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Preface

This book covers all the basic topics of a PDE course for undergraduate students and a
beginner course for graduate students. The book is written in simple language, it is easy to
read, and it provides qualitative physical explanations of mathematical results. At the same
time, we keep all the rigor of mathematics (but without the emphasis on proofs – some
simple theorems are proved; for more sophisticated ones we discuss only the key steps of
the proofs). In our best judgment, a balanced presentation has been achieved, one which is
as informative as possible at this level, and introduces and practices all necessary problem-
solving skills, yet is concise and friendly to the reader. A part of the philosophy of the
book is ‘teaching-by-example’, and thus we provide numerous carefully chosen examples
that guide step-by-step learning of concepts and techniques, and problems to be solved by
students. The level of presentation and the book structure allow its use in the engineering,
physics and applied mathematics departments as the main text for the entire course.

The primary motivation for writing this book was as follows. Traditionally, textbooks
written for students studying engineering and physical sciences are concentrated on the three
basic second-order PDEs, the wave equation, the heat equation, and the Laplace/Poisson
equation. A typical example of such an approach is the popular book by J.W. Brown and
R.V. Churchill [1]. As a rule, only the method of separation of variables is presented and
only the simplest problems are discussed. On the other hand, complete books in that field
(for instance, the excellent book by R. Haberman [2]) contain too much information and
therefore they are difficult for beginner reading or for a one-semester course. In the presented
book, we tried to get rid of those shortcomings. The book contains a simple and concise
description of the main types of PDEs and presents a wide collection of analytical methods
for their solutions, from the method of characteristics for quasilinear first-order equations
to sophisticated methods for solving integrable nonlinear equations. The text is written in
such a way that an instructor can easily include definite chapters of the book and omit
some other chapters, depending on the structure of a particular course syllabus. Numerous
examples, applications, and graphical material make the book advantageous for students
taking a distance learning course and studying the subject by themselves.

The structure of the book is as follows.
Chapter 1 presents a general introduction. Examples of physical systems described by

basic PDEs are given, and general definitions (order of equation, linear, quasilinear and
nonlinear equations, initial and boundary condition, general and particular solutions) are
presented. Also, we consider some problems that can be solved without knowing any special
methods.

Chapter 2 is devoted to first-order PDEs. The consideration starts with linear PDEs,
where the problem can be reduced to ODEs by a coordinate transformation, and then the
approach is generalized so that it includes quasilinear equations. We consider the formation
of a shock wave and explain its geometrical and physical meanings, and discuss some other
nontrivial examples. The conditions of existence and uniqueness of the solution are also
explained.

xi



xii Preface

In Chapter 3, we provide the general classification of second-order PDEs, show its invari-
ance to transformations of coordinates, and consider the transformation of equations to their
canonical forms.

The subject of Chapter 4 is the Sturm-Liouville problem, which gives the basis for the
development of the classical technique of variables’ separation in the consequent chapters,
where three types of second-order PDEs are considered, hyperbolic (Chapter 5), parabolic
(Chapter 6), and elliptic (Chapter 7). In each case, physical systems described by the cor-
responding type of equations are presented. Besides the method of separation of variables,
Green’s function method is described. These chapters cover the full range of relevant sub-
jects including the notion of well-posedness, consequences of wave dispersion, Duhamel’s
principle, maximum principle, etc.

Chapter 8 is devoted mostly to multidimensional hyperbolic equations, with oscillations
of an elastic two-dimensional membrane as a primary example. In Chapter 9, the method
of separation of variables is applied to the two-dimensional heat equation in a rectangular
domain and in a circular domain.

The last chapter of the book, Chapter 10, is devoted to three famous nonlinear PDEs,
which have numerous applications in physics. First, we consider the Burgers equation, obtain
the solution of the Cauchy problem for that equation using the Hopf-Cole transformation,
and consider the interaction of shock waves. Further, the analysis of the Korteweg-de Vries
equation gives us the opportunity to present an example of an integrable equation. By means
of the Hirota transformation, we obtain its multisolitons solutions. Finally, the nonlinear
Schrödinger equation is considered. We discuss its symmetry properties and obtain some
basic particular solutions.

The appendices are an important part of the book. Appendices A and B are written
in the same style as the chapters of the main text, with reading exercises, examples, and
problems for solving. The subjects of these appendices (Fourier series, Fourier and Laplace
transforms, Bessel and Legendre functions) do not belong formally to the field of PDEs,
but they give mathematical tools, which are crucial for solving boundary-value problems for
different kinds of second-order partial differential equations. Therefore, they can be included
in the course syllabus if the class time allows. Appendices C, D, and E contain mathematical
materials related to the Sturm-Liouville problems which are used in several chapters of the
book.

We are grateful to Profs. Kyle Forinash and Mikhail Khenner, our former coauthors, for
sharing their experience in writing books.
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Introduction

1.1 Basic Definitions

Let us start with the discussion of the basic notion of partial differential equation. In a
contradistinction to an algebraic equation, e.g., a quadratic equation

ax2 + bx+ c = 0,

where one has to find the unknown number x, and to an ordinary differential equation
(ODE), e.g., that corresponding to Newton’s second law,

m
d2x

dt2
= F (x, t),

where the unknown object is the function x(t) of one variable, a partial differential equa-
tion (PDE) is an equation that determines a function u(x1, x2, . . . , xn) of several variables.
Because we live in a four-dimensional world, which has three spatial dimensions and one
temporal dimension, the natural phenomena are described by fields of physical quantities
(velocity, temperature, electric and magnetic fields etc.) that depend on spatial variables
and evolve in time. Therefore, it is not surprising that partial differential equations provide
the language for the formulation of the laws of nature.

Let us consider the following simple example. A metal rod of length L is subject to an
external heating (that may be a barbecue skewer), see Figure 1.1.

FIGURE 1.1
Heating a rod.

The temperature of the rod, u(x, t), is governed by the heat equation,

∂u

∂t
= κ

∂2u

∂x2
+ q(x, t), (1.1)

where x is the coordinate along the rod, t is time, κ is thermal diffusivity, and q(x, t) is the
rate of heating. It is assumed that κ and q(x, t) are known, while u(x, t) is the unknown
function that has to be found. When dealing with that equation, we have to indicate the
region Ω where that equation is defined, say,

Ω: 0 < x < L, 0 < t < T. (1.2)

1



2 Partial Differential Equations: Analytical Methods and Applications

Any function u(x, t) satisfying Equation (1.1), is a solution (or particular solution) of
that equation. It is assumed that the derivatives ∂u/∂t and ∂2u/∂x2, which appear in the
equation, really exist and are continuous in the whole region Ω; in that case we call u(x, t) a
classical or strong solution (in Chapter 5 we shall extend the notion of solution). Note that
there are infinitely many solutions of Equation (1.1); for instance, if u(x, t) is a solution,
then any function u(x) + ax+ b, where a and b are constant, is also a solution. The set of
all the particular solutions of a PDE form its general solution.

When we consider a definite real physical process, we are interested to describe it in a
deterministic, unique way; hence finding the general solution of the corresponding PDE is
not the final goal. In the case of the heat equation (1.1), as it will be shown in Chapter 6,
for getting a unique solution, it is sufficient to add the following data.

First, we have to present an initial condition, i.e., the distribution of temperature over
the whole rod including its ends in the very beginning of the process, i.e., at t = 0:

u(x, 0) = u0(x), 0 ≤ x ≤ L. (1.3)

Secondly, we have to indicate boundary conditions, i.e., the law of heating or cooling at
the ends of the rod, x = 0 and x = L. For instance, as it will be shown in Chapter 6, if the
rod ends are thermally insulated, the appropriate boundary conditions are

∂u

∂x
(0, t) = 0,

∂u

∂x
(L, t) = 0, 0 ≤ t ≤ T. (1.4)

More precisely, it is assumed that the functions that appear in the boundary conditions
are continuous by approaching the boundaries, i.e., relations (1.3) and (1.4) are actually
understood as

lim
t→0

u(x, t) = u0(x), 0 ≤ x ≤ L; (1.5)

lim
x→0

∂u

∂x
(x, t) = 0, lim

x→L

∂u

∂x
(x, t) = 0, 0 ≤ t ≤ T. (1.6)

The full formulation of the problem, which includes Equation (1.1), (1.2), initial con-
dition (1.3) and boundary conditions (1.4), is called initial-boundary value problem (see
Figure 1.2). Under a natural assumption that u0(x) is a continuous function, that problem
has a unique solution that allows us to predict the process of heating.

FIGURE 1.2
Initial-boundary value problem.

There is one more subtle point that should be kept in mind. It is clear that the initial
temperature distribution, u0(x), and the rate of heating, q(x, t), cannot be measured abso-
lutely precisely. There is always a certain error in the measurement data. If an arbitrary
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small error in those data leads to a drastic change of the solution, than the mathemat-
ical model is of no use. Fortunately, as we shall see in Chapter 6, problem (1.1)-(1.4) is
stable with respect to the measurement error: using that model, one can obtain the solution
with arbitrary precision, if the measurement data are precise correspondingly. Existence
and uniqueness of the solution, and its continuous dependence of the initial data and the
heating rate mean that model (1.1)-(1.4) is physically sound, or well-posed. An example of
an unsatisfactorily formulated, ill-posed, problem will be given in Chapter 7.

Equation (1.1) describes many other dissipative processes (e.g., diffusion and viscosity)
where initial inhomogeneities tend to be smoothed and exterminated in an irreversible way.
It is one of the three basic equations of the mathematical physics. Let us mention the other
two equations.

The wave equation

∂2u

∂t2
− a2 ∂

2u

∂x2
= 0, 0 < x < L, 0 < t < T (1.7)

describes the propagation of waves of different physical nature, including sound waves,
oscillations of a string, electromagnetic waves etc. We will discuss the initial and boundary
conditions for that equation, which make the initial-boundary value problem well-posed, in
Chapter 5.

Static distributions of the temperature u(x, y) in a two-dimensional body Ω are governed
by the Poisson equation

∂2u

∂x2
+
∂2u

∂y2
= −q(x, y)

κ
, (x, y) ∈ Ω; (1.8)

here the meaning of variables is the same as in (1.1) but now the temperature depends on
two spatial variables. This equation is valid for electrical potential, gravitational potential
etc. The question about the adequate boundary conditions is not trivial, and we will discuss
it in Chapter 7. If q(x, y) = 0, Equation (1.8) is called the Laplace equation.

Generally, a PDE for the function u(x1, x2, . . . , xn) can be written as

F

(
x1, . . . , xn,

∂u

∂x1
, . . . ,

∂u

∂xn
, . . .

)
= 0. (1.9)

The order of a PDE is the highest order of derivatives that appear in that equation. Thus,
Equations (1.1), (1.7) and (1.8) are of the second order.

If function F in (1.9) is a linear function of u and its derivatives (while the dependence
on x1, . . . , xn can be arbitrary), the PDE is called a linear equation. For instance, the most
general form of the second-order linear PDE for function u(x, y) is

a(x, y)
∂2u

∂x2
+ 2b(x, y)

∂2u

∂x∂y
+ c(x, y)

∂2u

∂y2
+ d(x, y)

∂u

∂x

+ e(x, y)
∂u

∂y
+ f(x, y)u = g(x, y), (1.10)

where a(x, y), b(x, y), . . . , g(x, y) are known functions. The second coefficient is written
as 2b(x, y) in order to simplify some formulas that will be obtained in Chapter 3. All
the Equations (1.1), (1.7), (1.8) are linear. If g(x, y) 6= 0, the equation is inhomogeneous;
otherwise it is homogeneous.

As an example of a nonlinear equation, let us present the non-viscous Burgers equation

∂u

∂t
+ u

∂u

∂x
= 0, (1.11)
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which describes the propagation of an intense sound wave (as well as many other phenomena,
including traffic waves). We shall consider that equation in detail in Chapter 2. Note that the
expression in the left-hand side of (1.11) is linear with respect to highest order derivatives,
∂u/∂t and ∂u/∂x. In that case, the nonlinear equation is called a quasilinear equation.

Later on, we will use often the following compact form of the notation for partial deriva-
tives:

ux =
∂u

∂x
, uy =

∂u

∂y
, uxx =

∂2u

∂x2
, uxy =

∂2u

∂x∂y
, uyy =

∂2u

∂y2
(1.12)

etc.

1.2 Examples

Let us consider some simple example of PDEs that can be solved without knowing any
special methods.

Example 1.1 Let us consider equation

∂u

∂x
= a(x, y), −∞ < x <∞, −∞ < y <∞ (1.13)

for a function u(x, y) of two variables.

If u and a were functions of one variable x, the general solution of the ODE

du

dx
= a(x) (1.14)

would be

u(x) =

∫ x

0

a(z)dz + C,

where C is an arbitrary constant. In the case of a PDE, one can see that the expression

u(x, y) =

∫ x

0

a(z, y)dz + f(y) (1.15)

where f(y) is an arbitrary function, presents the general solution of (1.13). Thus, in a
contradistinction to general solutions of ODEs that contain arbitrary numbers, general
solutions of PDEs contain arbitrary functions.

Generally, if a PDE contains only derivatives with respect to one variable, it can be
solved by the same methods which are used for solving ODEs, and the solution looks like
a solution of an ODE with constants replaced by functions. Let us consider the following
example that we will use below in Chapter 2 when studying the methods for solving linear
equations of the first order.

Example 1.2 Find the general solution u(x, y) of PDE

∂u

∂x
+ c(x, y)u = d(x, y), −∞ < x <∞, −∞ < y <∞. (1.16)
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Like in the case of an ODE, Equation (1.16) can be solved by means of an integrating factor.
Let us multiply both sides of (1.16) by a still unknown function µ(x, y),

µ(x, y)
∂u

∂x
+ µ(x, y)c(x, y)u = µ(x, y)d(x, y),

and demand that the left-hand side will be a full derivative:

µ(x, y)
∂u

∂x
+ µ(x, y)c(x, y)u =

∂

∂x
[µ(x, y)u].

That gives the relation
∂µ(x, y)

∂x
= µ(x, y)c(x, y),

thus, we can take

µ(x, y) = exp

[∫ x

0

c(t, y)dt

]
. (1.17)

Solving the obtained equation

∂

∂x
[µ(x, y)u] = µ(x, y)d(x, y) (1.18)

in the same way as in Example 1.1, we find:

µ(x, y)u =

∫ x

0

µ(z, y)d(z, y)dz + f(y),

where f(y) is an arbitrary function, thus

u(x, y) =
1

µ(x, y)

[∫ x

0

µ(z, y)d(z, y)dz + f(y)

]
. (1.19)

Formulas (1.17) and (1.19) together give the general solution of Equation (1.16).
In some cases a PDE can be reduced to “the form of an ODE” by a transformation of

independent variables.

Example 1.3 Let us consider equation

∂u

∂x
− ∂u

∂y
= 0, −∞ < x <∞, −∞ < y <∞. (1.20)

This equation contains both derivatives with respect to x and y. Let us perform the following
change of variables:

s = x+ y, t = x− y, u(x, y) = v(s(x, y), t(x, y)). (1.21)

Using the chain rule, we find:

∂u

∂x
=
∂v

∂s

∂s

∂x
+
∂v

∂t

∂t

∂x
=
∂v

∂s
+
∂v

∂t
,
∂u

∂y
=
∂v

∂s

∂s

∂y
+
∂v

∂t

∂t

∂y
=
∂v

∂s
− ∂v

∂t
. (1.22)

Substituting (1.22) into (1.20), we obtain:

2
∂v

∂t
= 0.

