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1.1 INTRODUCTION
Intelligent surveillance tracking system provides real-time and sustained monitoring of a person,

groups of people, objects, behavior, events, or environment. In recent years, there has been a rise in

the use of surveillance tracking system for numerous applications. They are widely used in military

applications, public monitoring, and commercial purposes. The main purpose of these kinds of

observation is to provide personal and public safety, identify crime, prevent criminal activity, and

enhance businesses and scientific research. Surveillance is extensively used for monitoring the

safety of people from street corners to crowded places such as railways, airports, restaurants, malls,

etc. It is also widely used in health-care services for observing patients and hospital facilities to

provide quality care and support emergency preparedness and emergency services [1,2]. A lot of

businesses use surveillance to boost their company productivity and profit by monitoring less their

employees and concentrating more on businesses.
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The benefits of a surveillance system can be applied in a number of ways other than security

purpose. They are applied for building smart home automation and smart city projects [3�5]. The

recent interest in mass surveillance for various causes introduces increased complexity in managing

the surveillance system. With the recent advancement of new disruptive technologies, reliable and

sophisticated surveillance tracking is built with multiple features. The surveillance tracking system

should be able to provide a fast, time-sensitive, reliable, and rapid recovery mechanism for moni-

toring and predicting possible dangerous situations. The scale and complexity of surveillance net-

works are approaching massive and rapid changes. With the rise in the proportion of Internet of

Things (IoT) enabled devices, sensors, mobile devices, smartphones, etc., the total Internet traffic

has grown tremendously. A number of devices communicating at the same time with the base sta-

tion increase and congestion occurs in the surveillance network. The amount of traffic exchanged

across devices is also huge. Managing huge volumes of data traffic generated from multiple moni-

toring and capturing devices is complex, because it has to be processed simultaneously and sent to

the appropriate base station or to the cloud for further investigation and data analytics. Because of

this, the traditional network architecture has huge complexity and challenges in handling the net-

work traffic and network management. Therefore improvising the intelligent and automated surveil-

lance tracking system requires the scientific and research community to provide solutions. To

address the challenges faced by traffic management, a new software defined networking (SDN)

technology can be integrated into the surveillance tracking system to enhance the data transmission

concerns that exist in the legacy surveillance network.

Section 1.2 presents in detail the concepts of the surveillance tracking system. Section 1.3 dis-

cusses the various communication technologies that are already in use to deploy the surveillance

system. Section 1.4 provides a brief overview of the SDN technologies and its benefits when com-

bined with the IoT. The novel framework of SDN-assisted IoT solution for building an effective

reliable surveillance system is discussed in Section 1.5. Finally, Section 1.6 provides the

conclusion.

1.2 SURVEILLANCE TRACKING SYSTEM
The surveillance tracking system is a system that is used for tracking humans, objects, vehicles,

etc. and monitoring environment for ensuring safety and avoiding intruders. The surveillance has

become a necessity for monitoring public and private spaces. Modern surveillance systems have

demanding requirements with enormous, busy, and complex scenes, with heterogeneous sensor net-

works. The real-time acquisition and interpretation of the environment and flagging potentially crit-

ical situations are challenging [6]. The implementation of the surveillance system has three major

phases. They are data capturing, data analysis, and postprocessing. In the data capturing phase, the

web traffic, audio/video, and VoIP contents are captured from the environment and given as input

to the preprocessing module for extraction. The data analysis phase comprises different steps in

processing to obtain an enhanced quality image. The steps are image preprocessing, object-based

analysis, event-based analysis, and visualization. In image preprocessing, video frames are

extracted from the captured visual. Then interframes are estimated and image encoding is applied.

The subregions of the image are identified by segmenting the image into partitions of different
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configurations in order to detect the person. The second phase of object-based analysis involves

person tracking, posture classification, and body-based analysis. Then, estimations are then updated.

The event-based analysis contains interaction modeling and activity analysis to explore the events

happening. Finally, in the visualization stage, based on the camera calibration, an enhanced quality

image is obtained. After the analysis phase, the extracted image is sent for postprocessing to take

further evaluations and generated actions. Fig. 1.1 depicts the three major phase of the surveillance

system.

1.2.1 CLASSIFICATION OF THE SURVEILLANCE

The surveillance tracking system can be broadly classified into three types. They are audio surveil-

lance, video surveillance, and Internet surveillance.

1.2.1.1 Audio surveillance
Audio surveillance involves listening to sounds and detecting various acoustic events. Audio sur-

veillance is applied to a wide range of applications like spying, patrolling, detective operations, etc.

A number of sophisticated devices are available to work under different circumstances. Some of

the listening devices are telephones, microphones, smartphones, wiretapping, voice recorders, and

acoustic sensors. These devices capture the sound and then are analyzed to detect unusual and

unsafe events [7]. The two important things in audio surveillance are feature extraction and audio

pattern recognition [8].

D
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FIGURE 1.1

Phases of surveillance tracking system.

31.2 SURVEILLANCE TRACKING SYSTEM



1.2.1.2 Video surveillance
Video surveillance is monitoring the behavior or activity in an area by capturing video images, and

these images are transferred to the automated system for further processing. The devices used are

cameras, sensors, high definition capability video capturing devices, and display monitors to view

the captured video in real time. Earlier days, the video surveillance system used simple video

acquisition and display systems. But with the advancement in technologies, modern video surveil-

lance tracking system has sophisticated devices for image and video acquisition and data proces-

sing. It can integrate image and video analysis algorithms for pattern recognition, decision-making,

and image enhancement. The major task in video surveillance is the detection and recognition of

moving objects, tracking, performing behavioral analysis, and retrieving of the important data of

concern [9]. Extracting visual from long footages is a laborious and time-consuming task.

Therefore visual analytics is required to process visual content without human intervention.

Various tools and technologies are integrated to understand the different dimensions of video sum-

marization, visualization, interaction, and navigation [10]. A lot of challenges exist in controlling

and monitoring the visual while streaming live from a large number of video surveillance

cameras [11].

1.2.1.3 Internet surveillance
Internet surveillance is monitoring online and offline computer activity. It involves monitoring the

exchange of digital data across the Internet. Here, monitoring is often carried out covertly by gov-

ernment agencies, service providers, and cybercriminals. As the Internet has become part of every-

day life, surveillance helps to identify, disrupt, and mitigate the misuse of the Internet by attackers

and criminals. Internet surveillance by multiple intelligent services has become a powerful tool in

monitoring individuals globally. But at the same time, the privacy and convenience of the users are

intruded [12]. There is a huge challenge in handling massive data volumes in terms of collection,

storage, and analysis.

1.2.2 APPLICATIONS

There are numerous environments and areas where the surveillance tracking system can be applied

to meet various needs. But some of the most commonly applied areas of surveillance are discussed

below. Fig. 1.2 enumerates each surveillance functionality.

1.2.2.1 Corporate surveillance
The corporate surveillance is monitoring the happenings in public places like shopping malls, bus

stands, railway stations, airports, restaurants, and people gathering using closed-circuit television

(CCTV) cameras to ensure the safety of the people. Here, the devices are positioned at a fixed loca-

tion to monitor only a particular area of interest [13]. In the earlier system, the data collected con-

tinuously from these CCTV cameras were observed by a human for any theft, or any untoward

incident. But with sophisticated technologies, automated intelligent algorithms are used for identifi-

cation, recognition, and image analysis. Extracting useful information from the long hours of video

footage is a tedious task. Also transferring the data to a data center or cloud for storage and
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retrieval for further processing is challenging and requires reliable connectivity between all the

devices. Delay in request or response may lead to fatal situations.

1.2.2.2 Public health surveillance
Public health deals with systematic health-related data collection, analysis, interpretation, and dis-

semination for providing quality health care of the public. This is also called syndrome surveil-

lance. It helps in diagnosing the disease and supporting real-time assistance. Timely dissemination

of data helps to prevent and control the disease from further spreading [14]. The surveillance net-

work should provide accurate information even from distant geographical locations to prevent the

outbreak of disease. It also involves the observation of patients for symptoms and vital signs, inter-

prets clinical changes, and notifies the response team to offer treatment to patients.

1.2.2.3 Vehicular surveillance
Vehicular surveillance involves monitoring and tracking of vehicle movements. Not only that, it

has to monitor the pedestrians on the road. The task is to have control of the transportation network

and ensure safety and hassle-free driving [15]. Now with autonomous car technology, the surveil-

lance tracking system should be effective and intelligent in order to ensure no accidents.

Continuous monitoring of the environment is required to avoid congestion and take the optimal

path for reaching the destination [16]. Surveillance tracking systems collect information about the

vehicle location, amount of fuel quantity, tire pressure, engine temperature, vehicle speed, driver’s

activities, etc. The collected data are sent to the server via mobile or satellite for traffic analysis

and evaluation purposes [17]. This surveillance when implemented effectively will help to avoid

accidents and pollution, and provide a fast and safe journey.

In a rapidly evolving surveillance tracking system, several challenges arise with respect identi-

fying, tracking, and processing. Devising complex models with an intricate set of equipment makes

the tracking system complex and challenging. The most common challenges are discussed in

Section 1.2.3.

FIGURE 1.2

Surveillance functionality.
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1.2.3 CHALLENGES

There has been an unprecedented level of growth in the usage of a surveillance tracking system for

a good cause, such as public health surveillance, disease surveillance, vehicle surveillance, animal

surveillance, marketing monitoring surveillance, and so on. But along with it, there are few chal-

lenges that are essential to be addressed in the surveillance tracking system. This section briefs on

the various challenges faced by the surveillance tracking system.

1.2.3.1 Dynamic processing
This is one of the most important factors when it comes to the surveillance tracking system.

Despite the advancement in various Internet technologies, dynamic real-time delivery of data to the

responders is still a challenge. Even if the surveillance devices collect from different sources in

real-time but if it cannot deliver the processed data on time then the surveillance will not be effec-

tive for handling emergency and critical situations.

1.2.3.2 Visual processing
Video processing is essential in order to understand the activity going on in the environment. To

gain knowledge on the visual, the foreground visual and the background visual have to be extracted

[18]. New advent methodologies are required to get trajectory models, categorization, recognition,

behavior analysis, etc. The validity and accuracy of a surveillance system can be improved by add-

ing video analytics and cloud infrastructure. But all this introduces new challenges in terms of cost

and response time.

1.2.3.3 Data management
As the surveillance system grows with a collection of heterogeneous devices, managing the data

collected continuously from all the devices is challenging. Extracting, transmission, and retrieval of

important data from the huge volume of raw data are difficult and time-consuming. If the data col-

lected are not properly analyzed, then deep insight into the happening cannot be understood and

intelligent reasoning may not be available to offer effective solutions for emergency and critical

situations.

1.2.3.4 Security and privacy
In most of the surveillance environments, the end user is unaware of being monitored. When indivi-

duals offer their personal information, it can be misused or used for threatening. Individual freedom

is interrupted in some cases if the surveillance data collected end up with the wrong person hands

and then the security and privacy of the individuals are lost. Though different surveillance system

has a different regulation mechanism for ensuring the safety of the public, there is always caution

on the usages of personal and private information.

1.3 WIRELESS COMMUNICATION TECHNOLOGIES
A number of technologies are utilized to facilitate the communication of captured data in the sur-

veillance tracking system. Most often, the wireless low-cost portable technologies are used because
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of its convenience, cost, and easy availability. The various wireless technologies that enable sur-

veillance are radiofrequency identification (RFID), near field communication (NFC), global posi-

tioning system (GPS), Bluetooth, ZigBee, and Wi-Fi. Fig. 1.3 shows the wireless technologies that

are most commonly used.

• RFID: It is used to identify and track tags attached to the objects. These tags communicate

using electromagnetic fields and need not be in the line of sight of the reader. These tags are

widely used in industries for tracking objects and assets. They can be attached to automobiles,

pet animals, pharmaceuticals, clothing, etc. to locate them easily.

• NFC: It is a short-range wireless technology that is used in electronic devices such as a

smartphone, sensors, credit cards, and so on. This NFC enabled devices help to identify

documents and objects within their communication range.

• Bluetooth: It is a technology that uses radiofrequency for transmitting data between Bluetooth

enabled devices. It is low-power high-speed wireless technology that is used in phones,

computers, networking devices, printer, mouse, etc. This technology is also used in a

surveillance system for short-range transmission. It is widely used in the indoor environment for

tracking customers, studying the movement of objects and individuals [19].

• ZigBee: It is a standard that is used in personal area network for home automation. It is mainly

designed to enable low-cost, low-power standard for monitoring and controlling objects with a

FIGURE 1.3

Wireless communication technology.
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small geographic location. This technology is used along with sensors and IoT devices for

transmission of data.

• GPS: It uses satellite communication to find the ground position of the object. The GPS

receivers are installed in smartphones, automobiles, and other handheld devices. It is used as a

navigation system by the civilians. It is used widely for vehicular tracking and to provide

navigation and driving instructions.

• Wi-Fi: It is a wireless technology that uses radio waves and provides high-speed connectivity. It

enables devices to connect to the Internet seamlessly. The surveillance tracking system uses Wi-

Fi technology for transferring the captured data from the device to the display monitors,

processing module, and then even stored in the cloud for long-term analysis. Internet

surveillance can be carried out by probing Wi-Fi traces in any infrastructure to collect the

individual’s data, movements, environment, resource utilization, etc.

Though these wireless technologies play a vital role to establish communication across small

and large networks, still technical difficulty exists in fulfilling the accessibility requirements and

the recurring challenges of QoS, reliability, and medium access.

1.4 SOFTWARE DEFINED NETWORKING
As most of the time the wireless communication medium is utilized for transferring data, the reli-

ability is not effectively ensured. When the huge volume of video footage is streamed across the

network for taking a constructive decision, it is mandatory for the network to support fast transmis-

sion and quick response to actions. The existing system of operation is very rigid and vendor-

specific. Customizing the working of devices is very hard and complex as it requires proprietary

middleware software to reconfigure them. The next-generation surveillance tracking system can be

built with a new network architecture by using SDN to improve parameters like network conges-

tion, throughput, latency, and QoS parameters.

SDN is a new paradigm that was designed to provide network operators with more control over

how traffic is forwarded from one place to another place. The idea of the SDN is to provide a sepa-

ration between the control plane and the forwarding plane. It simplifies network management by

providing global network visibility. SDN architecture has three layers. They are control plane layer,

data plane layer, and application layer. Fig. 1.4 illustrates the responsibility of each layer.

The centralized controller has a global view of the entire network topology. The controller deci-

des based on the request that comes from the forwarding plane devices. The network intelligence

resides in the centralized controller. Therefore if any reconfigurations are required, then it is suffi-

cient to configure only the controller and not all the forwarding plane devices. The forwarding

plane receives instructions from the controller and performs only forwarding of the traffic. The

administrator is able to customize the policies and protocols across the network devices via the cen-

tralized controller. The SDN supports scalability without affecting the reliability and performance

by offering network programmability. The resource utilization and energy management can be

improved by dynamic autoreconfiguration of the devices from the controller. The SDN offers traf-

fic engineering capabilities for different types of traffic and enables congestion-free reliable trans-

mission. The key benefits of integrating SDN with IoT (SDIoT) are shown in Table 1.1.
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1.5 SOFTWARE DEFINED SURVEILLANCE TRACKING SYSTEM
Today’s surveillance tracking system requires the underlying network architecture to behave in real

time and to scale up to a large amount of traffic. The network architecture should be capable of

classifying a variety of traffic types for different applications, and to provide an appropriate and

specific service for each traffic type in a very short time period such as within milliseconds. Highly

efficient network management is desirable to significantly improve resource utilization for optimal

system performance when it encounters the rapid growth and demand for massive-scale processing

with audio and video data. To augment these features, a novel SDN-based traffic engineering

framework for SDIoT is proposed.

FIGURE 1.4

Software defined networking layers.

Table 1.1 Benefits of software defined networking with Internet of Things (SDIoT).

Key Benefits of
SDIoT Description

Global visibility The centralized controller has a global database and has knowledge of the entire network

topology. It knows the current status and behavior of the network

Programmability A well-defined API is available to program these applications based on the requirements.

The forwarding plane devices can be programmed to get the desired network behavior

Dynamic

management

The traffic flow can be steered dynamically by the controller to offer flexibility based on

decision policies and rules

Reduce complexity Simplifies network management by enabling autoreconfigurations, agility, and flexibility
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1.5.1 TRAFFIC ENGINEERING

SDN traffic engineering scheme can be utilized to adaptively and dynamically manage or route

traffic in a network to accommodate different traffic patterns and improve network efficiency and

performance, and ensure high quality of service. Traffic engineering is a method of optimizing the

performance of a telecommunication network by dynamically analyzing, predicting, and regulating

the behavior of data transmitted over that network.

A major problem with the underlying surveillance network is the dynamic nature of the network

applications running on all the connected devices and their environments [20,21]. This means that

the performance requirements of the data flows exchanged across the surveillance network vary

over time. Therefore to ensure the quality of service (QoS) and real-time delivery of data, traffic

engineering schemes have to be incorporated with the SDIoT [22]. The various objectives of apply-

ing traffic engineering principles are given in Fig. 1.5.

Traffic
engineering
objectives 

Optimal load
balancing 

Packet loss
minimization

QoS
maximization

Energy
consumption
minimization

Optimize
network/resource

utilization 

Congestion
minimization

End-to-end
delay

minimization

FIGURE 1.5

Traffic engineering objectives.
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1.5.2 PROPOSED TRAFFIC ENGINEERING FRAMEWORK

The challenges that are especially faced in video surveillance can be overcome to a considerable

extent by implementing the traffic engineering mechanism. The working of the surveillance net-

work with the SDN integrated is depicted as a block diagram in Fig. 1.6. The devices that form the

surveillance systems are connected by means of a wired or wireless medium. Initially, the devices

are configured with default settings and policies based on the requirements. There is a centralized

controller representing the control plane and has the knowledge of the devices that are part of the

surveillance network. The captured data traffic can be in the form of web, audio, or video traffic.

The current traffic flow statistics and network status are communicated to the controller periodi-

cally. This keeps the controller updated on the network status. The traffic engineering principles

are applied by the controller. Based on the various application demands that arrive from the surveil-

lance tracking system, the devices are auto reconfigured in real time by the controller to accommo-

date new demands. The reconfiguration of devices involves modification to the flow table entries

in data plane devices. On applying the traffic engineering mechanism, the forwarding device flow

table entries are dynamically updated. If there are no changes to the flow table, then the existing

policies are applied for routing the traffic. The continuous monitoring by the SDN enabled control-

ler helps to dynamically find optimal path for traffic.

In the earlier days, the captured audio visual and video visual of the events were recorded. To

analyze and understand, the recorded video was replayed and manually checked by personnel. But

in modern surveillance tracking system, the visuals are continuously and systematically sent to the

Web, Video,
and VOIP

traffic

Flow and
network
statistics

Application
demands

Resource
status

Network
policy

Capturing the
surveillance data

Global
topology

Surveillance network
deployment

Initialization of setup
parameters for all

monitoring devices

IoT devices,
sensors, and
audio/video

capturing devices

Apply traffic
engineering
mechanism

Controller installs
rules in the

forwarding devices

Monitor and
analyze the traffic

flow

Update the existing
flow table entries with

alternate routes and
modify flow
specification 

If
reconfiguration

requiredNo changes to
flow table entries

Forward the traffic
through the optimal

path

Loop until the end of flow

No Yes

Loop

FIGURE 1.6

Block diagram of implementing TE mechanism. TE, Traffic engineering.
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remote server and stored for further long-term analysis. Sometimes the captured recording is sent

either to the local or remote server for an immediate evaluation of footage to take corrective actions

on time. Therefore managing traffic flow plays a very important role in ensuring reliability.

Fig. 1.7 illustrates the traffic engineering framework for SDIoT. The controller has the capacity

to perform traffic classification, flow routing, traffic policing, flow scheduling, load balancing,

resource allocation, and energy management. Based on the control decisions made by the control-

ler, the surveillance devices are programmed dynamically. The new and updated policies are

installed into the devices by the controller.

Since a wide range of traffic profiles in dynamic is part of the network, a more accurate traffic

classification based on flow features is required to guarantee the quality of service [23]. The SDN

controller with traffic classification algorithm helps in traffic flow characterization and applying

appropriate routing mechanism.

When forwarding traffic is computed using the open shortest path first (OSPF) algorithm, the

same path will be always used to route the traffic from the surveillance devices to the storage or

analysis server even though there are other nonutilized links. So certain links are overutilized lead-

ing to congestion, whereas other links are not at all used. Therefore to choose an optimal path,

SDN is combined with the OSPF protocol [24]. To achieve load balancing links, weights and the

flow-splitting ratio of the surveillance devices are dynamically changed. The controller device can

arbitrarily split the flows coming into the intermediate forwarding devices to share the load on

other available links and this minimization link utilization.
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FIGURE 1.7

Traffic engineering in software defined networking with Internet of Things.
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The two important routing metrics that are essential for routing traffic generated from multime-

dia applications are bandwidth and path delay. To ensure reliable communication of multimedia

traffic across the devices in the entire surveillance network, the bandwidth constraints of the links

have to be considered while computing the best route. It is recommended to always choose the path

with the smallest delay route after eliminating all links with insufficient bandwidth [25]. The bottle-

necked links are marked as critical and are not used until all the traffic in that link is delivered to

the receiver. Links that have sufficient bandwidth is chosen for routing the traffic. Dynamic routing

of traffic is possible with SDN implemented [26]. The newly arriving traffic flow should follow a

route that does not interfere too much with routes that may be critical to satisfy future traffic

demands. The path with the most available bandwidth is computed. If there is more than one such

path, the path with less number of hops is considered optimal. It tries to load network links evenly

such that no links are overloaded with too many traffic.

As modern surveillance consists of many IoT devices and low-power and computational capa-

bility devices with limited resources; the traffic engineering principles are enabled on the controller.

The controller analyzes the traffic flow and dynamically controls the routes by predicting the flows

types [27]. The predictable flows are sent by finding the path with sufficient bandwidth. The

unpredictable flows follow the load balancing method, where the traffic is sent over multiple links

so that links are not congested. To handle huge volumes of traffic, flows are allowed to pass

through at least one SDN enabled devices such that the controller will have control over the devices

[28] and flow routing is enhanced. This method reduces the maximum link utilization and mini-

mizes packet loss and latency.

The controller can leverage the concept of segment routing (SR) [29] by dictating the behavior

of the traffic flow. It works similar to source routing wherein the list of the intermediate devices

through which the traffic has to forwarded is listed as segment identifier (SID) into the packet by

the controller. The SR can be still improved by including the SID of the devices along a path that

has sufficient bandwidth [30].

To enhance load balancing feature in surveillance system, the adaptive multipath techniques can

be used [31]. The availability of the link and its bandwidth is used for path selection. Usually flows

arrive at different times from several devices across the network. When the traffic flows arrive

sequentially to avoid congestion, the controller calculates the traffic splitting ratio to find the con-

sumed bandwidth of the link. The bandwidth is updated for the next round of flow processing [32].

Thus flows are forwarded incrementally and congestions are avoided. This method of forwarding

results in high throughput, better load balancing, and minimizing link utilization.

As the surveillance system consists of low-power devices, it is essential to consider the energy

consumption of the devices to provide reliable services. Since the surveillance tracking system has

heterogeneous devices, each of them has different energy capacity. It is required of the controller

to have knowledge of the device energy consumption status. The device should have at least the

minimum energy level to become part of the network. The device with sufficient energy can

actively involve in the transmission of the data. Because the information has to be sent reliably

across the network, the controller has to ensure the energy level of each to become part of the net-

work [33].

Fault tolerance is another important property of any network. Traffic engineering helps to

reduce service degradation that occurs due to congestion and failure, for example, link or node fail-

ure. Implementing traffic engineering ensures that if a failure exists in the network, still the
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requested data can be delivered to the destination via alternate available routes. To address the sin-

gle point of failure of the controller, distributed multiple controllers are used [34]. To dynamically

perform traffic recovery, traffic engineering is applied in multidomain networks. SR scheme

dynamically recovers traffic flows disrupted by link or node failures by minimizing the depth of

the required segment list. Merging the protected path with a backup path as close as possible to the

failure point reduces signaling overhead [35]. The best solution to guarantee fast recovery is rerout-

ing disrupted traffic from the failed node.

To achieve the best result in terms of performance, the software defined traffic engineering

mechanism is integrated along with IoT for the surveillance tracking system. This improves signifi-

cantly the traffic management by improving throughput, link utilization, reducing congestion, and

drop loss. It improves the robustness of the network by reducing service degradation and building a

most reliable surveillance tracking system.

1.6 CONCLUSION

The surveillance tracking system has gained momentum in recent years because of the wide pro-

spects of its usage in various application fields. In this paper, the surveillance tracking system has

been explored to enhance its working operation. As the traditional network architecture is not flexi-

ble to handle the huge volume of surveillance video traffic and dynamic traffic demands, the SDN

technology is integrated along with IoT. The novel framework for SDIoT was proposed, which will

help to handle unpredictable huge flow of traffic from multiple heterogeneous devices. The traffic

engineering principles support dynamic routing of traffic for improving performance in terms of

link bandwidth utilization, energy consumption, and optimal path selection. For future work, this

framework will be further investigated to implement the surveillance tracking system for multiple

potential applications.

REFERENCES
[1] Y. Yin, Y. Zeng, X. Chen, Y. Fan, The Internet of Things in healthcare: an overview, J. Ind. Inf. Integr. 1

(2016) 3�13.

[2] N. Haering, P.L. Venetianer, A. Lipton, The evolution of video surveillance: an overview, Mach. Vis.

Appl. 19 (5�6) (2008) 279�290.

[3] M. Alaa, A.A. Zaidan, B.B. Zaidan, M. Talal, M.L.M. Kiah, A review of smart home applications based

on Internet of Things, J. Netw. Comput. Appl. 97 (2017) 48�65.

[4] R. Kunst, L. Avila, E. Pignaton, S. Bampi, J. Rochol, Improving network resources allocation in smart cit-

ies video surveillance, Comput. Netw. 134 (2018) 228�244.

[5] A.H. Alavi, P. Jiao, W.G. Buttlar, N. Lajnef, Internet of Things-enabled smart cities: state-of-the-art and

future trends, Measurement 129 (2018) 589�606.

[6] P. Remagnino, S.A. Velastin, G.L. Foresti, M. Trivedi, Novel concepts and challenges for the next gener-

ation of video surveillance systems, Mach. Vis. Appl. 18 (3�4) (2007) 135�137.

[7] P.K. Atrey, N.C. Maddage, M.S. Kankanhalli, Audio based event detection for multimedia surveillance,

Event (Lond.) (2006) 813�816.

14 CHAPTER 1 RELIABLE SURVEILLANCE TRACKING SYSTEM

http://refhub.elsevier.com/B978-0-12-816385-6.00001-5/sbref1
http://refhub.elsevier.com/B978-0-12-816385-6.00001-5/sbref1
http://refhub.elsevier.com/B978-0-12-816385-6.00001-5/sbref1
http://refhub.elsevier.com/B978-0-12-816385-6.00001-5/sbref2
http://refhub.elsevier.com/B978-0-12-816385-6.00001-5/sbref2
http://refhub.elsevier.com/B978-0-12-816385-6.00001-5/sbref2
http://refhub.elsevier.com/B978-0-12-816385-6.00001-5/sbref2
http://refhub.elsevier.com/B978-0-12-816385-6.00001-5/sbref3
http://refhub.elsevier.com/B978-0-12-816385-6.00001-5/sbref3
http://refhub.elsevier.com/B978-0-12-816385-6.00001-5/sbref3
http://refhub.elsevier.com/B978-0-12-816385-6.00001-5/sbref4
http://refhub.elsevier.com/B978-0-12-816385-6.00001-5/sbref4
http://refhub.elsevier.com/B978-0-12-816385-6.00001-5/sbref4
http://refhub.elsevier.com/B978-0-12-816385-6.00001-5/sbref5
http://refhub.elsevier.com/B978-0-12-816385-6.00001-5/sbref5
http://refhub.elsevier.com/B978-0-12-816385-6.00001-5/sbref5
http://refhub.elsevier.com/B978-0-12-816385-6.00001-5/sbref6
http://refhub.elsevier.com/B978-0-12-816385-6.00001-5/sbref6
http://refhub.elsevier.com/B978-0-12-816385-6.00001-5/sbref6
http://refhub.elsevier.com/B978-0-12-816385-6.00001-5/sbref6
http://refhub.elsevier.com/B978-0-12-816385-6.00001-5/sbref7
http://refhub.elsevier.com/B978-0-12-816385-6.00001-5/sbref7
http://refhub.elsevier.com/B978-0-12-816385-6.00001-5/sbref7


[8] B. Uzkent, B.D. Barkana, “Pitch-range based feature extraction for audio surveillance systems,” in:

IEEE Computer Society, 8th International Conference on Information Technology: New Generations,

2011, 476�480.

[9] V. Tsakanikas, T. Dagiuklas, Video surveillance systems-current status and future trends R, Comput.

Electr. Eng. 70 (2018) 736�753.

[10] A.H. Meghdadi, P. Irani, Interactive exploration of surveillance video through action shot summarization

and trajectory visualization, IEEE Trans. Vis. Comput. Graph. 19 (12) (2013) 2119�2128.

[11] M. Guennoun, S. Khattak, B. Kapralos, K. El-khatib, Augmented Reality-Based Audio/Visual

Surveillance System, in: IEEE International Workshop on Haptic Audio visual Environments and

Games, 2008, pp. 18�19.

[12] D. Potoglou, F. Dunkerley, S. Patil, N. Robinson, Public preferences for Internet surveillance, data reten-

tion and privacy enhancing services: evidence from a Pan-European study, Comput. Hum. Behav. 75

(2017) 811�825.

[13] K. Michael, R. Clarke, Location and tracking of mobile devices: Überveillance stalks the streets,
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2.1 INTRODUCTION
Vehicular ad hoc networks (VANETs) are comprised of moving vehicles and stationary roadside

units (RSUs) equipped with sophisticated sensors and dedicated short-range wireless communica-

tion devices. The vehicles can interchange information among themselves, called vehicle-to-vehicle

(V2V) communication, or with the roadside infrastructure elements like RSUs, called vehicle-to-

infrastructure (V2I) communication. Intervehicular (V2V) communications are of particular inter-

est, since for critical road safety applications, real-time information about potential dangers, such

as weather conditions, road conditions, or traffic congestion, can be communicated among the vehi-

cles. Moreover, advanced safety alerts like electronic brake light warning, lane change warning,

blind spot warning, forward collision warning, or control loss warning can further assist in reducing

road traffic crashes. In each of these scenarios, vehicles share basic information such as location

coordinates, direction of travel, speed, braking status, and loss of stability. It is essential to maintain

a secure authenticated channel for communication among vehicles, since authentic information can

assist traffic control units to make critical decisions in dispensing emergency services with a mini-

mal delay. Even for applications like truck platooning, maliciously inserted data, like a wrong brak-

ing status, can lead to collisions.

As for comfort applications, V2V can facilitate file sharing, message passing, Internet access,

and even multiplayer network games. Ensuring data privacy is a prime concern in such applica-

tions, and it is imperative to establish secure authenticated channels to effectively utilize these

applications to enhance travel comfort. To this end, we propose an identity-based authenticated key

agreement (ID-AKA) protocol for establishing a shared secret key between two authentic entities,

in a VANET. The system architecture is comprised of a trusted authority called the key generation

center (KGC), vehicles with on-board units (OBUs), and RSUs. The general architecture of a

VANET and few of its applications are illustrated in Fig. 2.1.
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The trusted authority, which also serves as the KGC, registers each vehicle (offline) after vali-

dating the identity and license of the driver and generates the unique vehicle registration number.

Since the registration number is unique within a country (in most cases), it can serve as the vehi-

cle’s pseudonym identity. After registration, the KGC issues the private key corresponding to the

vehicle’s identity. The private key along with the system public parameters will be incorporated

into the memory unit of the vehicle’s OBU. Furthermore, the embedded microcontroller in the

OBU performs various computations including cryptographic operations.

2.1.1 RELATED WORK

The initial key agreement protocols in VANETs ensured public key authenticity using the public

key infrastructure (PKI) model. The implication is that each vehicle or RSU must obtain the valid

certificate of its peer, perform certificate verification, and then negotiate a basic Diffie�Hellman

session key to communicate among each other or to obtain value-added services from various ser-

vice providers [1�3]. To prevent vehicle tracking by malicious entities and to preserve anonymity

while accessing services, several existing protocols require frequent pseudonym changes. This

requirement further increases the computational and storage overhead of the system, since the

pseudonym-related certificate of each entity must be updated at regular intervals [4,5]. To eliminate
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FIGURE 2.1

General architecture of a vehicular ad hoc network and its applications.
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the need for generating numerous certificates, Li et al. [6] proposed a key agreement scheme for

intervehicular communications, using blind signatures. However, the protocol is deemed to be inef-

ficient, since the underlying cyclic group requires a composite modulus comprising of four primes.

Studies prove that the size of the composite modulus must be at least 4096 bits, to prevent factoring

attacks [7,8]. Subsequently, several protocols were designed to facilitate RSU-aided distributed cer-

tificate generation services [1,9,10], to reduce the workload of the central certificate authority.

These protocols require expensive bilinear pairing computations for certificate generation, initial

vehicle registration, and/or key agreement, rendering them inefficient. Furthermore, the partially

identity-based key agreement schemes in [11] and [12] require bilinear pairings for vehicle registra-

tion and symmetric key establishment, respectively. It is to be noted that none of these protocols

are analyzed in a formal security model. Apparently, a heuristic analysis is insufficient to guarantee

security against a wide range of attacks such as basic impersonation (BI) attack, key compromise

impersonation (KCI) attack, unknown key share (UKS) attack, lack of perfect forward secrecy

(PFS), and lack of ephemeral secret key leakage (ESKL) resilience.

