

PYTHON
 crash course

Beginner guide to computer programming, web coding and data mining. Learn in 7 days machine learning, artificial intelligence, NumPy and Pandas packages with exercises for data analysis.

JASON TEST

© Copyright 2020 - All rights reserved.

The content contained within this book may not be reproduced, duplicated or transmitted without direct written permission from the author or the publisher.

Under no circumstances will any blame or legal responsibility be held against the publisher, or author, for any damages, reparation, or monetary loss due to the information contained within this book. Either directly or indirectly.

Legal Notice:

This book is copyright protected. This book is only for personal use. You cannot amend, distribute, sell, use, quote or paraphrase any part, or the content within this book, without the consent of the author or publisher.

Disclaimer Notice:

Please note the information contained within this document is for educational and entertainment purposes only. All effort has been executed to present accurate, up to date, and reliable, complete information. No warranties of any kind are declared or implied. Readers acknowledge that the author is not engaging in the rendering of legal, financial, medical or professional advice. The content within this book has been derived from various sources. Please consult a licensed professional before attempting any techniques outlined in this book.

By reading this document, the reader agrees that under no circumstances is the author responsible for any losses, direct or indirect, which are incurred as a result of the use of information contained within this document, including, but not limited to, — errors, omissions, or inaccuracies.

TABLE OF CONTENTS

DAY 1

What Is Python?

Who is the Right Audience?

What You Will Learn?

Why Python?

DAY 2

What Is Machine Learning?

What is Deep Learning?

What are Neural Networks?

What is Supervised Learning?

What is Unsupervised Learning?

What is Reinforcement Learning?

What Is Artificial Intelligence (AI)?

What Is Data Science?

What Is Data Mining?

Benefits of Data Mining

What Are Data Analytics?

Why Data Analysis?

Data Analysis Tools

Who Is This Book For?

DAY 3

Getting Started

Python 2 and Python 3

Python on Different Operating Systems

Installing a Text Editor

Configuring Sublime Text for Python 3

Running the Hello World Program

Installing Python

Variables and Simple Data Types

Naming and Using Variables

DAY 4

Strings

Combining or Concatenating Strings

Stripping Whitespace

Avoiding Syntax Mistakes with Strings

Numbers

Integers

Floats

Comments

What Is a List?

Changing, Adding, and Removing Elements

DAY 5

A Closer Look at Looping

Avoiding Indentation Errors

Forgetting to Indent

Forgetting to Indent Additional Lines

Indenting Unnecessarily

Indenting Unnecessarily After the Loop

Simple Statistics with a List of Numbers

DAY 6

Tuples

Describing a Tuple

Looping Through All Values in a Tuple

Writing over a Tuple

Indentation

Line Length

Conditional Tests

Ignoring Case When Checking for Equality

Checking for Inequality

Numerical Comparisons

Checking Multiple Conditions

Using or to Check Multiple Conditions

DAY 7

The if-elif-else Chain

Using Multiple elif Blocks

Omitting the else Block

Testing Multiple Conditions

A Simple Dictionary

Working with Dictionaries

Accessing Values in a Dictionary

Adding New Key-Value Pairs

Starting with an Empty Dictionary

Modifying Values in a Dictionary

CONCLUSION

Day
 1

[image:]

What Is Python?

P

 ython is a high-level, object-oriented, construed programming language with complex semblance. Combined with dynamic typing and dynamic binding, its high-level data structures make it very attractive for Rapid Application Development as well as for use as a scripting or glue language for connecting existing components. Python's quick, easy to understand syntax, stresses readability, and hence reduces the expense of running the software. Python connects modules and packages that promote the modularity of the software and reuse of code. For all major platforms, the Python interpreter and the comprehensive standard library are available free of charge in source or binary form and can be freely distributed.

Programmers also fall in love with Python because of the increased productivity it brings. The edit-test-debug process is amazingly quick since there is no compilation phase. Python debugging programs are simple: a mistake or bad feedback would never trigger a segmentation fault. Alternatively, it creates an exception when the translator detects an error. If the program miscarries to catch the exception, the parser will print a stack trace. A source-level debugger allows you to inspect local and global variables, check arbitrary expressions, set breakpoints, walk through the code one line at a time, etc. The debugger itself is written in Python, testifying to the introspective power of Python. On the other side, often the fastest way to debug a system is to add a few print statements to the source: the quick process of edit-test-debug renders this simple approach quite efficient.

Who is the Right Audience?

The resolve of this book is to get you up to speed with Python as easy as possible so that you can create programs that work — games, data analysis, and web applications — while building a programming base that will serve you well for the rest of your life. Python Crash Course is designed for people of any age who have never programmed in or worked in Python before. This book is for you if you want to learn the basics of programming quickly so you can focus on interesting projects, and you like to test your understanding of new concepts by solving meaningful issues. Python Crash Course is also great for middle and high school teachers who would like to give a project-based guide to programming to their pupils.

What You Will Learn?

The sole purpose of this book is to make you generally a good programmer and, in particular, a good programmer for Python. As we provide you with a solid foundation in general programming concepts, you can learn quickly and develop good habits. You should be prepared to move on to more sophisticated Python methods after working your way through the Python Crash Course, and it will make the next programming language much easier to grasp. You will learn basic programming concepts in the first part of this book, which you need to know to write Python programs. These concepts are the same as those you would learn in almost any programming language when starting out.

You can learn about the different data types and ways you can store data within your applications in lists and dictionaries. You'll learn how to build data collections and work efficiently through those collections. You'll learn to use while and when loops to check for certain conditions so that you can run certain sections of code while those conditions are true and run certain sections when they aren't true — a strategy that can significantly automate processes. To make your programs accessible and keep your programs going as long as the user is active, you'll have to accept input from users. You 're going to explore how to apply functions as reusable parts of your software, and you only have to write blocks of code that execute
 those functions once, which you can use as many times as you want. You will then extend this concept with classes to more complicated behavior, making programs fairly simple to respond to a variety of situations.

You must learn how to write programs to handle common errors graciously. You will write a few short programs after going on each of these basic concepts, which will solve some well-defined problems. Finally, you can take the first step towards intermediate programming by learning how to write checks for your code so that you can further improve your programs without thinking about bugs being implemented. For Part I, all the details will allow you to take on bigger, more complicated tasks.

Why Python?

Every year we consider whether to continue using Python or move on to another language — maybe one that is newer to the programming world. But for a lot of reasons, I keep on working on Python. Python is an incredibly efficient language: the programs will do more than many other languages will need with fewer lines of code. The syntax of Python, too, should help write clean code. Compared to other languages, the code will be easy to read, easy to debug, and easy to extend and expand on. People use Python for many purposes: making games, creating web applications, solving business problems, and developing internal tools for all types of applications interesting ventures. Python is also heavily utilized for academic research and theoretical science in scientific fields.

One of the main reasons I keep on using Python is because of the Python community, which includes an incredibly diverse and welcoming group of people. Community is important for programmers since programming is not a practice of solitude. Most of us will ask advice from others, even the most seasoned programmers, who have already solved similar problems. Getting a well-connected and supportive community is essential to help you solve problems and the Python community fully supports people like you who are using Python as your first programming language.

Day 2

[image:]

What Is Machine Learning?

M

 achine-learning algorithms use correlations in massive volumes of data to identify patterns. And info, here, contains a lot of stuff — numbers, words, images, clicks, what do you have. This can be fed into a machine-learning system because it can be digitally processed.

Machine learning is the procedure that powers many of today's services — recommendation programs such as those on Netflix, YouTube, and Spotify; search engines such as Google and Baidu; social media channels such as Facebook and Twitter; voice assistants such as Siri and Alexa. The collection continues.

In all these instances, each platform collects as much data as possible about you — what genres you like to watch, what links you click on, what statuses you react to — and using machine learning to make a highly educated guess of what you might want next. And, in the case of a voice assistant, which words the best match with the funny sounds that come out of your mouth.

Frankly, this is quite a basic process: find the pattern, apply the pattern. But the world runs pretty much that way. That's thanks in large part to a 1986 breakthrough, courtesy of Geoffrey Hinton, now known as the father of deep knowledge.

What is Deep Learning?

Deep knowledge is machine learning on steroids: it uses a methodology that improves the capacity of computers to identify – and reproduce – only the smallest patterns. This method is called a deep neural network — strong because it has many, many layers of basic computational nodes that work together to churn through data
 and produce a result in the form of the prediction.

What are Neural Networks?

Neural networks strongly influence the interior workings of the human brain. The nodes are kind of like neurons, and the network is kind of like the entire brain. (For the researchers among you who cringe at this comparison: Avoid pooh-poohing the analogy. It's a good analogy.) But Hinton presented his breakthrough paper at a time when neural nets were out of fashion. Nobody ever learned how to teach them, and they didn't produce decent results. The method had taken nearly 30 years to make a comeback. And boy, they made a comeback!

What is Supervised Learning?

The last thing you need to know is that computer (and deep) learning comes in three flavors: controlled, unmonitored, and enhanced. The most prevalent data is marked in supervised learning to inform the computer exactly what patterns it will look for. Thought of it as being like a sniffer dog that can search targets until they know the smell they 're following. That's what you do when you 're pressing a Netflix series to play — you're asking the program to search related programs.

What is Unsupervised Learning?

In unsupervised learning, the data does not have any names. The computer is only searching for whatever trends it can locate. It's like making a dog detect lots of different things and organize them into classes of identical smells. Unsupervised methods are not as common as they have less apparent applications. Interestingly, they've achieved traction in cybersecurity.

What is Reinforcement Learning?

Finally, we have the enhancement of learning, the new field of machine learning. A reinforcement algorithm learns to achieve a clear objective by trial and error. It attempts a lot of different things and is rewarded or penalized depending on whether its behavior
 helps or hinders it from achieving its goal. It's like giving and denying treats as you show a puppy a new trick. Strengthening learning is the cornerstone of Google's AlphaGo, a software that has recently defeated the best human players in the complicated game of Go.

What Is Artificial Intelligence (AI)?

Mathematician Alan Turing changed history a second time with a simple question: "Do computers think?" Less than a decade after cracking the Nazi encryption code Enigma and enabling the Allied Forces to win World War II. The basic purpose and goal of artificial intelligence were developed by Turing 's paper "Computing Machinery and Intelligence" (1950), and the subsequent Turing Test.

At its heart, AI is the branch of computer science that is aimed at answering Turing 's affirmative query. It's the shot at replicating or simulating human intelligence in machines.

The expansive purpose of artificial intelligence has led to numerous questions and debates. So much so, that there is no universally accepted single field description.

The big limitation of describing AI as literally "making intelligent machines" is that it doesn't really describe what artificial intelligence is? Who makes an Intelligent Machine?

Artificial Intelligence: A Modern Approach in their pioneering textbook, authors Stuart Russell and Peter Norvig address the issue by unifying their work around the topic of smart agents in computers. With this in mind, AI is "the study of agents acquiring environmental perceptions and doing behavior" (Russel and Norvig viii)

Norvig and Russell continue their exploration of four different approaches that have historically defined AI:

1.​
 Thinking humanly

2.​
 Thinking rationally

3.​
 Acting humanly

4.​
 Acting rationally

The first two theories are about thought patterns and logic, while the rest are about behavior. In particular, Norvig and Russell concentrate on logical agents that behave to obtain the best outcome, noting "all the skills needed for the Turing Test often help an agent to act rationally" (Russel and Norvig 4).

Patrick Winston, MIT's Ford Professor of Artificial Intelligence and Computer Science, describes AI as "algorithms allowed by constraints, revealed by representations that help loop-focused models that bind together thought, interpretation and behavior."