Thus, v is an arbitrary function of t;

v = f(s).

Returning to u(x, y), we find that

u = f(x+ y), (1.23)

where f is an arbitrary differentiable function, is the general solution of Equation (1.20).
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Let us consider one more example, that we will use below in Chapter 5, when considering
the propagation of waves.

Example 1.4 Find the general solution of equation

∂2u

∂x∂y
= 0, −∞ < x <∞, −∞ < y <∞. (1.24)

We will apply the reduction of the given equation to ODEs twice. First, define

v =
∂u

∂y
(1.25)

and rewrite (1.24) as
∂v

∂x
= 0. (1.26)

The general solution of Equation (1.26) is

v = f(y), (1.27)

where h(y) is an arbitrary function of y. Let us consider now (1.25) as an equation for u:

∂u

∂y
= f(y),

thus

u(x, y) =

∫ y

0

f(z)dz + g(x), (1.28)

where g(x) is an arbitrary function of x. Because the integral of an arbitrary function is
also an arbitrary function, we can write the general solution of Equation (1.24) as

u(x, y) = h(y) + g(x), (1.29)

where both f(y) and g(x) are arbitrary differentiable functions.

Applying the change of independent variables, as in Example 1.3, and/or the dependent
variable, as in Example 1.4, one can find general solutions of the following problems.

Problems

Find general solutions u = u(x, y) of the following PDEs.

1. 4ux + uy = 0, −∞ < x, y <∞.
2. yuxx = cosx, −∞ < x <∞, y > 0.

3. x2uxx + xux − u = 0, x > 0, −∞ < x <∞.
4. y2uxx − u = 0, −∞ < x <∞, y > 0.

5. uxyy = 0, −∞ < x, y <∞.
6. uxy = x2ey, −∞ < x, y <∞.
7. uxy + ux + uy + u = 0, −∞ < x, y <∞.
8. uxy + yux + uy + yu = 0, −∞ < x, y <∞.

Find solutions u = u(x, y) of the following initial value problems.

9. ux + 2uy = 0, −∞ < x, y <∞; u(x, x) = x.

10. uxy − uy = y, −∞ < x, y <∞; u(x, 0) = 0, u(0, y) = 0.



2

First-Order Equations

In the present chapter, we consider basic methods for solving first-order partial differential
equations for an unknown function u(x, y) of two independent variables.

2.1 Linear First-Order Equations

2.1.1 General Solution

We have acquired already some experience in dealing with linear first-order equations (see
Section 1.2, Examples 1.1-1.3.) Our next step is solving the general linear first-order equa-
tions,

a(x, y)ux + b(x, y)uy + c(x, y)u = d(x, y); (2.1)

here and below, we use notation (1.12),

ux =
∂u

∂x
, uy =

∂u

∂y
.

All the coefficients in (2.1) are assumed to be continuous functions. The approach that we
describe in this section (method of variable transformation), has actually been applied in
Example 1.3: we will construct a transformation of variables,

s = s(x, y), t = t(x, y), u(x, y) = v(s(x, y), t(x, y)), (2.2)

which allows us to obtain a solvable equation of Example 1.2.
Using the chain rule,

ux = vssx + vttx, uy = vssy + vtty, (2.3)

we rewrite (2.1) as
(asx + bsy)vs + (atx + bty)vt + cv = d. (2.4)

Thus, if we find a function s(x, y) such that

asx + bsy = 0, (2.5)

we shall obtain an equation that contains only one partial derivative vt, i.e., an equation of
the type of (1.16).

Equation (2.5) has a simple geometric meaning. Define a vector field

τ (x, y) = (a(x, y), b(x, y)); (2.6)

then Equation (2.5) can be written as

τ · ∇s = 0. (2.7)

7
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FIGURE 2.1
Characteristic curve.

The vector ∇s is normal to the level curves of function s(x, y) determined by the relation

s(x, y) = C, (2.8)

where C is a constant (see Figure 2.1). Therefore, vector τ (x, y) is a tangent vector to curve
(2.8), which passes through the point (x, y). Thus, we arrive at the following geometric
problem: for a given vector field (2.6), find the family of characteristic curves

y = y(x;C), (2.9)

such that in each point, τ (x, y) is a tangent vector to a certain curve of that family.
Differentiating (2.8) along a level curve, we obtain,

ds(x, y(x))

dx
= sx + sy

dy

dx
= 0,

hence
dy

dx
= −sx

sy
.

Using (2.5), we find:
dy

dx
=
b(x, y)

a(x, y)
. (2.10)

Thus, in order to find the appropriate function s = s(x, y), we have to solve the ordinary
differential equation (2.10) (the characteristic equation) and present the solution in the
implicit form (2.8).

The choice of t = t(x, y) is almost arbitrary, but we have to take care of a one-to-one
correspondence between coordinates (s, t) and (x, y). According to the Inverse Function
Theorem of calculus, the Jacobian determinant of the transformation (2.2),

J(x, y) =
∂(s, t)

∂(x, y)
=

∣∣∣∣ sx sy
tx ty

∣∣∣∣ = sxty − sytx, (2.11)

has to be non-vanishing. That allows us to invert the transformation (2.2) and find relations

x = x(s, t), y = y(s, t), (2.12)

that will allow us to present the coefficients in Equation (2.4) as functions of s, t.
When coordinates (s, t) are used, the first term in (2.4) vanishes; thus we obtain equation

(atx + bty) vt + cv = d, (2.13)

which contains only a derivative with respect to t, while s appears just as a parameter.
We can integrate the linear equation (2.13) keeping s constant, i.e., along the characteristic
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curves, as it was done in Section 1.2, Example 1.3. That integration gives us the solution
in the form

v = v(s, t). (2.14)

At the last stage, we obtain the solution

u(x, y) = v(s(x, y), t(x, y)). (2.15)

Note that a(x, y) can vanish at a certain point, which creates a problem with using
Equation (2.10) near that point. If b(x, y) 6= 0 at that point, one can use equation

dx

dy
=
a(x, y)

b(x, y)

instead of (2.10). A simultaneous vanishing of a(x, y) and b(x, y), is a true difficulty: different
characteristic curves cross at that point.

Let us apply the approach described above to the following problem.

Example 2.1 Consider equation

xux + yuy + u = 1. (2.16)

The characteristic equation is
dy

dx
=
y

x
. (2.17)

Let us assume that x 6= 0 for now. The family of solutions of Equation (2.17),

y(x) = Cx,

can be presented as
y

x
= C,

thus we find that
s(x, y) =

y

x
. (2.18)

Let us choose
t(x, y) = x. (2.19)

The Jacobian (2.11) of the transformation (2.18), (2.19) is

J = − 1

x
,

which is acceptable if x 6= 0. The chain rule (2.3) gives

ux = −vs
y

x2
+ vt, uy = vs

1

x
;

the inverse transformation of variables is

x = t, y = st, (2.20)

hence
ux = −vs

s

t
+ vt, uy =

vs
t
. (2.21)

Substituting (2.20) and (2.21) into (2.16), we obtain

tvt + v = 1. (2.22)
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Solving (2.22), we find

v(s, t) =
f(s)

t
+ 1, (2.23)

where f(s) is an arbitrary differentiable function. Substituting (2.18), (2.19) into (2.23), we
obtain the general solution of Equation (2.16):

u(x, y) =
f(y/x)

x
+ 1, x 6= 0. (2.24)

Alternatively, we can rewrite the characteristic Equation (2.17) as

dx

dy
=
x

y
, y 6= 0

and use the transformation

s(x, y) =
x

y
, t(x, y) = y. (2.25)

That will lead us to the following presentation of the solution:

u(x, y) =
g(x/y)

y
+ 1, y 6= 0, (2.26)

where g is an arbitrary differentiable function. In the region x 6= 0, y 6= 0, both forms (2.24)
and (2.26) are equivalent, with

g

(
x

y

)
≡ y

x
f

(
y

x

)
.

In the point (0, 0), where the characteristic lines intersect, all the solutions of Equation (2.16)
are singular except u = 1, which corresponds to f = 0 or g = 0.

2.1.2 Initial Condition

As expected, the general solution of a first-order equation includes an arbitrary function.
For getting a unique solution, we have to formulate an initial value problem, i.e., impose
an initial condition that assigns some definite values to function u(x, y) on a certain initial
curve Γ. Let us consider several examples.

Example 2.2 Find the solution of Equation (2.16) satisfying the additional condition,

u(1, y) = 2, −∞ < y <∞. (2.27)

In this example, the initial curve Γ is the line x = 1. Substituting (2.24) into (2.27), we find
f(y) = 1, hence we get a unique solution

u(x, y) =
1

x
+ 1. (2.28)

This solution diverges at x = 0. Note that though formula (2.28) describes a certain solution
of Equation (2.16) in the region x < 0, it does not present a solution of the initial value
problem (2.16), (2.27) in that region. Indeed, the classical solution of an initial value problem
for a first-order PDE has to be continuously differentiable in the whole region where it is
defined, including the line where the initial condition is imposed. The solution of the initial
value problem, (2.28), cannot be continued from the region x > 0 into the region x < 0 in a
continuously differentiable way, because of its singularity on the line x = 0. Therefore, the
definition region of the solution of the initial value problem (2.16), (2.27) is x > 0.
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FIGURE 2.2
(a) Example 2.1; (b) Examples 2.2 and 2.3.

Example 2.3 Find the solution of Equation (2.16) satisfying the additional condition,

u(x, x) = 2, −∞ < x <∞. (2.29)

In this case, the initial curve Γ is the line y = x. Substituting (2.24) into (2.29), we find
the relation f(1)/x = 1, which cannot be satisfied. Thus, the initial value problem (2.24),
(2.29) has no solutions.

Example 2.4 Let us take the same initial curve y = x but demand

u(x, x) = 1, −∞ < x <∞. (2.30)

Substituting (2.24) into (2.29), we find that the initial condition is satisfied if

f(1) = 0. (2.31)

Thus, there are infinitely many solutions corresponding to different functions f(y/x) in
(2.24), which satisfy condition (2.31).

What is the origin of the difference between these three cases? In Example 2.2, the
characteristic curves (actually, straight lines) y = sx, s = const pass through the initial
line x = 1 transversally, i.e., forming a non-zero angle with it (see Figure 2.2a). Thus, when
definite values of u(x, y) are assigned on the initial curve, the value of u(x, y) in any other
point with x > 0 is determined in the unique way by integrating along the characteristic
line connecting that point with a certain point on the initial curve Γ. In the point x = 0
the solution diverges, and one cannot extend the classical solution beyond that point.

In Examples 2.3 and 2.4, the initial line y = x is a characteristic line itself (see Figure
2.2b). Thus, we get two prescriptions for the calculation of u(x, y) on Γ: one of them is
given by Equation (2.22), and another one by the initial condition. If these two prescriptions
contradict each other, there are no solutions of the initial value problem. If they match each
other, there are infinitely many solutions, because the initial condition given on the initial
curve Γ does not influence the solution outside that line.

We will formulate the conditions for the existence and uniqueness of solutions of initial
value problems in the next section in a more general context.
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2.2 Quasilinear First-Order Equations

In the present section we develop an approach for solving initial value problems for more
general, quasilinear, first-order equations,

a(x, y, u)ux + b(x, y, u)uy = c(x, y, u) (2.32)

That approach is based on a generalization of the notion of characteristic curve defined in
the previous section.

2.2.1 Characteristic Curves

Our success in solving the linear equation, (2.1), was based on finding the curves

x = x(s, t), y = y(s, t) (2.33)

such that the transformed equation contains only a directional derivative in the direction
τ = (a(x, y), b(x, y)) along that curve. Now we will apply the same idea to a more general
equation, (2.32).

Consider a particular solution of Equation (2.32),

u = f(x, y), (2.34)

which satisfies equation

a (x, y, f(x, y)) fx + b (x, y, f(x, y)) fy − c (x, y, f(x, y)) = 0. (2.35)

The plot of this solution is a surface in the three-dimensional space (x, y, u), which is called
the integral surface of the partial differential equation (2.32). Let us present relation (2.34)
as

F (x, y, u) ≡ f(x, y)− u = 0. (2.36)

Thus, the integral surface of the equation is the surface where a certain function F (x, y, u)
vanishes. Note that

∇F = (fx, fy,−1) (2.37)

determines the direction of the normal vector in every point of the surface (2.36). Define
the vector field

τ (x, y, u) = (a(x, y, u), b(x, y, u), c(x, y, u)) . (2.38)

On the integral surface (2.36),

τ = (a (x, y, f(x, y)) , b (x, y, f(x, y)) , c (x, y, f(x, y))) . (2.39)

Obviously, Equation (2.35) can be written as

τ · ∇F = 0. (2.40)

The geometric meaning of that relation is quite clear: τ is tangent to surface (2.36), therefore
the directional derivative of F along the direction τ vanishes (see Figure 2.3).

We come to the following geometric reformulation of the partial differential equation
(2.32): for a given vector field (2.38), find a smooth surface u = f(x, y) such that vector
(2.39) is tangent in every point of that surface. The obtained surface will be an integral
surface of equation (2.32).
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FIGURE 2.3
Integral surface, characteristic curves, and initial curve.

As the first step for solving that problem, let us consider the following system of ordinary
differential equations:

dx(t)

dt
= a(x(t), y(t), u(t)),

dy(t)

dt
= b(x(t), y(t), u(t)),

du(t)

dt
= c(x(t), y(t), u(t)),

(2.41)

which is solved with some initial conditions

x(0) = x0, y(0) = y0, u(0) = u0 (2.42)

(t is changed in both positive and negative directions). The solution of the problem (2.41),
(2.42), (x(t), y(t), u(t), determines a curve (called the characteristic curve of the PDE) in
the three-dimensional space (x, y, u). According to (2.41), vector τ = (a, b, c) is tangent
to that curve at each of its points. Changing the initial condition (2.42), we can obtain
many curves of that kind. Taking a one-parametric family of such curves, we can obtain
a surface such that vector τ is tangent at every point of that surface. That will solve the
geometric problem formulated above, which is equivalent to finding a certain integral surface
of Equation (2.32).

For instance, if we take initial conditions corresponding to a certain parametrically
defined curve,

x0 = x0(s), y0 = y0(s), u0 = u0(s), (2.43)

called the initial curve (see Figure 2.3), then solving the system of Equations (2.41) with
initial conditions (2.43) will give us an integral surface, which is the plot of the solution
u = u(x, y) of Equation (2.32) with the initial condition (2.43). The solution is obtained in
the parametric form:

x = x(t, s), y = y(t, s), (2.44)

u = u(t, s). (2.45)

In order to get the solution u = u(x, y) in the explicit form, we have to invert relations
(2.44),

t = t(x, y), s = s(x, y), (2.46)



14 Partial Differential Equations: Analytical Methods and Applications

and substitute (2.46) into (2.45):

u = u (t(x, y), s(x, y)) .