Recently, Dang et al. (DXC) [13] proposed an efficient extended CK (eCK) [14] secure ID-

AKA scheme for securing V2V communications, based on the gap Diffie�Hellman (GDH)

assumption. The authors claim that the protocol ensures provable security against BI, KCI, and

UKS attacks. However, a cryptanalysis of the protocol reveals several flaws in the security proof.

We illustrate how an active adversary can exploit these vulnerabilities to unleash a successful KCI

attack. Subsequently, we propose an efficient eCK secure ID-AKA protocol, based on the GDH

assumption, with provable security against all the aforementioned attacks. As in [13], the proposed

scheme does not provide anonymity. The intuition is that the critical information being inter-

changed in a V2V communication is acceptable, only if the sender can be authenticated.

Furthermore, the ring signature generation and verification in anonymous schemes increase the

computational complexity of these highly dynamic, short-term intervehicular communications.

Moreover, since the peers establish a secure authenticated channel by negotiating a session key, the

messages exchanged between them remain unintelligible to external adversaries. Even if an attacker

obtains the identities of the communicating peers, the session key cannot be computed, unless the

adversary additionally acquires both the static private key and the ephemeral private key of at least

one of the communicating peers.

The rest of the chapter is organized as follows. In Section 2.2, we discuss the hardness assump-

tions used for the protocol design as well as the desirable security attributes of AKA protocols.

Section 2.3 provides a brief overview about the general adversarial capabilities and simulation of the

eCK security model. The proposed ID-AKA protocol is presented in Section 2.4, and the security

proof is provided in Section 2.5. Section 2.6 illustrates the security vulnerabilities in the DXC’s ID-

AKA scheme. Section 2.7 provides a comparative analysis of the security and efficiency of the pro-

posed scheme with other ID-AKA protocols. The concluding remarks are provided in Section 2.8.

2.2 PRELIMINARIES
This section introduces the basic hardness assumptions used for the protocol design as well as the

desirable security attributes of AKA schemes.
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2.2.1 HARDNESS ASSUMPTIONS

For a given security parameter λ, let G be a cyclic additive group of prime order q, defined by a

point addition operation over an elliptic curve EðFpÞ. Let P be the generator of G. We use the nota-

tion AR to denote “chosen uniformly at random.”

• Computational Diffie�Hellman (CDH) problem: For unknown values x; y ARZ
�
q , given the tuple

ðP;X5 xP; Y 5 yPÞ, no probabilistic polynomial time (PPT) adversary can compute xyP.

• Decisional Diffie�Hellman (DDH) problem: For unknown values x; y; c ARZ
�
q , given the tuple

ðP;X5 xP; Y 5 yP;C5 cPÞ, no PPT adversary determines whether xyP5 cP.

• GDH problem: Consider a DDH oracle DDHð�; �; �Þ, which, on input ðX5 xP;Y 5 yP;C5 cPÞ,
returns 1 if xyP5 cP and 0 otherwise. No PPT adversary can solve the CDH problem to

compute xyP, even if it is additionally provided with a DDH oracle.

Let DLOGðÞ:G-Z�
q denote a function that maps a point xPAG to its discrete logarithm value xAZ�

q .

2.2.2 DESIRABLE SECURITY ATTRIBUTES OF AUTHENTICATED KEY AGREEMENT
PROTOCOLS

AKA protocols are required to satisfy the following security criteria.

• Known key security (KKS): The protocol generates a unique session key for each session. An

adversary in possession of session keys related to other sessions cannot recover the current

session key.

• No key control: Each participating entity equally contributes information toward the creation of the

shared key. Neither of the participants can force the session key in part or in its entirety upon its peer.

• BI attack resilience: An adversary cannot impersonate a legitimate user, unless it obtains the

latter’s static private key.

• KCI resilience: An adversary in possession of an entity’s static private key cannot impersonate

other uncompromised users in the system, to the compromised entity.

• Weak perfect forward secrecy (wPFS): Any adversary that has not actively participated in the

generation of the ephemeral private keys corresponding to a previously established session

cannot recover the session key, even if it compromises the static private keys of both the

communicating peers of that session.

• ESKL resilience: An adversary in possession of both the ephemeral private keys corresponding

to a session cannot compute the session key, unless it additionally compromises the static

private key of at least one of the concerned peers.

• UKS attack resilience: An entity cannot be coerced into thinking that it is sharing the key with

an adversary, when the key is actually being shared with another honest peer.

2.3 SECURITY MODEL
AKA protocols are deemed to be suitable for practical applications, only if they are proven secure

in a formal security model. Bellare and Rogaway (BR) [15] proposed the first formal security
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model for AKA protocols based on the indistinguishability game. The BR model and its variants

[16], [17] capture KKS; however, these models fail to capture KCI attacks, ESKL attacks, and

wPFS property. Canetti and Krawczyk (CK) [18] proposed the CK security model that empowers

the adversary with session state reveal and corrupt queries. Nevertheless, since these queries cannot

be issued against the test session, the CK model fails to capture ESKL and KCI attacks [19]. In

order to ensure provable security against KCI and ESKL attacks, Lamacchia et al. [20] proposed

the eCK model that allows the adversary to issue any nontrivial combination of static private key

reveal queries, as well as ephemeral private key reveal queries, even for the test session. Therefore,

to ensure a maximum-exposure-resilience property, the proposed protocol is analyzed based on the

eCK security model. A brief overview of the eCK security model is provided below.

2.3.1 PARTICIPANTS

The participating entities are defined by a finite set U of fixed size n. Each participating peer ui
with an identity IDi, static private (public) key diðPiÞ, and ephemeral private (public) key

tiðTi; respectivelyÞ is modeled as a PPT machine. Each peer can simultaneously execute multiple

instances (sessions) of the protocol, in parallel. Each entity can be activated by any one of the fol-

lowing messages: (1) ðI; IDi; IDjÞ; or (2) ðR; IDi; IDj;MiÞ. If the entity IDi is activated by the first

message, it takes up the role of the session initiator; otherwise, it acts as the responding peer.

2.3.2 SESSION

Each session is defined by the session identifier Π5 ðrole; IDi; IDj;Mi;MjÞ, where role is the role

(initiator I or responder R) of the session owner, IDi is the identity of the session owner, IDj is the

identity of the peer, Mi is the message sent by IDi, and Mj is the message received by IDi. Two ses-

sions Π5 ðrole; IDi; IDj;Mi;MjÞ and Π� 5 ðrole�; ID�
j ; ID

�
i ;M

�
j ;M

�
i Þ are said to be matching, if

role 6¼ role�, IDi 5 ID�
i ; IDj 5 ID�

j , Mi 5M�
i , and Mj 5M�

j . For instance, two sessions

Π5 ðI; IDi; IDj; ðRi;TiÞ; ðRj; TjÞÞ and Π� 5 ðR; IDj; IDi; ðRj; TjÞ; ðRi;TiÞÞ are matching, where IðRÞ
denotes the roles initiator (responder, respectively), tuple ðRi;TiÞ corresponds to the message

Miðor M�
i Þ, and tuple ðRj; TjÞ corresponds to the message Mjðor M�

j Þ, respectively.

2.3.3 ADVERSARY

The eCK model considers a PPT adversary A, which is capable of controlling all the communica-

tions in the session, including the session activations, using the following adversarial queries.

• Send(Π, message): The adversary A can activate the initiating peer IDi by the message

ðI; IDi; IDjÞ, or the responding peer IDj by the message ðR; IDj; IDi; ðRi;TiÞÞ. In addition, A can

also send the message ðI; IDi; IDj; ðRj; TjÞÞ back to IDi, as the response from IDj. In all these

cases, the concerned peers act according to the protocol specification.

Furthermore, to simulate the leakage of secret data in a session, the adversary is allowed to

issue the following queries.

• SessionKeyReveal(Π): A is provided access to the session key corresponding to the completed

session Π.
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• EphemeralPrivateKeyReveal(Π): A is provided access to the ephemeral key generated by the

owner of the session Π.

• StaticPrivateKeyReveal(ui): A is provided access to the static private key of the participating

entity ui.

• CreatePeer(ui): A registers an entity ui, with an identity IDi. The static public�private key pair

ðdi;PiÞ of the entity ui is generated according to the protocol specification. These values are

returned to A. The entity ui registered by the CreatePeer(ui) query is completely controlled by

A and is said to be dishonest.

2.3.4 FRESH SESSION

Let Π denote a completed session between two honest peers ðui; ujÞ, where ui is the initiating peer

and uj is the responder. Let Π� denote the matching session of Π (if it exists). The session Π is

said to be locally exposed, if any of the following conditions hold:

• A issues the SessionKeyReveal(Π) query.

• A issues both StaticPrivateKeyReveal(ui) and EphemeralPrivateKeyReveal(Π).

The session Π is said to be exposed, if: (1) Π is locally exposed; (2) the matching session Π�

exists and is locally exposed; or (3) Π� does not exist and A issues a StaticPrivateKeyReveal(uj)

query. The session Π is fresh if none of these conditions hold and Π remains unexposed.

2.3.5 SECURITY EXPERIMENT

The security experiment is defined as an adversarial game between a challenger C that tries to

solve the GDH assumption, using an adversary A that tries to compromise the security of the ID-

AKA protocol. Initially, A is provided with the finite set of honest entities U5 fu1; . . .; ung. A can

issue a polynomial number of send queries or reveal queries, in any order. Once the query phase is

over, A issues the Test(Π) query during the challenge phase. The Test(Π) query is characterized

by the following features.

Test(Π): The adversary A can issue only a single query of this form. The session Π associated

with the test query must be fresh. The challenger C responds to the test query by choosing a ran-

dom bit bARf0; 1g. If b5 0, then C returns the session key generated by Π. Otherwise, a randomly

chosen key is returned to A.

The adversary continues the query phase and finally makes a guess b
0
. A wins the game if the

freshness of Π is still preserved and the guess bit b
0
5 b. The advantage of A in the security exper-

iment is defined as AdvAKAΠ ðAÞ5 Pr b
0
5 b

� �
2 1

2

�� ��.

2.3.6 DEFINITION 1 (ECK SECURITY OF IDENTITY-BASED AUTHENTICATED KEY
AGREEMENT PROTOCOL)

An ID-AKA protocol is said to be secure in the eCK security model, if the following conditions are

satisfied.
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• In the presence of a passive adversary that faithfully conveys the protocol messages, matching

sessions compute the same session key.

• For any PPT adversary A, AdvAKAΠ ðAÞ is a negligible function of λ.

2.4 PROVABLY SECURE IDENTITY-BASED AUTHENTICATED KEY
AGREEMENT PROTOCOL FOR V2V COMMUNICATIONS

The proposed ID-AKA protocol for securing V2V communications is comprised of three phases,

namely the setup phase, the entity registration phase, and the key agreement phase.

2.4.1 SETUP PHASE

Let λ be the security parameter. Let G be an elliptic curve group of prime order q and let the point

P be the generator of the additive group G. Let G� denote the set of nonidentity elements in G. The

KGC chooses the master secret key s AR z�q and computes the corresponding master public key

Ppub 5 sP. The KGC also defines the hash functions: H1:f0; 1g� 3G-Z�
q and H2:f0; 1g� 3 f0; 1g� 3

G7-f0; 1gz, where z denotes the size of the final session key. The system public parameters are

defined by the tuple fq;G;P;H1;H2g.

2.4.2 ENTITY REGISTRATION PHASE

For each vehicle ui, with the identity IDi, the KGC chooses a randomizing element ri AR z�q and

computes a Schnorr [21] signature di 5 ri 1H1ðIDi;RiÞs, where Ri 5 riP. The value di corresponds

to the static private key of the entity ui. Given the entity’s public elements ðIDi;RiÞ, the correspond-
ing static public key can be computed as Pi 5Ri 1H1 IDi;Rið ÞPpub 5 diP. The static private key is

stored in the tamper-proof device of the OBU. The system public parameters as well as the master

public key are also incorporated into the vehicle’s OBU.

2.4.3 KEY AGREEMENT PHASE

The key agreement phase between the vehicles uA and uB with the identities IDA and IDB proceeds

as shown in Fig. 2.2.

1. The initiating peer uA, upon activation by the message ðI; IDA; IDBÞ, chooses the ephemeral

private key tA AR Z�
q , computes the corresponding ephemeral public key TA 5 tAP, and sends

the tuple ðR; IDB; IDA; ðRA;TAÞÞ to the user uB. The entity uA also creates a session defined by

Π5 ðI; IDA; IDB; RA;TAð Þ; 2 Þ.
2. On receiving the message ðR; IDB; IDA; ðRA; TAÞÞ from uA, the responding peer uB checks if

TAAG�; if so, it chooses the ephemeral private key tB AR Z�
q , computes TB 5 tBP, and sends the

tuple ðI; IDA; IDB; RB; TBð ÞÞ to the session initiator uA: Concurrently, the peer uB defines

Π� 5 ðR; IDB; IDA; RB;TBð Þ; RA;TAð ÞÞ. The entity uB then computes the shared secrets

KBA1
5 ðtB 1 2dBÞðTA 1 2PAÞ, KBA2

5 ðtB 2 dBÞðTA 2PAÞ, and KBA3
5 ð2tB 1 dBÞð2TA 1PAÞ,
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where PA 5RA 1H1 IDA;RAð ÞPpub is the static public key of uA. Finally, the session key is

computed as SKBA 5H2ðIDA; IDB;RA;RB;TA;TB;KBA1
;KBA2

;KBA3
Þ.

3. On receiving the message ðI; IDA; IDB; RB;TBð ÞÞ, the entity uA checks if TBAG� and there exists

an incomplete session of the form Π5 ðI; IDA; IDB; RA;TAð Þ; 2 Þ, then it completes the tuple as

Π5 ðI; IDA; IDB; RA;TAð Þ; RB; TBð ÞÞ and computes the static public key of peer uB as

PB 5RB 1H1 IDB;RBð ÞPpub. Subsequently, it computes the shared secrets

KAB1
5 ðtA 1 2dAÞðTB 1 2PBÞ, KAB2

5 ðtA 2 dAÞðTB 2PBÞ, and KAB3
5 ð2tA 1 dAÞð2TB 1PBÞ. The

resultant session key is derived as SKAB 5H2ðIDA; IDB;RA;RB;TA;TB;KAB1
;KAB2

;KAB3
Þ.

The correctness of the session key can be verified as follows: KAB1
5 tA 1 2dAð Þ TB 1 2PBð Þ5

tA 1 2dAð Þ tB 1 2dBð ÞP5 tB 1 2dBð Þ TA 1 2PAð Þ5KBA1
, KAB2

5 tA 2 dAð Þ TB 2PBð Þ5 tA 2 dAð Þ
tB 2 dBð ÞP5 tB 2 dBð Þ TA 2PAð Þ5KBA2

, and KAB3
5 2tA 1 dAð Þ 2TB 1PBð Þ5 2tA 1 dAð Þ 2tB 1 dBð Þ

P5 2tB 1 dBð Þ 2TA 1PAð Þ5KBA3
.

2.5 SECURITY ANALYSIS
Theorem 1:: Assuming that the GDH problem is intractable in ðG;PÞ and considering the hash

functions ðH1;H2Þ as random oracles, the proposed ID-AKA protocol for V2V communications is

secure in the eCK model.

Proof:: Consider that a PPT adversary A can win the security game, as illustrated in Section 2.3,

by distinguishing the session key of the fresh session in the test query, from a random key, with the

probability 1
2
1 vðλÞ, such that vðλÞ is non-negligible. Then, we prove that it is possible to construct

a GDH solver C using A, also with a nonnegligible probability. Let ðX;YÞ be a CDH instance,
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Compute =

))

) )
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FIGURE 2.2

Key agreement phase in the proposed identity-based authenticated key agreement protocol.
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such that C is unaware of the values ðx5DLOG Xð Þ; y5DLOGðYÞÞ. The GDH solver C is provided

with a DDHð�; �; �Þ oracle and simulates the security game for the adversary A. C simulates the

KGC and generates the system public parameters, along with the master public�private key pair

ðs;Ppub 5 sPÞ. The challenger C then creates n honest entities, by generating their static public�pri-

vate key pairs according to the protocol specification. Let m denote the maximum admissible num-

ber of protocol sessions. Let Π5 ðI; IDA; IDB; RA;TAð Þ; RB; TBð ÞÞ denote the test session, which is a

completed session, executed between two honest peers ðuA; uBÞ. Let F denote the event that A suc-

ceeds in the distinguishing game. Let QH2 denote the event that A issues the H2 oracle query

H2ðIDA; IDB;RA;RB;TA;TB;KAB1
;KAB2

;KAB3
Þ, concerning the test session Π. Let QH2 denote the

complement of the event QH2. It is easy to see that, if the event QH2 does not occur, the probabil-

ity of A succeeding the security game is no better than a random coin flip. Hence,

PrðFXQH2Þ# 1
2
, and Pr Fð Þ5 Pr FXQH2

� �
1 Pr FXQH2ð Þ# 1

2
1 Pr FXQH2ð Þ. The implication is

that, for the adversary to win the game, Pr FXQH2ð Þ$ vðλÞ, and we denote the event FXQH2 as

W. For the successful simulation of the distinguishing game, the freshness of Π must be preserved.

Therefore we consider the following complementary cases.

1. The matching session Π� corresponding to the test session Π does not exist. In this case, to

maintain the freshness of Π, the adversary cannot issue the RevealStaticPrivateKeyðIDBÞ query
and either of the following:

a. A cannot issue the EphemeralPrivateKeyReveal(Π) query—Event F1a.

b. A cannot issue the StaticPrivateKeyReveal ðIDAÞ query—Event F1b.

2. The matching session Π� corresponding to the test session Π exists, and any of the following:

a. A cannot issue either the StaticPrivateKeyRevealðIDAÞ query or StaticPrivateKeyReveal

(IDB) query—Event F2a.

b. A cannot issue either the StaticPrivateKeyReveal(IDA) query or

EphemeralPrivateKeyReveal(Π�) query—Event F2b.

c. A cannot issue either the EphemeralPrivateKeyReveal(Π) query or StaticPrivateKeyReveal

(IDB) query—Event F2c.

d. A cannot issue either the EphemeralPrivateKeyReveal(Π) query or

EphemeralPrivateKeyReveal(Π�) query—Event F2d .

2.5.1 EVENT W ^ F1A
In this case, the matching session Π� does not exist; hence, for the test session, the incoming

ephemeral private key tB originating from the responding peer uB is chosen by A. The challenger

C generates the static private key for each user ui 6¼ uB, by choosing random elements ðdi; hiÞ ARZ
�
q

and setting Ri 5 diP2 hiPPub. Thus the static public key Pi 5 diP5Ri 1 hiPPub, as per the protocol

specification. The challenger then embeds the CDH instance ðX;YÞ as follows: C randomly chooses

two users uA; uBð ÞAR ui...n and a protocol instance l AR 1;m½ �, in an attempt to guess the test session

Π, which is correct with a probability 1
n2m

. C then sets the ephemeral private key of the test session

as TA 5X. The static public key of the user uB is set as PB 5 Y , by selecting hB AR Z�
q and assign-

ing RB 5 Y2 hBPpub. Thus C knows the static private keys of all the users in the system except uB.

The challenger C responds to the user activations and oracle queries issued by the adversary A as

shown below.
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2.5.1.1 Simulation
C maintains two lists LH2

and Ls, to keep track of the H2 oracle queries and the SessionKeyReveal

queries, respectively. Whenever A activates protocol participants via the send queries, C responds

in the conventional manner.

1. SendðI; IDi; IDjÞ: C chooses ti AR Z�
q , computes Ti 5 tiP, records the session identifier

Πi;j 5 ðI; IDi; IDj; Ri;Tið Þ; 2 Þ, and returns ðR; IDj; IDi; ðRi;TiÞÞ.
2. SendðR; IDi; IDj; ðRj; TjÞÞ: C checks if TjAG�, then C chooses ti AR Z�

q , computes Ti 5 tiP,

records the session identifier Πi;j 5 ðR; IDi; IDj; Ri;Tið Þ; Rj; Tj
� �Þ, and returns the tuple

ðI; IDj; IDi; Ri;Tið ÞÞ. The session keys are computed as illustrated in Section 2.4.3, and the

session is marked as completed.

3. SendðI; IDi; IDj; ðRj;TjÞÞ: C checks if TjAG� and there exists an incomplete session

Πi;j 5 ðI; IDi; IDj; Ri;Tið Þ; 2 Þ, then C completes the session by computing the session key and

records the session identifier Πi;j 5 ðI; IDi; IDj; Ri; Tið Þ; Rj;Tj
� �Þ.

The oracle queries and secret reveal queries are simulated as follows.

1. H2ðIDi; IDj;Ri;Rj;Ti;Tj;K1;K2;K3Þ: If the tuple ðIDi; IDj;Ri;Rj; Ti; Tj;K1;K2;K3Þ is recorded in

the H2 list, then the corresponding value SK is returned. Else, if the session

Πi;j 5 ðI; IDi; IDj; Ri;Tið Þ; Rj;Tj
� �Þ or the session Πj;i 5 ðR; IDj; IDi; Rj; Tj

� �
; Ri;Tið ÞÞ is recorded

in the list Ls, then C checks the correctness of the shared secrets ðK1;K2;K3Þ using the

DDHð�; �; �Þ oracle and the known private key value(s) and returns the session key SK, if the

shared secrets are correctly formed. Else, C returns a random value SK and records the same in

the LH2
list.

2. SessionKeyRevealðΠi;jÞ: If the session Πi;j is not completed, C returns the error symbol. Else, if

Πi;j is a completed session recorded in Ls, C returns the corresponding session key SK. Else, if

the tuple ðIDi; IDj;Ri;Rj;Ti;Tj;K1;K2;K3Þ is recorded in the H2 list, C checks the correctness of

the shared secrets ðK1;K2;K3Þ using the DDHð�; �; �Þ oracle and the known private key value(s)

and returns the recorded session key value SK. Else, C returns a random value SK and records

the same in the Ls list.

3. EphemeralPrivateKeyReveal(Πi;j): If the ephemeral public key corresponding to Πi;j is Ti 5X

or Ti 5 Y , where ðX; YÞ is the CDH instance, then C aborts the simulation. Else, C returns the

ephemeral private key tiAZ�
q , corresponding to the session Πi;j.

4. StaticPrivateKeyReveal(IDi): If the static public key Pi 5X or Pi 5 Y , where ðX;YÞ is the CDH

instance, then C aborts the simulation. Else, C returns the static private key diAZ�
q ,

corresponding to IDi.

5. CreatePeer(IDi): C responds to the query faithfully, by generating the static public�private key

pair of IDi and returning the same to A. The entity IDi will be considered to be fully controlled

by the adversary A.

6. Test(Π): For the event WXF1a, if TA 6¼ X or PB 6¼ Y for the test session Π, then C aborts the

simulation. Otherwise, the simulation proceeds normally.

The probability that C chooses the session Π with the initiating peer uA, the responding peer uB,

the ephemeral public key TA 5X, and the static public key PB 5 Y is 1
n2m

. The simulation remains per-

fect except with a negligible probability. A can query any static private key di 6¼ dB, any ephemeral
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private key ti 6¼ tA corresponding to Π, and SKi;j 6¼ SKA;B corresponding to Π. If A wins the security

game, then it must have issued the query H2ðIDA; IDB;RA;RB;TA;TB;KAB1
;KAB2

;KAB3
Þ. Using

the known value dA, C checks the correctness of the shared secrets ðKAB1
;KAB2

;KAB3
Þ as follows: C

computes K
0
1 5KAB1

2 2dAðTB 1 2PBÞ, K
0
2 5KAB2

1 dAðTB 2PBÞ, and K
0
3 5KAB3

2 dAð2TB 1PBÞ,
and checks if DDH TA;TB 1 2PB;K

0
1

� �
5 1, DDH TA; TB 2PB;K

0
2

� �
5 1, and

DDH 2TA; 2TB 1PB;K
0
3

� �
5 1. If the validation succeeds, then C computes CDH X;Yð Þ5 ð4K 0

1
2K

0
3
Þ

6
.

Thus the GDH solver succeeds with the probability PrðCÞ5 P1

n2mh2
, where P1 is the probability that

the event WXF1a occurs and h2 denotes the number of hash queries to the oracle H2.

2.5.2 EVENT W ^ F1B
In this case, the matching session Π� corresponding to the test session does not exist. A can issue the

EphemeralPrivateKeyReveal (Π) query, but cannot reveal the static private keys of the participating

peers ðuA; uBÞ corresponding to the test session Π. For any entity ui, such that ui 6¼ uA and ui 6¼ uB, C

chooses random ðdi; hiÞ AR Z�
q and sets Ri 5 diP2 hiPPub. Thus the static public key

Pi 5 diP5Ri 1 hiPPub, as per the protocol specification. For the entity uAðuBÞ, C chooses

hAðhBÞ AR Z�
q and sets RA 5X2 hAPpub ðRB 5X2 hBPpub, respectively). Thus the static public key of

uA is set as PA 5X, and the static public key of uB is set as PB 5 Y . C responds to the oracle queries

and the user activations in the same way as in the event WXF1b. The GDH solver chooses the session

Π with the initiating peer uA and the responding peer uB, as the test session, with the probability 1
n2
.

The simulation remains perfect except with a negligible probability. A can query any static private key

di 6¼ dAXdi 6¼ dB and any session key SKi;j 6¼ SKA;B corresponding to Π. If A wins the security game,

then it must have issued the query H2ðIDA; IDB;RA;RB;TA;TB;KAB1
;KAB2

;KAB3
Þ. Using the known

value tA, C checks the correctness of the shared secrets ðKAB1
;KAB2

;KAB3
Þ as follows: C computes

K
0
1 5KAB1

2 tAðTB 1 2PBÞ, K 0
2 5 tA TB 2PBð Þ2KAB2

, and K
0
3 5KAB3

2 2tAð2TB 1PBÞ, and checks if

DDH 2PA;TB 1 2PB;K
0
1

� �
5 1, DDH PA;TB 2PB;K

0
2

� �
5 1, and DDH PA; 2TB 1PB;K

0
3

� �
5 1. If the

validation succeeds, then C computes CDH X; Yð Þ5 ðK0
1
2 2K

0
2
Þ

6
. Thus the GDH solver C succeeds with

the probability PrðCÞ5 P2

n2h2
, where P2 is the probability that the event WXF1b occurs and h2 denotes

the number of hash queries to the oracle H2.

2.5.3 EVENT W ^ F2A
In this case, the matching session Π� exists; therefore A is a passive adversary that faithfully conveys

the protocol messages. A cannot issue either StaticPrivateKeyReveal(IDA) or StaticPrivateKeyReveal

(IDB). The GDH solver C embeds the CDH instance ðX; YÞ in the same way as in the event WXF1b.

Therefore the static public key of uA is set as PA 5X, and the static public key of uB is set as PB 5 Y .

The user activations and oracle queries are also similar to those of the event WXF1b. However, the

simulation is comparatively easier than that of the event WXF1b, since C knows both ephemeral

private keys ðtA; tBÞ. If A wins the security game, then it must have issued the query

H2ðIDA; IDB;RA;RB;TA;TB;KAB1
;KAB2

;KAB3
Þ. Using the known values ðtA; tBÞ, C checks the correctness

of the shared secrets ðKAB1
;KAB2

;KAB3
Þ as follows: C computes K

0
1 5KAB1

2 tA TB 1 2PBð Þ2 2tBPA,
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K
0
2 5 tA TB 2PBð Þ2KAB2

2 tBPA, and K
0
3 5KAB3

2 2tA 2TB 1PBð Þ2 2tBPA, and checks if

DDH 2PA; 2PB;K
0
1

� �
5 1, DDH PA;PB; 2K

0
2

� �
5 1, and DDH PA;PB;K

0
3

� �
5 1. If the validation suc-

ceeds, then C computes CDH X;Yð Þ5K
0
3. Thus the GDH solver C succeeds with the probability

PrðCÞ5 P3

n2h2
, where P3 is the probability that the event WXF2a occurs and h2 denotes the number of

hash queries to the oracle H2.

2.5.4 EVENT W ^ F2B
In this case, the matching session Π� exists, and A cannot issue either StaticPrivateKeyReveal(IDA)

or EphemeralPrivateKeyReveal(Π�). C chooses the lth session Π between the initiating peer uA and

the responding peer uB, as the test session, with a probability 1
n2m

. C assigns static private keys to all

users ui 6¼ uA, by choosing random ðdi; hiÞ AR Z�
q and setting Ri 5 diP2 hiPPub. Thus the static public

key Pi 5 diP5Ri 1 hiPPub, as per the protocol specification. For the entity uA, C chooses hA AR Z�
q

and sets RA 5X2 hAPpub. C also sets the ephemeral public key of session Π� as TB 5 Y . C responds

to the oracle queries and the user activations in the same way as in the event WXF1b. If A wins the

security game, then it must have issued the query H2ðIDA; IDB;RA;RB;TA;TB;KAB1
;KAB2

;KAB3
Þ.

Using the known values ðtA; dBÞ, C checks the correctness of the shared secrets ðKAB1
;KAB2

;KAB3
Þ as

follows: C computes K
0
1 5KAB1

2 tA TB 1 2PBð Þ2 4dBPA, K
0
2 5 tA TB 2PBð Þ2KAB2

1 dBPA, and

K
0
3 5KAB3

2 2tA 2TB 1PBð Þ2 dBPA, and checks if DDH 2PA; TB;K
0
1

� �
5 1, DDH PA;TB;K

0
2

� �
5 1,

and DDH PA; 2TB;K
0
3

� �
5 1. If the validation succeeds, then C computes CDH X;Yð Þ5K

0
2. Thus the

GDH solver C succeeds with the probability PrðCÞ5 P4

n2mh2
, where P4 is the probability that the event

WXF2b occurs and h2 denotes the number of hash queries to the oracle H2.

2.5.5 EVENT W ^ F2C
In this case, the matching session Π� exists, and A cannot issue either

EphemeralPrivateKeyReveal(Π) or StaticPrivateKeyReveal(IDB). C chooses the lth session Π
between the initiating peer uA and the responding peer uB, as the test session, with a probability
1

n2m
. The simulation closely resembles that of the event WXF2b, except that the roles of uA and uB

are interchanged. Thus, for the entity uB, C chooses hB AR Z�
q and sets RB 5 Y 2 hBPpub. C also

sets the ephemeral public key of session Π as TA 5X. C responds to the oracle queries and the

user activations in the same way as in the event WXF1a. If A wins the security game, then it must

have issued the query H2ðIDA; IDB;RA;RB; TA; TB;KAB1
;KAB2

;KAB3
Þ. Using the known values

ðtB; dAÞ, C checks the correctness of the shared secrets ðKAB1
;KAB2

;KAB3
Þ as follows: C computes

K
0
1 5KAB1

2 tB TA 1 2PAð Þ2 2dAPB, K
0
2 5KAB2

2 tB TA 2PAð Þ2 dAPB, and K
0
3 5KAB3

2 2tB
2TA 1PAð Þ2 dAPB, and checks if DDH TA; 2PB;K

0
1

� �
5 1, DDH TA;PB; 2K

0
2

� �
5 1, and

DDH 2TA;PB;K
0
3

� �
5 1. If the validation succeeds, then C computes CDH X; Yð Þ52K

0
2. Thus the

GDH solver C succeeds with the probability PrðCÞ5 P5

n2mh2
, where P5 is the probability that the

event WXF2c occurs and h2 denotes the number of hash queries to the oracle H2.

2.5.6 EVENT W ^ F2D
In this case, the matching session Π� exists, and A cannot issue either

EphemeralPrivateKeyReveal(Π) or EphemeralPrivateKeyReveal(Π�Þ. C assigns static private keys

28 CHAPTER 2 AN EFFICIENT PROVABLY SECURE IDENTITY-BASED



to each user ui, by choosing random ðdi; hiÞARZ
�
q and setting Ri 5 diP2 hiPPub. Thus the static pub-

lic key Pi 5 diP5Ri 1 hiPPub, as per the protocol specification. C sets the ephemeral public key of

the session Π as TA 5X and the ephemeral private key of the session Π� as TB 5 Y . C responds to

the oracle queries and the user activations as illustrated in the event WXF1a. C chooses the lth ses-

sion Π between the initiating peer uA and the responding peer uB, as the test session and Π� as the

matching session, with a probability 1
n2m2. If A wins the security game, then it must have issued the

query H2ðIDA; IDB;RA;RB;TA;TB;KAB1
;KAB2

;KAB3
Þ. Using the known values ðdA; dBÞ, C checks the

correctness of the shared secrets ðKAB1
;KAB2

;KAB3
Þ as follows: C computes

K
0
1 5KAB1

2 2dA TB 1 2PBð Þ2 2dBTA, K
0
2 5KAB2

1 dA TB 2PBð Þ1 dBTA, and K
0
3 5KAB3

2 dA
2TB 1PBð Þ2 2dBTA, and checks if DDH TA;TB;K

0
1

� �
5 1, DDH TA;TB;K

0
2

� �
5 1, and

DDH 2TA; 2TB;K
0
3

� �
5 1. If the validation succeeds, then C computes CDH X;Yð Þ5K

0
1. Thus the

GDH solver C succeeds with the probability PrðCÞ5 P6

n2mh2
, where P6 is the probability that the

event WXF2d occurs and h2 denotes the number of hash queries to the oracle H2.

