

 Take Control of Automating Your Mac (3.0)

 Joe Kissell

 Copyright © 2019, alt concepts inc. All rights reserved.

 ISBN for EPUB and Mobi version: 978-1-947282-47-6

 Table of Contents
	Read Me First	Updates and More
	What’s New in the Third Edition

	Introduction
	Automation Quick Start
	The State of Mac Automation
	Develop an Automator’s Mindset	Learn the Basic Principle of Automation
	Learn What You Can Automate
	Look for Automation Opportunities
	Pick the Right Tools

	Use Built-In Automation Features	Use the Mac’s Built-In Keyboard Shortcuts
	Make Your Own Keyboard Shortcut
	Use and Customize Toolbars
	Use macOS Text Substitutions and Transformations
	Control Your Mac with Your Voice
	Update Apple and Mac App Store Software Automatically
	Update Non-Mac App Store Software Automatically
	Work with Rule-Based Searches
	Create and Use Smart Containers
	Deal with the Mac’s Evolving Security Features

	Automate Your Input Devices	Use Trackpad and Magic Mouse Gestures
	Use BetterTouchTool
	Customize Your Touch Bar
	Save Clicks with Third-Party Input Devices
	Program an Input Device with USB Overdrive
	Learn About Other Special Input Devices

	Automate Text Expansion	Use Text Replacement in macOS
	Use a Third-Party Text Expansion Utility

	Automate the Finder	Use Spotlight as a Launcher
	Use a Third-Party Launcher
	Organize Files with Hazel

	Supercharge Your Clipboard	Learn What a Clipboard Utility Can Do
	Use a Macro or Launcher Utility
	Use a macOS Clipboard Utility

	Automate Individual Apps	Automate Microsoft Office
	Automate Nisus Writer Pro
	Discover Other Internally Scriptable Apps

	Automate Email	Use Server-Based Rules
	Automate Apple Mail
	Automate Outlook Email with Rules
	Automate Other Email Apps

	Automate the Web	Log In Faster with iCloud Keychain and Safari Autofill
	Automate Web Logins with a Password Manager
	Automate Cloud Services
	Discover Other Web Automation Options

	Automate Backup and Syncing	Run Backups Automatically with Time Machine
	Create Hands-Off Versioned Backups
	Schedule Bootable Duplicates
	Automate Mac-to-Mac Syncing

	Discover macOS Automation Technologies	Apple’s Core Automation Technologies
	Using JavaScript for Automation
	Using Swift for Automation

	Use Services for System-Wide Shortcuts	Configure Services
	Find and Use Services

	Get Started with Automator	Create a Simple Automator Workflow
	Create an Automator Droplet
	Create Your Own Service
	Find and Run Sample Workflows
	Learn More about Automator

	Get Started with AppleScript	Write a Simple AppleScript
	Learn What AppleScript Can Do
	Understand AppleScript Basics
	Find and Run Example AppleScripts
	Edit an Existing AppleScript
	Use GUI Scripting
	Use AppleScript Folder Actions
	Learn More About AppleScript

	Script the Command Line with Shell Scripts	Create Your Own Shell Script
	Try Another Script
	Shell Scripts Outside the Shell

	Use Omni Automation	What Omni Automation Can Do
	Try Omni Automation in OmniGraffle

	Use a Macro Utility	Control Your Mac with Keyboard Maestro
	Use Another Macro Utility
	Switch Contexts with ControlPlane

	About This Book	Ebook Extras
	About the Author and Publisher
	Acknowledgments
	Credits

	Copyright and Fine Print
	Also by Joe Kissell
	Hazel Coupon
	Keyboard Maestro Coupon
	LaunchBar Coupon
	Nisus Writer Pro Coupon
	Script Debugger Coupon
	TextExpander Coupon
	TextSoap Coupon
	TypeIt4Me Coupon
	Typinator Coupon
	UI Browser Coupon

 	
 Cover

 	
 Table of contents

Read Me First

Welcome to Take Control of Automating Your Mac, Third Edition, version 3.0, published in November 2019 by alt concepts inc. This book was written by Joe Kissell and edited by Scholle McFarland (first and second editions) and Glenn Fleishman (third edition).

This book explores many ways to work faster, increase your efficiency, and have more fun using your Mac by automating common activities. Many of these techniques require no extra software, and nearly all of them are suitable for ordinary users without special technical skills.

If you want to share this ebook with a friend, we ask that you do so as you would with a physical book: “lend” it for a quick look, but ask your friend to buy a copy for careful reading or reference. Discounted classroom and Mac user group copies are available.

Copyright © 2019, alt concepts inc. All rights reserved.

Updates and More

You can access extras related to this ebook on the Web (use the link in Ebook Extras, near the end; it’s available only to purchasers). On the ebook’s Take Control Extras page, you can:

	Download any available new version of the ebook for free, or buy any subsequent edition at a discount.

	Download various formats, including PDF, EPUB, and Mobipocket. (Learn about reading on mobile devices on our Device Advice page.)

	Read the ebook’s blog. You may find new tips or information, links to author interviews, and update plans for the ebook.

If you bought this ebook from the Take Control website, it has been added to your account, where you can download it in other formats and access any future updates. However, if you bought this ebook elsewhere, you can add it to your account manually; see Ebook Extras.

What’s New in the Third Edition

This edition contains numerous small changes to reflect revisions in macOS made to Mojave and Catalina. It also includes the following significant updates:

	Updated the chapter The State of Mac Automation, and added a sidebar about Shortcuts in iOS and iPadOS

	Added information on using toolbars for shortcuts; see Use and Customize Toolbars

	Revamped the topic Control Your Mac with Your Voice to cover changes to Siri, dictation, and Dictation Commands; see especially the new sidebar Voice Control Changes in Catalina and the new topic Use Dictation Commands in Catalina or Later

	Explained new procedures for updating Apple software; see Update Apple and Mac App Store Software Automatically, and particularly the topic Configure Software Updates in Mojave and Later

	Added information about new security issues you might encounter while working with automation and how to handle them; see Deal with the Mac’s Evolving Security Features

	Added two new topics to the Automate Your Input Devices chapter: Use BetterTouchTool and Customize Your Touch Bar

	Made some adjustments in Automate Nisus Writer Pro to match the most recent version of the app

	Updated Automate Apple Mail with Plugins to reflect currently available Mail plugins

	Revised Log In Faster with iCloud Keychain and Safari Autofill to describe the way iCloud Keychain works with newer versions of macOS and Safari

	Updated Create Your Own Service to reflect the fact that Automator uses the term Quick Action for services in Mojave or later

	Added a sidebar, From bash to zsh, covering the new default shell in Catalina

	Removed information about products that have been discontinued since the last edition, which includes the Griffin PowerMate, Wappwolf Automator, and Scriptarian.

Introduction

If you’ll forgive the cliché, life is too short. I have long-term goals and dreams that need my attention. And every single day, I have work to do, a family to take care of, books to read, and TV shows to watch. I don’t have time to waste on tedious tasks that my expensive, modern Mac is perfectly capable of doing for me.

This book is about taking back your time by automating your Mac, which sounds like a fancy and high-tech undertaking. But in fact, all I mean by “automating” is finding shortcuts—ways to do the same thing, only more quickly and easily, with fewer manual steps. That might be as simple as learning a keyboard shortcut for a common command, or scheduling a task to run at a certain time. You can do more advanced things, too, like using macro utilities or writing AppleScripts, but you may be surprised to find that some of the most powerful and effective automation techniques require the least effort and skill to set up. In many cases, you won’t even need extra software.

I want to emphasize that you do not have to be a programmer or computer geek to do most of this stuff. I do mention a few techniques that require above-average technical chops, but I’ve written this book for ordinary—smart but non-technical—readers. On the other hand, if you are a computer geek, I hope you’ll find some ideas here that you can use to make your work even more efficient than it already was.

Tip: If you are interested in learning about programming but don’t know where to start, try Hour of Code.

Let me share a personal story. There’s a certain bookkeeping task that used to take me about 5 minutes a day. After running through it a few hundred times, I decided that I couldn’t stand it any longer. So I spent a full day working up a very snazzy macro that combined Keyboard Maestro with AppleScript—two tools I discuss later in this book—to perform the whole task without any intervention at all.

Now, you may be thinking, “That’s madness! What kind of idiot would spend a whole day automating something that takes just 5 minutes?” Well, this idiot did it to save time. If I spent 8 hours perfecting my macro, that’s equivalent to 5 minutes a day for about 3 months. Which means that after 3 months of using the macro, I get 5 extra minutes every single day to spend with my kids—more than 30 hours over the course of a year. All of a sudden, that sounds pretty smart!

That’s an extreme example—rarely would I spend so much time automating a single task—but it nicely illustrates my objective. I invest a bit of up-front setup time to shave off a few seconds here, a few minutes there, from tasks that I perform over and over. My work becomes less frustrating, and I’m freed up to concentrate on more interesting and creative tasks. Whether I get more work done in the same amount of time or the same amount of work done in less time, the result is the same—higher productivity and greater happiness.

Many of the topics I discuss are deep, and I can only scratch the surface in a book like this. For example, Sal Soghoian and Bill Cheeseman once wrote an 895-page book on AppleScript, but I spend just a chapter on it. Other Take Control authors penned entire titles about LaunchBar and TextExpander, which I cover only briefly. And I could write hundreds of pages about Keyboard Maestro, Nisus Writer Pro macros, and other topics. Automation is a virtually endless subject, but I’m sure you don’t want to read thousands of pages about it!

Instead, I want to do just three things with this book:

	Show you lots of automation tools and techniques for your Mac.

	Offer concrete examples you can use as is or adapt to your needs.

	Inspire you with lists of further possibilities and learning resources.

Unless otherwise noted, all the techniques in this book work with macOS 10.12 Sierra through 10.15 Catalina, and likely beyond. Most of them work in older Mac operating systems, too—perhaps with minor modifications. I haven’t spelled out all those differences or compatibility issues, but in general, the older your operating system, the less likely you’ll find that everything works as described.

Automation Quick Start

There are dozens, if not hundreds, of ways to automate your Mac. This book explores many of the most interesting options. Feel free to dip in wherever you like and jump around to techniques that interest you; however, I suggest that you first read the Introduction and Develop an Automator’s Mindset. And, if you’re interested in ways of automating your Mac that require no extra software, pay special attention to the second chapter, Use Built-In Automation Features.

Automation 101:

	Where things stand: Get a snapshot of the changing Mac automation landscape; read The State of Mac Automation.

	Strategy: Learn what you can automate and figure out where you can save time and effort in Develop an Automator’s Mindset.

	Built-in features: Discover the many ways you can make your Mac more efficient using nothing more than what Apple supplies in macOS; see Use Built-In Automation Features.

Tip: At this point, you can explore any specific automation category in the next group of chapters, or skip ahead to Discover macOS Automation Technologies such as Automator, AppleScript, and Keyboard Maestro.

Discover what you can automate:

	Input devices: Get the most out of your mouse, trackball, trackpad, or other input device; see Automate Your Input Devices.

	Text expansion: Insert commonly used words, phrases, variables, and even elaborate fill-in-the-blanks reports just by typing a few characters; see Automate Text Expansion.

	Finder: Launch apps, open files and folders, play music, look up definitions, perform calculations, and much more with just a few keystrokes; see Automate the Finder.

	Clipboard: Cut, copy, and paste like a pro using multiple clipboards, clipboard histories, and tools to manipulate what’s on your clipboard; see Supercharge Your Clipboard.

	Apps: Use the capabilities built into major apps like Word, Excel, Nisus Writer Pro, and FileMaker Pro to automate repetitive or complex actions; see Automate Individual Apps.

	Email: Eliminate spam, file messages instantly, send out automatic replies, and more as you Automate Email.

	Cloud services: Connect cloud services to each other, create agents that watch the web for information that interests you, and even control your Mac remotely; see Automate the Web.

	Backup and sync: Keep your data safely backed up—and, if you like, in sync across more than one Mac; see Automate Backup and Syncing.

Learn about Apple’s high-level automation tools:

	Overview: Read Discover macOS Automation Technologies for the basics of services, Automator, AppleScript, and shell scripts. Then delve into full chapters on each:

	Services: Use Services for System-Wide Shortcuts

	Automator: Get Started with Automator

	AppleScript: Get Started with AppleScript

	Shell scripts: Script the Command Line with Shell Scripts

Use advanced third-party automation tools:

	Omni Automation: Get a taste of the brand-new, cross-platform, JavaScript-based automation capabilities of apps by the Omni Group; see Use Omni Automation.

	Macro utilities: Create sequences of steps you can replay with a click or a keystroke to do nearly anything you could do yourself with a mouse and keyboard; see Use a Macro Utility.

The State of Mac Automation

The Apple world has undergone a huge change in automation options in the last few years, requiring you to learn new skills, change old habits, and perhaps even buy and configure some new software—all in the interest of getting your Mac to do more work for you.

Through the first edition of this book, in 2014, I thought the direction Apple was likely heading was towards more and better automation capabilities, and with various Apple teams paying greater attention to automation. Since then, signals have become decidedly more mixed.

For starters, Sal Soghoian was laid off in late 2016. Sal spent 20 years at Apple as the company’s main internal and external evangelist for automation; his title was Product Manager of Automation Technologies. Apple’s explanation was they eliminated the position for business reasons, not for personal ones (see Tell Us Your Mac Automation Stories by Adam Engst in TidBITS). But no one seems to know what those reasons were.

Sal was instrumental in the development of Automator. And more than anyone else, he worked hard to explain, promote, and encourage the adoption of automation technologies across the Apple ecosystem and apps. Without his efforts, I’d have far too little to say about Mac automation that could fill a book.

I’d be more sanguine about Sal’s departure, even though he’s a friend, if Apple had kept on a path towards improving automation. But as best as I can tell, there’s no one in charge of this area at Apple since he left.

Another recent change: in macOS 10.15 Catalina, Apple has deprecated the Unix scripting languages Perl, Python, and Ruby, all of which have been included with the operating system for eons. That’s a pity, because these are powerful and useful tools that numerous other automation utilities depend on for automating tasks. Although Apple hasn’t provided specific details, it sounds as though future versions of macOS will no longer install these languages by default.

I don’t have any inside knowledge of Apple’s corporate thought processes or business plans, but I can make some informed predictions:

	Most of Apple’s automation technologies—particularly the home-grown ones—will remain roughly the same in the next few releases of macOS, just as they did in High Sierra, Mojave, and Catalina. Although individual apps may drop support for certain automation technologies, I expect that most workflows you build today with, say, AppleScript or Automator will still be functioning a year or two.

Note: An interesting exception to the above is DEVONthink (see my free book Take Control of DEVONthink 3). Although the latest major release dropped Automator support, it both increased its support for AppleScript and added several new internal automation features—including smart rules that function much like Hazel (see Organize Files with Hazel).

	I would be shocked to see substantial improvements or revisions to Apple’s existing macOS automation technologies in the next few years. I expect to see bug fixes at best.

	Apple will likely continue to promote app extensions, cloud services, web-based tools, and—most importantly—apps written in the Swift programming language as the preferred ways to accomplish tasks that older automation technologies typically addressed (even though these methods might not quite be able to do the job yet).

	There will be an increase in attention to automation on iOS, which accounts for a far greater share of Apple’s income (and, thus, programming resources) than macOS these days. See the sidebar Shortcuts in iOS and iPadOS.

My gut feeling is that, in terms of official, system-level support from Apple, Mac automation has plateaued, and might be on the decline.

However…

Even as someone who loves automation, I don’t find this depressing. In fact, I feel quite positive about a broader picture of automation on the Mac—one that isn’t defined solely by Apple’s decisions. Here’s why:

	The Mac automation community is large, vibrant, and influential; witness 73 Mac Automation Stories from TidBITS Readers. Notably, some of the large groups that spend the most on Apple gear—such as graphic artists, musicians, and various sorts of enterprise users—depend crucially on automation technologies. I’m sure those people collectively hold some influence over Apple’s decisions.

	In many respects, Apple takes a “let’s leave well enough alone” approach to the guts of macOS. Notwithstanding the deprecation of Unix scripting languages mentioned above, there are oodles of other old Unix utilities still kicking around in macOS. They’re not doing any harm, and some problems might arise if they were removed, so they largely stay, even without a strong argument as to why they’re needed. The same could be true of today’s built-in automation technologies.

	If you depend on Perl, Python, or Ruby for automation tasks, you’ll always be able to manually download, install, and use these tools even after they’re no longer built into macOS. Indeed, since Apple’s versions of these tools have been behind the times for a number of years, installing fresher versions has already been quite common among developers.

	The number of apps with their own built-in automation tools is growing, as are the capabilities of those tools. (See, for example, the chapter Use Omni Automation.) Even if AppleScript disappeared tomorrow (don’t worry; it won’t), you’d still be able to automate tasks within Acrobat Pro DC, DEVONthink 3, Microsoft Office, Nisus Writer Pro, Photoshop, and many other apps. You’d also still be able to use tools like Keyboard Maestro that use their own methods to automate other apps.

	Even though app extensions, Swift, and so forth don’t meet the general need for automation tools today, they could plausibly evolve in such a way that they will in the future. Indeed, perhaps Apple or a third-party developer will invent some entirely new technology that will make today’s options seem quaint.

	Apple’s new Catalyst framework, which makes it simpler for iPad developers to develop native Mac versions of their apps that share most of the same source code, fully supports AppleScript. (Yeah, I have to admit even I was a little surprised to learn this!)

	Apple is paying a lot of attention to both automation and programming on iOS/iPadOS. The free Shortcuts app gained big new capabilities in iOS 13 and iPadOS 13; see the sidebar Shortcuts in iOS and iPadOS, ahead. Apple also (somewhat shockingly) approved Omni’s iOS/iPadOS apps that incorporate JavaScript—not just for automation within a single app, but between apps too. And the company offers Swift Playgrounds, a free app that lets people learn to code in Swift on an iPad (even though iOS/iPadOS devices can’t yet be used to develop full-blown iOS/iPadOS apps).

Granted, that’s iOS/iPadOS, not macOS. But this shows that Apple does care about automation, and lately we’ve seen a number of technologies flow from iOS/iPadOS to macOS. Apple could very well be using iOS/iPadOS automation developments to lay the groundwork for future Mac capabilities. At the very least, it’s an argument for parity between the two platforms.

In short, although I don’t know what the future of Mac automation holds, I’m enthusiastically increasing my own use of various automation technologies, and I hope you’ll join me!

Shortcuts in iOS and iPadOS

Shortcuts is a free automation app from Apple, available for both iOS 12 and iOS 13/iPadOS 13, that’s based on an earlier app called Workflow. Using Shortcuts, you can quickly access actions in a wide variety of apps and system services, and you can even construct long, complex sequences of actions that run with a single tap, a Siri command, or another trigger.

Although there are ways to include code from programming languages in Shortcuts, most shortcuts involve no coding. Rather, they are built by dragging in modules and setting switches and parameters to specify how they should behave. In other words, it’s conceptually much like Automator on the Mac (see Get Started with Automator).

Shortcuts doesn’t have quite the reach that AppleScript does, but it’s far and away the best tool for automating activities on an iPhone or iPad. As of November 2019, we’re working on a Take Control book all about Shortcuts that we hope to release in the near future!

Develop an Automator’s Mindset

I think of myself as a relatively lazy person. I mean, yes, I’ve written 60 Take Control books in the last 16 years. And yes, I’ve written numerous other books, too, not to mention hundreds of articles for Macworld, TidBITS, and other sites. And sure, I run a publishing company and speak all over the world and have a wife and two young (and energetic) kids. But apart from those minor exceptions and maybe a dozen others, I’m pretty much a layabout.

However, there’s more than one way to think about laziness. When it comes to your Mac, a good form of laziness is not wanting to spend unnecessary time doing something that’s tedious or repetitive. A bad form of laziness is not bothering to figure out how to save yourself that effort later on.

I frequently interrupt my work to spend a half hour figuring out how best to automate a task that might take me a minute to do manually. But if I save a minute several times every day, that half hour pays for itself in no time. And from then on, I’m more efficient and happier. Even if a certain automation technique saves only a second or two, those seconds add up in a big way over time.

Note: To get a visual sense of how much time you might save in the long run, see the xkcd comic Is It Worth the Time?.

But saving time isn’t the only reason to automate activities on your Mac. You’ll also make your work more consistent and accurate. Automation can prevent small errors that would otherwise trip you up, and save you the annoyance of looking up forgotten details.

As you read about automation methods, I want you to accept the fact that you’ll have to spend (not “waste”) time learning, experimenting, and setting things up, and that this work is going to be a temporary drag on your productivity. Don’t worry about it. The end result will make you much more productive. Bear in mind, too, that the effort-to-reward ratio is least favorable at the beginning, as you’re getting to know the tools and techniques. But as you gain experience, you’ll find that smaller amounts of effort produce greater rewards.

Your biggest challenge may be figuring out what you can automate and how. That’s what I want to address in the remainder of this chapter.

Learn the Basic Principle of Automation

I alluded to this in the Introduction, but I want to make sure it’s clear:

For the purposes of this book, automation means finding shortcuts—easier ways to do the same things you’re already doing regularly.

I use such a broad and inclusive definition because I want you to get in the habit of looking for easier ways to do things on your Mac without the psychological barrier of thinking that automation is some intensely technical process only a computer geek could grasp.

You probably wouldn’t have bought this book if you weren’t already interested in simple labor-saving shortcuts: if there’s something you do frequently that requires three clicks and you can come up with a way to do it with one click instead, you’ve saved yourself some effort. Or maybe you have a regular task that normally requires a dozen keystrokes and you can do it with a single menu command instead.

Once you feel confident finding shortcuts like these, you can work your way up to the more conventional sense of automation—setting up your Mac to perform complex sequences of useful tasks without any intervention. These could be tasks you would do anyway, or they could be tasks that would be too complicated, time-consuming, or onerous to bother doing by hand—tasks such as sorting your incoming email, monitoring sales figures, or moving files between disks or machines.

Keep in mind, however, that since it takes some time to set up any automation task, automation saves time only when the activity in question happens over and over again. Suppose an app has a deeply nested menu command, like Tools > Format > Paragraph > Style > Quote Level > Increase, and it’s a pain to find it and select it. You could assign it a keyboard shortcut, but if it’s a command you use only on a rare occasion, there’s no point. It would take more effort to set up (and remember) the shortcut than to search for the command manually. On the other hand, if this is a command you use several times every day, it’s certainly worth your effort to find a quicker way.

Learn What You Can Automate

Think for a moment about the differences between tasks that can be described in purely mechanical (or objective) terms compared to tasks that require human intelligence (or subjectivity). Here are a few examples to illustrate what I mean.

Mechanical tasks:

	Select all the black pixels in an image.

	Find all capitalized words in italics.

	Type a predefined chunk of text.

	Fill out a web form with my contact information.

	Click your pointer at a spot 50 pixels from the left edge and 120 pixels from the top edge of the frontmost window.

Subjective or creative tasks:

	Select all the flowers in an image.

	Find all allusions to Star Trek in a book.

	Compose a poem.

	Fill out a web form with your opinions on survey questions.

	Click the photo of the most appetizing pastry.

Broadly speaking, mechanical tasks are the ones that most readily lend themselves to automation. While writing this book, I used automation for things like expanding abbreviations, applying styles, creating bookmarks, inserting cross-references, and modifying URLs. None of my automation tools helped me figure out what to write, however.

Your own work undoubtedly includes a mixture of mechanical and subjective or creative tasks. The more you automate mechanical tasks, the better you’ll be able to focus on the creative part of your work.

Crucially, you can automate such tasks (and sequences of tasks) even in cases where variables are involved or decisions are required—automation need not be blind. For example, you might have a macro (a structured series of automated actions) that looks at the text on a certain webpage and, depending on what that text is, takes one of three actions in response. You might have a command that runs automatically—but only on rainy days, or only if there are fewer than five messages in your email inbox. You might even have your Mac prompt you to make a decision manually, or fill in some information, before proceeding with an automation task.

When trying to determine whether a task is ripe for automation, I like to ask myself whether it’s something I could explain to my mother how to do, over the phone. My mom is both intelligent and computer-literate, although she’s not a technophile. I could say, “Mom, go to this page in your browser. Now look at the second line from the top. Does it have a number that’s greater than 100? If so, then open this spreadsheet, click in the first empty cell in the second column, and type that number into that cell.” On the other hand, I would not tell my mother, “Give descriptive names to these 100 technical documents I just scanned,” because although she might give it her best shot, chances are close to nil that she and I would choose similar names—and I’d have a hard time finding a particular document.

Look for Automation Opportunities

Now it’s time for you to start making a list. You can use a text file, the Notes app on your Mac or iPad, or even (gasp!) a piece of paper, but do start making a list of tasks you might want to automate right now.

As you use your Mac, pay attention to activities that are largely mechanical in nature, that you perform more than a few times a day, and that require more than a single click, keystroke, or menu command. Jot down what those activities are, and as you read this book, look for appropriate ways to automate each task. Even if you know for sure that you want to automate something, it’s not always convenient to drop everything and do so at the moment you realize it. Having a list helps you remember what to come back to when you do have time.

In particular, I suggest concentrating on situations in which you might be able to click less, type faster, or use keyboard shortcuts.

Click Less

Although it’s not a perfect measurement of complexity, it’s a convenient way to think about the effort needed to perform common tasks: How many clicks does it take?

If you click the Finder icon in your Dock to switch to the Finder, click File > New to open a new window, click on the name of another Mac in the sidebar, and then click Share Screen to share the screen, that’s four clicks.

All things being equal, fewer clicks take less effort than more clicks, so if you can find ways of reducing multiple clicks to a single click (or perhaps to a keyboard combination), you’ll save effort.

Write it down: When you notice yourself performing a task two or more times a day, count and write down how many clicks it takes to complete it, remembering that one click equals a press and release. (Moving the pointer to a menu command and dragging add complexity too, but for the sake of this little experiment, you can ignore those mouse movements.) If an activity also requires keystrokes (such as entering a username, or searching for a word), count those too—we’ll come back to extra keystrokes in a moment. Any repetitive activity that requires more than two clicks could potentially be shortened. The reason for counting your clicks is so you can roughly prioritize which tasks may bring you the most gains once automated.

What to do: Pretty much any automation I discuss has the potential to eliminate clicks. Areas that may especially apply, however, are these:

	If you spend too much time launching applications and opening files, read Automate the Finder.

	If you want to copy and paste multiple items quickly, start with Supercharge Your Clipboard.

	To automate your mouse, trackpad, or other input device, read Automate Your Input Devices.

	If you want to switch applications with your voice, try Control Your Mac with Your Voice, or find other options for quickly getting in and out of apps in Automate the Finder.

Type Faster

If you don’t already know how to touch-type (that is, type with all ten fingers, without looking at the keys), learning to do so will probably save you more time and increase your efficiency more than anything else in this book. You can find numerous free or inexpensive apps to help you learn, such as Mavis Beacon Teaches Typing.

But if you’re already a touch typist, you can increase your typing speed and accuracy even further. For example, I frequently write about an app called DEVONthink To Go, but I never type out all 16 characters of that name. I type dttg and my Mac expands that automatically into the full name. That not only saves time, but also ensures I get all the capitalization right. I do the same thing with frequently typed names, addresses, phone numbers, URLs, dates, and other phrases—especially those that I use more than a few times a day.

Write it down: Consider all the email messages and documents you wrote in the last 24 hours, and see if you can pick out long names, phrases, and other text you used repeatedly, such as a company name, chemical name, or address. Make a note of them.

What to do: Set up shortcuts for yourself to Automate Text Expansion using the tools built into macOS or a third-party utility.

Use Keyboard Shortcuts

One premise underlying many of the automation techniques in this book is:

Using the keyboard has the potential to be considerably faster than using a mouse (or other pointing device).

To the extent that this is true, it would seem logical to learn (or create) as many keyboard shortcuts as possible. But I wouldn’t go so far as to say that keyboard shortcuts are always or even usually faster than using a pointing device. (For a fascinating glimpse into research Apple did in this area in the late 1980s, read Bruce “Tog” Tognazzini’s articles “Keyboard vs. The Mouse,” part 1, part 2, and part 3.) And let’s not forget the mental effort required to learn and recall all those shortcuts!

Keyboard shortcuts are likely to be superior in certain situations:

	Cases where you’ve memorized a keyboard shortcut so fully that its application is a matter of muscle memory—as is often the case with the most common shortcuts such as ⌘-C for Copy, ⌘-X for Cut, ⌘-V for Paste, ⌘-S for Save, ⌘-W for Close, and ⌘-Q for Quit

	Editing operations in which you can perform a keyboard shortcut with one hand while selecting text or other elements using your mouse or other pointing device with the other hand

	Activities that require multiple mouse clicks (refer back to Click Less)

	Activities that require navigating submenus or searching for a menu command whose location is unknown

	Repetitive activities (for example, applying a certain menu command to a dozen different objects, one after the other)

	Actions to which you can assign a mnemonic, multi-key shortcut sequence, such as ⌘-P-D-F for Save as PDF (see Use Multi-Key Shortcuts in Microsoft Word and Use Multi-Key Shortcuts in Nisus Writer Pro)

Furthermore, if you are a touch-typist and your work involves mostly typing (in which case there’s a frequent time penalty for moving one hand from the keyboard to the pointing device and back), you’re likely to see greater efficiency improvements from using keyboard shortcuts than if you’re a hunt-and-peck typist or if your work involves more mousing than typing.

Write it down: Make a note of tasks you perform several times a day that require searching for menu commands, as well as those you repeat two or more times in a row.

What to do: In some cases, you can learn their existing shortcuts (see Use the Mac’s Built-In Keyboard Shortcuts), but if they don’t have shortcuts—or you don’t like the built-in shortcuts—you can assign keyboard shortcuts to them (see Make Your Own Keyboard Shortcut and Use a Macro Utility).

Consider Routine Tasks

I may have given you the impression that automation is best suited for tasks you perform many times a day. It’s true that the more often you perform a task, the more you’ll benefit from automating it. But you might also want to consider automating tasks you perform less frequently—say, once a week, once a month, or once a quarter.

Do you have to prepare a monthly expense report? A quarterly summary of customer support email messages? An annual chart of sales statistics? It may be worth the effort to figure out how to automate those tasks as well (or portions of them, anyway).

You may not be able to predict how long it will take you to create the workflow, script, or macro needed for such a task, but in general, I like to see my automation efforts amortized within a few months. For example, if a quarterly task takes an hour to do manually, and I can automate it with an hour’s work, I’ll see that time savings the next quarter. Spending an entire day automating an annual task that would otherwise take only 15 minutes makes much less sense—it could take the rest of your career to recoup that lost time.

Set Yourself Up for Success

I have one last suggestion on the topic of looking for automation opportunities.

Imagine you’re shopping for an optical character recognition (OCR) program, a word processor, a photo manager, or a digital audio workstation app. You’ve narrowed your choices down to two or three candidates. Which should you buy? All things being equal, I’d pick the one with the most or best automation capabilities, whether they’re built in (a macro language, let’s say) or externally driven (for example, with extensive AppleScript support).

Although most apps can be automated by brute force, as it were—having a macro utility fake a click at certain coordinates in a window, for instance—that kind of automation is tricky and error-prone. Apps that expose their functions directly to tools like Automator, AppleScript, and LaunchBar make automation much easier. That’s why I talk glowingly about the automation possibilities in Microsoft Word, Nisus Writer Pro, DEVONthink, Panorama X, and 1Password. They go out of their way to make it easy for other apps to communicate with them.

You may also need to request some adjustments to the way other people send you data in order to facilitate automation. For example, data you receive in a highly structured form, such as a spreadsheet, database, or XML file, lends itself well to automation because it’s easy to instruct a computer to look in a certain field, cell, or key for a piece of data. Receiving data as a free-form PDF or Word file complicates automation, because you first have to automate the task of locating just the needle you need in a fairly large haystack.

These are just a few examples, but my main point is to keep automation in mind as you make decisions about the apps you use and the ways you send and receive information. Even if you don’t use those capabilities now, you may appreciate them in the future.

Make Friends with Metadata

Metadata is “data about data”—for example, a song’s data is the music you hear, but metadata includes the song’s title, composer, performer, album art, lyrics, and so on—as well as its star rating, if you gave it one in Music or iTunes, and any comments you added to its description. Similarly, files can have metadata such as tags and comments; photos can have titles, ratings, and location information; and email messages can be marked as sent, read, or junk.

If you get in the habit of adding metadata where it’s appropriate, you’ll make automation that much easier later on. For example, if you always mark your favorite songs with 4 or 5 stars, then it’s easy to make playlists that include only your favorites. Tag your files, and then it’s easy to use those tags to make smart folders (see Create and Use Smart Containers). Mark your favorite photos, and then it’s easy to find them at the end of the year when generating a holiday card or to show only your favorites to your friends at your college reunion.

Without question, adding metadata, after the fact, to hundreds or thousands of existing items is an extraordinary time sink that is seldom worth the effort. But adding it to new items as you go can open up interesting automation possibilities in the future.

Pick the Right Tools

I talk about tons of different techniques, features, and apps in this book. I use most of them myself. But I don’t expect you to go out and buy every app I mention here, or even one of each type of app. I don’t expect you to spend the time learning Automator and AppleScript and Keyboard Maestro and Nisus Writer Pro macros and so on. You’re welcome to do that if it sounds like fun (it’s fun for me!), but for most people, that’s would be unreasonable and incredibly boring.

Instead, I suggest you read through this book with the idea of picking out just the handful of techniques and apps that give you the biggest bang for your buck (or your time). The answer will be different for each person; it’ll depend on how you use your Mac and what your biggest sources of annoyance are.

I asked myself: If I could pick only one automation tool from this book, which one would it be? For me, that tool would be Keyboard Maestro (see Control Your Mac with Keyboard Maestro), because it’s so versatile. It may not be the best launcher or the best clipboard utility or the best text-expansion tool, but it does a respectable job at all those tasks—in addition to its crucial core features of creating macros and letting you assign keyboard shortcuts to commands.

Don’t get me wrong: I’d miss LaunchBar, TextExpander, Nisus Writer Pro macros, and AppleScript every single day. So, for me, the right answer is to use a bunch of tools, each for specific purposes. But as you’re getting started in automation, learning one tool (or a few tools) more deeply is better than learning many tools only slightly.

Finally, I should caution you not to buy automation apps just because they sound neat, or because you hope to think up problems for them to solve. That’s like going to the hardware store and buying a tool without having anything you need to use it for. (Which, I admit, I’m prone to do, but I don’t recommend.) Start with the problems you want to solve, and then find an app or technique that can solve them.

Tip: A great place to find tips, tools, macros, and other resources pertaining to Mac and iOS/iPadOS automation is Automation Orchard, maintained by Take Control author Rosemary Orchard.

Use Built-In Automation Features

Although it may not be apparent at first glance, macOS contains dozens of built-in automation features, just waiting for you to make use of them. In fact, later in this book, I’ll discuss numerous ways to take advantage of built-in features, such as:

	Use Trackpad and Magic Mouse Gestures

	Use Text Replacement in macOS

	Use Spotlight as a Launcher

	Use Services for System-Wide Shortcuts

	Get Started with Automator

	Get Started with AppleScript

	Script the Command Line with Shell Scripts

	Manage Incoming Apple Mail with Rules

	Search Faster with Smart Mailboxes

	Log In Faster with iCloud Keychain and Safari Autofill

	Run Backups Automatically with Time Machine

But in this chapter, I want to introduce you to a core set of built-in automation capabilities that don’t fit logically within another topic—or that don’t go as far as the more capable third-party tools that I discuss later in this book. Most of these involve things you can do in the Finder or in System Preferences, and they’re among the easiest ways to start automating your Mac.

Use the Mac’s Built-In Keyboard Shortcuts

Every app that comes with macOS, including the Finder, has keyboard shortcuts for common commands.

Menu Shortcuts

The best-known type of keyboard shortcut performs a menu command. You can see the shortcuts right on the menus (Figure 1).

[image: Figure 1: Examples of menu commands with predefined keyboard shortcuts.]Figure 1: Examples of menu commands with predefined keyboard shortcuts.

The symbols represent modifier keys:

	⌘ means Command

	⌥ means Option

	^ means Control

	⇧ means Shift

So, if you see a command labeled ^⌘T (File > Add to Sidebar in the Finder), that means hold down both the Control key and the Command key and press T.

The easiest way to learn what keyboard shortcuts are available for menu commands is to look at the menus as you use them.

Although every app has its own shortcuts, most apps are consistent in their use of common shortcuts, such as:

	⌘-A for Select All

	⌘-B for Bold

	⌘-C for Copy

	⌘-D for Duplicate

	⌘-F for Find

	⌘-I for Italic

	⌘-N for New

	⌘-O for Open

	⌘-P for Print

	⌘-Q for Quit

	⌘-S for Save

	⌘-U for Underline

	⌘-V for Paste

	⌘-W for Close

	⌘-X for Cut

	⌘-Z for Undo

	⌘-, for Preferences

	Return to click the default (highlighted) button in any dialog

	⌘-. or Esc to cancel the current action

Every Mac user should know these common shortcuts cold, because they’re useful in nearly every app.

Tip: Try pressing the Option key while displaying a menu. In many cases, the commands (and their associated shortcuts) change to reveal hidden options. (This also works with other modifier keys, such as Shift and Control, but those are used less frequently.)

For many more shortcuts, see Apple’s Mac keyboard shortcuts page.

In addition, you should know a few general principles about menu commands. These are not hard-and-fast rules, but they’re overall trends worth being aware of:

	Adding Shift to a shortcut often reverses its meaning. For example, press ⌘-Tab to switch to the next open application, or ⌘-Shift-Tab to switch to the previous application. Or, in the Finder, while ⌘-Z is Undo, ⌘-Shift-Z is Redo.

	Adding Option to a shortcut often applies the command to a broader scope. For example, in the Finder, ⌘-M is Minimize (to minimize an open Finder window), while ⌘-Option-M is Minimize All (as in minimize all Finder windows). In TextEdit, ⌘-W is Close (a document), while ⌘-Option-W is Close All (open documents).

	Adding multiple modifiers to a shortcut often means “the same thing, but with different options.” For example, ⌘-V is Paste, but in most apps, ⌘-Option-Shift-V (or sometimes just ⌘-Shift-V) is Paste as Plain Text. Similarly, ⌘-Shift-S is often Duplicate (that is, save the entire document as a duplicate) whereas ⌘-Option-Shift-S is Save As (that is, save the entire document with a different name).

Text Editing Shortcuts

Besides shortcuts for menu commands, macOS has many built-in shortcuts for working with text. Here are a few you should know:

	Arrow key: Move the insertion point in the direction of the arrow.

	Option-← or Option-→: Move the insertion point left or right by a word.

	⌘-← or ⌘-→: Move the insertion point to the beginning or end of the current line.

	Option-↑ or Option-↓: Move the insertion point to the beginning or end of the current paragraph.

	⌘-↑ or ⌘-↓: Move the insertion point to the top or bottom of the document.

	Shift plus any of the above: Select text from here to the destination. For example, Option-Shift-→ selects the next word, while ⌘‑Shift-← selects to the beginning of the line.

Spend an hour or so practicing these shortcuts and you’ll be able to do much of your text editing without reaching for a mouse or other pointing device.

Make Your Own Keyboard Shortcut

If a menu command in one of the apps you use doesn’t already have a keyboard shortcut—or if it does, but you want to change it to something different—follow these steps to create your own:

	Go to System Preferences > Keyboard > Shortcuts > App Shortcuts.

	Click the plus button.

	In the dialog that appears (Figure 2), select the app you want the shortcut to work with from the Application pop-up menu. (If you don’t see it listed there, choose Other, navigate to the application, and click Add.) If you want your shortcut to work in all applications (or in, say, the pop-up PDF menu that appears in the Print dialog of all your apps), choose All Applications from the pop-up menu.

[image: Figure 2: Specify the app, menu item, and keyboard shortcut.]Figure 2: Specify the app, menu item, and keyboard shortcut.

Note: Unfortunately, you can’t assign keyboard shortcuts to commands on menu extras, such as the Wi-Fi menu or the Bluetooth menu. To create keyboard shortcuts for those commands, you’ll have to Use a Macro Utility.

	Enter the menu command—for example Paste, (not the name of the menu itself—for example, Edit) for which you want to specify a shortcut in the Menu Title field.

You must get everything—including capitalization, punctuation, and spaces—exactly correct. If what you type here doesn’t precisely match what’s on the menu, it won’t work. One exception: If you see an ellipsis (…) at the end of a command, you can type either the single ellipsis character (Option-;) or three periods. Either way works.

	Click in the Keyboard Shortcut field and press the key combination you want to use. (If another command previously used the shortcut you enter, your new shortcut will override it.)

	Click Add.

The shortcut should immediately appear next to the menu command in the app—even if the app is still running—and can be used right away.

Note: You may occasionally run across an app with a nonstandard way of implementing menus, in which case custom keyboard shortcuts don’t work—they don’t show up on the menu, and pressing the shortcut has no effect. In such cases, your best bet is to Use a Macro Utility, such as Keyboard Maestro, to assign the shortcut.

Sometimes an app has two or more menu commands with the same name, located on different menus or submenus. For example, in Mail, you can find Format > Quote Level > Increase as well as Format > Indentation > Increase. Likewise, the mailbox names on the Message > Move to and Message > Copy to submenus are the same. So if you specify only the menu command name (like Increase), it may not connect to the right command.

To address this problem, instead of entering just the menu command name, enter the full path through all the submenus, with -> (that is, a hyphen followed by a greater-than sign)—and no spaces—between each step, like so: Format->Quote Level->Increase. This ensures that the shortcut goes only with the menu command you specify.

Tip: Some apps also have built-in mechanisms for creating keyboard shortcuts. You can use whichever method you prefer, but an app may give you more control—for example, Nisus Writer Pro lets you assign sequences of keystrokes as shortcuts (see Use Multi-Key Shortcuts in Nisus Writer Pro).

If you’re uncertain what keyboard shortcuts might be useful, here are some ideas to get you started:

	If you frequently assign tags to files, you may want to assign a keyboard shortcut to the Finder’s File > Tags… command. ⌘-T, ⌘-Shift-T, and ⌘-Option-T are already used by other menu commands, but you can reassign any of them to Tags… if you like.

	How about an All Applications shortcut to open System Preferences (found with a trailing ellipsis […]—on the Apple menu)?

	Lots of apps have Check for Updates… commands (usually on the application menu—the one bearing the application’s name), but that command almost never has a shortcut. If you use it frequently, it might benefit from an All Applications shortcut.

	Your keyboard may have keys you rarely if ever press (F13–F15, anyone?), and they can be put to good use. Most of these keys have preassigned shortcuts, which you can see by looking through the various categories of System Preferences > Keyboard > Shortcuts, but if you think a key can serve you better by performing a different action, you should feel completely free to change it.

Tip: If you’re having trouble remembering all the keyboard shortcuts for your various apps (either built-in shortcuts or those you created), try the KeyCue utility, which pops up a context-sensitive list of shortcuts whenever you press the Command key.

