& ‘ h a\ %

S A \\\\\ \ \ Ny

W ‘ \\

Games, Gadgets, and Home
Automation with the Microcontroller
Used in the Arduino

FLASH, SENSE, SPIN, AND ROLL WITH
THE AVR MICROCONTROLLER

o \ v
\ :
\ :
g % f:"")
p o B . :
b '-:'-:
- o -~ =

Alan Trevennor

Practical AVR
Microcontrollers

Games, Gadgets, and Home Automation with
the Microcontroller Used in Arduino

Alan Trevennor

Apress

Practical AVR Microcontrollers
Copyright © 2012 by Alan Trevennor

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter
developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly
analysis or material supplied specifically for the purpose of being entered and executed on a computer system,

for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only
under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission

for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN 978-1-4302-4446-2
ISBN 978-1-4302-4447-9 (eBook)

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial
fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning

Lead Editor: Michelle Lowman

Developmental Editor: Matthew Moodie

Technical Reviewer: Cliff Wootton

Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Louise Corrigan, Morgan Ertel, Jonathan
Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie,
Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing,
Matt Wade, Tom Welsh

Coordinating Editor: Jill Balzano

Copy Editor: Lori Jacobs

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science + Business Media New York, 233 Spring Street, 6th
Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit waw. springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk
Sales-eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to
readers at www.apress.com. For detailed information about how to locate your book’s source code, go to
WWw.apress.com/source-code.

“To Wendy, who made it all possible.”

Contents at a Glance

1 o XV
About the AURNOFcccsricemiesmrssn s ——————————— xvii
About the Technical REVIEWETcccssssmssmmsmsmssssmssssmssssssssssssnssssssssnssssssmsssnssnsssnsnnsnsnss Xix
Acknowledgments........ccccuuuisemnmmsssnnnmsssssssnmssssssnssssssnssesssssnnessssnsnsessssnnnsssssnnnsessnnnnssss XXi
INtroductionccvvcmnismns s ————————_——_—_— Xxiii
Part 1: The BaSICS...ucuummmsmmmmmsssansnmssssnsnsssssansnssssannnsssssnnnsssssnnnssssssnnnssssnnnnss 1
Chapter 1: A Brief History of Microcontrollersccccvmumsemmmmsssnnnmmssssssnmssssssssssssnnnnns 3
Chapter 2: Building Our AVR Test Bedcccivnnemmmnmsssennmmsssssnnmsssssssssssssssssssssssssssssnns 13
Chapter 3: Arduino and the Naked AVRccccusemmmmmsennmmnssssnmmmsssssnssssssssssssssssssssssnns 49
Chapter 4: Moving Onl.......cccoiusemmmmmmsnnnmmsssssnmmssssssmmssssssneessssnsnsssssnsnsssssnnssnsssnnnnssssnnns 85
Chapter 5: Smarten Up!ccccvieemminmisesnmmmmsssmmmmssssmmmssssssssssssnessssssssssssssssessssnnssnss 155
Chapter 6: Digitally SPeakingccccussseensrssssnnnsssssansssssssnnnssssssnssessssnsnsssssanssessssnnnsssss 167
Part 2: The Projectsccccccemmmmmmmmmmmmmmmmssssssssssssssssssssssssssssnsnsnnnssssssssnsns 189
Chapter 7: Introduction to the Projects Sectioncccccnsmrnssmnsssmsnsssssssssnssssansnns 191
Chapter 8: Project 1: Good Evening, Mr. Bond: Your Secret Panel..........cccccuseenninnns 195
Chapter 9: Project 2: Crazy Beams—Exercise Your Pet!cccccinrnnssssnnnnnnnnnnssssnns 213
Chapter 10: Project 3: WordDUNEcoccursmmmmssmsmsssssssssssesssssssssnssssssssssnsessnnsessansss 229
Chapter 11: Project 4: The Lighting Waterfall...........ccccccnnnnemmmmnssssnnmnmssesnnnssssssnins 249
Chapter 12: Moving to MeSMEriZe.......ccccusssmmmmmsssnnnmmssssnnnssssssnssssssssnnssssssnnsssssnnnnsnsss 277
Chapter 13: Smart Home Enablerscccurmmnsmmmnssmmmsssssmsssssmssssssssssssssssssssssessansns 305

CONTENTS AT A GLANCE

Appendix A: Common COmMPONeNts.......cccuussmmmmssssssnmmssssnssssssssnsssssssnsssssssnsssssssnnnsssss 333
Appendix B: A Digital Electronics Primerccccuueemmmmssemmmmmsssssnmssssssnmsssssssssssssssssnns 347
Appendix C: Breadboardscuuseeeserimmmmmmmsssssssmmmmsmmssnns 359
Appendix D: Serial Communicationscccusemmmmsssemnmmmsssssmmmsssnmmmsssnmmssssnmssssms 365
111 377

vi

Contents

FOrEWOIdcicceiiiemsinsansnssansssnssnssnssnssnsnnssn s sassn s nnnn s nssmn snssmn ansamn s samnnaamn e mmn s mn s mnnnnnnnss XV
About the AUhOFcccciiimmminmmmmenmmsenmssassssass s ssasssssnnsssnnnsssannns Xvii
About the Technical REVIBWEYcccsssemmmsssnsmssnssssssssssssssssnsssssssssssssssssnsssssnssssnnssssansns Xix
Acknowledgmentsccummsmmmsmmmssmssenmsnsssansssnsssasssssmsssmsnsssasssnsssassssnsssnnsssasnsansnsans XXi
INtrodUCtionccoiieeriiennssnnnsssnsssssnnsssnnnsssanssssnnssssnnssssnnsssannsssnnssssnnssssnnsssnnnsnsnnnsssnnnssns xxiii
Part 1: The BaSiCS....cuummmsmmmmmsssansnmssssnsnsssssannsssssnnnnsssssnnnsssssnnnsssssnnnnsssssnnns 1
Chapter 1: A Brief History of Microcontrollersccccvmumsemmmmsssnnnmmssssssnmssssssssssssnnnnns 3

A Microcontroller TIMEIINEcceceeriernseeesrsesesse s ese e ses e sre s sss e srs e se e s e snssessnsesnes 4
Why MiICrOCONTIOIIEIS?eeeeeceereeir s n e n e nr s ene e 5
Why Should You Learn About MicroCONTrOlIErS?cccvvevrvererrereseressersssessssessssessssessssessssessesessssessssssssssssens 5

What Can You Do With @ MiCroCONTIOIIEI? ... s 5

WY AVR?.....eveevessseeessssssessesssssssssssssssssssssssssassssssssssssssssssssesssssssssssssssssssssssssssssssssssssesssssssssssssssssssssssssssnnes 7
SUMMEANY ...ttt a e a e R e e e e e e s e e e e e e e e e R e Re e Re e ReeRe e R e nRenR e R e nnnnes 11
(0] 0T T T8 N 11
Chapter 2: Building Our AVR Test Bedccciunseemmmmsssennmmsssssnnmmsssssnssssssssssssssssssssssnns 13
Test Bed DEtalilS.........cccoermeeeerereererese e 13
Test Bed INGredients........ccvceecerceeccrcrcrese e n e snennennns 13

A DeSKIOP COMPULET.....cveececeecceer et e e e e sa e e p e p e s 14
SUuMMary List 0f OTNEr PAITScccouiiiire e 15
ToolKit: REQUIrEH EMScoveeceeceir e s a s e e e sn e s p e p e s 16
ToolKit: OPtIONAL HEBMScovieiecetr s e s e e e ea e e p e p e s 17

L= T oL TS 18

vii

CONTENTS

AVR ISP PrOGFAIMIMETcovevieeeeseressseessssssesesssessssssssssssssssssssssssssnssessssessasssssssssssessssssnssssssassssssssssesssssssnns 24
Other PrOgramMIMETSccceueuireeesrsessseesesssessseses s s s sesesss e e s s sssssss s sessssesessssssssssessssssssssssssensasensssssnsassnsnns 33
AVR ISP Programming Adaptor and Pin HEAUEISc.ccccecrrrrnenmrerneesesesisssesese s ses e sessssssssesesenns 34
Assembling the Programming AQApIOr.........cocveererererereseresererereressesessesesesesessssesesessssesessesassesessessssenes 35
Test Bed Software—Installation and SEtupc.ccoovevrirerncecnsc s 39
Choosing the Software: Why Arduing?coceeeeernrcscrsrses s sse s s snenes 39
TeSt BEU TESHING ..ccvereeeeerererer et s s a e a e na e naenn e 42
TTL LeVel Srial PO ... 45
RS0 111 T PSS 47
L] 0T T T8 N R 47
Chapter 3: Arduino and the Naked AVRccccueemmmmmsennmmmssssnmmmsssssnmmssssssmssssssssnsssnns 49
ComParing APPrOACHEScceerierererererersessessessessessssss e s se s e s s e s s saesaesaesaesaesaesaesassaessnnes 49
L T 3T o 52
GO AVR! ... s e e e R AR AR AR e AR R R R R R e R R R R A A nE R e e e e e e e Eaen 53
Putting All the Pieces in PIACE..........cccceceiereeerere e snesnesne s 55
THE AVR TYPE ...t sas s sassnesnennssnsnnnnnns 57
Arduing’s ConfigUration FilES:........cucucceerrrriesenerrsnesesese s s sas s nnssnns 57
AVR QUL OF thE BOX..vvvuuereesssneeesssssesssssssssssssssssssssssssesssssssssssssessssssessssssssssssssssssssssssssssssssssssssesssssssssssssnnes 60
USiNg an EXTErNAl CryStalcccovriienmrrrrneesesesseesese s sese s sesss e ssssssssesssssssssssssessessnsssssnsassnsanns 61
The AVR AN IS FUSEScccovecreeireeerese e e s s e s s e ses s sassssesssssnssnes 62
AVRDUGE......cerueueererreeresseesessssssessssssssessssessssssesssss s sessnns 66
The Trouble with AVRDude’s Terminal MOdE...........cccoererieenereiie e 67
AVRDUdE: GEHHING STAMEM.........oceeeeeceeeeererere et e 67
Arduino and the AVR ID ProbIBm ... e 76
Pin Name TranSIations.........c.coveeeerrncrernssessesse s s s sasssnens 77
AVR: SPEAK 10 ME! ...ttt a s r e p e e 79
Terminal EMUIALOLScccccoiiiiireirenisess s sn s 82
RS 11111 R 83
COMING UP NEBXL.....o e s n e ne e n e nr e nn e nn s 83

viii

CONTENTS

Chapter 4: Moving On!.........cccvsmmimmmmmmmsmmssmss s s s s s ssssssssssssnssnsnsnsansnsnss 85
Making Things That MOVEccccrveriererere s s s nesassa e sa e sne s 85
L= 1= 0T 0] 85
Giving a Servo Motor @ TESHING TIMEcoeceveererererere e se e sa e se s se s eas e sae e sae e sae e nae e naes 91
LI 1= 11 o 3 101
0] 1 108
IMOS-WRAL?eoeeeereereueeseeseeeesesessessessessessess s s s s bbb st n st 114
3T O RRPRSRS 117
310 [T 110 121
MOTOIS (NON=SEIVO)ceveerreerrererreerseseraeesseersesessesessesesae s sae e sse s sseasaesasaesassesssserasse s saesessesansesassessesersssenes 124
Sensing MOVEMENL..........co e nre e 138
SENSOF SWITCHES ... e ————————— 138
LT 1T ST £ 144
R3] 11 RS 154
COMING UP NBXL......eeee s p e e sn s e ne e 154
Chapter 5: Smarten Up!..........cccnimmismmmmmmmmemmsmmesmssssssssssssssssssssssssssssesnss 199
INEllIGENTt DEVICES....ccueceeeecererer e s s nn e nnennnnnn 155
Increased FUNCHONANILYccocoeriiieieire e e 156
AdAPTIVE BENAVIOL.......c.ceecceieccie et e e ae e s ae e e R nenrnnas 157
INCreased EffiCIBNCYccouruiicirireresce e 158
Improved Problem Management ... 159
Capacity fOr REPUIPOSINGcourerireririeriririse s ss st as s s se s e s e s e e e e e e e nenenaens 159
GrEENET PrOGUCTS.....cucuiuciisisiisss st e e 164
Support from the MOther SHIp ... ——————————— 164
Embedded Intelligence BENefits........oo it 164
Downsides of Intelligent DEVICEScccucrerrrernneresere e ssssesnssesnas 164
The Anatomy 0f @ SMArt DEVICEccccevcerererrre e s saesaesn e sne s 165
SUMIMAIY ... e ae s ae R e R e e e eR e e e e e e e e e Re e Re e aeeReeaenaennnnrenrnnnen 166
0] T T T o RS 166

ix

CONTENTS

Chapter 6: Digitally SPeakingccsssssssessssssssassssnsssassssssssssssssssssssssnssssssssnsssansnsnsnnas 167
When Intelligent DEVICES SPEAK..........cccceverererire e s saesnesnesne s 167
CommunNICationS ChaNNEl TYPES......corvererrererererereererseseresseres e rassesae e ssesesassessssessesessssssasnesseessesessensssessnaens 168
0] 08 T o L o 169
Microcontroller KISS CommuniCatioNS...........cccocrenireresenininssssss s 171
The RS-232 CONNECHION ..o 172
RS-232 or Direct Logic Level CONNECHIONT ..ot s 174
Designing the Time-Getter ProtoCol ... 174
TaIKING TOKENScueereereuecsesesssesesesessesese e sss s e e e s se e e s sss s e e sesss e e s sessese s e sssssss s s ssssnssssnssensessnsnsnsnsasenes 178
ODJECE MOURIS.....ceeerereeecerer e s e s e se s e s ne s s e e e s s e e eenbesen e e npesnannnns 179
Implementing a Tokenized Object Model 0N AVR...........cocrrcrrreresere e sse e sse s se e sessesessesesaens 187
Summary of Object Models and TOKENIZALION...........cccoeeeeerererecrcceee e seenes 188
RS 1] 11 RS 188
0] 1] T 1o RS STS 188

Part 2: The Projects......ccccccmmemmmmmmmnmnnmmsmmsssssssssssssssssssssssssssssnsnssssnnnness 189

Chapter 7: Introduction to the Projects Sectioncccccevrnnsnsnsmsnnnnnmsmmssssssssnnesssnsnes 191
PrOJECE BASESeevveerereerieieeseseses e se s e sse s sse s s s snssns s s e e s s sne e nennennennennns 191
Project Chapter FOrmats ..o nesresne e 192
Project Scope and DiffiCURYccoceeeriiieriererere e sne e 193
Chapter 8: Project 1: Good Evening, Mr. Bond: Your Secret Panel.........cccccnrrrrssnnns 195
A Life Ruined by Movies @and TV ..o e s ssessessesassssssssassasses 195
MaKIiNg [t RALcoeeeeeeeeeree e s n e nn e nnennn 195
THE Fireling FIASCOccceueueericriecriscrss et e s ne e nennnnas 196
BT 017 T U o O 197
RACKING UP @ SUCCESSeeueuceririceine st e s ee et e b nn s 198
Hiding the BUHTON......c.oee e e 201
POSIION SENSOISecciiecctccrre et e e e b e e b e e e R e R et R e e 203
The Secret CompPartmMeNt...........ocoii e s e 203

BT = L= (0] (S 205

CONTENTS

Sliding Panel Electronics TroubleSNOO0tING........ccccverereererr s ae s re e sesaenasaens 207
L0 1 LI 0T 1T) 208
ALTTOGEINET NOW! ...ttt a e e e e e s e e e e s e R e aeenenaesn e s e s e nrans 209
SUMMANY ...ttt se s s e e bR e e e R e e e ae e e A e e Re e e Re e e e na e e nnernais 212
COMING UP NEXL ... s n e eae s ae s n e nn e nnnn s 212
Chapter 9: Project 2: Crazy Beams—Exercise Your Pet!ccccvsmmnnsnmnnssensnssannnns 213
L LTI 24 (0] (<] SRRSO 213
SOUICING T LASEIS...c.eivieeeererireseesesisseese e se e se s e s e s e s e s se e e e e e e s s e e e e snnnaes 214
PrOJECT BUII ...ttt e s e e 214
TS =1 1 1]] 217
THE EIBCIIONICS ...ueueereeseseesesessesesesesss e e s e se e s e e e s sss s e e sss e e e e s e s e e nan e e nenRn e e e nensnnnnes 219
Crazy BeAMS—The SOMIWAIEccorerererererere e a e se e es 223
RS 1] 11 RS 228
COMING UP NEBXL.... o n s e s ae s ne s ne s n e nn e nnn e s 228
Chapter 10: Project 3: WordDUuNecccvusssnnnssssssnnssssssssssssssssssesssssssssssssnnsssssnnnssnnss 229
How MUCh DO YOU REAIIY SBY ...t sne s sne s s nnns 229
The HArdWAre.........cccoiiriircine s 229
WordDune: The BUild ..ot 232
WOordDUuNe GAMEPIAYcceceeererererer e s sae s n e n e nn e nn s 235
WordDune: Game SOftWare SEIUPcccvvververre v n e e s nae s 237
WOrdDUNE COMMEANGS.......ccoererueererreesessssesessssesssessssesessssssessssssssssssssssssssenssssssssssssssssssssnes 239
General SOftWare STIUCTUTE.........coecereeirerrere e 239
WordDune SKetCh Cote WaKcccorurererereirerrsese e e sesss s sesesnnns 241
WordDune: Declarations SECLONc.cococeeeeeeeeereerssssssssssssesss s se e sssssssens 242
L] 11)ROSR 242
1070 o | RS 242
L{0 01 VO = =1 o0 {0) 243
AAATODICHIONANY (). v ererererereereeeeeeeeeeeseese s s e s s s s s s s s s e e e e se e ne e e ne e e e e e e e s e e s s s s 243
dumpEEPROMTOSEFAICNANNEN() ... coveuereeereeerrerereerersesessesessesessesessesessesassessssessssessssessssesassesssnessenessssessensnses 243
dumpDictTOSErAICRANNEI()e.eeveererereeerrerererere s e st s e s e e s e re s resaerassesassesa s e ra e e saesesassesaesesaenesansenaensnan 243

CONTENTS

SUMMEANY ...ttt r e r e s a e e e e e e s e s e e e e e e e e ae e Re e ReeReeReeaenRenaenrennnnnan 247
COMING UP NBXL....cvieeeeireeireris e n s n e sn s nna s 247
Chapter 11: Project 4: The Lighting Waterfall...........ccccccnmnnnsmmmmmnnssnnnmnssssssmnssssssnnnns 249
The Passageway Lightccccceerernnnennesnesese e ssssesss s eses s sessessssssssssssssnsens 250
PrOVING CIFCUIL ...vveveeeeeeriseeesesesssss e s se e s s s e se e e a e g s e nn e e s e e s nns 252
Waterfall LIghtS SOTWAIEccoeererrirecererer et s e s e s e e s s e s sas e sas e sae e sae e sae e saenenans 255
T3 o 0 L T N | 258
Waterfall LIGhtS MArK I........cccoceueiereiereseresererer e sereesessesesae e s e e s sessesassesassesassessssesassesassesassesassesassesssnesas 269
MarK [l EIBCIFONICS.......ccuceercrircrieisere st 269
Take-Two Circuit DIagramccccecererieriesese e e s saesaesnesns s s 271
R3] 11 RS 276
COmMING UP NEXL......oeeeeecr e sn e sa s e n e 276
Chapter 12: Moving to MeSMEriZe.......cccursssnnmmmsssnnnsmssssnnnssssssnnssssssnsssssssnnnssssssnnnsssss 277
DUCK SHOOTEI GAME........coeiirircriciree e 277
The Duck ShoOter CIrCUIL........cv i ————— 278
Making Duck Shooter int0 @ KBEPETccocvurureeriririreee et s 280
BUIIAING DUCK SROOTET ...ttt 281
GOING FUMNET ...ttt E bt se R ee e e e 284
DUCK SHOOTEI SOTEWAIE.......ceccciiiiisss b 285
MCU Shadow PUPPELS....cceeeeerererert st sn e sn e sn e nnn 287
Building the ShAdOW PUPPELS.......cccceirieerererseesesesssse s e sssss s e ssssssssssssesssssssssssnsnns 288
The Shadow PUPPEL CIFCUILcccoviieceerirneese e sr s sas e ne s snns 293
Shadow PUPPELS SOFIWAEcccevrericrrrrrneese s se s na e 294
THE MOITE WREEL.......ceceeececeecceseseresesssssssss e se e s ss s s s s sessssssessssssnsssssssssssnens 296
WaLrSldE DECAIS.........ccceererereceie et e e 299
Building the Moiré WHEel ProjECTccovveerererreereniresssssesesssssssssesssse s sessssssssssssssssssssssssssssesssessssssssssassns 301
MOiIré WHEEI SOTIWAIE ...c.cvveeecrreresssssr e sse s s s s s s snsens 303
SUMMENY ...ttt s e r e s e e e e e e e e s e e e e e e e e e R e ReeReeReeRenReenensenrnnnan 304
COMING UP NEBXL.... e se s s s e a e s ae s a e a e na e nn e 304

xii

CONTENTS

Chapter 13: Smart Home Enablersccccusemmmmnssemmmmnsssssnmmssssssmmssssssnssssssssnsssssssssnans 305
IS Your HOme SMart?........cccnnninnsssssss s 305
SOCKEL CraCkingccccveerierierercressese s ssesse e ssessesss e s sn s s s snesaesnennennnnas 307
On the Radio: The Un-wired HOMEcccorierenmiennicnine e snsse s snsssnes 308
Radial Or WIriNg NEEUScccevrerrreererrsrseese s sesssse s s sss e e se s ssssssssssssasessssssssssssssesssssssssssnsnns 309
BACK 10 BASICSeereeeeeececeeeeee s s s s e e e e e e e e e e se e e e e e nenennnnnns 311
Low-Cost Wireless COMMUNICALION............oerererererererereresese e ssssesssesesesssesesesesesesesenes 312
Smart Home Using a MiXed NETWOIK.........ccoverurereiereserrserercree e sessesesse s sae e saesessesesaesessesessesenaens 313
A Simple HomeHeEIP ProtoColcccceeererererere e s s s s ssessessesassssssssassasses 315
Using a Low-Cost Smart Home WIrelesSs NOUEcovreeeerererrerenreresereesersesessssessesessesessesessesessesessessssesassens 317
Door Sensor CirCUIt DIAgramccveeererererererere s s sesse e s e e ssesesse s sassesassessssesassessssesassessssesassesassesassenes 319
DoOr SenSor SENEr SOFTWAIE ... s 321
D0oOr SENSOr RECEIVEr SOTtWANE.......ccvrierecscsre s 321
DOOF SENSOr SUMMEAIY......cuiuiiisrrrriisssrs s e s e s e bbb 322
Remotely Commandable Light Stand ... 322
Light STaNd EIECIIONICS........cueueeerereneeseress s e e e s nnns 325
Light Stand: RGB VaIUES SENUETccvurrieiririreeeririses s se s ss s e e s sessssssssnns 326
Light Stand SOfIWAre: RECEIVEccceereruieeririreesesiriss s s sss e ssnnnns 328
The Light STANd in ACTION..........ccceeeeeercccrtr et a e e 329
R3] 11 RS 331
COMING UP NEBXL.....oeeeeee st ne s re e n e n e nn e e 331
Appendix A: Common CoOmpPOoNeNnts........uummmeemmmmmmmmmsmssssmmmmsmmsssssssssmssssssssssssssesssnns 333
RESISTONS ...c.veceriiciri e s 333
ReSiStOr SPECIfiCAtIONSccceiere et 334
Resistor TYpes and PACKAGINGSccureerererureeriresssesese e ses e e se s se s s 335
072 0 (1] (0] £ RS 336
Measuring CAPACITANCEccceurrrerererrrrseeseresssee e sssse e e sss e e se s e e e s e e e e s se e ne e s nn e e e nsns 337
Time fOr @ CAPACITANCE........cveeeerrreseese e e s e esan s e R e e pnnn s 338
Capacitor SHAPES ANM SIZES.......covviererrrrrneeri e se s ne e sn e e 340
Light-Emitting DIOGES.......cccereerererereressessessessessessssssssssss s s e s sse s ssesnssssssssssssssssssnnnes 344

CONTENTS

Appendix B: A Digital Electronics Primercccummmmsemsmmmssssnnmmsssssnmmssssssssssssssssnns 347
The Highs and the LOWS.......ccccerrerrenenere s s sassassassassan s 347
| COUNt—IN DENAIY?......eeeeeeerer e e s nrenn e nnennns 347
DeCiding, LOGICAIIYccorerrererreresessssesssssssessssesss e sssses s ssssessssessssssssssssssssssssssssssssssnssanssns 349
GENEIAl GALESccuceeecceerre e r e e a e a e e nn e n e nernns 350
AND GALEEcverrueueererssseesesesssss e s e e se s et s e s se e e e b s e e e e A e e AR e Re e e A A e Re e e e e R e e e R e e e R e R s 350
NAND Gcvvvvreveseeessseesssnsssssssssessssesssssesssssesssssssssesssssssssssessssesssssessssesssssesssssessssssssasesssssessssesssasassssnnsssns 351

OR GALE......coeerrreueerersise e se e e e et re s et e e e e s e e e R e AR AR e RS E AR e AR ne R Re e e 351
NOR GAEEvececcresicsccreris et se s se bbb e e e e AR A E e e AR e R e Ens 352
XOR GAE.....coviriueuceriris et et e e R e AR A A e R e A AR e e AR s 352
Understanding the Specifications of Gatescccceeverrrircr i 353
REAI LIVE GALES......cereerueeerserreessesessesssessssessessssesss e ssssesssssssessssesssssssssssssssssesssssssssssssssansenes 354
Appendix C: Breadboardscccusseermmssssnnmmssssssnmsssssnnssssssnssssssssnsssssssnnssssssnsnsssssnnnsssss 359
Appendix D: Serial Communicationscccusmmmssenmessasmssssnssssssssssssssssssesssnsessansessans 365
Data TranSTer BaSICS........coueereerrerrerererscse e s s snesnennennn 365
BINATY V! ...ttt e e AR e AR R nenr e 365
THE BYLEE Bit......ccoeeiieeeeecrisiseecse st e s e e e e e s e e R e s nnn s 366
The Trouble With PArallel ..o s s 367
Tear It DOwn, SHIP It QUL ... s 368
Asynchronous Data TranSMiSSION...........cvererrerereresssse s s s saesaesaesassasses 369
R3] (0] 08 1 PR 372
WO LENGLN ...ttt s a e e e e e s e e e s e e R e ae e ae e a e aenaeneennans 373
Parity Checking and Error DETECHON.........ccceeverre st sa s e se e se s sas e sas e sae e sas e s 373
ProtoCOl OVEINEAMccucueecrieirce i e se e e a e e e e bR nenp s 373
Okay, So Tell Me About RS-232 and RS-485...........ccovrinrienrerneres e see s 373
Are There Other Types of Serial Data Interface?............ccovererivennsesnniesssess s 375
INOEX uettiiinnnnnnsssnnnnnssssnnnnessssnnnessssnnnnessssnnnessssnnnsesssssnnnssssnsneessssnnnessssnnnensssnnnnessssnnnesssnnns 377

Xiv

Foreword

The computer-on-a-chip functionality of microcontrollers is nowhere better demonstrated than in the Atmel AVR
family. The AVR family offers a huge range of microcontrollers, from very simple devices with limited capabilities
to much more complex chips that have numerous built-in features for interconnectivity and interfacing as well
as much larger memory capacities—all in a single integrated circuit. Yet, all the AVR family use the same basic
execution unit for running programs, which means you can start with the simple members of the AVR family
and, when you're ready, graduate to the larger, more complex members without having to relearn how they are
programmed.

There are lots of interesting books on AVR microcontrollers around, and like this one, many will tell you how
to use your desktop machine as a development platform for making AVR programs. However, most other books
focus on AVR programs that flash lights, measure temperatures, make sounds, interface to keypads, and so on.
As valuable as those things are (and this book covers many of those areas too) it has always been my hope to find
a book that has more of a focus on how to make AVRs actually do stuff. I want to make things move or change, to
make things happen in the real world.

There are books that focus on using microcontrollers to provide the intelligence for robots, which is great,
but again, not quite what I had in mind. Maybe I watched too much Thunderbirds and Star Trek as a kid, but
it always seemed to me that the potential for microcontrollers goes far beyond merely flashing lights. I always
imagined that having some degree of intelligence built into a device that could do useful things, and having that
device be able to talk to other intelligent devices—all without human intervention—would result in magic!

Having never found the book I wanted and finding that I now had the space and time to play around with
some of my ideas, I set about building a lot of them. Now, I am going to share them in this book.

Even if you don’t need or want the gadgets and projects I present here in this book, I'm willing to bet that
they will spark some of your own ideas and that you'll be able to use many of the concepts and techniques
described here to make your own ideas become realities.

That’s one major reason for writing this book, to spread the joy! It has been my key learning in creating this
book (and yet more stuff that hasn’t made it into this one) that the limitless possibilities of the microcontroller
stimulate creativity like you may never have experienced before. Another, bigger, reason is that this is Fun, and
that’s an intentional capital “F”!

It's also worth saying that there are more and more jobs opening up that involve product and project
engineering using embedded microcontrollers: if you look you'll see them going on in every sector; from the
automotive industry to the defense industries to the entertainment business, they are all finding a tidal wave of
applications for microcontrollers. So, if you're of a mind to seek a career using the technology, nothing you learn
from within these pages should be wasted.

Alan Trevennor
North Cornwall
United Kingdom
August 2012.

XV

About the Author

Alan Trevennor Alan originally wanted to work in music radio. However, after getting hooked on digital
electronics via a Science of Cambridge MK14 computer kit, Alan Trevennor joined the UK computer industry in
1980 as a hardware engineer, fixing DEC PDP-11 systems.

In the 1980s he wrote hardware-related books about operating systems and Amstrad computers. He
progressed to systems engineering and became a key member of DEC’s UK Unix support team. He created
and taught many training courses and user guides for DEC’s Unix-related products, RISC computers, TCP/IP
networking, and other subjects. He also contributed technical articles to many magazines.

In the 1990s Alan migrated to being a digital media solutions architect with Compaq and then HP. From then
until he left HP in 2009, Alan worked on digital media technical solutions and business consultancies. He worked
for customers as diverse as the BBC, Reuters, Allied Domecq Leisure, BT, Music Choice, The National Trust,

RBS, Glaxo, Virgin Radio, and Nokia. Coming full circle, he later spent a great deal of time in music radio stations
as part of a team working on a joint HP/Nokia project—Visual Radio. During an incredibly varied career Alan
has created numerous technical solutions (some using AVR microcontrollers) as well as large amounts of user
training materials and documentation.

Alan now lives in Cornwall, UK, with his wife and son. He runs a “hobby” business part time and works
full time as a technical author for Microtest, a creator and supplier of advanced medical software—based
in Cornwall.

xvii

About the Technical Reviewer

Cliff Wootton Cliff Wootton is a former Interactive TV systems architect at
BBC News.

The “News Loops” service developed there was nominated for a BAFTA
and won a Royal Television Society Award for Technical Innovation. He is an
invited speaker on pre-processing for video compression at the Apple WWDC
conference. He also taught postgraduate MA students about real-world
computing, multimedia, video compression, metadata, and researching
the deployment of next-generation interactive TV systems based on open
standards.

He is currently working on R&D projects investigating new interactive
TV technologies, involved with MPEG standards working groups, writing
more books on the topic, and speaking at conferences when not lecturing on
multimedia at the University of the Arts in London.

Xix

Acknowledgments

This book is the product of so many overlapping things that I hesitate to enumerate them all. However, I also
hesitate to water it down to basics with an “everyone who knows me” type of generality. So, let me try to steer a
middle course.

Special thanks to Wendy for her patience while life went on hold during the writing of this book, and also
for letting me use our home to try out my ideas—and being so encouraging about them. Special thanks also to
Laurence for his technically appreciative feedback, ideas, and inputs.

To the team at Apress—thank you. To Michelle Lowman who kicked it all off, to Jill Balzano who had the
unenviable job of bringing it all together to a tight timescale. To Matthew Moodie who—as technical editor—
contributed so much to the structure and content of the book. To Cliff Wootton who as technical reviewer
contributed greatly to making the book more understandable and generously contributed ideas of his own
for me to adopt. Also, thanks to Lori Jacobs who—as copy editor—made the text much more readable and
understandable by spotting mistakes and inconsistencies; things that I would never have spotted if I'd looked
at the text for a million years!

In the more general sense, I need to thank Reece Fitzhardy who—all those years ago—freely gave of his
knowledge and time to get me to the point where the TTL data book no longer looked like gibberish to me!I
thank Alf-Egil Bogen and Vegard Wollan, originators of the AVR architecture, and Atmel who gave it wings!

I thank the folks at Maplin UK, Sparkfun US, and Aaron and the support team at Pololu who have given
me help and information whenever I asked for it.

I thank the many thousands of people—but of course most especially the core team—who created
something truly remarkable and revolutionary in the Arduino hardware and software.

Also . .. but I'd better stop there. Sorry if I forgot anyone important!

XXi

Introduction

The microcontroller unit (MCU) is the ultimate electronics tinker-toy, and in this book you're going to see
how to tinker away with it to your heart’s delight! My intended audience for this book is those who like to learn
hands-on. Learning by doing and seeing has always been my preferred way to learn: If it'’s yours too, let’s take the
ride together. For those who like to understand the “why” first of all, the book also includes some background
material that explains why using microcontrollers in everyday situations can be such a powerful concept.

My only assumption is that you have some very basic knowledge of digital electronics. But, if that’s not you,
don’t worry! There are some appendixes that will give you the start that you need—and the book’s web site
(and various references through the text of the book) also point you to some valuable AVR MCU-related
online resources.

MCU Basics

I'll start with a summary of the absolute basics, just in case you're new in MCU town, if you're not, feel free to skip
to the next section. A microcontroller is truly a “computer on a chip.”

For straightforward applications such as making LEDs flash, or driving a simple clock displayj, it’s likely that
you would only need just one MCU (Microcontroller Unit) chip. For more complex applications (such as those
in some of the project chapters of this book) you often need to add helper chips, but the MCU still does all the
brainwork.

There are dozens of different microcontroller types on the market (PIC/PICAXE, Intel, ARM, Philips/NXP,
Toshiba, Panasonic, and many more) and they all have strengths and weaknesses.

