THE

JAVA

WORKSHOP

FIRST EDITION

David Cuartielles, Andreas Goransson and
Eric Foster-Johnson

- Packt> |

The Java Workshop

A practical, no-nonsense guide to Java

David Cuartielles
Andreas GOransson

Eric Foster-Johnson

Packt

The Java Workshop
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the authors, nor Packt Publishing,
and its dealers and distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Authors: David Cuartielles, Andreas Goransson, and Eric Foster-Johnson
Technical Reviewer: Darryl Pierce

Managing Editor: Manasa Kumar

Acquisitions Editor: Sarah Lawton

Production Editor: Shantanu Zagade

Editorial Board: Shubhopriya Banerjee, Mayank Bhardwaj, Ewan Buckingham,
Mahesh Dhyani, Taabish Khan, Manasa Kumar, Alex Mazonowicz, Pramod Menon,
Bridget Neale, Dominic Pereira, Shiny Poojary, Erol Staveley, Ankita Thakur,
Nitesh Thakur, and Jonathan Wray

First Published: August 2019
Production Reference: 1260819
ISBN: 978-1-83864-996-8
Published by Packt Publishing Ltd.
Livery Place, 35 Livery Street
Birmingham B3 2PB, UK

Table of Contents

Preface [
Chapter 1: Getting Started 1
(TR oo 11 Lot o T o T 2
Writing, Compiling, and Executing Your Hello World Program 2
Exercise 1: Creating Your Hello World Program in Javacccccceeveeevvercueennnen. 3
Basic Syntax and Naming CONVENtioNScccceeveeviininiiinennennienenneeseesneens 9
Printing Out Different Data TYPES ...cccceeverrreerrreerrreeneseeesseessseessseessseessssessssessnes 11
Variables and Variable TYPesccviiiiiiniiniiniinicnicneenrcecececseeneens 12
Exercise 2: Printing Different Types of Datacccceeeveerveerceenceenseenseeennne 12
Primitive versus Reference Data TYPEScccceverveerrereniennienneeneeessneessneesenes 15
INUIT ettt st b st a st a b at s 16
Chars @nd STFINESoooiiiiiiiieeeeeee e e e s ee s e s ee s ne s nne e 17
Exercise 3: Declaring STriNGScccceeevereverriernnenereeneseeesseessseessseessseessssesssnessnes 18
D0oING SOME Math ...t nee 19
Exercise 4: Solving a Simple Trigonometry Problemccccccovvinviriinnennnen. 20
Comments Help You to Share Codeccouiiiniieiiieneneienceenceercecscee e 22
L@ I T] 1 RN 23
Exercise 5: Running the Code from the CLIccccooviiiiiiiininiiiceeneeeeeee 23
Activity 1: Obtaining the Minimum of Two Numberscccccoecerviriinnncnnen. 24

SUMMAKY ceeiiiiiiiiiiiiiiiiieireeeee s isesesassreee s s s s s s sssssssseesssssssssssssssssesssssssssssnnnnes 25

Chapter 2: Learning the Basics 27

INEFOAUCEION .ottt e s 28
Controlling the Flow of YOUr Programscccceeeereveereneeneneereneenenneneeennne 28
Exercise 1: Creating a Basic if Statementcoccvereverevenevernrenrerceeeeenne 29
CoMPAriSON OPEFALOrSeeieiiiiiiiiieeiiereee ettt ee s ee s e e s ae s aesenne e 32
Exercise 2: Using Java Comparison Operatorsccccccceeeeveeererneerrcsnersenneenes 33
Nested if StateMENTS ...t eaee 35
Exercise 3: Implementing a Nested if Statementccceccevvveirceenceenceennee. 35
Branching Two Ways with if and else ..o 36
Exercise 4: Using if and else Statementscceccveveeereeenceenseenseenseeneeeennnes 37
Using Complex Conditionalscccoeiiiiiiiiiininiieneentereereenee e 39
Exercise 5: Using Logical Operators to Create Complex Conditionals 40
Using Arithmetic Operators in an if Conditionc.c.ccocceieviiiiiiiiciiicninenene 42
The Ternary OPEratorcceccceeevcerereeereesreessseessssessssesssseesssessssessssnssssssssssesnes 43
Exercise 6: Using the Ternary Operatorcccceivieininininnncenneeeseeeeeennes 43
Equality Can Be TriCKYcoooeeeeieriienieeseenceeeseesseeesneessneessneessneessnnesssesssnssssnes 45
Exercise 7: Comparing Decimal Valuescccooviiviiiiiniiiniiininincceeeeee 45
COMPAriNG SEFINES ...eoiiiiiiiiierieirerrerresecnee st e sesreessssnesessseesssssnessssnnessssnassnns 46
Using Switch Statements ... 48
Exercise 8: USING SWItCHcoouiiiiieeeeeeeeereeeeeeeeeese e 49
Exercise 9: Allowing Cases to Fall Throughcccocciiiiiiiiiiiiniiiniiiennee, 50
Using Java 12 Enhanced Switch Statementsccoevereerevererencrerereereeenene 52
Exercise 10: Using Java 12 Switch Statementsccocceiiviniiiiiiinniiniieennee. 52
Looping and Performing Repetitive Tasksccccccceeevrereveericneencnecrncneenee 54
Looping With the FOr LOOPcccceeieiiiiiiiiieeeneeeeeeeseee e 55
Exercise 11: Using @ ClassiC fOr LOOPccceeevvereeerereercneeneieneeesseeseseessnessnesenes 55
Exercise 12: Using an Enhanced for LOOPccccocviiiiiniiiniienciineeeceeneeene 56

Jumping Out of Loops with Break and Continueccccevevververncrncnnnenns 57

Exercise 13: Using Break and CONtinUEc.cccoeciiiiiiiiiiiciiniiinceeneesceeene 58

USIiNG the WHile LOOP ...coveeireeeieereeeeeieeeeeeee et eseeseseesesee s seesennesenneses 59
Exercise 14: Using @ While LOOPccoceeiiiiiiiiiiiiiiiieeetesees e seeseesne 60
Using the DO-WHhil@ LOOP ...ccccuereeireeereeeeeeeeerseeenee e sseeseseesenee s seesenneseneeses 61
Handling Command-Line ArgUmMENtsccccceeverevereneerenereneeseeesseessneens 62
Exercise 15: Testing Command-Line Argumentsccccevveveeeneenercnecennnees 62
Converting Command-Line Argumentsccccecviiineiinnniniennncncecncecseeene 64
Exercise 16: Converting String to Integers and Doublesccccceeuvvuennnen. 64
Diving Deeper into Variables - Immutabilitycccccceeviiiniiiiiniiiniiiniiennes 65
Comparing Final and Immutableccccccciviiiiiiininiiininintncccene 66
USING StAtiC ValUES ..ottt 66
Using Local Variable Type Inferenceccccovevvininiciicnncnncnncnicnecseenne, 67
Activity 1: Taking Input and Comparing Rangescccccceveviveriiennncennnennnnes 68
SUMMAKY ceeviiiiiiiiiiiiiiiinrtteeesssssssssssteessssssssssssssssesssssssssssssssssssssssssssssssnnns 69
Chapter 3: Object-Oriented Programming 71
Tk oo [U Lot T o 72
The Anatomy Of @ Classccccvveiiiiiiniiiiciicicccree e 72
Working with ObjJects iN JAVAccccveereviiiiiieiincienceeerceeesereeesesseeesesneesenne 74
Checking the Precedence of a Class with instanceofc.cccoeueveueenne 78
Exercise 1: Creating the WordTool Classcccccceevvereveeenieennneennneensneensneensseennnne 79
Activity 1: Adding the Frequency-of-Symbol Calculation to WordTool 87
[o] o=l g1 =T o Lol S [o 1 = V7= U 88
Overriding and Hiding Methodsccccvvviiininiininininiiniiiiienecnineenne 90
Avoiding Overriding: Final Classes and Methodscccecveerveirveenceencneennne. 93
Overloading Methods and CONStructorscccocceviveeriieerineenineeniseenieenane 94
(2= ol U]] T o N 96

7 Y a0 =) o o] o - 98

INEEITACES eeiiieeeeieeiieeeeeeeeeeeeeteeneeesesensessssessssssssssssssssssssssssssssssssssssnssssssssnns 102

LT =T = < 103
Documenting With JavaDOoCc.ccocveveveneiierreeneereeeee e seee e 105

Activity 2: Adding Documentation to WordToolcccccceevereverevcrccecrennene 110
Y U] 0 0 = | PR 111
Chapter 4: Collections, Lists, and Java's Built-In APIs 113
[T T oo 11 Tt u [0 o 114
AFTQYS coeiiiiiiiiiieereeteesssseesssnnreeeesessssesssssnnssaesssssssssssssnsseassssssssssssnsnasessssssns 115

Activity 1: Searching for Multiple Occurrences in an Arraycccceeeeene 123
R3] = TR 124
LISES ettt 130

Exercise 1: Creating the Analyzelnput Applicationc.ccecceevvveecvenceennnen. 136
] = T o P 138
Iterating through Collectionscccccevcviiiiviiincnienceecceeeeceee e 141

Exercise 2: Bringing Analytics into the Analyzelnput Application 145
SOrting COlECLIONSuuveiieceiiecteeceeercee et s reeessree e e s ssee s s srneesssnnesssnnaessns 148

Exercise 3: Sort the Results from the Analyzelnput Application 150
PrOPerties ...eeeeeieiiiiieenecctteeecccnreessesre e s sssssnre e s s snneesssssnneessssssnnessssssnnnenses 155

Activity 2: Iterating through Large Listsccccevevviiiiiniieneinninnecnneneeneene 160
SUMIMAKY ceeiiiiiiiiiiiiiieneeeeeesssssessssnereeeesssssesssssnssssasssssssssssssnnssaasssssssssssnnns 161
Chapter 5: Exceptions 163
(LY aigoTe [UTat dTo] o SRR 164
A Simple Exception EXamplecociiviiiiiniininiennneeneeeeeseeeseneesssneeens 164
NullPointerException - Have NO Fearcccccoveviricieeiriseerncecencneeneneenne 169
Catching EXCEPLIONSccivciiiiiiiiiiieercieecrreesesneeeesrneeesnneesessnesssneesssnnenssns 172

Exercise 1: Logging EXCEPLIONScovvuiiiiiiiiieiiiietecteeteetee et 177

TRIOWS QN TRIOW vttt eettteeesetaseeeeessssesssessssssssessssssssenns 179

Exercise 2: Breaking the Law (and FiXing It)ccccccoeviiiiiiiiiiiniinniienienen, 181

The finally BIOCKeoiiieiiieieeetenceerrercte et esae e s enee s 184
Activity 1: Designing an Exception Class Logging Datacccccceeuuennneen. 185
Best Practices for Handling EXCeptionsccccccvveveireveericieeercneenecnnenn. 186
Where Do Exceptions Come from?coccceeeverererenenenereneeneeeneeeseeennnes 190
SUMMAKY coeeiiiiiiiiiiiiiiiereeeee s issessssssseesssssssssssssssssesssssssssssssssssaassssssssssnnns 190
Chapter 6: Libraries, Packages, and Modules 193
[aY oo [Tl u o] o HR OSSR PR TRUTRRPR 194
Organizing Code into Packagescccccevieiirieneiniiiinicneeneseeseceeescsneenene 194
IMPOrtiNg ClAasSEScccueeevieirriireieereeneenstesseeeeseessseessneessseesssnesssnessnsessnsessnnes 194
Exercise 1: IMporting Classescccvevviinienienieiniinecnienicnscseeseeseeseens 195
Fully Qualified Class Namescccceeveerreerneersienseensneessneessneessseessneessnsessnnes 197
Importing All Classes in @ Packageccccovevieviciicniinnicnnicnnecnienecneenneens 198
Dealing with Duplicated Namescccceeverrvierreerneenrrenceeesreesreeseneeseneessnees 199
Y = 1o (ol [0 o o o PR 199
Creating @ PACKAEGEccceeveeerieireeeneeneeesseeesseeesseeesseeessneessneessesssssessssesssnanane 200
Naming Your Package ...ttt 200
Directories and Packagesccccevveerveersienniennieneesseeseneeseeessseessneessnsessnnes 201
Exercise 2: Creating a Package for a Fitness Tracking Appcccceeeeeeueennen. 202
BUIlAING JAR FIl@Seeeeeeieeeeeeeeereeetectessnteesseeesneessneessseessnnessnnessnnessnsesnnes 208
Exercise 3: Building @ JAR File ..ottt 209
Defining the Manifestcceeeeiierienrieneerreereeere e s e s sreesseeseneessnnes 210
Exercise 4: Building an Executable JARFileccccovvviiriiininnninicieeceeenee. 211
BUIlA TOOIS ..ottt 212
= Y= o T 213
Exercise 5: Creating @ Maven Projectcccceeceerieveerenneennnneenecneesssnneesennne 214

Exercise 6: Adding Java Sources to the Maven Projectcccccceeevrenenneen. 217

Exercise 7: Building the Maven Projectcccccoviiviiniinnniinniinncienceeen, 224

Exercise 8: Creating an Executable JAR with Mavencccceevuvvuvnnnneen. 225
USING Gradle ...ttt 226
Exercise 9: Creating a Gradle Projectcccceecevevereceenceenseenceeeeeeeeeennees 227
Exercise 10: Building an Executable JAR with Gradlec.ccceceruuenneen. 229
Using Third-Party LIDrariescccovererernrerereneeneeereeseeeseee e seeesnees 231
Finding the Libraries ...ttt 231
Adding a Project DEPeNdENCYccccceeeveerereerereerernereeeseeesenesesnesessesenesesneses 232
Exercise 11: Adding a Third-Party Library Dependencycccecceveuenneen. 232
Using the Apache Commons Lang Libraryccocccevevereveneiennrencneenceennen. 235
Exercise 12: Using the Apache Commons Lang Librarycccoccveuenneee. 236
USING MOAUIES ...t s e s e s e s s s nees 237
Creating MOdUIES ...ttt 239
Exercise 13: Creating a Project for a Moduleccccvveiireirnnirncrenceennen. 240
Exercise 14: Creating a Second Module Using the First One 242
Activity 1: Tracking Summer High Temperaturescccceecereverevercrerennene 245
Y U] 0 0 = | /PR 248
Chapter 7: Databases and JDBC 251
TR oo 11 Tt [o 252
Relational Databases ..ot 252
Relational Database Management Systemsccccccevevveerncveencsneerenneenn. 253
INStalling @ DAtabasecocceeeveeeiienrienreerreeeseeesreeeseessreessneessnnessneessnnesnnes 254
Exercise 1: Running the H2 Databasec.cccocevviiiiiiiniinicnicnnecnnecnecnneen. 254
INEroduCing SQL ..cceviiiieiieceterceececeeescrnreseseessseeesssneesesnneesssneesssnnesssnneens 256
Exercise 2: Creating the customer Tableccocvvviininninncnicnncnicnnnen. 256
Inserting Data into @ Table ... 258

Exercise 3: INserting Datacccoviivviiniinniiniiinircreeare e 259

REtrieViNg Datacccciiiiiiiiiiieetrtetr ettt 259

Relating TabIESeoeeeeeeeeeeeeeee et e s s 262
Exercise 4: Creating the email Table ..o, 262
Selecting Data from Multiple Tables ..o 263
Modifying EXiStING ROWScccueriirieiieiieiiinienteneeesteeeestes e sneseesssesnessnens 264
Exercise 5: Modifying email Datacccccevevireiirncienreeeeeeeeeeceeeee e 264
Deleting Datacocceiiiiiiiiieetet ettt 265
JDBC - Accessing Databases from Javaccccceverevereverenereseneneereneeneeenns 265
Connecting to Databasescccciiiiiiiiiiiiiiiitncecree e 266
Querying Data With JDBC ... eseeesee s sne e e e s sneesnne 267
Exercise 6: Querying Data with JDBCcccccovviiiiiiiiiiiniiinieteeeeeeeee, 268
SaNitizing USer INPULoiiiiiiiiiiretnrecrnte e e e e sne e s sne s nnes 272
Using Prepared Statements ...ttt 272
Transactions and RoOIIDACKccooeiiiiiiiieeereee e 274
Exercise 7: Using Prepared Statements with Transactions 275
Simplifying JDBC Programmingccccceeveeeverereenseesseessneesssesssneesssesssnnssnne 277
Using Object-Relational Mapping Softwareccccevevverveeriensecnneenneeennen. 278
Database Connection POOIINGcccocereirieiiecieeieeeeeeeeee e 279
Non-Relational, or NOSQL, Databasesuuuueeeiiiiiiiiiiiiiiiieeeeeeeeeeeeeeresennns 280
Activity 1: Track YOUFr Progresscocceieverererereereneereeeseseesenesesnesesnesenesennenes 280
Y U] 0 0 = | /PR 281
Chapter 8: Sockets, Files, and Streams 283
1Yo [¥ e o o o PR 284
Listing Files and Dire@CtOriescccceervereverinienntreereeeseee e e seeesnes 285
Separating Directories from Filesccccciiviiiiininininerceeeeeeeeeeee e 289
Exercise 1: Listing the Contents of Subdirectoriescccceeveeveivenneenneen. 292

Creating and Writing to @ Filecovuiiiioiiiniiiiniiceereeneeeecceeeene 297

Activity 1: Writing the Directory Structure to a Fileccccocoeiiiiiieinnnenn. 302

Reading an EXiStiNg Filecc.ccoveviirioiiiniiincienrceeecceeesceeseceeescnee s sneeees 304
Reading @ Properties Filecoereirinennieeeeneeeeseee e s 306
Exercise 2: Creating a Properties File from the CLIcccccvveevrrerencnennnnen. 309
What Are SEreamiS?coiiiiiiiiceecnete ettt 312
The Different Streams of the Java Languageccccccvevereverccercccrcceerennene 316
What Are SOCKELS? ...ttt 320
Creating @ SOCKELSEIVEN ... s e e sneenene 321
Writing Data on and Reading Data from a Socketcccceevervireiinnnencennne 323
Activity 2: Improving the EchoServer and EchoClient Programs 326
Blocking and Non-Blocking Callsccccoiiiiiiiiiiniiiiiiiiceeeceeeeeee, 328
SUMMAKY ceeiiiiiiiiiiiiiiiieerteees s isssssssstteessssssssssssssssssssssssssssssssssasssssssssssnnns 328
Chapter 9: Working with HTTP 331
[aY e o [Tl u o] o HR USSP TRTUTRRPR 332
EXPIOFING HTTP ..ottt eee s sene s s ne e s snn e s snnaeas 332
HTTP Request Methodscooiiriieiirieeeeenteeeeseeescreessneessreessneessnnessnees 334
Representational State Transfer ... 334
REQUESE HEAENScoeeeeeeeeeeceeeceeeeeeesnte s ee e e s e e s sneessseesssnessnnessnnessnnassnnes 335
Using HttpUrIConNeCtionccccceiieiiinciiniciernieeeceee e scnee e 336
Exercise 1: Creating @ HEAD REQUESTcccceeeeeieirinieerrenrennineenesneesssnneessnns 338
Reading the Response Data with a GET Requestcccccevvvveveeiecnncnnnen. 340
Exercise 2: Creating @ GET REQUESTcovevueeriieierinineerinreeneneesscneessssneessnns 341
Dealing with SIoW CONNECLIONScorveeiireiiiriierrceee e 342
Requesting PArametersccceeiieieeniiinenncneenenneesesnneesesssessssssesssssnesssssessssnns 342

Handling REIreCctsccccceviiiiiiiiiiiiieicnictctcececrcsresee e 343

Creating HTTP POST REQUESLSccoviiiiiiiiiiitiietinceee e snee e 343

Exercise 3: Sending JSON Data with POST Requestsccccceeervveireeincnnnen. 343
Parsing HTML Dataccccoiiiiiiiiiieineteneenee e 346
Exercise 4: Using jsoup to Extract Data from HTMLcccccceverrrevercrennnen. 348
Delving into the java.net.http Modulecccoeovreviriverriireereeeeeeee 350
Exercise 5: Getting HTML Contents Using the java.net.http Module 352
Activity 1: Using the jsoup Library to Download Files from the Web 353
SUMMAKY ceeiiiiiiiiiiiiiiiieereeeee s isssssssssteesssssssssssssssssssssssssssssssssssassssssssssssnnns 354
Chapter 10: Encryption 357
(TR oo 11 Lot T o R 358
g F= T = TN 358
CIPREIEEXL .ottt et see e ssee e s e e s e e s sre e s sreessseessneessaesnnesssnesssannnne 358
LG 1T R 358
K Y S ittt s s e s s s an e e s s s s s s e e e s s s s s snnaessssnnnne 360
Symmetric Key ENCrYPLiONcovieviiiieiieriiiennceeeneeeeseeeesesnesesneesssneensnne 360
Exercise 1: Encrypting the String using Advanced
Encryption Standard ...ttt 361
BIOCK CIPREIS ...ttt ssne e s ssneesessnesssneesssnnesssnneans 366
INitialization VECLOrScccviiiiiiiiiiinicicnectcccccee e 366
SEream CIPREIS ...t s e e s sne e s sne e s ne s s nnessnnessnnasane 367
Asymmetric Key ENCryptioncoocciivviiiiiinniniinienneeseeeesceee e 367
Exercise 2: Encrypting the String Using the RSA Asymmetric
KeY ENCIYPLION oottt ettt et 367
ENCrypting FIl@S ...coeeeiiieiieieetereercteccte e sene s ne e s sane s sane e 371
Exercise 3: Encrypting @ filecc.oooceeiieniiniiieeeeceeceece e 372

SUMMAKY ceeiiiiiiiiiiiiiiiiinreeeee s nesessnsssteessssssssssssssssesssssssssssssssssaasssssssssssnnns 380

Chapter 11: Processes 383

INErOAUCEION .ttt 384
Launching @ ProCessooviiieiiiiiiieeceencee st e e e s e 384
Sending Input to @ Child ProCessccceeereverrverrrernseenseesseeesseeesseeesseesnnne 387
Capturing the Output of a Child Processccceccerevereveerereencreencenncnennne 390
Storing the Output of a Child Process in a Filecccocceveveerncveeencneennne 391
Activity 1: Making a Parent Process to Launch a Child Process 393
SUMMAKY c.eeiiiiiiiiiiiiiiieeeteeeesisseesssssseeeesssssssssssssssssssssssssssssssssaassssssssssnnns 395
Chapter 12: Regular Expressions 397
[oY e o [Tl u o] o HN SRR PRSPPI 398
Decrypting Regular EXPresSsionscccceveveerecneeecneerennnesssneeeseseesesnenns 398
Character ClassSesciiiiiiiiiiiniteceeceee sttt 399
L0 F= T = T =T Y | SRR 400
(O TV E o] o1 T=T 400
Y3 ol T SRR 401
CaPLUNING GFOUPS ...cuviiiiiiiiiiiieeiieesit e s st s sae s sae s sae s se s saesssseessseesnne 401
Escaped Characters ... ieciiereeeeeeeeeree e e s e e s e e s nees 401
FIAES i 402
Exercise 1: Implementing Regular EXpressionsccccceeeveeeceereneenceennens 402
Activity 1: Regular Expressions to Check
If the Entrance is Entered in the Desired Formatccccoevveviricviencinnnnen. 406
Regular EXPressions iN JAVac.cccceeircreencieeincneeencneesssneesssneesesseessssneens 407
Exercise 2: Extracting the Domain Using Pattern Matching 408
Exercise 3: Extracting Links Using Pattern Matchingc.ccceceeeevercueennnen. 415

SUMMAKY ceeeiiiiiiiiiiiiiiiineeeete i nssssseteees s s s sssssssseesssssssssssssssseasssssssssnnnns 422

Chapter 13: Functional Programming

with Lambda Expressions 425
(LY uigeTe [UTat HTo] o SRR RRRRRRR 426
BACKEZIOUNeoeieeeeeeeeeeeeeeeeeee e seee s e s e s ssn e s nnessnn e s nnessnnesnnessnnassnnes 426
Functional Programmingcccccoeeeviriiiiiiinieniiennceesceeseceeeseneesesaeeens 426
SidE EffECES .ooeieiiieeetrtcrtcrt s 426
Deterministic FUNCLIONSooiiiiiiiiiiece ettt 428
PUFe FUNCLIONS ...coiiiiiiiiieiitinttcetcntc st 429
Exercise 1: Writing Pure FUNCLIONSccccoiiiiiiiiiiiieeteeee et 429
IMMUEabIlity Of STAte ...coeeereeeeeeeeeeer e 433
Exercise 2: Creating an Immutable Classcccoociiviiininiiiinniciencieeceeee, 434
Activity 1: Modifying Immutable LiStscccevceveverevernnerrereeereeeseeesenenns 439
Immutable ColleCtions ..o 440
Exercise 3: Overriding the String Methodccccvrviirvirrcienrieeceereeee, 441
Functional INterfaces ...t 443
Lambda EXPreSSIONSeiiieveiereiieiinieenceeeneseeseceeesesseesssnessssseesssnsessssseens 444
Exercise 4: Listing SPare TireSccooiiiiieiriinriinteeeeesteee et 445
SUMMAKY c.eeiiiiiiiiiiiiiiieeeteeeesssseessnssteessssssssssssnssssasssssssssssssssssaassssssssssnnns 452
Chapter 14: Recursion 455
[oY e [Tl u o] o NSRS PR TRURRRRR 456
Delving iNto RECUISION ...ccccciiiiiiiiiiiiiintcnetentee e 456
Exercise 1: Using Recursion to Overflow the Stackcccceecveeieeernnenneen. 457
Trying Tail RECUISIONooieeieeeeeeeeeeceeeeeeee st ees 459
Exercise 2: Using Recursion to Calculate Factorialscccccoecviiirninnnen. 459

Processing an XML DOCUMENTccoviviiiiiieiniiiieniieenceeesseeesssneesssneesennne 461

Exercise 3: Creating an XML File ...ttt 462

Introducing the DOM XML APIoooiirieeieeteeeeeeeeeeee s e eeneeseeeseseesnees 465
Exercise 4: Traversing an XML Documentcccccevviiiiinniinnnennnnienseennen. 467
Activity 1: Calculating the Fibonacci Sequencecccccveverevereverereerennene 474
Y U] 0 0 = | PR 475
Chapter 15: Processing Data with Streams 477
[T T oo 11 Tt u [0 o 478
Creating StrEAMISeeeiiiiiicrrerecccree e eeere e s sssnree s s e ssneeesssssnneessssssnneesssnnns 479
Parallel Streamssccooiiiiiiiiiinicnictccecrr e 481
ENCOUNLEI OFAEr ...ttt resressaesaessne s 482
L@ Loy [7=] o == T o R 482
Terminal OPerationscccceeeveerveenieenseenreesreeeesreesseeessaesssseessseesssessssesssneens 484
Intermediate OPerationsccceieeveincrierenriernceercee e e e sesneesesaneeas 489
Exercise 1: Using the Stream APlcoiirvierrienneeneenreeeeeeesneeseneessneessnees 495
Activity 1: Applying Discount on the Itemscccceviiiiiiiiniinneniicnennnenne 499
USING COIECLOIS ..ooeeeiiiriieceieecieeeeceeesceeeseseesssneesssneesesnneesssnnesssnnesssnnaens 499
1O B 4 =T T o 1 508
Exercise 2: Converting CSV to @ LiStcccceveveiiiiiiininienncreneceessceeesesneesenne 510
Activity 2: Searching for SPecificsc.ccvvvviiniiininiiiiiiicicccecene 516
SUMIMAKY ceeiiiiiiiiiiiiiieneeeeeesssssessssnereeeesssssesssssnssssasssssssssssssnnssaasssssssssssnnns 516

Chapter 16: Predicates and Other Functional Interfaces 519

(LY aigoTe [UTat dTo] o SRR 520
Predicate INterface ...t ssneesssneesssnneens 520
Exercise 1: Defining a predicate ...ttt 521
Activity 1: Toggling the Sensor Statesccccccveveericreeercieernnreencseeneseeens 530
ConsSUMEr INLEITACEeeiieiieeeeceeeeee ettt 530

Exercise 2: Producing Side Effectscccccvevirrvernrienrenneeeeeeseeseeeeeeenees 531

[T Ta Lot o [] o HE 538

Exercise 3: EXtracting Datacccoccceiriiiiininieniiieenieeesceessseeesscneesssneessnnne 538
Activity 2: Using a Recursive FUNCLIONccccceiieiiiieiiieiniicnecnecneceeee 542
Activity 3: Using a Lambda FUNCLIONccccereeiriirereererceereeeee e 542
Y U] 0 0 = | PR 542
Chapter 17: Reactive Programming with Java Flow 545
TN oo [¥ e o o PR 546
PUBLISN@E ettt 548
SUBbMISSIONPUDBIISNEY ... 548
SUDBSCIIDEI ...ttt s e s e e s 549
SUDSCIIPLION ..ottt 550
Exercise 1: A Simple Application with a Single Publisher
and a Single SUBSCIIDer ... 550
o 0Tl <21 o 560
Exercise 2: Using a Processor to Convert a Stream
Of Strings t0 NUMDEISooriieeeceeereeee e s eene 561
Activity 1: Let NumberProcessor Format Values as Integers 588
SUMMAKY ceeiiiiiiiiiiiiiiiieerteteeinssessssstseessssssssssssssssesssssssssssssssssaassssssssssnnns 588
Chapter 18: Unit Testing 591
[aYd e o [Tl u o] o HR USSR PO TRRRRPR 592
Getting Started wWith Unit TeStScoocviiiiiiiiciiircieneceeereeeseceeeseneeeene 592
INtrodUCING JUNILeeeeiiieeeeceeceeeeeete e e st e s sneessneessnnessneesssnessnnessnnassnnes 593
Writing Unit Tests With JUNIt ...t 593
Exercise 1: Writing @ First UNit TeStccvvvveiiiiriiiiierrceeeeceensceeesecneesenne 596
Exercise 2: Writing a Successful Testccoevenriiiienicnicnnicncnecneeseeneens 600
Deciding WHat £0 TESTccieveercierreeneteneesseeeesneessseeesneessseesssnessssessnnessnsessnnes 602