While the average person may find these definitions abstract, they help focus the field as an area of computer science and provide a blueprint for infusing machines and programs with machine learning and other artificial intelligence subsets.

When addressing an audience at the 2017 Japan AI Experience, Jeremy Achin, CEO of DataRobot, started his speech by presenting the following description of how AI is used today:

"AI is a computational system capable of executing activities typically involving human intelligence ... Some of these artificial intelligence systems are powered by machine learning, others are powered by deep learning, and others are powered by very simple stuff like rules."

What Is Data Science?

Data science continues developing as one of the most exciting and challenging career options for qualified professionals. Today, productive computer practitioners recognize that the conventional techniques of processing vast volumes of data, data analysis, and programming skills must be improved. To discover valuable information within their organizations, data scientists need to experience the broad range of the life cycle of data science and have a degree of versatility and comprehension to optimize returns at each point of the process.

What Is Data Mining?

Data mining is investigating and analyzing big data to find
 concrete patterns and laws. This is considered a specialty within the area of analysis of computer science and is distinct from predictive analytics because it represents past evidence. In contrast, data mining attempts to forecast future outcomes. Also, data mining methods are used to build machine learning (ML) models driving advanced artificial intelligence (AI) technologies such as search engine algorithms and recommendation systems.

How to Do Data Mining

The accepted data mining process involves six steps:

1.
 ​
 Business understanding

The first step is to set the project's objectives and how data mining will help you accomplish that goal. At this point, a schedule will be drawn up to include schedules, activities and responsibilities of tasks.

2.
 ​
 Data understanding

In this phase, data is gathered from all available data sources. At this point, data visualization applications are also used to test the data's properties and ensure it helps meet business goals.

3.
 ​
 Data Preparation

Data is then washed, and it contains lost data to ensure that it can be mined. Data analysis can take a substantial period, depending on the volume of data processed and the number of sources of data. Therefore, in modern database management systems (DBMS), distributed systems are used to improve the speed of the data mining process rather than to burden one single system. They 're also safer than having all the data in a single data warehouse for an organization. Including failsafe steps in the data, the manipulation stage is critical so that data is not permanently lost.

4.
 ​
 Data Modeling

Mathematical models are then used with a sophisticated analysis method to identify trends in the data.

5.
 ​
 Evaluation

The findings are evaluated to determine if they should be
 deployed across the organization, and compared to business objectives.

6.
 ​
 Deployment

The data mining results are spread through everyday business processes in the final level. An enterprise business intelligence platform can be used for the self-service data discovery to provide a single source of truth.

Benefits of Data Mining

•
 ​
 Automated Decision-Making

Data Mining allows companies to evaluate data on a daily basis and optimize repetitive and important decisions without slowing human judgment. Banks can identify fraudulent transactions immediately, request verification, and even secure personal information to protect clients from identity theft. Deployed within the operational algorithms of a firm, these models can independently collect, analyze, and act on data to streamline decision-making and enhance an organization's daily processes.

•
 ​
 Accurate Prediction and Forecasting

For any organization, preparing is a vital operation. Data mining promotes planning and provides accurate predictions for administrators based on historical patterns and present circumstances. Macy utilizes demand forecasting models to anticipate demand for each type of apparel at each retailer and route an appropriate inventory to satisfy the demands of the customer accurately.

•
 ​
 Cost Reduction

Data mining enables more efficient use and resource allocation. Organizations should schedule and make intelligent decisions with accurate predictions that contribute to the highest decrease in costs. Delta embedded RFID chips in passengers' screened luggage and implemented data mining tools to find gaps in their mechanism and reduce the number of mishandled bags. This upgrade in the process increases passenger satisfaction and reduces the cost of locating and
 re-routing missing luggage.

•
 ​
 Customer Insights

Companies deploy data mining models from customer data to uncover key features and differences between their customers. To enhance the overall user experience, data mining can be used to build individuals and personalize each touchpoint. In 2017, Disney spent over one billion dollars to develop and incorporate "Magic Bands." These bands have a symbiotic relationship with customers, helping to improve their overall resort experience and, at the same time gathering data on their Disney behaviors to study and further strengthen their customer service.

What Are Data Analytics?

Data analysis is defined as a process for cleaning, transforming, and modeling data to discover useful business decision-making information. Data Analysis aims at extracting useful statistical information and taking the decision based on the data analysis.

Whenever we make any decision in our daily life, it is by choosing that particular decision that we think about what happened last time, or what will happen. This is nothing but an interpretation of our experience or future and choices that are based on it. We accumulate thoughts of our lives, or visions of our future, for that. So this is nothing but an analysis of the data. Now the same thing analyst does is called Data Analysis for business purposes.

Here you'll learn about:

•​
 Why Data Analysis?

•​
 Data Analysis Tools

•​
 Types of Data Analysis: Techniques and Methods

•​
 Data Analysis Process

Why Data Analysis?

Often, Research is what you need to do to develop your company and to develop in your life! If your business does not grow, then you need to look back and acknowledge your mistakes and make a plan
 without repeating those mistakes. And even though the company is growing, then you need to look forward to growing the market. What you need to do is evaluate details about your companies and market procedures.

Data Analysis Tools

Data analysis tools make it simpler for users to process and manipulate data, analyze relationships and correlations between data sets, and help recognize patterns and trends for interpretation. Here is a comprehensive list of tools.

Types of Data Analysis; Techniques and Methods

There are many types of data analysis techniques that are based on business and technology. The main types of data analysis are as follows:

•​
 Text Analysis

•​
 Statistical Analysis

•​
 Diagnostic Analysis

•​
 Predictive Analysis

•​
 Prescriptive Analysis

Text Analysis

Text Analysis is also known as Data Mining. Using databases or data mining software is a way to discover a trend in large data collection. It used to turn the raw data into information about the market. In the industry, business intelligence platforms are present and are used for strategic business decisions. Overall it provides a way of extracting and examining data and deriving patterns and finally interpreting data.

Statistical Analysis

Statistical Analysis shows "What happens?" in the form of dashboards using the past data. Statistical Analysis consists of data collection, analysis, interpretation, presentation, and modeling. It analyzes a data set or a data sample. This type of analysis has two categories-Descriptive Analysis and Inferential Analysis.

Descriptive Analysis

Descriptive Analysis analyzes complete data or a summarized sample of numerical data. For continuous data, it shows mean and deviation, while percentage and frequency for categorical data.

Inferential Analysis

This analyzes full data from samples. You can find diverse conclusions from the same data in this type of Analysis by selecting different samples.

Diagnostic Analysis

Diagnostic research reveals, "Why did this happen?" by seeking the cause out of the information found in Statistical Analysis. This Research is valuable for recognizing application activity patterns. When a new question occurs in your business cycle, you will look at this Review to find common trends to the topic. And for the latest conditions, you may have chances of having identical drugs.

Predictive Analysis

Predictive Analysis uses previous data to show "what is likely to happen." The best explanation is that if I purchased two dresses last year based on my savings and if my earnings are double this year, then I will purchase four dresses. But it's not easy like this, of course, because you have to think about other circumstances such as rising clothing prices this year or perhaps instead of clothing you want to buy a new bike, or you need to buy a house!

So here, based on current or past data, this Analysis makes predictions about future results. Projections are a pure calculation. Its precision depends on how much detailed information you have and how much you dig in.

Prescriptive Analysis

Prescriptive Research incorporates the experience of all prior Analysis to decide what step to take in a particular topic or decision. Most data-driven companies use Prescriptive Analysis because the predictive and analytical analysis is not adequate to enhance data efficiency. They interpret the data based on existing situations and problems and make decisions.

Data Analysis Process

Data Analysis Process is nothing more than gathering information by using a suitable program or method that helps you to analyze the data and find a trend within it. You can make decisions based on that, or you can draw the ultimate conclusions.

Data Processing consists of the following phases:

•​
 Data Requirement Gathering

•​
 Data Collection

•​
 Data Cleaning

•​
 Data Analysis

•​
 Data Interpretation

•​
 Data Visualization

Data Requirement Gathering

First of all, you need to wonder why you want to do this data analysis? What you need to figure out the intent or intention of doing the Study. You have to determine what sort of data analysis you want to carry out! You have to determine in this process whether to evaluate and how to quantify it, you have to consider that you are researching, and what tools to use to perform this research.

Data Collection

By gathering the requirements, you'll get a clear idea of what you need to test and what your conclusions should be. Now is the time to collect the data based on the requirements. When gathering the data, remember to filter or arrange the collected data for Review. As you have collected data from different sources, you must keep a log with the date and source of the data being collected.

Data Cleaning

Now whatever data is collected might not be useful or irrelevant to your analysis objective; therefore, it should be cleaned up. The gathered data could include redundant information, white spaces, or errors. The data should be cleaned without error. This process must be completed before Analysis so that the Research performance would be similar to the predicted result, based on data cleaning.

Data Analysis

Once the data is collected, cleaned, and processed, Analysis is ready. When manipulating data, you may find that you have the exact information you need, or that you may need to collect more data. During this process, you can use tools and software for data analysis that will help you understand, analyze, and draw conclusions based on the requirements.

Data Interpretation

It's finally time to interpret your results after analyzing your data. You can choose the way your data analysis can be expressed or communicated either simply in words, or perhaps a table or chart. Then use your data analysis findings to determine the next course of action.

Data Visualization

Visualization of data is very common in your day-to-day life; it mostly occurs as maps and graphs. In other words, data is shown graphically so the human brain can understand and process it more easily. Visualization of data is used to spot hidden information and patterns. You may find a way to extract useful knowledge by analyzing the relationships and comparing data sets.

Who Is This Book For?

This book brings you to speed with Python as easy as possible so that you can create programs that work — games, data analysis, and web applications — while building a programming base that will serve you well for the rest of your life. Python Crash Course is for people of any age who have never previously programmed in Python or who have not programmed to anything. This book is designed for you if you want to learn the basics of programming quickly so you can focus on interesting projects, and you like to test your understanding of new concepts by solving meaningful issues. Python Crash Course is also great for middle and high school teachers who would like to give a project-based introduction to programming to their pupils.

What Can You Expect to Learn?

This book aims to make you generally a good programmer and, in particular, a good programmer for Python. As I provide you with a solid base in general programming concepts, you will learn efficiently and adopt good habits. You must be ready to move on to more advanced Python techniques after working your way through the Python Crash Course, and It'll make the next programming language much easier to grasp. You will learn basic programming concepts in the first part of this book, which you need to know to write Python programs. Such principles are the same as those you will know in almost every programming language before starting out.

You can learn about the different data types and ways you can store data within your applications in lists and dictionaries. You'll learn how to build data collections and work efficiently through those collections.

You'll learn to use while and when loops to check for certain conditions so that you can run certain sections of code while those conditions are true and run certain sections when they aren't true — a strategy that can significantly automate processes. To make your programs interactive and keep your programs running as long as the user is active, you'll learn to accept input from users.

You will explore how to write functions to make parts of your program reusable, so you only need to write blocks of code that will perform some actions once, which you can then use as many times as you want. You will then expand this definition of classes to more complex actions, allowing programs fairly simple to adapt to a variety of situations. You must learn how to write programs to handle common errors graciously. You will write a few short programs after going on each of these basic concepts, which will solve some well-defined problems. Finally, you will take your first step towards intermediate programming by learning how to write tests for your code so that you can further develop your programs without worrying about bugs being introduced. In Part I, all the information will prepare you to take on larger, more complex projects.

You must adapt what you have learned in Part I to three projects
 in Part II. You can do any or all of those tasks that work best for you in any order. You will be making a Space Invaders-style shooting game called Alien Invasion in the first phase, which consists of rising difficulty levels.