Use and Customize Toolbars

Many Mac apps have a toolbar at the top of each window, and sometimes different windows within the same app display different toolbars. For example, Mail has one toolbar for the main viewer window, another for messages opened in their own window, and a third for the window used to compose new messages or replies.

Each toolbar has buttons and menus for commonly performed tasks, but if you’re anything like me, you tend to ignore most of what appears on a toolbar. After all, I don’t need a button for Save or Reply or Bold as I invariably use keyboard shortcuts for these actions.

While most toolbar controls are simply alternative ways to perform actions using menu commands or keyboard shortcuts, you shouldn’t write them off, because:

	A shortcut is a shortcut. If you can click a button on a toolbar more quickly than you can locate the equivalent menu command or memorize a keyboard shortcut, this becomes the most efficient way to perform the activity.

	Even though default toolbars are often pretty dull, you can customize almost any toolbar to make it genuinely useful.

To illustrate the second point, consider Preview. Its default toolbar (as it appears when a PDF is open) is shown in Figure 3.

[image: Figure 3: The default Preview toolbar.]Figure 3: The default Preview toolbar.

That’s OK, I guess. But I’ve customized mine (Figure 4) to add several more controls that I nearly always find useful when viewing PDFs: Scale (which shows me the current zoom percentage and lets me type in a different number to change the zoom), Previous and Next (for navigating), and Page (which lets me type a page number to jump directly to it). Sure, there are other ways to access these features, but in this specific instance, I find the revised toolbar more efficient.

[image: Figure 4: My customized Preview toolbar, with labels.]Figure 4: My customized Preview toolbar, with labels.

In fact, I go a step further and hide the labels (Figure 5), to give myself a bit more vertical space.

[image: Figure 5: My customized toolbar without labels.]Figure 5: My customized toolbar without labels.

To customize a toolbar in any app:

	Right-click (or Control-click) the toolbar and choose Customize Toolbar from the contextual menu.

	Drag icons onto or off of the toolbar, or rearrange them as you like.

	Click Done.

Note: Some apps, like Nisus Writer Pro, even let you make custom toolbar items.

You can also choose Icon and Text, Icon Only, or Text Only from the contextual menu to show or hide icons or labels.

Use macOS Text Substitutions and Transformations

If you look at the Edit menu in TextEdit, Mail, Messages, Safari, and numerous other applications that include text editing features, you’ll see a Substitutions submenu and a Transformations submenu. These two submenus contain shortcuts for manipulating text. You don’t have to do anything to make them appear (and you can’t add the commands in apps that don’t natively support them), but I think everyone should know about them, because they’re useful yet often overlooked.

Substitutions

As you work with text in supported apps, macOS can automatically change certain attributes in order to make your text more readable. When an item on the Edit > Substitutions submenu is checked, it means that substitution is enabled for that app (only) until you deselect it. (Choose a menu command again to toggle it.)

Substitution options are as follows:

	Smart Copy/Paste: If you double-click a word to select it, and then copy and paste it, a space is added before and/or after if necessary to separate it from the adjacent text. Similarly, if you double-click a word to select it and then press Delete, extra spaces are removed. (Smart copy/paste does not occur if you manually drag to select the word.)

	Smart Quotes: As you type, this feature converts straight quotation marks and apostrophes (" ') into curly quotation marks and apostrophes (“” ‘’).

	Smart Dashes: As you type, this feature converts two consecutive hyphens (--) into an em dash (—).

	Smart Links: As you type, this feature converts URLs (including strings macOS interprets as URLs, even if they don’t start with a scheme such as http or https) into clickable links.

	Data Detectors: This feature intelligently identifies strings of text that match patterns like street addresses, dates (even vaguely stated dates, like “next Tuesday” or “breakfast tomorrow”), phone numbers, and flight numbers—and then lets you do appropriate things with them like add an entry to Contacts, schedule an event in Calendar, look up a location in Maps, track a flight, and so on.

With Data Detectors enabled, if you see a chunk of text that looks like one of the kinds of data I just mentioned, move your pointer over it. If Data Detectors considers it to be an appropriate kind of data, a dotted box will appear around it, with a downward pointing triangle on the right. Click the triangle to display either a contextual menu with one or more options, or a popover with additional controls, depending on the type of data.

	Text Replacement: As you type, this feature replaces abbreviations with user-specified words or phrases, or corrects misspellings. (This feature is important enough that I talk about it separately; see Use Text Replacement in macOS.)

	Show Substitutions: Select this command to display the Substitutions window (Figure 6), in which you can change any of your settings for the current app (selecting or deselecting the checkboxes has the same effect as selecting the corresponding menu command) or apply substitutions retroactively.

[image: Figure 6: Adjust preferences for substitutions in this window.]Figure 6: Adjust preferences for substitutions in this window.

I mentioned earlier in the list that substitutions for smart quotes, smart dashes, smart links, and text replacement occur as you type. In other words, if you open a document that already contains straight quotation marks, double hyphens, or plain-text links, macOS does not convert them automatically. If you want to make such conversions after the fact, open the Substitutions window, select the desired checkboxes, and click Replace All (to affect the entire document) or select a portion of the text and click Replace in Selection.

Transformations

The Transformation submenu contains three commands that change the case of the selected text:

	Make Upper Case: Converts all lowercase letters to their uppercase equivalents

	Make Lower Case: Converts all uppercase letters to their lowercase equivalents

	Capitalize: Converts the first letter of each word in the selected text to uppercase (regardless of whether that would constitute proper “title case”)

Tip: Do you find yourself changing substitution settings or using transformations frequently? Why not add a keyboard shortcut to the relevant commands? See Make Your Own Keyboard Shortcut.

Control Your Mac with Your Voice

Macs have had built-in speech recognition for a long time. Although this was cool when it first appeared in the mid-1990s, Apple paid little attention to the feature for many years. Starting with macOS 10.12 Sierra, however, Macs include Siri. Now you can ask your Mac questions and tell it to do things for you without using any special software, just as you can on an iOS device, Apple Watch, or Apple TV.

For times when you need to use your voice to perform specific functions outside Siri’s skill set, you can also Use Dictation Commands. This feature lets you run scripts, press keys, and do other custom activities—that is, your voice can trigger shortcuts, just like a menu command or keyboard shortcut.

In ideal conditions, using speech recognition can make it feel like you’re living in a science-fiction future—things just happen magically at the sound of your voice. However, it works best in relatively quiet environments and in settings where talking to your computer won’t distract or disturb other people. (So, it’s not great for when you’re working on your MacBook Pro at Starbucks, as I am at the moment.) And even when it works, it’s slower for certain tasks than keyboard shortcuts. Still, it’s well worth becoming acquainted with your Mac’s voice-control tools.

Use Siri

Siri, Apple’s voice-controlled digital assistant, needs little introduction at this point. Now that it’s part of macOS, it gives you many of the same informational and control capabilities as its counterparts on other platforms—plus some capabilities unique to the Mac. Scholle McFarland provides detailed coverage of Siri in her book Take Control of Siri. Here, I’ll provide just a quick overview.

Before you can use Siri, you must enable it. You may have turned it on while installing or upgrading macOS by leaving a checkbox selected, which it is by default. But if not—or if you’re unsure—go to System Preferences > Siri and make sure Enable Ask Siri is selected. (This appears as Enable Siri on older versions of macOS.) While you’re there, you can also configure other options, such as which voice, microphone, and keyboard shortcut Siri should use.

Once Siri is enabled, you can activate it so that it listens for and responds to vocal commands, in any of the following ways:

	Press the Siri keyboard shortcut. (By default, the shortcut is to hold down Command and Space together for about a second. You can change this in System Preferences > Siri, and I suggest that you do, because otherwise it’s too similar to the default shortcut for Spotlight, which is to press ⌘-Space and quickly release both keys.)

	Click the Siri icon in the menu bar.

	Click the Siri Dock icon.

	Say “Hey Siri!” on supported Macs—newer models that include the T2 security chip. (To enable this feature, go to System Preferences > Siri and select Listen for “Hey Siri.”)

	In Catalina or later, with Voice Control enabled (see the sidebar Voice Control Changes in Catalina, ahead), say, “Open Siri.”

	In Mojave or earlier, activate Siri with your voice using the “Start Siri” Dictation Command—as long as you’re already in dictation mode (see Use Dictation Commands in Mojave or Earlier) or you say the dictation keyword phrase (see Using Dictation Commands Without the Keyboard).

Siri responds with a couple of beeps and a “What can I help you with?” window (Figure 7). You can then speak your question or command.

[image: Figure 7: Siri is now ready to listen to you.]Figure 7: Siri is now ready to listen to you.

Siri doesn’t require your commands to follow a preset pattern. Within reason, you can phrase your requests in everyday language and Siri (usually) interprets them close to what you would expect.

Tip: Ask Siri “What can I say?” to see a list of examples.

Although Siri can’t offer shortcuts to everything you might want to do on your Mac, you can start with these suggestions:

	Launch Safari.

	Tell my wife I’m on my way.

	Look up Frank’s address.

	Show me documents I created last week.

	Search the web for coffee grinders.

	Increase screen brightness.

	Play something by the B-52’s.

	What’s today’s weather forecast?

Although I rarely use Siri on my Mac, I find it most useful for commands that would otherwise require multiple steps or digging around in System Preferences, like “What’s my Mac’s serial number?” or “Enable Bluetooth” or “Show me PDFs with the label Important.” For more suggestions on how to use Siri on your Mac, see these articles:

	Apple’s Use Siri on your Mac page

	How to Use Siri on the Mac at iMore

	Use Siri on the Mac! A List of Mac Siri Commands at OSXDaily

Reminder: Scholle McFarland covers Siri in complete detail in her book Take Control of Siri.

Voice Control Changes in Catalina

In Mojave and earlier, there’s Siri for asking questions, opening apps, and so on; and Dictation, which lets you “type” by talking. Dictation Commands are considered a subset of Dictation: As long as Dictation is active, you can speak any of a list of phrases to perform specific tasks. You can activate Dictation using Siri or vice versa.

In Catalina, Siri remains its own thing, but there’s a new capability, called Voice Control, which encompasses both dictation, with a greatly expanded list of text-editing capabilities, and commands, which let you “click” objects and areas on the screen using only your voice. Although Apple no longer refers to these commands as Dictation Commands, they function in the same way—it’s just that there are many more of them, with more power.

However, Catalina also has a separate, standalone Dictation capability that doesn’t offer access to commands. It’s…confusing. In the hope of clearing it up slightly, let me outline what you can manage in Catalina by voice:

	Siri can activate and deactivate Voice Control.

	When Voice Control is on, you can’t use (old-style) dictation mode. In fact, in System Preferences > Keyboard > Dictation, you see this message: “Keyboard Dictation is disabled while Voice Control is turned on.” But that’s generally OK, because dictation still works as long as the insertion point is in a location where text can be typed—and commands work there too.

	If Voice Control is off, you can use Siri to enable or disable (old-style) Dictation, which is the equivalent of going to System Preferences > Keyboard > Dictation and selecting On or Off next to Dictation. However, you can’t use Siri to start dictation mode; for that, you’ll have to use whatever shortcut is specified in the Shortcut pop-up menu. However, since commands are now part of Voice Control, you can’t use them in this mode—or even use your voice to edit the text you entered.

Long story short: in Catalina, it’s better to stick with Voice Control.

Use Dictation Commands

As long as your Mac is running Yosemite or later, you have access to Dictation Commands—speech recognition capabilities that are more primitive than Siri, yet also more flexible in the sense that you can customize them to do very specific things, for example simulating keyboard shortcuts or menu commands.

As I noted above in the sidebar Voice Control Changes in Catalina, Catalina treats these commands a bit differently (and just calls them “Commands,” not “Dictation Commands”). So the instructions that follow differ depending on which version of macOS you’re using.

Use Dictation Commands in Catalina or Later

In Catalina, Dictation Commands are part of Voice Control, rather than part of Dictation. (Catalina no longer calls them Dictation Commands, even.) Thus, you can use them only when Voice Control is enabled. To enable Voice Control, you can either ask Siri to do it (“Enable Voice Control”) or follow these steps:

	Go to System Preferences > Accessibility > Voice Control.

	Select Enable Voice Control. A floating window (Figure 8, left) appears.

[image: Figure 8: This floating window tells you that Voice Control is enabled—though not necessarily active.]Figure 8: This floating window tells you that Voice Control is enabled—though not necessarily active.

Voice Control is now enabled, but not yet active—to make your Mac begin listening to your commands, click Wake Up or say “Wake up.” (To make it inactive, click Sleep, as in Figure 8, right, or say “Go to sleep.”)

With Voice Control active, you can speak a command, such as “Search Spotlight for text” or “Switch to Finder.” (For a partial list of commands you can speak, say, “Show commands.”)

Assuming everything is working correctly, the text of the command you spoke should appear in a small bubble above the floating window, and macOS should execute that command.

In addition, if the insertion point is in a document or field that supports text input, you can dictate text, and macOS inserts it in near-real-time. (Note, however, that not all apps support this feature well. To see how it is intended to function, try TextEdit.) To make changes to your text, you can use spoken commands such as “Select next word,” “Correct that,” “Delete word,” and many others. To see a list, first select one or more characters and then say “Show commands.”

To learn how to create your own dictation commands, skip ahead to Create Your Own Dictation Commands.

Use Dictation Commands in Mojave or Earlier

To prepare your Mac to use Dictation Commands in Mojave or earlier, follow these steps:

	Go to System Preferences > Keyboard > Dictation and click the On radio button next to Dictation. Read the privacy notice if it appears, and click Enable Dictation. (Because of what we do in the next step, the privacy notice is irrelevant.)

	Select Use Enhanced Dictation. As stated, this requires a fairly large (over 1 GB) download. A download status indicator appears in the lower-left corner of the window.

	When the download is complete, go to System Preferences > Accessibility > Dictation, click the Dictation Commands button, and select Enable Advanced Commands at the bottom. Click Done.

With those preparatory steps out of the way, do the following to use Dictation Commands:

	Press the Fn key twice. (If you want to change this keyboard shortcut, go to System Preferences > Keyboard > Dictation and choose a different shortcut from the Shortcut pop-up menu.) You hear a chime and a floating window called the Dictation Response HUD appears (Figure 9).

[image: Figure 9: This floating window, called the Dictation Response HUD, shows that the macOS Dictation feature is listening.]Figure 9: This floating window, called the Dictation Response HUD, shows that the macOS Dictation feature is listening.

	Speak a command, such as “Search Spotlight” or “Switch to Finder.” (For a complete list of commands you can speak, say, “Show commands.”)

Assuming everything is working correctly, the text of the command you spoke should appear in a small bubble above the Dictation window, and macOS should execute that command.

Note: Click Done in the Dictation window to turn off Dictation and Dictation Commands.

Using Dictation Commands Without the Keyboard

You can even use Dictation Commands without pressing a keyboard shortcut to bring up the Dictation Response HUD first. To enable this feature, go to System Preferences > Accessibility > Dictation, select “Enable the dictation keyword phrase,” and type a keyword, like “Jarvis” or “Bat-computer.” Whenever your Mac hears you say that word, it responds to your next spoken phrase as a Dictation Command. If that next phrase is “Start Dictation,” the Dictation Response HUD appears, allowing you to continue dictating. And if the phrase is “Start Siri,” Siri activates—hands-free!

macOS uses the same user interface for commands (things you tell your Mac to do) and dictation (turning your speech into written text). So, if you’re in a text editor or anywhere else that a text insertion point appears, you can also dictate text while the Dictation window is visible, and macOS inserts it in near-real-time. In addition, you can use spoken commands to edit your text (for example, “Select previous word” and “Italicize that”), though the list of available editing commands is much shorter than in Catalina.

Create Your Own Dictation Commands

macOS includes oodles of base commands (more than 100 in Mojave, and more than 200 in Catalina), many of which can be further extended. For example, you can insert the name of any menu in the “Click menu name menu” command, and the name of any running app in the “Quit app name” command.

You can even add your own commands. Custom commands can open files or apps, paste text or other data, perform keyboard shortcuts, or run Automator workflows (which, in turn, can include AppleScript, JavaScript, and shell script code)—see Get Started with Automator.

To create your own Dictation Commands, follow these steps:

	Go to System Preferences > Accessibility > Voice Control (Catalina or later) or System Preferences > Accessibility > Dictation (Mojave or earlier).

	Click Commands (Catalina or later) or Dictation Commands (Mojave or earlier).

	Click the plus button.

	In the “When I say” field, enter the word(s) you want your Mac to respond to.

	From the “While using” pop-up menu, choose Any Application if you want your command to work everywhere, or choose a specific app to restrict the command to that app.

	From the Perform pop-up menu, choose the action you want to perform in response to the command, such as Open Finder Items, Open URL, Press Keyboard Shortcut, or Run Workflow, and select or enter the requested details.

	Repeat the above steps as desired to add more commands.

	Click Done.

Now your custom commands should work whenever your Mac is accepting voice input. In Catalina or later, that’s when Voice Control is active; in Mojave or earlier, it accepts voice input when the Dictation Response HUD is visible or you’ve spoken the activation keyword you set up following the tip in the Using Dictation Commands Without the Keyboard sidebar a page or two back.

Update Apple and Mac App Store Software Automatically

All updates to Apple apps that aren’t included as part of macOS (such as Pages and Final Cut Pro), are delivered through the App Store app. And, of course, you can update all the third-party apps you’ve bought from the App Store at the same time.

Note: In High Sierra and earlier, the App Store app also handles updates to macOS itself and built-in software such as Safari, but starting in Mojave, the Software Update pane of System Preferences took over for updates to core macOS software.

To check for app updates manually, you open the App Store app and click Updates. Then, to update a single application, click the Update button next to it. (In some cases, Apple groups multiple software updates together; click the More link to see details on each one.) To update all the listed applications at once, click Update All. Enter your Apple ID and password if prompted to do so, and click Sign In. The App Store downloads and installs the updates.

To update core macOS components manually in Mojave or later, you can open System Preferences > Software Update and, if any updates appear, click Update Now (or Upgrade Now). This may require restarting your Mac.

But this is a book about automation, so we’re more interested in how to make this happen automatically! You can have macOS merely inform you of future updates or download (and optionally install) them as soon as they appear.

Because software updates often fix crucial bugs and add important features, I prefer to learn about them (and download them) as soon as possible. I don’t necessarily install updates as soon as they appear, because I might be busy with things that can’t be interrupted—and I want to know when something might be about to change—but some people may choose to do so as the fastest and most hands-off method. Still others never want to be interrupted with alerts about new software and dislike the idea of anything downloading behind their backs, or they need to keep an eye on a bandwidth usage cap. You can decide where you stand and configure your Mac accordingly.

Configure Software Updates in Mojave and Later

If your Mac is running Mojave or later, follow these steps to configure software updates:

	Go to System Preferences > Software Update (Figure 10). macOS checks for updates, and any available updates appear at the top of the pane. To apply them, click Update Now.

[image: Figure 10: Configure automatic updates in this preference pane.]Figure 10: Configure automatic updates in this preference pane.

	To turn on all automatic updates (not the best idea, in my opinion), check “Automatically keep my Mac up to date.” Or, to specify which updates you want macOS to install automatically (a much better idea), click Advanced. A dialog (Figure 11) appears.

[image: Figure 11: Select which types of automatic updates you want here.]Figure 11: Select which types of automatic updates you want here.

	The “Check for updates” checkbox is selected by default. Deselect it to disable (or re-enable) automatic checking. (In some situations, you must enter your password after changing this checkbox.) If it’s selected, you can also select any or all of:

	Download new updates when available, which not only notifies you of updates but also downloads them for you so you can install them as soon as you’re ready. (In the notification, click Install to install immediately; click Later and choose Try in an Hour, Try Tonight, or Remind Me Tomorrow from the pop-up menu to “snooze” the reminder; or click the notification itself to open the App Store and see which updates are available.)

	Install macOS updates, which downloads and installs updates to macOS itself—for example, macOS 10.15.x—and asks you to restart your Mac. (You may be prompted for your password if you change this checkbox.)

	Install app updates from the App Store, which silently updates installed apps from the App Store, except those requiring a restart or other interaction.

Note: For additional App Store update preferences, open the App Store app and choose App Store > Preferences.

	Install system data files and security updates, which installs these essential updates without prompting you, but only after they’ve been available in the App Store for 3 days

Although you’re welcome to check whichever of these boxes you like, my personal preference (and recommendation) is to check all of them except “Install macOS updates” (as shown in Figure 11, above). I like having most of my software updated automatically, but for system updates, I prefer to wait until I’ve confirmed that other users aren’t experiencing any major problems with them, and then apply them.

Configure Software Updates in High Sierra and Earlier

To configure App Store updates in High Sierra and earlier, do this:

	Go to System Preferences > App Store.

	Select or deselect (as you prefer) the Automatically Check for Updates checkbox to enable or disable automatic checking. If it’s selected, you can also select any or all of:

	Download Newly Available Updates in the Background, which not only notifies you of updates but downloads them for you so you can install them without further waiting

	Install App Updates, which installs updates to nonessential apps (that is, those that don’t fall into the next category) automatically in the background

	Install macOS Updates, which does the same as Install App Updates except for macOS itself—for example, macOS 10.15.x—and may prompt you to restart your Mac

	Install System Data Files and Security Updates, which automatically (without prompting you) installs essential updates—but only after they’ve been available in the Mac App Store for 3 days

	If you’re signed in to the App Store, you can also check or uncheck Automatically Download Apps Purchased on Other Macs, which does exactly what it says.

From now on, your App Store software updates according to your settings without you doing a thing.

Tip: If your Mac supports Power Nap (see How Power Nap works on your Mac) and you enable it in the Energy Saver pane of System Preferences, your Mac also downloads updates from the App Store when it’s asleep—as long as it’s plugged in to AC power.

Update Non-Mac App Store Software Automatically

Software that doesn’t come from Apple or the App Store must use a separate update mechanism. Happily, most modern applications contain some sort of update feature. Unhappily, they don’t all work the same way. Some check for updates every time they’re launched, or on a fixed schedule, while others check only on demand; of those that do check automatically, not all have this feature turned on initially. Some programs can download and install new versions of themselves automatically, while others download a disk image and expect you to open it and run the installer yourself; still others do nothing but open a webpage with links to updates you can download manually.

In an ideal world, updates would require no intervention other than a click or two to confirm that you’re aware of, and approve of, the installation; everything else would happen automagically. Because many applications still lack that level of automation, though, you may have to perform some extra steps.

For now, do the following. Whenever you download and install a new app that doesn’t come from the App Store, check its preferences to see whether there’s an Automatically Check for Updates (or similar) feature. If so, be sure to turn it on! If you can choose how often to check, choose the most frequent option. You might also do the same for your most frequently used apps the next time you open them.

Tip: Don’t just check standalone apps for an Automatically Check for Updates feature; also look for this option in preference panes, status menus, Mail plugins, and other such software. The wording of the command may vary, but such commands (Figure 12) usually appear in the application menu, the Help menu, or the Preferences window.

[image: Figure 12: In some applications, such as Transmit (left), the Check for Updates command appears in the application menu—the one with the same name as the application. In others, such as Excel (right), it appears in the Help menu. Wording may also differ between apps.]Figure 12: In some applications, such as Transmit (left), the Check for Updates command appears in the application menu—the one with the same name as the application. In others, such as Excel (right), it appears in the Help menu. Wording may also differ between apps.

Work with Rule-Based Searches

When you put together a rule-based search—whether it’s a smart folder in the Finder or a smart playlist in Music or iTunes—you let your Mac do the tedious work of identifying items (files, messages, songs, and so on) that are of interest to you. This saves you the time and effort of manually looking through many potential matches for the right thing. Define the search once, and even if it’s extremely complex, you can repeat it whenever you want with just one click—a classic automation shortcut.

Advanced searches in the Finder, rules in Mail, smart playlists in Music/iTunes, and many other environments—including some in third-party apps such as Hazel (see Organize Files with Hazel) and DEVONthink—use a nearly identical interface for finding things based on a series of conditions. Once you’ve learned how to construct one of these rule-based searches in one place, you can recycle that knowledge, with minor variations, in lots of different places, many of which I cover in the next topic (Create and Use Smart Containers).

Before we begin, let me clarify some basic concepts:

	Condition: A condition (sometimes called a criterion) is any piece of information used to identify an item you’re searching for—a word in a filename, a modification date, the sender of an email message, and so on.

	Multiple conditions: A search can have more than one condition, and these can be used together or individually.

For example, I can search for all files that both (a) contain the word “book” and (b) were modified within the last week, in which case files that have one of those attributes but not the other wouldn’t show up in such a search. This is known as an All search, because all the conditions must match.

Or I can search for files that either contain the word “book” or were modified with the last week, which would match a much larger number of files. This is known as an Any search, because matching any one of the conditions is enough for a positive result.

	Nested conditions: Most rule-based search environments (sadly, not Mail’s rules) have a hidden capability to simulate Boolean (AND/OR/NOT) logic by grouping conditions in Any, All, and None categories. For example, I can search for files that contain Any of Jack or Jill, or All (i.e., both) of Cindy and Sandy, but None of Thomas. In other words, written in Boolean notation it would look like (Jack OR Jill) OR (Cindy AND Sandy) AND NOT Thomas. You can use this technique to devise highly detailed and specific searches.

I’ll use the Finder to illustrate how to set up a rule-based search; just remember, you’ll follow the same steps wherever you use this technique.

To perform a rule-based search in the Finder:

	Press ⌘-F (for Find). The insertion point jumps to the Search field in the upper-right corner.

	Type some text in that field, such as book. The window begins filling with all the files on your Mac containing that text. Press Return to search for the text you’ve entered in the contents of any file, or select a narrower category (such as “Name matches: book”) from the pop-up menu that appears.

Your search now has its first condition, such as “must contain the text book,” but you can change that later.

	Optionally change the search scope by clicking a folder name, This Mac, All, or another term on the left side of the search bar.

	Click the plus button next to the Save button (below the Search field). A new row appears (Figure 13).

[image: Figure 13: Click the plus button to see a new condition row.]Figure 13: Click the plus button to see a new condition row.

	From the leftmost pop-up menu in this new row, choose an attribute to search for, such as Kind, Name, or Contents.

Depending on what attribute you choose, the rest of the row may change. For example, if the attribute is Kind, then the only thing left in the row is a single pop-up menu you can use to pick a kind. But if you choose [Created Date], you see additional pop-up menus and/or fields (Figure 14), where you can specify, for example, is [Within Last] [12] [Days].

[image: Figure 14: As you change attributes, the rest of the row adjusts.]Figure 14: As you change attributes, the rest of the row adjusts.

With each choice you make, the rest of the row adjusts accordingly. For example, if you chose [Created Date] followed by is [exactly], then the remainder of the row changes to show only a date field where you can enter a single, specific date.

Use the pop-up menus and fields to specify your entire condition.

Tip: In Finder searches, you can add many attributes to that leftmost pop-up menu. To learn more, read my Macworld article Six quick Spotlight tips, which is from 2013, but remains largely accurate.

	To add a second condition that will narrow the search, click the plus button at the right of the current condition and repeat step 4.

Note: In most apps that use search rules like this, a pop-up menu with Any, All, and sometimes None appears above the conditions either all the time (or as soon as you add a second condition). In the absence of an explicit menu, assume it’s an All search—that is, all conditions must be satisfied for an item to match.

	To add a nested condition or group of conditions with its own Any/All/None specification, hold down the Option key and click the ellipsis button, which replaces the plus button. A new section (Figure 15) appears. Choose Any, All, or None from the pop-up menu, fill in the condition just as in step 8, and optionally add more conditions as in step 9. Repeat this step (at any level of the rule) to add still more nested conditions.

[image: Figure 15: When you hold down Option and click the ellipsis button, your search options expand considerably.]Figure 15: When you hold down Option and click the ellipsis button, your search options expand considerably.

	Recall from step 5 that in Finder searches, whatever you initially typed into the Search field remains part of the search. If you want to remove it (to search only for the detailed conditions you added later), select the text in the Search box and press Delete.

That may seem like a lot of steps, but most of them are optional—and once you’ve done a few searches this way, the process will seem both quick and obvious. With this technique under your belt, you can now move on to create smart containers.

Note: When you construct rules in Mail (see Manage Incoming Apple Mail with Rules), Hazel (see Organize Files with Hazel), and other such apps, the search conditions are only part of the equation—you then go through a similar procedure to specify what action(s) should occur when an item matches.

Create and Use Smart Containers

The Finder has smart folders. Music (like iTunes before it) has smart playlists. Mail has smart mailboxes. Photos has smart albums. Contacts has smart groups. I refer to all these (and similar constructions in other apps) collectively as smart containers. Although they may look like folders or mailboxes or whatever, they’re really just saved searches. You construct search rules as described previously, click a button to save the search, and give it a name. Then…hey, presto! Select that smart container whenever you want to display an up-to-date list of all the items that currently match your search.

Here’s a quick overview of how to create and use smart containers in several popular apps:

	Smart folders (Finder): Choose File > New Smart Folder (⌘-Option-N), or create a search rule as described in the previous topic. When you’re finished, click the Save button in the search bar. Give the smart folder a name, choose a location (the default is ~/Library/Saved Searches), and for maximum convenience, also check Add to Sidebar. Click Save. Thereafter, select that item in a Finder window’s sidebar (or open it wherever you saved it) to show currently matching items.

	Smart playlists (Music/iTunes): In Music (or iTunes), choose File > New > Smart Playlist (⌘-Option-N). Fill in the desired conditions, and optionally select the checkboxes to limit the playlist to a certain number of tracks, match only checked items, or use live updating.

(I recommend live updating; without it, the smart playlist will always show whatever it happens to match at the time you created it, unless you manually update it by right-clicking or Control-clicking the smart playlist and choosing Update Smart Playlist from the menu. However, live updating may make iTunes slower to respond; if so, you’ll have to decide which annoyance you’d rather endure.)

To view and play the items in that playlist, select Playlists (if the sidebar isn’t already visible) and then select the smart playlist.

	Smart mailboxes (Mail): In Mail, choose Mailbox > New Smart Mailbox. Fill in the conditions you want to use, bearing in mind that Mail does not support nested Any/All/None conditions. Optionally select Include Messages from Trash or Include Messages from Sent, as you prefer. Give the smart mailbox a name and click OK. Smart mailboxes appear in their own category in Mail’s sidebar—if it’s not visible, choose View > Show Mailbox List.

	Smart groups (Contacts): In Contacts, choose File > New Smart Group (⌘-Option-N). Fill in the conditions that you want to use, name the smart group, and click OK. Smart groups appear with your other groups (if any) in the sidebar. To view all the contacts in a smart group, select it.

Note: To edit an existing smart playlist, mailbox, album, or group, right-click (or Control-click) it and choose Edit Smart Container Type from the contextual menu.

If you’re still not sure how a smart container might serve as a useful shortcut, consider these ideas:

	A smart folder that shows all the files created or modified in the preceding calendar year that also have the tag tax info, regardless of the files’ locations. Handy for tax time!

	A smart mailbox that shows you all the messages you sent or received in the last month that mention a certain family member, regardless of where those messages are filed.

	A smart playlist in Music or iTunes that includes all purchased music tracks that you haven’t yet listened to at least five times. Make sure you get to know all your newly purchased music!

	A smart group in Contacts that contains all the other parents of kids in the same class as your child. You can do this by having a smart group [Note] [Contains] [school] and then putting the word “school” in the Note field of each parent’s contact. As the class composition changes, you can add or remove “school” from records, and the smart group updates automatically.

Deal with the Mac’s Evolving Security Features

With each new version of macOS, Apple adds or enhances security features. Some of these security changes aim to prevent malware from hijacking your Mac, stealing your data, or displaying annoying ads. Others are intended to thwart hackers who might try to gain access to your computer using a network or via apps that might send private information about you back to the developer without your consent. I think most of us would agree that improved security and privacy are excellent goals.

Unfortunately, Apple’s go-to solution for any perceived security or privacy threat is to display an alert with limited details, letting you decide whether or not you trust the app to perform a given activity. That can result in a long series of alerts. Apple provides too little information to judge the safety of what it’s asked us to approve. So most of us simply end up agreeing to all of them so we can get back to work. (In some cases, we must do more then just click a button, but it’s unclear how the extra steps to enable certain kinds of apps to do their thing makes our lives better.)

The more recent your version of macOS, the more of these alerts you’re likely to see, and it’s particularly bad in Catalina as you launch apps for the first time in that version of macOS. And, for better or worse, the types of automation activities covered in this book are especially likely to prompt these alerts, because they’re also the sorts of things that malicious software might want to do behind your back.

So, before leaving this chapter about the Mac’s built-in automation features, I wanted to be sure to tell you about security features that can interfere with automation—whether you’re using Apple’s software or third-party apps.

Accessibility Access

Apps that manipulate the user interface in one way or another to provide system enhancements and extra features may need you to approve them to use Apple’s accessibility features. Examples include launchers, macro utilities, text-expansion utilities, scripting tools, and AppleScripts that use GUI scripting—among many others. Even apps that come with macOS itself (such as Script Editor) may fall into this category, depending on how you use them.

When one of these apps needs your permission to run, you’ll see an alert like the one in Figure 16.

[image: Figure 16: To grant an app permission to control parts of your Mac’s user interface, click Open System Preferences. To refuse, click Deny.]Figure 16: To grant an app permission to control parts of your Mac’s user interface, click Open System Preferences. To refuse, click Deny.

You can’t grant this type of access right in the alert dialog. Instead, you must open System Preferences (manually or by clicking the Open System Preferences button), go to Security & Privacy > Privacy, and select Accessibility in the list on the left (Figure 17). Click the lock icon at the bottom, enter your password, and click Unlock. Then select the checkbox(es) for the apps to which you want to grant access.

[image: Figure 17: Select the checkbox for any app to which you want to grant accessibility access.]Figure 17: Select the checkbox for any app to which you want to grant accessibility access.

Automation Access

Another category, introduced in Mojave, is automation access. To ask your permission, an app displays a dialog like the one in Figure 18.

[image: Figure 18: This app is asking you for automation access.]Figure 18: This app is asking you for automation access.

You may notice that this dialog specifies the name of an app (in this case, Finder). Any app or utility that requests automation access must do so individually for each app it wants to control. So you may see this alert multiple times per app. To grant automation access immediately, just click OK in the alert. Alternatively—or if you change your mind about an app later—go to System Preferences > Security & Privacy > Privacy > Automation (Figure 19) and check or uncheck the app(s) you permit the listed utilities to control.

[image: Figure 19: For each app that has requested automation access, select the checkbox(es) for the apps you allow it to control.]Figure 19: For each app that has requested automation access, select the checkbox(es) for the apps you allow it to control.

Full Disk Access

Another privacy category introduced in Mojave is Full Disk Access. This isn’t merely about manipulating the user interface or automating actions within an app; this type of access gives the requesting app permission to read and modify files of a potentially sensitive nature (such as your email and messages). That may sound scary, but all it does is place an extra barrier between the bad guys (especially malware) and your important data. It’s entirely appropriate—indeed, necessary—for you to grant certain types of software access to this data. One example is a Mail plugin, such as SpamSieve, which needs access to your email in order to do its job.

If an app or utility needs access to your files, it will generally notify you in some way. There’s no single system-wide alert for this purpose, but an app may display a dialog such as the one in Figure 20.

[image: Figure 20: This app is requesting full disk access, which will enable it to access the files it needs.]Figure 20: This app is requesting full disk access, which will enable it to access the files it needs.

Like Accessibility Access, Full Disk Access requires you to manually pop into System Preferences. If an app needs this control, go to System Preferences > Security & Privacy > Privacy > Full Disk Access (Figure 21). If the app already appears in the list on the right, check the box next to it. If not, click the plus button, navigate to the app, select it, and click Open.

[image: Figure 21: The Full Disk Access category on the Privacy tab enables apps to access data anywhere on your disk.]Figure 21: The Full Disk Access category on the Privacy tab enables apps to access data anywhere on your disk.

Some apps that need Full Disk Access do not notify you. Because of this, they can be completely nonfunctional until you figure out that you need to follow the above steps—and, more confusingly, figure out where to select the precise app file that requires access.

One such app is Terminal. Although Terminal itself, and most command-line operations, work in Mojave and later more or less as they always have, some operations that use the sudo command (such as changing file ownership with chmod) work only if you’ve added Terminal to the list of apps in Full Disk Access. (See this discussion for more details.) Oh, and if you’re using Terminal to change ownership on a remote Mac via SSH, you’ll need to choose Go > Go to Folder in the Finder, enter /usr/sbin, and then drag the SSH daemon (/usr/sbin/sshd) to the Full Disk Access list too.

Files and Folders

In Catalina and later, there are even more situations in which apps have to ask permission to access files, beyond those covered by Full Disk Access. Basically, if an app wants to access a file it didn’t create—without any manual action on your part such as double-clicking or navigating in an Open or Save dialog—it’s going to throw up a dialog, no matter where the file is (even if it’s in the Trash).

You can manage apps to which you’ve granted file access permission in System Preferences > Security & Privacy > Privacy > Files and Folders.

Keystroke Receiving

If an app running in Catalina or later needs to watch for keys being pressed—as is the case for utilities like Keyboard Maestro, which lets you assign keyboard shortcuts to arbitrary actions—you must explicitly allow that access. Go to System Preferences > Security & Privacy > Input Monitoring. Click the lock icon and enter your password. Then select the checkbox next to each app you authorize to watch your keyboard.

Automate Your Input Devices

We’ve talked about your keyboard already, and we return to it in several future chapters. But I want to take a moment to talk about other input devices, such as the one you use to move your pointer, as well as game controllers and other special-use input devices.

Remember when every Mac came with a one-button mouse? Now buttonless multi-touch trackpads and Magic Mice (with no visible buttons) are de rigueur, but it’s still easy to find third-party mice, trackballs, and other input devices with numerous configurable buttons, wheels, and other controls. Even Apple’s minimalist pointing devices can be configured to do special things with gestures and combinations of modifier keys and clicks.

Every extra button or control on an input device can be put to some good use. Although you need not use anything other than a simple keyboard and a pointing device with a single button, you may—depending on your needs, tasks, and disposition—find it easier and quicker to do certain tasks via a dedicated button or knob than with an obscure menu command or keyboard shortcut.

Would you indulge me in a brief story?

I used to manage software development for Kensington, a computer accessories company. One of our products was a four-button trackball called Expert Mouse (or, in some variants, Turbo Mouse). I shared a large office we called the Mouse Lab with three other people—Cris, Debra, and Don. One afternoon when we all should have been busy with more productive tasks, we made up a game that, while goofy, illustrates the kind of thing you can do with a bit of clever automation and a few extra buttons on your input device.

We each started by making rules in Outlook (our email program) to play unique sounds whenever we received an email message from one another. For example, when I received a message from Don, my computer went Zing! but when Debra sent me a message, it went Pop! Everyone had a custom sound for each other person in the room.

Next, we configured MouseWorks (the software, since superseded by TrackballWorks, used to control our trackballs) so that each of the three extra buttons—besides the one used for a regular click—sent one of the others a blank email message.

Is your head spinning yet? Well, here’s the result of our labors. I click button #2 on my trackball and Don’s computer makes a Crack! sound. Don clicks button #3 on his trackball and Debra’s computer makes a Ping! sound. Cris clicks button #4 on his trackball and my computer makes an Oof! sound. And so on. So we spent half the day zapping each other with our trackball buttons. You had to be there, I guess, but it was hilarious, like a virtual pillow fight.

That’s not a useful example of automating input devices, I admit. But perhaps it will inspire you to think up customizations that will make you more productive.

Use Trackpad and Magic Mouse Gestures

If you have a Mac laptop with a built-in trackpad, or a standalone Magic Trackpad, you have at your disposal a device that supports not just moving the pointer and clicking, but also scrolling, switching apps, displaying contextual menus, zooming, and numerous other actions by way of gestures such as swiping, pinching, and tapping (with one or more fingers). Apple’s Magic Mouse also has a multitouch-capable top surface with support for many (but not quite all) of the same actions.

You must configure your trackpad or mouse with the gestures you want to use—that’s the easy part. The harder part is training your fingers to perform these gestures until they become second nature.

To set up your multitouch trackpad or Magic Mouse:

	Open the Trackpad (Figure 22) or Mouse pane of System Preferences, depending on which device you’re using.

[image: Figure 22: The Trackpad pane of System Preferences has numerous options for configuring taps and gestures.]Figure 22: The Trackpad pane of System Preferences has numerous options for configuring taps and gestures.

	In each view (Point & Click, More Gestures, and—for trackpads only—Scroll & Zoom), hover over a gesture to display a video demonstrating how it works.

	To enable a gesture, select its checkbox.

	Some gestures have multiple options—use the pop-up menu under the gesture name to specify your preference. For example, in the More Gestures view of the Trackpad pane, the Swipe Between Full-Screen Apps gesture can be performed by swiping left or right with either three fingers or four fingers.

	Practice the gestures you’ve just configured! You may find it helpful to create a little cheat sheet with the gestures and settings you’ve chosen (e.g., “4 L/R to switch apps”) until you’ve memorized them.

As you use gestures, you’ll find them increasingly natural—and it will drive you crazy to use a Mac with different settings!

Use BetterTouchTool

Unfortunately, Apple’s preference panes offers no way to assign custom actions to trackpad and mouse gestures—you can’t, say, swipe left with three fingers to run a script. If you want to do that sort of thing, you need an incredibly powerful and customizable app called BetterTouchTool, which lets you configure almost any combination or sequence of taps, clicks, and swipes (with one or more fingers) to perform keyboard shortcuts, menu commands, and a wide variety of other actions.

BetterTouchTool (Figure 23) has such a huge variety of features that it would take dozens of pages even to hit all the main points. It’s an app that certainly rewards exploration and experimentation, however.

[image: Figure 23: Trackpad gestures configured in BetterTouchTool.]Figure 23: Trackpad gestures configured in BetterTouchTool.

The usual workflow is to add or select an app (or All Apps) in the sidebar first, which specifies where the gestures you set up will operate. (While you can use the same gesture to mean different things in different apps, I find that excessively confusing.) Next, select an input device using the pop-up menu at the top of the window—that can be a mouse, trackpad, keyboard, Touch Bar—or even a Siri Remote. Then you add a gesture for that device, such as “Pinch With Thumb And 2 Fingers.” Finally, you specify what should happen when you perform that gesture in that context.

Beyond that, here are some useful things to know:

	Among the many gestures you can use are taps, swipes, pinches, and force presses with various numbers of fingers; sequences of taps; sequences of keystrokes; freeform gestures you “draw” yourself; and moving your pointer to a particular corner of the screen.

	The activities BetterTouchTool can trigger when your chosen gesture is performed include nearly anything you can think of, which includes menu commands, keyboard shortcuts, mouse clicks, AppleScripts, Automator workflows, shell scripts, window manipulation, and switching apps, as well as many, many others.

	A gesture can also trigger a sequence of actions. Which is to say: BetterTouchTool can function as a macro utility, somewhat along the lines of Keyboard Maestro. (See Use a Macro Utility.)