Thus, we have developed the following algorithm for solving quasilinear first-order equa-
tion (2.32) with definite initial conditions.

1. Present initial condition in the parametric form (2.43).

2. Solve ordinary differential equations

dx(t, s)

dt
= a (x(t, s), y(t, s), u(t, s)) ,

dy(t, s)

dt
= b (x(t, s), y(t, s), u(t, s)) ,

du(t, s)

dt
= c (x(t, s), y(t, s), u(t, s))

with initial conditions

x(0, s) = x0(s), y(0, s) = y0(s), u(0, s) = u0(s). (2.47)

That will give the solution in the parametric form,

x = x(t, s), y = y(t, s), u = u(t, s).

The existence and uniqueness of that solution in a certain interval of t around 0
is guaranteed if functions a(x, y), b(x, y) and c(x, y) are smooth.

3. Determine t = t(x, y), s = s(x, y) and find the solution in the explicit form,

u = u (t(x, y), s(x, y)) .

The general solution of Equation (2.32) is found as a set of all particular solutions with
arbitrary functions (2.43).

2.2.2 Examples

In order to find some “underwater rocks” in the way described above, let us consider the
following examples.

First, let us apply the approach described above to the linear equation,

xux + yuy = 1− u, (2.48)

formerly solved in Section 2.1 with different initial conditions (Examples 2.2-2.4).

Example 2.5 In Example 2.2, we have applied the initial condition

u(1, y) = 2, −∞ < y <∞. (2.49)

This initial condition determines the initial curve that can be presented in the parametric
form as

x0(s) = 1, y0(s) = s, u0(s) = 2; −∞ < s <∞. (2.50)

In order to find the set of characteristic curves crossing different points of the initial curve
(2.50), we solve the system of ordinary differential equations

dx

dt
(t, s) = x,

dy

dt
(t, s) = y,

du

dt
(t, s) = 1− u (2.51)
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with initial conditions

x(0, s) = 1, y(0, s) = s, u(0, s) = 2. (2.52)

The general solution of the equation for x is x(t, s) = C1(s) exp(t); from the initial condi-
tion x(0, s) = 1 we find C1(s) = 1. Similarly, we get y(t, s) = C2(s) exp(t) while solving
the equation for y, with C2(s) = s. Finally, solving the equation for u gives u(t, s) =
C3(s) exp(−t) + 1, with C3(s) = 1. Relations

x(t, s) = exp(t), y(t, s) = s exp(t), (2.53)

u(t, s) = exp(−t) + 1 (2.54)

determine the solution of the initial value problem (2.51), (2.52) in the parametric form. To
obtain the solution in its explicit form, u = u(x, t), we have to invert relations (2.53):

t(x, y) = lnx, s(x, y) = y/x, (2.55)

and substitute expressions (2.55) into (2.54). We get

u(x, y) =
1

x
+ 1, (2.56)

which coincides with the result obtained in Example 2.2.

The inverse transformation (2.55) is successful, because the projections of characteristic
curves on the plane (x, y) cross the projection of the initial curve (2.50) transversally, i.e.,
neither of the characteristic curves is tangent to the initial curve anywhere. Indeed, the
projection of the tangent vector to (2.50) is

x′0(s) = xs(0, s) = 0, y′0(s) = ys(0, s) = 1, (2.57)

while the projection of the tangent vector to the characteristic curve on the line t = 0,
according to Equations (2.53), is

xt(0, s) = x(0, s) = 1, yt(0, s) = y(0, s) = s. (2.58)

To check whether vectors (2.57) and (2.58) are nonparallel, we have to calculate the deter-
minant

J(0, s) ≡
∣∣∣∣ xt(0, s) yt(0, s)
xs(0, s) ys(0, s)

∣∣∣∣ =

∣∣∣∣ 1 s
0 1

∣∣∣∣ = −1.

Because that determinant is different from 0 at the initial curve, the possibility of the
inversion of relations (2.53) is granted in a certain vicinity of the initial curve. For arbitrary
t, the Jacobian of transformation (2.52)

J(t, s) ≡
∣∣∣∣ xt(t, s) yt(t, s)
xs(t, s) ys(t, s)

∣∣∣∣ =

∣∣∣∣ exp(t) s exp(t)
0 exp(t)

∣∣∣∣ = exp(2t) = x2.

Thus, we can expect that something wrong may happen at x = 0, where the Jacobian
vanishes. Indeed, the construction of the solution following the characteristic curves, which
starts at x = 1, cannot be continued below x = 0. When t → −∞, then x → 0 and y → 0
for all s. Thus, all the characteristic curves merge at the point x = 0, y = 0, and they
cannot be continued further.

In the region x > 0, the solution is defined in a unique way.
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Example 2.6 Let us consider now the same equation (2.48) with boundary conditions of
Example 2.3,

u(x, x) = 2, −∞ < x <∞. (2.59)

Presenting the initial curve in the parametric form,

x0(s) = s, y0(s) = s, u0(s) = 2; −∞ < s <∞, (2.60)

we formulate the problem for finding the characteristic curves that consists of the same
system of ordinary differential equations, (2.51), and initial conditions

x(0, s) = s, y(0, s) = s, u(0, s) = 2. (2.61)

First, let us check the transversality of the characteristic curves to the initial curve:

J(0, s) ≡
∣∣∣∣ xt(0, s) yt(0, s)
xs(0, s) ys(0, s)

∣∣∣∣ =

∣∣∣∣ s s
1 1

∣∣∣∣ = 0.

Thus, the projection of the tangent vector to the initial curve, (1, 1), is parallel to the
projection of the tangent vector of the characteristic curve, (s, s), hence our approach fails:
instead of leaving the initial curve and forming the integral surface, the characteristic curves
go along the initial curve. Moreover, we get a contradiction between the prescriptions of
(2.51) and (2.61). According to (2.51), the tangent vector to the integral surface with the
projection (s, s) is

(xt(0, s), yt(0, s), ut(0, s)) = (x, y, 1− u)|t=0 = (s, s,−1).

At the same time, the initial condition demands that the tangent vector with the projection
in that direction has to be

(xs(0, s), ys(0, s), us(0, s)) = (1, 1, 0).

These two vectors are not parallel; thus it is impossible to simultaneously satisfy the equa-
tions and the boundary conditions: the solution of (2.51) and (2.61) does not exist.

Example 2.7 Let us return to Example 2.4, i.e., consider Equation (2.48) with the initial
condition

u(x, x) = 1, −∞ < x <∞.

The initial curve is
x0(s) = s, y0(s) = s, u0(s) = 1,

hence we have to consider system (2.50) with initial conditions

x(0, s) = s, y(0, s) = s, u(0, s) = 1. (2.62)

Again,

J(0, s) ≡
∣∣∣∣ xt(0, s) yt(0, s)
xs(0, s) ys(0, s)

∣∣∣∣ =

∣∣∣∣ s s
1 1

∣∣∣∣ = 0.

This time, however, the tangent vector to the characteristic curve, (xt(0, s), yt(0, s), ut(0, s))
= (s, s, 0), and that to the initial curve, (xs(0, s), ys(0, s), us(0, s)) = (1, 1, 0), are parallel
for every s. Thus, we do not get any contradictions: the characteristic curve just coincides
with the initial curve. But our approach does not work: instead of the set of characteristic
curves forming the integral surface, we obtain only one characteristic curve which coincides
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with the initial curve. Thus, though the initial condition (2.62) is not harmful, it is also not
helpful in finding the solution.

In order to construct the solution in the whole region of its existence, let us return to
the general solution of (2.51),

x(t, s) = C1(s) exp(t), y(t, s) = C2(s) exp(t), u(t, s) = C3 exp(−t) + 1. (2.63)

It is useless to substitute that solution into the initial condition (2.62), because that gives
us the solution only at the line y = x. Let us apply the following trick. Instead of the useless
initial condition along the line y = x, we take a curve that is transversal to projections
of the characteristic curves, e.g., the line x = 1 of Example 2.5. Impose artificial initial
conditions,

x0(s) = 1, y0(s) = s, u0(s) = h(s),

where h(s) is a certain unknown function, and substitute (2.63) into those conditions:

C1(s) = 1, C2(s) = s, C3(s) = h(s)− 1,

Hence
x(t, s) = exp(t), y(t, s) = s exp(t), (2.64)

u(t, s) = (h(s)− 1) exp(−t) + 1. (2.65)

Inversion of relations (2.64) and substitution into (2.65) gives the solution,

u(x, y) =
h(y/x)− 1

x
+ 1. (2.66)

The original initial condition (2.62) determines the value of h only in one point:

u(x, x) = h(1) = 1.

The obtained solution coincides with (2.24), (2.31), where f(y/x) = h(y/x)− 1.

Examples 2.5-2.7 allow us to come to the following conclusions (the proof can be found
elsewhere, e.g., in [3]).

1. If the determinant

J(0, s) ≡
∣∣∣∣ xt(0, s) yt(0, s)
xs(0, s) ys(0, s)

∣∣∣∣ 6= 0

everywhere, the unique solution exists near the initial curve.

2. In the points where J(t, s) = 0, the solution may cease to exist.

3. If J(0, s) = 0 everywhere along the initial curve, then it is necessary to check
whether the vectors

(xt(0, s), yt(0, s), ut(0, s)) = (a, b, c) and

(xs(0, s), ys(0, s), us(0, s)) = (x′0(s), y′0(s), u′0(s))

are parallel. If they are parallel everywhere, there are infinitely many solutions.
Otherwise, the solution does not exist.
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Example 2.8 Let us consider equation

uy + uux = 0, −∞ < x <∞, y > 0 (2.67)

with initial condition
u(x, 0) = p(x), −∞ < x <∞, (2.68)

where p(x) is a known continuously differentiable function. As mentioned in Section 1, this
equation is called the non-viscous Burgers equation.

Equation (2.67) describes the propagation of a strong sound wave in a gas. The physical
meaning of x is the coordinate along the direction of the wave propagation; the variable
y denotes time. The wave propagation is described in the reference frame moving at the
speed of sound. Function u has the meaning of pressure.

Applying the approach described above, we present the initial curve in the parametric
form

x0(s) = s, y0(s) = 0, u0(s) = p(s) (2.69)

and consider the system of ordinary differential equations depending on the parameter s

dx

dt
(t, s) = u(t, s), (2.70)

dy

dt
(t, s) = 1, (2.71)

du

dt
(t, s) = 0, (2.72)

with initial conditions
x(0, s) = s, (2.73)

y(0, s) = 0, (2.74)

u(0, s) = p(s), (2.75)

which determine the characteristic curves.

First, let us calculate the value of the Jacobian J(0, s) of the transformation (x, y) →
(t, s) on the initial curve t = 0:

J(0, s) =

∣∣∣∣ xt(0, s) yt(0, s)
xs(0, s) ys(0, s)

∣∣∣∣ =

∣∣∣∣ p(s) 1
1 0

∣∣∣∣ = −1 6= 0.

Therefore, we expect that the solution of the problem (2.70)-(2.75) exists at least for values
of y sufficiently close to 0, and it is unique.

Solving Equation (2.72) with initial condition (2.75), we find

u(t, s) = p(s). (2.76)

Solution of Equation (2.72) with initial condition (2.74) is

y(t, s) = t. (2.77)

Finally, substituting (2.76) into (2.70) and solving the latter equation with initial condition
(2.72), we find

x(t, s) = s+ p(s)t. (2.78)

Formulas (2.76)-(2.78) describe the solution of the initial value problem (2.70)-(2.75)
in a parametric way. We cannot write that solution in an explicit way u = u(x, y) for an
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FIGURE 2.4
Example 2.8.

arbitrary function p(s). However, the evolution of the spatial pressure distribution u = u(x)
with time y = t can be easily understood. For sake of simplicity, assume that the plot of
function u(x, 0) = p(x) has a shape shown in Figure 2.4 (line 1): p(x) grows from 0 to p∗
for −∞ < x < x∗ and decreases from p∗ to 0 for x∗ < x < ∞. In the intervals of the
monotonicity of function p(x), we can invert the relation u = p(x) and present x(u) as
x−(u) in the region where p′(x) > 0 (hence x′−(u) > 0) and x+(u) in the region where
p′(x) < 0 (hence x′+(u) < 0) (see Figure 2.4).

For y > 0, the solution in both regions can be written in implicit form as

x = x(y, u) = x±(u) + uy. (2.79)

That means that with the growth of y = t, according to (2.76), each point of the plot
u = u(x) keeps its height. According to (2.78), that point moves horizontally with the
velocity u = p(s) corresponding to its height: the higher the point, the faster it moves (see
line 2 in Figure 2.4). One can see that the curve u(x) becomes more gently sloping with
time in the region where ∂u/∂x > 0 and steeper in the region where ∂u/∂x < 0. Indeed,
differentiating (2.79) with respect to u, we find that

∂x

∂y
= x′±(u) + y. (2.80)

Because x′−(u) > 0, ∂x/∂u > 0 grows with y, i.e., ∂u/∂x > 0 decreases. But x′+(u) < 0,
therefore with the growth of y, |∂x/∂u| decreases, and |∂u/∂x| grows. In the latter case,
according to (2.80), ∂x/∂u becomes equal to zero when y = −x′±(u). First it happens at
the time instant

y = ym = minu
[
−x′+(u)

]
=

1

maxs [−p′(s)]
. (2.81)

At y = ym, the derivative ∂u/∂x diverges at a certain point. The classical solution cannot
be extended beyond that time instant.

Let us calculate the Jacobian of the transformation (x, y) → (t, s) for the obtained
solution (2.76)-(2.78):

J(t, s) =

∣∣∣∣ xt(t, s) yt(t, s)
xs(t, s) ys(t, s)

∣∣∣∣ =

∣∣∣∣ p(s) 1
1 + p′(s)t 0

∣∣∣∣ = −(1 + p′(s)t).

One can see that J(t, s) first becomes equal to zero exactly at the time instant t = y = ym
determined by relation (2.81), which is the formal reason for the failure of the approach.

In the case of gas motion, the divergence of ∂u/∂x corresponds to the appearance of a
shock wave. For the description of the further evolution of the physical system, a modification
of model (2.67) is needed (see Chapter 10).
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Problems

Find the general solution of the equation and solutions satisfying initial conditions.

1. Equation: ux = 1, −∞ < x <∞, y > 0; initial conditions:

(a) u(x, 0) = 0, −∞ < x <∞;

(b) u(x, 0) = x, −∞ < x <∞;

(c) u(x, x2) = 0, −∞ < x <∞.

2. Equation: ux + uy = 1, −∞ < x <∞, −∞ < y <∞; initial conditions:

(a) u(x, 0) = v(x), −∞ < x <∞;

(b) u(x, x) = v(x), −∞ < x <∞;

(c) u(x, x2) = 0, −∞ < x < 1/2.

3. Equation: uy + (axu)x = 0, a = const, −∞ < x <∞, y > 0; initial conditions:

(a) u(x, 0) = v(x), −∞ < x <∞;

(b) u(0, y) = v(y), y ≥ 0.

4. Equation: xux − yuy = 0, x > 0, y > 0; initial conditions:

(a) u(x, x) = h(x), x ≥ 0;

(b) u(x, k/x) = h(x), k = const, k > 0, x > 0;

(c) u(x, 1− x) = h(x), 1/2 < x < 1.