Therefore, if A succeeds with a non-negligible probability in any of the complementary cases

discussed above, then the GDH solver C also succeeds in breaking the GDH assumption with a

nonnegligible probability. This contradicts the GDH assumption that no PPT algorithm can solve

the GDH problem except with a nonnegligible probability. Theorem 1 is hence proved.

2.6 ANALYSIS OF DANG ET AL.’S IDENTITY-BASED AUTHENTICATED KEY
AGREEMENT PROTOCOL

The protocol proposed by DXC [13] is summarized below. Initially, during the setup phase, the

KGC defines the hash functions: H1:f0; 1g� 3G-Z�
q and H2:f0; 1g� 3 f0; 1g� 3G5-f0; 1gz, where

z denotes the size of the final session key. The setup and entity registration phase is similar to that

of the proposed scheme. The key agreement phase between the vehicles uA and uB, with the identi-

ties IDA and IDB, proceeds as follows.

• Exchange of session-specific ephemeral keys:

• Entity uA chooses tA AR Z�
q as the ephemeral private key and computes the ephemeral public

keys TA
1 5 tARA and TA

2 5 tAPpub. The tuple ðIDA;RA;TA
1;TA

2Þ is sent to the entity uB.

• On receiving the tuple ðIDA;RA;TA
1; TA

2Þ, the entity uB chooses tB AR Z�
q as the ephemeral

private key and computes the ephemeral public keys TB
1 5 tBRB and TB

2 5 tBPpub. The tuple

ðIDB;RB;TB
1;TB

2Þ is sent to the entity uA.

• Session key establishment:

• Entity uA computes the shared secret KAB 5 tAdAðTB1 1H1ðIDB;RBÞTB2Þ and session key

SKAB 5H2ðIDA; IDB;TA
1; TA

2;TB
1;TB

2;KABÞ.
• Entity uB computes the shared secret KBA 5 tBdBðTA1 1H1ðIDA;RAÞTA2Þ and session key

SKBA 5H2ðIDA; IDB;TA
1; TA

2;TB
1;TB

2;KBAÞ.
The correctness of the protocol can be validated as follows:

KAB 5 tAdA TB
1 1H1 IDB;RBð ÞTB2

� �
5 tAdAtB RB 1H1 IDB;RBð ÞPpub

� �
5 tAdAtBdBP5 tBdB tARA 1ð

tAH1 IDA;RAð ÞPpubÞ5 tBdBðTA1 1H1 IDA;RAð ÞTA2Þ5KBA.
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2.6.1 KEY COMPROMISE IMPERSONATION ATTACK AGAINST DANG ET AL.’S
PROTOCOL

Consider that the adversary obtains the static private key dB of the vehicle uB. The adversary imper-

sonates another entity uA, to the compromised entity uB as follows.

• Exchange of session-specific ephemeral keys:

• Initially, the adversary generates the ephemeral public keys TA
1
5PpubH1 IDA;RAð Þ1 d21

B P

and TA
2
52Ppub. This computation is possible, since ðIDA;RAÞ can be obtained by

observing any of the previous communications by the entity I, and Ppub is the widely

distributed master public key. The adversary then forwards the tuple ðIDA;RA; TA
1
; TA

2Þ to
the entity uB.

• On receiving ðIDA;RA; TA
1
; TA

2Þ, the entity uB executes the protocol in the conventional

manner. Entity uB chooses tBARZ
�
q and generates the ephemeral public keys TB

1 5 tBRB and

TB
2 5 tBPpub. The tuple ðIDB;RB;TB

1; TB
2Þ is sent back to the initiator.

• Session key establishment:

• The adversary computes the shared secret as

KAB 5 d21
B TB

1 1H1 IDB;RBð ÞTB2
� �

5 d21
B tB RB 1H1 IDB;RBð ÞPpub

� �
5 d21

B tBdBP5 tBP: The
session key is computed as SKAB 5H2ðIDA; IDB;TA

1
;TA

2
;TB

1;TB
2;KABÞ.

• The victim uB computes the shared secret

KBA 5 tBdB TA
1
1H1 IDA;RAð ÞTA

2
� �

5 tBdB PpubH1 IDA;RAð Þ1 d21
B

�
P2H1 IDA;RAð ÞPpubÞ5 tBdBd

21
B P5 tBP5KAB. The session key is computed as

SKBA 5 SKAB 5H2ðIDA; IDB; TA
1
;TA

2
;TB

1;TB
2;KABÞ.

It is apparent that both the shared secrets and session keys are equivalent. Thus the adversary

succeeds in the KCI attack against the compromised entity uB. Next, we illustrate, with examples,

how a KCI attack can be exploited to perpetrate fatal road traffic collisions.

As shown in Fig. 2.3, in the first case, the legitimate vehicle A detects the ongoing manhole

maintenance work and sends the “Lane closed” alert message to the trailing vehicle B. However, a

malicious entity E that possesses B’s static private key impersonates A to B (KCI attack) and alters

the message as “Lane clear.” This can apparently jeopardize the vehicle B. The second example

illustrates a truck platooning system wherein the driverless automated trailing trucks B and C are

operated by the controlling truck A. In this case, an adversary E that possesses the static private

key of the truck B can wreak havoc, by impersonating the controller A to the compromised entity

B (KCI attack) and simultaneously impersonating B to C. The latter attack is trivial, since E already

knows B’s private key and can impersonate B to any other entity, including C. Thus B is coerced

into thinking that A is halting and triggers its emergency braking system, while C is instructed to

move forward at the same pace, ultimately leading to traffic collisions.

2.6.2 FLAWS IN THE SECURITY PROOF

For cases S5 and S6 in the security proof of [13], the simulator is dealing with an active adversary

that chooses the ephemeral private key tB, corresponding to the session responder IDB. Hence, the

simulator is unaware of the value tB.
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•Case S5: The adversary does not query IDA’s ephemeral private key or IDB’s static private

key. Matching session does not exist. In this case, according to the proof, the simulator embeds the

CDH instance ðX; YÞ as Ppub 5X and TA 5 Y . The proof assumes that the incoming tuple from the

adversary is of the form IDB;RB
0
;TB

1 5 ðtBPB 2 tBH1 IDB;RB
0� �
XÞ; TB2 5 tBX

� �
, where RB

0
might

be the incorrect public key material of uB. However, the simulator cannot expect the adversary to

send this tuple to favor the simulation, since the adversary might follow the protocol specification

to send the tuple IDB;RB
0
; TB

1 5 tBRB
0
; TB

2 5 tBX
� �

. Moreover, the simulator cannot solve for the

GDH instance, as the values ðtA; tB; dBÞ are unknown. Specifically, let H1 IDB;RB
0� �
5 h and

KAB 5DLOGðYÞdAðtBRB
0
1 tBXhÞ. After the oracle replay, let H1 IDB;RB

0� �
5 h and

KAB 5DLOGðYÞdAðtBRB
0
1 tBXhÞ. Then, KAB 2KAB 5DLOGðYÞdAtBXðh2 hÞ. The simulator can-

not compute GDHðX; YÞ, unless it knows the value of tB chosen by the adversary.

•Case S6: The adversary does not query IDA’s static private key or IDB’s static private key.

Matching session does not exist. The simulator embeds the CDH instance ðX;YÞ as Ppub 5X and

PA 5 Y . The proof assumes that the incoming tuple from the adversary is of the form

IDB;RB
0
;TB

1 5 ðtBPB 2 tBH1 IDB;RB
0� �
XÞ;TB2 5 tBX

� �
, where RB

0
might be the incorrect public key

material. As in the previous case, this assumption is incorrect, and the simulator fails to compute

the GDH instance, since the values ðdA; dB; tBÞ are unknown.

2.7 EFFICIENCY ANALYSIS
The proposed ID-AK A scheme for V2V communications is highly efficient, since it involves only

elliptic curve scalar multiplications and point additions. Table 2.1 presents a comparative analysis
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FIGURE 2.3

Road traffic scenarios illustrating successful key compromise impersonation attacks that can lead to fatalities.
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Table 2.1 Comparison of the security properties, and communication and computational overheads of the proposed

scheme with the existing ID-AKA protocols.

Protocol Assum. Model wPFS RKCI RESKL

Message Size
uA-uB; uA’uB

Group
Operations

Comm. Cost
(Bytes)

Comp. Cost
(ms)

FG [22] SDH CK Yes Yes No 2G; 2G 4PM1 2PA ð128; 128Þ 13.89

CKD [23] GDH mBR Yes Yes No 2G; 2G 5PM1 2PA ð128; 128Þ 17.33

IB1 [24] � � � � � 2G; 2G; 0; 1f gzð Þ 4PM1 2PA ð128; 160Þ 13.89

XW [25] CDH CK Yes � No ð3G; 1Z�
q Þ,ð3G; 1Z�

q Þ 6PM1 3PA ð212; 212Þ 20.82

SWZ [26] GDH eCK Yes Yes Yes 2G; 2G 6PM1 3PA ð128; 128Þ 20.82

BSV [27] GDH eCK! Yes Yes No 2G; 2G 4PM1 2PA ð128; 128Þ 13.89

NCL1

[28]

CDH eCK Yes Yes Yes 3G; 3G 7PM1 6PA ð192; 192Þ 24.30

NCL2

[28]

GDH eCK Yes Yes Yes 3G; 3G 5PM1 4PA ð192; 192Þ 17.35

IB2 [29] � BAN No � � ð2G; 1Z�
q Þ; ð2G; 1Z�

q Þ 5PM1 2PA ð148; 148Þ 17.33

DXC [13] GDH eCK! Yes No Yes 3G, 3G 4PM1 1PA ð192; 192Þ 13.88

Proposed GDH eCK Yes Yes Yes 2G, 2G 5PM1 6PA ð128; 128Þ 17.38

RESKL, Resistance to ESKL attack; RKCI , resistance to KCI attack; � , lack of provable security; Assum., hardness assumption, model—security model; BSV, Bala

et al.; CDH, computational Diffie�Hellman; CK, Canetti and Krawczyk; CKD, Cao et al.; Comm., cost�communication overhead in bytes; Comp., cost�computation

overhead in milliseconds; DXC, Dang et al.; eCK!, incorrect security proof; eCK, extended CK; FG, Fiore and Gennaro; SDH, Strong Diffie Hellman; GDH, gap

Diffie�Hellman; IB2, Islam and Biswas; ID-AKA, identity-based authenticated key agreement; NCL, Ni et al.; PA, point addition; PM, point multiplication; wPFS,

weak perfect forward secrecy; XW, Xie and Wang.



of the security properties (security model, hardness assumption, compliance to wPFS property, and

resilience to KCI as well as ESKL attacks) and performance (communication and computational

overheads) of the proposed scheme, with the existing ID-AKA protocols in the literature.

Specifically, the bilinear pairing-free ID-AKA protocol proposed by Fiore and Gennaro (FG)

[22] is proven secure in the CK security model and lacks ESKL resilience [30]. Cao et al. (CKD)

[23] proposed an ID-AKA scheme based on the GDH assumption in the weaker mBR model. Islam

and Biswas (IB1) proved that CKD is susceptible to ESKL attacks and proposed an alternative

scheme with ESKL resilience [24]. However, IB1 lacks provable security. Xie and Wang [25]

(XW) proposed a pairing-free ID-AKA scheme with wPFS property; however, the protocol requires

signature generation and verification by each participating peer to ensure security. Furthermore, Ni

et al. [28] noted that the protocol is also susceptible to ESKL attacks illustrated in [30]. Bala et al.

[27] (BSV) proposed an efficient ID-AKA protocol that is similar to FG; hence, the protocol is also

vulnerable to ESKL attacks. The pairing-free ID-AKA scheme by Islam and Biswas (IB2) [29] is

analyzed by using the Burrows, Abadi and Needham (BAN) logic; hence, it does not ensure prov-

able security against KCI and ESKL attacks or compliance to wPFS property. As shown in

Section 2.6, the ID-AKA scheme proposed by (DXC) [13], for securing V2V communications, is

vulnerable to KCI attacks. Few of these protocols are computationally more efficient than the pro-

posed scheme [13,22,24,27,29]. Nevertheless, none of these protocols can be deployed for securing

the safety-critical communications in V2V ad hoc networks, since they exhibit conspicuous security

vulnerabilities.

Since the computational power of nodes in a VANET is unconstrained, the execution time of

each protocol in milliseconds is determined by using the pairing based cryptography (PBC) library,

in a 64-bit Intel core-i5 machine, with a clock speed of 2.20 GHz, 8-GB RAM, and Windows 10

operating system. The elliptic curve group G is defined over a supersingular curve (type A), with a

curve equation y2 5 x3 1 x, embedding degree 2 and prime order q5 160 bits, at 80-bit security

level. The size of each group element in G is 512 bits, and the size of the final session key

z5 256 bits.

As for the existing eCK secure protocols [26,28], the computational cost of the Sun, Wen and

Zhang (SWZ) scheme [26] is much higher than the proposed scheme. Furthermore, the provably

secure ID-AKA protocol proposed by Ni et al. (NCL1 and NCL2) [28] has higher communication

and computational overhead than the proposed protocol. Although the computational cost of NCL2

is comparable with that of the proposed scheme, the communication cost is higher by 64 bytes.

Considering the highly dynamic nature of V2V communications, it is essential to minimize the

message size to expedite the packet delivery rate. Hence, when compared with the existing ID-

AKA schemes in the literature, the proposed protocol is highly suitable for securing intervehicular

communications, as it maintains a fine balance between security and efficiency.

2.8 CONCLUSION

In this chapter, we cryptanalyze the recently proposed ID-AKA scheme (DXC) [13] for securing

V2V communications. We prove that the protocol is vulnerable to KCI attacks and illustrate, with

real-time examples, how an active adversary can benefit from this security vulnerability, to create

road traffic collisions. The flaws in the security proof of [13] are also analyzed. Considering the

332.8 CONCLUSION



highly dynamic topology of V2V networks, the brevity of the established sessions, and the momen-

tousness of the exchanged automotive information, it is crucial to design a provably secure ID-

AKA protocol for securing intervehicular communications. To this end, we propose an eCK-secure

ID-AKA protocol with wPFS property and provable security against BI, KCI, UKS, and ESKL

attacks. The proposed scheme requires only five scalar multiplications per-party for session key

establishment and incurs minimal communication overheads. Thus, compared with the existing ID-

AKA protocols in the literature, the proposed scheme achieves a fine tradeoff between security and

efficiency.
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3.1 INTRODUCTION
Surveillance is the process of monitoring and gathering vital information from an environment

through keen observation. Surveillance has always been an integral part of the defence sector.

Highly skilled people were recruited and deployed for the purpose of surveillance. However, the

effectiveness of a human-based surveillance system has always been constrained by time, climatic

conditions, etc.

The dawn of the information age led to the development of video-based surveillance by employ-

ing a set of sophisticated surveillance video cameras. The traditional video surveillance system,

such as the CCTV, comprises of a set of video cameras to gather intelligence through the audio

and video streams from the desired monitoring environment [1,2]. The video surveillance system
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outperformed its human counterpart, as the efficiency of the video cameras was not constrained by

environmental factors. But the analysis of the captured video and audio streams in the traditional

video surveillance is cumbersome, as the earlier analog version of the closed circuit television

(CCTV) system had no physical storages and every camera required a dedicated monitor [3].

Due to the recent digitization and video multiplexing techniques, the contemporary, smart sur-

veillance system was developed. It utilized smart video cameras with onboard sophisticated sensors

as well as a dedicated set of sensors, and digital video recorders (DVRs). The sensors in the smart

surveillance system aided in capturing the environment on an on-demand basis and thereby reduc-

ing human intervention during the data analysis process [4]. The generated multimedia data were

stored in DVR, enabling the analysis to be carried out in the desired time. Earlier, the video surveil-

lance systems were confined to core military applications, but after the inception of the information

age, it was extended for civilian use in their workplaces, homes, and vehicles [3].

The traditional video surveillance systems were based on wired systems. Considering the

deployment, installation, and maintenance cost, wireless surveillance system (WSS) is preferred

over the conventional wired surveillance system [5]. The core components in a WSS are as follows:

(1) wireless video cameras (WVCs); (2) sensors; and (3) data centers. An example of an IoT-based

smart multilayer wireless surveillance framework is depicted in Fig. 3.1, where a set of WVCs is

connected to an intermediate data center called the mobile edge computing server (MECS). A

mobile edge computing (MEC) cell is the maximum region within which a set of WVCs is able to

connect to a MECS. A WSS may have one or more MEC cells based on the requirement of the

application. The base layer comprises a set of WVCs and sensors, while the upper layer comprises

of data centers with high power computing and storage.

A device with video recording capability is a primary part of the surveillance system. The block

diagram of the various units in a WVC is depicted in Fig. 3.2. The storage unit of the WVC has

inbuilt local storage and external storage capabilities. The local storage acts as temporary storage

and enables buffering until the data are completely transmitted via the transmission media through

the communication unit. The limited inbuilt storage of a WVC could be expanded as per the appli-

cation requirements.

A WVC with higher processing capability has the inherent ability to preprocess and analyze the

captured video. A WVC may also have a set of sensors and illumination units. The sensors such as

presence sensor, luminous sensor, and infrared (IR) sensor are also embedded in the WVC [6].

Under lower lighting conditions, the onboard sensors trigger the IR light-emitting diodes to illumi-

nate and capture an enhanced video. A WVC could be mounted with a wide range of wireless com-

munication devices such as Zig-Bee, Wi-Fi, and 4G [7]. A battery-powered smart WVC is a highly

energy-constrained device.

Apart from the embedded sensors of a WVC, a set of dedicated sensors is deployed optionally

in preidentified critical points based on the requirement of a WSS. Widely used sensors in a WSS

are temperature, humidity, acceleration, pressure, luminosity, motion, audio, and radiation [1].

Based on the activity, the sensors trigger the intermediate devices for further processing. The inter-

mediate and top layers contain sophisticated servers that act as a storage repository, data processing

unit, and prediction unit [1]. The major challenges of the WSS are (1) video size; (2) bandwidth;

(3) computing; and (4) storage.

The Internet of Things (IoT) has revolutionized by linking digital and physical entities together

[8]. The “thing” in the IoT represents a device connected to the Internet. In recent years, the IoT
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FIGURE 3.1

Overview of wireless surveillance framework.



has gained much importance, especially after the induction of the IPv6 addressing. A maximum of

2128 IoT devices could be connected to a network using the IPv6 addressing mode. The existing

Internet infrastructures are low cost and ideal for ubiquitous connectivity [5]. Thus a WVC is con-

sidered as “a thing” in an IoT-based WSS. During the task assignment process in the IoT-based

WSS, various factors including the capabilities and properties of the WVC, communication medium

were not considered. To this end, a dynamic, self-aware task assignment for a wireless heteroge-

neous surveillance system is presented to reduce the energy consumption and maximize the usage

of the wireless bandwidth.

The summary of the work is as follows. In Section 3.2, a study was carried out on: (1) the exist-

ing IoT-based WSS; and (2) the major factors influencing the task assignment. Section 3.3 presents

the proposed dynamic, self-aware task assignment for a wireless heterogeneous surveillance system.

The simulation analyzes and results of the proposed self-aware dynamic task assignment (SADTA)

with the corresponding benchmark method are discussed in Section 3.4. Concluding remarks are

provided in Section 3.5.

3.2 RELATED WORKS
The recent development in the IoT-based WSS is presented in this section. Colistra et al. [9] pro-

posed a distributed consensus decision of homogeneous resource allocation among all the nodes in

the network. Gossip and broadcast communication schemes were simulated to arrive at a consensus.

The homogeneous resource utilization in a heterogeneous environment confines the performance of

the network to a device with the least performance.

Khalil et al. proposed a game theory approach for two frameworks based on the evolutionary

heuristic algorithm with a single objective to minimize energy consumption in the IoT applications.

Camera unit

Sensor(s)
unit

Communication
unit

Driver
unit Camera unit

Camera unit

Processor
unitPower unit

Storage
unit

Illumination
unit

FIGURE 3.2

Smart wireless video camera—an overview.
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They were: (1) a typical application framework was proposed to minimize energy consumption and

maximize network lifetime; and (2) a crucial application framework was proposed to minimize

energy consumption and maximize stability period.

Kokkonis et al. [1] proposed a network adaptive transmission protocol for a dynamic,

multisensor-enabled surveillance system. Three separate dedicated channels were used for video,

audio, and multisensor in the WSS. The frame rate transmission was adjusted dynamically to avoid

network congestion. The protocol was found to be an ideal candidate for Wi-Fi and 4G networks.

However, the heterogeneous properties were not considered.

Alsmirat et al. [5] proposed the IoT-based multitier framework for a wireless video surveillance

system that aimed to minimize the high bandwidth demand and large storage requirement. The system

used the MEC and cloud computing technologies. The MEC technology is ideal in data collection and

bandwidth maintenance, while cloud computing offers unlimited storage and computing capabilities.

The inherent nature and the properties were not considered while assigning tasks to the WVCs.

Bharti and Pattanaik [10] proposed a task requirement aware preprocessing and scheduling

mechanism in the gateway to identify sensor nodes for the upcoming task. Tasks were classified

based on spatial and temporal requirements such as negotiable and non-negotiable tasks. The prop-

erties of the things were not considered. The existing WSN task assignment methods, such as task

allocation negotiation algorithm (TAN) [11] and self-organization based cooperative task allocation

(SOCTA) [12], were modeled to cater the needs of a WSN. However, the existing WSN task

assignment cannot be employed, as the data type, WVC configurations, and mission-critical nature

of the WSS have to be considered.

The investigations revealed that the existing task assignment in the IoT and WSS did not con-

sider the major properties of the edge nodes in the WSS during task assignment. The major factors

influencing the task assignment, such as the properties of a WVC, wireless communication medium

were not considered. A brief discussion on the factors is as follows.

3.2.1 FACTORS AFFECTING THE WIRELESS SURVEILLANCE SYSTEM

The major factors influencing the WSS are listed below.

Video resolution [4,5]: The number of pixels in the horizontal and vertical axes of a frame. The

resolution of a video is represented by H3V, where H and V are the number of horizontal and ver-

tical pixels, respectively.

Frame rate [5]: Frame rate is the rate of change of frames on a display. It is measured as the

number of frames displayed per second.

Wireless bandwidth [5]: Bandwidth is the maximum data that could be transmitted in a given

time and is measured in bits per second. In a WSS, the global bandwidth is the maximum band-

width between the intermediate server and the cloud servers. The local bandwidth is the maximum

bandwidth between the WVC and its corresponding intermediate servers.

Remaining energy [13]: A battery-powered WVC is a highly energy-constrained device. The

remaining energy of the WVC is expressed in Joules.

Location [13]: Based on the significance, a location could be broadly classified as a critical

zone (CZ) and noncritical zone (NCZ) [13]. A CZ mandates persistent surveillance of the WVCs.

In an NCZ, a set of WVCs is assigned to the surveillance task, while the rest of the WVCs are in a

standby mode.
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Duration [14]: WVCs could be dynamically assigned to be in a standby mode during the non-

peak hours while fully operational during peak hours. A WMC’s IR illumination may not be

required in the bright daytime duration, in turn reducing the energy requirement in that particular

span of time.

In summary, the literature survey revealed a lack of a novel dynamic task assignment algorithm

for WSS. A dynamic task assignment algorithm for WSS, considering the property of the edges

and factors affecting task assignment, is modeled in Section 3.3.

3.3 SELF-AWARE DYNAMIC TASK ASSIGNMENT ALGORITHM
Task assignment is the process of assigning a task to an ideal device [11,15]. The process of sur-

veillance is decomposed into a set of indivisible tasks. The tasks are modeled as a directed acyclic

graph as in [11], and the tasks are assumed to be independent of each other. The objectives of the

task assignment are to: (1) maximize the lifetime of the WVCs; (2) improve the resolution of

videos; and (3) minimize the bandwidth consumption. The aforementioned objectives of the task

assignment in a WSS can be modeled as a multi-objective problem. The proposed SADTA algo-

rithm is designed for WSS, and the WSS framework is as follows.

3.3.1 WIRELESS SURVEILLANCE SYSTEM FRAMEWORK

The overall framework of the proposed IoT-based WSS is depicted in Fig. 3.3. The primary partici-

pants in a WSS are: (1) the centralized cloud server (CCS); (2) MECSs; and (3) WVC. The CCS is

assumed to have unlimited processing and storage capabilities. The MECSi (1# i#m;) are consid-

ered as powerful intermediate devices in the edge of the network performing local data aggregation

and processing. The WVCi,j (1# i#m;1# j# n) are the leaf nodes of the WSS, connected wire-

lessly with its corresponding MECSi.

FIGURE 3.3

Self-aware dynamic task assignment framework.
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The WVC’s configuration and sensing units are processed by the MEC and CCS. The proposed

task assignment occurs at the intermediate and top layers of the structure; however, the local cell

task assignment is presented. The tasks are assigned to a WVC after the evaluation of the para-

meters using a decision support algorithm called the technique for order of preference by similarity

to ideal solution (TOPSIS) method in the MEC.

3.3.2 TECHNIQUE FOR ORDER OF PREFERENCE BY SIMILARITY TO IDEAL
SOLUTION

TOPSIS is a multicriteria decision analysis method based on the shortest geometric distance from

the positive ideal solution and the longest geometric distance from the negative ideal solution [16].

A wide range of applications employs the TOSIS to solve the multicriteria problem [17]. The

TOPSIS from [16] is adapted for the SADTA and is illustrated below.

Step 1: Generate the n3 k evaluation matrix “E,” where ej;k is the matrix element of the matrix

“E.” The matrix element ej;k is the performance metric of the WVCi;jð1# i#mÞð1# j# nÞ having
Ckð1# k# pÞ criteria.

Step 2: Calculate the normalized decision matrix “F,” where fj;k is the matrix element of the

matrix “N.” The value of fij is calculated by Eq. (3.1), where j5 1; 2; . . . n; k5 1; 2; . . . ; p:

fj;k 5 ej;k=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXp

k51
ej;k
� �2q

(3.1)

Step 3: Calculate the weighted normalized decision matrix “G,” where vj;k is the matrix element

of matrix “G.” The matrix is obtained using Eq. (3.2), where W is the criteria weighted matrix con-

taining wk elements and
Pp
k51

wk 5 1; k5 1; 2; . . . ; p:

G5W 3F (3.2)

Step 4: Calculate the best WVCb and the worst WVCw using Eqs. (3.3) and (3.4), where K2 and

K1 are the set of “k” criteria with negative and positive impacts.

WVCb 5 min vj;kjj5 1; 2; . . . ; n
� �jkAK2

� �
; max vj;kji5 1; 2; . . . ; n

� �jkAK1

� �� �
(3.3)

WVCw 5 max vj;kji5 1; 2; . . . ; n
� �jkAK2

� �
; min vj;kji5 1; 2; . . . ; n

� �jkAK1

� �� �
(3.4)

Step 5: Calculate the L2 distance between the best WVC (WVCb) and the worst WVC

(WVCw), where dj;w and dj;b are the distances from the luminaire “l” to the worst and best condi-

tions, respectively.

dj;w 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

j51
vik2vwj
� �2r

;k5 1; 2; . . . ; p (3.5)

dj;b 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

j51
vik2vbj
� �2r

;k5 1; 2; . . . ; p (3.6)

Step 6: Calculate the relative closeness to the ideal solution.

CFVj 5
dj;w

dj;b 1 dj;w
;j5 1; 2; . . . ; n (3.7)
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At the end of the TOPSIS method, the camera fitness value CFVð Þð0#CFV# 1
	
is calculated

for every WVC. If the CFV is 1 or 0, the luminaire has the best or worst solution, respectively. The

CFV perform the assigned illumination task corresponding to its role. The SADTA phases are dis-

cussed in the following.

3.3.3 SELF-AWARE DYNAMIC TASK ASSIGNMENT

The proposed SADTA is a centralized dynamic task assignment, and the phases are as follows:

(1) registration; (2) self-evaluation; and (3) task evaluation phase.

1. Registration phase: A WVC upon joining a WSS registers to its nearest MECS with its

corresponding properties, such as remaining energy, resolutions, frame rate, embedded sensors,

and location, using a WVC_INFOi,j message.

2. Self-evaluation phase: The WVC gets triggered based on anyone of the following activities:

(1) sensor actuation; (2) idleness; and (3) energy depletion. The WVC reports the activity to the

concerned MEC, leading to the task evaluation phase by sending a

TASKASSIGNMENT INITi;j message.

3. Task evaluation phase: The MECSs periodically perform assessments on their corresponding set

of WVCs. The TOPSIS algorithm is used to calculate the overall CFV on a set of WVCs

having “p” criteria, where wk is the corresponding weight of the kth criterion.

Thus the multiobjective problem of task assignment is converted into a single-objective problem

by adapting the TOPSIS. The weights of the criteria are awarded based on the application needs.

The tasks are assigned to the corresponding WVS with the highest CMV. The task assignment pro-

posal is sent via a TASK_ASSIGNMENT_UPDATE message to the corresponding WVC. The cor-

responding WVC responds to the update message with a TASK_ASSIGNMENT_UPDATE_ACKi,n

message.

The overview of the proposed phases is depicted in Fig. 3.4. The investigation of the proposed

work with the corresponding benchmark method is presented in Section 3.4. The pseudocode for

the algorithm is as follows.

ALGORITHM 1. SADTA
1: if WVCi ;j :status5unregistered then
2: sendWVC2 INFOi;j to MECSi

3: end if
4: if WVCi ;j :TASKASSIGNMENT :Initiate5 true
5: send TASK ASSIGNMENT INITi;j to MEC
6: end if
7: Execute TOPSIS
8: Assign task toWVCi;j based on CFV; jA1# n
9: Send TASK_ASSIGNMENT_UPDATE

10: for all i EWVCi;j do
11: send ROLE ASSIGNMENT UPDATE ACK to MEC
12: end for
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3.4 SIMULATION ANALYSIS AND RESULTS
The simulations were carried out by using the SCI Lab software for the wireless surveillance sce-

nario. The Waspmote, a wireless sensor node from Libelium, is taken as the WVCs in the wireless

surveillance simulation. The Waspmote has one or more cameras and video boards. For simulation,

a Waspmote with a single camera is taken. The heterogeneity in surveillance is achieved by initiat-

ing the WVC with random initial energy and equipping a few modes of resolution.

3.4.1 SIMULATION SETUP

The major parameters used in the simulation are tabulated in Table 3.1, and the rest is taken as in

[5]. Every WVC is uniquely identified by its unique identifier and is connected to a MECS. A set

of WVCs is connected to the nearest MECS, making a cell. The wireless connection within the cell

is established by using Wi-Fi (IEEE 802.11g) connectivity.

The complete set of compatible video resolutions of the Waspmote is tabulated in Table 3.2.

A total of six video resolutions could be generated by using the camera and video board.

The energy requirement of the individual component of a WVC is presented in Table 3.3. The

following criteria were taken into consideration for the simulation: (1) bandwidth; (2) resolution;

(3) frame rate; (4) remaining energy; (5) location; and (6) duration. A set of normalized weights is

provided for the base SADTA method for the proposed method. Higher weight is awarded to the

remaining energy criteria in the NCZ, while in a CZ scenario, higher weight is awarded to the loca-

tion, resolution, and bandwidth criteria. The proposed method was compared with the local man-

agement with global weighted bandwidth distribution-enhanced (LM-WD) method presented in [5].

FIGURE 3.4

Overview of the task assignment phase.
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3.4.2 BANDWIDTH ANALYSIS

The experimentation is enforcing various modes of video resolutions of WVCs for a fixed duration.

The wireless bandwidth is continuously monitored by varying the WVC count and video resolution

modes.

Table 3.2 Waspmote Video Resolution.

Label Resolutions (px)

R1 803 48

R2 1603 120

R3 1763 144

R4 3203 240

R5 3523 288

R6 6403 480

Table 3.3 Energy Properties.

Properties Value (J)

Initial energy 23,760

Camera 158.53 1023

IR LED 75.483 1023

IR sensor 19.23 1023

Presence sensor 19.23 1023

Wi-Fi send 1403 1023

Wi-Fi receive 1403 1023

IR, Infrared; LED, light emitting diode.

Table 3.1 Simulation Parameters.

Properties Values

MEC servers 5

Number of cells 5

Number of wireless cameras Random (1�10)

Video frame rate 15 fps

Wireless characteristics IEEE 802.11g

Video compression Raw

Wi-Fi Max bandwidth (local) 54 Mbps

Wi-Fi Max bandwidth (global) Random (4�100) Mbps

Simulation time 24 h

MEC, Mobile edge computing.
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Fig. 3.5 depicts the analysis performed on the total bandwidth used by the WVC based on the video

resolutions. The dotted line represented by the label “Max” denotes the maximum permissible band-

width of the IEEE 802.11(g). The investigation results revealed that the total bandwidth requirement of

the WSS is directly proportional to the video resolution of the WVCs. The video packets transmitted

above a cell’s bandwidth would be dropped at the source. The simulation result reveals the need for an

effective task assignment to effectively utilize the wireless bandwidth. The bandwidth analyzes of LM-

WD and variants of SADTA were performed on the WVCs and summarized as hour-wise values.

Fig. 3.6 depicts the hour-wise total bandwidth usage of the proposed methods of SADTA and

LM-WD-E. The bandwidth decreases considerably in the daytime, as the CZ, NCZ, and duration

are taken into consideration in the proposed methods. In the SADTA scenario, both CZ and NCZ

are considered, while in the SADTA-CZ and SADTA-NCZ scenarios, the entire location is consid-

ered as CZs and NCZs.