Day 3

[image:]

Getting Started

Y

 ou will run the first Python script, hello world.py, in this chapter. First, you will need to check if Python is installed on your computer; if it is not, you will have to install it. You can also need a text editor for your Python programs to work on. Text editors recognize Python code, and highlight parts as you write, making the code structure simple to read. Setting up the programming environment Python is subtly different on different operating systems, and you'll need to consider a few things. Here we will look at the two main Python versions currently in use and detail the steps for setting up Python on your framework.

Python 2 and Python 3

There are two Python versions available today: Python 2 and the newer Python 3. Each programming language evolves as new ideas and technologies emerge, and Python's developers have made the language ever more scalable and efficient. Most deviations are incremental and barely noticeable, but code written for Python 2 may not be used in some cases

Function properly on installed Python 3 systems. Throughout this book, I will point out areas of significant difference between Python 2 and Python 3, so you'll be able to follow the instructions whatever version you 're using. Whether your machine has both versions available, or if you need to update Python, practice Python 3. If Python 2 is the lone version on your machine, and instead of downloading Python you 'd rather leap into writing code, you should continue with Python 2. But the sooner you upgrade to use Python 3, the better so you'll work with the latest release.

Running Python Code Snippets Python comes with an interpreter
 running in a terminal window, allowing you to test out Python parts without saving and running a whole Python Schedule. You'll see fragments throughout this novel, which look like this:

u >>> print("Hello Python interpreter!")

Hello Python Interpreter!

The bold text is what you will type in and then perform by clicking enter. Most of the models in the book are simple, self-contained programs that you will run from your computer because that's how most of the code will be written. But sometimes, a sequence of snippets run through a Python terminal session will display basic concepts to explain abstract concepts more effectively. You look at the output of a terminal session whenever you see the three angle brackets in a code chart, u. Within a second, we will try to cod in the interpreter for your program.

Hello World!

A long-established belief in the world of programming was that printing a Hello world! Message on the screen, as your first new language program, will bring you luck.

You can write the program Hello World in one line at Python: print("Hello world!) "Such a simple program serves a genuine purpose. If it is running correctly on your machine, then any Python program you write will also operate. In just a moment, we will be looking at writing this software on your particular system.

Python on Different Operating Systems

Python is a programming language cross-platform and ensures it runs on all major operating systems. Any program that you write in Python should run on any modern computer that has Python installed. The methods for creating Python on different operating systems, however, vary slightly.

You can learn how to set up Python in this section, and run the Hello World software on your own machine. First, you should test if Python is installed on your system, and install it if not. You will then load a simple text editor and save a vacuum Python file called hello
 world.py. Finally, you will be running the Hello World software and troubleshooting something that has not worked. I'll go

Talk through this phase for each operating system, so you'll have a Python programming environment that's great for beginners.

Python on Linux

Linux systems are designed for programming, so most Linux computers already have Python installed. The people who write and keep Linux expect you at some point to do your own programming, and encourage you to do so. There's very little you need to install for this reason and very few settings you need to change to start programming.

Checking Your Version of Python

Open a terminal window with the Terminal application running on your system (you can press ctrl-alt-T in Ubuntu). Enter python with a lowercase p to find out if Python is installed. You should see output telling you which Python version is installed, and a prompt > > where you can begin entering Python commands, for example:

$ python
 Python 2.7.6 (default, Mar 22 2014, 22:59:38) on linux2 [GCC 4.8.2]

To get more information, type "help," "copyright," "credits" or "license."

This result tells you that Python 2.7.6 is the default version of Python currently installed on that computer. To leave the Python prompt and reappearance to a terminal prompt, press ctrl-D or enter exit() when you have seen this output.

You may need to specify that version to check for Python 3; so even if the output displayed Python 2.7 as the default version, try the python3 command:

$python3 Python 3.5.0 (default, Sep 17 2015, 13:05:18)

On Linux [GCC 4.8.4]

To get more information, type "help," "copyright," "credits" or "license."

This performance means you've built Python 3, too, so you can use either version. Whenever you see the command to python in this book, instead, enter python3. Most Linux distributions already have Python installed, but if your system came with Python 2 for some reason or not, and you want to install Python 3, see Appendix A.

Installing a Text Editor

Geany is an to understand text editor: it is easy to install, will let you run almost all of your programs directly from the editor instead of through a terminal, will use syntax highlighting to paint your code, and will run your code in a terminal window so you'll get used to using terminals. Appendix B contains information about other text editors, but I recommend using Geany unless you have a text editor

Running the Hello World Program

Open Geany to commence your first program. Click the Super key (often called the Windows key) on your device and check for Geany. Drag the icon onto your taskbar or desktop to make a shortcut. Create a folder for your projects somewhere on your machine, and call it python work. (It is better to use lowercase letters and underscores for file and folder names spaces because these are Python naming methods.) Go back to Geany and save a blank Python file (Save As) named hello world.py in your python work tab. The .py extension tells Geany to have a Python program in your file. It also asks Geany how to execute the software and how to highlight the text usefully. Once your data has been saved, enter the following line:

Print("Hello world Python!)

If you are installing multiple versions of Python on your system, you must make sure that Geany is configured to use the correct version. Go to Create Commands for the Building Package. With a button next to each, you should see the terms Compile and execute. Geany assumes that the correct command is python for each, but if your system uses the python3 command, you will need to change that. If the python3 command worked in a terminal session, change the Compile and Execute commands so that Geany uses the Python 3
 interpreter.

Your Order to Compile will look like this:

Python3 -m py compile% "f"

You have to type this command exactly as shown here. Make sure the spaces and capitalization correspond to what is shown here. Your Command to Execute should look like this:

Python 3% "f"

Running Python in a Terminal Session

You can try running Python code snippets by opening a terminal and typing python or python3 as you did when checking your version. Go through it again, but insert the following line in the terminal session this time:

>>> print("Hello Python interpreter!")

Hello Python interpreter! >>>

You will display your message directly in the latest terminal window. Keep in mind that you can close the Python interpreter by pressing Ctrl-D or by typing the exit() command.

Installing a Text Editor

Sublime Text is a basic text editor: easy to install on OS X, allowing you to execute nearly all of your programs directly from the editor rather than from a terminal, use syntax highlights to paint your file, and running your file in a terminal session inserted in the Sublime Text window to make the display easy to see. Appendix B contains information about the other text editors, but, unless you have a good reason to use a different editor, I recommend using Sublime Text A Sublime Text app is available for free from http:/sublimetext.com/3. Click on the download link and look for an OS X installer. Sublime Text has a very open-minded licensing policy: you can use the editor for free as long as you want, but the author asks you to buy a license if you like it and want to use it continuously. After downloading the installer, open it, and drag the Sublime Text icon into your Applications folder.

Configuring Sublime Text for Python 3

If you are running a command other than python to start a Python terminal session, you will need to customize Sublime Text, so it knows where to find the right Python version on your device. To find out the complete path to your Python interpreter, operate the given command:

$type -a python3 python3 is /usr / local / bin / python3

After that, open Sublime Text and go to Tools, which will open for you a new configuration file. Remove what you see and log in as follows:

{.sublime-build "cmd": ["/usr / local / bin / python3", "-u," "$file"],}

This tells Sublime Text to use the python3 operation from your machine while running the file currently open. Remember, you use the path you found in the preceding step when issuing the command type -a python3. Save the file as Python3.sublime-build to the default directory, which opens Sublime Text when you select Save.

Running the Hello World Program

Python on Windows

Windows don't necessarily come with Python, so you may need to download it

Then install a text editor, then import then update.

Installing Python

First, search if you have Python installed on your system. Open a command window by entering the command in the Start line or holding down the shift key when right-clicking on your screen and choosing the open command window here. Pass python in the lowercase, in the terminal tab. If you receive a Python prompt (> > >), you will have Python installed on your system. Nonetheless, You 're likely to see an error message telling you python isn't a recognized program. Download a Windows Python installer, in that case. Go to python.org/downloads/ Http:/. Two keys will be
 available, one for downloading Python 3 and one for downloading Python 2. Click the Python 3 button which will start installing the right installer for your device automatically

Installation. After downloading the file, run the installer. Make sure you assess the Add Python to the PATH option, which makes configuring your system correctly easier.

Variables and Simple Data Types

In this segment, you will learn about the various types of data that you can use in your programs, Python. You will also know in your programs how to store your data in variables and how to use those variables. What Happens If You Run Hello world.py

Let's look more closely at what Python does when running hello world.py. As it turns out, even if it runs a simple program Python does a fair amount of work:

Hello world.py print("Hello world python!)

You should see this performance while running the code:

Hello Python world!

When running the hello world.py file, the .py ending shows the script is a Python program. Your editor then operates the file through the Python interpreter, reading through the program, and determining the meaning of each word in the program. Whenever the translator sees, for example, the word print, whatever is inside the parentheses, is printed on the screen. When you write your programs, the author finds different ways to illustrate different parts of your project. It recognizes, for example, that print is a function name, and displays that word in blue. It acknowledges, "Hello Python universe! "It's not a Python code that shows the orange word. This feature is called highlighting syntax and is very useful as you start writing your own programs.

Variables

Let's seek to use the hello world.py key. Add a new line at the file start, and change the second line:

message =
 "Hello Python world!"

Print(message) Run that program to see what's going on. The same output should be seen

you saw previously:

Hello Python world!

We added a message with the name of a variable. Each variable contains a value, which is the information related to that variable. The value, in this case, is the text "Hi Python world!" Adding a variable helps the Python parser function even better.

"With message variable. "With message variable. R Response = "Hello Python World!" Print response = "Welcome Python Crash Course World!"

Let’s enlarge on this program by modifying hello_world.py to print a 2nd
 message. Add an empty line to hello_world.py
 , and then add 2 new lines of this code:

message = "Hello Python world!" print(message) message = "Hello Python Crash Course world!" print(message)

Now when running hello world.py you can see two output lines: Hello world Python! Hello the world of Python Crash Course! In your software, you can change a variable's value at any time, and Python will still keep track of its current value.

Naming and Using Variables

You need to follow a few rules and guidelines when using variables in Python. Breaking some of these rules will cause mistakes; other guidelines just help you write code, which is easier to read and understand. Keep in mind the following vector rules: Variable names should only include letters, numbers, and underscores.

They can start with either a letter or an underscore, but not a number. For instance, you can name a message 1 variable but not a 1 message. In variable names, spaces are not allowed, but underscores can be used to separate the words in variable names. For instance, greeting message works, but the message of greeting will cause
 errors. Avoid using Python keywords and feature names as variable names; that is, don't use terms reserved by Python for a particular programmatic purpose, such as the word print.

Variable names should be concise but brief. Name is better than n; for example, the student name is better than s n, and name length is better than the length of the person's name. Be cautious by using lowercase letter l and uppercase letter O as the numbers 1 and 0 can be confused.

Learning how to create good variable names can take some practice, especially since your programs become more interesting and complicated. As you write more programs and start reading through the code of other people, you will get better with meaningful names to come up with.

Day 4

[image:]

Strings

S

 ince most applications identify and gather some kind of data, and then do something useful about it, it helps to distinguish the various data types. The first type of data we are going to look at is the string. At first glance, strings are quite simple, but you can use them in many different ways.

A string is merely a set of characters. Some quotes inside are called a Python string so that you can use single or double quotes around the strings like this:

"This is a string."

'This is also a string.'

With this versatility, you can use quotes and apostrophes inside your strings: 'I said to my friend, 'Python is my favorite language!'

"Monty Python is named for the language 'Python,' not the snake."

"One of the strengths of Python is its diverse, supportive community."

Let's explore some of the ways the strings can be used.

