interacting population’s trait xj. Together, these changes
result in:

dNi

dt
=

⎛
⎝r (xi) −

N∑
j=1

α
(
xi, xj

)
Nj

⎞
⎠ Ni = g

(
xi; �x, �N

)
Ni

For simplicity, we drop the guild subscript and the explicit
consideration of the environment �E from the general for-
mulation in section 2.2.3. It is commonly assumed that the
maximum growth rate r is a unimodal function of x and that
α, the strength of competition (competition kernel), declines
to zero as a function of the difference in the strategies of the
focal and interacting populations. Two functions that satisfy
these assumptions are the quadratic r(x) = 1 − x2 and

the Gaussian α
(
xi, xj

) = exp
[
−(

xi − xj
)2

/σ 2
]
, where σ

controls the width of competition kernel.
Motivated by the seminal work of MacArthur and Levins

(1967), trait-based Lotka–Volterra models have been used
to investigate the conditions under which such models
lead to the coexistence of finitely many species with dis-
tinct trait values or a continuum of species (Barabás et al.
2012).

Invasion analysis of trait-based models

Having defined a trait-based model, how can
we analyze it? For simplicity, we will consider
a single guild with a single trait here. Begin
with a monomorphic resident population with
strategy x1 and find its ecological attractor (assumed
here to be an equilibrium for simplicity) and
the corresponding environment Ê (x1), such that

g
(

x1; Ê (x1)
)

= 0. Now consider the fate of a
rare population with a different strategy x0 by
calculating its invasion fitness when invading the

resident, g
(

x0; Ê (x1)
)

. As described previously,

invasion succeeds if g
(

x0; Ê (x1)
)

> 0 and fails if

g
(

x0; Ê (x1)
)

< 0. If the new strategy is quite similar
to the existing one, then successful invasion implies
replacement of the previous resident (Geritz
et al. 2002), except at special points described
next. This process is then repeated to generate a
“trait substitution process.” The fitness gradient,
∂g/∂x0

∣∣
x0 = x1

, measures directional selection on a
resident, given its strategy: if ∂g/∂x0 > 0 then the
trait evolves towards larger values (Figure 11.3A)
and if ∂g/∂x0 < 0 then it evolves towards smaller
values (Figure 11.3B). We will call a trait value or
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Box 11.2 Trait-Based predator-prey interactions

As a more complicated example of how to set up a
trait-based model, consider predator-prey interactions. We
begin with a classic predator-prey model, the Rosenzweig–
MacArthur model (Rosenzweig and MacArthur 1963), where
a prey with abundance N is consumed by a predator with
abundance P:

dN
dt

= (r − αN) N − aN
1 + haN

P

dP
dt

= eaN
1 + haN

P − mP

The prey grows at an intrinsic rate r and self-regulates
through a competition coefficient α. The predator consumes
the prey through a Type II functional response with attack
rate a and handling time h, and converts prey abundance
into predator abundance with efficiency e. Finally, m sets the
mortality rate of the predator.

To convert the previous model into a trait-based model,
we first need to identify the guilds at play. A natural
choice here consists of introducing two guilds: the prey
guild and the predator guild. Their abundances, generalized
to multiple populations, are respectively denoted Ni with
i = 1, . . . ,NN and Pi, with i = 1, . . . ,NP. Let the fitness
function of the prey and the predator depend on traits x and
y, respectively. We can then write:

dNi

dt
=

⎛
⎝r (xi) −

NN∑
j=1

α
(
xi , xj

)
Nj −

NP∑
j=1

a
(
xi , yj

)

1 + ∑NN
k=1 h

(
xk , yj

)
a
(
xk , yj

)
Nk

Pj

⎞
⎠ Ni

= gN

(
xi ; �x,�y, �N, �P

)
Ni

dPj

dt
=

⎛
⎝

NN∑
i=1

e
(
xi , yj

)
a
(
xi , yj

)
Ni

1 + ∑NN
k=1 h

(
xk , yj

)
a
(
xk , yj

)
Nk

− m
(
yj
)
⎞
⎠ Pj

= gP

(
yj ; �x,�y, �N, �P

)
Pj

As in the Lotka–Volterra competition model in Box 11.1,
prey growth rate r(xi) depends on the focal population’s
trait value and density-dependence, α(xi,xj) depends on
the trait values of the focal and interacting prey popu-
lations. The predators’ attack rate a(xi, yj), handling time
h(xk, yj), and conversion efficiency e(xi, yj) all depend on
the trait values of the predator and prey involved. Note that
there are multiple interactions in this model that have been
replaced by summations. The first summation in the prey
equation adds up competition between prey populations; the
second summation adds up predation by different predator
populations; and the third summation in the denominator
of the functional response adds up time predator j spends
handling different prey. Finally, the outer summation in the
predator equation adds up energetic gain from different prey
populations.

strategy x̂1 where directional selection disappears
(∂g/∂x0 = 0) an evolutionary equilibrium, also known
as a singular strategy (Geritz et al. 1998).

An evolutionary equilibrium is called a (global)
evolutionarily stable strategy (ESS) if no other
strategy can invade it. As in optimization models,
an evolutionary equilibrium can be either a
fitness maximum, and hence at least locally
evolutionarily stable, if ∂2g/∂x2

0

∣∣
x0 = x1

< 0 (Figure

11.3C), or a fitness minimum, if ∂2g/∂x2
0

∣∣
x0 = x1

> 0

(Figure 11.3D). This quantity ∂2g/∂x2
0, the second

derivative of invasion fitness with respect to the
trait of the invader, measures the strength of
stabilizing vs. disruptive selection (Figure 11.3C
vs. Figure 11.3D). An ESS represents an endpoint
of evolution or community assembly. Note that
if new strategies are restricted to be similar to
existing ones (e.g., due to small mutations), local
evolutionary stability is sufficient to prevent

further trait change. However, if large mutations
or immigration of different species occur, global
evolutionary stability is required (Figure 11.3C vs.
Figure 11.3E).

A second form of stability—convergence stability—
controls whether directional selection leads towards
or away from an evolutionary equilibrium (Eshel
1983; Geritz et al. 1998). An evolutionary equilib-
rium is convergence stable when ∂2g/∂x2

1 > ∂2g/∂x2
0.

Any combination of these two stability conditions
(evolutionary and convergence stability) is pos-
sible. An evolutionary equilibrium that is both
convergence and evolutionary stable (i.e., a fitness
maximum) is called a convergence stable strategy
(CSS), which behaves as we would naively expect
an optimum to behave. While fitness minima play
a minor role in optimization models, serving only
as boundaries between the basins of attraction of
alternative optima (Figure 11.2B), they can play a
central role in density-dependent models. The most
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Figure 11.3 Invasion fitness landscapes. Positive invasion fitness is denoted by gray shading. A-B) Directional selection. C) An evolutionarily stable
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interesting case where the two conditions differ is
an evolutionary equilibrium that is convergence
stable but not evolutionary stable, which is called
a branching point (Geritz et al. 1998) for reasons
discussed below.

Geritz et al. (1998) gives a complete eight-fold
classification of the types of stability of monomor-
phic evolutionary equilibria, both in terms of these
second derivatives of invasion fitness and also
graphically using pairwise invasion plots (PIPs).
Whether the invasion of a resident with strategy x1

by an invader with strategy x0 is successful or not

depends only on the sign of g
(

x0; Ê (x1)
)
, or g(x0; x1)

for short. A PIP plots sign[g(x0; x1)] as a function of
the strategy of the resident and the invader (Figure
11.4). Graphically, convergence stability can be seen
along the main diagonal, whereas evolutionary
stability is assessed with a vertical line test through
the evolutionary equilibrium.

A mutual invasiblity plot (MIP) illustrates the pairs
of strategies x1 and x2 that can stably coexist, i.e.,

g (x2; x1) > 0 and g (x1; x2) > 0. It is constructed by
superimposing a PIP on its reflection around the 1-
1 line, exchanging the role of resident and invader
(Figure 11.5). In general, the region of stable coex-
istence through mutual invasibility (if one exists)
does not touch the 1-1 line other than at points
corresponding to one-strategy evolutionary equi-
libria. This implies that, in general, similar species
cannot coexist, representing an ecological limit to
similarity.

One important exception occurs near branching
points, where coexistence of similar strategies is
guaranteed. This means that a strategy that success-
fully invades a resident at a branching point does
not exclude it, but coexists with it. These coexisting
strategies then experience opposing directional
selection and diverge, justifying the name “branch-
ing point”. The final outcome may be a pair of
strategies that prevent invasion (Figure 11.3F), or the
development of further branching points leading to
a more diverse set of strategies, or other outcomes
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Source: after Geritz et al. (1998)

(see following). A set of strategies (or species) that
is both globally uninvasible and convergence stable
is described as an evolutionarily stable community
(ESC); Figure 11.3F illustrates a two-species ESC
(Edwards et al. 2018; Kremer and Klausmeier 2017).
This scenario assumes no recombination between
the two diverging lineages, which may not be valid
in sexual species (Waxman and Gavrilets 2005). In
general, however, the existence of a branching point
indicates that more than one ecological strategy is
required to render a community uninvasible.

One important caveat about the previous dis-
cussion of the stability of evolutionary equilibria is
that all of the conditions based on derivatives are
strictly local criteria. Just as a local optimum may
not be a global optimum (Figure 11.2B), a local ESS
where ∂2g/∂x2

0 < 0 may be invasible by a strategy
that is sufficiently different than a resident (Figure
11.3E). In this case, assumptions about the source of
new phenotypes matters: under the assumption of
small mutations (in adaptive dynamics) or standing
genetic variation (in quantitative genetics, see
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Section 11.3), a local-but-not-global ESS would
represent a stable equilibrium, whereas larger
mutations or immigration of different species from
a regional species pool would allow the community
to escape such an equilibrium.

Trait-based predictions across
environmental gradients

The preceding section offered a detailed description
of how to determine the outcome(s) of community
assembly/evolution within a community, focusing
on particular trait(s), while other model parameters
remained fixed. An important application of trait-
based approaches is to examine how these outcomes
change as these external parameters vary. This can
be used to determine how community structure—
the diversity and abundance of species present and
the value and similarity of their traits—varies with
changes in model parameters, including along envi-
ronmental gradients, a central goal of community
ecology.

Other general insights emerge, including reveal-
ing how an N -species ESC may lose its evolution-
ary stability as an environmental parameter varies.
Intuitively, one might expect that a member of the
ESC loses stability as a branching point emerges;
however, except when the model has a particular
symmetry, the first bifurcation is a loss of global
evolutionary stability, resulting in a local-but-not-
global ESS (Figure 11.3E; Geritz et al. 1999). At the
same parameter value where the ESC first loses
its global evolutionary stability, an (N + 1)-species
ESC is created, with the new strategy at zero pop-
ulation density (Figure 11.6). Thus, the system is

discontinuous in traits but continuous in population
density at these evolutionary transcritical bifurcation
points. Alternatively, an N -species ESC may col-
lapse into an (N − 1)-species ESC as the density
of one of its members declines to zero. This is a
developing area of adaptive dynamics/trait-based
theory, sometimes described as the “bifurcation the-
ory of adaptive dynamics”.

An efficient way to compute bifurcation diagrams
of evolutionary equilibria is as follows (Kremer
and Klausmeier 2017). At an initial bifurcation
parameter value z, find a (preferably N = 1 species)
ESC by simultaneously solving for the abundance
N̂i and trait value x̂i of each population i such
that g

(
x̂i; �x

) = 0 and ∂g/∂x0
(
x̂i; �x

) = 0. There are
two equations and two unknowns per population,
which can be solved numerically using Newton’s
method. Then vary the bifurcation parameter value
z by a small amount δz and solve for the updated
evolutionary equilibrium, extrapolating the previ-
ous solution(s) as an initial guess. At each value
of the parameter z, i) assess global evolutionary
stability by checking that max g

(
x0; �x)

< 0, and
ii) verify that no species has gone extinct (N̂i > 0
for all i). These conditions correspond to passing
through an evolutionary transcritical bifurcation
point either forward (adding a strategy) or in
reverse (removing a strategy). Also, iii) check
convergence stability using the Jacobian matrix. If
the evolutionary equilibrium is still a convergence
stable global ESC with no strategy extinct, continue
varying z. Otherwise, stop (refining with a smaller
step size δz if necessary). To find the exact
bifurcation point, augment the system with the
nascent strategy’s eco-evolutionary equations
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g
(
x̂N+1

) = 0 and ∂g/∂x0
(
x̂N+1; �x) = 0 and two

additional unknowns, the trait value of the nascent
strategy x̂N+1 and the parameter value where the
bifurcation occurs z*. As a new (N + 1)-species ESC
is created at this point with N̂N+1 = 0, this solution
provides a natural starting point to be continued
as previously shown. The resulting evolutionary
bifurcation diagrams summarize predictions of
how the evolutionarily stable community structure
(trait values, diversity, and population densities)
varies with changes in a model parameter, such as
along an environmental gradient (e.g., Kremer and
Klausmeier 2017).

More complex possible outcomes

Within a given environment, stable evolutionary
equilibria are not the only possible outcome of eco-
evolutionary models used to study trait-based the-
ory. In this section we provide a non-exhaustive
summary of a growing set of dynamical phenomena
that have been discovered and which may provide
important insights into various ecological systems.

Limit cycles. Similar to their purely ecologi-
cal counterparts, eco-evolutionary systems can
converge towards limit cycles where species’
abundances and traits both fluctuate over time.
A classic example of these evolutionary cycles
happens in the context of predator-prey co-
evolution models (Dieckmann et al. 1995; Cortez
and Weitz 2014).

Evolutionary suicide. The pessimization princi-
ple mentioned earlier illustrates another classic
emergent phenomenon of eco-evolutionary models,
known more generally as the “Tragedy of the
commons” (Hardin 1968). We have described
how invasion analysis is used to understand the
repeated invasion and replacement of resident
populations by invaders with different trait values.
This sequence of replacements is determined
solely by the fitness of new invaders when rare;
nothing ensures that a new invader behaves
“optimally” when it has completely replaced the
former resident. For example, there is no reason
in general for the equilibrium population density
of successive invaders to increase. In fact, quite
the opposite can happen: evolution can drive a
population extinct, either through a continuous
decrease in density (Diekmann 2004; Boudsocq et al.

2011) or through a catastrophic tipping point in the
presence of an Allee-effect at low densities (Ferrière
2000). These phenomena are considered examples
of “evolutionary suicide” or “evolutionary traps”.

Branching-extinction evolutionary cycles. Another
interesting phenomenon happens when one of the
two populations generated by a branching point
goes extinct through evolutionary suicide (Dercole
2003). If the surviving population remains in the
basin of attraction of the original branching point,
it will be driven back towards the branching point
and diversify, again setting one population up to
experience evolutionary suicide. The succession
of these branching and extinction events lead to a
stable eco-evolutionary limit cycle.

Alternative evolutionarily stable states. Finally, as in
purely ecological models, alternative stable states
can occur in eco-evolutionary models in the form
of alternative ESSs and ESCs (Kisdi and Geritz
1999; Kremer and Klausmeier 2017). Such eco-
evolutionary priority effects mean that the initial
trait values of evolving population(s) will influence
which ESS/ESC is reached at equilibrium. This
once again illustrates that “optimality” in density-
dependent trait-based models is a subtle concept, as
density-independent models generally only possess
one global optimum.

11.2.3 Applications

Previously, we presented a general approach
for implementing a trait-based approach using
virtually any mechanistic model of community
dynamics. It is not surprising then that trait-based
approaches have been applied to a broad range of
systems in ecology and evolution, to study ques-
tions from what determines organism’s adaptations
to what drives large-scale ecosystem functions. Here
we give but a sampling of this extensive literature.
Many of the following examples use techniques
similar to those already described; others use related
methods (see Section 11.3).

This broad spectrum of applications includes
a wide range of different types of ecological
interactions. In the context of consumer-resource
interactions, trait-based models have shown
how different resource types influence consumer
diversification (Schreiber and Tobiason 2003), as
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well as revealing optimal allocation strategies for
taking up different resources (Abrams 1987) and the
effects of resource uptake plasticity (Bonachela et al.
2011). When applied to predator-prey interactions,
trait-based approaches have shown how evolution
can strongly alter predator-prey cycles (Cortez and
Weitz 2014) or even engender them (Abrams and
Matsuda 1997), and have helped us understand
what drives the evolution of prey defenses (Yoshida
et al. 2003; Koffel et al. 2018a). Trait-based models
of host-pathogen systems have shown how within-
host competition between pathogens is at the origin
of their virulence (Van Baalen and Sabelis 1995;
Alizon et al. 2013) and how spatial structure can
lead hosts to evolve altruistic defense strategies,
such as suicide upon infection (Débarre et al. 2012).
A diversity of other trophic situations has been
investigated, including mixotrophy (Andersen et al.
2015), cannibalism (Dercole and Rinaldi 2002; Hin
and de Roos 2019), and intra-guild predation (Patel
and Schreiber 2015), the latter two giving rise to
a rich set of eco-evolutionary phenomena such as
eco-evolutionary cycles and evolutionary suicide.
Trait-based approaches have also been applied
to positive interactions, e.g., to investigate the
emergence and maintenance of facilitation in arid
ecosystems (Kéfi et al. 2008), the role of facilitation
in primary succession (Koffel et al. 2018b), and the
impact of exploiters on the evolution of mutualism
(Jones et al. 2009).

Trait-based approaches have made it possible
to study the evolution of life-history traits in a
diversity of organisms and ecological situations,
including the size at maturation of exploited fish
stocks (de Roos et al. 2006), the seed size and
germination strategies of terrestrial plants (Geritz
et al. 1999; Mathias and Kisdi 2002; Levin and
Muller-Landau 2000), the foraging behavior of
herbivorous arthropods (Egas et al. 2005), and the
size and trophic strategies of unicellular planktonic
organisms (Chakraborty et al. 2017).

Trait-based approaches have also been used to
understand the emergence of community structure.
System-specific models have been applied to
shade-tolerant trees competing for light in forests
subject to disturbances (Falster et al. 2017),
phytoplankton-zooplankton systems along nutrient
gradients (Sauterey et al. 2017), global distributions

of phytoplankton (Follows et al. 2007), and
size-structured fish communities (Hartvig et al.
2011). A variety of size-structured food web models
have been developed to understand emergent
properties such as connectance, omnivory and
trophic structure (Loeuille and Loreau 2005; Fuchs
and Franks 2010; Banas 2011).

When implemented in ecosystem models with an
explicit abiotic environment, trait-based approaches
have shed light on how organismal adaptations
affect ecosystem processes. Examples include
understanding selection patterns on nitrogen-fixing
plants and their consequences for N-limitation
in ecosystems (Menge et al. 2008; Lu and Hedin
2019), the evolution of plant litter decomposability
(Boudsocq et al. 2011; Allison 2012; Barot et al.
2016; Arnoldi et al. 2019), and the determinants
of phytoplankton stoichiometry and their effect on
oceanic N:P ratios (Lenton and Klausmeier 2007).

11.3 Other trait-based frameworks

As noted in Section 11.2, a plethora of trait-based
modeling frameworks have been developed over
the years (Abrams 2001; Abrams 2005; Fussmann
et al. 2007), which we summarize in Table 11.1/.
Some of these frameworks are purely ecological,
assuming fixed trait values. Others are purely
behavioral/evolutionary, neglecting population
dynamics. Finally, many combine ecological and
evolutionary dynamics in various ways. These
frameworks differ in a number of ways:

• The level of biological organization at which traits
vary: within individuals (plasticity, including
behavior and physiological acclimation), within
species (genetic and non-genetic trait variation),
or between species

• The heritability of trait variation
• The degree to which biological details are aggre-

gated (do models track population sizes, trait
means, and possibly trait variance/covariances,
or entire phenotypic distributions?) (Figure 11.7)

• The relative timescales of different processes
• The source of new phenotypes (mutation or

immigration, occasional or continuous)

Despite their differences, these different frame-
works are all based on trait-dependent growth
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Figure 11.7 Three trait-based modeling frameworks aggregate biological details to different degrees. A) Species sorting. B) Ecological moment
methods. C) Adaptive dynamics.

functions g and many can be connected mathemati-
cally as limiting cases (Abrams 2001; Lion 2018).

They also can reach similar conclusions about
the long-term outcome of community assem-
bly/evolution. When there is a global conver-
gence and evolutionarily stable community, these
approaches often tend to similar outcomes. For
example, Figure 11.8 shows the outcome of the
Lotka–Volterra competition model (Box 11.1)
simulated using five different trait-based theoretical
frameworks. The ecological quantitative genetics
framework initialized with four similar species
leads to the four-species ESC predicted by adaptive
statics (Figure 11.8A). After a large but finite time,
species sorting leads to four distinct clusters of
species (Scheffer and van Nes 2006), which are
symmetrical (when initial strategies are regularly
spaced, Figure 11.8B) or irregular (when strategies
are randomly spaced, Figure 11.8C). Community
assembly (Figure 11.8D) and adaptive dynamics
(Figure 11.8E) also lead to four clusters of species,
each containing one or two very similar species,
although the transient dynamics vary considerably.

To understand why these distinct frameworks can
lead to similar outcomes, consider the oligomorphic
dynamics framework (Sasaki and Dieckmann
2011), which tracks the first three moments for
a finite number of phenotypic clusters. The
“zeroth” moment is the size of population i,
Ni =

∫
ni(x)dx; the first moment is its mean trait,

x̄i =
∫

x· ni(x)dx/Ni; and the second moment is its
trait variance, Vi =

∫
(x − x̄i)

2ni(x)dx/Ni. In the

absence of immigration and mutation, the dynamics
of each population are given by

dNi

dt
=

∫
g(x)ni(x)dx ≈ g (x̄i) Ni + 1

2
Vi

∂2g(x)

∂x2

∣∣∣∣∣
x = x̄i

Ni

(11.4a)

dx̄i

dt
= 1

Ni

∫
x · g(x)ni(x)dx − x̄i

Ni

∫
g(x)ni(x)dx

≈ Vi
∂g(x)

∂x

∣∣∣∣
x = x̄i

(11.4b)

dVi

dt
= 1

Ni

∫
(x − x̄i)

2g(x)ni(x)dx − Vi

Ni

∫
g(x)ni(x)dx

≈ Vi
2 ∂2g(x)

∂x2

∣∣∣∣∣
x = x̄i

(11.4c)

The moment equations in (11.4) are closed by
assuming a particular phenotypic distribution,
usually normal (Norberg et al. 2001). Assuming
small trait variance, each extant species at equilib-
rium is characterized by g (x̄i) = 0 (from Equations
11.4a) and ∂g

∂x = 0 (from Equations 11.4b)—the same
conditions defining an evolutionary equilibrium in
adaptive dynamics (see Section 11.2). The condition
for convergence stability matches the linear stability
of Equations 11.4b. Finally, Equations 11.4c shows
that trait variance Vi → 0 if ∂2g/∂x2 < 0—exactly the
same condition as for evolutionary stability (Taylor
and Day 1997). Therefore, it is not surprising that
these different frameworks give similar results at
equilibrium.
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Figure 11.8 The dynamics and long-term outcome of five different modeling frameworks applied to the same trait-based Lotka–Volterra model
with a four-species ESC. A) Ecological quantitative genetics. B) Species sorting, with a uniform distribution of species. C) Species sorting, with a
random distribution of species. D) Community assembly from a continuous species pool. E) Adaptive dynamics with small mutations.

When do we expect these other frameworks
to give significantly different results from the
adaptive statics approach we describe in Section
11.2? We are not aware of precise statements, but
here are some suggestions based on intuition and
experience:

• In the case of a local-but-not-global ESS (Figure
11.3E), the stochastic trait-substitution process of
adaptive dynamics will not find a global ESC,
whereas a model that allows large mutations or
immigration will not get stuck.

• If ecological quantitative genetics or oligomor-
phic dynamics models are not initialized with a
sufficient number of species, they will not find
a global ESC. Instead, they will get stuck at a
branching point. Furthermore, early trait conver-
gence can reduce the number of distinct species
in these simulations, leading to groups of neutral
species clustered on a fitness maximum (Edwards
et al. 2018).

• If there is no global ESC, then the details of how
new strategies arise will be important in deter-
mining the non-equilibrium dynamics.

• Increasing immigration or mutation rates (in
methods that allow this) will increase the trait
variance and eventually affect population size
(the “demographic load”; e.g., Ronce and Kirk-
patrick 2001) and the number and mean traits of
phenotypic clusters.

Frameworks with dynamic trait variances such
as ecological moment methods and oligomorphic
dynamics may fail at branching points, where
∂2g/∂x2

0 > 0, because the disruptive selection will
cause the trait variance to diverge. Ecological
moment methods are especially susceptible to this
problem because they attempt to represent an entire
community with only three pieces of information:
total population size, mean trait, and trait variance.
Thus, they are not well-suited to situations where
there is a multi-species ESC.

These different frameworks make different sim-
plifying assumptions, so no single approach is best
for all purposes. Questions that directly concern
the source of new phenotypes obviously require
a framework that includes those processes. Trait
continuum models make the fewest simplifications,
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but are the most computationally intensive of the
listed approaches, intractably so for more than two
traits. Models that aggregate these details in order
to follow a small number of variables are required.
Ecological moment methods are particularly com-
pact, and each moment embodies a major ecological
perspective—total population (ecosystem), mean
trait (functional), and trait variance (diversity).
However, as described previously, they fail at
branching points where the variance diverges.

In contrast, the adaptive statics approach pre-
sented in Section 11.2 allows for a dynamic num-
ber of species. It makes the simplest assumption
about the source of new phenotypes (“everything is
everywhere”; Baas Becking 1934; De Wit and Bou-
vier 2006) and is computationally efficient, making
it an elegant approach focused on the ecological
mechanisms underlying community structure in the
absence of mutation or dispersal limitation. How-
ever, as an equilibrium approach, it is unable to deal
with trait dynamics on any time scale.

Adaptive dynamics takes a long-term perspec-
tive to address the evolutionary origins of diversity.
However, given its assumption of asexual repro-
duction, new phenotypes form populations that are
demographically independent of their progenitors.
This can seem simplistic from a purely evolutionary
biology standpoint, as it neglects the genetic, sex-
ual, behavioral, and spatial constraints that can pre-
vent reproductive isolation and assortative mating
from occurring, and has been the source of ongoing
debate (Doebeli et al. 2005; Gavrilets 2005).

Questions about short-term adaptive responses to
environmental perturbations require a framework
with trait variances such as ecological quantitative
genetics or oligomorphic dynamics. For such
questions, we recommend the ecological quan-
titative genetics approach, which allows species
evolution to occur within a community context
(e.g., McPeek 2017). Evolution that happens on
an ecological time scale can prevent a population
whose density is slowly decreasing from going
extinct, a phenomenon called “evolutionary rescue”
(Gomulkiewicz and Holt 1995). It can also allow per-
sistence in a continuously changing environment if
the rate of environmental change is slow enough
(Lynch and Lande 1993), although possibly with a
tipping point (Osmond and Klausmeier 2018).

Because trait-based approaches can be applied to
questions across ecology and evolutionary biology,
we need a diverse set of theoretical frameworks.
Understanding the relationships among these
frameworks (Table 11.1) as well as their strengths
and weaknesses is required to choose the best
approach for a given question. Devising new ways
to reduce the complexity of ecological communities
in our models will remain a valuable pursuit.

11.4 Extensions/Complications

The trait-based frameworks we have examined so
far were discussed in the simple ecological setting of
spatial and temporal homogeneity. Real ecosystems
are spatially extended and subject to both externally
driven and internally generated temporal fluctua-
tions, and this spatial and temporal heterogeneity
is known to be an important determinant of popu-
lation dynamics and community structure. Further-
more, we have focused on the dynamics of single
traits, another vast oversimplification. In this sec-
tion, we discuss how trait-based theoretical frame-
works can be made more realistic, and relevant to
more systems, by incorporating temporal and spa-
tial heterogeneity and multiple traits.

11.4.1 Traits in time

The invasion analysis presented in Section 11.2
assumes that a rare, invading population expe-
riences constant conditions (including resident
densities and environmental factors). However,
these conditions may vary due to externally driven
forcing (stochastic or deterministic) or internally
generated cycles or chaos. Adaptive dynamics
studies of temporally variable systems require
calculating an appropriate average invasion rate
ḡinv, based on the type of variability present within
a system and whether there is population structure
(Metz et al. 1992). Once the value of ḡinv has
been calculated, all the machinery of adaptive
dynamics can be used exactly as presented in
Section 11.2: calculating (time-averaged) fitness
gradients, locating evolutionary equilibria, and
determining their convergence and evolutionary
stability.
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Unstructured populations. In the case of an unstruc-
tured population experiencing periodic forcing, we
can simply average the instantaneous invasion rate,

ginv

(
x0; �E(t)

)
, over a period:

ḡinv = 1
τ

∫ τ

0
ginv

(
x0; �E(t)

)
dt (11.5)

(Smith and Waltman 1995). It is straightforward to
calculate ḡinv when cycles arise from external forc-
ing with known period τ , but potentially harder
when cycles are endogenously generated, as the
precise value of τ must be determined numerically
and may depend on the trait values of resident
species. If the environment varies stochastically or
chaotically, then the definition of invasion fitness is
the limit of Equation (11.5) as t → ∞. In practice,
it is usually not possible to calculate this infinite
integral to find the exact invasion rate, so an approx-
imation can be obtained by simply averaging ginv

over a long interval of time. Note that, because the
integral in Equation (11.5) is linear, the gradient
of average fitness needed for adaptive dynamics
studies, ∂ ḡinv/∂x0, is equivalent to the average of the
gradient of instantaneous fitness,

∂ ḡinv

∂x0
= 1

τ

∫ τ

0

∂ginv

∂x0
dt (11.6)

which may be easier to calculate numerically (Kre-
mer and Klausmeier 2017).

Structured populations. As described in Section
11.2, in a constant environment invasion fitness is
given as the dominant eigenvalue of the transition
matrix. Intuition might suggest that, in fluctuating
environments, invasion rate could be calculated
by simply averaging the dominant eigenvalue of
the transition matrix over a period in a periodic
system (or over a long interval of time in an
aperiodic system). However, that turns out to
be incorrect. Instead, obtaining invasion rates
requires calculating the dominant Floquet exponent
(periodic systems; Klausmeier 2008), or more
generally, the dominant Lyapunov exponents
(aperiodic systems; Metz et al. 1992). In both cases,
this must usually be done numerically.

As a final technical note, the definitions of
invasion fitness given previously are based on the
adaptive dynamics framework, and specifically its
separation of time scales. When other trait-based

modeling frameworks are employed (Section 11.3),
other approaches are required. For example, in
the ecological quantitative genetics approach, the
average trait(s) of a population change in response
to instantaneous fitness gradients, which depend
in turn on the current environment. As genetic
variance approaches zero, trait change slows, and
quantitative genetics results converge on those of
adaptive dynamics. However, with larger genetic
variances, rapid evolution is possible. and complex
interactions with ecological dynamics may arise
(Hairston et al. 2005).

Recently, we used trait-based models to examine
the evolutionary stability of species coexistence
in variable environments. We used the adaptive
statics framework to investigate two fluctuation-
dependent coexistence mechanisms (sensu Chesson
2000): relative nonlinearity and the storage effect.
We found that relative nonlinearity can easily sup-
port an ESC of two species (a fast grower and supe-
rior competitor), but higher diversity was improb-
able (Kremer and Klausmeier 2013). The storage
effect is a potentially more powerful coexistence
mechanism. When the environment alternates peri-
odically between two states and the period of forc-
ing is large, two species can coexist as an ESC under
a wide range of conditions (Miller and Klausmeier
2017). When the environment varies continuously,
more species can coexist, with a limit to similarity
resulting in species with evenly spaced trait values
(Kremer and Klausmeier 2017). We also found more
baroque outcomes, such as alternative evolutionary
attractors (Miller and Klausmeier 2017; Kremer
and Klausmeier 2017). When using the quantitative
genetics framework, we found that evolutionarily
stable coexistence was robust to a small amount of
trait variance, but that larger trait variance allowed
rapid evolution leading to complex dynamics
and species convergence, ultimately undermining
species coexistence (Kremer and Klausmeier 2013).

11.4.2 Traits in space

The theoretical framework as described in Section
11.2 implicitly assumes that populations, communi-
ties, and ecosystems do not vary in space, or that
dispersal between locations is negligible so that spa-
tial patterns can be derived directly from bifurcation
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diagrams (Section 11.2.2). These assumptions sim-
plify the analysis of trait-based theory when they
can be empirically justified for particular organ-
isms, scales, or questions (e.g., in well-mixed plank-
tonic systems). However, accounting for space may
be essential when: i) interactions between organ-
isms (and populations) are spatially structured (e.g.,
competition among terrestrial plants), ii) the trait(s)
of interest are directly related to the movement of
individuals, or iii) important environmental factors
vary in space, such that populations in different
locations experience different selective pressures,
and dispersal is not negligible. How ecological pro-
cesses vary in space is the focus of metapopulation,
metacommunity, and metaecosystem theories, all
of which can be all be integrated with trait-based
approaches.

In the adaptive dynamics framework, account-
ing for space simply consists of adding structure
to populations. Rather than considering a single,
unstructured population, we instead examine a col-
lection of multiple subpopulations (whose dynam-
ics are driven by local processes), that are coupled
together by the exchange of individuals through
dispersal. When the subpopulations are discrete,
well-separated entities, we call them “patches”, and
their collective population dynamics can be mod-
elled using matrices similar to Leslie matrices,

d �Ni

dt
=

(
G

(
xi; E

(
�x, �N

))
+ D (xi)

) �Ni (11.7)

where �Ni is a vector of the abundances of population
i in different patches, G is a diagonal matrix
governing within-patch dynamics and D is a matrix
encoding dispersal among patches. In principle,
both local processes and dispersal may depend
on trait x. Alternatively, it is sometimes more
appropriate to model populations as continuously
distributed through space (Troost et al. 2005). In this
approach, population dynamics can be modeled
using systems of partial differential equations called
reaction-diffusion systems, which take the form

∂Ni

∂t
= g

(
z, xi; E

(
�x(z), �N(z)

))
Ni + d (xi)

∂2Ni

∂z2

(11.8)

where z denotes the spatial dimension, g determines
the local dynamics, and the last term allows disper-

sal (Okubo and Levin 2001). Other approaches vary
in their level of detail, from explicitly accounting
for the discrete nature of individuals to treating
entire populations as either present or absent (e.g.,
patch occupancy models and cellular automata, see
Levins 1969; Durrett and Levin 1998; Klausmeier
and Tilman 2002).

Whatever the approach, the fitness of an invading
strategy is always given by the dominant eigen-
value of the matrix (G + D) or the linear operator
g + d ∂2/∂z2, which is its asymptotic population
growth rate once a stable spatial structure across all
subpopulations is reached (Metz et al. 1992; Troost
et al. 2005; Van Baalen and Rand, 1998). In the case
of reaction-diffusion equations, the linear opera-
tor usually needs to be approximated by a matrix.
The fitness gradient can be calculated numerically
using a finite difference approximation or it can be
computed directly using techniques from sensitivity
analysis (Caswell 2001), providing additional con-
ceptual insight: under some conditions, the fitness
gradient of the population as a whole can be shown
to be equal to a weighted average of the local selec-
tion gradients, where the weights are the squared
abundances of the corresponding subpopulations
(Wickman et al. 2017).

Moving from the adaptive dynamics framework
to the ecological quantitative genetics framework
requires a separate equation for trait dynamics
(Kirkpatrick and Barton 1997; Case and Taper 2000;
Ronce and Kirkpatrick 2001; Norberg et al. 2012). In
the reaction-diffusion setting, this takes the form

∂xi

∂t
= V

∂g
∂x0

∣∣∣∣
x0=xi

+ d

(
∂2xi

∂z2 + 2
∂ log Ni

∂z
· ∂xi

∂z

)

(11.9)

where the first term captures local directional selec-
tion and the second term incorporates gene flow (the
second term of which accounts for asymmetric gene
flow due to gradients in population density). This
powerful framework allows for the investigation of
local adaptation, since the trait values of a popula-
tion depend explicitly on space z.

Applications of spatially-explicit trait-based the-
ory span a diverse set of systems, from bacterial
biofilms (Nadell et al. 2016), to social vertebrates
and insects (Lehmann et al. 2008), terrestrial plants
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(Kéfi et al. 2018), pathogens (Débarre et al. 2012),
and plankton in poorly mixed water columns
(Troost et al. 2005, Wickman et al. 2017). It has
provided a number of important insights into
the evolution of species ranges (Kirkpatrick and
Barton 1997; Case and Taper 2000), the response
of communities to environmental change (Norberg
et al. 2012), the maintenance of species diversity in
heterogeneous environments (Wickman et al. 2017),
and the global distributions of plankton (Follows
et al. 2007).

The evolution of dispersal itself is an extensively
studied topic. It has long been recognized that
spatial variation alone is not sufficient to favor the
evolution of dispersal (Hastings 1983; Dockery et al.
1998; Parvinen 1999; Wickman et al. 2017). Only the
continuous availability of underexploited patches,
either at the edge of an invading population, or
maintained by regular disturbance or demographic
stochasticity, can turn dispersal into an advanta-
geous trait (Ronce 2007). More subtly, dispersal
can evolve as an altruistic behavior (e.g., when
it reduces competition among an organism’s kin,
despite offering no direct benefits).

More generally, spatially-explicit approaches
have been essential to the understanding of the
evolution of cooperation and a variety of other
altruistic traits (Lion and Van Baalen 2008; Lehmann
et al. 2008). In completely homogenous systems,
altruism is selected against due to the “Tragedy of
the commons” (Hardin 1968). Conversely, spatial
structure and local dispersal can create “viscous
populations”, where related individuals tend to
cluster in space, favoring the evolution of altruism
(Lion and Van Baalen 2008).

11.4.3 Multiple traits

The theory on evolutionary equilibria and their sta-
bility presented in Section 11.2 focused on systems
with a single trait. In the real world, an organism
can be characterized by a myriad of traits that are all
simultaneously under selection. Even though trade-
offs can constrain the space of possible trait com-
binations, any given population’s strategy is often
determined by its specific values of multiple traits.
For this reason, a general trait-based theory that
applies to multidimensional traits is necessary.

In practice, setting up a trait-based model with
multidimensional traits follows the same recipe
laid out in Section 11.2.2, except that �xG,i is now a
vector whose coordinates are the collection of traits
defining the ith strategy in guild G. Invasion fitness

g
(
�x0; Ê

(�x1
))

of a mutant �x0 follows, with the fitness
gradient now being a true vector. Evolutionary
equilibria are characterized by the trait vectors
�x0 that cancel out the components of the fitness
gradient. Because of fitness interactions between
traits—selection on one trait usually depends on
other traits—finding a multidimensional evolu-
tionary equilibrium implies solving a system of
coupled equations. This also applies if the multiple
traits belong to separate guilds, such as co-evolving
predator-prey systems, as it comes to no surprise
that the optimal trait for a prey will depend on
the trait of the predator, and vice-versa. Finally,
assessing whether these evolutionary equilibria are
evolutionarily stable relies on extending the tools
presented in Section 11.2.2 to multidimensional
space, which is done in practice by checking if the
Hessian matrix of the invasion fitness is negative
definite for unbounded traits. If the trait space
is bounded, constrained optimization has to be
used instead.