3.4.3 ENERGY CONSUMPTION

Fig. 3.7 depicts the total energy consumed by the WVCs in the WSS. The overall energy consump-

tions of the proposed SADTA-CZ and SADTA-NCZ with the LM-WD are 23.41% and 25.01%.

The significant reduction of energy is due to the dynamic task assignment, considering the capabili-

ties of the WVC, zones, and duration. The major part of the energy of a WVC is used by the cam-

era and communication unit. In CZs, all the WVCs are on surveillance. The considerable drop is

due to the dynamic illumination in the WVC. In NCZs, selected WVCs are dynamically assigned

in a standby mode, awaiting for any event changes. Upon encountering any event, the onboard sen-

sors trigger the camera unit in the WVC and update the MECS.

FIGURE 3.5

Bandwidth analysis.
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FIGURE 3.7

Total energy consumption in a day.

FIGURE 3.6

Hour-wise bandwidth utilization.
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3.5 CONCLUSION

The IoT-based WSS are preferred over the legacy surveillance systems. Majorly, the existing task

assignment algorithms in the literature were designed to optimize the bandwidth. The multiobjec-

tive need of the IoT-based WSS was addressed by the proposed SADTA algorithm. The various

investigations, including dynamic resolution control, bandwidth utilization, and energy utilization,

were performed on the WVCs by the corresponding MECSs with the corresponding benchmark

method. The future work includes the investigation of the proposed task assignment on the global

scenario with additional performance metrics.
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4.1 RELATED WORKS
From the dawn of civilization, security has been evolving as a prime motive over our belongings.

Organizations that are dependent on transport and travel relevance are at a high risk of security. In

this modern world, it is essential that every travel company secures the right level of security to

ensure that they are free from the threat of damage, danger, theft, or crime. Commercial and corpo-

rate risks require round the clock surveillance. Vehicle monitoring systems are employed to track

the vehicle in order to get and process the monitoring data. With more cars on roads now than

before, vehicle tracking has become an incredibly important tool for clients who wish to evade

such a problematic havoc of insecurity. But, aside from avoiding traffic and road problems, the sig-

nificant exercise is to monitor the vehicle with user-friendly environment that is welcomed by the

present community.

Hoh et al. [1] proposed a typical traffic monitoring architecture with three entities: probe vehi-

cles, GSM devices, and global positioning system (GPS) receivers. Chen and Liu [2] created the

software integrated GPS, geographic information system (GIS), and GSM for intelligent vehicle

monitoring system. Manihatty et al. [3], Lee et al. [4], Dhumal et al. [5], Kumar et al. [6], and
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Security and Rengaraj [7] (child safety device) have also discussed the tracking facility with GPS-

enabled devices. The major flip side of GPS-based tracking system is that, when the GPS device is

switched off, the vehicle is out of monitoring/tracking control, and it can be driven unauthorized.

Second, GPS signals can be blocked when the vehicle is in highly populated urban areas and under-

ground tunnels. Kumar et al. furnished the monitoring system with GPS and GSM devices; how-

ever, it fails with the concept of secured remote monitoring capability. Hence, the major barrier of

GPS is that it is prone to misuse by switching off the device. Moreover, GPS-based systems

employed to monitor a vehicle’s speed are normally costly to implement and to the subsequent

maintenance costs.

Rahman et al. [8] established an e-plate radio frequency identification (RFID)-based tracking

and management system. Hamzah et al. created an entry monitoring system with a passive RFID

tag, only passing through the localized gate. It fails to monitor the vehicle continuously over its on-

road journey. The use of passive RFID for tracking is limited to a short range of few centimeters,

and it cannot be used for a real-time implementation [9]. Speed monitoring system [10], vehicle

monitoring system [11], school bus tracking and security system [12], and transportation security

system [13] were also developed based on RFID. Mainly, Hafeez et al. accomplished a speed moni-

toring system, but it fails with the distance of tracking zonal coverage. This system aims to calcu-

late the speed of the vehicle with an active RFID, but there is no monitoring facility. Even, the car

slot tracking facility with a passive RFID tag (vehicle monitoring system) discussed by Kiranmayi

fails to cover a sufficient range. It has a range detection problem when the system ages.

Dislocation of passive tags in the vehicle fails to track the RFID. Hence, the tracking is not practi-

cable for security purpose.

In recent past, the Internet of Things (IoT) is a new technology that has attracted the attention

of many researchers. The IoT applications include vehicular pollution monitoring [14], local-

positioning awareness [15], bus monitoring system [16], intelligent vehicle monitoring system [17],

dustbins [18], school bus tracking and arrival time prediction [19], smart school bus monitoring

and notification system [20], children safety system [21], and intelligent bus positioning [22].

However, the IoT is implemented by using a combination of wireless sensor network (WSN)/RFID/

GSM/GPRS technologies for these applications.

To avoid the problem of intrusion and hindrance, many alternative designs and techniques have

been developed and implemented in the vehicles. Smart vehicle parking monitoring and manage-

ment system [23] was developed by using high-end cameras and Android phones. However, this

method cannot be used for monitoring and tracking, because its performance is limited by camera

range. Many research efforts have been made to provide a standardized WSN/RFID integration

framework to support smart vehicle monitoring and tracking systems. Zhang and Wang [24] have

discussed about the opportunities and challenging problems of WSN/RFID integration. Sung et al.

[25] and Ying and Kaixi [26] proposed to build a global standard infrastructure that combines the

WSN and RFID.

In [27�29], the vehicle monitoring and identification systems are designed based on the IoT

and RFID. Apart from these papers, in [30,31], a real-time car parking system and a device with

identity verification for car drivers were presented, respectively. Prinsloo and Malekian [32] pro-

posed a system to make use of the various solutions and opportunities provided by the IoT in order

to give solutions to a real-world problem. They have used a combination of GPS, GSM, and RFID

technologies for locating and tracking vehicles. They used the abilities of GPS technology as the
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communication platform in real time to collect data periodically, GSM technology for communica-

tion and storing data in the cloud, and RFID technology for sensing a module that is used in com-

plex environments such as dense urban areas and underground tunnels. However, designing a

vehicle security system and interfacing the monitoring, by the owners, viewable login webpage on

a computer or a mobile phone will be the absolute solution to the current situation and the need.

Notifications at anywhere can be observed by using a webpage that can be accessed by a computer

as well as in a smartphone. Integrated engineering is a latest trend to solve problems. To be able to

design a product using an integrated technology will be beneficial to any engineering problems and

a huge contribution to the community. The summary of related works is shown in Table 4.1.

Table 4.1 Summary of Related Works.

Technologies Applications

GPS Intelligent vehicle monitoring system [2]

Vehicle tracking system [3]

Vehicular tracking system [4]

Vehicle tracking system [5]

Vehicle monitoring and tracking system [6]

Child safety device [7]

RFID Plate number (e-plate): tracking and management system [8]

Vehicle tracking system [9]

Smart vehicle speed monitoring system [10]

Vehicle monitoring system [11]

School bus tracking and security system [12]

Transportation security [13]

IoT Vehicular pollution monitoring [14]

Local-positioning awareness [15]

Bus monitoring system [16]

Intelligent vehicle monitoring system [17]

Dustbins [18]

School bus tracking and arrival time prediction [19]

Smart school bus monitoring and notification system [20]

Children safety system [21]

Intelligent bus positioning [22]

Cameras1Android OS Smart vehicle parking monitoring and management system [23]

RFID1WSN Logistics management system [26]

RFID1 IoT Automatic vehicle identification system [27]

Goods dynamic monitoring and controlling system [29]

Real-time car parking system [30] and vehicle location system [32]

Device with identity verification for car driving [31]

GPS, Global positioning system; IoT, Internet of Things; WSN, wireless sensor network.
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This chapter presents the design and implementation of vehicle tracking, vehicle monitoring,

and vehicle status system (vehicle number and location with date and time at the respective zones).

The designed system consists of a sensor actuator module and a communication module to acquire

the input signals and monitor the vehicle using the active RFID and IoT technology. A dedicated,

portable, cost-effective, and flexible vehicle tracking and monitoring system deployed into automo-

bile. To demonstrate the feasibility and effectiveness of the proposed system, vehicle number,

reserved vehicle zone, and duration of entry and exit with date and time are monitored by using the

local zone map. Maps of grid sequence are vested on the zones. The indication in the zones also

gives the details about the vehicle. The status notifications for vehicle entry to the zones, location,

and duration are implemented with an integrated communication technology.

4.2 NEED FOR SMART VEHICLE MONITORING SYSTEM
Every year, thousands of vehicles are stolen on the roads and in the unsecured parking areas. Banks

employ exclusive assistance for replenishing cash in automated teller machines (ATMs); however,

intruders still attempt to steal the cash by opening the doors or breaking the glasses of the vehicle.

Because of this, organizations are afraid to ship cash in the vehicles. In the course of rendering

vehicles for the local travel purposes, the proprietor wants to know the current location of the vehi-

cle. GPS-enabled devices are prevalent now for tracking and monitoring purposes. The main draw-

back of the GPS system is that, when a GPS-enabled device is switched off, the device is out of the

tracking/coverage area; hence, it can be driven unauthorized. To avoid the havoc of intrusion and

hindrance, there is a need for a smart vehicle monitoring system. This novel designed system with

an active RFID and IoT technology is for a complete monitoring purpose. This novel smart vehicle

monitoring system powered by an active RFID and IoT (SVM-ARFIoT) system that provides a

viewable login webpage furnished with the monitoring facility will be the absolute solution for the

needed secured monitoring system.

4.3 DESIGN OF SMART VEHICLE MONITORING SYSTEM
SVM-ARFIoT is utilized here, which is cost-effective and secured. The system gives tracking assis-

tance over the connected devices. Hence, this system overcomes the issue of GPS, as it is mainly

focused on the continuous monitoring with an active RFID and IoT technology. Hence, there is a

need for a system that is more secured and cost-effective. The status notifications for vehicle entry

to the zones, location, and duration are implemented with an integrated communication technology.

The detailed block diagram is depicted in Fig. 4.1. ESP 8266 is used to push the data to the cloud,

that is, the IoT domain. The harvested information from the on-field territory is a unique RFID

number (binary), zone number (binary), and WSN number (binary) in the format of “1010;1;1”.

This pattern is pushed to the IoT platform. From the already stored vehicle information by the cus-

tomer during lending, the vehicle number is noted, and it is mapped for the harvested RFID num-

ber. Thus the system can identify the vehicle in the particular zone, that is, monitoring is achieved

with a low bandwidth.
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The layout of the specified area is initially gridded into zones based on the range of coverage.

The active RFID transmitters are equipped in a mobile fashion, and they have been housed in the

vehicle. The RF wireless sensors serve as stationary active RFID receivers that are placed as per

the range of detection. This geographical area is split into zones depending on the active RFID

detection range. The stationary active RFID receivers are retained in the range specified zones. All

these stationary active RFIDs are connected to form a WSN. Fig. 4.2 shows the zonal grid diagram

of the SVM-ARFIoT, the yellow dot in the diagram indicates the vehicle entering the zone of WSN

housed with an active RFID transmitter, and the blue dots indicate the sensor nodes attached with

the receiver module of the WSN.

The functional flowchart of the SVM-ARFIoT is shown in Fig. 4.3. The functional flow of the

system is divided into two phases: on-field (hardware phase) and customer perspective (software

phase). The hardware phase computes the unique active RFID number and zone appending from each

zone. The software phase matches the unique active RFID number with the vehicle number of the

customer, which is stored in the database. A customer query is sent to the processing unit to monitor

the specified vehicle. Database management system is used to store the customer vehicle data to cor-

relate the active RFID number and vehicle number for monitoring purpose. Time stamp is given dur-

ing each entry to the zone to have control over efficient monitoring. Table 4.2 compares the existing

GPS-enabled automobile tracking system with the SVM-ARFIoT in various dimensions.

4.4 EVALUATION OF SVM-ARFIOT
The active RFID module works under an industrial, scientific and medical (ISM) frequency band of

433 MHz. It is furnished to act as a 4-bit data encoder (HT12E). This active RFID module emits a

FIGURE 4.1

Detailed block diagram of the smart vehicle monitoring system powered by active radio frequency identification

tag and Internet of Things.
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4-bit data combinational code as 0000 to 1111, which we can have in 16 combinations and can be

placed in 16 vehicles. These four bits can be scaled sufficiently to many by adding an additional

encoding bit in the HT12E module. This flexibility of scaling in a low-cost fashion is a boon to

many micro, small, and medium lending enterprises for their automobile monitoring. The active

RFID module works under the operating voltage of 2.4�12 V. The 3 bit combinational code has to

be made uniformly in both the transmitter and receiver sections to establish the proper encoding

and decoding processes. Fig. 4.4 portrays the active RFID transmitter module that works in the

ISM band (433 MHz) implanted on the automobile.

In the receiver part, we have the 4-bit decoder IC (HT12D) as an active RFID receiver. This

active RFID receiver will receive the 4 bit, which is transmitted by the transmitter. It is received by

the RF waves with 433 MHz. Fig. 4.5 portrays the active RFID receiver mounted on the WSN hub

(MSP430) with the IoT transceiver module (ESP8266) to push the harvested data to the IoT

domain.

Raspberry Pi 3 that has inbuilt-enabled Wi-Fi access, to act as a central server. All the harvested

data are stored in this server, which is connected to all the nearby WSNs. Fig. 4.6 portrays the

server setup of Raspberry Pi 3.

FIGURE 4.2

Zonal grid diagram of smart vehicle monitoring system powered by active radio frequency identification tag and

Internet of Things.
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The server collects the data in the form of individual data bits and zone numbers, as portrayed

in Fig. 4.7. The snapshot of the harvested data shown in the server is a putty screen connected via

a serial port and secure shell. From Fig. 4.7, we can infer the data bits (d1-d4), and the zone num-

bers are harvested separately; hence, there is low possibility of error.

The real-time data received from the IoT server to the database of phpMyAdmin is portrayed in

Fig. 4.8. A random parity bit is appended before each data bit (d1-d4) for security. Facilities for

time stamp with date are included to have an efficient control for a secured monitoring system.

The IoT support login page is created by using the HTML code. A unique account is created for

each customer by providing unique user name and password, as depicted Fig. 4.9. This feature of

entry control mechanism is to provide security from an unauthorized person viewing the monitoring

details.

Stop

Start

Processing unit

IoT
paspberrypi 3

Information harvest using wsn

RFID reception and detection

“RFID=VECHICLE ##”“RFID receiver”

“WSN placed in zones” “WSN=REGION ##”

DBMSQuery?

Importing database
to admin
webpage

FIGURE 4.3

Flowchart of the smart vehicle monitoring system powered by active radio frequency identification tag and

Internet of Things.
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Table 4.2 Comparison of Conventional GPS-Based Vehicle Monitoring System Versus SVM-

ARFIoT-Based Vehicle Monitoring System.

Conventional GPS-Based Vehicle
Monitoring System SVM-ARFIoT-Based Vehicle Monitoring System

GPS module and chipset are not cost-

effective.

SVM-ARFIoT system is cost-effective.

It demands a huge bandwidth, as it is solely

depending on software computation.

It needs a low bandwidth. Balance of computational load is

equally divided into both hardware and software sections.

It is not scalable. It is highly scalable, as the codes can be reused.

It is prone to hacking. It is immune to hacking. Parity codes are appended before the

unique active RFID number for security.

It is directly done on the basis of GPS

module integration to a network.

It is accomplished with smart integration of active RFID, and the

WSN is connected to the IoT technology to enable the best data

extraction and efficient handling even.

GPS, Global positioning system; SVM-ARFIoT, smart vehicle monitoring system powered by active radio frequency

identification tag and Internet of Things; WSN, wireless sensor network.

FIGURE 4.4

Active radio frequency identification transmitter module implanted on the automobile.
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FIGURE 4.5

Active RFID receiver of 433 MHz mounted on the WSN hub (MSP430) with the IoT transceiver module

(ESP8266).

FIGURE 4.6

Raspberry Pi 3 with Wi-Fi-enabled access.
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The monitoring admin page consists of various functionalities like import database from the IoT

server, list of registered vehicles, specific option to delete the particular vehicle’s outdated details

from the main database permanently, the capability to monitor the vehicle by providing an active

RFID number in the monitor tab, and the ability to refresh the entire database. All these functionali-

ties are portrayed in the admin webpage of Fig. 4.10.

FIGURE 4.7

Raspberry Pi 3 harvested data from the wireless sensor network shown in the putty window.

FIGURE 4.8

Real-time data received from the Internet of Things domain to the database with date, time-stamp, and encoded

data bits.
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FIGURE 4.9

Login page of SVM-ARFIoT.

FIGURE 4.10

Admin monitoring page with multiple options for smart vehicle monitoring system powered by active radio

frequency identification tag and Internet of Things.
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Upon the successful entry of RFID in the “Track Vehicle” search box, the zone of the present

location of that particular active RFID-holding vehicle is shown in the zone map. Fig. 4.11 shows

the monitored results of the particular vehicle with the active RFID number of 0010, and the results

are successfully reflected in the SVM-ARFIoT webpage support for customers. For the purpose of

research, the zones have been indicated as matrices; however, in real time, a GIS image can be

used as an alternative to indicate the accurate location of the vehicle.

4.5 CONCLUSION

The smart vehicle monitoring system powered by an active RFID and IoT technology proposed in

this chapter is a cost-effective and highly secured system compared with the conventional GPS-

enabled devices for the purpose of monitoring. Real-time monitoring of a vehicle is displayed in the

appropriate zones in the front end, IoT webpage support for customer successfully. This SVM-

ARFIoT system can be scaled to support a huge number of vehicles by encoding techniques, code

reusability concept, and adding additional data pins in the active RFID transceiver module. The

SVM-ARFIoT monitoring system will ensure safe onboarding of a currency chest vehicle to safely

load the ATMs, by monitoring the authorized road path utilized by the driver. The SVM-ARFIoT sys-

tem can be extended to a highly secured monitoring official system to avoid victim driving misshapen

by terrorist, that is, control over an unauthorized route for driving for a law-guilty person in a police

vehicle during the official journey toward an ordered destination, to enforce law correctly. Hence, the

SVM-ARFIoT system will be a boon to many official organizations and micro, small, and medium

lending enterprises for their secured and cost-effective purposes of automobile monitoring.
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5.1 INTRODUCTION
Visual tracking is the process of effectively focusing the moving object over the human visual field.

In image sequence, certain target is estimated by using visual tracking. A technique of generative

tracking is an appearance model to represent their target, and image region is selected by using

matching scores. Various challenges in tracking involve the computational complexity and increase

their processing time. In visual tracking, there are many algorithms used, such as convolutional

neural networks, hierarchical convolutional features, and similarity measuring, matching, and opti-

mization techniques. Discriminative classification is used to classify the video images. Some track-

ing techniques are also used in the visual tracking systems, such as the foreground and background
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tracker, Hough-based tracking [1], superpixel tracking, multiple-instance learning tracking, and

tracking, learning, and detection. Visual tracking is utilized in many applications, such as:

• monitoring;

• surveillance and assistance;

• control and defense;

• robotics;

• autonomous car driving;

• human�computer interaction;

• mobile application and image stabilizing;

• action and activity recognition.

5.1.1 OBJECTIVES

The objectives of this work are as follows:

• to extract the foreground from the background;

• to track the objects that are in motion exactly;

• to associate target objects in consecutive video frames.

5.2 RELATED WORKS
Leal-Taixé et al. [2] present a benchmark for multiple-object tracking with the goal of creating a

framework for the standardized evaluation of multiple-object tracking methods. It collects the two

releases of the benchmark made and provides an in-depth analysis of almost 50 state-of-the-art

trackers that were tested on over 11,000 frames.

Khalifa et al. [3] have proposed the detection of multiple objects using background subtraction meth-

ods and extract each object features by using the speed-up robust feature algorithm and then track the

features through k-nearest neighbor processing from different surveillance videos sequentially. The back-

ground subtraction performed by subtracting the movement pixels from the static background objects.

In this paper, Danelljan et al. [4] describe the contribution of color in a tracking by the detection

framework. The color attributes provide superior performance for visual tracking and an adaptive

low-dimensional variant of color attributes. Both quantitative and attribute-based evaluations are

performed with benchmark color sequences.

5.3 PROPOSED WORK
In this paper, we propose a novel model of background clustering by utilizing the neighborhood

sequential-based pattern extraction (NSPE) algorithm for dissimilar background and object detection.

Then, the pattern possibility analysis (PPA) technique is used for texture extraction in order to suppress

the shadow pixels present in the frame. Then, patterns were extracted and classified using the machine

learning classification (MLC), in which the moving objects were isolated from the nonmoving object.
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The schematic flow of the proposed system is represented in Fig. 5.1, where the image is pre-

processed by the preprocessing block and is sent for the NSPE to transform the pattern of the video.

The output of this is again processed by removing the shadow and is made to convert the video by

utilizing the possibility analysis (PPA) technique that will also perform the weight of the pixel-

dependent grid formation and the connected components. The proposed machine learning classifi-

cation is provided by the training; afterwards, the retrieval of blob is carried out on the targeted

tracking image.

5.4 PROPOSED PHASES
The major steps involved in this proposed work are as follows:

• preprocessing;

• object detection;

• feature extraction;

• object segmentation;

• object tracking.

5.4.1 PREPROCESSING

Preprocessing is the process of eliminating the noise and shadow segment in the video frames.

Preprocessing is the primary step in video processing, in which the noise or the shadow region is

detached using some filtering techniques. In this phase, the input frames are filtered using the

median filter for the smoothening effect.

5.4.2 OBJECT DETECTION

The enhanced image from the preprocessing phase consists of interested objects as well as the

background regions. The two main tasks of video tracking are object detection and recognition.

Object detection, the process of searching each and every part of an image to localize the parts, is

carried out, in which the properties of photometry or geometry should be matched with the targeted

object in the training database. The similarity between the images is computed using correlation

Pre 

processing

NSPE PPA  Binary 

conversion

Labeled outputBlob detectionTracking 

Frame  

conversion 
Video 

FIGURE 5.1

Overall flow of proposed work.
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methods. The object detection is carried out to find the interested region using the NSPE technique

to find object in each frame

5.4.3 FEATURE EXTRACTION

The feature extraction process is mainly used for reducing the quantity of the resources, which is

required for describing a large set of data such as video sequences. While analyzing the complex large

data, the major problems may raise due to the presence of a number of variables. This analysis of a

large number of variables needs more amount of computation power and memory. Feature extraction

is performed to extract the interested region PPA technique to extract object in each frame.

5.4.4 OBJECT SEGMENTATION

Object segmentation is the important task in the process of segmentation, which depends on the

various features that are extracted from the image. Mostly, it consists of color or texture features.

In the order of recovering the original image, the segmented features are denoising from an original

image. The objective of the segmentation process is to decrease the information of an image for

easy analysis. Also this segmentation helps to process the targeted regions more accurately.

5.4.5 OBJECT TRACKING

The most critical task in video processing is the tracking of moving objects as they move in a

video. The issue of object tracking is to evaluate the locations and other associated information of

the moving objects in an image classification. This process of object tracking is carried out for

determining the activities of the object in the image frames.

The object or target is tracked by several methods and has drawbacks like merging with various

frames, which has a lot of training features and intensity changes when suddenly changes happen

and it is difficult to verify the matching features or points. To overcome these limitations of the

existing methods, a novel or robust technique is proposed to track the target. The target or track

region is represented with the bounding-box-tracked target region. The moving objects in the each

frame are classified using the MLC algorithm, in which the classified objects are considered as the

blobs. The blobs are the region of tracked object, and each frame and bounding box are applied for

every blob in the video frame.

ALGORITHM
Step 1: Input video to frame conversion shown in Fig. 5.2

Step 2: Edge enhancement in converted frame

Step 3: Resize image to 2563 256 (minimum Size)

Step 4: Edge Enhancement by applying Laplacian Equation

Step 5: Filter image using median filtering shown in Fig. 5.3

Step 6: Convert filtered RGB image to Gray Scale Image shown in Fig. 5.4

Step 7: Object is detected by using NSPE shown in Fig. 5.5

Step 8: Video sequence is tracked by PPA shown in Fig. 5.6

Step 9: Objects are classified by MLC shown in Fig. 5.7
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5.5 RESULTS AND DISCUSSIONS
The proposed work is implemented in windows 7 OS with Core-i5 and 3GB data set. In this

research, there are two videos that are used to evaluate the proposed method. We have taken the

Caviar data set and Walk-I video clips is done for experimental results.

FIGURE 5.2

Input video.

FIGURE 5.3

Preprocessing.
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FIGURE 5.4

Gray scale.

FIGURE 5.5

Blob detection.

70 CHAPTER 5 AN EFFICIENT FRAMEWORK



FIGURE 5.6

Background subtraction.

FIGURE 5.7

Tracking.
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5.5.1 ANALYSIS PARAMETERS

The proposed work is compared with the methodologies that are evaluated by true positive (TP),

false positive (FP), true negative, and false negative (FN) computations.

5.5.1.1 Precision
Precision metric is defined as the value assessed between the ratios of the associations between any

two patterns retrieved at a single instance of time.

Precision5
TP

TP1FP

The proposed work provides the precision value of 97.98% compared with the existing method

hidden markov random function (HMRF) (64.2%).

5.5.1.2 Recall
The proportional value inferred from those associated patterns and those retrieved patterns

Recall5
TP

TP1FN

The proposed work provides a recall value of 95.7 compared with the existing method HMRF

(64.8%).

5.5.1.3 F-Measure(F)
F1-measure is defined as

F5 2� Precision � Recall
Precision1Recall

5.5.1.4 Success and failure rate

Tracking Methods Success Rate Failure Rate

PartT 54.93 23.3

MVS 90.14 6

NSPE-PPA 98.95 4.86

MVS, Multiview SVM (SVM-Support vector model); NSPE-PPA, Neighborhood sequential-based pattern extraction-pattern

possibility analysis.

5.6 CONCLUSION

In this novel method for foreground region analysis, the method of NSPE and the possibility

analysis (PPA) are introduced for detecting the movable objects and extracting the features by sup-

pressing the foreground and background regions. This is because of tracking the targeted region

from the input image. The input image is retrieved and is preprocessed via some techniques, and

the performance of NSPE-PPA is attained for the conversion of video on utilizing the formation of
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pixel grids along with the connected component extraction. The image is then tracked on using the

machine learning classification algorithm to attain the targeted output image pattern. This section

also provides the estimation of performance on measuring the accuracy, precision, recall, F-measure,

success rate, and failure rate of the nearest neighbor chain prediction and the differential boundary

pattern. The performance analysis is made for proving the efficiency and improvement of this pro-

posed method to that of the existing methodologies. Hence, the proposed method shows the effective

improvement of accuracy, success rate, and so on with the reduction in the rate of error.
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6.1 INTRODUCTION
An unmanned aerial vehicle (UAV), commonly known as a drone, is an aircraft or an airborne sys-

tem that is remotely operated by a human operator or autonomously by an onboard computer. An

UAV can be defined as a powered, aerial vehicle that does not carry a human operator but works

autonomously by an on board computer. They are used for a variety of applications, especially in

military applications. UAVs are increasingly used, because they have the advantage of not placing

human life at risk and lowering operational costs. To realize these advantages, UAVs must have a

higher degree of autonomy and preferably work cooperatively in groups. Groups of UAVs that

work together as a single unit to complete a particular mission, such as mapping, are referred to as

cooperative UAVs.

Our project focuses on the simulation of cooperative UAVs with embedded path planning and

collision avoidance algorithms, such that they work autonomously and capture the images required

for two-dimensional (2D) orthomosaics. An orthomosaic is a 2D map. It is created by using a series

of aerial images of a particular area and by stitching the overlapping areas together. Thus a group

of UAVs working cooperatively can get the images faster and more accurately than a single UAV.

In this chapter, we have simulated the UAVs using the DroneKit software in the loop (SITL) and

Mission Planner. The advantage of our method is that we can easily debug and modify the design,

as it is in simulation. In addition, we can easily embed this in hardware, as the software emulates

that in the hardware board.

6.2 LITERATURE REVIEW

6.2.1 EFFICIENT THREE-DIMENSIONAL PLACEMENT OF A UNMANNED AERIAL
VEHICLE USING PARTICLE SWARM OPTIMIZATION

When cellular networks exhaust, UAVs can be utilized as aerial wireless base stations. In the litera-

ture, UAV-based wireless coverage is considered as an air-to-ground path loss model, which is

based on the assumption that the users are outdoor and they are positioned on a 2D plane. In this

chapter, a single UAV is designed to provide wireless coverage for the users inside a high-rise

building under disaster conditions (such as earthquakes or floods). It is assumed that the locations

of indoor users are uniformly distributed in all the floors, and a particle swarm optimization (PSO)

algorithm is proposed to find the efficient three-dimensional (3D) positioning of a UAV that
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minimizes the total transmit power required to cover the indoor users. At a low altitude, the data of

path loss between the aerial vehicle and the ground user reduce, when the probability for the line

of sight links decreases. Alternatively, at a high altitude, the line of sight connections exist with a

high probability, while the path loss increases. Anyhow, it is assumed that all users are outdoor and

the location point of each user can be represented by an outdoor 2D point

6.2.2 API DEVELOPMENT FOR COOPERATIVE AIRBORNE-BASED SENSE AND AVOID
IN UNMANNED AIRCRAFT SYSTEM

The usage of unmanned aerial systems (UASs) to civil applications has extended the research inter-

est in this field. Under a common airspace, various types of Unmanned Aerial Systems are used for

detection of target. But the applications are limited due to various reasons. This is because of the

complexity of the surrounding environment, the nonsegregated airspace, the variety in UASs, both

from software and hardware prospective, and the wide use of UASs in civil applications. The pur-

pose of this chapter is to extend the functionality of a famous open-source software development

kit (SDK) for an open-platform UAS, DroneKit, in the advanced control spectrum. The infrastruc-

ture for a decentralized solution for cooperative conflict detection has been developed, containing

support for inter-UAS communication, prioritization, and mission save/restore in a resource con-

scious and developer-friendly application program interface (API). The software developed under-

goes both laboratory and field testing for evaluation purposes. The results are discussed, and the

advantages of the system, along with its limitations, are presented.

6.2.3 MULTIPLE-SCENARIO UNMANNED AERIAL SYSTEM CONTROL: A SYSTEMS
ENGINEERING APPROACH AND REVIEW OF EXISTING CONTROL METHODS

The use of UASs in both the public and military environments is expected to grow significantly.

The demand for UASs grows, and then the availability of more robust and capable vehicles that

can perform multiple mission types will be required. In the public sector, the demand will grow for

UASs for agriculture, forestry, and search and rescue missions. Militaries have demand over UAS

capabilities for diverse operations around the world. A significant research has been performed and

continues to progress in the areas of autonomous UAS control. Most of the work focuses on the

subsets of UAS control: path planning, autonomy, small UAS controls, and sensors. The short work

exists on a system-level issue of multiple-scenario unmanned autonomous system control for inte-

grated systems. This chapter gives a high-level modular system architecture definition that is modi-

fiable across platform types and mission requirements. A review of the current research and

employment of UAS capabilities is provided to evaluate the states of the capabilities required to

enable the proposed architecture. The systems being developed will need to be safe, reliable, and

effective across multiple operational environments and tasks, be able to perform under multiple

scenarios, and be adaptable to new capabilities and responsive to changes in environments and

missions, which will be key to future success.
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6.2.4 FLOCKING ALGORITHM FOR AUTONOMOUS FLYING ROBOTS

The beast swarms displaying different typical flocking patterns would not exist without satisfying

safe, optimal, and stable dynamics of any individual. These patterns can be efficiently reconstructed

with simple flocking models, based on three simple rules: cohesion of the flock, repulsion of neigh-

boring individuals, and alignment of velocity between neighbors. When designing robust swarms,

the controlling adoptive dynamics of the robots can be based on the models. In this chapter, we

present such a flocking algorithm, endowing flying robots with the capability of self-organized col-

lective maneuvering. The main feature of the work is that we include the velocity alignment part of

the equations, which is an analogue of the usual frictional force between point-wise bodies. We

introduce a generalized mathematical model of an autonomous flying robot, based on flight field

tests. Using simulations, we test the flocking algorithm from the aspects of the most general defi-

ciencies of robotic systems such as time delay, locality of the communication, and inaccuracy of

the sensors. Some of these deficiencies often cause instabilities and oscillations in the system. We

show that the instabilities can be efficiently reduced in all states of the system by the inclusion of

the friction-like velocity alignment, resulting in stable flocking flight of the robots. By using a real-

istic simulation framework and studying the group behavior of autonomous robots, we can learn

about the majority of factors influencing the flight of bird flocks.

6.2.5 A GROUND CONTROL STATION FOR A MULTIUNMANNED AERIAL VEHICLE
SURVEILLANCE SYSTEM

This proposed work presents the ground control station (GCS) developed for multiple UAVs in sur-

veillance missions. The application is founded on open-source libraries, and it has been intended as

a robust and decentralized system. It allows the user to dynamically allocate variety of jobs to the

vehicles and to show their operational information in a real-time 3D environment. The ground sta-

tion is to assist the user in the different challenging tasks of controlling a system with multiple

vehicles, initiating to reduce the workload. The multi-UAV cooperative surveillance system has

been shown in field experiments with two quadcopters equipped with cameras. The design adopted

on the system architecture has demonstrated to be an efficient solution to achieve a rapid deploy-

ment of a multi-UAV surveillance system. The design of the GCS exploited the autonomous capa-

bilities of the multi-UAV system to decrease the workload of the operator. Thus the developed

GCS allowed exploiting most of the capabilities that the autonomous multi-UAV system could pro-

vide, while at the same time offered a user-friendly and easy-to-operate interface. The integration

of the information from other sensors in the GCS (not only ground cameras) can be accessed from

a remote location through the internet has been done.