If that sounds intriguing, you can download a 45-day free trial of the app to play with before making a purchase commitment.

Customize Your Touch Bar

Do you have a MacBook Pro with a Touch Bar? If so, you have yet another customizable input device at your disposal. I mentioned above that BetterTouchTool enables you to add Touch Bar gestures. But even without any extra software, you can tweak your Touch Bar’s behavior to make it more useful.

To customize your Touch Bar:

	Go to System Preferences > Keyboard > Keyboard (Figure 25).

[image: Figure 24: You can customize Touch Bar behavior here.]Figure 24: You can customize Touch Bar behavior here.

	From the “Touch Bar shows” pop-up menu, choose one of the following (your options may vary depending on your version of macOS):

	App Controls: This is the default setting, which shows different context-dependent controls as appropriate for the frontmost app. When this is selected, you can optionally check Show Control Strip to display an expandable set of icons on the right for things like brightness, volume, and search.

	Expanded Control Strip: This view shows all the icons (13 by default) on the Control Strip all the time, as opposed to just when you expand the strip when App Controls, Quick Actions, or Spaces is selected.

	F1, F2, etc. Keys: This setting displays the function keys that appear on non–Touch Bar Mac laptops. So, if you’re not much of a Touch Bar fan, you might use this to approximate what your keyboard would be like without one.

	Quick Actions: Quick Actions are Automator actions you create (or download) to perform specific tasks; I say more about these in Create Your Own Service. You can display your Quick Actions pm the Touch Bar with this setting. (To configure which Quick Actions appear, go to System Preferences > Extensions > Touch Bar and select or deselect items in the list there.) With this option selected, you can also optionally check Show Control Strip to display the Control Strip on the right side of the Touch Bar.

	Spaces: Choose this option to display buttons on the Touch Bar representing each Space you’ve set up on your Mac, for easy switching.

	Regardless of your setting from the previous step, you can configure the Touch Bar to show a different set of options when you hold down the Fn key: from the “Press Fn key to” pop-up menu, choose one of the other options listed above.

	If either your main or alternate Touch Bar display includes the Control Strip, you may want to customize which icons it includes. To do this, click Customize Control Strip. Then drag icons from your screen all the way down onto your Touch Bar. Then click Done.

Save Clicks with Third-Party Input Devices

In Apple’s design aesthetic for pointing devices, even a single visible button is considered excessive. But some people like having lots of buttons, and if you find it easier to remember “click the second button from the left” than “swipe down with three fingers” do perform a particular action, a third-party device might be just what you need.

During the time I worked at Kensington, we had a trackball model (Turbo Mouse Pro) with 11 buttons and a trackpad (WebRacer) with 22 buttons—all programmable! Those models have been discontinued, but companies like Kensington, Logitech, and Microsoft still sell mice and trackballs with multiple buttons that you can customize. In some cases, you can also customize scroll wheels and other controls.

An obvious use for an extra button is to perform a double-click. (Recall that, all things being equal, less clicking is preferable.) If you have your hand on your pointing device most of the time anyway, perhaps a finger naturally falls on an “extra” button that can serve this purpose. You might also use buttons for frequent operations such as Undo, Cut, Copy, Paste, switching apps, and so on.

Most third-party input devices come with software that lets you customize the controls. Kensington trackballs come with TrackballWorks, Logitech pointing devices come with Logitech Control Center, and Microsoft mice…somehow, even in 2018, include software only for Windows. But no matter, you can still customize them with a third-party utility called USB Overdrive, discussed next.

Other actions you can potentially assign to mouse buttons include:

	Right-clicking, Control-clicking, or clicking with other virtual modifier keys

	Triple-clicking

	Drag lock (drag without holding down a button)

	Opening apps, documents, URLs, and AppleScripts

	Sending keystrokes (as if you’d typed keys on a keyboard)

	Navigating forward/back in a web browser

	Controlling your system’s volume, brightness, and other settings

	Simulating previous/next/pause/play commands in Music or iTunes

Program an Input Device with USB Overdrive

Many fine input devices come only with Windows software (or in some cases, no software at all), but thanks to a piece of shareware called USB Overdrive, Mac users can fully configure nearly any USB mouse, trackball, keyboard, gamepad, joystick, or other HID (human interface device) product—as well as most Bluetooth pointing devices. The app functions in much the same way as TrackballWorks and Logitech Control Center—pick a device, pick a button, pick an action for that button; repeat as needed.

If you were so inclined, you could get, say, a Logitech Extreme 3D Pro joystick and program each of its 12 buttons, each of the 8 directions on its hat switch, the throttle control, the joystick directions, and the twist rudder control to do something different on your Mac. Of course, the obvious use would be to program all the controls to work in a game such as a flight simulator, but I’m just saying…if you wanted each button to send a different person a blank email message that resulted in a sound playing on their computer, you could.

Learn About Other Special Input Devices

I’ve mentioned multi-button mice and trackballs, programmable trackpads, extra keyboard keys, gamepads, and joysticks as examples of user-configurable input devices. In addition, just about any other USB or Bluetooth input device can be connected to your Mac, and if it doesn’t happen to come with its own software, you can likely use USB Overdrive to program its actions.

A few examples of the many special-purpose devices that you might consider are:

	The iGrip Ergonomic Keyboard looks more like a game controller than a keyboard, and indeed it can serve in either capacity (and as a pointing device).

	The Leap Motion controller is an infrared sensor that detects the positions of your hands and fingers in the air and lets you perform nearly any action with a gesture. Guess which gesture I’ve assigned to Force Quit.

	Pageflip pedals let you turn the page of sheet music (forward or backward) when viewing it on a screen rather than on paper.

	RollerMouse products use a horizontal bar, positioned in front of your keyboard, that both rolls around its axis and slides back and forth to move your pointer. They also feature buttons for left-, right-, and double-click, plus Copy and Paste.

	Piano-style keyboards connected directly to a USB port or via a MIDI interface can be used not only for playing music, but also for triggering other actions depending on the key(s) pressed.

	X-keys input devices from P.I. Engineering include crazy keyboard- and keypad-like button arrays, with or without an analog joystick or jog & shuttle control, foot pedals, and other switches.

Discover macOS Automation Technologies

As we’ve seen so far in this book, macOS offers lots of ways to automate individual activities. But some automation tasks require apps to talk to each other (or even to other computers), employ sophisticated logic or user interaction, or perform specialized functions that are unique to your situation. When simple tools aren’t up to the job, it’s time to bring in the heavy hitters.

In the next four chapters, I talk about a subset of technologies that go considerably deeper than things like keyboard shortcuts or text expansion. These technologies—Automator, AppleScript, services, and shell scripts—aren’t so much tools as platforms built into macOS that you can use to create your own tools. As such, they’re more complex, but also far more powerful. In this brief chapter, I introduce you to these platforms and offer a bit of high-level advice about how to approach them, especially if you’re a beginner.

I also offer a brief introduction to Using JavaScript for Automation. Although I don’t cover JavaScript extensively in this book, it forms the basis of the automation features in Omni products, which I discuss later (see Use Omni Automation). And I say a few words about using Apple’s newest programming language, Swift, as the basis for automating your Mac without writing new apps from scratch; see Using Swift for Automation.

Apple’s Core Automation Technologies

There’s certainly some overlap among the technologies we cover next. Indeed, I frequently have to flip a coin when choosing which of several approaches I should use to solve a given problem.

So I’ve chosen to arrange these topics in order of what I consider least to most intimidating. Get to know the ones earlier in the list first, and as your knowledge and skills grow (or your needs outgrow the less-intimidating tools), move on to the next:

	Services are plugins that add features for working with text, graphics, and more to almost any app. macOS comes with a number of built-in services, and many popular apps add their own. You can also install standalone third-party services, or create your own using Automator or other tools. See Use Services for System-Wide Shortcuts.

	Automator lets you construct multi-step operations called workflows using graphical building blocks rather than code. (It does, however, let you incorporate code written in AppleScript, JavaScript, and other scripting languages, if needed to solve particular problems.) Automator makes it easy to experiment, and with a bit of creativity, you can create quite powerful workflows that solve everyday problems. See Get Started with Automator.

	AppleScript is a language you can use to write programs that do all sorts of useful tasks on your Mac. It’s meant to resemble English, but that’s perhaps an exaggeration; in any case, AppleScript is certainly more difficult to use than Automator. Even so, AppleScript is far more approachable than heavy-duty programming languages like Swift and Objective-C, while still being quite capable. See Get Started with AppleScript.

	Shell scripts run in the Terminal command-line utility, performing tasks using the Mac’s Unix underpinnings. Because shell scripts have direct access to all the low-level Unix programs that make up the core of macOS, they can solve problems that no other approach can. But they do require you to interact with your Mac in a pure text environment, which you may find confusing or off-putting if your only experience using a computer has been through a graphical user interface. See Script the Command Line with Shell Scripts.

Worried that this all sounds too complicated? Don’t be. I want to make sure you understand this crucial concept up front:

You can use a service, Automator workflow, AppleScript, or shell script without knowing how to create one.

In fact, that’s precisely what I recommend. For each of the technologies in the following four chapters, I suggest the following process:

	Learn how to locate, install, and use scripts/tools written by other people.

	Once you’re comfortable using them, try modifying them slightly. That’s one of the easiest ways to learn how they work while also customizing them to better meet your needs.

	When you have time to tinker, start to create your own scripts/tools, using the resources I recommend (and with other people’s work as a guide).

But before I turn you loose on that stuff, I want to mention two other important automation approaches that you should be aware of.

Using JavaScript for Automation

Starting in Yosemite, Apple made it possible to use JavaScript as well as AppleScript for scripting. To be precise, Apple’s implementation is called JavaScript for Automation, or JXA. To oversimplify greatly, JXA means that you can now do nearly any sort of automation task in JavaScript that would previously have required AppleScript. You can even create your Mac automation JavaScript code using the Script Editor app, just as you do for AppleScript—all you have to do is choose JavaScript from the pop-up menu just below the Record button in the upper-left corner of the Script Editor window. (In fact, JXA is available throughout macOS; you can use it for Mail rules, Calendar alarms, and anywhere else you can use AppleScript.)

Why might you want to do this?

For one thing, lots more people know JavaScript than know AppleScript. If you already know a bit about JavaScript programming—for example, from designing websites—you can now use that skill to automate activities on your Mac, without having to learn a new (and, let’s face it, rather quirky) programming language. All you need to learn is how to reference the objects and methods you want to interact with (most of which are similar to, if not identical to, the corresponding AppleScript terms).

Tip: To learn the terminology for interacting with Mac apps using JavaScript, open Script Editor, choose File > Open Dictionary, select an app, and click Choose. Then, from the Language pop-up menu at the top of the dictionary window, choose JavaScript instead of AppleScript.

JavaScript also lets you write code that can be used in both macOS and iOS versions of certain apps (see Use Omni Automation). That usage could plausibly extend to other developers’ apps in the future.

This book doesn’t cover JavaScript programming as such, but if you already know how to write code in JavaScript, you can pretty much follow everything I say later in Get Started with AppleScript and simply replace the logic with JavaScript code. To learn more about automating your Mac with JavaScript, see:

	This 25-minute training video by Sal Soghoian

	Apple’s JavaScript for Automation Release Notes

	Getting Started with JavaScript for Automation on Yosemite, by Alex Guyot at MacStories (which still applies to newer systems)

Using Swift for Automation

Since the introduction of Mac OS X, Objective-C has been the primary language programmers used to create full-blown apps for macOS (and, later, iOS, watchOS, and tvOS). In 2014, however, Apple debuted a brand-new programming language called Swift, which was designed to be more modern, easier to use, and less prone to certain kinds of errors and bugs than Objective-C. In the years since, Swift has undergone rapid development. It hasn’t yet completely replaced Objective-C (and indeed, for some programming tasks, Objective-C is still the superior choice), but it’s well on its way. Nearly any type of app can be written entirely in Swift, and it’s clearly the future of programming as far as Apple is concerned. There’s even a free iPad app called Swift Playgrounds that teaches you how to code in Swift using a game-like interface.

Ordinarily, Swift is written in Xcode, and compiled into an app before it’s run. But what if you could use Swift in a manner somewhat analogous to AppleScript or JavaScript to automate user-level activities on your Mac, without all that overhead? Aside from solving your immediate automation problems, that could provide a useful environment in which to learn the language.

In fact, I know of two ways to do just that:

	Keyboard Maestro, which I discuss extensively later on (see Control Your Mac with Keyboard Maestro) lets you embed Swift scripts as actions in your macros, just as you can do with AppleScript, JavaScript, shell scripts, and scripts in other languages. So if you have a macro that can mostly be accomplished with prebuilt actions, but just needs a bit of custom code, you can use Swift to write that code.

	SwiftAutomation is a free framework written by a developer known as Hengist Podd. It provides a bridge to Apple events for Swift, meaning that Swift can be used to control any app that would otherwise be controllable with AppleScript. SwiftAutomation is clearly a work in progress, and its documentation is only partially complete, but it may be worth experimenting with.

Automate Text Expansion

Even if you’re a great typist, you can save time and increase your accuracy by using software that watches what you type and dynamically replaces abbreviations you’ve previously specified with longer chunks of text. (And if you’re not a great typist, such software can increase your effective typing speed!)

I mentioned earlier that whenever I type dttg, my Mac automatically expands that into DEVONthink To Go. That’s just one of dozens of abbreviations I use in my own work. I also use TCo to produce Take Control of, syp to produce System Preferences, and so on. The longer and more complex the text in question, the more useful automatic text expansion becomes.

Text expansion isn’t just for names and short phrases. You can use it for addresses, phone numbers, URLs, boilerplate text for common email replies, HTML code snippets, and so on. Depending on which software you use for text expansion, your snippets might also include styles (such as bold and italic), graphics, the current date or time, variables, AppleScripts or shell scripts, the contents of the clipboard, and more.

The great thing about text expansion is that you don’t have to do anything special to use it—you simply type. You don’t need modifier keys like Command or Control, and you don’t need to hunt for menu commands. And it can be used nearly anywhere.

One catch, however, is that you must be careful when choosing abbreviations—since text expands as you type, you might end up making a lame mistake if you’re not paying attention. For example, I thought I’d use km as an abbreviation for Keyboard Maestro, but then I tried typing a distance in kilometers and got a surprising result! So be sure to use abbreviations that will never occur on their own, or even as part of another word. One technique many people use to solve this problem is to double the first or last letter, as in kmm for Keyboard Maestro. Another is to add a slash (/) to the beginning of each abbreviation.

Note: Although I say “text expansion,” the very same feature can be used for simple replacements, even if the replacement isn’t longer. For example, if you frequently mistype “the” as “teh,” you could use text expansion to replace the latter with the former—or you can correct “MacWorld” to “Macworld” and “PhotoShop” to “Photoshop.”

Use Text Replacement in macOS

macOS includes its own rather rudimentary text-expansion capability, known as text replacement.

To configure text replacement:

	Go to System Preferences > Keyboard > Text (Figure 25).

[image: Figure 25: Set up macOS text replacements here. This image shows the window after numerous replacements have been added.]Figure 25: Set up macOS text replacements here. This image shows the window after numerous replacements have been added.

	Click the plus button.

	Type the text you’ll type in the left-hand (Replace) field, and then type the text you want to end up with in the right-hand (With) field.

Tip: Although replacement text can’t include a Return character, you can type Option-Return to include a line break.

	Press Return.

Repeat these steps as needed to add further abbreviations.

Tip: To add abbreviations for special characters (such as fractions, as shown in Figure 25, above), use the Emoji & Symbols Viewer to find them. First, in System Preferences > Keyboard > Keyboard, select Show Keyboard and Emoji Viewers in Menu Bar. Then, from the menu you just added, select Show Emoji & Symbols, and type your term into the search field (fraction, say). To see an expanded version of the viewer, click the icon in the upper-right corner.

Once configured, text replacement is seamless: you type one of your abbreviations, and as soon as you press a trigger key—Space, Tab, or Return, or a punctuation character—the abbreviation is replaced with the text you’ve specified. Abbreviations are not case-sensitive, so if you set up myurl to expand into http://www.myurl.com/, then that will happen even if you type MyURL.

Your abbreviations even sync across your Macs and iOS devices if they’re all signed in to the same iCloud account and iCloud Drive is selected in System Preferences > Apple ID > iCloud (Catalina or later) or System Preferences > iCloud (Mojave or earlier).

Although text replacement works well enough for what it is, this feature has numerous limitations:

	It doesn’t work in all apps; the only way to know where it does work is to look for the Edit > Substitutions > Text Replacement menu command, make sure Text Replacement is selected, and then try your abbreviations. (For example, it doesn’t work in BBEdit or Word—but Word has its own built-in text-expansion feature.)

	If your replacement text is longer than about 25 characters or uses the Option-Return trick for multiple lines, the text will be cut off in the Keyboard preference pane—you won’t be able to read it.

	You can’t configure the trigger characters that cause abbreviations to expand.

	You can’t include styled text, graphics, variables, or other such niceties.

So, if you like the idea of text expansion but find the Mac’s built-in feature too limited, it’s time for a more powerful, third-party tool.

Use a Third-Party Text Expansion Utility

For vastly more power and flexibility when it comes to text expansion, turn to a third-party utility. At the moment, I’m aware of four main contenders for macOS that are under active development: aText, TextExpander, Typinator, and TypeIt4Me. (For the purpose of this topic, I’m restricting myself to standalone tools for text expansion. There are also multipurpose tools that can perform this task. Alfred, a launcher app, also includes an automated text expansion feature in its optional Powerpack add-on. BetterTouchTool can also use a key sequence to trigger an action, including typing replacement text; see Use BetterTouchTool. And Keyboard Maestro can use arbitrary typed shortcuts to launch any macro, including one for typing or pasting text; see Control Your Mac with Keyboard Maestro.)

These four tools share many features in common beyond mere text replacement—for example, all of them can:

	Insert the current date or time (or a portion of it, such as “Tuesday”)

	Respect case when expanding abbreviations

	Insert snippets that include styled text and graphics

	Ignore certain apps where you don’t want text expansion to occur

	Include the contents of the clipboard in the expanded text

	Perform simple calculations on numbers and dates, including variables

	Reposition the insertion point to any arbitrary location after expanding text

	Use abbreviations to trigger AppleScripts

	Sync clippings and abbreviations via Dropbox

These four utilities are much more alike than different, and most users should be equally content with any of them. I will, however, point out a few distinguishing characteristics:

	aText: aText strikes me as having the least-polished interface of the four utilities—it doesn’t even include online help or any other documentation—but what it lacks in looks it makes up for in an extensive feature set. Among other things, snippets can include editable fields, and can launch shell scripts as well as AppleScripts. aText is also the least expensive option, at $4.99.

	TextExpander: Like aText, TextExpander has editable fields for fill-in-the-blanks snippets. It also includes some spiffy predefined shortcuts, such as one that uses AppleScript to shorten any URL on your clipboard with a service such as bitly.com or is.gd. And, there’s an iOS version (TextExpander for iPhone & iPad), which can sync snippets with the Mac version. We’ve included a coupon at the end of the book for a 30% discount on a one-year subscription to TextExpander.

Tip: The Smile blog has a fantastic post about how to perform Currency Conversion with TextExpander, with a little bit of AppleScript and a small helper app.

	Typinator: Typinator, from the developer of KeyCue (discussed earlier) is right up there on the feature comparison checklist, with fill-in-the-blanks snippets, date and time calculations, and scripting support, among dozens of other capabilities. You can download a free AppleScript snippet called Conversions that performs currency conversions (among other things). Typinator also supports regular expressions, which means that expansions can be triggered with user-defined patterns, not just fixed abbreviations—and the replacements can also be pattern-based. However, unlike the other apps in this list, Typinator doesn’t let you define which delimiters trigger expansion—abbreviations can expand either as soon as you finish typing them or at word boundaries, but you can’t specify which characters can signal the end of a word. And unlike TextExpander and TypeIt4Me, it currently has no iOS counterpart. At the end of this book, there is a 30%-off coupon for Typinator.

	TypeIt4Me: TypeIt4Me has been around the longest—since way back in 1989! As a result, it feels a bit dated in spots. For example, its fill-in-the-blanks feature, called AutoCue, pauses expansion of a snippet, with text selected, while you enter the content you want, and then continues when you press Tab. That’s clunkier than a simple dialog with fields for entering all the values at once, but it gets the job done. On the other hand, it can use Apple’s spelling dictionaries (in multiple languages) for autocorrect. It also has an iOS counterpart (TypeIt4Me Touch), although it’s not quite as capable as TextExpander for iPhone & iPad. You can save 30% on TypeIt4Me with the coupon at the end of this book.

The more time you spend working with a text-expansion tool, the more ideas you’ll come up with for putting it to good use. Here are a few I haven’t mentioned already:

	Enter special characters without remembering how to type them. For example, eurosymbol could “expand” to €, while rightarrow could produce → and thumbsup could give you the 👍 emoji.

	Enter several paragraphs of greeked text (which is usually, in fact, based on Latin) such as “Lorem ipsum…” with a quick abbreviation, such as lipsum.

	Type your Twitter handle, with or without an embedded, clickable link, with an abbreviation such as @tw.

	Replace your email app’s signatures with custom signature snippets that appear wherever and whenever you need them.

Just to show you how this works, let me walk you through the steps of creating and using an abbreviation in TextExpander:

	Open the TextExpander app.

	Click the New Snippet button.

	In the main content area, type the text you want to end up with, such as supercalifragilisticexpialidocious.

	In the abbreviation field, type the abbreviation you want to use, such as scfl. (Be sure not to reuse an abbreviation you used in System Preferences > Keyboard > Text.)

	Close the TextExpander window.

	Now open an app where you can type text (like TextEdit or Mail).

	Type your abbreviation scfl and then a space or other punctuation. With a “pop” sound, your abbreviation disappears and is replaced with “supercalifragilisticexpialidocious.”

Clean Up Your Text with TextSoap

Text expansion is handy, no doubt about it, but sometimes your text needs help of another kind. For example, do you often find extra spaces or return characters, duplicate lines, or text in the wrong case? Do you find URLs or dates in the wrong format, styled text that should be in HTML or Markdown instead, or other annoying errors? An app called TextSoap can solve these and thousands of other problems, often with one click. (We’ve even included a coupon at the end of the book so you can buy it at a 20% discount.)

Where a built-in solution isn’t quite what you need, you can make your own with a combination of regular expressions (a powerful pattern-matching system) and styles, and you can even build elaborate multi-step macros to manipulate text any which way. Thus, it’s somewhat like a subset of Nisus Writer Pro (see Automate Nisus Writer Pro)—the Find/Replace capability and a portion of the macro language, but without all the other word-processing features. Anyone who works extensively with text can find many uses for such a tool.

Automate the Finder

The Finder is a special app that runs all the time and lets you navigate all the files, folders, and apps on your Mac. You use the Finder to organize, tag, and locate files; connect to other devices on your network; mount and unmount servers and external drives; and perform numerous other activities that involve files, folders, and volumes.

The Finder is also the main place people go to open apps that don’t appear in the Dock. When you want to launch an app, you might open a Finder window, click Applications in the sidebar, scroll to the app you want, and double-click it. Similarly, if you want to open a document in its default app, you might dig through any number of nested folders in the Finder and then double-click that document.

Since you use the Finder so much, it offers prime opportunities for automation. For example, it’s possible to launch apps and open documents without clicking and scrolling through any windows. In a second or less, while keeping both hands on the keyboard, you can open an app or document without even knowing where it’s located.

In this chapter, I discuss how to get started automating the Finder using Spotlight, and then I move on to more powerful third-party utilities that let you do even more.

Tip: As you’re working in the Finder, don’t forget about the Mac’s Quick Look feature. Just press Space with a file selected to see a full-size preview instantly without having to open an app—many common formats are supported. Quick Look also works in most launcher apps.

Use Spotlight as a Launcher

Spotlight, the Mac’s built-in file indexing and search feature, has always been an excellent way to launch apps (and open files) too. You can activate Spotlight with a click on the Spotlight menu or a keyboard shortcut, type a few letters of the app you’re searching for, and press Return to launch it as soon as it’s highlighted.

In recent versions of macOS, Spotlight has become a better launcher, as well as an all-purpose tool for searching the web, performing calculations, and controlling other aspects of your Mac’s operation. In fact, Apple not-too-subtly changed Spotlight’s appearance and behavior to more closely resemble third-party launchers such as Alfred and LaunchBar, discussed just ahead (see Use a Third-Party Launcher).

Spotlight isn’t perfect, by any means, but once you get the hang of it, it’s a pretty good way to find stuff.

To use Spotlight as a launcher:

	Press ⌘-Space or click the magnifying glass icon in your menu bar to display the Spotlight window.

	Begin typing an app’s name (Figure 26). If the app’s name is made up of multiple words, you can type the first letter of each (such as ka for Keychain Access); you can also type InterCapped letters, as in bc for BusyCal. Wait while Spotlight searches. As it finds matching items, it lists apps at the top.

[image: Figure 26: The Spotlight window as it appears for me after typing m.]Figure 26: The Spotlight window as it appears for me after typing m.

	If the app you want to launch is highlighted as the top hit, press Return to launch it. If it’s not the top hit, you can either continue typing to narrow down the search or press the ↓ key until the app you want is highlighted. Then press Return.

The app opens. This works regardless of where the app is located on your Mac.

You can use the same technique to open documents, Music/iTunes tracks, Contacts records, Safari history items, and so on. You can also use it to look up words in the dictionary and to perform web searches.

Many of these search results—including Wikipedia entries, maps, dictionary definitions, and contact records—appear in the built-in Spotlight preview pane to the right, so there’s no need to open a separate app (and, in fact, you can skip pressing Return). Spotlight can also do mathematical calculations and currency conversions. For example, type (17*3)/12 or $120 in euros, and the result will appear in both the search window and the preview pane.

Furthermore, Spotlight is adaptive—whichever app you selected last after typing a given letter or letters will appear first on the list the next time you type the same thing. However, all non-app matches will be farther down on the list, likely requiring multiple arrow presses to get to them. (You can customize the order of the categories in System Preferences > Spotlight > Search Results.) Also, be aware that the list won’t show every possible match, so you may have to click Show All in Finder (at the bottom of the list) to open a new window with complete search results.

Even if you restrict yourself to opening apps from the keyboard with this method, Spotlight tends to be kind of slow. And because its results change over a period of several seconds, it often takes that long to be sure that the thing you want will still be highlighted when you press Return. So you can’t blindly type in a few characters and trust that the right thing will open.

But with a bit of extra software, all these problems can magically disappear—and you can gain significant new capabilities.

Use a Third-Party Launcher

If your goal is simply to use your keyboard to launch apps, open an occasional document, and perhaps do a few calculations, Spotlight might be adequate. But wouldn’t it be even better if you could use that same ⌘-Space shortcut (or another one of your choosing) as a system-wide trigger to perform dozens of other common actions, too? If so, you’re the type of person who can use a third-party launcher.

Here are the sorts of things a third-party launcher can do that the Spotlight menu can’t:

	Learn your preferences as you use it, so that your most frequently used items automatically bubble to the top of the list (and therefore require fewer keystrokes)—even if those items aren’t apps

	Display matching items instantly

	Browse your Music/iTunes library for music by song, artist, composer, album, genre, or playlist—and control music playback

	Perform actions other than opening items—for example, sending the items via Mail or Messages, compressing files in the Finder, moving them to another location, or adding tags

	Add calendar events using only the keyboard

	Look up login items from the password utility 1Password

Mac users have four excellent choices in launchers: Alfred, Butler, LaunchBar, and QuickSilver. Each of these utilities approaches the task a bit differently from the rest, offering its own unique features and user interface. And each of them has a ton of vocal supporters who insist that their favorite launcher is far superior to all the others. I have my own preference, but I acknowledge that all four have merits, and I won’t think (much) less of you if you choose a different one.

Note: Keyboard Maestro (see Control Your Mac with Keyboard Maestro) also has an app launcher that you can activate with a user-defined keystroke, but I don’t include it in this list because it’s less powerful and less convenient to use than standalone launchers—and it doesn’t learn your preferences as you use it.

The typical way you use a launcher is much like the way you use the Spotlight menu from the keyboard. Press Control-Space (or whichever hot key you’ve selected) to open a window or other widget, and then begin typing.

In most cases, after a bit of training, the launcher matches whatever it was you were looking for with only one or two characters. Then, press Return to open that thing. For example, to open Mail, I press ⌘-Space, m, and Return. Of course, that’s just the sequence for the basic task of opening an app or file; you might type different characters, or use a different hot key or string of commands, to perform additional actions.

Note: Although Spotlight uses ⌘-Space by default, if you’d prefer to use that shortcut for a third-party launcher, you can change what Spotlight uses (for example, to Control-Space) by going to System Preferences > Keyboard > Shortcuts > Spotlight.

Here’s a brief rundown of the four major Mac launcher utilities.

LaunchBar

I’ve used LaunchBar since 2002, and even though I’ve tried all the other launchers (more than once), I always come back to LaunchBar because it just feels right to me. It works the way I think (or vice versa). And, you can save 20% on LaunchBar with the coupon at the end of this book.

You activate LaunchBar with a hot key—it’s ⌘-Space by default (which I prefer, so I changed Spotlight to be Control-Space). Start typing (the name of an app, file, contact, or whatever) and, when the right item is selected (Figure 27), press Return to open it.

[image: Figure 27: After activating LaunchBar with ⌘-Space (or a custom keystroke), type a letter or two (M in this case) to see matching apps and other items.]Figure 27: After activating LaunchBar with ⌘-Space (or a custom keystroke), type a letter or two (M in this case) to see matching apps and other items.

You don’t have to type the first letters of the name exactly; for example, I type nw for Nisus Writer Pro and oo for OmniOutliner. If you type an abbreviation and then select something other than LaunchBar’s top pick, it remembers that, and as you use it, it molds its suggestions to your actual usage.

LaunchBar has many other talents, too. If you press the hot key and then start typing numbers, LaunchBar assumes you want to perform a calculation, and lets you do so without any other preliminaries (just as Spotlight does). You can also use a feature called Instant Send to do interesting things with selected files or folders—for example, email them, open them with a non-default app, or run an AppleScript on them. I use LaunchBar for looking up contact phone numbers, tracks in Music, and 1Password login items, among many other things. LaunchBar can also remember items previously copied or cut to your Clipboard and recall them later.

Tip: To learn about LaunchBar’s six superpowers and much more, read Kirk McElhearn’s book Take Control of LaunchBar.

Alfred

When you press Alfred’s hot key (Option-Space by default), a large floating window appears. Start typing the name of an app, file, or other content, and Alfred displays matches immediately. You can also type keywords to perform commands such as restarting your Mac or hiding the current app. Alfred has hundreds of features and nearly every aspect of the app is highly customizable.

Although Alfred itself is free, some of its most interesting features require a purchase of the optional Powerpack, which—among other things—adds automatic text expansion, access to Contacts, email searching, 1Password integration, a clipboard history, and workflows (which combine Alfred features with system commands and scripts to form macro-like tools; see Use Another Macro Utility).

Butler

Butler pops up a floating window when you press its hot key (Control-Space by default), and as you start typing, the results initially look much like those in the Spotlight menu. However, unlike Spotlight, Butler can learn your favorite apps, files, and other items as you use it. You can also trigger Butler with a menu, hot corner, or user-defined abbreviation. Butler offers the usual range of launcher actions: opening files and apps, searching the web, running AppleScripts, controlling music playback, and so on. It also includes a clipboard history (see Use a Macro or Launcher Utility).

Unfortunately, although Butler has lots of capabilities, I find its user interface nearly inscrutable, and its included documentation isn’t much help. Perhaps it was just designed for someone who approaches software differently than I do, but it seemed to require too much thought and effort to decode its features, problems I didn’t experience with any other launcher I tried. Furthermore, a major update from Butler 4 (the current version) to Butler 5 has been promised since at least 2012, which may tell you something about its pace of development.

Quicksilver

Quicksilver is a free (donations accepted), slick, and highly modular launcher. It includes just a few built-in features, but you can add any of dozens of free plugins to enhance the app with additional capabilities. Some of these plugins provide controls for specific apps (Apple Mail, Evernote, Google Chrome, iTunes, Safari, and others) while others add lower-level features (such as image and text manipulation, access to the windows and menus of open apps, calculations, a clipboard history, and text manipulation).

You bring up the Quicksilver display by pressing a hot key (Control-Space by default), and then start typing to find items to launch. You can also assign hot keys to many other actions, such as music controls. With the right plugins, you can also trigger actions with mouse actions, trackpad gestures, or system events (such as an application quitting or a file being compressed).

Unfortunately, development appears to have slowed way down in recent years, and as of publication time, the product’s webpage makes no mention (one way or another) of Catalina compatibility.

Organize Files with Hazel

You’re probably familiar with the way email rules work (whether or not you use them yourself; see Automate Email). When a message comes in, your email program checks to see if the conditions in your first rule match. If so, it performs the actions associated with that rule (such as filing the message in a mailbox, deleting it, or replying to it); if not, it moves on to the next rule.

A clever utility called Hazel does the same thing, except for files in the Finder rather than for email messages. You can save 20% on Hazel with the coupon at the end of this book. (And, you should find Hazel’s built-in help especially helpful—I wrote it!)

On the Hazel pane of System Preferences, you select a folder and then set up one or more rules for it (Figure 28).

[image: Figure 28: Rules in Hazel look and act much like rules in Mail—except they target files rather than email messages.]Figure 28: Rules in Hazel look and act much like rules in Mail—except they target files rather than email messages.

Rules can look for conditions such as how recently a file was created or modified, its name, its size, tags, and other attributes. When it finds a match, Hazel can perform one or more actions such as applying a tag, moving or copying the file into another folder, deleting the file, compressing or decompressing it, importing it into Music/iTunes or Photos (for music and photos, respectively), displaying a notification, or running an AppleScript or shell script.

Hazel rules have an effect similar to AppleScript Folder actions. (If you’re not familiar with them, flip ahead to Use AppleScript Folder Actions.) But Hazel rules require no coding, so they’re far simpler to use.

Hazel can also keep your Trash from overflowing with old and/or large files, help you completely remove all traces of apps you delete, and remove duplicate files.

I’ll admit that the first time I heard about Hazel, I was afraid that it would move things around without my knowledge, with the result being that I’d lose (or at least lose track of) things rather than have a tidier Mac. I mean, I put files in particular places for a reason, and I didn’t want some smart-alecky app making up its own mind about where things should go. But in fact, Hazel does only what you expressly ask it to do. And if it makes you more comfortable, it can alert you when it moves or deletes something so that there are never any surprises.

Here are some examples of what Hazel can do for you:

	Keep your Downloads folder clean. If you haven’t manually removed a downloaded file after a week or so, Hazel can archive or delete it based on rules you’ve set up.

	Add music files that appear in your Dropbox folder to Music or iTunes. It can delete the (now redundant) originals, too.

	Keep your Desktop clutter-free by moving files into project-specific folders if they’ve been on your Desktop for a few weeks without being opened.

	Alert you when a shared folder changes (say, for a project you’re working on with someone else).

	Add photos from Dropbox to your favorite photo-management app.

It’s easy to get carried away with a tool like this, but I prefer to think of it as a way to automate a few specific file-management tasks that would otherwise require my time and attention.

Supercharge Your Clipboard

Cut, copy, paste. You’ve probably done those things thousands of times without even thinking about your clipboard, the temporary storage space macOS uses to hold whatever you’ve cut or copied. The Mac’s built-in clipboard is boring, but numerous utilities can supplement or replace it with powerful new capabilities that will save you time and effort.

Note: Starting in Sierra and iOS 10, iCloud’s Universal Clipboard automatically syncs the contents of your clipboard across your devices, as long as they’re signed in to the same iCloud account, have Wi-Fi and Bluetooth enabled, and are near each other. That’s neat when it works, although I have found it less than perfectly reliable. See How to use Universal Clipboard on Your Mac at iMore for details.

With one of these utilities installed, you’ll never again have to worry about your Mac crashing right after you’ve cut or copied something but before you paste it. You’ll also be able to see and use things you copied to your clipboard hours or days ago, change the clipboard contents between the time you copy it and the time you paste it, and more.

Learn What a Clipboard Utility Can Do

You might think you can do just fine without a clipboard utility, but remember: people used to think that about cars and microwave ovens, too! Here are some of the groovy tricks you’ll be able to perform:

	Access your clipboard history: By default, every time you cut or copy something to the clipboard, whatever was there before disappears. By contrast, every utility mentioned in this chapter maintains a clipboard history, which is to say you can view a list of dozens or hundreds of previous clipboard items and paste any of them at will. (I especially like using a keyboard shortcut, such as ⌘-Control-V, to paste the just-previous item from my clipboard history—that way, I can easily copy two different things and then paste them both consecutively.)

	Juggle multiple clipboards: What if you had not just a single clipboard (with a historical record of its contents) but two, five, or a dozen clipboards—each with its own name? If you need to copy things independently of each other and refer to them by name or category, multiple clipboards may be just the thing.

	Store and reuse clippings: Normally, your Mac’s clipboard is cleared when you shut down or restart. Most clipboard utilities preserve not only your current clipboard but also your clipboard history across restarts. Some even let you manually save and name clippings for future reuse.

	Edit a clipboard’s contents: Say you’ve copied something you intend to paste multiple times—but you find an error in the copied text. Some clipboard utilities let you edit what’s on the clipboard before you paste it, so that every pasted copy will be correct.

	Filter a clipboard’s contents: Perhaps you’ve copied styled text but want to paste it as plain text. Or maybe you want to do something far more elaborate—perform find/replace operations or mathematical calculations on the copied text, add to it or trim it, change its case, or manipulate it in some other way. All this is possible with a utility that can filter a clipboard’s contents.

Still can’t quite imagine how you’d use a clipboard utility? Let me give you some concrete examples of how I do:

	Copy the title of an article on the web, copy its URL, and then paste the two in sequence without having to switch back to a browser

	Cut paragraphs or bullet points from several different locations in a book, and then paste them all together at a new spot

	Copy the URL for a product at Amazon and paste it with my affiliate link baked right in

	Copy raw HTML code but paste it with Markdown formatting, or vice versa

	Copy a large chunk of text and paste it with any duplicate lines removed

The last three items in this list are examples of filtering, which saves a tremendous amount of tedious work.

Use a Macro or Launcher Utility

You may already have a utility on your Mac that includes many or all of the clipboard enhancements you’d like—macro utilities such as Keyboard Maestro and launcher utilities such as LaunchBar often have such capabilities.

I’m all in favor of multipurpose tools, and if one of these meets your needs, that may be the best solution for you. On the other hand, if you need extra features (or don’t have a suitable macro or launcher utility), I’ll tell you about several standalone clipboard tools ahead in Use a macOS Clipboard Utility.

Keyboard Maestro

I talk about Keyboard Maestro’s macro capabilities later, in Control Your Mac with Keyboard Maestro; there’s also a coupon at the end of the book for a 20% discount. For now, I want to mention its clipboard capabilities:

	Multiple, named clipboards

	A history for your primary clipboard (Figure 29)

	Filtering the contents of any clipboard while pasting it, according to rules you set up

	Optionally pasting plain text, even if you copied styled text

	Access to persistent clippings that you can see and use even after restarting your Mac

	User-definable hot keys for working with clipboards

[image: Figure 29: Keyboard Maestro’s clipboard switcher and history window.]Figure 29: Keyboard Maestro’s clipboard switcher and history window.

Note: Keyboard Maestro, like many of the utilities in this book, uses the term hot key (or hotkey) as a synonym for keyboard shortcuts.

All this is extremely snazzy, and it’s nearly everything I could want from a clipboard utility. Keyboard Maestro doesn’t, however, let me manually edit a clipboard, nor does it offer a way to sync my clipboard history across Macs (although it can send a clipboard from one Mac to another).

Launcher Utilities

In the previous chapter, I told you how to Use a Third-Party Launcher to do things like opening apps, playing tunes, and performing calculations. All the launchers I mentioned—LaunchBar, Alfred (with the optional Powerpack), Butler, and QuickSilver—also keep clipboard histories, so you can copy multiple things and then paste earlier clippings. But, they also offer some other clipboard features worth mentioning.

LaunchBar and Alfred can both paste a clipping as plain text, preserve clippings when you restart your Mac, and merge whatever you’re copying with what’s already on the clipboard. In addition, Alfred lets you name your clippings. Butler refers to clipboards by their technical name, “pasteboards,” and offers persistent clippings, named clippings, and user-definable hot keys for working with clipboard contents.

Unfortunately, none of the launcher apps can filter clipboard contents, which I think is one of the most useful clipboard capabilities.

Use a macOS Clipboard Utility

If you don’t use a launcher like LaunchBar—or if you do, but crave even more clipboard power—you have a bunch of options. Years ago, my favorite clipboard utility was an app called PTHPasteboard Pro, which had a truly amazing set of features. Unfortunately, PTHPasteboard Pro was discontinued, so I now use either Keyboard Maestro or LaunchBar (both of which are running on my Mac all the time anyway) to provide a clipboard history and other clipboard tools. (Which one I use at any moment depends on my exact needs.)

However, if you want a standalone clipboard utility, there are many—in fact, dozens—from which you can choose. Back in 2015, I rounded up six top picks in my Macworld article Copy, Paste, Repeat: Finding the Best Clipboard Manager for Mac. To make a long story short, my favorite at that time was an app called Copy’em Paste. Nowadays, though, I’d lean toward either Copied or Pastebot, both of which offer a wealth of clipboard management features (including a 500-item history, filtering, and a clear user interface) and come in versions for both macOS and iOS. Still other clipboard utilities worth considering include:

	Clipboard Center

	CopyClip 2

	CopyLess 2

	CopyPaste Pro

Automate Individual Apps

Later in this book, I talk about system-wide automation technologies built into macOS like AppleScript and Automator, which can automate the actions of individual apps. But there’s often a better—or, at least, more thorough—way of doing that within an app itself. That’s the topic of this chapter: using apps’ built-in automation capabilities.

Due to the breadth and depth of in-app automation features, I can only provide an overview, basic instructions, and a few examples. You’ll be able to accomplish some basic tasks and discover how to learn more.

I begin with Microsoft Office, partly because of its popularity and partly because of its extensive built-in programming language. I then move to Nisus Writer Pro, the very app I’m using to type these words, to illustrate a few different forms of automation that should be useful to anyone who works with words. Then I briefly discuss Google Apps Script, a macro language for Google Apps, and list the automation capabilities of several other popular apps.

Tip: If you want to automate Apple’s iWork apps (Pages, Numbers, Keynote), you’ll need to use either AppleScript or Automator. You can learn more about AppleScript for iWork at iWork & Automation: Productivity Enhanced, part of the Mac OS X Automation site.

Automate Microsoft Office

Microsoft Office—which on the Mac comprises Word, Excel, PowerPoint, Outlook, and OneNote as its main components—is one of the world’s best-known software packages. Microsoft long ago added a programming language to the suite called Visual Basic for Applications (VBA), which enables users to write macros that automate Office apps, optionally embed those macros in documents, and run them (with some limitations) on either macOS or Windows. Microsoft removed VBA from Office 2008 for Mac, but brought it back in Office 2011. It’s still there in Office 2019 (i.e., Office 16.x, also available as part of an Office 365 subscription), and presumably, it will be in future versions too. (Microsoft Office also has excellent AppleScript support, which is an alternative way to accomplish many of the same tasks.)