There is another complication, specific to the
multi-dimensional nature of this problem, that
involves the idea of convergence stability defined in
Section 11.2.2. This problem has been well-explored
in the adaptive dynamics context (Leimar 2009; see
also Débarre et al. 2014 for a similar approach in
ecological quantitative genetics). This complication
is subtle, as convergence stability depends on
the nature and characteristics of trait variation.
In an evolutionary context, genetic variation
is usually constrained through correlations—
formally encoded in the genetic variance-covariance
matrix, also known as the G-matrix of quantitative
genetics (Lande 1979)—such that selection on one
trait can lead to evolution of another trait, even
when the latter is not under selection. Due to
these correlations, convergence stability cannot
always be solely assessed using the Jacobian of
the fitness gradient (the “selection” part), but
can also depend on the exact nature of genetic
correlations (the “variation” part). To formalize
this issue, Leimar (2009) distinguishes between two
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notions of convergence stability. The first, “absolute
convergence stability”, imposes very restrictive
conditions on the Jacobian of the fitness gradient
under which an evolutionary equilibrium will be
locally convergence stable under any conceivable
adaptive path and G-matrix. The second, “strong
convergence stability”, places a weaker condition
on the Jacobian under which an evolutionary equi-
librium will be locally convergence stable under the
most probable evolutionary trajectory. This second
definition of convergence stability is weaker than
the first one: if an evolutionary equilibrium is only
strong convergence stable, one could find some very
particular series of mutations allowing escape from
this equilibrium (Leimar 2009).

Applications of trait-based theories that involve
multiple traits are diverse. Two-dimensional trait
spaces, resulting in practice from a three-way trade-
off between three traits, are a natural starting point.
They have been influential in ecology (Grime 1974)
and are associated with counterintuitive outcomes,
such as the possibility of positive correlations
between two traits when the last one is not
controlled for (Van Noordwijk and de Jong 1986).
A recent example in plants involves the study of
optimal allocation between resource competition
and the tolerance of and resistance to herbivory—
with the latter two traits corresponding to “defense”
(Koffel et al. 2018a). We showed that investment in
defense is expected to increase along a resource
gradient, but that increase in partial resistance,
mixed tolerance and resistance, or coexistence
of a completely resistant and a tolerant strategy
were all possible outcomes, depending on the
shape of the allocation trade-off that constrains the
three traits. In another two-dimensional example,
Falster et al. (2017) showed how a model of plants
differing in leaf mass per unit leaf area and height
at maturation in a complex forest ecosystem can
generate a very diverse community, including a
diverse set of shade-tolerant species. In the context
of macroevolutionary dynamics, accounting for
multiple phenotypic dimensions has been shown
to have a strong influence on the structure of
the emerging food webs (Allhoff et al. 2015).
Using a general model of asymmetric competition,
Doebeli and Ispolatov (2017) showed that the

diversity of strategies that coexist at the end of the
diversification process scales exponentially with the
number of traits considered.

Despite these applications, most trait-based mod-
els focus on a single trait or a pair of traits linked by
a hard trade-off (effectively one trait). One barrier to
multi-trait models is coming up with a manageable
way to define the shape of multi-dimensional trade-
offs. A possibility is to base them on a common
energetic or material currency, so that total alloca-
tion to different traits is constant, while functions
with flexible shapes encode whether investment in a
specific trait has diminishing or accelerating returns
(Koffel et al. 2018a). Further investigation of mul-
tiple traits—how they affect convergence stability,
how to efficiently find eco-evolutionary equilibria,
and how to encode multi-dimensional trade-offs—
remains an important area for future theoretical
development.

11.5 Frontiers of trait-based modeling

11.5.1 Comparisons with empirical systems

One of trait-based theory’s advantages, as previ-
ously discussed, is its ability to make quantitative
predictions about the diversity and distribution of
trait values likely to occur within populations and
communities, and how these distributions might
change across environmental gradients (Sections
11.2.2). In principle, this should provide increased
opportunities to test theoretical predictions and
models using experimental and observational data.
A handful of examples exist, spanning a range of
traits, systems, and ecological dynamics. Regarding
individual populations and communities in
particular environments, examples include studies
of the size-dependent flowering strategies of plants
(Childs et al. 2003; Rees et al. 2006; Metcalf et al.
2008), the reproductive strategies of female Soay
sheep (Childs et al. 2011), and the height and
distribution of foliage in herbs and trees (Givnish
1982; King 1990). Considering population and
community dynamics through time, successful
examples include studies of the predatory-prey
cycles exhibited in a rotifer/algae system (Yoshida
et al. 2003), and seasonal patterns in aquatic food
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webs (Boit et al. 2012; Curtsdotter et al. 2019).
Across environmental gradients, predictions of
trait-based theory have been tested by examining
variation in forest productivity along elevational
gradients (Enquist et al. 2017; Fyallas et al. 2017),
plant allocation to foliage, wood, and fine roots
across nitrogen gradients (Dybzinski et al. 2011),
and global relationships between the optimal
temperature of phytoplankton species and the mean
annual temperatures they experience (Thomas et al.
2012). These examples are exciting and highlight
the power of trait-based approaches to bridge gaps
between the theoretical and empirical world.

However, compared to the extensive (and grow-
ing) body of literature focused on theory alone,
these empirical tests are few in number. In part,
this may reflect challenges posed by the limited
availability of high-quality trait data across multiple
individuals, species, and environments over time
(e.g., Kremer et al. 2017). Excitingly, portions of this
constraint are being alleviated through a variety
of massive community-wide efforts to compile and
publish trait data, especially for terrestrial plants
(e.g., TRY database; Kattge et al. 2011). We think,
however, that it is more likely that the shortage of
examples simply reflects the fact that few teams
have attempted to bring together trait-based the-
ory with empirical observations. We hope that the
introduction to trait-based theory presented in this
chapter will help lower the barriers associated with
this challenge, while convincing readers of the value
of this opportunity to tighten theoretical-empirical
linkages and to advance the field of ecology.

11.5.2 Linking trait- and species-based
approaches

In this chapter we have focused on purely trait-
based approaches, where a species’ performance
is defined solely by its traits. This is an effective
way to reduce model complexity when the number
of relevant traits is less than the number of
species. However, achieving this reduction requires
knowing the identity (and values) of the relevant
traits and how best to incorporate them into process-
based models, both of which represent significant
challenges. When more species are introduced into

trait-based models (such as ecological quantitative
genetics models) than can persist in an evolution-
arily stable community (ESC), distinct species may
converge on an adaptive peak to become selectively
neutral (terHorst et al. 2010; Edwards et al. 2018).
This may represent a phenomenon that happens
in the real world (McPeek 2017; Edwards et al.
2018), but it is also potentially symptomatic of
situations where trait-based models are missing
important functional variation among species. Are
there hybrid approaches that would allow us to
combine trait-based models with species-based
models that account for species-specific differences?

One possibility, inspired by Chesson’s modern
coexistence theory (Chesson 2000), would be to con-
sider introducing species-specific terms that either
affect “fitness differences” or are (de-)stabilizing. To
allow for fitness differences, we would simply add
a species-specific term εi to a species’ growth rate so
that

dNi

dt
=

(
g

(
xi; E

(
�x, �N

))
+ εi

)
Ni (11.10)

Theoretically, these fitness-difference terms would
simply promote dominance by species with higher
εi values. The real value of this formulation
would be in parameterizing the trait-dependent
population dynamics of actual species, where
species differences that cannot be attributed to the
traits considered would be captured by this species-
dependent “error term.”

If these species-specific effects are instead
(de-)stabilizing, the theoretical implications are
more interesting and require more intricate model
modifications. For example, these terms could rep-
resent species-specific sources of negative density-
dependence, such as intraspecific competition for
mates or specialized natural enemies (Scheffer and
van Nes 2006), or positive density-dependence such
as Allee effects (Noest 1997). Negative density-
dependence inhibits resident species more than
invaders (who are naturally at low density),
stabilizing coexistence of slightly inferior and
neutral species. In contrast, positive density-
dependence inhibits rare invaders compared to
established residents, leading to more cases of
founder control (Section 11.2.2, Lotka–Volterra
case iv). A systematic exploration of these effects,
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as well as broader efforts to integrate trait- and
species-based approaches, would be valuable.

11.5.3 Using trait-based theory to improve
Earth Systems Models

One frontier where trait-based theory is poised
to make important contributions involves earth
systems modeling. Earth Systems Models (or
ESMs) are spatially explicit models of the dynamic
physical and chemical interactions of the earth’s
land, ocean, and atmosphere (Heavens et al. 2013).
They are used to study the past development of
our planet’s climate and the operation of global
biogeochemical cycles. ESMs are also powerful
tools for projecting future environmental and
ecological conditions under different anthropogenic
climate change scenarios, including shifting species
ranges and altered ecosystem function (Heavens
et al. 2013). While ESMs contain sophisticated
descriptions of physical and chemical processes,
biological processes (including ecology and evo-
lution) are treated more coarsely or are absent
entirely. Historical factors, critical uncertainties
(including the absence of a widely-accepted, general
model of ecology), data shortages (needed to
parameterize and validate biological sub-models),
and computational demands (ESMs are already
computationally intensive) all contribute to limit the
level of biological detail in ESMs. These constraints
are problematic, as ecological and evolutionary
processes can significantly affect physical and
chemical properties, driving feedbacks that regulate
the global carbon cycle. Consequently, making
more accurate projections of future environmental
conditions from regional to global scales depends
in no small part on developing more realistic repre-
sentations of ecology within ESMs. Fundamentally,
this is a question of how to model variation in
traits (and hence, ecosystem function) through time
and space at a global scale. Trait-based approaches
offer promising ways to enhance the flexibility
and biological diversity of biogeochemical models
(Litchman et al. 2015) and ESMs without adding
large computational demands.

Currently, the terrestrial and marine components
of ESMs typically aggregate Earth’s vast functional
diversity of individuals and species into somewhere

between two and a dozen functional groups or
functional types. All members of a single group are
assumed to have fixed identical traits or functions,
intended to represent an average individual.
Turnover in traits across environments only occurs
through changes in the relative abundances of
groups, driven by underlying environmental
gradients and/or interactions between groups,
such as competition or predation. For example,
marine systems often contain basic N-P-Z models
(where mineral nutrients, N, support a single,
generic phytoplankton, P, that is in turn consumed
by a generic zooplankton, Z) (e.g., Fasham et al.
1990). Extensions of this basic structure expand the
diversity of plankton functional types considered,
based on factors including size (e.g., Le Quéré
et al. 2005; Stock et al. 2014). Similarly, terrestrial
models, termed Dynamic Global Vegetation Models
(DGVMs) tend to focus on the dynamics of a
handful of plant functional types representing trees
and herbaceous species. Predetermined bioclimatic
envelopes control the distribution of each functional
group, while environmental (and in some cases,
competitive) factors control the relative abundance
of each group within a given location (Foley et al.
2000; Sitch et al. 2003). Critiques of these approaches
include: i) the fact that fixed trait values significantly
under-represent the functional variation within and
across communities, and ii) interactions between
functional groups are over-simplified have been
raised in both terrestrial and marine systems
(e.g., Van Bodegom et al. 2012; Reichstein et al.
2014; Litchman et al. 2015). Furthermore, there
are concerns in terrestrial systems that population
demographics and community succession follow-
ing disturbance are poorly resolved (Fisher et al.
2018), and that fixed bioclimatic constraints of
functional groups may severely hamper the ability
of DGVMs to predict the effects of climate change,
as new, no-analog environments and communities
emerge (Van Bodegom et al. 2012).

Trait-based approaches offer promising ways
to address these shortcomings, in both marine
and terrestrial systems. Efforts to build the next
generation of more realistic ecosystem models fall
into several groups. This includes adding flexibility
to functional groups by replacing fixed trait values
with trait-environment relationships that are either
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empirically parameterized (terrestrial, Zaehle and
Friend 2010; Van Bodegom et al. 2012; Verheijen
et al. 2015; temperature dependence in marine
models, e.g., Stock et al. 2014) or that emerge
from various optimality assumptions (terrestrial,
Xu et al. 2012; Meir et al. 2015; marine, Smith
et al. 2011). In marine systems, both moment
methods (Terseleer et al. 2014) and species sorting
(Bruggeman and Kooijman 2007; Follows et al.
2007; Ward et al. 2012) have been investigated.
Others have adopted a detailed individual- or
agent-based approach, where traits vary across
individuals, determining their survival, growth,
and reproduction, and hence the transmission of
their traits to successive generations (terrestrial,
Scheiter et al. 2013; Sakschewski et al. 2015; marine,
Clark et al. 2011, 2013). This approach allows for trait
variation within communities, as well as emergent
patterns of trait variation across environments and
adaptation to ongoing environmental change, but
comes at substantial computation costs. While
the goal of these diverse studies is the eventual
development of the next generation of more
biologically realistic ESMs, few if any have yet
been applied at the full scale of an ESM, but rather
focus on regional examples. Sorting out which of
these approaches, all variously focused on traits,
provides the most useful balance between flexibility,
feasibility, and reality at different scales and in
diverse systems awaits further research.

11.5.4 Final thoughts

As we have seen, trait-based approaches have a
long history in ecology and evolution (Section 11.1),
extending well before the emergence of trait-based
ecology as an identifiable and important paradigm.
In recent decades, theoretical frameworks such as
adaptive dynamics (Section 11.2) have used evolu-
tionary concepts to provide tools for understanding
a diverse set of ecological interactions and systems
(Section 11.2.3). An expanding range of trait-
based modeling frameworks (Section 11.3), tailored
to different situations, may superficially appear
quite different, but are in fact they closely related
(Table 11.1). Trait-based theory can incorporate
complicating factors such as temporal and spatial
heterogeneity and multiple traits (Section 11.4).

Future developments of trait-based modeling
approaches show great promise in advancing
both our theoretical and empirical understanding
of ecology, from community structure to global
ecosystem dynamics (Section 11.5).
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CHAPTER 12

Toward a general theory
of metacommunity ecology
Dominique Gravel and François Massol

12.1 Introduction

The study of community ecology in a spatial context
has a rich history with different roots coming
from various disciplines, in particular population
biology and geography (MacArthur 1972). Com-
munity ecology, as a sub-field of ecology, focuses
on the diversity and coexistence of species. One
of the hallmarks of spatial community ecology is
the theory of island biogeography (TIB), elaborated
by MacArthur and Wilson (MacArthur and Wilson
1963), based on a first model they published simul-
taneously with a very similar study by Levins and
Heatwole (1963). The aim of the TIB is to explain
various observations emerging from the analysis
of biodiversity on islands (e.g., area-diversity
and distance-to-mainland-diversity relationships).
The thesis defended by the TIB (MacArthur and
Wilson 1967) is that most of these observations can
reasonably be explained from the balance between
island colonization and local extinction processes,
and these processes in turn are expected to depend
on geographic characteristics such as island size
or distance to the nearest continental mass. By rec-
ognizing colonization and extinction processes as
key drivers of biodiversity at biogeographic scales,
MacArthur and Wilson i) were among the first to

propose a mechanistic theory to solve the issue
of spatial scale of biodiversity and ii) based their
theory on stochastic processes, thus implicitly
acknowledging that an average diversity of S does
not mean that the S same species should inhabit the
site considered at all times.

Since the seminal book of MacArthur and Wilson,
the theory on spatial community ecology has
followed two main routes: i) a “complex sys-
tem” approach focusing on species and diversity
distributions at different spatial scales, following
approaches from landscape ecology, in order to
grasp the connection from landscape structure to
community and ecosystem processes, e.g., Polis
et al. (1997); ii) a “parsimonious assumption”
approach aiming at explaining general coexistence
mechanisms for community ecology without much
attention to the details of the landscape, which
in its most recent form is now better known as
metacommunity ecology (Holyoak et al. 2005).
In recent years, the field of spatial ecology has
moved towards a more integrative view, merging
both approaches together with a stronger focus
on spatially structured food webs to explain
coexistence mechanisms and the consequences of
species diversity on ecosystem functioning and
ecological interaction networks (Massol et al. 2011).

Gravel, D. and Massol, F., Toward a general theory of metacommunity ecology In: Theoretical Ecology: Concepts and Applications. Edited by: Kevin S. McCann and
Gabriel Gellner, Oxford University Press (2020). © Oxford University Press.
DOI: 10.1093/oso/9780198824282.003.0012
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The metaecosystem concept and its associated
framework (Loreau et al. 2003; Gounand et al. 2018)
has notably introduced the ideas that ecological
stoichiometry coupled with spatial dynamics
might play a very important role in the control
of ecosystem productivity (Loreau, 2004; Massol
et al. 2011) and limiting factors (resources and
natural enemies) shaping species coexistence have
to be understood more generally through the prism
of biomass fluxes within and among ecosystems
(Gravel et al. 2010b,a,b; Massol et al. 2017).

In parallel to the construction of the metapo-
pulation/metacommunity/meta-ecosystem frame-
work, P. Chesson and his collaborators have made
crucial contributions to the theory of species
coexistence through a completely different approach
(Chesson 1994, 2000b,a,b; Snyder and Chesson
2003). In particular, these works have proposed
a useful categorization of coexistence mechanisms
based on two main classes: on the one hand,
some mechanisms can be branded as equalizing
because their ultimate effect is to minimize fitness
differences between species at large spatial and
long temporal scales ; on the other hand, some
mechanisms are stabilizing because they tend to
increase negative density-dependent interactions
within species compared to between-species inter-
actions (also interpreted as niche differentiation).
Following the logic of the Lotka–Volterra model,
such effects are expected to favor the coexistence
of species because they increase the likelihood
that the multi-species equilibrium is more stable
than the ones lacking one or more species. Some
models have implicitly incorporated these ideas
into the metacommunity framework through
ideas such as the regional similarity hypothesis
(Mouquet and Loreau 2002) and the neutral theory
of biodiversity (Bell 2000; Hubbel 2001), which
basically recasts coexistence theory in the absence
of stabilizing mechanisms but with perfect equality
between species (Gravel et al. 2006; Adler et al.
2007). Although both equalizing and stabilizing
mechanisms work towards species coexistence
(i.e., the existence of a feasible equilibrium
comprising all considered species), only stabilizing
mechanisms actually make this coexistent state
resilient to perturbations (Barot and Gignoux
2004). For this reason, the categorization proposed

by (Chesson 2000b) is of particular relevance
because it allows for a more precise under-
standing of the conditions favoring species diver-
sity within a patch and species turnover in space
and time.

In this chapter, our first goal is to give the reader
a general idea of what metacommunity theory
has achieved, what it can explain, and how, and
what it has not tackled yet, focusing on theories of
community assembly and species coexistence and
comparing their predictions. However, going into
the details of all predictions and theories linked to
metacommunity ecology is way beyond the scope
of a single book chapter, see Leibold and Chase
(2018) for such an overview). For the purpose
of conciseness and consistency, our approach
here will be to propose and formalize a single
unifying model in the context of patch dynamics
(i.e., focusing on species occupancies rather than
species abundances) to make predictions on
three main statistics (species-species and species-
environment correlations as well as spatial species
occurrence autocorrelation) that could well capture
the distribution shaped by coexistence mechanisms.
We will first introduce some theoretical results
linked to the Levins metapopulation model and
its many offshoots in order to highlight the basic
expectations of this model in terms of three cor-
relations describing metacommunity structure:
environment-occupancy, first order spatial auto-
correlation and co-distribution. We will then resort
to simulations to check whether the three proposed
statistics are indeed able to discriminate between
different scenarios of species coexistence. These
results might hopefully guide future empirical
and theoretical studies by highlighting relevant
signature characteristics of metacommunities as
well as weaknesses of occupancy-based metrics,
thus kindling future research on appropriate metrics
of species coexistence mechanisms.

12.2 A general model for “meta” ecology

We start with the presentation of a single-species
model and review elements of metapopulation
theory with a unique formalism. The model is
developed following the tradition of Levins’ model
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of patch dynamics (Levins 1969). Our objective is
to provide a tool that could be used to develop
the theory further, but that is also coherent with
previous tools.

12.2.1 The heritage of the Levins’ model
of colonization and extinction dynamics

In population and community ecology textbooks,
one of the classic models that is often presented to
study spatial dynamics and scaling in biodiversity
studies is Levins’ metapopulation model. Initially
proposed in the context of agronomical research,
see Levins (1969), this model has been especially
fruitful with many extensions, see the reviews in
Hanski (1999) and Britton (2013). Interestingly, the
model was developed in parallel to MacArthur and
Wilson’s theory of island bigeography, which also
builds on the same fundamental state variable and
processes. Essentially, Levins’ model describes the
dynamics of expected patch occupancy p, which
could be interpreted as a fraction of the landscape
that is occupied by the species, as well as the prob-
ability to find a population at a given location. The
metapopulation is dynamic because of the processes
of colonization, which is the result of a propag-
ule landing at a location and establishing a viable
population, and extinction, which is the result of
a permanent disappearance of all individuals from
that locality, either because of stochastic population
dynamics or a disturbance. An implicit assumption
is that the per capita growth rate is positive in all
patches, i.e., that the entire landscape is suitable to
establish viable local populations (but see following
variants).

We start by deriving Levins’ model from its
underlying processes (colonization and extinction)
and then we add spatial heterogeneity. Let us first
consider a large landscape of n patches, each of
them with approximately the same quality and
size, so that colonization and extinction rates are
comparable throughout. We look at the probabilities
Pk that k of these patches are occupied. Assuming
that propagules landing into a patch can come
from any other patch (i.e., global dispersal and
perfect mixing), this family of probabilities obeys
the following master equation:

dPk

dt
= c

n
(k − 1) (n − k + 1) Pk−1 + e (k + 1) Pk+1

−
[ c

n
k (n − k) + ek

]
Pk (12.1)

i.e., the number of occupied patches can increase
if a colonization happens in one of the n − k
empty patches (the associated rate being coloniza-
tion pressure c/n per occupied patch owing to the
division of emigrating propagules between the n
possibble destinations, multiplied by the number of
occupied patches, k), or can decrease if an extinction
happens (with rate e) in one of the k occupied
patches. Multiplying both sides of Equation 12.1 by
k/n and summing over k yields the following equa-
tion for the dynamics of p = E [k/n], with terms in
v = Var [k/n]:

dp
dt

= cp
(
1 − p

)− cv − ep (12.2)

If k were a random variable with binomial distri-
bution, we would have v = p

(
1 − p

)
/n, i.e., van-

ishing variance with increasing n. In general, we
can expect v to decrease with n, so, assuming a
large number of patches, the dynamics of p can be
approximated by Levins’ equation:

dp
dt

= cp
(
1 − p

)− ep (12.3)

In this form, it is a one-species model with no under-
lying spatial heterogeneity. The classic results from
this model are easy to obtain:

• there are two equilibria for p, either p = 0 or
p = 1 − e/c;

• the first equilibrium is unstable when c > e and
the second is stable, which in ecological terms
means that persistence occurs if colonization is
larger than extinction; the reverse is true when
c < e;

• the dynamics of this model are strictly identical to
those of a logistic growth model with parameters
r = c − e and K = 1 − e/c, notably a rate of return
to the equilibrium equal to c − e.

Avery natural improvement to the original model
stems from the idea that less than 100 per cent of the
available patches are fit for species colonization, i.e.,
the local intrinsic population growth rate is negative
in some locations such that establishment is not
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feasible even if there are plenty of propagules. The
following formalization, introduced by (Nee and
May 1992) in a two-species context, adds another
parameter to Levins’ model, i.e., the proportion of
inhabitable patches h:

dp
dt

= cp
(
h − p

)− ep (12.4)

This model does not change results radically for
the one-species, one-habitat type model, i.e., there
are still two equilibriums (the second becomes
p = h − e/c), the critical inequality that must be
satisfied for the metapopulation to persist is now
hc > e, and the rate of return to the non- empty
equilibrium is ch − e. However, the introduction of
this new parameter allows one to model habitat
heterogeneity and ecological interactions in a
simple way.

12.2.2 Local demography versus
regional processes

Levins’ metapopulation model and its various
offshoots are “macroscopic” models insofar as they
concentrate on colonization/extinction dynamics
and do not treat population dynamics within a
patch. An important implicit assumption of this
formalism is that local dynamics are happening
much faster than regional dynamics, such that
they could be ignored from the model (see Gravel
et al. (2010a) for relaxation of this assumption).
Essentially, a just-colonized patch is assumed to
be identical (on average) to a patch that has been
occupied for a long time. Population dynamics are
assumed to be fast enough, when compared to col-
onization/extinction dynamics, for newly formed
populations to reach their carrying capacity before
the next extinction event in the metapopulation.
This assumption is obviously not realistic in all
metapopulation settings, especially when there
is a strong seasonal forcing on population and
colonization/extinction dynamics. A good reading
on the limits of this assumption is provided by
Keeling (2002) and Eriksson (2013).

12.3 Spatial heterogeneity

Coexistence is impossible in the Levins metapopu-
lation model in the absence of spatial heterogeneity
or the possibility of local species replacement.

Gause’s competitive exclusion principle can easily
be reformulated to apply to spatial dynamics by
stating that two similar species competing for
space cannot coexist. Akin to local dynamics, some
form of heterogeneity is required to obtain spatial
coexistence. We will see in the next section how
differences among species may contribute to it, but
first we need to establish how spatial heterogeneity
affects single-species metapopulations. This step is
necessary to reveal how environmental variation
and limited dispersal contribute to affect the
equilibrium occupancy of a resident species. In
this section we analyze extensions of the single-
species Levins model in order to reveal the effects of
environmental variation and dispersal limitation on
the equilibrium occupancy. Our analysis formalizes
how environmental occupancy and spatial correla-
tions may arise and structure species distribution.

12.3.1 Environmental variation

Introducing environmental variation into Levins
metapopulation model can be achieved in all
generality by making model parameters (i.e., c
and e) dependent on patch type and stating the
proportion of total patches assigned to each type
(i.e., the equivalent of parameter h). For simplicity,
consider a metapopulation which comprises two
habitat types, say favorable (in proportion π ) and
unfavorable (in proportion 1 − π ). We follow a
single species which inhabits this metapopulation,
and its metapopulation dynamics are governed by
the usual processes of colonization and extinction.

Extinction rate varies between the two habitat
types and is equal to eF in favorable patches and to
eU in unfavorable patches. In the same vein, con-
tribution of occupied favorable patches to coloniza-
tion (resp. unfavorable) is cF (resp. cU). To keep in
line with the spirit of approaches proposed earlier
(Slatkin 1974; Christiansen and Fenchel 1977; Han-
ski 1983), unfavorable patches are also considered
as potentially more (or less) resistant to colonization
through parameter rU, which describes the proba-
bility that colonization can take place.

The differential equations that define the dynam-
ics of species occupancy in both habitat types, (pU

in favorable habitats, pF in unfavorable ones, and
total occupancy p = pU + pF) according to Levins
metapopulation model are:
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dpF

dt
= (cFpF + cUpU

) (
1 − π − pF

)− eFpF

dpU

dt
= rU

(
cFpF + cUpU

) (
π − pU

)− eUpU (12.5)

The main interest of this variant of Levins metapop-
ulation model is that it can predict the expected
correlations between species occupancy and patch
type, a quantity that we will be interested in later
when we will explore statistical moments of meta-
communities. To obtain this correlation, we first
need to derive expressions for equilibrium occupan-
cies. These are given by the following equations:

(
1 − π − pF

) (
cFpF + cUpU

) = eFpF

rU
(
π − pU

) (
cFpF + cUpU

) = eUpU

(12.6)

which can be solved by introducing the variable m
defined as:

m = 1/
(
cFpF + cUpU

)
(12.7)

yielding pF and pU:

pF = 1 − π

1 + meF

pU = π

1 + meU/rU

(12.8)

The equation on m obtained through system (12.6)
is a quadratic equation with solutions:

m± = fF + fU − c̄ ±
√(

c̄ − fF − fU
)2 + 4

[
cF (1 − π) + cUπ fF − fFfU

]

2
[
cF (1 − π) fU + cUπ fF − fFfU

]
(12.9)

where c̄ = cF (1 − π) + cUπ , fF = eF and fU = eU/rU.
p can be recovered from Equation (12.9) by summing
the two parts of system (12.8), i.e., as:

p = 1 − π

1 + mfF
+ π

1 + mfU
(12.10)

Plugging Equation (12.9) in Equation (12.10) gives
a long formula better left hidden. Figure 12.2
presents a more understandable picture of how p
varies as a function of statistical moments of the
“effective extinction rates”, fx, namely its expecta-
tion f̄ =π fU + (1 − π) fF and its variance Var(f ) =
π (1 − π)

(
fU − fF

)2. A larger difference between
the two effective extinction rates at a given
average effective extinction rate (i.e., going up
on Figure 12.1) increases occupancy; conversely,
at a given difference of effective extinction rate,
increasing the average effective extinction rate (i.e.,
going right on Figure 12.1) decreases occupancy.

Approximating Equation 12.10 at first order in
Cov[f, c] and Var[f ], we obtain the following Taylor
series approximation for p:

p ≈ 1 − f̄
c̄

+ f̄ Cov
[
f , c
]

c̄3 + Var
[
f
]

c̄2 (12.11)

This expression can also be recovered with a large
number of patch types defined by their parameters
cx, ex and rx, with fx = ex/rx, and the proportion of
patches of type x, πx. The equivalent of system (12.5)
then becomes:

dpx

dt
= rx

(
πx − px

)∑
y

cypy − expx (12.12)

At equilibrium, Equation (12.12) always implies:

px = πx

1 + fx/
∑

ycypy
(12.13)

and, from Equation (12.12) taken for all x,

p = 1 −
∑

y fypy∑
y cypy

(12.14)

Developing the sum at the denominator in terms of
αx = px/πx and using Equation (12.13), one obtains:

αc = E

⎡
⎢⎣ cx

1 + fx
αc

⎤
⎥⎦ ≈ c̄

1 + f̄
αc

− Cov
[
f , c
]

αc

(
1 + f̄

αc

)2

+ c̄ Var
[
f
]

αc2

(
1 + f̄

αc

)3 (12.15)

Assuming that αc can be decomposed as an average
term plus terms in Cov[f, c], Var[c] and Var[f ], one
finds:

αc ≈ c̄ − f̄ − Cov
[
f , c
]

c̄
+ Var

[
f
]

c̄
(12.16)

With the same type of calculations, we can also
obtain the following approximation:

ᾱf ≈
f̄
(

c̄ − f̄
)

c̄
+
(

2f̄ − c̄
)

Var
[
f
]

c̄3 − f̄ 2Cov
[
f , c
]

c̄2

(12.17)

Plugging Equations (12.16) and (12.17) into
Equation (12.14) and keeping only sensible terms,
we finally recover Equation (12.11).
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Figure 12.1 Effect of spatial heterogeneity on equilibrium occupancy. The figure illustrates iso-occupancy lines (from 0 to 1, with one line at each
0.1 occupancy increment) as a function of the average effective extinction rate, f̄ and the standard deviation of extinction rates, at π = 0.2,
cF = cU = 1. The area in the top left corner is not possible with only two patch types – it would require negative values for eF. The area in the
bottom right corner leads to p = 0.

Based on Equations (12.13) and (12.16), we can
also obtain an approximation of px:

px ≈ πx

⎡
⎣ c̄ − f̄

c̄ + �fx
−
(

fxCov
[
f , c
]

c̄
(
c̄ + �fx

)2 + fxVar
[
f
]

c̄
(
c̄ + �fx

)2

⎤
⎦

(12.18)

with �fx = fx − f̄ . Using Equation (12.18), we can
get an approximation of the covariance Kx between
species occurrence and patch type x occurrence:

Kx = px − pπx

≈ − πx(
c̄ + �fx

)2
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 − f̄

c̄

)
Var
[
f
]

+
[(

1 − f̄
c̄

)
c̄ +
(

1 − 2 f̄
c̄

)
Cov

[
f , c
]

c̄
+ Var

[
f
]

c̄

]
�fx

+
[(

1 − f̄
c̄

)
− f̄

c̄
Cov

[
f , c
]+ Var

[
f
]] (�fx

)2
c̄2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12.19)

The correlation between species occurrence and
patch type x occurrence, κx, can be obtained by
dividing the right-hand side of Equation (12.19)

by
√

p
(
1 − p

)
πx (1 − πx) and cutting approxi-

mations at the level of variance and covariance
terms:

κx ≈ −
√

πx

(
c̄ + �fx

)2
√√√√(1 − π)

f̄
c̄

(
1 − f̄

c̄

)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 − f̄

c̄

)
Var
[
f
]

+

⎡
⎢⎢⎢⎢⎣

(
1 − f̄

c̄

)
c̄ +

(
1 − 2f̄

c̄

)
Cov

[
f , c
]

2 c̄
+ Var

[
f
]

2 f̄

⎤
⎥⎥⎥⎥⎦

�fx

−
[
−
(

1 − f̄
c̄

)
+ Cov

[
f , c
]

2 c̄2 − Var
[
f
]

2 c̄f

] (
�fx
)2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12.20)

Independently of �fx, environment-occurrence
correlations are expected to be negatively affected
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by the variance in effective extinction rates. A
patch type with local extinction rate equal to the
metapopulation average would be less occupied
than predicted from the product of p and π just
because of the variance in extinction rates, which
creates a deficit in recolonisation of extinct patches.
In other words, for a given average performance,
spatial variation in the environment reduces the
regional performance of a species. Patch types
with larger than average f are expected to have
more negative habitat-occurrence correlations due
to i) the effect of colonization (the higher the
colonization rate, the stronger the effect of �fx), ii)
the variance in effective extinction rates (the higher
the variance, the stronger the effect), and (iii) the
covariance between colonization and extinction
rates depending on whether the extinction- to-
colonization ratio is lower or higher than 1/2. If the
ratio is lower than 1/2, a positive covariance means
a negative effect of �fx on κx; conversely, if the f /c
ratio is above 1/2, a positive covariance means a
negative effect of �fx on Kx. The effect of (�fx)2 is
mainly to decrease the value of the correlation (i.e.,
becoming more negative), with a modulation by
Cov[ f, c] if this quantity is positive.

An important result of Equation (12.20) is that
when fx does not vary among patch types, the
environment-occurrence correlations all become
equal to zero. This is not so surprising: when only
colonization rates out of patches differ, we do
not expect more or less productive patches to be
occupied more or less often if space is modeled
implicitly (i.e., we do not take the clustering of
patch types into account). Conversely, when only fx
varies but not cx, the effects of �fx and Var[ f ] are
quite straightforward: the environment-occurrence
correlation decreases with the variation in extinction
rates, �fx, with the product of both terms, (�fx)2,
and also decreases with the product of this term
with Var[f ]. Since (�fx)2 and Var[f ] are always
non-negative, the only term that can produce a
positive correlation is the simple �fx effects—patch
types with less than average extinction rates should
have higher correlations. Because of all the negative
effects of (�fx)2 and Var[f ], this means that positive
environment-occurrence correlations are expected
to be less intense than the negative ones—the
association, positive or negative, is stronger with

unfavorable environment types than with favorable
ones. Or, in other words, we expect a negative
correlation between species occurrence, and patch
x occurrence even when �fx is negative, down to
negative values of order −Var

[
f
]
/c̄.

12.3.2 Dispersal limitation

In this section, we introduce the notion that spatially
explicit structure driven by dispersal limitation can
induce spatial autocorrelation in species occur-
rence. Computing the expectation for occurrence
autocorrelation is a difficult problem and recent
approaches have circumvented this difficulty by
applying stochastic differential equation formalism
and perturbation analysis (Ovaskainen and Cornell
2006a; Ovaskainen and Cornell 2006b). Here we
will focus on a simple toy model that can be
approximately solved using pair approximations.

Consider a metapopulation comprising a large
number (N) of patches positioned on a circle and
assume that colonization processes only take place
in a stepping-stone manner (i.e., colonization can
only occur from a neighboring patch). We assume
that the number of patches is high, so that whole
metapopulation extinction due to stochasticity is
practically impossible. To analyze the dynamics of
such a model metapopulation, we use pair approx-
imations, i.e., we assume that the occurrence of the
focal species in a patch can be computed from the
knowledge of species occurrence in the two neigh-
boring patches.

To describe the state (occupied, O, or empty, E) of
a given patch (with index x) at time t, we use random
variable Xx(t). The proportion of patch pairs that
are both empty (pEE), both occupied (pOO), or
mismatched (pEO and pOE) can be written as
follows:

pEE = E
[
(1 − Xx)

(
1 − Xx+1

)]

pEO = pOE = E
[
Xx
(
1 − Xx+1

)]

pOO = E [XxXx+1] (12.21)

Quite naturally pEE + pOO + 2pOE = 1. Species occu-
pancy is then given by p = pOO + pOE.

When a patch x is empty, the pair approximation
assumption implies that the probability that its
left-hand side neighboring patch is occupied is
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pOE/
(
pOE + pEE

)
. Based on this assumption and

a colonization rate c/2 towards each side of
an occupied patch, the differential equations
governing the dynamics of the metapopulation are
given by:

pEE

dt
= 2epOE − cpEE

(
pOE

pOE + pEE

)

pOE

dt
= c

2
pEE

(
pOE

pOE + pEE

)
+ epOO

−
[

e + c
2

(
1 + pOE

pOE + pEE

)]
pOE

pOO

dt
= c
(

1 + pOE

pOE + pEE

)
pOE − 2epOO (12.22)

The equilibrium solution to this set of equations can
be explicitly given in terms of e/c:

pEE = 2(e/c)2

1 − (e/c)

pOE = pEO = (e/c) [1 − 2 (e/c)]
1 − (e/c)

pOO = 1 − 2 (e/c) (12.23)

so that metapopulation occupancy p = pOE + pOO is
given as:

p = 1 − 2 (e/c)
1 − (e/c)

(12.24)

and the autocorrelation between neighboring patch
states, ρ = (pOO − p2) /p

(
1 − p

)
, equals:

ρ = e
c

(12.25)

Plugging pOO = p2 + ρp
(
1 − p

)
and pOE =

(1 − ρ) p
(
1 − p

)
into system (12.22), we can deduce:

dp
dt

= c (1 − ρ)
(
1 − p

)
p − ep (12.26)

and from Equations (12.26) and system (12.22) :

dρ

dt
= c(1 − ρ)2 (1 − p

)− eρ
ρ

1 − ρ
(12.27)

Equations (12.26) and (12.27) yield the equilibrium
relationships:

(1 − ρ)
(
1 − p

) = e/c

(1 − ρ)2(1 − p
)2 = ρe/c (12.28)

from which we can also deduce Equations (12.24)
and (12.25).

Equations (12.26) and (12.27) are interesting
because they highlight the similarities and dif-
ferences between the model developed here and
the spatially implicit Levins model developed
previously. In the spatially explicit version, the
effective colonization rate becomes multiplied by
1 − ρ, which is the mathematical translation of
the fact that colonization is most efficient when
occupied, and empty patches are intermingled
rather than spatially segregated. Spatially explicit
dispersal has two consequences that will be
helpful to later understand coexistence. First, it
reduces the equilibrium occupancy relative to
the standard Levins’ model with global dispersal
model by an amount equal to e/c. Keeping in
mind that the extinction rate has to be smaller
than the colonization for persistence, it indicates
that the negative effect of dispersal limitation
will vanish as colonization rate becomes very
large, simply because empty patches are rapidly
recolonized. Second, the spatial autocorrelation
is always positive and also monotonically decline
with colonization rate.

12.4 Coexistence and Persistence

12.4.1 Introducing species interactions

We now move to the most general version of a
multi-species version of the Levins model. The
model is based on the earlier work of several other
authors, including Cohen (1970), Levins and Culver
(1971), Slatkin (1974), Hanski (1983), Hanski (1999),
and Holt (1996). Its parameterization for specific
cases, as we will see, and summarized in Table
12.1 covers different situations such as pre-emptive
competition (Levins and Culver 1971), competition-
colonization trade-off (Tilman 1994; Hastings 1980),
predation (Holt 1996; Gravel et al. 2011b) and
mutualism (Klausmeier et al. 2001). The following
analysis is based on a two-species scenario for
tractability, with the two species labelled 1 and 2,
but could easily be extended to multiple species.

See Figure 12.2 and Table 12.1 for description of
parameters.
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Table 12.1 Summary comparison of different parameterization of the two species model for various cases of inter-specific interactions.