6.2.6 MULTIUNMANNED AERIAL VEHICLE CONTROL WITH THE PAPARAZZI
SYSTEM

Two experiments involving multi-UAV control are presented. At first, three vehicles flew in forma-

tion flight, controlled by a ground station. Then, two aircraft flying in different places in the GPS

have been controlled from the same GCS from somewhere. Both experiments have been conducted

continuously in the Free Autopilot. The human interactions with system were complex during those

experiments. Controlling three aircrafts in the same time in a safe way requires the help of a
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carefully studied interface. Controlling a UAV from a distant remote place requires sharing the

control authority between the local and distant operators. We believe that the human work for

UAV’s control and command in this context is more similar to the work of an air-traffic controller

than to the work of a pilot. The graphical interface of the system is developed with the need. These

tests involve multi-UAV control by several operators in the same time. The results show that the

design of Paparazzi provides the perfect architecture for distributed agents, UAVs, or/and operators.

The time in hours of flight shows that the system must be autonomous and enough to provide time

to the operator to react to unexpected events. The aerial vehicle or microaerial vehicle must autono-

mously stay in the air environment as long as possible, and audible or visible alarms are shown to

the operator. Paparazzi is an open-source autopilot system, oriented toward inexpensive autono-

mous aircrafts of all types. The more number of autonomous flights have been successfully

achieved with the Paparazzi system.

6.3 RELATED WORKS
The simulation work depends on the following process for implementing the efficient cooperative

UAVs.

6.3.1 COOPERATIVE UNMANNED AERIAL VEHICLE METHODS

With the advancement in advanced sensing and information technology, cooperative UAV control

can be achieved by using a variety of sensors. The existing methods deal about controlling the mul-

tiple UAVs using one remote controller. The safe flight of multiple UAVs can be done by main-

taining a particular distance between each UAV. The distance maintenance behavior can be

achieved by using the principle that if two copters are so close to each other, then the copters must

move away autonomously. Similarly, if the copters are away from each other while locating the

position, then the copters must move closer autonomously. UAVs send their GPS coordinates to

other UAVs, thereby maintaining the distance. Cooperative UAV control can be achieved by using

sensors and remote controllers.

6.3.2 PATH PLANNING

The key factor for cooperative UAVs is path planning. The existing methods for path planning can

be classified into two types: (1) predefined flight path-based search; and (2) dynamic path planning.

In the predefined flight path method, first the flight paths are generated in advance, and the paths

are followed during the execution. They are done by using a sweep line-based search. This method

is so effective; hence, no search areas are missed but not efficient methodologies due to the prede-

fined paths. In addition, this method cannot be used for searching the dynamic targets. Dynamic

programming, artificial intelligence, and model predictive control can be used for efficient path

planning. The optimal path has to be found out. There are several algorithms for path planning, and

some of them are sampling-based algorithms, node-based algorithms, mathematical model-based

algorithms, bioinspired algorithms, and multi-fusion-based algorithms.
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6.3.3 COLLISION AVOIDANCE

The UAVs are required to fly in the defined path and to avoid collisions between each other. In the

older methods, the collision avoidance between the vehicles is achieved by using a dual mode con-

trol system, namely safe and danger mode. The safe mode is activated when there is no obstacle in

the free environment, whereas the danger mode is defined when there are chances for collisions in

the path. Every collision avoidance system contains two vital parts, and they are sensing and detec-

tion. The sensing process defines about getting vital information about the environment around the

vehicle. Here, the collision avoidance generally refers to the vehicle that can acknowledge dangers

that are not been initially known and act concurrently. For sensing some sensors, like ADS-B,

visual sensor or radar can be used. Once an UAV senses an obstacle, it has to determine whether it

will cause collision or not. There are a few collision detection methods, such as trajectory calcula-

tion and distance estimation, worst case, probabilistic, and act as seen.

6.4 PROPOSED ARCHITECTURE
Here, the DroneKit software is used for the simulation of the UAV. The DroneKit SITL is used for

simulating the vehicle without the real one. We need virtual machine for simulating multiple drones

as the SITL can simulate only one UAV. DroneKit allows us to control the UAV using Python pro-

gramming language and to test bug fixes and other changes to the autopilot. This method uses

MAVproxy to make the initial connections. As shown in Fig. 6.1, we run multiple machines in the

virtualbox and in each machine we run the DroneKit SITL. They each connect to Mission Planner

using either a transmission control protocol (TCP) or a user datagram protocol (UDP) connection.

Mission Planner provides a virtual environment to simulate the vehicle and implement the path

planning and collision avoidance algorithms. We can set the waypoints and targets in Mission

Planner.

6.4.1 DRONEKIT-PYTHON

DroneKit-Python is an open-source and community-driven project. It is installed by using a Python

pip tool on all platforms. It is a project of ArduPilot, created for connecting, controlling, and moni-

toring a vehicle. DroneKit helps you to create powerful applications for UAVs. These applications
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UAV2

UAVn

V
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l B
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Mission 
Planner

TCP

FIGURE 6.1

Block diagram.
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can run in their companion computers. They can also perform tasks that are computationally inten-

sive and use a low latency link. It provides compatibility with vehicles that communicate using the

microair vehicle link (MAVLink) protocol. One of its major advantages is that it uses Python pro-

gramming language (Fig. 6.2).

Python is a high-level programming language and easy to program and interpret. DroneKit-

Python operates on Linux, Mac OS, or Windows.

6.4.1.1 Installation
DroneKit-Python can be installed by the following command:

pip install dronekit

6.4.2 DRONEKIT-PYTHON SOFTWARE IN THE LOOP

DroneKit SITL is the fastest, simplest, and easiest way to simulation on Windows, Linux, or Mac

OS X.

The SITL simulator can be used to test the algorithms and processes for UAVs without the real/

physical vehicle.

6.4.2.1 Installation
DroneKit SITL can be installed in all platforms using the following command:

pip install dronekit-sitl

Arducopter or arduplane desktop executable

Physics simulation 
sim_multicopter.py

Flight gear

Other GCSMAV proxy on 
telemetry port

MAV proxy (or) 
mission planner

Serial 
TCP5760 

TCP

Serial 
TCP5763 

TCP

UDP 
14550

UDP 
14550

UDP
5502

UDP
5501

UDP
5502

UDP
5501 UDP 

5503

UDP
5503

UDP 
5501

FIGURE 6.2

Block diagram of ArduPilot modules.
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6.4.2.2 Running software in the loop
We can run any SITL vehicles using the default settings

dronekit-sitl copter

or can input parameters such as home location, vehicle model type, (e.g., quad), etc.

dronekit-sitl plane-3.3.0 --home5-35.363261,149.165230,584,353

6.4.3 MAVLINK

MAVLink is a protocol for communicating with unmanned vehicles. It is used for communication

between a GCS and unmanned vehicles, and in the intercommunication of the subsystem of the

vehicle. It can also be used to transmit the state of vehicle, its GPS coordinates, and other

parameters.

6.4.4 ARDUPILOT

ArduPilot is an open-source platform, which is the highly advanced application, capable of control-

ling the vehicle system designable, from conventional airplanes, submarines, hexacopters, helicop-

ters, to even boats. It has both hardware and software, thus allowing for testing before

implementation.

6.4.5 MISSION PLANNER

Mission Planner is a full-featured ground station application for the ArduPilot open-source autopilot

project. It has various options and features that help in monitoring and controlling the vehicle. In

Mission Planner, we can view the location of the vehicle, its state parameters, roll, pitch, and yaw

(RPY) axis, and plenty of other options. We can also record the running of the vehicle as a video.

Waypoints and missions can be programmed and can even be saved for later use. We can view the

running of the DroneKit SITL in Mission Planner using a TCP or UDP connection.

6.4.6 TWO-DIMENSIONAL ORTHOMOSAICS

An aerial shot image data set along with a geometrical reference has been corrected orthophoto,

orthophotograph, or orthoimage, such that the scale is uniform. The photo has the same dearth of

distortion in the map. A 2D orthomosaic is basically a 2D map created from a series of aerial

images taken by the UAVs. The drones work as a unit and capture the images of a particular area

from various angles.

These images can be used to form a large image using an algorithm that stiches together the

images using color detection. A single UAV can also be used to create an orthomosaic image, but

the efficiency and the accuracy increase by using cooperative UAVs.
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6.5 SIMULATION OF THE DRONEKIT SOFTWARE IN THE LOOP
After installing DroneKit and the DroneKit SITL, we can run the SITL for various vehicles such as

copter, plane, quad, etc. To run the latest version of a copter, we can simply call:

dronekit-sitl copter

The SITL will trigger and wait for TCP connections on 127.0.0.1:5760, where 5760 is the port

number. We can also specify the version and other parameters of the vehicle.

We can connect Mission Planner to the DroneKit SITL after running it (Fig. 6.3). In addition,

we can run the other.

No

Yes

Start

Initialize Connection_String

If 
Connecti
on_String

Connection_String = COMPORT

Connnection_String = SITL

Start simulator and hub thread

Initialize vehicle objects

Vehicle 1 Vehicle 3Vehicle 2

Arm motors Arm motorsArm motors

Set waypoints

Takeoff

Get Location parameters from 
vehicles 1,2, and 3

A

Yes

Takeoff

A

Get location parameters 
from vehicles 1,2, and 3

If 
location 

too 
close?

Move toward waypoint

Get location parameters 
from vehicles 1,2, and 3

If 
obstacle 
detecte

d?

Reached waypoint

Get location parameters 
from vehicles 1, 2, and 3

If next 
way 

point?

Load all vehicles

Close vehicle objects

Stop simulator

Start

Yes

FIGURE 6.3

Flow of execution.
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The initial calibration of each and every vehicle can be configured by using this software in

terms of RPY. In case of octocopters, all the wings and propellers should be configured in order to

maintain the stability (Fig. 6.4).

Python programs in the command prompt view the results in Mission Planner. The graph, as

shown in Fig. 6.5, of Mission Planner is the graph of the RPY axis while the drone is flying. The

channel for communication with each other can also be configured in the software.

Initially, single UAV has configured and flied along with the GPS location to study the parame-

ter outcome for the efficiency calculation.

For multiple UAVs, we can use Oracle VirtualBox. In the virtualbox, we can run the DroneKit

SITL in different virtual machines. In Fig. 6.6, we are running two Ubuntu machines, and in each

machine, we run ArduCopter.elf (Figs. 6.7�6.9).

We can then connect Mission Planner to both vehicles using a TCP connection.

In Mission Planner, we can create the waypoints for the UAV to fly (Fig. 6.10).

According to the GPS data, the vehicle will start moving along with the velocity assigned in the

algorithm. In the traditional PSO algorithm, the velocity gets changed according to the real-time

data of wind, energy consumption, and so on. In the modified PSO, the velocity keeps constant.

While the vehicle meets the wind at the real time, the rpm of propellers will get vary to maintain

the stability and the velocity. Here, the velocity becomes constant. This is the modification that has

been done in the algorithm that provides low probability of collision occurrence when compared

with the traditional PSO algorithm. Fig. 6.11 shows the simulation of multiple UAVs flying

together by communicating with each other according to the GPS data. This proposed algorithm

can be used for the real-time terrain mapping of the largest area. The vehicles split the mapping

work and stitched the pieces into one large area by the process of 2D orthomosaic (Table 6.1).

FIGURE 6.4

Parameter selection in Mission Planner.
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FIGURE 6.5

DroneKit SITL running in two virtual machines.

FIGURE 6.6

Quad flying over a given location.
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FIGURE 6.7

Simulation of takeoff of three UAVs.

FIGURE 6.8

Simulation of UAVs in Mission Planner.
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FIGURE 6.9

Setting the global positioning system location to initiate.

FIGURE 6.10

Simulation of multiple UAVs.
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6.6 COLLISION AVOIDANCE AND PATH PLANNING
In cooperative UAVs, the major challenges are obstacle/collision avoidance and path planning.

While the groups of UAVs are flying, they need to discover a path that is obstacle free and does

not cause them to collide with each other. To achieve this, we need an algorithm to find the best

possible path while the UAV is flying. The various algorithms that can be used to find the best

path are Dijkstra’s algorithm, Bellman Ford’s algorithm, Floyd�Warshall’s algorithm, and the

AStar algorithm. Among these algorithms, the AStar algorithm is found to be the best, as it does

not choose the next state only with the lowest heuristic value but the one that gives the lowest value

when considering its heuristics and cost of getting to that state.

FIGURE 6.11

Processing of images in two-dimensional orthomosaics.

Table 6.1 Readings From Mission Planner

Parameters

UAVs

UAV 1 UAV 2 UAV 3

Altitude (m) 1.20 0.97 2.38

Battery remaining (%) 92 99 94

Ground speed (m/s) 0.37 0.24 0.14

Vertical speed (m/s) 6 5 4

Distance to (Wind pressure)WP (m) 0.00 0.08 0.06

Distance traveled (m) 3.5 3.2 4.1

Yaw (degrees) 154.17 344.36 99.19

Wind speed (m/s) 3 1.8 2.2
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The collision avoidance is made possible by getting the GPS location of each drone. If the

drones move too close to the critical distance of each other, then they are made to move farther. If

they are too far away, then they are made to come closer to maintain the formation. Thus, by this

method, we achieve both collision avoidance and path planning.

The above data set has been taken for three vehicles flown cooperatively with a constant veloc-

ity. While having the constant velocity, the collision occurrence gets reduced. The altitude also

fixed for all the vehicles around the same integer. The algorithm plays a vital role for maintaining

the constant velocity, but the battery drains easily because of the sudden changes of rpm in the pro-

pellers (Tables 6.2 and 6.3).

Here, in the proposed work, we focus only on the velocity.

6.7 APPLICATIONS
Orthomosaic maps are a group of many overlapping images of a defined area, which are processed

to create a new, larger “orthomosaic”: a highly detailed, up-to-date map that is in true scale. The

orthomosaic has a uniform scale and can be used for 2D measurements, distances, and areas,

because it is an accurate representation of the Earth’s geographic surface. The images are taken by

the camera fixed in the UAVs. These images are then processed by the orthomosaic algorithm. The

Table 6.2 Comparison of PSO and Modified PSO

Parameters

PSO Modified PSO

Vehicle 1 Vehicle 2 Vehicle 3 Vehicle 1 Vehicle 2 Vehicle 3

Velocity (m/s) 6.1 5.033 4.465 6.03 6.029 6.032

Fuel efficiency (%) 64 72 71 76 81 79

Average cost time (ms) 76 80 93 65 67 73

PSO, Particle swarm optimization.

Table 6.3 Graph of Velocity.

Vehicle
1

Vehicle
2

Vehicle
3

PSO 5.1 5.45 4.465

Modified PSO 5.86 5.98 5.83

0
2
4
6
8

V
el

oc
it

y 
(m

/s
) Velocity comparison

896.7 APPLICATIONS



algorithm stiches the photos together using color detection. Thus we can obtain the complete map

using this method. The advantage of orthomosaics is that distances are preserved and therefore the

map can be used for measurements.

As further development, in the real-time implementation in hardware, 3D modeling of the whole

area can be generated by using the 2D image data set generated by the vehicle. The image data set

will be fed to the modeling software as input, and based on the input images, the point cloud gener-

ation and formation of mesh network using the points will create the complete 3D modeling using

software like Meshlab, Photomodel, and so on (Figs. 6.12�6.15).

This process of 3D modeling is used in many applications: landslide prediction, mine survey,

terrain mapping, measurement of historical buildings and objects, and underwater archeological

survey.

The reconstruction process might be very useful in the archaelogical process, especially the

underwter archaelogical process. Some objects can be buried in the water. Those kinds of objects

can be taken as 2D images, and the complete object can be rebuilt by using this process. The pro-

posd work initiated the cooperative UAV flying for terrain mapping and the 3D modeling of any

geographical area.

FIGURE 6.12

Block diagram of three-dimensional mapping.

FIGURE 6.13

Measurement of three-dimensional object.
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6.8 CONCLUSION

In this chapter, we have simulated the cooperative UAV with the collision avoidance and path plan-

ning algorithm, shown the simulation of terrain mapping using cooperative UAVs. The image data

set has been taken from the software while simulating along with the GPS location. This efficient

application can be implemented in real time by having the control board of Raspberry PI for image

processing and Pixhawk for controlling the vehicle without collision. The same proposed work can

also be used for precision agriculture, 3D mapping, emergency rescue missions, and various other

applications.
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7.1 INTRODUCTION
Sound is assumed to be a significant part of our environment. Sound recognition is an upfront sub-

ject in the present sound event recognition (SER) hypotheses and covers a rich assortment of appli-

cations. This includes finding and grouping sound from genuine conditions like infant crying,

individuals strolling, and dog yapping. Critical applications include detecting dangerous events/

crimes [1]. It also helps in context understanding for robots [2] and cars [3]. The objective of SER

is to assess the begin time and end time of every occasion and give a printed descriptor to every

occasion inside a sound chronicle. Sounds can be classified into stationary and nonstationary [4].
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Environmental sounds incorporate into the segment of nonstationary partition based on the fact that

the state of sounds changes all of a sudden inside a brief period. In general, the conventional dis-

course acknowledgment methodologies may not be suitable for the different classes of environmen-

tal sounds. Numerous studies focus on finding a better and accurate extraction technique to extract

more discriminative features. The basic classification is deciding whether the sound falls under the

category of being either an indoor sound or an outdoor sound. Such examples of indoor classifica-

tion include a living room, a bedroom, a classroom, an office, a childcare center, and so on. On

looking at the outdoor classification, it includes a noisy street, a quiet residential neighborhood,

bazaar full of people, and a school.

In the previous decade, diverse methodologies were proposed for SER task [5�13]. For

instance, a few SER frameworks have addressed polyphonic identification utilizing the Gaussian

blend models with shrouded Markov models (GMM-HMM) [14,15] and a couple of nonnegative

lattice factorization. Various profound learning approaches have been proposed for SER and con-

sidered the front-line technique for SER.

Some of the sound recognition methods have produced groundbreaking results, for example,

automatic speech recognition (ASR) [16,17] and music information retrieval (MIR) [18,19].

Environmental sound classification (ESC) is another essential branch of sound recognition and is

broadly connected in reconnaissance, home computerization, scene examination, and machine hear-

ing. Music and sound events differ much with an extensive variety of frequencies and are hardly

all-around characterized, thus making ESC assignments more troublesome than MIR and ASR.

Thus ESC still faces basic plan issues in performance and accuracy improvement. There exists a

large acoustic variation present in each class. There are also problems of overlapping in the case

of audio surveillance. In addition, reverberation poses a great challenge. Overview of SER is

shown in Fig. 7.1.
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FIGURE 7.1

Overview of sound event recognition.
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In this paper, we tend to perform a study on various methods by experimenting with three

standard classification techniques. This is done by evaluating the methods over the publicly avail-

able benchmark data sets. The methods include support vector machines (SVMs) under nonprob-

abilistic linear classifier. Under deep learning methodologies, experimentation is done with neural

networks (NNs) and convolutional neural network (CNN). Performance of each method is dis-

cussed in Section V.

7.2 NATURE OF SOUND EVENT DATA
Characteristics and various sound events to be recognized are elaborated with the help of the ESC-

50 data set.

7.2.1 NATURE OF DATA

The data set used for this study is the ESC-50. This data set is available in HARVARD Data verse

by the Warsaw University of Technology. It is a collection of about 2000 short environmental

recordings available in a uniform format, which are suitable for the benchmarking methods of envi-

ronment and sound classification. The clips are divided into 50 classes, where each class contains

40 clips. The data set contains stereo recordings from five major categories:

1. Natural soundscapes and water sounds, which includes rain, wind, water drops, thunderstorm,

pouring water, sea waves, etc.

2. Human and nonspeech sounds like Snoring, laughing, footsteps, clapping, breathing, drinking,

etc.

3. Interior or domestic sounds like door knock, vacuum cleaner, glass breaking, mouse click,

keyboard typing, alarm clock, etc.

4. Exterior or urban noises like engine, church bells, train, siren, car horn, airplane, etc.

5. Animal sounds like dog, sheep, hen, frog, cat, cow, etc.

Each recording is 5-s long. These recordings were recorded in different streets and homes. The

ESC-50 data set has been prearranged into fivefolds to perform easily a comparable cross-

validation, making sure that the fragments from the same original source file are contained in a sin-

gle grid. The data set is available under the terms of the Creative Commons Attribution

Noncommercial license.

7.3 FEATURE EXTRACTION TECHNIQUES
The most important aspects in machine learning such as “feature selection” and “feature extraction”

are discussed in the following section.
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7.3.1 FEATURE SELECTION

It is very critical to understand and discriminate between the relevant and irrelevant parts of inputs.

A problem of reducing the number of features used for modeling is referred to as dimensionality

reduction. Especially, when dealing with a large number of variables, there is a need for dimension-

ality reduction. Feature selection can significantly improve a learning algorithms’ performance

Mathematically speaking, given a set of features F5 {f1, fi,. . ., fn}, the feature selection prob-

lem is to find a subset that maximizes the learner’s ability to classify patterns. Formally, F’ should

maximize some scoring function. This general definition subsumes feature selection (i.e., a feature

selection algorithm also performs a mapping but can only map to subsets of the input variables).

The required number of samples (to achieve the same accuracy) grows exponentially with the num-

ber of variables. The classifier’s performance usually will degrade for a large number of features.

In many cases, the information that is lost by discarding variables is made up for by a more accu-

rate mapping/sampling in the lower dimensional space. In practical cases, the number of training

examples is fixed.

In theory, the goal is to find an optimal feature subset (one that maximizes the scoring func-

tion). In real-world applications, this is usually not possible. For most problems, it is computation-

ally intractable to search the whole space of possible feature subsets. One usually has to settle for

the approximations of the optimal subset. Most of the research in this area is devoted to finding

efficient search-heuristics.

7.3.2 FEATURE EXTRACTION

There are various features that can be used while incorporating in SER. All these features take up

the specific characteristics of the energy that is involved with the sound with the exception of the

time-based features. Apart from time-based features, these energy-based features give us

suitable predictable values. A few of the commonly used features are discussed below.

1. Time-domain based features

Time-domain features are directly derived from the time-domain representation of a signal.

There are various time-domain features, namely, waveform minimum and maximum, short-time

energy, and zero-crossing rate.

2. Spectral-domain-based features

Spectral-domain features are directly extracted from the power value of a spectrum. Some of

the common spectral-domain features are fundamental frequency, pitch ratio, spectral moments,

spectral flatness, spectral rolloff, spectral centroid, and bandwidth.

3. Cepstral-domain-based features

Cepstral-based features are features extracted with a cepstrum. The cepstrum is nothing but a

nonlinear transformation of a spectrum. Most commonly used cepstrum-based features are Mel-

frequency cepstral coefficients (MFCCs) and linear predictive cepstral coefficients.

a. Mel-frequency cepstral coefficients

In sound processing, the Mel-frequency cepstrum [20] is a portrayal of the short-term power

spectrum of a sound, based on a linear cosine transform of a log range spectrum on a nonlinear
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Mel scale of frequency. The extraction usually involves applying the Fourier transform of the

signal. Then, map the powers of the spectrum obtained above onto the Mel scale, using

triangular overlapping windows. Finally, take the logs of the powers at each of the Mel

frequencies followed by discrete cosine transforms. The resulting amplitude is MFCC

representation of the sound signal.

b. Linear predictive cepstral coefficients

Linear predictive cepstral coefficients are the features that are extracted from the linear predic-

tive coefficients by using a recursive technique. Linear predictive coefficients are coefficients that

are obtained by minimizing the expectation of residual energy. It is obtained by two methods

namely covariance and autocorrelation method. These features are computationally inexpensive to

extract.

4. Energy-domain-based features

Energy domain features extract energy from all the above three domains. It has two types of

features, namely, log-energy first- and second-order derivatives and signal energy features.

5. Time-frequency-based features

These features are extracted from a bidimensional function that connects the time and

frequency. It includes the following features, namely, Gabor filter bank features, matching

pursuit features, wavelet coefficient, spectrogram, wavelet coefficients, spectrogram image

features, spectral variation, spectral flux, and histogram of oriented gradients features.

6. Perceptually driven-based features

These features are mainly intended for environmental sounds and events, because it is used to

represent a nonstationary one. It includes features like Mel-frequency coefficients, log frequency

coefficients, narrowband autocorrelation features, intonation, and Teager energy operator-based fea-

tures, relative spectral perceptual linear prediction, perceptual linear prediction coefficients and

derivatives, linear prediction coefficients and derivatives, gammatone cepstral coefficients, and

spectral features based on gammatone filter bank.

7.4 SOUND EVENT RECOGNITION TECHNIQUES
Sound event data can be represented as a sequence of feature vectors and modeled using any

sequence modeling techniques such as hidden-Markov model (HMM). The other way is to derive a

global vector representation from a sequence of feature vectors and then modeled using any vector

modeling techniques such as SVMs.

7.4.1 NONPROBABILISTIC LINEAR CLASSIFIER

7.4.1.1 Support vector machines
SVMs [21] is one of the nonprobabilistic linear classifiers that is supervised in nature with related

learning calculations that break down information utilized for characterization and relapse investi-

gation. SVMs are basic: The calculation makes a line, which isolates the classes in the event. The

objective of the line is to expanding the edge between the focuses on either side of the purported
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choice line. One of the methods to choose the best hyperplane is selecting the one that represents

the largest separation, or margin, between the two classes. We choose the hyperplane such that the

distance from it to the nearest data point on each side is maximized. The advantage of this proce-

dure is that after the detachment, the model can, without much of a stretch, figure the objective

classes (names) for new cases. The relation governing the mapping of points x in the feature space

into the hyperplane is given by the regularization parameter tells the SVM advancement. For sub-

stantial estimations of hyperparameter, the streamlining will pick a smaller edge hyperplane if that

hyperplane completes a superior employment of getting all the preparation focuses ordered accu-

rately. On the other hand, a little estimation of hyperparameter will cause the enhancer to search

for a bigger edge isolating hyperplane, regardless of whether that hyperplane misclassifies or not.

SVM is based on the concept of decision planes that define decision boundaries. A decision plane

is one that separates between a set of objects having different class memberships. SVM views the

input data as two sets of vectors in an n-dimensional space. The vectors that constrain the width of

the margin are the support vectors. It constructs a separating hyperplane in that space, one of which

maximizes the margin between the two data sets. To calculate the margin, two parallel hyperplanes

are constructed, one on each side of the separating hyperplane, which is pushed up against the two

data sets. A good separation is achieved by the hyperplane that has the largest distance to the

neighboring data points of both classes, since, in general, the larger the margin, the lower the gen-

eralization error of the classifier.

7.4.1.2 Hidden-Markov model
HMM is one of the generative model-based approaches used to model the temporal variations in

the environmental audio scenes with noise. It takes the sequence of feature vectors as input and

produces a hard target output. It mainly has three parameters, namely, transition probability, states,

and mixtures. This model for a class is trained to maximize the likelihood of a model producing

the sequence of input of that class. A test scene is fed as input in order to get the probability for

that sequence provided by the model, find the maximum one, and assign it to that test event.

Various parameters like the number of mixtures and states influence the recognition accuracy.

7.4.2 DEEP LEARNING METHODOLOGIES

Deep learning is a set of algorithms, which is part of a broader family of machine learning meth-

ods, which is based on the representations of data learning. The structure, functions, and working

of information processing and communication patterns present in the biological nervous systems of

the brain have been an inspiration, which gave rise to the development of deep learning. Deep

learning has undergone a dramatic improvement in addressing important and complex problems

like computer vision, natural language processing, social network filtering, machine translation,

medical image analysis, material inspection, and sound recognition majorly in the form of speech.

It can design powerful abstractions in the input through the use of a variety of architectures that are

composed of more than one nonlinear transformations. An audio signal can be characterized as a

vector and, therefore, can be handled by multiple standard methods. Sound event data can be repre-

sented as a sequence of feature vectors and modeled using any deep learning-based sequence

modeling techniques such as a recurrent neural network (RNN). The other way is to derive a global

vector representation from a sequence of feature vectors and then modeled using any deep
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learning-based vector modeling techniques such as deep neural network (DNN) and CNN.

This section explains deep learning methodologies that include methods like NNs, CNNs, and RNNs.

7.4.2.1 Neural networks
NNs, otherwise called artificial neural systems, are propelled by impersonating the manner in which

the human mind works. This network is in the form of a circuit or network, which is composed of

a group or groups of artificial neurons/nodes that use a mathematical as well as a computational

model for processing of information, which is based on a connectionist. The principal structure of

an NN is sorted out in layers. Layers are constituted of various interconnected neurons or nodes,

which contain initiation capacities. The connections between the neurons are modeled as weights.

Every neuron essentially comprises data sources that are duplicated by connection weights and after

that registered by a numerical capacity, which decides the enactment of the neuron. All inputs are

modified by performing a linear combination using weights. Finally, the amplitude of the output is

controlled by an activation function.

In spite of the fact that NNs have been embraced in numerous applications, it demonstrates a

few deficiencies while applying for spatial and transient structure information for pictures, sound,

discourse, and content. Right off the bat, the outline of NNs is completely connected layers that

have a substantial number of parameters and the number of parameters quickly increments amid

the preparing process. It prompts moderate learning for spatial and worldly structure information.

In addition, every combination of neurons between two layers of NNs has their own parameters

keeping the system abuses and highlights the connections in high-dimensional spatial and temporal

context. Cakir et al. [22] suggested a method using three types of features, namely, MFCCs, Mel-

band energies, and log Mel-band energies and DNNs with two hidden layers is used as the classi-

fier. The model was tested with recordings from realistic everyday environments leading to an

overall accuracy of 63.8%. The model has an accuracy higher than HMM-GMM [15] with a large

margin of over 20%.

7.4.2.2 Convolutional neural networks
The CNNs are a sort of neural system design and were produced to beat the downsides of NNs

when managing the spatial structure information. The CNN is most commonly used for analyzing

visual imagery. The CNN was enlivened in light of preparing the visual cortex of people. A CNN

comprises three essential segments—convolutional layers, pooling layers, and completely associ-

ated layers. In machine learning, a CNN can be treated as a type of feed-forward artificial neural

network (ANN). A CNN is composed of a couple of distinct layers of minor neuron collections,

which are stacked onto each other. Commonly used distinct types of layers are convolutional, pool-

ing, Rectified linear unit (ReLU), fully connected layer, and loss layer. Convolutional networks use

relatively little preprocessing when compared with other classification algorithms, because in this

case, the network learns the filters rather than hard-engineering. The above-mentioned collections

process portions of the input data as a consequence that the outputs of these collections are then

tiled so that they come one over the other to obtain a neater depiction of the original input. This is

often echoed for every similar layer. Just like any other NN, we use an activation function to make

our output nonlinear. In the case of a CNN, the output of the convolution will be passed through

the ReLU function.

ReLU: f(x)5max (0, x)
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This function performs the effective removal of negative values from the activation map by

setting all these values to zero. The applications of CNN are majorly in image and video recogni-

tion, recommender systems, image and audio classification, medical image analysis, and natural

language processing.

A variation in the CNN is the deep Q-network, which is a type of deep learning model that is a

combination of a deep CNN with Q-learning. The advantage is this method can learn directly from

high-dimensional sensory inputs. Another variation is the convolutional deep belief networks. The

core difference is that they provide a generic structure that can be used in many image and signal

processing tasks. Benchmark results on standard data sets have been obtained using this method.

A method was suggested by Piczak [19] by squaring the frequency area under the log Mel spec-

trogram. This increased the accuracy by 20.5% on the ESC 50 data set. Log Mel spectrogram was

again used by Takahashi et al. [23]. Agarwal et al. [24] implemented the gamma tone spectrogram,

used in the CNN similar to Piczak [19] and said to have achieved an accuracy 79.1 % in the ESC

50 data set. Dai et al. [25] suggested a deep CNN model with 1-dimensional (1-D) Convolutional

layers using 1-D raw data as input and it proved the purpose by attaining good accuracy with CNN

using log Mel spectrogram inputs [26].

7.4.2.3 Recurrent neural network
RNN is one of the deep learning models that are used for modeling the arbitrary length sequences

by applying a transition function to all its hidden states in a recursive manner. It is well suited for

sequence modeling techniques related to the time variations as well as the time-invariant inputs. It

has a fixed structure architecture, but it is differentiable from all the nodes [27]. The derivative of

the loss function is calculated for each and every parameter. It has many cycles in its structure, so

it is well suited for the time-varying inputs. These cycles are used to model the temporal variations

present in the input. The activation function followed by this RNNs hidden state is a function that

depends on its previous states only [28]. It maps the sequence of inputs into the fixed size vector,

and then, it is fed as an input to a softmax activation function and it produces the output. The RNN

overcomes the long-term dependences, because it depends on the current input and the previous

output. The problem over RNN is exploding and vanishing gradients due to its more number of

transitions.

7.5 EXPERIMENTATION AND PERFORMANCE ANALYSIS
In audio surveillance, SER is an important task. In this study, we review various methods and fea-

tures used for that task. In this section, we have done experimentation over the ESC-50 data set

using MFCC features with CNN, ANN, and SVM as classifiers and the results are tabulated in

Table 7.1. The best performance is acknowledged for deep learning-based approaches. MFCC-

based deep learning approaches of our work are compared with various literature works of different

features like Logmel [19] and Gammatone [24].
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7.5.1 DATA SET

There are various data sets for SER tasks, which are publicly available for experimentation.