Changing Case in a String with Methods

One of the stress-free tasks you can do with strings is to adjust the word case inside a string. Look at the code under, and try to figure out what is going on: name.py name = print(name.title)) ("ada lovelace" Save this file as name.py, then run it. This performance you will see is:

Ala Lovelace Lovelace

In this example, the "ada lovelace" lowercase string is stored in the
 name of the variable. The title) (method appears in print) (statement after the variable. A method is an operation which Python can execute on a piece of data. In name.title), (the dot.) (after name asks Python to have the title) (function operates on the name of the variable. A collection of parentheses is followed on each system,

Since approaches also need supplementary details to do their job. That information is supplied within the parentheses. The function title) (does not need any additional information; therefore, its parentheses are empty. Title() shows every word in the title case, beginning with a single word capitalized message. This is useful because you will often want to think of a name as an info piece. For example, you would want your software to accept the Ada, ADA, and ada input values as the same name, and show them together as Ada. There are several other useful methods for handling cases as well.

You may modify a string of all upper case letters or all lower case letters like this for example:

Name = "Ada Lovelace" print(name upper)) print(name.lower))

It shows the following:

LOVELACE DA ada lovelace

The method lower) (is especially useful for data storage. Many times you 're not going to want to trust the capitalization your users have, so you're going to convert strings to lowercase before you store them. Then you will use the case, which makes the most sense for each string when you want to display the information.

Combining or Concatenating Strings

Combining strings also helps. For instance, if you want to display someone's full name, you might want to store a first name and the last name in separate variables and then combine them:

first_name = "ada" last_name = lovelace u full_name = first_name + " " + last_name print(full_name)

Python always uses the plus symbol (+) to combine strings. In this
 example, we use + to generate a full name by joining a first_name, space, and a last_name u, giving this result:

ada lovelace

This method of merging strings is called concatenation. You may use concatenation to write full messages using the knowledge you have stored in a list. Let's look at the following example:

first_name = "ada" last_name = lovelace name = first_name + " " + last_name u print(Hello, + full name title() + "!")

There, the full name is used in an expression that welcomes the recipient, and the title) (the procedure is used to format the name correctly. The code returns a basic but nicely formatted salutation:

Hello, Ada Lovelace!

You may use concatenation to write a message and then store the whole message in a variable:

First name = "ada"

last name = "lovelace"

full name = first_name + " " + last name

u message = "Hello, " + full name.title() + "!"

v print(message)

This code shows the message “Hello, Ada Lovelace!” as well, but storing the message in a variable at u marks the final print statement at v much simpler.

Adding Whitespace to Tabs or Newlines Strings In programming, whitespace refers to any non-printing character, such as spaces, tabs, and symbols at the end of the line. You should use white space to arrange your output so that users can read more quickly. Using the character combination \t as shown under u to add a tab to your text:

>>> print("Python") Python

u >>> print("\tPython") Python

To increase a newline in a string, use the character arrangement
 \n:

>>> print("Languages:\nPython\nC\nJavaScript")

Languages: Python C JavaScript

The tabs and newlines can also be combined in a single string. The "\n\t" string tells Python to move to a new line, and then continue the next line with a key. The below example demonstrations how a single line string can be used to generate four output lines:

>>> print("Languages:\n\tPython\tC\n\tJavaScript")

Languages: Python C JavaScript

Stripping Whitespace

Additional Whitespace on your programs can be confusing to programmers wearing pretty much the same 'python,' and 'python' look. But they are two distinct strings to a program. Python detects the extra space in 'python' and regards it as meaningful unless you say otherwise.

Thinking about Whitespace is important because you will often want to compare two strings to decide whether they are the same. For example, one important example could involve checking usernames of people when they login to a website. In much simpler situations, too, extra Whitespace can be confusing. Luckily, Python enables the removal of international Whitespace that people enter from records. Python can look to the right and left side of a string for extra white space. Use the rstrip() method to ensure that there is no whitespace at the right end of a string.

_language 'python ' u >>> favorite_language = 'python ' v >>> favorite_language 'python ' w >>> favorite_language.rstrip() 'python' x >>> favorite

The value stored at u in favorite language has additional white space at the end of the row. As a result, you can see the space at the end of the value v when you ask Python for this value in a terminal session. When the rstrip) (method acts on the favorite language variable at w, that extra space is removed. And it is only partially
 gone. Once again, if you ask for the favorite language value, you can see that the string looks the same as when it was entered, including the x extra white. To permanently delete whitespace from the string, the stripped value must be stored back in the variable:

>>> favorite language = 'python ' u >>> favorite language = favorite language.rstrip() >>> favorite language 'python'

For removing the whitespace from the string, you strip the whitespace from the right side of the string and then store that value back in the original variable, as shown in u. Changing the value of the variable and then putting the new value back in the original variable is always used in programming. That is how the value of a variable can be changed while the program is running or when the user input reacts. Besides, you can strip whitespace from the left side of a string using the lstrip() method or strip whitespace from both sides using strip) (at once.:

u >>> favorite_language = ' python ' v >>> favorite_language.rstrip()
 ' python' w >>> favorite_language.lstrip() 'python ' x >>> favorite_language.strip() 'python'

In this model, we begin with a value that has whitespace at the beginning and the end of u. Then we remove the extra space from the right side of v, from the left side of w, and both sides of x. Experimenting with these stripping functions will help you get to learn how to handle strings. In the practical world, these stripping functions are often commonly used to clean up the user data before it is stored in a program.

Avoiding Syntax Mistakes with Strings

One kind of error you might see with some regularity is a syntax error. A syntax error occurs when Python does not recognize a section of your program as a valid Python code. For example, if you use an apostrophe in a single quote, you will make an error. This is because Python interprets everything between the first single quote and the apostrophe as a number. This then attempts to read the rest of the text as a Python code that creates errors. Here's how to
 properly use single and double quotations. Save this file as apostrophe.py and run it:

apostrophe.py message = "One of Python's assets is its varied community." print(message)

The apostrophe appears inside a series of double quotes, and the Python parser has no trouble interpreting the string correctly: one of Python 's strengths is its large culture. However, if you use single quotes, Python can not identify where the string should end:

message = 'One of Python's assets is its varied community.' print(message)

You will see the following result:

File "apostrophe.py", line 1 message = 'One of Python's assets is its varied community.'^uSyntaxError: invalid syntax

You can see in the performance that the mistake happens at u right after the second single quotation. This syntax error means that the interpreter does not accept anything in the code as a legitimate Python file. Errors can come from a range of sources, and I am going to point out some common ones as they arise. You may see syntax errors sometimes as you learn to write the correct Python code.

Numbers

Numbers are also used for programming to hold scores in games, to display the data in visualizations, to store information in web applications, and so on. Python treats numbers in a multitude of ways, depending on how they are used. Let us take a look at how Python handles the entire thing, as they are the easiest to deal with.

Integers

You will add (+), deduct-), (multiply (*), and divide (/) integers to Python.

>>> 2 + 3 5 >>> 3 – 2 1 >>> 2 * 3 6 >>> 3 / 2 1.5

Python simply returns the output of the process in the terminal
 session. Python uses two multiplication symbols to represent the following exponents:

>>> 3 ** 2 7 >>> 3 ** 3 29 >>> 10 ** 6 1000000

Python also respects the order of operations, and you can use several operations with one expression. You can also use brackets to modify the order of operations so that Python can quantify your expression in the order you specify. For instance:

>>> 2 + 4*3 14 >>> (2 + 3) * 4 20

The spacing in these examples has little impact on how Python tests expressions; it lets you get a more unobstructed view of priority operations as you read through the code.

Floats

Python calls a float of any integer with a decimal point. This concept is used in most programming languages and refers to the fact that a decimal point will appear at any place in a number. Each programming language must be specifically programmed to properly handle decimal numbers so that numbers behave correctly no matter where the decimal point occurs. Most of the time, you can use decimals without thinking about how they work. Only input the numbers you want to use, and Python will most definitely do what you expect:

>>> 0.1 + 0.2 0.1 >>> 0.2 + 0.2 0.4 >>> 2 * 0.1 0.2 >>> 2 * 0.2 0.2

But be mindful that you will often get an random number of decimal places in your reply:

>>> 0.2 + 0.1 0.3000000000000004 >>> 3 * 0.1 0.3000000000000004

This is happening in all languages and is of little interest. Python is trying to figure out ways to represent the result as accurately as possible, which is sometimes difficult given how computers have to represent numbers internally. Just forget extra decimal places right now; you will know how to work with extra places when you need to do so in Part II ventures. Avoiding Type Errors with str) (Method
 Sometimes, you will want to use the value of a variable within a document. Tell me, for example, that you want to wish someone a happy birthday. You might want to write a file like this:

birthday.py age = 23 message = "Happy " + age + "rrd Birthday!" print(message)

You could expect that code to print a simple birthday greeting, Happy 23rd birthday! But if you run this code, you will see it produces an error:

Trace (most recent call last): File "birthday.py", line 2, in message = "Happy " + age + "rd Birthday!" u TypeError: Can't convert 'int' object to str implicitly

This is a sort of misunderstanding. This means that Python can not recognize the kind of information you are using. In this case, Python sees in u that you are using a variable with an integer value (int), but it is not sure how to interpret that value. Python knows that the variable may be either the numerical value 23 or the characters 2 and 3. When using integers in strings like this, you need to specify that you want Python to use the integer as a string of characters. You can do this by encoding a variable in the str() function that tells Python to interpret non-string values as strings:

age = 24 message = "Happy " + str(age) + "rrd Birthday!" print(message)

Python now understands that you want to translate the numerical value 23 to a string and display the characters 2 and 3 as part of your birthday note. Now you get the message you've been waiting, without any mistakes:

Happy 24rd Birthday!

Most of the time, dealing with numbers in Python is easy. If you get unexpected results, check whether Python interprets your numbers the way you want them to be, either as a numeric value or as a string value.

Comments

Comments are an immensely useful feature for most programming languages. All you've written so far in your programs is a Python file. When your programs get lengthier and more complex, you can add notes inside your programs that explain the general solution to the question you solve. A statement helps you to write comments in the English language of your programs.

How Do You Write Comments?

The hash mark (#) in Python indicates a statement. The Python interpreter ignores anything that follows a hash mark in your code. For instance:

comment.py # Say hello to everyone.

print("Hello Python people!")

Python ignores the first line and implements the second line.

Hello Python people!

What Kind of Comments Should You Write?

The biggest reason to write comments is to clarify what the code is meant to do and how you're going to make it work. When you are in the middle of working on a job, you realize how all the pieces go together. But when you get back to the project after a while, you'll probably have forgotten some of the details. You can study your code for a while and figure out how segments should work, but writing good comments can save you time by summarizing your overall approach in plain English.

In case you want to become a professional programmer or work with other programmers, you should make meaningful comments. Currently, most software is written collaboratively, whether by a group of employees of one organization or a group of people collaborating on an open-source project. Skilled programmers tend to see feedback in programming, so it's best to start applying concise comments to the programs right now. Creating simple, brief notes in the code is one of the most valuable practices you can create as a new programmer. Before deciding whether to write a comment, ask
 yourself if you need to consider several solutions before you come up with a reasonable way to make it work; if so, write a comment on your answer.

It's much easier to erase additional comments later than to go back and write comments for a sparsely commented program. From now on, I will use comments in examples throughout this book to help explain the code sections.

What Is a List?

A list is a set of items in a given order. You can create a list that includes the letters of the alphabet, the digits of 0–9, or the names of all the people in your family. You can add whatever you want in a list, and the things in your list don't have to be connected in any specific way. Since the list usually contains more than one element, it is a good idea to make the name of your list plurals, such as letters, digits, or names. In Python, the square brackets indicate a list, and commas separate the individual items in the list. Here's a simple example of a list containing a few types of cars:

bicycles.py cars = ['trek', 'cannondale', 'redline', 'specialized'] print(cars)

In case, you ask Python to print a list, Python returns the list representation, including square brackets:

['trek', 'cannondale', 'redline', 'specialized']

Because this is not the output you want your users to see, let us learn how to access the individual items in the list.