Sp. 1 Sp. 2 Production Establishment Extinction

Ind. metapop. bi b′
i = bi si s′i = si ei e′

i = ei

Competition Neutral b1 = b2 b′
i = 0 s1 = s2 s′i = 0 e1 = e2 e′

i = ∞
Col. comp. Sup. Weak bi b′

i = bi si s′i < si ei e′
i = ei

Ext. comp. Sup. Weak bi b′
i = bi si s′i = si ei e′

i > ei

CC-Trade off Sup. Weak b1 < b2 b′
2 = 0 s1 < s2 s′2 = 0 ei e′

2 = ∞
Species sort. Spatially variable

Pred.-prey Bottom-up Prey Pred. b2 = 0 s2 = 0 s2 = 0 s′i e2 = ∞ e′
i
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Figure 12.2 Schematic representation of the model.

There are four types of patches to keep track of in
a two-species situation: p1 denotes the fraction of
the landscape occupied by species 1 only, p2 denotes
the fraction occupied by species 2 only, p12 is the
fraction occupied simultaneously by both species
and finally, p0 are empty patches. Following (Hanski
1983), we will simplify notation by defining the
quantities y1 = p1 + p12 and y2 = p2 + p12. The
landscape can only be in one of those states, such
that p0 = 1 − (p1 + p2 + p12

)
.

Interactions can be represented in various ways,
each the result of different local processes. To do
so, we first need to decompose colonization in
two sub-processes, the propagule production per
unit of occupancy, which occurs at rate bi, and
the establishment rate of propagules landing into

a suitable location, which occurs at rate si. The
traditional definition of an ecological interaction
is the effect of a species on the per capita growth
rate of another species. If the growth rate is either
increased or decreased by the presence of another
species, then it should affect the rate at which
the population will establish after landing into a
patch. This will translate into a modification of the
establishment rate in the patches already occupied
by the other species, which we will denote s′

i.
Since local population dynamics are happening
fast relative to regional dynamics, we also need
to consider the effect of ecological interactions on
the equilibrium population size. Such an effect
may either reduce (e.g., in presence of competition
or predation) or increase (e.g., in presence of
mutualism or a prey) the propagule production,
which we will also denote by b′

i Taken all together,
this means that ecological interactions may affect
the effective colonization rate in the target patch
where establishment occurs and in the source patch
from which propagules are being produced. The
rates of increase of species 1 occupancy due to the
colonization of empty patches and already occupied
patches will therefore be

(
b1p1 + b′

1p12
)

s1p0 and(
b1p1 + b′

1p12
)

s′
1p2 respectively.

Following the same logic, ecological interactions
may also affect extinction rate via both a modifi-
cation of the equilibrium population size and the
capacity of the species to recover from small local
perturbations. Again, we denote by a prime symbol
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the modified extinction rate e′
i for patches with

co-occurrence (p12). The rate of decrease of species
1 occupancy due to its extinction in patches it
occupies alone or together with species 2 will
therefore be e1p1 and e′

1p12 respectively. Note that
the rate of joint species extinctions is null.

Collecting the terms together and keeping track of
all possible pathways between the different states,
we get the following set of differential equations:

dp1

dt
= (b1p1 + b′

1p12
)

s1p0 − e1p1 + e′
2p12

− (b2p2 + b2p12
)

s′
2p1

dp2

dt
= (b2p2 + b′

2p12
)

s2p0 − e2p2 + e′
1p12

− (b1p1 + b′
1p12
)

s′
1p2

dp12

dt
= (b1p1 + b′

1p12
)

s′
1p2 + (b2p2 + b′

2p12
)

s′
2p1

− (e′
1 + e′

2
)

p12 (12.29)

A schematic version of the model is represented
in Figure 12.2 and parameters are interpreted for
various settings in Table 12.1. Albeit more difficult to
analyze than traditional Lotka–Volterra equations
for local dynamics, the model is general enough
to account for all combinations of positive and
negative interactions. Unfortunately it cannot be
solved for internal equilibrium except in special
cases, but the mutual invasibility can be studied
by stability analysis, following (Hanski 1983), a
species can invade a metapopulation equilibrium
only comprising the other one if this equilibrium
is unstable. This technique has the advantage of
highlighting the joint effects of interactions via
an analysis of the equilibrium occupancy of the
resident species and its effect on the invasibility of
the interacting species. Doing so, we will be able to
map our interpretation on Chesson’s formalism
of equalizing and stabilizing mechanisms of
coexistence.

12.4.2 Technique for invasibility analysis

It is not possible to solve the two-species model
for equilibrium except for a few special cases. It is
neither possible to compute directly the per capita
growth rate of an invading population because
of the p12 fraction. The approach to investigate
invasibility is therefore to use local stability analysis

on the equilibrium where only one species is
resident and the other is completely absent (i.e.,
p̂i = 0, p̂ij = 0 and p̂j > 0). In such a situation, the
small perturbation that is the object of the analysis
is the introduction of the alternative species and the
stability analysis tells us if this small perturbation
grows (unstable equilibrium, the species invades)
or not (stable equilibrium, resistance to invasion).
The following analysis was originally derived
by Hanski (1983), but here we introduce a few
additions due to the model reformulation and the
distinction between propagule production (bi) and
establishment (si). We will not detail all derivations
here but the reader could refer to Hanski’s analysis
of regional coexistence.

Stability analysis consists of first computing the
Jacobian matrix for the previous set of differential
equations, evaluating it at the equilibrium points p̂i

and then investigating the Routh–Hurwitz condi-
tions for stability. After some simplifications of the
conditions, we find that local stability depends on
two inequalities (setting species 2 at equilibrium,
species 1 the invader, and with the following defi-
nitions μi = b′

is
′
i − bisi):

b1s1 − b2s2 + (μ2 − μ1) p̂2 − 2e1 − e′
1 − e′

2 < 0(
b1s1 − e2 − μ1p̂2

) (
b2s2 + e1 + e′

2 − μ2p̂2
)

< e′
1
[− (b1s1 − e1) + (b1s1 + b2s2 − μ2) p̂2

]
(12.30)

Invasibility will occur if any of these two inequali-
ties is not satisfied. The following analysis for dif-
ferent parameterizations is based on this criterion.
Note that coexistence requires this condition to be
satisfied at both one-species equilibrium (when each
species is resident and the other one absent).

12.4.3 Competition

Fitness inequality and stabilizing interactions

Chesson’s theory of coexistence stems directly from
MacArthur’s heritage formulated in niche theory.
Using Lotka–Volterra equations for competitive
interactions, it is easy to show that the criteria for
stable coexistence depend on the ratio of carrying
capacities of the two species and the interaction
coefficients among them. Chesson’s interpretation
of coexistence mechanisms as equalizing and
stabilizing directly stems from this condition:
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equalizing mechanisms act to reduce the difference
in carrying capacities, while stabilizing mechanisms
act on the interaction coefficients. For instance,
non-linear population dynamics (e.g., a type-II
functional response) alter the long-term average
carrying capacities via Jensen’s inequality, which
is interpreted as an equalizing mechanism. Niche
differentiation on the other hand reduces the oppor-
tunities for species to compete for resources, and
thereby reduces the interaction coefficients among
them. There is no formal interpretation of these
for metacommunities, except by simulations (Rox-
burgh et al. 2004; Shoemaker and Melbourne 2016).

The previous analysis of equilibrium occupancy
with the single-species model was helpful to set-
up how different metacommunity settings do
affect fitness inequality. The equilibrium occupancy
is simply equal to p̂i = 1 − ei/ci for the simple
situation where the environment is uniform across
the landscape and dispersal is global. Inequality
in such a situation therefore only depends on the
intrinsic characteristics of the two species. Both
environmental variation and dispersal limitations
may, however, reduce the equilibrium occupancy,
especially when the response to the environment is
strong, environmental variation is large, and ci is
low (for a given p̂i). Therefore, species differences
in these characteristics may make coexistence
more difficult to obtain. (Mouquet and Loreau
2002) already provided a few hints about this
situation in their hypothesis of regional similarity,
where they conclude that coexistence may be
impeded at large dispersal if species are unequal
on average across the landscape. Quantification
of regional inequality between species is, however,
insufficient to conclude about coexistence as we also
need to consider the two interspecific interaction
coefficients. This is what we will perform in the
following analysis of a few cases. In particular,
we will look at the boundary conditions between
competitive exclusion, unstable coexistence, and
stable coexistence over the inequality-interaction
space.

Colonization competition (priority effects)

A situation that attracted significant attention of
early metacommunity research was the one of

colonization competition, also referred as migration
competition by Hanski (1983), where interspecific
interactions prevent the establishment of an invad-
ing species. It is common to refer at this type of
interaction as a priority effect (Fukami 2015), where
the resident species establishes and changes the
environment so that another species coming to that
locality cannot establish any further. In our model,
this corresponds to the situation where the estab-
lishment rate is lower in the presence of competitor
than in empty patches (i.e., si’ < si). Note that this
situation differs from the one where competition
reduces propagule production in patches where
species co-occur (i.e., bi’ < bi). In order to compare
with Chesson’s framework based on niche theory,
we consider a gradient of niche overlap σ ranging
between 0 (no overlap, perfect differentiation)
and 1 (perfect overlap) and that each species
establishment rate is reduced with increasing
overlap, such that si’ = siαi (1 − σ), where αi is
a positive constant indicating the sensitivity of
the species to competition. Note that si’ has to be
non-negative.

One of the main questions asked about coloniza-
tion competition was if it could prevent coexistence
and eventually lead to resistance (alternative stable
states). The invasibility conditions, specified by
inequality 12.30, simplifies considerably for colo-
nization competition. Invasibility of the resident
community res by an invading species inv is feasible
if the following inequality is satisfied:

p̂inv

p̂res
< αinvσ (12.31)

As one would guess, it is harder to find stable coex-
istence with both increasing niche overlap, up to
the point where the inferior competitor or the one
with the highest occupancy in absence of competi-
tion will exclude the other and regain in occupancy
(Figure 12.3). Competitive exclusion by the species
with the largest regional occupancy will occur if
interactions are strong enough. Hanski (1983) also
described a situation where priority effects may
prevent mutual invasibility and result in unstable
coexistence, i.e., a situation where the first species
to occupy the landscape resists invasion. This situa-
tion is not feasible with the previous definition of
competitive interactions, since it is impossible for
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Figure 12.3 Colonization competition. A) Regional fitness inequality interaction strength space delimiting where coexistence is feasible. Fitness
inequality is computed as the ratio of occupancies of each species in absence of competition. Competition is computed as a function of niche
overlap σ such that s′i = siαi (1 − σ), with symetric sensitivities to niche overal, αs1 = αs2. There is no colonization competition at σ = 0 and it
is impossible to colonize occupied patches because of strong priority effect at σ = 1. Other default parameters are all symetric except for
establishment that is varied to cover the range of occupancies, such that bi = b′

i = 1 and ei = e′
i = 1. B) The effect of competition colonization

on equilibrium occupancies and on co-occurrence. Here species are slightly unequal by specifying s1 = 5 and s2 = 4.5, other parameters being the
same as panel A. Spatial association is the difference between observed co- occurrence and expected co- occurrence under independent
distribution, ie p12 − ( p1 + p12) ( p2 + p12).

the two lines to cross on Figure 12.4 (because αinvσ

could not exceed 1 by definition).
It is interesting to investigate the amount of co-

occurrence observed, p12, relative to the expectation
if the two species were independently distributed
(i.e.,

(
p1 + p12

) (
p2 + p12

)
), because it may inform

on the signature of priority effects on the spatial
distribution. Diamond’s checkerboard hypothesis
(Diamond 1975) arises from the intuition that
negatively interacting species will avoid each other
in space, which should translate in an observed co-
occurrence that is much lower than the random dis-
tribution. Diamond’s intuition was right, as we see
that repulsion increases with interaction strength
(Figure 12.4B). That said, the magnitude of the effect
is very small relative to the drop in occupancy of
both species, in particular of the inferior competitor,
such that negative co-occurrence is very unlikely
to be detected.One special case of colonization
competition that attracted a lot of attention over
the years is the neutral model. Hubbell (2001) and
Bell (2000) models could be represented in our
model by setting all parameters equal and with

strong colonization competition. This situation
already attracted the attention of Slatkin (1974) and
Hanski (1983), who concluded that coexistence is
less and less likely with increasing competition.
The zero-sum dynamics represented in Hubbell
(2001) model is an extreme case where colonization
cannot happen in already occupied patches (si’ = 0).
In such a situation the stability of the system is null
and therefore make regional abundance subject to a
random walk to extinction caused by stochasticity
(May 1972; Gravel et al. 2011c). Note that drift
is not restricted to this very specific case, it will
increase in strength as species inequality reduces
and colonization competition increases.

Extinction competition (local exclusion)

Another means by which competitive interactions
may affect spatial dynamics is through a modi-
fication of the extinction rates. In a situation of
pure extinction competition, the two species may
colonize all patches, irrespective of their local
composition, but then the presence of a competitor
may increase the extinction rate, e′

i = ei + αiσ . This
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Figure 12.4 Extinction competition. Regional fitness inequality - interaction strength space delimiting where coexistence is feasible under
extinction competition. Fitness inequality is computed as the ratio of occupancies of each species in absence of competition. Competition is
assumed to be symetric and correspond to a scaling factor I such that e′

i = ei + αiσ , indicating there is instanteous extinction of the weaker
competitor at σ = 1. Other default parameters are all symetric except for establishment that is varied to cover the range of occupancies, such that
bi = b′

i = 1 and ei = e′
i = 1.

phenomenon can easily be explained by a reduction
in local population size following exploitative or
apparent competition, combined with a negative
relationship between extinction rate and population
size. While the invasion criteria differs significantly
from colonization competition, the interpretation
of the model is much the same (Figure 12.5).
Coexistence is possible if the difference in the
occupancies is not too large and competitive
interactions not too strong. (Hanski 1983) has
shown that priority effects and unstable coexistence
are also possible when occupancies are of similar
magnitude and interactions very strong, contrary to
the original conclusion of (Slatkin 1974).

Competition-colonization trade-off

It is quite challenging to combine both colo-
nization and extinction competition in a single
model, but an interesting situation that attracted
a lot of attention is one of a trade-off between
competitive ability and colonization. While much

credit for this analysis has been awarded to Hastings
(1980) and later to Tilman (1994), it is possible
to find mentions of it in Skellam (1951) and also
in Hanski (1983). Subsequent analyses are found
in Pacala and Rees (1998) and Calcagno et al.
(2006). The idea is fairly simple and is easily
transposed in the model. Basically, one species
(labeled species 1) is a strong competitor and
therefore could colonize both empty patches and the
ones already occupied by the other species, while it
is not affected by the presence of the other species.
This situation translates in s1 = s′

1 and e1 = e′
1. The

other species is a good colonizer of empty patches,
but cannot colonize occupied ones, neither defend
the ones it already occupies. In such a situation,
s2 > s1 but s′

2 = 0, e2 < e1 and e′
2 → ∞. Coexistence

is feasible with this parameterization if the
inequality,

s2

s1
>

p̂1

1 − p̂1
+ e2

e1
(12.32)
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Figure 12.5 Coexistence under the competition-colonization trade-off.

is satisfied. This inequality shows that coexistence
is promoted by increasing difference in occupancies
between competitors.

What has never been done, however, is its formal
interpretation in Chesson’s space of fitness inequal-
ity and interaction strength, and in particular
with less stringent assumption about competitive
hierarchies. The aprevious inequality assumes
implicitly that competition is unidirectional (against
species 2 only) and infinite (the weaker com-
petitor goes extinct instantaneously). Shoemaker
and Melbourne (2016) attempted to partition
equalizing and stabilizing mechanisms using a
combination of stochastic simulations and time
series analysis, but the model they used differs
significantly from the Tilman–Hastings framework
and therefore a formal decomposition of coexistence
mechanisms has never been performed. It is
nonetheless possible to perform this analysis using
a graphical representation of Hanski’s analysis (see
Figure 12.6 and inequality 12.30). Interestingly,
the model formulation allows us to relax some
of the most contested assumptions in the Tilman–
Hastings model, namely the perfect pre-emption
by the strong competitor and the instantaneous

extinction of the weak competitor. While a satisfying
first approximation to a trade-off that is commonly
observed in nature, these assumptions prevent a
more continuous analysis of the effect of interaction
strength on coexistence.

The competition-colonization trade-off is a
regional coexistence mechanism based on both
fitness inequality and species differentiation. As
one would guess from inequality (12.30), traits
(e.g., energetic investment in seed production)
and spatial conditions (e.g., connectivity of the
landscape) leading to a strong inequality in
occupancies, in favour of the weaker competitor,
will promote coexistence. This interpretation
contrasts with the general view that stabilizing
processes are necessary to promote coexistence
and equalizing mechanisms not sufficient. We find
that the stronger the niche overlap, the larger the
required amount of inequality between species
to allow coexistence of the weaker competitor
(species 2). In addition, traditional niche differ-
entiation mechanisms reducing the strength of
interspecific interactions also promote coexistence.
Relaxing the assumption of perfect pre-emption
by the stronger competitor and instantaneous
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Figure 12.6 Moments for competitive metacommunities. Each dot represents a metacommunity and its size is proportional to the average
correlations among the three moments. Species 1 is the strongest regional competitor (because of a higher occupancy). Parameters are:
fi = f ′i = 1, s1 = 5, s2 = 5, s′i = si ∗ (1 − I), e1 = e′

1 = 1 + d and e2 = e′
2 = 1 − d, and I = 0.85.

extinction of the weaker competitor both reduce the
inequality in occupancies required to promote
coexistence. Fitness inequality alone can promote
coexistence because there always exists a critical
value of s2 that would allow both species to invade
each other, regardless of extinction coefficients (even
when e′

1 = 0 and e′
1 = ∞, in other words when there

is immediate extinction of the weak competitor), as
long as p̂1 < 1 (Hanski 1983).

Species sorting

Analytical results showing how species sorting may
contribute to coexistence with the previous model
are impossible to derive, but the few basic princi-
ples responsible for the species sorting are easy to
understand from the previous findings. Let consider
the situation where two competitors have differ-
ent performances throughout the landscape, either
because they respond to different environmental
variables or because they differ in their response to
a single variable. First, we have previouslly shown
for the single species analysis that spatial variation

in the colonization-extinction ratio for each species
will decrease their occupancy. This effect of spa-
tial heterogeneity will be further magnified by dis-
persal limitation and together they may influence
regional inequality. Spatial variation of the envi-
ronment alone may not have an impact on coex-
istence if it affects occupancies similarly because
the inequality will stay unchanged, but it may pro-
mote it if it harms more a specialist competitor
(which will experience larger spatial variance) than
a generalist but weaker competitor. Differences in
niche breadth will move away the species pair from
the fitness equality line in the coexistence plane. In
addition, spatial heterogeneity will reduce oppor-
tunities for interactions. Co-occurrence (p12) will be
reduced because of spatial sorting and so will the
effective importance of exclusion competition. Fur-
ther, a negative correlation between patches occu-
pied by a species and the colonization rate of the
other species (cor(pi, sj)) will further reduce oppor-
tunities for co-occurrence and therefore competitive
exclusion. Overall, conditions for coexistence will
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be made easier with a move toward the left and the
center in the inequality/interaction space.

12.4.4 Food webs

The persistence of spatial food webs can also be
investigated using the same model. Driven by a
simple set of principles, established first by Holt
(1996) and Holt (2005) and later generalized by
(Calcagno et al. 2011), Gravel et al. (2011b), and
Massol et al. (2017). The basic model considers a
sequential assembly of a linear food chain made
of specialized species, with the bottom-level prey
establishing first, followed by a predator and
eventually by a top predator. The entire food chain
may collapse with the extinction of a low-level
species. In the most extreme situation, the predator
(labeled species 2) cannot colonize a patch where
the prey (labeled species 1) is absent and it goes
automatically extinct with the extinction of the prey.
These assumptions translate into the model with
s2 = 0 and e2 = ∞, but they could be relaxed if one
considers that the predator may forage and stay for
a short amount of time in unoccupied locations. The
spatial dynamics are bottom-up driven in the most
simple formulations and therefore s1 = s′

1.
The criterion for the persistence of the prey is

the same as an independent metapopulation in the
situation where the predator does not harm the
dynamics of the prey, i.e., s1 − e1 > 0. The predator
will invade if the following inequality is satisfied:

c2p1 > e2 (12.33)

which indicates that it will persist only if the prey
occupancy is large enough relative to the predator
extinction rate. The equilibrium occupancy of
specialized predators (p2 = p1−e2/c2) will always be
lower than the one of their prey, which eventually
will put a limit on the number of trophic levels that
can be observed in a region, unless the colonization-
extinction ratio scales with trophic level—Holt
(2005). A consequence of these assumptions is
that the predator will always co-occur with
the prey, but the opposite will not always be true.
Interestingly, the invasion criteria will remain the
same in presence of top-down regulation, where
the presence of the predator increases the extinction
of the prey (e′

1 > e1). Occupancies of both the

prey and the predator will, however, be reduced
with top-down regulation, and while the predator
distribution will remain nested within the one
of the prey, the distribution of the prey will be
more negatively associated with the one of the
predator.

While much of the focus in this section is about
two-species mutual invasibility, it is relevant to note
a few general results that have been derived for
more diverse communities. Persistence of a preda-
tor will increase with the generality of its diet, as it is
easier to find prey in empty patches and for interac-
tions to rewire following species extinctions (Gravel
et al. 2011b). Further, the topology of the regional
food web is also affecting the occupancy of the
different species because of high order interactions.
A predator specializing on a prey with a large occu-
pancy is more likely to persist than a predator select-
ing a prey with smaller occupancy (Massol et al.
2017). The co-distribution of multiple prey species
is also influencing the occupancy of the predator as
it affects the total fraction of the landscape that is
suitable for colonization (Gravel et al. 2011a). Nega-
tive association between prey will increase the per-
sistence of the top predator because of a larger total
amount of suitable patches, while positive asso-
ciation will reduce it. On the other hand, in the
presence of top-down regulation (a positive effect
of the predator on the prey extinction rate), apparent
competition may appear at the regional level, reduc-
ing total prey occupancy and generating negative
association between between them (Holt 2005). The
effect of spatial variation in the environment on
food web assembly has yet to be studied, but one
could easily predict that a positive covariance in the
response to the environment between the predator
and the prey (i.e., species share the same abiotic
niche) will promote the persistence of the predator
(Cazelles et al. 2016). More discussion about the
impact of spatial dynamics on food web structure
and stability is provided as a perspective at the end
of the chapter.

12.4.5 Mutualism

The assembly of mutualistic communities follows
essentially the same principles as bottom-up
predator-prey dynamics (Fortuna and Bascompte
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2006; Astegiano et al. 2015), with the distinction
that interactions may be mutually beneficial
(versus unidirectional for predator-prey) and
that mutualists are often facultative. A plant, for
instance, will have a much larger colonization rate
and potentially a smaller extinction rate in the
presence of its mutualist. A specialized pollinator
may, however, go extinct from a region if its partner
is not abundant enough. In the case of a chain of
interactions, it may be expected to see amplification
of occupancies, rather than an inefficiency such as
the one observed for predators.

12.5 Moments of metacommunities

We now turn to numeric simulations to investigate
potential interactions among the different assembly
mechanisms that were previously discussed. Sim-
ulations also facilitate the investigation of the three
moments of metacommunities. The simulation
model applies to a large number of patches the
two-species model described previously, with the
addition of spatial variation in the environment
and spatially explicit dispersal. We summarize the
spatial structure of metacommunities by looking
at three measures of correlation investigated
previously: i) Environmental correlation reports
the spatial association between the occurrence of
each species and the environment. Here, because
we solve the model for equilibrium occupancies,
we compute it as the Pearson correlation between
the environment at each patch, Ex, and the
expected occupancy, Pix = pix + pijx. ii) Spatial
correlation reports the first order spatial auto-
correlation between patches. It is computed as
the Pearson correlation between occupancies of
nearest neighbour patches. iii) Species correlation
reports the amount of spatial association between
species relative to an independent distribution. It is
computed as the scaled difference between expected
co-occupancy and the independent expectation,(
p12 − P1P2

)
/P1P2, across all patches. Note that

these representations, based on correlations, do not
account for shared responses; more sophisticated
techniques may solve for partial correlations and
allow a complete partitioning of the variation
(Ovaskainen et al. 2017; Leibold et al., in review).
Here we focus on the correlations to be coherent
with previous analytical derivations.

We expect to see situations where synergies
among mechanisms could magnify the importance
of a given moment, or alternatively antagonism
among them may occur. For instance, competitive
interactions may force species to occur at loca-
tions that are most favourable to them, thereby
increasing the environmental correlation. On the
other hand, predator-prey interactions may reduce
environmental correlation and increase species
correlation when the two species share different
environmental requirements. We also expect
these interactions to be dependent on the spatial
contingencies, such as the amount of variance and
spatial autocorrelation in the environment and the
structure of the connectivity matrix. It was shown
for instance that the strength of species sorting
in competitive metacommunities may be affected
by the landscape structure since short boundaries
between environmental types may induce a mass
effect as well as dispersal limitations (Ai et al. 2013;
Fournier et al. 2017).

We conducted spatially explicit numerical simu-
lations of the model represented in Figure 12.2. We
considered a landscape made of n = 25 patches.
The landscape is simulated as a random geometric
graph by distributing patches randomly in a square
plane and connections made between the ones dis-
tant by less than a threshold value r. For each patch
x we consider a local environmental condition Ex

that has an average of 0 and a random deviate dx.
For simplicity, and to respect the previous analytical
derivations, we consider there are only two types
of patches (favorable and unfavorable), and that
the local environment only influences equally the
extinction parameters ei and ei’. We solve the model
numerically for equibrium occupancies for all four
types and each patch.

12.5.1 Competition

We simulated four scenarios to illustrate interac-
tions among dispersal limitation, environmental
heterogeneity and competitive interactions (here
limited to colonization competition, but the same
results would hold under extinction competition).
The basic simulation starts with two independent
metapopulations with distinct connectivity land-
scapes and no underlying environmental variation



OUP CORRECTED PROOF – FINAL, 8/4/2020, SPi

212 T H E O R E T I C A L E C O L O G Y

Environmental
correlation

Spatial 
correlation

Species
correlation

0.
2

0.8

0.2

0.
4

0.6

0.4

0.
6

0.4

0.6

0.
8

0.2

0.8

Independent
metapopulations

+ bottom-up

+ top-down

Figure 12.7 Moments for predator-prey interactions. Each dot represents a metacommunity and its size is proportional to the average
correlations among the three moments. Species 1 is the predator and species 2 is the prey. The environment is spatially uniform. Parameters are:
fi = f ′i = 1, s1 = 0, s2 = 4, s′1 = 0, s′2 = 4, e1 = 1000, e′

1 = 5, e2 = 1, e′
2 = 1 for the bottom-up simulation and e′

2 = e2 = 1/ (1 − I) for
the top-down situation, where I = 0.7

(Figure 12.7). The position of the metacommunity
tends to be toward the bottom right of the triangle,
dominated by spatial autocorrelation. The exact
position of the metacommunity may vary with
parameterization and the spatial structure of the
landscape, but essentially the only significant
correlation is spatial. Some spurious correlation
with the environment and between species may,
however, happen by chance alone, see Bell (2005),
but it will tend to vanish with an increasing number
of patches, while it will increase with the amount
of spatial autocorrelation in the environment.
Not surprisingly, adding variation in the environ-
ment moves the location of the metacommunity
toward the left of the triangle (species sorting).
Alternatively, adding competitive interactions
moves the location of the metacommunity toward
the top of the triangle, with increasing species
correlation. As it would be expected, combining
environmental heterogeneity and competition
moves the metacommunity toward a more central
position; interestingly, the correlations are also

stronger, indicating that both species sorting
and negative spatial association get stronger
when acting together. Stochastic simulations of
a similar model also suggest that some minimal
amount of species sorting is required to obtain
species correlation because otherwise, competitive
exclusion drives spatial distribution and blur any
spatial correlation (Leibold and Chase 2018).

12.5.2 Predator-prey interactions

The previous section on coexistence has shown
that species correlation may be stronger in the
situation of predator-prey interactions because
the distribution of specialized predators is nested
within the one of their prey. We start again with
the same simulation as previously made of two
independent metapopulations over a spatially
uniform environment. The dependence of the
predator on the presence of the prey strongly
increases the species correlation. Interestingly, the
situation also prevails even if the interaction is
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strongly asymmetric with top-down regulation:
the predator and the prey maintain a positive
spatial association, despite the negative effect of
the predator on the prey. The distribution of the
predator is, however, completely nested within
the one of the prey (i.e., y1 = p12 and p1 = 0),
while the prey is much more often alone than
with the predator. This distinction is important
for co-occurrence analysis and we underline that
asymmetric indices are much more appropriate to
investigate assembly processes and their ensuing
patterns (Cazelles et al. 2015).

12.6 Discussion

Our objective in this chapter was to propose a
single model unifying different theories of meta-
community assembly, from competitive interactions
to food webs. The model we presented is a re-
interpretation of the one analyzed by Hanski (1983)
in his investigation of coexistence in competitive
metacommunities, following the earlier work of
Cohen (1970), Levins and Culver (1971), and Slatkin
(1974). Previous metacommunity theory was based
on a wide range of modelling approaches, such as
spatialized Lotka–Volterra equations, e.g., Takeuchi
(1989); Neuhauser and Pacala (1999), multi-species
Levins models, e.g., Hastings (1980); Tilman (1994);
Mouquet and Loreau (2002); Holt (2005); Gravel
et al. (2011a), individual based models, e.g., Bell
(2000); Chave et al. (2002), Markov-chain island-
mainland models (Hubbell 2001), point-pattern
analysis (Bolker and Pacala 1997), and moment
approximations (Chesson, 2000a; Snyder and
Chesson 2004). Leibold et al. (2004) proposed a
unification of different theories for competitive
metacommunities with the definition of four
paradigms: neutral, species-sorting, mass effect, and
competition-colonization trade-off. The proposition
was based on a synthesis of the different theories at
that time and free of any modelling approach. This
contribution was fundamental to the advancement
of the field but now we see the limitations of a verbal
theory arising. These include the appreciation that
the four paradigms are extreme cases of a more
continuous reality (Logue et al. 2011); mechanisms
are not exclusive, they can be additive or they could
interact (Leibold and Chase 2018); contingencies

such as landscape structure, disturbances, or envi-
ronmental variation may affect which mechanism
dominates community assembly (Ai et al. 2013);
species not only interact by competition, they
are embedded in a more diversified network of
ecological interactions (Cazelles 2016); species
are not all equal, and their distributions may be
influenced by different processes (Fournier et al.
2017); metacommunity theory needs to provide
a wider range of predictions than the traditional
opposition between spatial autocorrelation and
species-environnement correlation (Leibold et al.,
in review). Hopefully, the model we presented here
will prove general enough to solve at least part of
these problems, and be used as a foundation for a
new phase of metacommunity research.

A single mathematical formalism allows us
to underline the key parameters to investigate,
in theory but also in the field. We placed our
analysis of coexistence in a fitness inequality and
niche overlap space in order to compare regional
versus local coexistence mechanisms. We quantified
fitness inequality as the ratio of metapopulation
carrying capacities (the equilibrium single species
occupancy). Equilibrium occupancy is a function
of the ratio of extinction to colonization rates in
spatially homogeneous environments and we have
shown how it is reduced by both spatial variation
of the environment and spatially explicit limited
dispersal. This quantity proves to be essential to
understand coexistence of competitors in a spatially
heterogeneous environment, but also bottom-
up assembly of food chains. As an extension of
the definition for local dynamics, we also define
interactions at the regional level as the per patch
impact of a species on the colonization and the
extinction rates. Indeed, niche overlap reduces local
per capita growth rate, a process scaling up at
the regional level by its effect on the colonization
rate. Similarly, niche overlap reduces equilibrium
population size and eventually promotes extinction.

We also proposed a set of three emerging
properties to characterize the structure of meta-
communities. More specifically, we looked at three
moments of the mutlivariate species distribution:
i) first-order spatial autocorrelation is a measure
of the similarity in species composition among
adjacent localities and is mostly driven by the
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joint effects of disturbances (extinctions) and
dispersal limitations; ii) environment-occurrence
correlation is a measure of the association between
species distribution and the abiotic environment
resulting from variation in fitness; iii) species
co-distribution is a measure of the spatial asso-
ciation between species and results from various
causes, including biotic interactions, shared envi-
ronmental requirements, and dispersal limitations.
Gilbert and Lechowicz (2004) and Cottenie (2005)
were the first to describe metacommunity structure
with spatial autocorrelation and environment-
occurrence correlation. More recently, the develop-
ment of joint species distribution models (Pollock
et al. 2014; Warton 2015) facilited the analysis of co-
distribution and opened new ways to investigate
metacommunity dynamics (Zurell et al. 2018). The
analysis of co-distribution has a long and rich
history in community ecology but was mostly
ignored from metacommunity research, but see
Bell (2005). Biotic interactions are included in all of
the four paradigms of metacommunity dynamics
of Leibold et al. (2004), but surprisingly they
are not the object of predictions to discriminate
them. Various forms of competitive interactions
should leave an imprint on species distribution,
beyond the checkerboard distribution proposed by
Diamond (1975).

Our analysis was not meant to be extensive
and future work is, however, needed to identify
the circumstances leading to a distinctive co-
distribution. We have shown, for instance, that
symmetric competition hardly leads to negative
spatial association between species, in opposition
to Diamond (1975) hypothesis. The onset of
competitive exclusion occurs much before negative
correlation can be detected from empirical data. We
found negative association between competitively
interacting species, but measuring this signal
in noisy empirical data may require sampling
effort much beyond what is typically accessible.
Joint species distribution models are powerful
tools to quantify co-distribution but they are
also limited to the special case of symmetric
associations. Asymmetric interactions, in particular
antagonistic ones, are impossible to document using
covariance or joint probabilities. Rather, conditional
probabilities may prove to be more flexible

(and realistic) to describe associations (Cazelles
et al. 2015). Shared environmental requirements,
indirect interactions, and diffuse interactions
are all conditions that are susceptible to mask
spatial associations, or alternatively to generate
false signal. Investigation of co-distribution in
metacommunities should, therefore, be the main
object of future metacommunity theory.

Not only does the model we proposed allow
development of theory, it could be tested explicitly
with measurements of transitions between the
different species composition. This analysis was
done recently in an investigation of range shifts
of temperate forests in North Eastern America
(Vissault et al. in review). Forest inventory data
was used to document transitions from presence
to absence (extinction) and absence to presence
(colonization). The model was parameterized
across North America and all transitions were
conditioned on annual average temperature and
precipitations. All of the previous coefficients of
species interactions were successfully evaluated,
and solving the model made it possible to investi-
gate conditions where competitive interactions limit
species range. The model was fitted from dynamical
data (transitions) and solved at equilibrium to
successfully predict static distribution (current
ranges) of both temperate and boreal tree forest.
The model was then used to show that stability is
the highest in the middle zone, where temperate
tree species coexist with boreal ones, and minimal
at range limits where interactions are driving one
species to the extinction. Trees make a good case for
testing such a theory because their spatial dynamics
are often driven by disturbances (e.g., canopy gaps,
fires) and succession, and because they are also
strongly dispersal limited (Hubbell et al. 1999).

12.6.1 Extension to multi-species communities

We focused on pairwise interactions in this chapter
but the model we proposed is easy to scale up
to entire communities embedded in a diverse
network of interactions. The key problem is to
represent how interactions add up and influence
species dynamics. Tradition in local community
ecology is to consider that multiple interactions are
additive. In Lotka–Volterra equations, for instance,
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interactions are summed over the community and a
given species has the same effect whether it is
alone or in an entire community. If interactions are
additive, then it is possible to approximate the total
effect of interactions with knowledge of average
interaction strength and the covariance between
interaction strength and occupancy (Godsoe et al.
2017). Multiple interactions are also additive in
consumer resource models (Brose et al. 2006),
although they may influence rate of consumption
for Type II and Type III functional response and
generate non-lineariteis. Cazelles et al. (2016)
rather introduced the idea that the effect of other
species saturates with increasing diversity in a
model of spatial dynamics similar to the one
considered here, with the first interaction being
the most significant and the subsequent weaker.
At the end of the spectrum, (Gravel et al. 2011c)
proposed that only the first interaction matter for
spatial dynamics, allowing the colonization and the
persistence of a consumer if at least one prey is
present.

Multi-species analyses have shown that a
network approach may be the way to reduce the
complexity of spatial community dynamics. With
the assumption that a predator requires at least one
prey to colonize an area and to persist, one can easily
derive the expectation for occupancy as a function
of the generality of the diet (Gravel et al. 2011c). As a
consequence, generalists are expected to be the first
to colonize a new location, documented empirically
by Piechnik et al. (2008) and to persist. This per
species effect scales up and influences how local
network properties and body size distribution are
affected by area and isolation (Jacquet et al. 2017).
Another important aspect to consider in multi-
species communities is the effect of higher-order
interactions. A species at the top of the food chain
not only needs to find its prey, it will be limited by
the distribution of the the prey of its prey; as a result,
extinction cascades can occur and influence regional
food web dynamics (Holt et al. 1999; Calcagno
et al. 2011; Massol et al. 2017). Such a theory has
not been explored for competitive interactions, but
some principles will nonetheless apply. Generality
of a species will influence its persistence in
competitive metacommunities, although a reversal
should be expected, with the least connected

species being more persistent and the first to
colonize empty locations. Further, higher order
interactions may also be important for occupancy
because of the “enemy-of-my-enemy-is-my-friend”
principle.

A set of simple rules also explains how co-
distribution scales from a few species to entire
networks (Cazelles et al. 2015): i) spatial associations
may arise from indirect interactions; ii) associations
do not have to be symmetrical; iii) multiple
interactions decrease the strength of pairwise
associations. Putting these rules together, it was
predicted that pairwise associations should tend
toward randomness with increasing degree and
topological distance between species. As a conse-
quence, species are expected to be independently
distributed in species-rich communities. In such
a situation, we should expect to find stronger
environment-occurrence correlation as well as
spatial autocorrelation.

12.6.2 From coexistence to dynamical stability

While species coexistence is a central question of
community ecology, another closely connected topic
is the issue of community stability. Stability has
been defined in a variety of ways, reviewed e.g.,
by Donohue et al. (2013), and theoretically explored
by (Arnoldi et al. 2016), but the central tenet of a
stable (meta)community remains the same across
definitions: rapidly returning to equilibrium after a
perturbation. Coexistence and stability are linked in
multiple ways, e.g., since coexistence of species at
an equilibrium means that this equilibrium is stable
(but all coexistence situations are not at equilib-
rium), and because coexistence can also be recast as
mutual invasibility of all communities lacking one
species, which amounts to looking for n communi-
ties of n−1 species that are unstable to invasions by
the nth species.

The question of ecosystem stability is an old-time
classic in ecology, dating back at least to (MacArthur
1955). In a provocative paper, (May 1972) challenged
the view that species diversity and ecological
network complexity contribute positively to
ecosystem stability by providing a null model for
community stability. He proposed to use random
Jacobian matrices to assess whether a randomly
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assembled set of S species, interacting with
connectance c and with Jacobian elements of mean 0
and variance σ 2, could represent a stable ecosystem.
The answer was that such a system imposes a
strong constraint on all of these factors (May 1972;
Allesina and Tang 2012), i.e., σ

√
Sc < m where m

is the value of diagonal elements of the Jacobian
matrix (feedbacks of species upon themselves).
(Allesina and Tang 2012) further elaborated on this
theory by providing sophistications of the model,
taking into account the proportions of predator-
prey mutualistic and competitive interactions, and
making a distinction between asymptotic stability
and reactivity (Tang and Allesina 2014).

