

Ruby on Rails

The Ultimate Beginner's Guide to Learn Ruby on Rails Step by Step

By Max Beerbohm & Moaml Mohmmed

2
 nd
 Edition

"Programming isn't about what you know; it's about what you can
 figure out
 .
 ”
 -
 Chris Pine

memlnc

Introduction

 7

Why Ruby? 7

Rails philosophy is based on two main pillars:

 8

What you need to get started

Create a new project in Rails

Install Rails

Create a blog app:

Hi Rail
 s

Chapter One

The mechanism of the Rails window

Start blog creation:

First Form

Create articles

Chapter II

Models in Rails - Created and Managed Forms

Migration

View articles

View a list of blog articles

Add links to navigate blog page
 s

Check input

Chapter III

Models in Rails - Modify and delete articles

Update articles:

Use partials to remove duplicates from presentations

Delete articles

Create the for
 m

The Purpose file

Connect models with each other

Chapter IV

Restructure the code and add a simple authentication system

Rendering the partial file of the form

Delete comments

Delete the threaded objects

Authentication in Rails

Framework Rails and UTF-8 encoding system

Chapter V

Active Record basics: what it is, import and forms

Active Record mode

Draw relationships between Object Relational Mapping

Active Record as an ORM platform

Naming method

Database organization and planning

Make Active Record form
 s

Skip Rails naming methods

Read and write CRUD data

Create command

Read command

Update command

Delete command

Callbacks

Chapter VI

Active Record Validations: Overview

Why use ratifications?

Why is the investigation happening?

Skip the investigations

[] errors

Custom Validators

Working with Validation Error
 s

Add errors

Details of errors.details

[Errors [: base

errors.clear

Introduction

The concept of the framework is to make a set of routine repetitive tasks easy and does not take a lot of time, whether it is in the field of development of sites or programs, etc. It enables you to build modern and sophisticated sites based on the Ruby programming language and uses the same language for background programming.

Rails Framework Features

{
 Focus well
 }

One of the most important features that make developers prefer to build and programming sites using Rails is the speed and ease, so that to create a new project it does not need a lot of things to do where you need a very simple thing, this made it one of the most famous solutions to build powerful sites such as Twitter, which Partly based on Rails at some point, one of the powerful things it offers is the default presets that save the developer a lot of time, and its MVC style makes it an ideal choice for anyone who wants a building site in modern ways.

Of course, since the framework of Rails is based on the programming language Ruby, it means that you will write the site or logical and programming part “Back_end” using them, and this in itself is something fun as it is one of the easiest and most efficient languages because of the availability of dynamic and powerful.

Learn Ruby

{
 You can skip this part (not necessary
 }

Of course before you start learning the framework must first learn some things from them and of course HTML and CSS and JAVASCRIPT, which enables you to build the interface of the site, also you must be familiar or have already dealt with the language of the Ruby programming language itself where it will be used primarily for programming Back_end as previously Signal.

Another thing is the need to learn to work with MySql databases that will be used primarily with the framework.

Why Ruby?

{You can skip this part (not necessary)}

To answer this question I will quote the words of the language tuner

 quotation

 Matsumoto said the Ruby programming language was designed for productivity and fun. He emphasizes that his design any system needs to focus on human needs, rather than a computer,

 People often, especially computer engineers, have their focus on the computer. They think, "By doing this, the device will work faster. By doing this, the device will work more effectively. Through it, the device will be and be and be" but really we need to focus on humans and on how to write and understand our software Or apps running on the device. We are gentlemen (humans). They are slaves (organ).

This is evident when you start programming in Ruby, as the programming process may seem to you as if you were conversing with a computer in English (for simplicity).

Of course the Ruby language when it was first introduced (1995) was not famous until the design of the famous framework ruby on rails in 2005, which is one of the most powerful tires

Rails is a web application development framework written in the Ruby programming language. This framework is designed to facilitate web application programming by making some presuppositions about what the developer needs to get started. This framework allows you to write less code and do more than any other programming language or framework.

Rails assumes there is an optimal way to get things done.It was designed to encourage the developer to follow these methods and at times encourage them to leave other alternatives.You may notice a huge increase in your productivity if you learn the method followed by this framework, and may lead to adherence to the old habits of programming languages Other to a poor experience in developing applications using Rails.

Rails philosophy is based on two main pillars:

{You can skip this part (not necessary)}

Don’t Repeat Yourself: This concept states that any part of the knowledge must be represented individually, unambiguously, and reliably in the system. Following this concept in writing scripts and not repeating the same information continuously leads to increased serviceability of the written code and the ability to expand in addition to the low percentage of errors in it.

The principle of “Convention Over Configuration”: Rails has special principles associated with determining the best way to do business in a web application, and relies on these principles by default rather than forcing the developer to identify small details in his work through a large number of settings.

What you need to get started

This series is intended for beginners who want to start building applications on the Rails framework. No previous experience in this area is assumed, but there are a few things to install before you start learning:

- Install Ruby version 2.2.2 or higher.

- Install the appropriate version of the Development Kit if you are a Windows user.

- RubyGems package management system which comes with Ruby by default.

- Install SQLite3 databases.

We have mentioned that the Rails framework is built using Ruby, and if you have no previous experience in this language, you can review the lessons on the basics of Ruby in the Academy as well as the official language site.

Create a new project in Rails

The goal of this introduction is to build a simple blog using the Rails framework, and before you start building the app, make sure you have Rails installed on your device.

We will use the $ symbol to express the command line on UNIX-like systems. In Windows, you will see a command line that starts with something similar to this formula: <C: \ source_code.

Install Rails

Go to your computer's command line (on macOS, open Terminal.app, and in Windows choose “Run” from the Start menu and type cmd.exe). At first we will check the language version of Ruby installed in the device:

$ ruby -v

ruby 2.3.1p112

There are many tools to help install Ruby and Ruby on Rails on your device. Windows users can use the Rails installer, while macOS users can use Tokaido. To learn more about the available installation methods for various operating systems, see the official Ruby website.

SQLite3 databases are usually installed by default on UNIX-like systems. In Windows, if you install Rails through the Rails installer, SQLite will be installed on your computer as well. You can also check the SQLite3 website for database installation instructions. SQLite3 installation can be verified with the following command:

$ sqlite3 --version

If SQLite is installed, the version number will appear on the command line.

On Linux systems you will also need to install the libsqlite3-dev package (in Ubuntu), sqlite-devel (in Fedora).

To install Rails, use the RubyGems gem install command:

$ gem install rails

To make sure that the installation is done correctly, you should be able to execute the following command on the command line:

$ rails --version

You should get a result similar to this: Rails 5.1.0.

Create a blog app:

The Rails framework provides a set of codes called generators, which are intended to facilitate the work of the developer by creating the files needed to embark on a task. The new app generator is one of these generators and creates a new Rails application and saves the trouble of being written by the developer.

To use the generator, go to the command line to the folder where you want to create the application and type the following command:

$ rails new blog

This will create a new application named Blog in your blog folder and install the gem credentials in GEMfile using the bundle install command.

If you are using the Windows Subsystem for Linux feature on Windows (using the Ubunut command line in Windows), there are some limitations on the operating system alerts and you must turn off the spring and listen gems by running the following command:

rails new blog --skip-spring --skip-listen

You can see all the command line options accepted by the Rails generator by executing the command:

rails new -h

After creating the blog application, head to the command line to its folder:

$ cd blog

You'll notice that the Blog folder contains some of the automatically generated files and folders that are the backbone of the Rails app. The bulk of our work will be confined to the app folder,

Hi Rails

Let's first try to get some text on the screen quickly, and to do that, you'll need to run the Rails server.

Run Server Rails

The Rails framework includes its own web server and all we need to do is run it by executing the following command at the command line within the blog folder:

$ bin / rails server

If you are using Windows, pass the code in the bin folder directly to the Ruby interpreter:

ruby bin \ rails server

CoffeScript and JavaScript asset compilation requires a Javascript implementation environment in the operating system, and in the absence of this environment you will receive an execjs error when compiling the assets. The implementation environment is usually installed by default on macOS and Windows systems. The Rails framework adds the therubyracer gem to the Gemfile file created as a commented line, and can be used when needed to remove comment tags. The therubyrhino development environment is preferred by JRuby users and is added by default to the Gemfile file in applications created by JRuby. You can view the list of supported environments on the ExecJS website.

Doing this will launch Puma, which is a Web server built by default in the Rails framework.

Now it's time to access our app through your browser by going to http: // localhost: 3000 /. The next page will appear to indicate our success in creating our first Ruby on Rails project.

Chapter One

The mechanism of the Rails window

{You can skip this chapter (not necessary)}

In the introduction, we learned how to install Rails and started working on our first project, which is a simple blog, and we run the framework server.

In this chapter, we will learn about the Rails framework in a simple example, and then begin building our simple code to learn more about the many concepts underlying this framework.

We will learn how Ruby on Rails works in a simple example where we display a set of words on the main page of our application, and to do this we need a Controller and View.

The function of the controller is to receive incoming requests to the application, and routing links between requests and controllers. Often there is more than one track for each controller, and different paths can lead to different Action events, and the function of the event is to gather and submit the necessary information to the presentation.

The function of the presentation is clear from his name, which is to display the information obtained from the event in a legible manner to man. It is important to note here that the process of collecting information takes place within the controller and not within the presentation, and the sole task of the presentation is to present the information. The Rails window uses a special template language in presentations called eRuby (abbreviated for Embedded Ruby) which is handled by the request cycle in Rails before being sent to the user.

We resort to the generator tool to create a Welcome controller with an event called index. Type the following command at the command line:

$ bin / rails generate controller Welcome index

Rails will create a path and number of files.

create app / controllers / welcome_controller.rb

route get 'welcome / index'

invoke erb

create app / views / welcome

create app / views / welcome / index.html.erb

invoke test_unit

create test / controllers / welcome_controller_test.rb

invoke helper

create app / helpers / welcome_helper.rb

invoke test_unit

invoke assets

invoke coffee

create app / assets / javascripts / welcome.coffee

invoke scss

create app / assets / stylesheets / welcome.scss

We are interested in these files are the controller located in the app / controllers / welcome_controller.rb and the display in the app / views / welcome / index.html.erb.