Few of them are Challenge-DCASE2013, TUT-DCASE2016, ESC-10, UrbanSound8k, CICESE,

and ESC-50. We use ESC-50 for our experimentation.

7.5.2 COMPARATIVE STUDY ON RELATED WORK

Various methods evaluated over ESC-50 data set are studied, and comparison results are shown in

Table 7.1. Piczak [19] proposed a model using SVM. In this model, two types of features were

extracted: zero-crossing rate and MFCCs. This shows an overall accuracy of 39.6%. The proposed

model in this paper has an accuracy of 59.5 %. The model outperforms the former by 19.9%.

Heittola et al. [15] proposed a multilabel feedforward DNNs for the SER task. The model is evalu-

ated with recordings from realistic everyday environments, and the achieved overall accuracy is

63.8%. The model studied in this paper has an accuracy of 74.84% and outperforms HMM-GMM

with a margin of 11.04%. Jeong et al. [6] show a good performance when applied the CNN for the

SER task. The work uses both short-term and long-term audio signals as input features to feed into

convolutional network architectures. They used the 1-D convolution layer with 64 filters. The pro-

posed model obtained better results than the baseline system in terms of score and accuracy. The

model has achieved an accuracy of 78.54%.

Our methods have shown reasonable recognition accuracy over other methods mentioned in

Table 7.1. From our experimental study, we observe that the performance of the ANN is better

than the other methods using SVM as classifier. The CNN outperforms both SVM and ANN meth-

ods. Furthermore, on the analysis with the help of the confusion matrix, we observe that sounds

that are confused over human perception is also misclassified by the system.

Further, on studying the manipulations over the number of layers of the neural networks, we

find that the accuracy of the model goes down. This is natural as we do not know the trends in

neural models as the number of layers and the number of nodes in each layer go up. Sometimes,

the accuracy may increase or decrease according to the nature of the sound classes we take

upon. For example, in the ANNs on increasing the number of layers by 2, the accuracy drops by

more than 10%.

Table 7.1 Comparative Study on ESC-50 Data set

S. No. Methods Used Accuracy(%)

1 MFCC1 SVM 59.5

2 MFCC1ANN 74.84

3 MFCC1CNN 78.54

4 Logmel2CNN [19] 64.5

5 MFCC2DNN [15] 63.8

6 Gammatone�CNN [24] 79.1

ANN, Artificial neural network; CNN, convolutional neural network; DNN, deep neural network; MFCC, Mel-frequency cepstral

coefficient; SVM, support vector machine.
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7.6 FUTURE DIRECTIONS AND CONCLUSION
More research is needed on understanding the characteristics of the SVM, NN, and CNN techni-

ques applied over the sound classification task under highly clamorous conditions. For successfully

developing of such a sound recognition system, it is essential to take into account such noisy distur-

bances. In order to achieve this, different kinds of techniques aiming essentially at finding robust

and invariant signal features can be used with the help of adaptation methods or robust decision

strategies. From the observations made so far, we suggest that additional efforts has to be taken to

combine existing features like MFCC and LPCC to achieve improved results. Further research can

be done over different data sets collected from some real-world scenarios to improve robustness.

Many new model-driven approaches such as discriminative-model based approaches and hybrid-

model based approaches can be applied to achieve better results. Our future studies will be carried

over long duration tasks, since most of the above-mentioned methods are suitable only for short-

duration tasks.

SER is one of the most important tasks in audio surveillance. In this survey, we focus on tradi-

tional and deep learning approaches for SER task over the ESC-50 data set. We have done a com-

parative study of traditional and deep learning approaches with some methods available from the

literature. With this analyzed results of our study, we conclude that deep learning approaches work

well for the SER tasks.
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8.1 INTRODUCTION
Image classification plays an important role in remote sensing images and is used for various appli-

cations such as environmental change, agriculture, land use/land planning, urban planning, surveil-

lance, geographic mapping, disaster control, and object detection and also it has become a hot

research topic in the remote sensing community [1]. The remote sensing image data can be

obtained from various resources like satellites, airplanes, and aerial vehicles. Earlier, the spatial sat-

ellite image resolution was used, which was very low, and the pixel sizes were typically coarser

and the image analysis methods for remote sensing images are based on pixel-based analysis or

subpixel analysis for this conversion [2]. In this case, sometimes it is difficult to classify the scene

images at pixel level clearly.

In order to solve this problem, some researchers have focused on object-based image analysis

instead of individual pixels [3]. Here, the term “objects” represents meaningful scene components

that distinguish an image. The object-level methods gave better results of image analysis than the

pixel-level methods. With the development of machine learning algorithm, the semantic-level
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method is also used for analyzing the remote sensing image [4]. The semantic-level image classifi-

cation aims to provide the label for each scene image with a specific semantic class. The scene

images are manually extracted from the large-scale remote sensing image, for example, airplane,

beach, forest, road, and river [3,4].

A wide number of techniques have been developed for object classification [1]. In general,

the object classification methods are divided into three categories based on the features they use,

namely, handcraft feature learning method, unsupervised feature learning method, and deep fea-

ture learning-based method [5]. Earlier, scene classification was based on the handcraft feature

learning-based method. This method [6,7] was mainly used for designing the engineering fea-

tures, such as color, shape, texture, and spatial and spectral information. The unsupervised feature

learning method [8] is an alternative for the handcrafted feature method and training the unla-

beled data for remote sensing image classification. The aim of the unsupervised feature learning

method is used to identify the low-dimensional features that capture some underlying high-

dimensional input data. When the feature learning is performed in an unsupervised way, it

enables a form of semisupervised learning, where features learned from an unlabeled data set are

then employed to improve performance in a supervised setting with labeled data. There are sev-

eral unsupervised feature learning methods available such as k-means clustering, principal com-

ponent analysis (PCA), sparse coding, and autoencoding. In real-time applications, the

unsupervised feature learning methods have achieved high performance for classification com-

pared with handcrafted-feature learning methods [9]. However, the lack of semantic information

provided by the category label cannot promise the best discrimination between the classes. So we

need to improve the classification performance and to extract powerful discriminant features for

improving classification performance.

Deep learning [10] is a powerful machine learning technique for solving a wide range of com-

puter applications. It is composed of multiple processing layers that can learn more powerful fea-

ture representations of data with multiple levels of abstraction [11]. In the deep learning technique,

a several number of models are available such as convolutional neural network (CNN), deep auto-

encoders, deep belief network (DBN), recurrent neural network (RNN), and long short-term mem-

ory (LSTM). The models are aimed to get high-level features. When compared with traditional

methods, deep learning methods do not need manual annotation and knowledge experts for feature

extraction. Feature extraction and classifications are combined together in this model.

This research paper has been organized as follows. Section 8.2 describes the review and related

works for the scene classification. Section 8.3 discusses the visual geometry group (VGG)-16 deep

CNN for scene classification. Section 8.4 provides detail description about the benchmark data set.

Section 8.5 describes the experimental results and analysis. Finally, conclusions are shown in

Section 8.6.

8.2 RELATED WORKS
Remote sensing images are more valuable tool for monitoring the Earth surface and mainly used

for various applications such as surveillance, agricultural monitoring, metrology, mineralogy, and

environmental science. A lot of classification methods have been proposed to deal with the remote
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sensing image classification. The traditional object classification is based on either supervised or

unsupervised learning methods. Some researchers have proposed object classification methods

using supervised learning techniques such as support vector machines (SVMs), artificial neural net-

works (ANNs), random forest, k-nearest neighbors, decision tree, and sparse representation classi-

fier [1].

Bazi and Melgani [12] have introduced the genetic optimization framework in an SVM for clas-

sifying hyperspectral remote sensing images. Archibald and Fann [13] have proposed embedded

feature-selection algorithm that is tailored to operate with SVMs to perform band selection and

classification. The ANN is a nonparametric learning technique, which is a more sophisticated and

robust method for image classification. The ANN produces higher accuracy from few training data.

Kavzoglu and Mather [14] have proposed back-propagating ANNs in land cover classification. The

Random forest is an ensemble classifier that produces multiple decision trees using randomly

selected training samples. Belgiu and Drăguţ [15] have done a survey of object classification by

using random forest techniques and their applications. Hayesa et al. [16] have introduced high-

resolution land cover classification using Random forest.

Cheriyadat [17] proposed an unsupervised feature learning approach for scene classification.

Unsupervised feature learning approach is to generate feature representation for various high-

resolution aerial scenes. Chaib et al. [18] have introduced an informative feature selection method

for high-resolution satellite image classification by using a PCA classifier. Zhang et al. [19] have

developed a hybrid model satellite image classification using multifeature joint sparse coding.

Sheng et al. [20] have proposed a sparse coding-based multifeature for image classification. But the

sparse coding is more expensive when dealing with big data. Therefore the sparse feature coding

can be used only for small-scale problems.

In recent years, a CNN has been used in various remote sensing applications, such as object

classification, land use scene classification, and object detection. The CNNs is a one type of ANNs,

which consist of a series of layer such as convolution, subsampling/pooling, fully connected, and

softmax function. However, additional layers such as dropout, batch normalization, and optimiza-

tion can be used for avoiding overfitting problem and improving the generalization of the model.

The last layer depends on the problem types, for binary classification sigmoid is used. For multi-

class classification, softmax function is used.

Zhong et al. [21] proposed a novel approach for scene classification of high spatial resolution

imagery by using large patch CNNs. The large patch sampling is used to generate hundreds of

possible scene patches for feature learning. Almost all the existing CNN models train only

small data sets. In order to solve this problem, deep CNN is introduced, which can train large

data sets. Kruithof et al. [22] have proposed an object recognition using deep CNNs with com-

plete transfer and partial frozen layers. Zou et al. have developed a deep learning-based feature

selection for remote sensing scene classification. The popular deep-learning technique, that is,

the DBN, has achieved feature abstraction by minimizing the reconstruction error over the

whole feature set, and features with smaller reconstruction errors would hold more features

intrinsic for image representation [23]. Kussul et al. [24] have introduced deep learning classifi-

cation of land cover and crop types using remote sensing data. While analyzing the literature,

we found that the classification performance of all the above techniques is not satisfactory. So

in order to improve the performance, we have included the VGG-16 deep CNN in our proposed

approach.
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8.3 VGG-16 DEEP CONVOLUTIONAL NEURAL NETWORK MODEL
This section describes the VGG-16 deep CNN model for classification of remote sensing images

using deep CNNs. The model is one of most powerful deep CNN, which was proposed by

Simonyan and Zisserman. Fig. 8.1 shows the architecture diagram of the VGG-16 deep CNN

model. It takes input image at the low level and processes them through a sequence of computa-

tional units and obtains the necessary values for classification in the higher layer. This model con-

sists of 13 convolutional layers with 33 3 filter size, five subsampling/max pooling layer with a

size of 23 2, and two fully connected layers with activation function and softmax function.

The convolutional layers extract features from the input images. The 13 convolutional layers

are distributed in five blocks. The first two blocks contain two convolutional layers in each block.

Similarly, the remaining three blocks consist of three convolutional layers in each block. The first

block convolutional layer extracts low-level features such as lines and edges. Higher level layer

extracts high-level features. Every convolutional filter has a kernel size of 33 3 filters with stride

1. The filter size of the convolutional layer is gradually increased from 64 to 512.

The subsampling layer is used to reduce the feature resolution. This layer reduces the number

of connection between the convolutional layers, so it will lower the computational time also. There

are three types of pooling: max pooling, min pooling, and average pooling. In each case, the input

image is divided into nonoverlapping two-dimensional spaces. For example, if the input size is
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FIGURE 8.1

Architecture of visual geometry group-16 deep convolutional neural network model.
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43 4 and the subsampling size is 23 2, a 43 4 image is divided into four nonoverlapping of matri-

ces 23 2. For max pooling, the maximum value of the four values is selected. In the case of min

pooling, the minimum value of the four values is selected. Fig. 8.2 shows the operation of the max

pooling and average pooling processes.

The VGG-16 deep CNN model ends with two fully connected layer and softmax function. In

these layers, sum of all the weights of previous layer features is calculated and the specific output

is determined. Finally, fully connected layers reduce the dimension into 4096 and classify the 10

class object using softmax function. The activation function improves the deep CNN performance.

In this chapter, three standard activation functions, such as tanh, eLu, and rectified linear unit

(ReLU), have been used. The ReLU is one of the standard and popular activation functions in the

last few years. The ReLU activation function is defined as:

bi;j;k 5max ðai;j;k; 0Þ (8.1)

where ai,j,k is the input of the activation function at location (i, j) on the kth channel. In this layer,

we remove every negative value from the filtered images and replace it with zeros. Fig. 8.3 elabo-

rates the process of activation function.

The overfitting is an unneglectable problem in the VGG-16 deep CNN model that can be

reduced by regularization. In this chapter, we use the effective regularization technique Dropout.

The Dropout was introduced by Hinton et al. [25] and it has been proved effective in reducing

overfitting. The dropout techniques are used in the fully connected layer and we can specify the

different level of dropout parameters like 0.2, 0.3, and 0.5. The VGG-16 deep CNN model was

trained with backpropogation algorithm and root mean square property (RMSprop). The RMSprop

is used to reduce the loss function of the VGG-16 deep CNN model. Table 8.1 summarizes the

hyperparameters of the VGG-16 deep CNN model.

FIGURE 8.2

Pictorial representation of max pooling and average pooling processes.
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FIGURE 8.3

Pictorial representation of activation function.

Table 8.1 Summary of VGG-16 Model

Layer (Type) Output Shape Parameter

input_1 (Input Layer) (None, 224, 224, 3) 0

b1_conv1 (Conv2D) (None, 224, 224, 64) 1792

b1_conv2 (Conv2D) (None, 224, 224, 64) 36,928

b1_pool (MaxPooling2D) (None, 112, 112, 64) 0

b2_conv1 (Conv2D) (None, 112, 112, 128) 73,856

b2_conv2 (Conv2D) (None, 112, 112, 128) 14,7584

b2_pool (MaxPooling2D) (None, 56, 56, 128) 0

b3_conv1 (Conv2D) (None, 56, 56, 256) 295,168

b3_conv2 (Conv2D) (None, 56, 56, 256) 590,080

b3_conv3 (Conv2D) (None, 56, 56, 256) 590,080

b3_pool (MaxPooling2D) (None, 28, 28, 256) 0

b4_conv1 (Conv2D) (None, 28, 28, 512) 1,180,160

b4_conv2 (Conv2D) (None, 28, 28, 512) 2,359,808

b4_conv3 (Conv2D) (None, 28, 28, 512) 2,359,808

b4_pool (MaxPooling2D) (None, 14, 14, 512) 0

b5_conv1 (Conv2D) (None, 14, 14, 512) 2,359,808

b5_conv2 (Conv2D) (None, 14, 14, 512) 2,359,808

b5_conv3 (Conv2D) (None, 14, 14, 512) 2,359,808

b5_pool (MaxPooling2D) (None, 7, 7, 512) 0

flatten_1 (Flatten) (None, 25,088) 0

dense_1 (Dense) (None, 1024) 25,691,136

dropout_1 (Dropout) (None, 1024) 0

dense_2 (Dense) (None, 10) 10,250

Total parameters: 40,416,074

Trainable parameters: 32,780,810

Nontrainable parameters: 7,635,264

VGG, Visual geometry group.
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8.4 DATA SET DESCRIPTION
The North Western Polytechnical University (NWPU)-RESISC 45 class data set is the publicly

available benchmark data set. It is mainly used for remote sensing image scene classification and

created by the NWPU. The remote sensing data set is extracted from Google Earth. The NWPU-

RESISC 45 class data set contains airplane, airport, baseball diamond, basketball court, beach,

bridge, chaparral, church, circular farmland, cloud, commercial area, dense residential, desert, for-

est, freeway, golf course, ground track field, harbor, industrial area, intersection, island, lake,

meadow, medium residential, mobile home park, mountain, overpass, palace, parking lot, railway,

railway station, rectangular farmland, river, roundabout, runway, sea ice, ship, snow berg, sparse

residential, stadium, storage tank, tennis court, terrace, thermal power station, and wetland. The

data set contains 31,500 satellite images and each class consists of 700 images. The resolution of

each image has size of 2563 256 pixels with RGB color space. In our proposed method, we ran-

domly select 10 classes such as airplane, beach, commercial area, desert, forest, lake, overpass,

river, tennis court, and wetland.

Fig. 8.4 shows some example images from the NWPU-RESISC 45 class data set for image

classification. In the VGG-16 deep CNN model, the data set has been split into training, valida-

tion, and testing data sets separately. The training and testing set descriptions are shown in

Table 8.2. The validation images are randomly selected from training sample based on the size of

validation.

8.5 EXPERIMENTAL RESULTS AND ANALYSIS
Experiments are conducted on 10 classes such as airplane, beach, commercial area, desert, forest,

lake, overpass, river, tennis court, and wetland from the NWPU-RESISC 45 class data set using

VGG-16 deep CNN. The VGG-16 model was trained and tested with 7000 images using tensor

flow in Core i7 CPU 2.6 GHz, 1-TB hard disk, and 8-GB RAM.

In order to evaluate the performance of proposed work, six common evaluation metrics such as

accuracy, precision, recall, F1-score, confusion matrix, and receiver operating characteristics

(ROC) curve are calculated using the formula given in Eqs. (8.2)�(8.5):

ACCURACY5
Total No: of Correct Prediction

No: of Input Samples
(8.2)

PREi 5
TPi

TPi 1 FPi
(8.3)

RECi 5
TPi

TPi 1 FNi

(8.4)

Fi1 5 2 3
PREi 3 RECi

PREi 1RECi

(8.5)

where TP (true positives) denotes the number of correct detections of the object, TN (true nega-

tives) denotes the number of wrong detections of the object, FN (false negatives) denotes the num-

ber of missed objects, and FP (false positives) denotes the number of incorrect detections of the
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object. The average accuracy, precision, recall, F1-score, and loss of VGG-16 model on validation

data set were 0.947, 0.95, 0.95, and 0.2341, respectively. The results suggest that the VGG-16

model could classify all the classes with higher accuracy. The wetland class gives an average of

0.82 results due to shadow class and the class is missclassified as river, lake, and forest. The evalu-

ation metrics of the proposed VGG-16 deep CNN model was shown in Table 8.3.

FIGURE 8.4

Image examples of different classes from the North Western Polytechnical University-RESISC 45 class data set.
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Fig. 8.5 shows the accuracy performance of the VGG-16 Deep CNN model for both training

and validation data sets. The accuracy of the model increases for each and every epoch. Similarly,

loss of the model decreases for every epoch. The fluctuations in the accuracy from one epoch to

another epoch depend on the regularization and optimizing techniques.

The generated confusion matrix is shown in Table 8.4. The correctly classified data items are

placed in the diagonal of confusion matrix, and remaining missclassified data items are placed

above and below the diagonal of the confusion matrix. We found that the error occurs when “wet-

land” classified as “forest” and “lake.” Fig. 8.6 shows the ROC curve of the proposed model for

object classification.

Table 8.2 Statistics of Training and Validation Data Set

Class Number Class Name
No. of Training
Sample

No. of Validation
Sample

No. of Testing
Sample

0 Airplane 538 100 19

1 Beach 542 100 20

2 Commercial

area

544 100 20

3 Desert 532 100 20

4 Forest 560 100 20

5 Lake 533 100 20

6 Overpass 541 100 20

7 River 493 100 20

8 Tennis court 530 100 20

9 Wetland 538 100 20

Total no. of samples 5451 1000 99

Table 8.3 Evaluation Metrics for Object Classification

Class Name Precision Recall F1-Score

Airplane 0.99 1.00 1.00

Beach 0.99 0.97 0.98

Commercial area 0.97 0.98 0.98

Desert 1.00 0.98 0.99

Forest 0.93 0.99 0.96

Lake 0.91 0.90 0.90

Overpass 0.98 0.99 0.99

River 0.88 0.88 0.88

Tennis court 0.97 0.98 0.98

Wetland 0.85 0.80 0.82

Total/average 0.95 0.95 0.95
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8.5.1 CLASSIFICATION OF RESULTS FOR VARIOUS HYPERPARAMETERS

The VGG-16 model was trained by varying three hyperparameter activation function, dropout prob-

ability, and batch size. The results are shown in Tables 8.5�8.7 and its corresponding chart is

shown in Figs. 8.7�8.9.

In this analysis, we found that the activation function “ReLU” has higher results than other two

functions ELU and tanh. By using this activation function, the VGG-16 Deep CNN model achieves

0.947 accuracy result. The experiment by varying dropout probability gives better performance for

0.3. Also the efficiency of the VGG-16 deep CNN model was compared with different batch sizes

such as 4, 8, 12, and 16 and found that the batch size 4 gave better results.

FIGURE 8.5

Train and validation accuracy for visual geometry group-16 deep convolutional neural network model. (A) Model

accuracy for validation set. (B) Model loss for validation set.

Table 8.4 Confusion Matrix for 10 Class Object Classification

Class Name Airplane Beach

Commercial

Area Desert Forest Lake Overpass River

Tennis

Court Wetland

Airplane 100 0 0 0 0 0 1 0 0 0

Beach 0 97 0 0 0 0 0 1 0 2

Commercial

area

1 0 98 0 0 0 0 1 0 0

Desert 0 0 0 98 1 0 0 1 0 0

Forest 0 0 0 0 99 0 0 0 0 1

Lake 0 0 0 0 0 90 0 2 0 8

Overpass 0 0 1 0 0 0 99 0 0 0

River 0 0 2 0 1 4 1 88 2 2

Tennis court 0 0 0 0 0 0 1 0 98 1

Wetland 0 1 0 0 6 5 0 7 1 80
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FIGURE 8.6

ROC curve of the proposed model for object classification.

Table 8.5 Classification Performance of Various Activation Functions

Activation Function Accuracy Precision Recall F1-Score

ReLU 94.7 95 95 95

ELU 90.5 91 91 90

Tanh 91.1 92 91 91

ReLU, Rectified linear unit.

Table 8.6 Classification Performance of Various Batch sizes

Batch Size Accuracy Precision Recall F1-Score

Batch 4 94.7 95 95 95

Batch 8 93.8 95 94 94

Batch 12 93.5 94 94 94

Batch 16 92.1 92 92 92

Table 8.7 Classification Performance of Various Dropout Probabilities

Dropout Accuracy Precision Recall F1-Score

Dropout-0.2 90.5 92 91 91

Dropout-0.3 94.7 95 95 95

Dropout-0.4 91.2 91 90 90

Dropout-0.5 92.1 92 92 92
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8.6 CONCLUSION

In this paper, we have proposed object classification methods for remote sensing images using

VGG-16 deep CNN. The deep CNN model acts as a feature extractor and classifier for the given

training images as well as validation images. We have tuned the VGG-16 deep CNN with batch

size 4, dropout-0.3, and activation function ReLU. With this mode, we have achieved 94.7% accu-

racy for 10 class remote sensing images, which is higher than other classification methods. In

future, we have planned to implement the proposed work in GPU configuration for reducing the

computational time.

FIGURE 8.7

Classification performance chart of various dropout probabilities.

FIGURE 8.8

Classification performance chart of various activation functions.
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9.1 INTRODUCTION
Since the inception of mathematical modeling of engineering systems, linear algebra has been used

as a fundamental structure due to its abundant capacity for the presentation of geometry, planes,

space, and rotation. This further aids the analysis of many natural phenomena. This decimation in

complexity allows a logical analysis and efficient computations of the systems. Linear algebra

accommodates a system of linear equations generally represented as Ax5 Y, where A represents all

the m coefficients, each from the set of n equations. The very solvability coupled with the nature of

solution is determined by the structure of the matrix A. But, the system becomes underdetermined,

if A is in an over-complete basis. An infinite set of dimensions can thus represent the same data set

x, which disrupts the uniqueness of the solution. But the introduction of the criterion of sparsity in

the vector space of data x makes it complete and thus converges to a unique solution. It is from this

very canny idea that evokes the practicality of compressive sensing (CS). Donoho and David [1]

stated that a prior knowledge about a signal’s sparsity can be used for reconstructing the signal
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with far few samples as demanded by the sampling theorem. This ground breaking idea thus breaks

free off the existing real-time systems from the constraint set by the sampling theorem. Fast, effi-

cient, and inexpensive systems can thus be realized [2]. CS is a dump signal acquisition model, in

the sense that it does not take account of neither the domain of sparsity of the signal nor the magni-

tude and the position within the signal. The randomness and the sporadic nature of signal acquisi-

tion brought about by CS add to their usefulness in critical system realizations. This chapter

discusses one such critical application of CS in collision prevention system in automobiles. The

framework consists of acquiring the digital image from the camera mounted on the vehicle. A

Block Compressed Sensing (BCS) [3] approach is adopted here. This method reduces the computa-

tional complexity, memory, and time by sensing a randomly formed block divided pixel space

(Fig. 9.1). In [3], it was studied that BCS produced comfortable performance in natural images.

The online camera captures frames at 24 fs21, where each of the frames is sensed by BCS.

The acquired signal undergoes image processing to find a reference pixel space that infers to the

information about the distance between vehicles. Section 9.2 gives a brief review over the existing

CS literature. Sections 9.3 and 9.4 produce a detailed description and result analysis of the pro-

posed system.

9.2 THEORETICAL BACKGROUND
According to Shannon, for recovering a continuous-time signal, it has to be sampled at a sampling

frequency fs which is twice the maximum frequency component fm in the signal [4].

fs 5 2fm (9.1)

FIGURE 9.1

Block compressed sensing.
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This theorem became the very fundamental element that bridged the analog and digital signals.

In the existing signal processing paradigm, these uniformly collected n samples are further com-

pressed into m numbers, where m , n entities, discarding all the n2m entries [2,5]. At the recep-

tion end, decompressions of these entities are carried out to represent the entire signal. When it

comes to realization of a practical digital communication system, measuring n samples, only to pre-

serve “m” among them, turns out to be cumbersome. Furthermore, in the event of identifying all

the “m” entities, the remaining n2m entries were also to be operated, which accounted for a major

loss in memory, power, and time. Furthermore, the peculiar character around the sampling theorem

sticks to the dogma that denser the sampling, the fairer will become the reconstruction, which

infringes with the flexibility of the realizable system. The current designing of signal acquisition

system is constrained by the long-established tradition of the sampling theorem.

9.2.1 SPARSITY

It is observed that the signal that has a high time bandwidth product demands a high sampling rate.

But in the wavelet and Gabor transform, they can be represented over a small frequency range

[6,7]. These domains can typically provide an approximation over the sparsity of the given signal.

Fig. 9.2 shows the 2-D wavelet decomposition of an image in the Haar wavelet in single level.

FIGURE 9.2

Haar wavelet decomposition.
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These domains can represent the given signal x with most of its coefficients having their absolute

vales null [7]. This aids the judicious choice over the number of compression samples m rather

than a blind choice of a threshold value coupled with a tradeoff of quality. The sparsity of the sig-

nal is defined in the domain of choice as per the application. Under the current literature [6], the

discovery of wavelet orthogonal bases lit a path for various transforms adaptable over a wide range

of signals. As discussed in [7], these systems for sparse approximation can diverse from wavelet

shearlets to dictionary learning algorithms, where the representational system is produced from a

training set of signals [8]. The sparsity of the signal comes handy in the reduction of required mea-

surements in the above discussed domains, for other way mammoth time-domain representations.

9.2.2 COMPRESSED SENSING PROBLEM STATEMENT

The CS problem statement can be introduced from a signal acquisition model for a signal x, where

ðxiÞNi51ARN , where x is a signal of the dimension N. It can be assumed that the signal x itself is

sparse, where most of the entries to N dimensions are zero or negligible over s larger absolute

values [9]. In [10], a mathematical representation using the l0 counting norm is used to evaluate the

sparse nature of x, |i:xi6¼0|. But, it is very hard that the natural signals are expected to exhibit this

character [11]. Hence, the existence of an orthonormal basis ϕ over which x is sparse is assumed.

x5ϕc (9.2)

where c is the natural nonsparse vector of x. The orthonormal basis is often termed as a representa-

tional matrix [2]. The choice of a representational matrix is depended upon the application and

nature of x. In a CS frame, random low dimensional measurements m are taken over the signal by a

measurement/sensing matrix A. A is an m dimensional vector space of n vectors with m much lesser

than n. This system is coupled with a constraint that x is sparse in some domain ϕ. The product of

measurements over x yields a measurement vector Y in m dimensions. The CS problem is stated as

follows: recover x from a prior knowledge of A and Y.

Y5Ax (9.3)

The above system represents a linear combination of m dimensional vectors from A with the

corresponding entries in the signal x. The Eq. (9.2) represents an under-deterministic system of lin-

ear equations, which makes it unsolvable as it converges to an infinite set of solutions. The intro-

duction of sparsity to the above equation will redesign it as follows:

Y 5ψc (9.4)

where ψ5A3ϕ. If the combined transform ψ is a linear independent vector space, the problem is

translated to an under-complete basis. The sparsity of x forces Y to be just s linear combinations of

m dimensional vectors weighted by the corresponding sparse element’s magnitude. This inhibits the

contribution of all other n2 s vectors to Y. Fig. 9.3 depicts the CS as opposed to the traditional

sampling technique.

9.2.3 RECOVERY

As m. s and ψ (ψ5A3ϕ) is linearly independent, the system takes unique redundant measure-

ments on the signal that can be solved to retrieve the sparse solution. But, the nature of the
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measurement (active vectors) depends on the location of the sparse element in x. Solving for x by

trying out all the possible combinations of vectors makes the problem non-deterministic polynomial

(NP)-hard [11]. Solution for x can be founded out by the introduction of vector norms [1,10].

minx jjxjj0 subject tojjY 2Axjj22 5 e (9.5)

where e is the expected error after recovery. As the signal is sparse, the obvious choice would be

the pseudonorm l0 [12]. But, this still does not lift the system from the burden of infinite combina-

torial search and drives the problem NP-hard [11]. This calls for another suitable norm. In [13], it

was proposed that the convex norm l1 could replace l0 in this minimization problem, which was

termed Basis Pursuit:

minx jjxjj1 subject tojjY 2Axjj22 5 e (9.6)

The choice of l1 over l2 is due to the fact that it converges to the sparsest solution. This is evi-

dent from its geometric structure of l1. Furthermore, l1 is closest to l0 in penalization, when l2 exhi-

bits a quadratic nature.

9.2.4 QUALITY MEASUREMENT

In digital image processing algorithms, quality assessment of a processed image is an integral part,

as it is important to quantify the loss of information due to distortions and noises the image inher-

its. Under the current literature, there are various mathematical tools available for quality estima-

tion [14]. In this chapter, two such popular techniques, namely peak signal-to-noise ratio (PSNR)

and structural similarity index measure [SSIM], are used [15]. The computational easiness is one

key factor that triggers its wide usage in most of the image processing algorithms [16]. From [16],

for a reference image f and its processed result g, both of the same dimension M3N, PSNR is

defined as follows:

FIGURE 9.3

Traditional sampling versus compressed sensing.
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PSNRð f ; gÞ510log10
2552

MSEð f ; gÞ

� �
2552

MSEð f ; gÞ (9.7)

where

MSEð f ; gÞ5 1

MN

XM
ði51Þ

XN
ð j51Þ

ð fij2gijÞ2 (9.8)

where MSE is the mean square error between the reference and reconstructed images. As the MSE

approaches zero, the PSNR value approaches infinity. This implies that PSNR increases as the

reconstruction produces an image of higher quality. However, PSNR lacks in the ability to examine

the structural information of the image [17]. This surfaces the advantage of SSIM [18] over abso-

lute error estimations like PSNR and MSE. SSIM takes account of the loss in correlation, lumi-

nance, and contrast masking associated with the reconstructed image. In [18], SSIM is defined as

follows:

SSIM f ; gð Þ5 l f ; gð Þc f ; gð Þs f ; gð Þ (9.9)

where

l f ; gð Þ5 2μf μg 1C1

μ2f 1 μ2g 1C1

(9.10)

c f ; gð Þ5 2σfσg 1C2

σ2f σ2g 1C2

(9.11)

s f ; gð Þ5 σfg 1C3

σfσg 1C3

(9.12)

The function l(f,g) is the luminance comparison function with the mean luminance of reference

and processed images, μf and μg. The second function c(f,g) compares the contrast between the two

images with standard deviation σf and σg. The structural function s(f,g) measures the structural com-

parison between the two images. σfg is the covariance between the two images, and C1, C2, and C3 are

constants. From the studies conducted in [15,19], it was concluded that SSIM and PSNR were sensi-

tive to addictive Gaussian noises. The proposed architecture introduces a collision prevention system

in automobiles by taking a breaking action autonomously, overriding manual inputs. The digital image

sensor mounted at the front of the vehicle captures frames at a fixed rate of 24 fs21 (Fig. 9.4).

9.3 SYSTEM
The system, aided by BCS, acquires random limited measurements from these frames as the input.

The acquired data undergo a series of operations (Sections 9.3.1, 9.3.2, and 9.3.3), comprising

reconstruction and image processing converging to a single task of distance measurement between

the object and the vehicle. The system is designed to produce a warning signal (visual, audio, or

both). When the vehicle is in imminent collision region (between 2 and 1.5 m), the system mea-

sures the object distance by inferring the pixel density in the detected object. A fifth degree polyno-

mial aids the distance prediction. The manual controls are overruled to apply the brakes, once the
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distance crosses the critical threshold value (1.5 m). The predicted distance is compared with the

threshold values, and appropriate actions are taken. Digital images being bulky add to the computa-

tional complexity and delay in the system. However, the system realization through BCS enhances

the possibility of implementing the system in real time.