In the same vein, Gravel et al. (2016) explored
the question of meta-ecosystem stability using the
same framework as the one initially envisaged
by May (1972), see also (Coyte et al. 2015 and
(Mougi and Konodh 2016). By decomposing links
between populations as interactions and dispersal
rates, Gravel et al. (2016) evinced a major stabi-
lizing factor arising from spatial structure when
dispersal is sufficiently high and patches behave
heterogeneously. In this context, dispersal mixes
heterogeneous random Jacobian elements together,
and these random variables are thus averaged
over space, with a sample variance decreasing
with sample size (i.e., the number of patches
averaged over). With a reduced variance of the
average ecosystem, stability is enhanced—in May
(1972), the σ that appears in the stability criterion
is divided by the number of patches that are
being averaged. More generally, even when patch-
specific Jacobian elements cannot be considered
independent random variables, the σ is still divided
by the effective number of independent patches in
the meta-ecosystem, this quantity being defined
through the number of patches and the correlation
of their Jacobians. By simulating spatially structured
Lotka–Volterra competitive systems, Gravel et al.
(2016) were finally able to show that the result
obtained through random matrix modelling also
held in random dynamical systems, provided
dispersal is not too high—at very high dispersal,
patches tend to synchronize and thus, the effective
number of independent patches decreases with
dispersal.

In the case of the multi-species version of Levins’
metapopulation model, stability can be assessed

using the same kind of theory. Providing general
stability assessment of such models is beyond the
scope of this chapter, but we can provide a simple
example based on the competitive metacommunity
framework used by Calcagno et al. (2006). In this
model, each patch can only be occupied by a single
species, and occupancy of species i, pi, is governed
by its colonization rate, ci, the general extinction
rate, e, and all the probabilities of successful
replacement of species l by species k, ηkl:

dpi

dt
= ci

⎛
⎝h −

∑
j

pj

⎞
⎠ pi − epi +

∑
j

(
ciηij − cjηji

)
pipj

(12.34)

If all species are assumed to be present (i.e., non-
extinct at the metacommunity scale), the compu-
tation of the Jacobian matrix elements Jij is highly
simplified:

Jij = −cip∗
i + (ciηij − cjηji

)
p∗

i (12.35)

where p∗
i denotes equilibrium occupancies. Fol-

lowing (Tang and Allesina 2014), asymptotic
stability of this system, if its Jacobian elements were
random, could be obtained by looking at the leading
eigenvalue of the Jacobian matrix, as the maximum
of (S − 1) E − d and (1 + ρ)

√
SV − E − d, where E

is the mean of non-diagonal Jacobian elements, −d
is the mean of diagonal Jacobian elements, V is the
variance of non-diagonal Jacobian elements, and ρ

is the correlation between Jacobian elements across
the diagonal. Since E < 0 and d > 0 in this system,
the leading eigenvalue of a random Jacobian
would thus be (1 + ρ)

√
SV − E − d. However,

for the system to be stable, this would mean that
−E − d should at least be negative (otherwise,
there is no way the leading eigenvalue could have
negative real parts). Using the symmetry of the
ciηij terms in the Jacobian and the equilibrium
conditions given by setting the right-hand side
of Equation 20.34 equal to zero with all pi > 0,
it can be shown that −E − d tends towards
< ci >< pi > , i.e., the product of the average
colonization rate over all species by the average
occupancy of a species, when the number of species
goes to infinity. Since this product cannot become
negative, this demonstrates that the multi-species
competition-colonization version of the Levins
cannot be stable by chance alone, and thus a strong
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constraint on its parameters is needed for the
system to be stable, probably inherited from the
constraints on parameters needed for the system to
be feasible in the first place. Since the system can
also be compared to a competitive Lotka–Volterra
multi-species one, this result agrees with other
recent theoretical approaches aimed at uncovering
conditions for the feasibility of large ecological
systems (Bastolla et al. 2005; Dougoud et al. 2018;
Stone 2018).

The Levins approach to spatial dynamics assumes
a disconnection between local and regional time
scales. Interestingly, it allows major disturbances to
occur locally, leading to one or several extinctions
from a patch. Extensions of the Levins model also
have the property of very strong elements along
the diagonal of the Jacobian, since all species are
subject to a very fundamental constraint: they
cannot occupy more than the entire landscape.
Overshooting is impossible by construction of the
model and the nature of spatial dynamics, and
therefore it tends to strongly stabilize dynamics.
It does not mean, however, that interactions or
the spatial arrangement of patches cannot affect
stability. Grilli et al. (2015) has investigated, for
instance, the impact of spatial network topology
on the stability of metapopulations and found
that a random arrangement of patches is more
stable and persistent than a regular one. The next
step would be to develop a formalism to build
Jacobian matrices embedding both the network
of interactions and the connectivity matrix. It is
unclear for now if May’s prediction will hold
in a spatialized context with patch dynamics.
Since spatial dynamics have often found to be
stabilizing, see review in Amarasekare (2008),
it may be expected to see a reversal of the
stability-diversity relationship. (Gravel et al.,
2011a), for instance, found with simulations that
more diverse and connected food webs are more
persistent than simpler ones, in opposition to May’s
proposition.

12.7 Conclusion

Metacommunity theory has matured and is ready
to undertake a new phase in its development. In
conclusion, we propose the following three topics at

the center of a new research program on community
assembly in spatially structured environments.

1. Co-distribution: where and when? New
methods are proposed to document biotic inter-
actions from co-distribution, e.g., Pollock et al.
(2014); Ovaskainen et al. (2017); Harris (2016)
but they suffer from inappropriate integration
with metacommunity theory (Zurell et al. 2018).
Conditions leading to a distinctive signature
of interactions on co-distribution need to be
established formally.

2. Diversity-stability in metacommunities.
Studies are suggesting that the negative diversity-
stability relationship proposed by May (1972) may
not apply in metacommunities subject to patch
dynamics, such as documented in this chapter.
Attention should be given to derive Jacobian
matrices from patch dynamics and investigate
to what extent food web assembly may stabilize
dynamics and solve the stability paradox.

3. Empirical investigation of metacommunity
models. The model we proposed is simple enough
to be parameterized directly from field data,
as exemplified by Vissault et al. (in review).
Parameterization of the mdoel and test of its
quantitative predictions is required to determine
if the proposition is an appropriate representation
of spatial dynamics and build further on it. In
particular, food web models and the assumption
of a sequential community assembly need to be
explored.
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Astegiano, J., Guimarães, P. R., Cheptou, P. O., Vidal, M.
M., Mandai, C. Y., Ashworth, L., and Massol, F. (2015).
Persistence of plants and pollinators in the face of habitat
loss: Insights from trait-based metacommunity models.
Advances in Ecological Research 53: 201–57, G. Woodward
and D. A. Bohan (eds.), Ch. 5, pp. 201–57. Cambridge,
Massachusetts: Academic Press.

Barot, S. and Gignoux, J. (2004). Mechanisms promoting
plant coexistence: Can all the proposed processes be
reconciled? Oikos 106: 185–92.

Bastolla, U., Lässig, M., Manrubia, S. C., and Valleriani, A.
(2005). Biodiversity in model ecosystems, I: Coexistence
conditions for competing species. Journal of Theoretical
Biology 235: 521–30.

Bell, G. (2000). The distribution of abundance in neutral
communities. The American Naturalist 155: 606–17.

Bell, G. (2005) The co-distribution of species in relation
to the neutral theory of community ecology. Ecology 86:
1757–70.

Bolker, B. and Pacala, S. W. (1997). Using moment equa-
tions to understand stochastically driven spatial pattern
formation in ecological systems. Theoretical Population
Biology 52: 179–97.

Britton, N. (2013) Destruction and diversity: Effects of
habitat loss on ecological communities. In M. Lewis, P.
Maini, and S. V. Petrovskii (eds.), Dispersal, Individual
Movement and Spatial Ecology. Berlin: Springer-Verlag,
pp. 307–31.

Brose, U., Williams, R. J., and Martinez, N. D. (2006).
Allometric scaling enhances stability in complex food
webs. Ecology Letters 9: 1228–36.

Calcagno, V., Massol, F., Mouquet, N., Jarne, P., and David,
P. (2011). Constraints on food chain length arising from
regional metacommunity dynamics. Proceedings. Biolog-
ical sciences/The Royal Society 278: 3042–9.

Calcagno, V., Mouquet, N., Jarne, P., and David, P. (2006).
Coexistence in a metacommunity: The competition-
colonization trade-off is not dead. Ecology Letters 9:
897–907.

Cazelles, K., Araújo, M. B., Mouquet, N., and Gravel, D.
(2016). A theory for species cooccurrence in interaction
networks. Theoretical Ecology 9: 39–48.

Cazelles, K., Mouquet, N., Mouillot, D., and Gravel, D.
(2015). On the integration of biotic interaction and envi-
ronmental constraints at the biogeographical scale. Ecog-
raphy 39: 921–31.

Chave, J., Muller-Landau, H. C., and Levin, S. A. (2002).
Comparing classical community models: Theoretical
consequences for patterns of diversity. The American
Naturalist 159: 1–23.

Chesson, P. (1994). Multispecies competition in vari-
able environments. Theoretical Population Biology 45:
227–76.

Chesson, P. (2000a). General theory of competitive coexis-
tence in spatially-varying environments. Theoretical Pop-
ulation Biology 58: 211–37.

Chesson, P. (2000b). Mechanisms of maintenance of species
diversity. Annual review of Ecology and Systematics 31:
343–66.

Cohen, J. E. (1970). A Markov contingency table model
for replicated Lotka–Volterra systems near equilibrium.
American Naturalist 104: 547–59.

Cottenie, K. (2005). Integrating environmental and spatial
processes in ecological community dynamics. Ecology
Letters 8: 1175–82.

Christiansen, F. B. and Fenchel, T. M. (1977). Theories of
populations in biological communities. In Fenchel, Tom,
Springer Science & Business Media. Berlin, New York:
Springer-Verlag.

Coyte, K. Z., Schluter, J., and Foster, K. R. (2015), The
ecology of the microbiome: Networks, competition, and
stability. Science, 350: 663–6.

Diamond, J. (1975). Assembly of species communities. In
M. Cody and J. Diamond (eds.), Ecology and Evolution of
Communities. Cambridge: Harvard University Press, pp.
342–444.

Donohue, I., Petchey, O., Montoya, J., Jackson, A., McNally,
L., Viana, M., Healy, K., Lurgi, M., O’Connor, N., and
Emmerson, M. (2013). On the dimensionality of ecolog-
ical stability. Ecology Letters 16: 421–9.

Dougoud, M., Vinckenbosch, L., Rohr, R. P., Bersier, L.
F., and Mazza, C. (2018). The feasibility of equilibria
in large ecosystems: A primary but neglected concept
in the complexity-stability debate. PLOS Computational
Biology 14: 1–18.

Eriksson, A., Elias-Wolff, F., and Mehlig, B. (2013).
Metapopulation dynamics on the brink of extinction.
Theoretical Population Biology 83: 101–122.

Fortuna, M. and Bascompte, J. (2006). Habitat loss and the
structure of plant-animal mutualistic networks. Ecology
Letters 9: 278–83.

Fournier, B., Mouquet, N., Leibold, M. A., and Gravel, D.
(2017). An integrative framework of coexistence mech-
anisms in competitive metacommunities. Ecography 40:
630–41.

Fukami, T. (2015). Historical contingency in community
assembly: Integrating niches, species pools, and priority
effects. Annual Review of Ecology, Evolution, and Systemat-
ics 46: 1–23.

Gilbert, B. and Lechowicz, M. J. (2004). Neutrality, niches,
and dispersal in a temperate forest understory. Proceed-
ings of the National Academy of Sciences of the United States
of America 101: 7651–6.

Godsoe, W., Jankowski, J., Holt, R. D., and Gravel, D.
(2017). Integrating biogeography with contemporary
niche theory. Trends in Ecology and Evolution 32: 488–99.



OUP CORRECTED PROOF – FINAL, 8/4/2020, SPi

TO W A R D A G E N E R A L T H E O RY O F M E TA C O M M U N I T Y E C O L O G Y 219

Gounand, I., Harvey, E., Little, C. J., and Altermatt, F.
(2018). Meta-ecosystems 2.0: Rooting the theory into the
field. Trends in Ecology and Evolution 33: 33–46.

Gravel, D., Albouy, C., and Thuiller, W. (2016). The mean-
ing of functional trait composition of food webs for
ecosystem functioning. Philosophical Transactions of the
Royal Society of London B: Biological Sciences 371(1694),
DOI: 10.1098/rstb.2015.0268.

Gravel, D., Beaudet, M., and Messier, C. (2010a). Large-
scale synchrony of gap dynamics and the distribution of
understory tree species in maple-beech forests. Oecologia
162: 153–61.

Gravel, D., Canard, E., Guichard, F., and Mouquet, N.
(2011a). Persistence increases with diversity and con-
nectance in trophic metacommunities. PloS One 6:
e19374.

Gravel, D., Canham, C. D., Beaudet, M., and Messier, C.
(2006). Reconciling niche and neutrality: The continuum
hypothesis. Ecology Letters 9: 399–409.

Gravel, D., Guichard, F., and Hochberg, M. E. (2011b).
Species coexistence in a variable world. Ecology Letters
14: 828–39.

Gravel, D., Guichard, F., Loreau, M., and Mouquet, N.
(2010b). Source and sink dynamics in meta-ecosystems.
Ecology 91: 2172–84.

Gravel, D., Massol, F., Canard, E., Mouillot, D., and Mou-
quet, N. (2011c). Trophic theory of island biogeography.
Ecology Letters 14: 1010–6.

Gravel, D., Massol, F., and Leibold, M. A. (2016). Stability
and complexity in model meta-ecosystems. Nature Com-
munications, 7: 12457.

Grilli, J., Barabas, G., and Allesina, S. (2015). Metapop-
ulation persistence in random fragmented landscapes.
PLOS Computational Biology 11: e1004251.

Hanski, I. (1983). Coexistence of competitors in patchy
environment. Ecology 64: 493–500.

Hanski, I. (1999). Metapopulation Ecology. Oxford: Oxford
University Press.

Harris, D. J. (2016). Inferring species interactions from
co-occurrence data with Markov networks. Ecology 97:
3308–14.

Hastings, A. (1980). Disturbance, coexistence, history, and
competition for space. Theoretical Population Biology 18:
363–73.

Holt, R. (1996), Food webs in space: An island biogeo-
graphic perspective. In G. A. Polis and K. O. Winemiller
(eds.), Food Webs: Contemporary Perspectives. London,
UK: Chapman and Hall, pp. 313–23.

Holt, R., Lawton, J., Polis, G., and Martinez, N. (1999).
Trophic rank and the species-area relationship. Ecology
80: 1495–504.

Holt, R. D. (2005). Food web dynamics in a metacommu-
nity context: Modules and beyond. In M. Holyoak, M.
Leibold, and R. D. Holt (eds.), Metacommunities: Spatial

Dynamics and Ecological Communities. Chicago: Chicago
University Press, pp. 68–94.

Holyoak, M., Leibold, M. A., and Holt, R. D. (2005). Meta-
communities: Spatial Dynamics and Ecological Communi-
ties. Chicago: Chicago University Press.

Hubbell, S. (2001). The Unified Neutral Theory of Biodiversity
and Biogeography. Princeton, NJ: Princeton University
Press.

Hubbell, S. P., Foster, R. B., Brien, S. T. O., Harms, K. E., and
Condit, R. (1999). Light-Gap disturbances, recruitment
limitation, and tree diversity in a neotropical forest.
Science 283: 554–7.

Jacquet, C., Mouillot, D., Kulbicki, M., and Gravel, D.
(2017). Extensions of island biogeography theory predict
the scaling of functional trait composition with habitat
area and isolation. Ecology Letters 20: 135–46.

Keeling, M. J. (2002). Using individual-based simulations
to test the Levins metapopulation paradigm. Journal of
Animal Ecology 71: 270–9.

Klausmeier C. A. (2001). Habitat destruction and extinc-
tion in competitive and mutualistic metacommunities.
Ecology Letters 4: 57–63.

Leibold, M., Blanchet, G., De Meester, L., Gravel, D., Har-
tig, F., Peres-Neto, P. J. R., Shoemaker, L., and Chase,
J. (in review). Rethinking metacommunity ecology.
Ecology.

Leibold, M., Holyoak, M., Mouquet, N., Amarasekare, P.,
Chase, J. M., Hoopes, M., Holt, R. D., Shurin, J. B., Law,
R., Tilman, D., Loreau, M., and Gonzalez, A. (2004). The
metacommunity concept: A framework for multi-scale
community ecology. Ecology Letters 7: 601–13.

Leibold, M. A. and Chase, J. M. (2018). Metacommunity
Ecology. Princeton: Princeton University Press.

Levins, R. (1969). Some demographic and genetic conse-
quences of environmental heterogeneity for biological
control. Bulletin of the Entomological Society of America 15:
237–40.

Levins, R. and Culver, D. (1971). Regional coexistence
of species and competition between rare species.
Proceedings of the National Academy of Sciences 68:
1246–8.

Levins, R. and Heatwole, H. (1963). On the distribution
of organisms on islands. Caribbean Journal of Science 3:
173–7.

Logue, J., Mouquet, N., Peter, H., and Hillebrand, H.
(2011). Empirical approaches to metacommunities: A
review and comparison with theory. Trends in Ecology
and Evolution 26: 482–91.

Loreau, M. (2004). Does functional redundancy exist?
Oikos 104: 606–11.

Loreau, M., Mouquet, N., and Holt, R. (2003). Meta-
ecosystems: A theoretical framework for a spatial
ecosystem ecology. Ecology Letters 6: 673–9.



OUP CORRECTED PROOF – FINAL, 8/4/2020, SPi

220 T H E O R E T I C A L E C O L O G Y

MacArthur, R. (1955). Fluctuations of animal populations,
and a measure of community stability. Ecology 36: 533–6.

MacArthur, R. H. (1972). Geographical Ecolog: Patterns the
Distribution of Species. Princeton: Princeton University
Press.

MacArthur, R. H. and Wilson, E. O. (1963). An equilibrium
theory of insular zoogeography. Evolution 17: 373–87.

MacArthur, R. H. and Wilson, E. O. (1967). The Theory
of Island Biogeography. Princeton: Princeton University
Press.

Massol, F., Altermatt, F., Gounand, I., Gravel, D., Lei-
bold, M. A., and Mouquet, N. (2017). How life-history
traits affect ecosystem properties: Effects of dispersal in
metaecosystems. Oikos 126: 532–46.

Massol, F., Gravel, D., Mouquet, N., Cadotte, M. W.,
Fukami, T., and Leibold, M. A. (2011). Linking commu-
nity and ecosystem dynamics through spatial ecology.
Ecology Letters 14: 313–23.

May, R. M. (1972). Will a large complex system be stable?
Nature 238: 413–14.

Mougi, A. and Kondoh, M. (2016). Food-web complexity,
meta-community complexity and community stability.
Scientific Reports 6: 24478.

Mouquet, N. and Loreau, M. (2002). Coexistence in Meta-
communities: The Regional Similarity Hypothesis. The
American Naturalist 159: 420–6.

Nee, S. and May, R. (1992). Dynamics of metapopulations:
Habitat destruction and competitive coexistence. Journal
of Animal Ecology 61: 37–40.

Neuhauser, C. and Pacala, S. W. (1999). An explicitly
spatial version of the Lotka–Volterra model with inter-
specific competition. Annals of Applied Probability. 9:
1226–59.

Ovaskainen, O., Tikhonov, G., Norberg, A., Blanchet, F.
G., Duan, L., Dunson, D., Roslin, T., Abrego, N., and
Chave, J. (2017). How to make more out of community
data? a conceptual framework and its implementation
as models and software. Ecology Letters 20: 561–76.

Ovaskainen, O. and Cornell, S. J. (2006). Asymptotically
exact analysis of stochastic metapopulation dynam-
ics with explicit spatial structure. Theoretical Population
Biology, 69: 13–33.

Ovaskainen, O. and Cornell, S. J. (2006). Space and stochas-
ticity in population dynamics. Proceedings of the National
Academy of Sciences 103: 12781–6.

Pacala, S. and Rees, M. (1998). Models suggesting field
experiments to test two hypotheses explaining succes-
sional diversity. The American Naturalist 152: 729–37.

Piechnik, D. A., Lawler, S. P., and Martinez, N. D. (2008).
Food-web assembly during a classic biogeographic

study: Species’ “trophic breadth” corresponds to colo-
nization order. Oikos 117: 665–74.

Polis, G. A., Anderson, W. B., and Holt, R. D. (1997).
Toward an integration of landscape and food web
ecology: The dynamics of spatially subzidized food
webs. Annual Review of Ecology and Systematics 28:
289–316.

Pollock, L. J., Tingley, R., Morris, W. K., Golding, N.,
O’Hara, R. B., Parris, K. M., Vesk, P. A., and McCarthy, M.
A. (2014). Understanding co-occurrence by modelling
species simultaneously with a joint species distribu-
tion model (JSDM). Methods in Ecology and Evolution 5:
397–406.

Roxburgh, S. H., Shea, K., and Wilson, J. B. (2004). The
intermediate disturbance hypothesis: Patch dynamics
and mechanisms of species coexistence. Ecology 85:
359–71.

Shoemaker, L. G. and Melbourne, B. A. (2016). Linking
metacommunity paradigms to spatial coexistence mech-
anisms. Ecology 97: 2436–46.

Skellam, J. (1951). Random dispersal in theoretical popula-
tions. Biometrika 38: 196–218.

Slatkin, M. (1974). Competition and regional coexistence.
Ecology 55: 128–34.

Snyder, R. E. and Chesson, P. (2003). Local dispersal can
facilitate coexistence in the presence of permanent spa-
tial heterogeneity. Ecology Letters 6: 301–9.

Snyder, R. E. and Chesson, P. (2004). How the spatial
scales of dispersal, competition, and environmental
heterogeneity interact to affect coexistence. Coexistence
American Naturalist 164: 633–50.

Stone, L. (2018). The feasibility and stability of large com-
plex biological networks: A random matrix approach.
Scientific Reports 8: 8246.

Takeuchi, Y. (1989). Diffusion-mediated persistence in two-
species competition Lotka–Volterra model. Mathematical
Biosciences 95: 65–83.

Tang, S. and Allesina, S. (2014). Reactivity and stability of
large ecosystems. Frontiers in Ecology and Evolution 2: 21.

Tilman, D. (1994). Competition and Biodiversity in Spa-
tially Structured Habitats. Ecology 75: 2–16.

Vissault, S., Talluto, M., Boulangeat, I., and Gravel, D.
(in review) Slow demography and limited dispersal
constrain the expansion of north-eastern temperate
forests under climate change. Journal of Biogeography.
Forthcoming.

Zurell, D., Pollock, L. J., and Thuiller, W. (2018). Do joint
species distribution models reliably detect interspecific
interactions from co-occurrence data in homogenous
environments? Ecography 41: 1812–19.



OUP CORRECTED PROOF – FINAL, 8/4/2020, SPi

CHAPTER 13

Theories of diversity in
disease ecology
T. Alex Perkins and Jason R. Rohr

13.1 Introduction

Organisms engaged in parasitic and pathogenic
interactions with their hosts represent funda-
mentally important components of ecosystems.
After decades of study, an appreciation has been
cultivated for the role of pathogens in regulating
host population dynamics (Hudson et al. 1998),
shaping host behavior (Rohr et al. 2009; Perkins
et al. 2016) and evolution (Best et al. 2008; Boots
et al. 2012), facilitating exotic species invasions
(Mitchell and Power 2003; Torchin and Mitchell
2004), increasing food web connectance (Lafferty
et al. 2006a; Lafferty et al. 2006b), and influencing
ecosystem biomass and functioning (Kuris et al.
2008). From an applied point of view, parasites and
pathogens are the source of numerous challenges
to conservation and human health, with the
magnitude of those challenges expected to grow
as numerous forms of global change continue their
worrisome trends (Lafferty 2009; Martin et al. 2010;
Rohr et al. 2011).

Despite the prominent role that parasites and
pathogens play in all corners of ecosystems and
their considerable entanglement throughout them,
the treatment of parasitic and pathogenic interac-
tions in ecological theory has largely been relegated
to the study of interactions between a single
parasite or pathogen and a single host. This view is
perfectly adequate in many systems. In humans,

for example, a number of pathogens that were
once zoonotic have now adapted to exclusively
circulate among humans (Wolfe et al. 2007). Many
of these and other pathogens exhibit strain diversity
(e.g., plasmodium and pneumococcus), yet others
can, for all intents and purposes, be considered
as a single strain in ecological analyses due to the
essentially uniform immune response that genetic
variants elicit from their hosts (e.g., measles and
smallpox viruses) (Lipsitch and O’Hagan 2007).
Moreover, this body of theory focused on single-
pathogen, single-host systems has led to numerous
fundamental advances in population ecology. Many
works—including a canonical book (Anderson
and May 1992) and a chapter in the third edition
of Theoretical Ecology: Principles and Applications
(Grenfell and Keeling 2007)—have developed,
reviewed, and synthesized this body of work
exquisitely.

Many parasites and pathogens cannot possibly
be understood from a single-host, single-pathogen
perspective, however. For every pathogen that has
transitioned to exclusive transmission in humans,
there are at least as many that circulate in one or
more animal species or in animals and humans
(Taylor et al. 2001; Wolfe et al. 2007). This diversity
of hosts is significant in large part because of
heterogeneities among hosts in their susceptibility
and infectiousness to a given pathogen (Kilpatrick
et al. 2006). Compounding those heterogeneities
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is the structure of contacts between hosts of the
same and different species (Paull et al. 2012;
Vazquez-Prokopec et al. 2016). In terms of pathogen
diversity, it is not uncommon for pathogens to occur
as multiple strains, each of which may elicit an
immune response from its host that is more effec-
tive against itself than other strains (Gupta et al.
1996; Cobey and Lipsitch 2012; Bedford et al. 2015).
These strains may interact in other ways, as well.
They can engage in exploitative or interference com-
petition, as can pathogens of completely different
types (Pedersen and Fenton 2007). Pathogens can
also engage in facilitation by temporarily suppress-
ing a host’s immune defenses (Mina et al. 2015).

The goal of this chapter is to survey prominent
themes in theoretical research on host and pathogen
diversity to date. Specifically, we draw attention to
theory on the relationship between host diversity
and disease and theory on the coexistence of
diverse, interacting pathogens. Although there
are many valuable contributions to the theory
of host and pathogen diversity that do not fall
cleanly into either of these two categories, we have
chosen to focus on these areas due to the fact that
they have received disproportionate attention in
disease ecology research. For example, one topic
that we have largely ignored that has a great deal of
relevance to questions of diversity in host-pathogen
interactions is evolution (Levin et al. 1999; Gandon
et al. 2001; Grenfell et al. 2004; de Roode et al.
2005). We do, however, describe some important
extensions and applications of the two bodies of
theory on which we focus, and we comment on
potential synergies between and future directions
for these two bodies of theory.

Theories related to host and pathogen diversity
have been presented in excellent reviews and syn-
theses before (Rohani et al. 2006; Pedersen and Fen-
ton 2007; Civitello et al. 2015a; Seabloom et al. 2015),
but we find it rare for theoretical work related to
host and pathogen diversity to be presented along-
side one another (Dobson 1990; Holt and Dobson
2006; Keeling and Rohani 2011). By doing so here,
and with a focus on both theoretical advances and
empirical evidence in support of those advances, we
hope to facilitate crosstalk between these areas of
research and to provide an accessible entry point for
the more general reader of this volume.

13.2 Host diversity

Hypotheses regarding relationships between host
diversity and disease have potentially impor-
tant public health, management, and policy
implications because they imply that changes to
biodiversity, whether natural and anthropogenic,
could increase or decrease human and wildlife
diseases. Thus, understanding when, where, and
how host diversity affects disease is important
because it can facilitate predicting and mitigat-
ing disease outbreaks and can influence policy
decisions for both biodiversity conservation and
public health. Nevertheless, the disease ecology
community has become polarized by disagreement
over the question of whether host diversity reduces
or increases infectious disease risk (Randolph and
Dobson 2012; Lafferty and Wood 2013; Ostfeld 2013;
Ostfeld and Keesing 2013; Salkeld et al. 2013; Wood
and Lafferty 2013; Wood et al. 2014; Civitello et al.
2015a; Civitello et al. 2015b; Salkeld et al. 2015; Levi
et al. 2016; Wood et al. 2016; Ostfeld and Keesing
2017; Wilcox 2017).

There are two competing hypotheses regarding
the relationship between diversity and disease, the
dilution and amplification effect hypotheses.
The dilution effect hypothesis proposes that
host diversity can reduce the per-host abundance of
a particular pathogen and thus reduces the risk of
infectious disease caused by that pathogen (Van
Buskirk and Ostfeld 1995; Keesing et al. 2010).
Consequently, the dilution effect predicts that loss
of host diversity should increase infectious disease
burden, with the implication that biodiversity
conservation (defined as preserving functioning
ecosystems with predominantly native species)
might reduce infectious diseases. A meta-analysis
revealed that much of the published research
supports the dilution effect hypothesis (Civitello
et al. 2015a). In contrast, some studies support
alternatives to the dilution effect (Dunn 2010;
Dunn et al. 2010; Randolph and Dobson 2012;
Lafferty and Wood 2013; Wood and Lafferty 2013;
Young et al. 2013; Wood et al. 2014, 2016), such
as no relationship, a highly context-dependent
relationship, or an amplification effect—defined
by Keesing et al. (2006) as the opposite of the
dilution effect, or a positive relationship between



OUP CORRECTED PROOF – FINAL, 8/4/2020, SPi

T H E O R I E S O F D I V E R S I T Y I N D I S E A S E E C O L O G Y 223

host diversity and risk of a particular infectious
disease in that host community. Here, we outline
the theory for various relationships between host
diversity and disease, as well as evidence in support
of and against these relationships.

13.2.1 The basics of host diversity–infectious
disease theory

Intuitively, host diversity is unlikely to affect
pathogens of humans if they rarely interact with
non-human hosts or are well controlled in some
settings by sanitation, drugs, or vaccines (Wood
et al. 2017). Examples include directly-transmitted,
specialist pathogens of humans without free-
living stages, intermediate hosts, or vectors,
such as HIV and the causative agents of human
tuberculosis, measles, non-pandemic influenza,
and pneumonia (Wood et al. 2017). In contrast,
multi-host, wildlife, and zoonotic pathogens, and
pathogens with complex life cycles, free-living
infectious stages, or generalist vectors are most
likely to respond to changes to overall biodiversity.
Examples include West Nile virus, hantavirus,
and the causative agents of Chagas disease and
leptospirosis (Dizney and Ruedas 2009; Suzan
et al. 2009; Derne et al. 2011; Kilpatrick 2011;
das Chagas Xavier et al. 2012; Gottdenker et al.
2012; Luis et al. 2018). Nevertheless, some of these
expectations will need to be re-evaluated as disease
ecologists better understand how host diversity
(a) regulates the density of susceptible hosts that
might then pass directly-transmitted pathogens
amongst themselves (Keesing et al. 2006; Strauss
et al. 2015; Luis et al. 2018) and (b) influences
microbiota that protect against infectious diseases
(e.g., Keesing et al. 2010; Johnson et al. 2015; Knutie
et al. 2017).

For pathogens that are responsive to host
diversity, theory suggests that if the dilution effect
occurs, then relationships between host diversity
and disease must be non-linear (Figure 13.1). This
is because pathogens cannot exist where host
richness equals zero given that pathogens rely
on hosts for their survival (Ostfeld and Keesing
2000b; Ostfeld et al. 2009; Lafferty and Wood 2013;
Wood and Lafferty 2013; Kilpatrick et al. 2017).

Thus, pathogen abundance must initially increase
at low levels of host richness before higher levels
of richness could theoretically cause a dilution
effect (Figure 13.1). For this reason, most dilution
effect research has focused on how biodiversity
reductions in relatively pristine communities affect
disease risk (Van Buskirk and Ostfeld 1995; Schmidt
and Ostfeld 2001; Keesing et al. 2006; Ostfeld and
Keesing 2012; Levi et al. 2016). In other words,
they have focused on the disassembly rather
than the assembly of communities. Importantly,
the more left-skewed or asymptotic relationships
between host diversity and disease are, the
more amplification effects should predominate,
whereas the more right-skewed they are, the more
dilution should predominate (Wood et al. 2016, see
Figure 13.1). Additionally, if most communities fall
in the right or left portions of unimodal diversity-
disease curves, then dilution or amplification,
respectively, will be most common, regardless of
the direction of the skew (Figure 13.1).
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Figure 13.1 Hypothetical relationships between biodiversity and
disease risk. The right-skewed distribution suggests that dilution might
occur more frequently, but less intensely than amplification, because
the relationship is moderately negative over a greater portion of the
biodiversity gradient than it is strongly positive. The left-skewed
distribution suggests that amplification might occur more frequently
but less intensely than dilution, because the relationship is moderately
positive over a greater portion of the biodiversity gradient than it is
strongly negative. An asymptotic distribution suggests that
amplification becomes increasingly moderate with biodiversity. In
addition to the shape of biodiversity-disease relationships, the
frequency with which each biodiversity level occurs in the environment
will also affect the likelihood and intensity of dilution and
amplification. These hypothetical curves underscore the importance of
documenting the shape of biodiversity-disease relationships, which
has rarely been accomplished empirically.
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13.2.2 Mechanisms for host
diversity–infectious disease interactions

Many of the proposed mechanisms for dilution
and amplification include community assembly
processes (LoGiudice et al. 2003; Ostfeld and
LoGiudice 2003; Keesing and Ostfeld 2015), and
thus it is important to cover some basic concepts
regarding community assembly and disassembly.
Communities are often dichotomized into those that
exhibit substitutive assembly, whereby increases
in diversity are associated with replacements of
individuals because of competition (usually due
to a fixed carry capacity for the community), and
those that exhibit additive assembly, whereby total
density or biomass increases with diversity (Joseph
et al. 2013; Mihaljevic et al. 2014). In reality, this is
a false dichotomy because theory suggests that all
systems should assemble in both an additive and
substitutive manner (Mihaljevic et al. 2014). For
example, if we start with a system absent of species,
then assembly must be additive because species
will fill these unoccupied niches and thus will not
compete. However, if we assume that niches are not
endless, then as open niches are filled and species
richness increases, so too do the chances that any
new species added to the community will compete
with an existing species. Hence, at the inflection
point of the species richness versus abundance
curve, all communities should shift from additive to
substitutive assembly (Mihaljevic et al. 2014). What
matters to dilution and amplification mechanisms
discussed next is where communities fall on their
species richness versus abundance curve.

When communities assemble additively, ampli-
fication likely occurs because additional host
species will increase the total number of hosts,
thus facilitating density-dependent pathogen
transmission (Dobson 2004; Rudolf and Antonovics
2005). In contrast, some processes can cause
either amplification or dilution. For example, when
community assembly is additive, amplification
or dilution can occur when competent hosts or
non-competent hosts, respectively, are added to
communities via the sampling effect—the idea
that more diverse communities are more likely to
contain a host species that either strongly increases
or decreases disease (e.g., Halliday et al. 2017).

However, sampling effects might be less about
diversity per se than about species composition
or the presence/absence of particular species.
In contrast to the sampling effect, the niche
complementarity hypothesis depends more directly
on diversity per se. It is the notion that coexisting
species should often fill different functional roles
in a community and thus as diversity increases,
regardless of composition, an ecosystem service,
such as disease control, should increase (Cardinale
et al. 2012; Becker et al. 2014; Rohr et al. 2015; Frainer
et al. 2018). The shape of relationships between
host diversity and disease will affect whether
sampling effects cause amplification or dilution.
Right-skewed relationships have more space for
scenarios where sampling effects promote dilution
and left-skewed relationships have more space to
promote amplification.

Dilution is generally expected to occur more
frequently when communities reach substitutive
assembly, where additional host species must be
substituted for individual hosts already present
in the community and thus increasing richness
does not increase host densities. Given that host
densities tend to be relatively constant at this stage
of assembly, the frequency of hosts that vary in
their competency to transmit pathogens can thus
change as new hosts are added. Using a multi-host
model, Mihaljevic et al. (2014) considered density-
and frequency-dependent pathogen transmission
modes crossed with purely additive, purely
substitutive, or a saturating host community
abundance-richness relationship (starting additive
and shifting to substitutive). Importantly, their
model revealed that pathogens with frequency-
dependent transmission generally show dilution
regardless of whether host assembly was additive
or substitutive, consistent with other theory
supporting the notion that frequency-dependent
transmission increases the likelihood of dilution
(Dobson 2004; Rudolf and Antonovics 2005; Faust
et al. 2017). However, when transmission was
density dependent, amplification predominated
when communities assembled additively and
dilution predominated when they assembled
substitutively; thus, the relationship between host
richness and disease risk was hump-shaped for
the more realistic scenario of a saturating host
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community abundance-richness relationship—
where communities start assembling additively and
shift to substitutive assembly as niches fill. Given
this theory, if communities are at a substitutive stage
of assembly or experience frequency-dependent
transmission, dilution seems likely. The biological
mechanism often proposed for these patterns is
based on the following assumptions: i) either
pathogens should experience greater selection
to infect abundant than rare hosts or abundant
hosts likely make considerable investments into
reproduction, growth, and/or dispersal at the
expense of defenses against pathogens, or both
occur, ii) abundant hosts are more likely to colonize
and less likely to be extirpated from ecosystems,
and iii) rare hosts displace common hosts when
host diversity is high (Ostfeld and Keesing 2000b;
Previtali et al. 2012). If these assumptions are true,
then abundant and widespread hosts would regu-
larly be amplifying hosts, while hosts with greater
diluting potential would be added to communities
as biodiversity increases or would be lost from
communities when they become fragmented or
disturbed (Joseph et al. 2013; Mihaljevic et al. 2014;
Johnson et al. 2015; Levi et al. 2016). Under these
scenarios, natural community disassembly would
regularly cause increases in disease risk.

13.2.3 Evidence in support of proposed
mechanisms for host diversity–infectious
disease interactions

Several of the assumptions behind the theory for
the dilution effect have empirical and observational
support (Johnson et al. 2013a; Venesky et al. 2014;
Rohr et al. 2015; Liu et al. 2018). For example, a
combination of mesocosm experiments and field
surveys demonstrated that the most abundant and
widespread amphibian hosts are also the most
competent hosts for a particular trematode species,
supporting the notion that community assembly
and disassembly processes function in a manner
consistent with the dilution effect for this pathogen
(Johnson et al. 2013a). Community (dis)assembly
processes also support dilution effects documented
for Lyme disease (Ostfeld and Keesing 2000a;
LoGiudice et al. 2003; Ostfeld and LoGiudice
2003; Keesing et al. 2010), and in a recent study,

when plant communities were (dis)assembled
randomly, dilution was not observed, but when
they (dis)assembled naturally, host diversity
significantly reduced disease, again highlighting the
potential importance of natural assembly processes
(Liu et al. 2018). Several other studies support the
notion that widespread hosts with “fast-paced” life
histories are more susceptible to pathogens when
controlling for exposure (Johnson et al. 2012; Han
et al. 2015; Sears et al. 2015). This suggests that
rare species have an advantage because they are
infected less frequently given the same exposure as
abundant species, a concept supported in many
plant-pathogen systems. For example, Parker
et al. (2015) coupled an experiment on forty-four
host plant species, with a database on 210 host
genera and 212 fungal pathogens, and showed
that abundant and phylogenetically common plant
species have more infectious disease than rare plant
species, particularly those that are phylogenetically
distant from common species.

Importantly, this advantage of rarity is also a
mechanism for the associational resistance, crop
rotation, and Red Queen hypotheses, classic and
well-established concepts in plant-herbivore and
disease biology, all of which are based on the
assumption that communities are in the substitutive
portions of their diversity-abundance curves (Lively
and Dybdahl 2000; Barbosa et al. 2009; Lively
2010). The associational resistance hypothesis is
the well-supported idea that plant host diversity
reduces herbivory (Barbosa et al. 2009), in many
cases from insects, such as aphids, that have
long-term intimate relationships with their host
plant (i.e., they are pathogens; Raffel et al. 2008).
Whereas the associational resistance hypothesis
focuses on the advantages of variation in plant
host species in space, crop rotation highlights the
value of increasing host plant diversity temporally
to reduce pathogen accumulation (Mordecai 2011).
The Red Queen hypothesis incorporates a within-
species dilution effect (Clay et al. 2008; Ostfeld
and Keesing 2012), positing that as a genotype
gets more abundant, it faces greater parasitism
pressures (Lively and Dybdahl 2000; Lively 2010) so
that as the diversity of genotypes within a species
increases, per capita disease risk generally declines
(e.g., “Red Queen Communities”; Clay et al. 2008).
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These examples highlight several mechanisms by
which biodiversity can protect against disease both
within and among species (see also Civitello et al.
2015a).