Open the app / views / welcome / index.html.erb file in your favorite text editor, delete its contents and replace it with the following code:

<h1> Hello, Rails! </h1>

After we set up the controller and display we must tell Rails which path the user will take to this display. In this case, we would like the user to be directed to the view when heading to http: // localhost: 3000, but the welcome page is currently on this path. You must then tell Rails to locate the home page before it can be shown to the user.

Open the config / routes.rb file in the text editor:

Rails.application.routes.draw do

 get 'welcome / index'

 # For details on the DSL available within this file, see http://guides.rubyonrails.org/routing.html

end

The code above is in the path file which includes special DSL input (DSL for domain-specific language) which tells Rail how to connect incoming requests to the application to controllers and events. Edit this file as follows:

Rails.application.routes.draw do

 get 'welcome / index'

 root 'welcome # index'

end

From the root 'welcome # index' line, the Rails framework links incoming requests to the application's main path with the index event in the Welcome control, and the get 'welcome / index' line from which Rails links incoming requests to http: // localhost: 3000 / welcome / index With the same event and the same controller, this code was generated by the generator tool.

Now run the Rails server and navigate to http: // localhost: 3000 and you will see “Hello, Rails!” In the app / views / welcome / index.html.erb file. To the index event in the Welcome controller, which in turn rendered the display correctly.

Start blog creation:

Once we learn about controllers, events and offers, let's start working on our blog.

We will now create a so-called Rail in resourse, and a resource is a term that expresses a set of similar elements, such as articles, people or animals. Create, read, update, and destroy items in the resource can be created. These operations are called CRUD operations.

Rails provides a function named resources that can be used to disclose a resource in the standard REST style. You must add the article resource to the config / routes.rb file as follows:

Rails.application.routes.draw do

 get 'welcome / index'

 resources: articles

 root 'welcome # index'

end

Now if you execute the bin / rails routes command, you will see all the paths for all REST-style events. We'll learn the meaning of the prefix column and the rest of the columns later, but note that Rails has guessed and used the singular (article) formula in the right context.

[image:]

We will now be adding the properties for creating and displaying articles.

[image:]

The form may seem rudimentary but it is sufficient for the time being, and we will work to improve its appearance later.

Create necessary controls and paths

At the beginning you must choose the path that will direct the user to the new article creation form, and we will use the / articles / new path to do this task, then the application will be able to receive requests on this path. Now navigate to your browser at http: // localhost: 3000 / articles / new and you'll receive the following error:

routing_error_no_controller.png

This error occurs because the path needs a controller to send the request to, so we will create a controller named ArticlesController by executing the following command:

$ bin / rails generate controller Articles

Open the file you created app / controllers / articles_controller.rb and you'll see an empty controller:

class ArticlesController <ApplicationController

end

The controller is a Class class inherited from the ApplicationController and we will define the functions within that class that will represent the events of this controller. These events are responsible for performing CRUD operations on the articles in our application.

Ruby has public, private, and protected functions, but events are exclusively public.

If you reload the page you will receive a new error:

unknown_action_new_for_articles.png

This error indicates that Rails cannot find the new event in the ArticlesController controller that we just created. This is because the controllers are empty when they are created, unless we specify the events required during the controller creation process.

To define a new event manually, we will only need a new dependent definition within the controller. Open the app / controllers / articles_controller.rb file and under the ArticlesController class define a new function as follows:

class ArticlesController <ApplicationController

 def new

 end

end

Now reload the page in your browser and you'll get another error:

template_is_missing_articles_new.png.jpeg

This error appears because Rails expects pure events similar to this event to have offers associated with it to display the information it contains, and since there is no view associated with this event, Rails has triggered this error.

To see the full error message:

ArticlesController # new is missing a template for this request format and variant. request.formats: [“text / html”] request.variant: [] NOTE! For XHR / Ajax or API requests, this action would normally respond with 204 No Content: an empty white screen. Since you’re loading it in a web browser, we assume that you expected to actually render a template, not… nothing, so we’re showing an error to be extra-clear. If you expect 204 No Content, carry on. That’s what you’ll get from an XHR or API request. Give it a shot.

Let's review the previous text quickly, and understand its content well.

The first part of the error text identifies the missing template, in which case the missing template is articles / new. Rails starts searching for this template, and if it doesn't find it, it tries to load a template called application / new because the ArticleController is an inherited class from the ApplicationController.

The second part of the error message contains request.formats which specifies the template format that will be displayed in response to the request received by the application. Request.variant specifies the nature of the physical devices to be provided with the request and helps Rails determine which template to use in the response, which is empty because information is not available.

The simplest template that can work in this case is the template in the app / views / articles / new.html.erb path. This extension is very important: the first part of the extension (.html) expresses the template format, and the second part (.erb) is the handler that will be used to render the template. Rails attempts to find a template named articles / new under the app / views folder. The format of this template should be exclusively HTML, and erb will be the default HTML handler. Rails uses a number of wizards such as: builder, used to create XML templates, and coffee that uses CoffeeScript to build JavaScript templates. Since we want to build a new HTML form, we'll use ERB, which allows us to include Ruby in HTML.

The template will then be named articles / new.html.erb and will be under the app / views folder of the application.

Create a new file named new.html.erb in the app / views / articles path and add the following:

<h1> New Article </h1>

Reload the page and you will see the title appear in the header, meaning that the path, controller, event, and display are in perfect harmony.

First Form

We will use the form builder to create the first form in this template. The main Form Builder can be used in Rails using the form_for helper child. Add the following code in the app / views / articles / new.html.erb file:

<% = form_for: article do | f | %>

 <p>

 <% = f.label: title%>

 <% = f.text_field: title%>

 </p>

 <p>

 <% = f.label: text%>

 <% = f.text_area: text%>

 </p>

 <p>

 <% = f.submit%>

 </p>

<% end%>

Reload the page and you will see the same form shown in the previous example. As you can see, building forms in Rails is very easy.

When we call the form_for function we pass to it an element that specifies the purpose of this form, and in this case the goal is: article. The FormBuilder object, which we represented with f, is used to build the label and text fields for both the title and body of the article. Finally, we called the submit function to create the submit button for the form.

But this form has a small problem. If you examine the HTML code generated by the previous code, you will notice that the form's action attribute refers to the articles / new path, which is the same path that leads us to this page. This path should be used to display only a new article creation form.

The form must use another path, and this can be easily done by using the url option in form_for. The event responsible for submitting a new article is usually called “create”, so the form should be directed to the event.

Edit the line containing form_for in the app / views / articles / new.html.erb file as follows:

<% = form_for: article, url: articles_path do | f | %>

In this example, the articles_path function is passed to the option: url. To see the result of this modification, we will look at the output of the bin / rails routes command in the command line:

$ bin / rails routes

 Prefix Verb URI Pattern Controller # Action

 articles GET /articles(.:format) articles # index

 POST /articles(.:format) articles # create

new_article GET /articles/new(.:format) articles # new

edit_article GET /articles/:id/edit(.:format) articles # edit

 article GET /articles/:id(.:format) articles # show

 PATCH /articles/:id(.:format) articles # update

 PUT /articles/:id(.:format) articles # update

 DELETE /articles/:id(.:format) articles # destroy

 root GET / welcome # index

The articles_pat utility directs the form to the URI style associated with the articles suffix and the form will automatically send a POST request to the path, which is associated with the articlesController create event.

Once we have created the form and defined the associated path, it is possible to fill in the form fields and press the submit button to start the process of creating a new article, but when you submit the article you will receive the following expected error:

unknown_action_create_for_articles.png

The remedy for this simple error is to create the create event within the ArticlesController controller.

Create articles

We will now define the create event within the ArticlesController class in the app / controllers / articles_controller.rb file after the new event as follows:

class ArticlesController <ApplicationController

 def new

 end

 def create

 end

end

If you resubmit the form again, you will notice that the page has not changed. Don't worry, this is because Rails returns the “204 No Content” response to any event that does not specify the requested response. We added the create event without specifying the required response, in this case, creating a new article in the database.

When the form is sent, its fields are sent to Rails as parameters, which can be referenced in the events of the controller to accomplish a task. To find out what these parameters look like, modify the create event as follows:

def create

 render plain: params [: article] .inspect

end

The render function here takes a simple Hash table with the key: plain and the value is the params [: article] .inspect function. Parameters are the object that represents the parameter (or field) taken from the form. The params function returns an ActionController :: Parameters object, which allows us to access the keys of a cutting table through Strings or Symbols. In this case, the significant transactions are those taken from the form.

To illustrate the function of params, here is the following example: At this URL: http://www.example.com/?username=dhh&email=dhh@mail.com, params [: username] has the value “dhh” and params [: email] With the value “dhh@mail.com”.

Now resubmit the form again and you'll see something similar to the following:

<
 ActionController :: Parameters {"title" => "First Article!", "Text" => "This is my first article."} Permitted: false>

This event displays the article-specific transactions taken from the form, but this is not exactly what we want. We view the transactions but do not provide any significant benefit in this case.

In the next chapter we will learn about Models in the Rails framework and use them to add a new article to the application's database.

Chapter II

Models in Rails - Created and Managed Forms

In the previous lesson, we briefly learned about the Ruby on Rails framework, where we learned about the controls and presentations, started creating a simple blog application, and in the previous lesson we created the form for adding a new article, but we got to the point where we needed to store the article in the database. Models.

Forms in Rails have a singular name while the associated table in the database has a plural name. The generator tool in Rails lets you create templates and most developers use this tool to create templates.

To create a new form, use the following command at the command line:

$ bin / rails generate model Article title: string text: text

With this command we tell Rails that we want to create a form named Article along with the title property of the string type, and the text property of the text type. These attributes are automatically added to the article table in the database and linked to the Article form.

Rails responds to this by creating a number of files, and what we are interested in now are app / models / article.rb and db / migrate / 20140120191729_create_articles.rb (note that the second file name is slightly different from that name). The second file is responsible for creating the database structure, which we will talk about shortly.

Note:

Active Reord is smart enough to associate the column name with the corresponding form property, meaning you don't need to declare properties within the Rails form, as the active record will do this for you.

Migration

As we have noticed, the bin / rails generate model command has created a database migration file inside the db / migrate folder. Migrations are classes designed to facilitate the creation and modification of tables in databases. Rails uses rake commands to make migrations, and can be undone after the database has been made. Displacement file names include a timestamp to ensure that these files are processed according to their creation chronology.