FIGURE 9.4

Block diagram of the proposed system.

1279.3 SYSTEM



9.3.1 SIGNAL ACQUISITION

The signal acquisition is performed by mounting a digital camera in the front of the car. The pro-

posed framework uses an SJCAM SJ4000 device with a Novatek 96650 chipset. The device

contains AR0330, a 1/3-in. CMOS digital image sensor with the image resolution of 10803 1920,

and an aperture of f/2.8. The camera streams an online video from which frames are captured at

fixed intervals. In the designed framework, 24 frames are captured per second (Fig. 9.5).

The acquired frames undergo CS [3]. The system adopts a BCS technique. In this approach, the

pixel space is divided into blocks of fixed dimensions. Fig. 9.6 shows a captured frame that is

divided into blocks of 323 32. The pixel space can contain blocks of useless data that can be dis-

carded. Only the blocks where the required information can be present are selected. Fig. 9.6 shows

a captured frame of the dimensions of 10803 1920, of which the presence of desired information

is distributed over a coordinate, [(554, 413) and (1460, 959)]. The BCS approach selectively takes

the useful data from these pixel spaces. This further adds to the flexibility of the system. The BCS

approach further reduces the memory requirements of the system.

The dimensions of the block are fixed to 323 32. Those pixel blocks that have the possibility

of containing information are selected and reshaped as a vector of length N (N5 323 32) and

stacked together to form a signal matrix (Fig. 9.6) of size N3 L, where L represents the number of

selected pixel blocks. Each of these transformed blocks later passed through a random measurement

matrix (Fig. 9.7) to take fixed random measurements. This randomized measurement operations

produce a matrix Y. This is then used to recover the image from the knowledge of measurement

matrix and orthonormal basis ϕ. The image is assumed to be sparse in a wavelet basis. Hence, for

the purpose of recovery, a Haar wavelet basis is chosen as ϕ.

9.3.2 IMAGE PROCESSING

Once the reconstruction of the frame is complete, the next step is to identify a reference segment

that can be used as the reference for pixel variations. This reference point will serve as a mean to

find the relative distance between the two vehicles. Number plates are identified as this common

reference point, as they are all of almost the same fixed dimensions and locations. The processing

is carried out in MATLAB 2014a in the experimental setup. The reconstructed image undergoes a

FIGURE 9.5

(A) Original frame. (B) Block divided frame.
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series of image processing operations here. The MATLAB R2014a software [20] is adopted, as it

ensures better system prototyping [21]. The reconstructed images are subjected to morphological

operations [22] to locate spatial pixel objects and to segment the desired dimensions at expected

locations. These operations produce a structure of pixel objects as in figure 9.9 (A) and 9.10 (A).

For the purpose of plate detection, all pixel objects less than the threshold value are neglected.

From the analysis of various sets of operated images, this threshold value was set to 3000 pixels.

Out of these, objects with a major axis orientation between 220 and 120 are filtered. In practice,

it was observed that these selected features were fruitful in mapping just the area corresponding to

the number plate, as it showed a positive result over all the frames (Fig. 9.8).

FIGURE 9.6

(A) Identified blocks containing information. (B) Area corresponding to selected blocks.

FIGURE 9.7

Signal transformation.

1299.3 SYSTEM



As a preprocessing step for morphological operations, the recovered gray-scale image is trans-

formed into a binary format of a supported data type. After a series of dilation and erosion opera-

tions [23,24] using appropriate structuring elements, the returned image contained a spatially

distributed pixel objects of varying features. On these objects, the above discussed feature selection

procedure was executed, which aided to spatially allocate just the number plate. This operation

when repeated over a different set of frames produced a positive result (Fig. 9.9). This further

strengthened the choice over features used for plate detection and its application into the system

(Fig. 9.10).

9.3.3 ANALYSIS

Once the number plate is identified, it is taken for distance measurement. The idea behind

this is that, when an object comes closer to an image acquisition point, the pixel space

accommodated by the object within the frame increases. This increment in pixels is directly

proportional to the distance between the image acquisition point and the object. In order to

establish a relation of pixel variation with distance, manual measurements of length between

the acquisition point and the object was carried out. From the distance labeled point, four

sample measurements were taken, and an average of these sample values was used as the

final pixel number. The distance labeled images were later examined to find their accommo-

dating pixels.

Table 9.1 calibrates the relation between the pixel number and the distance in centimeters.

Columns 2�5 display the recorded sample measurement, column 6 gives the average pixels, and

column 1 shows the labeled distance. Inferring the data from Table 9.1, the characteristics

FIGURE 9.8

MATLAB-generated random measurement matrix.
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FIGURE 9.9

(A), (C), (E), and (G) Generated object structure. (B), (D), (F), and (H) Selection of desired object after feature

extraction.
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FIGURE 9.9

(Continued).
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FIGURE 9.10

(A), (C), (E), (G), and (I) Frames after morphological operations. (B), (D), (F), (H) and (J) Result after feature extraction.



between the number of pixels and the distance were plotted, and a suitable fifth degree equation

was found to fit the curve [25]. Fig. 9.11 shows the data line along with the curve as estimated

by Eq. (9.13)

Y 5 6:119e2 21x5 2 2:0276e2 16x4 2 6:76e2 12x3 1 3:3072e2 7x2 2 0:012818x1 336:24 (9.13)

where Y is the distance in centimeters and X is the number of pixels. The area returned from the

detected pixel object is substituted to the above equation to find the distance.

Validation of the estimated function over the actual distance (Table 9.2) was done. The distance

as estimated by the function (column 2) is observed over the actual distance (column 1). The differ-

ences in both of these measurements are founded out as errors (column 3). Fig. 9.12 shows a graph-

ical representation of Table 9.2, with the actual distance in the X-axis and the estimated distance in

the Y-axis. The mean absolute percentage error (MAPE) [26] for the overall system was calculated

as follows:

Table 9.1 Distance�Pixel Characteristics.

Distance (cm)

Pixel Values

S1 S2 S3 S4 Average Pixel Value

280 4831 4844 4826 4833 4834

270 6090 6121 6131 6086 6107

260 7120 7180 7185 7135 7155

250 8048 8052 7991 7949 8010

240 9225 9198 9230 9215 9217

230 10,288 10,254 10,271 10,299 10,278

220 11,159 11,100 11,121 11,072 11,113

210 12,799 12,775 12,762 12,744 12,770

200 13,951 13,908 13,948 13,949 13,939

190 15,028 15,048 15,051 15,021 15,037

180 16,309 16,351 16,349 16,323 16,333

170 17,340 17,358 17,388 17,358 17,361

160 18,499 18,454 18,477 18,450 18,470

150 19,502 19,555 19,542 19,541 19,535

140 20,071 20,101 20,105 20,105 20,090

130 21,674 21,703 21,705 21,705 21,691

120 22,560 22,531 22,573 225,998 22,549

110 23,655 23,685 23,672 23,672 23,668

100 24,791 24,791 24,746 24,816 24,776

90 25,999 25,999 25,972 25,998 25,981

80 26,999 2699 26,955 26,973 26,972

70 27,751 27,751 27,749 27,872 27,767

60 28,922 28,922 28,891 28,896 28,906

50 30,008 30,028 30,038 30,010 30,021

40 31,501 31,548 31,544 31,499 31,523
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FIGURE 9.11

Curve fitting with the fifth degree polynomial.

Table 9.2 Error.

S. No.

Error

Actual Distance in Centimeters Estimated Distance in Centimeters %Error

1 280 281 0.3571

2 270 269 0.3571

3 260 259 20.3571

4 250 251 20.3571

5 240 240 0

6 230 231 0.3571

7 220 223 1.0714

8 210 209 20.3571

9 200 199 20.3571

10 190 190 0

11 180 178 20.714

12 170 169 20.3571

13 160 159 20.3571

14 150 150 0

15 140 144 1.45286

16 130 129 20.3571

17 120 121 0.3571

18 110 110 0

19 100 99.6 20.1429

20 90 87.9 20.7500

21 80 78.5 20.5357

22 70 71 0.3571

23 60 60.7 0.2500

24 50 51.1 20.3929

25 40 39.3 20.2500



M5 1n
Xt51

n

���At 2Et

At

��� (9.14)

where At is the actual value and Et is the estimated value at the tth measurement. n represents the

total number of measurements taken. For the proposed system, the MAPE was found to be

0.00392828.

9.4 RESULT
Frames were captured from the live streaming video at a rate of 24 fs21. From these frames, M

samples are taken, which are determined by the subrate r. The relation between the subrate and the

number of samples are given by

M5 r3 block2 size3 block2 size (9.15)

where the block size is fixed to 32. The quality assessment of the reconstructed image is carried

out in MATLAB. As discussed in Section 9.2, quality measurement, PSNR, and SSIM metrics are

chosen. The MATLAB functions psnr() and ssim() are used over the reconstructed image to find

PSNR and SSIM at a different subrate (Fig. 9.13). The reconstructed images are processed to check

for the distance of the vehicle in front. By performing morphological operations, the number plate

of the car is acquired, and this number plate is used as a reference to check the distance with the

car in front by checking the pixel density inside the number plate. The distance is compared with a

FIGURE 9.12

Error curve.
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FIGURE 9.13

Peak signal-to-noise ratio and structural similarity index measure for the recovered image.

FIGURE 9.14

Vehicle at an imminent collision range. (A) Block compressed sensing sensed frame. (B) Identified objects. (C)

Plate detection. (D) Activated warning signal.
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tolerant range between 2 and 1.5 m. When the result of the comparison turns true, a warning signal

is generated (Fig. 9.14). As the vehicle crosses the critical threshold value of 1.5 m, automatic

breaking is applied (Fig. 9.15).

9.5 CONCLUSION

The system was successful in recovering the entire signal from a handful of measurements M,

which is very small in comparison with the number of measurements as demanded by the Shannon

sampling theorem. The random measurements were taken by using a randomly formed matrix,

formed from the randn() function from MATLAB. These measurements guaranteed a perfect recon-

struction of the original signal with a PSNR depended on the selected subrate. This further confirms

the fact that the “randomized measurements” can encode the sparse position and magnitude. The

validity of the l1 norm over the signal recovery problems is reinforced. We were able to implement

the software model of CS for collision prevention system, which can be much faster in signal

acquisition than the existing models. The system was simulated in an Intel Core i5 7500 Processor.

It was observed that the signal recovery time varied from 5 to 25 seconds depending on the selected

subrate ranging from 0.2 to 0.8. This toll on time can be decimated if a parallel processor is used.

Here, if GPUs of larger number of cores are used, the processing delay is eliminated, and we get

instantaneous results for the input. The number of cores required completely depends on the

FIGURE 9.15

System generated result for the vehicle closer than the threshold value. (A) Block compressed sensing sensed

frame. (B) Identified objects. (C) Plate detection. (D) Application of automatic braking.
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criticality of the application. GPUs such as Nvidia GeForce GTX 1050, AMD Radeon RX 570, or

Nvidia GeForce GTX 1050 Ti can be used to meet the requirements.
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10.1 INTRODUCTION
Wireless multimedia sensor networks (WMSNs), outlet of networks, deal with audio�visual data

and provide opulent information compared with traditional audio and video sensors through wire-

less sensor networks (WSNs) [1]. A subdivision of WMSNs, which has complete handling with

video for surveillance purpose, is wireless video surveillance networks [2] that can also be a part of

wireless video sensor networks when perceived from the implementation angle [3].

Surveillance can be achieved by monitoring the environment with the help of audio, sensing

parameters as temperature, humidity, soil moisture, and sunlight, and through recording and analy-

sis of video. Surveillance is now targeted for the delivery of high performance at low cost and low

power consumption [4]. Video surveillance over Internet of Things (VS-IoT), a subdivision of mul-

timedia Internet of Things (IoT), is an emerging category of the IoT that integrates image proces-

sing, deep learning, computer vision, artificial intelligence, and networks capability for use in

motion detection, face recognition, behavior analysis, anomaly detection, event recognition, and
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surveillance [5]. To the best of the authors’ knowledge, this chapter is the first of its kind on the

subject of the survey of video surveillance in terms of IoT networks.

The remainder of this chapter is arranged as follows. Section 2 deals with the classification of

the IoT environment. Section 3 provides an introduction to the stages of VS-IoT along with a

description of the sensing and monitoring techniques and analytics of the IoT, a discussion of data,

and communication standards, and presents the different types of warehousing and an application

design for VS-IoT. Section IV concludes this review chapter.

10.1.1 INTERNET OF THINGS ENVIRONMENTAL TAXONOMY

Pivoted on the IoT environmental features, taxonomy is comprised of three major building

blocks, namely design, implementation, and processing. The three building blocks can further be

subdivided into few specific feature blocks such as deployment types, design of architecture, sen-

sor types, sensing time, tracking objects, and data requirements. The design block can be divided

on the basis of deployment methods and architecture sorts [6�8]. Deployment methods can be

centralized or in distributed fashion. Architecture for the IoT can be designed in two sorts as

monolithic architecture and microservice architecture. The implementation block can be catego-

rized on the basis of nature of sensing time and sensing types [9�11]. With an emphasis on sens-

ing time, the sensor can be of either linear or nonlinear nature. Sensing in the IoT can be of

either homogenous or heterogeneous types. The processing block can be classified depending on

application types and data requirement modes [10,12]. An application of the IoT according to the

tracking of objects can be of two types, namely: (1) single object tracking; and (2) multitarget

tracking. Considering the data requirement modes, the environment can be categorized into a

real-time mode and an offline mode. The taxonomy based on the IoT environment is summarized

and depicted in Fig. 10.1.

Building blocks 
of IoT

Types of 
deployment

Centralized

Distributed

Sensor time

Homogenous

Heterogenous

Sensor types

Linear

Nonlinear

Architecture

Monolithic

Microservice

Application
types

Single object
tracking

Multitarget
tracking

Data
requirement

s

Real time

Off-line

FIGURE 10.1

Internet of Things environmental taxonomy.
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10.2 VIDEO SURVEILLANCE—INTERNET OF THINGS
The enactment of the VS-IoT networks comprises of five stages. The initial stage involves sensing

and monitoring the environment, which is the soul of the VS-IoT structure. IoT data analytics, the

second stage, handles the data generated by the preliminary stage. Following this is the communi-

cating stage. In the third stage, the busted-out multimedia data are pushed to the data collection

unit. The fourth stage indicates the five varieties of data warehousing for storage and computing.

The concluding stage is an application-oriented design for the VS-IoT. This stage covers the

techniques involved in the three main purposes of video surveillance. In Fig. 10.2, the survey of the

VS-IoT along with the reference number of the chapter, the name of the author, and the year in

which the technique has been proposed are portrayed in detail.

10.2.1 SENSING AND MONITORING

A portrayal of the VS-IoT indicates the first to form the VS-IoT environment that is the deploy-

ment of sensors and algorithms for motion detection. Based on employment variations, sensors can

be of three major kinds, namely environmental layable, wearable, and implantable sensors [13].

Environmental layable sensors can be integrated with surroundings for applications like temperature

and atmospheric pressure monitoring. Wearable sensors can be worn on the human body for pulse

rate and other health parameters. Implantable sensors can be implemented in various devices and

human organs for specific applications like vision sensor implantation on human eye retina. Some

sensors are used discretely, and at times, they are clubbed to form a collaborative sensing platform

for the VS-IoT [4]. In reality, it is found that motion detection befalls in substantial interludes.

Thus it is obligatory to implement procedures for the perception of the motion. Motion detection

can be achieved through sensors and algorithms. The combination of both algorithm and sensors

efficiently gives rise to intelligent front-end devices. The challenge lies in implementing sensing

and monitoring stages with low latency, low power consumption, and miniscule detection.

10.2.1.1 Sensor-based motion detection
Sensor implementation facilitates the work of motion detection. Based on the discrete or collabora-

tive style of operation, a sensing platform can be of discrete or collaborative type. The sensors that

can be worn on the human body are categorized as wearable body sensors (WBSs).

10.2.1.1.1 Discrete sensing platform

Different types of sensors are used in video surveillance. Investigation of passive infra red sensors,

rotational-directional sensors, and audio sensors form the subject matter of this chapter. The general

PIR-based video surveillance mounts the PIR sensor on-board with a camera that turns on only

when motion is detected by the PIR sensor, thus reducing the power consumed by the camera dur-

ing idle times. Jeličić et al. [3] proposed a network that has a dense deployment of PIR sensors.

These sensors send information about motion detection to the main node, which in turn switches on

the specific camera based on PIR sensor’s information and camera energy. This prototype achieves

more power consumption compared with the previous one.
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FIGURE 10.2

Survey on the video surveillance over Internet of Things.
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Mekonnen et al. [2] proposed a sleepyCAM power management mechanism that involves the

use of PIR sensor for motion detection and powering up of Raspberry Pi (RPi) using a relay. In

sleepyCAM, normally RPi is powered off, and a step for proper shutdown of RPi achieves low

power consumption during the waiting time of the surveillance application. As the earlier work [2],

does not support high definition videos, Mekonnen et al. implemented the sleepyCAM power man-

agement mechanism for high definition videos using the Libelium Waspmote sensor platform. The

monsoon power monitor tool is used for the measurement of the power consumption of both RPi

and Waspmote [14]. Rotational and directional sensors have the capability to move the linked entity

in a particular direction and to revolve for specific degrees. Thus connecting rotational and direc-

tional sensors to the video node helps position the camera and record the Event of absence. This

reduces the power consumption of recording the unnecessary events and increases the camera cov-

erage area [15]. A dense deployed audio sensor network, which is a low cost and low power device,

is implemented to perform first level of noise detection, which in turn helps in motion detection.

This wireless sensor audio network [16] overcomes the limitation of line of sight and lighting con-

ditions in monitoring the environment.

10.2.1.1.2 Collaborative sensing platform

The collaborative sensing platform uses the sensing capability of two or more sensors for the detec-

tion of the required actions. In Ref. [4], audio sensors and rotational and directional sensors are

used together to record videos. At the initial stage, a dense deployed audio sensor is used for pre-

liminary detection and, then on, audio detection sensors trigger the sparsely implemented video

nodes to capture the videos. The audio sensor sends the location of motion to the rotational and

directional sensor. Based on the location information, the rotational and directional sensor revolves

and moves the video node to a particular direction and angle to capture the videos. Currently, the

surveillance system is explored with the help of sensors in smartphones to enable low cost and ease

implementation [17,18].

10.2.1.1.3 Wearable body sensors

Wireless sensors can be wearable, giving rise to a WBS that has invented wireless ears and wireless

tongues. It is not that all body sensors must be wearable. They can also be linked to a function

along with some organs of human body. One such example is the sound signature technology-

based Breezhaler by Novartis, which works on the basis of inhaling and exhaling of air through

nose [19]. Despite many advantages of WBSs, battery life is the main drawback.

Sleepy devices introduced into the system help in overcoming this weakness [3,14]. In sleepy

devices, the wake-up perception is used as an alternative for providing constant power. In wake-up

concept, power is provided to the right required devices of the system at its right time and then is

laid into either sleep or shutdown mode when the devices are redundant. WBSs also suffer from

challenges such as the dimensions of WBSs and health disputes due to enactment on the human

body.

10.2.1.2 Algorithm-based motion detection
Motion detection algorithm determines the movement of an object through a comparison of two or

more successive images in the video. In the absence of any motion, the video is neither stored nor

processed. Otherwise, the current frame is processed in the event of motion detection [20]. Motion
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detection traditionally involves background subtraction, temporal difference, optical flow, and

hybrid methods [21]. Generally, motion recognition is meant to execute foreground object detection

and trace each frame independently. However, in the feedback method [22], the data from tracking

stage are integrated into the feedback stage, and thus foreground detection is performed in smaller

regions compared with the whole frame. Thus it results in dropping the handling energy of a frame

and switches on to an idle state at the end of processing a frame without causing tracking failure.

An adaptive method [22] is adopted to drop frames even when there is no empty scene. The idle

state duration is adaptively changed based on the amount of activity in the scene and tracking the

object speed.

10.2.1.3 Intelligent front-end devices
Intelligence requires coming with front-edged devices for a complete enjoyment of the IoT and

making them smart IoT front-end devices [23]. This idea of smart IoT front-end devices cuts down

unnecessary data movement. Front-end devices can be made of software-driven architecture for

tuning the parameters to get the desirable output. This notion is known as Do-It-Yourself [24].

A smart front-end camera with a decision-making algorithm makes judicious decisions when to

store or transmit a video [25]. IBM attempts at the creation of a smart front-end IoT device named

Cognitive Hypervisor. This device extracts noteworthy patterns from numerous data collected by

various WBSs for enhanced doctor�patient interaction [19]. There is a need for invention and

research of innovative sensors.

10.2.2 INTERNET OF THINGS DATA ANALYTICS

The technique of using the data sets according to the necessities is termed as data analytics. IoT

data can be classified on the basis of aspects such as analytics response, understanding and predic-

tion of analytics, analysis stages, and the number of hops, as portrayed in Fig. 10.3. IoT data can

be fast data and big data based on the quickness of analytics response [26]. Fast data represent ana-

lytics that should be done in the source of data within milliseconds for fast and judicious decisions.

The IoT devices yield countless data that upshot to big data. These big data must first be extracted

IoT data analytics characteristics

Analytics 
response

Fast data Big data

Understanding and 
prediction based 

analytics

Insight Outsight Foresight

Analystics stages

Decision 
level

Feature 
level

Pixel 
level

Signal 
data 
level

Hopping

Single 
hop

Multihop 

FIGURE 10.3

Internet of Things data analytics classification based on characteristics.
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from the devices. Insight is drawn from the collected data, and then the analytics is performed.

These big data can be categorized into 6Vs (velocity, variety, volume, value, veracity, and variabil-

ity). IoT data analytics based on understanding and prediction can be carried out on three levels,

namely insight, outsight, and foresight [27]. Insight analytics is executed for an in-depth under-

standing of its own data, while outsight analytics is for understanding the external aspects.

Foresight analytics is implemented for understanding, prediction, and prevention.

Data analytics takes place in four stages in the IoT embedding, namely decision level, feature

level, pixel level, and signal level [10]. Decision level evaluates the collected data for a judicious

conclusion. Feature level analyzes the miniscule data for feature classification. Pixel level details

are examined in pixel level analytics. Signal level studies signal data values. Data analytics based

on hopping perspective can be of two types, namely single hop and multihop [28,29]. In single

hop, data are directly sent to the data collection center, whereas in multihop, data are passed

through the adjacent centers to reach the data center. Table 10.1 encapsulates the classification

based on the aspects of data analytics. The biggest challenge lies in the fusion of massive heteroge-

neous data and intensive intelligent computing.

10.2.3 COMMUNICATION

There are numerous traditional techniques for data communication. Based on the coverage range,

communication can be of three types, namely short-range communication [33], medium-range com-

munication, and long-range communication [34]. In the short-range communication, technologies

Table 10.1 Classification Based on Data Analytics Aspect.

Author and Year
of Publishing

Characteristics of
Data Analytics Types/Stages Examples

Mohammadi et al.

(2017) [26]

Analytics response Fast data Emergency situation with streaming

data analytics

Big data Smart city monitoring

Sun et al. (2016)[27] Understanding and

prediction

Insight Current scenario

Outsight Weather impact

Foresight Expected natural calamities

Wills (2014) [30],

Huang et al. (2016)

[31], and Zhang

(2010) [32]

Analytics stages Decision level Healthcare

Feature level Activity recognition, fall detection,

and sentiment analysis

Pixel level Sign language data set and feature

recognition

Signal data level Controlling and monitoring the

environment, and human�computer

interfaces

Singh et al. (2015)

[28] and Mtibaa

et al. (2017) [29]

Hopping Single hop Centralized environment

Multihop Distributed environment
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with a coverage of up to 100 m are considered, whereas a coverage of about 10 km is grouped in

the medium-range communication. The exposure range is about 100 km in the long-range commu-

nication. The communication classification for the VS-IoT is detailed in Table 10.2.

10.2.3.1 Short-range communication
Short-range communication includes technologies such as radio-frequency identification (RFID),

Bluetooth, ZigBee, and body sensor networks (BSNs) [35�37]. RFID is a low cost and low power

technology that can work with or without a battery. This system is compatible with abundant appli-

cations. RFID has tags that have the ability to transmit information, consuming less or no power

Table 10.2 VS-IoT Communication Classification.

Author and Year
of Publishing Range Techniques

Challenges for Implementing in IoT
Scenario

Amendola (2014) [35],

Morin et al. (2017)

[36], and Zhang et al.

(2014) [37]

Short

range

Radio-frequency

identification

Passive

tags

Increase reader coverage area

Active

tags

Development for large-scale

applications

IEEE 802.15.1 Classic

Bluetooth

High duty cycle

High transmission power, security,

and small distance

BT-LE Small data transmission

IEEE 802.15.4

ZigBee

Low bandwidth of 250 kbps

IEEE 802.15.6

BSN

Poor computation capability

Zhang et al. (2014)

[37] and Morin et al.

(2017) [36]

Medium

range

IEEE 802.11

WLAN

Mobility

Coverage and energy efficiency

IEEE 802.16

WiMax

High cost

Poor bandwidth due to large clients.

Weather conditions have a big impact

IEEE 802.20

MBWA

Does not support sensor networks,

thus put to slumber

Akpakwu et al. (2017)

[34], Zhang et al.

(2014) [37], and

Catarinucci et al.

(2015) [38]

Long

range

IEEE 802.22

Cognitive radio

This possibility is difficult for WSN

applications

SIGFOX Low data rate

LoRa Lower lifetime compared with many

low power technologies

NB-IoT To encounter the varied necessities of

the IoT

Hybrid techniques Coordinated research activities in both

RFID and WSN challenge areas

BSN, Body sensor networks; LoRa, long range; NB-IoT, narrowband Internet of Things; VS-IoT, video surveillance over Internet

of Things.
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and thus facilitating extension of their lifetime to decades. The RFID tags can be either passive

tags or battery-assisted active tags. RFID technology is easy to implement and maintain. In spite of

the zero power tags, the disadvantage of RFID come from the point that it can operate only in the

reader coverage area, that is, up to 5 m if fully passive tags are used; else up to 25 m if battery-

assisted tags are used. Feasibility of RFID in some applications has been a matter of doubt due to

the emission of electric field and the power absorption of the human body from the tags [35]. The

key challenges in implementing RFID increase the reader coverage area and limit the emission of

electric field from RFID devices. The IEEE 802.15.1 standard comprises of classic Bluetooth and

Bluetooth Low Energy (BT-LE). Classic Bluetooth is of low cost and easy to install, whereas

BT-LE consumes low power for operation and can operate in two modes. IEEE 802.15.4 ZigBee is

useful for the creation of a self-configurable and self-healing network. IEEE 502.15.6 BSN is bene-

ficial to form a network with wearable sensors. A BSN delivers mobility and energy efficient

network.

10.2.3.2 Medium-range communication
Medium-range communication takes account of techniques, for instance, wireless local area net-

works (WLANs), worldwide interoperability for microwave access (WiMAX), and mobile broad-

band wireless access (MBWA) [36,37]. IEEE 802.11 WLAN provides a continuous high

throughput connection. IEEE 802.16 WiMAX provides a secure mobile network with high trans-

mission speed. IEEE 802.20 MBWA offers high velocity and challenges to the upcoming

3G technologies.

10.2.3.3 Long-range communication
Long-range communication consists of methods like cognitive radio, SIGFOX, long range (LoRa),

and narrowband Internet of Things (NB-IoT). IEEE 802.22 cognitive radio has an option to use

licensed bands by unlicensed users on a noninterference basis. SIGFOX is easy to deploy and con-

nect well to underground buried devices. LoRa supports ultralow traffic intensity. NB-IoT provides

improved bidirectional information compared with most of the unlicensed low power wireless

access. Although WSNs, when compared with RFID, provide a low cost ad-hoc network to analyze

and control the environment, most of the WSN motes consume substantial power that shrinks the

lifetime of the network. Therefore hybrid work combining RFID and WSN is evolved, to enable

the use of only RFID in the usual conditions and for the timely use of WSN in the circumstances

of emergency for informing the required individuals and henceforth able to manage the power effi-

ciently [38].

10.2.4 DATA WAREHOUSING

The data acquired through the sensors should be warehoused for workout and other indispensable

operations. Privacy and security are closely associated with each other, and the collected data

should be secured from hackers. By means of illustration in Table 10.3, the warehousing of data

can be done in the succeeding five techniques.
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10.2.4.1 Cloud
Cloud is wireless centered computing that provides the provision of rearranging, processing, storing

the data sets, and providing the required content to the users based on their demands [39]. Cloud

computing provides scalable, elastic, fault-tolerant, and pay-per-use architecture. As it is a central-

ized architecture, it may lead to a situation like data loss during large data transmissions from the

devices to the cloud. Hence, there is a need to keep the data close to the sensor devices.

10.2.4.2 Fog and edge
The concept of computing data close to sensor devices leads to two types of computing, namely

fog computing and edge computing [40]. Fog computing is meant to bring the small part of the

cloud close to the IoT gateways. This leads to a distributed architecture and overcomes the partial

disadvantages of the cloud. The main benefits of fog computing are heterogeneity, interplay with

cloud computing, high mobility, and latency reduction. Fog can be either ad-hoc or dedicated fogs

based on their computing resources. The legal requirement to have the data near the devices,

latency between edge devices and gateways, results in ineffective decisions that, in turn, lead to

edge computing. Edge computing does the storing and processing in edge devices’ bottom of the

architecture hierarchy. It also offers location-aware computing for real-time analytics with reduced

network traffic.

10.2.4.3 Hybrid technologies
A combination of the above computing types has been the melting pot for the evolution of two

types of computing, namely collaborative computing and crowd computing [6]. Collaborative com-

puting refers to performing analytics by combining two or three of homocomputing technologies. It

provides a feedback to the end users and combines the advantages of homocomputing technologies.

Crowd computing uses human intelligence (crowd) along with one, two, or three of the above

Table 10.3 Overview of Five Types of Data Warehousing.

Author and Year of
Publishing

Hetero/Homo
Technology Classification Challenges for Research

Yan et al. (2017) [39],

Yousif (2017) [40], and

Jianhua et al. (2018)

[41]

Types based on

homotechnology

Cloud Data privacy

Verification on correctness of data

processing

Limited computations

Fog Ad-hoc Lack of concrete methods, tools, and

frameworksDedicated

Edge Is not efficient for static

Limited data processing

Sharma et al. (2017) [6]

and Bi et al. (2015) [42]

Types based on

hybrid technology

Collaborative

computing

Interplay with different types of computing

must be developed at high rates

Crowd

computing

Mobility of devices for data sharing

Temporal and spatial correlations
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computing techniques for the delivery of higher computing capability. In this type, nearby devices

come into a social tie and share their resources.

10.2.5 APPLICATION-ORIENTED DESIGN

Surveillance is given intelligence and is designed to work for a specific purpose. Video surveillance

is mostly done for human detection [43]. Surveillance is also done for some specific detection and

for intelligent analyses. Generally, human detection in videos is done by detection followed by a

classification [44]. The object detection can be of two different types based on static and dynamic

backgrounds. Object classification done following object detection is divided into three types,

Table 10.4 Summary of Application-Oriented Design.

Author and Year of
Publishing

Video
Surveillance
Purpose Types and Subtypes Supporting Technologies

Paul et al. (2013) [44],

Ye et al. (2013) [50],

and Borges et al.

(2013) [45]

Human

detection

Object

detection

Static

background

Background subtraction based

on a Gaussian mixture, model

region segmentation-based

graph cut, and compressive

sensing

Dynamic

background

Lucas�Kanade�Tomasi

tracker, mean shift, and level

set contour

Object

classification

Shape-based Standard template matching

Motion-based Self-similarity-based

time�frequency technology

and optical flow based

Texture-based Histograms of oriented gradient

and SVM

Li et al. (2017) [46],

Borges et al. (2013)

[45], and Liu et al.

(2013) [47]

Specific

detection

Activity recognition SVM, k-nearest neighbor, and

Bayes classifier

Silhouettes extraction Background segmentation

approaches and traditional

classifiers

3D sensing Intelligent fiber-grating-based

3D vision sensory system

Mahdavinejad et al.

(2017) [48], Soham

et al. (2015) [25],

Revathi et al. (2017)

[51], Cao et al. (2017)

[49]

Intelligent

video

surveillance

Machine learning algorithms Smart Monitoring and anomaly

detection

Deep learning algorithms Restricted Boltzmann machine

algorithm and convolution

neural networks

Classifiers SVM, Naı̈ve�Bayes, and

decision tree

SVM, Support vector machine.
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namely shape-based, motion-based, and texture-based. Video surveillance can also be used for

specific purposes like action recognition, silhouette extraction, and 3D sensing [45�47]. Machine

learning algorithms [48], deep learning algorithm [25], and classifiers [49] are used in the process

of adding intelligence to the video surveillance system. A detailed taxonomy for the video surveil-

lance purpose is depicted in Table 10.4. The challenge lies in the convergence of suitable deep

learning techniques, artificial intelligence, and things to attain the targeted application. The IoT is

in the early stage of implementation and faces lot of challenges itself [52]. An analysis of the over-

view of the VS-IoT leads to the inference of its notable three challenges, in the areas of energy

depletion, informal latency, and multimodal data quality. In general, a prototype developed for pro-

cessing high quality multimedia data results in high power consumption, and the steps that are

taken to reduce the power consumption may result in a low standard of video and can add on

latency. Thus, in developing a VS-IoT, it is crucial to keep confrontation on both energy consump-

tion and video quality. Information latency also plays a major role, as delayed data become useless

data in times of emergencies. Hence, the VS-IoT leads to research options in implementing a low

energy, high quality, and reduced latency system.