Note: In Office for Mac, only Word, Excel, and PowerPoint support VBA.

What can you do with an Office macro? The sky’s the limit, but here are a few simple examples, any of which could be done with a single click or keystroke:

	Perform a frequently used find-and-replace operation

	Format spreadsheet cells according to their contents

	Number all the instances of a certain phrase in a document

	Reformat a table

	Remove all the hyperlinks in a workbook

	Change all the tab stops in the current paragraph style

	Merge cells from two columns into a third column

	Resize all the graphics in a document

If you use Office extensively—and especially if you share documents with Windows users—it might be worth the effort to learn a bit of VBA since (unlike AppleScript) its macros work on both Windows PCs and Macs. But let me be frank: it’s not great for beginners. VBA was designed for programmers, not for ordinary users. It won’t do you any good beyond Office apps, and unlike AppleScript, VBA would never be called “English-like.” If you don’t know much about programming already, there’s a significant learning curve.

However, there’s a sneaky way to get your foot in the door—to write a VBA macro without knowing any VBA at all. Office lets you record macros—that is, turn on recording, do some stuff while Office watches, and then turn off recording. Office then attempts to make a VBA macro out of whatever you just did, which you can then replay at will. Sometimes these macros work fine as is; sometimes they require fiddling; and sometimes you’re out of luck.

So, my advice if you want to automate an Office app is to try recording a macro first. If that doesn’t work (and you can’t easily see how to fix it), move on to Automator. If Automator won’t do what you need either, try either AppleScript (if you need more control) or Keyboard Maestro (if you want a simpler interface). Write your own VBA macro from scratch only if no other tool does the trick.

Record Macros in Microsoft Office Apps

Let’s walk through the process of recording and then playing back a simple macro. (I’ll use Word for this example, but the process is virtually identical in Excel and PowerPoint.)

	Open a new, blank document in Word. (It doesn’t have to be blank, but it’s easier that way for this example.)

	Choose Tools > Macro > Record Macro.

	In the dialog that appears (Figure 30), give your new macro a name (like Test) and click OK.

[image: Figure 30: In this window, you define a new macro before you begin recording it.]Figure 30: In this window, you define a new macro before you begin recording it.

Tip: If you want to assign a keyboard shortcut to your macro now, you can. Before you click OK in this dialog, click Keyboard, press the desired keyboard shortcut, and click OK. But you can also Assign a Keyboard Shortcut to a VBA Macro later.

	Now perform some actions—click buttons, choose menu commands, run a Find/Replace, or whatever you like. For the purpose of this exercise, I suggest doing the following:

	Type the word First, press Tab, type Second, and press Return.

	Type Third, press Tab, type Fourth, and press Return.

	Press ⌘-Shift-↑ to select the second paragraph.

	Press ⌘-B to turn the selected text bold.

	Press Shift-↑ to add the previous paragraph to the selection.

	Select Table > Convert > Convert Text to Table and click OK.

	Press ↓ to move the insertion point below the table.

	Choose Tools > Macro > Stop Recording.

That’s it; you’ve recorded a macro. In theory, you can replay the exact actions you took again, at any time, in any document. So let’s try.

To play back your macro:

	Choose Tools > Macro > Macros.

	Select the macro you just recorded (it will likely be selected by default).

	Click Run.

If everything is working correctly, your document will get two more table rows that look exactly like the two that were already there.

Curious to know what your macro looks like in VBA? Choose Tools > Macro > Macros, select your macro, and click Edit. You see something like Figure 31, along with other windows that you can ignore for now.

[image: Figure 31: Here’s what the macro we just recorded looks like in Visual Basic.]Figure 31: Here’s what the macro we just recorded looks like in Visual Basic.

Beautiful, isn’t it? No, of course not, but if you look carefully, you can probably make out approximately what the commands do. If you were so inclined, you could edit the macro right here—for example, substitute different words in the Selection.TypeText Text: lines.

To get out of the editor, choose File > Close.

Assign a Keyboard Shortcut to a VBA Macro

Going through Tools > Macro > Macros and a separate window whenever you want to run a macro is a drag. Fortunately, you don’t have to: you can assign a keyboard shortcut to your macro. In Word or Excel (but not PowerPoint), follow these steps:

	Choose Tools > Customize Keyboard.

	In the Categories list on the left, select Macros.

	In the Commands list on the right, select the macro you want to assign a keystroke to.

	Click in the Press New Keyboard Shortcut field.

	Press the key combination you want to use. (See the sidebar Use Multi-Key Shortcuts in Microsoft Word, below, for a special tip.)

	Click Assign.

	Click OK to dismiss the window.

From now on, you can activate your macro with that keyboard shortcut.

Use Multi-Key Shortcuts in Microsoft Word

A little-known and useful fact about Word (which does not apply to Excel or PowerPoint, by the way) is that keyboard shortcuts can include sequences—to a point.

For example, you could assign Control-P,B to insert a page break (Insert > Break > Page Break). The way this would work is that you’d press Control-P, and as long as the next key you pressed within 5 seconds was a B, you’d get a page break. If you pressed any other key, or no key at all, during those 5 seconds, nothing would happen.

I used Control in my example, not Command, because all single alphabetic ⌘-key shortcuts are preassigned, and even though you can create your own shortcuts that override them, sequences are ignored in such cases. For example, if I assigned ⌘-P,B to Page Break, it would have to override ⌘-P for Print—but then, as soon as I pressed ⌘-P (and without waiting for the B), the page break would be inserted. I know, weird.

So that’s one limitation. Another is that sequences can have at most two characters (plus modifiers)—you can’t assign Control-P,B,J to a Peanut Butter & Jelly macro. Still, two-key sequences starting with Control are useful mnemonic aids.

To set one up, follow the directions above, but type the sequence (such as Control-P, followed by B) in step 5. Word shows sequences with a comma (Control-P,B), but you won’t actually type the comma.

Nisus Writer Pro offers vastly more flexibility in assigning multi-key shortcuts. See Use Multi-Key Shortcuts in Nisus Writer Pro.

Run an Existing VBA Macro

We’ve already been using VBA, but now I want to switch gears slightly to show you how to use a macro someone else wrote—for example, something you find on a webpage. For this example, I’ll use a macro I wrote years ago to paste whatever’s on the clipboard as plain text, so that it assumes the style of the surrounding text. If you were to do this manually, the process would be: Choose Edit > Paste Special, select Unformatted Text, and click OK. A macro can reduce all that to one key combination!

To use a macro someone else has written:

	Choose Tools > Macro > Macros.

	Type a new macro name (we’ll use PastePlainText) and click Create.

	In the window that opens, you’ll see a placeholder template for your new macro, like so:

 Sub PastePlainText()
 '
 ' PTT Macro
 '
 '
 End Sub

	Paste or type the macro commands. For this example, enter the following in the blank space before the End Sub line:

 Selection.PasteSpecial Link:=False, _
 DataType:=wdPasteText, Placement:=wdInLine, _
 DisplayAsIcon:=False

	Your final macro should look like this:

 Sub PastePlainText()
 '
 ' PTT Macro
 '
 '
 Selection.PasteSpecial Link:=False, _
 DataType:=wdPasteText, Placement:=wdInLine, _
 DisplayAsIcon:=False
 End Sub

	If you like, you can remove the lines starting with an apostrophe; those are comment lines that don’t affect the macro’s function.

Your macro is now ready to run. You can run it using Tools > Macro > Macros, or assign a keyboard shortcut to your macro (such as ⌘-Shift-V) following the instructions in Assign a Keyboard Shortcut to a VBA Macro.

Note: I said I “wrote” this macro years ago, but, in fact, I cheated—I recorded myself following the steps I spelled out a moment ago, and this macro is what I got!

Find Sample VBA Macros

You should be able to turn up all sorts of VBA macros with a few web searches. Here are a few resources to get you started:

	Excel Macro Examples & Free Downloads at Chandoo.org

	VBA Code Excel Examples at Analysistabs

	Word: Sample Macros, VBA Codes at MSDN Blogs

Learn More about VBA

To get help writing and editing VBA macros, try these sites:

	Microsoft’s Office 2016 for Mac pages Create, run, edit, or delete a macro, Automate tasks with the Macro Recorder (for Excel), and Create a macro in PowerPoint

	Microsoft’s Getting Started with VBA in Office for Mac 2011 page (which still largely applies to Office 2016)

Automate Nisus Writer Pro

Nisus Writer Pro is a powerful yet easy-to-use word processor. Wait, did I call it a word processor? Oh, it’s much more than a word processor; I like to think of it as a Programmable Everything Tool. I explain my history with Nisus (the product and the company) and why I’m so enamored of this app in my Macworld article Tools of the trade: Why I prefer Nisus Writer. For anyone who works with words, it’s an extraordinarily flexible tool—and capable enough that Take Control Books has left behind both Word and Pages and now creates ebooks (including this one) exclusively in Nisus Writer Pro. With the coupon at the end of this book, you can buy Nisus Writer Pro at a 25% discount.

One of the reasons I like Nisus Writer Pro so much is that it’s chock full of automation features that make my writing faster and more efficient. In this chapter I want to look at three of them: macros, multi-key shortcuts, and automatic numbers and cross-references.

Run Macros in Nisus Writer Pro

As in other apps, macros in Nisus Writer Pro let you perform an action, or a list of actions, with a menu command or keyboard shortcut. But Nisus Writer Pro macros can do much more than run sequences of commands; they can interact with files and folders on your Mac, ask for user input, make decisions based on complex logic, and access capabilities in the app that don’t appear anywhere in the visible user interface. In other words, macros let you create entirely new features.

Nisus Writer Pro includes over 50 preinstalled macros on the Macro menu (or its submenus). Choose any macro name to run it. Some macros assume you have text selected first; if you try to run a macro and it won’t work in the current context, it’ll either beep or display an error message.

Here are a few you might try:

	Macro > Calculation > Mortgage Calculator: Fill in the blanks to calculate your monthly payment.

	Macro > Document > Create Word Frequency List: This creates a new document listing every word in the existing document (or selection) along with a count of how many times it appeared.

	Macro > Editing > Quote Selection: Select some text and run this macro to put quotation marks around it.

Take Control authors and editors have lots of specialized macros that aid in our workflow, such as:

	Converting documents that use our highly customized styles into Markdown formatting, which we then use to create the EPUB and Mobipocket editions of our books

	Inserting or formatting tips and notes

	Turning selected text into a cross-reference to a bookmark elsewhere in the document

	Checking for common errors, such as graphics with problematic names or extra spaces between words

If you’d like to find more macros you can install and run yourself, visit Nisus Software’s Nisus Writer Pro Macros forum. (That’s also a good place to find tips on writing your own macros.)

Create Macros in Nisus Writer Pro

To make your own macro in Nisus Writer Pro, follow these steps:

	Choose Macro > New Macro. A new window (which looks just like a regular document window) opens.

	Type or paste the text of your macro. For illustration purposes, try this:

prompt "Hello, world!"

	Choose Macro > Save as Macro. Give your macro a name (such as Hello) and choose a location. The ideal destination is your default Macros folder, and you can choose or change that location using the Macro > Choose Macros Folder. (If you’re uncertain which folder is currently the default for saving macros, choose Macro > Show Macros Folder in Finder, and that window opens.) If you save a macro in the default Macros folder, it will automatically appear on the Macro menu; if you save it anywhere else, you’ll have to go through extra steps (which I don’t cover here).

Now, to run your macro, choose its name from the Macro menu: Macro > Hello (or whatever you named it). You should see a little dialog with the text “Hello, world!” Click OK to dismiss it.

If you want to view or edit a macro that’s already in the Macro menu, the easiest way to do so is to hold down the Command key while choosing the macro from the menu—instead of running, it opens in a new window. You can edit it there; after you save it, choosing the macro name from the Macro menu in the normal way runs your updated version.

Tip: You can, of course, assign keyboard shortcuts to macros too. I cover that just ahead, in Use Multi-Key Shortcuts in Nisus Writer Pro.

I gave you a one-line example macro, but what else can you put in a macro? I’m glad you asked. Let me begin with the easiest approach to writing your own macros.

Simple Macros

First, the bad news: unlike Microsoft Office, Nisus Writer Pro has no recording capability—it can’t watch what you do and make a macro out of that for you. But now, the good news: it’s way easier to write macros for Nisus Writer Pro than for Word!

How easy? For the simplest things, like running menu commands, you just type a command (as it appears on a menu) on a line by itself. If the command includes an ellipsis (…), you can leave that off.

So, here’s a macro that turns the selected text bold, makes it 18 points, and then copies it to the clipboard:

bold
18
copy

And that’s a complete macro, by the way—no brackets, declarations, funky names, or obscure codes. Case doesn’t matter. (Spelling does matter!) Great, right?

Tip: When trying the macros from this book in Nisus Writer Pro, either retype them or paste them by choosing Edit > Paste > Paste Text Only (⌘-Shift-V). If you paste styled text into a macro, you might encounter inscrutable error messages.

A macro can do lots of things that aren’t merely menu commands, too. Want it to type the text “Hello, world!”? Do it like this:

type text "Hello world!"

Find all instances of the word Apple?

find all "Apple"

Set the line height to exactly 17 points?

set fixed line height 17

You can construct a macro with dozens or hundreds of commands like this, one after the other, and it will execute them all with a single click.

I gave find all "Apple" as an example, but one of the most useful things you can do in a macro is automate more elaborate find-and-replace procedures—or a series of them. Nisus Writer Pro, like a few other apps mentioned in this book, lets you use a pattern-matching system known as regular expressions for finding and replacing text. (It can take those expressions even further by applying styles to portions of the expressions—a highly unusual feature.)

Any type of find or replace operation can go in a macro. For example, this macro line finds any sequence of two or more return characters and replaces it with one:

find and replace '\\n\\n+', '\\n', 'Ea'

Note: The letters E and a at the end tell the macro to perform the find and replace with two special options—using regular expressions, or PowerFind Pro, as Nisus Writer Pro calls them (E), and replacing all the occurrences in the document (a). Those special characters are case-sensitive.

This one finds any sequence of two capitalized words and underlines just the first one:

find and replace '([A-Z][a-z]+)([A-Z][a-z]+)', '\\1\\2', 'Ea-iU'

Note: The -i at the end means “case-sensitive search”; the U means “attribute-sensitive replacement.”

Complex Macros

It’s easy to make a macro that executes a series of simple commands, but you may want to do fancier things. You may want to use variables, arrays, objects, functions, loops, if/then/else conditionals, mathematical functions, string manipulation, and other sorts of things you’d normally find in a “real” programming language. All that, and much more, is well within the purview of Nisus Writer Pro macros too!

I’ve written many of these complex macros that involve serious programming, and while I can say confidently that it’s not nearly as bad as working in VBA or even AppleScript, it’s different. And the way you construct the commands and routines to do these nifty things is far from obvious.

Unfortunately, there’s not room here for me to get into the finer points of the language. You can get some guidance from the Nisus Writer Pro macro reference—choose Help > Macro Language Reference in Nisus Writer. That document contains all (well, nearly all) of the commands in the language, and a number of examples. But candidly, it wasn’t written for the layperson. The macro language itself isn’t unduly complicated, but the documentation makes it seem harder than it is. Someone ought to write a better guide. Maybe one day, somebody will.

In the meantime, I recommend the same thing for learning Nisus Writer Pro macros as I recommend elsewhere in this book for VBA and AppleScript: start with things other people have written (including the 50+ macros included with Nisus Writer Pro), try modifying them a little bit, and once you get the hang of that, start exploring new commands and features.

Use Multi-Key Shortcuts in Nisus Writer Pro

Nisus Writer Pro lets you assign a keyboard shortcut to any command, including macros you create yourself. That isn’t unusual. What is unusual, and extremely helpful, is that you’re not limited to modifier keys and a single character (like ⌘-P or ⌘-Option-Shift-I). You can do all that, but you can also have keyboard shortcuts that are sequences of keys.

For example, there’s a menu command that capitalizes the first letter of each selected word: Edit > Transform Text > To Capitalized. You could assign ⌘-Control-Shift-C to it, but that’s hard to remember. What’s easy to remember is ⌘-C-A-P. That is, hold down Command while typing C, and then A, and then P. Cool, no?

Multi-key shortcuts are much easier to remember, because you can build in more mnemonic clues. How about:

	Save As: ⌘-S-A

	Save As PDF: ⌘-P-D-F

	Replace and Find: ⌘-R-F

	Page Break: ⌘-P-B

	12 (font size): ⌘-1-2

I’m sure you get the idea. Here’s how you set up a shortcut:

	Go to Nisus Writer Pro > Preferences > Menu Keys (Figure 32).

[image: Figure 32: Set up keyboard shortcuts here.]Figure 32: Set up keyboard shortcuts here.

	In the first column, select the menu where the command is found.

	In the second column, select the command (or, if it’s not on the top level of the menu, navigate through the submenus to select it).

Tip: You can also create menu keys for individual preference panes by navigating to Nisus Writer Pro > Preferences > pane name. I set up ⌘-M-K to take me directly to the Menu Keys pane!

	Click in the field on the rightmost pane.

	Press the keyboard combination or sequence you want to use. You can include as many characters as you like: ⌘-C-A-P-I-T-A-L-I-Z-E is valid. But realistically, that’s awkward to type—I suggest limiting sequences to two or three characters, plus modifiers.

A shortcut must include Command, but it may include Shift, Option, and/or Control too. Any of these that you hold down while entering a shortcut are selected, but you can also select or deselect Shift, Option, or Control to add or remove it from the shortcut.

	Click Set.

	Repeat with any additional shortcuts you want to define. When you’re done, click the red Close button. (Don’t press ⌘-W, because Nisus Writer Pro will think you’re trying to assign that shortcut to the current command!)

Keyboard shortcuts are available immediately.

Use Automatic Numbers and Cross-References in Nisus Writer Pro

The final Nisus Writer Pro automation tool I want to mention combines two features: automatic numbers and cross-references. I’ve used both dozens of times in this book. Let me tell you why they’re great.

Nisus Writer Pro can automatically number almost anything—pages, sections, lists (such as the seven steps just above), figure numbers (as seen throughout this book), tables, and the like. These numbers are variables that update themselves automatically. So, if I’m creating a list that has six items (numbered 1–6) and I press Return to create a seventh item, it’s numbered 7 automatically; if I insert, remove, or reorder part of the list, all the numbers update themselves. Similarly, if I use automatic numbering for figures, I can freely add, delete, or rearrange figures without ever worrying that the figure numbers in the captions will be out of order.

That part is useful but not terribly unusual; most word processors can do something of the sort. Where it gets interesting is cross-references to the automatic numbers. For instance, I might have a graphic that’s labeled “Figure 12,” and near it I say, “see Figure 12.” I want that reference to update automatically if, later on, that graphic turns out to be Figure 15 instead. So instead of just typing the reference, I insert a cross-reference to the text of that automatic number. As the figure number itself changes, so does the textual cross-reference!

OK, I’m oversimplifying slightly. For performance reasons, Nisus Writer doesn’t automatically update cross-references immediately when their references change, though it does so when you open a document, print it, add or update a table of contents, and at certain other times. If cross-references ever appear to be out of date, you can force an immediate update by choosing Tools > Automatic Content > Update All Stale Content. It goes without saying that you can and should assign a keyboard shortcut to that command! Mine is ⌘-USC.

Note: Nisus Writer Pro can do this trick with lots of things, not just automatic numbers. Any time text in one part of your document changes, cross-references to that text elsewhere can update themselves. (That’s what I’ve done with all the links in this book to other topics—if I rename a heading, the text of the link updates too.)

A full explanation of how to use automatic numbering and cross-references in Nisus Writer Pro would take many pages, so I’ll walk you through just one example:

	Begin by creating a new list style, just for figure numbers. In a Nisus Writer Pro document, choose Format > Lists > Edit List Styles.

	Click the plus button at the bottom and choose List Style from the pop-up menu. Name it Figures, leave the Kind set to Numbered, and click Create.

	In the sample text area on the right side of the window, select Level 1. Then, in the Lists palette (if you don’t see it, choose Window > Palettes > List), click in the Before Text field and type Figure followed by a space. In the After Text field, type a colon (:) followed by another space (Figure 33).

[image: Figure 33: Your list style definition should look something like this.]Figure 33: Your list style definition should look something like this.

	Choose View > Page View to return to editing your document.

	Insert a graphic (or just type some text, pretending that it’s a graphic) followed by Return. Type a caption in the paragraph beneath that line, such as This is the caption.

	With your insertion point still in the caption paragraph, choose Format > Lists > Figures to apply the Figures list style. In so doing, the caption will be preceded by “Figure 1:”.

	Repeat steps 5 and 6 a few times, so you have three or four numbered figures. (If you press Return at the end of a list paragraph, Nisus Writer Pro assumes you want that next paragraph to be in list style too. You can override this by choosing Format > Lists > Use None, or by applying a paragraph style, such as Normal.)

	Somewhere else in your document, in an ordinary paragraph, type See and a space. Choose Insert > Cross Reference. Make sure the Insert Reference To pop-up menu says List Item, the Display Text pop-up menu says List Item Number, and the two checkboxes are deselected. Select Figure 2 in the list and click Insert.

Your text should now say “See Figure 2”.

	Now make a change to your document so that Figure 2’s number changes—for example, remove the caption for Figure 1, or add another captioned figure before Figure 2.

You should see that the caption’s figure number updates itself, and the reference to that caption in the text updates itself to match! (And, if that doesn’t happen immediately, remember that you can force an update with Tools > Automatic Content > Update All Stale Content.)

Note: What I just presented was a distinctly oversimplified version of what we do for Take Control books, but it should demonstrate the basic principles.

Discover Other Internally Scriptable Apps

You’ve seen that Microsoft Office and Nisus Writer Pro have built-in scripting languages, in addition to being controllable by AppleScript and external macro utilities. But you may be wondering: is that it? Are there no other Mac apps that have internal macro or automation features? Indeed there are others! Here are a few prominent examples:

	Adobe Acrobat Pro and Photoshop: Both of these apps let users create actions, which are basically macros—sequences of predefined steps that alter a document or image in some way. You can also install actions other people have written, some of which are fantastically sophisticated.

	BBEdit: This splendid plain-text editor, which is designed mainly for programmers and web designers but has also found a following among authors, has a couple of great automation features. Text factories are sequences of actions (such as find-and-replace–based on regular expressions, natch; sorting lines; changing case; and running shell scripts or AppleScripts) that you can save and run repeatedly with a couple of clicks. BBEdit also has a Text > Apply Text Filter submenu, which lists not only your text factories but also individual Automator workflows, AppleScripts, and shell scripts that can process and modify your text.

	FileMaker Pro Advanced: This user-friendly relational database from Apple subsidiary Claris International Inc. is deeply scriptable. You can use its own extensive built-in scripting language, or AppleScript, or the two in combination to take nearly any action when a button is pressed, a menu command is selected, or any of half a dozen other triggers occurs. Scripts can include complex logic, mathematical calculations, and numerous types of data manipulation.

	Google G Suite: This web-based productivity suite includes apps for editing for documents (Google Docs—somewhat like Word), spreadsheets (Google Sheets—somewhat like Excel), and presentations (Google Slides—somewhat like PowerPoint), among other tools. Lots of people do their day-to-day document editing with Google’s apps in a browser. To automate tasks in these apps, you use a scripting language called Google Apps Script. It’s based on JavaScript, and basically amounts to VBA for Google apps. But it’s even better than VBA in that it can add custom menus, dialogs, and sidebars to G Suite apps, interact with other Google services (such as AdSense and Google Drive), and quite a bit more.

	Logic Pro X: Apple’s professional audio recording software lets you create multitrack recordings of real and virtual instruments and vocals, add effects, and mix audio every which way. It can memorize all your changes in real time—adjustments to volume, panning, equalization, effect levels, and other parameters for each individual track—and repeat those changes every time you record or play back your music.

	OmniGraffle, OmniOutliner, and OmniPlan: These fine apps by the Omni Group use JavaScript for automation—and that works even in their iOS versions. It’s such an innovative automation technique that I’ve devoted a whole chapter to it. See Use Omni Automation.

	Panorama X: Another database app, even older than FileMaker Pro, Panorama was designed for speed and flexibility. In much the same way that Nisus Writer Pro is a programmable word processor, Panorama is a programmable database—in fact, it’s a complete development environment. You can control every aspect of its operation and create enormously complex applications using its built-in programming language; with scripts written in Perl, Ruby, Python, PHP, or AppleScript; or with shell scripts. (Indeed, large portions of Panorama were written in Panorama’s programming language itself.)

Panorama X is a complete, modern rewrite of the app, and I’ve been running it for a few years. Among other tasks, I use it for tracking royalties for Take Control authors. It’s an insanely powerful and flexible tool that, over time, has enabled me to automate some of the most tedious parts of my job. I can’t say enough good things about it.

Automate Email

Probably 90% of the time I spend using my Mac involves one of four apps: a text editor, a word processor (I am an author, after all), a web browser, and an email client. I send and receive large quantities of email, and I use email far more frequently than phone calls or instant messaging—maybe even more than speaking. It’s my main means of communication.

Because my incoming and outgoing email volume is so high, I can’t bear to spend any more time or effort than is absolutely necessary on filing or searching for messages. So I’ve thought long and hard about how to automate as much of that process as possible—while still ensuring that important messages never slip through the cracks.

One of my key strategies is to use rules (sometimes referred to as filters) to process messages as they come in. Each rule looks for certain conditions (criteria such as a sender, subject, or words in the message body), and then takes one or more actions whenever a match is found. For example, the rule might move the message into a certain mailbox, send an automatic reply, or delete the message.

If you’re trying to keep your inbox under control, rules are one of the most powerful tools available. Because I presort my email with rules, tons of messages that don’t require immediate attention never reach my inbox at all; instead, they’re safely shunted to other mailboxes where I can review them at my convenience. Creating a good set of rules requires a bit of thought and effort, but once you’ve done that, those rules operate invisibly in the background.

Rules are a very powerful organizational aid, but making them is just one aspect of automating email. You may also want to simplify the manual filing of messages that aren’t picked up by rules, add plugins that automate various other email actions, or use smart mailboxes as search shortcuts. I cover all those activities in this chapter.

Use Server-Based Rules

Rules can operate either in your email client (such as Apple Mail) or directly on your incoming mail server. The huge advantage to server-based rules is that they can presort messages before you see them, even if your Mac email client isn’t running. That greatly reduces the amount of mail you need to deal with on your iPhone or iPad.

I recommend starting with server-based rules if possible and then using rules in your email client for the actions you can’t accomplish on the server, like running user-defined AppleScripts on matching messages or moving messages to mailboxes in other accounts.

Check with your email provider to see whether it offers server-side rules or filters, and if so, what the procedure is to configure them. Here’s how to get started with iCloud and Gmail:

	iCloud: Log in to your account at iCloud.com. Click Mail, and then click the gear icon in the lower-left corner and choose Rules from the pop-up menu. Click Add a Rule to configure your first rule.

	Gmail: Log in to your Gmail account (using this link or whichever URL you normally use for a Google Apps account with a custom domain). From the Settings pop-up menu at the top of the page, choose Settings, and then click Filters and Blocked Addresses. Click “Create a new filter” to begin setting up a custom filter.

Although the details vary from one provider to the next, rules always contain one or more conditions (things to search for) and then, when there’s a match, perform one or more actions. For example, look for any message from a certain address (say, a company’s PR department) and file it in a Newsletters mailbox.

If your email provider doesn’t offer server-based rules, or if its conditions or actions don’t meet your needs, you can move on to rules in your email client. If Mail is your preferred client, that’s just one of the ways you can automate your email.

Tip: A service called SaneBox will, for a monthly fee, perform an automated analysis of your incoming messages, determine what’s likely to be less important to you, and move it out of your inbox (providing only a brief summary). It can do other tricks too, such as providing server-based rules—even if your email provider doesn’t offer them—and automatically moving attachments to cloud storage such as Dropbox. Although SaneBox doesn’t fit my model of email management, many people find it immensely helpful.

Automate Apple Mail

Apple Mail is my email client of choice, and as I mentioned, I go to great lengths to automate my email. In this chapter, I’ll cover my three main techniques: using rules to pre-sort my messages, using plugins to file and otherwise work with them once they’re in my inbox, and using smart mailboxes for searching. This information largely comes from my book Take Control of Apple Mail, which has far more detail—not just about automation but also about using email more effectively, troubleshooting problems, and becoming a better correspondent.

Manage Incoming Apple Mail with Rules

Whether or not you use server-based rules, you might want to set up rules within Mail. They work essentially the same way—sorting, deleting, replying to, or otherwise processing incoming messages. But they can do a few things server-based rules can’t do (such as moving a message to a different account and running an AppleScript). And, if you can’t use server-based rules, Mail’s rules are the best way to manage the flow of incoming messages.

Tip: For help writing an AppleScript that will be used in a Mail rule, open Script Editor (in /Applications/Utilities) and choose File > New from Template > Mail > Mail Rule Action. That’ll open a template with example code to get you started.

Create a Rule

To create a basic rule, follow these steps:

	Go to Mail > Preferences > Rules and click Add Rule.

A dialog appears showing the condition(s) the rule checks for and the action(s) Mail takes if the conditions match (Figure 34).

[image: Figure 34: Use this dialog to specify the condition(s) and action(s) for your Mail rule.]Figure 34: Use this dialog to specify the condition(s) and action(s) for your Mail rule.

	Enter a name for the rule in the Description field.

	Create a condition. Start by choosing something from the left-hand pop-up menu in this area. Depending on what you choose, you may now see a second pop-up menu, a text field, or both. Here are some examples of completed conditions:

[From] [Contains] apple.com

[Subject] [Begins with] Take Control

[Date Sent] [Is Less Than] 3 days old

[Message Content] [Does not contain] Sierra

	From the provided pop-up menus, choose the action you want the rule to perform on a message if (and only if) it matches the condition you just specified. (Just ahead I explain how to handle rules that include multiple actions.)

Here are some examples:

[Move Message] to mailbox: [Filed]

[Set Color of Message] [of background] [Blue]

[Reply to Message] (Click the button and fill in your stock reply)

[Mark as Read]

If you use a rule to move a message, choose your target mailbox carefully. In general, unless you mean to specifically archive the message to a local mailbox, you’ll want to move it to a server-based mailbox—most likely in the same account—so the message will be available on all your iOS devices and other Macs.

	Click OK.

An alert appears, asking if you want to apply your rules (including the one you just created) to messages in selected mailboxes.

	Click Apply or Don’t Apply, as you prefer. I generally suggest clicking Don’t Apply, because applying new rules to messages in open mailboxes can have unexpected and potentially unpleasant results.

	If you’re finished creating rules, close the Preferences window.

Your new rule now checks all incoming messages for matches and performs the actions on them that you set.

Rule Examples

One of the most common uses for rules is to process messages that follow predictable patterns. If you find yourself filing, flagging, or deleting a certain type of message at least once a week, you can save time and effort by setting up a rule to do it for you. Examples are mailing lists, utility bills, bank statements, newsletters, travel discount offers, and jokes forwarded by friends or family members.

Here are a few rules I use:

TidBITS issues:

If Any of the following conditions are met:

[From] [Contains] support@tidbits.com

Perform the following actions:

[Move Message] to mailbox: [Lists]

Any public Apple mailing list:

If Any of the following conditions are met:

[From] [Contains] @lists.apple.com

[Cc] [Contains] @lists.apple.com

Perform the following actions:

[Move Message] to mailbox: [Lists]

Feedback about this book:

If Any of the following conditions are met:

[Subject] [Is] Take Control of Automating Your Mac

Perform the following actions:

[Move Message] to mailbox: [Take Control Feedback]

Tip: To ensure that a message matched by a given rule isn’t also processed by other rules, add the Stop Evaluating Rules action as the final action for any rule. Doing this improves Mail’s performance and avoids potential rule conflicts.

Mail applies rules automatically to messages as they are delivered to your inbox. Sounds about right, but there is a hitch. Mail does not apply rules to messages that arrive in other mailboxes, even if the messages are unread. That means if you have a server-based rule that moves certain messages to your Family mailbox, those messages bypass your inbox and therefore don’t get processed by Mail’s rules.

You can manually apply rules to selected messages, wherever they reside, by choosing Message > Apply Rules. For example, you might want Mail to use rules to re-sort messages that were moved into the wrong mailbox by the server. However, note that that command applies all your rules, not just a specific rule. If you want more control over after-the-fact rules, try the Mail Act-On component of SmallCubed’s MailSuite plugin, discussed ahead.

Automate Apple Mail with Plugins

Numerous third-party Mail plugins let you give the program new features, enable significant customization options, and even zap unwanted features. For example, plugins can stop spam, encrypt email messages, offer advanced message filing options, change the way attachments are handled, and much more.

I won’t try to catalog all the available Mail plugins here, but I do want to put in a plug (so to speak) for a few plugins that I find especially helpful for automating Mail above and beyond what rules do. These plugins allow me to act on messages in my inbox and save time when composing or replying:

	MailSuite is my favorite Mail plugin by far. It combines four plugins that the developer, SmallCubed, previously sold separately: MailTags, Mail Act-On, Mail Perspectives, and SigPro. Of these, the first two are particularly relevant to this book:

	Mail Act-On is a multipurpose tool that adds numerous features, but the one I like best is its clever approach to filing messages. Mail’s built-in rules run automatically when messages are received, but Mail Act-On adds another layer of rules that run on demand, via keyboard shortcuts—or when a message is sent. You can even combine multiple rules in a single keyboard shortcut.

For example, I can select a message and press my keyboard shortcut that means “do the right thing with this message,” and it will move the message into Mailbox A if it’s from person A, B, or C, but put it into Mailbox B if it’s from person X, Y, or Z. It’s extremely clever, and that’s only one tiny example of what Mail Act-On can do.

Note: Although Mail Act-On is my personal pick for filing messages from the keyboard, other plugins that do similar things and have their own loyal fans include MsgFiler and MailHub.

	MailTags adds tagging to Mail messages (as the name suggests) as well as numerous other advanced organizational tools.

	MailButler, like MailSuite, is more like a collection of plugins than a single tool. Among its many capabilities:

	Convert an email message to a to do item.

	Schedule messages to be sent in the future.

	Snooze a message so that it disappears from your inbox, but then reappears later.

	Unsubscribe from mailing lists with one click.

MailButler’s basic features are free, and even advanced capabilities can be used up to 30 times per month without charge. Higher-volume usage of advanced features requires a paid subscription.

	SpamSieve: If you get too much spam in your inbox even after server-side filtering, SpamSieve is the best tool, by far, for separating the wheat from the chaff.

	QuoteFix: This plugin lets you customize quoting to your specifications. For example, you can more easily put quoted text first and your reply after (so your recipient needn’t jump around in the message to understand the context). Unfortunately, it hasn’t been updated since Mojave.

Tip: Mail lets you define signatures that appear at the bottom of each message (see Mail > Preferences > Signatures). Although Mail provides a decent level of customization, it doesn’t approach what you can get if you Use a Third-Party Text Expansion Utility instead. Other tools that can customize signatures include MailButler and the SigPro module of MailSuite.

Search Faster with Smart Mailboxes

Back in Create and Use Smart Containers, I explained what smart mailboxes are (basically, saved searches) and how to create them. If you click a smart mailbox icon, it should initially display exactly the same messages as the search you used to create it. As you receive and delete messages that meet your criteria, the list will change.

Here are my favorite suggestions for making smart mailboxes:

	Show all correspondence with a specific person or group: Choose Any from the pop-up menu at the top. Add two conditions, [From] and [Any Recipient], both of which include the other person’s email address. (To show conversations with more than one person, create a new Contacts group with all the names you want to include, and instead of [From], choose [Sender Is a Member of Group] [some-Address-Book-group]. Then add [Any Recipient] conditions for each person in the group individually.)

Make sure you select Include Messages from Sent to pick up your messages to this person. For even better results, choose View > Organize by Conversation to display all your exchanges in a threaded conversation.

	Display recent unread messages: If you use rules to move messages into different mailboxes, you might enjoy seeing all your unread messages—wherever they may be—in a single place. If you like, limit these to messages received in the last day (or few days).

	Locate attachments in Sent mail: If you often send photos or other large attachments, their copies in your Sent mailbox can take up a lot of space, and you probably have the originals. Make a smart mailbox with two conditions: [Contains Attachments] and [Message is in Mailbox] [Sent]. From time to time, check this mailbox; to remove attachments from these messages, select them and choose Message > Remove Attachments.

	What to do if All and Any aren’t smart enough: If you use the [Message is in Mailbox] condition, the contents of one smart mailbox can depend on another smart mailbox. This is handy when you have so complex a set of conditions that Any and All are too limited. For example, you might have one smart mailbox that lists messages from any (“Any”) of several friends, and another that lists messages that are both in the first smart mailbox and (“All”) marked as high priority.

	Look for group members: Use the [Sender is a Member of Group] option to search for messages from people in one of your Contacts groups. And yes, you can even refer to smart groups, so that as your contacts’ information changes, the contents of the smart mailbox track the automatic changes in smart group contents.

Automate Outlook Email with Rules

Whatever you may think of Microsoft in general or Office in particular,Microsoft Outlook for Mac is a highly capable email client with extensive automation capabilities. You can create rules much like those in Apple Mail, but with a few key differences:

	Each incoming account type (Exchange, POP, and IMAP) has its own distinct rules.

	You can also create rules that apply to outgoing messages. (In Mail that requires a third-party plugin).

	In addition to rules that match Any and All conditions, you can specify negative matches—“Unless any conditions are met” and “Unless all conditions are met.”

	The conditions and actions available are somewhat different from Mail’s, but the most crucial one, in my opinion, is that while Outlook’s rules can match any header or metadata, they can’t search the message body on incoming IMAP messages—only on messages coming from POP and Exchange accounts.

To create a rule in Outlook:

	Choose Tools > Rules.

	Select an account type in the list on the left.

	Click the plus button.

	Enter the desired condition(s) and action(s), give the rule a name, and click OK.

The rule begins working immediately.

Automate Other Email Apps

I’ve focused here on Mail and Outlook because of their popularity. But lots of other Mac email clients contain rules and/or other automation features, too, including:

	Airmail

	Inky

	MailMate

	Mail Pilot

	Postbox

	Thunderbird

I refer you to the apps’ documentation to discover how to use their respective automation features.

Automate the Web

You might not think of web browsing as an activity that requires automation. You follow links, you read articles, watch cat videos, maybe make the occasional purchase, but that’s all inherently manual, right? After all, I don’t want my Mac to read Facebook posts for me or play games behind my back.

But in fact, the web offers numerous opportunities for shortcuts and simplification. For example, every time you’re asked to supply a username and password, a credit card number, or a mailing address, your Mac can do that for you—no typing (or memorizing) required.

Here’s another example: you keep checking a certain webpage—or maybe a specific portion of a page—for changes. Maybe you’re waiting for an announcement, a sale, or a product update, or maybe you’re looking for news stories about your neighborhood. Repeatedly checking a page for changes (whether once a day or several times a minute) is exactly the sort of labor-saving task computers are good at.

And then, looking more generally at cloud services that have a web presence, there are tons of opportunities for connecting things. Perhaps you want to post photos to Facebook after they appear in a shared Dropbox folder. Or save links from your favorite tweets to Instapaper. Or see an alert in the evening if tomorrow’s weather forecast calls for rain. All sorts of things that can occur in one cloud service can trigger events in other cloud services—an area ripe for automation.

Log In Faster with iCloud Keychain and Safari Autofill

Let’s begin with an easy way to automate filling out all those pesky web forms, without the need for any extra software.

Note: This topic is adapted from my book Take Control of iCloud.

The Mac version of Safari (like nearly all web browsers) can automatically fill in your contact information (name, address, phone number, and so on), as well as usernames and passwords, on web forms. Safari uses the Mac’s system-wide keychain mechanism to securely store the portions of this data that aren’t already in your Contacts app.

iCloud Keychain, included in macOS and iOS/iPadOS, extends this capability. It lets you sync a keychain across your Apple devices securely via the cloud. The biggest benefit is that Safari for iOS/iPadOS can autofill usernames and passwords that you stored in a keychain on your Mac (and vice versa). But iCloud Keychain also includes:

	A strong password generator built into Safari (on both platforms)

	The capability to store, sync, and enter credit card information (except the CVV number from the back of the card) in web forms

	Support for multiple sets of credentials per site

	A way to view and remove passwords within Safari

In addition, if you turn on iCloud Keychain, it automatically syncs the settings for the accounts listed in the Internet Accounts pane of System Preferences on your Mac (including email accounts) amongst your other Macs. This account syncing does not extend to iOS/iPadOS devices.

Enable and Configure iCloud Keychain

The short version of setting up iCloud Keychain is: go to System Preferences > Apple ID > iCloud (in Catalina or later) or System Preferences > iCloud (in Mojave or earlier), select the Keychain checkbox, and enter your Apple ID password. Repeat on your other devices. However, unlike most iCloud features, flipping a single switch isn’t all there is to it here; the initial setup process is more involved. Also, the steps you follow with whichever device you set up first will be different from the steps for setting up all subsequent devices.

If you haven’t already set up iCloud Keychain, I encourage you to read Apple’s article Set up iCloud Keychain for details.

One iCloud Keychain is enabled and syncing your data, you must next configure Safari to use its features. Go to Safari > Preferences > AutoFill and make sure the checkboxes are selected for each type of data you want to autofill—the two options relevant to iCloud Keychain are “User names and passwords” and “Credit cards.” (If you like, you can also select “Using information from my contacts” or “Other forms”; I discuss these later.) Then click Passwords at the top and, if the screen says “Safari passwords are locked,” fill in the password for your macOS user account and press Return.

Note: Mac users can autofill passwords from iCloud Keychain only in Safari (as of Catalina), while iOS and iPadOS support this feature across all apps. I address only Mac usage in this book.

Autofill Passwords

After you load a login page for which you’ve already stored credentials in your iCloud Keychain, you can do any of the following to fill your credentials:

	Choose Edit > AutoFill Form

	Press ⌘-Shift-A

	Click or tap in the Username or Password field and then click the credentials you want to use on the pop-up menu that appears

Safari fills in the username and password fields for you—all you need to do then is click or tap the Login button or its equivalent.

If you’ve stored more than one set of credentials for a site—for example, if you have two different accounts for Google or Twitter—first delete the credentials Safari has autofilled, if any. You can then click in the username field to display a pop-up menu with your logins (Figure 35); choose the one you want to fill in your credentials.

[image: Figure 35: If you have multiple credentials for a site, click or tap in the username field to choose one.]Figure 35: If you have multiple credentials for a site, click or tap in the username field to choose one.

If Safari autofills a set of credentials and it’s not what you want, delete them and try clicking or tapping the username field again. If they still don’t appear (for example, because the domain names don’t match exactly), click Other Passwords. In the dialog that appears, locate the account you want (manually or using the Search field). Select it and click Fill.