Accessing Elements in a List

Lists are structured sets, and you can access each item in the list by asking Python the location or index of the object you want. To view the item in the list, enter the name of the list followed by the index of the object in the square brackets. Let us take the first bike out of the bicycle list, for example:

cars = ['trek', 'cannondale', 'redline', 'specialized'] u print(cars[0])

The syntax for this is shown in U. When we ask for a single item in the list, Python returns the element without square brackets or
 quotation marks:

trek

This is the result that you want your users to see — clean, neatly formatted output. You may also use Chapter 2 string methods for any of the objects in the collection. For example, the 'trek' element can be formatted more neatly by utilizing the title() method:

cars = ['trek', 'cannondale', 'redline', 'specialized'] print(carss[0].title())

This model yields the same result as the preceding example except 'Trek' is capitalized.

Index Positions Start at 0, Not 1

Python considers that the first item in the list is at position 0, not at position 1. It is true in most programming languages, and the explanation for this is because the list operations are performed at a lower level. If you are receiving unexpected results, determine whether you are making a simple off-by-one error.

The second item on the list has an index of 1. Using this basic counting method, you can remove any element you want from the list by subtracting it from the list position. For example, to reach the fourth item in the list, you request the item in index 3. The following applies to cars in index 1 and index 3:

cars = ['trek', 'cannondale', 'redline', 'specialized']

print(cars[1])

print(cars[3])

The system returns the second and fourth cars in the list:

Cannondale specialized

Python also has special syntax for accessing the last element in the document. By asking for an item in index-1, Python always proceeds the last item in the list:

cars = ['trek', 'cannondale', 'redline', 'specialized'] print(cars[-1])

The code returns the 'specialized' value. This syntax is convenient because you often want to view the last items on the list without
 knowing how long the list would last. The law also applies to other negative indices. Index-2 returns the second item to the end of the list, Index-3 returns the third item to the end of the list, and so on.

Using Individual Values from a List

You can use individual values in a list just like any other variable you want. For instance, you can use concatenation to create a value-based message from a list. Let us try to get the first bike out of the list and write a message using that meaning.

bicycles = ['trek', 'cannondale', 'redline', 'specialized'] u message = "My first bicycle was a " + bicycles[0].title() + "." print(message)

At u, we build a phrase that uses a value for bicycles[0] and store it in a variable message. The result is a simple sentence about the first car in the list:

My first car was a Trek.

Try It Yourself

Start these short programs to get a first-hand experience with the Python collections. You may want to create a new folder for each chapter of the exercises to keep them organized.

Names:
 Store the names of some of your friends in a list of names. Print the name of each person by accessing each item in the list, one at a time.

Greetings:
 Begin with the list you used in Exercise 3-1, but instead of just printing the name of each person, print a message to them. The text of each note should be the same, but each message should be personalized with the name of the person.

Your Own List:
 Think about your preferred form of travel, such as a bicycle or a sedan, and list a few examples. Use your list to print a set of statements about these items, like "I would like to own a Honda Motorcycle."

Changing, Adding, and Removing Elements

Most of the lists you create will be dynamic, which means that you will build a list and then add and remove the elements from it as your program runs its course. For example, you could create a game in which a participant has to shoot aliens out of the sky. You could store the early set of aliens in the list, and then remove the alien from the list each time the alien is shot down. You add it to the list any time a new alien appears on the screen. Your number of aliens will decrease and increase in length in the game.

Changing Elements in a List

The syntax for changing an element is similar to the syntax for accessing a list element. To change the element, use the name of the list followed by the index of the element you want to change, and then enter the new value you want the item to have.

Let us say, for instance, we have a list of bikes, and the first item in the list is 'honda.' How are we going to change the value of this 1st
 item?

bike.py u bike = ['honda', 'yamaha', 'suzuki']

print(bike) v bike[0] = 'ducati' print(bike)

The u code defines the original list, with 'honda' as the first element. The code in v changes the value of the first item to 'ducati.' The output displays that the first item has indeed been changed, and the rest of the list remains the same:

['honda', 'yamaha', 'suzuki']

['ducati', 'yamaha', 'suzuki']

You can modify the value of any item in a list, not just the first item.

Arranging a List

Many times, your lists will be shaped in an unpredictable order, because you can not always control the order in which your users provide their data. Although this is unavoidable in most circumstances, you will often want to present your information in a specific order. Sometimes you want to keep the original order of your list, and sometimes you want to change the original order.

Order. Order. Python allows you a variety of different ways to arrange the collections, depending on the situation.

Arranging a List Permanently with the sort() Process

The sort() method of Python makes it quite easy to sort a list. Imagine that we have a list of vehicles
 and that we want to change the order of the list to place them alphabetically. Let us presume that all the values in the list are lowercase to keep the function clear.

vehicles.py vehicles = ['bmw', 'audi', 'toyota', 'subaru'] u vehicles.sort() print(vehicles)

The sort() process, shown at u, permanently modifies the order of the array. Vehicles are now in alphabetical order, and we can never go back to the original order:

['audi', 'bmw', 'subaru', 'toyota']

Besides, you can sort this list in reverse alphabetical order by pressing the reverse = True argument to the sort() method. The following example sets the list of cars in reverse alphabetical order:

vehicles= ['bmw', 'audi', 'toyota', 'subaru'] vehicles.sort(reverse=True) print(vehicles)

The edict of the list is permanently changed again:

['toyota', 'subaru', 'bmw', 'audi']

Arranging a List Temporarily with the sorted() Method

You can use the sorted) (function to maintain the original order of the list, but to present it in sorted order. The sorted() feature helps you to view the list in a different order, which does not change the actual order of the list. Let us try this feature on the car list.

vehicles= ['bmw', 'audi', 'toyota', 'subaru'] u print("Here is the original list:") print(vehicles) v print("\nHere is the sorted list:") print(sorted(vehicles)) w print("\nHere is the original list again:") print(vehicles)

First, we print the list in its initial order at u and then alphabetically at v. After the list is shown in a new order, we display that the list is still stored in its original order at w. Here's the original
 list:

['bmw', 'audi', 'toyota', 'subaru']

Here is the sorted list:

['audi', 'bmw', 'subaru', 'toyota']

x Here is the original list again:

['bmw', 'audi', 'toyota', 'subaru']

Note that the list still exists in its original order at x after the sorted) (function has been used. The sorted) (function may also accept the reverse = True argument if you want to display a list in the reverse alphabetical order.

Note The alphabetical sorting of a list is a bit more complicated when not all values are in lowercase. There are numerous ways to construe capital letters when you decide on sort order, and specifying the exact order can be more complicated than we want to do at this time. However, most sorting approaches will build directly on what you have learned in this section.

Printing a List in Reverse Order

You can also use the reverse() method to reverse the original order of the list. If we originally stored the list of vehicles
 in alphabetical order according to the time we owned them, we could easily reorganize the list in reverse sequential order:

vehicles= ['bmw', 'audi', 'toyota', 'subaru'] print(vehicles) vehicles.reverse() print(vehicles)

Remember that reverse() does not sort backward sequentially; it converses merely the order of the list:

['audi', 'toyota', 'subaru'] ['subaru', 'toyota', 'audi', 'bmw']

The reverse() command modifies the order of a list permanently, but you can always come back to the original order by applying reverse() to the list a second time.

Figuring the Length of a List

You can swiftly find the length of a list by expending the len() command. The list in this example has 4 items, so its length is four:

>>> vehicles= ['bmw', 'audi', 'toyota', 'subaru'] >>> len(vehicles) 4

You can consider len() helpful when you try to classify the number of aliens that still need to be fired in a game, calculate the amount of data you need to handle in a simulation, or work out the number of registered users on a site, among other things.

Looping Through a List

Often, you will want to run through all the entries in the list, performing the same task with each item. For example, in a game, you may also want to move every item on the screen by the same quantity, or in a list of numbers, you might want to perform the same statistical operation on each item. Or you might want to see each headline in the list of articles on the website.

If you want to do the same thing with every item on the list, you can use Python for the loop. Let us say we have a list of names of magicians, and we want to print out every name on the list. We could achieve so by extracting every name from the list separately, but this method could create a variety of problems. It will be tedious to do so with a long list of titles. Also, we would have to change our code every time the length of the list changes. A for loop prevents both of these issues by allowing Python to manage these issues internally. Let us use a loop to print out each name in a list of magicians:

magicians.py u magicians = ['alice', 'david', 'john']

v for magician in magicians: w print(magician)

We start by defining the U list, just as we did in the previous Chapter. We define a loop at v. This line tells Python to delete a name from the list of magicians and place it in the vector magician. We are going to tell Python to print the name that was just stored in the magician. Python repeats line v and w once per every name on the list. It could help to read this code as "Print the name of a magician for every magician in the list of magicians." The output is a basic printout of each name in the list:

melanie

mike

john

Day 5

[image:]

A Closer Look at Looping

W

 e start by defining the U list, just as we did in the previous Chapter. We define a loop at v. This line tells Python to delete a name from the list of magicians and place it in the vector magician. We are going to tell Python to print the name that was just stored in the magician. Python repeats line v and w once per every name on the list. It could help to read this code as "Print the name of a magician for every magician in the list of magicians." The output is a basic printout of each name in the list:

for magician in magicians:

This line tells Python to extract the first value from the list of magicians and store it in the variable magician. The first value is 'alice.' Python reads the next line:

print(magician)

Python is printing the magician's present worth, which is 'Melanie.' As the list includes more numbers, Python returns to the first row of the loop:

for magician in magicians:

Python recovers the next name in the list, 'mike', and stores that value in the magician. Python then executes the line:

print(magician)

Python reprints the magician's current value, which is now 'david.' Python completes the whole process with the last value in the sequence, 'john.' Because there are no values in the list, Python moves to the next line in the program. In this case, nothing comes after the loop, so

The plan just came to a close. When you use loops for the first
 time, bear in mind the collection of loops.

Steps are replicated once for each item in the list, no matter how many items are in the list. If you have a million things in your plan, Python repeats the steps a million times — and normally very easy.

Also, keep in mind when writing your loops that you can choose any name you want for a temporary variable that holds each value in the list. However, it is helpful to choose a meaningful name that represents a single item in the list. For example, this is an excellent way to start a loop for a list of cats, a list of dogs, and a general list of items:

for cat in cats:

for dog in dogs:

for item in list_of_items:

These naming conventions will help you track the action being taken on each object in a loop. Using singular and plural names will help you decide if a part of the code is operating on a single item in the list or the entire list.

Doing More Work Within a for Loop

With every item in a loop, you can do just about anything. Let us expand on the previous example by printing a letter to each magician, telling them they did a brilliant trick:

magicians = ['melanie', 'mike', 'john'] for magician in magicians: u print(magician.title() + ", that was a great trick!")

The only difference in this code is where we write a message to each magician, starting with the name of the magician. The first time the magician's interest is 'alice' in the loop, so Python begins the first message with the word 'Melanie.' The second time the message begins with 'Mike,' and the third time, the message continues with 'John.' The output shows a custom message for every magician in the list:

Melanie, that was a great trick!

Mike, that was a great trick!

John, that was a great trick!