The AVR' family of MCUs from Atmel Corporation has become one of the most available and capable
general-purpose MCU product sets—and via platforms like the Arduino (more of which later on) has reached a
market prominence in the low-cost MCU world. AVR also compares favorably on cost with other low or mid-
range microcontroller families.

Microcontrollers evolved partially from the digital memory chips industry and partly from the simpler
microprocessors that they have now largely displaced for new designs. We'll be looking at the evolution of the
microcontroller in more detail in the first section of this book.

Every AVR MCU consists of a processor core, some programmable flash memory, and some RAM. It will
also have on-chip extras, such as input/output (I/O) ports, timers, serial communications ports, analog to digital
convertors, and maybe even a USB port.

All chips in the AVR range have the basic processor core and memory, but as you go up the range of products
they include more and more of the extras (and bigger and bigger on-chip memory capacities). Using the simplest
of AVR MCU chips (a small eight-pin device costing no more than a dollar; see the photo) you can easily make an
LED flasher or other simple circuits.

"Weirdly, nobody at Atmel wants to tell what the initials AVR stand for. In fact, the guys who invented AVR, Alf Egil Bogen
and Vegard Wollan, tease anyone who asks the question! Was it a combination of their initials? No, they say. They even
made a teasing video. Search for “The Story of AVR” on youtube to see it.

xxiii

INTRODUCTION

I'mentioned Arduino previously. Arduino is a packaged MCU system that uses an AVR chip at its heart but
provides extra facilities such as bringing all the I/O pins of the MCU out to convenient connectors, providing
voltage regulation, and so on. We now live in a world where a majority of people are used to using a computer at a
high level, using a Windows, Mac, or Linux machine. However, the essential aim of Arduino is to make it easy for
non-techs and beginners to try out low-level computing and computer programming for the first time. Low-level
computing may use essentially the same technology as your desktop machine, but it’s a very different beast.

Arduino is a superb platform, and the software development environment that comes with it is also
excellent. However, an Arduino board will cost you between three and four times as much as just an AVR chip,
and very few individual projects use all the features of an Arduino board.

So, in many projects it can be beneficial to use just a stand-alone AVR chip with a minimum of external
components, and that will be our concentration in this book. As a subsidiary benefit, you will also be more likely
to gain a deeper understanding of the AVR from using it outside a packaged hardware environment such as
Arduino.

About Our MCU Setup

For many readers, this book will contain a lot of new stuff. To make it easier to assimilate, I have elected to use
the Arduino software development environment throughout the book. Arduino’s development software (which
is 100% free for anyone to download and use) runs on Windows, Linux, and Mac OS X: For the most part, the
Arduino software looks and feels the same on them all. So, using Arduino’s development environment has the
added benefit that you won’t be skipping great chunks of the book that don’t apply to the machine you are using.
Arduino’s programming language is very easy to use—another benefit if you're new to all this.

Since this is not primarily a book about programming, we will only be going beneath the covers of the
Arduino software when we really have to; that won’t be very often, but it will be fully explained when we do. So,
although we’ll be using the Arduino software, there won’t be an Arduino board in sight! We’ll use a low-cost AVR
programmer board and AVR chips—often we’ll be using just the AVR chip on its own.

Note Atmel has an excellent (and free) development package of its own,“AVR Studio,” which lets you program
in the C language, or in AVR native assembler.2 But at the time of writing it’s only available on Windows PCs (XP or
later)—inexplicably, there is no Mac or Linux version. So, we don’t use it in this book.

2Assembly language programming is a very low level way of programming, requiring far more knowledge of the intricate
details of the chip you are programming and its characteristics. Assembly language programs can often run a little faster on a
given processor, but they take very much longer to write and debug than higher-level programming methods like the ones we
use in this book.

XXiv

INTRODUCTION

Putting AVRs to Work

While an AVR is a single-chip computer, it doesn’t have anything approaching the capability of your desktop
machine—which costs many tens of times more. Therefore, it makes sense to use the greater capabilities,
resources, and power of your desktop computer to create the software that an AVR needs and then to download
that software into the AVR chip. The following diagram overviews how this works.

Desktop AVR USB Target !
USB Cable Dgrammer ISP AVR Chlp

On your desktop machine, you install an AVR development environment (all free) which lets you create and
compile your AVR software. An AVR programmer (several available) simply connects via USB to your desktop and
uses a technique called in-system programming (ISP) to connect to your AVR chip and upload the software you
have created into it. I'll go into much more detail and provide a shopping list in Chapter 2.

Note In this book we’ll be using your AVR plugged into a specially set up breadboard (see Appendix G for
a basic tutorial on breadboards). However, in other approaches the AVR could be plugged into a circuit board or even
a full-scale AVR programmer product.

So, the preceding diagram represents the development environment we will be using throughout this
book. It’'s important to understand that because the AVR family uses erasable and reusable on-chip memory,
you can reprogram AVR chips tens of thousands of times if you need to, which means you can keep modifying
your program until it’s exactly how you want it. Once you have your software exactly right, your AVR chip can be
detached forever from the programmer and can go off to have a life of its own in a dedicated application.

In this book we'll be looking at practical examples of how to use useful project elements (such as motors,
solenoids, and sensors of various kinds) and software concepts. Then, we'll be making a set of project
applications for AVR chips. After you've seen the descriptions and built some of these project applications for
yourself, I'm willing to bet that your own application ideas will come thick and fast. It seems that AVRs (and
MCUs in general) have that effect on creative minds!

Book Structure

This book is split into two major sections, each of which is further subdivided into smaller sections.

Part 1: Basics

Part 1 deals with the background and the basics. You may already know a lot of this stuff, or you may just be
itching to get started with the practical side of things, so feel free to skip any sections that lie outside your area of
interest or experience.

We all learn in different ways, and a lot of the stuff in this section is intended for those people who learn
better by first understanding “why” things are valuable and “why” one way of doing things is better than another.
If you're a “how” learner, you'll probably want to just skim through some bits of Part 1 which deal with history
and theory and get onto the more practical sections. If you're going to do that, though, please be sure not to skip
the section on setting up your development environment; we’ll all need to look at that!

XXV

INTRODUCTION

All through Part 1, we will be gently introducing programming, showing you how to program the AVR
with some minimal programs that are fully explained so that if you've never programmed before, you'll get the
introduction you need.

Part 2: The Projects

Part 2 of this book is all about specific projects using AVRs. These are projects you can build or adapt to your own
needs. This section of the book covers a mix of digital electronics, a little lightweight “making” for the controlled
mechanisms, software details, and, of course, lots about AVR microcontroller applications.

For each project we'll look at the design of the hardware and any mechanisms needed, discussing any
trade-offs and possible adaptations or alternative uses for it. We’ll overview the software for the project, detailing
any tricky parts of it. The fully commented software will all be available for download from the book’s web site:
http://www.apress.com/9781430244462.

Photographs and diagrams are used to give you as much detail as possible on each project as built, so that
you can build one for yourself if you want to or adapt it to your own needs when you make your own version of it.

Following is a list of the projects:

e Chapter 8: “Good Evening, Mr. Bond: Your Secret Panel” Shows how to build a sliding
panel mechanism and control it with an AVR. What’s behind the panel? Well, wait and
see, but I bet you'll soon have your own ideas about what you want behind your secret
panel, and what secret way you want to be able to open it!

e Chapter 9: “Crazy Beams—Exercise Your Pet!” Cats (and dogs too) are fascinated by
moving beams of light, and they get great exercise chasing them around the room. This
project gives them all the beams they could ever want to chase, and it never gets tired of
playing the game with them!

e Chapter 10: “WordDune: How Much Do You Really See?” We all like to think we could
find a needle in a sand dune. Can you find words in a sea of letters? It starts easy, but it
gets harder as it goes on.

e Chapter 11: “The Lighting Waterfall: Light the Way—Ever So Prettily!” Don’t just “plip”
those lights on in that long thin walkway, let’s do it with some style!

e Chapter 12: “Moving to Mesmerize”:
e Moiré wheel: Put a light behind a spinning wheel and watch the magic!
e Animation projector: Flashing LEDs can make shadow magic.
¢ Duckshooting game: All the fun of the fair!

e Chapter 13: “Smart Home Enablers” We examine just why the “home of the future” has
been so very long in arriving! We look at some get-started foundational projects and ideas
that can help make yours a “smarter home.”

Appendixes

Finally, we have a number of reference appendixes. These are intended for those “wazzat?” moments, when you
encounter an unfamiliar term, technique, or concept. To save time and confusion, readers who are completely
new to a subject area might want to read one or more of these before starting on the projects.

¢ Appendix A: Common Components: Some basics about resistors, capacitors, diodes,
LEDs, and integrated circuits (chips).

XXVi

INTRODUCTION

e Appendix B: “A Digital Electronics Primer” New to the world of digital electronics? Never
fear, this appendix is just for you. It won’t make you into an overnight digital wizard, but it
should give you just enough to get started.

e Appendix C: “Breadboards.” What are they, what are they for, how do you use them and
why are they so darn useful?

e Appendix D: “Serial Communications.” Often puzzling to newcomers, serial
communications is a must-understand technology for realizing the full benefits of
connected MCU projects.

Where Do We Go from Here?

It's essential that you read Chapter 2 in order to set up your AVR development system. However, after that, if you
feel that you already know enough it’s not essential that you following any particular reading order: if one subject

area appeals to you most, by all means go there first if you feel you already have the knowledge (or are happy to
refer back to previously skipped sections).

Make maximum use of the detailed keyword index if you come across the unfamiliar—and don’t forget the
appendixes, which are there for your reference.

Coming Up Next

Part 1: Chapter 1: “A Brief History of Microcontrollers”—the computer industry takes a RISC.

XXVii

PART 1

The Basics

CHAPTER 1

A Brief History of Microcontrollers)

Although it’s not essential that you understand how microcontrollers developed to the point where they are
today, it’s an interesting story, which can help you understand where an AVR microcontroller fits into the
overall hierarchy of information technology (IT) and electronics products. More important, by having such an
understanding you can make better choices and decisions about when and where to use a microcontroller, in
preference to other alternatives.

If you open up a CD player or a VCR from the 1980s (perhaps you have one in the attic, or in your garage, I
know I do!) you will find that they are absolutely stuffed with circuit boards, and that each circuit board is densely
populated with integrated circuits (chips) and components that made the thing work.

By contrast, open up a DVD player made in the last few years and you are likely to find quite a lot of empty
space, and just one quite small circuit board that contains perhaps two or three quite large chips and a handful
of other components. Yet, it’s probable that the modern device offers far better quality and robustness. It will
certainly offer massively more product features and options than its 1980s predecessor.

This transformation is due to two main factors:

e The increasing miniaturization of electronics and components, which has enabled more
and more circuitry to be put onto single chips, reducing the chip count needed for any
given function.

The transistors in the first family of logic chips (launched in the early 1970s) each
measured about 10 microns' across. Just to give you some idea of scale, a human hair
averages about 100 microns in width. At the time of writing this, in 2012, the size of
transistors on current generation chips can be as small as 22 nanometers. That’s just 22
billionths of a meter! That gives you some idea of the pace of miniaturization that has
gone on inside integrated circuits since the 1970s.

e The progressive transition from implementing device functions in hardware to
implementing them in software running on microcontrollers.

Let’s start with a quick timeline before getting into the whys and wherefores of microcontrollers and AVR.

' A micron (now more often called a micro-meter) is one millionth part of a meter, or about 0.0000394 inches.

CHAPTER 1 * A BRIEF HISTORY OF MICROCONTROLLERS

A Microcontroller Timeline

Until the mid-1980s most electronic products were still built using extremely intricate and clever combinatory
logic? circuits, implemented with an awful lot of chips! Starting in the early 1980s, a minority of manufacturers
started to build in microprocessors to their products in order to reduce chip count, which brought down
manufacturing costs and thus reduced end-user prices.

The earliest 8-bit microprocessors such as the Intel 8080 or the Zilog Z80 first appeared toward the late
1970s and were a significant advance on what had gone before. Engineers and designers soon realized that once
you put a microprocessor into a device, you could not only make it do much more, but you could also update
it much more cheaply if defects or flaws in the original design came to light. Many product defects could now
be addressed by using semiskilled labor to plug in a replacement firmware ROM (read-only memory) (this
was in the days before programmable flash memory) rather than having to use skilled labor to expensively
rework or replace thousands of complete circuit boards. As the 1980s wore on, more and more products had a
microprocessor at their core.

Even though microprocessors were a huge improvement on what they replaced, they weren’t a complete
magic bullet for bringing down costs and complexity of product design. The problem was that, to make a
microprocessor do anything useful, it had to be surrounded by a large number of additional chips for input
output (I/0) and it usually needed other support chips too—such as real-time clock chips and address decoders.

By the 1990s, improved silicon processing and chip manufacturing techniques resulted in the ability to
put ever more circuitry on one chip. One of the ways this was used was to augment the microprocessor chip
with additional functions and features that had previously been implemented by separate external chips. To
differentiate these new super-micro chips from their simpler forebears, these came to be called microcontrollers.
Some examples of functions that moved from being external chips to being part of the microcontroller are

e Serial ports to enable the subsystem to talk to a desktop computer or other RS232
port-equipped devices.

e Timers to enable the microcontroller to have an accurate time reference on chip and to
carry out events at accurate preset intervals. These timers also enabled microcontrollers
to generate music and sounds, since interval accuracy could be assured.

e Serial digital channels to enable microcontrollers to chat with one another, over just two
linking wires.

e Analog to digital convertors allowing a microcontroller system to sense analog signals
and store or process them as digital data.

e Digital to analog convertors that allowed microcontrollers to interface with external
devices like motors that need a continuously variable voltage.

e Input ports for sensing on/off states of things in the outside world.

e Output ports for switching on/off things in the outside world.

2Combinatory logic circuits use individual chips in combination to provide each function. For example, in a microcontroller
project that controls ten motors for an industrial process, we would use a software counter for each motor to count how many
times it had turned. In the combinatory logic implementation of the same thing, there would have to be an actual counter chip
for each motor sensor. So, in a microcontroller approach to this function, a whole board full of counter chips could be replaced
by perhaps 20 lines of software. This would reduce cost, power consumption, heat generation, and size. Furthermore, if the
design were updated, in the combinatory approach, rewiring and very likely redesigning of the board would be needed. In the
microcontroller approach a simple software update would attain the same result.

CHAPTER 1 © A BRIEF HISTORY OF MICROCONTROLLERS

Once microcontrollers started to be designed into consumer goods and control systems during the 1990s,
the already impressive electronic miniaturizations of the previous two decades took another big jump, in terms of
both size reductions and the ability to sport more options and features than ever before.

By the first decade of the 2000s, nobody would seriously consider designing anything other than the very
simplest consumer electrical device without the use of some kind of microcontroller. They are everywhere;
they get more capable and more complex as time goes on. As a technical person, unless you understand
microcontrollers at some level, you will be at a considerable disadvantage compared to those who do.

Why Microcontrollers?

The ubiquity of microcontrollers is the main reason you should know something about them. However, it’s also
very satisfying to use and design with microcontrollers. You can get things running very quickly that previously
would have taken very much longer to complete. You can also have a considerable amount of fun in the process,
and what's life without a little fun? The AVR family of microcontrollers is a wide ranging and cost-effective way to
implement your projects. The ever-growing popularity of AVRs means that there is an enormous and very active
online support community to help you out if you get stuck. It also means that there is a massive amount of free
AVR software available that makes your projects far easier and faster to complete.

Why Should You Learn About Microcontrollers?

To answer this question simply: Because they are fun! The fascination of what you can do and what you can
make with them is never ending. It has been rightly said that the computer is the ultimate tinker toy: you can
use it an infinite number of ways to enhance your job, your learning, your hobby, or your social life. The value of
microcontrollers is that they allow you to extend the benefits of computing into the real world.

You probably already own quite a few microcontrollers without knowing it. They are embedded in most of
the appliances and devices around you.® Anyone who wants a real understanding of how modern products
work—from cars to mobile phones to toys—needs to have at least a rudimentary understanding of
microcontrollers.

What Can You Do with a Microcontroller?

Okay, well here’s the heart of the matter. Desktop computers (PCs and Macs) are excellent—they are truly a
wonder of the age. In concert with the Internet, the desktop computer you buy from the store can do just about
anything you want with digital information.

The desktop computer is essentially a resource-rich computer for reliably processing and storing
information in a networked world. It can do many things at once (e.g., check your e-mails, and do virus checking
while you are browsing the news online) because it is running a complex operating system that is capable of
multitasking on a scale that is truly (to use that overused word accurately for a change) awesome*—what we see
on the screen is only the tip of the iceberg of the work going on inside the machine.

Having said that, a modern desktop computer has a central processor running at something around an
unimaginable 3 billion cycles per second, and many processors have a multicore architecture, meaning that
they are capable of executing two, or even four, sets of instructions streams at this speed, simultaneously! Your
modern desktop machine is likely to have a hard drive inside offering at the very least 500 gigabytes (that’s

3Thus, you will often find microcontrollers referred to as embedded computers, and the software they run is often generically
called embedded software.

*Did you know, for example, that both Linux and Windows update their time clock and the statistics for all the running tasks
and certain other internal data at least 100 times . . . per second?

CHAPTER 1 * A BRIEF HISTORY OF MICROCONTROLLERS

500,000,000,000 bytes) of storage, and it probably has a RAM (random-access memory) of 2 gigabytes or more.
So, in computing terms, it is a resource-rich machine. Alan Turing himself could not have wished for more.

Want to edit a video? No problem. Find out who your great, great, great, great, great grandfather was? Yes,
can do! Want to send an e-mail to the other side of the world in just a few minutes? Yes of course, tell you what,
let’s make it one minute! Want to index your family photo collection? Shazam! It's done. Want to play hi-def
movies? Let’s do it!

The reason desktop machines have evolved into these monstrous—and comparatively expensive—computers
is that they are general-purpose machines. The capabilities of even a low-end desktop machine are now so high
that you could use it for any of the previously mentioned information management tasks without any problem,
but in its default state it’s actually quite poor at interfacing with the real world.

But: Do you want to be notified when your freezer fails? Want to intelligently control the speed of a fast
running motor? Want to implement a control system for deriving electricity from the rainwater running down
from your roof gutters? Hmmm, no, that’s a bit trickier—your out-of-the-box desktop computer can’t do that
without adding on quite a lot of extras.

The dirty little secret about modern desktop machines is that most of them barely ever break into a canter.
Graphical compilation (compressing and encoding videos, 3D game compiling, etc.) are among the most
demanding tasks that a desktop PC can be set to do, and comparatively few of them are ever used for these things.
Playing full-screen video is probably the most challenging thing that most desktops are asked to do, and almost
any modern machine can do that and still have processing power to spare. So, it’s fairly clear that much more
mundane computing tasks really don’t need that huge amount of processing power.

The desktop computer in your house (statistically you are likely to have more than one, by the way) is the
de facto “home hub” for IT in your house. But, as we saw, there are “real world” tasks that are actually beyond
this general-purpose behemoth. It’s very good at processing information, but in its default state it’s useless at
interfacing with other devices in the real world. Enter microcontrollers.

On paper, a microcontroller looks like a very poor relation to that desktop machine of yours. It will have a
processor that runs at only small a fraction (perhaps a 300th) of the one on your desktop, and it’s unlikely to have
more than a fraction of the memory capacity. It doesn’t have inbuilt support for interfacing to hard drives and
you can’t just plug it in to the Internet.

On the other hand, you can get a midrange microcontroller chip for the price of a Skinny Latte and you can
build a complete microcontroller system for rather less than the price of a business lunch. The microcontroller
will have inputs and outputs suitable for use with real-world devices, and with a little effort, it can talk to your
desktop’s serial or USB ports.

So, here’s how it pans out:

e Use your desktop computer for general-purpose big-world stuff, Internet, e-mail,
downloading and playing video, word processing, printing stuff, instant messaging,
social networking, building photo libraries, editing photos, and . . . you get the picture.
The standard USB and serial ports on your desktop machine can also be used to talk to
external microcontroller systems, to allow it access to real-world data, and to be the brain
that controls real-world stuff like heaters and motors and lights.

e Use a microcontroller as a single-purpose stand-alone computer that performs a
particular small-world task, like controlling some lights, measuring the temperature,
and passing the results on to your desktop machine. Microcontroller systems can take
orders from your desktop machine, “Switch that heater on, Put that light out” But a
microcontroller system doesn’t have to be connected to a desktop machine; it can happily
work as a complete single-purpose, simple, but still intelligent, stand-alone computer.

In summary: The desktop computer is built, sold, and operated as a general-purpose computer. It is
intended to find and manipulate any digital information, in any way you want. A microcontroller is a much
simpler, scaled-down computer that is far cheaper than a desktop machine but is suitable to be programmed to
do just one task very well.

CHAPTER 1 © A BRIEF HISTORY OF MICROCONTROLLERS

A microcontroller system can be the interface to real-world devices (freezers, temperature sensors, fans,
heaters, lights) for a desktop machine,® or it can just be used built into a stand-alone system. Such applications
are often called Smart Appliances because, thanks to the fact that they are software controlled, they can allow an
appliance to exhibit a limited range of adaptive behaviors. Modern cars usually feature several microcontrollers
embedded in their various systems.

In this book we look at a variety of microcontroller-based projects. Some are interfacing projects that benefit
from connection to a desktop computer, while others are stand-alone, independent systems.

Why AVR?

There are, in fact, a large number of different (and software-incompatible) microcontroller families on the
market, of which AVR is one. Probably the market leader in this field is the PIC (Programmable Intelligent
Computer®). PIC was gradually developed as an upgrade to a previous generation of microprocessors by General
Instruments in the early 1980s. The product line was inherited by Microchip Technologies—the commercial
successors to GI-which by the mid-1990s had added additional refinements such as on-chip user-writable
program memory.

PIC chips offer excellent value and there is a lot of support software and hardware available for them-they
deserve their success. However, PIC chips are not especially clock efficient. That is, a PIC chip driven at a certain
clock rate will not achieve as much useful work as other microcontrollers, due to certain inefficiencies inherent
in the PIC architecture.” The PIC was not originally designed around a RISC methodology (see the following
section)-whereas the AVR family of microcontrollers has a more recent design and is RISC to the core.® To
answer the preceding question, “Why AVR?,"I am a fan of AVR because it is fast, well designed, easy to use, well
supported, and cheap to buy.

Some History: The Computer Industry Takes a RISC

To understand what RISC (Reduced Instruction Set Computer) really means, and how today’s computing
benefits from it, we need to look briefly at how computer processors developed in the 1970s and 1980s and how
computers were used back then.

Early electronic computers offered the programmer very few machine instructions. Adding or subtracting
two numbers, moving a value from one storage register to another, loading and saving registers to main
memory-and that was about it. The people who programmed these pioneering machines in the late 1940s and
into the 1950s were working in pure machine code: They had to learn the binary values for each instruction that
the machine understood and construct great slews of binary codes for the processor to execute. No screens, no
hard drives or floppy drives, everything keyed in on a large bank of switches and lights. Very hard work!

However, as technology advanced into the 1960s and 1970s, increased machine capabilities made it possible
for higher-level programming languages to appear. These languages were implemented by compilers: a compiler
is a program that converts human-readable programs—written in languages like FORTRAN, BASIC, or C—into

*If you look closely at any USB accessories you may have for your desktop computer you may be able to see that they do in
fact have a microcontroller at their heart. Many toys, novelties, and domestic appliances are similarly built around a microcon-
troller. If you have a USB memory stick or pen drive, you will find it almost certainly has a microcontroller inside.

Originally it stood for Peripheral Interface Controller.

7Some of these have been addressed in more recent PIC chips, but some still remain.

$Various tests have concluded that if an AVR and a PIC are clocked at the same speed and set to do an identical task, the AVR
will be around four times faster than the PIC. I have never tried this, but I have observed notable speed differences in strong
favor of the AVR.

CHAPTER 1 * A BRIEF HISTORY OF MICROCONTROLLERS

actual machine instructions. The advent of compilers (and their increasing importance and scope during the
period 1960-1980) meant that human programmers gradually became insulated from the need to know intricate
details of the computer processors for which they were creating software.

CISC: The Computer Industry Gets a Complex!

By the early 1980s, huge improvements in semiconductor manufacture made it possible to implement ever
more complex computer processors, and there was a kind of a gold rush. Each major manufacturer of the time
(IBM, Sperry, ICL, Boroughs, DEC, etc.) vied to give successive generations of processors ever more complex
and comprehensive instruction sets. The theory was that if you implemented commonly used functions such

as string searches or list processing as a single machine instruction, then your machine would out perform its
competition. Equally important, if your processor achieved more useful work with each instruction, you needed
fewer instructions for any given program task, and the program size would be smaller. Minimizing program size
was a very important consideration in 1980, when a computer that had 512 kilobytes of RAM (half a megabyte)
was a top-of-the-range machine!

This gold rush went on until the mid-1980s with processors getting faster, but more complex, with each
passing year. By the mid-1980s, a processor like Digital Equipment Corp.s VAX boasted an instruction set totaling
about 160 instructions, further subdivided into more than 400 variants.

By the 1980s, almost nobody was programming large computers in machine language any more. Almost
all software was being written in high-level languages like C, PASCAL, BASIC, and FORTRAN. A very lucrative
software industry had grown up writing compilers.

A compiler is not an easy or cheap piece of software to create. A compiler has two major headline functions.
The first function (the front end) is to examine the source code written by a human programmer and make sure
it obeys the rules of the high-level language; then, if all is well, it will convert the steps of that code into a number
of generic “tokens.” The second function (the back end) is to take that set of generic tokens and convert it into
a stream of machine code. Obviously, the back end must produce a machine code stream that is specific to the
instruction set of the target machine: the machine on which the executable version of the program is to be run.’

The KISS Principle Reasserts Itself

You've doubtless heard of the “Keep It Simple Stupid” (KISS) principle - a way of saying that a back-to-basics
approach to things can often be a revelation. Well, the computer industry had its own KISS moment back in the
mid-1980s.

A study came out of Stanford University in California from a team headed by Professor John L. Hennessy.
This study was the result of work that had taken several years to complete. The team had analyzed—in exhaustive
detail-the machine code streams produced by a wide a range of compiler products. The results pointed to a
somewhat shocking conclusion: one that changed the whole field of processor design. The study found that 90 %
of compiler-generated software used only about 10 % of the available instructions on any given processor type.
So, it seemed that all the effort that processor designers had put into designing ever more ambitious instruction
sets was wasted; most of the software running on these computers actually wasn’t using their more sophisticated
features!

When Hennessy’s team sought the reasons for this underuse of instruction sets, they found that the main
underlying cause wasn’t a technical one at all-it was a commercial one.

Team members realized that the market had evolved in such a way that most compilers were being created
by independent companies, not by the computer manufacturers themselves. These compiler companies were
achieving economies of scale by creating their products in such a way that they could be used on many ranges

°There are quite a few other intermediate steps performed by a compiler; these are only the major ones.

8

CHAPTER 1 © A BRIEF HISTORY OF MICROCONTROLLERS

of computers. Thus, a compiler vendor might have a FORTRAN compiler which worked on IBM, ICL, DEC, Intel,
and Unisys machines. That compiler would have a common front-end section, and a manufacturer-specific
back-end section.

Given the cost and complexity of developing compilers for all these platforms, the back-end sections tended
to use only the simpler instructions of the computers concerned, and not the more complex, unique, ones. It
simply wasn’t worth the compiler vendor’s time and effort to optimize the back-end part of the compiler per
computer architecture. This then was the main reason most of the software analyzed by the Stanford study used
only 10 % of the available instruction sets. Additionally, during the later 1980s RAM memory sizes in computers
grew much larger; in 1988 even a desktop machine would have 8 or perhaps 16 megabytes of RAM installed. That
meant that the need to keep program sizes to the absolute minimum was easing, further reducing the need to use
complex, machine-specific, instructions.

Professor Hennessy’s Stanford team reflected that, through the 1980s, improvements in speed and device
density in the underlying silicon technology had been used to enable more complex processor architectures and
larger and ever more complex instructions sets. However, the team’s detailed analyses of numerous software
programs conclusively showed that, in fact, very few programs made use of these advanced features. They
characterized the state-of-the-art machines of the mid-1980s as CISC (Complex Instruction Set-pronounced
“SISK”) computers.

They posed a new question: given the great increases in capacity and speed of semiconductors, if processors
had stayed very simple, with small, elegant instruction sets, how much faster would they be running now? They
imagined a stripped-down processor along these lines, and they called it a RISC computer.

They showed that if you designed a machine with a uniform instruction set, in which each instruction had
the same format, and in which there were only very simple conditional branch instructions,'® then you could
dedicate more chip space to features that would enhance execution speed, such as a subsystem to prefetch
instructions from memory into the processor “pipeline,” meaning that the processor was continuously busy,
rather than spending an appreciable percentage of its time waiting for its next instruction to be fetched. In an
ideal RISC design, the processor completes one machine instruction for each and every clock cycle-something
CISC processors could never do. In other words, the goal of a RISC processor design is that if its clock speed is, for
example, 20 MHz, then it will be able to execute 20 million instructions per second.

RISC Goes Primetime

The work done by the Hennessy team was so influential that, within only a few years, it changed the course
of computer technology. The R2000 from MIPS Computer (released in late 1985) was the first commercially
available microprocessor to implement the RISC principles. It took a couple of years, but eventually, when the
R2000 was implemented in Unix systems from DEC and Silicon Graphics (SGI), among others, its performance
left equivalent CISC-based machines for dead.

The R2000 was swiftly followed by the R3000 and successive generations of RISC processors from MIPS and
many others. The RISC processors outperformed their CISC predecessors for almost all mainstream applications.

Since that time, all new mainstream processor designs have used most of the ideas embodied in the RISC
philosophy. By 1990, CISC designs were either starting to fade away or—as with the Intel range used in personal
computers—being updated to include as much RISC-ness as possible, while still retaining historical compatibility.
In other cases, companies brought out new RISC architectures to replace eclipsed CISC architectures; for
example, DEC’s Alpha RISC architecture replaced its older VAX range of CISC processors and Apple and Sun
Microsystems traveled a similar route in changing their base hardware platforms. The blazing performance of
MIPS Computer products meant that they showed up in a new class of products: game consoles. Crack open an
old PlayStation or a Nintendo 64 and you'll find a MIPS chip in there doing the graphics chores.

10Such an instruction might be “branch if zero”—meaning if the result of the last instruction was zero then do “this,” or if it
was not zero then do “that.”

CHAPTER 1 * A BRIEF HISTORY OF MICROCONTROLLERS

Wraps Off AVR

In 1996 the semiconductor company, Atmel, released a new product called AVR (by the way, Atmel says that the
initials AVR don’t stand for anything in particular). The AVR is a microcontroller chip designed, from the ground
up, around the RISC principles whose history and provenance we discussed in the previous section.

This innovative product used, for the first time on a microcontroller, flash memory, meaning that it could
easily be reprogrammed with new software while in situ'! on its application board. AVR also included innovations
around the amount of I/O capability it had on-chip—it featured more than was usual at the time.

It was around this time that it started to become essential to differentiate between microprocessors
(a processor on a chip) and microcontrollers (a potentially complete computer, with processor, memory, and I/0
subsystem on a chip).

After the first 8-bit AVR microcontroller was released by Atmel in 1996, there was a steady stream of new
AVRs to follow, each faster and more capable than the last. This eventually included a family of 32-bit AVR
processors for use in very demanding applications such as engine management systems.

The AVR family has several primary characteristics:

e Itis a common family of processors with code compatibility across the range because the
processors all use the same RISC processor core.

e Therange of code-compatible chips allows the designer to find the right trade-off
between features and cost. All AVR chips have the microprocessor core, but each chip in
the range features a different set of peripheral ports and devices, with differing amounts
of flash and RAM memory. This range of products allows the designer to select the chip
which offers exactly the right amount of capability, and price point, for the job in hand.
This is very important when designing commercial products: for several reasons, the
number and cost of components are often a key decider of the success or failure of a
consumer product.

e AVRespouses RISC design principles and makes very good use of each clock cycle,
allowing it to outperform older architectures running at the same clock speed. Of course,
since not all microcontroller uses are time-critical, this is less of a consideration in some
applications than others, and speed of execution is not the only thing to be considered in
designing a microcontroller application. Nevertheless, where speed is an issue—or likely
to become an issue—AVR is a very good choice.

"The first microprocessors had no on-chip program memory; they needed external ROM chips to hold their programs. The
second generation of microcontrollers offered updatable program memory, but it was implemented using EEPROM
(Electrically Erasable Programmable Read Only Memory), which required that the chip be removed from circuit and put into
an infrared light box which caused the light-sensitive cells on the memory portion of the chip to be reset. Once erased, the
memory could be reprogrammed. Flash memory—used on third-generation microcontrollers onward—behaves very much like
a RAM and is thus far easier to use and reuse: with careful design the flash memory can be updated in place (i.e., without
physically removing the microcontroller from the application circuit).

10

CHAPTER 1 © A BRIEF HISTORY OF MICROCONTROLLERS

Summary

The application of the RISC philosophy to computers in general enabled a big step up in computer performance,
and when used in the AVR family, it made it possible to offer a highly performing processor core that could be
common throughout the extensive AVR product range.

The advent of the microcontroller truly revolutionized the consumer electronics field, and many others
(such as the automotive field). The availability of microcontrollers also facilitated the creation of whole new
industries and classes of devices—such as GPS (global positioning system) receivers and MP3 players.

So, now that you know why you should be interested in microcontrollers, and why AVRs are such a good
entryway into this fascinating subject—it’s time to start getting our hands dirty with some practical work!

Coming Up Next

Building our AVR test bed and development system. Putting together the basic tools and equipment we need to
get going.

11

CHAPTER 2

Building Our AVR Test Bed

We're going to call it our AVR test bed but really, it’s a lot of things rolled into one. It provides a means of trying
out the project ideas in this book, it provides a way to upload your software into your AVR chip, and it gives you
a place to try out your own ideas, based on this book’s projects, or the completely new ones you're bound to
have before long.

In this chapter we’ll look at the details of the test bed, tell you what you need to get to build it, and give you
detailed instructions on how to build and test it. Testing a test bed, now, there’s a challenge!

Test Bed Details

The AVR test bed is really our development system—testing is only part of what it does for us. The test bed is to be
built around a prototyping breadboard: if you're new to the idea of a breadboard, read through Appendix C which
gives you an initial walk through what a breadboard is and what it can do for you.

The main purposes of the test bed are

e To provide an easy to use and fully functional AVR programmer that is compatible with
the Arduino software suite.

e To host the AVR processor and provide permanent wiring to interface it to the AVR
programmer.

e To provide a logic level (not RS-232) serial interface that allows your AVR projects to talk
back to your desktop machine without having the need to use a conventional serial port.

e To provide a suitable power supply for AVR projects.