13.2.4 Application of theory on host diversity
to disease management

Importantly, community assembly theory and field
observations suggest that low-diversity commu-
nities are a nested subset of their higher-diversity
counterparts (Johnson et al. 2013a). This is an exam-
ple of how diversity and species composition can
be correlated (Keesing et al. 2010), a correlation that
can make it challenging to disentangle composition
from diversity. However, this correlation can also
make it easier to manage diseases than if diversity
and composition were related to one another
idiosyncratically, because managing diversity will
by default result in the management of composition
(Keesing et al. 2010). As an example, top predators
are often added to communities late during
community assembly and are often lost from
communities first because of their rarity and need
for large plots of intact land or water. Owing to
these traits, much of the theory behind relationships
between host diversity and disease suggests that top
predators are frequently diluting species. However,
top predator species cannot be added to or sustained
in a community without first ensuring that there is
an ample abundance and diversity of their prey
species, and thus, the nested nature of assembly
processes can make it difficult to manage single
species or species composition without managing
biodiversity.

Both diversity-disease interactions and conser-
vation generally occur at local to regional scales
(Kilpatrick et al. 2017) and thus the dependence
of dilution and amplification effects on scale can
influence the effectiveness of management (Lafferty
and Wood 2013; Wood and Lafferty 2013; Kilpatrick
et al. 2017). There are several ways in which scale
might influence the relationship between biodiver-
sity and disease. Theory suggests that relationships
between biodiversity and infectious disease might
be strongest at local scales and weaken at larger
scales (Johnson et al. 2015) because species inter-
actions that affect dilution and amplification occur

at relatively small spatial scales, whereas abiotic
factors like climate tend to predominate as drivers
of biological patterns at larger spatial scales (Levin
1992; McGill 2010). Cohen et al. (2016) found sup-
port for this hypothesis in amphibian chytrid fun-
gus, West Nile virus, and the bacterium that causes
Lyme disease. At large spatial scales, the distribu-
tion of pathogens was strongly influenced by cli-
mate and human population density, whereas at
smaller spatial scales, host richness was a signifi-
cant predictor of disease prevalence (Cohen et al.
2016). It is also possible that the diluting capacity
of a non-competent host might be most observable
at small scales where encounter reduction (reduc-
ing encounter rate or duration between infected
and susceptible individuals; Keesing et al. 2006) can
occur, while the amplifying effect of a competent
host might be most observable at larger temporal
and spatial scales necessary to support definitive
hosts and full lifecycle completion of the pathogen
(Buck and Perkins 2018). Understanding the scales
at which dilution and amplification predominate
will be necessary to effectively employ manipula-
tions of biodiversity as a disease management tool.

Whether biodiversity conservation is an effective
management tool for protecting against newly
introduced pathogens will likely depend on
the mechanisms for dilution. Theory suggests that
abundant hosts, which are more likely to colonize
and less likely to be extirpated from ecosystems,
amplify disease risk because: i) pathogens should
experience greater selection to infect abundant than
rare hosts, ii) abundant hosts make considerable
investments into reproduction, growth, and/or
at the expense of defenses against pathogens (i.e.,
trade-offs), or iii) both (Ostfeld and Keesing 2000b;
Previtali et al. 2012). However, few studies have
attempted to quantify the contribution of these two
mechanisms to host competence. If abundant hosts
are competent predominantly because pathogens
experience greater selection pressure to infect
abundant than rare hosts, then biodiversity con-
servation might not be very effective at preventing
outbreaks of novel pathogens because they would
be naïve to most of the hosts they encounter
and thus would not have experienced selection
to infect them yet. In contrast, if abundant hosts
are competent predominantly because they invest
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little in pathogen defenses, then an evolutionary
history between a host and pathogen would be
less necessary for dilution and thus biodiversity
conservation could theoretically be effective at
preventing colonization and outbreaks of novel
pathogens. Hence, understanding the mechanisms
for disease dilution will be crucial for determining
whether biodiversity conservation will be effective
at managing the hazards and risk of disease
emergence (Luis et al. 2013; Hosseini et al. 2017).

13.3 Pathogen diversity

Whereas research on host diversity and infectious
disease has revolved around polarizing debate
about dilution and amplification, research on
pathogen diversity and infectious disease has
been somewhat more diffuse. One major focus
though has been investigation of interactions
among pathogens and their role in mediating a
variety of outcomes in multi-pathogen systems:
coexistence and competitive displacement, as well
as cycling and turnover. An understanding of the
conditions under which each of these outcomes
occurs in a given system is of great significance,
because changes in the factors that promote these
outcomes—which can result from introduction
of new pathogens, changes in host communities,
application of interventions, or evolution—can shift
a system’s trajectory from one outcome to another.
Thus, an ecological understanding of these regimes
may hold important clues to how to successfully
eradicate certain pathogens and how to prevent the
emergence of others.

This body of theory has been developed primarily
under two alternative scenarios: a single pathogen
with multiple strains or multiple pathogens with a
single strain each. Although there can be important
differences between pathogen assemblages that fall
into these different categories (e.g., the former may
involve frequent genetic exchange, whereas the lat-
ter does not), there are many similarities among pro-
cesses that shape these assemblages (Seabloom et
al. 2015). These similarities are not surprising given
more general similarities between processes shap-
ing ecological and population genetic diversity (Vel-
lend 2010). Accordingly, we draw from examples of

theoretical work on pathogen diversity under both
scenarios, and from work that ranges from generic
to specific in its emphasis on a particular system.

13.3.1 A community ecology framework
for pathogen coexistence

In a general sense, coexistence mechanisms in multi-
pathogen systems can be organized around three
themes (Bashey 2015). First, pathogen coexistence
can be explained through niche differentiation,
which involves more intense competition among
like than unlike pathogens. Two forms of compet-
itive interactions among pathogens that must be
sufficiently weak to allow for co-existence (Rohani
et al. 2006) include cross-reactive immunity, which
involves one infection eliciting a host immune
response that inhibits another (Figure 13.2c), and
ecological interference, which involves pathogens
reducing host availability for other pathogens
through mechanisms unrelated to immunity
(Rohani et al. 1998, 2003, and Figure 13.2a). At the
same time, pathogens can sometimes facilitate one
another through host immunosuppression (Mina
et al. 2015). Second, competition-colonization trade-
offs can contribute to the maintenance of pathogen
diversity, provided that pathogens exhibit variation
in traits related to within-host and between-host
processes and that variation in those traits is
negatively correlated (Hochberg and Holt 1990).
The spatially discrete nature of hosts and the
necessity of continual colonization of new hosts
for pathogen persistence ensure that opportunities
for pathogens specializing in competition or
colonization are always available. Third, temporal
and spatial heterogeneities in the environment
experienced by pathogens can promote their
coexistence under certain conditions. For example,
storage effects occur when pathogens that vary in
their responses to a heterogeneous environment
transform their success under favorable conditions
into persistence under unfavorable conditions
through some form of buffering (Chesson 2000).
This buffering can be achieved in a variety of
ways, including by retreating to an alternative
transmission mode when conditions under their
primary transmission mode become unfavorable
(Roche et al. 2014).
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Figure 13.2 Different forms of pathogen interaction. Pathogen
interactions can occur either during coinfection of a single host
organism by two or more pathogens, or non-concurrently following
infection by the first pathogen. (a) Exploitative competition can occur
during coinfection when two or more pathogens compete for the
same limited host resource. It can also occur non-concurrently if
one pathogen kills hosts that can no longer be infected by other
pathogens. (b) Interference competition most often occurs between
pathogens coinfecting a single tissue type within a host. (c) Apparent
competition can occur during coinfection when two or more
pathogens stimulate a similar and sufficiently broad immune response.
It can also occur non-concurrently when adaptive immunity developed
in response to one pathogen is cross-reactive to a subsequent
pathogen. (d) Facilitative interactions are also possible, such as when
an immune response elicited by one pathogen inhibits a different
immune response to another pathogen.

Given how difficult it can be to empirically mea-
sure any of several coexistence mechanisms that
might be operating, realistic models of pathogen
communities offer a valuable tool for gaining insight
about the relative contributions of different mech-
anisms to coexistence in a given system (Morde-
cai et al. 2016). At the same time, it is critical to
develop null models that do not result in coexistence
as an artefact of a model’s structure or as a result
of an unintentionally impactful assumption (Lip-
sitch et al. 2009). To avoid that, an appreciation for
past theoretical research that has established general
conditions for coexistence of interacting pathogens
is essential.

13.3.2 A diverse web of interactions
among pathogens

Mechanisms for pathogen coexistence are usually
modulated in one way or another by within-host
interactions. Like other organisms, pathogens are
known to engage in three major forms of com-
petition: exploitative, interference, and apparent
(Mideo 2009, and Figure 13.2a-c). These competitive
interactions span what some have portrayed
as three “trophic levels,” corresponding to host
resources (producers), pathogens (consumers),
and host immune responses (predators) (Pedersen
and Fenton 2007; Graham 2008). Focusing on
simultaneous coinfections in humans, Griffiths
et al. (2014) found that exploitative competition
for host resources shared by two or more pathogens
was the most common form of interaction. As an
example, multiple species of malaria pathogens and
helminths consume red blood cells, in some cases
depleting them to such an extent that reductions in
the density of competing pathogens result (Budis-
chak et al. 2018). Interference competition between
pathogens is also known to occur, although this
appears to occur more commonly among pathogens
that are physically co-located within certain host
tissues (Griffiths et al. 2014). Interactions among
pathogens occupying different host tissues or
infecting a host at different points in time more
typically take the form of apparent competition
(Holt 1977), mediated by host immune responses
that apply to some degree to two or more pathogens.
For example, immune-mediated apparent compe-
tition was surmised among helminths infecting
the digestive tracts of wild rabbits, due in part
to the fact that pathogens occurring downstream
in the digestive tract were able to negatively affect
pathogens upstream of them (Lello et al. 2004).
Despite widespread appreciation for this diversity
of interactions among pathogens, pinpointing the
nature of and mechanisms for these interactions can
be a challenging undertaking (Fenton et al. 2010).

Among other interactions, the ways that pathogens
can interact through host immune systems are
quite diverse (Pedersen and Fenton 2007). In the
context of pathogens infecting a host concomitantly
(i.e., coinfection), interactions among even very
phylogenetically distant pathogens are possible.
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T-helper (Th) cells, which generate signals to
activate different types of immune responses, offer
one such example. Two major types of these are Th1
and Th2 cells, which elicit immune responses that
are effective against intracellular and intercellular
pathogens, respectively (Graham 2002). Because
both Th1 and Th2 cells originate from the same
pool of naive Th cells, an active immune response
to one pathogen can inhibit the development of an
immune response to another pathogen that infects
the host shortly after the first pathogen, at least in
the same tissue (Su et al. 2005; Graham 2008, and
see Figure 13.2d). Conversely, pathogens that are
combatted effectively with signals emanating from
the same type of Th cells can lead to a synergized
immune response on coinfecting pathogens (Curry
et al. 1995; Page et al. 2005, see Figure 13.2c).
Depending on which pathogens are involved in
coinfection and the order in which two or more
infections occur, coinfection can affect transmission
dynamics of either or both pathogens and either
dampen or exacerbate heterogeneities in the
contributions of individual hosts to transmission
(Graham et al. 2007).

Beyond coinfection, pathogens infecting a
mammalian host can also interact through adaptive
immunity developed in response to previous infec-
tions by other pathogens (Figure 13.2c). Although
pathogen specificity is a hallmark of adaptive
immunity, there are reasons to speculate that cross-
reactivity of antibody-based adaptive immunity
could be fairly common due to evolutionary
advantages of an immune system that responds
to pathogens that are similar, but not identical,
to ones encountered in the past (Fairlie-Clarke
et al. 2009). Regardless of their ultimate cause
though, capturing the complexities of potential
cross-reactivities among the many pathogens that a
host faces is a daunting task for theory (Rohani et al.
2006). Cobey (2014) offered one way to simplify
this complexity by proposing that a pathogen’s
“immunophenotype” be defined in terms of the
strength, duration, and breadth of a host’s immune
response to it. These three dimensions can be
made to depend on the abundances of other
pathogens and various components of the host’s
immune system. Notably, the immunophenotype
of a pathogen can depend on host species, infection

history, and current infection and immunological
status (Cobey 2014). One even simpler alternative
involves tracking the status of hosts with respect to
their immunity to each of many strains rather than
their full history of infection (Gog and Swinton
2002; Gog and Grenfell 2002). The major advantage
of this approach is that it reduces the dimensionality
of the state space considerably, although this
comes at the cost of the rather specific assumption
that cross-reactive immunity renders some hosts
completely immune instead of all or some hosts
partially immune. Irrespective of the details, ways
to address the complexity of pathogen interactions
mediated by host immunity through simplifying,
but biologically justifiable, assumptions remain an
important goal for theory.

13.3.3 Theoretical results about
pathogen coexistence

Theoretical results about pathogen coexistence
depend a great deal on the properties of the model
being used in the analysis. In the simplest models
of ecologically similar pathogens, coexistence is a
simple question of whether the strength of cross-
reactive immunity is below a certain threshold
(Keeling and Rohani 2011). From there, conditions
for coexistence can quickly become more compli-
cated. White (1998) showed that even the most basic
refinements of assumptions about cross-reactive
immunity lead to complications that affect criteria
for coexistence. Under a model with susceptible-
infectious-recovered compartments (SIR, in which
hosts gain permanent immunity), conditions for
coexistence were sensitive to assumptions about
whether past infection results in reduced suscep-
tibility or reduced transmissibility of a subsequent
pathogen (White 1998). This distinction is impor-
tant, because reduced transmissibility blocks trans-
mission but still allows for population immunity to
accrue. Under a model with susceptible-infectious-
susceptible compartments (SIS, in which hosts are
only immune temporarily), coexistence was enabled
by differences in the pathogens’ abilities to infect
partially or completely susceptible hosts (White
1998). This effectively partitions hosts into two
distinct resources that can support the coexistence
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of two pathogens specializing on those resources.
Coinfection with another pathogen can add an
additional dimension to the way in which hosts
are partitioned into distinct resources. Although
not capable of fully explaining coexistence of
Streptococcus pneumoniae strains, Cobey and Lipsitch
(2013) found that coinfection with Haemophilus
influenzae promotes S. pneumoniae strain coexistence
by disrupting the competitive hierarchy of strains
that is typical in the absence of H. influenzae.
Trade-offs in pathogen fitness in different host or
vector species can contribute similarly to pathogen
coexistence (Mordecai et al. 2016).

The task of explaining pathogen coexistence
in real systems can sometimes be much more
formidable than explaining the coexistence of two
or three pathogens in a simple model. To explain the
coexistence of over ninety strains of S. pneumoniae,
Cobey and Lipsitch (2012) found that two forms
of immunity needed to be invoked. Acting alone,
an antibody-based form of immunity that was
specific to strains to which an individual had been
previously exposed was not sufficient to counteract
inherent competitive advantages of certain strains,
resulting in greater competitive exclusion than has
been observed empirically. When a nonspecific form
of immunity based on CD4+ Th cells was added to
the model, Cobey and Lipsitch (2012) were able to
reproduce observed levels of serotype diversity and
to better account for other aspects of S. pneumoniae
epidemiology, as well. Another consideration that
can be important for explaining strain coexistence
is the potential for pathogen strains to evolve on
relatively fast timescales. In such cases, strong
cross-reactive immunity can contribute to stable
coexistence of a discrete number of strains, provided
that pathogen molecules detected by the immune
system respond evolutionarily to that form of
diversifying selection. Even in the presence of the
homogenizing effect of genetic exchange among
strains, Gupta et al. (1996) found empirical support
for this theoretical result in the form of more
discrete structuring of multilocus, antigenic variants
of Neisseria meningitidis bacteria than would be
expected under random multilocus combinations
consistent with observed levels of variation at
each locus on its own. Relaxing the assumption of
homogeneous mixing of host contacts by Gupta

et al. (1996) amplifies this tendency of strong
cross-reactive immunity to promote coexistence
of multiple discrete strains, resulting in even
greater strain diversity (Buckee et al. 2004; Buckee
et al. 2007).

Negative frequency dependence favoring anti-
genic variants to which host immunity has deterio-
rated over time has been shown to result in cyclical
dynamics that can maintain pathogen diversity
through time (Gupta et al. 1998; Gupta and Galvani
1999; Gomes et al. 2002). While these basic results
are clear, additional considerations come into play
when models are used to explain cyclical dynamics
in real systems. Focusing on the bacteria that cause
cholera, Koelle et al. (2006) showed that alternating
cycles of dominance by either of two serotypes
in Bangladesh could be explained by a simple,
two-serotype model with strong, but nonetheless
partial, cross-reactive immunity. Interestingly,
acknowledgment of two serotypes with partial
cross-reactive immunity provides an alternative
to their previous explanation of cholera dynamics
in this setting, which depended on the assumption
that immunity is temporary (Koelle et al. 2005).
In other words, partial cross-reactive immunity
between two strains with alternating cycles offers
a plausible explanation for the appearance of
temporary immunity when information about
strains is not visible in the data (Koelle et al. 2006).
Another pathogen that exhibits strain cycling is
dengue, which is transmitted by mosquitoes and is
well known for the complex interannual dynamics
of its four serotypes that affect humans (Cummings
et al. 2004). One hypothesis about dengue serotype
cycling that has been advanced is that it is driven
by antibody-dependent enhancement (ADE), which
could enhance the susceptibility and/or transmis-
sibility of an infection with a second serotype,
thereby giving a boost to non-dominant serotypes
beyond that afforded by herd immunity against the
dominant serotype (Ferguson et al. 1999; Cummings
et al. 2005; Recker et al. 2009). Although recent
evidence does demonstrate ADE of severe disease
(Katzelnick et al. 2017), whether ADE is capable
of eliciting the effects necessary to drive serotype
cycling remains unclear. A more widely accepted
alternative hypothesis is that some combination of
temporary cross-reactive immunity and seasonal
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transmission account for serotype cycling (Wearing
and Rohani 2006; Adams et al. 2006; Reich et al.
2013; ten Bosch et al. 2016).

13.3.4 Application of theories of pathogen
diversity to disease management

One notable body of theoretical work on pathogen
diversity that is relevant to disease management
assumes that strains circulate independently of one
another. This “strain theory” of malaria (Gupta et al.
1994; Gupta and Day 1994) is based on the premise
that immunity to a single strain of Plasmodium
falciparum is long-lasting, but immunity to all strains
is negligible. A highly significant, but controversial,
prediction of strain theory is that the R0 for any
given strain is relatively low and, thus, intervention
coverage thresholds required for eradication are
significantly higher if P. falciparum is conceptualized
as a single- rather than a multi-strain pathogen
(Gupta et al. 1994). Given that R0 estimates for
malaria that do not account for strain structure can
often be in the range of fifty to a hundred or more
(Smith et al. 2007), strain theory makes eradication
seem vastly more achievable (Gupta et al. 1994).
One critique of this prediction (Dye et al. 1996)
used results from a field trial of insecticide-treated
bednets that showed little impact on prevalence
in humans to argue that intervention coverage
would need to be in excess of 96% to achieve
eradication, which is far higher than Gupta et al.
(1994) envisioned. In response, Gupta and Snow
(1996) provided an alternative interpretation of the
trial data that is compatible with predictions from
strain theory. Recent extensions of strain theory
(Artzy-Randrup et al. 2012; He et al. 2018) have used
agent-based models to place more emphasis on the
highly polygenic nature of P. falciparum antigenic
repertoires and the important complication that
P. falciparum undergoes extensive recombination,
which raises questions about what the concept of a
strain even means for this pathogen (McKenzie et
al. 2008).

Another body of theoretical work involving
multiple pathogen strains that has received signif-
icant attention is that of vaccine escape, which is a
phenomenon whereby strains that are not targeted
by a vaccine can increase in prevalence due to

competitive release from a target strain that has
been reduced by vaccination (McLean 1995).
This outcome depends critically though on the
strength of cross-reactive immunity and the relative
competitive abilities of the target and non-target
strains prior to vaccination (Gupta et al. 1997). In
addition, McLean (1995) found that low vaccination
coverage was one reason why vaccine escape might
not be observed in a system that otherwise has
potential for it. Looking at coverage from a different
perspective, Lipsitch (1997) found that vaccination
coverage thresholds for elimination of the target
strain were lower for a strain-specific vaccine than
for a bivalent vaccine, which would affect both
strains. Intuitively, this result follows from the non-
target strain contributing to the demise of the target
strain via apparent competition through naturally-
acquired, cross-reactive immunity, while the non-
target strain remains resilient to vaccine-derived
immunity. Lipsitch (1997) noted that such a scenario
may be compatible with the biology of H. influenzae.
One pathogen for which strain replacement from
vaccine escape has been observed empirically is
pneumococcus (Hanage et al. 2010). Others with
perceived potential for strain replacement include
rotavirus (Pitzer et al. 2011), human papillomavirus
(Orlando et al. 2012), malaria (Neafsey et al. 2015),
dengue (Rodriguez-Barraquer et al. 2014), and
pertussis (Nicoli et al. 2015).

The ecological principle underlying vaccine
escape, competitive release, is relevant not only
to competing strains but also to distinct pathogens
engaged in competition. As an example, Lloyd-
Smith (2013) assessed the potential of orthopox
viruses besides smallpox virus, especially mon-
keypox virus, to fill the niche vacated by smallpox
virus following its eradication in 1980. Although
intensive epidemiological investigations in the
early 1980s concluded that monkeypox virus was
not quite capable of sustained spread (R0 = 0.83)

(Fine et al. 1988), more recent epidemiological
trends show clear signatures of competitive release
not from smallpox virus itself, but from the
smallpox vaccine that is no longer in use and thus
protects only an aging, and dwindling, population
(Rimoin et al. 2010). It is notable that the only two
infectious diseases eradicated to date—smallpox
and rinderpest—both appear to have competitors
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encroaching on their vacated niches. Rather than
discourage efforts to eradicate diseases, the lesson
from these examples is that the possibility of
competitive release of other pathogens should
not come as a surprise. Instead, preparations for
this possibility, along with appropriate research
and surveillance, should be undertaken during
early stages of planning for eradication campaigns
(Lloyd-Smith 2013).

13.4 Are theories of host and pathogen
diversity ships passing in the night?

The respective bodies of theory on host and
pathogen diversity surveyed previously have been
developed largely independently of one another.
That is, theories of host diversity have mostly asked
how host diversity impacts the disease burden
associated with a single type of pathogen, and
theories of pathogen diversity have mostly asked
how diverse pathogens manage to coexist in a
single type of host. Here, we explore a few points
of interface between these distinct bodies of theory,
with the goal of stimulating further developments
at this intersection.

One natural question at the interface of host and
pathogen diversity is what impact the former has on
the latter. Intuitively, host diversity should promote
pathogen diversity by expanding the diversity
of niches available to pathogens (Hechinger and
Lafferty 2005). One way that this can manifest is in
terms of the diversity of host immune repertoires,
which models have shown can promote strain
diversity (Gupta and Galvani 1999). Support for
host diversity as a driver of pathogen diversity by
way of niche diversity has also been demonstrated
in broader pathogen communities (Johnson et al.
2016). Beyond ideas related to niche diversity,
factors that affect the persistence of any single
pathogen should also affect pathogen diversity,
given that the maintenance of diversity requires the
persistence of each constituent species. A number
of theoretical studies (Holt et al. 2003; Dobson
2004; Fenton et al. 2015) have demonstrated that
host species can easily differ in their individual
contributions to a pathogen’s persistence. In some
cases, a single host species may be sufficient to
ensure persistence of a pathogen, whereas in other

cases pathogen persistence may only be possible in
the presence of multiple host species that are each
incapable of sustaining the pathogen on their own.
In primates, it has been noted that host species with
higher population densities tend to harbor more
pathogens (Nunn et al. 2003; Altizer et al. 2007).
This finding is consistent with theoretical predic-
tions that higher host density should allow for
persistence of pathogens with a wider range of
threshold densities for persistence (Dobson 1990).

Another important question at the interface of
host and pathogen diversity is what the implications
of pathogen diversity are for host health. While
the effects of host diversity on host health have
been investigated intensely, pathogen diversity
has more often been examined as its own object
of study rather than as a driver of disease. There are
exceptions though. In a simple model of antigenic
strain diversity, Abu-Rabbad and Ferguson (2005)
showed that there is a monotonically increasing
relationship between pathogen diversity and over-
all pathogen prevalence combined across strains.
This relationship was modulated critically though
by the strength of cross-reactive immunity, with
more intense cross-reactive immunity resulting in
lower prevalence. Empirical investigations of the
relationship between pathogen diversity and host
disease have yielded somewhat different results.
An empirical study (Johnson and Hoverman 2012)
of six trematode pathogens in an amphibian host
found that the relationship between pathogen
diversity and host disease depended on whether
pathogen communities assembled additively
or substitutively, mirroring results about the
relationship between host diversity and disease.
Specifically, additive assembly increased disease
severity, whereas substitutive assembly decreased
disease severity in cases where the prevalence of a
more virulent pathogen was reduced by increased
pathogen diversity (Johnson and Hoverman 2012).
In two studies (Johnson et al. 2013b; Rottstock et al.
2014) in which host disease was examined across
naturally occurring variation in host and pathogen
diversity, greater pathogen diversity was negatively
associated with disease, which is more consistent
with the notion that pathogen community assembly
is substitutive in those systems. In theoretical work
going forward, considering pathogen diversity and
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the dynamic nature thereof may, at a minimum,
provide greater insight into the mechanisms
underlying relationships between host diversity
and disease.

Relationships between host and pathogen
diversity are also sensitive to other players in
ecological communities. In particular, predators of
pathogens offer an additional potential mechanism
by which overall biodiversity can mitigate disease
risk. Predation on pathogens and parasitized hosts
can be an important but overlooked limit on
pathogens; for example, comprising an estimated
44% of trophic links in the well-studied Carpinteria
Salt Marsh food web (Lafferty et al. 2006b), though
most of these links led to pathogen transmission
rather than pathogen loss. In one study, increasing
tadpole diversity was associated with reduced
chytrid fungal loads per frog, and the degree to
which tadpole species filter-fed; thus, removing
chytrid zoospores from the water was associated
positively with their ability to reduce chytrid
infections in both transmission experiments and
field surveys (Venesky et al. 2014). In another study,
the diversity of predators of multiple species of
trematode cercariae was associated negatively with
trematode infections per host in the field (Rohr
et al. 2015). This study used both experiments
and mathematical models to demonstrate that the
degree to which a species preferred to consume
pathogens over hosts determined how strongly
that species could dilute disease through pathogen-
encounter-reduction mechanisms (Rohr et al. 2015).
Many effects of predator diversity on pathogens
might actually be species composition effects, but
they are good examples for where a sampling effect
in diverse communities could tend to increase the
chance that pathogen feeders might occur.

13.5 Diversifying the use of theory
to address questions of diversity
in disease ecology

Theories on host and pathogen diversity in disease
ecology have developed over the past three to
four decades and have done much to extend
understanding of infectious disease dynamics
beyond the single-host, single-pathogen paradigm

that preceded it, and still dominates. Many key
advances in the theory of multi-host and/or multi-
pathogen systems have been underpinned by
theoretical developments in community ecology
more broadly. In reference to host diversity, com-
munity assembly theory has played an important
role in clarifying the conditions under which
diseases in some host communities are subject
to dilution effects and others to amplification
effects. In reference to pathogen diversity, modern
coexistence theory has been helpful for many
who seek to understand what impact each of the
very many possible interactions among pathogens
have on their mutual persistence. We now turn
our attention to questions about the future. What
underutilized elements of ecological theory will
underlie future advances in our understanding of
multi-host and/or multi-pathogen systems? What
new theoretical capabilities are needed to meet the
most formidable challenges ahead?

One feature of current theory that we find
strikingly pervasive is the focus on long-term,
equilibrium behavior. As a starting point, using
models with stable equilibrium properties to
analyze something as inherently complex as a multi-
host and/or multi-pathogen system is perfectly
reasonable. At some point though, one must wonder
what lies beyond models with those properties.
Regarding host diversity, we now know a great
deal about how changes in host diversity affect
the transmission of pathogens that exhibit long-
term persistence, but is there similarly general
understanding that can be obtained about how
changes in host diversity affect diseases prone to
epidemics or that are only beginning to emerge?
Troublingly, some of the multi-host diseases of
greatest concern to human health—such as Lyme
disease, West Nile, and yellow fever—exhibit
strongly seasonal epizootics with a great deal of
poorly understood interannual variation therein.
To assume that we fully understand the role of
host diversity in those systems would be naive.
Regarding pathogen diversity, we now know
a great deal about conditions that permit the
long-term coexistence of multiple pathogens that
circulate in a well-mixed host population, but do we
know the extent to which those conditions apply for
strongly-immunizing pathogens that persist only
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at the scale of a metapopulation? In systems such
as these, coinfection—a key driver of pathogen
interactions in many systems—may be much less
common (Vogels et al. 2019). As inspiration for
how to advance theory in light of these challenges,
one nice demonstration by Lourenço and Recker
(2013) showed how more realistic representations
of transmission dynamics can alter conclusions
about pathogen interactions. They used a spatially
explicit, agent-based model of dengue virus
transmission to show that stochastic amplification
of differences among serotypes was sufficient to
recreate many of the same patterns that simpler
models could explain only by invoking strong
interactions among serotypes. Until possibilities
such as these are explored in a greater diversity of
systems, much of the theory of multi-host and/or
multi-pathogen systems will, in our view, remain
provisional.

Another theme of current theory that we have
noticed is that the variety of pathogen assemblages
that are considered in analyses of multi-pathogen
systems is somewhat limited. For example, rather
than consider all pathogens in a given community,
theoretical investigations often focus on a much
smaller subset, such as i) hosts known to harbor a
particular type of pathogen (e.g., West Nile virus
and its many hosts); ii) strains within a single
species of pathogen (e.g., dengue virus serotypes);
iii) hosts and/or pathogens that all have a similar
mode and dynamic of transmission (e.g., pathogens
that all have stable, long-term persistence in a
shared set of hosts); iv) a small number of different
pathogen types with a documented interaction
of specific interest (e.g., helminths and malaria
pathogens); or v) a system with a tractable number
of multiple hosts and multiple pathogens (e.g.,
barley yellow dwarf viruses of plants). There
are important questions to be addressed in each
of these situations, but the fact that the current
state of theory is limited to these subsets of the
full assemblage of hosts and pathogens must
be acknowledged. We find these choices to be
reminiscent of the “modules” that have been
a focus of theory on food webs (Holt 1997).
They may well be instructive in many ways, but
they are somewhat myopic in their view of true
communities of pathogens and their hosts. There

are, of course, reasonable arguments for restricting
the focus of theory in this way. First, it may
be the case that interactions beyond the players
in these restricted groupings are so minimal as to
be insignificant. After all, the specificity to respond
to only certain pathogens, or their close relatives,
is a hallmark of adaptive immune responses. At
the same time though, immune responses can be
much less specific in many host species (Wuerthner
et al. 2017), a consideration that could lead to
greater connectedness in host-pathogen interaction
networks than previously appreciated. Second, the
analytical tractability of models involving a large
number of types quickly diminishes as diversity
exceeds that of the more limited assemblages
that have been the focus of much work to date.
In addition to ways that some models of strain
diversity have addressed this issue (Gog and
Grenfell 2002; Cobey and Lipsitch 2012), theory
from other areas of ecology, such as food webs
(McCann 2011), may offer inspiration for future
advancements.

Finally, it is worth reflecting on the range of
possibilities for how theory—and, more broadly,
mechanistic models with a basis in theory—
can be used to enhance understanding and
management of host-pathogen systems. Many
compartmental models offer the ability to obtain
formulas describing how various parameters affect
conditions for pathogen persistence, which can then
be used to describe the contribution of different
host species to transmission, explain pathogen
coexistence, or inform strategies for pathogen
elimination. Models ranging from simple to
complex can be used to simulate system dynamics,
informing how different biological mechanisms
give rise to different observable patterns or how
a system might respond to various perturbations
from the environment, evolutionary forces, or
interventions. Models can be generic and studied
without reference to a particular system, or they
can be used to extract signals from data not readily
apparent in the data itself. Models can also be used
for forecasting, an enterprise that directly interfaces
models with data, offers a unique opportunity for
model comparison and hypothesis testing, and
offers direct value for public health (Du et al. 2017;
Johnson et al. 2018; Reich et al. 2019). While there
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are notable exemplars involving multi-host and/or
multi-pathogen systems for each of these uses of
theory, our perception is that progress in many of
these areas is much farther along for single-host,
single-pathogen systems than for multi-host and/or
multi-pathogen systems. As theories of host and
pathogen diversity continue to develop, theoretical
ecologists may benefit from looking outward from
the narrow literature within existing niches in this
area, such as the ones we focused on in this review.
Doing so may inject humility and spark creativity,
leading to the construction of new and exciting
theoretical niches in this field.
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CHAPTER 14

The impact of temperature on
population and community dynamics
David A. Vasseur

14.1 Introduction

Climate change is expected to alter many character-
istics of the abiotic environment. These alterations
will ultimately be re-expressed as changes in eco-
logical patterns and processes and our ability to
understand and predict these changes is one of the
great challenges of the current century. In addi-
tion to a gradual warming of many of the Earth’s
ecosystems, concomitant changes in precipitation,
the concentrations of organic and inorganic nutri-
ents, and the alteration of habitat (among other
things) will interact in important and unforeseen
ways. Such interactions have been emphasized in a
number of important experiments (e.g., the free-air
CO2 enrichment experiments; Ainsworth and Long
2005) yet, these present a significant challenge to the
development of general theoretical approaches for
studying population and community dynamics due
to the often non-linear, threshold-driven, and con-
text dependent nature of such interactions. Rather,
the theoretical foundations in this area have focused
more on the integration of singular environmental
variables across a range from single populations to
complex communities of interacting species.

Of the many environmental variables that impact
ecological systems, temperature has proven to
be particularly enticing for study, due perhaps
to its ubiquitous importance in nature, a strong
physical theory upon which to frame its influence,
and in many systems, the lack of a feedback cycle

between temperature and ecological attributes such
as population dynamics. While the global mean
temperature has already risen by approximately
1oC and will continue to rise over the coming
decades, researchers have also begun to appreciate
the potential for variation in temperature beyond
the mean change to affect ecological systems.
Climate models predict an increase in the temporal
variation and autocorrelation of temperature
(Easterling et al. 2000; Meehl and Tebaldi 2004; Field
et al. 2012), and although there is substantial spatial
variation in the extent to which these characters
will change, many locations will experience the
culmination of these changes as increases in the
frequency, intensity, and duration of extreme events.

Population dynamics play a critical role in linking
climate change to ecological patterns and process, as
they form part of a chain of responses that are linked
via ecological interactions and because they are the
basis upon which aggregate-level responses at the
community or ecosystem level formed. Although
the idea that external forces in the environment
can influence population dynamics is not new
(e.g., Andrewartha 1954), there remains much to
be learned about how population dynamics depend
on the environment. This lack of understanding is
perhaps best exemplified in attempts to forecast
population dynamics. While quantitative models
have proven useful in some cases, recent work
has shown that the forecast horizon, over which
sufficiently good predictions can be made, is vastly

Vasseur, D. A., The impact of temperature on population and community dynamics In: Theoretical Ecology: Concepts and Applications. Edited by: Kevin S. McCann
and Gabriel Gellner, Oxford University Press (2020). © Oxford University Press.
DOI: 10.1093/oso/9780198824282.003.0014
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reduced in the presence of environmental variation
(Petchey et al. 2015). Central to this issue is the
fact that there has been little consensus about
how environmental variation should interface with
population dynamics, especially in circumstances
where “the environment” is not a well-specified
quantity. This chapter seeks to synthesize efforts
to embed temperature variation into models of
population and community dynamics, outline the
major challenges involved in doing so, and suggest
a new paradigm for linking temperature-driven
variation in key parameters.

14.2 Population dynamics in
varying environments

Form a theoretical perspective, the effect of
changing environmental conditions on population
dynamics are perhaps best considered through the
lens of perturbation theory (Bender et al. 1984).
Altered environmental conditions, so long as they
do not produce an immediately lethal effect, alter
parameters such as the rates of birth and death in
a population, thereby dictating a new pattern of
population growth, or decline (or stasis) relative
to previous environmental states. A large majority
of perturbation experiments have considered the
role of singular and sustained (long-term) changes
to environmental conditions in this context (e.g.,
Carpenter et al. 2001), and indeed many such
experiments have looked at the role of temperature
in this manner(Petchey et al. 1999; Barton et al. 2009;
O’Connor et al. 2011; Shurin et al. 2012; Fussmann
et al. 2014a; Yvon-Durocher et al. 2015). However,
it is important to also consider that the same
framework is useful for exploring how multiple
short-term changes in environmental conditions
manifest in population dynamics. Here, the rate
at which environmental changes occur, relative to
the rate at which the ecological system responds,
represents a scalar adjustment that can be applied
to any system.

Perhaps the first to study the effect of tempo-
ral environmental variation on population growth
were Lewontin and Cohen (1969), who examined
random variation in the intrinsic growth rate of an
exponentially growing population in discrete time,

and Levins (1969) extended their results to random
variation in the intrinsic growth rate r and carrying
capacity K of the continuous time Logistic model:

dN
dt

= rN
(

1 − N
K

)
. (14.1)

Their results formed the foundation for our under-
standing of how variation in a biological parameter
is reflected in the abundance (N) over time. Levins
(1969) demonstrated that when the intrinsic growth
rate r varies through time, the population is likely
to remain near its carrying capacity K so long as the
variance of r is less than its mean, otherwise the pop-
ulation distribution is bimodal with modes at zero
and K. When the carrying capacity K is varied, the
population remains near the harmonic mean of K;
however, the extent to which recent values of K are
weighted in the harmonic mean relative to distant
values of K is determined by the value of r. This
final point was revisited later by May (1976), who
examined the role of sinusoidal variation in K on
population dynamics. May demonstrated that for
high values of r, population dynamics would closely
track (“environmental tracking”) their sinusoidal
environments and would approach the same sinu-
soidal fluctuation (with some associated time lag)
as r → ∞ whereas, for low values of r, population
dynamics would settle on the harmonic mean of the
carrying capacity. The implication is therefore that
any variation in K gives rise to a mean population
size N that increases with r, but is always less than
the mean carrying capacity K (Figure 14.1). This
led to the idea that natural selection should favor
genotypes that are best able to track environmental
fluctuations when variation in K is small, and select
genotypes that integrate across environmental fluc-
tuations when variation in K is large (Boyce and
Daley 1980). These findings demonstrate the inter-
twined roles that model parameters can have with
respect to filtering and re-expression of environ-
mental variation in population dynamics and the
inherent challenge of dealing with more complex
models where multiple parameters may be fluctu-
ating simultaneously.