If you look at the db / migrate / YYYYMMDDHHMMSS_create_articles.rb file (remember that you have a different time stamp):

class CreateArticles <ActiveRecord :: Migration [5.0]

 def change

 create_table: articles do | t |

 t.string: title

 t.text: text

 t.timestamps

 end

 end

end

The above displacement will create a function called `change` which is called when the displacement is performed. Even the event defined within the function can be undone, which means that Rails is able to undo the changes from the displacement if you want later. When this displacement occurs, a table named `articles` will be created with a column of type` string` and one of text` type, as well as two time stamp columns from which Rails can follow the creation and modification dates of the articles. To execute the migration, go to the command line and execute the following command:

$ bin / rails db: migrate

Rails will execute the next displacement order and tell you to create an Articles table.

== CreateArticles: migrating === =====

- create_table (: articles)

 -> 0.0019s

== CreateArticles: migrated (0.0020s) ===

Note:

Since we are working in the Development Environment by default, the above command will be executed on the database defined in the development section of the config / database.yml settings file. If you wish to carry out the displacement in another environment, such as the production environment, this must be declared during the execution of the displacement order as follows:

bin / rails db: migrate RAILS_ENV = production.

Save the data by the controller

We will now return to the ArticlesController, where we will modify the create event to use the new Article to save the data in the database. Open the app / controllers / articles_controller.rb file and edit it as follows:

def create

 @article = Article.new (params [: article])

 @ article.save

 redirect_to @article

end

Each form can be initialized in Rails with its Attributes attributes, which are automatically linked to the corresponding columns in the database. We did this in the first line of the create event (do you remember params [: article] which includes the properties we want). The form can then be saved to the database through the @ article.save function. Eventually we redirect the user to the show event that we will define later.

Note:

You might think: Why did we use the letter A in the Article.new function when all the variables referring to articles started with a lowercase letter? In this context, we refer to a class named Article defined in the app / models / article.rb file, and in Ruby the classes must have names beginning with uppercase letters.

Note:

We will see later that the @ article.save function returns a boolean value indicating whether or not the article was saved.

Now head to http: // localhost: 3000 / articles / new and you'll receive the following error:

forbidden_attributes_for_new_article.png

Rails supports many security features that help write secure applications, and we are now dealing with one of these features. This feature is called strong parameters, which forces us to determine which parameters are allowed in events within the controller.

What's the use of it? It is true that the ability to automatically add all transactions to the form at once reduces a lot of effort for the programmer, but in this case the program is vulnerable to malicious uses. What if a request is made to the server that includes a new article creation form and other fields that contain information that is harmful to the application? Additional information will be extensively attributed to “Mass Assignment” on the form and then on the database along with the original data, which may disrupt your software or much worse.

We must then specify the parameters that are allowed to be entered into the form, in which case we will allow the inclusion of the title and text parameters and ask for their values. To do so, edit the first line of the create event as follows:

@article = Article.new (params.require (: article) .permit (: title,: text))

The parameters that are allowed to be entered into the form are often specified in a special function so that they can be reused by several events in the same controller, such as create and update events. next one:

def create

 @article = Article.new (article_params)

 @ article.save

 redirect_to @article

end

private

 def article_params

 params.require (: article) .permit (: title,: text)

 end

View articles

If you fill out the new article form and submit it, you will receive an error that Rails does not find the show event, so we will create this event now.

As we saw earlier in the bin / rails routes output, the show event path is:

article GET /articles/:id(.:format) articles # show

The special formula: id means that this path requires the coefficient: id, which in this case represents the article ID.

As we did earlier, we must add the show event to the app / controllers / articles_controller.rb file and specify the associated view.

CRUD events in controllers usually take the following order: index, show, new, edit, create, update, destroy. You can follow the order you like, but remember that these functions are public functions, and must be announced before the special functions are announced.

We will now add the show event with the above in mind:

class ArticlesController <ApplicationController

 def show

 @article = Article.find (params [: id])

 end

 def new

 end

 # The rest of the code

We used the Article.find function to find the desired article, passing the parameter params [: id] to get the ID value of the request sent by the Create New Article page. We also used an instance variable (preceded by @) to reference the article object, because Rails passes this type of variable to the view.

Now create a new file named show.html.erb in the app / views / articles / path and add the following code:

<p>

 Title:

 <% = @ article.title%>

</p>

<p>

 Text:

 <% = @ article.text%>

</p>

You will now be able to create a new article, so head to http: // localhost: 3000 / articles / new and try adding a new article.

View a list of blog articles

We now need to display a list of all the articles in the blog, and the path associated with this event and the output of the bin / rails routes command will be as follows:

articles GET /articles(.:format) articles # index

Add the index event associated with this path to the ArticlesController controller in the app / controllers / articles_controller.rb file.

A common practice among developers is to write the index event at the beginning of the controller:

class ArticlesController <ApplicationController

 def index

 @articles = Article.all

 end

 def show

 @article = Article.find (params [: id])

 end

 def new

 end

 # The rest of the code ...

Then add the view for this event located at app / views / articles / index.html.erb which includes the following code:

<h1> Listing articles </h1>

<table>

 <tr>

 <th> Title </th>

 <th> Text </th>

 </tr>

 <% @ articles.each do | article | %>

 <tr>

 <td> <% = article.title%> </td>

 <td> <% = article.text%> </td>

 <td> <% = link_to 'Show', article_path (article)%> </td>

 </tr>

 <% end%>

</table>

Now head to http: // localhost: 3000 / articles in your browser and you'll see a list of all the articles you've already created.

Add links to navigate blog pages

We are now able to create, view, and list the list of articles on the blog, but we need some links to help us navigate the pages of the site.

Open the app / views / welcome / index.html.erb file and edit it as follows:

<h1> Hello, Rails! </h1>

<% = link_to 'My Blog', controller: 'articles'%>

The link_to function is one of the auxiliary function functions included in Rails.

Let's add some links to other views, and start by adding a new article creation link to the app / views / articles / index.html.erb file before the <table> tag:

<% = link_to 'New article', new_article_path%>

This link will direct the user to the page with a new article creation form.

We'll add another link to the app / views / articles / new.html.erb file right after the form, so the user can return to the homepage:

<% = form_for: article, url: articles_path do | f | %>

 ...

<% end%>

<% = link_to 'Back', articles_path%>

Finally, we’ll add a link to the app / views / articles / show.html.erb template that directs the user to the homepage as well, making it easy for the person viewing the article to return to the page that shows all the articles:

<p>

 Title:

 <% = @ article.title%>

</p>

<p>

 Text:

 <% = @ article.text%>

</p>

<% = link_to 'Back', articles_path%>

Note:

If the link indicates an event in the same controller, then you do not need to specify the value of the controller: Rails uses the current controller by default.

Note:

In the development environment (the default environment you are currently working on), Rails reloads the application every time it receives a request, so there is no need to shut down and restart the server to see updates.

Check input

If you look at the model we created earlier, you will see that the file is very simple:

class Article <ApplicationRecord

end

Note that the Article class is inherited from the ApplicationRecord class, which is inherited from the ActiveRecord :: Base class, which includes many functions and procedures for forms, such as simple CRUD operations (Create, Read, Update, Destroy), validation of validation data, complex searches, and linking. Different models with each other.

The Rails framework provides multiple functions that help verify data sent to the form. Open the app / models / article.rb file and add the following code:

class Article <ApplicationRecord

 validates: title, presence: true,

 length: {minimum: 5}

end

This change will ensure that each new blog post has a title of at least five characters. Rails allows you to check various things in forms, such as checking whether or not columns are duplicated, formatting, and the existence of objects associated with them.

Now let's call the @ article.save function in an article that doesn't have a title, and we notice that the function returns false. If we go back to the controller in the app / controllers / articles_controller.rb file again we will notice that we did not check the result returned by the @ article.save function within the create event. If the @ article.save function fails, we must return the user to the Add New Article form. To do this, modify the new and create events in the app / controllers / articles_controller.rb file as follows:

def new

 @article = Article.new

end

def create

 @article = Article.new (article_params)

 if @ article.save

 redirect_to @article

 else

 render 'new'

 end

end

private

 def article_params

 params.require (: article) .permit (: title,: text)

 end

The new event will create a new instance variable named @article and you will learn why it is done shortly.

Note that we used render within the create event instead of redirect_to if the save function returns false. The render function is used to pass the @article object to the new template when rendered. This rendering takes place within the same request resulting from the form submission, while the redirect_to function causes another request to be sent.

Now reload the page with the address http: // localhost: 3000 / articles / new and try to add a new article without a title, you'll see that Rails takes you back to the form page, but that's not very useful. You must tell the user that something went wrong, and to do so, edit the app / views / articles / new.html.erb file to check for error messages:

<% = form_for: article, url: articles_path do | f | %>

 <% if @ article.errors.any? %>

 <div id = "error_explanation">

 <h2>

 <% = pluralize (@ article.errors.count, "error")%> prohibited

 this article from being saved:

 </h2>

 <% @ article.errors.full_messages.each do | msg | %>

 <% = msg%>

 <% end%>

 </div>

 <% end%>

 <p>

 <% = f.label: title%>

 <% = f.text_field: title%>

 </p>

 <p>

 <% = f.label: text%>

 <% = f.text_area: text%>

 </p>

 <p>

 <% = f.submit%>

 </p>

<% end%>

<% = link_to 'Back', articles_path%>

We initially checked for errors through @ article.errors.any ?, and if so, we display a list of errors available through @ article.errors.full_messages.

The pluralize function takes two coefficients, the first numeric and the second textual. If the number is greater than one, the text string automatically converts to the plural.

The reason for adding @article = Article.new to the ArticlesController is that if we don't, the @articl value will be nil, and the @ article.errores.any? To launch an error.

Rails surround fields with <div> tags with a CSS class named field_with_errors, and you can define this CSS class to format fields as desired.

Now you will receive an ordered error message when you try to save an article without a title.

In the next chapter we will continue to work on the model where we will write the code responsible for editing and deleting the articles, and then learn how to create relationships between the different models by adding a template to deal with comments in the blog.

Chapter III

Models in Rails - Modify and delete articles

In the previous chapter of this book, we talked about models in the Ruby on Rails framework.

In the second part of this chapter we will learn how to associate two forms with each other by creating a new feedback form. But before that, we will continue with what we started in the previous lessons of the series in the construction of “CRUD” operations, where we previously covered the processes of Create and Read, and today we will cover the remaining two processes, update and deletion Destroy.