Writing Parameterized TeSEScccveveiriiriiirnereeereeereee e 603

Exercise 3: Writing a Parameterized Testcccocciiiiiiiiniiiinnsinniieneeee, 605

When Tests Won't Work - Disabling Testsccccceveverevercvenecereeereeereene 607
TESE SELUP oottt 608
Exercise 4: Using Test Setup and Cleanup Methodscccceevvvurvunnneen. 608
MOCKING ..ottt ettt et et 611
Testing with Mocks Using MOCKItOcccceevereeerenenrereerceereeeeeeeree s 611
Exercise 5: Using Mocks when TeStingccccocceviviiiiiiniiniiieniienieeeeee, 614
Activity 1: Counting the Words in the Stringccccveverevercverevcrererennene 620
Y U] 0 0 = | /PR 620
Chapter 19: Reflection 623
[T T oo 11 Tt u [0 o 624
RefleCtion BaSiCScccevvviriieiiiereereeeeeeceee et 624
Exercise 1: Getting Class Informationccccevevviiiiiniinncnicnnicnnecneenneen. 626
Determining CONSLIUCLOISccuiiiiciieiiiirerncieeeecneeseseeesesneesssseesssssnessssseessnns 634
Exercise 2: Extracting a List of CONStructorscccceevvieviecniecniecnnecnseennnn. 635
Instantiating New ODjJECESc.uoivvieeviirrieeeeeceeerecresee e saeeenees 637
Exercise 3: Instantiating ObjJectsccooccviviiiriiininereeeeeeeeee e 638
Getting MethOdScocveiivieiieneereereereesre e e s e e s seeessseessseessneesssnessnaasane 640
Exercise 4: Extracting Method Informationcccoeccieeviiniiinninicienceennen. 640
Getting a Single Methodco i ssnee e 643
CalliNng Methods ..ottt sne e 643
Exercise 5: Calling Methodsccceriinnienniinrieceeeceereeeeeee e seeeseeessnees 644
GEttiNG FIeldS ...cueeiieiieeeeeeeee ettt 646
Exercise 6: Getting Field Informationcccceceevviinniinnrennnenceecceeeceeeneen 647
Setting Field ValU@esoo ettt 648
Drawbacks of Reflectionccccoveiviiiiininiiniiniinenccccecneeceecee e 650

Reflection in the Real World - Dependency Injectionccccceeeeeecueennnen. 650

Exercise 7: Using Dependency INJectioncccccevviiiiinniinnsinnceenseennnen. 652

Reflection in the Real World - JSON Data and RESTful Services 654
Using the Jackson Library ...ttt 656
Exercise 8: Converting JSON Data Using Jacksonccccceevveeirecveeceennnen. 658
Activity 1: Take-Out Food Delivery Using Drones and JSON 665
SUMMAKY ceeiiiiiiiiiiiiiiiieereeeee s isssssssssteesssssssssssssssssssssssssssssssssssassssssssssssnnns 667
Chapter 20: Optionals 669
[aY oo [Tl u o] o HR OSSR PR TRUTRRPR 670
Instantiating Optional ObJectsccocevviiiiiiiiniinniiicicceeeeeeees 670
GEttiNG VAlUESeeeeeeeeeeeeeceeceeeeseeeseeesseees e s s sressseeessaesssneessnesssnsessseesnnannne 672
The Presence ACLIONScocciiiiiiiiieeecreececeeseee e s e s e s ne s ne e 676
Exercise 1: Create Your Own Class Using Optionalsccccccceevercvercueennnen. 678
Map Versus flatMapcooeiiii e 683
Returning With filtercooeeoiirriieeeetecre e 685
Activity 1: Experimenting with Filtersccoooiiiiriiiniiiieerceeee 687
Chaining Optionals to the Streamcccceevereveerieenreerreereeeeeeeeeeeseeeeane 688
SUMMAKY ceeeiiiiiiiiiiiiiiiireeetee s nsssssssreees s s sssssseseesssssssssssssssesssssssssssnnnns 690
Chapter 21: References 693
[oY oo [¥ Tl u o] o HR S ST P TR 694
Java Memory Managementccccvviiiiiiniiieeinnienecnneecsssneee e 694
MEMOIY LEAKS ...eeeiieiiiiriieceieeeieeseceeeecsneesesneesesneesssnnessssneesssnaesssssensssnaens 695
SEronNg REfErENCEeS ...ttt 695
Weak REfEreNCESccceeieiiiiiiiienientecetc ettt ettt 696
Exercise 1: Weak Referencescooiiiriniiiniinniicteteceee et 697
Reference QUEUEScovviiiieeiiitniiereeeeeeeeetiesseessssssssssseeseeseessesssssssssssssssssnnes 702
Exercise 2: Creating a Shopping Cartcccceeviiiiirirniennieeeeeeeeceee e 703

Activity 1 - Using Multiple Weak References in a Reference Queue 707

WeaKHaShMaAP ..ottt 707

Exercise 3: WeakHashMapccceeeireiinieceeeecreeeeere e 708
Activity 2: Clearing Cross-Referenced Objectsccccceveeveeeveeeercneecneneennne 711
Activity 3: Solving the Memory Problemcccccovvverivirncenenereeereeeeeeene 711
SOFt REFEIENCESeeieieiiteeetetete ettt ettt st 712
Exercise 4: SOft REfErenCeSoooeeeeieieeeeeeeeeeeree e 712
Activity 4: Forcing the Soft Reference to Be Cleanedcccceceeeireerenennne 715
Phantom Referencesiiiniinicnniiniciicnicnecnecneesecscsee e 715
Exercise 5: Phantom Referenceoeeeeieinensiinienncneceeneeceeseeceeeeens 715
SUMMAKY ceeiiiiiiiiiiiiiiiinereeeeesissessssstteessssssssssssssssesssssssssssssssssaasssssssssssnnns 725
Chapter 22: Concurrent Tasks 727
[aY oo [Tl u o] o HN USSP TRURRRPR 728
Thread Class versus Runnable Interfacesccccoeverveviiricvinncneerecnen. 728
Some Thread Properti€sccceeeceeeveenieenneenneesseesseessseesssesssnsessseessseesane 731
Activity 1 - Prioritize TasksScccevveinenicnnicniinicnicnicnecnecneessssneseesseene 736
Sleep, JOIN, INEEITUPLeeeeeeeeeeeeeceeeree e eesre e e es e e s seeessneesssesssneesssessssnasnne 738
Shared RESOUICEScocciiieiiiiieeiereeeeeeceeee et s et sae e sae s e sae e s sneessmeesnne 746
SYNCAIONIZEAeeeeeieieeeececeeeese et rre e see e see e s see e s saeessneessseessneessseessnnannne 747
Exercise 1: Making a Thread That Counts and Discountsccccucuu..... 748
Atomic Variables/Operationscccceevereveennernneerssernsessseessssessseessssesssenes 757
TRrEAd POOIS ...t s 761
Activity 2 - Random Amounts of TasKSccecceveveerrveerirernrereerceereeeeeeeene 766
ACLOr MOEI ...ttt st 767

SUMIMAKY cceeiiiiiiiiiiiiiieneeeetesssseesssnnereeeesssssessssnssssasssssssssssssnnsssassssssssssnnns 768

Chapter 23: Using the Future API 771
[Tk go o 11 Lot o T o 772
FUBUIES oottt s aae s sae e s aa e s snae s 772
Thread POOIS ...ttt eae s 773
The Executor INterfacec..ininicniincnicicnicccccececeeseene 773
Employing the Thread PoOolcovieeireieeeeeeeereeee e 775
Exercise 1: Implementing Bubble Sortccccciiiiiiiiniiieeeeeeeee, 776
Activity 1: COMPAring SOFtINGcccccerieiiiriiiieririeercnreeseseesesseessssressssseessnnns 783
The FOrk/Join FrameWOrKooioiiiiiiiirreeeeeecccccreeeeee e canneeeeeeeeeses 783
Exercise 2: Implementing Merge SOrtccccecceveeeeerceencreensseenseesseesseessnees 783
Activity 2: Improving the MergeSort algorithmccccoeviiiiiniiinincnnnenn. 792
WOrking With FULUFEScoovereeieereiereeereeeeeie e s e s snessne s snessnessnesssneens 793
Exercise 3: Comparing Merge and Bubble Sortscccccoeviiiviniiiinnininnnnen. 794
Activity 3: Optimizing SOIrtiNGccccevieviiririiirieercrerrcee e sseeresesneesenne 812
Scheduling FULUIESooiiiiiietetnee et 812
SUMMAKY ceeeiiiiiiiiiiiiiieeeteeeessssesssnsssseeesssssssssssnssssassssssssssssssnssaasssssssssssnnns 813
Appendix 815
Index 921

Preface

About

This section briefly introduces this book and the software requirements to complete all of the
included activities and exercises.

ii | Preface

About the Book

The Java Workshop is heavily geared towards getting you build-ready for the real world.
A step-by-step approach to learning helps you develop and reinforce key skills in a
way that feels engaging and rewarding, without dragging you down into long-running
lectures on dry, underlying theory. We use real examples that lead to real results.

As you progress through the book, you'll find key concepts broken down into
convenient, individual sections. Designed to accommodate short reading sessions as
well as intense, laser-focused study, you'll find that the included step-by-step exercises
and open-ended activities help you embed and reinforce what you've learned in a
hands-on, practical context. With every chapter carefully designed to let you learn at
your own pace, you get to decide how quickly you progress and how you fit learning
within your schedule.

About the Chapters

Chapter 1, Getting Started, covers the basics of writing and testing programs, a first step
towards building all the code that you will find in this book.

Chapter 2, Learning the Basics, covers the basic syntax of the Java language, especially
ways to control the flow of your applications.

Chapter 3, Object-Oriented Programming, provides an overview of OOP and details the
aspects that make Java a popular language.

Chapter 4, Collections, Lists, and Java's Built-In APIs, covers the popular Java collections
framework, which is used to store, sort, and filter data.

Chapter 5, Exceptions, provides recommendations on how to deal with exceptions
on a more conceptual level, providing a list of best practices that any professional
programmer will follow.

Chapter 6, Libraries, Packages, and Modules, introduces you to various ways to package
and bundle Java code, along with tools to help you build Java projects.

Chapter 7, Databases and JDBC, shows how to use JDBC to access relational databases
from your Java applications.

Chapter 8, Sockets, Files, and Streams, aids you in working with external data storage
systems.

Chapter 9, Working with HTTP, explains how to create programs that connect to a
specific web server and downloads data.

Chapter 10, Encryption, explores how applying encryption to your software is vital to
safeguard yours, or your customers, integrity, data, and business.

About the Book | iii

Chapter 11, Processes, briefly discusses how processes function and are dealt with in
Java.

Chapter 12, Regular Expressions, decrypts what regular expressions mean and looks at
how this comes in handy in Java.

Chapter 13, Functional Programming with Lambda Expressions, discusses how Java
doubles up as a functional programming language, and how lambda expressions are
used to perform pattern matching in Java.

Chapter 14, Recursion, looks at a couple of problems that are solved using the recursion
technique.

Chapter 15, Processing Data with Streams, explains how you can use streams to write
more expressive programs with fewer lines of code, and also how you can easily chain
multiple operations on large lists.

Chapter 16, Predicates and Other Functional Interfaces, explores some of the valid use
cases of functional interfaces.

Chapter 17, Reactive Programming with Java Flow, talks about the Java Flow API and the
advantages of the Reactive Streams specification.

Chapter 18, Unit Testing, delves into testing with JUnit, one of the primary testing
frameworks for Java.

Chapter 19, Reflection, talks about how to use Java's Reflection API and implement
dependency injection.

Chapter 20, Optionals, helps you deal with null references in code and shows you how
to make the whole interaction with the data a lot smoother using the Optional class.

Chapter 21, References, talks about the four types of references available in Java - strong,
weak, soft, and phantom references.

Chapter 22, Concurrent Tasks, talks about running multiple tasks at the same time using
threads, otherwise known as multithreading.

Chapter 23, Using the Future API, covers scheduling long-running tasks without
blocking your user interface.

Conventions

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "You
can nest if statements within any block of code, including the block of code that
follows an if statement.”

iv | Preface

A block of code is set as follows:
if (i ==5) {
System.out.println("i is 5");

New terms and important words are shown like this: "Every Java Virtual Machine (JVM)
does come with a set of available ciphers with different transformations."

Words that you see on the screen, for example, in menus or dialog boxes, appear in the
text like this: "Click on Create New Project."
Before You Begin

While all the code present in the course runs on all Java compilers, we have used IntelliJ
IDEA on our systems. All the instructions in the exercises and the activities are tailored
to work on IntelliJ. To install Intelli] on your system, visit https: //www.jetbrains.com/

idea/.

Installing the Code Bundle

Download the code files from GitHub at https: //github.com /TrainingByPackt /
The-Java-Workshop and place them in a new folder called C: \Code. Refer to these code
files for the complete code bundle.

https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://github.com/TrainingByPackt/The-Java-Workshop
https://github.com/TrainingByPackt/The-Java-Workshop

Getting Started

Learning Objectives

By the end of this chapter, you will be able to:
+ Write and compile your first "hello world" program
+ Differentiate between CLI and GUI

+ Hold data in variables and understand the basic concepts behind them

+ Comment your code

In this chapter, we will be covering the fundamentals of Java. We will see how to run simple
programs in Java.

2 | Getting Started

Introduction

When learning how to program in almost any programming language, the first example
you will typically test is called "hello world." It is the simplest application possible: the
aim is to write the expression "hello world" to whatever user interface the programming
environment offers. Executing this program will introduce you to the basics of writing
code using the IntelliJ editor, using different types of data to be printed to the user
interface, and adding comments to your code.

When writing your first program, you will also discover how Java's syntax is constructed
and how it relates to other languages such as C or C++. Understanding the syntax is

key to starting to read code: you will learn how to distinguish where commands and
functions begin and end, how parameters are passed over between blocks of code, and
how to leave comments that will help you when revisiting your software in the future.

This chapter covers the basics of writing and testing programs as a first step toward
building all the code that you will find in this book.

Writing, Compiling, and Executing Your Hello World Program

In the preface, you saw how to install the Intelli] development environment. While it is
possible to write Java code with literally any text editor, we believe it is good to see how
to create applications using state-of-the-art tools such as the aforementioned software
package.

However, prior to guiding you step by step through getting your first program to run,
we should take a look at the code that will become your first executable running on
Java. The following code listing shows the program. Read through it, and we will later
revise what each one of the parts is doing:

Example@1. java

public class Main {
public static void main (String[] args)

{
System.out.println("Hello World!";

Writing, Compiling, and Executing Your Hello World Program | 3

The first line is what we call a class definition. All programs in Java are called classes.

A program might consist of several classes. Classes carry inside them everything they
need to perform the task they were designed for. For a class to be executable in Java,

it must contain a method called main. In this program, you can see how the Main class
contains a method called main that will be printing the sentence "Hello World!" to the

system's default output.

The code included in the class definition (public class Main) indicates that the class
itself is public, which means that it will be accessible from other programs running
on your computer. The same happens for the method definition (public static void
main(String[] args)). There is, however, a series of other things that require our
attention:

* static signifies that there is nothing in the system instantiating the main method.
Because of the way the Java Virtual Machine works, the main method needs to be
static, or it will not be possible to execute it.

* void indicates that the main method will not be returning anything to any code
calling it. Methods could, in fact, send an answer to a piece of code executing it, as
we will see later in the book.

* main is the name of the method. You cannot assign this a different name, since it is
the method that makes the program executable and needs to be named this way.

* String[] args are the parameters of the main method. Parameters are passed as a
list of strings. In other words, the program could take arguments from other parts
within your computer and use them as data. In the particular case of the main
method, these are strings that could be entered on the command-line interface
(CLI) when calling the program.

Exercise 1: Creating Your Hello World Program in Java

Intelli] provides you with a pre-made "hello world" template. Templates help you to get
started faster with your code, as they provide the components you may need to speed
up development. Templates can also be used for educational purposes - this is the case
when it comes to testing "hello world."

4 | Getting Started

Let's start the editor for the first time. We will leave some options as they are by default.
We will later see how to personalize some of the options to better suit our needs:

1. Open IntelliJ and you will see a window giving you several options. Click on Create
New Project. It should be the first option in the list:

™ ® Welcome to IntelliJ IDEA

Intellid IDEA

\ A A
4 4

Version 2018.3.

-+ Create New Project
1< Import Project
&= Open

|4+ Check out from Version Control

@Events~ % Configure~v GetHelp v

Figure 1.1: Creating a new project on IntelliJ IDE

Writing, Compiling, and Executing Your Hello World Program | 5

2. Anew interface should appear. The default options here are meant for creating a
Java program, so you just need to click Next:

New Project
Project SDK: 1z 12

v New...
= Java FX
Android Additional Libraries and Frameworks:
IntelliJ PlatForm Plugin - @ Groovy
] K Kotlin/JvM
11 Maven
Gradle
& Groovy
K Kotlin
2 Empty Project
Use library: | [No library selected] Create...

Error: library is not specified

Previous m Cancel Help

Figure 1.2: Creating a new Java project

6 | Getting Started

3. Check the box to create the project from a template. Click on Java Hello World
and then click Next:

New Project

Create project from template

2 Command Line App

Java Hello World

Simple Java "Hello World" application.

Previous m Cancel Help

Figure 1.3: Create a Java Hello World project from template

4. Name the project chaptero1. Then, click Finish:

x New Project

Project name: Helloworld

Project location: | ~/IdeaProjects/ch01/Helloworld

Previous m Cancel Help

Figure 1.4: Create a Hello World Project

Writing, Compiling, and Executing Your Hello World Program | 7

5. As we haven't chosen a folder to store the projects (intentionally), IntelliJ will offer

you the possibility to create a default project folder inside your user space. Click
OK:

Directory Does Not Exist

9 The project directory
"/home/ogakisan/ldeaProjects/ch01/Helloworld"
does not exist. It will be created by IntelliJ IDEA.

m Cancel

Figure 1.5: Default project folder option on IntelliJ IDE

6. You will see a popup with tips on how to use the software. If you have never
used a development environment of this type before, then this is a good way to
get information about how it functions every time IntelliJ boots up. Choose your
preferences and then click Close:

Welcome to Intelli] IDEA 2018.3.4!

You can quickly get familiar with the main features of the IDE by reading these tips. You
may try out the features described in the tips while this dialog stays open on the

screen. If you close the dialog, you can always get back to it from the Help | Tip of
the Day main menu item.

Show tips on startup Previous Tip Next Tip Close

Figure 1.6: Tip on how to use the IDE

7. Intelli] reminds you regarding the possibility of using a special tab dedicated to
learning more about the environment in relation to programming. Click Got It.

8 | Getting Started

8. The editor presents a menu bar, a code navigation bar, a project navigation area,
and the actual editor where you can see the code we explained earlier. Now it is
time to test it. Click on the Run button (this is the triangle on the right-hand side
of the code navigation bar).

HelloWorld [~/IdeaProjects/ch01/Helloworld] - .../src/Main.java [Helloworld] - IntelliJ IDEA
File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help

2 Helloworld B A\ Main~ | > # G Q
g Project ~ @ = & — @Mainjava m
= =
E " Hellow:nr.ld . No IDEA annotations attached to the JDK 12 (/usr/lib/jvm/jdk-12.0.1), some issues will not be Fou... Attach annotations £ E
= » i External Libraries b public class Main { 3
- o Scratches and Consoles

public static void main(String[] args) { System.out.println("Hello World!"); } *
>
£
g
a

w
]

E
i
&
*
@
2

]

=
]

&
- Main » main()
™ Terminal = 6: TODO @ Event Log
[IDE and Plugin Updates: IntelliJ IDEA is ready to update. (11 minutes ago) 4:41 LF : UTF-8 : 4spaces : m &

Figure 1.7: Execute the program by clicking on the Run button

9. When the program runs, a terminal window unfolds at the bottom of IntelliJ. Here,
you can see how the software called your JVM, the program's outcome, and a line
from the editor reading Process finished with exit code 0, which means that no
errors occurred.

Writing, Compiling, and Executing Your Hello World Program | 9

HelloWorld [~/IdeaProjects/ch01/HelloWorld] - .../src/Main.java [Helloworld] - IntelliJ IDEA

File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help

Helloworld B A\ Main~ p» # G Q m
5 Project ~ @G = & — @Mainjava m
2 z
E HelloWor_ld . No IDEA annotations attached to the JDK 12 (fusr/lib/jvm/jdk-12.0.1), some issues will not be Fou... Attach annotations £z E
= 1 External Libraries public class Main { Mk
L] Scratches and Consoles
public static void main(String[] args) { System.out.println("Hello World!"); } &
>
3
g
g
Main » main()
Run: Main o —
8 > /usr/lib/jvm/jdk-12.0.1/bin/java -javaagent:/home/ogakisan/Dropbox/development/Software/idea-1C-183.5429.36/1ib/idea rt.jar=43740:/home/ogak
= Hello World!
=3
>
& Process finished with exit code ©
& —
* =
4
@
E —
k=] -
=2
AL
| =
E .
™ Terminal = 0: Messages = » 4 Run = 6: TODO € Event Log
2 Compilation completed successfully in 15 s 740 ms (moments ago) 441 LF: UTF-8 : 4spaces : m &
Figure 1.8: JVM showing the output
Note

Since we took all the options by default for this example, you will see that our
program is called Main. java. In the following chapter, we will see how to create
programs that we then name ourselves.

Basic Syntax and Naming Conventions

The first thing you will have noticed in the hello world program, when it comes to
syntax, is how we group the code into blocks marked within sets of curly braces - { and
}. The Main class contains the main method. In other words, main is nested inside Main.
This is how classes are defined in Java - in principle, they contain all of the methods
they are going to use.

10 | Getting Started

Another aspect of the Java syntax is that capitalization matters. If a command is defined
as Print, it differs from another command called print, and the compiler will identify
them as different. Capitalization falls under a convention, an unwritten rule among
programmers on how names should be formatted in Java. You will have noticed that
the class is called HelloWorld. In Java, the convention establishes that methods, classes,
variables, and so on should be named by joining words together using capitals as a way
to mark the separation between words. In addition, the names of classes should start
with capitals.

Note

When you are starting off, it is easy to get confused between syntax, which is rigid
and must be respected for the compiler to function, and conventions, which are
intended for developers to better understand how code is supposed to function.

To some extent, the Java compiler doesn't care about whitespace characters, but there
is a convention about using them to make code more readable. The first code listing you
saw (Example@1. java) can be rewritten as follows, and will have the exact same result
once compiled and executed:

Example@2. java

public class Main {
public static void main(String[] args) {
System.out.println("Hello World!");

}

The System.out.println("Hello World!") function call will print out the expected
message on the CLI. The command is nested inside the main(String[] args) method
definition, which is nested inside the class definition. You could add more blank spaces,
but it will not affect the functionality of the program. This is part of the syntax of Java,
but also of other programming languages such as C, C++, and Scala.

Also, note that "Hello World!" is a String, a type of data. The following section will
explore what types of data can be sent as parameters to the System.out.println()
method call.

Writing, Compiling, and Executing Your Hello World Program | 11

Printing Out Different Data Types

In Java, it is common to define methods that have the capability to use different sets
of parameters. For example, the System.out.println() method can print other types
of data that are not just pieces of text. You could, as an example, try to print out a
simple number and see the result. Example@3. java adds a couple of lines to the code to
showcase different types of data:

Example@3. java

public class Main {
public static void main(String[] args) {

System.out.println("This is text");
System.out.println('A');
System.out.println(53);
System.out.println(23.08f);
System.out.println(1.97);
System.out.println(true);

3
The previous example will print out four lines to the CLI, representing the different
arguments given to the System.out.println() method. The outcome will look as follows:
This is text
A
53
23.08

true

Process finished with exit code ©

You see six different types of data in this result: some text, a character, an integer
number, two different kinds of decimal numbers, and a truth statement. In the Java
programming language, we define those types of data as String, char, int, float, double,
and boolean, respectively. There is a lot more to learn about data types, but let's first
introduce a new topic: variables. This will help to understand why data types are
important.

12 | Getting Started

Variables and Variable Types

Variables are human-readable names given to slots of your computer memory. Each
one of those slots can store some data, such as a number, a piece of text, a password, or
the value of the temperature outside. This kind of data is what we call a variable type.
There are as many variable types as there are data types in our programming language.
The type of data we are using defines the amount of memory allocated to store the
data. A byte (which is made up of 8 bits) is smaller than an integer (which is made up of
32 bits). A string comprises several characters, hence making it bigger than an integer.

byte, int (short for integer), String, and char (short for character) are variable types.
To make use of a variable, you need to define it for the compiler to understand that
it needs it in order to allocate some space for storing data. The variable definition is
done by first determining its type, followed by the variable's name, and then you can
optionally initialize it with a certain value.

The following code listing shows how to define a couple of variables of different types:
// a counter

int counter = 0;

// a String

String errMsg = "You should press 'NEXT' to continue";

// a boolean

boolean isConnected = false;
Let's now work through an exercise where you will modify the code listing from
Example@3. java in order to print out the values coming from the variables.
Exercise 2: Printing Different Types of Data

In this exercise, we shall declare variables of different data types and print it as an
output. To do so, perform the following steps:

1. Open Intelli]. If you didn't get to try the code listing from Example®3. java, let's
start by creating a new project using the HelloWorld template:

Writing, Compiling, and Executing Your Hello World Program | 13

o New Project
Project SDK: 1z 12 (java version "12.0.1") - New...

»JavaFX
Android
IntelliJ Platform Plugin

Additional Libraries and Frameworks:
" | e Groovy

] K Kotlin/Jv™Mm
Maven

Gradle
& Groovy
K Kotlin

= Empty Project

Use library: | [No library selected] Create

Previous m Cancel Help

Figure 1.9: Create a new Java project

Once you have reached the step when you have the code generated by the
development environment, copy all of the code, erase it, and paste in the code
from the Example03. java listing instead:

Try out the code, and check that the outcome is what it should be, as explained in
Printing Out Different Data Types.

Start by declaring a new variable of the String type and initialize it:

public class Main {
public static void main(String[] args) {
String t = "This is text";
System.out.println("This is text");
System.out.println('A');
System.out.println(53);
System.out.println(23.08f);

14 | Getting Started

System.out.println(1.97);
System.out.println(true);

}

5. Next, substitute the text in the first System.out.println() command with the
variable. As the variable is linked to the piece of memory containing the string,
executing the program will give the same result:

public class Main {
public static void main(String[] args) {

String t = "This is a text";
System.out.println(t);
System.out.println('A');
System.out.println(53);
System.out.println(23.08f);
System.out.println(1.97);
System.out.println(true);

}

6. Continue by declaring a variable of the char type, another of the int type, one of
the double type, and finally, one of the boolean type. Proceed to use the variable
names instead of the values when printing out to the CLI:

public class Main {
public static void main(String[] args) {

String t = "This is a text";
char ¢ = 'A';
int i = 53;
float f = 23.08f;
double d = 1.97;
boolean b = true;
System.out.println(t);
System.out.println(c);
System.out.println(i);
System.out.println(f);
System.out.println(d);
System.out.println(b);

Writing, Compiling, and Executing Your Hello World Program | 15

With this example, not only have you learned about different types of data and the
variables that store this data, but also about how methods can handle more than one
data type.

Note

Notice how the float type, when defined, requires the letter f to be appended after
the number. This way, Java will be able to distinguish between these two types of
decimal variables.

Primitive versus Reference Data Types

Some data types are built on top of others. For example, strings are made of sequences
of characters, so, in a sense, without characters, there would be no strings. You could
say that characters are more core to the language than strings are. Like characters,
there are other data types that are used to define the properties of a programming
language. These data types, fundamental for the construction of the language itself, are
what we call primitive data types.

The following table describes some of the basic types of variables you will find in Java,
along with their characteristics:

Type name |Range of values Default value |Size
boolean true or false false 1 bit
byte -128 . 127 0 8 bit
short -32,768 .. 32,767 0 16 bit
int -2,147 438,647 . 2,147,438,647 0 32 bit
long -9,223,372,036,854,775,808 .. 9,223,372,036,854,775,807 0 64 bit
float 340282347 x 10°8, 1.40239846 x 10°%° 0.0 32 bit
double 17976931348623157 x 10308, 4 9406564584124654 x 107324 00 64 bit
char Unicode character \u0000 16 bit

Figure 1.10: Basic types in Java

16 | Getting Started

The eight primitive data types represent truth levels (boolean), integral numbers (byte,
short, int, and long), floating point numbers (float and double), and characters (char).
The second exercise showcased how to use variables from some of these types within
our programs.

Note

String is not a primitive data type. It is what we call a reference data type. A
mnemotechnic that could help you remember why it is called "reference" is that

it is not linking to the actual data, but to the position in memory where the data

is stored; hence, it is "a reference." There are other reference data types that you
will be introduced to later in the book. Note that float and double are not precise
enough to deal with some uses of decimal numbers, such as currencies. Java has a
high-precision decimal data type called BigDecimal, but it is not a primitive type.

Null

In the same way that primitive data types have a default value, reference data types,
which could be made of any kind of data, have a common way to express that they
contain no data. As an example of a reference typed variable, the default value for a
string that is defined as empty is null.

Null is a lot more complex than that, though - it can also be used to determine
termination. Continuing with the example of the string, when stored in memory, it will
be made of an array of characters ending with null. In this way, it will be possible to
iterate within a string, since there is a common way to signify that you have reached its
end.

It is possible to modify the content of the computer memory during the execution of a
program. We do this using variables in code. The next code listing will show you how to
create an empty variable of the String type and modify its value while the program is
running:

Example04. java

public class Main {
public static void main(String[] args) {
String t = null;
System.out.println(t);
t ="Joe ...";

System.out.println(t);

Writing, Compiling, and Executing Your Hello World Program | 17

t = "went fishing";

System.out.println(t);

}

The previous example shows how to declare an empty string, how its value can be
modified throughout the program, and how the program will cope with displaying the
content of an empty string. It literally prints out the word null on the CLI. See the full
outcome of the program:

null
Joe ...

went fishing

Process finished with exit code ©

The program declares an empty variable, and by assigning new values to it, overwrites
the variable's contents with new content.

Chars and Strings

As explained in Primitive versus Reference Data Types, strings are made of sequences
of characters. A character is a symbol representing a letter in the alphabet, a digit, a
human-readable symbol such as the exclamation mark, or even symbols invisible to the
eye, such as the blank space, end-of-line, or tabulation characters. Strings are variables
that refer to a part of the memory containing a one-dimensional array of characters.

Java allows the use of the mathematical composition of characters into strings. Let's
take the previous example that printed the message "Joe . . . went fishing." Let's
modify this so that it will add the different parts of the string together instead of
overwriting the variable at each step:

Example®5. java

public class Main {
public static void main(String[] args) {
String t = null;
System.out.println(t);
t=t+ "Joe . . .";

System.out.println(t);

18 | Getting Started

t=1t+ "Joe . . . went fishing";

System.out.println(t);

by
3
The outcome for this program will be the following:
null
nullJoe ...
nullJoe ... went fishing

Process finished with exit code ©

What happens here is that the program prints the string as we make it grow longer by
appending new parts to it. However, the result is a non-desired one (unless you really
want the program to print null in front of the string).

Now it is time to see what happens when you do not declare a variable properly.
Let's modify the previous code listing and observe the outcome from the development
environment.

Exercise 3: Declaring Strings

Let's modify the code example from Example@5. java to see how the development
environment will respond to the non-valid declaration of a variable. To do so, perform
the following steps:

1. Start by creating a program using the HelloWorld template and overwrite all of the
code with the listing from the Example05. java file.

2. Try the program. You should get the outcome presented earlier in this section.
3. Modify the line where the string is declared to be as follows:

String t;
4. When executing the program, you will get an error as the result:

Error:(4, 28) java: variable t might not have been initialized

5. Declare the string to be empty, as in, containing no characters. You can do this by
using the following line of code to declare the string:

nn,
’

String t =

Writing, Compiling, and Executing Your Hello World Program | 19

After making this modification, the program's result will be as follows:

Joe ...
Joe .. went fishing

Process finished with exit code ©

Doing Some Math

You could say that the code presented in the Example®5. java file's listing represents a
way to add strings. This operation of adding strings is called concatenation. At the same
time, it is possible to run all kinds of simple and complex mathematical operations using
variables as part of the equation.