Much of the early theoretical work on environ-
mental variation assumed a set of rather ideal con-
ditions: i) that environments were stochastic and
unpredictable from previous states (e.g., they lacked
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Figure 14.1 Mean abundance exhibited by the logistic model dn/dt = rN(1 − n/K) where K = 1 + sin(2π t)/2. At low values of the intrinsic
growth rate the mean abundance approaches the harmonic mean carrying capacity K̃ whereas at high values the mean abundance approaches the
arithmetic mean carrying capacity K. The smaller panels show the dynamics of N (solid) and K (dashed) at small and large r. The transition from
“averaging” to “tracking” depends on the frequency of oscillations in K, with higher frequencies requiring faster growth rates.

autocorrelation); ii) that variation in the environ-
ment mapped linearly onto the biological parameter
of interest (e.g., r, K or similar), and iii) that environ-
mental variation was not great enough to generate
qualitative changes to the underlying stability of the
system. Moving from these idealized conditions to
a more natural model of environmental variation
that violates one or more of these requirements,
improves the biological validity of models but at
the same time introduces complexities that interfere
with analytical synthesis. Considering the role of
temperature in relatively simple models of popu-
lation dynamics, it is clear that all three of these
conditions are easily violated.

Temperature, like many other environmental
variables demonstrates strong temporal autocor-
relation in aquatic environments and moderate
autocorrelation in terrestrial environments (Cyr*
and Cyr‡ 2003: Vasseur and Yodzis 2004). Autocor-
relation increases the responsiveness of population
dynamics to environmental variation (Roughgar-
den 1975, Tuljapurkar 1982) by concentrating it at
longer scales, thereby providing populations more
time to mount a response and leading to closer
tracking of the environment. This finding led to

the suggestion that environmental autocorrelation
could be detrimental for persistence (Ripa and
Lundberg 1996, Heino et al. 2000, Heino and
Sabadell 2003) by luring populations closer to
extinction boundaries. These ideas match closely
with those of Levins (1969) and May (1976) whose
work on sinusoidal variation represents a special
case of autocorrelated variation. In Figure 14.1,
the more responsive population demonstrates
a much greater range of variation; notably this
responsiveness increases not just as function of r
but also of the frequency of sinusoidal variation f.
However, many counter examples also suggested
a beneficial role of autocorrelation for ensuring
the persistence of populations (Cuddington and
Yodzis 1999; Wichmann et al. 2005) and more
recently it has been shown that the effect ultimately
depends on the extent to which population
dynamics overcompensate for changes in their
environmentally determined equilibria (Schwager
et al. 2006; Vasseur 2007). Autocorrelation can also
act to increase the persistence times of source-
sink metapopulations by leveraging the power of
exponential growth during long-runs of favorable
conditions (Gonzalez and Holt 2002; Roy et al. 2005).
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Beyond the general effects of autocorrelation,
theoretical work on the relationship between
temperature and population dynamics has mainly
considered how, and which parameters are sensitive
to temperature. Temperature influences population
dynamics through a myriad of physiological and
behavioral responses that ultimately affect ecolog-
ically relevant biological and ecological rates of
birth, death and interaction. Peters (1986) provides
an incredibly rich summary of the ecological
importance of body size and temperature, much of
which has ultimately has been formalized as part of
the metabolic theory of ecology (Gillooly et al. 2001;
Brown et al. 2004). In this framework the effects of
temperature are scaled by the Arrhenius relation-
ship e−Ea/kT, where Ea is the activation energy, k is
Boltzmann’s constant, and T is temperature. This
relationship generates an increase (or decrease) in
biological rates that is approximately exponential
over the range of biologically relevant temperatures.
While the Arrhenius equation provides a good
characterization of cross-species comparisons it
does not necessarily characterize the effect that
temperature has on the biological rates expressed
by individuals or populations. For example, (Eppley
1972) demonstrated that an exponential relationship
characterized the overarching rate of maximal phy-
toplankton production in marine environments, but
showed that individual species only approached
this curve at their optimum temperature for growth.
At the species level, relationships between temper-
ature and production are instead better depicted by
the skewed unimodal curves that are commonplace
in the study of thermal ecology and oftent described
as “thermal performance curves” (Kingsolver 2009);
while these curves exhibit an exponential rise over
part of the temperature range, they ultimatley slow,
reaching a maximum at some optimal temperature
and crash quickly at temperatures above the
optimum. The incorporation of temperature into
studies of population and community dynamics is
thus dependent on the scale at which individuals
are aggregated into funcional groups—an in issue
which will be explored further.

Given the scope of the model (e.g., single
population vs. community), temperature variation
has the potential to generate both quantitative and
qualitative changes in population dynamics. For

example, temperature can change the equilibrium
or non-equilibrium density of the population, the
quasi-equilibrium temporal patterns exhibited by
population density (e.g., oscillations), and/or the
potential for a population to exist at all. Regardless
of the scale at which populations are modeled
(single-species or functional groups), temperature
has a non-linear effect on biological rates. While
it is clear that the non-linearity of these functions
can itself generate the possibility for variation to be
filtered in non-intuitive ways (Laakso et al. 2001),
the non-linearity of responses combined with the
co-dependence of many biological parameters on a
single variable such as temperature, has provided a
rich set of problems to investigate in this area.

Although climate change is expected to alter
many aspects of the thermal environment, recent
studies have focused on the effects of gradual
warming on populations and communities. Here,
the equilibrium conditions and population dynam-
ics that are generated at different temperatures
are of particular interest. While this approach
has proven valuable, there has been some debate
about how and where to incorporate temperature
sensitivity in models. The wide variety of functional
relationships, combined with differences in their
sensitivity across model parameters, have led to
inconsistency in predictions for the response of
populations and communities to warming. In the
following section, I review this literature, focusing
on models of single populations and consumer-
resource systems. I then discuss implications for
shorter-term temperature variation by introducing a
new framework for modeling temperature-sensitive
logistic population dynamics.

14.3 Focusing our paradigm:
Which parameters of trophic models
should we study?

The level of biological detail that is described in a
model changes the number of parameters involved,
and with this change, the opportunity to include
links to the abiotic environment. My intent now is to
employ and summarize the work on a set of simple
population and community models that have utility
as building blocks for larger and more complicated
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models of food web dynamics. These models are
generally applied to populations of ectotherms and
assume a strict mapping of ambient temperature
onto body temperature. While it is well known that
ectotherms deploy a variety of strategies to decou-
ple their body temperature from ambient tempera-
ture, and that this has important ecological conse-
quences (Kearney et al. 2009; Huey et al. 2012; Sears
et al. 2016), thermoregulation is not a component
of the models described herein. Thermoregulatory
behavior can be easily layered on top of the exist-
ing set of models by creating a dynamic mapping
between ambient and body temperature (e.g., Fey
and Vasseur 2016).

It is well accepted that the intrinsic rate of popu-
lation growth r is sensitive to temperature. In fact,
many studies seeking to describe the relationship
between performance or fitness and temperature
use r as a proxy (Deutsch et al. 2008; Kingsolver
2009; Thomas et al. 2012). r describes the difference
between the per-capita rates of birth and death in a
population, both of which are an aggregate of other
processes that are themselves governed by physi-
ological and ecological temperature dependences.
For example, birth rates are influenced by rates
of resource acquisition which may be temperature
sensitive for various reasons including the effective-
ness of membrane transport in microbes, swimming
speeds and visual or chemosensory acuity in preda-
tors, and enzymatic effectiveness in herbivores, to
name only a few. In the absence of other sources of
variation, r has little value for studying the effects of
temperature since its effect on population dynamics
is relatively straightforward. Yet, when populations
are coupled via and ecological interactions such as
competition and predation, the interplay between
the direct and indirect effects of temperature (e.g.,
those passed through interactions) can yield impor-
tant insight.

In this spirit, and motivated by the growing body
of literature relating metabolic and other biological
rates to body size and temperature, Vasseur and
McCann (2005) developed and analyzed a basic
model of trophodynamics that incorporates the
effects of temperature into three key biological rates:
the intrinsic rate of increase of a living resource
population (r), and the maximum assimilation
rate (1 − δ) Jm, and the loss rate due to energy

metabolism (m) of its consumer. For tractability,
they assumed that temperature increased these
three rates according to a Boltzmann–Arrhenius
relationship—an approach that has validity when
the state variables in the model do not reflect
populations of a specific species, but instead reflect
characteristic functional groups in a community.
Their model followed the classic form of Rosen-
zweig and MacArthur (1963), adapted to model
biomass rather than abundance (Yodzis and Innes
1992), with resource (R) and consumer (C) dynamics
are given by:

dR
dt

= rR
(

1 − R
K

)
− Jm

RC
R0 + R

dC
dt

= C
[
−m + (1 − δ) Jm

R
R0 + R

]
.

(14.2)

By deriving the equilibrium of this model as a
function of temperature, they suggested that in
general, both resource and consumers should
exhibit declining abundance at warmer tem-
peratures despite greater productivity of the
resource, due to a relatively greater increase in
the metabolic demand and ingestion rates of
consumers. Their findings were predicated on a
particular ranking of temperature’s effects on the
three parameters, drawn from a relatively shallow
pool of empirical estimates, and subject to scrutiny
regarding where temperature sensitivity entered
the model. Equilibrium analysis demonstrates that
the effect of warming on the distribution of biomass
is largely determined by two key differences among
the activation energies of the three biological
rates. The difference

(
EJ − Em

)
determines the top-

down effect of consumers on resources (positive
values lead to reduced resource biomass at warm
temperatures; whereas the difference (Er − Em)

determines the potential for the total biomass in the
system to change (with positive values leading to
greater biomass). They assumed that the activation
of ingestion EJ exceeded the activation energy of
consumer respiration Em which further exceeded
the activation energy of resource production Er

and ultimately suggested that the biomass of
both resources and consumers should decline
with warming (Figure 14.2). In addition, they
noted that the stability of the equilibrium could
be compromised in warmer environments. Others
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Figure 14.2 Equilibrium abundance exhibited by the
Rosenzweig–MacArthur model when three key biological rates vary
according to the Boltzmann–Arrhenius relationship. The sizes of circles
depict a logarithmic scaling of the amount of biomass at each trophic
level. The left-side panels show the pattern that occurs when
consumer ingestion increases faster than metabolism while the
right-side panels show an alternative arrangement of EM and EJ. The
upper panels show the results when K is invariant, and the bottom
panels show the results when K declines with temperature.

later modified the assumptions about the relative
relationship between activation energies of the key
parameters (O’Connor et al. 2011; Sentis et al. 2017)
and experimentally demonstrated that

(
EJ − Em

)
tended to be negative (Rall et al. 2010), which would
lead to a reduction in top-down control of resources
and a shift toward a resource dominated system
(Figure 14.2).

Vasseur and McCann (2005) assumed that the
two remaining parameters, the resource carrying
capacity (K) and the half-saturation density of the
consumer’s functional response (R0), were indepen-
dent of temperature. One of the primary motivat-
ing factors for this assumption is that neither of
these are rate parameters; rather, both are threshold
values that are defined in units of abundance or
biomass density. Threshold parameters generally
represent an aggregate of many underlying pro-
cesses, some of which may be dependent on factors
that are extrinsic to the populations described in
the model. For example, carrying capacity (K) in
(14.2) reflects the extent to which resources com-

pete for resources whose abundance is assumed
to be fixed by processes that are extrinsic to the
model. While the temperature-dependence of these
factors may be challenging to describe, they rep-
resent a clear opportunity to improve our under-
standing of temperature effects on populations and
communities.

The assumption regarding the temperature-
independence of the half-saturation density R0 is
better understood using the alternative Holling
Type II form of the functional response. Under
the transformation Jm → h−1 and R0 → (ah)−1 the
Michaelis–Menten form of the functional response
depicted in (14.2) can be re-expressed using the
attack rate (a) and handling time (h) parameters
of the Holling Type II. Here it is obvious that
a temperature-invariance of R0 is satisfied so
long as a and h have an inverse dependence on
temperature. To a first approximation this is a valid
assumption. Attack rates of ectothermic consumers
should increase with temperature due to increases
in movement rates, visual acuity, chemotaxis, and
other elements of prey detection and capture (Dell
et al. 2011). At the same time, the rate at which
consumers handle a unit of resources h−1 increases
with temperature as ingestion, digestion, and
assimilation occur more rapidly. In a meta-analysis
of temperature-dependent functional responses
that included fifty-six observations on ectothermic
consumers, Englund et al. (2011) showed that
a and h−1 have a near identical response to
temperature, reinforcing the assumption that
R0 should be temperature independent. Rall
et al. (2012) extended this work to include over 600
functional response estimates from a large diversity
of systems, again showing a very close matching
of the temperature dependence of a and h−1.
More recently, Dell et al. (2014) suggested that this
condition could be violated in circumstances where
the effectiveness of consumer attacks are influenced
by the resource’s response to temperature. For
example, consumers that engage in active capture
or sit-and-wait strategies may have resources that
are more elusive in warmer environments, thus
slowing or reversing the effect of temperature on
attack rates.

In some cases, it may be more appropri-
ate to model the functional response of the
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consumer-resource model (Equation (14.2) ) as a
Holling Type III (Holling 1959). A few studies have
suggested that warming can induce a shift from
Type II to Type III functional responses for the same
pair of consumers and resources (Wang and Ferro
1998; Mohaghegh et al. 2001). This change would
have considerable implications for both the biomass
distribution and stability of the interaction, but it
presents a significant challenge to parameterize
given the phenomenological nature of the shape
parameter. For the zooplankton grazer Daphia con-
suming algae, Uszko and Diehl (2016) demonstrated
that, although the functional response was type
III over the entire range of temperatures studied,
the shape parameter increased with temperature,
making the sigmoid rise of the response sharper.
The authors suggest that warmer temperatures may
cause Daphnia to reduce its grazing effort at low food
densities to compensate for metabolic losses. While
such results may be common among many grazers
and predators, few studies have yet to consider the
potential for functional changes of this kind.

While there is no disagreement about importance
of vital rates in consumer-resource models for deter-
mining the impact of temperature for dynamics,
the functional forms describing the temperature
dependence of these rates has developed consid-
erably. The early work incorporating Arrhenius
relationships (e.g., Savage et al. 2004; Vasseur
and McCann 2005; O’Connor et al. 2011) assumed
that resources and consumers could continue to
exhibit increases in their vital rates across a large
range of temperatures by assuming, for example,
that each represented a broad functional group
with relatively diverse thermal sensitivities. When
these are replaced by single species, it is well-
established that for certain parameters, including
measures of fitness and performance, a unimodal
relationship that declines sharply beyond an opti-
mum best represents the relationship (Angilletta
2006; Deutsch et al. 2008; Kingsolver 2009).
Amarasekare and Savage (2012) demonstrated
that the skewed unimodal relationship between
r and temperature can be derived by assuming
that the positive contributions to fitness (e.g.,
fecundity, developmental or maturation rate) have a
symmetric unimodal relationship with temperature
while the negative contributions (e.g., mortality

or respiratory energy loss) are driven by an
Arrhenius relationship. Although there have been
some efforts to incorporate unimodal temperature
dependencies into trophic models (Gilbert et al.
2014; Fussmann et al. 2014b; Amarasekare 2015),
these are hampered by the potential for thermal
asymmetries (Dell et al. 2014). Asymmetries exist
when the optimum temperature for one vital rate
(e.g., resource intrinsic growth) is mismatched
relative to another (e.g., consumer ingestion).
For any pair of consumers and resources this
asymmetry adds an additional layer of uncertainty
that complicates the search for generalities and
patterns in response to warming. Before treating the
issue of unimodality in temperature responses, it is
pertinent to address the potential role of carrying
capacity as an additional temperature sensitive
parameter.

14.4 Temperature dependence
of carrying capacity

Perhaps the more questionable assumption made
by Vasseur and McCann (2005) is the temperature
invariance of the resource carrying capacity, K.
Despite the known importance of this parameter for
processes and dynamics at levels of organization
from populations to ecosystems (Rosenzweig
1971), there has been surprisingly little study of
its temperature dependence (Gilbert et al. 2014).
In a study aimed at quantifying the sensitivity
of consumer-resource interactions to warming,
Fussmann et al. (2014b) surveyed the literature
for temperature-scaling relationships and found
only five reports on the temperature sensitivity of K
(most from microbes). These showed a consistent
reduction of K with warming. More recent
studies have both confirmed this result (Bernhardt
et al. 2018) and supported the idea of temperature
invariance (Jarvis et al. 2016). Not surprisingly,
theoretical studies that have assumed an increase
in K with warming (e.g., Rall et al. 2010; Sentis
et al. 2017) tend to show qualitatively different
results for trends in biomass and stability compared
to studies that assume a decrease or stasis in K
(e.g., Savage et al. 2004; Vasseur and McCann 2005;
Fussmann et al. 2014b; Binzer et al. 2016; Osmond
et al. 2017). Figure 14.2 shows the relative effect
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of incorporating warming induced reductions in K
into consumer-resource models of the form given
by Equation (14.2). This addition tends to strongly
reduce the biomass of consumer populations, and
where top-down control becomes very weak, allow
for an increase in resource biomass.

For most species, carrying capacity reflects an
aggregate of biotic and abiotic processes, some of
which may be temperature-dependent. Schoener
(1973) described carrying capacity of a producer as
a function of the nutrient supply, the per-capita
uptake rate, and the per-capita metabolic rate.
Assuming a constant supply of resources, it has
been suggested that temperature-induced increases
in uptake and metabolism should lead K to decline
in warmer environments since fewer individuals
can be supported by same flux of resources into
the system (Savage et al. 2004; O’Connor et al.
2011; Gilbert et al. 2014). Recently, Bernhardt et al.
(2018) extended this logic to include the potential
for declining resource body sizes in warmer
temperatures (an idea that has been expressed
as the temperature-size rule or Bergmann’s rule).
They demonstrated that temperature induced
changes in body mass slow the expected decline
in carrying capacity by reducing the per-unit-mass
rate of metabolism. They furthermore demonstrated
empirical support for this finding in the algae
Tetraselmis tetrahele over the range 5 to 25oC and
under a constant supply of nutrients.

Similar to work on other vital rates, carrying
capacity has been shown to have a unimodal
response to temperature when such relationships
are considered part of the processes underlying
carrying capacity. Others have argued that the
temperature sensitivity of K might be U-shaped
because competition should be strongest at temper-
atures that are optimal for production (Amarasekare
2015). Uszko et al. (2017) derived a unimodal
function for algal carrying capacity based on the
temperature dependence of nutrient uptake and
respiration of algal cells in the absence of grazers,
noting that this function must drop to zero at the
upper and lower limiting temperatures for intrinsic
algal growth. Considering this requirement, they
suggested that carrying capacity could, over the
range of biologically relevant temperatures, exhibit
invariant, unimodal or a decreasing response to

temperature depending on the interplay of nutrient
and light limitation. Lemoine (2019) recently
developed this idea further by incorporating
both external and internal nutrient dynamics
into a model of phytoplankton growth. Here the
temperature dependence of K is driven by the
interplay among five physiological processes that
individually respond to temperature. By randomly
combining empirical estimates of the sensitivity of
these processes, they found strong support for a
unimodal response of K and only rare instances
of entirely negative and positive curves over the
biologically sensitive range (0–40oC). This fits well
to a literature survey of thirty-nine experiments,
53% of which showed a unimodal response of K.

14.5 Unimodal responses and
community dynamics

Unimodal thermal response curves are typically
described by an exponential increase from a low
critical temperature (Tmin) to an optimum tempera-
ture (Topt), beyond which the curve crashes sharply,
crossing zero at an upper critical temperature
(Tmax). These critical values provide an additional
potential for alterations in the equilibrium stability
of populations and communities. For example,
in the trophic model (Equation (14.2) extinction
of the consumer via a transcritical bifurcation is
possible at either low or high temperatures, but
not both. Using a model similar to Equation (14.2),
but where r, a and h−1 are replaced by unimodal
functions of temperature (Amarasekare 2015),
showed that the upper and lower persistence limits
for the consumer are determined by a combination
of the critical values of r and a, with those of
the more thermally restricted population taking
precedence. This work clearly demonstrated the
potential for thermal mismatches of consumers and
resources to destabilize the system under climate
warming. This outcome had been clearly predicted
by earlier work comparing the thermal sensitivity
of consumption and respiration in urchins and
other taxa (Lemoine and Burkepile 2012); declines
in the rate of consumption at high temperatures
ultimately leads to a “mismatch” between the
metabolic requirements and acquisition of energy
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that makes it impossible for the population to
persist. Building on this work Uszko et al. (2017)
provide the most complete temperature-dependent
model of consumer resource dynamics to date,
by incorporating an explicitly derived unimodal
function for carrying capacity in addition to
unimodal sensitivity of r, a, and h−1. Similar
to the work of (Amarasekare 2015), they find
that consumer persistence depends strongly on
the thermal tolerances of the resource, and that
oscillations are likely at temperatures optimal for
resource growth. When consumers forage with
a Type III functional response oscillations are
limited to temperatures near the upper and lower
critical temperatures for consumer persistence.
Interestingly, they showed that enrichment of
the system had only a weak interaction with
temperature, with its effects more apparent in
warmer temperatures.

14.6 Warming and food webs

Using a tri-trophic model, Binzer et al. (2012)
explored the effect of warming and enrichment in
size-structured communities whose vital rates (and
carrying capacity) were increasing (decreasing)
functions of temperature. They found that warming
strongly decreased the persistence of the secondary
and primary consumer, ultimately leaving only the
resource population. However, they found that
enrichment could counter the effect of warming,
suggesting that a substantial part of the temperature
effect in their model was mediated by carrying
capacity. Using the niche model of food web
construction (Williams and Martinez 2000), these
results were extended to dynamic size structured
food webs (Binzer et al. 2016). They again found that
warming strongly decreased species persistence,
particularly at low eutrophication, for food webs
where consumers are, on average, one hundred
times the mass of their resources. This finding
strongly reflected their choice of activation energies
(which relied on an extensive database of empirical
estimates); here the metabolic loss increased more
rapidly than ingestion rate, challenging the ability
of many non-basal species to persist. Zhang
et al. (2017) took a slightly modified approach,
incorporating Arrhenius relationships to describe
the effects of warming on parameters, but adding a

thermal niche to the birth rate of populations. They
found that species responses to temperature change
were not predictable from their own thermal niche
but relied more on changes to the food web. They
demonstrated that continued functioning of the
food web relied on whether the system was open
to immigration, such that functional roles could be
replaced.

To date, there are no studies that have incor-
porated unimodal responses in complex food web
models. While it is impossible to analytically deter-
mine the sensitivity of dynamics to temperature
once beyond a fairly simple set of small motifs, it
is reasonable to assume that: i) the thermal limits of
populations at lower trophic positions can strongly
influence those at higher trophic positions, and ii)
cascades of extinction may occur when the ther-
mal limits of basal resources or keystone species
are surpassed. Although it is a rather straightfor-
ward exercise to incorporate unimodal temperature
responses into models such as those used by Binzer
et al. (2016), doing so remains a rather fruitless effort
until we have a better roadmap of how, for example,
sensitivity to temperature among the various vital
rates changes with body size or trophic position.

14.7 Temperature variation at
shorter time scales

The body of literature concerning the impact of
temperature on communities has mainly been con-
cerned with equilibrium dynamics and the poten-
tial for changes in the equilibrium stability of the
system with warming. To realize the predictions
made under this framework, temperature change
must be sufficiently slow to allow the system to
remain sufficiently near to equilibrium at all times.
However, many aspects of climate change concern
the character of fluctuations in temperature at much
shorter time scales than these; time scales that will
generate transient dynamics that may have particu-
larly drastic consequences. Recently, the importance
of temporal variation in temperature has been high-
lighted as a key driver of fitness (Helmuth et al.
2014; Vasseur et al. 2014; Stoks et al. 2017), but there
has been little work extending this to population,
community, and food web dynamics. This is sur-
prising given that much of this work relies on the
intrinsic growth rate r as a proxy for fitness and
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so inherently considers population growth as the
underlying metric.

One of the major insights into the work on tem-
perature variation and fitness is that moments when
temperature exceeds the upper or lower critical lim-
its of a thermal response curve are key determinants
of long-term fitness (Woods et al. 2018). Dealing
with these moments from a population dynamic
perspective is challenging however, since negative
intrinsic growth rates generate inconsistencies in
the logistic model of population growth that is the
cornerstone of more complex models (Mallet 2012).
Because r is multiplied by the factor representing
density dependence (1 − N/K), negative values of
r lead to an inversion of the effect of density depen-
dence thereby weakening the rate of population
decline. Some authors have argued that a functional
separation of processes exists when r is negative,
such that the effects of density dependence can be
neglected during these periods. However, to deal
with this challenge others have adopted an alter-
native form of the logistic model based on Ver-
hulst’s original form of the logistic (Long et al. 2007;
Mallet 2012):

dN
dt

1
N

= (r − αN) . (14.3)

Here, r has a similar but not fully equivalent rep-
resentation as the intrinsic growth rate of the pop-
ulation (see Schoener 1973), and α represents the
intraspecific competition coefficient. I herein refer
to as this as the r-α model. The two forms of the
logistic model (Equations (14.1), (14.3) ) are easily
interconvertible since the r-α model has an equilib-
rium value r/α which is equal to K in the classical r-
K formulation. However, this equivalence makes it
plainly obvious that environmental variables (such
as temperature) that have an effect on r, must also
have an effect on K except in the instance where the
intraspecific competition coefficient varies in a man-
ner that is exactly compensatory. This is of course
an extremely unlikely scenario which furthermore
generates unlikely singularities at the critical values
where r = 0. The more likely scenario, in which r
and K change in a correlated fashion has rarely been
noted in the literature (see Uszko et al. 2017), but
provides a clear constraint that resolves the debate
about the form of temperature sensitivity in K.

14.8 Deriving an r-K temperature
dependent model

The r-α and the r-K version of the Logistic model
can be derived in a variety of ways, but the most
common ecological interpretation is based on a
density-dependent net difference between births
and deaths. Assuming that, either one or both the
birth and death rates of a population exhibit linear
density dependence, we can derive the following:

dN
dt

1
N

= B − D

= b0 − d0 − N (β + δ), (14.4)

where B = b0 − βN and D = d0 + δN define the per-
capita birth and death rates as a function of density
according to the density dependence constants β

and δ. Here, it is clear that for the r-α model, r is
the difference between birth and death rates when
N = 0 and α is the sum of density dependent effects
on birth and death (β + δ). Shifting to r-K terminol-
ogy, r remains as b0 − d0 and K = (b0 − d0)/(β + δ).
From this interpretation of the logistic model, it is
clear that if the environment has an effect on the
density-independent per-capita rates of birth and
death, b0 and d0, that these effects should manifest in
both r and K of the logistic model (but not in α of the
alternative form). If the environment effects only the
extent to which density alters per-capita birth and
death rates, then K would vary independently of r.

The well-established evidence for a unimodal
response of r to temperature (Deutsch et al. 2008;
Kingsolver 2009; Thomas et al. 2012; Kremer
et al. 2018) in many cases comes from studying
the rate of population growth under density-
independent conditions. Amarasekare and Savage
(2012) demonstrated that this relationship could be
reconstructed by assuming a symmetric unimodal
relationship between temperature and birth
rate, coupled to an Arrhenius relationship for
death rate. Building on this set of assumptions,
I begin with the following set of equations that
incorporate temperature dependence into zero-
density per-capita birth and death rates. Assuming
no interaction between temperature and density
dependence these equations are given as:

B(T, N) = b0(T) − βN

D(T, N) = d0(T) + δN, (14.5)
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where b0(T) = abe−s−1(T−bopt)
2

and the death rate
is a simple exponential function of temperature
d0(T) = adezT. Here, the ai are intercepts, bopt is the
temperature that optimizes birth rates, s governs
the breadth of the birth function, and z scales
the effect of temperature (in oC) to mimic the
Arrhenius relationship. So long as the parameters
ensure that B exceeds D at some temperature,
r(T) takes on the familiar unimodal, left-skewed
shape that is common to thermal performance
curves, with critical temperatures for population
growth at Tmin < bopt and Tmax > bopt. Figure 14.3
shows a three-dimensional plot of B(T, N) and D(T,
N); here r(T) is given by the difference between

the two planes at N = 0 and K(T) is given by the
projection of the intersection of the two planes
onto temperature. It is easily evident that r(T) and
K(T) share their form with respect to temperature
since they are related through their derivation
according to

K(T) = r(T) · (β + δ)−1. (14.6)

Because β and δ are the density-dependent con-
stants, K(T) is simply a constant multiple of r(T);
thus, the two curves exhibit a perfect covariance
with respect to temperature. The optimum temper-
ature for growth, ropt, corresponds perfectly to the
temperature that maximizes population size. Kopt
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Figure 14.3 The temperature and density dependence of birth and death rate given by Equation 14.5 (green and violet surfaces respectively)
interactively determine the joint reliance of r and K on temperature. r(T) is projected in black and K(T) is given by the projection of the intersection
of planes (yellow line) onto the bottom plane. Here, density dependence only alters birth rates (e.g., δ = 0) but this has no qualitative effect on the
model behavior. In the lower left panel, the temperature dependence of per-capita growth rate (birth–death) is shown for 5 different population
densities. The curve when N = 0 shows the temperature dependence of r. In the lower right panel, r(T) and K(T) are shown together and the
upper-right panel shows their covariance as a function of temperature. In the panels b0 (T, N) = 3e−(T−20)2/25 − 0.025N b0(T) = 3e−(T−20)2/25

and d0(T) = 0.01e0.2T .
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(Figure 14.3). Given the assumptions made here
about the nature of birth and death, these optima
will always occur at a value less than the opti-
mum for birth bopt (Amarasekare and Savage 2012).
Furthermore, it is obvious here that the tempera-
tures at which r(T) and K(T) transition from pos-
itive to negative values must be the same. This
can be seen in Equation (14.6) where the density-
dependence constants have no bearing on the roots
of r(T) and K(T). This is visually represented in
Figure 14.3 where the curves representing r(T) and
K(T) must be equal to zero at precisely the same
values. This derivation provides a simple and rather
elegant solution to the perceived challenges associ-
ated with the scaling of carrying capacity in pop-
ulation and community models. Moreover, it also
shows that the r-K version of the logistic model is
quite capable of handling negative values of r in a
consistent manner; since both r(T) and K(T) switch
sign at the same temperature, density dependence
is assured to act in the correct manner on per-capita
growth rates. It can be shown that this property
extends beyond the assumptions made in Equation
(14.5) to cases where the strength of density depen-
dence, α + β, also exhibits temperature sensitivity
(see Box 14.1).

Box 14.1 When temperature affects the strength of density dependence

Consistent with the idea that individual resource use
increases with temperature, and to provide a working
example, the following model exhibits a density dependent
reduction in birth rate that increases exponentially with
temperature.

B(T, N) = abe−s−1(T−bopt)
2 − aβezβ TN

D(T) = adezT
(14.B.1)

Here r(T) remains unchanged from the previous model, but
due to the temperature dependence of β, K(T) takes the
more complicated form:

r(T) = abe−s−1(T−bopt)
2 − adezT

K(T) = a−1
β

[
abe−s−1(T−bopt)

2−zβ T − adeT(z−zβ)
]

.

(14.B.2)

Here, the scaling exponents zB modifies the optimum of

K(T)
(
μ

opt
K

)
relative to that of r(T)

(
μ

opt
r

)
. In the case

where z = zβ , indicating that the effect of temperature
on death rates and density dependence are the same, the
interaction between temperature and density dependence
generates a shift in μ

opt
K that is equal to −0.5s · zβ oC

(Figure 14.4). This shift is more extreme in cases where z <

zβ . The addition of a temperature and density dependence
interaction also reduces K(T) for all values of T (this effect
is not demonstrated in Figure 14.4 due to the choice of
parameters).

14.9 Temperature by density interactions

There are a variety of ways in which temperature
might impact the strength of density dependence
on population growth. Movement rates of many
ectotherms increase in warmer environments
(Peters 1986) thereby intensifying opportunities
for interactions such as interference competition
(Lang et al. 2012). Exploitative competition may
also increase if the provisioning of resources
is constant since the greater metabolic demand
of organisms can lead to a depleted stock of
resources. Interactions between temperature and
density dependence can also reflect aspects of
a biotic resource’s response to temperature that
arise through its own physiological constraints or
interactions with other species.

Box 14.1 describes how the temperature sen-
sitivity of carrying capacity is altered when
density dependence is altered by temperature and
Figure 14.4 shows an example in which warmer
temperatures strengthen density dependence.
Although the shift in K(T) modifies the covariance
between r(T) and K(T), it does not alter the fact
that the two curves intersect zero at precisely
the same temperatures (Figure 14.4). The positive
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Figure 14.4 The temperature and density dependence of birth and death rate given by Equation 14.B.2 (green and violet surfaces respectively)
interactively determine the joint reliance of r and K on temperature. r(T) is projected in black and K(T) is given by the projection of the intersection
of planes (yellow line) onto the bottom plane. Here, density dependence alters birth rates interactively with temperature. In the lower left panel, the
temperature dependence of per-capita growth rate (birth–death) is shown for 5 different population densities. The curve when N = 0 shows the
temperature dependence of r. In the lower right panel, r(T) and K(T) are shown together and the upper right panel shows their covariance as a
function of temperature. In the panels b0 (T, N) = 3e−(T−20)2/25 − 0.0006Ne0.2T and d0(T) = 0.01e0.2T .

density-temperature interaction depicted here,
demonstrates that cooler temperatures would favor
higher carrying capacities at a given r, while warmer
temperatures would have reduced K relative to the
model without interactions. Furthermore, the model
exhibits pronounced differences in the relationship
between r(T) and K(T) as the system crosses the
upper and lower critical points.

Perhaps surprisingly, an increase in the strengh
of density dependence at warmer temperatures
leads to a shift in the optimum temperature for
growth in more competitive environments (Figure
14.4 lower left). This shift has been observed in
experiments where the growth rate of juvenile
salmon was measured across a range of food
availibity (Brett et al. 1969), and in detailed models

of phtoplankton populations where temperature
modified nutrient availability (Thomas et al. 2017).
Given that the r-K framework reproduces these
imporant and surprising characteristics, further
study of this simple framework may provide new
insight into how populations respond to variation
in temperature.

14.10 Temperature variation, dynamics,
and extinction in r-K models

In addition to forming the basis for studies
of consumer-resource or food-web dynamics,
the r-K models are useful on their own for
elucidating the impact of short-term variation
on population dynamics. The dynamics of this
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model can be simulated as a stochastic differential
equation (SDE) system (Han and Kloeden 2017),
where the dynamics of temperature (T) are
given by the stochastic Ornstein-Uhlenbeck (OU)
process and the population dynamics (N) are a
temperature-dependent deterministic process as
defined previously:

dTt = θ(μT − Tt)dt + σdWt

dN
dt

1
N

= (b0(Tt) − d0(Tt))

(
1 − (β + δ)

b0 (Tt) − d0 (Tt)
N

)
.

(14.7)

The Ornstein-Uhlenbeck process generates
normally-distributed, temporally-autocorrelated
dynamics using a standard Weiner process, dWt,
with volatility σ , that is modified to ensure a
tendency to return to the mean value (μT). This
tendency is given by the reversion rate θ which
is herein set at 0.1 to approximate the extent of
autocorrelation that naturally occurs in temperature
variation (Vasseur and Yodzis 2004). Numerical sim-
ulations of the SDE model were simulated as a fine-
grained Stratonovich Process in Mathematica v. 11.3.

Figure 14.5 shows sample dynamics arising from
the two r-K models for three different mean envi-
ronmental temperatures μT. In the temperature-
density independent model, when μT is set near
the modal value of r(T) and K(T) dynamics exhibit

little variability and remain near to the maximum
of K(T). Despite the fact that populations are more
able to track and therefore embed temperature
variation into their dynamics when r is large, here
this is offset by relative insensitivity of K(T) near its
maximum. At cooler and warmer values of μT, K(T)
is a more strongly increasing (decreasing) function
of temperature, leading to larger variation in K(T).
This larger variation translates into greater variation
in population dynamics despite a reduction in
tracking ability away from the the maximum.
As the mean temperature approaches the critical
values, the variability in population dynamics
becomes small due to the compression of dynamics
near zero values and because their ability to track
environmental fluctuations is relatively weak. As
a confirmation of the key role K(T) plays in deter-
mining patterns, the dynamics of the temperature-
density dependent model exhibit the least variation
around μ

opt
K .

Figure 14.6 shows the probability distribution of
population size as a function of mean tempera-
ture. The interaction of r and K near the upper
critical temperature leads to extinctions occuring
in environments with mean temperatures substan-
tially less than the critical value. This is a joint effect
of the rapid decrease of r and K above the critical
value which leads to a strong detrimental effect of
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Figure 14.6 Probability densities of population size after 1000 time steps for the Logistic model without (left) and with (right) a density-
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non-linear averaging (see Vasseur et al. 2014). In
contrast, the population is able to tolerate environ-
ments with mean conditions at, or even less than
the lower critical threshold via a positive effect of
non-linear averaging. The fact that both r and K

are correlated across these critical points suggests
an even greater effect of thermal variability than
previous models incorporating only fitness (r) have
predicted (Deutsch et al. 2008; Vasseur et al. 2014;
Woods et al. 2018).
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14.11 Summary and future directions

Including temperature as a driver of key biological
rates and ecological thresholds has led to a suite of
important predictions about the dynamics of popu-
lations and communities. As a whole, these models
have driven a more exhaustive study of the rate
and functional form of temperature dependence in
a variety of key parameters in addition to fuel-
ing micro- and mesocosm scale experimental work
aimed at understanding the impacts of warming. To
date, few studies have taken a close look at the role
of shorter-term thermal variability on population
dynamics using models that accurately capture the
skewed-unimodal nature of temperature responses
and none have embedded such dependence into
complex food web models. These are both areas
deserving further research.

To date, the functional form of temperature
dependence of the carrying capacity K, has been
challenging to characterize due to the wide variety
of assumptions and hypotheses that have been
proposed. Recent work, including that developed
herein, shows that the sensitivity of K shares a
number of key aspects with that of r; notably,
the two functions must have the same roots and
sign as a function of temperature. Although there
is empirical evidence for K as a monotonically
increasing, decreasing, and invariant function
of temperature, it is possible that these results
are capturing results on a subset of the entire
unimodal function. More research is needed to
better determine how unimodal or more complex
interpretations of K relate to the temperature-
dependence of intrinsic growth rates.

Body size plays a key role in the determination
of a population’s carrying capacity and recent work
has shown how compensatory changes in body size
can play an important role in buffering potential
reductions in carrying capacity in warmer environ-
ments (Bernhardt et al. 2018). Similarly, changes
in body size due to warming have been shown to
stabilize consumer-resource interactions (Osmond
et al. 2017). Changes in body size due to warming
may lead to a host of changes in food webs, par-
ticularly when body size determines the strength
of trophic interactions in a system. Such changes,

combined with a realistic depiction of the role of
temperature on vital rates and carrying capacity,
will likely be important in addressing the impact of
climate change.

Even in their current form, the relationships that
describe the sensitivty of vital rates and thresholds
are missing elements that are inherently important
in many systems. Thermoregulatory behavior will
allow many ectotherms to avoid stressful low and
high temperatures, but will potentially incurr the
additional cost of reducing their time spent forag-
ing or increasing their vulnerability to predation
(Fey and Vasseur 2016; Sears et al. 2016). Within
the lifetime of an individual, exposure to critical
temperatures can invoke protective measures such
as heat shock proteins that diminish the detrimen-
tal effects of future exposure (Sinclair et al. 2016).
Furthermore, gradual acclimation has been shown
to be an important process that decouples acute
biological rates from those predicted under chronic
exposure to a certain temperature (Sentis et al. 2015;
Kremer et al. 2018; Woods et al. 2018). Acclimation
may have largely different effects across biologial
rates within and across species, challenging our abil-
ity to predict the effects of temperature variation,
at least in response to temperature variabiliity at
shorter time scales. At longer scales, evolution may
play a key role in reshaping the thermal responses
of parameters. There are thought to be a number
of important tradeoffs governing the evolution of
thermal performance curves (Angilletta et al. 2003;
Bennett and Lenski 2007), but to date, there is no
clear best practies on how to constrain evolution
in a manner that ensures meaningful theoretical
predictions.