Update articles:

The first step in updating articles is to add an edit event to the ArticlesController between the new and create events as follows:

def new

 @article = Article.new

end

def edit

 @article = Article.find (params [: id])

end

def create

 @article = Article.new (article_params)

 if @ article.save

 redirect_to @article

 else

 render 'new'

 end

end

The presentation will include a form similar to the one we used to create new articles. Create a file named app / views / articles / edit.html.erb and add the following code:

<h1> Edit article </h1>

<% = form_for (@article) do | f | %>

 <% if @ article.errors.any? %>

 <div id = "error_explanation">

 <h2>

 <% = pluralize (@ article.errors.count, "error")%> prohibited

 this article from being saved:

 </h2>

 <% @ article.errors.full_messages.each do | msg | %>

 <% = msg%>

 <% end%>

 </div>

 <% end%>

 <p>

 <% = f.label: title%>

 <% = f.text_field: title%>

 </p>

 <p>

 <% = f.label: text%>

 <% = f.text_area: text%>

 </p>

 <p>

 <% = f.submit%>

 </p>

<% end%>

<% = link_to 'Back', articles_path%>

This time, we will direct the form to an update event that we haven't defined yet.

Passing the article object to the child generates a url for submitting the modified article form. With this option, we tell Rails that we want this form to be sent through the HTTP PATCH verb, an HTTP verb that is used to update resources according to the REST protocol.

The first parameter of form_for can be an object, for example @articl, which will cause the auxiliary function to fill out the form with the object's fields, and passing the symbol (: article) with the name of the instance variable (@article) automatically results in the same result.

Now we will create the update event in the app / controllers / articles_controller.rb controller and add it between the create event and the private operator:

def create

 @article = Article.new (article_params)

 if @ article.save

 redirect_to @article

 else

 render 'new'

 end

end

def update

 @article = Article.find (params [: id])

 if @ article.update (article_params)

 redirect_to @article

 else

 render 'edit'

 end

end

private

 def article_params

 params.require (: article) .permit (: title,: text)

 end

The update event is used when you want to update an existing record in the database, and this event receives a hash chopping table that contains the properties that you want to update. As before, if there is an error in the update process, we will return the form to the user again.

We'll use the article_params function we defined earlier for the create event.

There is no need to pass all properties to update them, for example, if @ article.update (title: 'A new title') is called, Rails will only update the title property, leaving the rest of the properties unaltered.

Finally, we want to display a link to the edit event on the page where we display the list of articles, so head to the app / views / articles / index.html.erb file and add the link to appear next to the “Show” link:

<table>

 <tr>

 <th> Title </th>

 <th> Text </th>

 <th colspan = "2"> </th>

 </tr>

 <% @ articles.each do | article | %>

 <tr>

 <td> <% = article.title%> </td>

 <td> <% = article.text%> </td>

 <td> <% = link_to 'Show', article_path (article)%> </td>

 <td> <% = link_to 'Edit', edit_article_path (article)%> </td>

 </tr>

 <% end%>

</table>

We'll also add a link to the app / views / articles / show.html.erb template to show an “Edit” link on the article page as well:

...

<% = link_to 'Edit', edit_article_path (@article)%> |

<% = link_to 'Back', articles_path%>

This is the form of our application up to this point:

[image:]

Use partials to remove duplicates from presentations

The article edit page looks exactly like the new article creation page, and in fact both pages use the same code to display the form. We will now eliminate this duplication using partial view files. These files have names beginning with the _ character.

Create a new file named _form.html.erb under app / views / articles / and add the following code:

<% = form_for @article do | f | %>

 <% if @ article.errors.any? %>

 <div id = "error_explanation">

 <h2>

 <% = pluralize (@ article.errors.count, "error")%> prohibited

 this article from being saved:

 </h2>

 <% @ article.errors.full_messages.each do | msg | %>

 <% = msg%>

 <% end%>

 </div>

 <% end%>

 <p>

 <% = f.label: title%>

 <% = f.text_field: title%>

 </p>

 <p>

 <% = f.label: text%>

 <% = f.text_area: text%>

 </p>

 <p>

 <% = f.submit%>

 </p>

<% end%>

Note that we have changed nothing except the declaration of the form_for function and the reason for using this simple and simple method to declare the form_for function to express the two forms is that @article is a resource associated with a set of RESTful paths, and Rails can guess which URI and function should be used.

Now let's update the view app / views / articles / new.html.erb to use the partial file we created and we'll rewrite it as follows:

<h1> New article </h1>

<% = render 'form'%>

<% = link_to 'Back', articles_path%>

Then do the same in the view file app / views / articles / edit.html.erb:

<h1> Edit article </h1>

<% = render 'form'%>

<% = link_to 'Back', articles_path%>

Delete articles

This is the last operation within CRUD operations, and according to the REST criteria, the path that deletes the articles as shown in the bin / rails routes output is:

DELETE /articles/:id(.:format) articles # destroy

The DELETE verb must be used in the path responsible for deleting resources, but if you use the GET verb, you can create a malicious link like this one:

 look at this cat!

We'll use the delete function to delete the sources, and this path is associated with the destroy event within the app / controllers / articles_controller.rb that we haven't created yet. The last destroyer is usually within the controller, and as with other public functions, it must be declared before any special or protected functions.

def destroy

 @article = Article.find (params [: id])

 @ article.destroy

 redirect_to articles_path

end

The final image of the ArticleController in app / controllers / articles_controller.rb is:

class ArticlesController <ApplicationController

 def index

 @articles = Article.all

 end

 def show

 @article = Article.find (params [: id])

 end

 def new

 @article = Article.new

 end

 def edit

 @article = Article.find (params [: id])

 end

 def create

 @article = Article.new (article_params)

 if @ article.save

 redirect_to @article

 else

 render 'new'

 end

 end

 def update

 @article = Article.find (params [: id])

 if @ article.update (article_params)

 redirect_to @article

 else

 render 'edit'

 end

 end

 def destroy

 @article = Article.find (params [: id])

 @ article.destroy

 redirect_to articles_path

 end

 private

 def article_params

 params.require (: article) .permit (: title,: text)

 end

end

The destroy function can be called in Active Record objects when you want to delete them from the database. Note that we don't need to add a view for this event because we redirect the user to the index event.

Finally add a ‘Destroy’ link to the app / views / articles / index.html.erb template to link all pages together.

<h1> Listing Articles </h1>

<% = link_to 'New article', new_article_path%>

<table>

 <tr>

 <th> Title </th>

 <th> Text </th>

 <th colspan = "3"> </th>

 </tr>

 <% @ articles.each do | article | %>

 <tr>

 <td> <% = article.title%> </td>

 <td> <% = article.text%> </td>

 <td> <% = link_to 'Show', article_path (article)%> </td>

 <td> <% = link_to 'Edit', edit_article_path (article)%> </td>

 <td> <% = link_to 'Destroy', article_path (article),

 method:: delete,

 data: {confirm: 'Are you sure?' }%> </td>

 </tr>

 <% end%>

</table>

Here we used the link_to function differently, passing the path name as a second parameter, and then passing the other options. The options use the method:: delete and data: {confirm: 'Are you sure?' } As HTML5 attributes so clicking the link displays a dialog box to confirm that the user wants to delete the article, and then submits the link using the delete function.

This validation is performed by a JavaScript file named rails-ujs, which is located by default in the application schema (app / views / layouts / application.html.erb).

Congratulations You can now create, view, list, update and delete articles on your blog.

Note:

In general, Rails encourages the use of resource objects rather than manually typing paths.

Add the feedback form

We will now create a new form in this application that will be dealing with comments.

Create the form

To create the form for comments, we will follow the same method as using the Generator tool to create a form named Comment that is a reference to the article. Type the following command at the command line:

$ bin / rails generate model Comment commenter: string body: text article: references

This command will create four files:

The Purpose file

Let's take a look at the app / models / comment.rb file:

class Comment <ApplicationRecord

 belongs_to: article

end

As you can see, the content of this file is similar to the article template we created earlier, and the only difference is the line belongs_to: article that creates a link between the two forms, and we'll talk about the links shortly.

The keyword (references) within the command we execute on the command line is a special type of data for forms. This keyword creates a column in the table in the database with the name of the form passed to that word with the addition of _id, which is an integer. Things will become clearer to you if you check the db / schema.rb file below.

In addition to creating the form, Rails created a displacement whose job is to create the corresponding table for the form in the database:

class CreateComments <ActiveRecord :: Migration [5.0]

 def change

 create_table: comments do | t |

 t.string: commenter

 t.text: body

 t.references: article, foreign_key: true

 t.timestamps

 end

 end

end

The t.references line creates an integer column named article_id, an index index for that column, and a Foreign Key Constraint constraint that points to the id column in the article table.

Now perform the displacement using the following command:

$ bin / rails db: migrate

Rails only performs unimplemented migrations, so the result of the following command will be:

== CreateComments: migrating === ====

- create_table (: comments)

 -> 0.0115s

== CreateComments: migrated (0.0119s) ==

Connect models with each other

Active record links facilitate the formation of relationships between forms, and in this case we will establish a relationship between the tables of comments and articles, and if we think about the nature of the relationship between them we will find that:

Each comment belongs to one article.

One article has many comments.

Rails uses a similar syntax to associate forms, and we have seen in the Comment form in the app / models / comment.rb file the code responsible for linking each comment to one article:

class Comment <ApplicationRecord

 belongs_to: article

end

We will now need to configure the second side of the link, that is, link the articles to the comments, so go to the app / models / article.rb file and edit it as follows:

class Article <ApplicationRecord

 has_many: comments

 validates: title, presence: true,

 length: {minimum: 5}

end

Now the two models are automatically linked to each other. For example, if we have the @article variable representing a particular article, all comments associated with that article can be called as an array by @ article.comments.

Add a comment path

As with the welcome controller we will need to add a path where we specify the address we want to use to view the comments, so open the config / routes.rb file again, and edit it as follows:

resources: articles do

 resources: comments

end

In this way, comments become resources embedded in articles, and this method is part of the hierarchical relationship that arises between articles and comments.