Some websites deliberately block browsers and password managers from saving passwords you enter there, in a misguided attempt at greater security. Safari can either accept or attempt to bypass any site’s restrictions, but, unfortunately, you can’t control that behavior.

Store New Passwords

If you arrive at a login page for which iCloud Keychain does not yet contain your credentials, enter them manually (or with a third-party password manager) and log in. Safari should then display a prompt asking if you want to save the password in your iCloud Keychain. Click Save Password to store your credentials for that site.

If you already have credentials stored for the site and you want to store an additional username/password combination, first delete the credentials Safari has autofilled. Then enter the new credentials, log in, and click Save Password when prompted.

Generate a Random Password

When you’re asked to register on a website and create a new password, iCloud Keychain can generate one for you and store it automatically. Follow these steps:

	Make sure the Password field is completely empty.

	Click or tap in the field.

	Click the key icon and choose Suggest New Password from the pop-up menu.

	Safari fills in a suggested password (highlighted in yellow), but displays only the first few characters, along with the label “Strong Password.” A popover with additional details may appear on its own; if not, click the field to display it (Figure 36).

[image: Figure 36: Click a suggested password to see this popover.]Figure 36: Click a suggested password to see this popover.

	To use Safari’s suggested password, click Use Strong Password. You may be unable to even see the entire password. Click Don’t Use to fill in your own password, either one you type or via a third-party password generator.

	Fill in any remaining fields (such as Username) and submit the form.

When you submit the form, Safari saves your credentials for the site without any additional steps.

Store and Enter Credit Card Numbers

Credit cards work much like passwords—if you type or paste a credit card number into a blank field (along with its expiration date) and submit the form, Safari prompts you to save the credit card number in your iCloud Keychain. (Remember, it doesn’t save or store the CVV number from the back of your credit card.)

When it’s time to fill in a stored credit card number, click or tap in the Credit Card Number field and choose the desired credit card from the pop-up menu—or from the QuickType bar in iOS. If you have more than one credit card stored, Safari displays a pop-up menu from which you can choose the one you want to use, just as when filling in your username and password on a site for which you have multiple sets of credentials.

Autofill Other Data

I mentioned that you might want to enable Safari’s two other autofill features in Safari > Preferences > Autofill. The first, “Using information from my contacts,” populates form fields with your contact information when appropriate. The second, “Other forms,” does the same thing for anything you’ve previously filled in on a form that isn’t part of your credentials, credit card, or contact information—that might include preferences, survey questions, or nearly anything else.

Tip: Pay attention when you use this feature, to make sure that it doesn’t autofill unwanted data, such as an old coupon code in an online shopping cart.

As you browse the web, if “Other forms” is selected, Safari remembers everything you enter in a form field.

Later, if you want to fill that in on the same site—or if you want to fill in your contact information—you have two choices:

	Choose Edit > AutoFill Form (⌘-Shift-A).

	Start typing your contact information in any form field. When Safari sees that it matches corresponding information from your card in Contacts, it pops up a little card icon labeled with your name. Click this icon or press the ↓ key to select it, and then click AutoFill (or press Return) to fill in the rest of the form.

Automate Web Logins with a Password Manager

Although the combination of Safari and iCloud Keychain can simplify entering most form data, you might consider (instead or in addition) a third-party password manager. Why would you pay for something that’s built into macOS and iOS/iPadOS? Well, third-party tools can do several important things that iCloud Keychain can’t:

	Work on older versions of macOS, as well as non-Apple platforms (Android, Windows, Linux) that you might also use

	Generate stronger random passwords to your exact specifications (length, case, numbers, special characters, and so on)

	Autofill credentials in other macOS browsers (such as Google Chrome and Firefox)

	Store and fill multiple sets of contact data (such as home and work)

	Fill in your credit cards’ CVV numbers, so you don’t have to dig them out of your wallet every time you make a web purchase

	Store a broader range of information types, including software licenses, passports, memberships, and reward programs

	Provide a friendlier interface for viewing and editing data than Apple’s awful Keychain Access utility

For all these reasons, although I use and appreciate iCloud Keychain, I rely more heavily on a password manager called 1Password. It syncs all my data amongst my Macs and iOS devices, as well as Windows and Android devices. It has lots of useful organizational features. And, it gives me a greater feeling of control over my passwords than iCloud Keychain does. When I get to a webpage that asks for my credentials, I simply press the default keyboard shortcut ⌘-\, and 1Password fills them in; I then press Return to submit the form. Piece of cake.

In fact, I like 1Password so much I wrote a book about it: Take Control of 1Password. If you choose to use 1Password, you may find that book helpful in getting up to speed.

However, 1Password is not by any means the only game in town. Other third-party password managers that have most of the same features (and thus, the same advantages over iCloud Keychain) include Dashlane, LastPass, and RoboForm. I’ve tried them all and would happily recommend any of them.

Tip: To learn more about password security generally—including what crucial steps you should take beyond simply using a password manager—see my book Take Control of Your Passwords.

Tip: If you want to automate a series of operations on webpages, such as logging in, filling in forms, and searching, you can use Keyboard Maestro (see Control Your Mac with Keyboard Maestro).

Automate Cloud Services

Hundreds of apps, sites, services, and other products proclaim their connections to the cloud, even though it’s often unclear what “cloud” means or what its benefits are.

Tip: I use the term “cloud” to refer to storage, apps, and other services made available over the internet as a replacement for similar products that would otherwise run on local devices or require managing resources on a server. Such services are provided by large, distributed computer networks rather than individual servers, adding another stratum to the cloud metaphor.

A consequence of this cloud craze is that you can end up with dozens of accounts with cloud services that partially overlap in capabilities. Yet for the most part, these services don’t communicate with each other. The result is that you may end up spending a lot of time taking a file, photo, or piece of information from one cloud service and moving or posting it to another service.

Luckily, a few sites have emerged whose entire purpose is to connect cloud services for you, automating the cloud so that useful things happen in one service when something happens in another.

Let me give you some concrete examples of how multiple cloud services can be connected and automated:

	Add something to the Reminders app (in macOS or iOS/iPadOS) and it’s copied to an Evernote checklist.

	When someone tags you in a Facebook photo, download that photo to your Dropbox.

	Post an Instagram photo and have it automatically sent to Twitter too.

	Save all your incoming email attachments to your OneDrive.

	Send a thank-you note by email whenever someone endorses you on LinkedIn.

Got the idea? Let’s look at three sites that let you do those sorts of things.

Tip: I wrote this little (not so little) book called Take Control of the Cloud, which undertakes the ambitious task of making sense of the cloud. If you find the many competing and overlapping cloud services overwhelming, this book will help you sort out what you need.

IFTTT

IFTTT (for If This, Then That) is the best-known and most popular site in this category. The name describes the basic concept: you create two-part recipes called applets that say: If this happens (in one cloud service), then do that (in a second service). These applet formulations are a bit like email rules, except that, in their default representation there’s always exactly one condition and one action—simple.

What services can you connect? Why, there several hundred of them, which IFTTT refers to as “channels,” covering almost every major cloud storage platform (Box, Dropbox, Google Drive, OneDrive…), social network (Facebook, LinkedIn, Twitter, Foursquare…), and photo site (Flickr, Instagram, 500px…), plus iOS/iPadOS data (contacts, location, notifications, photos, reminders), email, SMS, blog platforms, news sites, home automation tools, and even things like the date, time, and weather. The list is growing all the time.

IFTTT provides many prebuilt actions; you can also build your own, use actions other people have created, or edit an existing applet to meet your needs.) Here are a few examples of prebuilt actions:

	Back up your new Facebook photos to Google Drive.

	Post to Trello when a specific tag is added to an Evernote note.

	Whenever you add a new iOS/iPadOS contact, mark it in your Google Calendar.

	Turn on your lights automatically as you arrive home.

	Automatically post a reminder to a Slack channel 15 minutes before a calendar event starts.

	Get a mobile notification when your Whirlpool dryer cycle finishes.

As you see, applets are customizable to include things like time, date, and location, among other attributes.

IFTTT is free for personal use. After signing up for an account, you activate whichever channels you’re interested in by signing in to the relevant accounts. Then you can choose from a prebuilt applet, or concoct your own as follows:

	Click your avatar in the upper-right corner and then click Create from the pop-up menu.

	Click the word This.

	Click a trigger channel—where you look for the new piece of data that will kick off the recipe.

	Fill in any necessary information (the options vary by channel). For example, if your trigger channel is Facebook, you click one or more links to specify what particular activity in your Facebook account you want to use (such as “You are tagged in a photo”). Then click “Create trigger.”

	Now click the word That.

	Click an action channel—where the information from the trigger channel will be sent. For example, you can click Email followed by “Send me an email.”

	Once again, specify any details necessary to complete the action, such as whether you want to download a photo or have its URL added to a text file.

	Click “Create action.”

	Finally, review your applet and click Finish.

That’s it! Your recipe now runs by itself, automatically taking the action you specified when the trigger occurs.

Tip: For a great example of using IFTTT with iOS notifications (via iCloud), read Ben Waldie’s Macworld article Power tools: Make events on your Mac trigger iOS notifications.

If you need more power, however, you can turn to the (also free) IFTTT Platform, which lets you create applets with greater complexity. For example, an applet can have not just one action but several—If this, then that and that and that. And, the starting condition can run through a filter that you write (using JavaScript) that overrides or skips actions depending on certain variables.

Zapier

Unlike IFTTT, Zapier is designed primarily for business. As such, it integrates with a much larger number of cloud apps and services, including many that are strictly for enterprise use. Zapier refers to its automations as Zaps. In the basic, free plan, you can create Zaps with only two steps (a trigger and an action, just like IFTTT’s basic applets), using a subset of the available cloud services. To access the full range of services and multi-step Zaps, you’ll need a paid plan; prices start at $19.99 per month.

If you need to automate business-related cloud services that IFTTT doesn’t connect to, such as Infusionsoft, Zoho CRM, Basecamp, or QuickBooks Online, Zapier is the tool to use. Some example Zaps:

	Add new WooCommerce orders to QuickBooks Online as customers.

	Create Infusionsoft contacts for new successful sales in PayPal.

	Post new Basecamp 2 activity to Slack.

	Start or stop instances on Amazon EC2 on a daily schedule.

	Copy new Facebook Lead Ads leads into Zoho CRM as leads.

If those names don’t mean anything to you, don’t worry! You’re probably just not the target audience for Zapier, and IFTTT will likely be more suitable for your needs.

Discover Other Web Automation Options

Connecting cloud services is fantastically useful, but sometimes you may need something a bit simpler and more elegant. For example, you might want to monitor the web (as a whole) for new pages on a topic of interest, or monitor a specific page for changes.

Monitor the Web with Google Alerts

The web changes continuously, so Google is constantly updating its massive index of the web to provide up-to-date search results. As a result, a search you perform one day may yield completely different results than it did yesterday. If you’d like to stay on top of a given subject, you can use the free Google Alerts service to perform an automated search every day (or even more frequently, if you like) and send you any new results by email or a customized RSS feed.

To use Google Alerts, you fill out a form (Figure 37) with your search query (just as if you were doing a regular Google search), click Show Options, and fill in a few other pieces of information—most crucially, your email address (or choose RSS Feed from the Deliver To pop-up menu to create an RSS feed). The current results of your query appear beneath the form. Click Create Alert, and you’re done—you’ll get the results automatically.

[image: Figure 37: Create a Google Alert by filling out this form.]Figure 37: Create a Google Alert by filling out this form.

You can go back to the Google Alerts page whenever you like to add, remove, or modify alerts.

Ideas for Google Alerts:

	Google yourself and find out when people are talking about you.

	Follow rumors about hypothetical new Apple devices.

	Get the latest news on treatments for a medical condition a loved one is experiencing.

	Search for discounts and deals on products you’re interested in.

	Keep tabs on your competition.

Use a Cloud Service to Monitor a Website for Changes

In the online appendixes to my book about backing up a Mac, I have tables listing the features of many backup apps and cloud services. This information changes all the time, though. One way I keep that information (more or less) up to date is by monitoring the pages that list release notes or other version information for each of dozens of apps. When a page changes, I check to see if the change is relevant to my table, and if so, I update the table accordingly.

Needless to say, I don’t manually check dozens of webpages for changes every day! Instead, I use a free service that checks for me and sends me an email message if any monitored page has changed since the last time it checked.

I’ve used two such services—WatchThatPage, which has a kind of awkward and old-fashioned interface, but gets the job done; and Visualping, which is more modern and customizable.Either way, the process is dead simple: sign up for a free account, enter a URL, and click a button to start monitoring it.

Tip: If you do use a service like this, do yourself a favor and set up a rule in your email client (see Automate Email) to file all those change reports into a special mailbox. They tend to accumulate over time!

Other reasons to monitor websites for changes:

	Watch for schedule changes, special events, and other announcements from your child’s school.

	Find out the second any new Take Control book is published—even if you’re not on our mailing list!

	Learn about new products or price drops in the Apple Store.

	Get updates on your favorite crowdfunding projects from Kickstarter, Indiegogo, and the like.

Automate Backup and Syncing

Anyone who has followed my writing for Macworld, TidBITS, or Take Control over the last decade is undoubtedly aware of my passion for good backups. I’ve written several books (including Take Control of Backing Up Your Mac) and lots of articles on the topic, and I preach about the importance of backups at every opportunity.

In this book, I’m not going to try to convince you to back up your Mac; I’ll take for granted that you already know that’s a good idea. Instead, I want to focus on automating backups. Believe it or not, there are still people who back up important files by dragging them to another disk once a day. Still others use backup software to do the job, but they back up only when they remember to run that software.

My feeling is that if you don’t have hands-off backups, you’re doing it wrong. Backups should happen all by themselves—whether once a week or multiple times an hour—without any intervention. Not only does it require extra effort to launch a backup app and click a button, it’s an interruption—one you might put off if you’re too busy, or forget about at a crucial moment right before losing data!

In this chapter, I discuss three backup scenarios: using Time Machine, using a third-party tool that creates versioned backups, and creating bootable duplicates. You may not use all of these methods, but whichever one(s) you use, they should be automated.

I also talk briefly about automating syncing between Macs. Although that doesn’t count as backup in my book, many of the same assumptions apply—and you may even be able to use the same software for both backups and syncing.

Run Backups Automatically with Time Machine

Time Machine is the backup feature that Apple built into macOS. It’s not necessarily the best backup tool, but it’s reasonably good. Most importantly, it’s extremely easy to set up, making it the path of least resistance for many users.

Time Machine ordinarily runs once an hour, backing up whatever has changed or been added since the previous hourly run. This happens in the background, with barely any visible clue. So, if you’ve set up Time Machine already, and you’ve kept the default options, there’s nothing more to see here—move along to the next topic.

If you haven’t already set up Time Machine and would like to—or if you configured it but turned off automatic backups—keep reading.

Configure Time Machine

To activate Time Machine, all you need to do is tell it what destination to use:

	Go to System Preferences > Time Machine.

	Click Select Backup Disk.

A dialog appears (Figure 38), listing all volumes eligible to be a destination disk (including external hard drives, network volumes configured as Time Machine servers, and AirPort Time Capsules) and the amount of free space on each.

[image: Figure 38: Available local and network volumes appear in this window; select the one you want to use and click Use Disk.]Figure 38: Available local and network volumes appear in this window; select the one you want to use and click Use Disk.

	Select a volume, and click Use Disk.

On the Time Machine preference pane, the Back Up Automatically checkbox is selected, and a timer begins a 2-minute countdown before your first backup begins. (You may prefer to deselect that checkbox until you’ve excluded files from Time Machine, which I talk about next.)

At any point, you can select or deselect Back Up Automatically. When it’s deselected, that means only that Time Machine doesn’t run automatically; you can still run it manually, at any time, by clicking and holding (or right-clicking) on the Time Machine Dock icon and choosing Back Up Now, or by choosing Back Up Now from the Time Machine menu in the main menu bar. (If you don’t see the Time Machine menu, you can enable it with the Show Time Machine in Menu Bar checkbox in System Preferences > Time Machine.)

You can turn off Time Machine temporarily if need be, but please don’t leave it off. Remember, backups are most valuable when they’re automatic!

During each of Time Machine’s hourly runs, it backs up only the files that have changed since its previous run (except files you’ve excluded, as I discuss next). If an application stores its data as a package (that is, a folder that looks like a file in the Finder), Time Machine backs up only changed items within the package. (Among many others, Photos, GarageBand, and DEVONthink use packages for their data.)

Restore Data with Time Machine

Once you have Time Machine set up and running, it normally does its thing silently in the background, without intruding on your work. And you can continue ignoring it until the time comes when you need to restore something—a missing file or folder, or a previous version of a file you still have.

If you notice that a file or folder is missing, or that you’ve accidentally changed it and need an older version, follow these steps to retrieve an item from your Time Machine backup:

	In the Finder, make sure the window that contains the item you want to restore (or the one that used to contain it, if it’s been deleted) is frontmost—you can verify this by clicking anywhere in the window.

	Click the Time Machine icon in the Dock or choose Enter Time Machine from the Time Machine menu.

The frontmost window moves to the center of the screen, and the screen’s background changes to the “infinity mirror” display, with copies of the window receding into the background (Figure 39).

[image: Figure 39: Go “back in time” to a previous version of your data.]Figure 39: Go “back in time” to a previous version of your data.

	To locate the file or folder you want, do one of the following:

	Just to the right of the main window, click the top arrow (which means backward in time). Time Machine zooms back to the most recent backup in which that window’s contents were different. Keep clicking to continue zooming back through previous versions of that window; click the bottom arrow to move forward in time.

	Use the controls along the right edge of the screen to jump to a particular backup. As you hover your pointer over the small horizontal lines, they zoom in to display the date and (for recent backups) time of the corresponding backup. Click any of these lines to jump right to that version of the window. As you zoom backward or forward in time, the date and time of the backup you’re currently viewing is shown to the right of the main window.

	Once you’ve selected the item you want to restore, decide whether you want to restore it to its original location or somewhere else:

	Original location: Click the Restore button. Time Machine immediately restores the selected item, and returns you to the Finder. (Time Machine may prompt you to enter an administrator password.) You can use this procedure even if you want to restore an older version of a file but keep the current version. After you click Restore and the Finder reappears, you’ll see an alert asking whether you want to replace the existing file, keep both copies, or keep the original (thus canceling the restoration).

	Different location: Right-click (or Control-click) the item and choose Restore “File Name” To from the contextual menu, navigate to the desired destination, and click Choose.

If you decide against restoring any files, instead click the Cancel button or press Esc.

Tip: For more details, including how to restore an entire disk with Time Machine and how to restore data from within apps such as Contacts and Mail, see my book Take Control of Backing Up Your Mac.

Create Hands-Off Versioned Backups

Whether or not you use Time Machine, you may use another product to create versioned backups (that is, backups that store multiple versions of each file). Dozens of apps can do this, including apps that back up data to the cloud, apps that back up data to local devices, and apps that do both.

In any case, I simply want to emphasize that if you use any such app, you should be certain it’s configured to perform backups without any manual effort.

Some apps back up files as soon as they change, or at least within an hour or so—among these are apps such as Arq, Backblaze, and DollyDrive. As long as that’s the case—and you haven’t disabled automatic backups—you should be in good shape.

But many backup apps, especially those that have been around for many years, run only on a schedule that you determine. Some apps can run as often as once per minute; others can run no more frequently than once per day. Apps that require scheduling include ChronoSync, Intego Personal Backup, and QRecall, among others.

Note: Retrospect Desktop is a backup app that normally runs on a schedule, but can be set to run whenever client machines are available using its Proactive Backup feature.

Follow the instructions that came with your backup app to schedule backups. You can choose what frequency works best for you, which should take into account how actively you modify files and how much of an impact the backup app has on your system when it runs. For me, once an hour is too infrequent, but even if you use your Mac only casually, I suggest scheduling backups to run at least once a day.

What I use: Because I write so much about backups, I have more backups than I need, so I wouldn’t tell you to do what I do. But I use a combination of Time Machine and Backblaze for versioned backups, plus several cloud syncing services that store multiple versions of certain files.

Schedule Bootable Duplicates

Along with versioned backups, bootable duplicates are a key pillar of a complete backup plan. They let you get back to work quickly in the event of a hard drive failure, give you a useful troubleshooting tool, and make upgrading to a new version of macOS safer.

You can’t make a bootable duplicate by copying files in the Finder; you need a special utility. Lots of programs can do this, but I want to talk about two—SuperDuper and Carbon Copy Cloner—that focus on just this one task and do it easily, effectively, and on a schedule (I recommend once a week at the very least—once a day is even better).

Create a Duplicate with Carbon Copy Cloner

Carbon Copy Cloner was one of the first tools available for creating a bootable duplicate of a macOS volume, and it has undergone numerous revisions since then.

Although it was originally designed only for creating bootable duplicates, Carbon Copy Cloner has gradually added more features; it now also optionally creates versioned backups. In fact, in the course of creating a bootable duplicate, it can move any outdated or deleted files safely aside on the destination disk—meaning the duplicate actually contains extra data, but that’s fine because the archived versions of old files won’t prevent booting or normal operation. Carbon Copy Cloner now has several other safety features too, which can protect you from the consequences of accidental file deletion.

In the instructions that follow, I deliberately avoid most of these safety features, and instead show you how to create a standard, run-of-the-mill duplicate that’s a true clone of the source volume. Consult the documentation that comes with Carbon Copy Cloner to learn about other ways of using the software to back up your disk.

To create a duplicate with Carbon Copy Cloner, follow these steps:

	Launch Carbon Copy Cloner.

	In the main Carbon Copy Cloner window (Figure 40), click in the Source area and choose your internal disk from the pop-up menu that appears; then click in the Destination area and choose the disk or partition set aside for duplicates on your external disk from the Destination pop-up menu.

[image: Figure 40: Carbon Copy Cloner has a different window layout than SuperDuper, but features comparable plain-English explanations.]Figure 40: Carbon Copy Cloner has a different window layout than SuperDuper, but features comparable plain-English explanations.

	From the pop-up menu under Source, choose Copy All Files (the default).

	From the pop-up menu under Destination, choose SafetyNet Off.

	Optional but recommended: click in the Schedule area, choose your desired frequency for automatic duplicates from the Run This Task pop-up menu, and click Done.

	Click Clone, enter your administrator password, and click OK to make an immediate duplicate. Then wait—it’ll take a while.

If you selected scheduled updates, Carbon Copy Cloner updates your duplicate at the appointed times.

Create a Duplicate with SuperDuper!

SuperDuper! has a well-deserved reputation for its ease of use and reliability. The software costs $27.95; a free version lets you create duplicates but not update them incrementally.

To create a duplicate with SuperDuper!, follow these steps:

	Launch SuperDuper!.

	You’ll see two pop-up menus at the top of the window that appears (Figure 41); choose the source (your internal disk) from the one on the left and the destination (the disk or partition set aside for duplicates on your external disk) from the one on the right.

[image: Figure 41: The SuperDuper! window asks you for just a few pieces of information, and explains what will happen in plain English.]Figure 41: The SuperDuper! window asks you for just a few pieces of information, and explains what will happen in plain English.

	From the Using pop-up menu, choose “Backup - all files.”

	Click Options. In the General view, from the During Copy pop-up menu, choose Smart Update Destination from Source. Click OK.

	To schedule this duplicate to occur on a schedule, click Schedule. Select the day(s), week(s), and time to run the schedule. I recommend at least one day per week but preferably once a day, at a time when you aren’t actively using the Mac. Click OK.

Immediately or on the schedule you selected, SuperDuper! duplicates your internal drive to your external drive.

What I use: I use Carbon Copy Cloner for bootable duplicates, and I have it scheduled to update my duplicate twice a day (although I’m tempted to make it four times a day). Because it updates so frequently, relatively little changes between runs, so it’s pretty fast.

Automate Mac-to-Mac Syncing

Do you use two or more Macs regularly? If not, skip ahead to the next chapter. But if you do, you may find it useful to keep some or all of the data in sync between Macs. I can say from experience that it’s far better to automate this process than to do it manually!

I suggest thinking through two main questions:

First, is it desirable (or even possible) to keep all your personal files in sync between two Macs?

If you have an iMac with 3 TB of storage and a MacBook Air with 128 GB, the answer is clearly no. Even if all your Macs have enough space for all your files, you may not need or want to have all of them everywhere. So, if the answer to this question is no, you’ll have to figure out which subset of files to keep in sync. All things being equal, it’s easiest if you can segregate all those files into a single folder or a small number of folders.

You’ll notice, by the way, that I said personal files. You should never, ever try to sync all files between two Macs—in particular, stay far away from the top-level /System, /Library, and /Application folders, as well as any hidden folders. Attempting to sync any of those can lead to serious data corruption, including an inability to boot your Mac. So whatever you choose to sync, make sure it’s not part of macOS.

Second, is it desirable (or even possible) to use a cloud service to sync files between your Macs?

I’ll use Dropbox as an example. If it turned out that you had 800 GB of data you wanted to keep in sync between two (or more) Macs, you could purchase 2 TB of storage from Dropbox for about $120 a year. Install Dropbox on your Macs, make sure all the files you want to sync are in your Dropbox folder, wait for that initial upload to finish, and…you’re done. You never have to run sync software or take any other manual action; file changes propagate almost instantly. As a bonus, the files in your Dropbox are also available on your mobile devices, and can be shared easily with others.

What’s true of Dropbox is also true of numerous competing services—Box, Google Drive, Microsoft OneDrive, SpiderOak One Backup, SugarSync, and many more. They each have their own features, benefits, and pricing, and you may prefer one over the others for any number of reasons. But they all can perform the essential task of syncing the contents of one or more folders across Macs automatically.

Then there’s iCloud Drive, which is built into macOS and iOS. Superficially it works much like Dropbox, and it can keep whatever files you store in it in sync between your Macs automatically. In fact, iCloud Drive can optionally sync your Desktop and Documents folders across your Macs too. That’s nice in theory, but I’ve found it to be problematic in practice because of the extremely large and frequently modified files I keep in those two folders. (You can turn this feature off by going to System Preferences > iCloud, clicking Options next to iCloud Drive, and deselecting Desktop & Documents Folders. After doing this, select iCloud Drive in the sidebar of any Finder window, open the Desktop folder within it, and drag its contents to your desktop. Repeat with your Documents folder.)

Tip: If you happen to choose iCloud Drive for cloud syncing, check out Take Control of iCloud.

Of course, you may not want to sync files via the cloud, due to privacy concerns, cost issues, available bandwidth, or the sheer volume of data. If that’s the case, you might want to consider sync software such as:

	Resilio Sync Home: Based on the BitTorrent file sharing protocol, Resilio Sync Home (formerly called BitTorrent Sync) functions much like Dropbox, but without the cloud storage. You tell it which folders you want to sync on each of your computers, and syncing happens quickly, in the background, whenever files change. An iOS app is available too.

	ChronoSync: This powerful and flexible app can sync files between folders, volumes, or Macs in almost any way you can think of: one-way, bidirectionally, with or without filters, and so on. (For Mac-to-Mac syncing, you may want the add-on ChronoAgent app on one of the Macs.) You can set up syncing to happen as frequently as once a minute. ChronoSync can also create both versioned backups and bootable duplicates, if you like, although it’s not quite as easy to use as Time Machine or Backblaze.

What I use: I use Resilio Sync to keep a few of my key folders (~/Documents, ~/Desktop, and ~/Downloads) in sync between my two main Macs. I also use several cloud-based syncing services, most notably Dropbox and iCloud Drive, to make a subset of my files—especially those I need to share with other people—available across platforms.

Use Services for System-Wide Shortcuts

In macOS, a service is a special, context-sensitive program that can operate almost anywhere. You can find services on the Services submenu of the application menu (that is, the menu with the current app’s name). Alternatively, right-click (or Control-click) something and choose a service from the very bottom of the contextual menu. (Services appear on a Services submenu of the contextual menu if more than four of them are active and applicable to whatever you selected.)

If you look at this menu in different apps, and with different things selected, you’ll notice that your choices change. For example, you’ll see one set of commands when you select a file in the Finder, a different set when you select text in Mail, and yet another set when you have a graphic open in Preview. That’s because each service is designed to operate only on certain kinds of data, or in certain contexts. The idea is to show you only the commands that are relevant to what you’re currently doing.

Services, like Automator workflows and AppleScripts (discussed later in this book), can perform complex tasks for you with only one click. So they’re fantastic automation tools that every Mac user should be aware of. As we’ll see in a moment, you can use a combination of built-in services, third-party services, and services you create yourself to automate a wide variety of activities.

Before you do anything else, you should configure the services on your Mac to your taste. Not all the services installed on your Mac are necessarily active (only active services appear in the Services submenu); you can enable or disable services as you wish. In addition, you can assign a keyboard shortcut to any service to avoid hunting for it in a hard-to-reach submenu.

Configure Services

To set up Services on your Mac:

	Go to System Preferences > Keyboard > Shortcuts > Services (see Figure 42).

[image: Figure 42: Enable, disable, or add keyboard shortcuts to services here.]Figure 42: Enable, disable, or add keyboard shortcuts to services here.

	Select the checkbox next to any service you want to enable; deselect those you want to disable. (Remember, selected services appear in the Services submenu only when the context—the app and data type—are appropriate.)

	To add a keyboard shortcut to a service that doesn’t have one, click the light gray word “none” to the right of the service name and click Add Shortcut. Or, to change an existing shortcut, double-click it.

	Press the new key combination you want to use for the service. (To remove a shortcut, select it and press Delete.)

Ordinarily, changes to the Services menu happen immediately, so you can try out your newly activated service or shortcut right away.

Find and Use Services

macOS includes lots of built-in services, which you can explore simply by selecting various kinds of things (text, files, images, URLs) and then looking at the Application > Services submenu. For example, you can select a word and choose Look Up in Dictionary from the Services submenu to open the Dictionary app with that word’s definition showing, or select a graphic in the Finder and choose Set Desktop Picture to make it your Desktop picture without having to open System Preferences > Desktop & Screen Saver > Desktop and adding it there manually. In addition, some apps install their own services.

Beyond what comes with macOS and the apps you already have, there are a great many free services you can download that are extremely useful. For instance:

	The Download Services page at Mac OS X Automation has dozens of services for images, email, movies, PDFs, web browsing, and other contexts.

	DEVONtechnologies’ Download page has two services: CalcService (for performing calculations on text selections) and my favorite, WordService (which includes numerous commands for reformatting and manipulating text).

	Markdown Service Tools from Brett Terpstra help you format text using the popular Markdown syntax.

Once you’ve downloaded a service, move or copy it into /Library/Services (to make it available to all users) or ~/Library/Services (to make it available only to you). Then go back to System Preferences > Keyboard > Shortcuts > Services to enable the specific commands you want to use and assign or change keyboard shortcuts.

But wait, there’s more! You can create your very own service, without any programming at all, using Automator, which I discuss in the next chapter. (For instructions, see the Create Your Own Service).

Tip: To learn more about services, visit the Services portion of the Mac OS X Automation site. The page is quite old, but most of the information is still applicable to recent versions of macOS.

Get Started with Automator

Automator is an easy-to-use technology, included as part of macOS, for bundling actions into sequences known as workflows. If programming gives you the willies, Automator is nothing to fear. You don’t have to learn a new language or write in code—just drag things into a list, fill in some blanks, and check some boxes.

Note: Although it’s often lumped together with AppleScript (which I discuss in the next chapter), Automator is a completely independent technology that just happens to be capable of many of the same things.

For example, a workflow can:

	Convert text files and graphics into an ebook in EPUB format

	Create a graphic from a word or phrase

	Import all the images from a webpage into Photos

	Create and mount a new disk image

	Convert a movie file to a size and format suitable for your iPhone or iPad

	Create an audio file with a synthesized voice reading the contents of a text file

	Add a 1-pixel gray border around any graphic (that’s how we put the borders on most of the graphics in Take Control books!)

	Upload a file to each of several server destinations—with a different, pattern-based name in each place (that’s how we upload Take Control books to the various places they need to go when they’re ready for sale!)

Workflows are made from building blocks called actions. Automator includes many actions, as do a number of the applications bundled with macOS (such as Calendar, Contacts, Mail, Music/iTunes, and Preview). Just as a third-party app may or may not include AppleScript support, some apps come with their own Automator actions and some don’t. A few third-party apps with good Automator support are BBEdit, LaunchBar, Microsoft Office, Pixelmator, and Transmit. (In some cases, notably BBEdit, Automator support for an app requires a separate download and installation.) In addition, actions can optionally contain instructions written in numerous programming and scripting languages, including AppleScript, JavaScript, Perl, Python, and Ruby, and shell scripts.

I’ll show you how to make a few simple Automator workflows. Then I’ll tell you about some of your other options, where to find existing workflows that you can use as is or modify to meet your needs, and how to learn more about Automator.

Tip: If you’re unsure whether Automator or AppleScript is the best tool for a certain automation task, my advice is to try Automator first, because it’s so much easier to use. If you get stuck, you can fall back on AppleScript (possibly even including the necessary AppleScript code as part of your Automator workflow).

Create a Simple Automator Workflow

For an easy (yet somewhat fancy) introduction, we’ll create a workflow that asks you to type some text, and then speaks it back to you:

	Open Automator (in /Applications).

	Click New Document.

	In the dialog that appears, select Workflow (the default) as the document type and click Choose. Your window should now look something like Figure 43.

[image: Figure 43: An empty Automator workflow window.]Figure 43: An empty Automator workflow window.

	If you don’t see a Library list in a sidebar on the left, click Show Library on the toolbar.

The Library is the list of available actions. You can click a category or app name to see its available actions, or type a search term into the Search field to find matching actions.

	Type text into the Search field to show only text-related actions in the second column.

	Locate the Ask for Text action in the second column, and drag it into the workflow area on the right (Figure 44).

As the name suggests, this action displays a dialog that asks you to enter text.

[image: Figure 44: The Ask for Text action, ready to be filled in.]Figure 44: The Ask for Text action, ready to be filled in.

	Fill in the question you want the dialog to ask, such as What would you like me to say? and, if you like, fill in a default answer, such as Beep. Select the Require an Answer checkbox to ensure that some text must be entered (so that the workflow always does something).

	Return to the second column, find the Speak Text action, and drag it below the Ask for Text action (Figure 45).

You’ll notice that the two actions join together to show that the output of the first one (whatever you type into the dialog) is fed as input into the second one.

[image: Figure 45: Two actions joined into a workflow.]Figure 45: Two actions joined into a workflow.

	If you like, choose a different voice from the Voice pop-up menu.

Your workflow is now ready. To run it, click the Run button on the toolbar. You should see a dialog asking you what you want it to say. Accept the default answer or supply a new one, click OK, and your Mac speaks that text.

That’s the general idea of workflows. Usually, one action produces some sort of output (a file, a URL, text, or whatever) and feeds that to the next action, which does something with it and passes it along to another action—and so on. The final action provides the result in the form you’re looking for (a modified file, information in a dialog, an open webpage, or what-have-you).

To reuse a workflow, save it (choose File > Save, choose a name and location, and click Save); you can then double-click it to reopen it in Automator. Or you can save it as an app (same procedure, but choose Application from the File Format menu in the Save dialog), and you get a standalone, double-clickable Automator app. (For other ways to package a workflow, see the sidebar Automator Workflow Types.)

Create an Automator Droplet

I mentioned a moment ago that you can save an Automator action as a double-clickable app. Automator apps can also function as droplets—that is, they’ll perform the actions you specify on any files or folders you drag and drop onto the app icon. I’d like to show you a quick example, and in the process point out a few other interesting things about Automator. For this example, we’ll create a droplet that scales images to 50% of their original size, saves them as JPEGs (regardless of their original format), and renames them, changing the case to Title Case and adding the word “Scaled” to the filename.

Follow these steps:

	Open Automator. If the new document window doesn’t appear automatically, choose File > New.

	Click Application, followed by Choose.

	From the Photos category, drag the Scale Images action to your workflow.

An alert appears, telling you that the action you just added will change files passed into it. If you wanted Automator to add a step here so that it works on a copy of the file instead, you could click Add. But for the purpose of this example, we don’t—we’re going to go ahead and change the original—so click Don’t Add. (You’ll see this alert a few more times before we’re done with this workflow!)

	In the Scale Images action, choose By Percentage from the pop-up menu and fill in 50 in the field that follows.

	From the Photos category, drag the Change Type of Images action to your workflow. Once again, click Don’t Add in the alert that appears. Choose JPEG from the To Type pop-up menu.

	From the Files & Folders category, drag the Rename Finder Items action to your workflow. Click Don’t Add, as usual. From the first pop-up menu, choose Change Case. Leave the second set to “Basename only,” and choose Title Case from the third.

	From the Files & Folders category, drag another instance of Rename Finder Items to your workflow, and yet again, click Don’t Add. This time, choose Add Text from the first pop-up menu. Then fill in “ Scaled” (that is, a space followed by the word Scaled) in the text field, and leave the other pop-up menu set to “after name.”

	Choose File > Save, enter a name (such as Scale & Rename), and save the app. The final version should look something like Figure 46.

[image: Figure 46: The final version of the Scale & Rename app.]Figure 46: The final version of the Scale & Rename app.

To run the app, first make a copy of a graphic that you don’t mind altering, or take a quick screenshot just so you have a disposable graphic file to work with. Drag that graphic onto the app you saved in step 8. You should see the title change (for example, “my graphic.png” would become “My Graphic Scaled.jpg”) and if you open the graphic in Preview, you’ll see that it’s in JPEG format and at 50% of its original size. (Needless to say, you can adjust the size, format, and naming to something that would be more useful to you.)

I want to point out a few things about this workflow:

	You can reorder the steps any which way. In some cases, order is significant (you need to make one change before making another one that depends on it), but in this case, it doesn’t matter. You could, for example, drag the two renaming steps above the two image steps and get exactly the same result.

	Although I asked you to opt out of the steps that make copies of the file (just to keep the example short and sweet), you should pay attention to that option in real life—especially when a file format changes or unrecoverable data might be lost.

	Sometimes you need multiple instances of the same action (as with “Rename Finder Items” here) to get the desired end result.

Create Your Own Service

Services (refer back to Use Services for System-Wide Shortcuts) help you automate common tasks, but what about uncommon tasks—things you’d like a service to do, but for which you can’t find a prebuilt solution? Even if you’re not a programmer, you can create your own service with Automator!

To create a service, open Automator and create a new workflow (see Create a Simple Automator Workflow), but instead of selecting Workflow as the document type, select Quick Action (in Mojave or later) or Service (in High Sierra or earlier). When you do so, a few new options appear at the top of your workflow; fill them in to specify how and where your service will work:

	Workflow receives current (Mojave or later) or Service receives selected (High Sierra or earlier): From this pop-up menu, choose the type of data that must be selected for the service to appear; the service then receives the selected data as input. For example, choose “text,” “dates,” “files or folders,” “image files,” or “web content.” (To create a service that requires no input at all, choose “no input.”)

	in: Use this pop-up menu to choose whether your service should be available in any application, or only in a specific application. (Choose Other and navigate to the app if it doesn’t appear in the menu.)

	Input is: For certain data types only, you can use this pop-up menu to determine whether the service acts on the Entire Selection or only the relevant portion of it—for example, Only Addresses, Only URLs, or Only Dates.

	Output replaces selected text: For text and rich text selections only, check this box if you want the service to replace whatever’s selected after the service runs. For example, if you select a word and run a service that translates it into another language, you may want the translated word to replace the original.

Then build your workflow as usual, save it, and give it a name. Automator automatically stores it in ~/Library/Services.

Here’s a simple yet useful example from the Automator portion of the Mac OS X Automation site: a service that takes text you’ve selected in any app and turns it into a static image with a user-specified font, size, style, and color. (You might use such an image on a website, in an email newsletter, or in a Keynote presentation, for example.)

To create this service:

	Open Automator. If the new document window doesn’t appear automatically, choose File > New.

	Click Quick Action (in Mojave or later) or Service (in High Sierra or earlier), followed by Choose. Leave the settings in the top portion of the window set at their defaults.

	From the Photos category, drag the action Create Banner Image from Text to the workflow. Select the “Replacing existing file” checkbox, and choose your desired location, typeface, color, and size (or leave it set to the defaults—Desktop folder, Helvetica, black, and 64 points, respectively).

	From the Photos category, drag the Open Images in Preview action to the workflow.

Your workflow should now look something like Figure 47.

[image: Figure 47: This service workflow converts selected text to an image.]Figure 47: This service workflow converts selected text to an image.

	Now choose File > Save and give your workflow a name (such as Text to Image).

To use the workflow, open any app that lets you select text. Select a few words and then choose Application Name > Services > Service Name, where “Application Name” is the name of the app you’re using and “Service Name” is the name you chose in step 5. Automator creates the image, saves it on your desktop, and opens it in Preview.

Tip: If you ever encounter a situation in which you explicitly want to avoid having an action take input from the previous step in an Automator workflow, right-click (or Control-click) it and choose Ignore Input from the contextual menu. (That command is disabled in contexts where it would lead to an unusable workflow.)

Automator Workflow Types

When you create a new workflow, a dialog asks you to choose a document type. Here’s what the options mean:

	Workflow: A workflow that runs only in the Automator app.

	Application: A standalone, double-clickable app (which can also function as a droplet that operates on items you drop onto it).

	Quick Action (Mojave or later)/Service (High Sierra or earlier): A program that’s available anywhere on your Mac but that operates only on certain kinds of data. (See Use Services for System-Wide Shortcuts, the previous chapter, and Create Your Own Service, earlier in this chapter.)

	Print Plugin: Also known as a PDF workflow, this is a command that appears in the pop-up menu at the bottom of Print dialogs—that is, instead of sending a file directly to your printer, you can send it to an Automator workflow as a PDF.

	Folder Action: A workflow that operates on the contents of a specific folder when those contents change. This is similar to an AppleScript folder action (see Use AppleScript Folder Actions).

	Calendar Alarm: When you set an alarm in Calendar, your choices are normally Message, Message with Sound, Email, or Open File. This workflow type gives you another option—trigger a workflow at the alarm time.

	Image Capture Plugin: The Image Capture app accepts input from scanners and digital cameras. With a workflow of this type, Automator can process whatever comes in via Image Capture.

	Dictation Command: A workflow you activate with a spoken command; see Control Your Mac with Your Voice.

If you choose the wrong type when you created a workflow, you can change it; choose File > Convert To, select a different type, and click Choose. Make any needed adjustments and save the new workflow.

Find and Run Sample Workflows

Automator workflows you find online usually work unmodified on your Mac—you double-click them and, depending on how they were saved, you either run them in Automator or they run as apps. (If you want to edit an Automator app, drop it onto the Automator icon.)

Try some of the sample workflows (most of which should still work fine, even if they’re a bit old) at these sites:

	15 Automator and AppleScripts You Can’t Live Without at TechRadar

	10 Awesome Uses for Automator Explained at Tuts+

Tip: If a workflow doesn’t function on your Mac, it may have been configured to look for a file or folder in a specific location that doesn’t exist on your Mac. You should be able to change the relevant action(s) to point to valid locations. Another possibility is that the author used an Automator action or app you don’t have installed. An error message should tell you its name; you can then do a web search to locate it, install it, and try the workflow again.