There is no doubt that climate change will yield
novel environmental conditions that generate qual-
itative and quantitative changes in population and
community dynamics. While temperature may play
a key role in certain placers, there are few, if any,
ecosystems on Earth where temperature change will
occur in isolation of other environmental variables.
Research on the interaction of multiple stressors
at the population and community level will ulti-
mately serve to provide a more comprehensive pic-
ture of ecological systems in the next decade and
beyond.
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CHAPTER 15

Alternative stable states, tipping
points, and early warning signals
of ecological transitions
John M. Drake, Suzanne M. O’Regan, Vasilis Dakos, Sonia Kéfi,
and Pejman Rohani

15.1 Introduction

15.1.1 Tipping points in dynamical systems

Biological populations and ecosystems commonly
exhibit alternative stable states. For instance, some
species display cooperative behavior such as group
foraging or coordinated defense. If the cooperative
behavior is necessary for the growth of populations
at small sizes, such that there is a critical population
size below which the population cannot persist, then
the population is said to exhibit a strong Allee effect
(Allee et al. 1949; Courchamp et al. 1999). Above
this threshold, the population will approach a
carrying capacity. Another example comes from the
dynamics of shallow lakes, which are often found in
either a clear state dominated by aquatic vegetation
or a turbid state dominated by algae (Scheffer et
al. 1993). The transition between these two states is
typically controlled by nutrient inputs or top down
regulation through trophic cascades (Carpenter

et al. 2008). Transitions between alternative stable
states may, of course, arise by a direct change of
state. For instance, a subcritical population subject
to Allee effects may be supplemented with enough
individuals to exceed the critical size. In this case,
the dynamical tendencies of the population have
not changed, but its size has been adjusted so that
it now tends upward, toward carrying capacity,
rather than downward toward extinction. A less
obvious cause for transition among alternative
stable states is the slow drift in some external
condition, such as the influx of phosphorus to a lake,
that changes the system’s dynamical tendencies. In
this case, the system may move to a point where
qualitative features, such as stable states, appear
or disappear. The points at which these qualitative
changes occur, e.g., a particular level of phosphorus
loading, are tipping points that govern the possible
behaviors of the system. Changes in the system
state associated with such tipping points are critical
transitions.

Drake, J. M., O’Regan, S. M., Dakos, V., Kéfi, S., and Rohani, P., Alternative stable states, tipping points, and early warning signals of ecological transitions
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To derive a theory for critical transitions, we begin
by considering a general model for the growth of an
isolated population with carrying capacity N,

dn
dt

= A(n, t) = b(n, t) − d(n, t) , (15.1)

where n(t) is the population, b(n, t) is birth rate
and d(n, t) is death rate. The model has equilibrium
states at the equilibrium n∗ = 0 and where b (n, t) =
d (n, t) at some time t. Our theory is concerned with
critical transitions that occur over long time scales,
for example, gradual variations in demographic
parameters due to shifts in phenotypic, behavioral
or life history traits as a result of climate change,
or increases in anthropogenic pressures such as
harvest effort or land use. To model gradual
changes appropriately, we couple Equation (15.1) to
another equation describing underlying changes in
system parameters. For instance, assuming gradual
changes in the birth rate, we have

∂b(n, t)
∂t

= εf (t), (15.2)

where f (t) is a continuous, non-zero function of
t. The rate of change is determined by ε and its
magnitude is assumed to be small relative to the
population dynamics, such that 0 < ε � 1. Equations
(15.1) and (15.2) together form a fast-slow system
(Kuehn 2015). This model assumes that the birth rate
changes slowly over long time scales. A system with
nonlinear feedback will typically exhibit parameter-
dependent stable steady states. For instance, in
(15.1) possible states include extinction (if n∗ = 0 is
the stable equilibrium) and the carrying capacity, the
value n∗ = N such that b(N, t) = d(N, t) (if n∗ = N is
the stable equilibrium). Typically, critical transitions
occur when the slow change in b(n, t) causes (15.1)
to go through a bifurcation (Strogatz 2014). Because
(15.1) and (15.2) are coupled, such a bifurcation is
sometimes called a dynamic bifurcation (Hale 1984).

How do we study such models? Typically, ε will
be so small that for short periods of time it will
be acceptable to make the simplifying assumption
that r is unchanging over a time interval of interest.
This is the assumption of separability of time scales.
Thus, for short time intervals, we will consider
only Equation 15.1 (or its stochastic counterpart,
see the following) and not the full fast-slow system.
In this case, we can use the tools of linear stability
analysis. For a system in one dimension with the
form dn

dt = A(n), we consider a fixed point n* and

let ξ(t) = n(t) − n∗ be a small perturbation from
n*. To determine whether ξ grows or decays we
note that dξ

dt = A(n) = A (n∗ + ξ). Now, A (n∗ + ξ)

is expressed in terms of the Taylor expansion
A (n∗ + ξ) = A (n∗)+A’ (n∗) ξ +O

(
ξ2). Ignoring the

O
(
ξ2) terms, defining the eigenvalue λ = A’ (n∗),

and noting that A (n∗) = 0, we have the approxi-
mation dξ

dt = λξ with solution ξ(t) = ξeλt. Thus, if
the eigenvalue λ < 0, the perturbation will decay to
zero and the point n* is stable. Alternatively, if λ > 0
the system diverges from its equilibrium, n*, which
is unstable. A bifurcation occurs at λ = 0, which is
a tipping point of the system (Strogatz 2014).

15.1.2 Early warning signals

Early warning signals are statistical features of
systems that anticipate the approach to a tipping
point (Scheffer et al. 2009). They arise from the
interaction between noise and the tendency of
the nonlinear system to return to its asymptotic
states. Many statistical features are qualitatively
identical when the system is sufficiently close to
a tipping point, leading to a great deal of interest
in identifying model-independent early warning
signals that could be exploited to create early
warning systems—information systems to provide
advance warning of the approach to a critical
transition. Such model-independent indicators are
primarily due to critical slowing down, which refers
to the loss of resilience (Scheffer et al. 2015), which is
the tendency of the system to return more slowly to
its steady state as the bifurcation is approached. The
autocovariance function and dependent statistical
summaries such as the variance, autocorrelation
coefficient or power spectrum are then affected
in predictable ways as the system approaches the
critical point. The source of noise driving such early
warning signals may be intrinsic (e.g., demographic
stochasticity) or extrinsic (e.g., environmental stochas-
ticity, which are environmental fluctuations that
affect the demographic events experienced by all
individuals). In both cases, the state of the system n
must be considered a random variable. Accordingly,
the deterministic representation of the system used
in the previous section will no longer be adequate.
Instead, the system is represented by stochastic
differential equations. In one dimension,

dn = A(n, θ)dt + √
B(n, θ)dW. (15.3)
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This equation consists of two terms, one for the
mean field, A(n, θ ), and a second for the fluctuations,√

B (n, θ). W(t) is a Wiener process or Brownian
motion process, meaning that incremental changes
�W are normally distributed with mean 0 and
variance �t. Typically, the mean field is depen-
dent on both the state of the system and some
unobservable parameters, collected in the vector
θ . Separating the mean field and fluctuations, the
mean field can also be written as a differential
equation dn

dt = A (n, θ), which is sometimes referred
to as the “deterministic skeleton” but is just as
readily interpreted as the mean flow in a “fully”
stochastic system. As the fluctuations go to zero, this
representation reduces to a deterministic equation.
Different sources of noise (e.g., demographic and
environmental stochasticity) give rise to different
forms for the fluctuations (O’Regan and Burton

2018). An example of a stochastic differential
equation in ecology is provided in Box 15.1.

In one dimension, under continuity and bound-
ary conditions that are typically satisfied (or
approximately satisfied) for ecological systems,
n will approach a stationary (or quasi-stationary)
distribution,

P(n) = N
B (n, φ)

exp
(

2
∫ n

0

A (x, θ)

B (x, θ)
dx

)
, (15.4)

where N is a normalization constant that ensures∫ ∞
1 P(n)dn = 1 (Nisbet and Gurney 1982; Gardiner

2009). Numerous other statistical properties may
be derived. Importantly, the eigenvalue of the
mean field equation, λ = d

dn A (n, θ), evaluated at
an equilibrium n* not only gives the stability of the
equilibrium in the deterministic sense elaborated
previously, but is also a key determinant of the

Box 15.1 Example: A stochastic logistic model

To illustrate the use of a stochastic differential equation
in ecology, we consider a stochastic version of the familiar
logistic model for regulated population growth. A stochastic
logistic growth equation may be obtained by substituting
A (n, θ) = rn (1 − n/K) and B (n, θ) = gn into Equation
15.3 to obtain

dn = rn(1 − n/K)dt + √
gndW.

We numerically solve the model for two different parameter
combinations using Euler’s method (Allen 2011). For these
solutions, the intrinsic rate of increase, r, was set to 1.0

and 0.2, respectively. In both cases, the carrying capacity, K,
was set to 100 and the diffusion parameter, g, was set to
one. The logistic model exhibits a transcritical bifurcation at
r = 0, at which point the equilibrium at carrying capacity
loses stability and extinction becomes the attracting state.
Thus, the difference between the two simulations is not in the
long run average state (for these values of r both solutions
fluctuate around n∗ = 100) but in (15.1) the speed at which
they grow from near extinction at the start of the simulation,
and (15.2) the damping of perturbations around carrying
capacity.
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Box 15.1 Continued

It is immediately apparent from these simulations that r
governs more than just the speed of population growth,
however. Specifically, the model that is closer to the bifur-
cation (r = 0.2, blue line) exhibits a solution that is more
variable, with long sojourns away from the carrying capacity,
compared with the model with the model where r = 1.0.

The following plot shows a histogram of the distribution of
population sizes visited by each simulation in the period from
Time 50 to Time 250 (to allow for the transient growth at the
start of the simulation to disappear). As expected, the sample
variance in the population with r = 0.2 is much larger than
in the population with r = 1.0.
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Additionally, the blue line (r = 0.2) appears to exhibit longer
“runs” than the black line (r = 1.0). This is a feature of the

greater autocorrelation in the model closer to the tipping
point. This is verified by inspection of the autocorrelation
function.
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properties of the stochastic system. For instance, we
derive a linear approximation to (15.3) by retaining
leading terms of the Taylor expansions of A(n, θ ) and
B(n, θ ) about n*, yielding an Ornstein–Uhlenbeck
equation,

dξ = λξdt + √
B (n∗, θ)dW. (15.5)

Recall that λ < 0 because n* is stable by assumption.
Equation (15.5) additionally arises formally from the
Van Kampen system size expansion, described in Sec-
tion 2. The stationary or quasi-stationary variance of
(15.5) is,

σ 2 ≈ B (n∗, θ)

2 | λ | . (15.6)
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Thus, as the tipping point at λ = 0 is approached,
the variance diverges (i.e., the denominator in Equa-
tion (15.6) become smaller and smaller as λ becomes
less and less negative, causing the entire expression
to blow up). This feature, where the eigenvalue is
in the denominator of a formula for the theoretical
variance, is a ubiquitous feature of stochastic sys-
tems. This is the cause of the observation that the
variance of a stochastic system typically increases as
a critical transition is approached (Gilmore 1981).

Another related concept is the potential function, a
function U(n) taking the form,

U(n) =
∫ n

n∗
f (s)ds, (15.7)

so that dn
dt = − U′(n). The potential is a curve or

surface in n that has it’s minimum at the equilibrium
n* giving rise to the “ball and cups” heuristic
(Figure 15.1) (Scheffer et al. 2001; Nolting and
Abbott 2016). A system starting at any point n
will move “downhill” in this diagram, which is
particularly useful for visualizing the behaviors
of bistable systems (which exhibit “double well”
potentials) and transitions that may occur when
a parametric change in U(n) causes one of the
bistable states to be lost. Typically, this corresponds
to a saddle-node bifurcation. The resulting cusp
catastrophe can give rise to sudden system shifts of
large magnitude and hysteresis, a phenomenon in
which the steady state of a system may depend on
its history. The cusp catastrophe, in particular, has
motivated a lot of theory on critical transitions in
ecology and is a widely accepted explanation for
existence of alternative stable states in shallow lake
ecosystems (Scheffer et al. 1993).

Identifying A(n, θ ) with −U′(n), and assuming
the fluctuations to be independent of the population
size n, we can also write Equation 15.3 as

dn = −U′(n)dt + √
B (θ)dW. (15.8)

This representation shows that important features
of that shape, such as the direction of motion from
any given point and the location of any equilibria,
are independent of the noise, which is measured
by

√
B (θ). As previously demonstrated, one may

derive the stationary probability density of states,
which is commonly expressed in the form

Perturbation

Co
nd

iti
on

s

Ecosystem state

F1

F2

Figure 15.1 Potential functions (at different parameterizations) of a
bistable system exhibiting a saddle-node bifurcation illustrate the
concept of alternative stable states. Depending on conditions, the
system can persist in a “high” state, a “low” state, or exhibit
alternative stable states. Solid blue lines in the bifurcation diagram
depict stable equilibria. The dashed blue line is an unstable branch.
Tipping points (saddle-node bifurcations) occur at F1 and F2.
Reprinted by permission from Nature, Scheffer et al. (2001.)

P(n) = N exp
(

−2U(n)

B (θ)

)
, (15.9)

where the normalization constant is
N = 1/

∫ ∞
0 exp

(
− 2U(n)

B(θ)
dn

)
. From this formula

comes the proposal that by interpreting measure-
ments of the system state over time as samples from
(15.9) one might reconstruct the potential U(n), the
qualitative features of which provide insight into
the critical behaviors of the system (Ditlevsen and
Johnsen 2010; Livina et al. 2010). For instance, if the
system exhibits two alternative stable states, then
the histogram of measurements will be bimodal
(Gilmore 1981). These and many other properties of
simple stochastic systems are elaborated in Nisbet
and Gurney (1982) and Gardiner (2009).
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15.1.3 Bifurcation delay

In many applications, a key question is when the
system will undergo a transition between alterna-
tive stable states. Importantly, this may not coincide
with a bifurcation in the system’s mean field. In
systems where there are two coexisting stable equi-
libria, a change in the basin of attraction can occur
due to sufficiently large change of state without
any movement in the underlying attractor. Simi-
larly, as the fast system moves closer and closer
to a bifurcation, the size of displacement necessary
to make this change gets smaller and smaller. As
a consequence, in bistable systems the shift from
one basin of attraction to another is very likely to
occur before the bifurcation in the mean field due
to a stochastic perturbation (Scheffer et al. 2015). On
the other hand, in other systems, particularly those
where the tipping point corresponds to a transcrit-
ical bifurcation or Hopf bifurcation, the change in
system state may not occur until some time after the
bifurcation in the system’s mean field, a situation
referred to as bifurcation delay (Berglund and Gentz
2006; Dibble et al. 2016).

15.2 Theory

15.2.1 Birth-death processes

As hinted at previously, the key to anticipating
critical transitions is understanding the interaction
between the deterministic fast-slow dynamics and
stochasticity. In this section, we elaborate on this
idea and develop the quantitative theory of critical
transitions for some canonical ecological models.

First, we consider the effects of demographic
stochasticity, i.e., variation among individuals in the
timing of reproduction and death, on the change in

the size of a population. More precisely, we consider
changes in population size in a small increment
of time �t, and model the intrinsic population
fluctuations with a continuous-time Markov chain.
Table 15.1 indicates the changes in population size
that occur in a small increment of time, �t, which
comprise a birth-death Markov process.

For example, the probability of an increase in the
population size in a small time increment depends
only on the current birth rate b(n, t), and not on
previous values of the birth rate. Letting �t → 0, the
events in the birth-death process can be described
more concisely via a master equation for the proba-
bility distribution Pn(t) of n individuals at time t,

dPn(t)
dt

= dt
n+1Pn+1(t) + bt

n−1Pn−1(t) − bt
nPn(t)

− dt
nPn(t), n = 0, 1, . . . , N

= T (n|n + 1) Pn+1(t) + T (n|n − 1) Pn−1(t)

− (T (n + 1|n) + T (n − 1|n)) Pn(t), (15.10)

consisting of N + 1 differential equations. At n = 0
and n = N, we define the transition probabilities
appropriately (Table 15.1). Equation (15.10) can be
solved analytically if the rates bt

n and dt
n are con-

stant or linear (Van Kampen 2007) or if the rates
are nonlinear, it may be solved numerically if the
population size is not too large (e.g., less than 1,000;
Keeling and Ross (2008)).

Since a master equation for an ecological birth-
death process often has density-dependent birth
and death rates bt

n and dt
n, we use an analytical

approximation called the Van Kampen system-
size expansion (Van Kampen 2007). Crucially, the
expansion hinges on the assumption that the
population size N is large, which ensures that
the fluctuations (jumps between states n, Table
15.1) are small relative to the population size. The

Table 15.1 Transition probabilities associated with changes in number of individuals n. Note that
T (0| − 1) = T (1|0) = T (N|N + 1) = T (N + 1|N) = 0 since the system is closed.

Event Change in state Master Equation Term Transition probability per unit time �t

Birth n → n + 1 T (n + 1|n) b (n, t) �t = bt
n�t

Death n → n − 1 T (n − 1|n) d (n, t) �t = dt
n�t

No change n → n – 1 − (
b (n, t) − d (n, t)

)
�t
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advantage of the expansion is that it leads to a
stochastic differential equation for the fluctuations,
from which leading indicators of critical transitions
can be obtained.

The expansion assumes that the discrete random
variable n can be approximated with a continuous
random variable,

n = Nφ(t) + √
Nψ(t), (15.11)

where ψ is a continuous random variable describing
fluctuations that scale with the square root of the
population size N and φ(t) is a function determined
by the Van Kampen system size expansion. Sub-
stituting Equation (15.11) into the master equation
and computing the Van Kampen expansion yields
the following system of equations that decouple the
mean field dynamics from the stochastic fluctua-
tions and therefore approximate the evolution of the
probability distribution Pn(t) through time,

dφ(t)
dt

= α (φ, t) , (15.12)

∂� (ψ , t)
∂t

= − ∂

∂φ
(α (φ, t))

∂ (ψ�)

dψ

+ 1
2

(β (φ, t))
∂2�

∂ψ2 . (15.13)

Equation (15.12) describes the dynamics of the
population proportion, φ = n(t)/N, through time.
Equation (15.13) represents the evolution of the
probability distribution Pn(t) =� (ψ , t). It is a
Fokker–Planck equation with drift coefficient
α(φ, t), and diffusion coefficient β(φ, t). The drift
coefficient determines the rate of return to the
system state φ(t), and the diffusion term describes
the strength of random perturbations. Essentially,
the transformation to the new variables φ and ψ via
the system-size expansion yields a normally dis-
tributed description for the probability distribution
Pn(t) (Van Kampen 2007). The description is most
appropriate far from the boundaries. Further, if n(t)
is small, the Gaussian description breaks down. It is
from the Fokker–Planck equation that we obtain
a stochastic differential equation that provides
a route to leading indicators. Letting λ (φ, t) =
∂
∂φ

(α (φ, t)), the Fokker–Planck equation describing
the evolution of the random variable ψ(t) (15.13) is
equivalent to the stochastic equation (Allen 2011),

dψ = λ (φ, t) ψdt + √
β (φ, t)dW. (15.14)

Equation (15.14) can be Fourier transformed to yield
the power spectrum (Nisbet and Gurney 1982), and
integrating the power spectrum yields expressions
for stationary variance and lag-τ autocorrelation.
Alternatively, taking expectations of the solution
of Equation (15.14) will also give expressions
for stationary variance and lag-τ autocorrelation
(Gardiner 2009; Allen 2011) in the limit t →∞.
Table 15.2 summarizes the expressions for these
summary statistics.

In what follows, we apply the theory to two
representative examples of ecological tipping
points: i) overharvesting representing a catastrophic
transition, and ii) a non-catastrophic transition in
Levins metapopulations. In each case we assume
intrinsic noise, and therefore we can apply this
framework. We then investigate the agreement
between the leading indicators theoretically derived
using this method with the same statistics measured
from exact simulations. We note that neither of the
following examples has a double-well potential,
and therefore, are not bistable systems in the sense
of having two positive alternative stable states.
They were chosen for demonstration based on
analytical tractability. (Bistable systems with a cusp
catastrophe involve solving a cubic polynomial for
the steady states and, although typically tractable,
involve much more algebra.)

15.2.2 Case Study 1: The Logistic model
with harvesting

First, we consider a model of overharvesting,

dn
dt

= rn
(

1 − n
N

)
− hN, (15.15)

where r is the per capita growth rate of the pop-
ulation n(t), N is its carrying capacity and hN is a
constant rate of harvest effort. The model has two
steady states (Figure 15.2a),

Table 15.2 Leading indicator statistics.

Lag-1 Autocorrelation Variance Power spectrum

exp (−|λ (φ, t)|) β(φ,t)
2|λ(φ,t)|

β(φ,t)
|λ(φ,t)|2 + ω2
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Figure 15.2 Bifurcation diagrams for each model. The logistic model with harvesting exhibits a saddle-node bifurcation at h = r/4. The Levins
metapopulation model has a transcritical bifurcation at e = c. Solid blue branches indicate stable steady states and dashed red branches are
unstable steady states. Parameters for the harvest model: r = 1, N = 50, h = [0, 1/4]. Parameters for the Levins model: c = 2, N = 50, e = [1, 3].

n1,2 = N
2

[
1 ±

√
1 − 4h

r

]
.

If h < r/4, n2 is stable and n1 is unstable. The model
exhibits a saddle-node bifurcation at h = r/4, where
the stable steady state (solid blue branch in Fig-
ure 15.2a) and the unstable steady state (dashed
red branch) collide and disappear. Consequently, if
h > r/4 then the population collapses to extinction
(Brauer and Kribs 2015).

To model the gradual approach to extinction from
overharvesting, we assume the harvest effort h
increases gradually over time at rate h1 from an
initial harvest effort of h0,

h(t) =
{

h0 + h1t, 0 < th

r/4 t ≥ th.
(15.16)

The time the critical threshold h = r/4 is attained
is denoted by th = (r/4 − h0) /h1. Modeling gradual
increases in harvest effort yields the following fast-
slow system,

dn
dt

= rn
(

1 − n
N

)
− hN (15.17)

dh
dt

= h1. (15.18)

We write the fast-slow model as a continuous-time
Markov chain (Table 15.3), which can be expressed
as a master Equation (15.10). Applying the Van-
Kampen system size expansion to the master equa-
tion yields the following equations,

dφ(t)
dt

= rφ(t) (1 − φ(t)) − h(t), (15.19)

∂� (ψ , t)
∂t

= − (r − 2rφ(t))
∂ (ψ�)

dψ

+ 1
2

(rφ(t) (1 − φ(t)) + h(t))
∂2�

∂ψ2 ,

(15.20)

where φ(t) = n(t)/N. Equation (15.20) can be
expressed as a stochastic differential equation,

dψ = (r − 2rφ(t)) ψdt

+ √
rφ(t) (1 − φ(t)) + h(t)dW, (15.21)

which can be analyzed through Fourier transforma-
tion or by taking expectations of its solution to yield
the stationary statistics in Table 15.4.

To understand behavior of the statistics as the
critical threshold is approached, it is instructive to
consider the steady state approximation, where the
rate of change of harvest effort (Equation (15.18))
is set to zero. To obtain the steady state, Equation
(15.19) is set to zero and solved for steady states

φ1,2. The stable state φ2 is 1/2
(

1 + √
1 − 4h/r

)
, and

the saddle-node bifurcation occurs at the critical
threshold h = r/4. By Fenichel’s theorem (Fenichel
1979), the fast-slow dynamics will approach those
of the model with constant bifurcation parameter h
evaluated at the steady state as h1 approaches zero.
The steady state approximation assumes the peak of
the probability distribution is located at the steady
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Table 15.3 Transition probabilities for the models (15.17)–(15.18) and (15.25)–(15.26)
associated with changes in number of individuals n.

Harvest Model Event Change in state Transition probability per unit time �t

Birth n → n + 1 rn (1 − n/N)�t = bt
n�t

Death n → n − 1 h(t)N�t = dt
n�t

No change n → n 1 − (
rn (1 − n/N) − h(t)N

)
�t

Levin’s Model Event Change in state Transition probability per unit time �t

Birth n → n + 1 cn (1 − n/N)�t = bt
n�t

Death n → n − 1 e(t)n�t = dt
n�t

No change n → n 1 − (cn (1 − n/N) − e(t)n)�t

Table 15.4 Leading indicator statistics for models (15.19)–(15.20) and (15.27)–(15.28).

Model Lag-1 Autocorrelation Variance Power spectrum

Harvest Model exp (−|r − 2rφ(t)|) rφ(t)(1 − φ(t))+ h(t)
2|r − 2rφ(t)|

rφ(t)(1 − φ(t))+ h(t)
|r − 2rφ(t)|2 + ω2

Levin’s Model exp (−| (c − e(t)) − 2cφ(t)|) cφ(t)(1 − φ(t))+ e(t)φ(t)
2|(c − e(t))− 2cφ(t)|

cφ(t)(1 − φ(t))+ e(t)φ(t)
|(c − e(t))− 2cφ(t)|2 + ω2

state φ2 rather than at φ(t). The stochastic differen-
tial equation for the fluctuations about the steady
state, which is equivalent to Equation (15.20) eval-
uated at the steady state, is an Ornstein–Uhlenbeck
process,

dψ = (r − 2rφ2) ψdt + √
rφ2 (1 − φ2) + hdW.

(15.22)

Substituting the steady state approximation into the
expressions for the early warning signals in Table
15.4 allows us to examine the limiting behavior of
the indicators. As h approaches r/4 from the left, the
lag-1 autocorrelation approaches 1 since the eigen-
value r − 2rφ2 approaches zero as φ2 tends to 1/2
and the power spectrum exhibits greater power in
lower frequencies. The variance blows up to infinity
as φ2 → 1/2 and h approaches the threshold r/4
from the left,

lim
h→r/4−

rφ2 (1 − φ2) + h
2 | r − 2rφ2 | =

r
4 + r

4
2 | 0 | = +∞.

Leading indicators in Table 15.4 were obtained
numerically using the fast-slow solution and
the steady state approximation. The analytical
predictions for the leading indicator behavior using
the steady state approximation are predictive of

the behavior of the fast-slow indicators. Figure 15.3
shows the trends in the leading indicators as the
harvest rate increases to the critical threshold.
Lag-1 autocorrelation and variance increase as
predicted, and the power spectrum moves towards
lower frequencies. These changes in the summary
statistics are indicative of the critical slowing down
that signals the impending bifurcation.

15.2.3 Case Study 2: The Levin’s
metapopulation model

Next we consider Levin’s metapopulation model
(Levins 1969),

dn
dt

= cn
(

1 − n
N

)
− en, (15.23)

where n(t) is the population size, c is the per capita
colonization rate, e is the per capita extinction rate
and N is the number of patches. The model has two
steady states, n1 = 0 and n2 = (1 − e/c) N, and n2

is stable if colonization rate is greater than extinc-
tion rate. The model has a transcritical bifurcation
point at c = e, where the steady states meet and
exchange stability (Figure 15.2b). Equation (15.23)
also represents a model of overharvesting with per
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Figure 15.3 Trends in leading indicators of population extinction for two ecological models. The solutions of the fast-slow models were obtained
numerically using the lsoda ODE solver in R. For autocorrelation, the theoretical results obtained using the steady state approximations (dashed
line) are virtually indistinguishable from exact numerical solutions of fast-slow models (solid line). For variance, the theoretical result is excellent for
the harvest model all the way to the bifurcation point and for Levins for most of the range, but there is a discrepancy in the vicinity of the tipping
point. For both models, the power spectrum shows a “red shift” from relatively even distribution over all frequencies at t = 0 to dominance by low
frequencies close to the bifurcation. Parameters for the Levins model: c = 2, e(t) = 1 + 0.0001t, φL0 = 0.5, te = 10000; Parameters for the
harvest model: r = 1, h(t) = 0.01 + 0.0001t, φH0 = 0.99, th = 2400.

capita growth rate of c and per capita harvest effort e
(Brauer and Kribs 2015).

We assume that the per capita extinction rate
slowly increases over time to eventually equal the
colonization rate, that is,

e(t) =
{e0 + e1t, 0 < te

c t ≥ te
(15.24)

where te = (c − e0) /e1 is the time that the critical
threshold e = c is reached. Equation (15.23) may be
recast as a fast-slow system,

dn
dt

= cn
(

1 − n
N

)
− en (15.25)

de
dt

= e1. (15.26)

Again we write Equations (15.25) and (15.26) as
a continuous-time Markov chain, with transitions
between states as described in Table 15.3. The Van-
Kampen system-size expansion yields

dφ(t)
dt

= cφ(t) (1 − φ(t)) − e(t)φ(t), (15.27)

∂� (ψ , t)
∂t

= − (c − e(t) − 2cφ(t))
∂ (ψ�)

dψ

+ 1
2

(cφ(t) (1 − φ(t)) + e(t)φ(t))
∂2�

∂ψ2 ,

(15.28)

where φ(t) = n/N. Writing (15.28) as a stochastic
differential equation,

dψ = (c − e(t) − 2cφ(t)) ψdt

+ √
cφ(t) (1 − φ(t)) + e(t)φ(t)dW, (15.29)

and applying the usual analysis, we obtain leading
indicators of population extinction (Table 15.4).

Once more, it is instructive to use the steady state
approximation to gain insight into limiting behavior
of the leading indicators as the critical threshold is
approached, and detection of critical slowing down
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prior to metapopulation collapse. The stable steady
state is φ2 = 1 − e/c, and we let the extinction rate
approach the colonization rate from the left. The
eigenvalue c − e − 2cφ2 = − (c − e) approaches zero
as e approaches c from the left and consequently,
lag-1 autocorrelation approaches 1 and the power
spectrum is again indicative of greater power in
lower frequencies. Rather than blowing up how-
ever, the variance increases to 1 as e approaches c
from the left,

lim
e→c−

cφ2 (1 − φ2) + eφ2

2 | c − e − 2cφ2 | = lim
e→c−

(c − e) e
c + e

c (c − e)
2 (c − e)

= lim
e→c−

e
c

= 1. (15.30)

The trends in the fast-slow leading indicators
obtained from solving Equations (15.25)–(15.26)
numerically are similar to the steady state approx-
imations (Figure 15.3). However, close to the
threshold, the fast-slow variance does not match
the limiting value of 1 obtained using the steady
state approximation. Unlike model (15.15), the
Levin’s metapopulation model undergoes a critical
transition at n = 0, and as the metapopulation
teeters on the verge of extinction, Equation (15.28)
obtained from the van Kampen expansion of the
master equation will not be an accurate description
of the fluctuation dynamics. Trends in leading
indicators far from the boundary n = 0 are accurate,
but there is loss of accuracy near the boundary. The
limiting behavior of variance at the tipping point
for this model can only ever be an approximation
and result (15.30) should be interpreted cautiously,
but perhaps more importantly, this result predicts
that, far from the boundary, variance increases as
extinction rate increases.

15.3 Empirical evidence

Concurrent with the development of theory and
simulation studies on early-warning indicators of
critical transitions, there is also a growing body of
empirical evidence (Scheffer et al. 2012, 2015; Litzow
and Hunsicker 2016). The idea is that by measuring
changes in recovery rate, variance, autocorrelation,
or power spectra of the ecological state dynamics,
we can detect the onset of critical slowing down
(CSD) that precedes a critical transition. The

characteristic signatures of these indicators, as
presented in Section 15.2, can then be used to
signal loss of stability and the potential risk of a
tipping point. Most empirical examples come from
long-term monitoring data (usually time series) of
ecological systems that have already experienced
a regime shift. In fewer cases, spatial statistics
have been used, either through derivation of the
spatial pattern induced by loss of resilience or
through space-for-time substitution comparing
indicators along a stress gradient. On the other
hand, there is only a handful of studies where
specific experiments have been developed to test the
indicators by actually causing a regime shift in situ
(Table 15.5). The majority of these studies focuses on
systems of single populations. Both observational
and experimental work so far have aimed to provide
“proof-of-principle” evidence for the possibility of
detecting approaching instabilities, and there are
well developed approaches for their practical appli-
cation (Dakos et al. 2012). Operationalizing these
indicators would allow for practical applications,
for instance ranking ecosystems according to their
resilience (for instance along a gradient), or moni-
toring over time the resilience of a given ecosystem
and its propensity to shift (Scheffer et al. 2015).

In what follows, we highlight a few of the empir-
ical examples from lab and field experiments as
well as observational data that make use of either
temporal or spatial data sets to infer for a system its
proximity to a tipping point.

15.3.1 Lab experiments

Slowing down before the collapse of a
photoinhibited phytoplankton population

Some of the clearest demonstrations of early-
warnings prior to tipping points come from
controlled population experiments in the lab. For
example, Veraart et al. (2012) measured critical
slowing down in a phytoplankton population
that was stressed to extinction. In a chemostat, a
monoculture of cyanobacterium was exposed to a
slow (daily) increase in light conditions. During
the course of the experiment the population was
disturbed by diluting its standing density by a fixed
amount, and the population was left to recover
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Table 15.5 Examples of studies that have estimated early-warning signals on empirical and experimental data organized according to the type of
ecological study system, the type of transition involved, and the type of indicators analyzed. Note that the list is not exhaustive and
under-represents the fact that so far there are more observational than experimental studies available.

System type Transition Indicators Reference

Empirical

marine fish populations population decline Temporal Krkošek and Drake 2014

marine community community compositional shifts Temporal Beaugrand et al. 2008

intertidal community shifts in dominance Temporal Benedetti-Cecchi et al. 2015

marine/terrestrial populations shifts in abundance Temporal Bestelmeyer et al. 2011

lake plankton community eutrophication Temporal Burthe et al. 2016

avian population extinction threshold Temporal Hefley et al. 2013

marine fish populations stock collapses Temporal Litzow et al. 2013

tree individuals tree mortality Temporal Camarero et al. 2015

lake paleo-communities eutrophication Temporal Wang et al. 2012

marine phytoplankton community compositional shifts Temporal Wouters et al. 2015

lake plankton community community compositional shifts Temporal Gsell et al. 2016

lake paleo-communities anoxia shift Temporal Belle et al. 2017

marine fish populations overexploitation Temporal Hshie et al. 2006

intertidal community community compositional shift Spatial Hewitt and Thrush 2010

marine community community compositional shift temporal/spatial Lindegren et al. 2012

avian/zooplankton community spatial discontinuities temporal/spatial Sundstrom et al. 2017

salt marsh vegetation shift to bare tidal flat temporal/spatial van Belzen et al. 2017

drylands desertification spatial patterns Kefi et al. 2007

Experimental

lake community trophic cascade Temporal Batt et al. 2013

lake community trophic cascade Temporal Carpenter et al. 2011

lake community algal bloom Temporal Pace et al. 2015

yeast population Allee effect collapse Temporal Dai et al. 2012

zooplankton population population extinction Temporal Drake and Griffen 2010

phytoplankton population photoinhibition Temporal Veraart et al. 2012

whale populations overexploitation Temporal Clements et al. 2015

phytoplankton population population extinction Temporal Jarvis et al. 2016

zooplankton population population decline Temporal Wissel 1984

drylands desertification Temporal Bestelmeyer et al. 2013

intertidal community shifts in dominance Spatial Rindi et al. 2017

yeast population Allee effect collapse Spatial Dai et al. 2013

back to equilibrium. These disturbance-recovery
experiments were conducted every four to five
days until light intensity reached a threshold at
which the population was not able to sustain its

growth (after around four weeks from the start
of the experiment) (Figure 15.4a). At that critical
light intensity, where the positive effect that the
population is exerting on its growth by protecting
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itself via shading is compromised, the population
becomes photoinhibited and collapses to extinction
(Huisman and Weissing 1994). Along this trajectory
to extinction, it was shown that the measured
recovery rate of the population decreased over time.
This is a direct result of critical slowing down that
occurred prior to population collapse (Figure 15.4b).

Slowing down prior to extinction
of zooplankton populations

In a different lab experiment, Drake and Griffen
(2010) “pushed” a zooplankton population to
extinction by slowly deteriorating its environment.
The deterioration was simulated by progressively
reducing the available food fed to the experi-
mental populations. Specifically, the authors used
sixty populations of a freshwater cladoceran
(D. magna) that they randomly assigned to a stressed

(deteriorating environment) and control (constant
environment) treatment. After an initial period
to allow for the population to achieve quasi-
stationarity, the populations of the stressed
treatment received progressive reductions in food
in roughly monthly intervals. The authors mon-
itored the abundance of all populations for both
treatments on a weekly basis. The experiment lasted
for over a year, until the last populations in the
stressed treatment went extinct. It was observed that
the populations in the deteriorating environment
went extinct (but at different time points and levels
of food), while most populations in the control
treatment survived (Figure 15.4c). Although the
transition to population extinction was gradual
rather than catastrophic, the authors estimated
early warning indicators (coefficient of variation,
autocorrelation, skewness, and spatial correlation)
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Figure 15.4 Three miscrocosm experiments showed evidence of critical slowing down. A photoinhibited phytoplankton population was perturbed
at multiple points during the slow increase in light intensity (left). The recovery rate is a direct measurement of system stability, corresponding
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Modified with permission from Scheffer et al. (2015).
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from the ensemble of all populations at each weekly
observation time point for both treatments. By
comparing the changes in the indicators between
the stressed and control treatments it was found
that the early warning signals identified a change
in the dynamics of the zooplankton populations
during the deterioration of their environments.
Moreover, in the case of the coefficient of variation,
this indicator showed a strong increase prior
to extinction demonstrating for the first time
that critical slowing down occurs with noncatas-
trophic transitions as well as catastrophic ones
(Figure 15.4d).

Slowing down before the extinction
of yeast populations with an Allee effect

Perhaps the most complete experimental demon-
stration of identifying tipping points using generic
early-warning signals comes from a yeast popula-
tion experiment (Dai et al. 2012). In this system,
growth is facilitated by a cooperative effect within a
population: yeast cells can metabolise sucrose out-
side the cell so that other cells in the population
can benefit. This positive population effect however
requires some minimum cell density, below which
the effect is compromised and the population can
go extinct. Such threshold behavior is character-
istic of an Allee effect which means that at low
population density per capita growth rate becomes
negative (Allee et al. 1949). Dai et al. (2012) fol-
lowed the dynamics of laboratory yeast populations
at increasing levels of dilution rate (paralleling the
harvest model derived in Section 15.2) to identify
the threshold at which the yeast population col-
lapsed to extinction due to the Allee effect (Figure
15.4e). The top figure shows how the exact critical
density threshold was estimated for each dilution
rate below which the population would not survive
but go extinct. Following these steps, it was possi-
ble to empirically characterize the fold bifurcation,
including the two alternative states and the unstable
saddle between them (Figure 15.4e). Based on this
bifurcation diagram, the authors monitored the den-
sity dynamics of replicate yeast populations for a
range (but constant level) of eight dilution rates and
estimated the average variance, coefficient of varia-
tion, autocorrelation, and skewness of the dynamics
for each dilution rate. All early-warning indicators
but skewness exhibited a systematic increase prior

to the collapse of the yeast population providing
strong evidence that critical slowing down can pro-
vide warning of the impending transition in the
system (Figure 15.4f).