5. Equation: xuy − yux = 0, x > 0, y > 0; initial conditions:

(a) u(x, 0) = v(x), 0 ≤ x <∞;

(b) u(x,
√

1− x2 = v(x), 0 ≤ x ≤ 1;

(c) u(x, 1) = x, 0 ≤ x <∞;

(d) u(x, 1) = x2, 0 ≤ x <∞.

Solve the following initial value problems.

6. uy + u2ux = 0, −∞ < x <∞, y > 0; u(x, 0) = p(x); p(x) is a bounded function.

Find the solution in the implicit form. Find its existence region.

7. uy +uux = −au, −∞ < x <∞, y > 0; a = const, a > 0; u(x, 0) = p(x); p(x) is a
bounded function. Find the solution in the implicit form. What is the condition
for the existence of the solution for any y?

8. ux + (x− u)uy = 0, x > 0, −∞ < y <∞; u(x, 0) = x.
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Second-Order Equations

Now we start studying the most important class of PDEs, the linear equations of the second
order.

3.1 Classification of Second-Order Equations

In the Introduction, we already formulated the most general form of the second-order linear
PDE for function u(x, y),

a(x, y)
∂2u

∂x2
+ 2b(x, y)

∂2u

∂x∂y
+ c(x, y)

∂2u

∂y2
+ d(x, y)

∂u

∂x

+ e(x, y)
∂u

∂y
+ f(x, y)u = g(x, y), (3.1)

and considered three basic examples, the wave equation

∂2u

∂y2
− c20

∂2u

∂x2
= 0, (3.2)

the heat equation
∂u

∂y
− κ∂

2u

∂x2
= q(x, y) (3.3)

(in order to unify notations, we denote time as y in the examples above), and the Poisson
equation

∂2u

∂x2
+
∂2u

∂y2
= g(x, y). (3.4)

It has been announced that these three equations correspond to three types of prob-
lems, namely description of wave propagation, dissipative processes and static fields. What
kind of solution behavior is expected for Equation (3.1) with a definite set of functions
a(x, y), . . . , g(x, y)?

Let us calculate the discriminant

δ(x, y) = b2(x, y)− a(x, y)c(x, y) (3.5)

for each of Equations (3.2)-(3.4).
For the wave equation, a = −c20, b = 0, c = 1, hence δ = c20 is positive. We shall call

the equation hyperbolic in that case. As we shall see in Chapter 5, equations of this kind
describe waves.

For the heat equation, a = −κ, b = c = 0, hence δ = 0. Equations of this kind are
called parabolic. They describe a non-wave evolution of the system (like heat conductivity
and diffusion).

21
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For the Poisson equation, a = c = 1, b = 0, hence δ = −1 < 0. The negative values of δ
correspond to the elliptic type of equations. Equations of this kind are used for description
of static physical fields (e.g., temperature, concentration, pressure, gravity potential, electric
potential etc.).

Note that the equation type is determined by the first three terms of (3.1), which contain
derivatives of the second order. These terms form the principal part of the equation.

It is crucial that the type of the equation is not changed by transformation of coordinates

s = s(x, y), t = t(x, y), u(x, y) = v(s(x, y), t(x, y)); (3.6)

it is assumed that the Jacobian of the transformation,

J(x, y) =
∂(s, t)

∂(x, y)
=

∣∣∣∣ sx sy
tx ty

∣∣∣∣ = sxty − sytx, (3.7)

is different from 0 everywhere. Using the chain rule,

ux = vssx + vttx, uy = vssy + vtty, (3.8)

we find that
uxx = vsss

2
x + 2vstsxtx + vttt

2
x + vssxx + vttxx, (3.9)

uxy = vsssxsy + vst (sxty + sytx) + vtttxty + vssxy + vttxy, (3.10)

uyy = vsss
2
y + 2vstsyty + vttt

2
y + vssyy + vttyy. (3.11)

Substituting (3.9)-(3.11) into (3.1), we obtain:

Avss + 2Bvst + Cvtt + g (s, t, v, vs, vt) = 0, (3.12)

where
A = as2

x + 2bsxsy + cs2
y, (3.13)

B = asxtx + b (sxty + sytx) + csyty, (3.14)

C = at2x + 2btxty + ct2y, (3.15)

and g does not contain derivatives of the second order of v.
It can be shown directly that(

A B
B C

)
=

(
sx sy
tx ty

)(
a b
b c

)(
sx tx
sy ty

)
. (3.16)

Calculating the determinants of the both parts of (3.16), we find that the discriminant
characterizing the type of Equation (3.12),

δ′ = B2 −AC = J2(b2 − ac) = J2δ.

Because J2 > 0, the type of the equation is not changed by transformation (3.16).

3.2 Canonical Forms

By means of a definite transformation (3.16), one can transform the principal part of Equa-
tion (3.1) to a certain standard form called canonical form. That transformation standard-
izes and simplifies the further analysis of the equation.
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3.2.1 Hyperbolic Equations

Let us start with hyperbolic equations, δ = b2 − ac < 0. The canonical form for those
equations is defined as

vst +G (s, t, v, vs, vt) = 0, (3.17)

where G does not contain derivatives of the second order.
Obviously, in order to obtain the form of (3.17), it is necessary to make A and C in

(3.12) equal to zero:

as2
x + 2bsxsy + cs2

y = 0, at2x + 2btxty + ct2y = 0. (3.18)

The transformation is needed if at least one of the coefficients a and c is nonzero. Assume
that a 6= 0 in the whole region of the definition of the equation. Solving quadratic equations
(3.18), we find that

sx =
−b±

√
b2 − ac
a

sy, tx =
−b±

√
b2 − ac
a

ty.

Because we are interested in finding a transformation with s 6= t, let us take different signs
of the root for sx and tx, e.g.,

sx +
b−
√
b2 − ac
a

sy = 0, (3.19)

tx +
b+
√
b2 − ac
a

ty = 0. (3.20)

For solving first-order partial differential equations (3.19), (3.20), we can apply the
approach described in Section 2.1.1. For (3.19), we obtain the characteristic equation

dy

dx
=
b−
√
b2 − ac
a

. (3.21)

If the general solution of (3.21) is found in the implicit form f−(x, y) = const, then we can
choose the appropriate change of variable as

s = f−(x, y). (3.22)

Similarly, finding the general solution of the characteristic equation

dy

dx
=
b+
√
b2 − ac
a

. (3.23)

in the form f+(x, y) = const, we obtain the corresponding variable

t = f+(x, y). (3.24)

Using transformation (3.22), (3.24), we obtain the equation

Bvst + g = 0,

where B is determined by formula (3.14) and g does not contain derivatives of the second
order. Dividing by B, we get an equation in the canonical form,

vst +G = 0, G = g/B.
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Instead expressions (3.13) and (3.15), one can use the following simple mnemonic rule.
The characteristic curves (3.21) and (3.23) satisfy the following quadratic equation:

a

(
dy

dx

)2

− 2b
dy

dx
+ c = 0 (3.25)

that can be written immediately while looking at Equation (3.1) (just do not forget to
change the sign in the term with b). Below we shall see that this rule is useful also for other
types of equations.

Example 3.1 The wave equation

uyy − c20uxx = 0 (3.26)

is given. Let us transform it to the canonical form and find its general solution.
In this example, a = −c20, b = 0, and c = 1; hence, as shown above, δ = b2−ac = c20 > 0.

This, Equation (3.26) is of the hyperbolic type. The equation (3.25) for the characteristic
curve is

−c20
(
dy

dx

)2

+ 1 = 0,

hence
dy

dx
= ± 1

c0
. (3.27)

Solving (3.27) gives
s = x− c0y, t = x+ c0y. (3.28)

Using formulas (3.8)-(3.11), we obtain equation

vst = 0. (3.29)

As shown in Example 1.4, the general solution of Equation (3.29) is the sum of two arbitrary
functions (with continuous second derivatives); each of them depends only on one variable:

v(s, t) = F+(s) + F−(t).

Returning to original variables according to (3.28), we find:

u(x, y) = F+(x− c0y) + F−(x+ c0y). (3.30)

The physical meaning of Equation (3.26) and the obtained solution (3.30) will be dis-
cussed in Chapter 5.

3.2.2 Elliptic Equations

In the case of elliptic equations, δ = b2 − ac < 0, the canonical form is

vss + vtt +G (s, t, v, vs, vt) = 0, (3.31)

where G does not contain derivatives of the second order.
As the first step, let us apply exactly the same transformation as in the hyperbolic case.

Consider the complex transformation

s̃ = s̃(x, y), t̃ = t̃(x, y), u(x, y) = ṽ
(
s̃(x, y), t̃(x, y)

)
, (3.32)
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determined by equations

s̃x +
b− i
√
ac− b2
a

s̃y = 0, (3.33)

t̃x +
b+ i
√
ac− b2
a

t̃y = 0. (3.34)

Note that t̃(x, y) = ¯̃s(x, y), where a bar is the sign of complex conjugation. Following the
derivation given in Section 3.2.1, we obtain equation

ṽs̃t̃ + G̃
(
s̃, t̃, ṽ, ṽs̃, ṽt̃

)
= 0. (3.35)

At the second step, we introduce real variables

s = s̃+ t̃, t =
(
s̃− t̃

)
/i, v(s, t) = ṽ(s̃, t̃). (3.36)

According to the chain rule,

∂

∂t̃
=

∂

∂s
+ i

∂

∂t
,

∂

∂s̃
=

∂

∂s
− i ∂

∂t
, (3.37)

hence we obtain Equation (3.31). Note that Equation (3.25) can be used in the case of an
elliptic equation for finding characteristic curves in a complex space.

Example 3.2 Let us consider equation

auxx + 2buxy + cuyy = 0 (3.38)

with constant coefficients.
Following the algorithm described above, we write the characteristic Equation (3.25)

and obtain its solutions,
dy

dx
=
b± i
√
ac− b2
a

. (3.39)

Integrating Equations (3.39), we find the transformation

s̃ = ay −
(
b− i

√
ac− b2

)
x, t̃ = ay −

(
b+ i

√
ac− b2

)
x, (3.40)

which brings Equation (3.38) to the form

ṽs̃t̃ = 0; (3.41)

thus, the general solution is given by the formula

ṽ(s̃, t̃) = F+(s̃) + F−(t̃),

or

u(x, y) = F+

(
ay −

(
b− i

√
ac− b2

)
x
)

+ F−

(
ay −

(
b+ i

√
ac− b2

)
x
)
, (3.42)

where F+ and F− are arbitrary continuously differentiable functions.
Generally, solution (3.42) is complex, but it can be used for construction of the real

general solution. Note that if u1(x, y) and u2(x, y) are solutions of a linear homogeneous
equation (e.g., Equation (3.38)), then any linear combination of those solutions, c1u1(x, y)+
c2u2(x, y) is also a solution of that equation (that feature of solutions of linear homogeneous
equations is called the superposition principle). Also, for equations with real coefficients, if
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u(x, y) is a solution, then the complex conjugate function, ū1(x, y), is a solution. Therefore,
starting with (3.42), one can construct two real solutions of Equation (3.38),

u1(x, y) = Re u(x, y) =
1

2
[u(x, y) + ū(x, y)] (3.43)

and

u2(x, y) = Re u(x, y) =
1

2i
[u(x, y)− ū(x, y)] (3.44)

The set of linear combinations of (3.43) and (3.44) with real coefficients form the real general
solution of (3.38).

According to formulas (3.36), the transformation

s = 2(ay − bx), t = 2
√
ac− b2x, v(s, t) = ṽ(s̃, t̃)

leads to the canonical form
vss + vtt = 0,

which is the Laplace equation.

3.2.3 Parabolic Equations

In the case of a parabolic equation, δ = b2 − ac = 0, the canonical form is

wss +G (s, t, w,ws, wt) = 0, (3.45)

where G does not contain derivatives of the second order. This time, the characteristic
equation (3.25) gives only one equation for a characteristic curve,

dy

dx
=
b

a
, (3.46)

which corresponds to the equation for the change of only one variable, say,

t = t(x, y); (3.47)

that equation is

tx +
b

a
ty = 0. (3.48)

As the second variable, let us choose
s = x. (3.49)

According to (3.14), (3.15),
B = atx + bty = 0,

C = at2x + 2btxty +
b2

a
t2y = a

(
tx +

b2

a
ty

)2

= 0,

hence the transformation (3.47), (3.49) brings Equation (3.1) to the canonical form (3.45).

Example 3.3 Let us transform equation

auxx + 2buxy + cuyy = 0, b2 − ac = 0 (3.50)

with constant coefficients a, b and c to the canonical form, and find its general solution.
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Following (3.46), we apply the transformation

t = ay − bx, s = x

and obtain the canonical form of the equation,

vss = 0.

Its general solution is
v(s, t) = f1(t)s+ f2(t),

hence
u(x, y) = xf1(ay − bx) + f2(ay − bx),

where f1 and f2 are arbitrary functions, which are twice continuously differentiable.

Problems

Transform the equation to the canonical form and find its general solution.

1. uxx + 2uxy + ux = 0, −∞ < x <∞, −∞ < y −∞.
2. uxx − 4uxy + 4uyy = 1, −∞ < x <∞, −∞ < y −∞.
3. xuxx + 2x2uxy − ux = 1, 0 < x <∞, −∞ < y −∞.
4. x2uxx − 2xyuxy + y2uyy + xux + yuy = 0, 0 < x <∞, −∞ < y −∞.
Transform the equation to the canonical form.

5. uxx − xuyy = 0, 0 < x <∞, −∞ < y −∞.
6. uxx + x2uyy = 0, 0 < x <∞, −∞ < y −∞.
7. y2uxx − x2uyy = 0, 0 < x <∞, 0 < y <∞.
8. sin2 xuxx + sin(2x)uxy + cos2 xuyy = 0, 0 < x < π, 0 < y <∞.
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4

The Sturm-Liouville Problem

4.1 General Consideration

In the following chapters we carry out a systematic study of methods for solving second
order linear PDEs. We will develop a powerful approach, the method of separation of vari-
ables (or Fourier expansion method), which is efficient for solving all three types of PDE
equations. That method includes solution of a certain kind of problems for ordinary differ-
ential equations, the Sturm-Liouville problem, which is not always included in a standard
course of ODEs. Therefore, we devote the present chapter to consideration of that problem.

The Sturm-Liouville problem consists of a linear, second order ordinary differential equa-
tion containing a parameter whose value is determined by the condition that there exists
a nonzero solution to the equation which satisfies a given boundary conditions. The set of
orthogonal functions generated by the solutions to such problems gives the base functions
for the Fourier expansion method of solving partial differential equations.

Consider a general linear second order ordinary differential equation

a(x)y′′(x) + b(x)y′(x) + c(x)y(x) + λd(x)y(x) = 0 (4.1)

with a parameter λ, generally a complex number, multiplied by the function y(x), which is
generally a complex function, while the functions a(x), b(x), c(x) and d(x) are real.