Using this rig, you can create and debug your AVR programs and get to a final configuration of the hardware
for your project. Once you have a final working version of the hardware and software for your project and have
installed your software into the AVR chip, your computer and the AVR are disconnected. You build
permanent project board and that particular AVR goes off to operate completely separately, forever. In other
words, once the desktop computer has served its purpose as a development and programming platform, your
AVR project is completely independent.

Test Bed Ingredients

It’s likely that you will already have many of the tools, and maybe even some of the parts, you need to build your
test bed. For the rest, the pieces you need to get are all widely available; in most locales you can get them from
reasonably local stores, but if not, you can get any of them from multiple sources on the Internet.

13

CHAPTER 2 * BUILDING OUR AVR TEST BED

A Desktop Computer

Preferably this will be a machine that is exclusively yours, or one that you can use whenever you are able to
work on your projects. The beauty of this requirement is that it does not need to be a fast machine; provided
it still works reliably, an old “chuggabox” will do. As compared to modern office applications, the demands
that the Arduino software puts on a machine are not all that heavy. The file sets involved are all small by
today’s standards, the software sets to install are not big, and the central processing unit (CPU) demands are
comparatively light, so an old system might be perfectly suitable.

Although you don’t need the latest and greatest hardware, you should make sure that the system you use
is up to date on all required operating system updates and security enhancements before you begin using the
machine. Some of the features a development system requires may be missing from a machine with outdated
system software. On an Apple machine you will need to be using an up-to-date Mac OS X installation. For
Windows, you will need to be on at least Windows XP with Service Pack 3, or an up-to-date installation of Vista
or Windows 7. Linux versions are less critical; however, your installed kernel version should not be more than a
couple of years old.

Tip Use the command line uname -v to see the build date of your currently in-use Linux kernel.

The machine you use must have a spare USB port (USB2 for preference, but in most cases I think USB1 will
work too): any machine made post-millennium should have this. To work well, the system you use should have
1 gigabyte (GB) of RAM memory or more (especially if you are running Windows). If you're a patient person, you
can get away with less, but don’t expect anything to happen quickly. Using an old machine has the advantage that
your main desktop can be used concurrently for other things (or by other people) while you are doing AVR stuff.

I used to use my main desktop for AVR work, but now I use an old laptop with a 15-inch screen, 1 GB of memory,
and a 1.7 gigahertz (Ghz) processor, which works perfectly well. You'll need a maximum 300 megabytes of free
disk space to install everything required.

If you don’t have a suitable old machine of your own, you're likely to find someone on your local Freecycle
group offering an obsolete machine for free: find your nearest Freecycle group by visiting www. freecycle.org/
which lists the huge number of Freecycles sites around the world. Failing that, Internet auction sites such as eBay
and Craigslist, for example, are usually awash with old machines selling for minimal prices (but be sure to check
you are buying a known working machine; also precheck the shipping and packing charges of a “cheap” purchase
before bidding or buying).

Finally, if you are reusing or buying an older machine to be your development machine it’s always worth
looking for, or asking for, the installation disks that originally came with it. Reinstalling any system from scratch
is a sure way to get it back to its maximum possible performance. All computer systems get slower as they get
older-nothing to do with the hardware, it’s just that various aspects of the operating system—such as file system
performance—degrade as more software is installed and removed and more files accumulate on the hard drive.
I have always found Windows systems to be especially prone to this syndrome.

If you are planning to reinstall the operating system on your development machine, make absolutely sure
before you begin that you have any special driver installation kits you may need (e.g., check to see if the system
has a graphics card or a network card in it which needs its own special driver installing). Also, make sure you
have a way to reinstall your security software (virus protection software): an unprotected machine that has been
installed from an old version of an operating system kit is very vulnerable. A wise precaution is to take a complete
image backup' (don't just save all the files) of the hard drive before you begin the reinstallation. That way, if
something goes wrong, you at least have the option of putting the system back as it was. Products like Ghost and
Truelmage for Windows, SuperDuper or Retrospect for Mac OS, and Clonezilla or Partimage for Linux will all
perform image backups to an attached USB hard drive.

14

CHAPTER 2 © BUILDING OUR AVR TEST BED

Allow a realistic amount of time for a reinstallation. The reinstallation from the original installation disc may
not take more than an hour, but the subsequent cycle of automated patches and updates required to get your
system up to the latest revision can go on for many hours. . . or even days!

Summary List of Other Parts

In the following section, I detail each of the things that you'll need to build your test bed, but to begin, here is a
summary list of the other major pieces apart from a desktop computer:

e An AVR programmer.

e Anin-system programming (ISP) connector breakout board from Sparkfun—and some
0.1" header pins to solder onto it. We'll be looking at ISP in more detail in the section
“About In-System Programming.

e Abreadboard to build up your circuits upon (see appendix A for basic information about
breadboards, and see the section “Breadboard” for specifics in this application).

e A power supply providing an output of +5 volts DC. This power supply should be capable
of providing at least 1 amp at its output. It’s possible you may already have a suitable unit
left over from some old piece of equipment.

e ATTLlevel serial port USB dongle (see the section “TTL Level Serial Port”). If your AVR
programmer has such a port already, as the Pololu AVR programmer does, then it’s not
essential that you get one. You might like to get one of these anyway if you plan to build
permanent versions of any of the projects in this book. You probably won’t want to use
your test bed to communicate with your permanent projects forever.

e Aninline fuse holder and a suitable quick-blow glass fuse (see more details later in this
chapter in the section “A +5V-Regulated Supply”).

e The Arduino software installation kit, which you can download from www.arduino.org.
Get the latest available version for your chosen platform (Mac, Linux, Windows). The
examples in this book all use Arduino version 1.0.

e Atleast one ATmega328 (a 28-pin device), but you'll probably want to buy two or three
because it’s likely you'll want to build up more than one project at a time; also, if you're
experimenting with electronics there always comes a time when you make a mistake
and need a spare.

Figure 2-1 shows the basic test bed. As you can see, the AVR chip is placed onto a breadboard. At the top left
of the picture, the AVR breakout board allows the programmer to connect to the board. The other end of the AVR
programmer connects to your computer via a USB cable: in this picture, the programmer cable is not
yet connected.

'If you are unfamiliar with the concept of an image backup, Wikipedia can tell you what you need to know. Look at the
Wikipedia entry for “Disk Image.”

15

CHAPTER 2 * BUILDING OUR AVR TEST BED

M
g ‘ ‘reakout

RESET(+) g
HOSTE) | | B

"b|llll.

"!'

Figure 2-1. Basic test bed

The “Piece Parts” section lists each of the required items: you'll see why you need each one, what it does
for you, where you might buy it, and how you can install it.

Toolkit: Required Items

As in any endeavor, it’s essential to have the right tools to do a good job. In addition to the tools found in most
homes (general-purpose screwdrivers, pliers, a set of standard-size twist drills and perhaps an electric drill,
hammers, etc.), the following list includes the minimum specialist toolkit I would recommend for the electronic
projects in this book:

e A soldering iron with interchangeable tip: You will need one fine tip for small-scale
electronics work and one larger tip for things like soldering larger power supply leads,
and so on. A medium-size tip may possibly be usable for both purposes, but it will often
make soldering tasks harder and more error-prone than they need to be. The soldering
iron should be an electric type, with a heating element of between 20 and 40 watts.
Gas-powered soldering irons are great for many general tasks, but they are harder to use
successfully for this kind of work.

e Don't forget you'll need solder too. Lead-free solder (the healthiest kind to use) is
available in reels and tubes from all electronics hobby stores.

e A pair of fine long-nosed (sometimes called needle-nosed) pliers: What you're looking for
is something that makes it easy to pick up a thin sewing needle. If your pliers can do that,
then they are the right ones for the job.

16

CHAPTER 2 © BUILDING OUR AVR TEST BED

e A pair of small wire cutters: These need to be small enough for the tip of their cutting
points to get into fairly small spaces but beefy enough to be able to cut through a bobby
pin (also called a hair-grip) without making your hand hurt.

e A small blade-headed electrical screwdriver (as shown in Figure 2-2) and a small
cross-headed (a.k.a. Phillips head) screwdriver: The electrical screwdrivers are usually
insulated all the way up the shank with a plastic handle (often having a neon lamp
embedded inside the handle-as in the illustration that follows,—allowing it to be used
as an AC voltage indicator, as per instructions that will come with it).

Figure 2-2. Small screwdriver

e A general-purpose digital voltmeter (DVM)—also sold as a “digital multimeter”: Almost
any modern DVM will be suitable for our purposes. It should be capable of measuring the
following quantities:

e DColts from 0 to 600.

e ACvolts from 0 to 600.

e Resistance from 0 ohms to 20 megohms.
e Amps from 0 to 10 amps.

e Itwould be useful for it to have a continuity test facility, whereby it bleeps if there is direct
contact between two tested points. I think any DVM now on sale should meet these needs.

e A craft knife of some sort, preferably with safety features such as a retractable blade.
e Some 1/2" (12mm)- or 1" (25mm)-wide electrical tape.

e A set of miniature twist drills in sizes less than found in most DIY (do-It-Yourself) drill
kits. These are usually sold as “mini HSS drill” sets. You will need sizes from 1/8" (about
3mm) downwards. Such kits are usually quite cheap and are readily available from online
sources like Amazon, model-making shops, and larger DIY outlets.

e A “bits box” containing various sizes of small nuts, bolts, and self-tapping screws: You
can usually buy a mixed bits box at your local hardware store or electronics shop. Many
people keep a bits box, so there may be something suitable in your house already.

Toolkit: Optional Items

As well as the preceding items, which you will definitely need, a number of other items may be useful to you,
though they are not essential for every reader.

17

CHAPTER 2 © BUILDING OUR AVR TEST BED

o A “helping hands” work holder (see Figure 2-3): These come in various shapes and sizes, they
are sold by electronics hobby stores, handicrafts stores and various other outlets. Essentially,
these are stands with a number of alligator clips mounted on arms. Apart from the base
(usually quite a heavy thing to provide stability) everything else can be adjusted to almost
any position you want. This allows you to hold your circuit board or project in just the right
position for you do some soldering or make various adjustments to it; some (like the one in
Figure 2-3) come with extra refinements like a soldering iron holder and a magnifying glass
with an integral light. This gives superb close-up visibility of the job under way.

Figure 2-3. Helping hands (image courtesy of Jinhua Top Optical Instrument Co. Ltd.)

e Alogic probe: This is a handy little device that can tell you whether the probed point in
a circuit is at logic high, logic low, or pulsing between the two. Handy sometimes, even
though not essential equipment.

e Component grab bags: Most electronics outlets do bags of LEDs, resistors and capacitors,
and other components. Each bag contains a selection of one type of component. It’s
usually a lot cheaper to get these than to buy the same components individually. You may
not have a use for so many components immediately, but it’s very handy to have a few
spare components around when you are experimenting and trying out new ideas.

Piece Parts

In the following sections we look at each of the piece parts of the test bed in more detail.

18

CHAPTER 2 © BUILDING OUR AVR TEST BED

Breadboard

Remember, Appendix A provides an introduction to electronics, and Appendix C provides an introduction to
breadboards.

The breadboard is the indispensable foundation for the test bed. It allows you to plug in components and
make interconnections between them, without soldering. It’s also reusable. When you have finished developing,
proving, or understanding a circuit, you can just unplug everything and start again, using it for something new
and completely different!

Because no soldering is involved, you can make circuit wiring changes very quickly without risk to
components of overheating through repeated exposure to heat. However, it’s unlikely that you would ever want
to put a circuit into long-term use while it was still on a breadboard (though it has been done). Breadboards are
superb for on-the-fly designing and for getting your projects working right, but they are not space efficient.

Usually, once a project is working, you transfer it to a smaller, permanent board—either a solder strip board
or a printed circuit board that you might design with some piece of free software like Fritzing or Eagle. Look in the
appendixes for additional information.

The breadboard I used for my test bed rig is a fairly standard layout with 64 rows of pins, columns labeled
A through J, and power rails at each side. Some breadboards have slightly fewer rows, but this does not matter
for our purposes here: the majority of standard-size (as opposed to miniature) breadboards have the same
number of columns.

Breadboards need jumper wires, but few breadboards come with a supply of them, so you’ll need to make
or buy some. If you want to make your own breadboard jumpers you'll need some 22 or 23 AWG (0.65mm
diameter) insulated, solid core, not stranded, wire. This can be bought from any hobby electronics outlet.
Though it’s not essential, you may want to get several different colors, since this makes jumpers easier to
differentiate in more complex setups. If you're making your own jumpers, you'll probably want to buy about
ten feet (about three meters) of each color.

Many people prefer to buy ready-made jumpers which are widely available in boxed kits (look for
“Breadboard jumper kit”), providing various colors in various lengths.

A +5-Volt Regulated Supply

If you've been doing any kind of electronics previously, you may be lucky enough to have your own lab-grade
power supply (such as the one shown in Figure 2-4), in which case, you're all set.

© Thurlby K2module” @ Thurlby

current

nrn
imit u L’ L’

damping isolated —— veltage —— damping current

ﬁl l(\('I(Q

- output - estpat uulnul-l

sanse senso

pooegen wingin

Figure 2-4. Lab grade power supply

19

CHAPTER 2 * BUILDING OUR AVR TEST BED

Such a power supply will provide you with an adjustable, overload-protected power source. Often these
kinds of power supplies have multiple outputs (as in Figure 2-4) so that you can get, for example, +5 volts for the
logic circuits and also a separate +12-volt output for motors, relays, and so on.

However, lab supplies can be pretty expensive (though, as ever, look for bargains in online auctions), but
there are much cheaper alternatives: maybe something you already have will work?

Look around your home for “wall-wart” AC to DC power adaptors left over from a now defunct phone, PDA,
MP3 player, or similar devices. If you're home is anything like mine, you'll have some orphaned adaptors tucked
away somewhere. You're looking for one that gives an output of +5 volts DC, with at least 1 amp current. If you
find one with 2 or even 3 amps output capability, that’s even better.

If you're going the wall-wart route, you will need to add an inline fuse to the positive (+) lead to protect
yourself and your circuitry. Your usual electronics supplier should be able to supply you a spring-loaded inline
fuse holder that will hold a variety of small fuse sizes. You will need one that can hold 1-inch or 1.25-inch fuses
(in metric, the closest standard size is 20mm, which is fine).

Example suitable fuse holders are

e Digi-Key F1468-ND (United States).
e Maplin PC78 (UK).

Also, of course, you will need some fuses to put into this holder. These days such fuses are almost always
supplied in boxes of ten. There are two main flavors of fuse, slow-blow (sometimes called time-delay) fuses and
quick-blow fuses. We need to use the quick-blow type. You need a 1.25" (or 20mm) quick-blow fuse rated at 1.25
amps. Some of the later projects have additional power requirements and thus will require additional power
and fusing, but I will detail those in the descriptions of those particular projects. However, you might like to get a
couple of fuse holders and keep one for later.

So, back to the power supply: in my junk box I found an old Compaq iPAQ PDA (personal digital assistant)
power supply/charger (see Figure 2-5). This offers +5 volts DC output at 2 amps. So, I prepared it for use with my
test bed rig by doing the following:

1. Icut off the device-specific output plug.

Caution When you cut off the output plug, take care that there is no remaining charge in the power supply unit
(PSU). Make sure the device has been unplugged for at least five minutes, and if possible, when you cut the wires,
cut them one at a time. Also, always use cutters with insulated handles whenever dealing with electrics of any kind.
Always be mindful that most electronic circuits store some level of charge for some minutes after they are switched
off or disconnected.

2. Tused my DVM to identify which was the positive lead and which the negative (in the
case of this PSU, as in many others, the two wires look the same, or have only minute
differences). To identify the positive lead, set your DVM to its 20-volt DC range then
connect the positive probe (red) to one wire and the negative (black) wire to the other:

a. Ifyour DVM reads a negative voltage (e.g., “~5.1”) then the positive lead is the
one you've got connected to the black probe.

b. Ifyour DVM reads a positive voltage (e.g.,5.1”) then the positive lead is the one
you've got connected to the red probe.

3. linstalled my inline fuse holder in the positive lead (see the following illustration).

4. TImade neat solder ends on the output leads.

20

CHAPTER 2 © BUILDING OUR AVR TEST BED

Figure 2-5. A repurposed 5 volt supply

and voila! A high-quality +5V power supply for free (well, almost for free).

If you don’t have a suitable supply already hanging around to reuse, then you should be able to get one
cheaply from your usual electronics supplier. Many larger DIY stores (e.g., Home Depot in the United States, B&Q
in the UK, or your local equivalent) carry suitable products. Online auction sites offer a large number of suitable
new products, and there are always bargains to be had from people trying to sell off their surplus used PSUs from
lost or discarded gadgets.

Do make sure that any device you buy

e Isbeingsold as a working unit, not something in an unknown condition.

e Has an output of +5 volts DC (NOT AC).

e Has a regulated? output to ensure maximum smoothness of the voltage level.
e Can supply +5 volts at one amp (often written as “1@” or “1.0@"), or more.

e Has an output wire that you can cut into and replace the ending. Integrated supplies that
form a cradle for some other device are not usually so easily adapted to a new use.

And don'’t forget to buy the fuse holder (previously discussed) and a pack of correctly rated fuses too.

Depending on the thickness of the wires on the output of your power supply, you may need to solder some
22 AWG tails on them; these will more easily plug into the power rails on your test bed breadboard (see Figure 2-6)
making a secure power connection.

2Try to avoid PSUs that only offer only “rectified” output, since the output voltage may not be smooth enough for logic chip
applications. You need a supply with a “regulated” output, which gives a far more stable supply. PSU manufacturers usually
state on the product label if the output is regulated, or they may use the phrase “For ITE Equipment.” If neither of these appear
on the label, then it’s best to assume that the product concerned is not right for this usage.

21

CHAPTER 2 © BUILDING OUR AVR TEST BED

Figure 2-6. Power supply leads with breadboard-friendly tails added

Don’t forget to put some tape (or some shrink-wrap sleeve, if you have any) around the solder joints to

prevent any nasty accidents resulting from them shorting out to one another, or to other things.
The power from your +5V supply feeds onto the breadboard at the far end from the AVR chip (shown in

Figure 2-7). (Positive goes to the red, negative to the black.)

o
Lo WoOm«

®20a3,
'] ® s e
o & 303, ...::3
e 3
] b e 2 *o88s o
] @0 e‘D .
LA
e a s SNes cssss o B
a2 w3 L(ﬂ .
o e .
~ ® o0
. " ®e e g, ...::.}‘-'i .
L
LY o i LY
i weeee, bl J)) g .

Figure 2-7. PSU attach points
Finally, we need to bridge and combine the various break points in the power rail around the breadboard. As

you can see in Figure 2-8 we do this by adding linking jumpers between the power rails on each side (the vertical
jumpers in this photo). We also add jumpers (the horizontal jumpers in the photo) to make sure both rails on both
sides of the breadboard are energized. All this happens half way along the breadboard, around position 32-34.

22

CHAPTER 2 © BUILDING OUR AVR TEST BED

...’...I
b ik
et ITTT
9311!"."
hadalITTT
ll...'.'
ﬂl.....'
".....'

Mﬁ;

Figure 2-8. Bridging and linking the power supply rails
Now, plug in your power supply to the wall socket. Connect your DVM (still on its 20V DC range) to a couple
of points on the breadboard, one +5V and one ground and make sure you are getting around about 5 volts. If you

have any problem setting up the power supply
e Checkto see if the fuse in your fuse holder is blown. If it is, look for a mistake in your
wiring on the breadboard, you should only have positive joined to positive and negative
to negative. With the power supply disconnected (and no components plugged onto the
breadboard) using the continuity test (beeper) facility of your DVM to see if there is any

connection between the positive and negative around the breadboard.

e Ifyour wiring is fine, make sure a good fuse is installed in the holder and attach your
DVM to the PSU outputs (be careful not to short them together) and make sure that you

still have +5 volts (give or take 0.2 volts) coming out of it.
If the PSU has its own separate mains fuse (some have an integral AC-side fuse), check

that it is okay.
If you can, try a different power supply.

The AVR Chip

To maintain simplicity and familiarity we're going to use the ATmega328 AVR MCU chip throughout this book
(or the low-power version ATmega328pu is also okay). You can buy the ATmega328 from many electronics

suppliers, for example
www . sparkfun.com/products/9061 (United States).

°
www . coolcomponents.co.uk/catalog/product_info.php?products_id=272 (UK).

e Various international eBay vendors.
We are using the ATmega328 because it’s an easily obtainable and capable device with lots of useful features

and I/0, and it has 32 kilobytes of program memory as well as RAM and flash memory for software to use. It’s also

fully qualified to work with the Arduino software development environment that I use throughout this book.
Once you get confident enough to branch out on your own a bit, you might want, for a few simpler projects,

to try using an AVR ATTINY85 instead. The TINY85 is also widely available
www. sparkfun.com/products/9378 (United States).

[]
www. rapidonline.com (use order code 73-5122) (UK).

23

e Various eBay vendors.

CHAPTER 2 * BUILDING OUR AVR TEST BED

The TINY85 has only 8 Kbytes of program memory, and 512 bytes of internal RAM, so it has its limitations.
However, it can do more than you might at first think.

Our concentration is going to be on the ATmega328 and you'll see how it fits onto the test bed rig in just a
little while.

AVR ISP Programmer

There are two ways to install the software you create into your AVR chip.
e Parallel programming.
e Serial programming.

The process of installing your software into the chip is usually called uploading, and we say that we are
programming the chip.

Programming in Parallel

Parallel programming is a technique in which the programmer connects with all the pins of the AVR processor
and treats it almost as if it were just a memory chip that it was writing data into. The programmer drives the
whole process and the AVR processor remains inert until the programmer is disconnected. Parallel programming
is done by multifunction programmer boards, mainly the ones offered by Atmel such as the STK500. The STK500
offers all kinds of facilities for interrogating, diagnosing, and probing a large variety of AVR microcontrollers. It
also offers a number of useful development system capabilities; for example, it has a bank of LEDs and a bank
of push buttons. It also has a full RS-232 port that can interface directly to a desktop machine. Additionally, the
STK500 has a number of other facilities that can be very useful in hardware and software development.

The main downside to using parallel programming is that-in most cases—you have to unplug the AVR chip
from your circuit, plug it into a programmer board, program it, remove it from the programmer and then move
it back to your circuit every time you want to update the code! All that (especially when you are developing or
debugging your code) gets to be a real chore very quickly and is very prone to mishaps such as bending chip pins
or plugging chips in wrongly, resulting in damage to the chips.

So, the STK 500 is an excellent product and you can buy it from many of the same sources as you would
buy AVR chips, but it is not a cheap product and—although I considered using it as the test bed platform for this
book—TI have taken the view that it’s very much overkill and anyway it’s not especially suitable for our purposes.
I just want you to program the AVR as cheaply and effectively as possible using a desktop machine. So, you will
be using the other principal AVR programming method.

About In-System Programming

In-system programming (ISP) is the means by which you can upload your developed code into your AVR
microcontroller while your AVR is still installed in its application circuit. A special interface allows an ISP device
(a much simpler beast than the parallel programmer) to send blocks of data to the AVR, and the AVR programs
the uploaded code into itselfa little at a time. This method is slower than parallel programming, but the kit
to do it is quite a lot cheaper and it does actually work out faster, because you're not swapping the chip from
your application circuit to your programmer all the time. The ISP route is a lot faster and more practical for
development work.
The setup we're using allows you to use ISP to upload software into the AVR chip, in situ, on the breadboard.
You can update your software without removing your MCU chip from the board. It gets reprogrammed where it sits.
The next diagram gives you the general idea of the set of signals needed to implement ISP.

24

CHAPTER 2 © BUILDING OUR AVR TEST BED

T VCC (+5V)
vCe VCC

10K %
RESET

100nF

RESET

L
Lo

GND
i

SCK SCK
MISO MISO
MoSI MOSI

AVR

Figure 2-9. AVR ISP hook-up signals

You'll find more details about this hook-up a little later in this section, but as you can see, it uses just four
signals (plus VCC and ground) from the programmer to the AVR chip to allow programming.

e MOSIL
e SCK.

e RESET.
e MISO.

e VDD (+5volts).
e Ground.

Using the first four of these signals in a particular protocol, ISP allows the programmer to upload data into
the MCU'’s program memory. The protocol consists of holding the RESET pin active (i.e. to a logic low), and then
essentially using the serial clock (SCK) and memory serial in (MOSI) and memory serial out (MISO) as a serial
port to upload new contents into an internal buffer. The AVR itself then writes the uploaded data into its own
flash memory. There is a little more to it than this, but that’s basically how it works. See the data sheet of any ISP
capable AVR chip for full details.

All AVR microcontrollers, from the small 8-pin chips to the high-end 40-pin devices, have these four signals
and all of them can be programmed in this way. With this basic setup you can hook your ISP programmer up to
any AVR. This makes it easy to provide an ISP connection on all your projects so that you can update the firmware
in them whenever you need to.

You may already have used ISP without realizing it, because Arduino boards incorporate an ISP programmer.
However, that means that every time you buy an Arduino board you're buying yet another programmer, buried
somewhere there in the Arduino board. Our approach in this book is a little different.

Atmel itself has offered several ISP programmers for AVR, the main current one is called (not unreasonably)
the AVRISP MKII programmer (usually abbreviated to AVRISP2). Atmel’s original product has been widely copied
and cloned (I guess Atmel doesn’t mind, as long as it sells more microcontroller chips) which means there are a

25

CHAPTER 2 © BUILDING OUR AVR TEST BED

huge number of programmers around which are called AVRISP2 programmers: this class of programmer is very
often abbreviated in configuration files and documentation to “AVRISP2.” As there are so many, I have only been
able to test or try a handful.

The original Atmel programmer works, of course, flawlessly but is often offered at more than twice the price of
some of the other products that do the same job. I tried three cheap imported AVRISP2 clones. Two of these three
worked fine, one seemed to have some problems; it failed to program correctly on about 30% of the attempts.

Then, I found the Pololu programmer . ..

I have elected, for this book, to recommend the Pololu USB AVR programmer.® It simply connects to your
desktop via any available USB port and you can use it with any mainstream desktop machine (Mac or PC,
Windows XP or later, Mac OS X, or Linux). The Pololu programmer (which comes ready to use, it’s not a kit like
some other programmers) is comparatively cheap when compared to Atmel’s own AVRISP2 programmer and
works in just the same way, being compatible in every way. It offers an extra logic level serial port that can be very
useful.* Figure 2-10 (courtesy of Pololu) shows the programmer (front and back view).

(T YN B T P

® ® ® & O VBUS (+5V)
A TX RX GND

PGMO3A ~

0J1345

Pololu Engage Your Brain
©2009 - www.pololu.com

®
=
o
L
®
!_
=
(=
o

osSiIN® @ (@ Lsy

Figure 2-10. Pololu USB/AVR programmer (courtesy of Pololu)

As you could infer from the signal names in the photo, the six-way ISP cable that comes from the
programmer to your circuit (your test bed rig) carries the six signals needed for ISP.

Ineed to stress here that if, for any reason, you want to use a different AVRISP2 compatible programmer, or
an Atmel original, that is fine, it won’t make much difference except in relatively unimportant areas—which I will
point out as we go through the rest of the book.

*In the interests of transparency, I have no financial, personal, or business connection with Pololu, other than as a satisfied
customer.

“Although the mainstream functions of the Pololu programmer can all be used on a Mac, Mac OS X system users may have to
download additional, unsupported software to use the TTL level serial port. See the Mac-specific sections of the product
description at www.pololu.com/catalog/product/1300.

26

CHAPTER 2 © BUILDING OUR AVR TEST BED

As Figure 2-10 shows, as well as having the six-way ribbon cable to provide the ISP signals, the Pololu
programmer board also offers some additional signals. These are as follows:

e B & A:These are extra logic level signals that you can manipulate via the modem signals
of the serial port (RTS, DTR, etc.). These signals give you additional I/0O lines that you can
use to control something from the desktop. They seem like they would one day be useful,
though I haven’t yet found a use as yet.

e TX & RX: These are the logic level serial port transmit and receive lines. These are suitable
for direct connection to the serial of the AVR chip. See the section “TTL Serial Port”

e GND (Ground): This gives access to the ground plane of the board, and by extension the
ground plane of the desktop. It is a requirement that the desktop machine, programmer,
and test bed grounds be connected to one another prior to any other connections being
made. If the grounds are not common, damage might occur to either or both of them.
Usually this is not a problem because the ground link between the two devices is made
through the ground wire contained in the ribbon cable and the USB cable. So, although
this is something always to bear in mind, it’s not usually an issue.

e VBus (+5V): This gives access to the +5V supply that the programmer gets via its USB
cable. In very limited circumstances you could use this to power your project, but only if
your project required a very small amount of current (<100ma). This is different from the
+5V supply you need to provide to your test bed breadboard-as previously detailed.

Figure 2-11 shows the programmer connected up: the mini-USB cable going off to the desktop at the left
hand, and the ribbon cable going off to the test bed at the right. The programmer is supplied as an unboxed but
otherwise ready-to-use board. Along with it you will get the six-way ISP ribbon cable and a USB (form A plug to
mini plug) cable.

Figure 2-11. Pololu programmer connected

27

CHAPTER 2 © BUILDING OUR AVR TEST BED

Although the programmer is perfectly usable as delivered, I wanted to put it in a box. Call me a worrier if you
will, but having a bare PCB (printed circuit board) flapping around on a work surface that also contains lots of other
electronic bits and pieces just seems like tempting fate to me. I'll cover the boxing exercise in the next section.

Once you have obtained your programmer (and boxed it-if you are going to; remember, it’s not 100%
necessary, just precautionary) you'll need to install it. The programmer’s home page (www.pololu.com/catalog/
product/1300) links to a list of resources, among which is an excellent user manual which includes detailed
installation and configuration instructions for each of the supported platforms. Also there is an installation kit for
Windows (XP, Vista, and 7). Linux and Mac systems do not need an installation kit; just follow the configuration
instructions in the Pololu documentation.

Boxing the Programmer

This section describes how I boxed the programmer. This step is optional: if you are happy with your programmer
as delivered, please skip this section.

I got a small semitransparent blue plastic project box and built the programmer into it. The style of box looks
pretty classy, but the main reason for using it is that I can still see the LED indicators on the programmer board,
which is sometimes essential to be able to know what'’s going on.

To continue to have access to the additional connections offered by the programmer (see Figure 2-10) I
extended the various Pololu board connections out to a small-size screw connector block on the outside of the
box. Following is the process I used, accompanied by illustrations of each step.

This is the box I used. It's a Hammond
1593]JTBU, which you can get from

o Newark/Element 14 (in the United
States): its stock number is
05N0023.

e Farnell.com (UK & Europe): its
order number 1876933.

The box external measurements are

o 1.1" high by 2.6" square or
e 28mm high by 66mm square

Figure 2-12.

28

CHAPTER 2 © BUILDING OUR AVR TEST BED

Figure 2-13.

This photo shows the innards of the

box. It has lots of mounting points (and
comes with two self-tapping screws for
these mounting points) so that if your
programmer board has fixing holes

in ityou could probably find a way to
mount it on one or more of these points.
Measure carefully though; there is not
much height to play with in this particular
box, so you may need a taller one.

The Pololu programmer has no
mounting holes. Originally, I thought I
would drill some very small holes in the
base of the box, thread a thin cable tie
around the underside of the box, and lash
the programmer into the base of the box
with that the cable.

But then, a stroke of luck. . .

Figure 2-14.

It turns out that the Polulu programmer
(shown here with TX and RX wires
already attached) slots in exactly and
tightly between the box edge and one of
the screw pillars.

So, now, it’s just a matter of drilling a
hole in the box side, large enough for the
mini-USB plug to pass through snugly.

I mark the approximate center of the
programmer’s USB socket (the box being
semitransparent, I can easily see where
that is). I then take the programmer out
and put it out of the way.

I put the box into something to hold
it steady (use a clamp or a vise) and I drill
a0.3" hole (8mm) at the marked point.

29

CHAPTER 2 © BUILDING OUR AVR TEST BED

Figure 2-15.

I then use a small file to elongate the hole
vertically, until I can get the mini-USB
plug at least partly through it.

The hole should not be too big as
it’s useful for the plug to help anchor the
programmer board inside the box.

Figure 2-16.

If you have a selection of USB cables to
choose from, choose the one with the most
regularly shaped, smallest plug hood. It
will make this part easier. The plug I used
required a cutout that was quite tricky!

This picture shows what the cutouts
look like when done. For my setup the
combination of the pillar and the USB
connector hold the board very securely.
However, in other circumstances you may
need to add a very thin plastic tie-wrap
around the board to lash it to the side of
the box or to the pillar.

Next, I use the flat side of the file
to create an exit in the box lip for the
programmer’s ribbon cable. For the
Pololu’s six-way cable, and in this box,
this needs to be about 0.3" (8mm) wide
and 0.1" (2.5mm) deep: however, you
should adapt it if using a different box or a
different programmer.

30

CHAPTER 2 © BUILDING OUR AVR TEST BED

The essential thing for the ribbon cable
cutout is that, with the lid on, the cable is
not overly loose, but also it’s not unduly
compressed by the box lid, which would
eventually cause problems—-even it didn’t
do so immediately.

I elected to put a tiny bit of tape
around the ribbon cable at this point, to
provide extra cushioning for the cable,
but also because the cable felt a little too
loose through the opening.

Figure 2-17.

Next, I took a five-way section of
small-size screw terminal and, marking
the fixing points, drilled two holes large
enough to fit some tiny nuts and bolts

to hold the terminal onto the side of the
case, at a height that would allow a cable
exit underneath it.

I drilled a 1/4" (6.5mm) hole under
the screw terminals, large enough to
comfortably get five small wires through.
I then fixed the screw terminal in place.

Figure 2-18.

31

CHAPTER 2 © BUILDING OUR AVR TEST BED

Figure 2-19.

Now, with the screw terminal in place
and the box prepared, I used a word
processor to create the labels that will go
onto the box lid so that it’s easy to see at a
glance what signal each terminal extends
out from the programmer:

¢« Gnd.
¢ RX.
o« TX.

Note The +5V VBus is not extended
out to the screw terminal, since | have
never had a use for it.

Figure 2-20.