15.3.2 Field experiments

Early-warning experiments outside the control con-
ditions of the lab are scarce, as they are difficult to
perform (Dakos et al. 2015). One of the very few
studies that attempted to identify tipping points
based on critical-slowing down signals at commu-
nity level in the field comes from Paul and Peter US
lakes in Wisconsin (Carpenter et al. 2011). During
the course of three years, Carpenter et al. (2011)
gradually added large-mouth bass in Peter Lake
that was dominated by planktivorous fish popu-
lations. Their aim was to manipulate Peter Lake
in order to induce a trophic cascade that would
overturn the fish community from planktivore to
piscivore dominance. The mechanism behind this
regime shift is based on bass releasing pressure of
planktivores feeding on juvenile bass resulting in
higher recruitment of bass drawing planktivores
to low densities and making piscivores eventually
dominant. Models had indicated the possibility of
a catastrophic transition caused by this trophic cas-
cade mechanism that could be anticipated by early-
warning signals (Carpenter et al. 2008). Indeed, the
authors witnessed this shift in dominance during
their experiment, while this regime shift was not
documented in the nearby lake, Paul that they used
as a reference. During the experiment, different vari-
ables were monitored (piscivores and planktivores
abundances, zooplankton and chlorophyll as proxy
of phytoplankton) for both manipulated and refer-
ence lakes. A series of indicators (return rate, vari-
ance, skewness, spectral properties) were measured
on all of these variables and they were compared
between the reference and manipulated lake. This
comparison suggested that variance of planktivores
(that were main part of the actual trophic cascade)
increased before and during the regime shift. More
interestingly, high-frequency chlorophyll dynamics
exhibited a shift to low frequency power spectra
compared to the control as expected from theory.
These findings actually implied that early-warning
signals from high-frequency monitored ecosystem
variables could potentially be useful for monitoring
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resilience at the whole ecosystem level (Batt et al.
2013).

15.3.3 Observational studies

Detecting climatic transitions along time series

Lab and field experiments, like the ones described
previously, provide relatively long and high reso-
lution time series for estimating early-warning sig-
nals. However, this quality of information is lack-
ing for most natural ecological systems. Thus, most
research on unmanipulated systems has comprised
retrospective analysis of past records, such as pale-
oreconstructions of the Earth’s climate.

Although the climate appears to have been
exceptionally stable during the Holocene, in fact
this is an exception as it has been punctuated by
sudden events that triggered abrupt transitions
between contrasting climatic states. Among the
most prominent of these events are the end of
the greenhouse Earth more than 34 million years
ago (the Eocene to Oligocene transition) when the
Earth shifted from a tropical climate to a state
with ice caps, the abrupt (recurring) transitions
at the end of each glacial period, or the most
recent termination and restart of the thermohaline
circulation that marked the Younger Dryas period
(around 12,000 years ago). Such transitions are not
just past singular events. Contemporary concerns
about the possibility of abrupt transitions have
been raised for a series of climate tipping elements
(Lenton et al. 2007), like the weakening of the
thermohaline circulation, that could trigger to a
similar disruption as it did in the past (Caesar et al.
2018). In view of this possibility, the operational
challenge is to detect such approaching instabilities
before they become irreversible.

Dakos et al. (2008) attempted this by analysing
paleoclimatic records that describe 8 of the most
important documented past abrupt climatic tran-
sitions using indicators based on critical slowing
down. They showed that in all of these cases critical
slowing down did precede the transitions. For
example, in the case of the exit from the Younger
Dryas, the authors used a paleorecord of grayscale
from a sediment core at the Cariaco basin in
the Caribbean that is proxy for changes of the
thermohaline circulation (Figure 15.5a). By focusing

only the part of the record that preceded the
transition to the end of the Younger Dryas (roughly
around 11,500 years ago), and after filtering the data
with a smoothing function to remove the long term
slow trends, it can be assumed that the resulting
residuals are capturing the fluctuations of the
system (in this case the thermohaline circulation) to
natural disturbances. Thus, the autocorrelation of
the residuals is an indirect measure of the strength
of recovery of the system to its average state. In
this record, Dakos et al. (2008) used a window
equal to half the size of the record to estimate
the autocorrelation (at the first lag, AR1) of the
residuals (Figure 15.5a). By sliding this window
along the time series, one can retrieve the evolution
of AR1 as function of time (Figure 15.5b). An
increase in AR1 along this period could signal that
the thermohaline circulation was slowing down
towards a critical threshold that would mark a shift
to another state. Indeed, the authors found the trend
of the indicator to be positive (Figure 15.5b) and
statistically significant when compared to trends
estimated in randomly generated trajectories of AR1
from various null models (Dakos et al. 2012).

But, is an increase in AR1 to be expected prior
to the collapse of the thermohaline circulation? In
the same study, a climate model of intermediate
complexity was used to simulate the effect of a
slow increase of freshwater input into the North
hemisphere (due to ice melt for instance) that can
weaken the circulation and lead to its collapse
(Figure 15.5c). By focusing on the pre-transition
period and following the steps already described,
a similar rise in AR1 was found (Figure 15.5d).
The positive trends in AR1 both in the empirical
observational and modelled data from this study
provided the first clear evidence that climatic
transitions can be preceded by slowing down and
that these indicators could be potentially used to
monitor the risk of future tipping events.

15.4 Spatial indicators of resilience

Although most of the work to date on early warning
signals has focused on temporal indicators, there
are analogous spatial signatures. A number of
ecosystems are characterized by striking spatial
patterns, such as boreal peatlands, mussel beds,
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Modified with permission from Dakos et al. (2008).

mud flats, savannas, coral reefs and dryland
ecosystems (Rietkerk and van de Koppel 2008).
Because these patterns are well-known to change
along stress gradients, it has been suggested
that the shape and size of these patterns could
be used as indicators of ecosystem degradation
(von Hardenberg et al. 2001; Rietkerk et al. 2004).
Recently, Chen et al. (2019) have shown that the
eigenvalues of the covariance among measurements
taken at multiple locations provide a signature
of critical slowing down. Importantly, this spatial
eigenvalue is robust to environmental heterogeneity,
which might have been expected to obscure spatial
patterning due to the loss of system-wide resilience.

15.4.1 Critical slowing down spatial indicators

Critical slowing down also arises in spatial systems
(Dakos et al. 2011). One way to understand this is to
picture two neighboring units connected by diffu-
sion that can locally experience a critical transition
to an alternative state. Close to the transition, the
two units will become more like each other because

critical slowing down increases the relative effect
of diffusion. As a result, the spatial recovery from
disturbance (Dakos et al. 2011) and spatial propaga-
tion of perturbations (Dai et al. 2013) will be slow.
This ultimately translates to an increase in spatial
correlation (Dakos et al. 2010), an increase in spatial
variance (Guttal and Jayaprakash 2009; Donangelo
et al. 2010), or a peak in spatial skewness (Guttal and
Jayaprakash 2009).

15.4.2 Two broad types of patterns in drylands

Key ideas

The idea that spatial patterns can be used as indi-
cators of ecosystem degradation has been espe-
cially well studied in drylands, theoretically and
empirically (von Hardenberg et al. 2001; Rietkerk
et al. 2004). Dryland ecosystems are characterized
by patches of vegetation in a matrix of bare soil
(Figure 15.6).

Broadly speaking, two categories of vegetation
patterns can be found in drylands: i) regular, peri-
odic, Turing-like vegetation patterns that resemble
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Figure 15.6 Picture from a Mediterranean landscape in Cyprus showing the typical patchiness of the vegetation cover in these ecosystems.
Photo credit: F.D. Schneider.

designs seen on animal coats (von Hardenberg et al.
2001; Rietkerk et al. 2004), and ii) irregular patterns,
where patches of all sizes are present in the system
and the distribution of patch sizes tend to follow
heavy tail distributions (Scanlon et al. 2007; Kéfi
et al. 2007).

Patch-based indicators

It has been shown that early warning signals based
on critical slowing down may not work in spa-
tially structured ecosystems with periodic patterns

(Dakos et al. 2011). In such cases, looking at the pat-
terns themselves may provide an interesting alter-
native. Under increasing stress, models have shown
that regular vegetation patterns change from homo-
geneous vegetation cover to gaps, labyrinths, spots
and, finally, desert (von Hardenberg et al. 2001;
Rietkerk et al. 2004; Kéfi et al. 2010). In mathemat-
ical models, some of these patterns always occur
in the bistable region (i.e., they coexist with stable
homogeneous desert) (Kéfi et al. 2010). This means
that when the system is degrading, it goes through
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the full succession of patterns, whereas when it is
regenerating after a collapse, the system eventually
goes back to exhibiting labyrinths, gaps or homo-
geneous vegetation, but not to spots. This implies
that spot patterns arise only from the degradation
of a pattern with a higher cover and that they indi-
cate proximity to a discontinuous shift toward a
desert, in ecosystems where resource-concentration
drives the feedback between vegetation and soil
water availability (Rietkerk et al. 2004; Kéfi et al.
2010). It is however noteworthy that spot patterns
can also emerge from different ecological mecha-
nisms. Thus, observing spot patterns in nature is
not sufficient to infer that an ecosystem is close
to a discontinuous shift. Knowing the underlying
ecological mechanism is also necessary.

In ecosystems exhibiting irregular vegetation
patterns, models have shown that patch size
distributions deviating from a power law, toward
fewer large patches than expected for a pure power
law, indicate proximity to transitions (Kéfi et al.
2007; Kéfi et al. 2011). Whereas a system far from
transition is characterized by the presence of
patches of all sizes, a system tends toward a limited
range of patch sizes (intermediate and small) when
stressed. This is because the largest patches frag-
ment into smaller ones, while the smallest patches
die due to the high level of stress. More practically,
along a transition to desertification, the distribution
of vegetation patch sizes goes from spanning clus-
ters (vegetation patches crossing the whole system),
to power laws, to truncated power laws and finally
to an exponential distribution (Kéfi et al. 2011).

Empirical evidence

This observation of sequential pattern formation
leads to the idea that dryland ecosystems may be
ranked by their resilience to environmental change
by focusing on the patch size distribution. Kéfi
et al. (2007) investigated how the spatial organi-
zation of vegetation is influenced by the degree
of external stress in field data from three grazed
Mediterranean arid ecosystems in Spain, Greece
and Morocco. In each of these ecosystems, data
was collected on three sites with different levels
of livestock grazing. In each of the nine (3 × 3)

sites, the authors analysed the number and sizes

of vegetation patches, and plotted the number of
patches, N(S), as a function of size, S. They then
fitted these patch-size distributions to two different
models: a power law,

N(S) = CSγ (15.31)

and a truncated power law,

N(S) = CSγ exp
(

− S
Sx

)
, (15.32)

where γ is the estimated scaling exponent of the
model, Sx the patch size above which N(S) decreases
faster than in a power law, and C is a constant.

In the field sites with the lowest grazing
pressure, the patch-size distributions were best
fitted by heavy tail distributions resembling a
power law. This power-law relation implies that
vegetation patches were present over a wide
range of size scales, with many small patches and
relatively few large ones. This is consistent with
another study published which found power law
distributions in vegetation patch size across Africa
(Scanlon et al. 2007). As herbivory increased in
the three ecosystems, the distributions deviated
increasingly from a pure power law, because of
the fragmentation of the large patches as well as
the loss of the smallest patches from the ecosystem
(Kéfi et al. 2007).

This is consistent with theoretical results which
suggest that for high cover, the patch size distri-
bution is characterized by the presence of spanning
clusters, very large patches of the size of the system
itself (Kéfi et al. 2011). As the cover decreases,
spanning clusters of occupied cells first disappear
at a point that is referred to as the percolation point
of occupied cells. Interestingly, at this point there
is a drastic change in system-wide connectivity, as
the probability that a spanning patch appears in the
system changes dramatically, but other ecological
variables of interest, such as the fraction of occupied
cells, vary smoothly with no apparent shift. Power
laws emerge at this point. From the percolation
point, the large patches are progressively lost,
leading to deviations from power laws. These devi-
ations become stronger as the system approaches
extinction, and the tail of the distribution exhibits
increasingly fewer large patches than at the
percolation point. The sequence of patch size
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Figure 15.7 Succession of patch size distributions in a model along a gradient. (a) Each of the grey areas corresponds to a different region. Full
line: fraction of occupied cells in the lattice at steady state. Dashed left line: percolation probability of empty cells. Dashed right line: percolation
probability of occupied cells. (b) Patch size distributions of occupied cells at steady state on a log–log scale, and the corresponding snapshots of the
system at the end of the simulations for each of the four regions shown in (a). Black: occupied cell. White: empty cell.

Figure from Kéfi et al. (2011).

distributions with decreasing cover can be char-
acterized by four distinct patterns: i) spanning
clusters of vegetation, ii) power laws (Equation
15.31), iii) truncated power laws (Equation 15.32),
iv) truncated power law (Equation 15.32) with
spanning clusters of empty sites Kéfi et al. (2011)
(Figure 15.7). Simultaneously, as the cover keeps
decreasing, the probability that spanning clusters of
empty cells appear in the system increases.

Furthermore, theory suggests that this succession
of patterns occurs both along continuous and

discontinuous transitions (Kéfi et al. 2007). The
combination of model and data analysis suggest
that increasing deviations from pure power laws in
the patch size distribution of vegetation in drylands
may indicate that the ecosystem is degrading and
approaching the desertification point. As well-
resolved spatial data is becoming increasingly
available at low cost due to improved technology
(such as remote sensing), further tests of these
theories will help further validate these theoretical
results and clarify to what extent they can actually
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be used as management tools, in drylands, and more
generally in spatially structured ecosystems.

15.4.3 Structural early warning signals

In addition to space, ecological systems are struc-
tured by many features. For instance, populations
may be structured by age, sex, physiological
condition, or behavior. Species in communities
are structured by the connections they share with
other species in food webs. Such structure is
important to the dynamics of the system when
it affects the change in system state, for instance
when encounter between males and females is
required for reproduction or there is consumption
by herbivores or predators. The existence of spatial
early warning signals suggests that structural
measurements such as body size spectrum, food
web connectance, or species abundance distribution
might also contain signatures of criticality. There
is, however, little theory on such structural early
warning signals. Tirabassi et al. (2014) have shown
that time series data can be used to estimate
interaction networks that are informative about
structural changes in a vegetation model and
Cavaliere et al. (2016) studied how links among
individuals changed systematically in the collapse
of cooperation networks. Finally, Dakos (2018)
has investigated how some species or food web
modules may provide more information about the
approach to a critical point than others, suggesting
that the best indicators of ecological collapse may
be theoretically informed sentinels. More work is
needed in this area.

15.5 Conclusion

The theory of alternative stable states, tipping
points, and early warning signals of ecological
transitions has been developed with increasing
sophistication over the last two decades. The models
presented here are methodologically instructive,
but relatively simple, both in their structure
and in the number of interacting state variables.
Importantly, these models illustrate that there
is more to be understood about the stochastic
phenomena associated with classical ecological
models. Although some of these phenomena

are qualitatively universal (e.g., the increase in
autocorrelation associated with a critical transition),
the specific properties of many models, especially
more complex models, remain poorly understood.
Numerous empirical examples of alternative stable
states and associated early warning signals have
been identified in concert with these theoretical
advances. However, empirical evidence remains
largely specific to particular settings and has fre-
quently led to identifying additional complexities
that affect the manifestation of critical phenomena
in real systems. We view this as a healthy feedback
between theory and evidence. Despite these
qualifications, the use of stochastic early warning
signals to monitor ecological systems approaching
a tipping point is a promising development in
ecological theory. We suggest that future work
be guided with a view toward operationalizing
these concepts, including the development of better
theory about the observability of critical slowing
down and the performance of field projects to
demonstrate the effectiveness of early warning
signals at scale.
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CHAPTER 16

Areas of current and future growth
Kevin S. McCann and Gabriel Gellner

We are currently in a time of significant environ-
mental change, and with the continued growth of
the human population this change is unlikely to
subside. While applied research has always played
some part of ecological research, modern research in
both empirical and theoretical ecology has seemed
to increasingly consider how this global change
has altered the structure and function of ecological
systems. When we both started practicing ecology,
the divide between what was seen as fundamental
and applied was large. Now, these boundaries seem
to be blurring and the massive changes unfolding
before us seem to have led researchers to re-examine
classical theory from perspectives previously only
largely glossed over (i.e., applied issues motivate
fundamental theory now).

Climate change research has pushed empirical
ecologists to recognize that organisms are broadly
responding to the associated changing seasonal sig-
nals of climate change by altering their phenol-
ogy. So extensive has this work become, that recent
meta-analyses have patterns across whole ecosys-
tems, and these responses can be larger in some
ecosystems relative to others. This behooves the-
ory to really understand the role of seasonal tim-
ing in everything from coexistence, to interaction
strength, the frequency of diseases, and the cycling
of nutrients and materials. For this reason, it is hard
not to imagine a large growth in theory that looks
more at seasonality. While seasonality has certainly
been considered, it has historically been intermit-
tent and ignored by ecology in general and has
yet to make its way to ecology textbooks beyond

the recent work on empirical phenology patterns.
Nonetheless, understanding the role of seasonality
is a fundamental need brought on by an emerging
and growing applied problem.

In a manner similar to seasonality, ecosystem
theory is not well-represented in any of the theoret-
ical ecology (TE) books, including this one. Here,
meta-ecosystem theory is referred to in Gravel and
Massol’s important emerging piece, yet still, despite
the amazingly long and excellent empirical work
done in ecosystem ecology, a base of theory hardly
exists. There is the well-known and excellent book
by DeAngelis (1992), and a lot of modeling done
on NPZ (nutrient-phytoplankton-zooplankton)
or NPZD (where D is detritus), but this well-
done ocean research has yet to integrate well into
the general tenets of ecology. Again, with global
change occurring and intersecting with the nutrient
and carbon cycles in critical ways, it seems this is a
time for ecology as a field to follow in the footsteps
of DeAngelis and others to bring the generalities
of this research to bear on both fundamental and
applied research. While this has been pushed by
the largely empirical stoichiometry literature, more
needs to be done to tie nutrients to the currency of
energy and vice-versa.

Several areas of recent theoretical growth come
out of a modern research paradigm that is interested
in crossing scientific boundaries (e.g., socio-
ecology). Again, pushed by a world where we
realize the connections are ultimately important
and feedback to alter the system. As such, placing
humans and their actions in a dynamic role in
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ecosystems is on the rise. In applied problems, these
socio-ecological intersections often lead to “wicked
problems” where optimization as a society is multi-
dimensional and far from obvious. These problems,
which are ultimately higher dimensional dynamical
problems with feedbacks, are often economic,
social, and deeply connected to human behavior.
While this area exists and is thriving, it seems as
though it will only grow in the coming decades.
In our opinion, it is still youthful enough that the
ideas from this, that we are aware of, have not
yet percolated into textbooks—a litmus test for the
lasting success of a coherent set of ideas in ecology.

While we have already referred to global change
and how it will lead some areas of research, it is clear
that theoretical ecology is branching out to extend
its current theory to embrace changing conditions.
This has happened relatively strongly at the pop-
ulation level but has been done in a less convinc-
ing and thorough manner at the community, food
web, and ecosystem levels. A number of chapters
reflect this current trend of looking at stochastic-
ity, transients, and structural change in populations
to whole ecosystems. Global impacts are driving
the recognition of multiple stressors, and theory
has followed suit. This is consistent with the inter-
est in stochasticity, to consider the implications of
multi-stressors or perturbations on the stability and
functioning of ecological systems. This new area
has argued that the long-lasting reliance on local
stability is not enough.

Although strictly speaking, bioinformatics is not
theory but rather the analysis and manipulation
of large amounts of data, it has been coupled to
theory frequently (e.g. job searches seem to regu-
larly do this). Nonetheless, theory will need to grow
in order to embrace the use of large amounts of
data in ecology, socio-ecology, and disease ecology.
Further, many theoreticians are also adept at pro-
gramming, allowing them to be both theoreticians
and bioinformaticians. Often, large data exercises
seem to want to remove themselves from theory
(“the models are just too simple and not realis-
tic enough”). Disease ecology, in many areas, has
shifted away from theory, and yet there is a clear
role for simultaneously doing both theory and more
detailed applied approaches, with one informing
the other. This is part of a long tactical versus strate-

gic modeling argument but one that should not be
forgotten. Additionally, the intersection of bioinfor-
matics and theory is potentially rich. Tools of the
bioinformatics approach are useful for implemen-
tation into high data theory (e.g., May’s complex
matrices) and potentially for applications of the-
ory (e.g., deep learning and fisheries). Here, we
would argue that the intersection of these different
but technically overlapping research areas ought to
drive advances.

With the growing population, food production
is becoming a massive global issue. This is a socio-
ecological problem, and it is so large and growing
as to demand its own comments. One clear aspect
of food production is that it makes ecosystems into
agro-ecosystems, (human-dominated ecosystems).
These agro-ecosystems impact both adjacent
ecosystems and distant ecosystems because of the
connectivity of nature’s ecological systems. The
Lake Erie dead zone for example, was once largely
the manifestation of urban effluents before sewage
treatment, whereas now its massive and growing
dead zone is more directly related to agriculture in
the surrounding USA and Canadian watersheds.
Water, here, is nature’s transport system and, not
surprisingly, there is a growing frequency of these
dead zones globally. Due to the connectivity and the
complex of feedbacks, this is another area ripe for
theoretical input and guidance. It will also require
bioinformatic approaches, and numerous other
aspects could use the aid of ecological theory or
its existing tools. For example, even the aspect of
understanding how climate and spatial arrange-
ments (e.g. homogeneity or heterogeneity) alter the
stability of yield and economics is a problem core
to the tools of the theoretical ecologist. Note, much
of the connections in space are at the ecosystem
level so theory at the ecosystem scale is critical and
needs to be incorporated into the general toolbox of
ecologists.

One aspect of recent trends, started some time
back by Peter Yodzis and Ulf Dieckmann, involves
considering how biological constraints, like body
size allometry, impact ecological dynamics. Con-
straints are the “reality” filters of complex dynam-
ical systems theory and are playing an increasingly
big role in ecological theory (see Brose’s Chapter 9
for example). One can imagine that constraints may
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be ultimately tied to whole food web theory matrix
techniques for example, that ensure these matrices
are also “feasible” an area that has always plagued
general community matrix theory.

To end the book, we note that we have missed
things that are clearly important and being
developed. Namely, while eco-evolutionary theory
is within the trait chapter of Klausmeier, Kremer and
Koffel, it is arguably largely missing in this book,
likely reflecting an unfortunate bias towards our
own strengths. Clearly eco-evolutionary theoretical
developments are currently being developed, and

we imagine and hope that future versions of
theoretical ecology will reveal strong growth in
this important area. Much work is being developed
related to evolutionary response to global change
(e.g., evolutionary rescue). Again, consistent with
the themes being developed in this book, we would
argue that this multi-disciplinarian approach to the-
ory (evolution and ecology, agriculture and ecology,
economics and ecology, society and ecology) have
become part of the toolbox of modern ecology and
modern theoretical ecology and likely will play a
massive role in future theoretical development.
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Glossary

activation energy the energy which must be provided to
a system of reactants in order to generate a reaction. The
activation energy determines the relationship between
temperature and vital rates in the Arrhenius equation

adaptive dynamics a trait-based theoretical framework
that allows for the emergence of community structure,
assuming infrequent, small mutations of existing
strategies

additive assembly total density or biomass increases with
diversity as a community assembles because additional
species do not replace species that are already present

adult-driven population cycles cycles in a structured con-
sumer population exploiting a shared resource that arise
because adult consumers are competitively superior and
require lower resource densities for their survival than
juveniles. These stage-structured population cycles are
distinct from classical predator-prey cycles and result
from ontogenetic asymmetry

Arrhenius equation a formula for the temperature depen-
dence of biological and ecological rates, originally devel-
oped to describe rates of chemical reactions.

autocorrelation the relationship among subsequent obser-
vations in a temporal (or spatial) sequence. Positive
autocorrelation refers to a tendency for subsequent
observations to fall on the same side of the arith-
metic mean

biomass overcompensation an increase in the biomass of
a particular life history stage of a consumer population
when its mortality increases, resulting from the relax-
ation of density dependence. This overcompensation
occurs irrespective of whether mortality of the entire
population or of a particular life history stage increases

branching point an evolutionary equilibrium that is con-
vergence stable but not evolutionary stable

carrying capacity the number of individuals in a popula-
tion at which the rate of per-capita increase via births
and immigration is equal to the rate of per-capita loss
via death and emigration

causality (cause-and-effect relationship) refers to a
relationship between two variables, objects, events
and states of affairs, by which a cause contributes to

occurrence of an effect. Following three conditions are
important in definitions of most causality measures:
(1) the cause occurs before its effect, (2) there exists the
correlation between the cause and its effect, and (3)
the correlation between the cause and its effect do not
disappear in face of any confounding variables.

community matrix the community matrix describes the
linearized dynamics around a fixed point of an eco-
logical community. It is calculated evaluating the Jaco-
bian matrix of the dynamical system at the fixed point.
A fixed point is locally stable if all the eigenvalues of the
community matrix have negative real part

community all the biological species living in a defined
locality

competitive exclusion the process by which a species is
driven to extinction by competition with other species;
no more species can coexist at equilibrium due to limit-
ing factors

contemporary niche theory a theoretical framework that
employs a graphical approach to determine community
structure based on zero net growth isoclines (ZNGIs),
which summarize the response of organisms to their
environment, and impact vectors, which summarize the
effect of organisms on their environment

contingent competitive exclusion competitive exclusion
that depends on the initial densities of a species and its
competitors

convergence stability when directional selection pushes a
strategy toward an evolutionary equilibrium.

convergence stable strategy (CSS) an evolutionary equi-
librium that is both convergence and evolutionary stable

cross-reactive immunity immunity developed in response
to infection by one type of pathogen also confers some
degree of protection against a different type of pathogen

degree distributionn the degree of a node in a undirected
network is the number of nodes it connects to. The
degree distribution is the probability of observing a
node with a given degree

density feedback the tendency of the per capita popula-
tion growth rate of a species to increase or decrease as a
result of changes in the density of that same species, or
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a different species from the same guild, mostly due the
effects of species density on an intermediary such as a
resource or a natural enemy on which per capita growth
depends

density dependence changes in individual life history
rates, for example, rates of somatic growth, devel-
opment, maturation and mortality, brought about by
changes in overall population density. This negative
feedback effect of population density on individual
life history rates can operate directly (direct density
dependence) or indirectly, for example, through
depletion of a shared resource that individuals forage
on (delayed density dependence)

density-dependent transmission pathogen transmission
is a function of the number of infected individuals per
unit space

directional selection when there is a non-zero fitness gra-
dient

diversity maintenance the process by which the diversity
of species is maintained over time

ecological drift the tendency of species with equal aver-
age fitnesses, that are also not ecologically differentiated,
to drift in abundance due to the cumulative effects of
random perturbations of population density

emergent Allee effect an Allee effect of a predator
on a structured prey population that emerges from
the change in stage- or size-structure of the prey
with increasing mortality. The predator experiences
positive density dependence at low density (an Allee
effect) because the density of its preferred prey stage
increases through biomass overcompensation despite a
decreasing overall prey density

emergent facilitation the (mutual) facilitation between
two stage- or size-selective predators of the same struc-
tured prey population, which emerges from the changes
in prey stage- or size-structure that the predators induce

emergent predator exclusion the phenomenon that a
stage- or size-selective predator of a structured prey
population goes extinct with increasing productivity
of the resources that the prey forages on, because
the increased resource productivity changes the prey
population structure in a way that is detrimental for
predator persistence

environmental or E-state the set of variables that char-
acterize the environment in which the individuals in
a structured population model live and that determine
together with the individual or i-state the development,
reproduction and mortality of the individuals as well as
their interaction with the environment

environmental tracking the expression of a pattern of
population dynamics that is similar to that exhibited by
the forcing environment, usually at some temporal lag

equilibrium an ecosystem state (for a point equilibrium)
or set of states (for cycles or chaos) in which the system
will remain in perpetuity unless perturbed. An equilib-
rium can be stable or unstable; see the following points.
A system is considered to be “at equilibrium” if it is
in one of these states/sets of states and there is zero
population growth

evolutionarily stable community (ESC) an evolutionary
equilibrium (usually of >1 species) that is globally evo-
lutionarily stable and convergence stable

evolutionarily stable strategy (ESS) an evolutionary equi-
librium that is evolutionary stable, either locally (cannot
be invaded by nearby strategies) or globally (cannot be
invaded by any other strategy)

evolutionary equilibrium a trait value or set of trait values
where there is no directional selection; also known as a
singular strategy

evolutionary transcritical bifurcation a bifurcation where
an evolutionary equilibrium loses its global evolution-
ary stability

feasibility a fixed point is feasible if all its components are
positive.

fitness gradient the change in fitness with respect to
change in a trait value, ∂g/∂x0|x0=x1

; it summarizes
the directional selection, a strategy experience

fitness a synonym for the per capita growth rate, gi; see
also invasion fitness

food chain a linear pathway in a food web defining the
progress of organic matter from lower to higher trophic
levels

food web the set of all links between the species in a
community defining which species feed on which other
species

forecast horizon the dimensional distance in time for
which useful forecasts can be made. This is generally
quite low for ecological variables due to various kinds
of stochasticity and uncertainties about model structure
and data

founder control an outcome of competition where
whichever species reaches equilibrium first excludes
the other

frequency-dependent transmission pathogen transmis-
sion is a function of the proportion of infected
individuals per unit space

functional response the relationship between the density
of resources or prey and the number consumed per
consumer/predator in a unit of time. Temperature has
strong effects on numerous aspects of the functional
response

global stability a solution is globally stable within a given
domain D when a system returns to the equilibrium
after a perturbation of any given magnitude, with the
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requirement only that the perturbation does not take the
system outside the domain D

gradual acclimation non-genetic phenotypic changes that
are too slow to closely track the environmental changes
that drive them, yet too fast to be considered ecologically
irrelevant

growth isocline a curve or surface in Euclidean space
with axes being population densities, or other quanti-
ties affecting per capita population growth, for which a
particular species has zero population growth

guilds groups of species that are functionally similar in
a community, which share a fitness function such that
species with identical trait values are neutral

half-saturation density the density of resources or prey
at which half of the maximal ingestion of a consumer
or predator is achieved. The half-saturation density is a
parameter of the Monod formulation of the Holling type
II functional response

harmonic mean a summary statistic that is commonly
applied in situations when the average of rates is
desired. The harmonic mean is the reciprocal of the
arithmetic mean of the reciprocals of the individual
observations. The harmonic mean is always less than
the arithmetic mean

individual or i-state the set of variables or traits that char-
acterize individuals in a structured population model
and that determine together with the environmental or
E-state the development, reproduction and mortality of
the individual as well as its interaction with its environ-
ment

interaction coefficient the rate at which the per capita
growth rate of a species changes relative to its maximum
value as the density of the species (intra specific interac-
tion) or of a different species (interspecific interaction)
changes

interspecific competition competition, usually for shared
resources by individuals of different species

invade a population that is rare, attempting to establish
among a resident community; grows or declines expo-
nentially

invasibility criterion the judgement that species in a guild
coexist if it is possible for each of them to increase from
low density in the present of the other guild members
not necessarily at low density

invasion analysis a popular approach to understanding
coexistence between two populations, based on whether
each population can invade monoculture of the other on
its ecological attractor

invasion fitness fitness of a population when it is rare in
an environment set by any resident population(s)

juvenile-driven population cycles cycles in a structured
consumer population exploiting a shared resource that
arise because juvenile consumers are competitively

superior and require lower resource densities for their
survival than adults. These stage-structured population
cycles are distinct from classical predator-prey cycles
and result from ontogenetic asymmetry

life history theory predicts how organisms should
optimize their allocation to growth, survival, and
reproduction

limiting similarity limits on how similar the trait values of
species can be and yet allow them to coexist

linear stability analysis use of a linear approximation near
an equilibrium point to compute the rate of exponential
growth or decay in a small displacement from that
equilibrium. When the linear approximation is written
in matrix form, it is known as the Jacobian matrix
and its dominant eigenvalue gives this exponential
rate

local stability a fixed point is locally stable if, starting
starting from an arbitrarily close initial condition,
dynamics converge to the fixed point

locally stable equilibrium an equilibrium that is returned
to in the long run after sufficiently small perturbations

metabolic theory a concept that extends the relationship
between metabolic rate, body size and temperature to
describe patterns at other levels of organization

mutual invasiblity plot (MIP) illustrates the pairs of strate-
gies x1 and x2 that can stably coexist

natural enemy partitioning the tendency for different
members of guild to be most susceptible to different
natural enemies

neutral populations with identical fitness
neutrally stable equilibrium an equilibrium forming one

of a continua of equilibria such that perturbation from
the equilibrium leads to another equilibrium nearby
with no tendency to return to the initial equilibrium

niche overlap the degree to which species are similar in
their use of the environment with regard to those com-
ponents associated with density feedback

non-equilibrium system any population, community, or
ecosystem that is experiencing transient and/or stochas-
tic dynamics, and is therefore not currently at equilib-
rium

non-linear averaging the average value of a non-linear
function that is generated when the independent vari-
able is distributed across a range of values. Non-linear
averages typically differ from the function value at the
average of the independent variable

nonlinear dynamics refers to temporal changes of
variables that are generated by a deterministic rule
where the outputs show disproportional response to
the changes of the inputs. In nonlinear dynamics,
small differences between initial states often diverge
exponentially (called sensitivity to initial conditions),
making their long-term behaviors unpredictable
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ontogenetic asymmetry differences in, for example,
ingestion rate, maintenance rate, or resource and habitat
use between individuals of different body sizes or
life-history stages that translate into differences in
individual competitiveness

optimal foraging theory predicts how organisms should
optimize foraging for different resources

optimization theory a framework that assumes that
organisms will maximize their fitness, or a fitness proxy

Ornstein–Uhlenbeck (OU) process a stochastic differential
equation which combines a random-walk with a ten-
dency to return to a central value. OU processes can be
used to generate temporally-autocorrelated dynamics to
represent temperature or other environmental variables

overall interaction the geometric mean of the relative
interaction coefficients of two species in a community

pairwise invasion plots (PIPs) used in adaptive dynamics
to classify one-species evolutionary equilibria, these plot
the sign of g(x0; x1) as a function of the traits of a resident
and an invader population

per capita growth rate the rate of change of population
density per unit time, per unit density

permanent coexistence an outcome for deterministic
models in which all species rise above some minimum
positive density in the long run from any state in which
no species are extinct

physiologically structured population model a structured
population model that represents individuals by a set
of individual state or i-state variables and describes the
life history of the individual (development, reproduc-
tion and mortality) as well as its interaction with the
environment dependent on these i-state variables and
on the state of the environment the individual lives in.
The population level model emerges by bookkeeping
these individual life history dynamics

population or p-state the mathematical object in a struc-
tured population model that represents the distribution
of the individuals in the population over all possible
individual states. This can be a vector of densities, if the
individuals are classified in discrete life history stages,
or a continuous distribution in case the individual state
can adopt values in a continuous range

potential function a function that describes how a dynam-
ical system in any given state will change in the absence
of external perturbation. It can be thought of as a surface,
and the system’s state as a ball rolling on this surface.
The ball will roll downhill, away from unstable equilib-
ria (peaks in the surface) and toward stable equilibria
(wells). It will roll more slowly on flat spots and more
quickly on steep parts of the surface

random matrix a random matrix is a matrix whose
coefficients are random variables. As such, instead of
studying a given matrix, results obtained using random

matrix theory describe the “typical behavior” of an
entire class of matrices whose coefficients are sampled
from a given distribution

rank (of a matrix) the rank of a matrix is the number of
linearly independent columns (or, equivalently, rows) in
the matrix. For square matrices, the rank is also equiv-
alent to the number of non-zero eigenvalues. A square
matrix is said to be of full rank if the rank is equal to its
size, or, equivalently, if all the eigenvalues are different
from zero

relative average fitness the ratio of species average fit-
nesses of two different species in a guild

relative limitation ratio the ratio of interspecific to
intraspecific interaction coefficients

resident a population that is not an invader, i.e., which has
reached its ecological attractor

resource partitioning the situation in which the different
species in a guild are most heavily dependent on dif-
ferent resource species, or more formally have linearly
independent utilization functions

saddle an unstable equilibrium that is attracting from
some states and repelling from others; the dynamics
may approach a saddle before ultimately moving
away

species average fitness a quantity defined for each mem-
ber of guild predicting which species in any subset of the
guild would ultimately dominate, excluding the others,
in the absence of a coexistence mechanism

species diversity the number of species in a defined area,
or more generally a measure that increases with the
both the number of species and the evenness of their
abundances

spectral density the spectral density is the probability
density function associated with the eigenvalues of a
random matrix ensemble. It describes the probability of
observing an eigenvalue with a given magnitude

spectrum the spectrum of a matrix is the set of
eigenvalues

stabilizing/disruptive selection selection that respectively
disfavors (or favors) trait values that are more extreme
than the focal strategy’s, causing trait variance to
decrease (or increase)

stable coexistence the tendency of all species in a guild to
increase following perturbation to low density, avoiding
extinction with positive invasion fitness

state dependency in the context of community ecology,
“state dependency” means that effects of species or envi-
ronment on another species may depend on the system
state, which may vary with time, space and biological or
non-biological environments

stable equilibrium an equilibrium that is returned to in
the long run following a perturbation, including both
locally stable and globally stable equilibria



OUP CORRECTED PROOF – FINAL, 8/4/2020, SPi

G L O S S A RY 293

state space the set of possible values for state variables of
interest. If we’re interested in the dynamics of a popula-
tion, the state variable is population density and state
space is a one-dimensional line from 0 to ∞. If we’re
interested in two interacting populations, state space
is two-dimensional, representing pairs of population
densities

stationary environmental variation environmental vari-
ation that can be characterized by long-term stable
frequencies of events, and therefore having a central
tendency defined by a fixed mean, and spread defined
by a fixed variance

stochastic differential equation a differential equation in
which one of more of the terms is a stochastic process

stochastic random, with respect to the process being
studied

storage effect a coexistence mechanism arising in a
variable environment from the three-way interaction
of the response of population growth to environmental
change, changes in competition and species densities.
It is the mechanism allowing temporal partitioning to
promote species coexistence

strategy the trait values of a population (or species, in
some cases)

structural stability a system is considered to be struc-
turally stable if any smooth change in the model or in the
value of its parameters does not change its dynamical
behavior (such as the existence of equilibrium points,
limit cycles, or deterministic chaos). In Chapter 7, the
relevant dynamical behavior is the stable coexistence of
species and structural stability is reinterpreted as the
area in parameter space compatible with both a dynam-
ically stable and feasible equilibrium

structured population model a model that represents a
population by its composition in terms of, for example,
the sex-, age-, stage-, or size-structure of its individuals
as well as by the abundance of these different types of
individuals

substitutive assembly increases in diversity are associated
with replacements of individuals because of competi-
tion (usually due to a fixed carrying capacity for the
community); thus, the addition of an individual of one
species replaces an individual(s) of another species

temporal niche the way in which a species uses the envi-
ronment over time

temporal partitioning the presence of differences between
species in their temporal niches

thermal performance curve the relationship between a
measure of organism or population performance (e.g.,
swimming speed; growth rate) and temperature. These
curves are typically unimodal and skewed to reflect a
rapid reduction in performance above the modal tem-
perature

thermoregulation the ability of an organism to maintain
its body temperature at a value different than its sur-
rounding environment

top-down control/effect the extent to which a consumer
or predator determines the structure and biomass of the
resource/prey community

trade-off relationships between non-independent traits
that constrain their variation

trait any measurable characteristic of an individual; func-
tional traits are those that affect performance and ulti-
mately fitness. See also strategy

transcritical bifurcation a point in parameter space where
an equilibrium point exchanges its stability with another
equilibrium point as a parameter is varied. When tem-
perature varies, stable consumer-resource systems may
transition to stable resource-only systems (consumer
extinction) via a transcritical bifurcation

transient dynamics dynamics that occur in a system that
is not at equilibrium.

trophic level the position of species in a food web defined
by the maximum number of species that organic matter
passes through before being consumed by the species

universality the spectrum of a random matrix is universal
if it does not depend on the full distribution from which
the coefficients are drawn, but rather only on a few
moments of the distribution

unstable equilibrium an equilibrium state that a dynam-
ical system will naturally diverge away from, unless
perturbed toward it. However, if the ecosystem is pre-
cisely in this state, it will remain there in perpetuity
unless perturbed. It may be a point equilibrium, or a
more complex dynamic such as an unstable limit cycle
or chaotic repellor

utilization function a function defining the consumption
rate of each resource by a particular consumer species
measured per unit resource, and per unit consumer
species
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