You may find workflows that almost do what you want them to do. Feel free to experiment by changing options within actions, or swapping out one action for another. Unlike AppleScript, Automator makes it simple to tinker without worrying that you’ll make a syntax error or have no idea what command to use—your only building blocks are the actions you see in the list.

Learn More about Automator

If you want to learn much more about working with Automator:

	For a quick and interesting tutorial, start with Apple’s (somewhat outdated) Mac Basics: Automator page.

	See the Automator portion of the Mac OS X Automation site.

	Read Neil North’s Automator for Mac OS X: Tutorial and Examples.

Get Started with AppleScript

Whereas Automator lets you construct a workflow visually by dragging and dropping actions into a list, AppleScript is a scripting language—a type of simplified programming language that runs only in a specific environment (in this case, macOS). That means AppleScripts can run only on a Mac, and because your Mac must interpret the commands in the script as it runs, an AppleScript won’t have the high performance of a conventional Mac app. Even so, AppleScripts can look and act like ordinary Mac apps. You may already be using some apps that were written in AppleScript without even realizing it!

AppleScript has been around since way back in 1993, and it’s become popular among people who like to tinker but wouldn’t consider themselves programmers, because it’s built into macOS and is a lot easier to work with than a big, complicated language like Swift or Objective-C. AppleScript is often referred to as “English-like,” which is a generous description at best, but if you don’t know much about programming, you can probably make more sense of AppleScript code than, say, Java.

Write a Simple AppleScript

In a moment, I’ll give you some examples of what you can do with AppleScript (see Learn What AppleScript Can Do). But first—before I lose the attention of people who think programming is Just Too Scary—I’m going to show you how to write a complete AppleScript program with exactly one English word. Here we go:

	Open Script Editor in /Applications/Utilities.

	In the window that appears, click New Document. A blank window opens.

	Type the word beep (Figure 48). Your script is now complete!

[image: Figure 48: Here’s your first complete AppleScript!]Figure 48: Here’s your first complete AppleScript!

	Click the Run button.

Two things should happen:

	First, you’ll hear your system alert sound. That was your program running—congratulations!

	Second, you’ll notice that the word beep changed its appearance from a purple, monospaced font to a bold, blue, proportional font. That’s because when you try to run an AppleScript, the script editor first compiles it, a process that checks to make sure it’s properly written. If it is, it formats the entire script in an easier-to-read fashion (which will be more apparent with a longer script).

Tip: You can manually compile a script (without running it) to check its syntax, reformat it, and add automatic indentation by choosing Script > Compile (⌘-K) or clicking the Compile button on the toolbar.

Now that you’ve written and run an AppleScript, you can follow the same steps to run scripts other people have written—simply type (or copy and paste) the scripts into AppleScript Editor and click the Run button. We’ll come back to this idea in a bit, but for now, I merely want to point out that using AppleScript can be as simple as that.

Learn What AppleScript Can Do

The simplest way to think about what AppleScript can do is that it provides an alternative means of performing common actions in macOS and in many apps. For example, you can open or quit an app with a menu command or the keyboard; AppleScript can also open or quit an app as part of a script. You can rename a file in the Finder; an AppleScript can do that too. You can open a word processor, search for a certain word, highlight the entire paragraph it appears in, make it bold, copy it, switch to another app, and paste it—or let AppleScript do all that for you with one click.

It’s that last type of activity—combining strings of actions that involve multiple apps—where AppleScript especially shines. AppleScript is also good at repetitive tasks (say, renaming files spread across different folders or fetching a long list of items from one place and copying them to another place) that would otherwise be tedious. And it gives you access to features on your Mac that aren’t normally exposed. For example, you just wrote a script that plays a beep, and although that happens when there’s an error, there’s no button or menu command that lets you manually trigger a beep. (AppleScript can trigger lots of actions that are far more interesting and useful than a beep!)

More importantly, an AppleScript can include logic that enables it to make decisions as it runs—either on its own, or with your input. It can use programming constructs such as variables, if-then conditions, and loops, and it can tie into numerous other automation tools (such as TextExpander, LaunchBar, and Keyboard Maestro).

Fine, you may say, but what exactly can AppleScript do?

Well, if you want to know every built-in command and option, with detailed background and examples, check out Apple’s massive Introduction to AppleScript Language Guide. It’s written mainly for developers, but it’s reasonably clear, and well worth consulting.

But that tells you only about AppleScript. To find out what you can do with AppleScript in a particular app, you’ll need to look elsewhere.

Every app that supports AppleScript, including the Finder, contains a dictionary of all the nouns and verbs AppleScript can use to control it. For example, the Calendar app’s dictionary contains verbs like create calendar and switch view; and nouns like calendar, sound alarm, attendee, and event. To see what’s in any app’s dictionary, you can either choose File > Open Dictionary in Script Editor, select an app, and click Choose, or drag an individual app’s icon from the Applications folder onto the Script Editor icon. Either way, you’ll see something like Figure 49. Look through the terms and read some of the definitions to see what sorts of things AppleScript can do in that app.

[image: Figure 49: A portion of the AppleScript dictionary for Calendar.]Figure 49: A portion of the AppleScript dictionary for Calendar.

Unfortunately, not all apps support AppleScript, and of those that do, some of them have rather meager dictionaries (meaning you can’t do very much with them). But there are enough deeply scriptable apps out there to enable you to accomplish a great deal with AppleScript.

I could fill many pages with examples of tasks an AppleScript could perform, but here are just a few:

	Find and remove duplicate messages in Mail, events in Calendar, or records in Contacts

	Combine multiple PDFs into a single file

	Apply proper title case to the names of all your tracks in Music or iTunes

	Rotate, resize, or change the format of images

	Download all the MP3 files linked from a webpage

	Rename all the files in a folder with a different extension

	Count the number of email messages in a certain mailbox

I’ll give even more examples as the chapter goes on.

Understand AppleScript Basics

As you’ve seen, a line of AppleScript code can be as simple as a single word. But they’re usually a bit more elaborate than that. Although even teaching the rudiments of the AppleScript language would require many pages, I wanted to give you at least a few pieces of background information to start your explorations in the right direction and help you understand the examples ahead. (If you’re impatient, you can jump right to Find and Run Example AppleScripts, and then check back here later for some of the details.) Later on, in Learn More About AppleScript, I’ll tell you where you can get top-to-bottom instruction in scripting with AppleScript.

Tell Blocks

As you’ll notice in the examples ahead, most scripts start with tell application "App Name" on a line by itself, and conclude with an end tell line, with everything else indented in between. These are examples of tell blocks, a ubiquitous construction in AppleScript. With a handful of exceptions (that is, commands interpreted by AppleScript itself rather than sent to an app), nearly everything you do in AppleScript involves telling some object (an app, a window, a paragraph) to do something. So you must always pay attention to which object you’re directing the current command, or set of commands to.

Tell blocks can be nested explicitly, in order to refer to an object that’s contained inside another object:

tell application "MyApp"
 tell front window
 do something
 end tell
end tell

Or they can be combined like so:

tell front window of application "MyApp" to do something

Either way, if something isn’t working the way you expect, the first thing you should ask yourself is whether you’re telling the right entity to do something.

The Line Continuation Character

In AppleScript, each command normally goes on its own line. Instead of using a semicolon (;) to indicate the end of a command, as some programming languages use, AppleScript looks for a return character.

Sometimes you’ll have a long AppleScript command that can’t fit on a single line. That’s no problem; word wrap works in Script Editor just as in any word processor. However, until you compile or run a script with a long line, you might find this automatically wrapped code hard to read. And, on websites and in books like this one, it can sometimes be hard to tell when you’re looking at a single AppleScript command that happens to span multiple lines, and when you’re looking at separate lines.

To address these problems, Script Editor lets you press Option-Return to insert a line continuation character (¬), which is the script equivalent of a soft return. It means the line breaks at that point and the remainder of that command is indented underneath when the script is compiled or run, but the ¬ character itself is ignored (along with any leading or trailing spaces or tabs), and AppleScript treats the entire command as being on one line.

So this, for example, would be treated as one long line:

display dialog "Wow, I have so much to say that I barely know ¬
 where to begin. Let’s start, I suppose, with my childhood…"

Tip: Although the continuation ¬ character is added automatically when you press Option-Return in Script Editor, if you want to type that character manually for any reason, press Option-l.

Variables

Like all programming and scripting languages, AppleScript supports variables of several kinds. In most cases, you don’t need to go through an extra step of declaring a variable to tell AppleScript what type of data it will store, because as long as you assign a value to a variable the first time you use it, AppleScript figures out what its type is automatically. To set a variable, you use the set command, like so:

set someWord to "peaches"

That makes a variable of type string, since what you set it to was a string. You can also make an integer (set someNum to 12 + 34), a boolean (set isIt to true), a list (set theItems to {"cube", "sphere", "wedge"}), and numerous other classes.

How do you later retrieve the value of a variable? Simple: you use the get command, as in:

get someWord

If you happen to be running your script in Script Editor and it ends with a get command, the Results area at the bottom of the window shows the variable’s current value. You an also display the value of a variable to the user (see Display Dialog, next), pass it to another part of your script, alter it, and so on.

Display Dialog

Sometimes you’ll want to inform yourself, or whoever’s running your script, about its results, ask a question, or simply display the current value of a variable for the purpose of debugging or troubleshooting. For all these purposes and more, you’ll want to become good friends with the display dialog command, which produces a simple dialog with customizable buttons (Cancel and OK by default), the text of your choice, and an optional text entry field.

Here are some common variants—try mixing and matching these to get different results:

	Dialog with a message only (Figure 50):

 display dialog "Hi there"

[image: Figure 50: Dialogs can display hard-coded strings.]Figure 50: Dialogs can display hard-coded strings.

	Dialog with a message containing a variable (Figure 51):

 set firstName to "Joe"
 display dialog "Hi there, " & firstName`

[image: Figure 51: Dialogs can display the values of variables.]Figure 51: Dialogs can display the values of variables.

Note: To combine strings, use an ampersand (&).

	Dialog with a field, whose value goes into a variable (Figure 52):

 set firstName to text returned of ¬
 (display dialog "What is your name?" default answer "")

[image: Figure 52: Dialogs can ask for text responses.]Figure 52: Dialogs can ask for text responses.

	Dialog with custom buttons (Figure 53):

 display dialog "What rhymes with lunch?" ¬
 buttons {"Bunch", "Snack", "Table"} default button 1

[image: Figure 53: Dialogs can have custom buttons.]Figure 53: Dialogs can have custom buttons.

If/Then Statements

You can use an if/then statement (or if/then/else) to execute one or more commands only if a certain condition is true. Although there are multiple ways to format these, the most common ones look like these:

set myNum to 3
if myNum is less than 4 then
 display dialog "Yes, " & myNum & " is less than 4."
end if

(Note that you must include the word then at the end of the if line; if you don’t, AppleScript will add it for you.)

set firstName to text returned of (display dialog ¬
 "What is your name?" default answer "")
if firstName is "Joe" then
 display dialog firstName & " is awesome!"
else
 display dialog firstName & " is OK."
end if

Comments

To put a note to yourself or other people within a script that won’t be executed, put two hyphens (--) in front of it, like so:

-- This is Joe’s excellent script. The next line sets a variable.
set myVar to "something"
-- Next we display that variable in a dialog.
display dialog myVar

If your comment runs longer than a line, you can instead surround it with (* and *), like this:

(* Wow, there’s so much to say about this excellent script. Where can I even begin. Well, let’s start at the beginning. Once upon a time… *)

And That’s Just the Barest Beginning…

There’s so much more to AppleScript, even under the “Basic” heading: properties, loops, references, indexes, arrays, handlers, and much more. As I said, I’ll point you to resources that can teach you this stuff. For our purposes, I wanted to make sure you could decode at least a bit of what’s going on in our example scripts, to which I now turn.

Find and Run Example AppleScripts

Here are some simple scripts to try. To use one, copy and paste (or retype) it into Script Editor and click the Run button.

Tell me how many files and folders are on my desktop:

tell application "Finder"
 set theFolder to (path to desktop) as string
 set theCount to number of items in folder theFolder
 display dialog theCount
end tell

Speak the current date:

set theDate to current date
set theYear to year of theDate
set theMonth to month of theDate
set theDay to day of theDate
set niceDate to theMonth & " " & theDay & ", " & theYear as text
say niceDate

Apply some styles to a word in TextEdit:

set theStyle to {font:"Times", color:{26214, 0, 36237}, size:42}
tell front document of application "TextEdit"
 set properties of second word of first paragraph to theStyle
end tell

Resize the frontmost Safari window:

tell application "Safari"
 activate
 if front window exists then
 set bounds of front window to {0, 0, 1000, 600}
 else
 display dialog ("Safari has no open windows.")
 end if
end tell

Do a bit of simple math:

set firstNum to text returned of (display dialog ¬
 "Enter a number." default answer "")
set secondNum to text returned of (display dialog ¬
 "Enter a number." default answer "")
set operation to button returned of (display dialog ¬
 "What do you want to do with those two numbers?" ¬
 buttons {"Add", "Subtract", "Multiply"})
-- AppleScript dialogs can have a maximum of 3 buttons
if operation is "Add" then
 set theResult to firstNum + secondNum
else if operation is "Subtract" then
 set theResult to firstNum - secondNum
else
 set theResult to firstNum * secondNum
end if
display dialog "The result is: " & theResult

A quick web search should turn up thousands of AppleScripts that you can use—and I refer you to some additional sources ahead, in Learn More About AppleScript.

You can also find a bunch of sample scripts already on your Mac, in the /Library/Scripts folder. You’ll notice that those scripts—and perhaps many of those you find online—aren’t just text; they’re AppleScript files. One way to use any of these is to double-click the file (which opens it in Script Editor) and then click the Run button. (For scripts located in /Library/Scripts, you’ll be prompted to click a Duplicate button before your script runs so that changes can be saved.) But that’s not the only way!

Another way to access an AppleScript saved as a file is to choose its name from the AppleScript menu (Figure 54). Don’t see it? Open Script Editor, go to Script Editor > Preferences > General, and select the Show Script Menu in Menu Bar checkbox. By default, that shows all the scripts in /Library/Scripts as well as ~/Library/Scripts, so you can add to the menu by placing your scripts in one of those folders (or a subfolder).

[image: Figure 54: The optional AppleScript menu displays both built-in and user-supplied scripts, letting you run them with one click (and without opening Script Editor).]Figure 54: The optional AppleScript menu displays both built-in and user-supplied scripts, letting you run them with one click (and without opening Script Editor).

To save any of your own scripts (including those you created using the sample code just previously) as files, choose File > Save, choose a name and location, and leave the File Format pop-up menu set to its default choice of Script. Then click Save.

Save an AppleScript in Other Formats

Besides saving AppleScripts as files (using the Script option in the Save dialog), you can save them as Applications. These run by themselves, without opening Script Editor, when you double-click them in the Finder. (Applications can also behave as droplets, acting on whatever files or folders you drop onto them.)

Another option is Script Bundle, which is just like an application except that it can also contain extra resources the script may need (such as graphics or sounds).

Finally, you can choose Text to save the script as plain text.

Tip: Besides running an AppleScript in Script Editor, from the AppleScript menu, or as standalone apps, you can also trigger AppleScripts using many of the other utilities discussed in this book, such as Keyboard Maestro, LaunchBar, and TextExpander.

Edit an Existing AppleScript

One of the easiest ways to learn AppleScript is to start with a script that someone else has written, make a modification or two, and see what happens. If you like the results, make further changes, add a few new lines, or combine portions of multiple scripts. Once you have some experience fiddling with other people’s code, you’ll feel more comfortable creating scripts of your own from scratch.

You might start, for example, with the Resize the frontmost Safari window script from a few pages back. Try replacing Safari with the name of another app. Or, try changing this line:

set bounds of front window to {0, 0, 1000, 600}

Those numbers refer, respectively, to the window’s distance (in pixels) from the left edge of the screen; distance from the menu bar; width; and height. Change those values to resize or reposition the window.

Then try playing with the front window term. What if Safari has two windows open? Can you guess how to resize the back window? (It’s exactly what you think.) Then try changing the text of the dialog that appears if Safari has no windows open. And so on.

Script Debugger: A Better AppleScript Editor

So far, I’ve been talking about Script Editor as though it’s the only environment in which you can create and run AppleScripts, but it’s not. There are numerous other tools (including Automator, Keyboard Maestro, and other utilities) that let you enter, edit, and execute AppleScript code. And for basic scripts, any of them will do nicely.

But when you get to the point of needing to create long, complex, or tricky scripts, you should use an editor with more power and flexibility. There’s really no competition here—the script editor AppleScript pros use is called Script Debugger.

Script Debugger is to Script Editor as Nisus Writer Pro is to TextEdit. Sure, both tools will format your scripts, show you results, and let you save them in various formats. But Script Debugger goes way beyond that. For example, it offers the following features:

	Debugging: As the name suggests, Script Debugger’s forte is helping you find and fix bugs in your scripts—for example, by stepping through a script one line at a time and seeing the values of variables and the results of actions at every step.

	Explorer: Go way beyond an app’s AppleScript dictionary to see the exact objects and properties that currently exist in the app and its open documents. This makes it way simpler to write scripts that access those objects and properties.

	Clippings: Insert frequently used code blocks with a click or two.

	Code Folding: Temporarily collapse individual blocks of code to make it easier for you to see the overall flow of your script.

	AppleScriptObjC Code Completion and Debugging: If you use AppleScriptObjC to write Cocoa apps using AppleScript (see Writing Cocoa Apps with AppleScript), these features will make the process much simpler.

That’s just the beginning—Script Debugger offers a long list of additional powerful features. It’s overkill for beginners, but anyone who writes more than a modest amount of AppleScript code will find the savings of time and effort to be well worth the cost of the app. (And you can save 15% with the coupon at the end of this book!)

Use GUI Scripting

Sometimes an app doesn’t have an AppleScript dictionary at all. Or, it does, but it’s completely inadequate for your needs. In that case, you may be able to work around the problem using GUI scripting, which instructs AppleScript to simulate mouse clicks, button presses, menu commands, and the like—“playing” the user interface, as it were. It’s not foolproof, but it can solve otherwise intractable problems.

In GUI scripting, your script sends commands via a hidden app called System Events. System Events, in turn, tells a particular app (or other process) to click buttons, press keystrokes, and so on. (You’ll need to enable each app individually in System Preferences > Security & Privacy > Accessibility before they’ll respond to GUI scripting; this applies both to the target app and to apps that run scripts, such as Script Editor, Script Debugger, and UI Browser. See Deal with the Mac’s Evolving Security Features for more details.)

For example, while creating scripts to go with Take Control of Your Paperless Office (about which I say more just ahead), I wanted a way to drive an OCR (optical character recognition) app called Readiris with an AppleScript. Readiris is not scriptable, but I was able to use GUI scripting to simulate button clicks and menu selections, which produced the necessary end result. Here’s a simplified version of the portion of the script that does that:

tell application "System Events"
 tell process "Readiris"
 click button "OK" of sheet 1 of front window
 click menu "File" of menu bar 1
 click menu item "Export Document..." of menu ¬
 "File" of menu bar 1
 end tell
end tell

As you can see, as long as you can tell System Events precisely where to find a certain button or menu item, you can produce a click. (You can also send a keystroke with a command like keystroke "n" or keystroke return.) The problem, however, is that it’s often extremely difficult to ascertain the hierarchy of objects leading to the one you want—and worse, sometimes objects don’t respond to names at all.

Here, for example, is an actual line from an AppleScript I wrote:

click button "Convert to Text" of group 4 of group 12 of group 1 ¬
 of group 1 of group 3 of group 1 of group "Tools" of group 1 ¬
 of group 1 of group 1 of front window

Wow. So…how did I figure that out? Since nothing in the visible user interface tells me the names or numbers of all those groups of elements, how did I arrive at that hierarchy? Well, I used magic, which in this example was packaged into an app called UI Browser. (You can save 20% on UI Browser with a coupon at the end of this book.)

Among other capabilities, UI Browser lets you browse through any app’s hierarchy of objects (Figure 55)—something Script Debugger also does, albeit in a somewhat different form. But what makes UI Browser special is that it also lets you hover over any part of an app’s interface and see, in real time and from the perspective of System Events, what any object is called and exactly the path of containers that leads to it. It’s the easiest way I know to figure out how to script otherwise unscriptable apps.

[image: Figure 55: Browse an app’s hierarchy of UI objects in UI Browser.]Figure 55: Browse an app’s hierarchy of UI objects in UI Browser.

That said, I should warn you that some apps defy even GUI scripting, usually because they’re little more than wrappers around custom web browsers. For example, GUI scripting won’t get you anywhere with the team communication app Slack. What appear to be links and icons in the app are just part of a monolithic window as far as System Events is concerned. (In such cases, you may be still able to take a brute-force approach to automation, by simulating clicks at certain coordinates, but for such tasks I’d use something like Keyboard Maestro before trying to do something similar with AppleScript.)

To learn much more about GUI scripting, read the page Graphic User Interface (GUI) Scripting at Mac OS X Automation.

Use AppleScript Folder Actions

A folder action is an AppleScript that runs automatically when something happens to a specified folder—for example, you open or close it, or add files to it. In Take Control of Your Paperless Office, I described a situation in which your scanner saves PDF files to a certain folder—but what you want is for your OCR software to open the PDFs, recognize the text in them, save them as searchable PDFs, and then close them. No problem: attach one of my spiffy folder action scripts to the folder where your scans are saved, and all that can happen automatically.

Not just any old AppleScript can be a folder action; it must be written specially for that purpose. (For details, see the Folder Actions Reference page on Apple’s Developer site.)

In addition, before you can use folder action scripts, you must enable the system-wide Folder Actions capability (if you haven’t previously done so) and attach a particular script to the folder where your incoming scans are stored. Here’s how:

	Make sure whatever script you want to use is stored in the /Library/Scripts/Folder Action Scripts folder or in ~/Library/Scripts/Folder Action Scripts.

	Right-click (or Control-click) on the folder you want to attach the script to, and from the contextual menu that appears, choose Folder Actions Setup (if you don’t see it at the top level of the contextual menu, look on the Services submenu). Folder Actions Setup opens.

Note: In Catalina or later, you may see one or more security alerts when Folder Actions Setup opens for the first time (see Deal with the Mac’s Evolving Security Features). Just agree to them and move on.

	In the dialog that appears, select the script you want to use. (Although you can attach multiple AppleScripts to a single folder, I don’t recommend it. Pick a single script, and if need be, you can return to this dialog and change it later.)

	Make sure Enable Folder Actions is checked at the top of the Folder Actions Setup window. Your window should look something like Figure 56.

[image: Figure 56: You’re looking for approximately this end result (folder and script names may differ) after configuring Folder Actions.]Figure 56: You’re looking for approximately this end result (folder and script names may differ) after configuring Folder Actions.

	Quit Folder Actions Setup.

Now, to use your folder action, drop a new file in the folder (or take whatever other action(s) the script supports, such as changing or removing files). The script should run automatically.

Tip: An alternative way to get much the same effect as a folder action is to set up a rule in Hazel (see Organize Files with Hazel).

Here are a few further examples of things you could do with an AppleScript folder action:

	Get an alert when someone puts a new file in a shared folder.

	Rename all the files dropped into the folder to follow a particular format or convention.

	Upload the files to a web server.

	Move files to other folders on your Mac depending on file type, name, or other characteristics.

Writing Cocoa Apps with AppleScript

If you know a little about Objective-C and Cocoa, you can use a technology called AppleScriptObjC (short for AppleScript/Objective-C) to access Cocoa frameworks from AppleScript. You can learn more about it on the Resources for AppleScriptObjC page at Mac OS X Automation.

Learn More About AppleScript

I’ve barely scratched the surface of what you can do with AppleScript. If you want to learn more, allow me to recommend a few references:

	Apple’s official Introduction to AppleScript Language Guide

	The AppleScript portion of the excellent Mac OS X Automation site

	MacScripter.net, an extensive discussion forum where anyone (regardless of skill level) can offer or receive help with AppleScript

	Matt Neuburg’s book AppleScript: The Definitive Guide

	AppleScript 1-2-3, by Sal Soghoian and Bill Cheeseman

	A Wave of Automation at Mac OS X Automation, which covers automation features added in Mavericks (including AppleScript libraries)

	OS X Yosemite & Automation at Mac OS X Automation, which covers automation features added in Yosemite (and is still applicable)

Script the Command Line with Shell Scripts

As you probably know, macOS is based on Unix, and as such, there’s a whole layer of functionality most users never see. But you can access a long list of hidden files and useful tools in the text-based world of the command line.

A command-line interface is a way of giving instructions to a computer and getting results back. You type a command (a word or other sequence of characters) and press Return or Enter. The computer then processes that command and displays the result (often in a list or other chunk of text). In most cases, all your input and output remains on the screen, scrolling up as more appears. But only one line—usually the last line of text in the window, and usually designated by a blinking cursor—is the actual command line, the one where commands appear when you type them.

You normally access the command line on a Mac using the Terminal utility (found in /Applications/Utilities). When you open Terminal, it runs a special program called a shell, which interprets the commands you type and delivers the text-based output. macOS comes with several different shells, but that detail is unimportant for our purposes.

What is important is that shells are programmable. You can put a series of shell commands in a text file and, without any special fuss, run it as a program. Shell scripts can automate nearly any activity you can perform on the command line. Although some scripts are fabulously complex, running many thousands of lines, we’re concerned here with simpler tasks you can automate.

If you happen to be the sort of person who genuinely likes working in a command-line interface, you’ll probably want to have lots of scripts that simplify the process for you. But even if you’re entirely happy remaining in the Mac’s graphical interface, shell scripts can be your friends. They can modify files and folders, perform system functions, and do other sorts of tricks that are difficult or impossible to perform in other ways (such as using AppleScript or Automator). In fact, some of my favorite AppleScripts, Automator actions, and Keyboard Maestro macros rely heavily on embedded shell scripts.

Here are a few things shell scripts can do for you:

	Modify hidden preferences for macOS and its apps

	Securely delete specific files or folders without first moving them to the Trash

	Force background processes to quit without requiring the use of the Activity Monitor utility

	Load or unload daemons and agents, which control scheduled and background tasks (see Apple’s developer guide Creating Launch Daemons and Agents)

Ordinarily, you create and run shell scripts in the Terminal utility (as I show you next). However, as I mentioned, many of the other utilities I cover in this book can run shell scripts too.

Tip: If you’d like to know all about the command line—how to get around, run programs, edit files, and (of course) work with shell scripts, pick up my book Take Control of the Mac Command Line with Terminal. As of publication time, I’m planning to update that book to cover Mojave and Catalina in the near future.

Create Your Own Shell Script

I want to give you a tiny taste of creating your own shell scripts. As with the other topics in this chapter, I’m not going to teach you anything about programming as such, just the mechanics of creating and using a simple shell script. I want you to have enough familiarity with the process that you can successfully reproduce and run shell scripts you may run across in magazines, in books, or on websites.

You can create and run a shell script in six easy steps.

Step 1: Open Terminal

Open the Terminal utility (in /Applications/Utilities). You’ll be presented with a mostly blank window. That’s where all the magic happens.

Step 2: Start with an Empty Text File

Scripts are plain text files, so you should begin by creating one in a text editor. You can make a shell script in TextEdit, BBEdit, or even Word, but that requires extra steps. So I suggest using a simple command-line text editor called nano.

For the purpose of demonstration, we’ll name the script test.sh. (The .sh extension isn’t mandatory, but it can help you keep track of which files are scripts.) Before you create this file, I suggest typing cd (change directory) followed by Return to ensure that you’re in your home directory. (You can put scripts anywhere you want, but for now, this is a convenient location.)

That done, type nano test.sh and press Return.

The nano text editor opens with a blank file.

Step 3: Type In the Script

A script can be anything from a single one-word command to thousands of lines of complex logic. Let’s start with a very simple, five-line script. Type this:

#!/bin/bash
echo "Hello! The current date and time is:"
date
echo "And the current directory is:"
pwd

The first line tells the script which shell program to use (in this case, bash). The two echo commands simply put text on the screen. The date command displays the date (surprise!), and the pwd (print working directory) command displays your current directory. So, this script displays four lines of text, two of which are static (the echo lines) and two of which are variable.

Step 4: Close and Save the File

To save the file, press Control-O and press Return to confirm the file name. Then press Control-X to exit nano.

Step 5: Enable Execute Permission

The only slightly tricky thing about running scripts—and the step people forget most often—is adding execute (run) permission to the file. To do this, enter chmod u+x test.sh.

Step 6: Run the Script

That’s it! To run the script, type ./test.sh and press Return. The window should display something like this:

Hello! The current date and time is:
Wed Jun 1 19:58:21 PDT 2019
And the current directory is:
/Users/jk

For fun, try switching to a different folder. For example, type

cd /Library/Preferences

and press Return to move to the /Library/Preferences folder.

Now run the script again by typing ~/test.sh and pressing Return. You’ll see that it shows your new location.

Tip: Any time you need to put a new script on your system, follow these same steps (although the script name and location may vary).

From bash to zsh

A shell is a program that creates an interface you use to interact with a computer, typically by typing in text to execute programs via a command line. Command-line shells interpret what you type in Terminal or a similar app and pass along those instructions to the operating system or other programs.

They also have their own, often unique features. Those might include keeping a history of commands you entered or letting you create shortcuts for commonly typed sequences.

macOS includes six different shells, meaning your Mac has not just one command-line interface, but six! These shells share many attributes—in fact, they’re more alike than different. Most commands work the same way in all the shells, and produce similar results.

Since the beginning, macOS has used a shell called bash as the default, but in Catalina, Apple changed the default shell from bash to zsh. If your Mac came with Catalina preinstalled, or if you installed Catalina on an empty volume, zsh runs automatically when you open Terminal; if you upgraded to Catalina from an earlier version of macOS, your existing default remains in place, though Terminal invites you to switch whenever you open a new window.

Your default shell makes no difference when it comes to automation. The other shells are still there, and if you write command-line scripts that specify a shell in their first line (as the scripts in this book do), the scripts use that shell regardless of your default. In short, it basically doesn’t matter. Yes, there are differences between the two shells, and if you plan to spend a lot of time using the command line, it might be worth looking them up using your favorite search engine. Otherwise, you can pretty much ignore the change from bash to zsh.

Try Another Script

Here’s another script you may find handy. It generates a random integer within a range you specify.

Note: An earlier version of this book had a script for renaming a batch of files in this spot, but since that capability was built into the Finder starting in Yosemite (see How to Batch Rename Files in OS X 10.10 Yosemite by Josh Centers in TidBITS), I’ve replaced it with something the Finder can’t do.

Repeat the preceding set of directions, with three differences. First, in step 2, use a different filename when you open nano:

nano random.sh

Then, in step 3, type the following code instead:

#!/bin/bash
range=$(($2 - $1 + 1))
echo "Your random number is:" $(((RANDOM % $range) + $1))

And finally, in step 5, you’ll enter chmod u+x random.sh.

To run this script, enter ./random.sh followed by the lowest possible number, a space, and the highest possible number. For example, to generate a random integer between 0 and 50, inclusive, enter this:

./random.sh 0 50

Tip: To learn more about shell scripting, read Apple’s Shell Scripting Primer.

Shell Scripts Outside the Shell

But wait! What if you want to do something that requires a shell script, such as generating random numbers, frequently—without having to mess around in Terminal? You can put a script like that in a launcher (like LaunchBar), a text-expansion tool (like TextExpander), or a macro utility (like Keyboard Maestro), so that you can execute it with just a keystroke or click—just as you can with AppleScript and JavaScript. In fact, although Terminal is useful for experimenting with scripts in real time, most apps that can run shell scripts let you type or paste them in the app directly.

Use Omni Automation

Earlier in this book, I covered a number of apps with built-in automation tools, such as Microsoft Office and Nisus Writer Pro (see Automate Individual Apps). I also told you about system-wide platforms such as AppleScript (see Get Started with AppleScript) and JavaScript for Automation (see Using JavaScript for Automation), which can be used both for automating individual apps and for cross-application scripting.

Apps made by the Omni Groupcan already be automated in any of these ways. Those include OmniGraffle (a graphing and charting app), OmniOutliner (an outlining app), and OmniPlan (a project management app). Thus it may seem strange that I’m addressing them in a separate chapter.

But I felt it was important to give them extra attention because of a fantastic innovation the company began rolling out a couple of years ago—something they call Omni Automation.

What Omni Automation Can Do

In simple terms, Omni Automation is an implementation of JavaScript that (like JXA) permits automation both within and between apps. But it goes further by working cross-platform between the macOS and iOS/iPadOS versions of a given Omni app. Write a script for OmniOutliner on your Mac, and you can run the same one in OmniOutliner on your iPad (or vice versa). This is significant, because until now, the automation tools available for iOS/iPadOS (such as Shortcuts—see the sidebar Shortcuts in iOS and iPadOS) have been constrained to just the iOS/iPadOS platform. Now, for the first time, there’s a way to get sort of a little bit close-ish on iOS/iPadOS to what you’ve been able to do for years with AppleScript on a Mac—and you can write for both platforms at the same time.

To be sure, I need to make a couple of qualifications here. First, as terrific as this capability is, it’s still not nearly as extensive or powerful as AppleScript or JXA on a Mac—partly because of the way iOS/iPadOS apps are inherently isolated from each other (for important security reasons), and partly because, as I write this, only three apps offer this feature.

Second, the most exciting part of Omni Automation is what it does for iOS/iPadOS—but this book isn’t about iOS/iPadOS automation, except in a tangential sense.

Note: At publication time, OmniFocus (macOS and iOS) did not yet support Omni Automation, but my impression is that the Omni Group plans to eventually roll it out across their product line. I would not be surprised to see apps by other developers adopt the same or similar technology too, but I haven’t yet heard of any specific plans.

Even so—and even if you look only at the Mac side—Omni Automation offers some terrific capabilities:

	Third-party developers (including you!) can use Omni Automation to create plugins that add new features to Omni apps.

	Plugins can include scripts called actions that are triggered by a menu command, toolbar button, or another script.

	Scripts can also be encoded as URLs, which means that clicking or tapping a link on a webpage, in an HTML help document, or in a PDF document can run a script in an Omni app. URL-encoded actions can also be attached to individual objects in a document.

	Supported Omni apps include a built-in scripting console which lets you write your scripts right in the app.

In case you don’t already use OmniGraffle, OmniOutliner, and/or OmniPlan—or if you do, but you’re having trouble visualizing how these capabilities could be put to practical use—let me offer some examples of what you could do with Omni Automation:

	Import list or tabular data from a webpage into a single- or multi-column OmniOutliner document.

	Sort an outline, or retitle columns based on the results of a mathematical calculation.

	Use data from a table on the web to color-code a U.S. map by state in OmniGraffle.

	Draw a logo programmatically in OmniGraffle. (If you have a blank document open in OmniGraffle, you can also just click a link to draw that logo.)

	Create a set of slides in OmniGraffle based on an outline in OmniOutliner.

	Import the text from an OmniOutliner document into a text box in OmniGraffle.

You can learn all about Omni Automation, and see exactly how to do most of these tasks, on the Omni Automation website. The site was built by the estimable Sal Soghoian, who was formerly in charge of automation technologies at Apple (see The State of Mac Automation). It features numerous videos, tutorials, code samples, and other documentation to get you started.

Although I don’t want to reiterate all that material here, I would like to offer just a couple of examples of what Omni Automation can do and how you can get started. Since this is a book about Mac automation, I’ll be using the Mac version of OmniGraffle for my examples, but the iOS/iPadOS version is nearly identical, and OmniOutliner offers a comparable set of features on both platforms.

Security and iOS/iPadOS Automation

As I hinted earlier, one of the barriers to system-wide automation on iOS/iPadOS is the way apps are sandboxed, or isolated from each other, to prevent hacking, malware damage, and other problems. That’s just one of numerous restrictions Apple places on iOS/iPadOS developers in the name of security. Of course, security is an excellent and admirable goal, so it’s worth wondering whether Omni Automation somehow subverts these protections.

The short answer is: no. Omni Automation was designed with security as a prime consideration. Whenever a script is executed that operates outside an Omni app (including scripts that let OmniGraffle and OmniOutliner talk to each other, and scripts embedded in URLs), there’s a review process—you, the user, must explicitly agree to each and every script usage. (For that matter, Apple would not have approved the iOS/iPadOS versions of the apps for sale in the App Store if the company did not believe they contained adequate protections.)

Even so, it’s never wise to underestimate the creativity of people who create and distribute malware, so you should install plugins only from trusted sources—and exercise common sense when tapping links or pasting in JavaScript code, too.

Try Omni Automation in OmniGraffle

Sal Soghoian suggested an easy demonstration of how you can see the JavaScript code for creating shapes in OmniGraffle, and then make small adjustments to change the shape in real time. To try this, you’ll need OmniGraffle 7.3 or later (either the Standard or Pro version; a free trial is available). Follow these steps:

	In a blank OmniGraffle document, draw a simple square or rectangle (Figure 57).

[image: Figure 57: A basic shape in OmniGraffle.]Figure 57: A basic shape in OmniGraffle.

	With the shape still selected, choose Edit > Copy As > JavaScript. This puts the code needed to draw that shape on your clipboard.

	Now press Delete to delete that shape from your document. (Don’t worry, we’ll bring it back in a moment.)

	Choose Automation > Show Console to display OmniGraffle’s console window. I suggest dragging it to make it a bit larger than its default size. Make sure you can see the console and your document window at the same time.

	Click in the field at the bottom of the window, and choose Edit > Paste (⌘-V) to paste the JavaScript code in (Figure 58).

[image: Figure 58: The JavaScript code for a shape in the console window.]Figure 58: The JavaScript code for a shape in the console window.

	Press Return. Your shape should reappear in your document instantly, just as you left it—except this time, it was drawn by the code you just executed, rather than by hand!

	Now it’s time to play. Try entering these commands, one at a time (pressing Return after each one), and observing the results:

	Change the shape: g1.shape = "Circle"

	Change the stroke thickness: g1.strokeThickness = 12

	Change the fill: g1.fillColor = Color.RGB(1, 0, 0, 1)

	Change the stroke color: g1.strokeColor = Color.blue

The end result should look something like Figure 59. You can, of course, play with any attributes you like—and follow similar steps to discover how to draw other objects.

[image: Figure 59: Your final shape after altering it with JavaScript.]Figure 59: Your final shape after altering it with JavaScript.

Use a Macro Utility

Earlier in this book, I discussed AppleScript and Automator, two tools that can control numerous other apps and tie multiple actions together into easy-t0-run shortcuts. Both of those technologies are powerful, free, and included with macOS. But AppleScript’s learning curve precludes casual use, while it’s limited by the capabilities various apps choose to expose. Automator is far easier for a beginner to use, but it, too, has a fairly constrained palette of capabilities—and not all the tasks you might wish to automate fit its “workflow” mold. Meanwhile, apps like Excel and Nisus Writer Pro have fantastic automation capabilities built in, but they’re largely confined to activities within those apps.

So we come to a category of automation tools that—at the risk of overstating my case—transcends these limitations. If you just want to get the job done—not necessarily in the most programmatically elegant way but in a fast, reliable, and flexible way—you want a macro utility. It’s the sort of tool I reach for most often for general-purpose automation tasks.

Like other kinds of tools covered in this book, the idea of a macro utility is straightforward. You pick an action, or a series of actions, from a list; these form the macro’s task. Then you pick one or more events to trigger that action—a keyboard shortcut, a button click, a change in network settings, or whatnot. That’s it: you have a macro.

What’s interesting about the utilities discussed in this chapter is that the lists of potential actions they offer as building blocks for macros are long and diverse. Some of these actions, similar to AppleScript verbs and Automator actions, directly control a particular app (iTunes, Safari, the Finder) or send instructions to macOS (shut down, change display brightness, switch users). Others manipulate behind-the-scenes resources (clipboards, variables, strings) or manage the flow of steps (if/then/else conditionals, loops, subroutines). Still others “play” the visible interface, simulating button presses, menu commands, keystrokes, and mouse movements.

Put all this together and you have a toolkit that—with a bit of cleverness and patient testing—can automate almost any repetitive Mac task that doesn’t require creativity or human intuition. Here are just a handful of examples, all of which can be done with a single click or keystroke:

	Remap keys on your keyboard to perform different functions

	Show the screen of a shared Mac

	Force a “stuck” Trash to empty

	Add keyboard shortcuts to menu commands in apps that don’t support the Mac’s built-in shortcuts

	Create an ad hoc Wi-Fi network

	Open an entire set of apps and documents

	Resize and reposition all your windows so they don’t overlap

	Modify text or formatting according to predefined patterns

	Email the URL of the web page you’re currently viewing to someone else

	Rotate, flip, resize, or crop all the images in a folder

Having sung the praises of macro utilities generally, I must level with you. For all practical purposes, we’re talking about one utility: Keyboard Maestro. Sure, I’ll mention a few other apps—in Use Another Macro Utility and Switch Contexts with ControlPlane—and I noted earlier that BetterTouchTool has macro-like capabilities (see Use BetterTouchTool). Those other apps definitely have their place, but if you want a great macro utility for your Mac, Keyboard Maestro is (in my professional opinion) the best option by far.

Control Your Mac with Keyboard Maestro

I’ve already given you a taste of what Keyboard Maestro can do, so let me show you what it looks like, walk you through creating a couple of macros, and explore some of its options and little-known features.

Create a Macro

When you open the Keyboard Maestro (Figure 60), you’ll see a three-pane Editor interface. On the left is a list of groups, which you can use to organize your macros however you like; this includes the All Macros smart group. In the middle is the list of all the macros in the current group. And on the right is the contents of the currently selected macro (or a blank shell of a macro, if you’ve just created it). To create an empty macro, click the plus button at the bottom of the Macros list.

[image: Figure 60: The Keyboard Maestro editor with a new, blank macro ready to be customized.]Figure 60: The Keyboard Maestro editor with a new, blank macro ready to be customized.

Within the macro pane (Figure 61), you see two areas: the trigger(s) (top) and the action(s) (bottom). You can configure these two items in any order. A trigger is what you do to make the macro run—a keystroke, a menu command, or a system event, say. (More about triggers in a moment.) The action(s) are what happen when the trigger occurs.

[image: Figure 61: The macro pane includes trigger and action areas.]Figure 61: The macro pane includes trigger and action areas.

Note: The icons that appear next to macro names may differ from what you see here, but that’s irrelevant—they’re just for decoration.

Let’s walk through a few macros to see how it’s all done.

Macro #1: Open Login Items

For the sake of illustration, we’ll start by making a macro with a single, simple trigger and a sequence of three actions. When you run this macro, it displays System Preferences > Users & Groups > Login Items. (Ordinarily, you’d have to open System Preferences, click Users & Groups, and then, unless Login Items had been selected the previous time you viewed that pane, click Login Items. So, we’re replacing three clicks with one keyboard shortcut.)