The next step is to solder five wires onto
the programmer board, taking care not to
overheat it by holding the soldering iron
onto it for too long. The wires only need
to be a maximum of 6" (150mm) long.
On the subject of heat, it may
occur to you to wonder if there is any
potential heat problem with operating the
programmer in a closed box. Happily, no.
The programmer doesn’t generate any
significant amount of heat so this should
not be an issue.

32

CHAPTER 2 © BUILDING OUR AVR TEST BED

Figure 2-21.

Leaving quite a lot of length on each wire,
looped as shown in this picture, we now
terminate the wires in the order that we
listed previously (Gnd, RX, TX, A, B) onto
the underside of the screw terminals.
Depending on what kind of wire you
have used you may find that applying
a little solder to the wires at the screw
terminal ends makes it easier for the
screw to grip the wire.

Figure 2-22,

Finally, it’s time to reassemble the box.
Use the provided screws to secure

the lid-make sure the ribbon cable is
positioned correctly and that none of
the internal wires are caught by the lid
edge or the internal posts. Then, apply
the label strip to the lid to make it easy

to identify the screw terminal functions.
The label strip is simply an appropriately
sized text table from a word processor:
the table is printed out, cropped out

of the paper with scissors, and then
carefully fixed onto the box top with clear
scotch tape.

Now, your programmer is ready to
plug together with the other components
when they are ready—as shown in the
final picture.

Other Programmers

The numerous USB-attached ISP programmers are not the only option for programming your AVR. If you're on
an extremely tight budget, or using a computer with no USB ports, you can get a serial port programmer for about
$10 (delivered cost)-though it will be delivered as a kit you have to make up. An example of such a product is

www.adafruit.com/index.php?main_page=product_info&cPath=16&products id=26

This handy little device also uses the ISP programming method, but it uses your computer’s serial port rather
than USB-so it will probably be quite a lot slower—but, using the information available online and in this book,
you should be able to figure out how to make it work with the Arduino development environment.

33

CHAPTER 2 * BUILDING OUR AVR TEST BED

AVR ISP Programming Adaptor and Pin Headers

The ISP connector that comes as standard with all programmers features two closely parallel rows of pins (either
ten pins, or six pins, as in our Pololu example). If our test bed was a PCB then accommodating this connector
footprint would not be an issue, but as we know, it’s a breadboard. As Appendix A explains, it’s a feature of
breadboards that all closely spaced connections are connected in some way.

This means that we need to convert the footprint of the six-way (or perhaps ten-way if you are using a different
AVR ISP programmer) ribbon cable connector to a row of parallel pins suitable to plug into a breadboard.

Luckily, the Sparkfun people have seen this need and created the “AVR Programming Adaptor” (see
Figure 2-23). This is a little PCB that allows the plug from the programmer to be easily connected to the project
breadboard. As you can see from the initial photo of the adaptor, the board effectively converts the six-way or ten-
way ribbon cable connector from your ISP programmer to a single row of pins carrying the required ISP signals
(MOSI, MISO, RESET, etc.).

Figure 2-23. Sparkfun AVR programming adaptor

At the time of this writing, this adaptor is only available from Sparkfun (or its resellers around the world):
www . sparkfun.com/products/8508

Many of Sparkfun’s various distributors around the world also seem to stock it too. Click on the “distributors”
tab on Sparkfun’s home page to find your local outlet of Sparkfun products.
The pin headers can be obtained from most electronics suppliers, for example

e www.sparkfun.com/products/117 (United States).
e Maplin JW59P (UK).
e Your local electronic components supplier.

The AVR Programming Adaptor comes as just a PCB; so, we need to solder some pins from a pin header (like
the one shown in Figure 2-24) onto this board.

34

CHAPTER 2 © BUILDING OUR AVR TEST BED

Figure 2-24. Header pin strip

ing Adaptor

Assembling the Programm

We need to solder some header pins into the adaptor board. We're going to use some sections from a pin header,

in conjunction with the Sparkfun AVR Programming Adaptor board, as shown in Figure 2-25.

Figure 2-25. Adding header pins

35

CHAPTER 2 * BUILDING OUR AVR TEST BED

You'll find that with most pin headers, you can break off the number of pins you require quite easily by hand:
the plastic housing has snapping points between each pin position-but if you find this difficult you can use some
small cutters to make the breaks, though this can leave the pins a little loose in the plastic.

1. Start by breaking off two lots of three pins (or two lots of five pins if you have a ten-way
ISP ribbon cable if you're using a programmer with a ten-way cable). Then, also break
off one lot of six pins.

2. Putthe six-pin strip on the AVR breakout board’s underside, beneath the “Gnd, 5V,
MISO, SCK” labels. The longer length of the pins should be positioned straight down
from the underside of the board.

3. Now, solder the short ends of the pins which are poking through the PCB topside, as
in Figure 2-25.

4. Next, put your two three-pin groups into the top side of the board (or into the five-pin
groups above if you have a ten-way cable from your programmer), and solder on the
underside. Make sure there are no sneaky solder bridges shorting together any of the
soldered pins; remove any bridges you find. Figure 2-25 shows how the board looks
when the pins have been connected as described (in this case, for a six-pin cable).

5. Now, plug the completed breakout board assembly into your breadboard at row 16-as
shown in Figure 2-26.

Figure 2-26. The completed breakout board in place on the test bed breadboard

36

CHAPTER 2 © BUILDING OUR AVR TEST BED

Note Only the six pins on the edge of the board actually plug into the breadboard. The other set of pins only
connects to the programmer’s ribbon cable plug.

6. Next, plug the ribbon cable from the programmer into the adaptor board. Note that
the red wire side of the plug faces toward the pin names on the board (MOSI,
RESET, etc.).

7. Finally, you need to connect the breakout board to the microcontroller chip using
some breadboard jumpers that you will leave always connected. The jumpers need
to implement the connections shown back in Figure 2-9. As you can see, the idea is to
wire the ISP signals to the chip pins which have the same names. That’s what we do in
the next diagram~-Figure 2-27.

5V

JP2 v
®
mso[1 _ _2_]vce
sck | 3 _4_[mosl
RST | o5 @ @Obe] GND
ARISP GND
IC1
R1 1 23
. PC6(/RESET/PCINT14) PCO(ADCO/PCINTS) |-
10K PC1(ADC1/PCINTY) (2%
PC2(ADC2/PCINT10) (2>
PC3(ADC3/PCINTIT) 25
PCA4(ADC4/SDA/PCINT12) |21
o PC5(ADC5/SCLPCINT13) |28
-9 1 PBB(XTAL1/TOSC1/PCINTG)
10 | pR7(XTAL2/TOSC2/PCINT?))
PDO(RXD/PCINT1E) (2
PDI(TXD/PCINT17) (3
7 1 vee PD2(INTO/PCINT1E) |—2—
PD3(NT1/0C2B/PCINT19) >~
2 PDA(TO/XCK/PCINT20) |—2—
AVCC PDS5(T1/0COB/PCINT21) (-
21 | AREF PDG(AINO/OCOA/PCINT22) | —=
- PD7(AIN1/PCINT23) |2
S o0nF PBO(CP1/CLKO/PCINTO) |14
i PBI(OCIA/PCINTY) [—o-
AGND PB2(SS/OCIB/PCINT2) |—12
PB3(MOSI/OC2A/PCINT3) | —le
8 | GND PBA(ISO/PCINTA) (S
&b PB5(SCK/PCINTS)
ATMega328

Figure 2-27. Test bed: permanent connections to AVR breakout

37

CHAPTER 2 © BUILDING OUR AVR TEST BED

Figure 2-27 uses the AVR’s native pin names, not their Arduino names: we’ll investigate the difference
between native and Arduino pin names in the next chapter. Notice that we need R1 and C1 to ensure that the
reset is properly asserted at power on.

Figure 2-27 shows a photo of the completed breadboard setup: from the breakout board, permanent jumper
wires connect to the AVR chip. These permanent jumper wires are cut to size and striped using a Sharpie pen.
This is intended to make it easy to differentiate them from the temporary per-project wires we shall attach. The
resistor and capacitor permanently connected to pin 1 of the chip form the reset circuit.

The unstriped jumper wires bring five volts DC and ground connections to the ATmega328 AVR chip. On this
AVR chip, pins 7 and 20 connect to +5V, and pins 8 and 22 connect to ground. The little dot on the chip (at bottom
right Figure 2-28) shows which is pin 1: the pins then number from 1 to 28 around the chip in an anticlockwise
direction.

GND(+
su(L
;

Figure 2-28. Permanent jumper between AVR chip and breakout

Our PSU feeds +5 volts of power onto the far end of the breadboard—as we saw earlier.

One of the best aspects of ISP programming is that when the programmer is not active, it goes into an
electrically inert state that doesn’t ordinarily interfere with anything else. This means that you don’t need to
unplug the programmer from the breadboard if you don’t want to. I usually leave mine connected all the time
and it hasn’t caused a problem as yet.

38

CHAPTER 2 © BUILDING OUR AVR TEST BED

There’s one additional clarification to make about the signals on the ISP cable: we saw earlier that the Pololu
programmer board has a “+5V VBUS” connection, via which it is possible to draw a small amount of power,
derived from the USB port to which the programmer is connected. The AVR programmer adaptor also has a
connector which is marked “+5V” on the adaptor board,® but it is not the same thing.

The +5V connection on the adaptor is there to allow the programmer to sense whether the AVR circuit to
which it is connected is actually on-power. If the programmer does not “see” something in the region of +5V
coming in from the AVR circuit to which it is connected, it will not even attempt to carry out programming. Thus,
you should always make sure that your test bed rig is powered by your own +5V supply before attempting to carry
out any programming. Your test rig will not be able to obtain useful amounts of power from the programmer via
this line.

Test Bed Software—Installation and Setup

There’s little point in detailing the installation and setup instructions for the programmer here because you may
be using a different programmer from mine, but in any case all the programmers I have tried out come with setup
instructions (either on paper in the box with them, or via a web site link). The recommended Pololu programmer
is very well supported with an extensive downloadable user manual that details installation for all supported
platforms. There’s also a section on troubleshooting and alternate configurations and uses. The web pages for the
product provide a lot of additional material that may be of interest once you get into using the programmer.

Once you have your programmer installed, you will find that although it physically interfaces via USB, it
looks to your operating system like one or more additional serial ports (these are virtual serial ports). In the case
of the Pololu programmer (and others) there will actually be two new serial —one for the programmer and one for
the extra logic level serial port that it also provides.

During the installation of the programmer you may see messages which tell you the name of the new virtual
ports that are being created (e.g., on Linux and Mac OS X these will be something like /dev/ttyACMO, while on
Windows it will be COM3 or something similar. It’s not essential, but it’s a good idea to make a note of these port
names or numbers for later reference.

Once your programmer is installed, it’s time to move on to the software development environment setup.

Choosing the Software: Why Arduino?

As well as the ones to be described, there are a number of commercially available AVR software creation
packages, some offering programming languages such as BASIC. However, our main candidates for this book’s
software development environment were the two main free packages for AVR:

e Atmel’s AVRStudio is a free package that gives you the full range of C and assembly
language programming functions, including detailed access to the darker, seldom-used,
functional corners of the AVR chip. However, at present, AVRStudio runs only on
Windows PCs; there is no Mac or Linux version. For this reason we won'’t be using it in
this book. If you are using a Windows PC, you may want to download it to try out, here’s
the URL (uniform resource locator):

http://www.atmel.com/microsite/avr_studio_5/default.aspx

The issue here is really with Sparkfun’s labeling of this pin. It should more properly be marked as “VDD” or “VDD-Sense.”
Within the Pololu documentation this pin is always called VDD.

39

CHAPTER 2 * BUILDING OUR AVR TEST BED

e Arduino, also a completely free package, offers a development environment which uses a
language called Processing. This is syntactically similar to the C language, but it simplifies
code creation by hiding some of the more detailed aspects of C or those particular
to operating system and environment. Arduino also simplifies the use of I/O pins on
the AVR chip, making it exceptionally easy to use. The Arduino software development
environment is very capable, well documented, and easy to use, and it’s available for all
three major desktop environments: these are the main reasons we use it throughout
this book.

AVRStudio and the Arduino software can coexist on a single Windows PC quite happily without any
problem—just don’t try to use them simultaneously.

Both AVRStudio and Arduino feature an interactive development environment (IDE). Both packages include
the WinAVR C compiler, their main use of which is to take your source code and to compile a machine code
version of it. They write into an uploadable hexadecimal format file (see Wikipedia’'s “Intel Hex” page). Then, they
both use a program called AVRDude (formerly known as AVRprog) to do the actual upload of this hex file, via the
programmer, into your MCU chip. As it’s such a useful utility with so many options, you'll be looking at AVRDude
in a lot more detail in the next chapter.

Of course, most of the components described previously also do additional things, but this is the essence of
how both these packages work.

To obtain the Arduino software, go to the Arduino home page at www.arduino.org and get the latest
available version. You should also get the installation guide appropriate to your desktop type (Mac, Linux, or
Windows) from that same site. I won’t review the installation procedure here, because the platform-specific
install guides that accompany the kit download are very extensive and take you through the process step by step.
They provide information about what to do if things don’t go smoothly, but they usually do. I've never yet had a
problem installing an Arduino software kit.

Once installed, you need to make some customizations to allow the Arduino software to use your Pololu test
bed programmer: if you have elected to use a different programmer, the vendor should be able to tell you how to
do the equivalent of this customization. If you have used an AVRISP2 (or a clone product) then you should not
need to do anything extra.

For the Pololu programmer we need to modify two files:

e boards.txt
e programmers.txt

These files will be found under the installation location of the Arduino software, in file system locations
as follows:

e On Windows it’s the following, where xxx is the Arduino version number). Under the
installation location you will find a folder called hardware and under that will be another
folder called Arduino and inside that will be the two files noted above:

C:\Program Files\Arduino-xxx

e OnLinuxand on Mac OS X you'll find the base folder for Arduino at the following
location. Under the installation location you will find a folder called hardware and under
that will be another folder called Arduino and inside that will be the two files we need
to edit:

/usr/share/Arduino

As specified by Pololu at www.pololu.com/docs/0J17/3 you need to use a text editor (just a plain text editor
such as Notepad on Windows, or gedit or vi on Linux or Mac) to modify programmers.txt and boards. txt; you

40

CHAPTER 2 © BUILDING OUR AVR TEST BED

should make sure to save a copy of the original files (e.g., copy boards.txt to original boards.txt) in case you
make any mistakes in editing.

Add the following three lines to the end of programmers.txt. This enables the Arduino to know about the
AVRISP2 programmer and compatible programmers—such as the Pololu board and many others.

avrispv2.name=AVR ISP v2
avrispv2.communication=serial
avrispv2.protocol=avrispv2

Next, add the following lines at the bottom of the boards . txt file.’ You can download ready-made versions
of these files—with these additions already made—from the Pololu link quoted above.

G T
orangutan48.name=Pololu Baby Orangutan B-48 via Programmer
orangutan48.upload.using=avrispv2
orangutan48.upload.maximum_size=4096
orangutan48.build.mcu=atmega48

orangutan48.build.f cpu=20000000L
orangutan48.build.core=arduino
D T
orangutan168.name=Pololu Orangutan or 3pi robot w/ ATmegal68 via Programmer
orangutan168.upload.using=avrispv2
orangutan168.upload.maximum_size=16384
orangutan168.build.mcu=atmega168

orangutan168.build.f cpu=1000000L
orangutan168.build.core=arduino
AR R R A
orangutan328p.name=Pololu Orangutan or 3pi robot w/ ATmega328p via Programmer
orangutan328p.upload.using=avrispv2
orangutan328p.upload.maximum_size=32768
orangutan328p.build.mcu=atmega328p

orangutan328p.build.f cpu=1000000L
orangutan328p.build.core=arduino
HHHHHHEHEHEHE

Adding these lines adds three AVR chip definitions to the Arduino infrastructure: these are for ATmega48,
ATmegal68, and ATmega328 chips, respectively.

Note that each processor type has a build.f_cpu parameter; this specifies the clock speed at which the chip
is running. For a newly bought ATmega328 (or ATmega328p or ATmega328pu) that has never previously been
programmed, be sure that this line says:

e 1000000L (that’s a one followed by six zeroes and an L)as shown, and not
e 20000000L (that’s a two followed by seven zeroes and an L).

Although it can operate at up to 20 MHz, as shipped by Atmel, your AVR chip will be set to operate at its own
internal clock speed of just 1 MHz. You can change this—and will do so in the next chapter, where I will explain
what’s going on at that stage.

°Are you curious about why the name “Orangutan” appears in all this? Well, the whole reason Pololu produces an AVR
programmer is because its Orang-utan robotics controller uses an ATMEGA168 chip.

41

CHAPTER 2 * BUILDING OUR AVR TEST BED

Note Although you are not advised to use anything other than the quoted AVR chips, if you do find that you own
a variant of the ATmega328P (e.g., the ultra-low power version) or are using some other AVR than an ATmega168 or
328, you may need to make additions or modifications to AVRDude’s configuration file. You can find more information
about this area in the next chapter.

Once these file modifications have been made, you will need to close and then restart the Arduino IDE (if it
was already running).

Test Bed Testing

Now, you have built your development system hardware, installed the Pololu programmer, installed and set up
the Arduino environment, and it’s time to move on to the most exciting part, actually putting it to work.

Start up the Arduino software according to the instructions you saw at the end of the Arduino installation.
When Arduino has started up, click File » New to create a new sketch (yes, Arduino’s name for projects is
“sketches”).

In the white code space that appears within the Arduino window, type the following program code:

// Comments start with a "//"

#define THE_LED 8

// The above sets THE_LED to mean Arduino digital pin 8 (pin 14 on the chip - see Chapter 3)
void setup()

pinMode(THE_LED, OUTPUT);
}

void loop()
if (digitalRead(THE_LED)==1ow)

digitalWrite(THE_LED, high);
}
else
{

digitalWrite(THE_LED, low);

}
delay(4000);

You don’t need to understand the detail of this code at this point (this is something else you'll look at in the
next chapter); however, what this code should do is to slowly pulse pin 14 of the AVR chip low-high-low-high.
Make sure you type the code exactly as shown, with all capital letters precisely in the places shown and all
punctuation marks (especially the semicolons) in place. Be sure get the bracket types correct, don’t confuse
normal round brackets with curly brackets—although we use them both in programming, they mean different
things and are not interchangeable.

42

CHAPTER 2 © BUILDING OUR AVR TEST BED

When you have entered this code, your Arduino window should look pretty much like Figure 2-28:

When you are sure you have entered the code correctly click the verify button on the Arduino interface: This
has a v symbol on it (see top of Figure 2-29). This will compile the program but does not yet load it into your AVR
chip. If all is well, you should see the “Done compiling” message and some text that tells you how
big the compiled binary sketch is. However, if you have made a mistake in typing the program, you will see
an error message in red, indicating the nature of the error. This message will usually give you enough
information—especially in a small program like this one—to realize where the problem is.

e TestProg01| Arduino 1.0

00 |

TestProg0l
#define THE_LED 8 -

vold setup()
{

pinMode (THE_LED, OUTPUT);
vold loop(}
i

{
1

else

{

|
|
|
if [{digitalRead {THE_LED} == LOW) ‘
digitalWrite(THE_LED, HIGH); ‘
digitalWrite (THE_LED,LOW);

g |
delay (4000); |
} |

Binary sketch size: 1114 bytes (of a te maximum)

Figure 2-29. First test program

43

CHAPTER 2 * BUILDING OUR AVR TEST BED

When you have located and fixed any errors and can successfully process the file, save the sketch (project)
by clicking File » Save As. .. and then save the sketch as TestProg01 or some equivalent name that you will
remember for use in the next chapter.

Now, having compiled the program without errors, we can upload the program into your AVR chip! From
the Tools menu choose Board and from the list of possible boards choose the programmer whose details and
processor type you entered in the previous stage of the installation. In the case of the recommended programmer
you'd select Pololu Orangutan. . . 328p.

Next, from the Tools menu choose Serial Port and select the serial port to which your Pololu programmer is
attached. These selections only need to be made once; they will be maintained for all your subsequent Arduino
sessions unless you change them again or upgrade the Arduino software.

Now, the magic moment! When you press the =» button on the Arduino interface, you tell it to upload your
code into the AVR via the programmer. The first time through, this may take a minute or so, but you should see
the LEDs on the programmer flash rapidly when programming takes place. When programming completes, the
programmer goes to sleep again, and your program starts to run inside the AVR chip!

To verify the programming has worked, connect a DVM with ground probe to pin 8 of the chip, and the
positive probe to pin 14. You should see the voltage change between somewhere close to zero and something
close to 5 volts about every four seconds?

Congratulations! You've programmed your first AVR.

Oh no! It didn’t work? Try the following:

e With power off the test bed: Check that you have your AVR chip installed the right way
round. See Figure 2-28 which shows the dot on top of the chip indicating pin 1 at bottom
right in the photo.

e With power on: Look at the LEDs on the programmer board itself. Refer to the
documentation for your programmer as to what these mean. A steadily flashing light
usually means a problem. Fast flashing lights are good; they indicate programming activity.

e With power on: Double-check that your power supply is delivering 5 volts to your
breadboard—and that both the +5V and ground from your power supply are being
continued all the way along the power rails of the breadboard. Remember that many
breadboards have one or more breaks in their power supply rails up and down the
breadboard: these breaks will need jumpers installing to continue the power bus—as
Figure 2-30 (see also Figure 2-8).

eSS 37 39
aessesees

Figure 2-30. Breadboard power bus continuation jumpers

44

CHAPTER 2 © BUILDING OUR AVR TEST BED

e Check power connections: Make sure you have made the power connections to pins
7,8, 21, and 21 of the AVR chip as depicted in the circuit diagram of Figure 2-28 and use
your DVM (carefully) to check these pins to see that your chip is getting power. If it’s not,
check the inline fuse you fitted to the power supply. If it’s blown, you've probably made
a mistake in your wiring somewhere. For example check that you haven’t used a column
of holes on the breadboard for two different purposes. Check Appendix A for breadboard
details if you need to.

e With power off: Check and double-check the connections between your AVR chip and
the AVR breakout board against the diagram in Figure 2-28 make especially sure that
you have made the connections as shown between ground and VCC - without these, the
programmer will not be able to detect that the AVR is there.

e Upload your code again: If there is any possibility that your AVR chip has been used
before (i.e., it is known to be not new) then it is possible that it had been previously set by
some other usage to run at a different speed than the default 1 MHz we put in the
boards.txt file. Try editing the speed parameter to 8000000L (that’s eight with six
zeroes and an L, meaning 8 MHz) and then restart the Arduino program and try
uploading your code again.

e Double-check the programmer board: If, after checking thoroughly, you think your test
bed is all correct, then it’s possible that the problem is more with your programmer
board. Refer to the supplier’s web site for additional troubleshooting tools or techniques,
and for any possible required driver or software updates.

o Ifall else fails, don’t be downhearted: The next chapter contains some useful tips on
using the AVRDude program which will give you extra testing methods to try to determine
the problem.

TTL Level Serial Port

We saw previously that many AVRISP programmers offer a TTL level” serial port. But what does this mean

and why is it useful? As you probably know (especially if you've read Appendix B), the serial port on a desktop
computer uses a system that, ultimately, dates back to the 1960s, called RS-232. This system (which forms the
basis for the later serial communication standard CCIT V24) requires the translation of normal computer logical
levels (+5 volts for high and <1 volt for low) to greater voltages. Chips that do this voltage level translation, such as
the famous MAX232 series from Maxim semiconductor, translate a logic low into a +12-volt level and a logic high
into a -12V logic voltage. Those same chips also feature receivers that turn the received +12 volts and -12 volts
signals back into standard logic levels at the receiving end.

The purpose of this voltage translation is mainly to allow long cable runs for serial cables. If computer
cabling is run alongside mains cables and other sources of electrical noise (as it often is in the industrial settings
where serial communication was first used), then quite a lot of interference can be induced onto them. By
changing the voltage range of the signals from about 4.2 volts to about 24 volts, RS-232 greatly reduces the serial
data’s vulnerability to corruption during transit across long cables. RS-232 has a lot of value when long cables
are involved; however, long serial cables are now more or less a thing of the past, most communication between

"TTL stands for Transistor-Transistor Logic—a family of logic chips first launched by Texas Instruments in the mid-1960s.
These use a standardized system of two voltages to represent binary values 0 and 1—also called low and high. Consequently,
electronics that use the same voltage levels are often referred to as using TTL levels (shorthand). Many of the original TTL
format devices are still made, albeit using far more modern electronics to implement the same functions. Check out the
74HCO000 for just one example; it has exactly the same pin-out as the 7400 chip, which was launched in 1966.

45

CHAPTER 2 * BUILDING OUR AVR TEST BED

systems and peripherals now happens over newer and faster interconnects such as Ethernet over Cat5/Cat6
cables or Wi-Fi, and we also use shorter-haul connections such as USB or FireWire where previously we might
have used serial.

However, serial data communication is still a very handy way for MCU-based systems to talk to one another
and to larger machines. It's cheap, easy to use, and well understood. Better still, many MCU chips are equipped
with a TTL logic level serial port, so, in theory, no extra chips are needed on the project to allow it to exchange
messages with the outside world. I add “in theory” because, if the machine you want to talk to only has an RS-232
serial port, then you can’t directly connect. You'd have to add an RS-232 level translator chip to your project to
connect with it.

Please don’t ever try connecting an RS-232 port to a TTL level port: It’s a really good way to damage the
devices at both ends of the connection—perhaps irreparably.

For our purposes we only need short cable runs (perhaps three feet —or 900mm) between our MCU and
our desktop machine: Using TTL signaling levels over such a short distance should pose no problems, in most
circumstances. Fewer and fewer desktop machines now feature a serial port, and even on those that do, the
port will be using RS-232. So, how do we get a TTL level serial port on a desktop machine? As ever, technology
comes to the rescue here. You can buy, very cheaply from some Asia-Pac vendors, a USB dongle for your desktop
machine that offers the following functionality:

e The hardware (inside the USB plug) to implement a new virtual serial port such as COM4
(Windows) or /dev/ttyUSBO (Mac and Linux). This pretends to be a real serial port, which
means you can talk to it through a terminal emulator such as Hyperterm (bundled with
every version of Windows since forever-though not with Windows 7) and Minicom or
Screen on a Linux system or Terminal.app on a Mac.

e TTL data send and receive wires that you CAN safely connect directly to your AVR’s
equivalents (TX to RX in each case) as in Figure 2-31.

X
R TX from MCU
LXQ\ M
~— RXto M

Ground
MCU Subsystem Groun

R~ ‘
Figure 2-31. TTL level serial dongle to MCU connections

The USB plug (electronics inside) plugs into an unused USB port on your desktop machine. The ground
connection is common between the dongle and the MCU board (and should always be made first). Then, the
dongle’s transmit (TX) line goes to the MCU's receive (RX) line, and vice versa.

Of course, because your operating system sees the device as a standard serial port, in addition to
communicating using typed commands in a terminal emulator, you can also create software on the desktop side
(e.g., with the Arduino IDE) to talk to your AVR project.

We'll be making regular use of the TTL level serial connection in the “Projects” section of this book.

46

CHAPTER 2 © BUILDING OUR AVR TEST BED

Summary

In this chapter you have looked at the various materials and methods needed to construct our “test bed rig” You
looked at the various parts needed and we saw how to put them together to make what you need. You've seen
how you can use the test bed rig to program a simple program into the AVR and how to make sure it works. You've
also looked in detail at how an AVR gets programmed and finally at how you can use the TTL serial channel
provided by the programmer to simply allow your AVR application to talk to your desktop computer.

If you're new to this whole field you may well have found this section heavy going—there is a lot to take in
here. However, the good thing is, you're still here and still reading. So take a breather and then let’s continue with
some more steps into MCU-land!

Coming Up Next

Arduino and the Naked AVR: we find out how to use a bare AVR with software meant for an Arduino.

47

CHAPTER 3

Arduino and the Naked AVR

In the introduction we looked at the trade-offs involved in using just AVR chips for projects as opposed to a
packaged AVR-centric system such as Arduino.

The essential logic is this: MCU (MicroController Unit) chips are available very cheaply and so it’s
viable to use them, in even the simplest of projects, to add functionality and flexibility you could never get from
anon-MCU approach.

Packaged systems intentionally abstract the core hardware; the stated aim of many of them is to attract
people with more interest in creativity than electronics. They do this by abstracting the core computing function
as a black box. This highly laudable intent has worked! There are now many thousands of people using Arduino
and similar systems who would never have previously thought of themselves as electronics enthusiasts or
programmers. The people who put together Arduino, in particular, should be lauded from the rooftops; they
found a way to bridge the creative and technical worlds in a way that I believe to be radical and truly new. In
the same way that we now hear famous physicists saying they were hooked into science via watching the Apollo
Moon landings as kids, I think we’ll hear the designers of future technological wonders say that, for them, it all
started with an Arduino!

Using a packaged system for simple projects can be overkill, and the costs of that overkill can mount up
if you're doing lots of small projects. Looking at published projects that use an Arduino Duemilanove and a
protoshield to do time control of one solitary room light, you do have to wonder if, for those who err more toward
the technical side, the packaged approach can be taken too far!

This book contends that, for those who already have some electronics knowledge, and those who are willing
to learn, it’s possible to get the best of both worlds: we can reap the benefits of a packaged approach to software
but be able to build projects with hardware that is suited exactly to the purpose and that we understand more
fully. The electronics knowledge required is not very heavy and the appendices of this book are intended to get
you started in various areas that may be partly or completely new to you.

In the last chapter we saw how to put together a test bed rig that we can use for developing and testing
projects. In this chapter we look at some detailed differences between implementing circuits with and without an
MCU. Then, we look at some basic things you need to know about AVR chips. Finally, we look in detail at how the
various elements of the Arduino IDE and that test bed rig function together.

Comparing Approaches

There are few projects for which you could use an AVR alone. Figure 3-1 probably represents a minimal
configuration.

49

CHAPTER 3 * ARDUINO AND THE NAKED AVR

+5V (approx)
10K
7N 1Naoot 1 | pB5/RESET vee
2 pp3 PB2
N LED
6 Volt Battery —— —— ATTINY13
|
_ 3lpps PB1
——100 nF
4 | GND PBO

330R

Figure 3-1. A minimal LED flasher circuit using an AVR

Figure 3-1 shows an AVR circuit that could flash an LED. There’s no need to build this circuit, but let’s just
run through its important points.

e The circuit is powered from a 6-volt battery; and because of the 1n4001 diode this is
dropped to about 5.4 volts. This is okay because most (but not all) AVRs can operate from
supply voltages between 1.8 volts and 5.5 volts. Always check the data sheet for your

device for the power supply voltage limits (maximum and minimum).

e The AVR depicted is an entry-level ATTINY13 device which comes in a small eight-pin

DIP (Dual Inline Package) as shown in Figure 3-2.

Figure 3-2. An eight-pin DIP device

50

CHAPTER 3 * ARDUINO AND THE NAKED AVR

Hanging off pin 5 (PB0) we have the LED, which is protected by a 330 Ohm current
limiting resistor (330R). This resistor protects the LED and the AVR’s PB0 pin from pulling
too much current (amperage). Most ordinary LEDs need between 15 milliamps

(0.015 of one amp') and 20 ma to light up properly but not be damaged by excessive
current. Happily, the ATTINY13’s PBO and PB1 port pins can each handle this same
amount of current. So, this resistor is used to limit the flow through the LED to a
comfortable amount for both the LED and the AVR.

We have a 10 K Ohm (10,000 ohms) resistor and a 100 nf (100 nanoFarads) capacitor
connected to the reset pin (pin 1). These ensure that the AVR is reset properly when the

circuit powers up.

And that’s it! Just seven small components (including the battery) required to make an LED flasher.

Pre-MCUs you'd automatically reach for some kind of timer chip to do this job. Let’s compare the approach
just discussed with using a single-purpose device such as a 555 timer chip (if you're unfamiliar with this chip,
take alook at http://www.555-timer-circuits.com/):

+9V

9 Volt
Battery

min

470R §

LED

\VA

Gnd

Trigger

Output

Reset

VCe

Discharge

555 Timer

Threshold

Cont

27K

27K

AY|

= 10uF

Figure 3-3. A LED flasher circuit using a 555 chip

You will see that this circuit shown in Figure 3-2 also uses seven small components (including the
+9 V battery) to flash an LED on and off at a speed determined by the components connected to pins 6 and 7.
Could this 555-based circuit do more for us than just flash an LED on and off? Well, you could add another
LED/resistor pair connected to the output the opposite way around: you would then get two LEDs that flash in
strict alternation (one on while the other is off, but never on together and both can only flash at the same rate):

"You can work out these equivalences by using Ohm’s law (there’s a great Wikipedia page on that). Also, did you know you can
also just type “20 milliamps in amps” or “100 millivolts in volts” or “3 volts divided by 150 ohms” into Google to get answers
to these kinds of conversions?

51

CHAPTER 3 * ARDUINO AND THE NAKED AVR

+9V

9 Volt

470R /

470R
.

7

Gnd

Trigger

555 Timer

Output

Reset

VCC

Discharge

Threshold

Cont

27K

27K

10uF

Figure 3-4. A dual-LED flasher circuit using a 555 chip

In Figure 3-4, we have added that additional LED. Now, as well as pulling current through the first LED
when the 555 chip’s output (pin 3) is low, it also pushes current from the output through the second LED when
it is high. You could add a variable resistance to augment the 27 K fixed resistors, which would allow you to vary
the flash rate or duty cycle of both LEDs. But after that you're pretty much at the limit of what this simple circuit

could do.

AVR Pulls Ahead

The AVR circuit, on the other hand, is capable of doing a lot more. For example, it too can run two LEDs, as in
Figure 3-5 in which we’ve connected an additional LED, this time to pin 6 (PB1) of the AVR.

+5V (approx)
10K
1 8
PB5/RESET vce
/N 1N4001
2 7
6 Volt Battery PB3 PB2
+
i: ATTINY13
3 PB4 PB1 6
:rmo nF /
4 GND PBO 5

Figure 3-5. A dual LED flasher circuit using an AVR

52

330R ~>330R §

CHAPTER 3 * ARDUINO AND THE NAKED AVR

These two LEDs could, easily, be made to flash completely independently of each other at different rates and even
at different intensities. Since (on the ATTINY13 and many other AVRs) these particular AVR pins can source or sink
20 ma of current, we could repeat the trick we did with the 555 circuit and add two more LEDs in opposite polarity.

Figure 3-5 shows how a push-pull AVR version of the circuit would look: there are two additional LEDs.
When the output ports are set by software to a logic LOW level, the two top LEDs will turn on, when the output
ports are set to HIGH the bottom two will turn on. Like the 555 output pin, the AVRs pins are sinking (pulling)
current when LOW, but sourcing current (pushing) when HIGH.