Create a comment controller

Now that we have set up the template, we can now create the feedback controller, and we will use the generator tool as we did before:

$ bin / rails generate controller Comments

This command will create five files added to an empty folder

As with any blog, readers will write their comments immediately after reading the article, and after they submit their comments they are directed to the article's view page to see the comments. The function of the CommentsController will be to provide the necessary functions to create comments and delete annoying comments as they arrive.

We'll first edit the article view template app / views / articles / show.html.erb so we can add a new comment:

<p>

 Title:

 <% = @ article.title%>

</p>

<p>

 Text:

 <% = @ article.text%>

</p>

<h2> Add a comment: </h2>

<% = form_for ([@ article, @ article.comments.build]) do | f | %>

 <p>

 <% = f.label: commenter%>

 <% = f.text_field: commenter%>

 </p>

 <p>

 <% = f.label: body%>

 <% = f.text_area: body%>

 </p>

 <p>

 <% = f.submit%>

 </p>

<% end%>

<% = link_to 'Edit', edit_article_path (@article)%> |

<% = link_to 'Back', articles_path%>

The previous code will add a form to the article view page where you can add a new comment by calling the create event within the CommentsController. The form_for call uses an array that will create a nested route such as: / articles / 1 / comments.

Now make the necessary modifications to the create event in the app / controllers / comments_controller.rb file:

class CommentsController <ApplicationController

 def create

 @article = Article.find (params [: article_id])

 @comment = @ article.comments.create (comment_params)

 redirect_to article_path (@article)

 end

 private

 def comment_params

 params.require (: comment) .permit (: commenter,: body)

 end

end

Things will get a little bit complicated here because of the nesting overlap between the paths. Each time a particular comment is requested, the request must follow the article to which the comment relates, thus calling the find function in the Article form, which is responsible for selecting the desired article according to the ID specified in the path. .

In addition, we’ve taken advantage of some of the dependencies provided by linking the two forms. We used create at @ article.comments to create and save the comment, which will link the new comment to the selected article.

After the new comment is created, we redirect the user to the original article by using the article_path (@article) helper function. As we have seen, this function calls the show event within the ArticlesController controller, which in turn render the template show.html.erb, where we want comments to appear, so we will make the necessary modifications to the app / views / articles / show.html.erb file.

<p>

 Title:

 <% = @ article.title%>

</p>

<p>

 Text:

 <% = @ article.text%>

</p>

<h2> Comments </h2>

<% @ article.comments.each do | comment | %>

 <p>

 Commenter:

 <% = comment.commenter%>

 </p>

 <p>

 Comment:

 <% = comment.body%>

 </p>

<% end%>

<h2> Add a comment: </h2>

<% = form_for ([@ article, @ article.comments.build]) do | f | %>

 <p>

 <% = f.label: commenter%>

 <% = f.text_field: commenter%>

 </p>

 <p>

 <% = f.label: body%>

 <% = f.text_area: body%>

 </p>

 <p>

 <% = f.submit%>

 </p>

<% end%>

<% = link_to 'Edit', edit_article_path (@article)%> |

<% = link_to 'Back', articles_path%>

You can now add articles and comments to your blog and view them in the right places.

In the next chapter we will continue to work on the comments.

Chapter IV

Restructure the code and add a simple authentication system

Code restructuring

Now that articles and comments are working well, let's take a look at the app / views / articles / show.html.erb template. The file looks very long, so we will use partial files to clean and arrange the code.

Partial file rendering

Initially, we will create a partial comment file that will display all comments for the article. Create the app / views / comments / _comment.html.erb file and add the following code:

<p>

 Commenter:

 <% = comment.commenter%>

</p>

<p>

 Comment:

 <% = comment.body%>

</p>

Now you can edit the `app / views / articles / show.html.erb` file as follows:

<p>

 Title:

 <% = @ article.title%>

</p>

<p>

 Text:

 <% = @ article.text%>

</p>

<h2> Comments </h2>

<% = render @ article.comments%>

<h2> Add a comment: </h2>

<% = form_for ([@ article, @ article.comments.build]) do | f | %>

 <p>

 <% = f.label: commenter%>

 <% = f.text_field: commenter%>

 </p>

 <p>

 <% = f.label: body%>

 <% = f.text_area: body%>

 </p>

 <p>

 <% = f.submit%>

 </p>

<% end%>

<% = link_to 'Edit', edit_article_path (@article)%> |

<% = link_to 'Back', articles_path%>

This way the partial file will be rendered in app / views / comments / _comment.html.erb for each comment in the @ article.comments collection, and when the render function moves between the elements of the comment collection, each comment is assigned to a local variable with the same partial file name , In this case a comment that is available in the partial file.

Rendering the partial file of the form

Let's remove the new comments section to its own partial file, and again create a file named _form.html.erb in the app / views / comments / folder and add the following:

<% = form_for ([@ article, @ article.comments.build]) do | f | %>

 <p>

 <% = f.label: commenter%>

 <% = f.text_field: commenter%>

 </p>

 <p>

 <% = f.label: body%>

 <% = f.text_area: body%>

 </p>

 <p>

 <% = f.submit%>

 </p>

<% end%>

Then edit the app / views / articles / show.html.erb file to read as follows:

<p>

 Title:

 <% = @ article.title%>

</p>

<p>

 Text:

 <% = @ article.text%>

</p>

<h2> Comments </h2>

<% = render @ article.comments%>

<h2> Add a comment: </h2>

<% = render 'comments / form'%>

<% = link_to 'Edit', edit_article_path (@article)%> |

<% = link_to 'Back', articles_path%>

The second render function defines the partial template that we want to render: comments / form, and since the / is in this text string, Rails will know that you want to render the _form.html.erb file in the app / views / comments folder.

The @article object will be available for any partial file rendered in the view because we have defined it as an instance variable.

Delete comments

The ability to delete annoying comments is a feature of the blog, and in order to do so we will need to add a link to delete the comments in the view and a destroy event in the CommentsController.

So we will first add the delete link within the partial file app / views / comments / _comment.html.erb as follows:

<p>

 Commenter:

 <% = comment.commenter%>

</p>

<p>

 Comment:

 <% = comment.body%>

</p>

<p>

 <% = link_to 'Destroy Comment', [comment.article, comment],

 method:: delete,

 data: {confirm: 'Are you sure?' }%>

</p>

Clicking on this link will send the DELETE verb of the / articles /: article_id / comments /: id link to the CommentsController, which, using this link, will search for the comment to be deleted from the database. To add a destroy event to the app / controllers / comments_controller.rb file controller:

class CommentsController <ApplicationController

 def create

 @article = Article.find (params [: article_id])

 @comment = @ article.comments.create (comment_params)

 redirect_to article_path (@article)

 end

 def destroy

 @article = Article.find (params [: article_id])

 @comment = @ article.comments.find (params [: id])

 @ comment.destroy

 redirect_to article_path (@article)

 end

 private

 def comment_params

 params.require (: comment) .permit (: commenter,: body)

 end

end

The destroy event will search for the comment to be deleted, then locate it in the @ article.comments collection and then delete it from the database and redirect us to the article's show event.

Delete the threaded objects

It goes without saying that when you delete a particular article, the comments must be deleted, otherwise they will take up space in the database without any benefit. Rails allows us to use the dependent option to achieve this. Go to the article (app / models / article.rb) and edit it as follows:

class Article <ApplicationRecord

 has_many: comments, dependent:: destroy

 validates: title, presence: true,

 length: {minimum: 5}

end

Authentication in Rails

If you want to post your blog online, anyone can add, edit, and delete articles and comments.

Rails offers a simple HTTP authentication system that can be used in simple applications like this one.

In the ArticlesController we will need a way to prevent an unauthenticated person from accessing the events involved in this controller, and you can use the http_basic_authenticate_with function to achieve this.

To use the authentication system, we will disclose it at the beginning of the ArticlesController in app / controllers / articles_controller.rb file.

class ArticlesController <ApplicationController

 http_basic_authenticate_with name: "dhh", password: "secret", except: [: index,: show]

 def index

 @articles = Article.all

 end

 #The rest of the code ...

We will also allow only trusted users to delete comments, so add the following code to the CommentsController in the app / controllers / comments_controller.rb file:

class CommentsController <ApplicationController

 http_basic_authenticate_with name: "dhh", password: "secret", only:: destroy

 def create

 @article = Article.find (params [: article_id])

 # ...

 end

 #The rest of the code ...

Now if you try to create a new article, you will receive a request for authentication:

challenge.png

It is worth mentioning that there are many authentication methods in Rails applications, the most famous of which are Devise rails engine and Authlogic.

Framework Rails and UTF-8 encoding system

The easiest way to work with Rails is to store all external data in UTF-8 encoding. All external data is encoded in this system.

In case of any error in the coding system, the characters will often appear in the browser as black rhombic forms with a question mark inside them, or the characters may appear as strange symbols such as “” instead of “”. Rails takes some action in its rules of procedure to minimize common causes of these problems that can be detected and corrected automatically.

However, if you are dealing with data from external sources not stored in UTF-8 encoding, Rails will not be able to automatically detect the causes of the problem or provide a solution.

There are two common sources of data not stored in UTF-8:

- Text Editor
 : Most text editors save UTF-8 code files, and if the text editor you use to write code does not do so, it may result in the conversion of special characters or characters of languages other than English to the transformation of the browser into certain forms inside the tag Question. This also applies to i18n translation files. Note that most text editors that do not save code files by default (such as Dreamweaver) allow you to change the default encoding of saved files to UTF-8, and we recommend that you do so.

-
 Database
 : Rails converts data from the database to UTF-8 encoding, but if this coding system is not used by the database, it will not be possible to store all characters entered by the user. For example, if the database's internal encoding system is Latin-1 and the user enters words in Russian, Arabic, or Japanese, the data will be lost forever once it enters the database. Therefore, it is always recommended to convert the internal coding system in the database to UTF-8.

Chapter V

Active Record basics: what it is, import and forms

What is Active Record?

Active Record is part of the MVC programmatic style - explained at the bottom of the chapter - and is responsible for the data segment. Active Record is the part responsible for displaying the data and its algorithm. Active Record makes it easy to create and use data elements that require permanent space in the database. The application of the Active Record mode considers itself a description and part of the ORM

** MVC- Model View Controller - is a pattern adopted as a method of programming where this pattern depends mainly on isolating what is seen to the user interface (user interface) from the data (data) and methods of use, where the data section is separated from the interface and can More than one developer worked on the project smoothly and without conflict. One example of platforms that work this way is Laravel

** ORM Object- Relational- Object is a software technique used to convert data between incompatible systems by converting rows and columns into objects using object-oriented programming.