Follow these steps:

	If you haven’t already done so, launch Keyboard Maestro, select a group (doesn’t matter which one), and click the plus button at the bottom of the Macros list to create a new, blank macro.

	Give your macro a name—replace Untitled Macro at the top with Open Login Items.

	Click New Trigger to display a pop-up menu from which you can choose any of 20 trigger types. Choose Hot Key Trigger (the first item) from this menu to use a keyboard shortcut as the trigger.

	You’ll notice that the Type field under the text “This hot key” is already selected. So press the keyboard shortcut you want to use to trigger this macro. It can be anything you like, but I suggest choosing something obscure that isn’t already being used for something else, like ⌘-Option-Control-L.

Note: A macro can have more than one trigger, and you can change your trigger(s) at any time.

	Click New Action to display a new pane (which covers the two leftmost columns of the window) with a list of all possible actions, grouped by category (Figure 62).

[image: Figure 62: Keyboard Maestro’s actions are grouped by category.]Figure 62: Keyboard Maestro’s actions are grouped by category.

	The first action is to open the User & Groups pane of System Preferences.

To do this, click Open in the Categories list and then drag Open a System Preference Pane to the “No Action” label on the right (or just double-click the action). If Users & Groups isn’t already shown next to “Open preference pane,” choose it from the pop-up menu.

	When you launch System Preferences, it may take a second or two to open, and we want to wait until it’s running to switch to the Login Items view.

So, drag the Pause Until action (from the Control Flow category) underneath the Open Users & Groups Preference Pane action. Click New Condition and choose Front Window Condition from the pop-up menu. Then, from the Front Application pop-up menu, choose System Preferences (if it’s not already there, click More at the bottom to expand the list). Leave the last pop-up menu set to Exists.

	Now we need to switch to the Login Items view (in case that’s not what the window is currently set to).

Click Interface Control in the Categories list, and add the Press a Button action to the end of your action list. Replace the text OK with Login Items. At this point, the macro should look like Figure 63.

[image: Figure 63: The final Open Login Items macro, in edit mode.]Figure 63: The final Open Login Items macro, in edit mode.

	Click the Edit button at the bottom to deselect it. Once you’re no longer in edit mode, the macro should look like Figure 64.

[image: Figure 64: The final Open Login Items macro.]Figure 64: The final Open Login Items macro.

Note: The macro will work fine even if you don’t leave edit mode, but doing so keeps you from making accidental changes to your macro.

We’re ready to rock! Press ⌘-Option-Control-L (or whichever combination you chose). System Preferences should open to the Users & Groups pane, with the Login Items view visible.

Tip: If a Keyboard Maestro macro appears not to work at all, try choosing File > Quit Engine to quit the Keyboard Maestro Engine. Wait a moment, and then choose File > Launch Engine to restart it.

Macro #2: Convert Formats

Your favorite word processor can probably import and export files in various text formats. But macOS also includes a command-line utility called textutil that can (among other talents) convert files to or from any of nine different formats. Want to go from Word (.doc or .docx) to HTML (or vice versa)? You can do that with a Keyboard Maestro macro that employs a shell script, and never launch Word at all.

Note: I abbreviate most of the following steps; for more details refer to the instructions for the previous example.

Follow these steps:

	As in Macro #1: Open Login Items, create a new macro. Name it Convert Format.

	Click New Trigger to display a pop-up menu of trigger types. Choose Status Menu Trigger (just for variety).

	Add your first action—Prompt for User Input (in the Variables category)—which will prompt you, the user, to choose a destination file format.

	Fill in Convert Format for the Title, and in the Prompt field, type Choose the format you want to convert the selected file(s) to. Must be one of: txt, html, rtf, rtfd, doc, docx, wordml, odt, webarchive.

	Click the plus button under Variables and Default Values to add a new variable. Enter To in the first field (the variable’s name) and html in the second field (its default value).

	Next, tell the macro that it should operate on whichever file(s) you happen to have selected in the Finder: add the For Each action (in the Control Flow category) to the end of your action list. Replace the text Variable in the For Each field with filePath. Click the plus button next to New Collection, and choose Finder’s Selection Collection from the pop-up menu.

	Finally, it’s time to add the shell script. But it’s not an independent action; rather, it’s part of the For Each action—that is, the shell script will run on each item you selected in the Finder. Add an Execute a Shell Script (from the Execute category) into the No Action area (surrounded by a dotted line) at the bottom of the For Each action. In the field that appears there, type this:

textutil -convert $KMVAR_To "$KMVAR_filePath"

At this point, your macro should look like Figure 65.

[image: Figure 65: The final Convert Format macro, in edit mode.]Figure 65: The final Convert Format macro, in edit mode.

	Optional but recommended: click the Edit button at the bottom to deselect it.

Now you can run the macro, but first you’ll need at least one document somewhere in one of the supported formats (from step 6 above). I suggest copying one or more such files to your Desktop to make them easier to work with.

One last thing before we run the macro: if Keyboard Maestro’s status or menu isn’t visible in your Mac’s menu bar, switch back to Keyboard Maestro, go to Keyboard Maestro > Preferences > General and make sure Display Status Menu is set to either Alphabetically, By Group, or Hierarchically (i.e., not Never).

Now select the file(s) you want to convert. Then, choose Convert Format from the Keyboard Maestro status or menu. You should see the dialog (which you created!) (Figure 66).

[image: Figure 66: This dialog should appear when you run your macro.]Figure 66: This dialog should appear when you run your macro.

Leave the To field set to its default, and click OK. A new file should appear with the same name and location as the old file (which will still be there) but with the .html extension—and it’ll be in HTML format! (Feel free to run the macro as often as you like, with different To settings and different files selected to see how it works.)

Macro #3: Convert to Title Case

Here’s a goofy little macro that few people would be likely to use in exactly its current form, but it illustrates a few useful Keyboard Maestro features, and you can certainly adapt it to your own needs. When it runs, it selects all the text on the current line up to and including the insertion point and converts that text to title case (like the heading just above this paragraph). But the trigger is just typing a few characters.

Follow these steps (refer to Macro #1: Open Login Items for details):

	Create a new macro and name it Convert to Title Case.

	Click New Trigger to display a pop-up menu of trigger types. Choose Typed String Trigger. Then type cttc in the This String is Typed field, with the surrounding pop-up menus set to “case must match,” “match after any character,” and “diacriticals matter.” Also select the “Simulate 4 deletes before executing” checkbox.

	The first action simulates the keystrokes needed to select text from the insertion point back to the beginning of the line. To do this, add the Type a Keystroke action (from the Interface Control category). Then click in the Simulate Keystroke field and type ⌘-Shift-←.

	Next, we want the macro to pause for half a second, to allow that action time to complete. To do this, add a Pause action (from the Control Flow category). Fill 0.5 in the blank.

	Now we want to copy the selected text to a special clipboard (so that the main clipboard isn’t overwritten). To do this, add a Copy to Named Clipboard action (from the Clipboard category). From the second pop-up menu, choose New. Type the name Title Case, and close the window. Title Case should then automatically be selected in that pop-up menu.

	We’ll use one of Keyboard Maestro’s predefined text filters to change the contents of our Title Case clipboard. Add a Filter Clipboard action (from the Clipboard category) to the macro. Choose Title Case from the Filter pop-up menu, and then choose Title Case again from the “with” pop-up menu.

	Finally, we paste the revised clipboard, overwriting what we selected earlier. Add the action Paste from Named Clipboard (from the Clipboard category) and choose Title Case from the second pop-up menu.

Your macro should now look like Figure 67. (I’ll skip the step of turning off edit mode and showing you what that version looks like, although you can do that if you like.)

[image: Figure 67: The Convert to Title Case macro.]Figure 67: The Convert to Title Case macro.

To run this macro, make sure your insertion point is at the end of a line. Then type cttc (without any modifiers). The macro runs, and your trigger characters disappear.

Macro #4: Paste Previous Clipboard

I told you Keyboard Maestro includes a clipboard history. One of my favorite ways to use this is to press a keystroke that pastes whatever was on my clipboard just before the current thing. So, if I copy and paste something, copy a second thing, but then want to paste the first thing again, this is what I use.

Follow these steps, again using earlier instructions as a guide:

	Create a new macro and name it Paste Previous Clipboard.

	Assign the macro a hot key trigger of ⌘-Control-V (or whatever you like).

	Add two actions: Set Clipboard to Past Clipboard (from the Clipboard category), with System Clipboard chosen from the Set menu and 1 entered as the number of the clipboard; and Type a Keystroke (from the Text category), with ⌘-V entered as the keystroke. The result should look like Figure 68.

[image: Figure 68: The Paste Previous Clipboard macro.]Figure 68: The Paste Previous Clipboard macro.

With this macro enabled, simply press ⌘-Control-V to paste the previous contents of the clipboard.

Record a Macro

If you read Automate Microsoft Office, you may recall that in Office apps, you can record a macro. In other words, Office will watch you while you perform activities, and then make them into a macro. You can play this macro back later, no coding required. Keyboard Maestro offers a similar feature. It won’t always produce results as reliable as those you get creating your own macro from scratch—and not every kind of macro can be recorded—but it’s a simple way to ease into macro construction or get unstuck if you’re stuck.

To record a macro:

	Create a new macro, just as in the earlier examples, and give it a name and trigger.

	Instead of filling in actions, click the Record button at the very bottom of the window. A little 5-second countdown timer appears on screen (Figure 69).

[image: Figure 69: This floating window appears when you record a macro. The countdown timer (left) gives way to the icon on right when it reaches zero.]Figure 69: This floating window appears when you record a macro. The countdown timer (left) gives way to the icon on right when it reaches zero.

	Once the timer has counted down to zero and the icon says Recording, do stuff. Whatever you like. Switch apps, type some text, apply formatting, choose menu commands, click buttons, anything. You know, stuff.

	Click the floating Recording icon to stop recording and examine your new macro in Keyboard Maestro.

	Optional but recommended: click Edit to leave edit mode.

Now try running your macro. If the macro doesn’t work as expected—which is likely—go back and click Edit to return to edit mode and see if you can modify some of the actions to do what you want them to do. You may also need to add Pause or Pause Until actions to force the macro to wait for your Mac to catch up with it at certain points.

Learn about Keyboard Maestro Actions

I’ve shown you a handful of actions in the course of walking you through the sample macros. There are many, many more of them. You can learn about actions by looking at the Keyboard Maestro documentation, or by trying them out. Here are just a few actions and categories that I find particularly interesting:

	Activate Clipboard History Switcher (Switchers category): I mentioned in Use a Macro or Launcher Utility that Keyboard Maestro is also an excellent clipboard utility, with its own clipboard history. This action displays a floating window with that history.

	Filter Clipboard (Clipboard category): Speaking of clipboards, this action can make a wide variety of changes to the contents of your clipboard. Use it to remove styles, change case, perform a calculation, count words, and more.

	Google Chrome Control category, Safari Control category: Thanks to the actions in these categories, you can automate nearly anything in Google Chrome or Safari. Open a webpage, fill in and submit a form, click buttons, create new tabs, execute JavaScripts, and perform other activities.

	Execute category: If your macro needs capabilities that Keyboard Maestro’s built-in actions don’t provide, you can use the actions in this category to run a shell script (as we did in Macro #2: Convert Formats), an AppleScript, JavaScript, Swift script, or Automator workflow as part of your macro. (You can also apply a BBEdit text factory—look in the Clipboard category.)

	Find Image on Screen (Image category): This blew my mind when I first saw it. Keyboard Maestro can identify an area on your screen matching an image (perhaps a cropped screenshot) that you supply, and having found that portion of your screen, it can highlight it, move the mouse to it, or take other actions.

Alternatively, a macro can choose to do something or not based on whether an arbitrary portion of your screen matches an image. As just one example of why this is interesting, a blind reader wrote to tell me he uses this feature, in conjunction with AppleScript, to speak the status of an icon on his screen (enabled or disabled) that he’d have no other way to determine because it’s unavailable to VoiceOver. I think that’s amazing. To learn more about using this action, read How to Assign a Hotkey to Almost Anything by Patrick Welker.

Tip: Keyboard Maestro itself is VoiceOver-accessible, which opens its capabilities to those with limited sight. For instance, you can also use Keyboard Maestro’s Speak Text macro to create macros that deliver status reports verbally.

	Variables category: We used two variables in Macro #2: Convert Formats—one of which passed the contents of a field in a dialog to a shell script and the other of which contained the path of each file being operated on. There are countless other ways to use variables, but what I find most valuable is that they’re able to take information created or discovered by one action and reuse it in another action that comes later in the macro.

Learn about Keyboard Maestro Triggers

Just as Keyboard Maestro has lots of nifty actions, it has a crazy array of triggers. We’ve seen keyboard shortcuts and commands on the Keyboard Maestro status menu, but there are 29 other options too. I’m not going to enumerate all of them here—you can read all about them in the Keyboard Maestro documentation—but I want to call out a few that I think are especially noteworthy:

	Typed String Trigger: Unlike a keyboard shortcut, which uses a combination of keys pressed at once (typically with modifiers such as Command, Control, Option, and/or Shift), a typed string trigger is a sequence of keys you type without a modifier. In Automate Text Expansion, we saw how software can turn a typed abbreviation into a longer chunk of text. This is the same idea, except that typing an abbreviation runs a macro (and optionally deletes the characters you just typed)—just as we did in Macro #3: Convert to Title Case. For another example, I could type an abbreviation that fills in some predefined text, selects the entire current paragraph, and copies it to the clipboard—all in one operation.

	Time Trigger: Have your macro run on a timer! This trigger lets you select the time and day(s) of the week you want it to run.

	MIDI Trigger: If you have a piano-style MIDI keyboard (or any other MIDI instrument) connected to your Mac, you can trigger a Keyboard Maestro macro when you play a particular note. (Incidentally, there are also MIDI actions to send note on, note off, and control change messages.)

	Macro Palette Trigger: This floating palette normally takes the form of a small icon (which you can position anywhere on your screen). Mouse over it and it displays a list of macros that you can trigger with a single click (Figure 70).

[image: Figure 70: The macro palette is normally unobtrusive (left), but when you mouse over it, it expands to show macros you can activate with a click.]Figure 70: The macro palette is normally unobtrusive (left), but when you mouse over it, it expands to show macros you can activate with a click.

	Wireless Network Trigger: You can trigger a macro by connecting to, or disconnecting from, a certain Wi-Fi network.

	Focused Window Trigger: When the window that currently has focus (that is, the frontmost window) changes, or when its title or frame change, a macro can run automatically.

	URL Trigger: You can click a specially formatted URL in another app to trigger a macro.

Use Another Macro Utility

Even though Keyboard Maestro is an excellent macro utility for macOS, it’s not the only one. Because I know people will ask, I do want to say a few words about other Mac macro utilities:

	Alfred: Alfred, which I discussed in Use a Third-Party Launcher, has a feature called workflows that’s available only if you purchase the optional Powerpack. Workflows connect a trigger (such as pressing Alfred’s hot key and typing an abbreviation) and/or one or more inputs (such as keyword or filters) with one or more actions (such as opening a file or URL, or running a shell script or AppleScript) and optional outputs (such as a notification or putting something on the clipboard). So an Alfred workflow is certainly a variety of macro, but it’s more limited in its triggers, actions, and logic than what you’ll get in Keyboard Maestro, while being (in my opinion) harder to understand than an Automator workflow.

That’s not to say Alfred workflows aren’t extremely useful—they are. With a few keystrokes in Alfred, you can create a new note or search in Evernote, perform a search on multiple websites at once, or open a selected image in a browser instead of Preview. But they require a particular way of thinking about tasks that doesn’t match the way my brain works, so I find it difficult to recommend them.

Note: Looking for ControlPlane, which would appear here in alphabetical order? I gave it a separate treatment just ahead; see Switch Contexts with ControlPlane.

	QuicKeys: Back in the day (that is, before 2010 or so), QuicKeys was the biggest, baddest, most powerful macro tool for Macs. I absolutely loved it—I found it both easier to use and more flexible than the Keyboard Maestro of that era, and was hard pressed to come up with any automation task it couldn’t perform. Unfortunately, the company that owns it, Startly Technologies, encountered a series of misfortunes—not the least of which was the unexpected death of the lead QuicKeys developer. As a result, QuicKeys has been in a state of suspended animation.

The software hasn’t been updated since December 17, 2009. Although QuicKeys is still for sale and still sort of, mostly works with Sierra (see extra steps required here), it doesn’t take advantage of any recently added macOS technologies, has nontrivial bugs, and was never explicitly updated for Lion or any release since. So I have to assume the current version (4.0.7) is the last one we’ll ever see. It may work (sort of, mostly) with older versions of macOS, but despite its power, I can’t feel good about relying on an app that’s so neglected. If development begins again, I’ll be more than happy to update this section of the book!

	yKey: Although not in the same league as Keyboard Maestro, yKey (formerly called iKey) is a fine little macro utility. It has a reasonably thorough list of triggers and actions, and can dispatch many repetitive tasks with ease.

yKey doesn’t include logic, as such. For example, it can wait for certain app or window states before moving on with the next step in a macro, but it can’t make if/then/else decisions, process variables, perform loops, search for text patterns, or evaluate complex conditions as Keyboard Maestro can. And its interface is odd—it strikes me as being backward from the way most macro utilities approach triggers and actions.

Switch Contexts with ControlPlane

As fond as I am of Keyboard Maestro, there are a few things it can’t do that I need from time to time. For example, I want a certain app to launch whenever I connect my MacBook Pro to AC power, and to quit whenever I unplug it. I want my windows to rearrange in a particular way when I connect a second display to my iMac. And I want to switch my Mac’s audio input whenever I plug in external speakers. It turns out these sorts of tasks are precisely the domain of an app called ControlPlane.

ControlPlane is based on the notion of user-defined contexts, which you can think of as settings or situations your Mac might find itself in. For example, a context could be a location (home, work, or a coffee shop), the presence of a particular connected peripheral, or a mood that might strike you. You begin by creating whatever contexts are useful or meaningful to you.

Then, for each context, you create one or more rules that tell ControlPlane how likely it is that a given context exists. For example, if I have a context “coffee shop,” I might create a rule that says if my current Wi-Fi network is called “Google Starbucks,” my confidence that I’m in a coffee shop is 100%. Depending on the context, a single clue may give it away, or you may need a combination of factors, such as which devices are currently connected and what your Mac’s IP address is.

Once the conditions are in place that convince ControlPlane you’re in a given context, it performs any actions you’ve assigned to that context. (It can also perform actions when you leave a context.) So, if my context is “AC power,” with the fact that my Mac is plugged in supplying the sole piece of needed evidence, my action to open a particular app is performed automatically. When I disconnect from power, another action automatically quits that app.

Note: ControlPlane lets you assign multiple actions to a context, but you can’t chain actions into a sequence or apply any other logic.

I’ll be the first to admit that this is a rather unintuitive arrangement. And yet, once you get the hang of it, it can become quite powerful, giving you the option to perform tasks based on passive triggers, or combinations of triggers, that are entirely outside the domain of something like Keyboard Maestro.

About This Book

Thank you for purchasing this Take Control book. We hope you find it both useful and enjoyable to read. We welcome your comments.

Ebook Extras

You can access extras related to this ebook on the web. Once you’re on the ebook’s Take Control Extras page, you can:

	Download any available new version of the ebook for free, or buy a subsequent edition at a discount.

	Download various formats, including PDF, EPUB, and Mobipocket. (Learn about reading on mobile devices on our Device Advice page.)

	Read postings to the ebook’s blog. These may include new information and tips, as well as links to author interviews. At the top of the blog, you can also see any update plans for the ebook.

If you bought this ebook from the Take Control website, it has been automatically added to your account, where you can download it in other formats and access any future updates. However, if you bought this ebook elsewhere, you can add it to your account manually:

	If you already have a Take Control account, log in to your account, and then click the “access extras…” link above.

	If you don’t have a Take Control account, first make one by following the directions that appear when you click the “access extras…” link above. Then, once you are logged in to your new account, add your ebook by clicking the “access extras…” link a second time.

Note: If you try these directions and find that your device is incompatible with the Take Control website, contact us.

About the Author and Publisher

Joe Kissell is the author of more than 60 books about technology. In May 2017, he also became the publisher of Take Control Books, when alt concepts inc.—the company he runs along with his wife, Morgen Jahnke—acquired the Take Control series from TidBITS Publishing Inc.’s owners, Adam and Tonya Engst.

Joe is also a contributing editor to TidBITS and a senior contributor to Macworld. Before he began writing full-time in 2003, Joe spent nearly eight years managing software development. He holds a bachelor’s degree in Philosophy and a master’s degree in Linguistics.

When not writing or speaking, Joe likes to travel, walk, cook, eat, and practice t’ai chi. He lives in San Diego with Morgen; their sons, Soren and Devin; and their cat, Zora. To contact Joe about this book, send him email and please include Take Control of Automating Your Mac in the subject. You can also follow Joe on Twitter (@joekissell), or visit his rarely updated blog at JoeKissell.com.

Acknowledgments

Thanks to Glenn Fleishman for stepping in as the new editor. Bill Cheeseman and Sal Soghoian offered invaluable input and suggestions for an earlier edition of this book. I also appreciated the helpful feedback of all the technical reviewers of the first edition—especially Peter N Lewis and Greg Scown. And I’m grateful to all the developers who generously provided the coupons at the end of this book. Thank you!

Credits

	Publisher: Joe Kissell

	Editor: Glenn Fleishman (3rd edition) and Scholle McFarland (1st and 2nd editions)

	Cover design: Sam Schick of Neversink

	Logo design: Geoff Allen of FUN is OK

Copyright and Fine Print

Take Control of Automating Your Mac, Second Edition

ISBN: 978-1-947282-47-6

Copyright © 2019, alt concepts inc. All rights reserved.

alt concepts inc. 4142 Adams Ave. #103-619, San Diego CA 92116, USA

Why Take Control? We designed Take Control electronic books to help readers regain a measure of control in an oftentimes out-of-control universe. With Take Control, we also work to streamline the publication process so that information about quickly changing technical topics can be published while it’s still relevant and accurate.

Our books are DRM-free: This ebook doesn’t use digital rights management in any way because DRM makes life harder for everyone. So we ask a favor of our readers. If you want to share your copy of this ebook with a friend, please do so as you would a physical book, meaning that if your friend uses it regularly, they should buy a copy. Your support makes it possible for future Take Control ebooks to hit the internet long before you’d find the same information in a printed book. Plus, if you buy the ebook, you’re entitled to any free updates that become available.

Remember the trees! You have our permission to make a single print copy of this ebook for personal use, if you must. Please reference this page if a print service refuses to print the ebook for copyright reasons.

Caveat lector: Although the author and alt concepts inc. have made a reasonable effort to ensure the accuracy of the information herein, they assume no responsibility for errors or omissions. The information in this book is distributed “As Is,” without warranty of any kind. Neither alt concepts inc. nor the author shall be liable to any person or entity for any special, indirect, incidental, or consequential damages, including without limitation lost revenues or lost profits, that may result (or that are alleged to result) from the use of these materials. In other words, use this information at your own risk.

It’s just a name: Many of the designations in this ebook used to distinguish products and services are claimed as trademarks or service marks. Any trademarks, service marks, product names, or named features that appear in this title are assumed to be the property of their respective owners. All product names and services are used in an editorial fashion only, with no intention of infringement. No such use, or the use of any trade name, is meant to convey endorsement or other affiliation with this title.

We aren’t Apple: This title is an independent publication and has not been authorized, sponsored, or otherwise approved by Apple Inc. Because of the nature of this title, it uses terms that are registered trademarks or service marks of Apple Inc. If you’re into that sort of thing, you can view a complete list of Apple Inc.’s registered trademarks and service marks.

Also by Joe Kissell

Click any book title below or visit our web catalogto add more ebooks to your Take Control collection!

Are Your Bits Flipped?: Overcome common tech misconceptions with this collection of easy-to-read essays.

Take Control of 1Password: Slowed down by entering passwords repeatedly? Learn how to let 1Password do the heavy lifting.

Take Control of Apple Mail: Learn the ins and outs of Apple’s email app in macOS and iOS.

Take Control of Backing Up Your Mac: Protect your Mac’s valuable data from any sort of mishap.

Take Control of iCloud: Understand the many features, get set up properly, and enjoy iCloud!

Take Control of Maintaining Your Mac: Learn preventive maintenance steps to keep your Mac running smoothly.

Take Control of Speeding Up Your Mac: Turn a slow Mac into a high-performance machine.

Take Control of the Cloud: Wrap your head around the wide variety of cloud services and apps, and make smart purchasing decisions.

Take Control of the Mac Command Line with Terminal: Master your Mac’s command-line interface and learn basic Unix skills.

Take Control of Troubleshooting Your Mac: Solve most everyday Mac problems without a trip to the Genius Bar.

Take Control of Upgrading to Catalina: Experience a trouble-free upgrade to the latest version of macOS with this comprehensive guide.

Take Control of Your Digital Legacy: Make sure your important digital information is preserved for future generations.

Take Control of Your Online Privacy: Learn what’s private online (not much)—and what to do about it.

Take Control of Your Paperless Office: With your Mac, scanner, and this ebook in hand, you’ll finally clear the chaos of an office overflowing with paper.

Take Control of Your Passwords: Overcome password overload without losing your cool—and view the comic that goes with this ebook!

Hazel Coupon

To save 20% on Hazel, visit the Noodlesoft Store page to see the discount pricing, enter how many copies you want, and check out.

Keyboard Maestro Coupon

To save 20%, visit the Keyboard Maestro website and be sure to input the coupon code TCOAYM as you check out.

LaunchBar Coupon

To save 20%, go the Objective Development Shop page, add LaunchBar to the cart, and enter DT-4460-7113 in the Discounts field.

Nisus Writer Pro Coupon

To save 25% on Nisus Writer Pro, visit the Nisus Software Take Control Readers page and click the appropriate Buy button.

Script Debugger Coupon

To save 15% on Script Debugger, use this URL to automatically apply discount code TAKECONTROL17.

TextExpander Coupon

To save 30% on the first year of a TextExpander subscription, open the Smile cart to see the coupon code already applied.

TextSoap Coupon

To save 20% on TextSoap, visit the Unmarked Software Store page, click a Buy button, and enter TCAYM1414 in the Coupon Code field.

TypeIt4Me Coupon

To save 30% on TypeIt4Me, visit the Ettore Software coupon page and click Buy Now.

Typinator Coupon

To save 30%, open the Ergonis Store page and then select Typinator to open the Ergonis cart with the discount applied.

UI Browser Coupon

To save 20% on UI Browser, go to the PFiddlesoft Store and enter coupon code QXAMZB when you check out.

 OEBPS/Images/file73.png

OEBPS/Images/ch015.xhtml#DiscovermacOSAutomationTechnologies

Skip to content		Home

		search iconSearch

		navigation arrowExpand Nav		Your O'Reilly		Profile

		History

		Playlists

		Highlights

		Featured		Resource Centers

		Expert Playlists

		Practice		Katacoda Scenarios

		Jupyter Notebooks

		Sandboxes		Kubernetes

		Python

		TensorFlow

		Ubuntu

		queue iconExplore		All Topics

		Most Popular Titles

		Recommendations

		Early Release

		Playlists

		Attend		Live Training

		Conferences

		Newsletters

		settings iconSettings

		Support

		Sign Out

 Table of Contents for

 Take Control of Automating Your Mac, 3rd Edition

 		Search in book...

		

		Toggle Font Controls

				Twitter

		Facebook

		Google Plus

		Email

	

 Prev
 Previous Chapter
 Automate Backup and Syncing

 Next
 Next Chapter
 Use Services for System-Wide Shortcuts

Discover macOS Automation Technologies

As we’ve seen so far in this book, macOS offers lots of ways to automate individual activities. But some automation tasks require apps to talk to each other (or even to other computers), employ sophisticated logic or user interaction, or perform specialized functions that are unique to your situation. When simple tools aren’t up to the job, it’s time to bring in the heavy hitters.

In the next four chapters, I talk about a subset of technologies that go considerably deeper than things like keyboard shortcuts or text expansion. These technologies—Automator, AppleScript, services, and shell scripts—aren’t so much tools as platforms built into macOS that you can use to create your own tools. As such, they’re more complex, but also far more powerful. In this brief chapter, I introduce you to these platforms and offer a bit of high-level advice about how to approach them, especially if you’re a beginner.

I also offer a brief introduction to Using JavaScript for Automation. Although I don’t cover JavaScript extensively in this book, it forms the basis of the automation features in Omni products, which I discuss later (see Use Omni Automation). And I say a few words about using Apple’s newest programming language, Swift, as the basis for automating your Mac without writing new apps from scratch; see Using Swift for Automation.

Apple’s Core Automation Technologies

There’s certainly some overlap among the technologies we cover next. Indeed, I frequently have to flip a coin when choosing which of several approaches I should use to solve a given problem.

So I’ve chosen to arrange these topics in order of what I consider least to most intimidating. Get to know the ones earlier in the list first, and as your knowledge and skills grow (or your needs outgrow the less-intimidating tools), move on to the next:

		Services are plugins that add features for working with text, graphics, and more to almost any app. macOS comes with a number of built-in services, and many popular apps add their own. You can also install standalone third-party services, or create your own using Automator or other tools. See Use Services for System-Wide Shortcuts.

		Automator lets you construct multi-step operations called workflows using graphical building blocks rather than code. (It does, however, let you incorporate code written in AppleScript, JavaScript, and other scripting languages, if needed to solve particular problems.) Automator makes it easy to experiment, and with a bit of creativity, you can create quite powerful workflows that solve everyday problems. See Get Started with Automator.

		AppleScript is a language you can use to write programs that do all sorts of useful tasks on your Mac. It’s meant to resemble English, but that’s perhaps an exaggeration; in any case, AppleScript is certainly more difficult to use than Automator. Even so, AppleScript is far more approachable than heavy-duty programming languages like Swift and Objective-C, while still being quite capable. See Get Started with AppleScript.

		Shell scripts run in the Terminal command-line utility, performing tasks using the Mac’s Unix underpinnings. Because shell scripts have direct access to all the low-level Unix programs that make up the core of macOS, they can solve problems that no other approach can. But they do require you to interact with your Mac in a pure text environment, which you may find confusing or off-putting if your only experience using a computer has been through a graphical user interface. See Script the Command Line with Shell Scripts.

Worried that this all sounds too complicated? Don’t be. I want to make sure you understand this crucial concept up front:

You can use a service, Automator workflow, AppleScript, or shell script without knowing how to create one.

In fact, that’s precisely what I recommend. For each of the technologies in the following four chapters, I suggest the following process:

		Learn how to locate, install, and use scripts/tools written by other people.

		Once you’re comfortable using them, try modifying them slightly. That’s one of the easiest ways to learn how they work while also customizing them to better meet your needs.

		When you have time to tinker, start to create your own scripts/tools, using the resources I recommend (and with other people’s work as a guide).

But before I turn you loose on that stuff, I want to mention two other important automation approaches that you should be aware of.

Using JavaScript for Automation

Starting in Yosemite, Apple made it possible to use JavaScript as well as AppleScript for scripting. To be precise, Apple’s implementation is called JavaScript for Automation, or JXA. To oversimplify greatly, JXA means that you can now do nearly any sort of automation task in JavaScript that would previously have required AppleScript. You can even create your Mac automation JavaScript code using the Script Editor app, just as you do for AppleScript—all you have to do is choose JavaScript from the pop-up menu just below the Record button in the upper-left corner of the Script Editor window. (In fact, JXA is available throughout macOS; you can use it for Mail rules, Calendar alarms, and anywhere else you can use AppleScript.)

Why might you want to do this?

For one thing, lots more people know JavaScript than know AppleScript. If you already know a bit about JavaScript programming—for example, from designing websites—you can now use that skill to automate activities on your Mac, without having to learn a new (and, let’s face it, rather quirky) programming language. All you need to learn is how to reference the objects and methods you want to interact with (most of which are similar to, if not identical to, the corresponding AppleScript terms).

Tip: To learn the terminology for interacting with Mac apps using JavaScript, open Script Editor, choose File > Open Dictionary, select an app, and click Choose. Then, from the Language pop-up menu at the top of the dictionary window, choose JavaScript instead of AppleScript.

JavaScript also lets you write code that can be used in both macOS and iOS versions of certain apps (see Use Omni Automation). That usage could plausibly extend to other developers’ apps in the future.

This book doesn’t cover JavaScript programming as such, but if you already know how to write code in JavaScript, you can pretty much follow everything I say later in Get Started with AppleScript and simply replace the logic with JavaScript code. To learn more about automating your Mac with JavaScript, see:

		This 25-minute training video by Sal Soghoian

		Apple’s JavaScript for Automation Release Notes

		Getting Started with JavaScript for Automation on Yosemite, by Alex Guyot at MacStories (which still applies to newer systems)

Using Swift for Automation

Since the introduction of Mac OS X, Objective-C has been the primary language programmers used to create full-blown apps for macOS (and, later, iOS, watchOS, and tvOS). In 2014, however, Apple debuted a brand-new programming language called Swift, which was designed to be more modern, easier to use, and less prone to certain kinds of errors and bugs than Objective-C. In the years since, Swift has undergone rapid development. It hasn’t yet completely replaced Objective-C (and indeed, for some programming tasks, Objective-C is still the superior choice), but it’s well on its way. Nearly any type of app can be written entirely in Swift, and it’s clearly the future of programming as far as Apple is concerned. There’s even a free iPad app called Swift Playgrounds that teaches you how to code in Swift using a game-like interface.

Ordinarily, Swift is written in Xcode, and compiled into an app before it’s run. But what if you could use Swift in a manner somewhat analogous to AppleScript or JavaScript to automate user-level activities on your Mac, without all that overhead? Aside from solving your immediate automation problems, that could provide a useful environment in which to learn the language.

In fact, I know of two ways to do just that:

		Keyboard Maestro, which I discuss extensively later on (see Control Your Mac with Keyboard Maestro) lets you embed Swift scripts as actions in your macros, just as you can do with AppleScript, JavaScript, shell scripts, and scripts in other languages. So if you have a macro that can mostly be accomplished with prebuilt actions, but just needs a bit of custom code, you can use Swift to write that code.

		SwiftAutomation is a free framework written by a developer known as Hengist Podd. It provides a bridge to Apple events for Swift, meaning that Swift can be used to control any app that would otherwise be controllable with AppleScript. SwiftAutomation is clearly a work in progress, and its documentation is only partially complete, but it may be worth experimenting with.

 Prev
 Previous Chapter
 Automate Backup and Syncing

 Next
 Next Chapter
 Use Services for System-Wide Shortcuts

 You have 1 day left in your trial, Bakara25. Subscribe today. See pricing options.

 Back to top

 		Settings

 		Support

 		Sign Out

 © 2019 O'Reilly Media, Inc.

 Terms of Service
 /

 Privacy Policy

OEBPS/Images/file74.png

OEBPS/Images/file75.png

OEBPS/Images/ch013.xhtml#DiscoverOtherWebAutomationOptions

Skip to content		Home

		search iconSearch

		navigation arrowExpand Nav		Your O'Reilly		Profile

		History

		Playlists

		Highlights

		Featured		Resource Centers

		Expert Playlists

		Practice		Katacoda Scenarios

		Jupyter Notebooks

		Sandboxes		Kubernetes

		Python

		TensorFlow

		Ubuntu

		queue iconExplore		All Topics

		Most Popular Titles

		Recommendations

		Early Release

		Playlists

		Attend		Live Training

		Conferences

		Newsletters

		settings iconSettings

		Support

		Sign Out

 Table of Contents for

 Take Control of Automating Your Mac, 3rd Edition

 		Search in book...

		

		Toggle Font Controls

				Twitter

		Facebook

		Google Plus

		Email

	

 Prev
 Previous Chapter
 Automate Email

 Next
 Next Chapter
 Automate Backup and Syncing

Automate the Web

You might not think of web browsing as an activity that requires automation. You follow links, you read articles, watch cat videos, maybe make the occasional purchase, but that’s all inherently manual, right? After all, I don’t want my Mac to read Facebook posts for me or play games behind my back.

But in fact, the web offers numerous opportunities for shortcuts and simplification. For example, every time you’re asked to supply a username and password, a credit card number, or a mailing address, your Mac can do that for you—no typing (or memorizing) required.

Here’s another example: you keep checking a certain webpage—or maybe a specific portion of a page—for changes. Maybe you’re waiting for an announcement, a sale, or a product update, or maybe you’re looking for news stories about your neighborhood. Repeatedly checking a page for changes (whether once a day or several times a minute) is exactly the sort of labor-saving task computers are good at.

And then, looking more generally at cloud services that have a web presence, there are tons of opportunities for connecting things. Perhaps you want to post photos to Facebook after they appear in a shared Dropbox folder. Or save links from your favorite tweets to Instapaper. Or see an alert in the evening if tomorrow’s weather forecast calls for rain. All sorts of things that can occur in one cloud service can trigger events in other cloud services—an area ripe for automation.

Log In Faster with iCloud Keychain and Safari Autofill

Let’s begin with an easy way to automate filling out all those pesky web forms, without the need for any extra software.

Note: This topic is adapted from my book Take Control of iCloud.

The Mac version of Safari (like nearly all web browsers) can automatically fill in your contact information (name, address, phone number, and so on), as well as usernames and passwords, on web forms. Safari uses the Mac’s system-wide keychain mechanism to securely store the portions of this data that aren’t already in your Contacts app.

iCloud Keychain, included in macOS and iOS/iPadOS, extends this capability. It lets you sync a keychain across your Apple devices securely via the cloud. The biggest benefit is that Safari for iOS/iPadOS can autofill usernames and passwords that you stored in a keychain on your Mac (and vice versa). But iCloud Keychain also includes:

		A strong password generator built into Safari (on both platforms)

		The capability to store, sync, and enter credit card information (except the CVV number from the back of the card) in web forms

		Support for multiple sets of credentials per site

		A way to view and remove passwords within Safari

In addition, if you turn on iCloud Keychain, it automatically syncs the settings for the accounts listed in the Internet Accounts pane of System Preferences on your Mac (including email accounts) amongst your other Macs. This account syncing does not extend to iOS/iPadOS devices.

Enable and Configure iCloud Keychain

The short version of setting up iCloud Keychain is: go to System Preferences > Apple ID > iCloud (in Catalina or later) or System Preferences > iCloud (in Mojave or earlier), select the Keychain checkbox, and enter your Apple ID password. Repeat on your other devices. However, unlike most iCloud features, flipping a single switch isn’t all there is to it here; the initial setup process is more involved. Also, the steps you follow with whichever device you set up first will be different from the steps for setting up all subsequent devices.

If you haven’t already set up iCloud Keychain, I encourage you to read Apple’s article Set up iCloud Keychain for details.

One iCloud Keychain is enabled and syncing your data, you must next configure Safari to use its features. Go to Safari > Preferences > AutoFill and make sure the checkboxes are selected for each type of data you want to autofill—the two options relevant to iCloud Keychain are “User names and passwords” and “Credit cards.” (If you like, you can also select “Using information from my contacts” or “Other forms”; I discuss these later.) Then click Passwords at the top and, if the screen says “Safari passwords are locked,” fill in the password for your macOS user account and press Return.

Note: Mac users can autofill passwords from iCloud Keychain only in Safari (as of Catalina), while iOS and iPadOS support this feature across all apps. I address only Mac usage in this book.

Autofill Passwords

After you load a login page for which you’ve already stored credentials in your iCloud Keychain, you can do any of the following to fill your credentials:

		Choose Edit > AutoFill Form

		Press ⌘-Shift-A

		Click or tap in the Username or Password field and then click the credentials you want to use on the pop-up menu that appears

Safari fills in the username and password fields for you—all you need to do then is click or tap the Login button or its equivalent.

If you’ve stored more than one set of credentials for a site—for example, if you have two different accounts for Google or Twitter—first delete the credentials Safari has autofilled, if any. You can then click in the username field to display a pop-up menu with your logins (Figure 35); choose the one you want to fill in your credentials.

[image: Figure 35: If you have multiple credentials for a site, click or tap in the username field to choose one.]Figure 35: If you have multiple credentials for a site, click or tap in the username field to choose one.

If Safari autofills a set of credentials and it’s not what you want, delete them and try clicking or tapping the username field again. If they still don’t appear (for example, because the domain names don’t match exactly), click Other Passwords. In the dialog that appears, locate the account you want (manually or using the Search field). Select it and click Fill.

Some websites deliberately block browsers and password managers from saving passwords you enter there, in a misguided attempt at greater security. Safari can either accept or attempt to bypass any site’s restrictions, but, unfortunately, you can’t control that behavior.

Store New Passwords

If you arrive at a login page for which iCloud Keychain does not yet contain your credentials, enter them manually (or with a third-party password manager) and log in. Safari should then display a prompt asking if you want to save the password in your iCloud Keychain. Click Save Password to store your credentials for that site.

If you already have credentials stored for the site and you want to store an additional username/password combination, first delete the credentials Safari has autofilled. Then enter the new credentials, log in, and click Save Password when prompted.

Generate a Random Password

When you’re asked to register on a website and create a new password, iCloud Keychain can generate one for you and store it automatically. Follow these steps:

		Make sure the Password field is completely empty.

		Click or tap in the field.

		Click the key [image:] icon and choose Suggest New Password from the pop-up menu.

		Safari fills in a suggested password (highlighted in yellow), but displays only the first few characters, along with the label “Strong Password.” A popover with additional details may appear on its own; if not, click the field to display it (Figure 36).

[image: Figure 36: Click a suggested password to see this popover.]Figure 36: Click a suggested password to see this popover.

		To use Safari’s suggested password, click Use Strong Password. You may be unable to even see the entire password. Click Don’t Use to fill in your own password, either one you type or via a third-party password generator.

		Fill in any remaining fields (such as Username) and submit the form.

When you submit the form, Safari saves your credentials for the site without any additional steps.

Store and Enter Credit Card Numbers

Credit cards work much like passwords—if you type or paste a credit card number into a blank field (along with its expiration date) and submit the form, Safari prompts you to save the credit card number in your iCloud Keychain. (Remember, it doesn’t save or store the CVV number from the back of your credit card.)

When it’s time to fill in a stored credit card number, click or tap in the Credit Card Number field and choose the desired credit card from the pop-up menu—or from the QuickType bar in iOS. If you have more than one credit card stored, Safari displays a pop-up menu from which you can choose the one you want to use, just as when filling in your username and password on a site for which you have multiple sets of credentials.

Autofill Other Data

I mentioned that you might want to enable Safari’s two other autofill features in Safari > Preferences > Autofill. The first, “Using information from my contacts,” populates form fields with your contact information when appropriate. The second, “Other forms,” does the same thing for anything you’ve previously filled in on a form that isn’t part of your credentials, credit card, or contact information—that might include preferences, survey questions, or nearly anything else.

Tip: Pay attention when you use this feature, to make sure that it doesn’t autofill unwanted data, such as an old coupon code in an online shopping cart.