So, now if we were to create the software to make it do so, our AVR could flash two pairs of LEDs on and off
at whatever rate we wanted it to and in whatever combination we wanted it to, in an almost infinite variation. We
can change what it does and how it does it, without having to modify the hardware ever again, which could never
be the case with the 555 equivalent. But, there’s more.

Go AVR!

You may notice that in the four-LED version of the AVR circuit (see Figure 3-6), there are still three pins of the AVR that
have no connection. These are pins 2, 3, and 7 (PB3, PB4, and PB2, respectively). On this particular AVR chip these
port pins are not capable of driving or sinking more than 10 ma: However, if we added an additional 50-cent driver
chip (e.g., a ULN2803), these pins between them could control at least three more LEDs—meaning that this AVR could
control seven LEDs. You'll be using the ULN2803 in several projects later in this book for just such a purpose.

+5V (approx)
10K
! | pBs/RESET veel-
/N 1N4001
330R < 330R
2 7
6 Volt Battery PB3 PB2
+
:; ATTINY13
3 lpp4 pB1 |0 N
AV
——100 nF \
1 ‘ 5 \
GND PBO

330R 330R§

AN AN
AN N\

Figure 3-6. A quadruple LED flasher circuit using an AVR

If you didn’t need any additional LEDs you could use those spare port pins for something else. On the AVR,
as on most microcontrollers, any port pin can be configured by software to be either an input or an output. So, if

53

CHAPTER 3 * ARDUINO AND THE NAKED AVR

you configure the unused pin 3 (PB4) to be an input, you can use it to sense the state of a switch—SW1: Figure 3-7
has this feature added.

+5V (approx)
10K
1 8
PB5/RESET VCC
/N 1n4001
330R >330R
2 7
6 Volt Battery PB3 PB2
S ——100nF
-1 ATTINY13
3 Ipp4 pB1 |- N
sw1
\V4
N\
4 GND PBO 5 \

330R 330R §

1
™~

N AN
N\ AN

Figure 3-7. A quadruple LED flasher, with switch input

Now, the software you put into your AVR is able to sense the state of the switch (when the switch is closed,
the PB4 pin will read LOW; when the switch is open, it will read HIGH?). That means that the software can alter
the circuit’s behavior depending on the state of the switch. For example, it might flash the LEDs at one speed
when the switch port reads HIGH and at a different speed when it reads LOW. We could go even further and
connect a switch to all three unused port pins and implement a whole hatful of different LED flash rates or LED
intensity changes, according to the switch settings—but I guess you get the idea.

So our little eight-pin AVR circuit offers some fairly surprising capabilities especially when considering its
low component count and low cost.

However, we have so far ignored the elephant in the room. The AVR would need programming and would
need some software to be written for it—and the 555 timer would not. So, if you were simply making a project to
flash one or two LEDs on and off, the AVR probably provides more capability and possibility than you would need.
Although the amount of hardware is about the same, it would take additional effort to write software and upload
it into the AVR; however, no such extra effort is needed with the 555 timer approach, where you just calculate the
value of the components you need to set the required flash rate and duration and you're done!

*In many logic circuits you would need a pull-up resistor on a logic circuit input pin to make the input tend toward the HIGH
level when a switch was open. However, AVR ports have an internal pull-up resistor on them which can be activated to preclude
the need for an external resistor.

54

CHAPTER 3 * ARDUINO AND THE NAKED AVR

But, if the goal of your project was rather more comple, if you needed to make multiple LEDs flash
independently and at different rates at different times, or in direct response to changes of input, then it would—
no question—be better to use an AVR. It’s a fact of life that few project requirements are as simple as the one
depicted in this scenario. As the projects you attempt get more complicated, the MCU becomes an ever more
obvious choice for implementing it. Eventually, climbing the ladder of complexity, you reach a point where the
MCU becomes the only serious choice.

Now that you have a feel for the basic trade-offs and advantages that can be had from using an MCU
approach, even for a simple requirement, I hope that you agree that the MCU approach to projects is a good one
and provides a palette of possibilities whose end you might never reach.

Putting All the Pieces in Place

In this book you will use the Arduino software development environment, but in a slightly different way than if
you were using Arduino hardware. So, before you dive deeper into some of the building blocks, it’s perhaps a
good idea to zoom out and look at what the pieces are and—in broad-brush detail—how they fit together.

Figure 3-8 shows the pieces of the Arduino programming setup I use in this book. A block diagram of a
100 % Arduino environment would look much the same except that the AVR programmer and AVR chip would
all be packaged into a single box called Arduino hardware, representing a product such as an Arduino Uno or
Duemilanove board.

Arduino
Development
Environment

Arduino

Infrastructure AVRDude

Command
,—l—l Line
AVR-GCC WINAVR
(UNIX) (Windows)

AVRDude
AVR Code !
Hex File AVRDude copflg
file
I
USB
X
AVR Programmer | 1 ool
(hardware)
RX
AVR CHIP
ISP
L

Figure 3-8. AVR MCU development system: block diagram

55

CHAPTER 3 * ARDUINO AND THE NAKED AVR

The Arduino IDE

Starting from top left, we have the Arduino IDE. This is a desktop computer application that gives us a place to
enter our program code and to exercise various levels of control over the tool chain. For example, we can initiate
a compile (Arduino calls it a Verify) operation on our code which attempts to build an AVR executable version
of the program we have entered—and tells us of any problems with what we have written. From here we can tell
Arduino to begin uploading our completed code to our selected AVR device and do a whole load of other things.
For example,

e We can select which type of AVR programmer we want to use.
e We can print out our program code.

e We can have Arduino autoformat our code to “beautify” it with proper indents to make it
easier to read.

e We can create a code archive—and many other useful things.

Arduino infrastructure software

Underneath the IDE, in Figure 3-8, there is a layer of what I have called Arduino infrastructure software. This
contains things like task management facilities, file management routines, and autoupdate modules. One of the
main tasks in this layer is to take the code that we entered, which is in a very simplified C-like language, and to
surround it with a full jacket of C language constructs that a C or C++ compiler can use—including make files to
control things like the AVR processor for which the code is being built, code optimization levels, and so on.

C Compilers

Underneath the infrastructure are the C compilers. These are all based on the GNU C/C++ compiler, but there
are special variants of them for Unix (Linux and Mac) environments and a distinct variant called WINAVR for
Windows systems. The compiler takes the code produced by Arduino and compiles it into a body of machine
code which implements our programming, and which is customized for the AVR chip type we are using. It also
links in some standard library code modules, plus any additional libraries our code may need to use.

Hex File

The result of the compilation and linking process task goes into a hex file on the hard drive. This hex file is
essentially a text file, and all it contains is a long slew of hexadecimal numbers that represents the finished code
that has to be uploaded to the AVR chip.

Errors

Any errors from the previous processes show up in the Arduino IDE window in the bottom section—usually
in red text. These messages are generally quite detailed and numerous: if or when you have to analyze such a
message stream, the important thing is to scroll back to the first ones; the latter ones are very often just further
errors resulting from the first one or two.

56

CHAPTER 3 * ARDUINO AND THE NAKED AVR

AVRDude, the AVR Programmer, and the AVR Chip

When the compilation has successfully completed, and the hex file has been created (a fresh hex file won't
be created if the process fails), the Arduino infrastructure issues a command sequence to AVRDude (more on
that soon) to upload the contents of the hex file® to the AVR chip via the hardware. In an Arduino board, the
programmer and the AVR chip are all on the Arduino. In our case we are using a separate USB programmer
connected via ISP to our AVR chip, which will be on the test bed rig we built in Chapter 2.

The AVR Type

There are a few things to note about the infrastructure depicted in Figure 3-8. First, the Arduino suite, the
compiler/linker level, and AVRDude all have to agree about which type of AVR will be the target for the software
that is being developed. In theory, this is taken care of from the top level down. The Arduino’s boards.txt and
programmers.txt files between them contain all the known possibilities, and the choices made inside the IDE, in
regard to which board to use, ripple down through the other components depicted in Figure 3-8.

However, because they were crafted by different teams in different places at different times, for different
purposes each of the depicted functional blocks has its own separate list of AVR chips that it knows about, and
these are pretty extensive but not exhaustive. For example, I bought an ATmega328PU (which is the micropower
version of the ATmega328) and neither Arduino nor AVRDude had ever heard of it. We'll look at dealing with
such an issue later in the section “AVRDude: Getting Started.”

We'll look in some detail at AVRDude in the next section, but what about the compilers and Arduino? How
do we find out what AVR chips they know about? You can make the avr-gcc compiler list all the AVRs it knows
about using the following command:

avr-gcc --target-help | more

You'll find avr-gcc in the bin subfolder of wherever you installed WinAVR on your Windows system
(typically it gets installed on the top level of your C:\ drive. On Linux/Mac it’s usually installed in /usr/bin. In
most cases you should just be able to type the command as just shown, since the installations add these folders to
the users search path on both Unix and Windows systems.

Arduino’s Configuration Files:

Arduino lists all the boards specified in boards . txt in its Tools menu: for Arduino, boards. txt is a crucial file. As
you saw, we edited it in Chapter 2 to introduce a new programmer to Arduino. Let’s now look a little closer at the
entries in boards. txt.

boards.txt can be found

e On Mac and Linux systems in /usr/share/Arduino/hardware/Arduino.

e On Windows systems: Wherever you elected to install Arduino
(e.g., C:\Program Files\Arduino-1.0): then Hardware\Arduino.

If you look at the contents of boards . txt you will see it is split into a number of entries each one separated
from the next by a line of ###### characters. Each entry specifies a target MCU board.

*If you’re interested to see the contents of this hex file, you’ll find it in a build. subdirectory under /tmp on Linux and Mac and
under the \Documents and Settings\<USER>\Local Settings\Temp folder on Windows. You should be able to use the
more command to view it on Unix, or the Type command to view it on Windows, or just use a text editor to view it.

57

CHAPTER 3 * ARDUINO AND THE NAKED AVR

Let’s anatomize the main items in one of these entries so that we can see what kind of material is specified
in this file. We'll begin with the standard entry for an Arduino Duemilanove. Here’s what it contains at the time of
this writing.

atmega328.name=Arduino Duemilanove w/ ATmega328

atmega328.upload.protocol =arduino
atmega328.upload.maximum_size=30720
atmega328.upload.speed=57600

atmega328.bootloader.low_fuses=0xFF
atmega328.bootloader.high fuses=0xDA
atmega328.bootloader.extended fuses=0x05
atmega328.bootloader.path=atmega
atmega328.bootloader.file=ATmegaBOOT_ 168 atmega328.hex
atmega328.bootloader.unlock_bits=0x3F
atmega328.bootloader.lock_bits=0x0F

atmega328.build.mcu=atmega328p
atmega328.build.f cpu=16000000 L
atmega328.build.core=arduino
atmega328.build.variant=standard

HERAHRRRRRRRRAAARRRRRERRAAARRRRRRAAA AR RRRRRAAH R RRRRAA AR RRRRAAR R RRRRRAAA R RBRRRRAAR AR RRRY

The first line is the name we want to use for the board; this is what appears on the Tools»Boards list inside
the Arduino IDE. Here, it’s Arduino Duemilanove w/ ATmega328.

The second line specifies the communications and command protocol that the programmer expects the host
computer to use when sending it instructions or data. Being the major AVR platform, Arduino has a dedicated
protocol. Other possibilities include STK500 (Atmel’s development system) and AVRISP2—which is the one we
will be using with our USB connected programmer.

The next line (atmega328.upload.maximum_size) specifies the largest amount of program code memory that
the AVR plugged into this board can accommodate—in this case it’s 30,720 bytes.* If this was an earlier Arduino
board using an ATmegal68 this number would be halved, because the ‘168 offered only half as much memory as
the ‘328.

Next is the upload speed. Programmer boards always need to limit the speed that data are uploaded. The
AVR chip uses its master clock to synchronize the reprogramming of its memory with new data. If uploads
happen too fast, the AVR cannot keep up, and the upload will fail. This setting allows the speed to be capped.

We'll be looking at the subject of fuses in the section “The AVR and Its Fuses.” Essentially, in this context,
an AVR fuse is a switch that can be programmed to turn various features of the MCU on or off (e.g., power fail
detection can be enabled or disabled via a fuse). The next four parameters specify things (such as fuse settings) to
do with the bootloader module for this AVR processor. A bootloader is a program that, if required, permanently
resides in the MCU memory: for certain kinds of programming, the bootloader provides intelligence inside
the AVR that cooperates with the programmer to update the MCUs main program. However, I plan to use ISP
programming in this book and ISP programming does not use or require a bootloader.

The next item of interest is atmega328.build.mcu which is a crucial one for us. It is from this entry that
Arduino learns what AVR chip is plugged into this programmer board. In this case it is the standard ATmega328p
AVR chip that comes installed on an Arduino Duemilanove board. Remember that chip name. You shall see it
again when you look at AVRDude’s configuration file later in the “AVRDude’s Configuration File” section.

“This is not the full 32768 bytes of program memory that the ATmega28 offers because about 2,000 bytes are reserved for use
with the bootloader that this style of programming requires—see main text.

58

CHAPTER 3 * ARDUINO AND THE NAKED AVR

Next up is the definition of the AVR chip’s clock speed. atmega328.build.f_cpu specifies in Hz the clock
speed of the AVR; in this case it’s 16 million Hz (16 MHz), which is the speed at which the MCU in this Arduino
runs. It's important for a number of reasons that this number is correct. Many of the standard Arduino facilities,
such as the serial communication, the delay (Some_Number of Milliseconds) function, and many others use
this number to adapt the speed of their operations, so if it is wrong, all the elements in your project or program
that make use of precise timing will be wrong too.

Finally, atmega328.build. core specifies what core software should be used to build your application code
around. We will always use Arduino for this, but in other contexts you will see things like avrnetio instead.

Do you remember that we added an entry to boards.txt back in Chapter 2? This was to make the Pololu
AVRISP programmer known to Arduino. Let’s look through the entry that we created there.

orangutan328p.name=Pololu USB AVR Programmer
orangutan328p.upload.using=avrispv2
orangutan328p.upload.maximum_size=32768
orangutan328p.build.mcu=atmega328p
orangutan328p.build.f cpu=1000000 L
orangutan328p.build.core=arduino
orangutan328.build.variant =standard

e Asbefore, we begin the board specification with a name. This really is just a name; we
could call this board Shiney McFloopy if we really wanted to!

e Then, we see that instead of a protocol (which would imply the use of a bootloader) we
have upload.using specified as avrisp2.

e Nextis the memory size, in this case the full 32,768 bytes of program memory are
available because ISP programming does not require a bootloader.

e The MCU type is as the same as before.

e The f_cpu specification here is of interest. It’s set down to one million Hertz (1 MHz
rather than the 16 MHz which was specified for the Arduino entry). This is because, when
a brand-new unprogrammed AVR chip arrives, it will be factory set to run at 1 MHz, even
though it’s capable of a lot more. We’ll look at the logic of this in the next section of this
chapter, “AVR Out of the Box.”

e Because we still want to use the Arduino software core, that specification stays the same
as it would be for a “real” Arduino.

e Finally we specify the build variant as “standard.”

If you want to go deeper into the parameters specified in boards.txt, you'll need to get a copy of the full
data sheet for your AVR (in this case an ATmega328) from the Atmel web site and read up on things like fuses
and the many different internal elements of the MCU. Ideally, the foregoing gives you enough familiarity with the
boards.txt file to make any small changes that your projects may require.

Always remember that when you make any change to boards. txt (or programmers.txt), they won’t show
up in the Arduino graphical user interface (GUI) until you exit and then restart it. Arduino reads boards.txt and
programmers.txt just once, at its start-up time.

On the subject of programmers . txt we made some additions to that in Chapter 2 as well, so let’s review that.
Here’s what we added there:

avrispv2.name=AVR ISP v2
avrispv2.communication=serial
avrispv2.protocol=avrispv2

59

CHAPTER 3 * ARDUINO AND THE NAKED AVR

These are simple enough;

We added a programmer called AVR ISP v2, as in the boards.txt case, this name is just a
name, nothing more.

The communication media is serial; this is important, programming happens very
differently when a parallel programmer (such as some modes of the STK500) is used.

Finally, we name the protocol that will be used over the serial programming link, and that
is our old friend avrisp2.

So, now let’s move on to look at some AVR basics.

AVR Out of the Box

Here are some basic facts that you should know about AVR chips:

60

All AVR chips have a built-in clock oscillator. This is not to be confused with a
time-of-day type of clock! This clock sets the AVR chip’s internal rate of operations and
therefore controls how much work it can do in a given time. People often call the clock
speed of a processor its heartbeat. The faster the clock oscillator, the faster the AVR
processor runs. As shipped, most AVRs have an internal clock rate of 8 MHz (8 million
cycles per second); but, for compatibility reasons, the chips are shipped with this clock
rate stepped down to a far slower 1 MHz rate. One million clock pulses per second may
still sound like a lot, but for an electronics device, it’s really pretty slow. The majority of
currently available AVR chips have a maximum clock rate of 20 MHz, so if you used your
AVR at 1 MHz, you'd be seriously underusing your chip and it would do far less useful
work than you'd probably be hoping for.

In order to make an AVR run faster than its default 1 MHz speed, you can do one of two things:

e You can fit an external crystal (at, say, 16 MHz) and some capacitors to the chip
across its “Xtall” and “Xtal2” pins. You'd then need to program the AVR to use the
frequency of the external crystal as its clock source. Shortly, we'll look at the details
of doing this.

e You can simply turn off the CKDIV8 function of the chip, which will take the clock
speed up to a much more useful 8 MHz. This approach has attractions because you
don’t have to bother fitting additional components to your project, saving time, space,
and cost. It does, however, mean that your AVR is still running at less than half its
possible maximum speed. Depending on the project in which you want to include
your AVR, this may or may not be a problem (see section "Using an External Crystal”).

A brand-new AVR chip has a completely blank program and flash memory. Out of the
box, it will do the sum total of not much, until you program it.

AVRs can run on quite low supply voltages. Although we are going to use +5 volts with
the test bed rig, when you come to deploy your projects, the possibility exists of running
them on batteries: any supply voltage between 1.8 volts and 5.5 volts is fine for the AVRs
we will use in this book—and, in fact, the majority of eight-bit AVR processors can run on
this voltage range (but always check the data sheet for the exact device you have in front
of you—there are many variants.).

Of course, you need to take into account whether the other elements of your projects
(motors, LEDs, displays, Solenoids, etc.) will be okay running on batteries too. Also, you'll
have to remain aware that if you develop the hardware side of your project to use +5 volts

CHAPTER 3 * ARDUINO AND THE NAKED AVR

but then make a permanent version of it that runs on 3 volts (e.g., 2 x AA batteries) you'll
need to recalculate the value of things like current limiting resistors. For example, at +5V
a 270R resistor will limit the current flow through an LED to about 18 milliamps (since 5 +
270 =0.01851): however, on a +3 V supply, that same resistor will limit the current to only
11 milliamps and the LED will be much less bright. So you’d have to reduce the resistor to
something around 175R. These are the kinds of considerations that you need to take into
account when taking advantage of the wide supply voltage capabilities of an AVR.

Using an External Crystal

Using an external crystal to drive the AVR at a faster speed than is available from its internal oscillator is simply a
matter of adding a suitable crystal and some capacitors across its Xtall and Xtal2 pins. For example, suppose that
we wanted the ATmega328 on our AVR test bed to run at 16 MHz. We would connect the crystal and capacitors
as shown in Figure 3-9: In Figure 3-9 we see these components connected across the Xtal pins of the (partially

shown) ATmega328.

| 16Mnz o

11

12
2Xx220F 15

14

ATMEGA328

GND A

PB6 (Xtal1) A

PB7 (Xtal2) PB5 (S
PD5 PB4 (MIS
PD6 PB3 (MOS)
PD7 PB2
PBO PB1

Figure 3-9. Connecting a 16 MHz crystal to an ATMEGA328 AVR

Asyou can see, the crystal is connected across pins 9 and 10. A ceramic disc capacitor goes from each of
these pins to ground. This is how this arrangement looks when it’s been added to the test bed breadboard.

61

CHAPTER 3 * ARDUINO AND THE NAKED AVR

Figure 3-10. Crystal and caps installed on the test bed rig

The enclosing can for this crystal is a long thin one, which means it has to be mounted between the pins
diagonally. Although not so common, crystals can be obtained in other packages that offer pins at the same
spacings as the MCU chip, which makes the mounting more convenient.

Asyou can see, adding the crystal and capacitors does increase the permanent clutter on the test bed. My
personal preference (and you will, I am sure, develop your own opinion about this) is to use an external crystal
only when a project really demands the extra speed. In most of my projects, I have found that using the internal
8 MHz clock gives enough speed for what needs to be done, but the choice is, of course, entirely yours. Whether
or not you use a 16 MHz or an 8 MHz clock is not a big deal because we specify the MCU clock speed in the
setup (see the previous boards.txt and programmers.txt discussion). The software components of the Arduino
development environment take care of any clock speed-related adjustments for us during program compilation
and upload.

When you use an external crystal with your AVR, you need to reprogram the appropriate AVR fuses to make
the AVR use the crystal as its clock source. Before you look at exactly how to do that though, you need to look at
this whole topic of AVR fuses.

The AVR and Its Fuses

Certain crucial aspects of an AVR’s operation can be modified by programmable fuses. These are essentially
switches that turn things on or off within the AVR processor. Each AVR has one or more fuse bytes in which each
bit represents a fuse. You can alter any or all of these fuses from the AVRDude program, which you will look at in
the next section. First, let’s look in detail at the fuses for just one type of AVR MCU, our trusty ATmega328.

62

CHAPTER 3 * ARDUINO AND THE NAKED AVR

Warning Be very careful! When changing fuses on your AVR chip it is quite easy to make your AVR unusable
by misprogramming a fuse byte. Check and double-check before you make fuse changes. You can, for example,
unintentionally set lock bits which prevent your AVR from ever being reprogrammed again.

The ATMEGA328 AVR has three fuse bytes.
e The Fuse Low Byte (called FLB in the AVR data sheets, AVRDude calls this IFuse).
e The Fuse High Byte (called FHB in the AVR data sheets, AVRDude calls this hFuse).
e The Extended Fuse Byte (EFB in the AVR data sheets, AVRDude calls this eFuse).

Important A “programmed” (or active) bit in an AVR fuse will read as “0” and an unprogrammed (inactive) bit
will read as a “1.” This is the opposite way round to most logic systems—and therefore something to bear in mind
when reading the following descriptions.

Fuse Low Byte

The FLB contains the items of most interest in our projects context. By and large, because we have elected to use
the Arduino software development environment, we are sheltered from many of the more intricate details of the
AVR architecture. However, the FLB contains some items which are still useful to know about.

The general format of the FLB is:

FuseName CKDIV8 CKOUT SUT1 SUT0 CKSEL3 CKSEL2 CKSEL1 CKSELO

Bit # 7 6 5 4 3 2 1 0

The following details the items of interest in this fuse byte.

Bit Name Details

7 CKDIV8 If this bit is 0 then the AVR’s master clock (the built in 8 MHz clock) will be
divided by 8. If this bit is 1, then the clock will be used as is. Factory
default = 0 (feature on)

6 CKOUT If this bit is 0 then the ATmega328 pin 14 (PortB0) will become an output
of the MCU’s master clock. This allows you to synchronize external
circuits to the MCU’s internal clock if you need to. Factory default value = 1
(feature off).

5&4 SUT1 and SUTO These two bits allow you to set the start-up time delay for the MCU. This is a
way to allow external circuitry to get ready before the MCU starts operation, and
also to allow time for a power supply to stabilize. The default value (10 - binary)
specifies that 6 clock cycles will elapse before MCU operation begins. See the
AVR datasheet for full details.

(continued)

63

CHAPTER 3 * ARDUINO AND THE NAKED AVR

Bit Name Details

3-0 CKSEL3-0 These bits allow you to provide a code that tells the MCU what clock source to
use. There are three sets of possibilities:

o The MCU'’s own internal clock (see CKDIV8 at bit 7).
o An external crystal and appropriate capacitors.

e An oscillator. You can also get a four-terminal device called an oscilla-
tor: this class of device includes a complete crystal/amplifier combina-
tion in one package and provides a steady frequency, logical level,
output without the need for additional capacitors. An oscillator package
needs to be fed with power (thus the need for four connections) and
tends to be more expensive than the crystal + caps approach.

So, the settings of CKSEL3-1 provide for a number of clock types and start-
delay options.

If we're using the MCU's internal 8 MHz clock oscillator, we set these bits to
0010 (i.e., only CKSEL1 is set to “1”; the rest are “0”).

When using an external crystal we leave CKO as a “1” If we're using an external
crystal and capacitors (see above) to provide 12 MHz or above, we usually set
CKSEL3-CKSEL1 to 011. If using a slower crystal we could use a variety of different
values (see the device’s data sheet for the detailed possibilities)

We'll see how programming fuses works out in practice in the section “AVRDude.”

High Fuse Byte

Now let’s look at the hFuse values for the ATmega328. The general format of hFuse byte is

FuseName RSTDISBL DWEN SPIEN WDTON EESAVE BOOTSZ1 BOOTSZ0 BOOTRST

Bit # 7 6 5 4 3 2 1 0

The following details the items of interest in this fuse byte.

Bit Name Details

7 RSTDISBL If programmed to “0” disables the external reset pin, which becomes just
another I/0 pin. Factory default value = “1” (Reset pin is enabled).

6 DWEN This enables the use of an external debugger device. This is most useful when
using Atmel’s AVRStudio, which we are not. Factory default = “1” (disabled).

5 SPIEN Serial programming enabled. This bit allows you to use serial programming
using ISP techniques. If you set this bit incorrectly your AVR will no longer allow
ISP programming—so be careful! Factory default value = “0” (SPI enabled).

(continued)

64

CHAPTER 3 * ARDUINO AND THE NAKED AVR

Bit Name Details

4 WDTON Watchdog timer on. The AVR has a hardware-implemented watchdog timer.
A watchdog timer is essentially a counter that has been loaded with a certain
value. Without any software intervention, this counter counts down toward
zero. If it ever reaches zero it causes a hardware reset of the MCU, which
will completely restart its program. The idea is that the software application
program running inside the MCU periodically reloads the watchdog timer
to stop it from ever reaching zero: if the application program crashes or the
processor malfunctions, it will stop recharging the watchdog counter which
will at some stage fairly soon (typically a few milliseconds) reach zero and
cause a restart—thus restoring sanity and normal service. This scheme
works very well for some kinds of applications, but not all types require
it. So, the default value is “1” disabling the WDTON. Factory default = “1”
(WatchdogTimer = disabled).

3 EESAVE If this bit is programmed the EEPROM contents will remain unchanged
when the chip is commanded to do a chip erase. Factory default “1”
(EEPROM contents will be erased when chip erase is commanded).

2-1 BootSZ1 & BootSZ0 Selects the bootloader program size. We don’t use a bootloader in our
approach. Factory default = 00.

0 BOOTRST Selects that the MCU jumps to a reset vector when powered up. This allows
you to make special arrangements for what piece of code gets executed first at
power up. We don’t use this. Factory default=“1" (feature disabled).

Extended Fuses

The extended fuse register only uses the lower three bits. These specify a code for “brown-out” (a.k.a. power
fail) detection level. The ATmega328—and indeed most AVR chips—have a special feature whereby, when their
supply voltage drops below a certain level (programmed in the extended fuse register) they can jump to a preset
address in memory to execute some emergency power fail and shutdown routines. The general idea is that there
will be enough time to do some tidying up before the power fails fully.

This kind of feature is most useful when running on batteries, since battery power gradually ebbs away and
the MCU would have time to do whatever it needed to do (stop all motors, turn off all lights, etc.). However, if a
project or application is running from mains power, as most of ours do, then this feature is not of much use, since
failures will almost always be sudden and fast. So, we don'’t use this feature—it is disabled which, luckily, is the
default setting anyway!

Note In the section “AVRDude,” you’ll look at programming fuses and find out how to calculate what values you
need to use when changing fuse values (and what tools are available to make that tedious task easier).

While device signatures are not fuses (i.e., you can’t change them), they are fundamental to identifying and
thus being able to correctly configure an AVR MCU, so this seems like a good time to introduce the topic.

Each AVR device type has a specific three-byte signature code. This code differs even among devices that
are functionally the same. For example, the ATmega328 device signature is 1E-95-14, whereas the functionally
identical but lower power consumption version of the same MCU, the ATmega328p, returns a signature of
1E-95-0 F. This means that taking all the low power, lower voltage, higher clock rate variants of the AVR family

65

CHAPTER 3 * ARDUINO AND THE NAKED AVR

of device into account, there are a large number of possible device signatures that can be returned. Most of the
software and utility programs that we use through this book come preconfigured to recognize only the most
common device signatures. For example, we might want to use an uncommon variant of an MCU, such as an
ultra-low-power consumption version if we were making a project for battery powered operation. In that case,
we'd have to add some definitions to the configuration files. We'll see how to do this in the section “AVRDude.”

Although this concludes our look through AVR fuses and signatures, there is more detailed information
contained in the freely downloadable data sheets for AVR chips, like the ATmega328 and its companions. See the
www.atmel.com downloads page.

AVRDude

If you're using a packaged system such as Arduino you will find that it will hide most of the low-level details of
the actual programming of your AVR chip. However, if you want to get closer to the “naked” AVR (i.e., one not
embedded in a packaged system such as Arduino), it is crucial to know a little about a piece of free software
called AVRDude. Because it’s so central to AVR usage it’s already been mentioned quite a lot, but in this section I
explore it rather more fully.

AVRDude started out life being called AVRProg and initially it only ran on Linux systems. However, when it
was renamed it was also ported to Windows and Mac OS X. If you look around the Internet you will find lots of
other programs mentioned that do the same things as AVRDude (PonyProg, UISP, AVRFuses, etc.) but you'll also
soon realize that none of those are regularly updated to take into account new devices (the last UISP update, for
example, seems to have been in 2005) or they have other limitations, such as they only run on Windows or only
on Mac OS X. For these reasons, we concentrate in this book on AVRDude, which is still being regularly updated
and maintained and is available for all three major desktop types. It's not the easiest thing in the world to use, but
you'll soon get used to using the subset of functions you need.

When you install your Arduino software you'll also install AVRDude. That’s because it comes as part of the
Arduino software suite. In fact, AVRDude underlies all the currently available programming environments for
AVR, this includes Arduino, WinAVR, Eclipse, AVR Studio, . . . they all use AVRDude as the means for actually
uploading the user’s programs into the AVR chip.

In this section we're going to look at AVRDude and play around with some of the useful low-level functions it
provides. Luckily, although it can get very complex for more esoteric usages, most mainstream uses of AVRDude
are not overly hard to understand.

When you installed the Arduino IDE in the previous chapter, you installed AVRDude as well. Here’s where
you'll find it:

e OnaLinuxsystem: It will be at /usx/share/Arduino/hardware/AVRDude—which in fact is
usually a link to /usr/bin/AVRDude (though your setup could vary).

e OnaWindows system it will be under the location where you installed Arduino: if you
can’t remember where it was installed, just right-click the Arduino desktop link (or start
menu link) that you normally use to start the Arduino IDE and inspect its properties.
One of those should show you where it is installed. Under the install folder you'll find a
succession of subfolders and then AVRDude:

hardware\tools\avr\bin\AVRDude.exe

AVRDude is a command-line tool. At the time of writing you have to type commands for it into a terminal
window. There have been GUI front ends written for AVRDude in the past, but as discussed earlier you can’t rely
on these being up to date, so I think for our limited purposes, it’s probably best to stick to the latest version of the
command line program.

66

CHAPTER 3 * ARDUINO AND THE NAKED AVR

The Trouble with AVRDude’s Terminal Mode

Normally, you run AVRDude to do something, it does that something, and then it exits. However, AVRDude does
have a terminal mode into which you can enter using the -t option. This keeps AVRDude running and you can
type one command after another to it, finally exiting back to your normal command prompt. However, quite a
lot of USB attached programmers won’t work with terminal mode, although this seems not to be highlighted

in many places. If you try to use such programmers in AVRDude’s terminal mode, you will get time-outs and
other errors.

The problem is that, when in terminal mode, AVRDude expects the AVR programmer to remain in
programming mode for the whole time terminal mode is effective. The firmware of quite a few programmers
(including the Pololu AVR programmer, and I believe some of the AVRISP programmer versions) deliberately
only stay in programming mode for a very short time. Many things can render an AVR chip unusable (“brick
it” in microcontroller parlance) such as unintentionally changing fuse values or other crucial details. So, as a
protection mechanism, the firmware in many programmers will quietly exit programming mode if the computer
has not sent any programming commands for a couple of seconds.

While this offers great protection for the AVR against accidents, it does mean that AVRDude’s terminal
mode is more or less useless when such programmers are in the picture. It’s no big deal because all the functions
of AVRDude can be accessed via AVRDude’s single command mode, which sets the programmer board into
programming mode when required but then exits, so nothing is really lost. It’s just something you need to be
aware of.

To avoid confusion in this area we shall forget about AVRDude’s terminal mode and only use it in single
command mode in this book.

AVRDude: Getting Started

To get started with AVRDude you need to know two things. First, you need to know to what serial port your AVR
programmer is connected. Ideally, you made a note of this during the installation of your programmer’s software
if you're on Windows. On a Linux system, use the command

dmesg | grep tty

Which should give you an output that looks something like the following:

[0.000000] console [ttyo] enabled

[0.303806] serial8250: ttySo at I/0 0x3f8 (irq = 4) is a 16550A
[0.392571] serial8250: ttyS1i at I/0 0x2f8 (irq = 3) is a 16550A
[0.482509] 00:08: ttySo at I/0 0x3f8 (irq = 4) is a 16550A

[0.524803] 00:09: ttyS1 at I/0 0x2f8 (irq = 3) is a 16550A

[19.988367] cdc_acm 1-2:1.0: ttyACMo: USB ACM device

[19.993007] cdc_acm 1-2:1.2: ttyACM1: USB ACM device

From which it’s fairly obvious that, on this system, /dev/ttyACMO and /dev/ttyACM1 are the serial ports
provided by the USB AVR programmer. The lower number (0) will be the primary programmer port and the
higher number (1) the additional TTL level serial port.

On a Mac system, open up the system profiler and look under USB devices to see the port name(s)
being used.