Active Record mode

Martin Fowler has known Active Record in his book Patterns of Enterprise Application Architecture and in this definition he explained what it is. In Active Record, the object holds both persistent data and the operations that will be performed on it. Active Record binds logic to data access to the object so that it teaches users how to enter and output data from the database.

Draw relationships between Object Relational Mapping

This term is called ORM, a technique that connects application-specific objects with tables in a connected database management system. Using ORM, you can store and use object properties and relationships in the application without having to type SQL commands but directly and using fewer codes.

Active Record as an ORM platform

Active Record provides us with many possibilities, the most important of which are:

Representation of models and their data

Represent the links between those models

Representation of inherited data between connected data models

Authenticate forms before they are installed in databases

Application of database operations using object-oriented programming method

Easy to import codes from other languages

When writing an application in one language or other platform to use in the ORM platform, these codes need a lot of configuration. But this has been resolved in Rails where you will need to write very few codes to make the configuration (and sometimes you don't need to configure at all) when making Active Record forms. How this configuration works depends mainly on configuring applications the same way most of the time in a major way. However, sometimes you will need to type configuration codes when the applications you import do not fit the main method of configuration in Rails.

Naming method

Active Record uses naming rules that help create links between forms and database tables. Rails Converts classes names to plural to fit the appropriate database table. For example, if you have a class called book, you will get a database table called books. Rails uses a powerful mechanism that enables it to collect regular and abnormal names. When a two-word class is used, the naming rules tend to use the CamelCase method where the database table will contain the same words separated by “_”. For example, a class called BookClub, its database table will be called book_clubs, and it should be noted that the singular name begins with capital letters.

Model / Class Table / Schema

Article articles

LineItem line_items

Deer deers

Mouse Mice

Person people

Database organization and planning

Active Record uses the naming method we talked about to name columns in database tables, depending on the purpose of these columns.

Foreign keys are primary keys in other tables and are used to link databases to each other. The method of naming it follows the following pattern singularized_table_name_id eg item_id, order_id

Primary Keys: Active Record creates a column of integers called id whose task is to distinguish the table and its elements.

There are also some optional columns that add new features to Active Record:

The created_at key stores the time the record was made taking into account the current time.

The updated_at key stores the log update time taking into account the current time.

The lock_version key adds an optimistic close to the database

The type key specifies whether the Single Table Inheritance property is present

The _type (association_name) key is used to store the type of polymorphic associations.

The _count (table_name) key is used to store the number of objects or objects within a relationship. For example, if you have a class called Article containing a column called comments_count. This key will store the number of comments in each article.

Make Active Record forms

Creating Active Record models is easy. All you have to do is create a subclass of the ApplicationRecord log.

class Product <ApplicationRecord

end

Skip Rails naming methods

What do you do if you need to use another non-Rails naming method? There is no problem as you can easily skip naming rules. ApplicationRecord is inspired by ActiveRecord :: Base and this gives us many ways to bypass naming rules. For example, you can use this command ActiveRecord :: Base.table_name = to specify the appropriate name for the table you want to create.

class Product <ApplicationRecord

 self.table_name = "my_products"

end

If you do this, you must manually define the class name of the constants class (my_products.yml) using this set_fixture_class command in your test definition.

class ProductTest <ActiveSupport :: TestCase

 set_fixture_class my_products: Product

 fixtures: my_products

 ...

end

It is also possible to skip naming columns that are used as primary keys by using the command: ActiveRecord :: Base.primary_key =.

class Product <ApplicationRecord

 self.primary_key = "product_id"

end

Read and write CRUD data

CRUD is the abbreviation of the following four words: Create, Read, Update and Delete. Active Record automatically creates functions that allow an application to read and modify the data within its tables.

Create command

Objects in Active Record can be created using the hash window icon or their properties can be set manually after they are defined. A new function will output a new object. The create function will output a new object and save it in the database. For example, assuming a model named User and its name and occupation properties, the method function will create the form and save it to the database.

user = User.create (name: "David", occupation: "Code Artist")

Using the new function will create the object but not save it

user = User.new

user.name = "David"

user.occupation = "Code Artist"

And when you type user.save, the object will be saved in the database. Assuming a pre-block exists, both the creat and new commands will initially subject that object to block.

user = User.new do | u |

 u.name = "David"

 u.occupation = "Code Artist"

end

Read command

Active Record provides a powerful API for accessing data within the database. In the following codes, there will be several examples of accessing databases using Active Record.

return a collection with all users

users = User.all

return the first user

user = User.first

return the first user named David

david = User.find_by (name: 'David')

find all users named David who are Code Artists and sort by created_at in reverse chronological order

users = User.where (name: 'David', occupation: 'Code Artist'). order (created_at:: desc)

Update command

You can re-modify the object properties and save the changes to the database.

user = User.find_by (name: 'David')

user.name = 'Dave'

user.save

There is also a shortcut to making updates using hash mapping.

user = User.find_by (name: 'David')

user.update (name: 'Dave')

This method is useful if you want to update many properties at once. But if you want to update multiple records at once, you can use the update_all command:

User.update_all "max_login_attempts = 3, must_change_password = 'true'"

Delete command

You can delete any object after it is stored in the database, using these codes:

user = User.find_by (name: 'David')

user.destroy

Validation

Active Record allows you to document the status of data models before entering them into databases. There are many ways to document forms before they enter databases, such as making sure that the value of the entry is not empty, that it is not already in the database, that it follows a certain format, and that many things can be used for authentication. Documentation is very important when installing data into a database. Therefore, the save and update functions may make us false when authentication fails and will not perform any operations in the database. These functions have contradictory functions (! Save and! Update) that execute ActiveRecord :: RecordInvalid if authentication fails, for example:

class User <ApplicationRecord

 validates: name, presence: true

end

user = User.new

user.save # => false

user.save! # => ActiveRecord :: RecordInvalid: Validation failed: Name can't be blank

Callbacks

The call functions within Active Record allow you to attach the code to a specific event that is repeated in your model's repeating cycle. This allows you to add verbs to your templates, conditioned by certain events. For example, when a new record is created, Active Record updates or deletes another, etc.

Migrations

Rails provides a domain-specific language for database management called migration. Displacement commands are stored with files that are output to any database that is supported from Active Record using the rake command. Here is a displacement code that generates a table:

class CreatePublications <ActiveRecord :: Migration [5.0]

 def change

 create_table: publications do | t |

 t.string: title

 t.text: description

 t.references: publication_type

 t.integer: publisher_id

 t.string: publisher_type

 t.boolean: single_issue

 t.timestamps

 end

 add_index: publications,: publication_type_id

 end

end

Rails tracks the files delivered to the database and provides the ability to restore that database rollback. To create a table, you must type the command in dails: migrate rails and restore it using db :: rollback.

Note that the above code can be used in any database such as MySQL, PostgreSQL, Oracle, etc.

Chapter VI

Active Record Validations: Overview

Overview of ratifications

Example of a simple validation process:

class Person <ApplicationRecord

 validates: name, presence: true

end

Person.create (name: "John Doe"). Valid? # => true

Person.create (name: nil) .valid? # => false

As you can see in the example, using the authentication feature tells us that “Person” is not valid without the Name property. The other Person will not be installed in the database.

Before going into more detail, let's first talk about how validations fit into the big picture of your app.

Why use ratifications?

Validations / investigations are used to ensure that only usable data will be saved in the database. For example, it can be important for your app to ensure each user enters a valid email address and mailing address. Model-level validations are the best way to ensure that only valid data is stored in your database. They are interoperable on databases, where the user cannot bypass or circumvent them from any user, and is suitable for continuous testing and handling. Rails makes it easy to use, provides a built-in assistant for common uses, and lets you create your own verification methods as well.

There are many ways to validate data before saving it in the database, including some database-related constraints, client-side validations, and controller-level validations.

Here is a summary of the pros and cons:

Limitations of databases and / or stored procedures make investigation mechanisms dependent on the database, and can make testing and maintenance more difficult. However, if your database is being used by other applications, it may be a good idea to use some database-level constraints. In addition, database-level validations can safely handle some things that are difficult to apply in other ways (such as excellence / uniqueness in frequently used tables).

Client-side investigations can be useful, but are generally not reliable if used alone. If executed using JavaScript, it can be overridden if JavaScript is not enabled in the user's browser. However, if combined with other technologies, these investigations can be a convenient way to provide feedback to your users.

Controller-level validations can be tempting to use, but they often become impractical and difficult to test and maintain. It is good to make your controllers small, as they will make your app popular for long-term use.

Choose from the above in some cases you consider appropriate. But the Rails team saw model-level validations as the most suitable for all conditions.

Why is the investigation happening?

There are two types of Active Record objects: those that correspond to a row within your database, and those that do not. When you create a new object - for example, using the new method - that object does not belong to the database at the moment. Once you call save for this object it will be saved in the appropriate database table. Active Record uses the? New_record method to determine whether the object exists in the database. Consider the following Active Record category:

class Person <ApplicationRecord

end

We can see that it works by looking at the output of the rails console:

$ bin / rails console

>> p = Person.new (name: "John Doe")

=> # <Person id: nil, name: "John Doe", created_at: nil, updated_at: nil>

>> p.new_record?

=> true

>> p.save

=> true

>> p.new_record?

=> false

Creating and saving a new record will send the SQL INSERT operation to the database. Updating an existing record will send the SQL UPDATE operation instead. Investigations are usually conducted before these commands are sent to the database. While any investigation fails, the object will be selected as “invalid” and Active Record will not perform input or update operations. This avoids storing non-applicable objects in the database. You can also choose to perform certain investigations when creating, saving, or updating an object.

WARNING
 : There are many ways to change the state of the object in the database. Some methods will activate investigations, but some will not. This means that it is possible to save an object to the database in an invalid state if you are not careful.

The following methods trigger investigations and will save objects in the database only if they are usable:

create

! create

save

! save

update

! update

The commands ending in bang versions (such as! Save, for example) make an exception if the record is incorrect. Others do not. Save and update false, and create returns the same object.

Skip the investigations

The following functions bypass the investigations and store the object in the database regardless of its validity. So it should be used with caution.