As you browse the web, if “Other forms” is selected, Safari remembers everything you enter in a form field.

Later, if you want to fill that in on the same site—or if you want to fill in your contact information—you have two choices:

		Choose Edit > AutoFill Form (⌘-Shift-A).

		Start typing your contact information in any form field. When Safari sees that it matches corresponding information from your card in Contacts, it pops up a little card icon labeled with your name. Click this icon or press the ↓ key to select it, and then click AutoFill (or press Return) to fill in the rest of the form.

Automate Web Logins with a Password Manager

Although the combination of Safari and iCloud Keychain can simplify entering most form data, you might consider (instead or in addition) a third-party password manager. Why would you pay for something that’s built into macOS and iOS/iPadOS? Well, third-party tools can do several important things that iCloud Keychain can’t:

		Work on older versions of macOS, as well as non-Apple platforms (Android, Windows, Linux) that you might also use

		Generate stronger random passwords to your exact specifications (length, case, numbers, special characters, and so on)

		Autofill credentials in other macOS browsers (such as Google Chrome and Firefox)

		Store and fill multiple sets of contact data (such as home and work)

		Fill in your credit cards’ CVV numbers, so you don’t have to dig them out of your wallet every time you make a web purchase

		Store a broader range of information types, including software licenses, passports, memberships, and reward programs

		Provide a friendlier interface for viewing and editing data than Apple’s awful Keychain Access utility

For all these reasons, although I use and appreciate iCloud Keychain, I rely more heavily on a password manager called 1Password. It syncs all my data amongst my Macs and iOS devices, as well as Windows and Android devices. It has lots of useful organizational features. And, it gives me a greater feeling of control over my passwords than iCloud Keychain does. When I get to a webpage that asks for my credentials, I simply press the default keyboard shortcut ⌘-\, and 1Password fills them in; I then press Return to submit the form. Piece of cake.

In fact, I like 1Password so much I wrote a book about it: Take Control of 1Password. If you choose to use 1Password, you may find that book helpful in getting up to speed.

However, 1Password is not by any means the only game in town. Other third-party password managers that have most of the same features (and thus, the same advantages over iCloud Keychain) include Dashlane, LastPass, and RoboForm. I’ve tried them all and would happily recommend any of them.

Tip: To learn more about password security generally—including what crucial steps you should take beyond simply using a password manager—see my book Take Control of Your Passwords.

Tip: If you want to automate a series of operations on webpages, such as logging in, filling in forms, and searching, you can use Keyboard Maestro (see Control Your Mac with Keyboard Maestro).

Automate Cloud Services

Hundreds of apps, sites, services, and other products proclaim their connections to the cloud, even though it’s often unclear what “cloud” means or what its benefits are.

Tip: I use the term “cloud” to refer to storage, apps, and other services made available over the internet as a replacement for similar products that would otherwise run on local devices or require managing resources on a server. Such services are provided by large, distributed computer networks rather than individual servers, adding another stratum to the cloud metaphor.

A consequence of this cloud craze is that you can end up with dozens of accounts with cloud services that partially overlap in capabilities. Yet for the most part, these services don’t communicate with each other. The result is that you may end up spending a lot of time taking a file, photo, or piece of information from one cloud service and moving or posting it to another service.

Luckily, a few sites have emerged whose entire purpose is to connect cloud services for you, automating the cloud so that useful things happen in one service when something happens in another.

Let me give you some concrete examples of how multiple cloud services can be connected and automated:

		Add something to the Reminders app (in macOS or iOS/iPadOS) and it’s copied to an Evernote checklist.

		When someone tags you in a Facebook photo, download that photo to your Dropbox.

		Post an Instagram photo and have it automatically sent to Twitter too.

		Save all your incoming email attachments to your OneDrive.

		Send a thank-you note by email whenever someone endorses you on LinkedIn.

Got the idea? Let’s look at three sites that let you do those sorts of things.

Tip: I wrote this little (not so little) book called Take Control of the Cloud, which undertakes the ambitious task of making sense of the cloud. If you find the many competing and overlapping cloud services overwhelming, this book will help you sort out what you need.

IFTTT

IFTTT (for If This, Then That) is the best-known and most popular site in this category. The name describes the basic concept: you create two-part recipes called applets that say: If this happens (in one cloud service), then do that (in a second service). These applet formulations are a bit like email rules, except that, in their default representation there’s always exactly one condition and one action—simple.

What services can you connect? Why, there several hundred of them, which IFTTT refers to as “channels,” covering almost every major cloud storage platform (Box, Dropbox, Google Drive, OneDrive…), social network (Facebook, LinkedIn, Twitter, Foursquare…), and photo site (Flickr, Instagram, 500px…), plus iOS/iPadOS data (contacts, location, notifications, photos, reminders), email, SMS, blog platforms, news sites, home automation tools, and even things like the date, time, and weather. The list is growing all the time.

IFTTT provides many prebuilt actions; you can also build your own, use actions other people have created, or edit an existing applet to meet your needs.) Here are a few examples of prebuilt actions:

		Back up your new Facebook photos to Google Drive.

		Post to Trello when a specific tag is added to an Evernote note.

		Whenever you add a new iOS/iPadOS contact, mark it in your Google Calendar.

		Turn on your lights automatically as you arrive home.

		Automatically post a reminder to a Slack channel 15 minutes before a calendar event starts.

		Get a mobile notification when your Whirlpool dryer cycle finishes.

As you see, applets are customizable to include things like time, date, and location, among other attributes.

IFTTT is free for personal use. After signing up for an account, you activate whichever channels you’re interested in by signing in to the relevant accounts. Then you can choose from a prebuilt applet, or concoct your own as follows:

		Click your avatar in the upper-right corner and then click Create from the pop-up menu.

		Click the word This.

		Click a trigger channel—where you look for the new piece of data that will kick off the recipe.

		Fill in any necessary information (the options vary by channel). For example, if your trigger channel is Facebook, you click one or more links to specify what particular activity in your Facebook account you want to use (such as “You are tagged in a photo”). Then click “Create trigger.”

		Now click the word That.

		Click an action channel—where the information from the trigger channel will be sent. For example, you can click Email followed by “Send me an email.”

		Once again, specify any details necessary to complete the action, such as whether you want to download a photo or have its URL added to a text file.

		Click “Create action.”

		Finally, review your applet and click Finish.

That’s it! Your recipe now runs by itself, automatically taking the action you specified when the trigger occurs.

Tip: For a great example of using IFTTT with iOS notifications (via iCloud), read Ben Waldie’s Macworld article Power tools: Make events on your Mac trigger iOS notifications.

If you need more power, however, you can turn to the (also free) IFTTT Platform, which lets you create applets with greater complexity. For example, an applet can have not just one action but several—If this, then that and that and that. And, the starting condition can run through a filter that you write (using JavaScript) that overrides or skips actions depending on certain variables.

Zapier

Unlike IFTTT, Zapier is designed primarily for business. As such, it integrates with a much larger number of cloud apps and services, including many that are strictly for enterprise use. Zapier refers to its automations as Zaps. In the basic, free plan, you can create Zaps with only two steps (a trigger and an action, just like IFTTT’s basic applets), using a subset of the available cloud services. To access the full range of services and multi-step Zaps, you’ll need a paid plan; prices start at $19.99 per month.

If you need to automate business-related cloud services that IFTTT doesn’t connect to, such as Infusionsoft, Zoho CRM, Basecamp, or QuickBooks Online, Zapier is the tool to use. Some example Zaps:

		Add new WooCommerce orders to QuickBooks Online as customers.

		Create Infusionsoft contacts for new successful sales in PayPal.

		Post new Basecamp 2 activity to Slack.

		Start or stop instances on Amazon EC2 on a daily schedule.

		Copy new Facebook Lead Ads leads into Zoho CRM as leads.

If those names don’t mean anything to you, don’t worry! You’re probably just not the target audience for Zapier, and IFTTT will likely be more suitable for your needs.

Discover Other Web Automation Options

Connecting cloud services is fantastically useful, but sometimes you may need something a bit simpler and more elegant. For example, you might want to monitor the web (as a whole) for new pages on a topic of interest, or monitor a specific page for changes.

Monitor the Web with Google Alerts

The web changes continuously, so Google is constantly updating its massive index of the web to provide up-to-date search results. As a result, a search you perform one day may yield completely different results than it did yesterday. If you’d like to stay on top of a given subject, you can use the free Google Alerts service to perform an automated search every day (or even more frequently, if you like) and send you any new results by email or a customized RSS feed.

To use Google Alerts, you fill out a form (Figure 37) with your search query (just as if you were doing a regular Google search), click Show Options, and fill in a few other pieces of information—most crucially, your email address (or choose RSS Feed from the Deliver To pop-up menu to create an RSS feed). The current results of your query appear beneath the form. Click Create Alert, and you’re done—you’ll get the results automatically.

[image: Figure 37: Create a Google Alert by filling out this form.]Figure 37: Create a Google Alert by filling out this form.

You can go back to the Google Alerts page whenever you like to add, remove, or modify alerts.

Ideas for Google Alerts:

		Google yourself and find out when people are talking about you.

		Follow rumors about hypothetical new Apple devices.

		Get the latest news on treatments for a medical condition a loved one is experiencing.

		Search for discounts and deals on products you’re interested in.

		Keep tabs on your competition.

Use a Cloud Service to Monitor a Website for Changes

In the online appendixes to my book about backing up a Mac, I have tables listing the features of many backup apps and cloud services. This information changes all the time, though. One way I keep that information (more or less) up to date is by monitoring the pages that list release notes or other version information for each of dozens of apps. When a page changes, I check to see if the change is relevant to my table, and if so, I update the table accordingly.

Needless to say, I don’t manually check dozens of webpages for changes every day! Instead, I use a free service that checks for me and sends me an email message if any monitored page has changed since the last time it checked.

I’ve used two such services—WatchThatPage, which has a kind of awkward and old-fashioned interface, but gets the job done; and Visualping, which is more modern and customizable.Either way, the process is dead simple: sign up for a free account, enter a URL, and click a button to start monitoring it.

Tip: If you do use a service like this, do yourself a favor and set up a rule in your email client (see Automate Email) to file all those change reports into a special mailbox. They tend to accumulate over time!

Other reasons to monitor websites for changes:

		Watch for schedule changes, special events, and other announcements from your child’s school.

		Find out the second any new Take Control book is published—even if you’re not on our mailing list!

		Learn about new products or price drops in the Apple Store.

		Get updates on your favorite crowdfunding projects from Kickstarter, Indiegogo, and the like.

 Prev
 Previous Chapter
 Automate Email

 Next
 Next Chapter
 Automate Backup and Syncing

 You have 1 day left in your trial, Bakara25. Subscribe today. See pricing options.

 Back to top

 		Settings

 		Support

 		Sign Out

 © 2019 O'Reilly Media, Inc.

 Terms of Service
 /

 Privacy Policy

OEBPS/Images/file76.png

OEBPS/Images/file70.png

OEBPS/Images/file71.png

OEBPS/Images/file72.png

OEBPS/Images/file77.png

OEBPS/Images/file78.png

OEBPS/Images/file79.png

OEBPS/Images/ch011.xhtml#DiscoverOtherInternallyScriptableApps

Skip to content		Home

		search iconSearch

		navigation arrowExpand Nav		Your O'Reilly		Profile

		History

		Playlists

		Highlights

		Featured		Resource Centers

		Expert Playlists

		Practice		Katacoda Scenarios

		Jupyter Notebooks

		Sandboxes		Kubernetes

		Python

		TensorFlow

		Ubuntu

		queue iconExplore		All Topics

		Most Popular Titles

		Recommendations

		Early Release

		Playlists

		Attend		Live Training

		Conferences

		Newsletters

		settings iconSettings

		Support

		Sign Out

 Table of Contents for

 Take Control of Automating Your Mac, 3rd Edition

 		Search in book...

		

		Toggle Font Controls

				Twitter

		Facebook

		Google Plus

		Email

	

 Prev
 Previous Chapter
 Supercharge Your Clipboard

 Next
 Next Chapter
 Automate Email

Automate Individual Apps

Later in this book, I talk about system-wide automation technologies built into macOS like AppleScript and Automator, which can automate the actions of individual apps. But there’s often a better—or, at least, more thorough—way of doing that within an app itself. That’s the topic of this chapter: using apps’ built-in automation capabilities.

Due to the breadth and depth of in-app automation features, I can only provide an overview, basic instructions, and a few examples. You’ll be able to accomplish some basic tasks and discover how to learn more.

I begin with Microsoft Office, partly because of its popularity and partly because of its extensive built-in programming language. I then move to Nisus Writer Pro, the very app I’m using to type these words, to illustrate a few different forms of automation that should be useful to anyone who works with words. Then I briefly discuss Google Apps Script, a macro language for Google Apps, and list the automation capabilities of several other popular apps.

Tip: If you want to automate Apple’s iWork apps (Pages, Numbers, Keynote), you’ll need to use either AppleScript or Automator. You can learn more about AppleScript for iWork at iWork & Automation: Productivity Enhanced, part of the Mac OS X Automation site.

Automate Microsoft Office

Microsoft Office—which on the Mac comprises Word, Excel, PowerPoint, Outlook, and OneNote as its main components—is one of the world’s best-known software packages. Microsoft long ago added a programming language to the suite called Visual Basic for Applications (VBA), which enables users to write macros that automate Office apps, optionally embed those macros in documents, and run them (with some limitations) on either macOS or Windows. Microsoft removed VBA from Office 2008 for Mac, but brought it back in Office 2011. It’s still there in Office 2019 (i.e., Office 16.x, also available as part of an Office 365 subscription), and presumably, it will be in future versions too. (Microsoft Office also has excellent AppleScript support, which is an alternative way to accomplish many of the same tasks.)

Note: In Office for Mac, only Word, Excel, and PowerPoint support VBA.

What can you do with an Office macro? The sky’s the limit, but here are a few simple examples, any of which could be done with a single click or keystroke:

		Perform a frequently used find-and-replace operation

		Format spreadsheet cells according to their contents

		Number all the instances of a certain phrase in a document

		Reformat a table

		Remove all the hyperlinks in a workbook

		Change all the tab stops in the current paragraph style

		Merge cells from two columns into a third column

		Resize all the graphics in a document

If you use Office extensively—and especially if you share documents with Windows users—it might be worth the effort to learn a bit of VBA since (unlike AppleScript) its macros work on both Windows PCs and Macs. But let me be frank: it’s not great for beginners. VBA was designed for programmers, not for ordinary users. It won’t do you any good beyond Office apps, and unlike AppleScript, VBA would never be called “English-like.” If you don’t know much about programming already, there’s a significant learning curve.

However, there’s a sneaky way to get your foot in the door—to write a VBA macro without knowing any VBA at all. Office lets you record macros—that is, turn on recording, do some stuff while Office watches, and then turn off recording. Office then attempts to make a VBA macro out of whatever you just did, which you can then replay at will. Sometimes these macros work fine as is; sometimes they require fiddling; and sometimes you’re out of luck.

So, my advice if you want to automate an Office app is to try recording a macro first. If that doesn’t work (and you can’t easily see how to fix it), move on to Automator. If Automator won’t do what you need either, try either AppleScript (if you need more control) or Keyboard Maestro (if you want a simpler interface). Write your own VBA macro from scratch only if no other tool does the trick.

Record Macros in Microsoft Office Apps

Let’s walk through the process of recording and then playing back a simple macro. (I’ll use Word for this example, but the process is virtually identical in Excel and PowerPoint.)

		Open a new, blank document in Word. (It doesn’t have to be blank, but it’s easier that way for this example.)

		Choose Tools > Macro > Record Macro.

		In the dialog that appears (Figure 30), give your new macro a name (like Test) and click OK.

[image: Figure 30: In this window, you define a new macro before you begin recording it.]Figure 30: In this window, you define a new macro before you begin recording it.

Tip: If you want to assign a keyboard shortcut to your macro now, you can. Before you click OK in this dialog, click Keyboard, press the desired keyboard shortcut, and click OK. But you can also Assign a Keyboard Shortcut to a VBA Macro later.

		Now perform some actions—click buttons, choose menu commands, run a Find/Replace, or whatever you like. For the purpose of this exercise, I suggest doing the following:

		Type the word First, press Tab, type Second, and press Return.

		Type Third, press Tab, type Fourth, and press Return.

		Press ⌘-Shift-↑ to select the second paragraph.

		Press ⌘-B to turn the selected text bold.

		Press Shift-↑ to add the previous paragraph to the selection.

		Select Table > Convert > Convert Text to Table and click OK.

		Press ↓ to move the insertion point below the table.

		Choose Tools > Macro > Stop Recording.

That’s it; you’ve recorded a macro. In theory, you can replay the exact actions you took again, at any time, in any document. So let’s try.

To play back your macro:

		Choose Tools > Macro > Macros.

		Select the macro you just recorded (it will likely be selected by default).

		Click Run.

If everything is working correctly, your document will get two more table rows that look exactly like the two that were already there.

Curious to know what your macro looks like in VBA? Choose Tools > Macro > Macros, select your macro, and click Edit. You see something like Figure 31, along with other windows that you can ignore for now.

[image: Figure 31: Here’s what the macro we just recorded looks like in Visual Basic.]Figure 31: Here’s what the macro we just recorded looks like in Visual Basic.

Beautiful, isn’t it? No, of course not, but if you look carefully, you can probably make out approximately what the commands do. If you were so inclined, you could edit the macro right here—for example, substitute different words in the Selection.TypeText Text: lines.

To get out of the editor, choose File > Close.

Assign a Keyboard Shortcut to a VBA Macro

Going through Tools > Macro > Macros and a separate window whenever you want to run a macro is a drag. Fortunately, you don’t have to: you can assign a keyboard shortcut to your macro. In Word or Excel (but not PowerPoint), follow these steps:

		Choose Tools > Customize Keyboard.

		In the Categories list on the left, select Macros.

		In the Commands list on the right, select the macro you want to assign a keystroke to.

		Click in the Press New Keyboard Shortcut field.

		Press the key combination you want to use. (See the sidebar Use Multi-Key Shortcuts in Microsoft Word, below, for a special tip.)

		Click Assign.

		Click OK to dismiss the window.

From now on, you can activate your macro with that keyboard shortcut.

Use Multi-Key Shortcuts in Microsoft Word

A little-known and useful fact about Word (which does not apply to Excel or PowerPoint, by the way) is that keyboard shortcuts can include sequences—to a point.

For example, you could assign Control-P,B to insert a page break (Insert > Break > Page Break). The way this would work is that you’d press Control-P, and as long as the next key you pressed within 5 seconds was a B, you’d get a page break. If you pressed any other key, or no key at all, during those 5 seconds, nothing would happen.

I used Control in my example, not Command, because all single alphabetic ⌘-key shortcuts are preassigned, and even though you can create your own shortcuts that override them, sequences are ignored in such cases. For example, if I assigned ⌘-P,B to Page Break, it would have to override ⌘-P for Print—but then, as soon as I pressed ⌘-P (and without waiting for the B), the page break would be inserted. I know, weird.

So that’s one limitation. Another is that sequences can have at most two characters (plus modifiers)—you can’t assign Control-P,B,J to a Peanut Butter & Jelly macro. Still, two-key sequences starting with Control are useful mnemonic aids.

To set one up, follow the directions above, but type the sequence (such as Control-P, followed by B) in step 5. Word shows sequences with a comma (Control-P,B), but you won’t actually type the comma.

Nisus Writer Pro offers vastly more flexibility in assigning multi-key shortcuts. See Use Multi-Key Shortcuts in Nisus Writer Pro.

Run an Existing VBA Macro

We’ve already been using VBA, but now I want to switch gears slightly to show you how to use a macro someone else wrote—for example, something you find on a webpage. For this example, I’ll use a macro I wrote years ago to paste whatever’s on the clipboard as plain text, so that it assumes the style of the surrounding text. If you were to do this manually, the process would be: Choose Edit > Paste Special, select Unformatted Text, and click OK. A macro can reduce all that to one key combination!

To use a macro someone else has written:

		Choose Tools > Macro > Macros.

		Type a new macro name (we’ll use PastePlainText) and click Create.

		In the window that opens, you’ll see a placeholder template for your new macro, like so:

 Sub PastePlainText()
 '
 ' PTT Macro
 '
 '
 End Sub

		Paste or type the macro commands. For this example, enter the following in the blank space before the End Sub line:

 Selection.PasteSpecial Link:=False, _
 DataType:=wdPasteText, Placement:=wdInLine, _
 DisplayAsIcon:=False

		Your final macro should look like this:

 Sub PastePlainText()
 '
 ' PTT Macro
 '
 '
 Selection.PasteSpecial Link:=False, _
 DataType:=wdPasteText, Placement:=wdInLine, _
 DisplayAsIcon:=False
 End Sub

		If you like, you can remove the lines starting with an apostrophe; those are comment lines that don’t affect the macro’s function.

Your macro is now ready to run. You can run it using Tools > Macro > Macros, or assign a keyboard shortcut to your macro (such as ⌘-Shift-V) following the instructions in Assign a Keyboard Shortcut to a VBA Macro.

Note: I said I “wrote” this macro years ago, but, in fact, I cheated—I recorded myself following the steps I spelled out a moment ago, and this macro is what I got!

Find Sample VBA Macros

You should be able to turn up all sorts of VBA macros with a few web searches. Here are a few resources to get you started:

		Excel Macro Examples & Free Downloads at Chandoo.org

		VBA Code Excel Examples at Analysistabs

		Word: Sample Macros, VBA Codes at MSDN Blogs

Learn More about VBA

To get help writing and editing VBA macros, try these sites:

		Microsoft’s Office 2016 for Mac pages Create, run, edit, or delete a macro, Automate tasks with the Macro Recorder (for Excel), and Create a macro in PowerPoint

		Microsoft’s Getting Started with VBA in Office for Mac 2011 page (which still largely applies to Office 2016)

Automate Nisus Writer Pro

Nisus Writer Pro is a powerful yet easy-to-use word processor. Wait, did I call it a word processor? Oh, it’s much more than a word processor; I like to think of it as a Programmable Everything Tool. I explain my history with Nisus (the product and the company) and why I’m so enamored of this app in my Macworld article Tools of the trade: Why I prefer Nisus Writer. For anyone who works with words, it’s an extraordinarily flexible tool—and capable enough that Take Control Books has left behind both Word and Pages and now creates ebooks (including this one) exclusively in Nisus Writer Pro. With the coupon at the end of this book, you can buy Nisus Writer Pro at a 25% discount.

One of the reasons I like Nisus Writer Pro so much is that it’s chock full of automation features that make my writing faster and more efficient. In this chapter I want to look at three of them: macros, multi-key shortcuts, and automatic numbers and cross-references.

Run Macros in Nisus Writer Pro

As in other apps, macros in Nisus Writer Pro let you perform an action, or a list of actions, with a menu command or keyboard shortcut. But Nisus Writer Pro macros can do much more than run sequences of commands; they can interact with files and folders on your Mac, ask for user input, make decisions based on complex logic, and access capabilities in the app that don’t appear anywhere in the visible user interface. In other words, macros let you create entirely new features.

Nisus Writer Pro includes over 50 preinstalled macros on the Macro menu (or its submenus). Choose any macro name to run it. Some macros assume you have text selected first; if you try to run a macro and it won’t work in the current context, it’ll either beep or display an error message.

Here are a few you might try:

		Macro > Calculation > Mortgage Calculator: Fill in the blanks to calculate your monthly payment.

		Macro > Document > Create Word Frequency List: This creates a new document listing every word in the existing document (or selection) along with a count of how many times it appeared.

		Macro > Editing > Quote Selection: Select some text and run this macro to put quotation marks around it.

Take Control authors and editors have lots of specialized macros that aid in our workflow, such as:

		Converting documents that use our highly customized styles into Markdown formatting, which we then use to create the EPUB and Mobipocket editions of our books

		Inserting or formatting tips and notes

		Turning selected text into a cross-reference to a bookmark elsewhere in the document

		Checking for common errors, such as graphics with problematic names or extra spaces between words

If you’d like to find more macros you can install and run yourself, visit Nisus Software’s Nisus Writer Pro Macros forum. (That’s also a good place to find tips on writing your own macros.)

Create Macros in Nisus Writer Pro

To make your own macro in Nisus Writer Pro, follow these steps:

		Choose Macro > New Macro. A new window (which looks just like a regular document window) opens.

		Type or paste the text of your macro. For illustration purposes, try this:

prompt "Hello, world!"

		Choose Macro > Save as Macro. Give your macro a name (such as Hello) and choose a location. The ideal destination is your default Macros folder, and you can choose or change that location using the Macro > Choose Macros Folder. (If you’re uncertain which folder is currently the default for saving macros, choose Macro > Show Macros Folder in Finder, and that window opens.) If you save a macro in the default Macros folder, it will automatically appear on the Macro menu; if you save it anywhere else, you’ll have to go through extra steps (which I don’t cover here).

Now, to run your macro, choose its name from the Macro menu: Macro > Hello (or whatever you named it). You should see a little dialog with the text “Hello, world!” Click OK to dismiss it.

If you want to view or edit a macro that’s already in the Macro menu, the easiest way to do so is to hold down the Command key while choosing the macro from the menu—instead of running, it opens in a new window. You can edit it there; after you save it, choosing the macro name from the Macro menu in the normal way runs your updated version.

Tip: You can, of course, assign keyboard shortcuts to macros too. I cover that just ahead, in Use Multi-Key Shortcuts in Nisus Writer Pro.

I gave you a one-line example macro, but what else can you put in a macro? I’m glad you asked. Let me begin with the easiest approach to writing your own macros.

Simple Macros

First, the bad news: unlike Microsoft Office, Nisus Writer Pro has no recording capability—it can’t watch what you do and make a macro out of that for you. But now, the good news: it’s way easier to write macros for Nisus Writer Pro than for Word!

How easy? For the simplest things, like running menu commands, you just type a command (as it appears on a menu) on a line by itself. If the command includes an ellipsis (…), you can leave that off.

So, here’s a macro that turns the selected text bold, makes it 18 points, and then copies it to the clipboard:

bold
18
copy

And that’s a complete macro, by the way—no brackets, declarations, funky names, or obscure codes. Case doesn’t matter. (Spelling does matter!) Great, right?

Tip: When trying the macros from this book in Nisus Writer Pro, either retype them or paste them by choosing Edit > Paste > Paste Text Only (⌘-Shift-V). If you paste styled text into a macro, you might encounter inscrutable error messages.

A macro can do lots of things that aren’t merely menu commands, too. Want it to type the text “Hello, world!”? Do it like this:

type text "Hello world!"

Find all instances of the word Apple?

find all "Apple"

Set the line height to exactly 17 points?

set fixed line height 17

You can construct a macro with dozens or hundreds of commands like this, one after the other, and it will execute them all with a single click.

I gave find all "Apple" as an example, but one of the most useful things you can do in a macro is automate more elaborate find-and-replace procedures—or a series of them. Nisus Writer Pro, like a few other apps mentioned in this book, lets you use a pattern-matching system known as regular expressions for finding and replacing text. (It can take those expressions even further by applying styles to portions of the expressions—a highly unusual feature.)

Any type of find or replace operation can go in a macro. For example, this macro line finds any sequence of two or more return characters and replaces it with one:

find and replace '\\n\\n+', '\\n', 'Ea'

Note: The letters E and a at the end tell the macro to perform the find and replace with two special options—using regular expressions, or PowerFind Pro, as Nisus Writer Pro calls them (E), and replacing all the occurrences in the document (a). Those special characters are case-sensitive.

This one finds any sequence of two capitalized words and underlines just the first one:

find and replace '([A-Z][a-z]+)([A-Z][a-z]+)', '\\1\\2', 'Ea-iU'

Note: The -i at the end means “case-sensitive search”; the U means “attribute-sensitive replacement.”

Complex Macros

It’s easy to make a macro that executes a series of simple commands, but you may want to do fancier things. You may want to use variables, arrays, objects, functions, loops, if/then/else conditionals, mathematical functions, string manipulation, and other sorts of things you’d normally find in a “real” programming language. All that, and much more, is well within the purview of Nisus Writer Pro macros too!

I’ve written many of these complex macros that involve serious programming, and while I can say confidently that it’s not nearly as bad as working in VBA or even AppleScript, it’s different. And the way you construct the commands and routines to do these nifty things is far from obvious.

Unfortunately, there’s not room here for me to get into the finer points of the language. You can get some guidance from the Nisus Writer Pro macro reference—choose Help > Macro Language Reference in Nisus Writer. That document contains all (well, nearly all) of the commands in the language, and a number of examples. But candidly, it wasn’t written for the layperson. The macro language itself isn’t unduly complicated, but the documentation makes it seem harder than it is. Someone ought to write a better guide. Maybe one day, somebody will.

In the meantime, I recommend the same thing for learning Nisus Writer Pro macros as I recommend elsewhere in this book for VBA and AppleScript: start with things other people have written (including the 50+ macros included with Nisus Writer Pro), try modifying them a little bit, and once you get the hang of that, start exploring new commands and features.

Use Multi-Key Shortcuts in Nisus Writer Pro

Nisus Writer Pro lets you assign a keyboard shortcut to any command, including macros you create yourself. That isn’t unusual. What is unusual, and extremely helpful, is that you’re not limited to modifier keys and a single character (like ⌘-P or ⌘-Option-Shift-I). You can do all that, but you can also have keyboard shortcuts that are sequences of keys.

For example, there’s a menu command that capitalizes the first letter of each selected word: Edit > Transform Text > To Capitalized. You could assign ⌘-Control-Shift-C to it, but that’s hard to remember. What’s easy to remember is ⌘-C-A-P. That is, hold down Command while typing C, and then A, and then P. Cool, no?

Multi-key shortcuts are much easier to remember, because you can build in more mnemonic clues. How about:

		Save As: ⌘-S-A

		Save As PDF: ⌘-P-D-F

		Replace and Find: ⌘-R-F

		Page Break: ⌘-P-B

		12 (font size): ⌘-1-2

I’m sure you get the idea. Here’s how you set up a shortcut:

		Go to Nisus Writer Pro > Preferences > Menu Keys (Figure 32).

[image: Figure 32: Set up keyboard shortcuts here.]Figure 32: Set up keyboard shortcuts here.

		In the first column, select the menu where the command is found.

		In the second column, select the command (or, if it’s not on the top level of the menu, navigate through the submenus to select it).

Tip: You can also create menu keys for individual preference panes by navigating to Nisus Writer Pro > Preferences > pane name. I set up ⌘-M-K to take me directly to the Menu Keys pane!

		Click in the field on the rightmost pane.

		Press the keyboard combination or sequence you want to use. You can include as many characters as you like: ⌘-C-A-P-I-T-A-L-I-Z-E is valid. But realistically, that’s awkward to type—I suggest limiting sequences to two or three characters, plus modifiers.

A shortcut must include Command, but it may include Shift, Option, and/or Control too. Any of these that you hold down while entering a shortcut are selected, but you can also select or deselect Shift, Option, or Control to add or remove it from the shortcut.

		Click Set.

		Repeat with any additional shortcuts you want to define. When you’re done, click the red Close button. (Don’t press ⌘-W, because Nisus Writer Pro will think you’re trying to assign that shortcut to the current command!)

Keyboard shortcuts are available immediately.

Use Automatic Numbers and Cross-References in Nisus Writer Pro

The final Nisus Writer Pro automation tool I want to mention combines two features: automatic numbers and cross-references. I’ve used both dozens of times in this book. Let me tell you why they’re great.

Nisus Writer Pro can automatically number almost anything—pages, sections, lists (such as the seven steps just above), figure numbers (as seen throughout this book), tables, and the like. These numbers are variables that update themselves automatically. So, if I’m creating a list that has six items (numbered 1–6) and I press Return to create a seventh item, it’s numbered 7 automatically; if I insert, remove, or reorder part of the list, all the numbers update themselves. Similarly, if I use automatic numbering for figures, I can freely add, delete, or rearrange figures without ever worrying that the figure numbers in the captions will be out of order.

That part is useful but not terribly unusual; most word processors can do something of the sort. Where it gets interesting is cross-references to the automatic numbers. For instance, I might have a graphic that’s labeled “Figure 12,” and near it I say, “see Figure 12.” I want that reference to update automatically if, later on, that graphic turns out to be Figure 15 instead. So instead of just typing the reference, I insert a cross-reference to the text of that automatic number. As the figure number itself changes, so does the textual cross-reference!

OK, I’m oversimplifying slightly. For performance reasons, Nisus Writer doesn’t automatically update cross-references immediately when their references change, though it does so when you open a document, print it, add or update a table of contents, and at certain other times. If cross-references ever appear to be out of date, you can force an immediate update by choosing Tools > Automatic Content > Update All Stale Content. It goes without saying that you can and should assign a keyboard shortcut to that command! Mine is ⌘-USC.

Note: Nisus Writer Pro can do this trick with lots of things, not just automatic numbers. Any time text in one part of your document changes, cross-references to that text elsewhere can update themselves. (That’s what I’ve done with all the links in this book to other topics—if I rename a heading, the text of the link updates too.)

A full explanation of how to use automatic numbering and cross-references in Nisus Writer Pro would take many pages, so I’ll walk you through just one example:

		Begin by creating a new list style, just for figure numbers. In a Nisus Writer Pro document, choose Format > Lists > Edit List Styles.

		Click the plus [image:] button at the bottom and choose List Style from the pop-up menu. Name it Figures, leave the Kind set to Numbered, and click Create.

		In the sample text area on the right side of the window, select Level 1. Then, in the Lists palette (if you don’t see it, choose Window > Palettes > List), click in the Before Text field and type Figure followed by a space. In the After Text field, type a colon (:) followed by another space (Figure 33).

[image: Figure 33: Your list style definition should look something like this.]Figure 33: Your list style definition should look something like this.

		Choose View > Page View to return to editing your document.

		Insert a graphic (or just type some text, pretending that it’s a graphic) followed by Return. Type a caption in the paragraph beneath that line, such as This is the caption.

		With your insertion point still in the caption paragraph, choose Format > Lists > Figures to apply the Figures list style. In so doing, the caption will be preceded by “Figure 1:”.

		Repeat steps 5 and 6 a few times, so you have three or four numbered figures. (If you press Return at the end of a list paragraph, Nisus Writer Pro assumes you want that next paragraph to be in list style too. You can override this by choosing Format > Lists > Use None, or by applying a paragraph style, such as Normal.)

		Somewhere else in your document, in an ordinary paragraph, type See and a space. Choose Insert > Cross Reference. Make sure the Insert Reference To pop-up menu says List Item, the Display Text pop-up menu says List Item Number, and the two checkboxes are deselected. Select Figure 2 in the list and click Insert.

Your text should now say “See Figure 2”.

		Now make a change to your document so that Figure 2’s number changes—for example, remove the caption for Figure 1, or add another captioned figure before Figure 2.

You should see that the caption’s figure number updates itself, and the reference to that caption in the text updates itself to match! (And, if that doesn’t happen immediately, remember that you can force an update with Tools > Automatic Content > Update All Stale Content.)

Note: What I just presented was a distinctly oversimplified version of what we do for Take Control books, but it should demonstrate the basic principles.

Discover Other Internally Scriptable Apps

You’ve seen that Microsoft Office and Nisus Writer Pro have built-in scripting languages, in addition to being controllable by AppleScript and external macro utilities. But you may be wondering: is that it? Are there no other Mac apps that have internal macro or automation features? Indeed there are others! Here are a few prominent examples:

		Adobe Acrobat Pro and Photoshop: Both of these apps let users create actions, which are basically macros—sequences of predefined steps that alter a document or image in some way. You can also install actions other people have written, some of which are fantastically sophisticated.

		BBEdit: This splendid plain-text editor, which is designed mainly for programmers and web designers but has also found a following among authors, has a couple of great automation features. Text factories are sequences of actions (such as find-and-replace–based on regular expressions, natch; sorting lines; changing case; and running shell scripts or AppleScripts) that you can save and run repeatedly with a couple of clicks. BBEdit also has a Text > Apply Text Filter submenu, which lists not only your text factories but also individual Automator workflows, AppleScripts, and shell scripts that can process and modify your text.

		FileMaker Pro Advanced: This user-friendly relational database from Apple subsidiary Claris International Inc. is deeply scriptable. You can use its own extensive built-in scripting language, or AppleScript, or the two in combination to take nearly any action when a button is pressed, a menu command is selected, or any of half a dozen other triggers occurs. Scripts can include complex logic, mathematical calculations, and numerous types of data manipulation.

		Google G Suite: This web-based productivity suite includes apps for editing for documents (Google Docs—somewhat like Word), spreadsheets (Google Sheets—somewhat like Excel), and presentations (Google Slides—somewhat like PowerPoint), among other tools. Lots of people do their day-to-day document editing with Google’s apps in a browser. To automate tasks in these apps, you use a scripting language called Google Apps Script. It’s based on JavaScript, and basically amounts to VBA for Google apps. But it’s even better than VBA in that it can add custom menus, dialogs, and sidebars to G Suite apps, interact with other Google services (such as AdSense and Google Drive), and quite a bit more.

		Logic Pro X: Apple’s professional audio recording software lets you create multitrack recordings of real and virtual instruments and vocals, add effects, and mix audio every which way. It can memorize all your changes in real time—adjustments to volume, panning, equalization, effect levels, and other parameters for each individual track—and repeat those changes every time you record or play back your music.

		OmniGraffle, OmniOutliner, and OmniPlan: These fine apps by the Omni Group use JavaScript for automation—and that works even in their iOS versions. It’s such an innovative automation technique that I’ve devoted a whole chapter to it. See Use Omni Automation.

		Panorama X: Another database app, even older than FileMaker Pro, Panorama was designed for speed and flexibility. In much the same way that Nisus Writer Pro is a programmable word processor, Panorama is a programmable database—in fact, it’s a complete development environment. You can control every aspect of its operation and create enormously complex applications using its built-in programming language; with scripts written in Perl, Ruby, Python, PHP, or AppleScript; or with shell scripts. (Indeed, large portions of Panorama were written in Panorama’s programming language itself.)

Panorama X is a complete, modern rewrite of the app, and I’ve been running it for a few years. Among other tasks, I use it for tracking royalties for Take Control authors. It’s an insanely powerful and flexible tool that, over time, has enabled me to automate some of the most tedious parts of my job. I can’t say enough good things about it.

 Prev
 Previous Chapter
 Supercharge Your Clipboard

 Next
 Next Chapter
 Automate Email

 You have 1 day left in your trial, Bakara25. Subscribe today. See pricing options.

 Back to top

 		Settings

 		Support

 		Sign Out

 © 2019 O'Reilly Media, Inc.

 Terms of Service
 /

 Privacy Policy

OEBPS/Images/file84.png

OEBPS/Images/file85.png

OEBPS/Images/file86.png

OEBPS/Images/file87.png

OEBPS/Images/file80.png

OEBPS/Images/file81.png

OEBPS/Images/file82.png

OEBPS/Images/file83.png

OEBPS/Images/file88.png

OEBPS/Images/file89.png

OEBPS/Images/file51.png

OEBPS/Images/file52.png

OEBPS/Images/file53.png

OEBPS/Images/file54.png

OEBPS/Images/file50.png

OEBPS/Images/file102.png

OEBPS/Images/file59.png

OEBPS/Images/file101.png

OEBPS/Images/file100.png

OEBPS/Images/file55.png

OEBPS/Images/file56.png

OEBPS/Images/file104.png

OEBPS/Images/file57.png

OEBPS/Images/file103.png

OEBPS/Images/file58.png

OEBPS/Images/file62.png

OEBPS/Images/file63.png

OEBPS/Images/file64.png

OEBPS/Images/file65.png

OEBPS/Images/file60.png

OEBPS/Images/file61.png

OEBPS/Images/file66.png

OEBPS/Images/cover.xhtml

Skip to content		Home

		search iconSearch

		navigation arrowExpand Nav		Your O'Reilly		Profile

		History

		Playlists

		Highlights

		Featured		Resource Centers

		Expert Playlists

		Practice		Katacoda Scenarios

		Jupyter Notebooks

		Sandboxes		Kubernetes

		Python

		TensorFlow

		Ubuntu

		queue iconExplore		All Topics

		Most Popular Titles

		Recommendations

		Early Release

		Playlists

		Attend		Live Training

		Conferences

		Newsletters

		settings iconSettings

		Support

		Sign Out

 Table of Contents for

 Take Control of Automating Your Mac, 3rd Edition

 		Search in book...

		

		Toggle Font Controls

				Twitter

		Facebook

		Google Plus

		Email

	

 Next
 Next Chapter
 Take Control of Automating Your Mac (3.0)

[image: cover image]

 Next
 Next Chapter
 Take Control of Automating Your Mac (3.0)

 You have 1 day left in your trial, Bakara25. Subscribe today. See pricing options.

 Back to top

 		Settings

 		Support

 		Sign Out

 © 2019 O'Reilly Media, Inc.

 Terms of Service
 /

 Privacy Policy

OEBPS/Images/file67.png

OEBPS/Images/file68.png

OEBPS/Images/file69.png

OEBPS/Images/title_page.png

OEBPS/Images/file30.png

OEBPS/Images/file31.png

OEBPS/Images/file32.png

OEBPS/Images/file37.png

OEBPS/Images/file38.png

OEBPS/Images/file39.png

OEBPS/Images/file33.png

OEBPS/Images/file34.png

OEBPS/Images/file35.png

OEBPS/Images/file36.png

OEBPS/Images/file40.png

OEBPS/Images/file41.png

OEBPS/Images/file42.png

OEBPS/Images/file43.png

OEBPS/Images/file48.png

OEBPS/Images/file49.png

OEBPS/Images/file44.png

OEBPS/Images/file45.png

OEBPS/Images/file46.png

OEBPS/Images/file47.png

OEBPS/Images/file8.png

OEBPS/Images/file9.png

OEBPS/Images/file95.png

OEBPS/Images/file6.png

OEBPS/Images/file96.png

OEBPS/Images/file7.png

OEBPS/Images/file97.png

OEBPS/Images/file4.png

OEBPS/Images/file98.png

OEBPS/Images/file10.png

OEBPS/Images/file5.png

OEBPS/Images/file2.png

OEBPS/Images/file91.png

OEBPS/Images/file3.png

OEBPS/Images/file92.png

OEBPS/Images/file0.png

OEBPS/Images/file93.png

OEBPS/Images/file94.png

OEBPS/Images/file1.png

OEBPS/Images/file15.png

OEBPS/Images/file16.png

OEBPS/Images/file17.png

OEBPS/Images/file18.png

OEBPS/Images/file99.png

OEBPS/Images/file11.png

OEBPS/Images/file12.png

OEBPS/Images/file13.png

OEBPS/Images/file14.png

OEBPS/Images/file90.png

OEBPS/Images/file20.png

OEBPS/Images/file21.png

OEBPS/Images/file26.png

OEBPS/Images/file27.png

OEBPS/Images/file28.png

OEBPS/Images/file29.png

OEBPS/Images/file22.png

OEBPS/Images/file23.png

OEBPS/Images/file24.png

OEBPS/Images/file25.png

OEBPS/Images/file19.png