This equation can be written in the form

d

dx
[p(x)y′(x)] + [q(x) + λr(x)] y(x) = 0, (4.2)

where

p(x) = e
∫ b(x)
a(x)

dx, q(x) =
p(x)c(x)

a(x)
, r(x) =

p(x)d(x)

a(x)
. (4.3)

Reading Exercise: Verify that substitution of Equations (4.3) into Equation (4.2) gives
Equation (4.1).

As we will see studying PDE, many physical problems result in the linear ordinary
Equation (4.2) where the function y(x) is defined on an interval [a, b] and obeys homogeneous
boundary conditions of the form

α1y
′ + β1y|x=a = 0,

α2y
′ + β2y|x=b = 0. (4.4)

This kind of condition, imposed in two different points, strongly differs from the set of
initial conditions y(a) = y0, y′(a) = y1 imposed at the same point, which most often are
considered in ODE problems.

It is clear that the constants α1 and β1 cannot both be zero simultaneously, nor the
constants α2 and β2. The constants αk and βk, which are determined by physical laws,

29
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are real. We note also that the relative signs for αk and βk are not arbitrary; we generally
must have β1/α1 < 0 and β2/α2 > 0. This choice of signs (details of which are discussed in
books [7, 8]) is necessary in setting up boundary conditions for various classes of physical
problems. The very rare cases when the signs are different occur in problems where there is
explosive behavior, such as an exponential temperature increase. Everywhere in the book
we consider “normal” physical situations in which processes occur smoothly and thus the
parameters in boundary conditions are restricted as above.

Equations (4.2) and (4.4) define a Sturm-Liouville problem. Solving this problem involves
determining the values of the constant λ for which nontrivial solutions y(x) exist. If αk = 0
the boundary condition simplifies to y = 0 (known as the Dirichlet boundary condition),
if βk = 0 the boundary condition is y′ = 0 (called the Neumann boundary condition),
otherwise the boundary condition is referred to as a mixed boundary condition.

Notice that for the function y(x) defined on an infinite or semi-infinite interval, the
conditions (4.4) may not be specified and are often replaced by the condition of regularity
or physically reasonable behavior as x→ ±∞, for example that y(∞) be finite.

Later on we let p(x), q(x), r(x) and p′(x) be continuous, real functions on the interval
[a, b] and let p(x) > 0 and r(x) > 0 on the interval [a, b]. The coefficients αk and βk in
Equations (4.4) are assumed to be real and independent of λ.

The differential Equation (4.2) and boundary conditions (4.4) are homogeneous which
is essential for the subsequent development. The trivial solution y(x) = 0 is always possible
for homogeneous equations but we seek special values of λ (called eigenvalues) for which
there are nontrivial solutions (called eigenfunctions) that depend on λ.

If we introduce the differential operator (called the Sturm-Liouville operator)

Ly(x) = − d

dx
[p(x)y′(x)]− q(x)y(x) = −p(x)y′′(x)− p′(x)y′(x)− q(x)y(x) (4.5)

or

L = −p(x)
d2

dx2
− p′(x)

d

dx
− q(x),

then Equation (4.2) becomes
Ly(x) = λr(x)y(x). (4.6)

As it is seen from Equation (4.5), Ly(x) is a real linear operator. When r(x) = const. (in
this case one can take r(x) = 1) this equation appears as an ordinary eigenvalue problem,
Ly(x) = λy(x), for which we have to determine λ and y(x). For r(x) 6= 1 we have a modified
problem where the function r(x) is called a weight function. As we stated above, the only
requirement on r(x) is that it is real and chosen to be nonnegative. Equations (4.2) and
(4.6) are different ways to specify the same boundary value problem.

Now we discuss the properties of eigenvalues and eigenfunctions of a Sturm-Liouville
problem. Let us write Equation (4.6) for two eigenfunctions, yn(x) and ym(x), and take the
complex conjugate of the equation for ym(x). Notice that in spite of the fact that p(x), q(x),
and r(x) are real, we cannot assume from the very beginning that λ and y(x) are real: that
has to be checked. We have

Lyn(x) = λnr(x)yn(x)

and
Ly∗m(x) = λ∗mr(x)y∗m(x).

Multiplying the first of these equations by y∗m(x) and the second by yn(x), we then integrate
both from a to b and subtract the two results to obtain∫ b

a

y∗m(x)Lyn(x)dx−
∫ b

a

yn(x)Ly∗m(x)dx = (λn − λ∗m)

∫ b

a

r(x)y∗m(x)yn(x)dx. (4.7)
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Using the definition of L given by Equation (4.5), the left side of Equation (4.7) is{
p(x)

[
dy∗m
dx

yn(x)− y∗m(x)
dyn
dx

]}b
a

. (4.8)

Reading Exercise: Verify the previous statement.

Then, using the boundary conditions (4.4), it can be easily proved that the expression (4.8)
equals to zero.

Reading Exercise: Verify that the expression in Equation (4.8) equals to zero.

Thus, we are left with ∫ b

a

y∗m(x)Lyn(x)dx =

∫ b

a

yn(x)Ly∗m(x)dx. (4.9)

An operator, L, that satisfies Equation (4.9), is named a Hermitian or self-adjoint oper-
ator. Thus, we may say that the Sturm-Liouville linear operator satisfying homogeneous
boundary conditions is Hermitian. Many important operators in physics, especially in quan-
tum mechanics, are Hermitian.

Let us show that Hermitian operators have real eigenvalues and their eigenfunctions are
orthogonal. The right side of Equation (4.7) gives

(λn − λ∗m)

∫ b

a

r(x)y∗m(x)yn(x)dx = 0. (4.10)

When m = n the integral cannot be zero (recall that r(x) > 0); thus λ∗n = λn and we have
proved that the eigenvalues of a Sturm-Liouville problem are real.

Then, for λm 6= λn, Equation (4.10) is∫ b

a

r(x)y∗m(x)yn(x)dx = 0 (4.11)

and we conclude that the eigenfunctions corresponding to different eigenvalues of a Sturm-
Liouville problem are orthogonal (with the weight function r(x)).

The squared norm of the eigenfunction yn(x) is defined to be

‖yn‖2 =

∫ b

a

r(x)|yn(x)|2dx. (4.12)

Note that the eigenfunctions of Hermitian operators always can be chosen to be real. This can
be done by using some linear combinations of the functions yn(x), for example, choosing
sinx and cosx instead of exp(±ix) for the solutions of the equation y′′ + y = 0. Real
eigenfunctions are more convenient to work with because it is easier to match them to
boundary conditions which are intrinsically real since they represent physical restrictions.

The above proof fails if λm = λn for some m 6= n (in other words there exist different
eigenfunctions belonging to the same eigenvalue) in which case we cannot conclude that the
corresponding eigenfunctions, ym(x) and yn(x), are orthogonal (although in some cases they
are). If there are f eigenfunctions that have the same eigenvalue, we have an f-fold degeneracy
of the eigenvalue. In general, a degeneracy reflects a symmetry of the underlying physical
system (examples can be found in the text). For a Hermitian operator it is always possible
to construct linear combinations of the eigenfunctions belonging to the same eigenvalue so
that these new functions are orthogonal.
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If p(a) 6= 0 and p(b) 6= 0 then p(x) > 0 on the closed interval [a, b] (which follows from
p(x) > 0) and we have the so-called regular Sturm-Liouville problem. If p(a) = 0 then we
do not impose the first of the boundary conditions in Equations (4.4), instead we require
y(x) and y′(x) to be finite at x = a. Similar situations occur if p(b) = 0, or if both p(a) = 0
and p(b) = 0. All these cases correspond to the so-called singular Sturm-Liouville problem.

Beside problems with boundary conditions (4.4) imposed separately in points x = a and
x = b, we will also consider the periodic Sturm-Liouville problem with periodic boundary
conditions y(a) = y(b), y′(a) = y′(b). (In that case, it is assumed also that p(a) = p(b),
q(a) = q(b), and r(a) = r(b).)

The following summarizes the types of Sturm-Liouville problems:

i. For p(x) > 0 and r(x) > 0 we have the regular problem;

ii. For p(x) ≥ 0 and r(x) ≥ 0 we have the singular problem;

iii. For p(a) = p(b) and r(x) > 0 we have the periodic problem.

Notice that if the interval (a, b) is infinite, the Sturm-Liouville problem is also considered
as singular.

The following theorem gives a list of several important properties of the Sturm-Liouville
problem:

Theorem 1

i) Each regular and each periodic Sturm-Liouville problem has an infinite number
of non-negative, discrete eigenvalues 0 ≤ λ1 < λ2 < ... < λn < ... such that
λn →∞ as n→∞. All eigenvalues are real numbers.

ii) For each eigenvalue of a regular Sturm-Liouville problem there is only one eigen-
function; for a periodic Sturm-Liouville problem this property does not hold.

iii) For each of the types of Sturm-Liouville problems the eigenfunctions correspond-
ing to different eigenvalues are linearly independent.

iv) For each of the types of Sturm-Liouville problems the set of eigenfunctions is
orthogonal with respect to the weight function r(x) on the interval [a, b].

v) If q(x) ≤ 0 on [a, b] and β1/α1 < 0 and β2/α2 > 0, then all λn ≥ 0.

Some of these properties have been proven previously, such as property iv) and part of
property i). The remaining part of property i) will be shown in several examples below, as
well as property v). Property ii) can be easily proved when there are two eigenfunctions
corresponding to the same eigenvalue. We then apply Equations (4.2) and (4.4) to show
that these two eigenfunctions coincide or differ at most by some multiplicative constant.
We leave this proof to the reader as a Reading Exercise. Similarly, can be proven property
iii).

Solutions of some important Sturm-Liouville problems will be considered in subsequent
chapters. Many of them cannot be written using elementary functions. They form new
classes of functions called special functions. Specifically, Bessel functions and the orthogonal
polynomials, such as Legendre polynomials, arise from singular Sturm-Liouville problems;
thus the first statement in the above theorem is not directly applicable to these important
cases. In spite of that, singular Sturm-Liouville problems may also have an infinite sequence
of discrete eigenvalues which we will later verify directly for Bessel functions and for the
orthogonal polynomials (see Appendix B).

Since Equation (4.11) is satisfied, eigenfunctions yn(x) form a complete orthogonal set
on [a, b]. This means that any reasonable well-behaved function, f(x), defined on [a, b] can
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be expressed as a series (called a generalized Fourier series) of eigenfunctions of a Sturm-
Liouville problem in which case we may write

f(x) =
∞∑
n

cnyn(x), (4.13)

where it is convenient, in some cases, to start the summation with n = 1, in other cases
with n = 0. An expression for the coefficients cn can be found by multiplying both sides of
Equation (4.13) by r(x)y∗n(x) and integrating over [a, b] to give

cn =

∫ b
a
r(x)f(x)y∗n(x)dx

‖yn‖2
. (4.14)

Let us substitute (4.14) into (4.13). Changing the order of summation and integration
(we can do it due to uniform convergence), we obtain:

f(x) =
∞∑
n

1

‖yn‖2
∫ b

a

r(ξ)f(ξ)yn(x)y∗n(ξ)dξ.

That means that
∞∑
n

1

‖yn‖2
∫ b

a

r(ξ)yn(x)y∗n(ξ)dξ = δ(x− ξ).

This is the completeness property for eigenfunctions of a Sturm-Liouville problem.

The Sturm-Liouville theory provides a theorem for convergence of the series in Equation
(4.13) at every point x of [a, b]:

Theorem 2

Let {yn(x)} be the set of eigenfunctions of a regular Sturm-Liouville problem and
letf(x) and f ′(x) be piecewise continuous on a closed interval. Then the series
expansion (4.13) converges to f(x) at every point wheref(x) is continuous and to
the value [f(x0 + 0) + f(x0 − 0)]/2 if x0 is a point of discontinuity.

The theorem is also valid for the orthogonal polynomials and Bessel functions related to
singular Sturm-Liouville problems. This theorem, which is extremely important for appli-
cations, is similar to the theorem for trigonometric Fourier series.

Formulas in Equations (4.11) through (4.14) can be written in a more convenient way
if we define a scalar product of functions ϕ and ψ as the number given by

ϕ · ψ =

∫ b

a

r(x)ϕ(x)ψ∗(x)dx (4.15)

(the other notation of the scalar product is (ϕ,ψ)).
This definition of the scalar product has properties identical to those for vectors in linear

Euclidian space, a result which can be easily proved:

ϕ · ψ = (ψ · ϕ)∗,

(aϕ) · ψ = aϕ · ψ, (where a is a number)

ϕ · (aψ) = a∗ϕ · ψ,
ϕ · (aψ + bφ) = a∗ϕ · ψ + b∗ϕ · φ,

ϕ · ϕ = |ϕ|2 ≥ 0.

(4.16)
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The last property relies on the assumption made for the Sturm-Liouville equation that
r(x) ≥ 0. If ϕ is continuous on [a, b], then ϕ · ϕ = 0 only if ϕ is zero.

Reading Exercise: Prove the relations given in Equations (4.16).

In terms of the scalar product, the orthogonality of eigenfunctions (defined by Equation
(4.11)) means that

yn · ym = 0, if n 6= m (4.17)

and the formula for the Fourier coefficients in Equation (4.14) becomes

cn =
f · y∗n
yn · yn

(4.18)

Functions satisfying the condition

ϕ · ϕ =

∫ b

a

r(x)|ϕ(x)|2dx <∞ (4.19)

belong to a Hilbert space, L2, which is infinite dimensional. The complete orthogonal set of
functions {yn(x)} serves as the orthogonal basis in L2.

4.2 Examples of Sturm-Liouville Problems

Example 4.1 Solve the equation

y′′(x) + λy(x) = 0 (4.20)

on the interval [0, l] with boundary conditions

y(0) = 0 and y(l) = 0. (4.21)

Solution. First, comparing Equation (4.20) with Equations (4.5) and (4.6), it is clear that we
have a Sturm-Liouville problem with linear operator L = −d2/dx2, i.e. functions q(x) = 0
and p(x) = r(x) = 1. As a Reading Exercise, verify that L is Hermitian.

Let us discuss the cases λ = 0, λ < 0 and λ > 0 separately. If λ = 0, then a general
solution to Equation (4.20) is

y(x) = C1x+ C2

and from boundary conditions (4.21) we have C1 = C2 = 0, i.e. there exists only the trivial
solution y(x) = 0. If λ < 0, then

y(x) = C1e
√
−λx + C2e

−
√
−λx

and the boundary conditions (4.21) again give C1 = C2 = 0 and therefore the trivial solution
y(x) = 0. Thus we have only the possibilityλ > 0, in which case we write λ = µ2 with µ
real and we have a general solution of Equation (4.20) given by

y(x) = C1 sinµx+ C2 cosµx.
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The boundary condition y(0) = 0 requires that C2 = 0 and the boundary condition
y(l) = 0 gives C1 sinµl = 0. From this we must have sinµl = 0 and µn = nπ

l since the
choice C1 = 0 again gives the trivial solution. Thus, the eigenvalues are

λn = µ2
n =

(nπ
l

)2

, n = 1, 2, . . . (4.22)

and the eigenfunctions are yn(x) = Cn sin nπx
l , where for n = 0 we have the trivial solution

y0(x) = 0. It is obvious that we can restrict ourselves to positive values of n since negative
values do not give new solutions. These eigenfunctions are orthogonal over the interval [0, l]
since we can easily show that∫ l

0

sin
nπx

l
sin

mπx

l
dx = 0 for m 6= n. (4.23)

The orthogonality of eigenfunctions follows from the fact that the Sturm-Liouville operator,
L, is Hermitian for the boundary conditions given in Equation (4.21).