The basic mathematical operators in Java are addition (+), subtraction (-), multiplication
(*), and division (/). An example of some operations being performed is presented here:

t=a+5;
b=1tx*6.23;
n=g/s - 45;

The order in which operations will be performed is that of normal math: multiplication
and division first, followed by addition and subtraction. If nesting is needed, you could
use braces:

h=(04+1t)/ 2

f=3*(e-5/72);

There are other mathematical operators, such as square root (sqrt()), minimum (min()),
and round up a number (round()). Calling to some of these more advanced operations
will require calling the methods from the Math library within Java. Let's see some
example code that will execute some mathematical operations to see how this works,
later using this to try and solve a simple equation from trigonometry:

Example@6. java

public class Main {
public static void main(String[] args) {
float f = 51.49f;
System.out.println(f);

20 | Getting Started

int i = Math.round(f);
System.out.println(i);

}

In the preceding example, you declare a variable of the float type and print it. Next,
you declare a variable of the int type and initialize it with the result of rounding the
previous variable, which eliminates the fractional part of the number. You can see that
round() is part of Java's Math library and therefore has to be called this way.

Math.round() and System.out.println() are examples of calls to methods that belong
to the standard Java libraries Math and System, respectively. Java comes with a plethora
of useful methods that will make your interaction with the software quick and easy. We
will look at them later in the book.

Exercise 4: Solving a Simple Trigonometry Problem

The goal of this exercise is to solve the hypotenuse of a right triangle, given the lengths
of the other two sides. Note that the formula for calculating the hypotenuse of a
right-angled triangle is as follows: h? = a? + b?

K=d+¥

h

pa N

b
Figure 1.11: Aright angled triangle with sides as a and b and h as the hypotenuse

Writing, Compiling, and Executing Your Hello World Program | 21

To do this, perform the following steps:

1.

Take, once more, the HelloWorld template as a point of departure for the exercise,
create the program, and then let's build a new program by modifying its contents.

Declare the values to each one of the problem's variables. Initialize the one
corresponding to the hypotenuse with 0. Make all the variables of the double type:

double a = 3;
double b = 4;
double h = 0;

Given that the addition of the squares of a and b equals the square of h, rewrite the
equation as follows:

h = Math.sqrt(a*a + b*b);
The sqrt() method is used to obtain the square root of a number.
Add the necessary code to print out the result:
System.out.println(h);
The expected outcome of this program should be the following:

5.0

Process finished with exit code ©

Programming languages typically offer more than one way to solve a problem. In
this particular case, you could solve the calculation of the square of the aand b
variables by using the Math.pow() method. This will calculate the power of a base
by an exponent that is given as a parameter:

h = Math.sqrt(Math.pow(a,2) + Math.pow(b,2));
The form of the final program, given all the modifications, is as follows:

public class Main {
public static void main(String[] args) {

double a = 3;
double b = 4;
double h = 0;

h = Math.sqrt(Math.pow(a,2) + Math.pow(b,2));
System.out.println(h);

22 | Getting Started

Comments Help You to Share Code

Until now, you have just been writing programs and testing them. But if you intend to
be part of a large software project where you will collaborate with others in the making
of an application, you will have to share your code with others. Sharing code is an
important part of the work of the contemporary developer, and, in order to share code,
you will have to annotate it so that others can understand why you decided to solve
certain challenges the way you did in your code.

There are two ways to comment code in Java: inline comments, which are marked using
a double-slash, //; and more extensive comments, typically used at the beginning of
large blocks of code, which are marked with an opening tag comprising a slash and an
asterisk, /*, and a closing tag comprising an asterisk and a slash, */.

The following example showcases how to add comments to the resulting program from
the previous exercise:

Example@7. java

public class Main {
public static void main(String[] args) {
double a = 3; // first side of the triangle
double b = 4; // second side of the triangle
double h = @; // hypotenuse, init with value 0

// equation to solve the hypotenuse

h = Math.sqgrt(Math.pow(a,2) + Math.pow(b,2));

System.out.println(h); // print out the results

Writing, Compiling, and Executing Your Hello World Program | 23

In the previous example, we commented both the opening of the program and each one
of the lines. The idea is to highlight different ways to comment code - inline, before a
line, at the beginning of the code. You will notice some special things in the comments;
for instance, the opening comment includes the author of the code (eventually, you will
also include your contact information) as well as a copyright notice, letting people know
to what extent they are allowed to reuse your code.

Note

Copyright notices for code depend on a specific company's policies most of the
time, and vary for almost every project. Be careful when adding these to your code.

CLI versus GUI

In this book, we are going to be using the CLI as a way to test and deploy code. On the
other hand, we will be writing the code using the IntelliJ development environment,
which has a graphical user interface (GUI). We are intentionally avoiding making
programs that will be using a GUI to interact with users. Java, in its current form, is
mostly used as a service running on a server, and therefore the generation of GUIs is
not the main goal behind the use of Java.

Up to this point, this book has invited you to run the code from the IntelliJ environment.
The following exercise will help you to create a fully compiled application and run it
from the CLI.

Exercise 5: Running the Code from the CLI

We will start from the creation of the HelloWorld example. We will compile it and then
look for it from a terminal window. You have to remember which folder you created
your program in, as we will be executing it from there. In this example, we called the
folder chaptero1. If you named it differently, you will have to remember to use the
correct folder name when necessary in the code for this exercise:

1. Click on the Build Project button (this is the hammer on the toolbar), and check
that the system is not throwing any errors. If there are any, the console at the
bottom of the window will open up, indicating the possible errors:

24 | Getting Started

2. Next, open the terminal within the editor, and you will see a button at the bottom

of the environment's window. This will show a CLI starting at the location where
the program was created. You can see the contents of the folder by typing the 1s
command:

usr@localhost:~/IdeaProjects/chapter@1$ ls
chapter0l.iml out src

There will be two different folders and one file. We are interested in checking the
folder named out. It is the one containing the compiled version of our program.

Navigate to that folder by issuing the cd out command. This folder contains a
single subfolder called production - enter it, as well as the subsequent chaptero1
subfolder:

usr@localhost:~/IdeaProjects/chapter01$ cd out
usr@localhost:~/IdeaProjects/chapter@1/out$ cd production
usr@localhost:~/IdeaProjects/chapter@1/out/production$ cd chapter@1l
usr@localhost:~/IdeaProjects/chapter@1/out/production/chapter@1$ 1s
Main.class

Once at the right folder, you will find a file called Main.class. This is the compiled
version of your program. To execute it, you need to call the java Main command.
You will see the program's outcome directly at the CLI:

usr@localhost:~/IdeaProjects/chapter@1/out/production/chapter@1$ java Main
Hello World!

Activity 1: Obtaining the Minimum of Two Numbers

Write a program that will check two numbers entered as variables and print out the
message "The minimum of numbers: XX and YY is ZZ', where XX, YY, and ZZ represent
the values of the two variables and the result of the operation, respectively. To do this,
perform the following steps:

1.

Declare 3 double variables: a, b, and m. Initialize them with the values 3, 4 and 0
respectively.

2. Create a String variable r, it should contain the output message to be printed.

Summary | 25

3. Use the min() method to obtain the minimum of the two numbers and store the
value in m.

4. Print the results.

Note

The solution for the activity can be found on page 816.

Summary

This chapter introduced you to the use of the IntelliJ development environment, which
is the basic tool that will be used throughout the book. Many of IntelliJ's features

are common in other tools, along with the language used in menus and the overall
programming interface.

You have seen some basic aspects of Java's syntax, how classes are defined, how code
is nested inside curly braces, and how semicolons end each one of the commands.
Comments help make the code more readable, both for others with whom you may
collaborate and for yourself when reviewing your code in the future.

The primitive types offer a collection of possible variable types to be used in your
programs to carry data, store the results of operations, and transfer information
between different blocks of code.

All examples in this chapter are built from modifying an initial example that we used
as a point of departure: "hello world" - that is, printing a string on the CLI. In later
chapters, you will learn how to create your own classes from scratch, name them
according to your needs, and store them in different folders. The next chapter will
specifically cover statements in Java that control the flow of the programs.

Learning the Basics

Learning Objectives

By the end of this chapter, you will be able to:
+ Useif, else, else if, and switch-case statements to control the flow of your programs
* Run for, while, and the do-while loops to perform repetitive tasks
+ Pass command-line arguments to modify how programs run

+ Implement immutable, static (global) variables, along with Java's variable type inference
mechanism

In this chapter, we will be executing programs that do not have the typical linear flow that we
have seen so far.

28 | Learning the Basics

Introduction

Business applications have lots of special-case conditions. Such conditions may include
finding changes in allocation rules starting at a particular year, or handling different
types of employees differently based on their designation. To code for such special
cases, you will require conditional logic. You basically tell the computer to perform a set
of actions when a particular condition is met.

Before we delve into advanced Java topics, you need to know the basics of Java
syntax. While some of this material might seem simple, you'll find you need to use the
techniques and syntax shown in this chapter repeatedly in your applications.

As you've seen in Chapter 1, Getting Started, Java's syntax borrows heavily from C and
C++. That's true for conditional statements that control the flow of your programs

as well. Java, like most computer languages, allows you to control the flow of your
programs using conditional statements. This chapter covers the basic syntax of the Java
language, especially ways in which you can control the flow of your applications.

This chapter, and the next one on object-oriented programming, will give you a good
working knowledge of how Java programs work. You'll be able to take on more advanced
APIs and topics. So, plow through this material to get ready to tackle bigger things.

Controlling the Flow of Your Programs

Imagine paying a bill from your e-wallet. You will only be able to make the payment
if the credit balance in your e-wallet is greater than or equal to the bill amount. The
following flowchart shows a simple logic that can be implemented:

No

credit >= bill amount
lYes

Make payment

!

Revise credit amount

|

Close transaction E—

Figure 2.1: A representative flow chart for an if-else statement

Controlling the Flow of Your Programs | 29

Here, the credit amount dictates the course of action of the program. To facilitate such
scenarios, Java uses the if statement.

With the if statement, your application will execute a block of code if (and only if) a
particular condition is true. In the following code, if the happy variable is true, then the
block of code immediately following the if statement will execute. If the happy variable
is not true, then the block of code immediately following the if statement will not
execute.

boolean happy = true;// initialize a Boolean variable as true

if (happy) //Checks if happy is true
System.out.println("I am happy.");

Exercise 1: Creating a Basic if Statement

In most software industries, you are only working on a module of the code, and

you might know the value stored in a variable. You can use if statements and print
statements in such cases. In this exercise, use an if statement to check if the values of
variables assigned are true or false:

1. Create a directory for examples from this chapter and others. Name the folder
sources.

2. In Intelli], select File -> New -> Project from the File menu.
3. In the New Project dialog box, select a Java project. Click Next.

4. Check the box to create the project from a template. Click on Command Line App.
Click on Next.

5. Name the project chaptero2.

6. For the project location, click the button with three dots (...) and then select the
sources folder you created previously.

7. Delete the base package name so that this entry is left blank. You will use Java
packages in the Chapter 6, Libraries, Packages, and Modules.

30 | Learning the Basics

8. Click Finish.

IntelliJ will create a project named chaptere2, as well as a src folder inside
chaptere2. This is where your Java code will reside. IntelliJ also creates a class
named Main:

public class Main {

public static void main(String[] args) {
// write your code here

3
b

Rename the class named Main to Exercise01. (We're going to create a lot of small
examples in this chapter.)

9. Double-click in the text editor window on the word Main and then right-click it.

10. From the contextual menu, select Refactor | Rename..., enter Exercise01, and then
press Enter.

You will now see the following code:

public class Exercise0l {

public static void main(String[] args) {
// write your code here
3

}

11. Within the main() method, define two Boolean variables, happy and sad:

boolean happy = true;
boolean sad = false;

12. Now, create two if statements, as follows:

if (happy)
System.out.println("I am happy.");

// Usually put the conditional code into a block.

if (sad) {
// You will not see this.
System.out.println("The variable sad is true.");

Controlling the Flow of Your Programs | 31

The final code should look similar to this:

Exercise01.java

public class Exercise@l {

public static void main(String[] args) {
boolean happy = true;
boolean sad = false;
if (happy)
System.out.println("I am happy.");

// Usually put the conditional code into a block.

if (sad) {
// You will not see this.
System.out.println("The variable sad is true.");

3

13. Click the green arrow that is just to the left of the text editor window that points
at the class name Exercise@1. Select the first menu choice, Run ExerciseO1.main().

14. In the Run window, you'll see the path to your Java program, and then the
following output:

I am happy.

The line I am happy. comes from the first if statement, since the happy Boolean variable
is true.

Note that the second if statement does not execute, because the sad Boolean variable
is false.

You almost always want to use curly braces to define the code block following an if
condition. If you don't, you may find odd errors in your programs. For example, in the
following code, the second statement, which sets the i variable to zero, will always get
executed:

if (i == 5)
System.out.println("i is 5");
i=0;

32 | Learning the Basics

Unlike languages such as Python, indentation doesn't count in Java. The following shows
what will actually execute with greater clarity:

if (i ==5) {
System.out.println("i is 5");

The last line is always executed because it is outside the if statement after the curly
braces closes.

Comparison Operators

In addition to Java's Booleans, you can use comparisons in conditional statements.
These comparisons must form a Boolean expression that resolves to true or false.
Comparison operators allow you to build Boolean expressions by comparing values.
Java's main comparison operators include the following:

Operator Name Explanation
a==Db indicates that the value stored in variable
a is equal to the value stored in b
al=b indicates that the value stored in variable
| a is not equal to the value stored in b
a<b indicates that the value stored in variable

== is equal to

I= is not equal to

< is less than) .
| a is lesser than value stored in b

. a<=Db indicates that the value stored in variable

<= is less than or equal to .)
a is lesser than or equal to the value stored in b
S is areater than a>b indicates that the value stored in variable
9 a is greater than the value stored in b

. a>=b indicates that the value stored in variable

>= is greater than or equal to

a is greater than or equal to the value stored in b

Figure 2.2: The comparison operators in Java

The comparison operators such as == do not work the way you would expect for textual
values. See the Comparing Strings section later in this chapter to see how to compare
text values.

Note

A single equals sign, =, is used to assign a value. Two equals signs, ==, is used to
compare values. Therefore, generally, you never use = in a Boolean expression to
check a condition.

Controlling the Flow of Your Programs | 33

Exercise 2: Using Java Comparison Operators

An online retail store provides free delivery only if the destination is within a
10-kilometer (km) radius of the store. Using comparison operators, we can code this
business logic, given the distance between the nearest store location and home:

1. In the Project pane in IntelliJ, right-click on the folder named src.
2. Choose New -> Java Class from the menu.

3. Enter Exercise02 for the name of the new class.

4. Define the method named main():

public static void main(String[] args) {

b

5. Inside the main() method, define the variables we'll use for comparisons:

int maxDistance = 10; // km
int distanceToHome = 11;

6. Enter the following if statements after the variable declarations:

if (distanceToHome > maxDistance) {
System.out.println("Distance from the store to your home is");
System.out.println(" more than " + maxDistance + "km away.");
System.out.println("That is too far for free delivery.");

if (distanceToHome <= maxDistance) {
System.out.println("Distance from the store to your home is");
System.out.println(" within " + maxDistance + "km away.");
System.out.println("You get free delivery!");

34 | Learning the Basics

The final code should look similar to the following:

Exercise@2. java

public class Exercise02 {
public static void main(String[] args) {
int maxDistance = 10; // in kms
int distanceToHome = 11;

if (distanceToHome > maxDistance) {
System.out.println("Distance from the store to your home is");
System.out.println(" more than " + maxDistance + "km away.");
System.out.println("That is too far for free delivery.");

if (distanceToHome <= maxDistance) {
System.out.println("Distance from the store to your home is");
System.out.println(" within " + maxDistance + "km away.");
System.out.println("You get free delivery!");

}

7. Run the Exercise02 program using the green arrow to the left.

In the Run window, you'll see the path to your Java program, and then the
following output:

Distance from the store to your home is
more than 10km away.
That is too far for free delivery.

Controlling the Flow of Your Programs | 35

Nested if Statements

Nesting implies embedding a construct within another code construct. You can nest
if statements within any block of code, including the block of code that follows an if
statement. Here is an example of how the logic in a nested if statement is evaluated:

No
| Check if user is valid [———

l Yes

‘ credit >= bill amount }7

l Yes
Make payment

|

‘ Revise credit amount ‘

l

‘ Close transaction %

Figure 2.3: A representative flow chart for a nested if-else statement

Exercise 3: Implementing a Nested if Statement

In the following exercise, we will nest an if statement within another if statement to
check if the speed of the vehicle is above the speed limit, and if so, whether it is above

the finable speed:

1. Using the techniques from the previous exercise, create a new class named
Exercise03.

2. Declare the speed, speedForFine, and maxSpeed variables with the values of 75, 70,
and 60 respectively:

public class Exercise03 {
public static void main(String[] args) {
int speed = 75;
int maxSpeed = 60;
int speedForFine = 70;

36 | Learning the Basics

3. Create a nested if statement, where the outer if statement checks if the speed is
greater than or equal to the maximum speed limit, and the inner loop checks if the
speed is greater than or equal to the speed limit for a fine:

// Nested if statements.

if (speed <= maxSpeed) {
System.out.println("Speed is less than or equal to the max.
speed limit");

if (speed < maxSpeed) {
System.out.println("Speed is less than the max. speed
limit");
}

4. Run the Exercise@3 program using the green arrow to the left.

In the Run window, you'll see the path to your Java program, and then the
following output:

You're over the speed limit
You are eligible for a fine!

Note

Try changing the value of speed in the code and then running the program again.
You will see how different speed values produce different outputs.

Branching Two Ways with if and else

An else statement following the code block for an if statement gets executed if the if
statement condition is not true. You can also use else if statements to provide for an
additional test.

The basic syntax is as follows:
if (speed > maxSpeed) {
System.out.println("Your speed is greater than the max. speed limit");
} else if (speed < maxSpeed) {
System.out.println("Your speed is less than the max. speed limit");
} else {

System.out.println("Your speed is equal to the max. speed limit");

Controlling the Flow of Your Programs | 37

The third line (in the else block) will only print if neither of the first two lines (the if or
else if code blocks) was true. Whatever the value of speed, only one of the lines will
print.

Exercise 4: Using if and else Statements

A fair-trade coffee roaster offers a discount of 10% if you order more than 5 kg of whole
coffee beans, and a discount of 15% if you order more than 50 kg. We'll code these
business rules using if, else if, and else statements:

1. Using the techniques from the previous exercise, create a new class named
Exercise04.

2. Enter the main method and declare the variables as follows:

public static void main(String[] args) {
int noDiscount = 0;
int mediumDiscount = 10; // Percent
int largeDiscount = 15;

int mediumThreshold = 5; // Kg
int largeThreshold = 50;

int purchaseAmount = 40;

3

3. Enter the following if, else if, and else statements:

if (purchaseAmount >= largeThreshold) {
System.out.println("You get a discount of " + largeDiscount + "%");
} else if (purchaseAmount >= mediumThreshold) {

System.out.println("You get a discount of " + mediumDiscount + "%");
} else {

// Sorry

System.out.println("You get a discount of " + noDiscount + "%");

b

Notice that we check against the largest threshold first. The reason for this is that
a value greater than or equal to largeThreshold will also be greater than or equal to
mediumThreshold.

38 | Learning the Basics

The entire example appears in Exercise@4. java:

Exercise@4. java

public class Exercise04 {

public static void main(String[] args) {

int smallDiscount = 0;
int mediumDiscount = 10;
int largeDiscount = 15;

int mediumThreshold = 5;
int largeThreshold = 50;

int purchaseAmount = 40;

if (purchaseAmount >= largeThreshold) {

System.out.println("You get a discount of "

} else if (purchaseAmount >= mediumThreshold) {

System.out.println("You get a discount of "

System.out.println("You get a discount of "

||%|l);
Il%ll);

} else {

// Sorry

||%|l);

}

}

}

4. Run the Exercise@4 program using the green arrow to the left.

// Percent

+ largeDiscount +

+ mediumDiscount +

+ smallDiscount +

In the Run window, you'll see the path to your Java program, and then the

following output:

You get a discount of 10%

Controlling the Flow of Your Programs | 39

Using Complex Conditionals

Java allows you to create complex conditional statements with logical operators. Logical
operators are generally used on only Boolean values. In the following table are some of
the logical operators available in Java:

* AND (&&): a && b will be evaluated to true if both a and b are true
* OR(]]): a|| b will be evaluated to true if either a or b, or both are true

* NOT (!): !a be evaluated to true if a is false

Use the conditional operators to check more than one condition in an if statement. For
example, the following shows an if statement where both conditions must be true for
the overall if statement to execute:

boolean red = true;

boolean blue = false;

if ((red) && (blue)) {
System.out.println("Both red AND blue are true.");
3

In this case, the overall expression resolves to false, since the blue variable is false, and
the print statement will not execute.

Note

Always use parentheses to make your conditionals clear by grouping the
conditions together.

You can also check if either, or both, of the expressions are true with the || operator:
boolean red = true;

boolean blue = false;

if ((red) || (blue)) {
System.out.println("Either red OR blue OR both are true.");

40 | Learning the Basics

In this case, the overall expression resolves to true, since at least one part is true.
Therefore, the print statement will execute:

boolean blue = false;
if (!'blue) {
System.out.println("The variable blue is false");

b

The value of blue is initialized to false. Since we are checking the NOT of the blue
variable in the if statement, the print statement will execute. The following exercise
shows how we can use logical operators.

Exercise 5: Using Logical Operators to Create Complex Conditionals

This exercise shows an example of each of the conditional operators described
previously. When writing an application that works with data from a fitness tracker, you
are tasked with coding a check against normal heart rates while exercising.

If a person is 30 years old, a normal heart rate should be between 95 beats per minute
(bpm) and 162 bpm. If the person is 60 years old, a normal heart rate should be between
80 and 136 bpm.

Let's use the following steps for completion:

1. Using the techniques from the previous exercise, create a new class named
Exercise05 in the main method and declare variables.

public static void main(String[] args) {
int age = 30;
int bpm = 150;

3

2. Create an if statement to check the heart rate of a 30-year old person:

if (age == 30) {
if ((bpm >= 95) && (bpm <= 162)) {
System.out.println("Heart rate is normal.");
} else if (bpm < 95) {
System.out.println("Heart rate is very low.");
} else {
System.out.println("Heart rate is very high.");
}

We have nested conditionals to check the allowable range for 30-year-olds.

Controlling the Flow of Your Programs | 41

3. Create an else if statement to check the heart rate of a 60-year old person:

} else if (age == 60) {
if ((bpm >= 80) && (bpm <= 136)) {
System.out.println("Heart rate is normal.");
} else if (bpm < 80) {
System.out.println("Heart rate is very low.");
} else {
System.out.println("Heart rate is very high.");

b
We have nested conditionals to check the allowable range for 60 year old.

4. Run the Exercise05 program using the green arrow to the left.

In the Run window, you'll see the path to your Java program, and then the
following output:

Heart rate is normal.
5. Change age to 60 and re-run the program; your output should be as follows:
Heart rate is very high.
The full source code for this exercise follows:

Exercise05. java

public class Exercise@5 {

public static void main(String[] args) {
30;
150;

int age

int bpm

if (age == 30) {
if ((bpm >= 95) && (bpm <= 162)) {
System.out.println("Heart rate is normal.");
} else if (bpm < 95) {
System.out.println("Heart rate is very low.");

} else {

42 | Learning the Basics

System.out.println("Heart rate is very high.");

}
} else if (age == 60) {

if ((bpm >= 80) && (bpm <= 136)) {
System.out.println("Heart rate is normal.");

} else if (bpm < 80) {
System.out.println("Heart rate is very low.");

} else {
System.out.println("Heart rate is very high.");

}

Using Arithmetic Operators in an if Condition

You can use arithmetic operators as well in Boolean expressions, as shown in
Example®1. java:

Example@1. java

public class Example@1 {
public static void main(String[] args) {
int x = 2;

inty =1;

if ((x +y) <5){
System.out.println("X added to Y is less than 5.");

Controlling the Flow of Your Programs | 43

The output in this case would be as follows:
X added to Y is less than 5

Here, the value of (x + y) is calculated, and then the result is compared to 5. So, since
the result of x added to y is 3, which is less than 5, the condition holds true. Therefore,
the print statement is executed. Now that we have seen the variations of the if else
statement, we will now see how we can use the ternary operator to express the if else
statements.

The Ternary Operator

Java allows a short-hand version of an if else statement, using the ternary (or three-
part) operator, ?:. This is often used when checking variables against an allowed
maximum (or minimum) value.

The basic format is: Boolean expression ? true block : false block, as follows:

X = (x > max) ? max : Xx;

The JVM resolves the (x > max) Boolean expression. If true, then the expression returns
the value immediately after the question mark. In this case, that value will be set into
the x variable since the line of code starts with an assignment, x =. If the expression
resolves to false, then the value after the colon, :, is returned.

Exercise 6: Using the Ternary Operator

Consider the minimum height requirement for a roller coaster to be 121 centimeters
(cm). In this exercise, we will check for this condition using the ternary operator. To
complete the exercise, perform the following steps:

1. Using the techniques from the previous exercise, create a new class named
Exercise06.

2. Declare and assign values to the height and minHeight variables. Also, declare a
string variable to print the output message:

public static void main(String[] args) {
int height = 200;
int minHeight = 121;
String result;

44 | Learning the Basics

3. Use the ternary operator to check the minimum height requirement and set the
value of result:

result = (height > minHeight) ? "You are allowed on the ride" : "Sorry you
do not meet the height requirements";

System.out.println(result);

}

So, if height is greater than minHeight, the first statement will be returned (You are
allowed on the ride). Otherwise, the second statement will be returned (Sorry
you do not meet the height requirements).

Your code should look similar to this:

Exercise06.java

public class Exercise@6 {

}

public static void main(String[] args) {

int height = 200;
int minHeight = 121;
String result;

result = (height > minHeight) ? "You are allowed on the ride"
"Sorry you do not meet the height requirements";

System.out.println(result);

4. Run the Exercise06 program.

In the Run window, you'll see the path to your Java program, and then the
following output:

You are allowed on the ride

Controlling the Flow of Your Programs | 45

Equality Can Be Tricky

Java decimal types such as float and double (and the object versions, Float and Double)
are not stored in memory in a way that works with regular equality checks.

When comparing decimal values, you normally need to define a value that represents
what you think is close enough. For example, if two values are within .001 of each other,
then you may feel that is close enough to consider the values as equal.

Exercise 7: Comparing Decimal Values

In this exercise, you'll run a program that checks if two double values are close enough
to be considered equal:

1. Using the techniques from the previous exercise, create a new class named
Exercise07.

2. Enter the following code:

public class Exercise07 {
public static void main(String[] args) {
double a = .6 + .6 + .6 + .6 + .6 + .6;
double b = .6 * 6;

System.out.println("A is " + a);
System.out.println("B is " + b);

if (a !'=b) {
System.out.println("A is not equal to B.");

// Check if close enough.
if (Math.abs(a - b) < .001) {
System.out.println("A is close enough to B.");

46 | Learning the Basics

The Math.abs() method returns the absolute value of the input, making sure the
input is positive.

We will learn more about the Math package in Chapter 6, Libraries, Packages, and
Modules.

3. Run the Exercise@7 program using the green arrow to the left.

In the run window, you'll see the path to your Java program, and then the following
output:

A is 3.6

B is 3.5999999999999996
A is not equal to B.

A is close enough to B.

Note how a and b differ due to the internal storage for the double type.

Note

For more on how Java represents floating-point numbers, see https://ieeexplore.
ieee.org/document/4610935.

Comparing Strings

You cannot use == to compare two strings in Java. Instead, you need to use the String
class' equals method. This is because == with String objects just checks whether they
are the exact same object. What you'll normally want is to check if the string values are
equal:

String cat = new String("cat");

String dog = new String("dog");

if (cat.equals(dog)) {

System.out.println("Cats and dogs are the same.");

https://ieeexplore.ieee.org/document/4610935
https://ieeexplore.ieee.org/document/4610935

Controlling the Flow of Your Programs | 47

The equals method on a String object called cat returns true if the passed-in String,
dog, has the same value as the first String. In this case, these two strings differ. So, the

Boolean expression will resolve to false.

You can also use literal strings in Java, delineating these strings with double quotes.

Here's an example:
if (dog.equals("dog")) {

System.out.println("Dogs are dogs.");

b

This case compares a String variable named dog with the literal string "dog".

Example@9 shows how to call the equals method:

Example09. java

public class Example@9 {

public static void main(String[]

args) {

String cat = new String("cat");

String dog = new String("dog");

if (cat.equals(dog)) {
System.out.println("Cats

if (!cat.equals(dog)) {
System.out.println("Cats

if (dog.equals(dog)) {
System.out.println("Dogs

// Using literal strings
if (dog.equals("dog")) {
System.out.println("Dogs

and dogs

and dogs

are dogs.

are dogs.

are

are

Rk

the same.");

not the same.");

48 | Learning the Basics

// Can compare using a literal string, too.
if ("dog".equals(dog)) {
System.out.println("Dogs are dogs.");

}

You should get the following output:
Cats and dogs are not the same.
Dogs are dogs.

Dogs are dogs.

Dogs are dogs.

Using Switch Statements

The switch statement is similar to a group of nested if-else-if statements. With
switch, you can choose from a group of values.

The basic syntax follows:

switch(season) {

case 1: message = "Spring";
break;
case 2: message = "Summer";
break;
case 3: message = "Fall";
break;
case 4: message = "Winter";
break;
default: message = "That's not a season";
break;

Controlling the Flow of Your Programs | 49

With the switch keyword, you place the variable to be checked. In this case, we're
checking a variable called season. Each case statement represents one possible value
for the switch variable (season). If the value of season is 3, then the case statement that
matches will be executed, setting the message variable to the String Fall. The break
statement ends the execution for that case.

The default statement is used as a catch-all for any unexpected value that doesn't
match the defined cases. The best practice is to always include a default statement.
Let's see how to implement this logic in a program.

Exercise 8: Using Switch

In this exercise, you'll run a program that maps a number to a season:

1. Using the techniques from the previous exercise, create a new class named
Exercise08.

2. Enter in the main() method and set up these variables:

public static void main(String[] args) {
int season = 3;
String message;

}

3. Enter the following switch statement.

switch(season) {

case 1: message = "Spring";
break;
case 2: message = "Summer";
break;
case 3: message = "Fall";
break;
case 4: message = "Winter";
break;
default: message = "That's not a season";
break;

50 | Learning the Basics

4. And enter a println statement to show us the results:

System.out.println(message);

Note

You can find the code for this exercise here:

5. Run the Exercise08 program using the green arrow to the left.

In the Run window, you'll see the path to your Java program, and then the
following output:

Fall

Because the season variable is set to 3, Java executes the case with 3 as the value,
so in this case, setting the message variable to Fall.

Note

There is no one rule for when to use a switch statement as opposed to a series of
if-else statements. In many cases, your choice will be based on the clarity of the
code. In addition, switch statements are limited in only having cases that hold a
single value, while if statements can test much more complicated conditions.