On a Windows system, you need to start the Device Manager (accessible via the Control Panel application,
usually under computer management or system maintenance—depending on your Windows version) and look
under the Ports heading.

The second thing you need to know is AVRDude’s name for the MCU chip you're using. You can find this out
by making AVRDude print out the list of AVR chips that it knows about. Try this command line (make sure you get
the uppercase and lowercase letters correct if you're on a Unix system):

avrdude -p NoneSuch -c avrisp2 -P /dev/ttyACMoO

67

CHAPTER 3 * ARDUINO AND THE NAKED AVR

Change the device name to be the one you are using on your system—on Windows you will use a COM port
number something like COM2: rather than /dev/???. Except in screen logs, I'll represent this as {YOUR_COM_PORT}
from now on.

Since there is not an AVR part number code called NoneSuch (and never will be!), AVRDude chokes on this
command (we'll come back to the whole fraught issue of part numbers shortly). However, AVRDude helpfully
puts out a list of all the AVR parts it does know about, and the codes it uses for them—which should look
something like this. ..

avrdude: AVR Part "NoneSuch" not found.

Valid parts are:

t10 = ATtiny10 [/etc./avrdude.conf:15636]
t8 = ATtiny9 [/etc./avrdude.conf:15596]
t5 = ATtinys [/etc./avrdude.conf:15556]
t4 = ATtiny4 [/etc./avrdude.conf:15516]
ucr2=32UC3A0512 [/etc./avrdude.conf:15495]
x128a4 = ATXMEGA128A4 [/etc./avrdude.conf:15397]
x64a4 = ATXMEGA64A4 [/etc./avrdude.conf:15300]
12313 = ATtiny2313 [/etc./avrdude.conf:8928]
m328 = ATMEGA328 [/etc./avrdude.conf:8736]
m328p = ATMEGA328P [/etc./avrdude.conf:8546]
t88 = attiny88 [/etc./avrdude.conf:8360]
m168 = ATMEGA168 [/etc./avrdude.conf:8172]
m88 = ATMEGA88 [/etc./avrdude.conf:7986]
t15 = ATtiny1s [/etc./avrdude.conf:1265]
t13 = ATtiny13 [/etc./avrdude.conf:1092]
t12 = ATtiny12 [/etc./avrdude.conf:959]
t11 = ATtiny11 [/etc./avrdude.conf:895]

In this case I was using an ATmega328P, and you can see that AVRDude’s part code for that is m328p. So, that
means I can use the modified version of the command line:

avrdude -p m328p -c avrisp2 -P {YOUR_COM PORT}
This invokes AVRDude. Reading from left to right we have:
-p introduces the AVR part number code—as we saw previously. Note that this is a lowercase p.

-c introduces the type of programmer that is in use: here we use avrisp2, which is what AVRDude sees our
USB-connected ISP programmers as.

-P (that’s uppercase P) introduces the operating system’s name for the communications port to which the
programmer is connected.

e On this Ubuntu system it was /dev/ttyACMo.
e OnaMacOSXsystemit's "/dev/USB:tty???? (where ??? is some number).
On Windows it will be something like COM2. The output we get in response to this command is pretty simple:
avrdude: AVR device initialized and ready to accept instructions
Reading | HttHHHHHEHHEHHEHIEHHEHIEHHHHAHHPHHHHHHHH Y | 100 % 0.00s

avrdude: Device signature=0x1e950f

68

CHAPTER 3 * ARDUINO AND THE NAKED AVR

avrdude: safemode: Fuses OK
avrdude done. Thank you.

AVRDude makes contact with the AVR chip and then reads from it: it retrieves the device-type signature—
which in this case is 0x1e950f. As discussed in the previous section, AVR device types have a unique six-character
signature code—and the 0x1e950f shown in this example is the code for an ATmega328P.

Because we have not commanded any actions that would require writing to the AVR, the programmer stays
in “safe” mode (which essentially means read-only). Finally, the program checks the AVR’s fuses (see section
“The AVR and Its Fuses”) which it pronounces okay. It then politely exits.

It Failed? Tech Tip Sometimes, just sometimes, if you are using a brand-new virgin AVR chip, it’s possible that
you will get a time-out error, or nonsensical results when you use AVRDude commands. This happens because—as
we saw earlier—an out-of-the-box AVR only operates at a clock speed of 1 MHz and the programmer is not waiting
long enough for its responses. If you get this kind of problem, try adding the option -B3 to your command lines to
slow down communication with your chip. Unless you have a genuinely faulty AVR, or some kind of ISP wiring
problem, that should fix the problem. For example,
avrdude -p m328p -B3 -c avrisp2 -P {YOUR COM PORT}

AVRDude’s Configuration File

The first of the options we saw previously was the -p option which lets you specify which kind of AVR device you
want AVRDude to operate upon. Because there are so many AVR devices and so many variants of each, AVRDude
currently only knows about the mainstream AVR devices: for many AVR MCU subtypes you have to provide it
with the information about the device. This is not as much work as perhaps it sounds, but it does involve editing
AVRDude’s configuration file; so, let’s look at what that is, and where it lives.

All of AVRDude’s detailed knowledge of AVR chips and programmers comes from its configuration file which
is called avrdude.conf. Where does this file live?

e On Linux and Mac OS X systems you will usually find it in /etc. (and you'll need
superuser privileges to edit it).

e Onan Arduino-installation on Windows you will find it under the installation folder (see
the section “AVRDude: Getting Started” on AVRDude. exe installation location) under
hardware\tools\avr\etc.

Because avrdude. conf is a text file we can edit it with our favorite plain text editor (gedit, Notepad, emacs,
etc.). But before that, make a copy of the file just in case you introduce any unintentional problems with your
edits. Also, when you have done editing the file and come to save the revised version of it, make very sure that you
save it as a plain text file, not in a word processor-specific format (such as an MSWord . docx file). AVRDude can
only read a conf file in plain text format. The plain text editors mentioned previously will save in this format.

When you have opened the file and had browsed down it you will quickly realize that, after a few pages of
preliminaries, what you're seeing is a repeating list of programmer types (yes, our AVRISP2 programmer type is
there) and then a list of AVR MCUs in which each list entry provides the details of an AVR device.

Each new entry begins with a heading like the following:

The usual case is that you want to add an additional entry that will make AVRDude recognize the signature
of a faster version or a lower-power consumption version of an existing device.

69

CHAPTER 3 * ARDUINO AND THE NAKED AVR

Suppose we wanted to make AVRDude recognize the lower-power consumption version of an ATmega328p
(which is called the ATmega328pu). Without editing AVRDude’s config file, if we type the command
avrdude -p m328pu -c avrisp2 -P {YOUR_COM PORT}

we get back an error message like the one below and a long list of AVRDude’s known part numbers.

AVRDUDE: AVR part ‘m328pu’ part not found

So, to make our ATmega328pu known to AVRDude, we add a new entry to avrdude. conf in the following
way. We first locate the existing entry for the ATmega328p which begins as follows:

B o o o o o o e
ATmega328P
B e o o o o e e
part
id = "m328p";
desc = "ATMEGA328P";
has_debugwire = yes;
flash_instr = 0xB6, 0x01, 0x11;
eeprom_instr = 0xBD, OxF2, 0xBD, OxE1l, 0xBB, OxCF, 0xB4, 0x00,

OxBE, 0x01, 0xB6, 0x01, 0xBC, 0x00, OxBB, OxBF,
0x99, OxF9, OxBB, OxAF;

stk500_devcode = 0x86;

avr910_devcode = 0X;

Signature = Oxle 0x95 0x14;
Pagel = 0xd7;

bs2 = 0xc2;

chip_erase delay 9000;

As you can see, this specifies the expected signature byte values 1E-95-0 FE. The ATmega328pu version of the
chip is more or less identical, except it returns the signature code 1E-95-14. So all we really have to do is copy
the entire existing entry for ATmega328p and paste it into a new entry at the end of the file. Then, we modify the
device ID, the Description, and the signature for the new entry, so that they look like the following (changed bits
in bold):

e m oo o oo oo oo e
ATmega328PU
B o o o e
part
id = "m328pu";
desc = "ATMEGA328pu”;
has_debugwire = yes;
flash_instr = 0xB6, 0x01, 0x11;
eeprom_instr = OxBD, OxF2, oxBD, OxE1, 0xBB, OxCF, 0xB4, 0x00,

O0xBE, 0x01, 0xB6, 0x01, 0xBC, 0x00, OxBB, OxBF,
0x99, O0xF9, OxBB, OxAF;

stk500_devcode = 0x86;

avr910_devcode = 0X;

Signature = Oxle 0x95 0x14;
Pagel = 0xd7;

bs2 = 0xC2;

70

CHAPTER 3 * ARDUINO AND THE NAKED AVR

The remainder of the copied entry stays unchanged. Then, we just save the file back into place.®
Now, if we use the command:

avrdude -p m328pu -c avrisp2 -P {YOUR_COM PORT}
We get back the expected response with the correct signature.
avrdude: AVR device initialized and ready to accept instructions
Reading | HHHHHHHHHHHHHHHHHHHEHHHHHHHHHBHHBEHHESHEAAEHRBE | 200 % 0.00s
avrdude: Device signature=0x1e9514
avrdude: safemode: Fuses OK
avrdude done. Thank you.
Some points that arise from this description include the following:

e If (or more likely when) you come to upgrade AVRDude (either individually, or as part of
an Arduino upgrade) your avrdude. conf file will be replaced with a new one. This will
mean that your modifications will be overwritten. It’s therefore a really good idea to

e Make sure your modifications to the file are always added to the bottom of the file.

e Make sure you keep an additional copy of the file somewhere else so that you can
append your customized entries to any new file that an upgrade creates.

e If, after editing the conf file your AVR variant is still not recognized by AVRDude, you
should start by double-checking the new entry you made for errors (e.g., look for missing

quote marks or “;” terminators on the end of lines). Make sure that you haven’t run two
lines together when they should be separate, and so on.

Another possibility is that you have multiple instances of AVRDude installed on your
system and the one you are using is looking at a different config file from the one you
edited. For example, AVRStudio, WINAVR, and Arduino all come with a copy of AVRDude,
so if you have more than one copy installed it’s just possible that the AVRDude you are
running is looking at a conf file you have not modified. The way to deal with this is to
provide AVRDude with a definite location for the conf file (using the -C in uppercase
option) on the command line. Add it to the command we used above, as follows:

avrdude -p m328pu -C {YOUR CONFIG} -c avrisp2 -P {YOUR_COM_PORT}
This ensures that the conf file being used is the one you intend.

e Ifyouuse AVRDude frequently, you can save yourself some typing by specifying stuff
like your programmer type in a file called {$HOME}/ . avrdudeRC where HOME represents
your default login directory on Unix or $HOMEPATH on Windows. Refer to the AVRDude
manpage on Unix or the AVRDude user manual (supplied with AVRDude as a PDF file on
Windows) for more details about the .avrdudeRC file and its possible contents.

Adding a device variant, then, is fairly straightforward.

The more complex case occurs when you want to introduce a completely new AVR chip to AVRDude.
Fortunately, the AVRDude maintainer or user community has usually done this work for you, so it’s just a matter
of downloading the latest version of AVRDude to get the latest config file. However, if this does not solve your

*Remember that on Unix systems you’ll need to have logged in as root or used “sudo” to acquire extra level privileges to alter
this file. On Windows this is less of a problem, but you may need to upgrade your login privileges on some Vista and Win 7
systems, depending on how they have been configured.

71

CHAPTER 3 * ARDUINO AND THE NAKED AVR

problem, you get to build an entry for the new AVR. You will need a copy of the full data sheet for the AVR device
and you'll need to go through each individual item in the file and find the appropriate value for it in the data
sheet of your new device. I've never had to do this, but I imagine it takes a while! If you ever do need to do

this, be sure to send a copy of the new entry to the AVRDude maintainer (see the latest contact e-mail at
http://www.nongnu.org/AVRDude/) so that others can be spared having to repeat the task.

AVRDude Examples

A few examples should help make clear how useful AVRDude can be. In these examples I am going to use an
ATmega328p and (since this was done on Linux) /dev/ttyACMO as my AVR programmer port. Clearly, if you're
going to try these out for yourself, you should put your own specifics in place of these two items—for example,
COM2 or whatever COM port you are using on a Windows system.

Important Remember that a “programmed” (or active) bit in an AVR fuse will read as “0” and an unpro-
grammed (inactive) bit will read as a “1.” This is the opposite way round to most logic systems—and therefore
something to bear in mind when reading the following descriptions.

We'll begin by programming some fuses. In this regard you will definitely find the fuse value byte calculator
enormously useful.

http://www.engbedded.com/fusecalc

You tell it what AVR you are using, or get as close as you can; for example, it does not list an ATmega328pu,
so use an ATmega328. Then, tick the boxes to indicate the options and value you want. It will then give you the
byte value that you can need to program into the selected fuse byte. It will even give you the command line
options to AVRDude that you should use!

Let’s start gently: assuming you are using your brand-new ATmega328p chip we’ll clear the CKDIV8 bit in
1fuse. First, let’s see the current values:

avrdude -p m328p -c avrisp2 -P /dev/ttyACMO -U lfuse:r:myLfuse.txt:h

This command runs AVRDude and commands it to access the lower fuse byte, to read it, and to put the value
it reads into a file called myLfuse.txt®in hexadecimal byte format. When we examine the contents of the file
(using a text editor, or the cat command on Unix or the Type command on Windows) it is found to contain 0x62.
Now, here’s the really brilliant thing about the fusecalc tool linked above: once you have read the fuse value as
just described, you can enter the value you obtained into the appropriate text box (lower fuse byte in this case)
and it will decode it for you, which lets you see what the current fuse settings actually mean. Very useful! When
we do that, we see that the hexadecimal value 62 means (among other things) that the CKDIV8 bit is set in this
MCU. In other words, it’s only running at 1 MHz, which is a waste.

So, using fusecalc again, we clear that bit, and it tells us to program 1fuse as hexadecimal value E2. So, now
we do that:

avrdude -p m328p -c avrisp2 -P /dev/ttyACMO -U lfuse:w:0xE2:m

Then, if we repeat the fuse-read command, we get to see that the value has indeed changed to 0xE2 and
our MCU is now running at a much better 8 MHz. If we are using this AVR from Arduino, we need to go to our

‘Ifyou want to output to your terminal window instead of a file, use - as the file name on Unix systems, or use CON (short for
CONsole) on a Windows system. For example,

UNIX: AVRDude -p m328p -c avrisp2 -P /dev/ttyACMo -U lfuse:r:-:h
Windows: AVRDude -p m328p -c avrisp2 -P COM2 -U lfuse:r:CON:h

72

CHAPTER 3 * ARDUINO AND THE NAKED AVR

boards.txt file and change the clock speed in there. If we're using the board definition we added in Chapter 2, it
means that we change from

orangutan328p.build.f cpu=1000000 L
to
orangutan328p.build.f_cpu=8000000 L

Then we use Arduino to reupload whatever code was running in the AVR previously (e.g., the basic LED
flasher program). This time, Arduino will cause the code to be compiled taking into account the clock speed
change. The timed events (such as time delays governing LED flash rates) will be working exactly as before, but
the rest of the code will be running eight times as fast.

It’s sometimes interesting to see what the AVR’s memory contains: the following command will make
AVRDude dump out the contents of your AVR’s program memory to the screen (Unix first, then Windows):

avrdude -p m328p -c avrisp2 -P /dev/ttyACMo -U flash:r:-:h
avrdude -p m328p -c avrisp2 -P COM2 -U flash:r:CON:h

If your AVR only contains the basic LED flasher (which doesn’t contain any text strings) then you won't
see anything much, just a big long screed of hex numbers, which is not very exciting. For more excitement, let’s
modify the basic LED flasher program you used in Chapter 2 in the Arduino programming screen. We will add the
following line just immediately before the line that says void setup():

Static String myString="If you can read this you are looking into the AVR flash memory";

Then, use Arduino to recompile and re-upload the program into the AVR.
Now, try this command (Unix then Windows):

avrdude -p m328p -c avrisp2 -P /dev/ttyACMo -U flash:r:-:r
avrdude -p m328p -c avrisp2 -P COM2 -U flash:r:CON:r

This does the same as before, except that it outputs the data from the flash memory as raw data (the final
in the command). Of course, your terminal window won’t make much sense of most of this raw data, because
it’s not text, it is AVR machine code and some of it will translate into “beep” characters, so expect your machine
to bleep for a few seconds. However when you get to the block of text that we inserted in the Arduino program, it
should faithfully reproduce it among all the strange symbols and beeping.

ooo oooooo Fo vooe[88 Ir

i o[l]ieo[ld [: 4 HHe[? -o<o'oooooww

-o<o[i#3e’ 00)099 IEI1 E: i
[fdeooe[Hooooll]_ ’Ooooooolo i] 2

i eeeegot"w«oowwlf you can read this you are looklng into the AVR fla

!sh memory [SH¥HEHEREILHERUbUnty 12:01:10 >

iUbuntu 12:10:42 >
[ubuntu 12:10:43 >

We can list out the contents of the EEPROM memory inside the MCU as well, using the command (Unix then
Windows)

avrdude -p m328p -c avrisp2 -P /dev/ttyACMO -U eeprom:r:-:h
avrdude -p m328p -c avrisp2 -P COM2 -U eeprom:r:CON:h

73

CHAPTER 3 * ARDUINO AND THE NAKED AVR

On a new chip this is fairly boring, because we just get a screen full of 0xFF which is the empty initial state
that the EEPROM memory of the MCU is shipped with.” But, we can use an Arduino sketch to fill the EEPROM
with something a little bit more interesting. The sketch illustrated in Figure 3-11 will fill each of the first 255 bytes
of the EEPROM with its own address (e.g., the EEPROM byte with address 008 gets the value 08 written into it).

e CounterFill_EEPROM | Arduino 1.0

CounterFill_EEPROM
ginclude <EEPROM,h=; i

vold set up ()

I
This runs once at startup. It writes each of the first
255 EEPROM byte's address into itself, if it has not
already been done. */

for {int thisAddr = @; thisAddr ==255; thisAddr ++)

{
1f (EEPROM. read(thisAddr) != thisAddr}
{
EEPROM,write (thisaAddr, thisaAddr);
1
1
H
vold Loop()
{
// Do nothing.....
H

Figure 3-11. CounterFill_EEPROM sketch

The program in Figure 3-11 only writes the value into the EEPROM byte if the location has not already been
programmed. Since it is a characteristic of EEPROM memory that you can only change its contents a relatively
low (a few thousand) number of times, it’s very important to make sure that any code you create which writes into
EEPROM does not do so unnecessarily. EEPROM is only meant to written into occasionally during the lifetime of
your AVR chip. It’s all too easy to accidentally create code that gets stuck in a loop writing to an EEPROM location
over and over: with the speed of these processors, you can use up all the EEPROM lifetime in just a few moments,
meaning that the EEPROM (or at least the “used up” locations within it) are now useless.

"In some cases it may show you no data at all, from which you are supposed to conclude that there is nothing but blank space in
the memory.

74

CHAPTER 3 * ARDUINO AND THE NAKED AVR

Having uploaded this sketch and given it a few moments to run, we return to AVRDude and run the eeprom
list command again (Unix then Windows):

avrdude -p m328p -c avrisp2 -P /dev/ttyACMO -U eeprom:r:-:h
avrdude -p m328p -c avrisp2 -P COM2 -U eeprom:r:CON:h

and this time, we see the counter values that we just wrote into the EEPROM memory with our sketch (see
Figure 3-12)!

avrdude: writing output file "<stdout="
0x0,0x1,0x2,0x3,0x4,0x5,0x6,0x7,0x8,0x9,0xa,0xb,0xc,0xd,dxe,0xf,0x10,0x11,0x12,0
x13,0x14,0x15,0x16,0x17,0x18,0x19,0x1a,0x1b,0x1c,0x1d,0x1e,0x1f,0x20,0%x21,0x22,0
x23,0%24,0Xx25,0x26,0%x27,0Xx28,0x29,0x2a,0x2b,0x2c,0x2d,0x2e,0x2f,0x30,0%31,0x32,0
x33,0%34,0x35,0x36,0x37,0x38,0x39,0x3a,0x3b,0x3c,0x3d,0x3e,0x3f,0x40,0x41,0x42,0
x43,0x44,0Xx45,0x46,0x47,0x48,0x49,0x4a,0x4b,0x4c,0x4d,0x4e,0x4f,0x50,0%x51,0x52,0
x53,0%54,0Xx55,0x56,0%x57,0x58,0x59,0x5a,0x5b,0x5¢,0x5d,0x5e,0x5F,0x60,0%x61,0x62,0
x63,0%64,0X65,0x66,0X67,0X68,0x69,0x6a,0x6b,0x6c,0x6d,0x6e,0x6T,0x70,0%x71,0x72,0
X73,0%74,0X75,0x76,0Xx77,0x78,0x79,0x7a,0x7b,0x7c,0x7d,0x7e,0x7f,0x80,0%x81,0x82,0
x83,0x84,0x85,0x86,0x87,0x88,0x89,0x8a,0x8b,0x8c,0x8d,0x8e,0x8F,0x90,0x91,0x92,0
x93,0%94,0Xx95,0x96,0%x97,0Xx98,0x99,0x9a,0x9b,0x9¢c,0x9d,0x9%e,0x9f,0xa0,0xal,0xa2,0
xa3,0xad,0xa5,0xa6,0xa7,0xa8,0xa%,0xaa,0xab,0xac,0xad,dxae,0xaf,0xbo,0xbl,0xb2,0
xb3,0xb4,0xb5,0xb6,0xb7,0xb8,0xb%,0xba,0xbb,0xbc,0xbd,dxbe,0xbf,0xcH,0xcl,0xc2,0
xC3,0xcd,0xc5,0xc6,0xcT,0xcB,0xc9,0xca,0xcb,dxcc,0xcd,dxce,0xcf,0xd0,0xd1,0xd2,0
xd3,0xd4,0xd5,0xd6,0xd7,0xd8,0xd9,0xda,0xdb,0xdc,0xdd,dxde ,0xdf,0xed,0xel,0xe2,0
xe3,0xed,0xe5,0xe6,0xe7,0xe8,0xe9,0xea,0xeb,0xec,0xed,dxee,0xef,0xf0,0xf1,0xf2,0
xf3,0xf4,0xf5,0xf6,0xf7,0xf8,0xf9,0xfa,0xfb,0xfc,0xfd,oxfe,oxff,oxff,oxff,oxff,0
xff,0xff,oxff,oxff,oxff,oxff,oxff,oxff,oxff,oxff,oxff,oxff,oxff,oxff,oxff,oxff,0
xff,0xff,oxff,oxff,oxff,oxff,oxff,oxff,oxff,oxff,oxff,oxff,oxff,oxff,oxff,oxff,0
xff,0xff,oxff,oxff,oxff,oxff,oxff,oxff,oxff,oxff,oxff,oxff,oxff,oxff,oxff,oxff,
xff,0xff,oxff,oxff,oxff,oxff,oxff,oxff,oxff,oxff,oxff,oxff,oxff,oxff,oxff,oxff,
xff,0xff,oxff,oxff,oxff,oxff,oxff,oxff,oxff,oxff,oxff,oxff,oxff,oxff,oxff,oxff,0

Figure 3-12. EEPROM memory dump with first 256 locations filled

Making AVR Use the External Crystal Clock

Earlier in this chapter we looked at how we add an external 16 MHz crystal to the AVR chip on the test bed
breadboard. It’s time to see how we set the fuses to make the AVR use that crystal, rather than its own internal
clock. Again, we first use AVRDude to read the lower fuse byte.

avrdude -p m328p -c avrisp2 -P /dev/ttyACMo -U lfuse:r:mylLfuse.txt:h

When we examine the contents of myLfuse. txt, it shows us that the current value of that byte is 0x62 (or
perhaps 0xE2, if you have worked through the previous example). By using fusecalc we select the external full-
swing crystal (which is what an external crystal and capacitors running at greater than 12 MHz gives us) with
a 16 K clock (unfortunately, fusecalc deals in kilohertz (KHz), but 16,000 times 1,000 = 16 million!) and 4.1 ms
power rise time. With these settings—and with CKDIV8 not ticked, we learn that the lfuse value to program
is 0xe7 (binary 1110 0111). We use the following command to program that fuse byte into our AVR (this is the
LINUX version of the command, you should know the Windows version by now!):

avrdude -p m328p -c avrisp2 -P /dev/ttyACMO -U lfuse:w:0xe7:m

Again, we verify that the fuse has been programmed by reading it back (Unix then Windows):
avrdude -p m328p -c avrisp2 -P /dev/ttyACMo -U lfuse:r:-:h
avrdude -p m328p -c avrisp2 -P COM5 -U 1lfuse:r:CON:h

Though in fact, as you may have noticed, there’s no real need to do that, because AVRDude verifies that the
programming has been completed by reading the values back to us straight after the programming. If there had
been any problem in writing the fuse byte, AVRDude would have issued a verification error message.

75

CHAPTER 3 * ARDUINO AND THE NAKED AVR

Now, if we are using this AVR from Arduino, we once more need to go to our boards. txt file and change the
clock speed in there from

orangutan328p.build.f cpu=8000000 L
to
orangutan328p.build.f cpu=16000000 L

Then we use Arduino (which, remember, must be restarted after any edits to boards. txt) to once more
upload a program into the AVR: Arduino causes a recompilation, again taking into account the clock speed
change and our program runs as before, but now the processor is running at 16 MHz, a full sixteen times faster
than when we first installed it.

As I stated earlier, in most projects my personal preference is not to use an external crystal because of the
extra components required—though, of course, I use one if the project demands the fastest possible CPU speed.
But in this case, I now elect to set the clock source back to the MCU’s internal clock source, but with CKDIV8
unset so that my AVR is again running at 8 MHz.

avrdude -p m328p -c avrisp2 -P /dev/ttyACMo -U lfuse:w:0xE2:m

I can now power down and remove the crystal and capacitors—and we’re ready to move on.

Arduino and the AVR ID Problem

This section will probably only be of interest if you need or want to use some variant of an AVR device that is not
supported—out of the box-by the Arduino software.

As we saw in Figure 3-8, Arduino talks to two entities, the compiler and AVRDude. It first uses the compiler to
produce a hex file containing the developed program and then it commands AVRDude to upload that hex file into
the AVR chip. In both cases Arduino has to supply the other piece of software with an -mmcu code; this indicates
what kind of AVR chip is being compiled for, or uploaded to. Arduino obtains the value it uses from one single
place, the mmcu entry for the programmer in boards. txt (see the earlier discussion on boards . txt).

When we want to use an AVR type that Arduino doesn’t usually deal with, the problem we have is this:
Although we can make new chips (or additional variants of existing chips) known to AVRDude by editing its
avrdude. conf file (as we did in the previous section), there is no such easy way to make additional variants
known to the compiler. We can get the compiler to list the AVR parts it knows about with the following command:

avr-gcc -target-help

Because we can’t add parts to this list (unless we want to get into hacking the compiler—which is way
beyond our scope in this book) we have to “dress up” our unknown AVR variant as something that the compiler
does know about.

The compiler is only interested in building a body of machine code that is tailored for the characteristics
of the stated MCU type, and placing that code in a hex file. It never actually talks to the AVR programmer
device, or the AVR itself. AVRDude, on the other hand, makes very sure (using the device signature) that the
AVR to which it is uploading is of precisely the type specified on its command line. Thus, we can get away with
telling a lie to the compiler about what kind of chip we are using, but if we want to fool AVRDude we have to go
in for a little subterfuge!

We'll stick with our previous example in which we want to use the micro power consumption ATmega328pu
instead of an ATmega328p. The ultra-low-power version does not appear on the list of MCU parts that the
compiler knows about. However, the mainstream ATmega328 and the ATmega328p (used on several Arduino
boards) do appear. So, suppose we do have some ATmega328 chips, but we don’t have any ATmega328p chips,
we can modify the entry in avrdude.conf for the ATmega328p. In fact the only thing we need to change is the
signature byte value line from:

stk500_devcode = 0x86;
avr910_devcode = 0X;

76

CHAPTER 3 " ARDUINO AND THE NAKED AVR

signature = Oxle 0x95 0xOf;
pagel = 0xd7;

bs2 = 0XxC2;
chip_erase_delay = 9000;

to

stk500_devcod = 0x86;

avr910_devcode = 0X;

signature = Oxle 0x95 0x14;
pagel = 0xd7;

bs2 = 0xc2;
chip_erase delay = 9000;

Now, when we want to program our ATmega328pu chip, we just call it a -mmcu 328p and both AVRDude and
the compiler will be happy. Similarly we just put the entry for an ATmega328p into Arduino’s boards. txt file. Of
course, we'd have to do things differently if we wanted to use ATmega328p and pu chips, but this gives you the
idea of how we can rig things up to work with a nonmainstream device.®

This issue of dealing with unusual part numbers stems from the fact that Arduino provides no mechanism
for providing different part numbers to AVRDude and the compiler. It would become a nonissue if Arduino had
separate configuration entries for upload.mmcu_type and compiler.mmcu_type-at the moment, though, it does not.

Pin Name Translations

If you've seen or used an Arduino you'll know that, whereas AVR data sheets refer to individual I/O pins as names
like PortB3, the Arduino software uses names like Digital Pin 11. This is all part of the excellent way in which
Arduino tries to make it simple for nonhardware people to learn to program.

On an Arduino board the connectors are labeled with Arduino specific labels for the AVR pins—see
examples in Figure 3-13.

: '8
1

0___
O

|l: ' ,.‘u kb
3 , _ﬁlg-:::

PLM
5

Figure 3-13. Arduino port connector

Since we are using the Arduino software, we also have to use Arduino’s name for the I/0 pins.

8In reality, although this example shows how you can make one part seem like another to AVRDude, it’s a moot example. The
ATmega328pu returns the same code as a full power ATmega328. So, if we wanted to use the pu version, we’d just configure it
as ATmega328 and neither AVRDude nor the compiler would know the difference!

77

CHAPTER 3 * ARDUINO AND THE NAKED AVR

This means that we need a quick and easy translation between Arduino pin names and the actual physical
pin numbers of our Arduino chip—and here it is! Figure 3-14 gives an easy reference that will let you see at a
glance what physical pin number on the chip equates to the Arduino pin name you’ll use in your project software.
Make a photo copy of Figure 3-13 and keep it somewhere handy!

ATmega328
AVR to Arduino Pin
Names Translation*
Arduino Name Arduino Name
RESET 1| Reser (pes) ADC5 (PC5) [25 Analog Input 5
RX or Digital Pin 0 2 | rx (PDO) ADG4 (Pea) | 2 Analog Input 4
TX or Digital Pin 1 3 TX (PD1) ADC3 (PC3) 26 Analog Input 3
Digital Pin2 ____ 4 | ppy ADC2 (PC2) |25 Analog Input 2
Digital Pin 3 (PWM) 5 | pp3 ADC1 (PC1) 24 Analog Input 1
Digital Pin 4 6 | ppg Apco peo) |22 Analog Input 0
VCC (1.8V to 5V) 7 vee anD |22 GND
ut
ATMEGA328
GND 8 GND AREF 21 Analog Reference
Oystal 9 | ppg (xtalt) avee [22— vee
Crystal 10 PB7 (Xtal2) PB5 (SCK) 19 Digital Pin 13
Digital Pin 5 (PWM) 1 pps PB4 (MISO) |2 Digital Pin 12
Digital Pin 6 (PWM) 12| bpg PB3 (MOSI) | Digital Pin 11 (PWM)
Digital Pi 13 16 I
gital Pin7 | pp7 pPB2 | — Digital Pin 10 (PWM)
Digital Pin8 141 ppy PB1 |12 Digital Pin 9 (PWM)

* = Details are the same for an ATmega168

Figure 3-14. AVR ATmega328 to Arduino pin name translation

78

CHAPTER 3 * ARDUINO AND THE NAKED AVR

Bear in mind a few points about these translations.

¢ Pins2and 3 can actually be used as general I/O pins if you don’t need the hardware serial
channel. However, the moment you execute Arduino’s Serial.Begin() function, the pins
are reconfigured as TX and RX lines (output and input, respectively) and should only be
used for those purposes.

e The supply voltage for the chip on pin 7 can be anywhere in the range shown for various
ATmega328 variants. If you're planning to run your AVR on batteries, please check the
data sheet for the version you have, to see what voltage it can work from before assuming
it will work down to 1.8 V.

e Ifyoudon’t use the crystal pins 9 and 10 for a crystal you can’t use them for anything else.

e The pins with PWM (pulse width modulation) after their name are the only ones on
which the Arduino supports PWM. PWM is used to control the brightness of LEDs or
lamps, to control the speed of motors, or to set the angle of intelligent servo motors. We'll
be visiting these topics in the several of the projects.

e The six analog inputs can in fact be used as outputs as well and can double as digital I/O
lines if you want them to.

e The Analog Reference input (pin 21) is most often just tied to VCC. However, if you want
analog voltage inputs to be compared relative to some other voltage, you would tie pin 21
to that voltage instead. See the chip’s data sheet for more details on voltage limits.

AVR: Speak to Me!

If you've programmed in a full desktop environment, you'll be used to having lots of lovely facilities that help you
debug your programs. Using things like Java NetBeans or Microsoft Visual Studio you can pause your program
at pretty much any point you like, examine the value of variables, change variable values and then resume the
program from where it paused. You have a veritable armory of debugging tools at your command.

When programming AVRs, the debugging facilities are a lot more limited! If you are using Atmel’s AVRStudio
(on a Windows PC) you can, with some minimal additional hardware, use the AVRs debugWire facility to get some
debug capability. However, if, as we are here, you are using Arduino, your principal debugging tool is the serial
channel. If your program isn’t doing what you expect, you temporarily add Serial.print() statements to your
program, so that you at least gain some idea of where the problem might be:

Serial.print("message");

You can print out text messages, or you can print out variable values that help you gradually track down what the
problem might be and rectify it. This is not always easy, and it feels like hard work if you're used to something more
sophisticated. However, using this method you can get to the bottom of most problems without too much trouble; it’s
just a longer haul. So, having some way for your AVR to push messages out to your desktop is a high priority.

In the simplest case, one where we have a programmer that offers an additional TTL level serial channel, we
make the connections shown in Figure 3-15 in which we see the serial connection pins from the AVR on the test bed
connected to the programmer’s TTL level serial channel. As Figure 3-15 shows, we connect the TX of the AVR chip
(pin 3 on an ATmega328) to the programmer’s RX input, and connect the RX of the AVR chip (pin 2 on a ‘328) to the
programmers’ TX. Then, on the desktop, we use the Arduino software IDE as before, but we also start up a terminal
emulator window (see below) which we point at the second serial channel (in our ongoing example of using the
Pololu USB programmer this will be something like /dev/ttyACM1 on Linux and perhaps COM3: on Windows).