The eigenfunctions may be normalized by writing

C2
n

∫ 1

0

sin2 nπx

l
dx = C2

n ·
l

2
= 1,

which results in the orthonormal eigenfunctions

yn(x) =

√
2

l
sinnπx, n = 1, 2, . . . . (4.24)

Thus, we have shown that the boundary value problem consisting of Equations (4.20)
and (4.21) has eigenfunctions that are sine functions. It means that the expansion in eigen-
functions of the Sturm-Liouville problem for solutions to Equations (4.20) and (4.21) is
equivalent to the trigonometric Fourier sine series.

Reading Exercise: Suggest alternatives to boundary conditions (4.21) which will result in
cosine functions as the eigenfunctions for Equation (4.20).

Example 4.2 Determine the eigenvalues and corresponding eigenfunctions for the Sturm-
Liouville problem

y′′(x) + λy(x) = 0, (4.25)

y′(0) = 0, y(l) = 0. (4.26)

Solution. As in the previous example, the reader may check as a Reading Exercise that the
parameter λ must be positive in order to have nontrivial solutions. Thus, we may write
λ = µ2, so that we have oscillating solutions given by

y(x) = C1 sinµx+ C2 cosµx.

The boundary condition y′(0) = 0 gives C1 = 0 and the boundary condition y(l) = 0
gives C2 cosµl = 0. If C2 = 0 we have a trivial solution; otherwise we have µn = (2n+1)π/2l,
for n = 0, 1, 2, . . . . Therefore, the eigenvalues are

λn = µ2
n =

[
(2n− 1)π

2l

]2

, n = 1, 2, . . . (4.27)

and the eigenfunctions are

yn(x) = Cn cos
(2n− 1)πx

2l
, n = 1, 2, . . . , n = 1, 2, . . . . (4.28)



36 Partial Differential Equations: Analytical Methods and Applications

FIGURE 4.1
The functions tanµnl and −µn/h (for h = 5) plotted against µ. The eigenvalues of the
Sturm-Liouville problem in Example 4.3 are given by the intersections of these lines.

We leave it to the reader to prove that the eigenfunctions in Equation (4.28) are orthog-
onal on the interval [0, l]. The reader may also normalize these eigenfunctions to find the
normalization constant Cn which is equal to

√
2/l.

Example 4.3 Determine the eigenvalues and eigenfunctions for the Sturm-Liouville prob-
lem

y′′(x) + λy(x) = 0, (4.29)

y(0) = 0, y′(l) + hy(l) = 0. (4.30)

Solution. As in the previous examples, nontrivial solutions exist only when λ > 0 (the reader
should verify this as a Reading Exercise). Letting λ = µ2 we obtain a general solution as

y(x) = C1 sinµx+ C2 cosµx.

From the boundary condition y(0) = 0 we have C2 = 0. The other boundary condition
gives µ cosµl + h sinµl = 0. Thus, the eigenvalues are given by the equation

tanµnl = −µn/h. (4.31)

We can obtain these eigenvalues by plotting tanµnl and −µn/h on the same graph as
in Figure 4.1. The graph is plotted for positive µ, because negative µ do not bring new
solutions.

From the figure it is directly seen that there is an infinite number of discrete eigenvalues.
The eigenfunctions

yn(x) = Cn sinµnx, n = 1, 2, . . . (4.32)

are orthogonal so that ∫ l

0

sinµnx · sinµmxdx = 0 for m 6= n. (4.33)

The orthogonality condition shown in Equation (4.33) follows from the general theory as a

direct consequence of the fact that the operator L = − d2

dx2 is Hermitian for the boundary
conditions (4.30). We leave it to the reader to verify the previous statement as a Reading
Exercise.

The normalized eigenfunctions are

yn(x) =

√
2 (µ2

n + h2)

l (µ2
n + h2) + h

sinµnx. (4.34)
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Example 4.4 Solve the Sturm-Liouville problem

y′′ + λy = 0, 0 < x < l, (4.35)

on the interval [0, l] with periodic boundary conditions

y(0) = y(l), y′(0) = y′(l). (4.36)

Solution. Again, verify as a Reading Exercise that nontrivial solutions exist only when λ > 0
(for which we will have oscillating solutions as before). Letting λ = µ2 we can write a general
solution in the form

y(x) = C1 cosµx+ C2 sinµx.

The boundary conditions in Equations (4.36) give{
C1(cosµl − 1) + C2 sinµl = 0,

−C1 sinµl + C2(cosµl − 1) = 0.
(4.37)

This system of homogeneous algebraic equations for C1 and C2 has a nontrivial solution
only when its determinant is equal to zero:∣∣∣∣ cosµl − 1 sinµl

− sinµl cosµl − 1

∣∣∣∣ = 0, (4.38)

which yields
cosµl = 1. (4.39)

The roots of Equation (4.39) are

λn =

(
2πn

l

)2

, n = 0, 1, 2, . . . (4.40)

With these values of λn, Equations (4.37) for C1 and C2 have two linearly independent
nontrivial solutions given by

C1 =

(
1
0

)
and C2 =

(
0
1

)
. (4.41)

Substituting each set into the general solution we obtain the eigenfunctions

y(1)
n (x) = cos

√
λnx and y(2)

n (x) = sin
√
λnx. (4.42)

Therefore for the eigenvalue λ0 = 0 we have the eigenfunction y0(x) = 1 (and a trivial
solution y(x) ≡ 0). Each nonzero eigenvalue λn has two linearly independent eigenfunctions
so that for this example we have two-fold degeneracy.

Collecting the above results we have that this boundary value problem with periodic
boundary conditions has the following eigenvalues and eigenfunctions:

λn =

(
2πn

l

)2

, n = 0, 1, 2, . . . (4.43)

y0(x) = 1, yn(x) =

{
cos(2πnx/l),

sin(2πnx/l),
(4.44)
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‖y0‖2 = l, ‖yn‖2 =
l

2
(for n = 1, 2, . . .).

In particular, when l = 2π we have

λn = n2, y0(x) ≡ 1, yn(x) =

{
cosnx,

sinnx.

From this we see that the boundary value problem consisting of Equations (4.35) and
(4.36) results in eigenfunctions for this Sturm-Liouville problem which allows an expansion
of the solution equivalent to the trigonometric Fourier series expansion.

Example 4.5 In the book we meet a number of two-dimensional Sturm-Liouville problems.
Here we present a simple example.

Consider the equation
∂2u

∂x2
+
∂2u

∂y2
+ k2u = 0, (4.45)

where k is a real constant which determines the function u(x, y) with independent variables
in domain 0 ≤ x ≤ l, 0 ≤ y ≤ h. Define the two-dimensional Sturm-Liouville operator in a
similar fashion as was done for the one-dimensional case.

Solution. We have

L = − d2

dx2
− d2

dy2
. (4.46)

Let the boundary conditions be Dirichlet type so that we have

u(0, y) = u(l, y) = u(x, 0) = u(x, h) = 0. (4.47)

Reading Exercise: By direct substitution into Equation (4.45) and using boundary conditions
(4.47) check that this Sturm-Liouville problem has the eigenvalues

k2
nm =

1

π2

(
n2

l2
+
m2

h2

)
(4.48)

and the corresponding eigenfunctions

unm = sin
nπx

l
sin

mπy

h
, n,m = 1, 2, . . . (4.49)

In the case of a square domain, l = h, the eigenfunctions unm and umn have the same
eigenvalues, knm = kmn, which is a degeneracy reflecting the symmetry of the problem with
respect to x and y.

Example 4.6 Obtain the expansion of the function f(x) = x2(1− x) using the eigenfunc-
tions of the Sturm-Liouville problem

y′′ + λy = 0, 0 ≤ x ≤ π/2, (4.50)

y′(0) = y′(π/2) = 0. (4.51)

Solution. First, prove as a Reading Exercise that the eigenvalues and eigenfunctions of this
boundary value problem are

λ = 4n2, yn(x) = cos 2nx, n = 0, 1, 2, . . . (4.52)
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FIGURE 4.2
Graphs of the function f(x) = x2(1− x) (dashed line) and partial sum with n = 10 of the
Fourier expansion of f(x) (solid line).

A Fourier series expansion, given in Equation (4.13), of the function f(x) using the eigen-
functions above is

x2(1− x) =

∞∑
n=0

cnyn(x) =

∞∑
n=0

cn cos 2nx. (4.53)

Since f and f ′ are continuous functions, this expansion will converge to x2(1 − x) for
0 < x < π/2 as was stated previously. In Equation (4.50) we see that the function r(x) = 1;
thus the coefficients of this expansion obtained from Equation (4.14) are

c0 =

∫ π/2
0

x2(1− x)dx∫ π/2
0

dx
=
π2

4

(
1

3
− π

8

)
,

cn =

∫ π/2
0

x2(1− x) cos 2nx dx∫ π/2
0

cos2 2nx dx

=
(−1)n

n4

[
1− 3π

4
+

3

2πn2

]
− 3

2πn4
, n = 1, 2, 3, . . .

Figure 4.2 shows the partial sum (n = 10) of this series, compared with the original
functionf(x) = x2(1− x).

Two important special functions, Legendre and Bessel functions, are discussed in
Appendix B. In the two following examples they serve simply as illustrations of Sturm-
Liouville problems.

Example 4.7 (Fourier-Legendre Series).
The Legendre equation is

d

dx

[(
1− x2

)
y′
]

+ λy = 0 (4.54)

for x on the closed interval [−1, 1]. There are no boundary conditions in a straight form
because p(x) = 1 − x2 vanishes at the endpoints. However, we seek a finite solution, a
condition which in this case acts as a boundary condition.

Solution. The Legendre polynomials, Pn(x), are the only solutions of Legendre’s equation
that are bounded on the closed interval [−1, 1]. The set of functions {Pn(x)}, where n =
0, 1, 2, . . . , is orthogonal with respect to the weight function r(x) = 1 on the interval [−1, 1]
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in which case the orthogonality relation is∫ 1

−1

Pn(x)Pm(x)dx = 0 for m 6= n. (4.55)

The eigenfunctions for this problem are thus Pn(x) with eigenvalues λ = n(n + 1) for
n = 0, 1, 2, . . . (see Appendix B).

If f(x) is a piecewise smooth function on [−1, 1], the series

∞∑
n=0

cnPn(x) (4.56)

converges to
1

2
[f(x0 + 0) + f(x0 − 0)] (4.57)

at any point x0 on (−1, 1). Because r(x) = 1 in Equation (4.14) the coefficients cn are

cn =

∫ 1

−1
f(x)Pn(x)dx∫ 1

−1
P 2
n(x)dx

, (4.58)

or written in terms of the scalar product,

cn =
f(x) · Pn(x)

Pn(x) · Pn(x)
. (4.59)

Example 4.8 (Fourier-Bessel Series).
Consider the Sturm-Liouville problem

y′′ +
y′

x
+

(
λ− ν2

x2

)
y = 0, 0 ≤ x ≤ 1 (4.60)

with boundary conditions such that y(0) is finite and y(1) = 0. Here ν is a constant.

Solution. The eigenvalues for this problem are λ = j2
n for n = 1, 2, . . . , where j1, j2,

j3, . . . are the positive zeros of the functions Jν(x) which are Bessel functions of order ν (see
Appendix B). If f(x) is a piecewise smooth function on the interval [0, 1], then for 0 < x < 1
it can be resolved in the series

∞∑
n=1

cnJν(jnx), (4.61)

which converges to
1

2
[f(x0 + 0) + f(x0 − 0)] . (4.62)

Since, in this Sturm-Liouville problem, r(x) = x, the coefficients cn are

cn =

∫ 1

0
xf(x)Jν(jnx)dx∫ 1

0
xJ2

ν (jnx)dx
, (4.63)

or in terms of the scalar product,

cn =
f(x) · Jν(jnx)

Jν(jnx) · Jν(jnx)
. (4.64)
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Problems

In problems 1 through 7, find eigenvalues and eigenfunctions of the Sturm-Liouville problem
for the equation

y′′(x) + λy(x) = 0

with the following boundary conditions:

1. y(0) = 0, y′(l) = 0;

2. y′(0) = 0, y(π) = 0;

3. y′(0) = 0, y′(1) = 0;

4. y′(0) = 0, y′(1) + y(1) = 0;

5. y′(0) + y(0) = 0, y(π) = 0;

6. y(−l) = y(l), y′(−l) = y′(l) (periodic boundary conditions). As noted above,
if the boundary conditions are periodic then the eigenvalues can be degenerate.
Show that in this problem two linearly independent eigenfunctions exist for each
eigenvalue.

7. For the operator L = −d2
/
dx2 acting on functions y(x) defined on the interval

[0, 1], find its eigenvalues and eigenfunctions (assume r(x) = 1):

(a) y(0) = 0, y′(1) + y(1) = 0;

(b) y′(0)− y(0) = 0, y(1) = 0;

(c) y(0) = y(1), y′(0) = y′(1).
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5

One-Dimensional Hyperbolic Equations

5.1 Wave Equation

In Chapter 3 (Example 3.1) we introduced the wave equation as an example of hyperbolic
PDE and obtained its general solution. In the present chapter, we study that equation in
more detail. Let us start with the following physical example. Consider the problem of small
transverse oscillations of a thin, stretched string. The transverse oscillations mean that the
movement of each point of the string is perpendicular to the x axis with no displacements or
velocities along this axis. Let u(x, t) represent displacements of the points of the string from
the equilibrium at location x and time t (u plays the role of the y coordinate, see Figure
5.1). Small oscillations mean that the displacement amplitude u(x, t) is small relative to the
string length, and what is important is our assumption that the partial derivative ux(x, t)
is small for all values of x and t (i.e. the slope is small everywhere during the string’s
motion), and its second power can be neglected: (ux)2 � 1 (ux has no dimension). With
these assumptions which are justified in many applications, the equations that we will derive
will be linear partial differential equations.

Consider an interval (x, x+∆x) in Figure 5.1. Points on the string move perpendicularly
to the x direction; thus the sum of the x components of the tension forces at points x and
x+ ∆x equals zero. Because the tension forces are directed along tangent lines, we have:

−T (x) cosα(x) + T (x+ ∆x) cosα(x+ ∆x) = 0.

Clearly, tanα = ux and for small oscillations cosα = 1/
√

1 + tan2 α = 1/
√

1 + u2
x ≈ 1;

thus
T (x) ≈ T (x+ ∆x),

that is, the value of tension T does not depend on x, and for all x and t it approximately
equals its value in the equilibrium state.

FIGURE 5.1
Small oscillations of a string.

43
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In the situation shown in Figure 5.1, at point x the vertical component of force of tension
is

Tvert = −T sinα(x).

The same expression with a positive sign holds at the point x+∆x: Tvert = T sinα(x+∆x).
The signs of Tvert at x and x+ ∆x depend on the orientation of the string segment and are
opposite for the two ends of the segment.