Normally, you'll put a break statement after the code for a particular case. You don't
have to. The code will keep executing from the start of the case until the next break
statement. This allows you to treat multiple conditions similarly.

Exercise 9: Allowing Cases to Fall Through

In this exercise, we determine a temperature adjustment for the porridge in
Goldilocks and the Three Bears. If the porridge is too hot, for example, let's reduce the
temperature. If it's too cold, let's raise the temperature:

1. Using the techniques from the previous exercise, create a new class named
Exercise09.

2. Enter in the main() method and set up these variables:

public static void main(String[] args) {
int tempAdjustment = 0;
String taste = "way too hot";

Controlling the Flow of Your Programs | 51

3. Next, enter the following switch statement:

switch(taste) {

case "too cold": tempAdjustment += 1;
break;
case "way too hot": tempAdjustment -= 1;
case "too hot": tempAdjustment -= 1;
break;
case "just right": // No adjustment
default:
break;

}

4. Print out the results:

System.out.println("Adjust temperature: + tempAdjustment);

5. Run the Exercise@9 program using the green arrow to the left.

In the run window, you'll see the path to your Java program, and then the following
output:

Adjust temperature: -2

Look carefully at the switch statement. If the value of the taste variable is too
cold, then increment the temperature by 1. If the value is too hot, decrement

the temperature by 1. But notice there is no break statement, so the code keeps
executing and adjusts the temperature down by another 1. This implies that if the
porridge is too hot, the temperature is decremented by 1. If it's way too hot, it's
decremented by 2. If the porridge is just right, there is no adjustment.

Note

Starting with Java 7, you can use Strings in switch statements. Prior to Java 7, you
could not.

52 | Learning the Basics

Using Java 12 Enhanced Switch Statements

Java 12 offers a new form of the switch statement. Aimed at switch statements that are
essentially used to determine the value of a variable, the new switch syntax allows you
to assign a variable containing the result of the switch.

The new syntax looks like this:

int tempAdjustment = switch(taste) {
case "too cold" -> 1;
case "way too hot" -> -2;
case "too hot" -> -1;
case "just right" -> 0;
default -> 0;

1

This switch syntax does not use break statements. Instead, for a given case, only the
code block after -> gets executed. The value from that code block is then returned as
the value from the switch statement.

We can rewrite the Exercise@9 example using the new syntax, as shown in the following
exercise.

Note

Intelli] needs a configuration to support Java 12 switch statements.

Exercise 10: Using Java 12 Switch Statements

In this exercise, we will work on the same example as in the previous exercise;
however, we will implement the new switch case syntax that is made available by Java
12. Before we start with the program there, you'll have to make changes to the IntelliJ
configuration. We will set that up in the initial few steps of the exercise:

1. From the Run menu, select Edit Configurations.
2. Click on Edit Templates.
3. Click on Application.

Controlling the Flow of Your Programs | 53

10.

Add the following to the VM options:
--enable-preview
Click OK.
This turns on the IntelliJ support for Java 12 enhanced switch statements.

Using the techniques from the previous exercise, create a new class named
Exercise10.

Enter in the main() method and set up this variable:

public static void main(String[] args) {
String taste = "way too hot";

3

Define a switch statement as follows:

int tempAdjustment = switch(taste) {

case "too cold" -> 1;
case "way too hot" -> -2;
case "too hot" -> -1;
case "just right" -> 0;
default -> 0;

}s

Note the semi-colon after switch. Remember, we are assigning a variable to a value

with the whole statement.
Then print out the value chosen:

System.out.println("Adjust temperature: " + tempAdjustment);

When you run this example, you should see the same output as in the previous

example:

Adjust temperature: -2

54 | Learning the Basics

The full code is as follows:

Exercise10.java

public class Exercisel10 {
public static void main(String[] args) {

String taste = "way too hot";

int tempAdjustment = switch(taste) {
case "too cold" -> 1;
case "way too hot" -> -2;
case "too hot" -> -1;
case "just right" -> 0;
default -> 0;
s
System.out.println("Adjust temperature:

+ tempAdjustment);

}
Looping and Performing Repetitive Tasks

In this chapter, we cover using loops to perform repetitive tasks. The main types of loop
are as follows:

» for loops
* while loops
* do-while loops
for loops repeat a block a set number of times. Use a for loop when you are sure how

many iterations you want. A newer form of the for loop iterates over each item in a
collection.

while loops execute a block while a given condition is true. When the condition
becomes false, the while loop stops. Similarly, do-while loops execute a block and then
check a condition. If true, the do-while loop runs the next iteration.

Looping and Performing Repetitive Tasks | 55

Use while loops if you are unsure how many iterations are required. For example, when
searching through data to find a particular element, you normally want to stop when
you find it.

Use a do-while loop if you always want to execute the block and only then check if
another iteration is needed.
Looping with the For Loop

A for loop executes the same block of code for a given number of times. The syntax
comes from the C language:

for(set up; boolean expression; how to increment) {

// Execute these statements..
3
In the preceding code, we can see that:
» FEach part is separated by a semicolon, (;).
* The set up part gets executed at the beginning of the entire for loop. It runs once.

* The boolean expression is examined at each iteration, including the first. So long
as this resolves to true, the loop will execute another iteration.

* The how to increment part defines how you want a loop variable to increment.
Typically, you'll add one for each increment.

The following exercise will implement a classic for loop in Java.

Exercise 11: Using a Classic for Loop
This exercise will run a for loop for four iterations, using the classic for loop syntax:

1. Using the techniques from the previous exercise, create a new class named
Exercisell.

2. Enter a main() method and the following code:

public static void main(String[] args) {
for (int i = 1; i <5; i++) {
System.out.println("Iteration: " + i);

56 | Learning the Basics

3. Run the Exercisel1 program using the green arrow to the left.

In the Run window, you'll see the path to your Java program, and then the
following output:

Iteration: 1
Iteration: 2
Iteration: 3
Iteration: 4

Here is how the program executes:
* int i = 1isthe for loop set up part.
* The Boolean expression checked each iterationis i < 5.

* The how to increment part tells the for loop to add one to each iteration using the
++ operator.

» For each iteration, the code inside the parentheses executes. It continues like this
until the Boolean expression stops being true.
In addition to the old classic for loop, Java also offers an enhanced for loop designed to

iterate over collections and arrays.

We will cover arrays and collections in greater detail later in the book; for now, think
of arrays as groups of values of the same data type stored in a single variable, whereas
collections are groups of values of different data types stored in a single variable.

Exercise 12: Using an Enhanced for Loop

Iterating over the elements of arrays means that the increment value is always 1, and
the start value is always 0. This allows Java to reduce the syntax of a form to iterate over
arrays. In this exercise you will loop over all items in a letters array:

1. Using the techniques from the previous exercise, create a new class named
Exercisel2

2. Enter amain() method:

public static void main(String[] args) {

Looping and Performing Repetitive Tasks | 57

3. Enter the following array:
String[] letters = { "A", "B", "C" };

Chapter 4, Collections, Lists, and Java's Built-In APIs, will cover the array syntax in
greater depth. For now, we have an array of three String values, A, B, and C.

4. Enter an enhanced for loop:

for (String letter : letters) {
System.out.println(letter);
}

Notice the reduced syntax of the for loop. Here, the variable letter iterates over
every element in the letters array.

5. Run the Exercisel12 program using the green arrow to the left.

In the Run window, you'll see the path to your Java program, and then the
following output:

A
B
C

Jumping Out of Loops with Break and Continue

A break statement, as we saw in the switch examples, jumps entirely out of a loop. No
more iterations will occur.

A continue statement jumps out of the current iteration of the loop. Java will then
evaluate the loop expression for the next iteration.

58 | Learning the Basics

Exercise 13: Using Break and Continue

This exercise shows how to jump out of a loop using break, or jump to the next iteration
using continue:

1. Using the techniques from the previous exercise, create a new class named
Exercisel3.

2. Enter amain() method:

public static void main(String[] args) {
}

3. Define a slightly longer array of String values:
String[] letters = { "A", "B", "C", "D" };
4. Enter the following for loop:

for (String letter : letters) {
}

This loop will normally iterate four times, once for each letter in the letters array.
We'll change that though, with the next code.

5. Add a conditional to the loop:

if (letter.equals("A")) {
continue; // Jump to next iteration

3

Using continue here means that if the current letter equals A, then jump to the
next iteration. None of the remaining loop code will get executed.

6. Next, we'll print out the current letter:
System.out.println(letter);
For all iterations that get here, you'll see the current letter printed.
7. Finish the for loop with a conditional using break:

if (letter.equals("C")) {
break; // Leave the for loop

3

If the value of letter is C, then the code will jump entirely out of the loop. And
since our array of letters has another value, D, we'll never see that value at all. The
loop is done when the value of letter is C.

Looping and Performing Repetitive Tasks | 59

8. Run the Exercise13 program using the green arrow to the left.

In the Run window, you'll see the path to your Java program, and then the
following output:

B
C

Exercise13. java holds the full example:

Exercise13. java

public class Exercisel3 {
public static void main(String[] args) {

Stringl[] letters = { "A", "B", "C", "D" };

for (String letter : letters) {
if (letter.equals("A")) {
continue; // Jump to next iteration

}
System.out.println(letter);

if (letter.equals("C")) {
break; // Leave the for loop

b

Using the While Loop

In many cases, you won't know in advance how many iterations you need. In that case,
use a while loop instead of a for loop.

A while loop repeats so long as (or while) a Boolean expression resolves to true:
while (boolean expression) {
// Execute these statements..
3

Similar to a for loop, you'll often use a variable to count iterations. You don't have to do
that, though. You can use any Boolean expression to control a while loop.

60 | Learning the Basics

Exercise 14: Using a While Loop
This exercise implements a similar loop to Exercise10, which shows a for loop:

1. Using the techniques from the previous exercise, create a new class named
Exercisel4.

2. Enter amain() method:

public static void main(String[] args) {

3
3. Enter the following variable setting and while loop:

int i = 1;

while (i < 10) {
System.out.println("0dd: " + i);
i += 2;

b

Note how this loop increments the i variable by two each time. This results in
printing odd numbers.

4. Run the Exercise14 program using the green arrow to the left.

In the Run window, you'll see the path to your Java program, and then the
following output:

0dd:
0dd:
0dd:
0dd:
0dd:

O N 01w =

Note

A common mistake is to forget to increment the variable used in your Boolean
expression.

Looping and Performing Repetitive Tasks | 61

Using the Do-While Loop

The do-while loop provides a variant on the while loop. Instead of checking the
condition first, the do-while loop checks the condition after each iteration. This means
with a do-while loop, you will always have at least one iteration. Normally, you will only
use a do-while loop if you are sure you want the iteration block to execute the first time,
even if the condition is false.

One example use case for the do-while loop is if you are asking the user a set of
questions and then reading the user's response. You always want to ask the first
question.

The basic format is as follows:
do {
// Execute these statements..

} while (boolean expression);
Note the semicolon after the Boolean expression.

A do-while loop runs the iteration block once, and then checks the Boolean expression
to see if the loop should run another iteration.

Example17.java shows a do-while loop:

Example17.java

public class Examplel7 {
public static void main(String[] args) {

int i = 2;

do {
System.out.println("Even: " + i);
1+= 2;

} while (i < 10);

62 | Learning the Basics

This example prints out even numbers.

Note

You can use break and continue with while and do-while loops too.

Handling Command-Line Arguments

Command-line arguments are parameters passed to the main() method of your Java
program. In each example so far, you've seen the main() method takes in an array of
String values. These are the command-line arguments to the program.

Command-line arguments prove their usefulness by giving you one way of providing
inputs to your program. These inputs are part of the command line launching the
program, when run from a Terminal shell window.

Exercise 15: Testing Command-Line Arguments

This exercise shows how to pass command-line arguments to a Java program, and also
shows how to access those arguments from within your programs:

1. Using the techniques from the previous exercises, create a new class named
Exercisel5

2. Enter the following code:

public class Exercisel5 {
public static void main(String[] args) {
for (int i = 0; i < args.length; i++) {
System.out.println(i + " " + args[i]);

}

This code uses a for loop to iterate over all the command-line arguments, which
the java command places into the String array named args.

Each iteration prints out the position (i) of the argument and the value (args[i]).
Note that Java arrays start counting positions from O and args.length holds the
number of values in the args array.

To run this program, we're going to take a different approach than before.

Handling Command-Line Arguments | 63

In the bottom of the IntelliJ application, click on Terminal. This will show a
command-line shell window.

When using IntelliJ for these examples, the code is stored in a folder named src.
Enter the following command in the Terminal window:
cd src
This changes to the folder with the example source code.
Enter the javac command to compile the Java program:
javac Exercisel5. java

This command creates a file named Exercise15.class in the current directory.
Intelli] normally puts these .class files into a different folder.

Now, run the program with the java command with the parameters you want to
pass:

java Exercisel5 cat dog wombat

In this command, Exercise15 is the name of the Java class with the main() method,
Exercise15. The values following Exercise15 on the command line are passed
to the Exercise15 application as command-line arguments. Each argument is
separated by a space character, so we have three arguments: cat, dog, and wombat.

You will see the following output:

0 cat
1 dog
2 wombat

The first argument, at position @ in the args array, is cat. The argument at position
1is dog, and the argument at position 2 is wombat.

Note

The java command, which runs compiled Java programs, supports a set of
command-line arguments such as defining the available memory heap space. See
the Oracle Java documentation at https://docs.oracle.com/en/java/javase/12/tools/
java.html for details on the command-line arguments that control the execution of
your Java programs.

https://docs.oracle.com/en/java/javase/12/tools/java.html
https://docs.oracle.com/en/java/javase/12/tools/java.html

64 | Learning the Basics

Converting Command-Line Arguments

Command-line arguments appear in your Java programs as String values. In many cases,
though, you'll want to convert these String values into numbers.

If you are expecting an integer value, you can use Integer.parselInt() to convert a
String to an int.

If you are expecting a double value, you can use Double.parseDouble() to convert a
String to a double.

Exercise 16: Converting String to Integers and Doubles
This exercise extracts command-line arguments and turns them into numbers:

1. Using the techniques from the previous exercises, create a new class named
Exercisel6.

2. Enter the main() method:

public class Exercisel6 {
public static void main(String[] args) {

b

3. Enter the following code to convert the first argument into an int value:

if (args.length > 0) {
int intValue = Integer.parseInt(args[0]);
System.out.println(intValue);

}

This code first checks if there is a command-line argument, and then if so,
converts the String value to an int.

4. Enter the following code to convert the second argument into a double value:

if (args.length > 1) {
double doubleValue = Double.parseDouble(args[1]1);
System.out.println(doubleValue);

b

This code checks if there is a second command-line argument (start counting with
0) and if so, converts the String to a double value.

Handling Command-Line Arguments | 65

5. Enter the javac command introduced in Chapter 1, Getting Started, to compile the
Java program:

javac Exercisel6.java
This command creates a file named Exercise16.class in the current directory.
6. Now, run the program with the java command:
java Exercisel6 42 65.8
You will see the following output:

42
65.8

The values printed out have been converted from String values into numbers
inside the program. This example does not try to catch errors, so you have to
enter the inputs properly.

Note

Both Integer.parseInt() and Double.parseDouble() will throw
NumberFormatException if the passed-in String does not hold a number. See
Chapter 5, Exceptions, for more on exceptions.

Diving Deeper into Variables - Immutability

Immutable objects cannot have their values modified. In Java terms, once an immutable
object is constructed, you cannot modify the object.

Immutability can provide a lot of advantages for the JVM, since it knows an immutable
object cannot be modified. This can really help with garbage collection. When writing
programs that use multiple threads, knowing an object cannot be modified by another
thread can make your code safer.

Note

See Chapter 22, Concurrent Tasks, for more information on threads and
concurrency.

In Java, String objects are immutable. While it may seem like you can assign a String to
a different value, Java actually creates a new object when you try to change a String.

66 | Learning the Basics

Comparing Final and Immutable

In addition to immutable objects, Java provides a final keyword. With final, you cannot
change the object reference itself. You can change the data within a final object, but
you cannot change which object is referenced.

Contrast final with immutable. An immutable object does not allow the data inside the
object to change. A final object does not allow the object to point to another object.

Using Static Values

A static variable is common to all instances of a class. This differs from instance
variables that apply to only one instance, or object, of a class. For example, each
instance of the Integer class can hold a different int value. But, in the Integer class,
MAX_VALUE and MIN_VALUE are static variables. These variables are defined once for all
instances of integers, making them essentially global variables.

Note

Chapter 3, Object-Oriented Programming, delves into classes and objects.

Static variables are often used as constants. To keep them constant, you normally want
to define them as final as well:

public static final String MULTIPLY = "multiply";

Note

By convention, the names of Java constants are all uppercase.

Example20. java defines a constant, MULTIPLY:

Example20. java

public class Example20 {
public static final String MULTIPLY = "multiply";

public static void main(String[] args) {
System.out.println("The operation is " + MULTIPLY);

Handling Command-Line Arguments | 67

Because the MULTIPLY constant is a final value, you will get a compilation error if your
code attempts to change the value once set.

Using Local Variable Type Inference

Java is a statically typed language, which means each variable and each parameter has a
defined type. As Java has provided the ability to create more complex types, especially
related to collections, the Java syntax for variable types has gotten more and more
complex. To help with this, Java version 10 introduced the concept of local variable type
inference.

With this, you can declare a variable of the var type. So long as it is fully clear what
type the variable really should be, the Java compiler will take care of the details for you.
Here's an example:

var s = new String("Hello");
This example creates a new String for the s variable. Even though s is declared with

the var keyword, s really is of the String type. That is, this code is equivalent to the
following:

String s = new String("Hello");

With just a String type, this doesn't save you that much typing. When you get to more
complex types, though, you will really appreciate the use of the var keyword.

Note

Chapter 4, Collections, Lists, and Java's Built-In APIs, covers collections, where you will
see really complex types.

Example21. java shows local variable type inference in action:

Example21.java

public class Example21 {
public static void main(String[] args) {

var s = new String("Hello");

System.out.println("The value is " + s);

var i = Integer.valueOf("42");

68 | Learning the Basics

System.out.println("The value is " + i);

}

When you run this example, you will see the following output:
The value is Hello

The value is 42

Activity 1: Taking Input and Comparing Ranges
You are tasked with writing a program that takes a patient's blood pressure as input and

then determines if that blood pressure is within the ideal range.

Blood pressure has two components, the systolic blood pressure and the diastolic blood
pressure.

According to bloodpressureuk.org, the ideal systolic number is more than 90 and
less than 120. 90 and below is low blood pressure. Above 120 and below 140 is called
pre-high blood pressure, and 140 and over is high blood pressure.

The ideal diastolic blood pressure is between 60 and 80. 60 and below is low. Above 80
and under 90 is pre-high blood pressure, and over 90 is high blood pressure.

Component Ideal Range
Systolic blood pressure 90-120
Diastolic blood pressure 60-80

Figure 2.4: Ideal ranges for systolic and diastolic blood pressures

For the purpose of this activity, if either number is out of the ideal range, report that as
non-ideal blood pressure:

1. Write an application that takes two numbers, the systolic blood pressure and the
diastolic blood pressure. Convert both inputs into int values.

2. Check if there is the right number of inputs at the beginning of the program. Print
an error message if any inputs are missing. Exit the application in this case.

3. Compare against the ideal rates mentioned previously. Output a message
describing the inputs as low, ideal, pre-high, or high blood pressure.

To print an error message, use System.err.println instead of System.out.println.

Summary | 69

4. Try out your program with a variety of inputs to ensure it works properly.

You'll need to use the Terminal pane in IntelliJ to compile and run the program
with command-line input. Look back at Exercises 15 and 16 for details on how to
do this.

5. The blood pressure is typically reported as systolic blood pressure /diastolic blood
pressure.

Note

The solution for this activity can be found on page 820.

Summary

This chapter covered a lot of Java syntax, things you need to learn to be able to tackle
the more advanced topics. You'll find yourself using these techniques in just about every
Java application you write.

We started out by controlling the flow of the program using conditional statements
such as if, else if, else, and switch statements.

We then moved on to the different loops that can be used to perform repetitive tasks.
And then we looked at how to provide values during runtime using command-line
arguments. This is one way to pass inputs to your Java applications. Every example in
this chapter created a class, but we never did much with these classes.

In the next chapter, you'll learn about classes, methods, and object-oriented
programming, and how you can do a lot more with classes.

Object-Oriented
Programming

Learning Objectives
By the end of this chapter, you will be able to:
+ Create and instantiate your classes
+ Create methods that can handle data inside your classes
+ Code recursive methods
+ Override existing methods to make your own

« Overload the definition of methods to accommodate different scenarios with different
parameters to the same method or constructor

+ Annotate code to inform the compiler about specific actions to be taken with code

In this chapter, we will look at how Java implements OOP concepts.

72 | Object-Oriented Programming

Introduction

A Java class is a template that is used to define data types. Classes are composed

of objects carrying data and methods that are used to perform operations on that
data. Classes can be self-contained, extend other classes with new functionalities, or
implement features from other classes. In a way, classes are categories that allow us to
define what kind of data can be stored within them, as well as the ways in which that
data can be handled.

Classes tell the compiler how to build a certain object during runtime. Please refer to
the explanation of what objects are in the Working with Objects in Java topic.

The basic structure of a class definition looks like this:
class <name> {
fields;

methods;

Note

Class names should start with a capital letter, as in TheClass, Animal, WordCount,
or any other string that somehow expresses the main purpose of the class. If
contained in a separate file, the filename containing the source should be named
like the class: TheClass. java, Animal. java, and so on.

The Anatomy of a Class

There are different software components in classes. The following example shows a
class that includes some of the main ones.

Example@1. java

class Computer {
// variables

double cpuSpeed; // in GHz

// constructor

Computer() {

Introduction | 73

cpuSpeed = 0;

// methods

void setCpuSpeed (double _cpuSpeed) {
cpuSpeed = _cpuSpeed;

}

double getCpuSpeed () {

return cpuSpeed;

public class Example@l {
public static void main(String[] args) {
Computer myPC = new Computer();
myPC.setCpuSpeed(2.5);
System.out.println(myPC.getCpuSpeed());

3

The outcome of this example is:
2.5

Process finished with exit code ©

The previous code listing shows the definition of a basic class called Computer, which
includes variables and methods to deal with one of the properties of the class computer
- in this case, cpuSpeed. The code shows two different classes. The first one is the
blueprint for how to define objects of the Computer type in your programs. The second
one, Example01, is the one that will be executed after compilation and will make an
instance of the Computer class in the form of an object called myPC.

74 | Object-Oriented Programming

There is one more component inside the class, the constructor, which is optional,
as Java includes a default constructor for all your classes. Constructors are used to
initializing the basic properties of classes, and so are used when assigning values to
variables, for instance. In our case, the operation performed by the constructor is
initializing the cpuSpeed variable with a value of e:

// constructor
Computer() {
cpuSpeed = 0;
3
It is also possible for constructors to have parameters. You could have the constructor
of the class be this:
// constructor
Computer(double _c) {
cpuSpeed = _c;

}

In this way, you could call the constructor with:
Computer myPC = new Computer(2.5);

That would also require a parameter. In addition, classes can have more than one
constructor. This will be explained later in the chapter.

Working with Objects in Java

Objects are to classes what variables are to data types. While classes define the
structure and possible actions of a certain data type, objects are actual usable parts of
the computer memory containing that data. The action of creating an object is known
as making an instance of a class. In a sense, it is like making a copy of the template and
then modifying it by accessing its variables or methods. Let's see this in action:

Computer myPC = new Computer(2.5);

myPC is the actual object. We would say that myPC is an object of the class Computer in
colloquial terms.

Working with Objects in Java | 75

The different fields and methods inside the class can be accessed by typing the name
of the object followed by a period and the name of the variable or method you want to
address. Making any changes to the variables or calling the methods will take effect
only within the scope of that object. If you had more objects of the same class in your
program, each one of them would have a piece of memory of its own. An example of
how to address a method is as follows:

myPC.setCpuSpeed(2.5);

An example of how to address a variable, on the other hand, would be the following
assignment:

myPC. cpuSpeed = 2.5;

Because of the way the Computer class has been defined, the last two code listings

have the exact same effect. The whole class has been defined - by default - as public,
which means that all the methods, variables, and objects from the class are available to
be called with the mechanism described previously. It could be necessary to prevent
users from directly interacting with the variables within the class and only allow their
modification through certain methods. The different components within a class can be
defined as public or private. The former will make the component available to be used
as shown so far, while the latter will hinder the ability of other developers to access that
part. The following example shows how to make the cpuSpeed variable private:

Example@2. java

class Computer {
// variables

private double cpuSpeed; // in GHz

// constructor
Computer() {
cpuSpeed = 0;

// methods

void setCpuSpeed (double _cpuSpeed) {
cpuSpeed = _cpuSpeed;

}

double getCpuSpeed () {

76 | Object-Oriented Programming

return cpuSpeed;

public class Example0d2 {
public static void main(String[] args) {
Computer myPC = new Computer();
myPC. setCpuSpeed(2.5);
System.out.println(myPC.getCpuSpeed());

3

The result of this code listing is the same as before:
2.5

Process finished with exit code ©

If you tried to access the cpuSpeed variable directly from the Example02 class, the
program would throw an exception. The following example shows such a case. Try it
out to see how the debugger informs you when you try to access a private variable:

Example@3. java

class Computer {
// variables

private double cpuSpeed; // in GHz

// constructor
Computer() {
cpuSpeed = 0;

Working with Objects in Java | 77

// methods

void setCpuSpeed (double _cpuSpeed) {
cpuSpeed = _cpuSpeed;

}

double getCpuSpeed () {

return cpuSpeed;

public class Example@3 {
public static void main(String[] args) {
Computer myPC = new Computer();
myPC. setCpuSpeed(2.5);
System.out.println(myPC.cpuSpeed);

3
The result of this program is:
Example@3. java:23: error: cpuSpeed has private access in Computer

System.out.println(myPC.cpuSpeed);
1 error
Process finished with exit code 1.

What the compiler shows is an error in the Computer class, which has been derived from
java.lang.

78 | Object-Oriented Programming

Checking the Precedence of a Class with instanceof

You can check whether an object is an instance of a specific class. This can be
convenient for things such as error checking, handling data in different ways depending
on its precedence, and more. The following example shows the checkNumber method,
which can discriminate between different types of variables and will print different
messages based on that:

Example04. java

public class Example@4 {
public static void checkNumber(Number val) {
if(val instanceof Integer)
System.out.println("it is an Integer");
if(val instanceof Double)

System.out.println("it is a Double");

public static void main(String[] args) {
int vall = 3;
double val2 = 2.7;
checkNumber(vall);
checkNumber(val2);

}

The outcome of the previous example is:
it is an Integer

it is a Double

Process finished with exit code ©

Checking the Precedence of a Class with instanceof | 79

Exercise 1: Creating the WordTool Class

WordTool is a class that will help you to perform a series of operations on a piece of
text, including counting the number of words, looking at the frequency of letters, and
searching for the occurrence of a specific string:

1. Open IntelliJ and click on the File | New | Project menu options:

Example05 [~/IdeaProjects/ch03/Example05] - IntelliJ IDEA
'#1[=8 Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help
New » Project... B A > & G B ‘Q =
& Open... Project from Existing Sources...
Open Recent Project from Version Control
Close Project Module...
/# Settings... Ctrl+Alt+S Module from Existing Sources...

Bz Project Structure... Ctrl+Alt+Mayds+S 2 scratch File Ctrl+Alt+MayUs+insertar
Other Settings >

PIIng Uy 8¢

Import Settings...
Export Settings...
Settings Repository...
Export Project to Eclipse...
Export to Zip File...
H save All Ctrl+s
S synchronize Ctrl+Alt+Y
Invalidate Caches / Restart...

uane 3

& Print...
Associate with File Type...

Power Save Mode
Exit

7:Str

% 2: Favorites

= 6: TODO Terminal Event Log
Create a new project from scratch w &

m|

Figure 3.1: Creating a new project

80 | Object-Oriented Programming

2. A new interface unfolds. The default options are meant for creating a Java
program. You just need to click Next:

Project SDK: 72 1.8 - | New.

2 Java FX

i Additional Libraries and Frameworks:
Android

_| e Groovy

IntelliJ Platform Plugin
[K Kotlin/Jvm

I Maven

Gradle
& Groovy
K Kotlin

= Empty Project

Use library: | [No library selected] Create...

Error: library is not specified

Previous m Cancel Help

Figure 3.2: The New Project dialog box

3. Check the box to create the project from a template. Select the template for the
Command Line App. Click Next:

Checking the Precedence of a Class with instanceof | 81

Create project from template

Command Line App

= Java Hello world

Simple Java application that includes a class with main() method

Previous m Cancel Help

Figure 3.3: Creating a project from template

-~

Name the project WordTool. Click Finish:

Project name: wordTool
Project location: ~/IdeaProjects/ch03/WordTool

Base package:

Previous m Cancel Help

Figure 3.4: Adding the Project name

82 | Object-Oriented Programming

5. By default, the template calls your basic class Main. Let's change that to WordTool.
First, navigate within the new project to the Main. java file; it is displayed as the
main entry in the list:

WordTool [~/IdeaProjects/ch03/WordTool] - ../src/Mainjava [WordTool] - IntelliJ IDEA
File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help

= WordTool src - € Main B AN Main v| > # G Q
E Project ~ B = & — @ Mainjava m
7] s T
é = WordTool > public class Main { v %

.idea > public static void main(String[] args) { >
‘5 src ;/ write your code here %
° > P
:.—: € Main } ﬁ
;‘ = WordTool.iml =
Il External Libraries &
© Scratches and Consoles
g
s
>
£
&l
*
@
2
B
=
I
~
M Terminal i= 6: TODO Q) Event Log
(] 7:1 LF+ UTF-8 ¢+ 4spaces :+ m &

Figure 3.5: A template Java program

Checking the Precedence of a Class with instanceof | 83

6. Right-click on the Main entry and, in the drop-down list, select the Refactor
option. Within that, select Rename...:

e WordTool [~/IdeaProjects/ch03/WordTool] - ../src/Main.java [WordTool] - IntelliJ IDEA

File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help

= WordTool src € Main B N\ Main >~ b # G Q m

= Project ~ B = @ — @ Mainjava ‘ m

@ : -

é % WordTool ~/IdeaProjects/cho3/wWordTool % b public class Main { v §
H - (1]
idea 3 public static void main(String[] args) { >

g src 7 // write your code here -

E " Main - ¥ >

a } =

= New » =

] " s <

Il Exte ?‘ Cut Ctrt+x <
© Scrat & Copy C'fr e
Copy Path Ctrl+Mayuds+C
Copy Reference Ctrl+Alt+Mayds+C
O paste Ctrl+v
#' Jump to Source F4
Find Usages Alt+F7
Analyze »
Mayissro

a Add to Favorites » Rename File...

'E Browse Type Hierarchy Ctrl+H Changg Slgnlature... Clrl+Fé

& Reformat Code Ctri+Alt+L Type Migration... Ctrl+Mayls+F6

o .

* Optimize Imports Ctrl+Alt+0 Make Static...

Delete... Suprimir Convert To Instance Method...