We can then include stuff in our Arduino sketches that gives out useful debug information. The Arduino
sketch “Serial_Example 01”(listed below) shows how to send messages to the AVR’s serial channel so that they
show up in the terminal emulator window.

79

CHAPTER 3 * ARDUINO AND THE NAKED AVR

Desktop Machine

Virtual Serial Virtual Serial
Port 1 Port 2

USB

l

AVR Programmer X
(hardware)

A

RX

ISP (RST, MOSI, SCK etc)

AVR Chip

RX 4 |TX

Figure 3-15. Overview of serial connection scheme

Here’s an example of a program that would send messages from the AVR into a desktop machine’s terminal
window.

// Serial Example 01
int theCounter = 0;

void setup()

Serial.begin(9600);
}

void loop()

Serial.print("The counter now = "); // msg without a new line
Serial.prinln(theCounter); // msg with a new line.
theCounter++;

80

CHAPTER 3 * ARDUINO AND THE NAKED AVR

delay(1000); // Sleep for one second (1000 milliseconds).

The Serial_Example 01 program declares an integer called theCounter (which being outside both the
setup() and loop() functions is global in scope, meaning that it can be used from anywhere in the program.
Then, in the setup() function (which is run just once when the program starts) the Serial channel is initialized.
If you remember from an earlier discussion in this chapter, this is the moment when the TX and RX pins on the
AVR stop being general-purpose I/0 lines and instead begin usage as serial data transmission and reception pins.

With the setup complete, the program now executes the loop() function round and round forever. Within
that loop

1. We send the message “The Counter Now =" out to the serial port, but notice that we
user Serial.Print() and not Serial.println()-the first form doesn’t cause the
receiving terminal’s cursor to move down to the next screen line, the second form
does do a new line.

2. Then, we use Serial.println() to output the current value of theCounter and do
anew line. The first time through, this makes the message “The Counter Now=0"
appear on the screen because we initialized the variable theCounter to zero when we
first declared it.

3. Next, we increment the counter by 1 (that’s what ++ on the end of a numeric variable
means). Finally, we use the delay() function to put the program to sleep—in this case
for 1,000 milliseconds, which to you and me is one second.

4. Then, as always in an Arduino program, having reached the end of the loop, the loop
starts all over again. Only this time through the loop our variable theCounter will
contain the value 1 (because we incremented it), next time through it will be 2, then 3
and so on.

As this program executes on the terminal emulator running on our desktop machine we should be seeing
this kind of output.

The Counter now = 39
The Counter now = 40
The Counter now = 41
The Counter now = 42
The Counter now = 43
The Counter now = 44
The Counter now = 45
The Counter now = 46
The Counter now = 47
The Counter now = 48
The Counter now = 49
The Counter now = 50

This will continue forever, or at until we stop it! Eventually (after about nine hours) we'll start to see some
strange numbers come from the counter, because it will overflow and eventually start again from zero—but that’s
another story!

You've probably noticed that the Arduino software interface offers a serial monitor which looks like it
should be able to show the input from a serial channel. Unfortunately, the serial monitor expects to use the same
virtual serial port that is used for programming—because that’s how Arduino hardware works. None of the USB
programmers work in this way, however, so for most purposes the serial monitor facility of Arduino is useless to us.

If you're using an ISP programmer that does not offer an additional TTL level serial channel, how can you
tap into the essential serial chatter emerging from your AVR? There are two ways.

81

CHAPTER 3 * ARDUINO AND THE NAKED AVR

e Ifyour desktop machine does have a “real” serial port that uses RS-232 signal levels
(usually this is a nine-way D-plug on the side or back panel of your machine) you could
go down the route of fitting a level translator chip (such as a Maxim MAX 235) to your test
bed rig and connecting to your serial channel through that. That will take up space on
your test bed rig that you might eventually need for other purposes, and a level translator
chip can cost you a few bucks, perhaps more than your AVR chip did! See Appendix B for
more info on RS-232 and signal-level conversion.

e Another—and I think preferable—alternative is to buy a USB to TTL serial dongle. As
the name suggests, this plugs into a spare USB port on your desktop machine and sets
itself up as one or more additional virtual serial ports (you sometimes have to install a
driver, sometimes not). At the non-USB end, it presents TTL level TX, RX, and ground
connections that you can connect directly to your AVR (remember that to protect
against damage to your devices, always make the ground connection first and the others
afterward). You can get these devices from a variety of places. For example,

e http://www.sparkfun.com/products/9717 (United States); and
e Numerous Internet sellers sell these via auction sites.

In one or other of these ways, even if your AVR programmer does not provide the facility, you should be able
get yourself the serial channel that you are going to need for debugging your projects and code.

If you're thinking ahead, you could be wondering how to deal with the situation where your project needs
to use the serial channel for a purpose other than debugging. Suppose you are doing a project that requires
you to send out a constant stream of information (e.g., a temperature reading derived from an AVR-connected
sensor). Perhaps you want to send this information stream to a desktop application that paints pretty graphs of
the information from moment to moment! In such an application it’s not ideal to have to send debug information
over that same channel, yet, your AVR chip only has one serial channel; so what can you do?

SoftwareSerial Library, a free download based on work by Mikal Hart, is available.

http://arduino.cc/en/Reference/SoftwareSerial

This library lets you turn any of the general purpose I/0 pins on your AVR into an additional serial port. This
means that you can use your hardware serial port for your application purpose and create a software serial port
for debug or some other purpose (e.g., send info as a log stream to a data logger device with a TTL level serial
interface). It's even possible to create multiple extra software serial ports, though there are some limitations on
multiple ports—see the foregoing link for details and examples of using software serial.

Terminal Emulators

Up to now we've spoken blithely about using a terminal emulator window on your desktop machine. We intend
for this to be the on-screen termination point for messages being put out by your AVR. But, what are these
terminal emulators, where do you get them from, if you don’t already have them?

On a Mac system you should find the terminal app that is built in sufficient for anything we need to do in
this book.

On a Windows system you might use Hyperterminal (Windows XP and earlier) or you can use the
downloadable version of Hyperterminal (for Windows Vista or W7) from

http://www.hilgraeve.com/hyperterminal-trial/
You might also (for Vista and W7) like to try puTTY—a free terminal emulator that you can get from

http://www.chiark.greenend.org.uk/~sgtatham/putty/

82

CHAPTER 3 * ARDUINO AND THE NAKED AVR

For Linux, and Windows systems, check out coolterm at
http://freeware.the-meiers.org/

For Linux systems you can use Minicom—a free terminal emulator. Have a look at
http://alioth.debian.org/projects/minicom/ for akit.
On Ubuntu you can usually install Minicom with the command

"sudo apt-get install minicom"

Minicom, of course, has its own Wikipedia page.

If none of these possibilities works out, do a search of the Internet for a “terminal emulator with serial port
support.” You'll turn up lots of possibilities—many of them free to download.

Once you've got your terminal emulator running, you'll need to configure it with the following settings:

e The name of the serial port you want to communicate with (see the section “AVRDude:
Getting Started” for tips on how to find out this information if you don’t know it—
remember, if you have a programmer that offers two serial ports, the second port will

on Windows. The ? will vary from system to system.

e Asend and receive data rate (a.k.a. the baud rate). This is the speed you set when—in the
Arduino programming environment—you include a statement like Serial.begin(2400);
in your code. That example sets the baud rate to (guess what!) 2400 baud (which means
2,400 bits per second).

e Abits-per-byte length. This is always eight bits.
e Anumber of stop bits: you should always use one stop bit.
e A parity setting. We use None (or n).

If you use your terminal emulator’s settings screen to set these values, you should be able to communicate
very happily with your AVR via whatever serial port method you are using.

Summary

This chapter has covered a lot of topics, most of them quite low-level and detailed ones. Congratulations if you've
bashed through it all! If you didn’t read it all, I quite understand! Use it as a reference as you proceed through the
rest of the—more fun parts—of this book.

We began by comparing the MCU approach with using a dedicated chip to implement a timer. Then we
looked at how the “naked” AVR approach works and how all the pieces go together. We looked at some of the
basic characteristics of AVR chips and using external clocking components. Then, we looked at AVR fuses and
what they can do for us. AVRDude was next—a very useful piece of software for our purposes but initially hard to
get to know. We looked a numerous examples of AVRDude usage (including for programming fuses). We looked
at the complexities of AVR part numbers and some methods for being able to use nonstandard AVR parts if we
want to. We compared the native AVR pin names with the names for those same pins that Arduino uses (don’t
forget to make a photo copy of Figure 3-13 and keep it handy!). Finally, we looked at how we can use serial links
to allow our AVR to talk to the desktop, for debug purposes or for application specific communication—or both.

Coming Up Next

Moving On: making things that move, in which we look at how your AVR can become a shaker and shifter!

83

CHAPTER 4

Moving On!

Your AVR chip is a silicon nerd! It’s a very smart little beast, but it’s very puny. You may as well ask it to calculate
the square root of infinity as to directly energize a motor, or activate a solenoid. It’s all a question of electrical
muscle: even a small electric motor will want to consume about 500 milliamps of current, whereas an MCU port
pin starts to sweat at about 20 milliamps. So, for all that the AVR is smart, translating that smartness into making
real-world things move or happen at the right time is not within its direct capabilities. It needs help.

That’s the main thrust of this chapter—how we deliver the help that an MCU needs to be a shaker and shifter
in the real world of movement and motion.

Making Things That Move

I'love looking at books and magazines that show the endless novelty and invention that MCUs inspire, I really
do. However, you have to note a certain sameness about many ideas: such a large proportion of them are about
making little LED lights flash, or making messages appear on neat little screens. Nothing wrong with that, of
course, the world needs pretty things and neat solutions: I've created a few projects like that myself for this book
and elsewhere! But, I often feel the lack of more muscular MCU applications that interact with the world of
moving things in a more direct way, and I wish there were more published projects that did stuff like that.

In this chapter I get my wish. We look at how we can control everything from servo motors all the way
through to allowing our MCU to do grown-up stuff, like turning mains appliances on and off.

Clearly, an exhaustive treatment of the myriad methods used to activate and control real-world items would
fill many books: so, it’s obvious I cannot do very complete coverage in one chapter of one book, but I do single
out some examples at several levels of muscularity so that you have a feel for how the interfacing works and
what’s involved in controlling things. You'll look at creating movement and also a little bit at sensing movement.

The Servo Motor

First introduced some years ago for controlling moving parts in radio-controlled model planes and boats and
trains, servo motors are an absolute gift for MCU applications. A servo motor contains the motor itself, plus a
small internal control board (ironically, this board often has an embedded MCU on it). A typical servo motor has
three connections.

e Avoltage supply (+ and -) that is used to power the on-board electronics inside the
motor as well as the motor itself. On almost all servo motors the + supply wire is red, and
the - supply wire is black-be sure to check the documentation that came with your motor
though.

e Inmost products a servo control input is a logic level input (between 0 and 5 volts) which
needs to be pulsed at a constant rate. This wire is usually white, but sometimes it’s yellow.

85

CHAPTER 4 © MOVING ON!

The basic idea of a servo motor—and the reason it is so ideal for MCU projects—is that the control entity (in
this case our AVR MCU) can interface to the motor control input directly, just as if it was another logic device, not
a power-gulping beast of a motor! The servo motor has the built-in electronics to drive and control the motor. For
other types of motors the MCU needs to be far more involved in the control process, but generally, the MCU tells
a servo motor what to do, and it does it. Since many servo motors can run from the same +5-volt supply that the
MCU itself runs from, the servo motor and MCU partnership is indeed a marriage made in heaven!

Servo motors come in two main flavors.

e Positioner motors that rotate to a commanded angle. Individual servo motor products
will have slightly different parameters, which belies the common name of “standard servo
motors,” but a typical baseline product will have the capability for somewhere between
150 and 180 degrees of rotational movement.

e Ifyou pay more, you can get positioner servo motors that are able to give your MCU
positional feedback-though these can command quite a high premium and they are not
always needed. Many applications don’t need positional sensing at all and some only
need minimal sensing (such as end-of-travel detection) which can be done cheaply and
effectively with limit switches or opto-sensors.

e Continuous servo motors offer full 360-degree rotation (in other words, they rotate at
some number of revolutions per minute, just like any other motor) and you set the speed
of rotation with the control input.

The electronics inside a servo motor has two parts: the control part and the driver part. The driver part is
responsible for actually moving the motor into position. The control part consists of

e Asensor that gives a different voltage for every point of rotation of the motor.
e A circuit that converts incoming control pulses into a “target” position voltage
e Circuitry to signal the driver section to rotate the motor toward the target position.

e A control loop that monitors the motor’s position sensor and cuts power to the driver
section and locks it down when the target position is reached.

A servo motor’s control input expects to get control pulses somewhere between 30 and 50 times per second.
It's a sensible idea to use something close to 50 per second because there are some motors around that are not
happy if you deviate too far from there. So, each second is chopped up into 50 slots each of which lasts for 20
milliseconds. Each slot is a “frame” (or a “servo frame”). To make the motor move to the desired position, all
you have to do is vary the portion of each frame time slot when the control signal is high. So, you vary the pulse
width but rot the update frequency. MCU chips have the capability to produce PMW signals very precisely: for
many of them it is built into their hardware, but unfortunately (because it is intended for multiple purposes) the
frame rate is often rather higher than we need for controlling a servo motor. So, we have to write or use different
software that will produce precisely the right kind of PWM signals for a servo.

Figure 4-1 illustrates the general idea of a PWM signal. The diagram in Figure 4-1 represents a complete 20
millisecond frame. At the start of the frame the pulse occurs, this is just a logic level pulse—active high. The servo
motor’s key interest is in the duration of the high time of this pulse. Figure 4-1 is not drawn to scale; if it was, the
empty part of the slot would be even longer than that shown!

86

CHAPTER 4 © MOVING ON!

High o

Low

<—— 20 ms: One Frame Timg ——)

(not to scale)

Figure 4-1. One servo frame

In Figure 4-2, you can see how this waveform looks over half a second (500 ms). Again, the ratio of the highs
to the lows is exaggerated; the highs would be even shorter as compared to the lows if they were shown in true
proportion.

High

Low

[€———— 500ms=25 Frame Times —————|

(not to scale)

Figure 4-2. A set of 25 servo frames

In summary, then, at the start of each frame there is a small pulse, and it is the length of this small pulse
that the motor reads and acts upon. If you analyze the specs of a range of servo motors, you'll find that there is
variation between different manufacturers as to what range of pulse lengths the motor controller expects to get.
The supposed standard pulse lengths are between 1 millisecond and 2 milliseconds, but many products deviate
from this.

Even between supposedly identical products there is likely to be some small amount of variation between
pulse lengths to get the same amount of rotation. This is because some analog-ness is involved here. Inside the
servo motor the positional sensor is provided by a potentiometer (a rotary action variable resistor-see Appendix
A). This potentiometer is turned by the motor’s central spindle and it provides the control electronics with an
analog voltage that varies according to the position of the motor.

As we saw earlier, the motor’s internal electronics converts the control pulses we send into a voltage, and a
comparator circuit (or sometimes an MCU) is used to generate a difference voltage between where we want the
shaft to be and where it is now. This difference voltage is amplified and used to turn the motor in the appropriate
direction to lessen this difference voltage, to the point where it reaches zero (meaning the motor is on-station at
the commanded position). This arrangement is an elegant one (in an engineering sense) because it means that
when the motor gets close to where it should be, the difference voltage gets less and less and the drive power to

87

CHAPTER 4 © MOVING ON!

the motor falls away gracefully, making the motor decelerate as it gets close to the point where it must stop. This
ensures that there will be very little, if any, overshoot. However, since there are analog voltages involved and a
mechanical coupling between the potentiometer and the motor spindle, there are bound to be small amounts of
electrical variation—even among otherwise identical products.

So, look carefully at the specifications for the servo motor that you buy, because there are variations;
however, in the general case, the servo motor will react to pulses between 1 and 2 milliseconds: The motor will be
positioned centrally at the midpoint of the pulse length (1.5 ms in the standard case).

The spec for one servo motor, the one pictured at Figure 4-3, says that it reacts to a pulse length of between
0.75 ms (which sets the motor positioned fully clockwise) and 2.25 ms (sets motor positioned fully counter-
clockwise). So, a pulse length of 1.5 ms (the midpoint) should set this motor pretty much to the center of its travel.
Let’s see what the frames for that might look like.

Figure 4-3. Servo motor example

Figure 4-4 visualizes (but not to scale) a couple of servo frames implementing a midpoint pulse. We use
pulse lengths to set the position, but the position we set for any given pulse length will vary between products
and even (to a lesser extent) between individual units. You may already have experienced this variation at the
product level. If you have ever owned a radio-controlled model, such as a car, boat, or plane, there is always
some kind of mechanical adjuster to make it run true. Such adjusters are making up for (among other things) the
variations of the individual servo motor installed in your model.

High |—

Low

<€— 20ms One Frame Time —><€— 20ms One Frame Time —]

(not to scale) (not to scale)

Figure 4-4. Close-up on two servo frames

88

CHAPTER 4 © MOVING ON!

But don’t go away yet, there are more great things about servo motors. Once you have set the position, unless
there is quite a lot of mechanical pressure on the motor, most motors will stay in the position you set, even when
power is removed. When on power, the motor will resist any forces that try to take it off-station.

Additionally, they come with standard mounting arrangements. This means that you can shop around for
the best priced motor, but if one motor proves unequal to the task you have for it, you can very often slot in a
replacement without having to redo the mounting arrangements or power linkages. You'll find that many outlets
which sell servo motors also sell mounting kits for them, and these can be very useful. Generally, then, servo
motors are not too hard to install.

The mountings for a servo motor are pretty standard and the overlays to the photo in Figure 4-5 illustrate the
approximate center distances and dimensions. These do vary a tiny bit from product to product, but not enough
to make much difference. You can mount your servo motor in your project in a number of ways, though obviously
the details vary each time. You can mount the motor in any orientation that suits your project, vertically,
horizontally, or upside down, the motor will still work fine.

Figure 4-5. Servo motor mounting centers and dimensions

When fixing a servo into a wood-frame project I always use self-tapping screws with so-called cheesehead
tops as in Figure 4-6. I always drill tap holes at about two-thirds the screw size if it’s near the edge of the wood, if
you don’t do this, the wood tends to split.

89

CHAPTER 4 © MOVING ON!

B

Figure 4-6. Using self-tapping cheesehead screws

The really essential thing is that the motor is held securely so that it can’t twist about, thus changing the
distance to whatever it is driving. Also, in lightweight projects, you need to take account of the rotational force
the motor will generate and add grip or deadweight into the box or enclosure of the project. You don’t want the
centrifugal force generated by the motor making your project walk off the desk, instead of what it’s supposed to
be doing. Figure 4-6 shows a fixing with self-tapping screws.

If your project doesn’t offer any convenient or properly spaced fixing edges, which often happens, you
may need to use mounting brackets (as mentioned earlier, the same outlets that sell the motors usually offer
the mounting brackets); mounting brackets usually offer extensibility, which you can use to extend the motor’s
mounting points to a suitable dimension for your project needs.

If all else fails, you may need to go in for cutting out a hole in a piece of wood, plastic, or metal into which
you slot your motor. This simply consists of drawing the outline for the motor body (excluding the mounting tabs)
onto the place you want your motor to go: then, use a 0.75" (19 mm) drill bit to drill a couple of holes in a straight
line within the outline - (the adjacent diagram shows this idea). Then, using the large holes as the start points for
a small pad saw (a.k.a. a keyhole saw), cut neatly around the outline (indicated by the dotted line in the diagram).
Smooth and clean off the resulting edges and drop your motor in—of course, remembering to fit screws or nuts
and bolts into the fixing tabs—and you're done!

90

CHAPTER 4 © MOVING ON!

Translating the rotary movement of the motor shaft into other kinds of movement-such as a push-pull
motion—is very often essential when using a servo motor. This involves fitting an attachment to the motor shaft.
These types of attachments are known as “horns” and many, but not all, motors will come with a selection of
them (see Figure 4-7). If your motor didn’t come with any horns, or nothing that matches your needs, then you
should find that the same vendor will sell a selection separately. Robotics and model making stores usually have
avery large selection that should provide what you need.

Figure 4-7. Servo motor “horns” package

Giving a Servo Motor a Testing Time

In most projects you want to use a servo motor to provide fairly precise service. The problem is that using a servo
motor is fraught with variables. We've already seen that, due to the analog elements inside a servo motor, there
is some minor variation, even between how apparently identical units will act upon a given control signal. The
other more difficult variable is how your MCU will provide precisely timed pulses to the motor; fairly precise
timings are easy to do in a test program, but rather harder to do when your AVR is doing lots of other things too.

Let’s look at the mechanical side of the precision issue: the variations between motors may only result in
fractional differences of motor shaft rotation, but if you think about how these motors may be used, it’s possible
that those small differences could become a problem. Imagine if the motor is being used to power the short side
of alever, a small movement on one side will make a larger movement on the other side. Let me show you how
that might look in a real situation.

Refer to Figure 4-8, in which a servo motor positions a ball guide gate in a game. In this game the ball has
to be guided into a certain direction set by the position of a plastic paddle. The actuation mechanism is using
leverage (with the screw on the paddle as the fulcrum) to make a fairly small movement of the motor
(transmitted through the push rod) which will result in a comparatively large movement at the far end of the
paddle. This means that any variation on how the motor positions itself will make quite a difference to the
position of the end of the paddle. In this usage we would want the positioning of the paddle to be repeatable; it
has to be much the same every time. You would, at the very least, want the paddle to return to a known rest
point when the game was reset.

91

CHAPTER 4 © MOVING ON!

Given that any small variations of position are amplified, you would perform some testing and
characterization of the overall paddle positioner assembly to make sure that the software’s “idea” of where it is
positioning the paddle is close enough to the reality. If you only cared about the paddle getting accurately back
to its “rest” position (which is how it’s shown in Figure 4-8), then you could install a sense switch that the paddle
hits when it resets. Your program would then just send pulses to the motor to make it go back to the rest position
and monitor the sense switch. It would stop sending pulses when it “sees” the sense switch close and the “at rest”
position would always be the same—determined by the switch activation and not the motor characteristics which
will alter slightly with wear and tear.

@ o

PADDLE BAR

~
-

Figure 4-8. Small motor movement—Dbig effect!

All this adds up to the fact that, when you use a servo motor in a project, you often need to have a good idea
of the real limits of the motor movement: you need to know how well your positioning commands translate into
what the motor actually does.

Servo motors that do not rotate 360 degrees have built in mechanical limiters that stop them from rotating
too far. The nasty sound you get when the motor hits one of these hard is not a nice one; that sound you can
hear is the mashing of internal plastic gears. However, it is possible, with care, to gently explore the limits of your
motor, without much chance of damaging it.

It may be that your motor, when operated within the pulse lengths specified by the manufacturer, offers
enough rotational movement for your project. If the movement is sufficient and accuracy is not especially an
issue, then you're all set to go. However, if you want to get the maximum amount of rotation from your motor,
and/or you want to do some testing to see how accurate your control can be, then you need a test program.

92

CHAPTER 4 © MOVING ON!

The Great Thing About Standards...

...is that there are so many variations of them to choose from! Servo motors were originally all meant to be the
same. If one breaks, you just put in another one and everything works as before. Nice theory! But what are the
variable points?

I have found most servo motor specifications to be quite conservative, meant to protect your motor
against damage (and no doubt protect the manufacturers against a tidal wave of warranty claims). When [used
a program to test the motor shown earlier on, I only got about 120 degrees of rotation using the stated pulse
lengths. However, by very gently increasing the pulse lengths using a test program I managed to get the full
180-degree movement from it.

Here’s the test program I used (within the Arduino IDE which is not shown).

/*
Servo Motor Sweep. Makes a servo motor sweep from one end of
its travel to the other.

*/
int motorPin = 4; // Name the motorPin
/*
Constant values used through the program
*/
/*

Pulse length (in microseconds) for fully counter clockwise
and fully clockwise. Customize to your servo motor's specs.
*/

const int fullCCW =750;

const int fullCW = 2250;

const int frameRate = 50; // How many servo frames/second
const int msPerFrame = 1000 /frameRate; // Millisecs per frame
// Do the setup

void setup()

pinMode(motoxrPin, OUTPUT); // Make the pin an output
Serial.begin(9600);

Serial.print("msPerFrame="); // Say the frame length val.
Serial.println(msPerFrame,DEC);

}

// Now loop round this forever and ever.
void loop()

/*

We start from the fully counter clockwise value, then each
time through the main program loop we lengthen the pulse

by 5 microseconds. Then, we pause for enough time to allow
the rest of the 50 ms frame time to pass. This is not going

to be 100% accurate due to execution delays and latency, but
it's easily accurate enough (about 98% accurate) for the servo
motor - which in any case varies from example to example.

93

CHAPTER 4 © MOVING ON!

To make this 100% accurate we would need to hook up an
oscilloscope or a digital analyzer to the motorPin and tweak
the program values until we had it exact, however that would

be overkill for this purpose.

*/
for (unsigned int myDelay = fullCCW; myDelay < fullCW; myDelay++)
{

// Frame start

digitalWrite(motorPin, high); // The pulse starts.

delayMicroseconds(myDelay); // pause for current pulse microseconds
digitalWrite(motorPin, low); // The pulse ends.
/*

Now wait out the rest of the frame time which is our
frame time (in milliseconds) minus the pulse length in
milliseconds (1000 milliseconds to a microsecond)

*/

delay(msPerFrame- (myDelay/1000));

Let’s do a quick code walk:

e Itstarts by declaring constants for the control pin you will use to send pulses to the
motor. In this case it’s Arduino digital pin 4 (assuming using an ATmega328, this
translates to physical pin 6-refer to the pinout chart from Chapter 3 figure 14). Then
you get declarations for the minimum and maximum pulse lengths and these take the
values specified by the manufacturer for this motor, which were 0.75 milliseconds and
2.25 milliseconds, respectively. In the program you translate these into microseconds
(remember one millisecond = 1,000 microseconds).!

e Next, set the frame rate you want to use. In this case, you need 50 servo frames per
second. Then create a constant that tells you how many milliseconds there are per frame.

e Inthe setup (which, remember, only runs once at startup), all you do is make the motor
control pin into an output. You could add some stuff in the setup to call out the constants:
for example, you could add

Serial.begin(9600);

and

Serial.print("The frame time in milliseconds is ");
and

Serial.println(msPerFrame,DEC);

if we have a serial connection into a desktop machine.

! Also remember that if, like me, you are mathematically challenged, you can use Google to perform conversions for you, with
a query like “What is 0.75 milliseconds in microseconds?”

94

CHAPTER 4 © MOVING ON!

e Then, it’s time to get into the main program loop—which, as you remember, loops around
until you remove power from the AVR. Within the main program loop we run a for loop.
This outputs servo frames on the motor control pin; inside each successive frame the
motor control pulse gets longer by one millisecond starting from the minimum and
continuing until it reaches the maximum. When the full range of pulse lengths has been
output it starts all over again. Following are the steps within the main loop:

e Weinitiate the for loop. This sets the fTul1CCW value as its start and the fullCW value
(see the previous code) as its end. Each time through the loop the variable myDelay is
incremented by one, using myDelay++.

e WeusedigitalWrite to set the motor control pin to high.

e We use the Arduino software’s delayMicroseconds () function to wait for whatever
the current pulse length is; delayMicroseconds () pauses the program for the stated
number of microseconds.

e WeusedigitalWrite to set the motor control pin to low—which ends the pulse.

e Then, we use the delay() function of Arduino to pause the program for the rest
of the current servo frame. The delay(XXms) function expects to get XXms as the
number of milliseconds to pause. The calculation we do here works out the frame
time remainder by taking overall frame time and subtracting from it the number
of milliseconds we have already spent on the control pulse. The program is then
paused for whatever the remainder is. So, if the pulse length is currently 1,000
microseconds (which is 1 millisecond) and the frame length is 20 milliseconds, this
line of code will translate into:

delay(20-(1000/1000)) = 19
Meaning that the program will pause for 19 milliseconds.
e When the delay completes, the next time through the for loop begins.. ..

e When the for loop completes, the main loop() begins again—and the pulse length
will again start from the lowest value.

Although it’s fairly basic and leaves out some things it might do, the program gives you the means to test
your motor within the given parameters. The program timings won'’t be absolutely accurate because, of course,
the program itself takes some time to run and so this will cause variation in the timings, though not enough to
make any noticeable difference unless you are measuring it with a frequency meter or oscilloscope. If, using
the values provided by the manufacturer of your servo motor, you get the movement you need from your motor,
you’ll most likely be content to leave it there.

What do you do, if you are not getting as much movement as you want, or as the spec says you should
get from your servo motor? Well, you may want (at your own risk of course) to try some margin testing. To do
this, you need to repeatedly tweak the ful1lCCW and fullCW constants in the test program by small amounts
(5 microseconds at most each time) and reupload the program into your Arduino to find out what the true
minimum and maximum values are for your individual motor.

How will you know when you have reached the actual minimum or maximum values? If you look and listen
to your motor in motion, while the test program is running with the manufacturer’s values, you will see that it
moves in little staccato bursts in a strict rhythm. When it reaches the end of one cycle it quickly rewinds to the
start position and the beat starts again. However, when you extend the times (up at one end or down at the other)
you will see that, eventually, the rhythm is broken; there will be a dead time at the start or the end of the travel;
the movement rhythm will miss one or more beats. This may also be accompanied by a tiny “click” sound that the

95

CHAPTER 4 © MOVING ON!

motor doesn’t normally make (which is it gently hitting the end stop). When you get to that stage, do not continue
adjusting the timings: In fact, you should immediately undo your most recent changes and reupload the program
into your AVR as quickly as you can or just remove power from the motor. In other words, having established the
absolute limits of the movement for a particular motor, don’t leave the motor tapping its end stops for very long.

By gently adjusting the min and max pulse length values you should be able to find out the full range of
pulses that your motor can manage without any serious risk of damage. I have two examples of the motors
pictured earlier and I performed this margin testing with both of them. Remember, these are supposedly
identical products from the same manufacturer; I think also from the same batch if I read the labeling correctly.
One motor was okay with pulses from 550us to 2600us, the other’s range was 610us to 2450us. I have another
motor, a completely different type from a different manufacturer, and the pulse lengths quoted in the spec for that
one also proved very conservative.

One final word on this subject: if you are (I say again, at your own risk) operating your motor outside the
specified limits, leave some margin. For example, if you have established that your motor is okay with pulse
lengths between 800us and 2900us it’s not wise to operate it with exactly those values because if-as the motor
ages—the spec drifts a little, you have no margin for error and it’s likely to start hitting the end stops on a regular
basis (perhaps initially without you even realizing it) which is, mechanically, bad news. It is better to allow some
safety margin at either end for future wear and tear and operate it at, perhaps, 900 and 2800, respectively.

Margin testing is one aspect, but what about accuracy? Suppose our application requires the motor to rotate
90 degrees from its start position. We could just assume that if the motor rotates 180 degrees when we send it a
maximum length pulse, a pulse at half the maximum length will make it go to 90-degree rotation, but will it? We
need a test program for that too!

Adding Some Library Code

At this stage we should make our task easier by introducing some ready-made library code into the picture. One
of the glories of Arduino is that there are so many complete functional code libraries that are yours for the asking.
This one is called the Servo library and it does everything we have looked at so far, but far more easily (I know,

I should have said so, but I wanted you to see how the low level worked first!). The Servo library comes as part of
the Arduino kit. The following Arduino sketch shows how to use it.

// ServoStepperi
#include< Servo.h>

Servo myMotor;
void setup()

myMotor.attach(4);
}

void loop() {
for (int i=0;1<=180;i++)
{

myMotor.write(i); // Set angle to current value.
delay(100);
}

myMotor.write(0); // Command back to home
delay(1500); // Wait for rewind.

96

CHAPTER 4 © MOVING ON!

Asyou can see from the listing, using the Servo library makes short work of controlling the motor.
The code walk need not detain us for long!

e The program starts by including the Servo library code.

e We then declare a Servo called myMotor.

e Inthe setup() we attach this servo to Arduino pin 4 (the same pin as we used previously).
e Inthe program’s main loop() we use a for loop to step between 0 and 180 in steps of 1.

e We use the servo’s write method to write out the required angle of rotation for the motor

e We delay by 100 milliseconds, just so that we can see the motor do the steps; otherwise
it would probably be too fast to see the individual steps and-depending on speeds of
processor and motor—it might not have time to complete the move.

e When the for loop ends, we command the motor to return back to 0 degrees of rotation.
e We wait for 1 1/2 seconds for the motor to do its reset, and then the loop starts again.

Pretty straightforward stuff, no? Rather easier than what we were doing before. However, astute readers
will have deduced that the Servo library must, under the surface, be translating the angle of rotation we supply
into the appropriate servo pulse lengths on the designated pin. That is indeed what the library code does, and it
assumes that your servo motor is using the “standard” pulse lengths for servo motors.

So, what do you do if your servo motor is one of the many that uses slightly different timing values? In this
case, you simply use a different control method of the Servo library. Instead of using myMotor.write(angle) you
use myMotor.writeMicroseconds(uSecs) and instead of the for loop using value 0 to 180, it uses the minimum
and maximum pulse length values that your motor needs —as in this modified version of the program.

// ServoStepper2
#include <Servo.h>

const int fullCCW =550;
const int fullCW = 2250,

Servo myMotor;
void setup()

myMotor.attach(4);
}

void loop() {
for (int i=fullCCW;i< fullCW;i+=10)
{
myMotor.writeMicroseconds(i); // Set angle to current value.
delay(100);

myMotor.writeMicroseconds(fullCCW); // Command back to home
delay(1500); // Wait for rewind.

Asyou can see, this is more or less the same program, except the loop uses values derived
from the minimum and maximum pulse length constants at the top of the program, and we use

97

CHAPTER 4 © MOVING ON

myMotor.WriteMicroseconds(). So, by using the Servo library we can (as so often when using Arduino libraries)
make our task of creating a calibration program a lot easier.

Next, we'll create an Arduino program that takes three simple commands from the serial channel “u,” “d,”
“h,” and “z” (for up, down, halfway, and 0, respectively). Our program will look at the serial channel and if it sees
any of these characters coming in it will increase, decrease, or set to 90 or 0 the servo setting appropriately.

// This program allows you to step the motor manually by sending keyboard commands
/7 "u", "d", "z" and "h" meaning up, down, zero and halfway respectively.