For small oscillations sinα = tanα/
√

1 + tan2 α = ux/
√

1 + u2
x ≈ ux, so that

Tvert = −Tux(x, t) (5.1)

and the sum of vertical components of tension forces at points x and x+ ∆x is

Tnetvert = T [sinα(x+ ∆x)− sinα(x)] = T [ux(x+ ∆x, t)− ux(x, t)] .

As ∆x→ 0 we arrive at

Tnetvert = T
∂2u

∂x2
dx.

On the other hand, the force Tnetvert acting on segment ∆x is equal to the mass of this
segment, ρ(x)dx (where ρ(x) is a linear mass density of the string) times acceleration:

Tnetvert = ρ(x)
∂2u

∂t2
dx.

If there is also an additional external force F (x, t) per unit length acting on the string
perpendicular to the x axis (for small oscillations the force should be small with respect to
tension, T ), we obtain the equation for forced transverse oscillations of a string :

ρ(x)
∂2u

∂t2
= T

∂2u

∂x2
+ F (x, t). (5.2)

For the case of a constant mass density, ρ = const, i.e. for a uniform string, this equation
can be written as

∂2u

∂t2
= a2 ∂

2u

∂x2
+ f(x, t), (5.3)

where a =
√
T/ρ = const, f(x, t) = F (x, t)/ρ. For instance, if the weight of the string

cannot be neglected and the gravity force is directed down perpendicularly to the x axis,
we have f(x, t) = −mg/lρ = −g. If there is no external force, F (x, t) ≡ 0, we have the
equation for free oscillations of a string

∂2u

∂t2
= a2 ∂

2u

∂x2
(5.4)

which is referred to as the homogeneous wave equation; Equation (5.3) is called the nonho-
mogeneous wave equation. With subscripts for derivatives, Equation (5.4) is

utt(x, t) = a2uxx(x, t).

Equation (5.4) was considered in Section 3.2.1 (Example 3.1), up to a change of nota-
tions. We have found (see Equation (3.30)) that the general solution of that equation is the
sum of two solutions,

u(x, t) = f1(x− at) and u(x, t) = f2(x+ at),

where f1 and f2 are arbitrary, twice differentiable functions. Each of these solutions has a
simple physical interpretation. In the first case, the displacement u = f1 at point x and
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time t is the same as that at point x + a∆t at time t + ∆t. Thus, the disturbance moves
in the direction of increasing x with velocity a. The quantity a is therefore the “velocity
of propagation” of the disturbance, or the wave speed. In the second case, the displacement
u = f2 at point x at time t is found at the point with coordinate x − a∆t at a later time
t + ∆t. This disturbance therefore travels in the direction of decreasing x with velocity a.
The general solution of Equation (5.4) can be written as the sum of f1 and f2:

u(x, t) = f1(x− at) + f2(x+ at). (5.5)

This solution is considered with more details in the section devoted to the method of
D’Alembert.

Equation (5.4) describes the simplest situation with no external forces (including string’s
weight) and no dissipation. For a string vibrating in an elastic medium when the force on
the string from the medium is proportional to the string’s deflection, F = −αu (that is
Hooke’s law; α is a coefficient with the dimension of force per length squared, F is a force
per unit length) we have the wave equation in the form

ρ
∂2u

∂t2
= T

∂2u

∂x2
− αu. (5.6)

When a string oscillates in a medium with force of friction proportional to the speed,
the force per unit length, F, is given by F = −kut, where k is a coefficient of friction. In
that case, the equation contains the time derivative ut(x, t):

∂2u

∂t2
= a2 ∂

2u

∂x2
− 2κ

∂u

∂t
, (5.7)

where 2κ = k/ρ (κ has the dimension of inverse time).
All Equations (5.4), (5.6), and (5.7) are hyperbolic type (as we discussed in Chapter 3).
Next, consider the homogeneous wave equation with constant coefficients in the general

form
utt − a2uxx + b1ut + b2ux + cu = 0. (5.8)

If we introduce a new function, v(x, t), using the substitution

u(x, t) = eλx+µtv(x, t), (5.9)

with λ = b1/2 and µ = b2/2 Equation (5.8) reduces to a substantially simpler form

vtt − a2vxx + cv = 0. (5.10)

Exercise: Prove the statement above.

It is immediately seen that if c 6= 0 Equation (5.10) does not allow a solution in the form
f(x± at). Physically this result is related to the phenomena of wave dispersion which will
be discussed in Section 5.12.

5.2 Boundary and Initial Conditions

As we have seen in Chapter 2, where first order PDEs were considered, for a problem
described by a differential equation additional conditions are needed to find a particular
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solution describing the behavior of the system. These additional conditions are determined
by the nature of the system and should obey the following demands:

i) They should guarantee the uniqueness of the solution, i.e. there should not be two
different functions satisfying the equation and additional conditions;

ii) They should guarantee the stability of the solution, i.e. any small variation of these
additional conditions or the coefficients of the differential equation results in only insignifi-
cant variations in the solution. In other words, the solution should depend continuously on
these additional conditions and the coefficients of the equation.

These additional conditions may be categorized as two distinct types: initial conditions
and boundary conditions.

Initial conditions characterize the function satisfying the equation at the initial moment
t = 0. Equations that are of the second order in time have two initial conditions. For
example, in the problem of transverse oscillations of a string, the initial conditions define
the string’s shape and speed distribution at zero time:

u(x, 0) = ϕ(x) and
∂u

∂t
(x, 0) = ψ(x), (5.11)

where ϕ(x) and ψ(x) are given functions of x.
Boundary conditions characterize the behavior of the function satisfying the equation at

the boundary of the physical region of interest for all moments of time t. In most cases, the
boundary conditions for partial differential equations give the function u(x, t) or ux(x, t),
or their combination at the boundary.

Let us consider various boundary conditions for transverse oscillations of a string over
the finite interval 0 ≤ x ≤ l from a physical point of view.

1. If the left end of the string, located at x = 0, is rigidly fixed, the boundary
condition at x = 0 is

u(0, t) = 0. (5.12)

A similar condition exists for the right end at x = l, if it is fixed. These are called
fixed end boundary conditions.

2. If the motion of the left end of the string is driven with the function g(t), then

u(0, t) = g(t) (5.13)

in which case we have driven end boundary conditions.

3. If the end at x = 0 can move and experiences a force f(t) perpendicular to the x
axis (e.g., a string is attached to a ring which is driven up and down on a vertical
rod), then from Equation (5.1) we have

−Tux(0, t) = f(t). (5.14)

If this boundary condition is applied to the right end of the string at x = l, the
left-hand side of this formula will have a positive sign. These are called forced end
boundary conditions.

4. If the end at x = 0 moves freely, but is still attached (e.g., a string is attached to
a ring which can slide up and down on a vertical rod with no friction), then the
slope at the end will be zero. In this case, the last equation gives

ux(0, t) = 0 (5.15)

with similar equations for the right end. The conditions in this case are called
free end boundary conditions.
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5. If the left end is attached to a surface that can stretch, we have an elastic bound-
ary, in which case a vertical component of elastic force is Tvert = −αu(0, t).
Together with Equation (5.1) this results in the boundary condition

ux(0, t)− hu(0, t) = 0, h = α/T > 0. (5.16)

For the right end we have

ux(l, t) + hu(l, t) = 0. (5.17)

If the point to which the string is elastically attached is also moving and its
deviation from the initial position is described by the function g(t), replacing
u(0, t) in Equation (5.17) by u(0, t)− g(t) leads to the boundary condition

ux(0, t)− h [u(0, t)− g(t)] = 0. (5.18)

It can be seen that for stiff attachment (large h) when even a small shift of
the end causes strong tension (h → ∞), the boundary condition (5.18) becomes
u(0, t) = g(t). For weak attachment (h→ 0, weak tensions), this condition (5.18)
becomes the condition for a free end, ux(0, t) = 0.

In general, for one-dimensional problems, the boundary conditions at the ends x = 0
and x = l can be summarized in the form

α1ux + β1u|x=0 = g1(t), α2ux + β2u|x=l = g2(t), (5.19)

where g1(t) and g2(t) are given functions, and α1, β1, α2, β2 are real constants. As is
discussed in Chapter 4, due to physical constraints the normal restrictions on these constants
are β1/α1 < 0 and β2/α2 > 0.

When functions on the right-hand sides of Equation (5.19) are zero (i.e. g1,2(t) ≡ 0), the
boundary conditions are said to be homogeneous. In this case, if u1(x, t), u2(x, t), . . . , un(x, t)
satisfy these boundary conditions, then any linear combination of these functions

C1u1(x, t) + C2u2(x, t) + ...+ Cnun(x, t)

(where C1, . . . , Cn are constants) also satisfies these conditions. This property will be used
frequently in the following discussion.

We may classify the above physical notions of boundary conditions as formally belonging
to one of three main types:

1. Boundary conditions of the first kind (Dirichlet boundary condition). For this case
we are given u|x=A = g(t), where here and below A = 0 or l. This describes a
given boundary regime; for example, if g(t) ≡ 0 we have fixed ends.

2. Boundary conditions of the second kind (Neumann boundary condition). In this
case, we are given ux|x=A = g(t), which describes a given force acting at the ends
of the string; for example, if g(t) ≡ 0 we have free ends;

3. Boundary conditions of the third kind (mixed boundary condition). Here we have
ux ± hu|x=A = g(t) (minus sign for A = 0, plus sign for A = l); for example, an
elastic attachment for the case h = const.

Applying these three conditions alternately to the two ends of the string results in
nine types of boundary problems. A list classifying all possible combinations of boundary
conditions can be found in Appendix C, part 1.
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As mentioned previously, the initial and boundary conditions completely determine the
solution of the wave equation. It can be proved that under certain conditions of smoothness
of the functions ϕ(x), ψ(x), g1(t), and g2(t) defined in Equations (5.11) and (5.19), a unique
solution always exists. The following sections investigate many examples of the dependence
of the solutions on the boundary conditions.

In some physical situations, either the initial conditions or the boundary conditions may
be ignored, leaving only one condition to determine the solution. For instance, suppose the
point M0 is rather distant from the boundary and the boundary conditions are given such
that the influence of these conditions at M0 is exposed after a rather long time interval.
In such cases, if we investigate the situation for a relatively short time interval, one can
ignore the boundaries and study the initial value problem (or the Cauchy problem). These
solutions for an infinite region can be used for a finite one for times short enough that the
boundary conditions have not had time to have an effect. For short time periods, we may
ignore the boundary conditions and search for the solution of the equation

utt = a2uxx + f(x, t) for −∞ < x <∞, t > 0

with the initial conditions

u(x, 0) = ϕ(x)

ut(x, 0) = ψ(x)

}
for −∞ < x <∞.

Similarly, if we study a process close enough to one boundary (at one end for the one-
dimensional case) and rather far from the other boundary for some characteristic time
of that process the boundary condition at the distant end may be insignificant. For the
one-dimensional case, we arrive at a boundary value problem for a semi-infinite region,
0 ≤ x <∞, where in addition to the differential equation we have initial conditions

u(x, 0) = ϕ(x)

ut(x, 0) = ψ(x)

}
, 0 ≤ x <∞,

and a boundary condition
u(0, t) = g(t), t > 0.

Here as well as in the previous situation, other kinds of boundary conditions described above
can be applied.

5.3 Longitudinal Vibrations of a Rod and Electrical Oscillations

In this section we consider other boundary value problems which are similar to the vibrating
string problem. The intent here is to show the similarity in the approach to solving physical
problems, which on the surface appear quite different but in fact have a similar mathematical
structure.

5.3.1 Rod Oscillations: Equations and Boundary Conditions

Consider a thin elastic rod of cylindrical, rectangular or other uniform cross section. In
this case forces applied along the axis, perpendicular to the (rigid) cross section, will cause
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FIGURE 5.2
Arbitrary segment of a rod of length ∆x.

changes in the length of the rod. We will assume that the forces act along the rod axis
and each cross-sectional area can move only along the rod axis. Such assumptions can be
justified if the transverse dimensions are substantially smaller compared to the length of
the rod and the forces acting on the rod are comparatively weak.

If a force compresses the rod along its axis and is then released, the rod will begin
to vibrate along this axis – contrary to transverse string oscillations, such considered rod
oscillations are longitudinal. Let the ends of the rod be located at the points x = 0 and x = l
when it is at rest. The location of some cross-section at rest will be given by x (Figure 5.2).
Let the function u(x, t) be the longitudinal shift of this cross-section from equilibrium at
time t. The force of tension T is proportional to ux(x, t) – the relative length change at
location x, and the cross-sectional area of the rod (Hook’s law); thus, T (x, t) = EAux(x, t),
where E is the elasticity modulus.

Consider the element of the rod between two cross-sections A and A1 with coordinates
at rest of x and x+ dx. For small deflections, the resultant of two forces of tension at these
cross-sections is

Tx+dx − Tx = EA
∂u

∂x

∣∣∣∣
x+dx

− EA ∂u

∂x

∣∣∣∣
x

≈ EA∂
2u

∂x2
dx.

The acceleration of this element is ∂2u/∂t2 in the direction of the resultant force. Together,
these two equations give the equation of longitudinal motion of a cross-sectional element as

ρAdx
∂2u

∂t2
= EA

∂2u

∂x2
dx,

where ρ is the rod density. Using the notation

a =
√
E/ρ (5.20)

we obtain the differential equation for longitudinal free oscillations of a uniform rod:

∂2u

∂t2
= a2 ∂

2u

∂x2
. (5.21)

As we already know, solutions of such hyperbolic equations have a wave character with the
speed of wave propagation, a, given by (5.20).

If there is also an external force per unit volume, F (x, t), we obtain instead the equation

ρAdx
∂2u

∂t2
= EA

∂2u

∂x2
dx+ F (x, t)Adx,

or
∂2u

∂t2
= a2 ∂

2u

∂x2
+

1

ρ
F (x, t). (5.22)
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This is the equation for forced oscillations of a uniform rod. Note the similarity of Equa-
tion (5.22) to Equation (5.3) for a string under forced oscillations: the two equations are
equivalent.

For longitudinal waves there is an important physical restriction: the derivative ut(x, t)
must be small in comparison to the speed of wave propagation: ut � a.

The initial conditions are similar to those for a string:

u(x, 0) = ϕ(x),
∂u

∂t
(x, 0) = ψ(x),

which are initial deflection and initial speed of points of a rod, respectively.

Now consider boundary conditions for a rod.

1. If the left end (here and below similarly for the right end) at x = 0 is fixed, the
boundary condition is

u(0, t) = 0.

2. If the left end at x = 0 is driven, and its displacement is determined by the
function g1(t), then

u(0, t) = g1(t),

where g1(t) is a given function of t.

3. If the end at x = 0 can move and experiences a force f(t) along the rod axis,
then from equation T (x, t) = EAux(x, t) we have

−ux(0, t) = f(t)/EA.

If a force f(t) is applied, instead, to the right end at x = l, the left-hand side of
this formula will have an opposite sign. These are forced end boundary conditions.

4. If the left end is free, the tension at that location is zero, T (a, t) = 0. Then, from
T (x, t) = EAux(x, t), the condition follows that

ux(0, t) = 0.