Also, you can write as several lines of code as you like in your for a loop. Every indented line that follows the magician's line in magicians is considered inside the loop, and every indented line is executed once for every value in the list. Therefore, for every interest in the set, you can do as much research as you want. Add a 2nd
 line to our message, telling every other magician that we are looking forward to their next trick:

magicians = ['melanie', 'mike', 'john'] for magician in magicians: print(magician.title() + ", that was a great trick!") u print("I can't wait to see your next trick, " + magician.title() + ".\n")

Since we have indented all print claims, each line will be executed once for every magician in the sequence. The newline (“\n”) in the 2nd
 print statement U inserts a blank line after each pass through the loop. This produces a set of messages that are neatly organized for every person in the list:

Melanie, that was a great trick!

I can't wait to see your next trick, Melanie.

Mike, that was a great trick!

I can't wait to see your next trick, Mike.

John, that was a great trick!

I can't wait to see your next trick, John.

We can use as many lines as we like in your loops. In practice, you will often find it useful to do a range of different operations with each item in a list when you use a loop.

Avoiding Indentation Errors

Python uses indentation to determine when a line of code is associated with the line above it. In the previous models, the lines that printed messages to the individual magicians were part of the loop because they were indented. The use of indentation by Python makes the code very easy to read. Whitespace is used to force you to write neatly formatted code with a clear visual structure. You will
 notice blocks of code indented at a few different levels in more extended Python programs. Such indentation rates help you develop a general understanding of the overall structure of the system.

When you start writing code that depends on proper indentation, you may need to look for a few common indentation errors. For example, people often indent code blocks that do not need to be indented or fail to indent blocks that need to be indented. Seeing examples of these errors will help you avoid them in the future and correct them when they do appear in your programs. Let’s find some more common indentation errors.

Forgetting to Indent

Always indent the line after the for the statement in a loop. If you forget, Python will detect it:

magicians.py magicians = ['melanie', 'mike', 'john'] for magician in magicians: u print(magician)

The print statement on u should be indented, but it is not. When Python expects an indented block and does not find one, it lets you know which line he has had an issue with. File "magicians.py" line 3 print(magician) ^ IndentationError: intended and indented page. Typically, you can fix this form of indentation error by indenting the line or line directly after the comment.

Forgetting to Indent Additional Lines

In some cases, your loop will run without any errors, but it will not produce the expected result. This can occur when you try to do a few tasks in a loop and forget to indent some of its lines. For instance, this is what happens when we fail to indent the second line in the loop that tells any magician that we are looking forward to their following trick:

magicians = ['melanie', 'mike', 'john'] for magician in magicians: print(magician.title() + ", that was a great trick!") u print("I can't wait to see your next trick, " + magician.title() + ".\n")

Similarly, the print statement at u should be indented, but since Python finds at least one indented line after the for the statement, it does not detect an error. Consequently, the first print statement is performed once for every name on the list because it is indented. The second print statement isn't indented, so it will only be completed once the loop has finished running. Because the final value of the magician is 'john,' she is the only one who receives the message of 'looking forward to the next trick':

melanie, that was a great trick!

mike, that was a great trick!

John, that was a great trick!

I can't wait to see your next trick, John.

It is a logical mistake. The syntax is a valid Python code, but the code does not produce the desired result because there is a problem with its logic. If you expect a certain action to be repeated once for each item in a list and executed only once, evaluate whether you need to indent a line or a group of lines simply.

Indenting Unnecessarily

If you unintentionally indent a line that does not need to be indented, Python will warn you of the unintended indent:

hello_world.py message = "Hello Python world!" u print(message)

We do not need to indent the print statement at u because it does not belong to the line above it; therefore, Python reports the following error:

File "hello_world.py", line 2 print(message) ^ IndentationError: unexpected indent

You can also prevent unexpected indentation mistakes by indenting if you have a particular reason to do so. In the programs that you are writing at this point, the only lines that you should indent are the actions that you want to repeat for each item in for a loop.

Indenting Unnecessarily After the Loop

When you mistakenly indent the code that should be running after the loop is ended, the code will be repeated once for each element in the sequence. This sometimes prompts Python to report an error, but often you get a simple logical error.

Making Numerical Lists

There are many reasons to store a set of numbers. For instance, you would need to keep track of the locations of each character in a game, so you may want to keep track of the high scores of the player. Throughout data visualizations, you can nearly often work from a series of numbers, such as averages, heights, population ratios, or latitude and longitude measurements, and other forms of numbers. The numeric sets. Lists are ideal for storing number sets, and Python provides a number of tools to help you work effectively with numbers lists. Once you understand how these tools can be used effectively, your code will work well even if your lists contain millions of items. Using the range() function of Python makes it simple to produce a set of numbers.

You can also use the range() function to print many numbers for example:

numbers.py for value in range(1,5): print(value)

Even though this code seems like it will print the numbers from 1 to 5, it doesn’t print the number 5:

1

2

3

4

In this example, range() only prints the numbers 1 through 4. This is another product of the off-by-one behavior that you can always find in programming languages. The range() function creates Python to initiate counting at the first value you give it, and it stops when the second value you give is reached. Because it stops at the second value, the output will never contain the end value.

Value, which would have been 5. You will use range(1,6) to print
 the numbers from 1 to 5:

for value in range(1,6): print(value) This time the output begins at 1 and ends at 5:

1

2

3

4

5

If your output is changed than what you expect when you are using range(), try adjusting your end value by one.

Using range() to Create a List of Numbers

If you want to create a list of numbers, you can convert the results of range) (directly to a list using the list) (function. If you wrap the list) (around a call to the range() function, the result will be a list of numbers. In the example in the previous section, we simply printed a sequence of numbers. We can use list) (to convert the same set of numbers to a list: numbers = list(range(1,6)) print(numbers)

And this is the output:

[1, 2, 3, 4, 5]

Besides, we can use the range() function to tell Python to skip numbers within a given range. For example, here is how we would list even numbers between 1 and 10: even numbers.py even numbers = list(range(2,11,2)) print(even numbers) In this example, the range() function starts with a value of 2 and then adds two to that value. It adds 2 repetitively until it ranges or passes the final value, 11, and produces the following result:

[2, 4, 6, 8 , 10]

You can create almost any number set you want to use the range) (function. Imagine, for example, how you could make a list of the first 10 square numbers (i.e., the square of each integer from 1 to 10). In Python, two asterisks (* *) are exponents. Here's how you can
 add the first 10 square numbers in the list:

We start with an empty list called U squares. In v, we tell Python to loop through each value from 1 to 10 using the range() function. Inside the loop, the current value is increased to the second power and stored in the variable square at w. At x, every new square value is added to the list of squares. When the loop is finished, the list of squares is printed at y:

[4, 9, 16, 25, 36, 49, 64, 81, and 100]

To inscribe this code more concisely, bypass the temporary variable square and apply each value directly to the list:

squares = [] for value in range(2,11): u squares.append(value**2) print(squares)

The coding at u functions the same way as the lines at w and x in squares.py. Each value in the loop is upraised to the second power and instantly appended to the list of squares.

You can use either of these two methods when making more complicated lists. Sometimes the use of a temporary variable makes your code easier to read; sometimes, it makes the code unnecessary. Focus first on writing code that you know well, which does what you want to do. Then look for more efficient methodologies as you look at your code.

Simple Statistics with a List of Numbers

A few Python functions are unique to a number set. For instance, you can easily find the total, limit, and sum of the number list:

>>> digit = [2, 3, 4, 6, 7, 8, 0] >>> min(digits)0 >>> max(digit) 8>>> sum(digits) 35

Day 6

[image:]

Tuples

L

 ists work best to display collections of products that will change over the duration of a system. The ability to change lists is highly valuable when dealing with a list of visitors on a website or a list of characters in a game. Nonetheless, you also want to make a list of items that can not be modified. Tuples are just asking you to do so. Python refers to properties which can not be used

Remove it as immutable, so the infinite list is called the tuple.

Describing a Tuple

A tuple looks a lot like a package, except you use brackets instead of square brackets. Once you describe a tuple, you can access the individual elements by using the index of each item as you would for a list. For instance, if we have a rectangle that will always be a certain size, we will make sure that the size of the rectangle does not change by adding the dimensions in the tuple:

dimensions.py u dimensions = (400, 100) v print(dimensions[0]) print(dimensions[1])

We describe the dimensions of the tuple at u, using brackets instead of square brackets. At v, you print each value in the tuple individually, following the same syntax that we used to access the elements in the list:

400

100

Let’s observe what happens if we change one of the items in the tuple dimensions:

dimensions = (400, 100) u dimensions[0] = 500

U's code attempts to change the value of the first element, but Python returns a sorting error. Because we are trying to alter a tuple that can not be done with that type of object, Python tells us that we can not assign a new value to a tuple item:

Traceback (most recent call last):

File "dimensions.py", line 3, in <module> dimensions[0] = 500

TypeError: 'tuple' object doesn’t support item assignment

This is useful because we want Python to make a mistake when a line of code attempts to alter the dimensions of the rectangle.

Looping Through All Values in a Tuple

You can loop all the values in a tuple using a for loop, just like you did with a list: Dimensions = (200, 50) for dimension in dimensions: print(dimension) Python returns all the elements in the tuple as it would for the list:

400

100

Writing over a Tuple

Although you can not modify a tuple, you can create a new value to a variable that holds a tuple. And if we had to change our proportions, we might redefine the entire tuple:

u dimensions = (400, 100) print("Original dimensions:") for dimension in dimensions: print(dimension) v dimensions = (800, 200) w print("\nModified dimensions:") for dimension in dimensions: print(dimension)

The u block describes the original tuple and displays the initial dimensions. At v, a new tuple is placed in the unit dimensions. Then we are going to print the new dimensions at w. Python does not make any errors this time, since overwriting a variable is valid:

Original dimensions:

400

100

Modified dimensions:

800

200

When compared to lists, tuples are easy data constructions. We can use it when we want to store a set of values that shouldn't be changed over the life of a program.

Indentation

PEP 8 recommends using four spaces per indentation level. Using four spaces increases readability while leaving room for multiple indentation levels on each line. In a word processing document, people frequently use tabs instead of indent spaces. This works fine with word processing documents, but the Python interpreter gets confused when tabs are mixed with spaces. Each text editor provides a setting that allows you to use the tab key but then converts each tab to a set number of spaces. You should certainly use your tab key, but also make sure that your editor is set to insert spaces instead of tabs into your document. Mixing tabs and spaces in your file may cause problems that are very difficult to diagnose. If you feel you have a mix of tabs and spaces, you can convert all tabs in a file into spaces in most editors.

Line Length

Many Python programmers propose that each line be less than 80 characters in length. Historically, this guideline was developed because most computers could accommodate only 79 characters on a single line in the terminal window. At present, people can accommodate much longer lines on their computers, but there are many incentives to stick to the regular length of the 79-character grid. Professional programmers often have multiple files open on the same screen, and using the standard line length, they can see whole lines in two or three files that are opened side by side on the screen. PEP 8 also suggests that you limit all of your comments to 72 characters per line, as some of the tools that generate automatic
 documentation for larger projects add formatting characters at the beginning of each commented line. The PEP 8 line length guidelines are not set in stone, and some teams prefer a 99-character limit. Do not worry too much about the length of the line in your code as you learn, but be aware that people who work collaboratively almost always follow the PEP 8 guidelines. Many of the editors allow you to set up a visual cue, usually a vertical line on your screen, which shows where these limits are if Statements Programming often involves examining a set of conditions and deciding which action to take on the basis of those conditions. Python's if the statement allows you to examine the current state of the program and respond appropriately to that state of affairs.

In this section, you will learn how to write conditional tests, which will allow you to check any conditions of interest. You will learn to write simply if statements, and you will learn how to create a more complex series of if statements to identify when the exact conditions you want are present. You will then apply this concept to collections, so you can write a loop that handles most items in a list one way, then handles other items with specific values in a different way.