E Build Module 'WordTool' Move... Fé

E Recompile 'Main.java’ Ctrl+Mayus+F9 Copy... . F‘5

2 » Run 'Main’ Ctrl+Mayis+F10 Safe Delete... Alt+Suprimir

o #% Debug 'Main’ Extract »

- =N AT g Inline... Cerl+Alt+N

& Terming T, Run 'Main' with Coverage Q Event Log

——— & save 'Main’ Invert Boolean...

0 Remamet — % T TF8 ¢ 4spaces : m &

Pl Mamabacs T1m

Figure 3.6: Refactoring the Java class

84 | Object-Oriented Programming

7. A dialog window pops up. Write in it the name of the class, WordTool. The
checkboxes allow you to choose which parts of the code will be refactored to fit
the new name of the class:

File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help

= WordTool src ' € Main B A\ Main v | b & G Q -
£ Project « B = & — @ Mainjava m
7]) T -
é 2 WordTool ~/IdeaProjects/chos/wordTool 1 » public class Main { v ?
.idea 3 p public static void main(String[] args) { =
E src 4 // write your code here %
© > f
& < Main 6 } i
;‘ = WordTool.iml =
R =
© Scratches and Consoles . .
Rename class 'Main' and its usages to:
WordTool v
Search in comments and strings Search for text occurrences
Rename tests Rename inheritors
Rename variables
- Preview Cancel Help
@
15
=
w
&
*
@
2
B
2
a
~
™ Terminal = 6: TODO () Event Log
= 1:9 LF: UTF-8 ¢+ 4spaces : W 2

Figure 3.7: Renaming the class in Intelli)

Checking the Precedence of a Class with instanceof | 85

8. You will see that the class is now called WordTool and the file is WordTool. java:

WordTool [~/ldeaProjects/ch03/WordTool] - .../src/WordTool.java [WordTool] - IntelliJ IDEA
File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help

= WordTool sre ' € wordTool B A\ Main v b & G Q
£ Project « € = @ — & wordTooljava m
é = WordTool b public class WordTool { v §

. 3
-idea > public static void main(String[] args) { =
E src // write your code here ”
5 }
o >
& € WordTool } i
;‘ = WordTool.iml =)
a

Il External Libraries
© Scratches and Consoles

g
g
i
I
*
w
2
o]
=
A
~
M Terminal i= 6: TODO Q) Event Log
LI No occurrences found 71 LF+ UTF-8 :+ 4spaces :+ m &
Figure 3.8: WordTool

9. Create the constructor for the class; it will be empty, in this case:

WordTool() {3};

86 | Object-Oriented Programming

10. Add a method to count the number of words in a string:

public int wordCount (String s) {
int count = 0; // variable to count words

// if the entry is empty or is null, count is zero
// therefore we evaluate it only otherwise
if ('(s == null || s.isEmpty())) {
// use the split method from the String class to
// separate the words having the whitespace as separator
String[] w = s.split("\\s+");
count = w.length;

return count;

3

11. Add a method to count the number of letters in a string, and add the ability to
count both with and without whitespace characters:

public int symbolCount (String s, boolean withSpaces) {
int count = @; // variable to count symbols

// if the entry is empty or is null, count is zero
// therefore we evaluate it only otherwise
if ('(s == null || s.isEmpty())) {
if (withSpaces) {
// with whitespaces return the full length
count = s.length();
} else {
// without whitespaces, eliminate whitespaces
// and get the length on the fly
count = s.replace(" ", "").length();

3

return count;

b

12. In the main class, create an object of the WordTool class and add a String variable
containing some text of your choice:

WordTool wt = new WordTool();
String text = "The river carried the memories from her childhood.";

Checking the Precedence of a Class with instanceof | 87

13. Add code inside the main method to print out the calculations made by WordTool:

System.out.println("Analyzing the text: \n" + text);
System.out.println("Total words: " + wt.wordCount(text));
System.out.println("Total symbols (w. spaces): " + wt.symbolCount(text,
true));

System.out.println("Total symbols (wo. spaces): " + wt.symbolCount(text,
false));

14. Run the program; the outcome should be as follows:

Analyzing the text:

The river carried the memories from her childhood.
Total words: 8

Total symbols (w. spaces): 50

Total symbols (wo. spaces): 43

Process finished with exit code ©

Note

You can use the trick presented in this exercise to create classes for all the
examples in this book, just by using the template and refactoring them to have the
example name. After that, you will just need to copy the code in a fresh project.

Activity 1: Adding the Frequency-of-Symbol Calculation to WordTool

Add a method to the previously created WordTool class to calculate the frequency of a
certain symbol. To do so, perform the following steps:

1. Add a method to count the number of words in a string.

2. Add a method to count the number of letters in a string, and add the possibility of
separating the case of having whitespaces or not.

3. In the main class, create an object of the WordTool class and add a string variable
containing a line of text of your choice.

4. Add code inside the main method to print out the calculations made by WordTool.
The expected outcome of this activity is as follows:

Analyzing the text:

The river carried the memories from her childhood.
Total words: 8

Total symbols (w. spaces): 50

88 | Object-Oriented Programming

Total symbols (wo. spaces): 43
Total amount of e: 7

Process finished with exit code 0

Note

The solution for this activity can be found on page 821.

Inheritance in Java

Inheritance is a key principle of object-oriented programming. It entails the transfer of
the existing structure of one class, including its constructor, variables, and methods,
to a different class. The new class is called the child class (or subclass), while the one
it's inheriting from is called the parent class (or superclass). We say that the child

class extends the parent one. The child class is said to extend the parent class in the
sense that it not only inherits whatever structures are defined by the parent, but it
also creates new structures. The following example shows a parent class and how the
child class extends it by adding a new method to it. We will take the Computer class

we defined earlier as a parent and create a new class called Tablet, which is a type of
computer.

Example®5. java

class Computer {
// variables

private double cpuSpeed; // in GHz

// constructor
Computer() {
cpuSpeed = 0;

// methods
void setCpuSpeed (double _cpuSpeed) {
cpuSpeed = _cpuSpeed;

Inheritance in Java | 89

double getCpuSpeed () {

return cpuSpeed;

class Tablet extends Computer {
// variables

private double screenSize; // in inches

// methods

void setScreenSize (double _screenSize) {
screenSize = _screenSize;

}

double getScreenSize () {

return screenSize;

public class Example@5 {
public static void main(String[] args) {
Tablet myTab = new Tablet();
myTab.setCpuSpeed(2.5);
myTab.setScreenSize(10);
System.out.println(myTab.getCpuSpeed());
System.out.println(myTab.getScreenSize());

3

Notice how the definition of the Tablet class does not include any methods called
setCpuSpeed() or getCpuSpeed(); however, when calling them, not only does the program
not give any errors, but the commands are also successfully launched.

90 | Object-Oriented Programming

This is because the definition of the Tablet class extends the Computer class, thus
inheriting all its internal objects, variables, and methods. When creating an object of the
Tablet class, such as myTab, the JVM reserves space in memory for a cpuSpeed variable
and the setter and getter methods that go with it.

Overriding and Hiding Methods

When extending a class, it is possible to redefine some of the methods that are part

of it. Overriding means to rewrite something's functionality. This is done by making

a new declaration of the method with the same name and properties of the method
from the original class. This is demonstrated in the following example. Note that we're
continuing, for the sake of clarity, with Computer and Tablet, but they have been cleaned
up so as not to make the example programs too long.

Example06. java

class Computer {
public void whatIsIt() {
System.out.println("it is a PC");

class Tablet extends Computer {
public void whatIsIt() {
System.out.println("it is a tablet");

class Example@6 {
public static void main(String[] args) {
Tablet myTab = new Tablet();
myTab.whatIsIt();

Overriding and Hiding Methods | 91

Since Tablet extends Computer, you could modify the main class in the program to be as
follows:

class Example06 {
public static void main(String[] args) {
Computer myTab = new Tablet();
myTab.whatIsIt();

3

Technically, tablets are computers, which means that you can create an object of the
Tablet class by defining it as Computer in the first place. The result for both cases will be
the same:

it is a tablet

Process finished with exit code ©

The result is the same for both classes because both the child and parent classes
include a non-static method called whatIsIt(). When calling the method, the overriding
one will have priority. This is done by the JVM at runtime. This principle is what we

call runtime polymorphism. There can be multiple definitions of the same method, and
which definition will be executed is decided during the execution of the program.

But what would happen if the method you called was static? This could be a design
decision taken by the developer who is creating the class you are extending and
therefore is a situation out of your control. In this case, it is not possible to override the
method. The child class can, however, hide the method defined by the parent using the
same mechanism. The next code listing demonstrates this.

Example@7. java

class Computer {
public static void whatIsIt() {
System.out.println("it is a PC");

class Tablet extends Computer {

public static void whatIsIt() {

92 | Object-Oriented Programming

System.out.println("it is a tablet");

class Example0d7 {
public static void main(String[] args) {
Computer myTab = new Tablet();
myTab.whatIsIt();

}

The outcome of this example is:
it is a PC

Process finished with exit code 0

The decision of what method should be used with static methods is not taken at
runtime but during compilation, and this ensures that the method from the parent
class is the one being called. This action is called hiding instead of overriding. It is still
possible to call the method in the Tablet class. To do so, you should modify the code in
the main class to the following:

class Example0d7 {
public static void main(String[] args) {
Computer myTab = new Tablet();
Tablet.whatIsIt();

}

Note how we clearly specify the actual class you call for this. The result of the modified
example is:

it is a tablet

Process finished with exit code ©

Overriding and Hiding Methods | 93

Avoiding Overriding: Final Classes and Methods

If you want to stop other developers from overriding parts of your class, you can
declare the methods you want to protect as final. An example of this could be a class
that deals with temperature. The method that converts from Celsius into Fahrenheit is
final, as it makes no sense to override such a method.

Example©8. java

class Temperature {
public double t = 25;
public double getCelsius() {
return t;
}
final public double getFahrenheit() {
return t * 9/5 + 32;

class Example08 {
public static void main(String[] args) {
Temperature temp = new Temperature();
System.out.println(temp.getCelsius());
System.out.println(temp.getFahrenheit());

94 | Object-Oriented Programming

This program will give this result:
25.0
77.0

Process finished with exit code ©

Note

Alternatively, you can declare a whole class final. A final class cannot be
extended. An example of such a class is String. You could ask whether it defeats
the purpose of object-oriented programming to have a class that cannot be
extended. But there are some classes that are so fundamental to the programming
language, such as String, that they are better kept as they are.

Overloading Methods and Constructors

One very interesting property of Java is how it allows you to define methods that have
the same conceptual functionality as each other by using the same name but changing
either the type or number of parameters. Let's see how this could work.

Example@9. java

class Age {
public double a = 0;
public void setAge (double _a) {

}
public void setAge (int year, int month) {

a = year + (double) month / 12;

b
public double getAge () {

Overloading Methods and Constructors | 95

return a;

class Example@9 {
public static void main(String[] args) {
Age age = new Age();
age.setAge(12.5);
System.out.println(age.getAge());
age.setAge(9, 3);
System.out.println(age.getAge());

Note

Look at the highlighted portion in the preceding code. As we are taking the integer
parameter month and dividing it by a number, the result of the operation will be

a double. To avoid possible errors, you need to convert the integer into a floating
comma number. This process, called casting, is done by adding the new type
between brackets in front of the object, variable, or operation we want to convert.

The result of this example is:
12.5
9.25

Process finished with exit code ©

This shows that both methods modify the a variable in the Age class by taking different
sets of parameters. This same mechanism for having conceptually equivalent results
from different blocks of code can be used for the constructors of a class, as shown in
the following example.

Example10. java

class Age {
public double a = 0;

96 | Object-Oriented Programming

Age (double _a) {

}
Age (int year, int month) {
a = year + (double) month / 12;
3
public double getAge () {

return a;

class Examplel0 {
public static void main(String[] args) {
Age agel = new Age(12.5);
Age age2 = new Age(9, 3);
System.out.println(agel.getAge());
System.out.println(age2.getAge());

3

In this case, as a way to show the functionality, instead of instantiating a single object
and calling the different methods to modify its variables, we had to create two different
objects, age1 and age2, with one or two parameters, as those are the possible options
offered by the constructors available in the Age class.

Recursion

Programming languages allow the usage of certain mechanisms to simplify solving a
problem. Recursion is one of those mechanisms. It is the ability of a method to call
itself. When properly designed, a recursive method can simplify the way a solution to a
certain problem is expressed using code.

Recursion | 97

Classic examples in recursion include the computation of the factorial of a number or
the sorting of an array of numbers. For the sake of simplicity, we are going to look at the
first case: finding the factorial of a number.

Examplel1.java

class Examplell {

public static long fact (int n) {
if (n==1) return 1;
return n * fact (n - 1);

}

public static void main(String[] args) {
int input = Integer.parselnt(args[0]);
long factorial = fact (input);
System.out.println(factorial);

b

To run this code, you will need to go to the terminal and call the example from there
with java Example11 m, where m is the integer whose factorial will be calculated.
Depending on where you created the project on your computer, it could look like this
(note that we have shortened the path to the example to keep it clean):

usr@localhost:~/IdeaProjects/chapter@3/[... Jproduction/Examplel11$ java
Examplell 5

120
Or, it could look like this:

usr@localhost:~/IdeaProjects/chapter@3/[. .. Jproduction/Examplel11$ java
Examplell 3

6
The result of the call is the factorial: 120 is the factorial of 5, and 6 is the factorial of 3.

While it might not seem so intuitive at first sight, the fact method calls itself in the
return line. Let's take a closer look at this:

public static long fact (int n) {
if (n==1) return 1;

return n * fact (n -1);

98 | Object-Oriented Programming

There are a couple of conditions that you need to meet when designing a functional
recursive method. Otherwise, the recursive method will not converge to anything:

1. There needs to be a base condition. This means you need something that will stop
the recursion from happening. In the case of the fact method, the base condition
is n being equal to 1:

if (n==1) return 1;

2. There needs to be a way to computationally reach the base condition after a
certain number of steps. In our case, every time we call fact, we do it with a
parameter that is one unit smaller than the parameter of the current call to the
method:

return n * fact (n - 1);

Annotations

Annotations are a special type of metadata that can be added to your code to inform the
compiler about relevant aspects of it. Annotations can be used during the declaration

of classes, fields, methods, variables, and parameters. One interesting aspect of
annotations is that they remain visible inside classes, indicating whether a method is an
override to a different one from a parent class, for example.

Annotations are declared using the @ symbol followed by the annotation’'s name. There
are some built-in annotations, but it is also possible to declare your own. At this point,
it is important to focus on some of the built-in ones, as it will help you to understand
some of the concepts presented so far in this chapter

The most relevant built-in annotations are @override, @eprecated, and
@SuppressWarnings. These three commands inform the compiler about different aspects
of the code or the process of producing it.

eoverride is used to indicate that a method defined in a child class is an override of
another one in a parent class. It will check whether the parent class has a method
named the same as the one in the child class and will provoke a compilation error

if it doesn't exist. The use of this annotation is displayed in the following example,
which builds on the code we showcased earlier in the chapter about the Tablet class
extending the Computer class.

Example12. java

class Computer {
public void whatIsIt() {
System.out.println("it is a PC");

Annotations | 99

class Tablet extends Computer {
@Override
public void whatIsIt() {
System.out.println("it is a tablet");

class Examplel2 {
public static void main(String[] args) {
Tablet myTab = new Tablet();
myTab.whatIsIt();

b

@Deprecated indicates that the method is about to become obsolete. This typically
means that it will be removed in a future version of the class. As Java is a living language,
it is common for core classes to be revised and new methods to be produced, and for
the functionality of others to cease being relevant and get deprecated. The following
example revisits the previous code listing, if the maintainer of the Computer class has
decided to rename the whatIsIt() method getDeviceType().

Example13. java

class Computer {
@eprecated
public void whatIsIt() {
System.out.println("it is a PC");
}
public void getDeviceType() {
System.out.println("it is a PC");

100 | Object-Oriented Programming

class Tablet extends Computer {
@Override
public void whatIsIt() {
System.out.println("it is a tablet");

class Examplel3 {
public static void main(String[] args) {
Tablet myTab = new Tablet();
myTab.whatIsIt();

b

Calling the compilation of the previous example will issue a warning about the fact that
the whatIsIt() method will soon be no longer used. This should help developers plan
their programs, as they'll know that some methods may disappear in the future:

Warning: (13, 17) java: whatIsIt() in Computer has been deprecated

@SuppressWarnings makes the compiler hide the possible warnings that will be defined
in the annotation's parameters. It should be mentioned that annotations can have
parameters such as overrides, deprecation, divzero, and all. There are more types of
warnings that can be hidden, but it is too early to introduce them. While we are not
going to go deeper into this concept at this point, you can see an example of this in the
following code listing.

Example14. java

class Computer {
@eprecated
public void whatIsIt() {
System.out.println("it is a PC");

Annotations | 101

public void getDeviceType() {
System.out.println("it is a PC");

@SuppressWarnings("deprecation")
class Tablet extends Computer {
@verride
public void whatIsIt() {
System.out.println("it is a tablet");

class Examplel14 {
public static void main(String[] args) {
Tablet myTab = new Tablet();
myTab.whatIsIt();

}

When calling the compilation of the latest example, you will see a difference in
comparison to the previous one, as the compilation of this one will not produce any
warnings regarding the deprecation of the whatIsIt() method.

Note

You should be careful when using @SuppressWarnings as it can hide risks
derived from potential malfunctions of your code. Especially avoid using @
SuppressWarnings("all"), as it could mask warnings that could be producing
runtime errors in other parts of your code.

102 | Object-Oriented Programming

Interfaces

Interfaces are reference types in Java. As such, they define the skeleton of classes

and objects but without including the actual functionality of methods. Classes
implement interfaces but do not extend them. Let's look at an example of a simple
interface, further developing the idea of building classes to represent different types of
computers.

Examplel5. java

interface Computer {
public String getDeviceType();
public String getSpeed();

class Tablet implements Computer {
public String getDeviceType() {
return "it is a tablet";
}
public String getSpeed() {

return "1GHz";

class Examplel5 {
public static void main(String[] args) {
Tablet myTab = new Tablet();
System.out.println(myTab.getDeviceType());
System.out.println(myTab.getSpeed());

Inner Classes | 103

As you might have guessed, the output for this example is:
it is a tablet
1GHz

Process finished with exit code ©

Some relevant notes on interfaces follow:
¢ Interfaces can extend other interfaces.

» Unlike classes, which can only extend one class at a time, interfaces can extend
multiple interfaces at once. You do so by adding the different interfaces separated
by commas.

¢ Interfaces have no constructors.

Inner Classes

Classes, as we have seen so far, cannot be hidden to other parts of the program. In
code terms, they cannot be made private. To offer this kind of security mechanism, Java
developed so-called inner classes. This type of class is declared nested within other
classes. A quick example of this follows:

Examplel16. java

class Container {
// inner class
private class Continent {
public void print() {

System.out.println("This is an inner class");

// method to give access to the private inner class' method
void printContinent() {
Continent continent = new Continent();

continent.print();

104 | Object-Oriented Programming

class Examplel16 {
public static void main(String[] args) {
Container container = new Container();

container.printContinent();

}

The result of the previous example is:

This is an inner class

Process finished with exit code ©

The previous example is a case of a non-static inner class. There are two more:
method-local inner classes (these are defined inside a method) and anonymous classes.
There is no big difference in how method-local classes are declared in comparison

to what you've seen so far. A method-local inner class's main characteristic is that it

is defined only for the scope of that method; it cannot be called by other parts of the
program.

When it comes to anonymous inner classes, they make for an interesting case that
deserves to be studied. The reason for their existence is to make code more concise.
With anonymous classes, you declare and instantiate the class at the same time. This
means that for such a class, only one object is created. Anonymous classes are typically
created by extending existing classes or interfaces. Let's look at an example defining
one of these specific types of anonymous classes:

Examplel7.java

class Container {
int ¢ = 17;
public void print() {

System.out.println("This is an outer class");

}
class Examplel7 {

Documenting with JavaDoc | 105

public static void main(String[] args) {
// inner class
Container container = new Container() {
@0verride
public void print() {

System.out.println("This is an inner class");

1
container.print();

System.out.println(container.c);

}

This example shows how an anonymous class can be created in an ad hoc way to
override a single method from the original class. This is one of the many possible
applications of this type of inner class. The output of this program is:

This is an inner class

17

Process finished with exit code ©

Documenting with JavaDoc

Javadoc is a tool that comes with the JDK that can be used to generate documentation
of classes directly from properly commented code. It requires the use of a specific

type of commenting that is different from the ones seen in Chapter 01, Getting Started.
There, we saw that comments can be added to code using either // or /* or */. JavaDoc
uses a specific type of marking to detect what comments were intentionally made

for documentation purposes. Javadoc comments are contained within /** and */. A
simple example follows.

Example18. java

/**
* Anonymous class example
* This example shows the declaration of an inner class extending

* an existing class and overriding a method. It can be used as a

106 | Object-Oriented Programming

>*

technique to modify an existing method for something more suitable

* to our purpose.

*

@author Joe Smith
* @version 0.1

@since 20190305

*

*/
class Container {
int ¢ = 17;
public void print() {

System.out.println("This is an outer class");

}
public class Example18 {
public static void main(String[] args) {
// inner class
Container container = new Container() {
@verride
public void print() {

System.out.println("This is an inner class");

}s
container.print();

System.out.println(container.c);

Note

If you are going to generate documentation from a class, you need to make sure
the class is public, otherwise, the JavaDoc generator will complain about the fact
that it makes no sense to document classes that aren't public.

Documenting with JavaDoc | 107

The new comments include information about the program itself. It is good practice

to explain, in some detail, what the program does. Sometimes, it may be convenient

to even add blocks of code. In order to support that extra information, there are tags
that allow the addition of specific features or metadata to the documentation. @author,
@version, and @since are examples of such metadata - they determine who made the
code, the version of the code, and when it was first created, respectively. There is a long
list of possible tags that you can use; visit https: //docs.oracle.com /javase /8 /docs/
technotes/tools /unix /javadoc.html#CHDBEFIF for more information.

JavaDoc renders the documentation as one or more HTML files. Therefore, it is possible
to also add HTML markup to help messages. You could change the documentation part
of the previous example as follows:

/**

* <H1>Anonymous class example</H1>

* This example shows the declaration of an inner class extending
* an existing class and overriding a method. It can be used as a

* technique to modify an existing method for something more suitable

* to our purpose.

* @author Joe Smith
* @version 0.1

* @since 20190305
*/

https://docs.oracle.com/javase/8/docs/technotes/tools/unix/javadoc.html#CHDBEFIF
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/javadoc.html#CHDBEFIF

108 | Object-Oriented Programming

Finally, you can create the documentation file by selecting Tools | Generate JavaDoc
from the menu:

Example18 [~/IdeaProjects/ch03/Example18] -../src/Example 18.java [Example18] - IntelliJ IDEA
File Edit View Navigate Code Analyze Refactor Build Run BE[IEN VCS Window Help

= Example18 src € Example18.java Tasks & Contexts » Main v b & G Q
= Project ¥ €3 = & — & Example18.java GeneratJaano m
E o : 1 e Save Project as Template... 7=z
a .Exa{mple18 ~/ldeaProjects/q 2 “ <HI>Anonymous ~ Manage Project Templates... %

-idea 3 ¥ This example IDE Scripting Console ner class extending =
I} src 4 * an existing ¢ zan be used as a
5 & Example18.iava 5 * technique to Create Command-line Launcher... 2thing more suitable i’:
= P X s 0 : Lo our purpos create Desktop Entry... s
iy = Example18.iml / ©
L] Il External Libraries 8 “ @author Joe ¢ JShell Console... =
9 * i
N . @rersion 0.1 & Grogyy Console...
© Scratches and Consoles 10 @since 201903 .
11 *f K Kotlin »
12 e class Container {
13 int ¢ = 17;
14 @] public void print() {
15 System.out.println("This is an outer class");
16
17 }
18 » public class Examplel8 {
19 p public static veid main(String[] args) {
20 // inner class
" Container container = new Container() {
] @0verride
5 public void print() {
E System.out.println("This is an inner class");
&
* }i
container.print();
° System.out.println(container.c);
E }
] }
A
~
- Example18
B4 Terminal P 4:Run i= 6: TODO () Event Log
[Z Run the JavaDoc tool 18:8 LF: UTF-8 ¢+ 4spaces : m &

Figure 3.9: Generating JavaDoc

Documenting with JavaDoc | 109

The JavaDoc generation dialog box will pop up and give you some options. Make sure
that you insert the folder where you want the documentation file to be stored (/tmp in
the example) and tick the checkboxes for the @author and the @version:

File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help

% Example18 src € Example18.java B A\ Main v | > & G Q
£ Project ~ & = 2% — & Example18java m
5 » Example18 /** ®® Sspecify Generate JavaDoc Scope v|
&) i * <H1>Anonymol §

idea “ This exampli Generate JavaDoc scope
= " i
] src an existing .
5 N . “ technique t @ Whole project *
a € Example18.java * to our purpl o~ S
= . . () Custom scope =
= = Example18.iml . hor I ©
. : @author Joe =
|l External Libraries “ @version .| Include test soutces i =5
o Scratches and Consoles « @since 2019| [] Include JDK and library sources in -sourcepath
¥/
e| class Containe
int ¢ = 17 gytpyt directory: Jtmp
8 public voii
) Systey private Generate hierarchy tree [| @use
} sadeEe Generate navigation bar @author
> public c?ass E Generate index @version
4 puhl;; jﬁ: protected Separate index per letter @deprecated
i .
" Contail public deprecated list
b} @0
5 sl pul Locale:
N i } other command line arguments:
g H
tai 5 g
. gggt:;l Maximum heap size (Mb):
3 } ’ Open generated documentation in browser
=
a
& m Cancel Help
- Container
™ Terminal » 4:Run = 6: TODO () Event Log
] 3:13 LF+ UTF8 4 4spaces* m &

Figure 3.10: Specifying the scope for the JavaDoc

110 | Object-Oriented Programming

This will generate an HTML file that is formatted in the same way that official Java
documentation is:

Generated Documentation (Untitled) - Google Chrome

[@ Generated Documentat

(€M © Archivo | File:///tmp/index.html

All Classes

PACKAGE TREE DEPRECATED INDEX HELP
Examplel8

PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Class Examplel8
java.lang.Object
Examplel8

public class Examplel8
extends java.lang.0Object

Constructor Summary

Constructors
Constructor and Description

Examplel8()

Method Summary -

Figure 3.11: The generated JavaDoc

Activity 2: Adding Documentation to WordTool
Create documentation for the class created in Exercise 01.

1. Make sure you document each one of the examples and add enough metadata for
people to know how to handle the different methods.

2. Export the resulting documentation file.

Note

The solution for this activity can be found on page 823.

Summary | 111

Summary

This chapter introduced you to the core of object-oriented programming: the ability to
create classes and do operations with them, such as extend them, override parts of the
code, or create local instances of classes on the fly (also called inner classes).

The examples we looked at showed you the importance of creating classes to structure
your code better and improve how economical your code is. If there are several classes
within a specific context, it is very likely that they will have common characteristics
that could be described in a parent class or even an interface.

A part of the chapter was dedicated to operations done with the compiler. As a
developer, you may want to inform others about when certain parts of your code will be
deprecated, or whether a method from a specific class has been overridden. Annotating
code is a good technique for keeping some level of communication with others. You also
saw how to turn off possible warnings coming from annotations, as they may bother
you during development.

Finally, the process of documentation was presented. This is relevant when sharing
code or passing it over to other people.

Collections, Lists, and
Java's Built-In APIs

Learning Objectives

By the end of this chapter, you will be able to:
+ Explain the structure of the built-in Collections API
+ Perform standard operations on data stored in sets, lists, and maps
+ Explain the benefits of using the Java collections framework

+ Populate lists from arrays and examine the relationship between lists and arrays

This chapter introduces you to the powerful Java collections framework, which is used to store,
sort, and filter data.

114 | Collections, Lists, and Java's Built-In APIs

Introduction

Java comes with a built-in Collections API, allowing you to manipulate data structures
with very little effort. A collection is an object that contains multiple elements.
Collections are used to store, share, process, and communicate aggregated data. We
call this system the Java collections framework.

As part of this framework, there are different components that are used to optimize our
interaction with the actual data:

* Interfaces: Abstract data types that represent collections
* Implementations: Specific implementations of the collection interfaces

* Algorithms: Polymorphic methods used to process the data within a collection for
operations such as sorting and searching

Note

Other programming languages have their own collection frameworks. For example,
C++ has the Standard Template Library (STL). Java boasts simplicity when it
comes to its collection framework.

Using the collections framework has many benefits, including a reduction in the
complexity of creating programs that deal with data structures, an increase in the
performance of programs, a reduction in the effort required for developers to get
started with using or creating APIs, and an increase in the reuse of functioning
software.

The collections framework is relevant even when handling data that can be accessed
not just by a single process but by several processes simultaneously, as would be the
case in multithreaded programming scenarios. However, it is not the intention of this
chapter to deal with concurrent programming.

The Collections API comes with five main interfaces:
* Set: A collection that contains no duplicates
* List: An ordered collection or sequence, allowing for duplicates

* Queue: A collection that sorts data in the order of its arrival, typically handled as a
First In First Out (FIFO) process

* Deque: Essentially a queue that allows for data insertion at both ends - can be
handled both as FIFO and Last In First Out (LIFO)

* Map: Relates keys - which must be unique - to values

Arrays | 115

In this chapter, we will look at the definition of, and examples of uses for, the main
interfaces: lists, sets, and maps. The framework has even more interfaces than the ones
listed previously, but the others are either just variations of those listed or are outside
the scope of this chapter. Furthermore, we will look at how arrays work in much more
depth than we have previously.

The definition of a simple collection - in this case, a specific type of set would be as
follows:

Set mySet = new HashSet();

Note

The different available classes for sets, lists, queues, deques, and maps are named
after the interfaces. The different classes present different properties, as we will
see later in the chapter.