! decrement

decrement_counter

! increment

increment_counter

! toggle

touch

update_all

update_attribute

update_column

update_columns

update_counters

Note that save has the ability to skip investigations if appended to the validate: false command. This method should also be used with care.

(save (validate: false

Before you save an object in Active Record, Rails performs your investigations. If these investigations generate errors, Rails does not save the object. You can also conduct these investigations yourself. Valid activates your investigation and responds with true if there are no errors. And false otherwise. As I saw above:

class Person <ApplicationRecord

 validates: name, presence: true

end

Person.create (name: "John Doe"). Valid? # => true

Person.create (name: nil) .valid? # => false

After Active Record conducts your investigation, any error can be accessed through the errors.messages method that comes with a set of errors. As defined, the object is valid for use if this error pool is empty after investigations are performed. Note that the object represented by new will not report errors even if it is technically invalid, because investigations are performed automatically when the object is saved, as is the case with create and save functions.

class Person <ApplicationRecord

 validates: name, presence: true

end

>> p = Person.new

=> # <Person id: nil, name: nil>

>> p.errors.messages

=> {}

>> p.valid?

=> false

>> p.errors.messages

=> {name: ["can't be blank"]}

>> p = Person.create

=> # <Person id: nil, name: nil>

>> p.errors.messages

=> {name: ["can't be blank"]}

>> p.save

=> false

>> p.save!

=> ActiveRecord :: RecordInvalid: Validation failed: Name can't be blank

>> Person.create!

=> ActiveRecord :: RecordInvalid: Validation failed: Name can't be blank

?
 Invalid is simply the opposite of? Valid. It conducts investigations and responds to true if any error is found, and false if no errors exist.

[] errors

To check whether a particular property of an object is valid, you can use [errors [: attribute]. It responds with an array array with all property errors. If there are no errors for the specified property, the response is blank. This method is useful only after investigations are conducted, as it only examines error sets and does not activate the investigation itself. It differs from the ActiveRecord :: Base # invalid method described above, because it does not confirm the validity of the object as a whole. It only checks for errors with one property of the object.

class Person <ApplicationRecord

 validates: name, presence: true

end

>> Person.new.errors [: name] .any? # => false

>> Person.create.errors [: name] .any? # => true

errors.details details of errors

In order to detect any failures in a particular property, you can use [errors.details [: attribute]. You respond with an array of hashes with the error key: To get the authentication code:

class Person <ApplicationRecord

 validates: name, presence: true

end

>> person = Person.new

>> person.valid?

>> person.errors.details [: name] # => [{error:: blank}] Source:

Performing Custom Validations

When combined investigations are not enough for your needs, you can write your own investigations or investigative methods as you prefer.

Custom Validators

Custom validators are classes that are quoted from ActiveModel :: Validator. These classes must implement a validate method that takes a record as an expression and performs an investigation. The private investigator is called by using the validates_with method.

class MyValidator <ActiveModel :: Validator

 def validate (record)

 unless record.name.starts_with? 'X'

 record.errors [: name] << 'Need a name starting with X please!'

 end

 end

end

class Person

 include ActiveModel :: Validations

 validates_with MyValidator

end

The easiest way to add custom validators to verify personal properties with ActiveModel :: EachValidator is appropriate. In this case, the validator must execute a validate_each method, which takes three expressions: a record, a property, and a value. They are managed with what suits them: the property is verified, and the property value is overridden.

class EmailValidator <ActiveModel :: EachValidator

 def validate_each (record, attribute, value)

 unless value = ~ /\A([^@\s Wynd+)@((?:[-a-z0-9 Wynd+\.)+[a-zk{2,})\z/i

 record.errors [attribute] << (options [: message] || "is not an email")

 end

 end

end

class Person <ApplicationRecord

 validates: email, presence: true, email: true

end

As illustrated by the example, you can combine basic investigators with your own investigators.

Ad hoc means

You can also create methods that confirm the status of the form and add messages to the errorscollection when they are invalid. You must then register these methods using the validate (API) class, passing the symbols of the names of the interrogation methods. The error set is empty, so your custom investigations should add errors to it when you want the investigation to fail.

class Invoice <ApplicationRecord

 validate: expiration_date_cannot_be_in_the_past,

 : discount_cannot_be_greater_than_total_value

 def expiration_date_cannot_be_in_the_past

 if expiration_date.present? && expiration_date <Date.today

 errors.add (: expiration_date, "can't be in the past")

 end

 end

 def discount_cannot_be_greater_than_total_value

 if discount> total_value

 errors.add (: discount, "can't be greater than total value")

 end

 end

end

As set by default, these investigations will be performed each time you call? Valid or save the object. But it is also possible to control when these investigations work by giving the option on: to a validate method of either create: or update:

class Invoice <ApplicationRecord

 validate: active_customer, on:: create

 def active_customer

 errors.add (: customer_id, "is not active") unless customer.active?

 end

end

Working with Validation Errors

In addition to the previously valid? Valid and? Invalid methods, Rails supports a number of methods to deal with the set of errors and validates the object.

Errors

The ActiveModel :: Errors class returns both errors. Each key is the name of the property and the value in an array of text strings with errors.

class Person <ApplicationRecord

 validates: name, presence: true, length: {minimum: 3}

end

person = Person.new

person.valid? # => false

person.errors.messages

=> {: name => ["can't be blank", "is too short (minimum is 3 characters)"]}

person = Person.new (name: "John Doe")

person.valid? # => true

person.errors.messages # => {}

Add errors

The add method makes you add an error message associated with a particular property. You take the property and the error message as expressions. The errors.full_messages (or its equivalent errors.to_a equivalents) means the error message preferably to the user, and the property name is enlarged and added to the beginning of each message, as shown in the examples below.

class Person <ApplicationRecord

 def a_method_used_for_validation_purposes

 errors.add (: name, "cannot contain the characters! @ #% * () _- + =")

 end

end

person = Person.create (name: "! @ #")

person.errors [: name]

=> ["cannot contain the characters! @ #% * () _- + ="]

person.errors.full_messages

=> ["Name cannot contain the characters! @ #% * () _- + ="]

Attach a message at the beginning of an error.messages array to a property, equivalent to using errors # add.

class Person <ApplicationRecord

 def a_method_used_for_validation_purposes

 errors.messages [: name] << "cannot contain the characters! @ #% * () _- + ="

 end

end

person = Person.create (name: "! @ #")

person.errors [: name]

=> ["cannot contain the characters! @ #% * () _- + ="]

person.errors.to_a

=> ["Name cannot contain the characters! @ #% * () _- + ="]

Details of errors.details

You can specify the type of table breaker to break down the details of the recycled error using the errors.add method.

class Person <ApplicationRecord

 def a_method_used_for_validation_purposes

 errors.add (: name,: invalid_characters)

 end

end

person = Person.create (name: "! @ #")

person.errors.details [: name]

=> [{error:: invalid_characters}]

In order to improve error details, for example, to contain the unsupported string, you can pass additional keys to errors.add.

class Person <ApplicationRecord

 def a_method_used_for_validation_purposes

 errors.add (: name,: invalid_characters, not_allowed: "! @ #% * () _- + =")

 end

end

person = Person.create (name: "! @ #")

person.errors.details [: name]

=> [{error:: invalid_characters, not_allowed: "! @ #% * () _- + ="}]

All built-in Rails checkers increase the detail cutting table with a symmetrical type of checker.

[Errors [: base

You can add messages that are related to the state of the object as a whole instead of being associated with a particular property. You can also use that argument when you want to say that the object is not usable, regardless of its property values. Since the [errors [: base] is an array, you can simply add a text string to it and it will be used as an error message.

class Person <ApplicationRecord

 def a_method_used_for_validation_purposes

 errors [: base] << "This person is invalid because ..."

 end

end

errors.clear

A clear method is used when you want to clear all error messages in the errorscollection. Of course calling errors.clear for an invalid object will not make it valid or usable. The set of errors will be emptied, but the next time you invoke? Valid or any method that tries to save the object in the database, the investigation will work again. If any investigation fails, the set of errors will be filled again.

class Person <ApplicationRecord

 validates: name, presence: true, length: {minimum: 3}

end

person = Person.new

person.valid? # => false

person.errors [: name]

=> ["can't be blank", "is too short (minimum is 3 characters)"]

person.errors.clear

person.errors.empty? # => true

person.save # => false

person.errors [: name]

=> ["can't be blank", "is too short (minimum is 3 characters)"]

Chapter VII

Rails plugins

Since the beginning of this book, we've talked incessantly about convention over configuration in that Rails has sensitive defaults for just about everything. And more recently in the book, we've described Rails in terms of the underlying gems that you get when you install Rails. Now it is time to put those two thoughts together and reveal that the initial set of gems that Rails provides you with is a sensitive set of defaults — a group of gems that you can both add to and change. With rails, gems are the primary way in which you plug in new functionality. Instead of describing this in the abstract, we will select a few plugins and use them to illustrate different aspects of how plugins are installed and what plugins can do. The fact that many of these plugins turn out to be immediately useful for your day-to-day work is simply a bonus! Let's start with a simple plugin that can make you money. Credit Card Processing with Active MerchantIn Iteration G1 on page 170 we mentioned that we were temporarily punting on handling credit cards. Being able to charge a customer is clearly an important part of taking an order. Although this functionality isn't built into the core of Rails, there is a gem that provides this. You've already seen how you control what gems get loaded by your application; you do this by editing your Gemfile . Since we are going to cover a number of such gems in this chapter, let's add all of the ones that we'll cover at once. Add these any place you like; we've chosen to do so at the end of the file:

rails50 / depot_w / Gemfile

gem ' activemerchant ', '~> 1.58'

gem ' haml ', '~> 4.0' gem ' kaminari ', '~> 0.16'

You will note that we follow best practices by specifying a minimum version and effectively specifying an upper bound on the version number so that this demo will pick a version that is unlikely to contain an incompatible change. As for the gems we added, we will cover each in a separate section. This section will focus on Active Merchant.1 With this in place, we can use the bundle command to install our dependencies: depot> bundle install Depending on your operating system and your setup, you may need to run this command as root. The bundle command will actually do much more. It will cross-check gem dependencies, find a configuration that works, and download and install whatever components are necessary. But this needn't concern us now; we added only one component, and we can rest assured that this one is included in the gems that the bundler installed. We must do one last thing after updating or installing a new gem: restart the server. Although Rails does a good job of detecting and keeping up with your latest changes to your application, it is impossible to predict what needs to be done when an entire gem is added or replaced. We won't be using the server in this section but will shortly. Make sure that the server is running the Depot application. To demonstrate this functionality, we will create a small script, which we will place in the script directory:

rails50 / depot_w / script / creditcard.rb

credit_card = ActiveMerchant :: Billing :: CreditCard.new (

 number: '4111111111111111',

 month: '8',

 year: '2009' ,

 first_name : 'Tobias',

 last_name : ' Luetke ',

 verification_value : '123 ')

puts "Is # {credit_ card.number } valid? # {credit_ card.valid ?}"

There is not much to this script. It creates an instance of an ActiveMerchant :: Billing :: CreditCard class and then calls valid? () On this object. Let's run it:

$ rails runner script / creditcard.rb Is 4111111111111111 valid? false

There's not much to it; it just worked. Note that no require statements were

necessary; simply listing the gem you want in your gem file makes the function

available to your application
 .
 At this point, you should be able to see how you could use this functionality

in the Depot application. You know how to add a field to the Orders table via

a migration. You know how to add that field to the view. You know how to

add validation logic to your model, which calls the valid? () method that we used

earlier. If you go to the merchant site, you can even find out how to authorize
 ()

and capture () a payment, though this does require you to have a login and a

password with an existing commerce gateway. Once that is set up, you know

how to call this logic from your controller
 .