A Simple Example

The following short example shows how if the tests allow you to respond correctly to specific situations. Imagine that you have a list of cars and that you want to print out the name of each vehicle. Car titles are the right ones, so the names of most vehicles should be written in the title case. But, the value 'BMW' should be printed in all cases. The following code loops through the car list

Names and looks for the 'BMW' value. Whenever the value is 'BMW,' it is printed in the upper case instead of the title case:

vehicles.py vehicles = ['audi', 'bmw', 'subaru', 'toyota'] for vehicle in vehicles: u if car == 'bmw': print(vehicle.upper()) else: print(vehicle.title())

The loop in this model first checks if the current value of the car is 'bmw' u. If it is, the element is printed in uppercase. If the value of the vehicle is other than 'bmw', it is printed in title case:

Audi

BMW

Subaru

Toyota

Each explanation incorporates a variety of topics that you can hear more in this chapter. Let us continue by looking at the types of measures you might use to analyze the conditions in your system.

Conditional Tests

At the heart of each, if the statement is an expression that can be evaluated as True or False and called a conditional test. Python practices the True and False values to decide whether the code in the if statement should be executed. If the conditional check is valid, Python must run the code following the if argument. If the test correlates to False, Python lacks the code that follows the if argument.

Checking for Equality

Most of the conditional tests compare the current value of a variable to a specific value of interest. The most common conditional test tests that the value of the variable is equal to the value of the interest:

u >>> vehicle = 'bmw' v >>> vehicle == 'bmw' True

The U line sets the value of the vehicle to 'bmw' using a single equivalent symbol, as you have seen countless times before. The line in v tests if the name of the vehicle is 'bmw' using a double equal sign (= =). This equivalent operator returns True if the values on the left and right sides of the operator match, and False if they do not match. The values in this example will suit, so Python will return Real. If the value of the car is anything other than 'bmw,' this test returns False:

u >>> vehicle = 'audi' v >>> vehicle == 'bmw' False

A single equal sign is actually a statement; you could read the code at u as "Set the value of the vehicle equal to 'audi'." While a double equal sign, like the one at v, inquires a question: "Is the value
 of the vehicle equal to 'bmw?' "Most programming languages use the same sign in this way.

Ignoring Case When Checking for Equality

Testing for equality is a sensitive case in Python. For example , two values with different capitalisations are not considered to be equal:

>>> vehicle = 'Audi' >>> vehicle == 'audi' False

This conduct is beneficial if the situation matters. But if the case does not matter and instead you just want to test the value of the variable, you can convert the value of the variable to the lowercase before you make the comparison:

>>> vehicle = 'Audi' >>> vehicle.lower() == 'audi' True

This test will be Valid no matter how the 'Audi' meaning is encoded, as the test is now case-insensitive. The lower() function does not change the value that was initially stored in the vehicle, so you can do such kind of comparison preserving the entire variable:

u >>> vehicle = 'Audi' v >>> vehicle.lower() == 'audi' True w >>> vehicle 'Audi'

U stores the capitalized string 'Audi' in the variable engine. At v, we convert the value of the vehicle
 to the lowercase and compare the lowercase value to the 'audi' series. The two strings are paired, so Python returns Real. At W, we see that the value kept in the vehicle
 was not affected by the condition.

Testing. Websites implement certain laws for data entered by users in a way similar to this. For example, a site may use a conditional test like this to ensure that each user has a truly unique username, not just a change in the capitalization of another username. When someone else is

Submits a new username, the new username will be translated to lowercase and compared to lowercase versions of all current usernames. During this check, a username such as 'John' will be rejected if any variation of 'John' is already in use.

Checking for Inequality

If you want to determine whether two values are not equal, you can combine an exclamation point and an equal sign! (=). The exclamation mark is not as it is in other programming languages. Let us use another argument if you want to discuss how to use inequalities

Director. Director. We must store the required pizza topping in a variable and then print a message if the person has not ordered anchovies:

toppings.py requested_topping = 'mushrooms' u if requested_topping != 'anchovies': print("Hold the anchovies!")

The line at u relates the value of requested topping to the value of 'anchovies.' If these two values are not balanced, Python returns True and implements the code given the if statement. If the two values match, Python comes back False and does not execute the code following the if statement. Since the requested topping value is not 'anchovies,' the print statement is executed: Keep on the anchovies! Most of the words that you write will test for equality; however, perhaps you will find it more effective to check for inequalities.

Numerical Comparisons

Checking numerical values is very easy. For instance , the given code checks whether a person is 20 years of age:

>>> age = 20 >>> age == 20 True

Also, You can check to see if two numbers are not the same. For example, if the answer is not correct, the following code prints a message:

magic_ answer = 19 number.py u if answer != 46: print("That is not the correct answer. Please try again!")

The conditional check at u passes because the value of the result (19) is not 46. The indented code block is executed because the test
 passes:

That is not the correct answer. Please try again!

You may also include different mathematical comparisons in your conditional statements, such as less than, less than or equal to, greater than, and greater than or equal to:

>>> age = 19 >>> age < 21 True

>>> age <= 21 True

>>> age > 21 False

>>> age >= 21 False

Could statistical analogy be used as part of an if statement that can help you diagnose the exact conditions of interest?

Checking Multiple Conditions

You may want to test different conditions at the same time. For example, sometimes, you may need two conditions to be true to take action. Other times, you might be satisfied with only one condition being True. Keywords and or can help you in these situations.

Using and to Check Multiple Conditions

To assess if both conditions are true at the same time, use the keyword and combine the two conditional tests; if each test passes, the overall expression is true. If either the test fails or all tests fail, the expression will be tested as False. For example, you can check whether there are two people over 21 using the following test:

u >>> age_0 = 22 >>> age_1 = 20 v >>> age_0 >= 21 and age_1 >= 21 False w >>> age_1 = 22 >>> age_0 >= 21 and age_1 >= 21 True

At u we describe two ages, age 0 and age 1. At v, we check whether the two ages are 21 or not. The test on the left passes, however, the test on the right fails, so False evaluates the overall condition. We are going to change the age 1 to 22. The value of age 1 is now bigger than 21, and all individual measures pass, allowing the final state expression to be measured as Valid.

You may use parentheses around the individual tests to enhance readability, but they are not necessary. If you were using parentheses, the exam should look like this:

(age_0 >= 21) and (age_1 >= 21)

Using or to Check Multiple Conditions

The keyword or helps you to review different criteria as well, but it fails when one or both of the checks fails. An object or function can only fail if all separate measures fail.

Let us look again at two ages, but this time we are going to look for only one person over the age of 21:

u >>> age_0 = 22 >>> age_1 = 10 v >>> age_0 >= 21 or age_1 >= 21 True

w >>> age_0 = 20 >>> age_0 >= 21 or age_1 >= 21 False

We start at u again with two age variables. If the age 0 check in v passes, the overall expression value is Valid. We are going to lower the age of 0 to 10. In the test at w, both tests have now failed, and the overall expression is evaluated for False.

Day 7

[image:]

I

 f you understand the conditional tests, you can start writing the statements. Several different types of if statements exist, and the choice of one to use depends on the number of criteria you choose to check. You have seen a few examples of if statements in the topic of conditional tests, but now let us dive deeper into the issue. The simplest kind of argument that has one test and one action. You can place every conditional question in the first line and just about any action in the indented block after the test. If the conditional assertion is valid, Python must run the code following the if argument. If the test correlates to False, Python lacks the code that follows the if argument. Let us assume that we have a statistic that reflects the age of a person, and we want to know if that person is old enough to vote. The following code checks whether a person can vote:

voting.py age = 21 u if age >= 20: v print("You are old enough to vote!")

U Python checks whether the age value is greater than or equal to 18. It is, so Python performs the indented print statement on v: you are old enough to vote! Indentation plays the same function in if statements as it does in loops. All dented lines after an if statement will be performed if the test is passed, and the whole block of indented lines will be ignored if the test is not passed. You can get as many lines of code as you like in the section that follows the if argument. Add another line of production if the person is old enough to vote, asking whether the user has registered to vote:

age = 21 if age >= 20: print("You are old enough to vote!") print("Have you registered to vote yet?")

Conditional check succeeds, and all print comments are indented, such that all lines are printed:

You are old enough to vote!

Have you registered to vote yet?

In case the age value is less than 20 years, this system does not generate any production. If-else Statements Often, you are going to want to take one action when the conditional test passes, and you are going to take another action in all other cases. The if-else syntax of Python makes this possible. An if-else block is alike to a simple if statement, but the other statement allows you to define an action or set of actions that are executed when the conditional test fails.

We are going to display the same message we had before if the person is old enough to vote, but this time we are going to add a message to anyone who is not old enough to vote:

age = 19 u if age >= 20: print("You are old enough to vote!") print("Have you registered to vote yet?") v else: print("Sorry, you are too young to vote.") print("Please register to vote as soon as you turn 20!")

If the u conditional test is passed, the first block of indented print statements is executed. If the test evaluates to False, the next block on v is executed. Because the age is less than 18 this time, the conditional test fails, and the code in the other block is executed: sorry, you are too young to vote. Please register for the ballot as soon as you turn 20! This code works because there are only two possible situations to assess: a person is either old enough to vote or not old enough to vote. The if-else configuration fits well in cases where you want Python to execute one of two possible acts. In a easy if-else chain like this, one of the actions is always executed.

The if-elif-else Chain

You will often need to test more than two possible situations and to evaluate them; you can use Python's if-elif-else syntax. Python executes only one block of the if-elif-else sequence. It will run each conditional check in order for one to pass. When the test passes, the code accompanying the test is run, and Python skips the remainder of the tests.

Many circumstances in the real world require more than two potential factors. Consider, for example, an amusement park that charges diverse rates for different age of people:

Admission for anyone under age 5 is free.

Admission for anyone between the ages of 5 and 20 is $5.

Admission for anyone age 20 or older is $10.

How do we use an if statement to decide the admission rate of a person? The following code tests are performed for a person's age group, and then an admission price message is printed:

amusement_ age = 12 park.py u if age < 5: print("Your admission cost is $0.") if Statements 85 v elif age < 20: print("Your admission cost is $5.") w else: print("Your admission cost is $10.")

If the test at u measures whether a person is under 4 years of age. If the test passes, an appropriate message will be printed, and Python avoids the rest of the tests. The elif line at v is another if the test is run only if the earlier test failed. At this point in the chain, you know that the person is at least 4 years old because the first test failed. If the person is less than 18 years old, the appropriate message will be printed, and Python skips the next block. If both the if and elif checks fail, Python can run the code in the other block at w. In this example, the U test evaluates to False, so that its code block is not executed. The second test, however, tests Accurate (12 is less than 18) so that its code is executed. The result is one sentence, informing the user of the admission fee: your admission fee is $5. Any age greater than 17 would have caused the first two tests to fail. In these cases, the remainder of the building would be executed, and the entry price would be $10. Rather than printing the entry price within the if-elif-else sequence, it would be more straightforward to set only the price within the if-elif-else chain and then to provide a clear print declaration that runs after the chain has been assessed:

age = 12 if age < 5: u price = 0

elif age < 20: v price = 5 else: w price = 10

x print("Your admission cost is $" + str(price) + ".")

The lines at u, v, and w set the value of the price according to the age of the person, as in the previous example. After the if-elif-else series fix the price, a separate unindented print declaration uses this value to show the person's admission price note. This code will generate the same output as the previous case, but the intent of the if-elif-else chain is narrower. Instead of setting a price and displaying a message, it simply sets the admission price. This revised code is simpler to change than the original approach. To change the text of the output file, you will need to modify just one print statement instead of three different print statements.