Arrays

Arrays are part of the collections framework. There are some static methods that can
be used to manipulate arrays. The operations you can perform are creating, sorting,
searching, comparing, streaming, and transforming arrays. You were introduced to
arrays in Chapter 2, Learning the Basics, where you saw how they can be used to store
data of the same type. The declaration of an array is quite straightforward. Let's see
what an array of strings would look like:

String[] text = new String[] { "spam", "more", "buy" };
Running operations on an array is as easy as calling some of the methods contained in

the java.util.Arrays package. For example, sorting the previous array would require
calling the following:

java.util.Arrays.sort(text);
The methods dedicated to handling arrays include one method that could be used to

print out full arrays as if they were strings. This can be very handy when debugging a
program:

System.out.println(java.util.Arrays.toString(text));
This will print the arrays and display each element separated by commas and within

square brackets, []. If you executed the previous command after sorting the declared
array of strings, the outcome would be:

[buy, more, spam]

116 | Collections, Lists, and Java's Built-In APIs

As you can see, the array has been sorted in ascending alphabetical order. There is a
difference between that way of printing out an array and using a for loop to iterate
throughout an array:

for (int i = 0; i < text.length; i++)
System.out.print(text[i] + " ");
This would give the following as the result:
buy more spam
If you want to write your code in a slightly cleaner way, you could import the whole
java.util.Arrays API at the beginning of your program, which would allow you to call

the methods by omitting the java.util part of the command. See the following example
highlighting this technique:

Example@1. java

import java.util.Arrays;

public class Example@1 {
public static void main(String[] args) {
String[] text = new String[] { "spam", "more", "buy" };

Arrays.sort(text);

System.out.println(Arrays.toString(text));

for (int i = 0; i < text.length; i++)
System.out.print(text[i] + " ");

3
The outcome will be:

[buy, more, spam]
buy more spam

Process finished with exit code ©

Arrays | 117

If you were to make a new array that you wanted to be filled up with the same data for
all cells, there is the possibility of calling the java.util.Arrays.fill() method, as shown
here:

int[] numbers = new int[5];

Arrays.fill(numbers, 0);
Such a command would create an array filled with zeros:

[0, 9, 0, 0, 0]
Creating arrays with prefilled data can also be done with a copy of a preexisting array.
It is possible to create an array by copying part of one array, or by instantiating a larger

one where the old one would just be part of it. Both methods are shown in the following
example, which you can test in your editor:

Example@2. java

import java.util.Arrays;

public class Example@2 {
public static void main(String[] args) {
int[] numbers = new int[5];
Arrays.fill(numbers, 1);
System.out.println(Arrays.toString(numbers));

int [] shortNumbers = Arrays.copyOfRange(numbers, 0, 2);
System.out.println(Arrays.toString(shortNumbers));

int [J] longNumbers = Arrays.copyOf(numbers, 10);
System.out.println(Arrays.toString(longNumbers));

118 | Collections, Lists, and Java's Built-In APIs

This example will print the numbers, shortNumbers (which is shorter), and longNumbers
(which is longer) arrays. The newly added positions in the array will be filled with zeros.
If it was an array of strings, they would be filled up with null. The outcome of this
example is:

£, 1, 1,1, 1]
(1, 11
1, 1, 1,1, 1, 0, 0, 0, 0, 0]

Process finished with exit code ©

You can compare arrays by calling the java.utils.Arrays.equals() or java.util.Arrays.
deepEquals() methods. The difference between them is that the latter can look through
nested arrays. A simple comparison example of the former method in use follows:

Example@3. java

import java.util.Arrays;

public class Example@3 {
public static void main(String[] args) {
int[] numbersl = new int[3];

Arrays.fill(numbers1, 1);

int[] numbers2 = {0, 0, 0};
boolean comparison = Arrays.equals(numbersl, numbers2);

System.out.println(comparison);

int[] numbers3 = {1, 1, 1};

comparison = Arrays.equals(numbersl, numbers3);

Arrays | 119

System.out.println(comparison);

int[] numbers4 = {1, 1%};
comparison = Arrays.equals(numbers1, numbers4);

System.out.println(comparison);

3

In this example, we create four arrays: numbers1, numbers2, numbers3, and numbers4. Only
two of them are the same, containing three instances of 1. In the example, you can see
how the last three arrays are compared to the first one. You can also see how the last
array differs not in content, but in size. The outcome of this code is:

false
true

false

Process finished with exit code ©

Note

Since this chapter is not looking into such a complex data structure as nested
arrays, we will not show an example of java.util.Arrays.deepEquals(). If you're
interested, you should consider checking the Java reference at https://docs.oracle.
com/javase/8/docs/api/java/util/Arrays.html#deepEquals-java.lang.Object:A-java.

lang.Object:A-.

https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html#deepEquals-java.lang.Object:A-java.lang.Object:A-
https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html#deepEquals-java.lang.Object:A-java.lang.Object:A-
https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html#deepEquals-java.lang.Object:A-java.lang.Object:A-

120 | Collections, Lists, and Java's Built-In APIs

Searching within arrays is done through different algorithms behind the scenes. It is
obviously a lot faster to perform searches on sorted arrays than on unsorted ones. The
method to be invoked to run such a search on a sorted array is Arrays.binarySearch().
As it has many possible parameter combinations, it is recommended to visit the official
documentation for the method. The following example illustrates how it works:

Example04. java

import java.util.Arrays;

public class Example@4 {
public static void main(String[] args) {
String[] text = {"love","is", "in", "the", "air"};
int search = Arrays.binarySearch(text, "is");

System.out.println(search);

}

This code is going to search for the word the inside the array text. The result is:
-4

Process finished with exit code ©

This is wrong! binarySearch is an optimized search algorithm within the collections
framework, but it is not optimal when used with unsorted arrays. This means

that binarySearch is mainly very useful for determining whether an object can be
found within an array (by sorting it first). At the same time, we will need a different
algorithm when we must search through unsorted arrays and when there are multiple
occurrences of a value.

Arrays | 121

Try the following modification of the previous example:

String[] text = {"love","is", "in", "the", "air"};

Arrays.sort(text);

int search = Arrays.binarySearch(text, "is");

System.out.println(search);

The outcome, since the array is sorted, will be:
2

Process finished with exit code ©

It is only a coincidence in this case that "is" happens to be in the same place in the
unsorted and the sorted versions of the array. Making use of the tools you've been
learning about, it should be possible for you to create an algorithm that can iterate
throughout an array and count all the existing items, even if they are repeated, as
well as locating their positions within the array. See Activity 1, Searching for Multiple
Occurrences in an Array in this chapter, where we challenge you to write such a
program.

You can also transform objects of the java.util.Arrays class into strings with the
Arrays.toString() method, as we saw at the beginning of this section, into a list with
Arrays.asList() (we will see this in a later section, as well as in Example5) or into a set
with Arrays.setAll().

Arrays and collections play important roles in software development. This section of
the chapter dives into the differences between them as well as how they can be used
together. If you search the internet for the relationship between these two constructs,
most references you find will be focused on the differences, such as:

 Arrays have fixed sizes, while collections have variable sizes.

* Arrays can hold objects of any kind, but also primitives; collections cannot contain
primitives.

* Arrays will hold homogeneous elements (elements that are all the same nature),
while collections can hold heterogeneous elements.

* Arrays have no underlying data structure, while collections are implemented using
standard structures.

122 | Collections, Lists, and Java's Built-In APIs

If you know the amount of data you are going to be dealing with, arrays are the
preferred tool, mainly because arrays perform better than lists or sets in such cases.
However, there will be countless occasions when you don't know the amount of data
you will be dealing with, which is where lists will be handy.

Also, arrays can be used to programmatically populate collections. We will be doing this
throughout this chapter as a way of saving you the time of having to manually type all
the data that will end up inside a collection, for example. The following example shows
how to populate a set using an array:

Example®5. java

import java.util.x;

public class Example@5 {
public static void main(String[] args) {
Integer[] myArray = new Integer[] {3, 25, 2, 79, 2};

Set mySet = new HashSet(Arrays.asList(myArray));

System.out.println(mySet);

3
In this program, there is an array of Integer used to initialize an object of the HashSet
class, which is later printed out.

The outcome of this example is:
[2, 3, 25, 79]

Process finished with exit code ©

The previous code listing shows a couple of interesting things. First of all, you will
notice that the output to the program is sorted; that is because the conversion of the
array to a list using Arrays.asList() will make the dataset inherit the properties of a list,
which means that it will be sorted. Also, since the data has been added to a set and sets
do not include duplicates, duplicate number two is left out.

Arrays | 123

It is important to note that with collections, you can specify the type to be stored. As
such, there would be a difference between the declaration in the previous example,
where we displayed a generic declaration, and what follows. The type is declared here
using the name given within angle brackets, <>. In this case, it is <Integer>. You could
rewrite the instantiation of the object as follows:

Set<Integer> mySet = new HashSet<Integer>(Arrays.asList(myArray));

You will see that the result of executing the program will be the same.

Activity 1: Searching for Multiple Occurrences in an Array

Write a program that will search for multiple occurrences of a certain word in an array
of strings, where each one of the objects is a single word. Use the following array, a
famous quote by Frank Zappa, as a point of departure:

String[] text = {"So", "many", "books", "so", "little", "time"};

The word to search for is so. but you will have to consider that it shows up twice
and that one instance is not in lowercase. As a hint, the method to compare

two strings without looking at the specific casing of any of the letters in them is
text1.compareToIgnoreCase(text2). To do so, perform the following steps:

1. Create the text array.
Create the variable that contains the word to be searched for: so

Initialize the variable occurrence to -1.

L

Create a for loop to iterate through the array to check for the occurrence.

That will give the following result:
Found query at: 0
Found query at: 3

Process finished with exit code ©

Note

The solution for this activity can be found on page 827.

124 | Collections, Lists, and Java's Built-In APIs

Sets

Sets within the collections framework are the programmatic equivalent of mathematical
sets. This means that they can store objects of a specific type while avoiding duplicates.
In the same way, sets offer methods that will let you handle data as you would in
mathematics. You can add objects to a set, check whether a set is empty, combine

the elements of two sets to add all their elements into a single set, see what objects
coincide with each other between two sets, and calculate the difference between two
sets.

In the java.util.Sets class, we find three interfaces used to represent sets: HashSet,
TreeSet, and LinkedHashSet. The differences between them are straightforward:

* HashSet will store data without guaranteeing the order of iteration.

* TreeSet orders a set by value.

* LinkedHashSet orders a set by arrival time.
Each of these interfaces is meant to be used under specific circumstances. Let's look at
a couple of examples of sets, departing from the one in Example05, and look at how we
can add other methods to check how to operate sets. The first step is populating a set

from an array. There are several methods for doing so; let's use the one that is probably
the quickest to implement:

Example06. java

import java.util.=*;
public class Example@6 {
public static void main(String[] args) {
String[] myArray = new String[] {"3", "25", "2", "79", "2"};
Set mySet = new HashSet();

Collections.addAll(mySet, myArray);

System.out.println(mySet);

Sets | 125

The above line of code shows how to add all the elements of the array to the set; when
printing the results, we get:

2, 79, 3, 25]

Process finished with exit code ©

Please note that the order of the resulting print may vary for you. As explained earlier,
HashSet, because of the way it is implemented, cannot guarantee any sorting of the
content. If you performed the following example using Integer instead of String for the
data, it would end up being sorted:

Example@7. java

import java.util.x;
public class Example@d7 {
public static void main(String[] args) {
Integer[] myArray = new Integer[] {3, 25, 2, 79, 23};
Set mySet = new HashSet();

Collections.addAll(mySet, myArray);

System.out.println(mySet);

}

The result of this program is:
(2, 3, 25, 79]

Process finished with exit code ©

126 | Collections, Lists, and Java's Built-In APIs

This means that the results end up being sorted, even if we don't request it.

Note

The fact that the set in this example is sorted is a mere coincidence. Please be
aware that this may not be the case in other situations. Example@8 will show the
union operation between two sets, and there the data will not be sorted.

Working with sets involves working with packages of data and performing operations
with them. The union operation for two sets is displayed in the following example:

Example@8. java

import java.util.x;
public class Example0d8 {
public static void main(String[] args) {
Integer[] numbersl = new Integer[] {3, 25, 2, 79, 2};

Integer[] numbers2 = new Integer[] {7, 12, 14, 793};

Set setl = new HashSet();
Collections.addAll(set1, numbers?l);

Set set2 = new HashSet();
Collections.addAll(set2, numbers2);

set1.addAll(set2);

System.out.println(set1);

Sets | 127

This program will print, as its output, the resulting set from the union of the two sets
described by the two arrays at the beginning of the main method of the example:

[2, 3, 7, 25, 12, 14, 79]

Process finished with exit code 0
Besides HashSet, we also find TreeSet, and here is where data will be sorted by value.
Let's simply change the types of the sets in the previous example and see the result:
Set setl = new TreeSet();
Collections.addAll(setl1, numbers1);

Set set2 = new TreeSet();
Collections.addAll(set2, numbers2);

This, when changed in the previous example, will give the following sorted set as a
result:

[2, 3, 7, 12, 14, 25, 79]

You might be wondering about the pros and cons of using each type of set. When
sorting, you are trading speed for tidiness. Therefore, if you are working with large sets
of data and speed is a concern, you will have to decide whether it is more convenient
to have the system operate faster, or have the results sorted, which would allow faster
binary searches through the dataset.

Given this last modification, we could perform other operations with the data, such as
the intersection operation, which is invoked with the set1.retainAll(set2) method.
Let's see it in action:

Example@9. java

import java.util.x;

public class Example@9 {
public static void main(String[] args) {
Integer[] numbersl = new Integer[] {3, 25, 2, 79, 2};
Integer[] numbers2 = new Integer[] {7, 12, 14, 793};

128 | Collections, Lists, and Java's Built-In APIs

Set setl = new TreeSet();
Collections.addAll(set1, numbersi);

Set set2 = new TreeSet();
Collections.addAll(set2, numbers2);

setl.retainAll(set2);

System.out.println(set1);

3

For the output, given that the arrays are used to populate the arrays, we will get only
those numbers that exist in both arrays; in this case, it is just the number 79:

[791]

Process finished with exit code ©

The third type of set, LinkedHashSet, will sort the objects in order of their arrival. To
demonstrate this behavior, let's make a program that will add elements to the set one by
one using the set.add(element) command.

Example10. java

import java.util.=*;

public class Examplel@ {
public static void main(String[] args) {
Set setl = new LinkedHashSet();

set1.add(35);
set1.add(19);
setl.add(11);

Sets | 129

set1.add(83);
set1.add(7);

System.out.println(set1);

3

When running this example, the result will be sorted by the way the data arrived in the
set:

[35, 19, 11, 83, 7]

Process finished with exit code ©

For the sake of experimentation, use the next 2 minutes to chalk out the set
construction into HashSet once more:

Set setl = new LinkedHashSet();

The result of this modified program is uncertain. For example, I got:
[35, 19, 83, 7, 111

Process finished with exit code @
This is, again, an unsorted version of the same set of data.

To close our explanation of the possible methods that you can use with sets, let's use
LinkedHashSet to run an experiment where we will find the difference between two sets.

Examplel1.java

import java.util.=*;

public class Examplell {
public static void main(String[] args) {
Set setl = new LinkedHashSet();

set1.add(35);
setl.add(19);
setl.add(11);

130 | Collections, Lists, and Java's Built-In APIs

set1.add(83);
setl.add(7);

Set set2 = new LinkedHashSet();

set2.add(3);
set2.add(19);
set2.add(11);
set2.add(0);
set2.add(7);

setl.removeAll(set2);

System.out.println(set1);

3

In this case, both sets are slightly different, and by determining the difference, the
algorithm behind set1.removeAll(set2) will look for the occurrences of each item in
set2 within set1 and eliminate them. The result of this program is:

[35, 83]

Process finished with exit code ©

Finally, if you just want to check whether the whole of a set is contained within another
set, you can call the set1.containsAll(set2) method. We'll leave that for you to explore
- just be aware that the method simply responds with a Boolean stating whether the
statement is true or false.

Lists

Lists are ordered collections of data. Unlike sets, lists can have repeated data. Having
data contained within lists allows you to perform searches that will give the locations
of certain objects within a given list. Given a position, it is possible to directly access an
item in a list, add new items, remove items, and even add full lists. Lists are sequential,
which makes them easy to navigate using iterators, a feature that will be explored in full
in a later section in the chapter. There are also some methods for performing range-
based operations on sublists.

Lists | 131

There are two different list implementations: ArrayList and LinkedList. Each of them is
ideal depending on the circumstances. Here, we will work with ArrayList mainly. Let's
start by creating and populating an instance, then search for a certain value, and given
its location within the list, we'll print out the value.

Examplel12. java

import java.util.x;

public class Examplel12 {
public static void main(String[] args) {
List list = new ArraylList();

list.add(35);
list.add(19);
list.add(11);
list.add(83);
list.add(7);

System.out.println(list);

int index = list.index0f(19);

System.out.println("Find 19 at: + index);

System.out.println("Component: " + list.get(index));

}

The output of this example is:
[35, 19, 11, 83, 7]
Find 19 at: 1

Component: 19

Process finished with exit code ©

132 | Collections, Lists, and Java's Built-In APIs

The index0f method informs you about the location of an object passed to the method
as a parameter. It's sibling method, 1astIndex0f, reports the location of the last
occurrence of an object in the list.

You should look at a list as a series of nodes connected by links. If one of the nodes is
eliminated, the link that used to point to it will be redirected to the following item in the
list. When adding nodes, they will be attached by default at the end of the list (if they
are not duplicated). As all the nodes in the collection are of the same type, it should be
possible to exchange the locations of two nodes in a list.

Let's experiment with removing an item from a list and ascertaining the locations for
objects located immediately before and after the removed item:

Example13. java

import java.util.*;

public class Examplel3 {
public static void main(String[] args) {
List list = new ArraylList();

list.add(35);
list.add(19);
list.add(11);
list.add(83);
list.add(7);

System.out.println(list);
int index = list.lastIndexOf(83);

System.out.println("Before: find 83 at: " + index);

list.remove(index - 1);

Lists | 133

System.out.println(list);
index = list.lastIndex0f(83);
System.out.println("After: find 83 at: " + index);

3

This program creates a list, prints it out, looks for a node in the list, and prints its
location. Then, it removes an item in the list and repeats the previous process to show
that the node has been removed from the list. This is a clear difference from the case
with arrays, where it is not possible to remove items from them, and thus it is not
possible to change their size. Observe the output of the previous example:

[35, 19, 11, 83, 7]
Before: find 83 at: 3
[35, 19, 83, 7]
After: find 83 at: 2

Process finished with exit code ©

It is also possible to change the content of a node. In the previous example, instead
of removing a node, change list.remove(index-1); to the following and check the
outcome:

list.set(index - 1, 99);
The final array will have substituted 11 for 99.

If instead of deleting one node, you wanted to empty the whole list, the command to
the issue would be:

list.clear();

134 | Collections, Lists, and Java's Built-In APIs

Using subList(), an operator that generates lists from lists, it is possible to, for example,
delete a range of cells within a list. See the following example, which deletes part of a
string array, changing its meaning when printing it:

Examplel14.java

import java.util.=*;

public class Examplel4 {
public static void main(String[] args) {
List list = new ArrayList();

list.add("No");
list.add("matter");
list.add("what");
list.add("you");
list.add("do");

System.out.println(list);

list.subList(2,4).clear();

System.out.println(list);

3

Look at the following result:
[No, matter, what, you, do]
[No, matter, do]

Process finished with exit code ©

Lists | 135

The 1ist object has been modified by running the example code so that it becomes
shorter. The two index numbers used in the subList() method is the places in the list
where the method starts and stops. The result of subList() can also be assigned to a
different variable of the same List type, resulting in a reduced copy of the list in the
code, after performing the subList() operation.

Look at the following modification in the latest code listing:
List list1l = list.subList(2,4);
System.out.println(list1);

This will print out the list that was made of the nodes that were deleted in the previous
example.

There are a lot of interesting algorithms within the collections framework that offers
relevant functionality for operating with lists:

e sort: Put the elements of a list in a certain order.
» shuffle: Randomize the locations of all objects in a list.
* reverse: Invert the order of a list.

* rotate: Move objects to the end of a list, and when they reach the end, have them
show up at the other end.

* swap: Swap two elements with one another.

* replaceAll: Replace all occurrences of an element in a list using a parameter.
» fill: Fill the content of a list with one value.

e copy: Make more instances of a list.

* binarySearch: Perform optimized searches within a list.

* indexOfSubList: Search for the occurrence of a piece (a set of consecutive nodes)
of a list.

* lastIndexOfSubList: Search for the last occurrence of a piece of a list.

Note

Lists generated from arrays using Arrays.asList() do not behave in the same
way as the objects of the List class described in this section. The lists coming
from arrays have a fixed length, which means that elements cannot be removed
from the array. The reason for this is that java.util.Arrays implement its own
ArraylList class inside the package, one that is different from the one in the
collections framework. Confusing, isn't it?

136 | Collections, Lists, and Java's Built-In APIs

Exercise 1: Creating the Analyzelnput Application

In this exercise, we will create a new application that will respond to the CLI by storing
whatever strings are provided to it, then run some statistical operations on the data,
such as word counting, determining the most frequent word or the most frequent
letter, and so on. The idea is to give you an idea of how to use the collections framework
instead of other tools to do such operations. This time, we will do something special:
instead of getting the data from the CLI as arguments to the script, we will use the
java.io.Console API, which allows the reading of different types of strings from the
terminal, such as usernames (plain strings) and passwords. The goal of this application
is to read the input until a line with only the "*" symbol (asterisk) is captured. Once

the termination symbol is entered, the text will be processed, and the statistics will be

delivered to the terminal:

1. Open IntelliJ and create a new Java program using the CLI template. Name the
project AnalyzeInput.

2. Start by creating a simple program that can read a line from the terminal and
printing it out:

import java.io.Console;

public class Analyzelnput {
public static void main(String[] args) {
Console cons;
String line = "";
if ((cons = System.console()) != null && (line = cons.readlLine())
1= null) {
System.out.println("You typed: " + line);

3

3. Execute the program from the CLI by calling java AnalyzeInput from the right
folder and interact with it:

usr@localhost:~/IdeaProjects/ch@4/out/production/ch@4$ java Analyzelnput
hej this is an example
You typed: hej this is an example

4. You must import java.io.Console, which allows you to instantiate objects of the
Console class. You can also see the call to cons = System.console(), which will
make sure that the terminal is ready for you to read the data, and line = cons.
readLine(), which will ensure that when hitting the Enter key on the keyboard, the
resulting data is not empty.

Lists | 137

5. The next step is storing the data we are capturing in a collection. Since we don't
know the size this could be, we should be using ArrayList <String> to store the
data. Also, to store data for as long as we want, we can modify the if statement
and make it into a while loop. Finally, use the add method to add the lines into a
list (note that the following code listing will never exit, so bear with us and do not
execute it yet):

import java.util.x;
import java.io.Console;

public class Exercise@1 {
public static void main(String[] args) {

ArrayList <String> text = new ArrayList<String>();

Console cons;

String line = "";

while ((cons = System.console()) != null && (line = cons.
readLine()) != null) {

text.add(line);

}
System.out.println("You typed: " + text);

3

6. Modify the while loop to include the condition we established for finishing the
data capture process - the arrival of a line with only an asterisk symbol:

while (!line.equals("*"
&& (cons = System.console()) != null
&& (line = cons.readLine()) !'= null) {

7. The outcome will happen only when you type the asterisk symbol alone in a line,
as seen in this log while interacting with the program:

usr@localhost:~/IdeaProjects/ch@4/out/production/ch@4$ java AnalyzeInput
this is the array example

until you type *

alone in a line

*

You typed: [this is the array example, until you type *, alone in a line,

*]

138 | Collections, Lists, and Java's Built-In APIs

8. Since we used ArrayList to store the different strings, you could be typing
until you exhaust the computer's memory. Now it is possible to execute some
commands to work with the strings. The first step will be turning the whole of the
text into a list. This will require going through the different strings and splitting
them into parts that will be added to a larger list. The easiest trick is to use the
split() method using a whitespace character as a separator. Modify the main
method to look like the following, and you will see that the result is now a list with
all the words separated as single nodes in the list:

public static void main(String[] args) {
ArrayList <String> text = new ArraylList<String>();
Console cons;
String line = "";
while (!line.equals("*"
&& (cons = System.console()) != null
&& (line = cons.readLine()) != null) {
List<String> linelList = new ArraylList<String>(Arrays.asList(line.
split(" ")));
text.addAll(lineList);
3
System.out.println("You typed: " + text);
}

9. Having all the data stored in this way allows for the use of a lot of the methods
available in the collections framework that will let you do operations with data.
Let's start by counting all the words in the text (including the closing symbol, "*").
Just add the following at the end of the main method:

System.out.println("Word count: " + text.size());

The result of this exercise is a program that is ready to be used for further analysis of
the data. But in order to continue doing so, we need to make use of a tool that has not
yet been introduced, which is the iterator. We will come back to this example later in
the chapter and finish off the application by adding some extra functionality to it.

Maps

The collections framework offers one more interface, java.util.Map, which can be used
when dealing with data that is stored as key-value pairs. This type of data storage is
becoming more and more relevant as data formats such as JSON are slowly taking over
the internet. JSON is a data format that is based on having data stored in the form of
nested arrays that always respond to the key-value structure.

Maps | 139

Having data organized in this way offers the possibility of having a very simple way

to look for data - by means of the keys instead of using, for example, an index, as we
would do in an array. Keys are the way we can identify the block of data we are looking
for within a map. Let's look at a simple example of a map before looking at alternatives
to maps:

Example15. java

The following example shows how to create a simple map and how to print some
messages based on the information available within it. The first thing that you will
notice in comparison to other interfaces in the collections framework is that we do not
add elements to the map - we put elements in the map. Also, elements have two parts:
the key (in our case, we are using strings) and the value (which can be heterogeneous in
nature):

import java.util.=*;

public class Examplel5 {
public static void main(String[] args) {
Map map = new HashMap();
map.put("number", new Integer(1));
map.put("text", new String("hola"));
map.put("decimal", new Double(5.7));

System.out.println(map.get("text"));

if (!map.containsKey("byte")) {

System.out.println("There are no bytes here!");

140 | Collections, Lists, and Java's Built-In APIs

This program will give the following result:
hola

There are no bytes here!

Process finished with exit code ©

Since there is no key named "bytes" in the code, the maps. containskey() method will
answer accordingly, and the program will inform the user about it. The main methods
available in this interface are:

* put (Object key, Object value)
* putAll (Map map)

* remove (Object key)

* get (Object key)

* containskey (Object key)

* keySet()

* entrySet()

All but the last two are self-explanatory. Let's focus on augmenting our previous
example to see what those two methods do. Make the following addition to the code to
see what keySet() and entrySet() have to offer:

System.out.println(map.entrySet());
System.out.println(map.keySet());

The outcome of the modified code listing will be:
hola
There are no bytes here!
[number=1, text=hola, decimal=5.7]

[number, text, decimall]

Process finished with exit code ©

Iterating through Collections | 141

In other words, entrySet() will print the whole map using the key = value formula, while
keySet () will respond with the set of keys within the map.

Note

You might have realized this by now: keys must be unique - there cannot be two of
the same keys in a map.

We will not go deeper into maps at this point because they are, to an extent, a
repetition of what we saw with sets. There are three different classes for maps: HashMap,
TreeMap, and LinkedHashMap. The last two are put in order, while the first one is neither
sorted nor arranged in order of arrival. You should use these classes according to your
needs.

Iterating through Collections

Earlier in this chapter, when working with Exercise 01, we stopped when we were about
to make searches through the data. We made it to the point where we had to iterate
through the data and look for characteristics such as word frequency.

Iterators are used in Java to browse through collections. Let's look at a simple example
that involves extracting the elements from a simple list one by one and printing them
out.

Example16. java

import java.util.x;

public class Examplel6 {
public static void main(String[] args) {
List array = new ArraylList();
array.add(5);
array.add(2);
array.add(37);

Iterator iterator = array.iterator();

while (iterator.hasNext()) {

// point to next element

142 | Collections, Lists, and Java's Built-In APIs

int 1 = (Integer) iterator.next();

// print elements

System.out.print(i + " ");

3

The output of this program is:
52 37
Process finished with exit code ©

Iterators such as this one are the most generic ones in the collections framework

and can be used with lists, sets, queues, and even maps. There are other less-broad
implementations of the iterators that allow for different ways to browse through

data, for example, in lists. As you saw in the latest code listing, the iterator.hasNext()
method checks whether there is a node after the one we are at in the list. When starting
the iterator, the object points to the first element in the list. Then, hasNext() responds
with a Boolean stating whether there are more nodes hanging from it. The iterator.
next() method will move the iterator to the following node in the collection. This kind
of iterator does not have the possibility of going back in the collection; it can only move
forward. There is one final method in the iterator, called remove(), which will eliminate
the current element that the iterator is pointing to from the collection.

If we used listIterator() instead, we would have had a lot more options for navigating
collections, such as adding new elements and changing elements. The following

code listing demonstrates how to go through a list, add elements, and modify them.
listIterator works only with lists:

Example17.java

import java.util.x;

public class Examplel7 {
public static void main(String[] args) {
List <Double> array = new ArraylList();
array.add(5.0);
array.add(2.2);
array.add(37.5);

Iterating through Collections | 143

array.add(3.1);
array.add(1.3);

System.out.println("Original list: " + array);

ListIterator listIterator = array.listlterator();

while (listIterator.hasNext()) {
// point to next element

double d = (Double) listIterator.next();

// round up the decimal number
listIterator.set(Math.round(d));

3
System.out.println("Modified list: " + array);

3

In this example, we create a list of Double, iterate through the list, and round up each of
the numbers. The outcome of this program is:

Original list: [5.0, 2.2, 37.5, 3.1, 1.3]
Modified list: [5, 2, 38, 3, 1]

Process finished with exit code ©

By calling listIterator.set(), we modify each of the items in the list and the second
System.out.println() command shows where the numbers have been rounded up or
down.

144 | Collections, Lists, and Java's Built-In APIs

The final iterator example we are going to see in this section is a trick to iterate
through a map. This could come in handy in scenarios where you want to perform some
operations on data within a map. By using the entrySet() method - which returns a list
- it is possible to have an iterator over a map. See the following example to understand
how this works:

Example18. java

import java.util.x;

public class Analyzelnput {
public static void main(String[] args) {

Map map = new HashMap ();
map.put("name", "Kristian");
map.put("family name", "Larssen");
map.put("address", "Jumping Rd");
map.put("mobile", "555-12345");
map.put("pet", "cat");

Iterator <Map.Entry> iterator = map.entrySet().iterator();

while (iterator.hasNext()) {
Map.Entry entry = iterator.next();
System.out.print("Key = " + entry.getKey());
System.out.println(", Value = " + entry.getValue());

Iterating through Collections | 145

This program will iterate through a map and print the contents as they were stored in
HashMap. Remember that these types of objects are not sorted in any specific way. You
can expect an output like the following:

Key = address, Value = Jumping Rd

Key = family name, Value = Larssen
Key = name, Value = Kristian

mobile, Value = 555-12345

Key

Key = pet, Value = cat

Process finished with exit code ©

Given that we now have ways to iterate through collections, we can move on to an
exercise that picks up where we left off: iterating through a list for data analysis.