10.3 CONCLUSION

This chapter has taken up the subject of the elucidation of IoT environmental taxonomy on the

aspect of design, implementation, and processing. The survey for VS-IoT networks has been inves-

tigated stage by stage. VS-IoT has been interpreted as comprising five stages, namely sensing and

monitoring, IoT data analytics, communication, data warehousing, and application-oriented design.

The survey was done starting from the initial stage leading to application-oriented design with the

objective of a rich knowledge relating to the implementation of VS-IoT and obtaining a mature

framework for the same. Sensing and monitoring stage is analyzed on the basis of sensor usage,

algorithm, and intelligent front-end devices. IoT data analytics has been discussed and related with

some key aspects. Illustration of the communication stage has been developed based on a coverage

distance. Five types of data warehousing have been elaborated. Then, the application-oriented

design is summarized based on human detection, specific detection, and intelligent video surveil-

lance. An overview of the challenges faced by the video surveillance system when implemented

through the IoT networks has been presented in addition to these seen during each stage.
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11.1 INTRODUCTION
The rapid growth in the amount of video data has led to the increasing need for surveillance and

anomaly detection. Such anomalous events rarely occur as compared with normal activities.

Therefore to lessen the waste of labor and time, developing automated video surveillance systems

for anomaly detection has become the need of the hour. Detection of abnormalities in videos is a

challenging task as the definition of anomaly can be ambiguous and vaguely defined. They vary

widely based on the circumstances and the situations in which they occur. For example, riding a

bicycle in a regular pathway is a normal activity, but doing the same in a walk-only lane should be

flagged as anomalous. The irregular internal occlusion is a notable yet challenging feature to
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describe the anomalous behavior. In addition, representation of video data and its modeling induce

more difficulty due to its high dimensionality, noise, and highly varying events and interactions.

Other challenges include illumination variations, viewpoint changes, camera motions, and so on.

One of the significant aspects of anomaly detection includes violence recognition and detection.

The increase in threats to security around the world makes the use of video cameras to monitor

people necessary, and thereby early detection and recognition of these violent activities could

greatly reduce these risks. The modeling techniques used for anomaly or violent detection can be

broadly classified as shallow and deep models. The main objective of our paper is to perform a

comparative study of the above-mentioned models.

Shallow modeling techniques are those that are not capable of learning features on their own

but rather features extracted using handcrafted methods must be provided to a shallow network for

their classification. A shallow network can be classifier models like support vector machine

(SVM), artificial neural network (ANN) with one hidden layer, and so on. These models are best

suited for supervised learning, which in the given data should be well labeled. The main drawback

of this modeling technique is that they do not adapt to pattern changes automatically. Also the

labeling process can be manually intensive. Lloyd et al. [1] have proposed a real-time descriptor

that models crowd dynamics for anomaly detection by encoding changes in crowd texture using

temporal summaries of gray-level cooccurrence matrix features, in which k-fold cross validation

was performed for training a random forest classifier. Their proposed method outperforms the

state-of-the-art results over the UMN, UCF, and Violent Flows (ViF) data sets. Similarly, Bilinski

and Bremond [2] have used an extension of improved Fisher vectors (IFVs), which allows the

videos to be represented using both local features and their spatio-temporal positions for violence

recognition and detection. Their results have shown significant improvement in four publicly avail-

able standard benchmark data sets.

In contrast to shallow models, most of the deep models do not require a separate feature extrac-

tor, as they are based on the feature learning technique, which is that they learn their own features

from the given data and classify based on them. In addition, apart from end-to-end learning, the

above extracted features can be given as input to the SVMs and other shallow model classifiers.

Another way to implement deep models is by using the features from handcrafted feature descrip-

tors and providing it to a deep classifier. These models work on both supervised and unsupervised

learning-based methods but are better suited for the latter. Even though they work with unlabeled

data, they require high volumes of data and computational power. Chong and Tay [3] propose a

convolutional spatio-temporal autoencoder to learn the regular patterns in the training videos for

anomaly detection. Even though the model can detect abnormal events and is robust to noise,

depending on how complex the activity is, more false alarms may occur. One other work on this

model is proposed by Sudhakaran and Lanz [4], in which a convolutional long short-term memory

(CLSTM) is used to train a model for violence detection. On comparing this method with other

state-of-the-art techniques, their proposed method shows a promising result on the used data sets. A

general system for abnormality or violent detection is shown in Fig. 11.1.

In this chapter, we wish to compare and analyze the above shallow and deep models based on

their performance. The content of the chapter is as follows: Section 11.2 presents the recent and

promising feature detectors used in anomaly and violence detection tasks, Section 11.3 discusses

recent works in anomaly detections and a few methods that have been proven to be promising for

our task, and the experimentation and analysis part of this chapter is dealt in Section 11.4.
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11.2 FEATURE DESCRIPTORS
This section discusses about the feature descriptors used in our studies and also other recent state-

of-the-art descriptors.

11.2.1 HISTOGRAM OF ORIENTED GRADIENTS

Histogram of oriented gradients (HOGs) is a feature descriptor for object detection and localization,

which can compete with the performance given by deep neural networks. In HOG, the distribution

of the directions of the gradients is used as features. This is due to the fact that edges and corners

have high variations in intensities, and hence, calculating the gradient along with the directions can

help detect this information from the image.

11.2.2 SPACE�TIME INTEREST POINTS

By extending the Harris detector, Laptev and Lindeberg [5] and Laptev [6] proposed the space-

�time interest point (STIP) detector. After extracting the points with large gradient magnitude with

the help of a 3D Harris corner detector, a second-moment matrix is computed for each spatio-

temporal interest points. The features obtained from this descriptor are used to characterize the

spatio-temporal, local motion, and appearance information in volumes.

11.2.3 HISTOGRAM OF ORIENTED OPTICAL FLOW

Due to the relative motion between an observer (camera) and a scene (image, video), a pattern of

apparent motion of objects, surfaces, and edges is created. This is called as Optical Flow.

Histogram of oriented optical flow (HOF) [7] is a feature based on the optical flow that represents

the sequence of actions at each instance of time. It is scale-invariant and independent of the direc-

tion of motion.

FIGURE 11.1

Overview of violence detection system.
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11.2.4 VIOLENCE FLOW DESCRIPTOR

One important feature descriptor is the violence flow, which uses the frequencies of quantized

values in a vectorized form. This is different from other descriptors in a way that, rather than con-

sidering magnitudes of temporal information, the comparison of the magnitudes is taken for each

as it gives much more meaningful measures in terms of the predecessor frame [8]. Instead of using

local appearances, the similarities between flow-magnitudes with respect to time are considered.

11.3 MODELING TECHNIQUES
We divide the modeling techniques as supervised and unsupervised. In supervised, the training data

contain both normal and anomalous videos, while unsupervised training data contain only normal

videos.

11.3.1 SUPERVISED MODELS

11.3.1.1 Shallow models
There were many works carried out based on shallow models with simple handcrafted features

given as input to a classifier. One such work was done by Wang and Snoussi [9], in which a histo-

gram of optical flow orientation was introduced as a descriptor that was then fed to a one-class

SVM for classification. Further, Zhang et al. [10] proposed an algorithm that used motion-

improved Weber local descriptor (MoIWLD) for capturing low-level features and then gave it to a

sparse-representation-based classifier. The proposed approach showed superior performance on

three benchmark data sets for violence detection.

11.3.1.1.1 Support vector machine

All the data points that are nearest to the hyperplane, which on altering changes the position of the

dividing hyperplane, are called support vector. A hyperplane is a plane of dimension one less than

the dimension of data space, which divides the classes of data. SVM is a learning algorithm mainly

used on classification problems, which considers the data as support vectors and generates a hyper-

plane to classify them. There are three major kernels used in an SVM: linear, polynomial, radial

basis function (RBF). The linear kernel is useful when the data are linearly separable, whereas the

polynomial kernel is more suitable for data that can be separated by a curve of polynomial degree.

The RBF kernel is the one that uses the squared Euclidean distance between two vectors to gener-

ate the hyperplane. Hassner et al. [8] have represented the change in flow-vector magnitudes using

the ViF descriptor and detected violence using a linear SVM.

11.3.1.2 Deep models
Recently, the approach of deep learning models in computer vision and anomaly detection has been

of great significance. In a work done by Ionescu et al. [11], they have differentiated two consecu-

tive video sequences by using a binary classifier, which is trained iteratively. At each step, the clas-

sifier removes the most discriminant features, thereby helping the classifier to discriminate them

more effectively. Another work done by Tran and Hogg [12] uses a convolutional autoencoder
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(CAE), which extracts motion-feature, encodes it, and provides as input to a one-class SVM. To

obtain a sparsity of higher degree, a winner-take-all step is brought in after the encoding layer.

Further inspired by the strong feature learning ability of the convolutional neural networks (CNNs),

Smeureanu et al. [13] extracted deep learning features using a pretrained CNN and an SVM for

classification.

11.3.1.2.1 Artificial neural networks

ANNs [14] or simply neural networks are one of the main methods used for classification and are

inspired from the working of the human brain. An ANN has one input layer, one output layer, and

one or more hidden layers. More and more hidden layers are used for learning more complex fea-

tures. The architecture of an ANN is shown in Fig. 11.2. Each node in a layer has a vector of

weights and an activation function through which data are transmitted for further learning. There

are two main phases in the learning process of a neural network: forward and backward propaga-

tion. When the training data are fed into the network, it calculates the predicted output and com-

pares it with the true output. An error is generated in the output layer based on this comparison,

which is transmitted to the previous layer. With respect to this error received by each layer, the

weights of each node are tuned.

11.3.1.2.2 Convolutional neural networks

Similar to a neural network, CNN [15] also receives inputs through layers and has nodes through

which this information is passed through. But its layers are more specialized and can accept

volumes of data (image and video) unlike a simple neural network. This network comprises of four

types of layers: convolution, ReLu, pooling, and fully connected (FC). In the convolution layer, a

filter or a kernel is slid over the volume and convolution operation is applied to obtain an activation

FIGURE 11.2

A simple ANN architecture.
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map. Then this map is passed to the ReLu layer to increase nonlinearity. The resultant volume is

fed to the pooling layer, which is used to capture the important features from the previous layers.

The pooling layer can be either a maxed-pooling or an averaged pooling layer. The matrix is then

flattened to obtain a one-dimensional column vector, which is then fed to the FC layer. The FC

layer is used for classification purpose. One of the most significant CNNs is the AlexNet whose

architecture is given in Fig. 11.3.

11.3.1.2.3 Long short-term memory

Long short-term memory (LSTM) [16] networks are a special kind of recurrent neural networks

that are capable of selectively remembering patterns for long duration of time. It is an ideal choice

to model sequential data and hence used to learn complex dynamics of human activity. The long-

term memory is called the cell state. Due to the recursive nature of the cells, previous information

is stored within it. The forget gate placed below the cell state is used to modify the cell states. The

forget gate outputs values saying which information to forget by multiplying 0 to a position in the

matrix. If the output of the forget gate is 1, the information is kept in the cell. The input gates

determine which information should enter the cell states. Finally, the output gate tells which infor-

mation should be passed on to the next hidden state.

Two of the important variations for the LSTM model are deep LSTM (DLSTM) and CLSTM.

DLSTM differs from the general LSTM in the number of layers the model contains. A single-layer

LSTM will not be able to obtain well-defined temporal information. However, when more layers

are stacked in the LSTM model, it will be able to acquire better temporal features, and hence will

be more suitable in capturing motion in the time dimension [16]. In CLSTM, the data are first

passed through convolutional layers, which ensure in capturing the spatial features, as shown in

Fig. 11.4. The output from the CNN is provided to the LSTM, which will get the temporal features,

and hence, the model will capture a motion with respect to both space and time [4]. These two var-

iants can also be combined to give a convolutional deep LSTM, where the outputs from a CNN are

given to a multilayer stacked LSTM [16], which is guaranteed to provide a better result at the cost

of increased computational complexity.

11.3.2 UNSUPERVISED MODELS

11.3.2.1 Shallow models
A work done by Xiao et al. [18] employed a spatio-temporal pyramid, which captured the spatial

and temporal continuities and also used a local coordinate factorization to tell whether a video is

anomalous. Cheng et al. [19] presented a method with hierarchical feature representation to detect

FIGURE 11.3

Illustration of the AlexNet architecture used for image recognition [15].
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local and global anomalies simultaneously by finding the relations between nearby sparse spatio-

temporal interest points that were modeled by a Gaussian process regression. A popular work by

Bermejo et al. [20] introduced the Hockey Fight data set, where violence detection was performed

by taking spatio-temporal interest points (STIP) and motion scale invariant feature transform

(MoSIFT) as action descriptors and bag-of-words (BoW) for fight detection. Besides, Leyva et al.

[21] used the Gaussian mixture model (GMM), Markov chains, and BoW to prepare a compact fea-

ture set through which abnormal events are detected.

11.3.2.1.1 Principal component analysis

Principle component analysis is a form of representation learning model, which reconstructs the

data to a lower dimension from the given training data and learns by reducing the reconstructed

error. This is also used for dimensionality reductions and feature extractions, since principal com-

ponent analysis (PCA) is known for its ability to extract the important features and still maintain

the integrity of the original data. It computes eigenvectors by finding the covariance matrix of the

standardized data. These vectors provide the variance directions and help in reconstruction.

For videos, PCA is used for modeling the spatial correlations between each pixel of a frame

from its corresponding vector. In the case of anomaly or violence detection, the vector obtained

will be of lower dimension and this captures the anomalous behavior. As each frame is associated

with an optical flow value, this can be used for evaluating the reconstruction error. Kim and

Grauman [22] used a probabilistic principal component analyzer, which captured the typical optical

flow and, thereby, also learning normal patterns. The complex and costly step in this model is the

optical flow estimation.

FIGURE 11.4

Structure of a convolutional long short-term memory [17].
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11.3.2.2 Deep models
Huang et al. [23] extracted low-level features including visual, motion-map, and energy features.

Also mid-level features were extracted using a restricted Boltzmann machine (RBM) and deep

representations of the crowd patterns were learned for the detection of unusual events. Recently,

Sultani et al. [24] have introduced a new large data set comprising of surveillance videos. They

have performed anomaly detection on this data set by segregating the normal and abnormal videos

into bags and considering video sequences as instances for multiple instance learning. Another

recent paper includes a method proposed by Ravanbakhsh et al. [25] uses generative adversarial

nets (GANs) trained on normal frames and then used for abnormality detection. Likewise, Vu et al.

[26] proposed a method where data representation was learned using an RBM followed by the

reconstruction of the data. Based on the reconstruction errors, abnormal events were detected. In

addition to the above methods, considering the importance of violence detection in video surveil-

lance, Zhou et al. [27] trained FightNet by using image acceleration field as their input modal,

which helps in capturing better motion features.

11.3.2.2.1 Generative adversarial network

GAN is a model that is generative in nature as it uses joint probability distribution. GAN comprises

of a generator and a discriminator. A generator constructs a fake sample from the given noisy train-

ing data. This fake sample is fed along with the stream of other training samples to the discrimina-

tor. The discriminator is similar to that of a binary classifier and classifies the training data as real

or fake by assigning a probability to it. The generator is said to train on mapping the training data

distribution and the discriminator trains on maximizing probability of assigning “real” label to the

real training samples.

GANs can be easily used on videos for anomaly and violence detection by using the frames as

training data. They evaluate a probability density distribution on the training set, which contains no

anomalies, and provide an anomaly score that is the probability whether the sample is from the

generator and thereby classifying it as an anomaly. GANs achieve this implicitly by minimizing the

distance between the generative model and the training data distribution without the use of a

parametric loss function. The mapping in the generator is done by transforming the image domain

of the frames to a latent representation space. The loss from the discriminator is used in the back-

propagation process of both the generator to generate images similar to the training samples and in

the discriminator to classify the samples better. Ravanbakhsh et al. [28] used a modified version of

GAN to produce the state-of-the-art results. They proposed a cross-channel GAN, as shown in

Fig. 11.5, where the generator network is split into two parts: one to generate optical flow from

frames and another to generate frames from the optical flow. The discriminator trains on both the

generations, and hence, their method modeled a spatio-temporal correlation among the channels for

better predictions.

11.3.2.2.2 Autoencoders

Autoencoders are alternatives to PCA used for the purpose of dimensionality reduction by decreas-

ing the reconstruction error on the training data. It is a neural network, which is trained by back-

ward propagation. It performs a linear pointwise transform of the input using transformation
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functions like ReLU or Sigmoid. Two of the main types of autoencoders are CAEs and 3D

autoencoder.

Convolutional autoencoder. The input signal is viewed as a signal that is decomposed as the sum

of other signals by a normal autoencoder. This decomposition is made explicit by CAEs. CAEs are

a type of CNNs. However, instead of manually assigning filters, we let the model learn optimal fil-

ters that minimize the reconstruction error. These filters can then be used to extract features from

any input. Therefore CAEs are general-purpose feature extractors, which are trained only to learn

filters capable of extracting features that can be used to reconstruct the input.

In a work done by Hasan et al. [29], an input sequence of frames from a trained video set was

reconstructed by using a deep CAE. This is otherwise called as a spatio-temporal stacked frame

autoencoder (STSAE). The STSAE stacks the frame sequence with each frame treated as a different

channel in the input layer to a CAE. The architecture of the CAE and that of a stacked autoencoder

is depicted in Fig. 11.6 and Fig. 11.7).

3D Autoencoder. As discussed in [30], while 2D ConvNets are appropriate for image recognition

and detection tasks, they are incapable of capturing the temporal features of consecutive frames for

video analysis tasks. For this purpose, 3D convolutional architectures, depicted in Fig. 11.8, are

used in the form of autoencoders. The 3D convolutional feature maps are encoded by the 3D auto-

encoder to obtain representations, which are invariant to spatio-temporal changes.

11.4 EXPERIMENTAL STUDY AND RESULT ANALYSIS
In this chapter, having security as a concern, we have studied extensively on violence recognition

as it is regarded to be the most important section in anomaly detection. Although appearance fea-

tures are prominently used, motion features have proven to be more effective in violence detection

FIGURE 11.5

Cross-channel mechanism used in generative adversarial net for abnormality detection [17].

16511.4 EXPERIMENTAL STUDY AND RESULT ANALYSIS



task as appearance features sometimes might degrade the performance of the classifier. So in this

study, we have focused on HOF feature along with SVM and ANN as classifiers for our

experimentation.

11.4.1 DATA SETS

Our study is conducted on two standard benchmark challenging data sets: Hockey Fight and Crowd

Violence data sets. The Hockey fight data set comprises of a total of 1000 video clips categorized

as fight and no fight from the National Hockey Leagues. Each category consists of 500 video clips

and thereby having 500 violent and 500 nonviolent clips. Each clip exactly consists of 50 frames

having resolution of 3603 288 pixels for each frame.

The Crowd Violence data set is specialized to test violence detection based on a crowd behav-

ior. These videos characterize the violent and nonviolent behavior of crowd in public places, mak-

ing it suitable for surveillance task. Crowd Violence has a total of 246 real video clips, of which

123 are violent and 123 are nonviolent with each frame having a resolution of 3203 240 pixels.

11.4.2 COMPARATIVE STUDY ON RELATED WORK

The results of various recent state-of-the-art methods along with our basic study applied over

Crowd violence and Hockey Fight data sets are shown in Tables 11.1 and 11.2. Shallow modeling

techniques have proven to be effective in Crowd Violence data set. Due to the sparsely represented

MoIWLD approach by Zhang et al. [10], there is minimal reconstruction and classification error,

FIGURE 11.6

A stacked spatio-temporal autoencoder (left) and a convolutional long short-term memory autoencoder (right) for

abnormal event detection [17].
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which provides a significant result in Crowd Violence. By capturing local and spatio-temporal fea-

tures through IFV, Bilinski and Bremond [2] produced a state-of-the-art result in the Hockey Fight

data set.

FIGURE 11.7

A simple autoencoder [17].

FIGURE 11.8

3D autoencoder architecture for video anomaly detection [17].
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We studied a baseline approach by using the HOF feature descriptor on both SVM and ANN

models, where the results are obtained as shown in Table 11.1. Deep features even though being

less explored have proven to show promising results on these data sets. Through the combination

of GoogleNet Inception V3 CNN and stacked LSTM methods, Zhuang et al. [16] outperforms cer-

tain state-of-the-art results for Crowd Violence data set. Sudhakaran and Lanz [4] proposed a

CLSTM which was capable of extracting low-level localized features and thereby reducing false

alarm rate to a great extent.

11.4.3 OUR BASELINE STUDY

Some of the handcrafted feature descriptors and the classifiers mentioned in Section 11.3 are used

for conducting this study. The accuracies attained for these models, for each data set, are shown in

Tables 11.1 and 11.2. The results of our experiments are shown in bold. For both the models, fea-

tures extracted remain the same, that is, the features extracted from HOF are given to a classifier.

For modeling, we have considered SVM and ANN with one hidden layer as shallow, while the

ANN with two hidden layers as deep. As mentioned earlier, if handcrafted features are given to a

Table 11.1 Results on Crowd Violence Data Set

Model Method ACC (%)

Shallow IWLD [10] 88.16

VIF1 SVM [8] 82.13

HOF1SVM 83.37

HOF1ANN 79.32

Deep GoogleNet1DLSTM [16] 93.59

HOF1ANN (dp5 0.1) 78.47

HOF1ANN (dp5 0.13) 78.92

ANN, Artificial neural network; DLSTM, deep long short-term memory; dp, dropout level; HOF, histogram of oriented optical

flow; IWLD; improved Weber local descriptor; SVM, support vector machine; ViF, Violent Flows.

Table 11.2 Results on Hockey Fight Data Set

Model Method ACC (%)

Shallow STIFV [2] 93.40

STIP-HOG1HIK [20] 91.70

HOF1 SVM 87.40

HOF1ANN 87.13

Deep CLSTM [4] 97.10

HOF1ANN (dp5 0.1) 87.25

HOF1ANN (dp5 0.13) 87.75

ANN, artificial neural network; CLSTM, convolutional long short-term memory; dp, dropout level; HOF, histogram of oriented

optical flow; HOG, histogram of oriented gradients; STIP, space�time interest point; SVM, support vector machine.
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shallow network classifier, it represents a shallow model, while when provided to a deep network,

it can be said to represent a deep model. We have conducted our study solely based on the above

statement. HOF features are used to obtain the optical flow information. These features extracted

are provided to an SVM and also to an ANN, whose parameters are determined by hyperparameter

tuning, for classification based on shallow model representation. The features extracted for shallow

models above are also used for studying deep models by providing them to an ANN consisting of

two hidden layers, which is treated as a deep network. This network was trained on two different

dropout levels to study the impact of it on the model.

We conducted experiments by using the method of k-fold cross-validation, where k is five, that

is, each data set is divided into five divisions each containing both the violent and nonviolent video

clips. Features are extracted for each fold separately from each feature descriptor.

Training is performed by considering 80% as training set and the other 20% as test set. The

average of all the accuracy in the fivefold validation is said to be the accuracy of the model.

Confusion Matrix for the second fold:

Crowd Violence:
23 2

4 21

� �
22 3

7 18

� �

Shallowð Þ Deepð Þ

Hockey Fight:
90 10

8 92

� �
97 3

6 94

� �

Shallowð Þ Deepð Þ
From the above obtained confusion matrix from one of the folds, it could be inferred that the

Crowd Violence data set works better with shallow models as the false alarm rate is bound to be

higher in deep models. This might be due to the fact that Crowd Violence being a small data set

does not work well with deep networks. In contrast to the above, the Hockey Fight data set proves

to work well with deep networks, since it has lesser false alarm rate. This is because of the large

volume of data available in this data set compared with Crowd Violence. Our experimental study

on deep networks was done by providing HOF features to a deep ANN model with two variations

in dropout level. It can be seen that this baseline study with an HOF descriptor is more effective

with Hockey Fight than that with Crowd Violence on both the methods. On further tuning, ANN

may produce better results than other shallow methods.

11.5 CONCLUSION

Violence detection is one of the most important and essential tasks of video surveillance. In this

chapter, we have focused on shallow and deep modeling techniques on two standard benchmark

data sets such as Crowd Violence and Hockey Fight. We have done a comparative study of shallow

and deep models on the above data sets and also on other state-of-the-art approaches for different

feature descriptors and analyzed their results. In this chapter, we have inferred that for a small data

set, shallow models perform well, but for a large data set, deep models give comparatively better

performance at the cost of training time complexity.
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12.1 INTRODUCTION
Object detection and tracking are important in surveillance, as it is required to observe the activity

and report the information when there is a significant observed activity. Nowadays, surveillance

systems are available commercially because of its robustness, decrease in hardware cost, and

increase in processor speeds. Object detection using single camera is affected by many factors like

occlusions, shadows, etc., and these shortcomings are handled by using multiple cameras. The mod-

ern machine vision algorithms can be easily processed using reconfigurable devices. The object can

be detected using three methods, namely, temporal difference, optical flow, and background sub-

traction. Optical flow method has a disadvantage in meeting the requirement of real-time video pro-

cessing. The temporal difference involves the difference in adjacent images depending on time

sequence. The background difference, the video is captured using a static camera and this is con-

verted into frames. The first frame is considered as reference frame and current frame as the frame

under processing, and then it is given to subtraction operation. The output of operation is compared

with the threshold T to indicate the pixel movement from the object, as shown in Fig. 12.1. A good

background subtraction has the capability to overcome varying illumination condition, shadows,

etc.

Object tracking is another challenge task. It involves tracking of object of interest. The surveil-

lance system is the process of monitoring the behavior, activities of people, and other changing
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information. The system uses a static camera and there are three main processes, namely, object

detection, tracking, and recognition. Fig. 12.2 shows the tracking process.

12.2 PRIOR RESEARCH
Video surveillance becoming very important in many areas as 24-h monitoring by humans is cru-

cial. An intelligent transport system suggested by Buch et al. [1] is of low cost. Attard and Farrugia

[2] proposed a surveillance system to detect humans and vehicles. For object detection, Huang [3]

proposed moving object detection using the background model, which uses rapid matching algo-

rithm to get optimum background scenes. Fradi and Dugelay [4] proposed uniform motion model

for foreground segmentation. For video surveillance applications, the video data are initially com-

pressed. This is achieved by minimizing the spatial and temporal frames, thereby improving the

quality of the video. Motion detection is the one where moving objects are identified and motion

estimation represents the position of the moving objects. Horn�Schunck algorithm uses optical

flow vector calculation and is more sensitive to noise and found to be less efficient under occlusion

conditions. Krattenthaler et al. [5] suggested preprocessing for color conversion. Wallhoff et al. [6]

suggested reliable segmentation for surveillance recognition.

The better accuracy of the 3D imaging system is proved by Beder et al. [7]. Many image pro-

cessing methods like feature-based, edge-based, and model-based object detection and tracking are

given by Krattenthaler et al. [5], Stauffer and Grimson [8], Jain et al. [9], and Sheikh et al. [10]

suggested that the background subtraction is best for extracting foreground image. Johnson and

Tews [11] suggested effective classifier to determine the foreground images, which are influenced

by background image. The background subtraction techniques give accurate results in stationary

background environment. However, moving objects are obtained by using affine model but lacks in

Video from 

static camera

Videos to  frame 
conversion

Background frame

Current frame

Subtraction 
operation

Pixel 
threshold

Foreground 
mask

FIGURE 12.1

Background subtraction process.

Input video 
from 
camera

Video 
acquisition

Preprocessing 
and 
segmentation

Feature 
detection

Tracking of 
videos

FIGURE 12.2

Video tracking process.
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accuracy when the scene has significant depth variations. Implementation of computer vision algo-

rithm in hardware is a time-consuming one. It requires high computing system called field pro-

grammable gate array (FPGA), which can handle different task in reconfigurable techniques.

12.3 SURVEILLANCE SYSTEM TASKS AND CHALLENGES
In general, the surveillance system should able to detect the presence of objects in the field of

view, tracking these objects over time and classification based on activities and reporting informa-

tion about the events happening within the field of view. The object detection and tracking poses

various challenges with respect to system designers.

In the case of object detection, background subtraction is popular among other methods.

Fig. 12.3 shows the example for background subtraction output, but it faces several problems in

accurately detecting objects in realistic environments.

1. The change in illumination with daytime modifies the scene appearance, causing deviation from

the background model. As a result, there will be increase in the falsely foreground images,

which makes the system unrealistic.

2. It is not possible to differentiate the images when the current image is similar to the

background image.

3. Shadow objects will be considered as foreground images, which results in false detection.

Once the object is detected, it is necessary to record the object information over time. When the

objects are being tracked, its shape, size, or motion undergo various changes in realistic environ-

ment. Second, the objects undergoes occlusion, which means the object is being blocked by other

objects or structure. When the object undergoes occlusion, it is difficult to find the position and

velocity of an object. There are two types of occlusions as follows.

1. Interobject occlusion: blocking of one object with other. One of the examples is people moving

in groups. There will be frequent interobject occlusion. Detecting such case is important for

surveillance applications.

2. Scene structure occlusion: here, object disappears after a certain amount of time, for example,

person walking behind the building.

Images as 
frames

Image processing 
algorithm implemented 
in MATLAB

Coe file 
generation

FPGA-based 
image 
processing

Memory 
block

VGA 
display

FIGURE 12.3

Proposed method for object detection in FPGA.

17512.3 SURVEILLANCE SYSTEM TASKS AND CHALLENGES



12.4 METHODOLOGY
The techniques used to track the target of interest are known as the video tracking of objects. It

gains interest in security and surveillance system, medical imaging, and robotics. FPGAs are effi-

cient, high-speed, and low-cost devices, which can process the image processing algorithms effec-

tively. The objective of this chapter is to design the object tracking using FPGA. The static images

are initially stored in FPGA memory. The image processing algorithm is implemented using

VHSIC hardware description language (VHDL) and it is displayed using VGA display. The block

diagram of the proposed system is shown in Fig. 12.4:

The input image of size 2563 256 each of 8-bit wide is processed in MATLAB

environment. The coe (coefficient) is generated and it is stored in the memory block of the

FPGA. It is further processed using the FPGA and the resulting image is displayed in VGA

display.

For object detection, the first step is to convert an image into grayscale conversion.

The image that is in RGB format is converted into grayscale, whose values are in the

range of 0�255. The pseudocode that converts an image to grayscale image is given as

follows:

FIGURE 12.4

(A) Background image. (B) Foreground image. (C) Image subtraction. (D) Binary image.
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Image15 imread (‘C:\users\user1.jpg’);
Image25rgb2gray(Image1);
Y15step(hautothresh, Image2);
F5double(Image);

After the grayscale conversion, the background frames are subtracted from the foreground

image. The resulting foreground image is also called delta frame, which consists of less number of

pixels and is easy to process. In order to increase the resolution of the image, thresholding is done.

The grayscale image consists of a number of pixels, and each pixel is called object pixels. If the

object pixel is greater than the set threshold value, then the object pixel gains a value of “1” and

the background image “0.” In order to reduce the noise in the image, median filters are normally

used. The filtered image is further subjected to edge detection using Sobel operators. Fig. 12.4

shows the binary subtraction operations.

The object detection gives the information about its shape and size. Now the frames are

arranged in accordance with the video. One frame is processed in MATLAB per second. The center

of the mass method is used to track the target. The image processing algorithm is implemented

using MATLAB environment.

The pseudocode for .coe file generation in MATLAB is given as follows.

for row51:height
For column51:width
R5BW(row,column,1);
R5BW(row,column,1);
R5BW(row,column,1);
Y5[R;G;B];

Later, it is implemented using the Spartan 3E FPGA kit. Both spatial and temporal parallelisms

can be implemented easily using FPGA. The images are first downsampled from an 8-bit RGB

value to an 8-bit grayscale value. This is given in Eqs. (12.1) and (12.2)

Grayscale5 R3 0:25ð Þ1 G3 0:5ð Þ1 B3 0:125ð Þ (12.1)

The VHDL code for object detection using the distance equation

D5 sqrtððRI2RTÞ^21 ðGI2GTÞ^21 ðBI2BTÞ^2Þ (12.2)

is given in the following

process(RI, BI, GI)
begin
if (RI . RT) then
Rdif :5 RI - RT;
else
Rdif :5 RT - RI;
end if;
if (GI . GT) then
Gdif :5 GI - GT;
else
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Gdif :5 GT - GI;
end if;
if (BI . BT) then
Bdif :5 BI - BT;
else
Bdif :5 BT - BI;
end if;

R2 :5 Rdif * Rdif;
G2 :5 Gdif * Gdif;
B2 :5 Bdif * Bdif;
sqrtsum, 5 (R2) 1 (G2) 1 (B2);
if (sqrtsum. threshold) then
O ,5 '0';

else
O ,5 '1';

end if;
end process;
endBehavioral;

Fig. 12.5 shows the center of mass calculation and Fig. 12.6 shows the dilation operation for

object tracking.

Table 12.1 shows the synthesis report of object detection and tracking system.

FIGURE 12.5

Center of mass calculation.
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12.5 CONCLUSION

Object detection and tracking find applications in autonomous robot navigation, and surveillance

and vehicle navigation. Object detection involves obtaining objects in consecutive frames. Object

tracking locates the objects to appear over time using a camera. An FPGA includes a number of

configurable logic blocks, distributed memory, and hard digital signal processing modules, which

has the capability of processing real-time objects. In this chapter, object identification and tracking

are simulated using MATLAB environment and implanted using the SPARTAN 3E kit.
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