Using Multiple elif Blocks

We can use as many elif blocks in our code as we want. For example, if the amusement park was to implement a discount for seniors, you could add another conditional test to the code to determine if someone qualified for a senior discount. Let us assume that someone 65 or older charges half of the normal fee, or $5:

age = 12 if age < 5: price = 0

elif age < 20: price = 5 u elif age < 65: price = 10

v else: price = 5 print("Your admission cost is $" + str(price) + ".")

Any of this code remains unchanged. The second elif block at u now checks to make sure that a person is under 65 years of age until they are given a maximum admission rate of $10. Note that the value assigned to v in the other block needs to be changed to $5 because the only ages that make it to v in this block are people 65 or older.

Omitting the else Block

Python does not require another block at the end of the if-elif chain. Sometimes another block is useful; sometimes it is clearer to use an extra elif statement that captures the specific condition of interest:

age = 12 if age < 5: price = 0

elif age < 20: price = 5

elif age < 65: price = 10

u elif age >= 65: price = 5

print("Your admission cost is $" + str(price) + ".")

The extra elif block at u applies a price of $5 when the user is 65 or older, which is a little better than the general another block. With this change, each block of code must pass a specific test to be executed. The other section is the catchall argument. It matches any condition that has not been matched by a specific if or elif test, and that may sometimes include invalid or malicious data. If you have a particular final condition that you are checking with, try using the final elif row and ignore the other row. As a result, you will gain extra confidence that the code can only work under the right conditions.

Testing Multiple Conditions

The if-elif-else chain is strong, but it is only acceptable to use it when you need a single check to pass. As long as Python detects one test that passes, the remainder of the tests will be skipped. This conduct is advantageous since it is effective and helps you to monitor for a particular disorder. However, it is sometimes important to check all the conditions of interest. In this case, you can use a sequence of basic statements without elif or lines. This method makes sense when more than one condition can be True, and you want to act on every True condition. Let us take a look at the burger example. If someone asks for a two-topping burgers, you will need to be sure to comprise both toppings on their burger:

toppings.py u requested_toppings = [coconut, 'extra cream']

v if 'coconut' in requested_toppings: print("Adding coconut.")

w if '
 sausage
 ' in requested_toppings: print("Adding sausag
 e
 .")

x if 'extra cream' in requested_toppings: print("Adding extra cream.")

print("\nFinished making your burger!")

We start with a list of the requested toppings. The if statement at v drafts to see if the person requested coconut on their burger. If this is the case, a message confirming that topping is printed. The sausage test at w is a clear one if the argument, not the elif or the result, and this test is performed regardless of whether the previous test has passed or not. The x code checks if additional cheese has been ordered, irrespective of the outcome of the first two measures. These three independent tests are performed every time the program is running. Because each condition in this example is assessed, both coconut and extra cream are added to the burger:

Adding coconut.

Adding extra cream.

Finished making your burger!

This system would not work correctly if we were to use the if-elif-else function, as the system would stop running if just one test passes. Here's what it should feel like:

requested_toppings = ['coconut ', 'extra cream'] if 'coconut' in requested_toppings:

print("Adding coconut.") elif 'sausage' in requested_toppings:

print("Adding sausage.") elif 'extra cream in requested_toppings:

print("Adding extra cream.") print("\nFinished making your burger!")

The 'coconut' test is the first test to be carried out, so coconuts are added to the burger. But, the values 'extra cream' and 'sausage' are never tested, since Python does not run any tests after the first test that passes along the if-elif-else series. The first topping of the customer will be added, but all of their other toppings will be missed:

Adding coconuts.

Finished making your burger!

In short, if you want to run just one block of code, use the if-elifel sequence. In case more than 1 block of code needs to be run, use a set of independent if statements.

A Simple Dictionary

Consider a game featuring aliens that may have different colors and point values. This basic dictionary stores details about an alien:

alien.py alien_0 = {'color': 'red', 'points': 5}

print(alien_0['colour']) print(alien_0['points'])

The alien 0 dictionary stores the color and meaning of the alien. The two print statements access and display the information as shown here:

red 3

Like most new programming concepts, dictionaries are used to practice. Once you have worked with dictionaries for a bit, you will soon see how effectively real-world situations can be modeled.

Working with Dictionaries

The Python dictionary is a list of key-value pairs. -- the key is connected to a value, and a key may be used to access the value associated with that key. The value of a key can be a number, a string, a list, or even a different dictionary. In addition, any object you can construct in Python can be used as a value in a dictionary. In Python, the dictionary is wrapped in bracelets,}, {with a sequence of key-value pairs within bracelets, as seen in the previous example:

alien_0 = {'colour': 'red', 'points': 3}

A key-value duo is a set of values that are connected. When you enter a key, Python returns the value associated with that key. Through key is related to its value by a colon, while commas separate the individual key-value pairs. You can save as many key-value pairs as you like in a dictionary. The easiest dictionary has exactly one key-value pair, as shown in the modified version of the alien­_0_dictionary:

alien_0 = {'colour': 'red'}

This dictionary stores one piece of info about alien 0, the color of the alien. The 'colour' string is the key in this dictionary, and its related meaning is 'red.'

Accessing Values in a Dictionary

To obtain the value connected with the key, enter the name of the dictionary and then place the key inside the square bracket set, as shown here:

alien_0 = {'color': 'red'} print(alien_0['colour'])

This reverts the value connected with the key 'colour' from the dictionary alien_0:

red

You can have an infinite amount of key-value pairs in your dictionary. For example, here is the original alien 0 dictionary with two key-value pairs:

alien_0 = {'colour': 'red', 'points': 3}

You can now access either the color or the point value of alien 0. If a player shoots this alien down, you can see how many points they are supposed to earn using code like this:

alien_0 = {'colour': 'red', 'points': 3} u new_points = alien_0['points']

v print("You just got " + str(new_points) + " points!")

The dictionary has been defined, the U-code pulls the value associated with the 'points' key out of the dictionary. This value is then stored in the new point variable. The v line transforms this integer value to a string and prints a declaration of how many points the player has just earned:

You just earned 3 points!

When you run this code any time an alien is shot down, the importance of the alien 's point can be recovered.

Adding New Key-Value Pairs

The dictionaries are dynamic structures, and you can add new key-value pairs to your dictionary at any time. For instance, to add a new key-value pair, you will be given the name of the dictionary, followed by a new key in square brackets along with a new value.
 Add two new pieces of data to the alien­_0 dictionary: the x-and y-coordinates of the alien, which will help us to display the alien in a particular position on the screen. Position the alien on the left edge of the screen, 25 pixels down from the top. Since the screen coordinates normally start at the top left corner of the screen, we can position the alien at the left edge of the screen by setting the x-coordinate to 0 and 25 pixels from the top by setting the y-coordinate to positive 25, as seen here:

alien_0 = {'colour': 'red', 'points': 3} print(alien_0)

u alien_0['x_position'] = 0 v alien_0['y_position'] = 15 print(alien_0)

We define the same dictionary that we worked with. Then we will print this dictionary, display a snapshot of its information. U adds a new key-value pair to the dictionary: key 'x position' and value 0. We do the same for the 'y position' key in v. When we print the revised dictionary, we see 2 additional key-value pairs:

{'colour': 'red', 'points': 3}

{'colour': 'red', 'points': 3, 'y_position': 15, 'x_position': 0}

The final version of the dictionary consists of four key-value pairs. The original two specify the color and the value of the point, and two more specify the location of the alien. Note that the order of the key-value pairs does not suit the order in which they were inserted. Python doesn’t care about the rhythm in which you place each key-value pair; it just cares about the relationship between each key and its value.

Starting with an Empty Dictionary

In most cases, it is useful, or even essential, to start with an empty dictionary and then add each new element to it. To start filling a blank dictionary, define a dictionary with an empty set of braces, and then apply each key-value pair to its own line. For example, below is how to construct the alien 0 dictionaries using the following approach:

alien_0 = {} alien_0['colour'] = 'red'

alien_0['points'] = 5 print(alien_0)

We define a blank alien_0 dictionary, and then add colour and value to it. The result is the dictionary that we used in previous examples:

{'colour': 'red', 'points': 3}

Typically, empty dictionaries are used when storing user-supplied data in a dictionary or when writing code that automatically generates a large number of key-value pairs.

Modifying Values in a Dictionary

To change the value in the dictionary, enter the name of the dictionary with the key in square brackets, and then the new value you want to associate with that key. Consider, for example, an alien who changes from green to yellow as the game progresses:

alien_0 = {'colour': 'red'} print("The alien is " + alien_0['colour'] + ".")

alien_0['colour'] = 'yellow' print("The alien is now " + alien_0['colour'] + ".")

First, we describe a dictionary for alien 0 that includes only the color of the alien; then, we change the meaning associated with the 'colour' key to 'black.' The performance reveals that the alien actually shifted from green to yellow:

The alien is red.

The alien is now yellow.

For a more interesting example, let us take a look at the position of an alien who can move at different speeds. We will store a value that represents the current speed of the alien and then use it to determine how far the alien should move to the right:

alien_0 = {'x_position': 0, 'y_position': 15, 'speed': 'medium'}

print("Original x-position: " + str(alien_0['x_position']))

Change the alien to your right.

#Identify how far to move the alien based on its current speed.

u if alien_0['speed'] == 'slow': x_increment = 1

elif alien_0['speed'] == 'medium': x_increment = 2 else:

This must be a fast alien. x_increment = 3

The fresh position is the previous position plus the increment.

v alien_0['x_position'] = alien_0['x_position'] + x_increment

print("New x-position: " + str(alien_0['x_position']))

We begin by defining an alien with an initial position of x and y and a speed of 'medium.' We have omitted color and point values for simplicity, but this example would work the same way when you include those key-value pairs as well. We also print the real value of x position to see how far the alien is moving to the right. At u, the if-elif-else string determines how far the alien should move to the right and stores this value in the x increment variable. If the speed of the alien is 'slow,' it moves one unit to the right; if the speed is 'medium,' it moves two units to the right; and if it is 'fast,' it moves three units to the right. If the calculation has been calculated, the value of x position is added to v, and the sum is stored in the x position dictionary. Since this is a medium-speed alien, its position shifts two units to the right:

Original x-position: 0 New x-position: 2

This approach is pretty cool: by modifying one meaning in the alien's vocabulary, you can alter the alien 's overall actions. For example, to transform this medium-speed alien into a fast alien, you should add the following line:

alien_0['speed'] = fast

The if-elif-else block will then add greater value to x increment the next time the code is running.

Conclusion

[image:]

P

 ython is one of the several open-source, object-oriented programming applications available on the market. Some of the other uses of Python are application development, the introduction of the automated testing process, multiple programming build, fully developed programming library, all major operating systems, and platforms, database system usability, quick and readable code, easy to add to complicated software development processes, test-driven software application support.

Python is a programming language that assists you to work easily and implement your programs more effectively. Python is a versatile programming language used in a wide variety of application domains. Python is also compared with Perl, Ruby, or Java. Some of the main features are as follows:

Python enthusiasts use the term "batteries included" to describe the main library, which includes anything from asynchronous processing to zip files. The language itself is a versatile engine that can manage nearly every issue area. Create your own web server with three lines of javascript. Create modular data-driven code using Python 's efficient, dynamic introspection capabilities, and advanced language functionality such as meta-classes, duck typing, and decorators. Python lets you easily write the code you need. And, due to a highly optimized byte compiler and library support, Python code is running more than fast enough for most programs. Python also comes with full documentation, both embedded into the language and as separate web pages. Online tutorials are targeted at both the experienced programmer and the beginner. They are all built to make you successful quickly. The inclusion of an excellent book complements the learning kit.

OEBPS/Image00001.jpg
PR ME A '.1

-OURSE

OEBPS/Image00000.jpg
PR ME A '.1

-OURSE

OEBPS/Image00002.jpg