Exercise 2: Bringing Analytics into the Analyzelnput Application

We are going to start from where we left off at the end of Exercise 1, Creating the
AnalyzeInput Application. We managed to capture the text typed in the terminal and
store it as a list of strings. This time, we are going to use a method from the collections
framework called frequency, which will respond with the number of times a certain
object can be found inside a list. As words could be repeated in a sentence, we first
need to figure out a way to extract the unique elements in a list:

1. Sets are objects in the collections framework that keep only one copy of each
element. We saw an example of this earlier in the chapter. We will create a HashSet
instance and copy all the elements from the list into it. This will automatically
eliminate duplicates:

Set <String> textSet = new HashSet <String> ();
textSet.addAll(text);

2. The next step, now that we have the set, is to create an iterator that will check
how many copies of each element from the set can be found in the list:

Iterator iterator = textSet.iterator();

146 | Collections, Lists, and Java's Built-In APIs

3. Using the same technique that we saw in previous examples for how to iterate
through a set, we will find the next node in the set and check in the list for the
frequency of the string stored in the node:

while (iterator.hasNext()) {
// point to next element
String s = (String) iterator.next();

// get the amount of times this word shows up in the text
int freq = Collections.frequency(text, s);

// print out the result
System.out.println(s + " appears " + freq + " times");

3
4. The whole program will look like this:

import java.util.x;
import java.io.Console;

public class Analyzelnput {
public static void main(String[] args) {
ArraylList <String> text = new ArraylList <String> ();
Console cons;
String line = "";
while (!line.equals("*")
&& (cons = System.console()) != null
&8& (line = cons.readLine()) != null) {
List <String> linelList = new ArraylList <String> (Arrays.
asList(line.split(" ")));
text.addAll(linelList);

}
System.out.println("You typed: " + text);
System.out.println("Word count: " + text.size());

Set <String> textSet = new HashSet <String> ();
textSet.addAll(text);

Iterator iterator = textSet.iterator();

Iterating through Collections | 147

while (iterator.hasNext()) {
// point to next element
String s = (String) iterator.next();

// get the amount of times this word shows up in the text
int freq = Collections.frequency(text, s);

// print out the result
System.out.println(s + " appears " + freq + " times");

b

5. The outcome will depend on the kind of text you type. For the sake of testing, try
the following (we will stick to this data entry for the rest of the chapter - you can
copy and paste it to the terminal each time you call the application):

this is a test
is a test

test is this
*

6. The full outcome of this input will be:

You typed: [this, is, a, test, is, a, test, test, is, this, *]
Word count: 11

a appears 2 times

test appears 3 times

this appears 2 times

is appears 3 times

* appears 1 times

7. While the result is correct, it is not easy to read through. Ideally, results should be
sorted. For example, by descending values of frequency, so that it is easy to see at
a glance the most and least frequent words. This is the time to make yet another
stop in the exercise as we need to introduce the idea of sorting before we move on
with it.

148 | Collections, Lists, and Java's Built-In APIs

Sorting Collections

As we have seen, there are some classes in the collections framework that force the
items within them to be sorted. Examples of that are TreeSet and TreeMap. The aspect to
explore in this section is how to use existing sorting mechanisms for lists, but also for
cases that have datasets with more than one value per data point.

The exercise we are doing throughout this chapter is a good example of a case where
there are data points with more than one value. For each data point, we need to store
the word for which we are calculating the frequency and the frequency itself. You might
think that a good technique to sort that out is by storing the information in the form of
maps. The unique words could be the keys, while the frequencies could be the values.
This could be achieved by modifying the final part of the previous program to look like
this:

Map map = new HashMap();

while (iterator.hasNext()) {
// point to next element

String s = (String) iterator.next();

// get the amount of times this word shows up in the text

int freq = Collections.frequency(text, s);

// print out the result

System.out.println(s + " appears " + freq + " times");

// add items to the map
map.put(s, freq);

TreeMap mapTree = new TreeMap();

mapTree.putAll(map);

System.out.println(mapTree);

Sorting Collections | 149

While this is an interesting and simple approach to sorting (copying the data into a
structure that is sorted by nature), it presents the problem that data is sorted by key
and not by value, as the following result of the previous code highlights:

Word count: 11

a appears 2 times
test appears 3 times
this appears 2 times
is appears 3 times

* appears 1 times

{*=1, a=2, is=3, test=3, this=2}

So, if we want to sort these results by value, we need to figure out a different strategy.

But let's step back for a second and analyze what tools are offered in the collections
framework for sorting. There is a method called sort() that can be used to sort lists. An
example of this is as follows:

Example19. java

import java.util.x;

public class Examplel9 {
public static void main(String[] args) {

List <Double> array = new ArrayList();
array.add(5.0);
array.add(2.2);
array.add(37.5);
array.add(3.1);
array.add(1.3);

System.out.println("Original list: + array);

Collections.sort(array);

150 | Collections, Lists, and Java's Built-In APIs

System.out.println("Modified list: + array);

}

The result of this program is:
Original list: [5.0, 2.2, 37.5, 3.1, 1.3]
Modified list: [1.3, 2.2, 3.1, 5.0, 37.5]

Process finished with exit code ©

Given a list, I could sort it this way just fine - it would even be possible to navigate
through it backward using listIterator to sort a list in descending order. However,
these methods do not solve the issue of sorting data points with multiple values. In such
a case, we would need to create a class to store our own key-value pair. Let's see how to
implement this by continuing with the exercise we have been dealing with throughout
the chapter.

Exercise 3: Sort the Results from the Analyzelnput Application

We now have a program that, given some input text, identifies some basic
characteristics of the text, such as the number of words in the text or the frequency of
each of the words. Our goal is to be able to sort the results in descending order to make
them easier to read. The solution will require the implementation of a class that will
store our key-value pairs and makes a list of objects from that class:

1. Create a class containing the two data points: the word and its frequency.
Implement a constructor that will take values and pass them to class variables.
This will simplify the code later:

class DataPoint {

String key = ;
Integer value = 0;

// constructor

DataPoint(String s, Integer i) {
key = s;
value = i;

Sorting Collections | 151

2. When calculating the frequency for each word, store the results in a newly created
list of objects of the new class:

List <DataPoint> frequencies = new ArraylList <DataPoint> ();

while (iterator.hasNext()) {

3

// point to next element
String s = (String) iterator.next();

// get the amount of times this word shows up in the text
int freq = Collections.frequency(text, s);

// print out the result
System.out.println(s +

appears " + freq + " times");
// create the object to be stored

DataPoint datapoint = new DataPoint (s, freq);

// add datapoints to the list
frequencies.add(datapoint);

3. Sorting is going to require the creation of a new class using the Comparator
interface, which we are just introducing now. This interface should implement
a method that will be used to run comparisons within the objects in the array.
This new class must implement Comparator <DataPoint> and include a single
method called compare(). It should have two objects of the class being sorted as
parameters:

class SortByValue implements Comparator<DataPoint>

{

// Used for sorting in ascending order
public int compare(DataPoint a, DataPoint b)

{

return a.value - b.value;

152 | Collections, Lists, and Java's Built-In APIs

4.

The way we call the Collections.sort() algorithm using this new comparator is by
adding an object of that class as a parameter to the sort method. We instantiate it
directly in the call:

Collections.sort(frequencies,new SortByValue());

This will sort the frequencies list in ascending order. To print the results, it is no
longer valid to make a direct call to System.out.println(frequencies) because it is
now an array of objects and it will not print the contents of the data points to the
terminal. Iterate through the list in the following way instead:

System.out.println("Results sorted");
for (int i = 0; i < frequencies.size(); i++)
System.out.println(frequencies.get(i).value
+ " times for word "
+ frequencies.get(i).key);

If you run the program using the same input that we have been using for the last
couple of examples, the outcome will be:

Results sorted

1 times for word *

2 times for word a

2 times for word this
3 times for word test
3 times for word is

Our goal is to sort the results in descending order and, to do that, we will need

to add one more thing to the call to the sort algorithm. When instantiating the
SortByValue() class, we need to tell the compiler that we want the list to be sorted
in reverse order. The collections framework already has a method for this:

Collections.sort(frequencies, Collections.reverseOrder(new
SortByValue()));

For the sake of clarity, let's look at how the full program looks now, as we have
been introducing a lot of modifications:

import java.util.x;
import java.io.Console;

class DataPoint {

String key = ;
Integer value = 0;

// constructor

Sorting Collections | 153

DataPoint(String s, Integer i) {

key = s;
value = 1i;
3
}
class SortByValue implements Comparator<DataPoint>
{
// Used for sorting in ascending order
public int compare(DataPoint a, DataPoint b)
{
return a.value - b.value;
}
}

public class Analyzelnput {
public static void main(String[] args) {
ArrayList <String> text = new ArraylList <String> ();
Console cons;
String line = "";
while (!line.equals("*")
&& (cons = System.console()) != null
&& (line = cons.readLine()) != null) {
List <String> lineList = new ArraylList <String> (Arrays.
asList(line.split(" ")));
text.addAll(lineList);

}
System.out.println("You typed: " + text);
System.out.println("Word count: " + text.size());

Set <String> textSet = new HashSet <String> ();
textSet.addAll(text);

Iterator iterator = textSet.iterator();
List <DataPoint> frequencies = new ArraylList <DataPoint> ();
while (iterator.hasNext()) {

// point to next element

String s = (String) iterator.next();

// get the amount of times this word shows up in the text

154 | Collections, Lists, and Java's Built-In APIs

int freq = Collections.frequency(text, s);

// print out the result
System.out.println(s + " appears " + freq + " times");

// create the object to be stored
DataPoint datapoint = new DataPoint (s, freq);

// add datapoints to the list
frequencies.add(datapoint);

Collections.sort(frequencies,
Collections.reverseOrder(new SortByValue()));

System.out.println("Results sorted");
for (int i=0; i<frequencies.size(); i++)
System.out.println(frequencies.get(i).value
+ " times for word "
+ frequencies.get(i).key);

}

9. A full interaction path with this program, from the moment we call it to include
the data entry, would be as follows:

user@localhost:~/IdeaProjects/ch@4/out/production/ch04$ java Analyzelnput
this is a test

is a test

test is this

*

You typed: [this, is, a, test, is, a, test, test, is, this, *]
Word count: 11

a appears 2 times

test appears 3 times

this appears 2 times

is appears 3 times

* appears 1 times

Properties | 155

Results
3 times
3 times
2 times
2 times
1 times

Properties

sorted

for word test
for word is
for word a
for word this
for word *

Properties in the collections framework are used to maintain lists of key-value

pairs where both are of the String class. Properties are relevant when obtaining
environmental values from the operating system, for example, and are the grounding
class for many other classes. One of the main characteristics of the Properties class is
that it allows the definition of a default response in the case of a search for a certain key
not being satisfactory. The following example highlights the basics of this case:

Example20. java

import java.util.x;

public class Example20 {

public static void main(String[] args) {

Properties properties

Set setOfKeys;

new Properties();

String key;

properties.put("0S", "Ubuntu Linux");
properties.put("version", "18.04");

properties.put("language", "English (UK)");

// iterate through the map
setOfKeys = properties.keySet();

Iterator iterator = setOfKeys.iterator();

while(iterator.hasNext())
{

156 | Collections, Lists, and Java's Built-In APIs

key = (String)iterator.next();
System.out.println(key +

+ properties.getProperty(key));

System.out.println();

// looking for URL that not in list

String value = properties.getProperty("keyboard layout", "not

found");

System.out.println("keyboard layout = " + value);

b

Before diving into the results, you will notice that in properties, we put rather than
add new elements/nodes. This is the same as we saw with maps. Also, you will have
noticed that to iterate, we used the keySet() technique that we saw when iterating
through maps earlier. Finally, the particularity of Properties is that you can set a
default response in the case of the searched-for property not being found. This is what
happens in the example when searching for keyboard layout - it was never defined, so
the getProperty() method will answer with its default message without crashing the
program.

The result of this program is:
version = 18.04
0S = Ubuntu Linux
language = English (UK)

keyboard layout = not found

Process finished with exit code ©

Properties | 157

Another interesting method to be found in the Properties class is the 1ist(); it comes
with two different implementations that allow you to send the contents of a list to
different data handlers. We can stream the whole properties list to a PrintStreamer
object, such as System.out. This offers a simple way of displaying what is in a list without
having to iterate through it. An example of this follows:

Example21. java

import java.util.x;

public class Example21 {

public static void main(String[] args) {

Properties properties = new Properties();

properties.put("0S", "Ubuntu Linux");
properties.put("version", "18.04");

properties.put("language", "English (UK)");

properties.list(System.out);

}

That will result in:
version=18.04
0S=Ubuntu Linux
language=English (UK)

Process finished with exit code ©

158 | Collections, Lists, and Java's Built-In APIs

The propertyNames() method returns an Enumeration list, and by iterating through it, we
will obtain the keys to the whole list. This is an alternative to creating a set and running
the keySet() method.

Example22. java

import java.util.=*;

public class Example22 {

public static void main(String[] args) {

Properties properties = new Properties();

properties.put("0S", "Ubuntu Linux");
properties.put("version", "18.04");

properties.put("language", "English (UK)");

Enumeration enumeration = properties.propertyNames();

while (enumeration.hasMoreElements()) {

System.out.println(enumeration.nextElement());

}

That will result in:
version
0S

language

Process finished with exit code ©

Properties | 159

The final method we will introduce you to from Properties at this point is
setProperty(). It will modify the value of an existing key, or will eventually create a new
key-value pair if the key is not found. The method will answer with the old value if the
key exists, and answer with null otherwise. The next example shows how it works:

Example23. java

import java.util.x;

public class Example23 {

public static void main(String[] args) {

Properties properties = new Properties();

properties.put("0S", "Ubuntu Linux");
properties.put("version", "18.04");

properties.put("language", "English (UK)");

String oldValue = (String) properties.setProperty("language",
"German");

if (oldvalue != null) {
System.out.println("modified the language property");

properties.list(System.out);

}

Here is the outcome:
modified the language property
-- listing properties --

version=18.04

160 | Collections, Lists, and Java's Built-In APIs

0S=Ubuntu Linux

language=German

Process finished with exit code ©

Note

There are more methods in the Properties class that deals with storing and
retrieving lists of properties to/from files. While this is a very powerful feature from
the Java APIs, as we haven't yet introduced the use of files in this book, we will not
discuss those methods here. For more information at this point, please refer to
Java's official documentation.

Activity 2: Iterating through Large Lists

In contemporary computing, we deal with large sets of data. The purpose of this activity
is to create a random-sized list of random numbers to perform some basic operations
on data, such as obtaining the average.

1. To start, you should create a random list of numbers.

2. To compute the average, you could create an iterator that will go through the list
of values and add the weighted value corresponding to each element.

3. The value coming from the iterator.next() method must be cast into a Double
before it can be weighed against the total number of elements.

If you've implemented everything properly, the results of the averaging should
similar to:

Total amount of numbers: 3246
Average: 49.785278826074396

Or, it could be:
Total amount of numbers: 6475

Average: 50.3373892275651

Note

The solution for this activity can be found on page 827.

Summary | 161

If you managed to make this program work, you should think about how to take
advantage of being able to simulate large sets of data like this one. This data could
represent the amount of time between different arrivals of data in your application,
temperature data from the nodes in an Internet of Things network being captured
every second, or... the possibilities are endless. By using lists, you can make the size of
the dataset as endless as their working possibilities.

Summary

This chapter introduced you to the Java collections framework, which is a very powerful
tool within the Java language that can be used to store, sort, and filter data. The
framework is very big and offers tools in the form of interfaces, classes, and methods,
some of which are beyond the scope of this chapter. We have focused on Arrays, Lists,
Sets, Maps, and Properties. But there are others, such as queues and dequeues, that are
worth exploring on your own.

Sets, like their mathematical equivalents, store unique copies of items. Lists are like
arrays that can be extended endlessly and support duplicates. Maps are used when
dealing with key-value pairs, something very common in contemporary computing,
and do not support the use of two of the same keys. Properties work very much like
HashMap (a specific type of Map) but offer some extra features, such as the listing all their
contents to streams, which simplify the printing out of the contents of a list.

Some of the classes offered in the framework are sorted by design, such as TreeHash and
TreeMap, while some others are not. Depending on how you want to handle data, you will
have to decide which is the best collection based on the kind of operations you want to
perform.

There are standard techniques for looking through data with iterators. These iterators,
upon creation, will point to the first element in a list. Iterators offer some basic
methods, such as hasNext() and next(), that state whether there is more data in the list
and extract data from the list, respectively. While those two are common to all iterators,
there are others, such as listIterator, that are much more powerful and allow, for
example, the addition of new elements to a list while browsing through it.

We have looked at a chapter-long example that used many of these techniques, and we
have introduced the use of the console to read data through the terminal.

In the next chapter, we will cover exceptions and how to handle them.

Exceptions

Learning Objectives
By the end of this chapter, you will be able to:
+ ldentify the situations that produce exceptions in your code
« Catch and handle an exception
+ Log the details of an exception
« Throw an exception to the calling class
+ Differentiate between types of exceptions

+ Create your own exception class

This chapter discusses how exceptions are dealt with in Java.

164 | Exceptions

Introduction

Exceptions are not errors, or, more accurately, exceptions are not bugs, even if you
might perceive them to be when they crash your programs! Exceptions are situations
that occur in your code when there is a mismatch between the data you are handling
and the method or command you are using to process it.

In Java, there is a class that is dedicated to errors. Errors are unexpected situations that
affect programs on the JVM level. For example, if you fill-up the program stack through
an unconventional use of memory, then your whole JVM will crash. Unlike errors,
exceptions are situations that your code, when properly designed, can catch on the fly.

Exceptions are not as drastic as errors, even if the result for you, the developer, will

be the same - that is, a non-working program. In this chapter, we are inviting you to
make your programs crash by intentionally provoking exceptions that you will later
learn how to catch (that is, handle) and avoid. Depending on how you develop the catch
mechanism, you can decide on whether to get your program to recover and continue
operating or to gracefully end its execution with a human-readable error message.

A Simple Exception Example

Let's start by provoking a simple exception in your code. First, type in the following

program in the Integrated Development Environment (IDE) and execute it:

Example@1. java

public class Example@1 {
public static void main(String[] args) {
// declare a string with nothing inside

String text = null;

// you will see this at the console

System.out.println("Go Java Go!");

// null'ed strings should crash your program

System.out.println(text.length());

// you will never see this print

System.out.println("done");

A Simple Exception Example | 165

}
Here is the output:
Go Java Go!
Exception in thread "main" java.lang.NullPointerException

at Example@1.main(Example@1.java:11)

Process finished with exit code 1

The previous code listing shows how the program starts executing a command

that works fine. The sentence Go Java Go! is printed on the console, but then a
NullPointerException shows up, highlighting that something exceptional happened.
In this case, we tried to print the length of a string initiated to null by calling text.
length(). Since there is no length to be calculated (that is, we don't even have an
empty string), either System.out.println() or text.length() provoked the exception.
Additionally, there was an error at that point, so the program exited and the final

call to System.out.println("done") was not executed. You could try to separate both
commands to see what the outcome will be:

// null'ed strings should crash your program
int number = text.length();

System.out.println(number);

Here is the output:
Go Java Go!
Exception in thread "main" java.lang.NullPointerException

at Example@1.main(Example@1.java:11)

Process finished with exit code 1

If you check the line numbers in the IDE, you will see that the exception takes place on
the line where we are trying to get the length of the string. Now that we know the cause
of the problem, there are two ways around this issue: either we fix the data (note that
there will be situations where this will be impossible), or we include a countermeasure
in our code to detect the exceptions and then handle or ignore them. The action of
handling an unexpected event is what we call catching the exception. On the other
hand, bypassing the event is called throwing the exception. Later in the chapter, we will
explore different ways of doing both of these actions, as well as good practices for when
writing code-handling exceptions.

166 | Exceptions

However, before learning about how to avoid or handle exceptions, let's provoke some
more. Almost every Java API includes the definition of an exception that can help to
propagate errors towards the main class, and thus the developer. In that way, it will be
possible to avoid situations where the code will break in front of the user's eyes.

The exceptions covered by the Java APIs are what we call built-in exceptions. It is also
possible to create your own when you define a class. Talking about classes, let's try to
get a character from a non-existing location within an object instantiated from String
and see what happens:

Example@2. java

public class Example@2 {
public static void main(String[] args) {
// declare a string of a fixed length

String text = "I <3 bananas"; // 12 characters long

// provoke an exception

char character = text.charAt(15); // get the 15th element

// you will never see this print

System.out.println("done");

3
The IDE will respond with the following:

Exception in thread "main" java.lang.StringIndexOutOfBoundsException: String
index out of range: 15

at java.lang.String.charAt(String. java:658)
at Example02.main(Example@2. java:8)

Process finished with exit code 1

Note that the text variable is only 12 characters long. When trying to extract the 15th
character, the IDE will issue an exception and terminate the program. In this case, we
got one called StringOutOfBoundsException. There are many different types of built-in
exceptions.

A Simple Exception Example | 167

Here's a list of the various types of exceptions:

NullPointerException
StringOutOfBoundsException
ArithmeticException
ClassCastException
lllegalArgumentException
IndexOutOfBoundsException
NumberFormatException
IllegalAccessException
InstantiationException

NoSuchMethodException

As you can see, the names of the different exceptions are quite descriptive. When you
get one, it should be quite easy to figure out where to find more information about it
within the Java documentation in order to mitigate the problem. We classify exceptions
as checked or unchecked:

Checked exceptions: These are highlighted during compilation. In other words,
your program will not make it to the end of the compilation process, and therefore
you will not be able to run it.

Unchecked exceptions: These show up during program execution; therefore, we
also call them runtime exceptions. The examples that have been shown in this
chapter so far (NullPointerException and StringOutOfBoundsException) are both
unchecked.

Why Two Types of Exception?

There are two possibilities for exceptions: either we, as developers, make a mistake
and don't realize that our way of handling data is going to produce an error

(such as when we are trying to get the length of an empty string or when we are
dividing a number by zero), or the error happens because we are uncertain about
the nature of the data we will be gathering during an exchange with something
external to our program (such as when getting parameters from the CLI and they
are of the wrong type). In cases like the first one, checked exceptions make more
sense. The second scenario is the reason why we need unchecked exceptions. In
this second case, we should develop strategies to handle potential threats to the
proper execution of the program.

168 | Exceptions

Making an example of a checked exception is slightly more complicated because we
have to anticipate things that will not be introduced in depth until a later chapter.
However, we consider that the following example, which displays an example of
IOException, is simple enough even if it includes a couple of classes that haven't been
touched on in the book yet:

Example@3. java

import java.nio.file.*;

import java.util.s*;

public class Example@3 {
public static void main(String[] args) {
// declare a list that will contain all of the files
// inside of the readme.txt file
List<String> lines = Collections.emptylList();

// provoke an exception

lines = Files.readAllLines(Paths.get("readme.txt"));

// you will never see this print

Iterator<String> iterator = lines.iterator();

while (iterator.hasNext())
System.out.println(iterator.next());

3

The newest thing in this code listing is the use of java.nio.file.*. This is an API that
includes classes and methods to manage files, among other things. The goal of this
program is to read a whole text file called readme.txt into a list that will then be printed
using an iterator, as we saw in Chapter 4, Collections, Lists, and Java's Built-In APIs.

This is a case where a checked exception could occur when calling Files.
readAllLines() if there is no file to be read because of, for example, having a
wrongly declared filename. The IDE knows this and, therefore, it flags that there
is a potential risk.

NullPointerException - Have No Fear | 169

Note how the IDE displays a warning from the moment we write the code. Furthermore,
when trying to compile the program, the IDE will respond with the following:

Error: (11, 35) java: unreported exception java.io.IOException; must be
caught or declared to be thrown

Catching and throwing are the two strategies that you can use to avoid exceptions. We
will talk about them in more detail later in the chapter.

NullPointerException - Have No Fear

We presented the concept of null within Java in a previous chapter. As you may recall,
null is the value that is implicitly assigned to an object upon creation, that is, unless
you assign a different value to it. Related to null is the NullPointerException value. This
is a very common event that can and will happen to you for a variety of reasons. In this
section, we will highlight some of the most common scenarios of this in an effort to
introduce you to a different way of thinking when dealing with any type of exception in
your code.

In Example01, we examined the process of trying to perform operations on an object
that was pointing to null. Let's look at some other possible cases:

Example04. java

public class Example@4 {
public static void main(String[] args) {
String vehicleType = null;
String vehicle = "car";
if (vehicleType.equals(vehicle)) {
System.out.println("it's a car");
} else {

System.out.println("it's not a car");

170 | Exceptions

The outcome of this example would be the following:
Exception in thread "main" java.lang.NullPointerException

at Example@4.main(Example@4.java:5)

Process finished with exit code 1

You could have prevented this exception if you had written your code to compare the
existing variable with the potentially null one instead.

Example®5. java

public class Example@5 {
public static void main(String[] args) {
String vehicleType = null;
String vehicle = "car";
if (vehicle.equals(vehicleType)) {
System.out.println("it's a car");
} else {

System.out.println("it's not a car");

b

The preceding code will produce the following result:

it's not a car

Process finished with exit code ©

As you can see, there is no conceptual difference between the examples; however, there
is a difference at the code level. This difference is enough for your code to issue an
exception upon compilation. This is because the equals() method for the String class

is prepared to handle the situation of its parameter being null. On the other hand, a
String variable that is initialized to null cannot have access to the equals() method.

NullPointerException - Have No Fear | 171

A very common situation for provoking a NullPointerException occurs when trying to
call non-static methods from an object initialized to null. The following example shows
a class with two methods that you can call to see whether they produce the exception.
You can do this by simply commenting or uncommenting each of the lines calling the
methods from main(). Copy the code in the IDE and try the two cases:

Example06. java

public class Example06 {
private static void staticMethod() {

System.out.println("static method, accessible from null reference");

private void nonStaticMethod() {

System.out.print("non-static method, inaccessible from null
reference");

public static void main(String args[]) {
Exampled6 object = null;

object.staticMethod();
//object.nonStaticMethod();

}

There are other cases when this exception can appear, but let's focus on how to deal
with exceptions. The following sections will describe different mechanisms you can use
to enable your programs to recover from unexpected situations.

172 | Exceptions

Catching Exceptions

As mentioned earlier, there are two ways to handle exceptions: catching and throwing.
In this section, we will deal with the first of these methods. Catching an exception
requires encapsulating the code that might generate an unwanted result into a specific
statement, as shown in the following code snippet:
try {
// code that could generate an exception of the type ExceptionM
} catch (ExceptionM e) {

// code to be executed in case of exception happening

}

We can put this code to test with any of the previous examples. Let's demonstrate how
we could stop the exception we found in the first example of the chapter, where we
tried to check the length of a string that was initialized to null:

Example®7. java

public class Example@7 {
public static void main(String[] args) {
// declare a string with nothing inside

String text = null;

// you will see this at the console

System.out.println("Go Java Go!");

try {

// null'ed strings should crash your program
System.out.println(text.length());

} catch (NullPointerException ex) {
System.out.println("Exception: cannot get the text's length");

Catching Exceptions | 173

// you will now see this print

System.out.println("done");

}

As you can see, we have wrapped the potentially broken code inside a try-catch
statement. The result of this code listing is very different from the result that we saw
previously:

Go Java Go!
Exception: cannot get the text's length

done

Process finished with exit code ©

Mainly, we find that the program is not interrupted until the end. The try section of the
program detects the arrival of the exception, and the catch part will execute a specific
code if the exception is of the NullPointerException type.

Several catch statements can be placed in sequence after the call to try as a way
to detect different types of exceptions. To try this out, let's go back to the example
where we were trying to open a non-existing file and try to catch the reason for
readAllLines() stopping the program:

Example@8. java

import java.io.*;
import java.nio.file.*;

import java.util.x;

public class Example@8 {
public static void main(String[] args) {
// declare a list that will contain all of the files
// inside of the readme.txt file

List<String> lines = Collections.emptylList();

174 | Exceptions

try {
// provoke an exception
lines = Files.readAllLines(Paths.get("readme.txt"));
} catch (NoSuchFileException fe) {
System.out.println("Exception: File Not Found");
} catch (IOException ioe) {
System.out.println("Exception: IOException");

// you will never see this print
Iterator<String> iterator = lines.iterator();
while (iterator.hasNext())

System.out.println(iterator.next());

}

As we saw earlier in the chapter, we have made a program that tries to open a
non-existing file. The exception that we got then was I0Exception. In reality, that
exception is triggered by NoSuchFileException, which is escalated and triggers
IOException. Therefore, we get that exception on the IDE. When implementing the
multiple try-catch statements, as shown in the previous example, we get the following
outcome:

Exception: File Not Found

Process finished with exit code ©

This means that the program detects the NoSuchFileException and, therefore, prints
the message included in the corresponding catch statement. However, if you want to
see the full sequence of exceptions triggered by the non-existing readme.txt file, you
can use a method called printStackTrace(). This will send to the output everything
that was on the way to the proper execution of the program. To see this, simply add the
following highlighted changes to the previous example:

try {

// provoke an exception

lines = Files.readAllLines(Paths.get("readme.txt"));
} catch (NoSuchFileException fe) {

Catching Exceptions | 175

System.out.println("Exception: File Not Found");
fe.printStackTrace();

} catch (IOException ioe) {
System.out.println("Exception: IOException");

}

The output of the program will now include a full printout of the different exceptions
triggered during program execution. You will see the output of the stack is inverted:
first, you will see the reason why the program stopped (NoSuchFileException), and it will
end with the method that starts the process that provokes the exception (readAllLines).
This is due to the way exceptions are built. As we will discuss later, there are many
different types of exceptions. Each one of these types is defined as a class of exceptions,
which may be extended by several other subclasses of exceptions. If an extension of a
certain type occurs, then the class that it is extending will also appear when printing
out the stack. In our case, NoSuchFileException is a subclass of IOException.

Note

Depending on your operating system, the different nested exceptions for dealing
with opening a file will probably be called differently.

We have been catching two different exceptions - one nested inside the other. It
should also be possible to handle exceptions coming from different classes, such as
IOException and NullPointerException. The following example demonstrates how to
do this. If you are dealing with exceptions that are not a subclass of one another, it is
possible to catch both exceptions using a logical OR operator:

Example@9. java

import java.io.*;-
import java.nio.file.*;

import java.util.=*;

public class Example@9 {
public static void main(String[] args) {
// declare a list that will contain all of the files
// inside of the readme.txt file

176 | Exceptions

List<String> lines = Collections.emptylList();

try {
// provoke an exception
lines = Files.readAllLines(Paths.get("readme.txt"));

} catch (NullPointerException|IOException ex) {
System.out.println("Exception: File Not Found or NullPointer");

ex.printStackTrace();

// you will never see this print
Iterator<String> iterator = lines.iterator();
while (iterator.hasNext())

System.out.println(iterator.next());

3

As you can see, it is possible to handle both exceptions in a single catch statement.
However, if you want to handle the exceptions differently, you will have to work with
the object containing the information about the exception, which, in this case, is ex. The
keyword you need to distinguish the between the exceptions that you may be handling
simultaneously is instanceof, as shown in the following modification of the previous
example:

try {
// provoke an exception
lines = Files.readAllLines(Paths.get("readme.txt"));
} catch (NullPointerException|IOException ex) {
if (ex instanceof IOException) {
System.out.println("Exception: File Not Found");
}

if (ex instanceof NullPointerException) {

Catching Exceptions | 177

System.out.println("Exception: NullPointer");

How Many Different Exceptions Can You Catch in a Single Try?

The fact is that you can daisy chain as many catch statements as you need to.

If you use the second method that we discussed in this chapter (that is, using

the OR statement), then you should remember that it is not possible to have a
subclass together with its parent class. For example, it is not possible to have

NoSuchFileException and IOException together in the same statement - they

should be placed in two different catch statements.

Exercise 1: Logging Exceptions

There are two main actions that you can perform when catching exceptions, besides
any type of creative coding you may want to do to respond to the situation: logging or
throwing. In this exercise, you will learn how to log the exception. In a later exercise,
you will learn how to throw it instead. As we will reiterate in the Best Practices for
Handling Exceptions section of this chapter, you should never do both at once:

1. Create a new Java project in IntelliJ using the template for CLI. Name it
LoggingExceptions. You will be creating classes inside it that you can then use
later in other programs.