Just think: that was made possible by adding a single line to your Gemfile
 .

As we stated at the beginning of this chapter, adding gems to your Gemfile is

the preferred way to extend rails. The advantages of doing so are numerous
 :

All of your dependencies are tracked by Bundler, are all preloaded for immediate use by your application, and can be packed for easy deployment
 .

This was a simple addition. Let's try something more significant, something that

provides an alternative to one of the gems that Rails depends on
 .

Beautifying Our Markup with Haml

Let's take a look once again at a simple view that we use in the Depot application, in this case, one that presents our storefront
 :

rails50 / depot_v / app / views / store / index.html.erb

<
 p id = "notice"> <% = notice%> </ p
 >

<
 h1> <% = t
 ('. title _html ')%> </ h1
 >

<%
 cache @products do
 %>

<% @
 products.each
 do | product
 | %>

<%
 cache product do
 %>

<
 div class = "entry
 ">

<% =
 image_tag
 (product.image _url)
 %>

<
 h3> <% =
 product.title %> </ h3
 >

<% =
 sanitize
 (product.description)
 %>

<
 div class = "
 price_line
 ">

<
 span class = "price"> <% =
 number_to_currency (product.price)%> </ span
 >

<% =
 button_to
 t ('. add _html ')
 ,

line_items_ path (product_id : product, locale: I18n.locale)
 ,

remote: true
 %>

</
 div
 >

</
 div
 >

<%
 end
 %>

<%
 end
 %>

<%
 end
 %>

This code gets the job done. It contains the basic HTML, with interspersed bits of Ruby code enclosed in markup. Inside that markup, an equal sign is used to indicate that the value of the expression is to be converted to HTML and displayed. This is not only an adequate solution to the problem at hand; it is also all that is really needed for a large number of Rails applications. Additionally, it is an ideal place to start for books — like this one — where some knowledge of HTML may be presumed, but many of the readers are new to Rails and often to Ruby. The last thing you would want to do in that situation is to introduce yet another new language. But now that you are past that learning curve, let's explore a new language —one that more closely integrates the production of markup with Ruby code, namely, HTML Abstraction Markup Language (Haml). To start with, let's remove the file we just looked at:

$ rm app / views / store / index.html.erb

In its place, let's create a new file:

rails50 / depot_w / app / views / store / index.html.haml

%p # notice = notice

%h1 = t ('. title _html ')

- cache @products do

- @products.each do | product|

- cache product do

.entry

= image_tag (product.image _url)

%h3 = product.title

= sanitize (product.description)

.price _line

%span.price = number_to_currency (product.price)

= button_to t ('. add _html '),

line_items_ path (product_id : product, locale: I18n.locale),

remote: true

Note the new extension:. html.haml . This indicates that the template is a Haml template instead of an ERB template. The first thing you should notice is that the file is considerably smaller. Here's a quick overview of what is going on, based on what the first character is on each line: • Dashes indicate a Ruby statement that does not produce any output • Percent signs (%) indicate an HTML element.

• Equal signs (=) indicate a Ruby expression that does produce output to be displayed. This can be used either on lines by themselves or following HTML elements. • Dots (.) And hash (#) characters may be used to define class and id attributes, respectively. This can be combined with percent signs or used stand-alone. When used by itself, a div element is implied. • A comma at the end of a line containing an expression implies a continuation. In the prior example, the button_ to () call is continued across two lines. An important thing to note is that indentation is important in Haml . Returning to the same level of indentation closes the if statement, loop, or tag that is currently open. In this example, the paragraph is closed before the h1, the h1 is closed before the first div, but the div elements nest, with the first containing an h3 element and the second containing both a span and a button_ to (). As you can also see, all of your familiar helpers are available, things like t (), image_tag (), and button_to (). In every meaningful way, Haml is as integrated into your application as ERB is. You can mix and match: you can have some templates using ERB and others using Haml .

pagination

Warning: Under Construction Note that Rails 5.0 is still in beta, and that Kaminari support for Rails 5 has not yet been released. This work is being tracked in kaminari issue 774 a. Until this release occurs, the scenario described below will fail. A workaround would be to get the kaminari gem directly from the repositoryb a. https://github.com/amatsuda/kaminari/issues/774 b. http://bundler.io/git.html At the moment, we have a few products, a few carts at any one time, and a few line items per cart or order, but we can have essentially an unlimited number of orders, and we hope to have many — enough so that displaying all of them on an orders page will quickly become unwieldy. Enter the kaminari plugin. This plugin extends Rails to provide this much-needed function. Now let's generate some test data. We could click repeatedly on the buttons we have, but computers are good at this. This isn't exactly seed data, simply something done once and thrown away. Let's create a file in the script directory:

Order.transaction do

(1..100).
 each
 do | i
 |

Order.create (name: "Customer # {i}", address: "# { i } Main Street
 ",

email: "customer - # { i }@example.com", pay_type : "Check
 ")

end

This will create a hundred orders with no line items in them. Feel free to modify the script to create line items if you are so inclined. Note that this code does all this work in one transaction. This isn't precisely required for this activity but does speed up the processing. Note that we don't have any require statements or initialization to open or close the database. We will allow Rails to take care of this for us:

rails runner script / load_orders.rb

Now that the setup is done, we are ready to make the changes necessary to our application. First, we modify our controller to call paginate (), passing it in the page and the order in which we want the results displayed:

rails50 / depot_w / app / controllers / orders_controller.rb

def index

➤ @
 orders =
 Order.order (' created_at desc') .page (params [: page])

end

Next, we add links to the bottom of our index view
 .

rails50 / depot_w / app / views / orders / index.html.erb

<
 p id = "notice"> <% = notice%> </ p
 >

<
 h1> Orders </ h1
 >

<
 table
 >

<
 thead
 >

<
 tr
 >

<
 th
 > name </ th
 >

<
 th
 > Address </ th
 >

<
 th
 > Email </ th
 >

<
 th
 > Pay type </ th
 >

<
 th
 colspan = "3"> </ th
 >

</
 tr
 >

</
 thead
 >

<
 tbody
 >

<% @
 orders.each
 do | order
 | %>

<
 tr
 >

<
 td> <% = order.name%> </ td
 >

<
 td> <% =
 order.address %> </ td
 >

<
 td> <% =
 order.email %> </ td
 >

<
 td> <% =
 order.pay_type %> </ td
 >

<
 td> <% =
 link_to 'Show', order%> </ td
 >

<
 td> <% =
 link_to 'Edit', edit_order_path (order)%> </ td
 >

<
 td> <% =
 link_to 'Destroy', order, method :: delete
 ,

data: {confirm : 'Are you sure?' }%> </ td
 >

</
 tr
 >

<%
 end
 %>

</
 tbody
 >

</
 table
 >

<
 br
 >

<% =
 link_to
 'New Order', new_order_path
 %>

➤
 <p> <% = paginate @orders%> </p>

And that is all there is to it! The default is to show thirty entries per page, and the links will show up only if there are more than one page of orders. The controller specifies the number of orders to display on a page using the: per _page option

What We Just Did

Although this chapter did cover a few plugins, the purpose of this chapter wasn't to cover any particular plugin in depth but to introduce you to some of the capabilities that plugins can provide. If we include the gems that we saw in previous chapters, we have seen plugins that simply add new features (Active Merchant and Capistrano), add some methods to model objects (kaminari), add a new templating language (Haml), and even add an interface to a new database (mysql). If you think about it, there really isn't all that much that a plugin can't do.

Finding More at RailsPlugins.org

At this point, we have covered three plugins. Here are a few more to explore, grouped by categories:

• Some plugins implement behavior that was previously in the core of Rails and has since been moved out. As an example, instead of jQuery, the Prototype library was the one supported by default by previous versions of Rails.

This has moved into a plugin named prototype rails . 2 Others, like acts_as_tree , 3 have thrived as plugins. And still others, like rails_xss , 4 backport essential functionality from future versions of Rails in order to help with migration.

• Some plugins actually implement significant pieces of common application logic and even user interface. The devise5 and authlogic6 plugins implement user authentication and session management. We implemented these functions ourselves in Depot, but this is generally something we don't recommend. We've found that laziness pays: if somebody else has written a plugin for a function that you need to implement, that's all the more time you can spend on your application.

• Some plugins replace large portions of rails. For example, datamapper7 replaces ActiveRecord . The combination of cucumber, 8 rspec , 9 and webrat10 can be used separately or together to replace test scripts with plain test stories, specifications, and browser simulation.

• airbrake11 and exception_notification12 will help you monitor errors in your deployed servers. Of course, this is but a small fraction of the set of plugins available. And this list is continually growing; there undoubtedly will be many more available by the time you read this. Finally, you can obviously create your own plugins. Although doing so is beyond the scope of this book, you can find out more in the Rails Guides13 and documentation

OEBPS/Image00002.gif

OEBPS/Image00003.jpg

OEBPS/Image00005.jpg

OEBPS/Image00001.gif

OEBPS/Image00000.jpg