#include <Servo.h>

Servo myMotor;

int theAngle=0;

void setup()

Serial.begin(9600);
Serial.println("Servo Calibrator Vi");
myMotor.attach(4);

}

void loop() {
if (Serial.available() !=0)
{
// Something has been received.
int inChar = Serial.read();

switch (inChar)

{

case 'u':
theAngle++;
break;

case 'd':
theAngle--;
break;

case 'h':
theAngle=90;
break;

case 'z':
theAngle = 0;
break;

default: // Default case, say what...
Serial.println("use u, d, h or z only");
break;
} // End of switch...case block
if (theAngle < 0)
{

}

theAngle=0;

98

CHAPTER 4 © MOVING ON!

if (theAngle > 180)

{

theAngle=180;

}

Serial.print("Angle is now set to ");
Serial.println(theAngle,DEC);

}

myMotor.write(theAngle);

Let’s do a code walk for this program:

As before, we include the servo.h library. Then we declare our Servo which we call
myMotor. We also create an integer called theAngle which will hold the current servo
angle that is to be set. This is just for clarity, the servo itself could hold the angle-see the
Servo library read() method.

In the setup() we open (begin) the serial channel and we put out a message so that
anyone listening knows the program has started. We then, as before, use attach() to use
Arduino pin 4 to control the servo motor. Then we get into the main loop.

At the top of the main program loop() we check to see if any data are available from
the serial channel (i.e., have any characters typed on the desktop been received in the
Arduino)? If yes

e Weread the first received character from the serial channel and store it in a variable
called inChar (input Character).

e Webegin a switch...case table. This uses the value of inChar as its switch value,
and we check for each of the allowed characters in turn, changing the value of the
variable theAngle appropriately. For example if the character received is a “z” we set
theAngle to zero. A switch...case table works like this: When it finds a matching
value it carries out all the program statements until it gets to a break, and it then
exits the switch...case and moves onto the next statement in the program (in this

case that will be the
if (theAngle <0)...

down below the closing bracket. If none of the cases provided match the switch value
(the value of inChar, in this example) the default case actioned. Here, we just make it
send a message to the serial channel to say that what they sent was not valid and remind
them of what we are looking for from them.

e Bytheend of the switch...case code block, our variable theAngle is very likely to
have been altered. So, next we check it to make sure that our changes to it have not
taken out of the allowed range of 0 to 180. If it is out of range, we correct it. Doing
this check after every command is received ensures that the angle we set can never

go over 180 and never go below 0-no matter how many “u” or “d” commands are
received from an overenthusiastic user!

e We then send out the new value to the Serial channel so that the user can see some
visible reaction on screen, as well as knowing the angle which the motor is being
commanded to. This allows the user to compare what the software thinks it has done
with what is actually happening in reality.

99

CHAPTER 4 © MOVING ON!

e That's the end of the code block that’s conditional on there being something
received from the Serial channel

¢ Finally, we write out the value of theAngle to the servo.

That program was a little larger than the previous ones, but I hope it contained nothing too complicated or
hard to understand. So, how would you use that program? Well obviously it’s quite fun to fool around with it for a
while, but the serious use for it is to give you a way to relate the angle values that the software sends to the actual
physical position your motor adopts when you send them. For example, does it really rotate to a position that is
90 degrees different from its start point when you send the “h” command? Using this program you can calibrate
your motor as in Figure 4-9.

Figure 4-9. Motor calibration at 0, 45, 90, 135, and 180 degrees

100

CHAPTER 4 © MOVING ON!

In this photo sequence the calibration software starts from 0 degrees and progresses by 45-degree
increments (taking photos left to right and progressing down) until it reaches 180 degrees. As you can clearly see
in Figure 4-9 (thanks to the colored push pin inserted into the horn wheel), this motor—which is the same one
that has slightly nonstandard timings that we saw earlier on—actually rotates a little more than 180 degrees.

If this motor was going to be used in an application where accuracy of angle was very important, we would
have to make note of the values we have to send the motor to get it to go to the correct angle. However, in other
contexts it might be quite handy to have a servo motor that can rotate more than 180 degrees!

The Gem Light

By this stage I can almost hear readers saying “neat stuff, but what can you use it for?” Well perhaps it wasn’t you
saying that, perhaps you've already got some ideas in mind? Just in case, let’s do a quickie project using a servo
motor to get you started. You don’t have to build this if you don’t want to; it is not intended as a finished project,
it’s just a rough and ready thing to give you an idea of how to make use of a servo motor.

The Gem Light demonstrates the beauty of a moving light source when shone through crystals: to build this
quickie project you will need

e Aservomotor: I knowyou know what one of those is.

e Apowerful LED light (e.g., a 1 Watt Luxeon LED) mounted on a heatsink: these are
available from most electronics stores:

e www.sparkfun.com/products/10179 (United States)
e www.maplin.co.uk/1w-high-power-led-with-pcb-511367 (UK).
e The cardboard tube center from a used-up roll of kitchen wrap.

e Some cheap gem-like stones such as you would get from a new-age store or online from
beadwork and crystal suppliers. If you can find them at an attractive price, square-cut
glass crystals such as miniature “Swarovski” crystals are very suitable-but almost any
transparent glass beads should look good.

e Some 1" (25 mm) black electrical tape masking tape.
e Two very small nuts and bolt sets with washers if possible. The smallest you can find.

e Some scrap bits of smooth (planed) stick wood 2" x 1" (45 mm x 24 mm) or so—
dimensions not critical. You only need about 2’ (60 cm) of this. A couple of small bits of
2" x1/2" (46 x 12 mm) wood. None of these sizes are critical; you're just looking for any
bits of wood that you may have hanging around that are around about these dimensions.

e Some heat-resistant food wrap film (a.k.a. cling-film). This must be fairly heat resistant
stuff (the labeling on the box will usually tell you what maximum temperature it can take).
You want something that can take 220 f (105 c) or more. Since the high-power LED gets
quite warm, don'’t take chances with wrap for which you don’t know the melting point.
It could be a fire hazard—so please don’t use it if you're not sure.

Begin by making the gem holder. Using some strong scissors, cut the cardboard tube from the kitchen roll
down to about 2" (about 50 mm). Keep the 2" section and discard the rest.

Take your black insulating tape and neatly lap it round the outside of the roll, making an overlap at the top
and bottom that you can neatly fold over the ends to hide the cardboard-ness! Then, cut a small piece of kitchen
wrap and lay it over the end of the tube. Carefully use your fingers to push about an inch (24 mm) down into the
end of the tube to make a small nest for your glass crystals to sit inside.

101

CHAPTER 4 © MOVING ON!

Using the scissors, carefully trim around the outside of the tube to cut away excess film. Leave a skirt of about
2" (50 mm) around the outside so that you can add more tape around the outside of the roll to secure the film to
the tube. Figures 4-10 and 4-11 show the finished gem holder. It doesn’t have to be especially pretty, but it should
be as dark as possible, so use lots of black tape!

Figure 4-10. Gem holder tube bottom end

Figure 4-11. Gem holder tube top end

Figure 4-11 shows the top end of the gem holder, with the film-cradle for the glass beads to sit in.

Next, we need to mount the high-powered LED onto a suitable horn on the servo motor. This is shown in the
photo sequence in Figure 4-12, in which the existing horn is first removed. This reveals the motor shaft on which
you can see the gripping splines so that attachments don’t easily slip—even under considerable load. Then a
more suitable horn attachment is selected. Some appropriate mounting holes are drilled in the new attachment.
These have to be sized so that you can use those very small nuts and bolts to fix the high-powered LED to the
attachment securely. You will get a better effect if the LED is mounted a little off center, as this makes the light
direction change all the more as the motor rotates and gives a more pleasing effect. Two wires are then soldered
onto the Luxeon LED; be very careful not to overheat the LED while doing this.

Next, the horn is fixed onto the servo motor, and then the LED, on its heatsink, is fixed onto the horn using
two nuts and bolts.

102

CHAPTER 4 © MOVING ON!

Figure 4-12. Assembling the Gem Light

Then, a strain relief tie-on is used (I simply used a strand of some wire cut out from an old CAT5 network
cable) so that the wires flex as the motor moves, but the solder joints are not flexed. Finally, the LED is tested
by hooking it up to a +5V supply with a 15 Ohm resistor in the positive lead. This particular LED is okay up to
350 ma so using a 15 ohm resistor limits the current to 333 ma. Maximum currents vary a lot from product to
product. If you're going to try this project, make sure you know your LED’s current rating and don’t exceed it. The
vendor of your LED should be able to tell you the maximum current it can take. In the final photo of the sequence
in Figure 4-12 we see the LED alight and the motor ready to use.

Now we have to make a simple frame out of scrap wood to mount the motor and the gem holder upon.
Obviously the details of how you do this will depend on what scrap wood you have available, but the goal is to
make a cradle that can support the motor assembly and on top of that a transverse mounting for the gem holder.
Figure 4-13 shows what my quickly knocked together assembly looked like.

103

CHAPTER 4 © MOVING ON!

_—

E

Figure 4-13. Gem Light support cradle

It won’t win any prizes for woodwork, but hey! We're just prototyping here. The idea is that the gem holder
can be wedged between the two transverse beams, just above, but not touching, the LED/motor assembly as
shown in Figure 4-14.

Figure 4-14. The gem holder in place

Asyou can see in Figure 4-14 the gem holder sits pretty close to the rotating LED light. The rotating light
shines up through the holder from a varying angle, so that the contents of the holder scintillate in the moving
light.

Now, we need some software to make the motor sweep back and forward slowly from 0 to 180 degrees and
back again. The following Arduino sketch does this:

// ServoSlowScan_GemLight

// This program sets a servo motor to slow scan so that

// when a Luxeon LED is lashed to it, off-centre, and

// the whole assembly is placed under a transparent crystal

104

CHAPTER 4 © MOVING ON!

// holder filled with glass crystals they will scintillate!
// You can stop the scan by sending sending keyboard command
// "s" or start it by sending "g"
#include <Servo.h>

Servo myMotor;

int theAngle=0;

boolean countingUp = true;
boolean doMovement = true;

void setup()

Serial.begin(9600);
Serial.println("Servo Slow Scan for GemLight");
myMotor.attach(4);

}

void loop() {
delay(75);
if (doMovement == true){
if (countingUp == true)

theAngle++;
if (theAngle >= 180)

countingUp = false;

}
}
else
{
theAngle--;
if (theAngle <= 0)
{
countingUp = true;
}
myMotor.write(theAngle);
}
if (Serial.available() != 0)
{

// Something has been received.
int inChar = Serial.read();
switch (inChar)

{ ']

case 's':
doMovement = false;
Serial.println("Gemlight Stopped.");
break;

case 'g':

doMovement = true;
Serial.println("Gemlight Started.");
break;

105

CHAPTER 4 © MOVING ON!

default: // Default case, tell them what we need.

Serial.println("use s for 'stop' or g for 'go'");

break;
}
}
}

This is largely an adaptation of the previous sketch for setting a random motor position, so we won’t do a

complete code walk on this one. Briefly:

e The program scans in one direction at a fairly slow speed (alter the delay() value at the
top of the loop() if you want to increase or decrease speed) until it gets to the end of

travel, then it starts back toward the opposite end.

e You can send it “g” (go) or “s” (stop) commands via the serial channel. If you send it a

. n

Other than these points there is nothing new from the previous sketch.
Figure 4-15 shows the circuit diagram for this quickie project. This shows the necessary additions to the test

bed rig we built in Chapter 2.

s” command, it sets a Boolean variable called doMotion to false, and this causes the
movement section of the code to be skipped each time the loop comes around. When you
send a “g” command the doMotion Boolean is set to true and motion resumes.

R2

(See Text)

LED1 Red R1 10K

Gnd
+5V
MISO
SCK
—o | RST
MOSI

%

N

/ White

/

Black C1100nF|

[8l anp
PBG (Xtal1)

—— PD5
—— PD6
—— PD7

—— PBO

P (PDO)
AN (PD1)
—4 PD2
—5 PD3
\—f_s PD4
N

! vce

PB7 (Xtal2)

! RESET (PC6) ADC5 (PC5) 2

ADC3 (PC3)
ADC2 (PC2)

ADC1 (PCT) F——
ADCO (PCO) =

GND
ATMEGA328
AREF

AVCC
PB5 (SCK)
PB4 (MISO)
PB3 (MOSI)
PB2

PB1

Figure 4-15. Gem Light added on to the test bed rig

106

ADC4 (PC4) |2

CHAPTER 4 © MOVING ON!

All we've added is the high-powered LED]1, the current limiting resistor R2 (the value of which, as previously
discussed, will depend on the current limit of the individual high power LED you buy). The servo motor is driven
from pin 6 (Arduino pin 4) of the ATmega328.

In my case, 1 elected to cut the plug off the servo motor (instantly invalidating my warranty) and make solder
ends on the wires that push nicely into the breadboard holes. You may want to keep the connector, in which case
you will want to use a three-way section of header pin strip to allow you to plug the motor into the breadboard
(see Figure 4-16).

Figure 4-16. Header pins for servo motor connection

If we were building a permanent version of this project we would probably want to add additional features
such as

e Giving the MCU the capability to turn the light on and off, or perhaps control its intensity
with PWM.

e Providing the ability to dynamically change the speed of the motor’s scanning action in
response to an additional command.

e Onthe mechanical side, changing the arrangement so that the gem holder is rotated by
the motor, while the LED stays fixed underneath.

But, this project is just to give you an initial idea of a practical use for a servo motor so, we’ll leave it there.
I will show you some more servo motor usages in the main projects section of this book.
Now, how does it look when we put all this together? Figure 4-17 shows some views.

107

CHAPTER 4 © MOVING ON!

Figure 4-17. The gem holder underlit by the moving LED

The first photo in Figure 4-17 shows the gem holder in place on the frame, but unlit. Then it’s lights out! LED on.

Drive On!

Small low-power LEDs and servo motor control inputs are among a very few things that a microcontroller
can drive directly: it’s far more normal for the MCU to need some help. In many designs you'll see individual
transistors used as helpers to an MCU to drive some kind of load.

This is how it works (refer to Figure 4-18): the logic level signal from an MCU output is fed, via a resistor, into
the base of an NPN (negative positive negative) transistor. The signal from the MCU flows through the resistor
and down to ground through the transistor. The purpose of the resistor is to prevent too much current being
drawn from the MCUs output.

The flow of current from the MCU, through the resistor to ground makes the transistor flip into its ON
condition. The transistor terminal with an arrow coming out of it is the emitter; the transistor terminal at the
top is called the collector. When used in the way shown in Figure 4-18, a transistor behaves as an electronically
controlled switch. If current is flowing from its base to its emitter, then a much larger current can also flow from

108

CHAPTER 4 © MOVING ON!

the collector to the emitter (which is connected to ground). Since the “load” is in the pathway from the + V supply
to the transistor, when the transistor switches ON, the load is energized.

In this way, a small amount of current (a logic level signal from the MCU) is made to control a switch (the
transistor) that is capable of handling much more current than the MCU ever could.

Although it’s convenient to think of the transistor as being equivalent to a switch, always remember that it is
actually a semiconductor device. It can be damaged by static electricity, it can overheat, and, unlike mechanical
switches, it can be destroyed in a moment if you put more current through it than it can handle. So think of it like
a switch, but treat it better!

+V

(0]

From

MCU o/P

Resistor NPN Transistor

Figure 4-18. Basic transistor driver circuit

The “Load” in the circuit of Figure 4-18 can be whatever you like, provided the transistor can handle the
current that the load draws. You calculate the load current using Ohm’s law:

current = voltage over resistance

Suppose +v in the diagram is +5 volts and the load has a resistance of 100 ohms Then we have:
Current = 5/100

or

5
100 = 0.050 (which, when we ask Google “what is 0.050 amps in milliamps” we discover is 50 milliamps!).

The key parameter to look for in the NPN transistor used as a switch is the 1CMax parameter, which says how
much current the transistor’s collector can handle. Allow a generous margin. When run at the limits of their spec,
transistors will run hot, which is to be avoided wherever possible. For example if you need a transistor to handle
50 milliamps of current, choose a transistor that has a maximum collector current capability of 150 milliamps or
more. Most transistors are very cheap, so until you get into high current devices (tens of amps, or more) there is
no particular penalty to an overspec!

Typical loads for this kind of driver circuit are things like

e High-powered LEDs: the MCU cannot provide enough current to drive them directly.
® Relays: Essentially a set of switches activated by a small moving coil.

e Motors: We've already see one motor, but that had its own driver. When we use a motor
that has no internal circuitry, then we’ll need to use a driver transistor.

e Solenoids: When we want to create point-to-point movement (e.g., a door lock which has
only two positions open and closed) we would use a solenoid.

109

CHAPTER 4 © MOVING ON!

All those are power-thirsty beasts and we need a driver transistor to allow our MCU to control them.

In Figure 4-18, we were using an NPN transistor which switches on when its base voltage rises. In MCU
work, when we use transistors, we most often use NPN types. However, be aware that there are also PNP (positive
negative positive) transistors which switch ON when the base voltage is low and OFF when it is high—these can
sometimes also be useful and work perfectly well with MCUs.

An extra consideration when driving components that use windings of wire around a magnet (relays, motors,
and solenoids principally) is something called back-EMF (Electromotive Force). You probably already know that
when we apply power to a coil of wire wound round a metal core-which is basically what the aforementioned
devices all use some variation of-we get a magnetic force, which persists until the power is removed. This
is called the electromagnetic effect. However, when the power is removed, the magnetic force persists for a
brief time and just for a few instants, the process works in reverse: the collapsing magnetic field (or the briefly
continued motion of a motor coming to a stop) now generates voltage in the coil. The problem is that the voltages
created by the collapsing magnetic field, although they are usually quite brief, can be large and are highly likely
to damage any unprotected electronics they encounter back on the driver board. This is why we use “snubber”
diodes when we use transistors to drive wound components. I'll return to this subject soon.

Suppose you wanted to use a transistor to enable your MCU to control a 12-volt relay? Your MCU only runs
on +5 volts, so would this work? Yes, definitely it will work. Figure 4-19 shows how.

+5V

RESET (PCE) _ ADCS (PCB) |-
RX (PDO) Aoc4 (pea) 2

HN ——mm

TX (PD1) ADC3 (PC3) 2

1

2]

2

4

—los aoct o 2

—Bpna ADCO (PCO)UT | 23
7
8

2]

_10]

_1]

|28
127
|26
P02 a2 (pe2) 12—
|24
123
122

ATMEGA328 2
vce GND LOAD
21

21
PB6 (Xtal1) Avce

GND AREF [——

1
PB7 (Xtal2) PB5 (SCK)

|20
o
P05 B4 (MS0) |
—eps B3 (MoS) | —
—lpo7 pa2 1S

14 1
—PB0 PB1 S

An MCU Resistor

NPN Transistor

Figure 4-19. Usinga +12V load

In Figure 4-19 you can see the MCU on the left. It is getting its normal +5 V supply and ground. One of the
MCU outputs is connected to the transistor circuit—-as we saw in Figure 4-18. This time, however, although the
transistor’s emitter is connected to ground and the load is still connected to the transistor’s collector, the topside
of the load is connected to +12 V. When the transistor is turned ON by the MCU outputting logic high, current
flows from the +12 V rail through the load and to ground. Making the relay click on, or the solenoid fire-or
whatever it is. So, as you can seg, it’s perfectly easy for an MCU (a +5-volt device) to control a +12-volt device. The
only caveat is that the ground connections must be common. If you connect the transistor and the MCU to two
completely different power supplies, they won’t work, and you will very likely damage or destroy one or both of
the semiconductor devices.

Now, let’s revisit that back-EMF issue: this occurs when power is removed from the coil of a relay, a solenoid,
or the windings of a motor. The collapsing magnetic field, or the residual mechanical momentum of such

110

CHAPTER 4 © MOVING ON!

components, generates this nasty spike of voltage that we call back-EME? Even in a low-voltage application, these
spikes can reach several hundreds of volts, albeit for just a few micro seconds. Even such a short burst, however,
can completely destroy a driver transistor or a logic circuit. To counteract and nullify this problem we use a diode.
These are usually just general-purpose diodes, but when used in this application they are variously called a
snubber, a Freewheeling, a suppressor, a clamping, or a flyback diode. Figure 4-20 shows how they are used.

+V

(Lo]

From
MCU 0/P
NPN Transistor

Figure 4-20. Diode protecting against back-EMF

In this version of the diagram shown in Figure 4-19, we have added the snubber diode (I like that name best,
but you can choose what you want to call it). Because the back-EMF is always in the reverse polarity to the voltage
used in the circuit, this diode basically starts to conduct when a back-EMF voltage is generated and shunts that
voltage away from the driver transistor back to the supply rail. The diode you use should be capable of handling
high voltages but need not be a high-current device. For currents below 200 ma most people use tried and tested
diodes as snubbers, typically the 1N4148 or the 1N4001. In higher-current applications, the 1N4003 or 1N4007
is more often used. The crucial parameters are the switching speed and current handling ability of the diode-but
the diodes quoted previously suffice for most applications.

So, you can use individual transistors to drive your power-hungry MCU peripherals. However, this does
mean that for each thing you want to drive, you will need a transistor, a base resistor, and a snubber diode. If
you're only driving one item then that’s probably okay, but when it’s two or three or more items, the component
count starts to get a little bit unwieldy. Fortunately for projects where we want to drive loads that are under half
an amp the semiconductor industry offers arrays of driver transistors on a chip and these often (but not always)
include snubber diodes, and (when they are specified to have logic compatible inputs) you don’t need to use a
base resistor. Better yet, these chips are not overly expensive and will save you quite a lot of wiring and (if you're
going to go ahead and design a permanent project board) board space.

One transistor driver array chip that has been very widely used for many years is the ULN2803A. This chip
offers eight driver channels, each with logic signal compatible inputs, and each output has a snubber diode
built in (though on the data sheet it’s called a clamping diode). Each driver channel inside this chip actually
uses two transistors in what is called a Darlington configuration—this basically increases the drive capability and

“Interestingly, in some contexts back-EMF is a problem, but in others it is useful. In smart motor control applications, the
driver electronics may turn off the drive current for a very short interval and sample the back-EMF voltage in order to learn
how fast the driven motor is actually running. It then resumes supplying power at an increased or decreased level according to
whether the actual motor speed is greater or lesser than the desired speed. This technique is widely used where fine speed
control is required—Ilike in automotive applications, industrial machines and even in model railroad control systems.

111

CHAPTER 4 © MOVING ON!

speed over using just a single transistor. Each driver channel is capable of sinking 500 ma of current, though,
if you ever did use them all at that maximum simultaneously you would run into severe heat problems. It’s
probably realistic to say that you could use all eight channels at about 200 ma simultaneously without too many
problems—especially if you fitted a heatsink to the chip top (see adjacent picture). Since lots of companies make
the ULN2803A, check the specific data sheet for your flavor of it, especially if you plan to use it up to its limits.
The ULN2803A is actually available in many different packagings; the 18-pin DIP packaging is the one you
would want to use, because it is easy to use on your test rig breadboard. The diagrams in Figure 4-21 show the
pinout and the functional block diagram of the chip.

U 1B ! >L ;18 1c

15[1 18]'“: s 2 >_ LA
25[2 1?]20 s T E 2) i

s ceflac w1

48[4 15[]4cC o >T LA
5B[] 5 14]] 5¢ ' LN

sBfle 13flec > >y

78[l7 12[]7c = >”m o

85[3 11]80 . >‘ 2 2¢
GND[] ¢ 10]] com] Loy “

8B >Q—m1o 8C

—— COM

Figure 4-21. 2803A chip: pinout and block diagram (courtesy of Texas Instruments)

Asyou can see, the array has eight inputs and eight outputs. Each output has its own snubber diode, but one
end of all the diodes are brought out to one common pin (pin 10) which, in most applications, you would simply
tie to the + V rail.

The invertor symbol for each driver (the right-pointing triangle with the roundel on the end) represents
a pair of transistors in the Darlington configuration. When an input (say 1B) is taken to a logic high level, the
corresponding output (1C in this case) will turn ON and start sinking current. The diagrams in Figure 4-22 show
some common ways in which we use the drivers on this chip.

112

From MCU
(Low)

From MCU
(HIGH)

From MCU
(HIGH)

CHAPTER 4

+12V
ULN2803
(Partaf) Lamp OFF
Dvr 1
1 18
9 i
= +12v
ULN2803
(Partof) Lamp ON
Dvr 1
1 18
9
1 +12V
Relay
ULN2803 RELAY Energised
(Part of) 10
com
Dvr 1

il

Figure 4-22. Example uses of a ULN2803A driver channel

In the first case depicted, a lamp connected to the output of driver #1 is off because the
signal from the MCU port at driver #1 input is low.

In the second case, the MCU signal has now changed to high, and the output stage has
turned ON and is now providing a path to ground for current coming through the lamp.
In other words because the MCU signal changed from low to high, the output stage
begins sinking current. In these first two cases, there is no need to use the snubber diode
because lamps generate no harmful back-EMFE.

In the third case, a relay is connected to the output in place of the lamp. As before, the
MCU is sending a logic high signal which means that the output is on and sinking current
sufficient for the relay coil to be energized. In this application we expect that the relay will
generate back-EMF when it is de-energized so we make sure that the COM pin (10) of the
chip is connected to the +V rail of the supply.

MOVING ON!

In fact, in the normal case you would tie the COM output to the +V rail anyway, whether or not you were
driving devices that required snubber diodes.

113

CHAPTER 4 © MOVING ON!

If we were doing a project that needed eight drivers, this one chip would potentially replace 24 individual
components (8 resistors, 8 transistors, and 8 snubber diodes) and save us from a lot of fiddly intercomponent
wiring. That does of course assume that none of the eight drivers had to drive anything that needed more than
500 ma and that the total capabilities of the chip were not exceeded. In practice, not all that many MCU projects
actually need to drive so many peripherals, so it’s pretty common to include a chip like this in a project but to only
use half of the drivers it offers—but that’s okay: it’s still a lot easier, in most cases, than using the discrete component
approach and the cost difference is negligible. We will use this chip a lot in the projects section of this book.

The ULN2803A is one of a range of integrated driver chips (numbered ULN2800 to 2812), so if for any reason
your normal vendor doesn’t have stock of 2803s, the vendor may be able to offer an alternative which will do just
as well.

MOS-What?

Metal Oxide Semiconductor Field Effect Transistor (MOSFET). Not a name to set the pulses racing is it? But if
you're interested in using your MCU to make stuff move, it definitely should get you at least just a little excited!
For our purposes, where we usually want to use a transistor as a switch to do the bidding of our MCU, the trouble
with the older bipolar transistor types (NPN and PNP) that we have touched on so far is that they are hot. Their
ON resistance is still quite high and anything that resists the flow of electricity warms up, and the more current
that’s involved, the hotter they will get.

Suppose that we weren’t turning on nice friendly little relays or comparatively tame little lamps. Suppose
we were switching on a big, bad 12VDC heating element-such as you might use in a truck or in a trailer? Such
a device would have an internal resistance of perhaps two or three ohms which means that it would be pulling
somewhere between 4 and 6 amps from a 12V-volt power source: suddenly, we’re not in Kansas anymore! We
certainly could not use our ULN2803A chip for this job. We now need a switching element that can switch on and
off something around 12 amps (since we still have to abide by the rule of allowing some headroom in the spec to
ensure we don’t overstress or overheat the device).

Over the years several standard transistors became an electronic designer’s default go-to devices whenever
some serious “muscle” was needed; one such device is the 2N3055. Although it first appeared in the 1970s it’s
still being made today and you can still buy it from most electronics outlets. It comes in a “TO-3 package,” which
is a metal case with two pins (the base and the emitter) sticking out of the base. The overall “can” of the transistor
itself forms the collector connection. Almost always these transistors have to be mounted on big heatsinks that
have metal fins and tend to look a little like the outside of a motor cycle engine. Figure 4-23 shows one of these
assemblies: the transistor is in the middle of that big heatsink. You can get a sense of the scale from the diode and
resistor to the left of the heatsink. It’s not small.

Figure 4-23. 2N3055 transistor on a heatsink

114

CHAPTER 4 © MOVING ON!

The 2N-3055 is a great old workhorse, if you were able to use x-ray vision to look inside all the electrical stuff
around your house, garage, and car you'd probably find you actually own a few 3055 s: they’ve been built into
power supplies for everything from TVs to welders and into car electronics and audio and video kit for several
decades—though they are now used less and less.

The 2N3055 is capable of switching up to 15 amps, as long as it has the best possible heatsinking and heat
bonding, so it could easily handle our example of the 6 amp, 12-volt heater. But, when using the 3055 (or any
bipolar technology transistor) in a high amperage application we lose quite a lot of energy as heat and we need
alot of space in our project box to accommodate the heatsinking arrangements required; we might even have to
add a cooling fan in some cases. This heat is generated because, even when fully ON (a state which for transistors
is often referred to as “saturated”) a bipolar transistor will still offer some resistance between collector and
emitter and will heat up because of it. This heat problem is one major reason that bipolar transistors like the
2N3055 have been slowly but steadily losing ground to MOSFETs in power-switching applications over the last
decade.

MOSFETs came onto the scene in a serious way in the early 1990s and gradually gained ground through
various refinements and improvements. For example, there are now many MOSFET devices which can interface
directly to logic circuits, which was not always the case. For our purposes, the great thing about MOSFETs is that
when they are in a saturated ON state, they have almost no resistance and so they run a lot cooler than a bipolar
transistor ever could. MOSFETs also offer faster switching speeds; however, when driving motors, solenoids, and
other inductive components you still need a snubber diode—although some of the latest MOSFETS have one of
those built in as well.

The diagram in Figure 4-24 shows two basic AVR-controlled MOSFET switch arrangements. The MOSFET
depicted is an N-channel device, which means that the gate lead of the MOSFET has to be taken high to make the
drain to source resistance fall to near zero (in other words, turn on the MOSFET). A P-channel device would have
the opposite characteristic.

115

CHAPTER 4 © MOVING ON!

+12V
Lamp ON
Drain

From MCU Gate

(High) /\/\/\/ Source

1KR

+12v

Relay

ZS IELE Energized

— Drain
From MCU Gate (B

(High) W\/ F Source

1KR

Figure 4-24. Basic MOSFET driver circuits

Figure 4-24 shows a resistor in the path from the MCU to the gate of the MOSFET: you can regard this as
optional, it’s not functionally necessary, but it does provide a modicum of protection for your MCU in case the
MOSFET should ever fail and start feeding +12 volts back down the line toward it.

Unlike a bipolar transistor, where actual current must flow from base to emitter to turn the transistor ON,
no current flows from gate to source on a MOSFET; it is the presence (the field) of voltage on the gate that causes
the MOSFET to switch ON, not the flow of current through it to ground. The gate connection acts rather like a
tiny capacitor that has to charge up. The gate resistor is therefore only there as a firebreak in case of a MOSFET
malfunction; it’s not there to protect the MCU port from having too much current demanded from it (as would be the
case on a bipolar transistor equivalent), since there is no path to ground via the gate and therefore no current flows.

Somewhat surprisingly there are—as yet-not many MOSFET array chips that provide multiple drivers. There
are a few; for example, Texas Instruments has the TLC59210 and TLC5920, which provide MOSFET drivers on
the output stages and also provide logic data latches. However, the current handling capabilities of the devices
available so far don’t seem to be as good as using individual MOSFET transistors.

We'll look at some MOSFET driver circuits in the sections on motors and solenoids.

116

CHAPTER 4 © MOVING ON!

Relays

A relay is simply a switch that is activated by an electromagnet. You apply power to the coil of the electromagnet
(as we did in Figure 4-24) and the movement of a part called the armature is made to close or open one or more
sets of contacts. So the question may occur to you, since we already know we can do switching using transistors
why would we use a relay? Why not just use various transistors? There are several answers to that question.

e Most relays are quite small and can accommodate quite a few switch contacts.
Consequently it’s often more space effective to use a relay than a half dozen
semiconductor switches.

e Isolation is the main reason, in this age of semiconductor wizardry and wonder, the
humble electromechanical relay is still in widespread use. Hear that small click when you
turn your 68" flat-screen 3D, LED TV on or off? That'’s a relay. Hear that little click when
you start your bread maker? That’s a relay too. Why are we still using them?

In many products or projects it is desirable to have electrical isolation between the
different subsystems that make up the whole. Suppose you wanted to use your MCU to
turn a mains powered light on and off. You could use a semiconductor switch (perhaps
a triac or maybe a thyristor) to be the switching element, and control this from your
low-voltage MCU circuit. But when (as it someday inevitably would) a fault develops in
this circuit, or somebody miswires something on the lighting circuit or a 101 different
problem conditions develop, there’s a possibility that mains voltages are going to find
their way into your MCU circuit and destroy every device in it and maybe give a bad
electric shock to some poor person in the process.

Relays (of various sorts) provide a mechanical rather than an electrical linkage between
elements of a project. Stray voltages or earthing problems on the circuits connected to the
contacts of a relay in no way affect the relay coil, since the coil is electrically isolated from
the contacts. So a relay makes a great firewall against problems in one part of a product or
project affecting or damaging other parts.

e The switch contacts of even small relays can handle quite a lot of amps. A relay with
13 amp contacts is going to be a lot smaller in area than the 2N3055 transistor and its
heatsink which we saw earlier on.

In recent years, the trend in relays has been to get smaller and to be encapsulated into sealed, plug-in
packages. Older relays—such as the one shown in Figure 4-25-were either open or encased in a transparent
plastic hood. This makes it easier to explain how they work. In this picture you can probably see the actual
contacts on the left. And the relay coil on the right. When the coil is energized, the yoke (which is the metal bit
in the middle) moves to the left and uses plastic insulating push-rods to bend the center contacts away from the
position shown in Figure 4-25 and over to the left-hand set of contacts. Therefore, these contacts are what are
known as changeover contacts; they act like a double-pole single toggle switch—but one that is operated by an
electromechanical hand.

117

CHAPTER 4 © MOVING ON!

Figure 4-25. An open relay

A relay that you would buy now uses exactly this same kind of internal arrangement (though the contact
details vary a lot between products—offering more or fewer contacts than the one shown in Figure 4-25), but it will
likely be inside a sealed unit with contacts emerging (like this one) at the bottom. Most modern relays are quite
low profile, not tall like this one.

Another kind of relay, one that I have used quite a lot, is the “Solid State Relay” or SSR. SSRs now come in
many shapes and sizes. This kind of relay has the following benefits:

e Itcan switch appreciable amounts of