2. In the code, you need to import the logging API by issuing the following command:
import java.util.logging.*;

3. Declare an object that you will be using to log the data into. This object will be
printed to the terminal upon program termination; therefore, you don't need to
worry about where it will end up at this point:

Logger logger = Logger.getAnonymousLogger();
4. Provoke an exception, as follows:
String s = null;
try {
System.out.println(s.length());

} catch (NullPointerException ne) {
// do something here

178 | Exceptions

5. At the time of catching the exception, send the data to the logger object using the
log() method:

logger.log(Level .SEVERE, "Exception happened", ne);
6. Your full program should read as follows:

import java.util.logging.=*;

public class LoggingExceptions {
public static void main(String[] args) {
Logger logger = Logger.getAnonymousLogger();

String s = null;

try {
System.out.println(s.length());
} catch (NullPointerException ne) {
logger.log(Level .SEVERE, "Exception happened", ne);

b
7. When you execute the code, the output should be as follows:

may 09, 2019 7:42:05 AM LoggingExceptions main
SEVERE: Exception happened
java.lang.NullPointerException
at LoggingExceptions.main(LoggingExceptions .java:10)

Process finished with exit code ©

8. Asyou can see, the exception is logged at the determined SEVERE level, but the
code ends without an error code because we were able to handle the exception.
The log is useful because it tells us where the exception happened in the code and,
additionally, helps us to find the place of where we can dig deeper into the code
and fix any potential issues.

Throws and Throw | 179

Throws and Throw

You can choose not to deal with some caught exceptions in your code at a low level,

as described in the previous section. It could be interesting to filter out an exception's
parent class and focus on detecting a subclass that might be of more importance to us.
The throws keyword is used in the definition of the method you are creating and where
the exception may occur. In the following case, which is a modification of Example 09,
we should call throws in the definition of main():

Example10. java

import java.io.*;
import java.nio.file.*;

import java.util.x;

public class Examplel10 {
public static void main(String[] args) throws IOException {
// declare a list that will contain all of the files
// inside of the readme.txt file
List<String> lines = Collections.emptyList();

try {
// provoke an exception
lines = Files.readAllLines(Paths.get("readme.txt"));
} catch (NoSuchFileException fe) {
System.out.println("Exception: File Not Found");
//fe.printStackTrace();

// you will never see this print
Iterator<String> iterator = lines.iterator();
while (iterator.hasNext())

System.out.println(iterator.next());

180 | Exceptions

As you can see, we are throwing any I0Exception that is occurring during runtime. In
this way, we can focus on catching the one that actually happens: NoSuchFileException.
It is possible to throw more than one exception type in this way by separating them
using commas.

An example of such a method definition is as follows:

public static void main(String[] args) throws IOException,
NullPointerException {

The one thing that is not possible is having an exception class and its subclass being
thrown in the same method definition - just as we saw when trying to catch more than
one exception in a single catch statement. It is also interesting to see that throws is
operating at a certain scope; for example, we could disregard a certain exception within
a method in a class but not a different one.

On the other hand, there is yet another keyword that you will find relevant for dealing
with exceptions as you advance in your understanding of the term. The throw keyword
(note that this is not throws) will explicitly invoke an exception. You can use this to
create your own exceptions and try them out in your code. We will demonstrate in a
later section how you can create your own exception, and then we will use throw as part
of the example to also see how exceptions propagate. The main reason to use throw is

if you want your code to hand over an exception occurring within your class to another
one higher up in the hierarchy. For the sake of learning about how this works, let's look
at the following example:

Examplel1. java

public class Examplell {
public static void main(String args[]) {
String text = null;

try {
System.out.println(text.length());
} catch (Exception e) {

System.out.println("Exception: this should be a
NullPointerException");

throw new RuntimeException();

Throws and Throw | 181

In this case, we reproduce the NullPointerException example we saw earlier by trying
to call the length() method on a string initialized as null. However, if you run this code,
you will see that the exception that is being displayed is RuntimeException:

Exception: this should be a NullPointerException
Exception in thread "main" java.lang.RuntimeException

at Examplell.main(Examplel1.java:9)

Process finished with exit code 1

The reason for this is the call to throw new RuntimeException() that we issued in the
catch block. As you can see, when dealing with the exception, we are provoking a
different exception. This can be very useful for catching exceptions and piping them
through your own exceptions, or simply catching the exception, giving a meaningful
message to help the user understand what went down, and then letting the exception
continue its own path, and eventually crashing the program if the exception is not
handled at a higher level in the code.

Exercise 2: Breaking the Law (and Fixing It)

In this example, we are going to create our own checked exception class. We will define
a class and then experiment by provoking that exception, logging its results, and then
analyzing them:

1. Create a new Java project in IntelliJ using the template for CLI. Name it
BreakingTheLaw. You will be creating classes inside it that you can use later in other
programs.

2. In the code, create a new class to describe your exception. This class should
extend the base Exception class. Call it MyException and include the empty
constructor:

public class BreakingTheLaw {
class MyException extends Exception {

// Constructor
MyException() {};

public static void main(String[] args) {
// write your code here

}

182 | Exceptions

3. Your constructor should include all the possibilities to be thrown. This implies that
the constructor needs to contemplate several different cases:

// Constructor
public MyException() {

super();

3

public MyException(String message) {
super(message);

3

public MyException(String message, Throwable cause) {
super(message, cause);

}

public MyException(Throwable cause) {
super(cause);

}

4. This will allow us to now wrap any exception with our newly formed exception.
However, there are a couple of modifications that we should apply to our program
in order for it to compile. First, we need to make the exception class static for it to
work in the context we are using it in:

public static class MyException extends Exception {

5. Next, you need to make sure that the main class is throwing your new exception
since you are going to be issuing that exception in the code:

public static void main(String[] args) throws MyException {

6. Finally, you need to generate some code that will provoke an exception, such as
NullPointerException, when trying to get the length of a String initialized to null,
catch it, and then throw it away using our newly created class:

public static void main(String[] args) throws MyException {
String s = null;

try {
System.out.println(s.length());
} catch (NullPointerException ne) {
throw new MyException("Exception: my exception happened");

Throws and Throw | 183

10.

The result of running this code is as follows:

Exception in thread "main" BreakingTheLaw$MyException: Exception: my
exception happened
at BreakingThelLaw.main(BreakingThelLaw. java:26)

Process finished with exit code 1

You can now experiment with the call to throw by using any other of the
constructors in the class. We just tried one that includes our own error message,
so let's add the stack trace for the exception:

throw new MyException("Exception: my exception happened", ne);

What will make the output slightly more informative is that it will now include
information about the exception that generated our own NullPointerException:

Exception in thread "main" BreakingTheLaw$MyException: Exception: my
exception happened

at BreakingThelLaw.main(BreakingThelLaw. java:26)
Caused by: java.lang.NullPointerException

at BreakingThelLaw.main(BreakingThelLaw. java:24)

Process finished with exit code 1

You have now learned how to use throw to wrap an exception into your own
exception class. This can be very handy when dealing with a large codebase and
having to look for the exceptions generated by your code in a long log file, or
similar. For your reference, you can view the full example in the following code
listing:

public class BreakingThelLaw {
class MyException extends Exception {
// Constructor
public MyException() {

super();

}

public MyException(String message) {
super(message);

}

public MyException(String message, Throwable cause) {
super(message, cause);

}

public MyException(Throwable cause) {
super(cause);

184 | Exceptions

public static void main(String[] args) throws MyException {
String s = null;

try {
System.out.println(s.length());
} catch (NullPointerException ne) {
throw new MyException("Exception: my exception happened");

}
The finally Block

The finally block can be used to execute some common code after any of the catch
blocks used to handle a series of different exceptions in the code. Going back to our
example where we tried to open a non-existing file, a modified version of it including a
finally statement would look like the following:

Example12. java

import java.io.*;
import java.nio.file.*;

import java.util.x;

public class Examplel12 {
public static void main(String[] args) {
// declare a list that will contain all of the files
// inside of the readme.txt file
List<String> lines = Collections.emptyList();

try {
// provoke an exception
lines = Files.readAllLines(Paths.get("readme.txt"));
} catch (NoSuchFileException fe) {
System.out.println("Exception: File Not Found");

The finally Block | 185

} catch (IOException ioe) {
System.out.println("Exception: IOException");
} finally {

System.out.println("Exception: Case Closed");

// you will never see this print
Iterator<String> iterator = lines.iterator();
while (iterator.hasNext())

System.out.println(iterator.next());

3
The output of the preceding example is as follows:
Exception: File Not Found

Exception: Case Closed

Process finished with exit code ©

After the catch block detecting the NoSuchFileException, the handling mechanism
jumps into the finally block and executes whatever is in it, which, in this case, implies
printing yet another line of text to the output.

Activity 1: Designing an Exception Class Logging Data

We have seen examples of how to log exceptions and how to throw them. We have also
learned how to create exception classes and throw them. With all that information, the
goal of this activity is to create your own exception class that should log the different
exceptions in terms of severity. You should make an application that is based on the
arguments to the program, and the program will respond to the logging exceptions in
different ways. Just to have a common ground, use the following standard:

1. If the input is number 1, issue the NullPointerException with a severity level of
SEVERE.

2. If the input is number 2, issue the NoSuchFileException with a severity level of
WARNING.

186 | Exceptions

3. If the input is number 3, issue the NoSuchFileException with a severity level of
INFO.

4. In order to make this program, you will need to consider making your own
methods for issuing exceptions, such as the following:

public static void issuePointerException() throws NullPointerException {
throw new NullPointerException("Exception: file not found");

public static void issueFileException() throws NoSuchFileException {
throw new NoSuchFileException("Exception: file not found");

Note
The solution for this activity can be found on page 829.

Best Practices for Handling Exceptions

Dealing with exceptions in your code requires following a set of best practices in order
to avoid deeper issues when writing your programs. This list of common practices is
of relevance to your code in order to keep some degree of professional programming
consistency:

The first piece of advice is to avoid throwing or catching the main Exception class. You
need to be as specific as possible when dealing with an exception. Therefore, a case like
the following is not recommended:

Example13. java

public class Examplel3 {
public static void main(String args[]) {
String text = null;

try {
System.out.println(text.length());

} catch (Exception e) {

Best Practices for Handling Exceptions | 187

System.out.println("Exception happened");

}

This code listing will catch any exception, with no granularity. So, how are you
supposed to properly handle the exception this way?

In the following section, we will do a quick recap of where the Exception class is located
within the Java API structure. We will examine how it hangs from the Throwable class

at the same level as the Error class. Therefore, if you were to catch the Throwable

class, you would mask possible errors occurring in your code and not only exceptions.
Remember that errors are those situations when your code should be exited because
they alert to a real malfunction that could lead to the misuse of JVM resources.

Masking such a scenario behind a catch could stall the whole JVM. Therefore, avoid
code like the following:

try {
System.out.println(text.length());

} catch (Throwable e) {
System.out.println("Exception happened");

b

In Exercise 2, Breaking the Law (and Fixing It) you saw how to make your own exception
class. As discussed, it is possible to redirect exceptions toward others by using throw. It
is good practice to not disregard the stack trace of the original exception since it will
help you to debug the source of the issue in a better way. Therefore, when catching
the original exception, you should consider passing over the whole stack trace as a
parameter to the exception constructor:

} catch (OriginalException e) {

throw new MyVeryOwnException("Exception trace: ", e);

3

In the same exercise, when making your own exception, you learned how to use the
system's log to store the information of the exception. You should avoid both logging
the exception and throwing it once more. You should try to log at the highest level
possible in your code. Otherwise, you will get duplicated information about the
situation inside your log, making the debugging a lot more complicated. Therefore, we
recommend that you use the following:

throw new NewException();

188 | Exceptions

Alternatively, you can use the following inside the same catch block, but not for both:

log.error("Exception trace: ", e);

Additionally, when logging information, try to use a single call to the system's log. As
your code grows bigger, there will be multiple processes working in parallel, thus a lot
of different sources will be issuing log commands:

log.debug("Exception trace happened here");
log.debug("It was a bad thing");

This will most likely not show up as two consecutive lines in the log, but as two lines
that are far apart. Instead, you should do something like this:

log.debug("Exception trace happened here. It was a bad thing");
When dealing with multiple exceptions, some being subclasses of others, you should
catch them in order, starting from the most specific. We have seen this in some of the

examples in this chapter when, for example, dealing with NoSuchFileException and
I0Exception. Your code should look like this:

try {
tryAnExceptionCode();

} catch (SpecificException se) {
doTheCatch1();

} catch (ParentException pe) {
doTheCatch2();

}

If you are not planning to catch the exception at all, but you are still forced to use the
try block for the code to compile, use a finally block to close whatever actions were
initiated prior to the exception. An example of this is opening a file that should be
closed prior to leaving the method, which will happen because of the exception:
try {
tryAnExceptionCode();
} finally {

closeWhatever();

Best Practices for Handling Exceptions | 189

The throw keyword is a very powerful tool, as you have noticed. Being able to redirect
exceptions allows you to create your own strategy for handling different situations and,
additionally, it means that you don't have to rely on the strategy provided by default by
the JVM. However, you should be careful with placing throw in some of the blocks when
catching. You should avoid using throw inside a finally block as it will mask the original
reason for the exception.

In a way, this is in line with the "throw early, catch late" principle when dealing with
Java exceptions. Imagine that you are doing a low-level operation that is part of a larger
method. For example, you are opening a file as part of a piece of code that will parse its
contents and look for patterns. If the action of opening the file fails due to an exception,
it is a better option to simply throw that exception to the following method for it to put
in context and be able to decide at a higher level how to proceed with the whole task.
You should handle the exceptions only when you can make final decisions at a higher
level.

We saw the use of printStackTrace() throughout the previous examples as a way

to see the full source of an exception. While it is very interesting to be able to see

that when debugging some code, it is also almost irrelevant when not being in that
mindset. Therefore, you should make sure to either delete or comment away all the
printStackTrace() commands you might have been using. Other developers will have to
determine where they want to put their probes when analyzing the code later if that is
ever needed.

In a similar manner, when dealing with exceptions in whatever way inside your
methods, you should remember to document things properly in your Javadoc. You
should add an @throws declaration to clarify what kind of exception arrives and
whether it is handled, passed over, or what:

/**

*

Method name and description

* @param input

>*

@throws ThisStrangeException when ...
*/
public void myMethod(Integer input) throws ThisStrangeException {

190 | Exceptions

Where Do Exceptions Come from?

Moving away from the more-pragmatic approach we have followed in this chapter, it

is now time to put things into perspective and understand where things come from in
the larger schema of the Java API. Exceptions, as mentioned in a previous section, hang
from the Throwable class, which is part of the java.lang package. They are on the same
level as errors (which we explained earlier). In other words, both Exception and Error
are subclasses of Throwable.

Only object instances of the Throwable class can be thrown by the Java throw statement;
therefore, the way we had to define our own exception implied using this class as a
point of departure. As stated in the Java documentation for the Throwable class, this
includes a snapshot of the execution stack at the time of creation. This allows you

to look for the source of the exception (or the error) because it includes the state of
computer memory at that time. A throwable object can contain the reason for which it
was constructed. This is what is known as the chained exception facility because one
exceptional event might be caused by a certain chain of exceptions. This is something
we have seen when analyzing the stack traces in some of the programs in this chapter.

Summary

We have taken a very hands-on approach to this chapter. We started by making your
code break in different ways, and then explained the differences between an error and
an exception. Then, we focused on ways to handle the latter, because those are the only
ones that should not make your program crash immediately.

Exceptions can be handled by catching or throwing. The former is done by observing
the different exceptions and defining different strategies to respond to the situations by
means of a try-catch statement. You have the option of either resending the exception
to a different class with the throw or responding within the catch block. Independently
of what strategy you follow, you can set the system to execute some final lines of code
after handling the exception using the finally block.

This chapter also included a series of recommendations on how to deal with exceptions
on a more conceptual level. You have a list of best practices that any professional
programmer will follow.

Finally, at the practical level, you worked on a number of exercises that guided you
through classic scenarios of dealing with exceptions, and you have seen different tools
that you can use to debug your code, such as logs and printStackTrace().

Libraries, Packages,
and Modules

Learning Objectives

By the end of this chapter, you will be able to:

This chapter introduces you to various ways of packaging and bundling Java code, along with

Organize your code into packages

Build a JAR file from your packages

Create an executable JAR file using Maven and other build tools
Include third-party open source libraries in your projects

Create a Java module to group your packages together

tools to help build Java projects.

194 | Libraries, Packages, and Modules

Introduction

Any sophisticated Java application will require many separate Java classes. Java provides
several ways to help you organize your classes, one of which is the concept of packages.
You can collect multiple compiled packages together into a Java library, or a JAR file.
Furthermore, you can use modules to provide a higher level of abstraction in your code,
exposing only those elements that you consider appropriate.

When you start to create larger applications, you'll want to take advantage of Java's
handy build tools, of which Maven and Gradle are the most popular. Build tools make it
easier to build large projects, that might depend on other projects and libraries. Build
tools also provide standard ways to run tests, as well as packaging the project.

Both Maven and Gradle help significantly with the inclusion of third-party open-source
libraries in your applications. There are thousands of such libraries available.

Organizing Code into Packages

Java packages together related classes, interfaces, enums (a data type that contains a
data type that contains a fixed group of constants), and annotations (contain metadata).
In other words, a package is a collection of Java types brought together under a
common name. Using a common name makes it easier to find code in larger projects,
and helps to keep your code separate from other, perhaps similar, code. For example,
more than one package might contain a class named Rectangle, so referring to the
appropriate package will allow you to specify which Rectangle class you're looking for.
Packages allow you to organize your code, which becomes more and more important as
you work on larger and larger applications.

Java's API includes hundreds of classes divided into packages, such as java.math and
java.net. As you'd expect, java.math has mathematics-related classes, and java.net has
networking-related classes.

Importing Classes

When you use Java classes from packages other than java.lang, you need to import
them using an import statement. The Java compiler imports all classes in the java.lang
package by default. Everything else is up to you.

Here's an example:
import java.time.DayOfWeek;

import java.time.LocalDateTime;

Organizing Code into Packages | 195

This code imports two types from the java. time package, DayOofWeek and LocalDateTime.
Now, DayOfWeek is a Java enum representing days of the week. LocalDateTime is a class
that holds a date and a time.

Once you import these types, you can use them in your code, as follows:

LocalDateTime localDateTime = LocalDateTime.now();

DayOfWeek day = localDateTime.getDayOfWeek();

System.out.println("The week day is: " + day);

Exercise 1: Importing Classes

In this exercise, we will display the current day of the week, and we will use the java.
time package to extract system date and time.

1.
2.
3.

In IntelliJ, select File, New, and then Project from the File menu.
In the New Project Dialog, select a Java project. Click Next.

Check the box to create the project from a template. Click on Command Line App.
Click Next.

Name the project chapter6.

For the project's location, click the button with three dots (...), and then select the
source folder you created previously.

Enter com.packtpub.chaptero6 as the base package name. We'll do more with
packages later in this chapter.

Click Finish.

IntelliJ will create a project named chapter@6, as well as an src folder inside
chaptere6. This is where your Java code will reside. Inside this folder, IntelliJ will
create subfolders for com, packtpub, and chaptero6.

IntelliJ also creates a class named Main:
public class Main {
public static void main(String[] args) {
// write your code here

b
b

Rename the class named Main to Example01.

196 | Libraries, Packages, and Modules

8. Double-click in the text editor window on the word Main.
9. Right-click and select Refactor | Rename... from the menu.
10. Enter Example@1 and press Enter.
You will now see the following code:
public class Example@1 {
public static void main(String[] args) {
// write your code here

3
b

Now enter the following code inside the main() method:

LocalDateTime localDateTime = LocalDateTime.now();
DayOfWeek day = localDateTime.getDayOfWeek();

System.out.println("The weekday is: " + day);

Intelli] should offer the option to import the two types, DayOfWeek and
LocalDateTime. If, for some reason, you click the wrong button, you can add the
following lines after the package statement and prior to the definition of the class:

package com.packtpub.chaptero6;
import java.time.DayOfWeek;
import java.time.LocalDateTime;

public class Example@1 {

11. Now, click on the green arrow just to the left of the text editor window that points
to the class name, Example01. Select the first menu choice, Run Example@1.main().

12. In the Run window, you'll see the path to your Java program, and then some
output such as this:

The weekday is: SATURDAY
You should see the current day of the week.

The package statement identifies the package in which this code resides. See the
Creating a Package section later in this chapter for more information on this topic.

Organizing Code into Packages | 197

Fully Qualified Class Names

You don't have to use import statements. Instead, you can use the fully qualified class
name, as shown here:

java.time.LocalDateTime localDateTime = java.time.lLocalDateTime.now();

The fully qualified name includes both the package and the type name. the following
example would also give us the same result as the Exercise 01, Importing Classes.

Example@2. java

package com.packtpub.chaptero6;

public class Example0d2 {
public static void main(String[] args) {

java.time.LocalDateTime localDateTime = java.time.LocalDateTime.
now();

java.time.DayOfWeek day = localDateTime.getDayOfWeek();

System.out.println("The weekday is: " + day);

}

Usually, importing classes and types makes your code easier to read and requires less
typing. In large projects, you will find very long package names. Placing these long
names in front of every declaration will make your code much harder to read. Most Java
developers will import classes, unless you have two classes with the same name but
stored in separate packages.

Note

Most IDEs, such as Intelli), can find most classes for you, and will offer to import the
class.

198 | Libraries, Packages, and Modules

Importing All Classes in a Package

You can import all classes in a package using an asterisk, *, to represent all the classes

in a package, as follows:

import java.time.*;

The asterisk is considered a wildcard character and imports all public types from the
given package, in this case, java.time. The Java compiler will automatically import any

types from this package that you use in your code.

Note

import only the types that you require.

Example@3. java shows how to use wildcard imports:
package com.packtpub.chaptero6;

import java.time.*;
public class Example03 {
public static void main(String[] args) {
LocalDateTime localDateTime = LocalDateTime.now();

DayOfWeek day = localDateTime.getDayOfWeek();

System.out.println("The weekend is: " + day);

}

Using the wildcard imports may bring in different classes to the ones you intended.
Some packages use common class names, such as Event, Duration, or Distance,
that may conflict with type names you want to use. So, if you use the wildcard
import, you may end up with the wrong class imported. Normally, it is best to

When you run this program, you will see output like the following, depending on the

day of the week:
The weekday is: MONDAY

Organizing Code into Packages | 199

Dealing with Duplicated Names

If, for some reason, you have to use two different classes with the same name, you'll
need to use the fully qualified class names.

When you work with third-party libraries, you may find that there are multiple classes
in your project with the same name. StringUtils, for example, is defined in multiple
packages in multiple libraries. In this case, use the fully qualified class names to
disambiguate. Here is an example:

boolean notEmpty = org.springframework.util.StringUtils.isNotEmpty(str);
boolean hasLength = org.apache.commons.lang3.StringUtils.haslLength(str);

These are two classes with the same basic name, StringUtils, that come from different
third-party libraries. You will learn more about third-party libraries later on in this
chapter.

Static Imports

Many classes define constants, usually defined as static final fields. You can use these
constants by importing the enclosing class and then referencing them from the class
name, as shown in Chapter 3, Object-Oriented Programming. For example, Java defines
the end of time with the MAX constant in the LocalDateTime class.

Example@4. java shows how to statically import LocalDateTime. MAX to see when the
universe will end, at least according to the company behind Java:

package com.packtpub.chaptero6;
import java.time.LocalDateTime;

public class Example@4 {
public static void main(String[] args) {
System.out.println("The end of time is: " + LocalDateTime.MAX);

}

When you run this program, you will see the following output:
The end of time is: +999999999-12-31T723:59:59.999999999

200 | Libraries, Packages, and Modules

Creating a Package

As discussed earlier, once you start writing more complex Java programs, you will want
to bundle your code together in a package. To create a package, you should observe the
following steps:

1. Name your package.
2. Create the appropriate source directory for the package.

3. Create classes and other types, as needed, in the new package.

Naming Your Package

Technically, you can name your Java packages anything you want, so long as you stick
to the rules for naming variables and types in Java. Don't use characters that Java will
interpret as code. For example, you cannot use a hyphen, -, in a Java package name. The
Java compiler will think you are performing subtraction. You cannot use Java's reserved
words, such as class, either.

Typically, you'll use your organization's domain name in reverse for your package
names. For example, if the domain name is packtpub.com, then your package names
would start with com. packtpub. You will almost always want to add descriptive names
after the domain part to allow you to organize your code. For example, if you were
making a medical application that pulled data from a fitness tracking device, you might
create packages such as the following:

¢ com.packtpub.medical.heartrate
¢ com.packtpub.medical. tracker
* com.packtpub.medical.report

¢ com.packtpub.medical.ui

Organizing Code into Packages | 201

Use names that make sense for your organization, as well as for the purpose of the
classes in the package.

The reason for using your organization's domain name is, in part, to prevent your Java
packages from having the same name as packages in third-party libraries. The domain
names are already made unique by domain name registrars. Using the domain names
in reverse makes for more understandable names for packages as you delve deeper and
deeper into the package tree, such as com.packtpub.medical.report.daily.exceptions.
Furthermore, this convention helps separate packages from multiple organizations.

Note

The classes provided with Java APIs reside in packages starting with java or javax.
Don't use these names for your packages.

Generally, you'll want to group classes, interfaces, enums, and annotations that are
related to the same package.
Directories and Packages

Java makes heavy use of directories to define packages. Every dot in a package name,
such as java.lang, indicates a sub-folder.

In the IntelliJ project you created for this chapter, you also created a package named
com. packtpub.chaptere6. Using IntelliJ's Project pane, you can see the folders created
for the package.

1. Click on the gear icon in the Project pane.

2. Uncheck the Compact Middle Packages option.

202 | Libraries, Packages, and Modules

3. You will now see a folder for com. packtpub.chaptere6, as shown in Figure 6.1:

g Project M= -
g - chapter06
& .idea
B out
src
com
packtpub
chapter06

&' Example01
&' Example02
&' Example03
€' Example04
» Chapter06.iml
Il External Libraries
o Scratches and Consoles

Figure 6.1: Intelli)'s Project pane can show the individual folders that make up a Java package

Note

The folder structure might vary based on the number of examples you have tried
out in this chapter.

Normally, you'll want to leave IntelliJ's Compact Middle Packages setting on, as it makes
the project organization easier to see at a glance.

Exercise 2: Creating a Package for a Fitness Tracking App

We've created a package, com.packtpub.chaptere6, that acts as a catch-all for examples
in this chapter. In this exercise, we'll create another package to gather together a
related set of classes.

When creating an application that interacts with a fitness tracker, you want a package
for classes that relate to tracking daily steps. Users will define a goal for the number of
steps they want to take in a day, say 10,000. The tracker will record the number of steps
taken so far, along with a collection of the daily totals:

Organizing Code into Packages | 203

1. In the IntelliJ Project pane for the chapter@6 project created previously, click the
gear icon. Make sure Flatten Packages and Hide Empty Middle Packages are both
selected.

2. Remain in the Project pane, and right-click on the src folder. Select New, and then
Package. Enter the com.packtpub.steps package name, and then click OK. This is
our new package.

3. Right-click on the com.packtpub.steps package, select New, and then select Java
Class. Enter the Steps class name.

4. Enter the following field definitions:

private int steps;
private LocalDate date;

5. Allow Intelli] to import java.time.LocalDate, or simply enter the following code
after the package statement and before the definition of the class:

package com.packtpub.steps;

import java.time.lLocalDate;

/**
* Holds steps taken (so far) in a day.
*/
public class Steps {
private int steps;
private LocalDate date;

3

6. Right-click within the class definition. Choose Generate... from the menu. Then,
select Constructor. Select both steps and the date, and then click OK.

You'll see a brand-new constructor, as follows:

public Steps(int steps, LocalDate date) {
this.steps = steps;
this.date = date;

204 | Libraries, Packages, and Modules

7. Right-click within the class definition again. Choose Generate..., and then select
Getter and Setter. Select both steps and the date, and then click OK. You'll now
see the getter and setter methods:

public int getSteps() {
return steps;

b

public void setSteps(int steps) {
this.steps = steps;

public LocalDate getDate() {
return date;

public void setDate(LocalDate date) {
this.date = date;

b

We now have our first class in the new package. Next, we'll create another class.

8. Right-click on the com.packtpub.steps package in the Project pane, select New,
and then select Java Class. Enter the DailyGoal class name.

9. Enter the following field definition:
int dailyGoal = 10000;
Note that we default the daily steps goal to 10,000 steps.

10. Right-click within the class definition. Choose Generate... from the menu. Then,
select Constructor, followed by dailyGoal, and then click OK.

11. Define the following method, which is used to determine whether a Steps object
has achieved the daily goal:

public boolean hasMetGoal(Steps steps) {
if (steps.getSteps() >= dailyGoal) {
return true;

3

return false;

Organizing Code into Packages | 205

12.

13.

14.

15.

16.

Right-click on the com.packtpub.steps package in the Project pane, select New,
and then select Java Class. Enter the WeeklySteps class name.

Enter the following fields:

List<Steps> dailySteps = new ArraylList<>();
DailyGoal dailyGoal;

You will need to import java.util.List and java.util.ArrayList.

Right-click within the class definition again. Choose Generate..., and then select
Getter and Setter. Select both dailySteps and dailyGoal, and then click OK. You'll
now see the getter and setter methods.

To use this new class, we'll add some methods to determine the best day (the day
with the greatest number of steps), total the steps, and format the output.

Enter the following method to determine the best day for steps:

public DayOfWeek bestDay() {
DayOfWeek best = DayOfWeek.MONDAY;

int max = 0;
for (Steps steps : dailySteps) {
if (steps.getSteps() > max) {
max = steps.getSteps();
best = steps.getDate().getDayOfWeek();

return best;

}

Now, enter the following method to total the weekly number of steps:

public int getTotalSteps() {
int total = 0;
for (Steps steps : dailySteps) {
total += steps.getSteps();

return total;

}

Note that both methods iterate over dailySteps. These two methods could be
combined into one.

206 | Libraries, Packages, and Modules

In a real fitness tracking application, you would probably have a smartphone or a
web user interface. For this example, though, we'll simply generate a string of the
results of the weekly steps.

17. Enter the following method:

public String format() {
StringBuilder builder = new StringBuilder();
builder.append("Total steps: " + getTotalSteps() + "\n");

for (Steps steps : dailySteps) {
if (dailyGoal.hasMetGoal(steps)) {
builder.append("YAY! ");
} else {
builder.append(" DR

builder.append(steps.getDate().getDayOfWeek());
builder.append(" ");
builder.append(steps.getSteps());

DayOfWeek best = bestDay();
if (steps.getDate().getDayOfWeek() == best) {
builder.append(" *xxxx BEST DAY!");

}
builder.append("\n");

return builder.toString();
}

This method uses StringBuilder and DayOfWeek, both part of the Java API. An
encouraging message, YAY!, appears with each day the user met the step goal. The
best day also gets an uplifting message.

18. To help initialize the weekly step data, we'll create a convenience method (a
method that exists to simplify our code and reduce typing):

public void addDailySteps(int steps, LocalDate date) {

dailySteps.add(new Steps(steps, date));

Organizing Code into Packages | 207

19. To test the entire step-track