5. If the either end of the rod is attached to an elastic material (a wall that “gives”
in the horizontal direction) obeying Hook’s law, F = −αu, it is an elastic end
boundary condition. For the left end of the rod at x = 0, similarly to (5.16) we
have

ux(0, t)− hu(0, t) = 0.

For the right end of the rod, located at x = l, similarly to (5.17) we have

ux(l, t) + hu(l, t) = 0,

where h = α/EA > 0 is the elasticity coefficient.

5.3.2 Electrical Oscillations in a Circuit

Let us briefly set up the boundary value problem for a current and a voltage in a circuit
which contains resistance, capacitance and inductance R, C, and L as well as the possibility
of leakage, G. For simplicity, these quantities are considered uniformly distributed in a wire
placed along the x -axis and defined to be per unit length. The functions i(x, t) and V (x, t)
represent current and voltage at a location x along the wire and at time t. Applying Ohm’s
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law for a circuit with nonzero self-inductance and using charge conservation, the so-called
telegraph equations can be obtained (for more details see books [7, 8]):

ixx(x, t) = LCitt(x, t) + (RC + LG)it(x, t) +RGi(x, t) (5.23)

and
Vxx(x, t) = LCVtt(x, t) + (RC + LG)Vt(x, t) +RGV (x, t). (5.24)

These equations are similar to the equations of string oscillations; therefore they describe
electrical oscillations in an RCL circuit, which can be considered as a longitudinal wave
along a conductor. When R = 0 and G = 0, the equations have the simplest form. For
instance, for current

∂2i

∂t2
= a2 ∂

2i

∂x2
,

where a2 = 1/LC, once again we have the wave Equation (5.4). If G = 0, the equation is
similar to Equation (5.7) describing oscillations in a medium with the force of resistance
proportional to the speed:

∂2i

∂t2
= a2 ∂

2i

∂x2
− 2κ

∂i

∂t
,

where a2 = 1/LC, 2κ = (R/L+G/C).
Consider initial and boundary conditions for a current and voltage. Let initially, at t = 0,

the current be ϕ(x), and the voltage along the wire be ψ(x).
The equation for current contains the second-order time derivative; thus, we need two

initial conditions. One initial condition is the initial current in the wire

i(x, 0) = ϕ(x). (5.25)

The second initial condition for the current is:

it(x, 0) = − 1

L
[ψ′(x)−Rϕ(x)]. (5.26)

Two initial conditions for V (x, t) are:

V (x, 0) = ψ(x), (5.27)

Vt(x, 0) = − 1

C
[ϕ′(x)−Gψ(x)]. (5.28)

For the details on how to obtain conditions (5.26) and (5.28) see [7, 8].

Let us give two examples of the boundary conditions.

1. One end of the wire of length l is attached to a source of electro-motive force
(emf ) E(t), and the other end is grounded. The boundary conditions are

V (0, t) = E(t), V (l, t) = 0.

2. A sinusoidal voltage with frequency ω is applied to the left end of the wire, and
the other end is insulated. The boundary conditions are

V (0, t) = V0 sinωt, i(l, t) = 0.

One-dimensional wave equations describe many other periodic phenomena, among others
the acoustic longitudinal waves propagating in different materials, and transverse waves in
fluids in shallow channels – for details see [7, 8].
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5.4 Traveling Waves: D’Alembert Method

In this section, we study waves propagating along an infinite (−∞ < x < ∞) interval. In
this case, a physically intuitive way to solve the wave equation is D’Alembert’s method. Our
physical model will be waves on a string; however, as shown in the previous sections, the
same wave equation describes many different physical phenomena and the results derived
here apply to those cases as well. The material related to semi-infinite intervals, 0 ≤ x <∞
and −∞ < x ≤ 0 is discussed in books [7, 8].

It is clear that oscillations in the parts of a very long string very distant from its ends
do not depend on the behavior of the ends. (This is correct during the time interval needed
for a wave to arrive from the ends.) Recall that for oscillations we consider, there should
be (ux)2 � 1; also u(x, t) is supposed to be small relative to some characteristic scale
(instead of the string’s length) which always appears in scientific problems. Also, in most
physical applications ut should be small compared to the speed of propagation of a wave,
ut � a. Physically this is equivalent to the condition u2

x � 1 and ux ∼ u/L, where L is the
characteristic scale of the string deformation.

The general solution of the equation

∂2u

∂t2
− a2 ∂

2u

∂x2
= 0 (5.29)

can be presented, as we discussed earlier, in D’Alembert’s form as a sum of two twice
differentiable functions

u = f1(x− at) + f2(x+ at), (5.30)

wheref1 and f2 represent the waves moving with constant speed a to the right (along the
x -axis), and to the left, respectively.

In order to describe the solution for free oscillations in a particular physical case we
should find the functions f1 and f2 for that particular situation. Since we are considering
boundaries at infinity, these functions will be determined only by the initial conditions of
the string. Actually, the solution of (5.29) has form (5.30) also when the ends are considered;
just f1 and f2 are not determined by initial conditions but also by boundary conditions.

The Cauchy problem for the infinite string is defined as the search for a solution of
Equation (5.29) which satisfies the initial conditions

u|t=0 = ϕ(x) and
∂u

∂t

∣∣∣∣
t=0

= ψ(x). (5.31)

Substituting Equation (5.30) into Equation (5.31) gives

f1(x) + f2(x) = ϕ(x),

−af ′1(x) + af ′2(x) = ψ(x).

From the second relation

−af1(x) + af2(x) =

∫ x

0

ψ(x)dx+ aC,

(where C is an arbitrary constant), thus

f1(x) =
1

2

[
ϕ(x)− 1

a

∫ x

0

ψ(x)dx− C
]
,
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FIGURE 5.3
The characteristic triangle with vertex at point (x0, t0).

f2(x) =
1

2

[
ϕ(x) +

1

a

∫ x

0

ψ(x)dx+ C

]
.

Therefore

u(x, t) =
1

2

[
ϕ(x− at)− 1

a

∫ x−at

0

ψ(x)dx− C

+ ϕ(x+ at) +
1

a

∫ x+at

0

ψ(x)dx+ C

]
,

which finally gives

u(x, t) =
ϕ(x− at) + ϕ(x+ at)

2
+

1

2a

∫ x+at

x−at
ψ(x)dx. (5.32)

If the function ψ(x) is differentiable and ϕ(x) twice differentiable, this solution satisfies
Equation (5.29) and initial conditions (5.31). (The reader may check this as a Reading
Exercise.) The method of construction of the solution given by Equation (5.29) proves its
uniqueness. The solution is stable if functions ϕ(x) and ψ(x) depend continuously on x.

Another way to write the solution of Equation (5.29) is to use the characteristic triangle
shown in Figure 5.3. Suppose we want to find the solution at some point (x0, t0). The
vertex of this triangle is the point (x0, t0) and the two sides are given by the equations
x− at = x0 − at0 and x+ at = x0 + at0. The base of this triangle, i.e. the line between the
points P (x0 − at0, 0) and Q(x0 + at0, 0), determines the wave amplitude at point (x0, t0);
all other points beyond this base do not contribute to the solution at this point, as follows
from Equation (5.32):

u(x0, t0) =
ϕ(P ) + ϕ(Q)

2
+

1

2a

∫ Q

P

ψ(x)dx. (5.33)

We now discuss, in more detail, two physical situations which are typically encountered:
waves created by a displacement and waves created by a pulse.

a) Waves created by a displacement. Let the initial speeds of points on the string be zero,
but the initial displacements are not zero. The solution given by Equation (5.32) in this
case is

u(x, t) =
1

2
[ϕ(x− at) + ϕ(x+ at)] . (5.34)
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FIGURE 5.4
Propagation of an initial displacement.

The first term, 1
2ϕ(x−at), is a constant shape disturbance propagating with speed a in the

positive x direction, and the term 1
2ϕ(x + at) is the same shaped disturbance moving in

the opposite direction. Suppose that the initial disturbance exists only on a limited interval
−l ≤ x ≤ l. This kind of disturbance is shown schematically in Figure 5.4, where the
function ϕ(x) is plotted with a solid line in the upper part of the figure. The dashed line
shows the function 1

2ϕ(x). We can consider u(x, t = 0) given by Equation (5.34) as two
independent disturbances, 1

2ϕ(x), each propagating in opposite directions with unchanged
amplitude. Initially, at t = 0, the profiles of both waves coincide, after which they separate
and the distance between them increases. The bottom part of Figure 5.4 shows these waves
after some time t > l/a. As they pass a given section of the string, this part returns to rest.
Only two intervals of the string of length 2l each are deflected at any instant t.

Note that the function (5.34), which corresponds to the initial condition shown in
Figure 5.4, is not differentiable in some points; hence (5.34) is not a classical solution
of Equation (5.29) in that case (the classical solution assumes that the derivatives of the
unknown function u(x, t) exist and are continuous). However, it can be understood in the
following way.

We can change the non-smooth function ϕ(x) a little to make it smooth, i.e., consider
ϕ(x) as a limit of a sequence of smooth, twice differentiable, functions ϕn(x), n = 1, 2, . . .
such that

lim
n→∞

ϕn(x) = ϕ(x) (5.35)

for any x. For any finite n, we can construct a classical solution of Equation (5.29) satisfying
the initial condition un(x, 0) = ϕn(x),

un(x, t) =
1

2
[ϕn(x− at) + ϕn(x+ at)] .

Obviously,
lim
n→∞

un(x, t) = u(x, t) (5.36)

of classical solutions, which slightly differ from the formal solution (5.34) and converge to
it as n→∞. In that case, we say that u(x, t) is a generalized solution of the wave equation
(5.29) with the initial condition ϕ(x).
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FIGURE 5.5
Propagation of an initial pulse.

Reading Exercise: Let the initial displacement be ϕ(x) = exp(−x2/b2); b is a constant. Use
Equation (5.31) to obtain

u(x, t) =
1

2

[
exp

(
−(x− at)2/b2

)
+ exp

(
−(x+ at)2/b2

)]
.

Notice, that introducing constant b (as well as other constants to keep proper dimension in
the Examples and Problems everywhere in the book) is not necessary if x is dimensionless –
it is very common that problems’ parameters are used in dimensionless form.
b) Waves created by a pulse. In this case we let the initial displacement be zero, ϕ(x) = 0,
but the initial velocity is given as a function of position, ψ(x). In other words, points on
the string are given some initial velocity by an external agent. An example of a distribution
of velocities is schematically shown in Figure 5.5, where, to simplify the plot, a constant
function ψ(x) on −l ≤ x ≤ l was chosen. As in the case considered above, the solution
corresponding to Figure 5.5 is a generalized solution. The function ψ(x) is plotted with a
solid line in the upper part of Figure 5.5. Consider the integral

W (x) =
1

2a

∫ x

−∞
ψ(x)dx,

which is zero on the interval −∞ < x ≤ −l; for x ≥ l the function W (x) is constant and
equal to

1

2a

∫ l

−l
ψ(x)dx.

The graph for W (x) is shown with a dashed line in Figure 5.5. From Equation (5.31)
we have

u(x, t) =
1

2a

∫ x+at

x−at
ψ(x)dx = W (x+ at)−W (x− at). (5.37)

Equation (5.37) means that we again have two waves moving in opposite directions, but
now the waves have opposite signs.

At some location x for large enough time, we have x + at > l and the wave W (x + at)
becomes a constant and at the same instant of time x− at < −l and the wave W (x− at) is
equal to zero. As a result, the perturbation propagates in both directions but, contrary to
the case of a wave created by a displacement, none of the elements of the string return to
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the initial position existing at t = 0. The bottom part of Figure 5.5 illustrates this situation
for an instant of time t = l/a. When t > l/a we have a similar trapezoid for u(x, t) (with
the same height as at t = l/a), which expands in both directions uniformly with time.

Example 5.1 Let ϕ(x) = 0, ψ(x) = ψ0 = const for x1 < x < x2 and ψ(x) = 0 outside of
this interval.

In this case we have

W (x) =
1

2a

∫ x

x1

ψ(x)dx =


0, x < x1

ψ0

2a
(x− x1), x1 < x < x2

ψ0

2a
(x2 − x1) = const, x > x2.

Reading Exercise: Solve the problem in Example 5.1 and generate the wave propagation
with the parameters a = 0.5, l = 1, ψ0 = 1. Explain why the maximum deflection is
umax = 2, and why, for the point x = 0, this maximum deflection value is reached at time
t = l/a = 2.

Example 5.2 An infinite stretched string is excited by the initial deflection

ϕ(x) =
A

x2 +B

with no initial velocities. Find the vibrations of the string. Write an analytical solution
representing the motion of the string and illustrate the spatial-time-dependent solution
u(x, t) with an animation sequence including snapshots at times t = 0, 1, . . . , n.

Solution. The initial speeds of points on the string are zero (ψ(x) ≡ 0), so the solution
given by Equation (5.34) is

u(x, t) =
ϕ(x− at) + ϕ(x+ at)

2
=
A

2

[
1

(x− at)2 +B
+

1

(x+ at)2 +B

]
.

Figure 5.6 shows the solution for the case when a2 = 0.25, A = B = 1. The black bold
line represents the initial deflection and the bold gray line is the string profile at time t = 12.

FIGURE 5.6
Graph of the solution to Example 5.2.
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The gray lines show the evolution of the string profile within the period of time from t = 0
to t = 12.

Notice, that for a proper dimension of ϕ(x), the values of A and B should have dimen-
sions of length cubed and squared, correspondingly (if we consider string oscillations). In the
problems following this and other chapters, in most cases we use dimensionless parameters
and leave it to the reader to discuss particular physical situations.

5.5 Cauchy Problem for Nonhomogeneous Wave Equation

5.5.1 D’Alembert’s Formula

Let us consider now the nonhomogeneous wave equation,

∂2u

∂t2
− a2 ∂

2u

∂x2
= f(x, t), −∞ < x <∞, 0 < t < T (5.38)

with the same initial conditions,

u|t=0 = ϕ(x),
∂u

∂t

∣∣∣∣
t=0

= ψ(x), −∞ < x <∞. (5.39)

In the previous section, we defined the characteristic triangle ∆ that contains all the
points (x, t) that can influence the value u(x0, t0) in the world where the signals propagate
with velocity a. Let us integrate Equation (5.38) over that triangle:∫∫

∆

(a2uxx − utt)dxdt = −
∫∫

∆

f(x, t)dxdt

Recall Green’s theorem from calculus: for any differentiable functions p(x, t) and q(x, t),
the following relation exists between the double integral over a two-dimensional region ∆
and the integral along its boundary L,∫∫

∆

[qx(x, t)− pt(x, t)] dxdt =

∮
L

[p(x, t)dx− q(x, t)dt] . (5.40)

The integration has to be carried out counterclockwise.
In our case the integration path consists of three sides of the triangle, L1, L2 and L3

(see Figure 5.3). Substituting q = aux and p = ut into (5.40), we find that∫∫
∆

(
a2uxx − utt

)
dxdt =

∮
L

(
utdx+ a2uxdt

)
, (5.41)

where L = L1 ∪ L2 ∪ L3.
Along the base of the triangle L1, t = const, hence dt = 0 and∫

L1

(
utdx+ a2uxdt

)
=

∫ x0+at0

x0−at0
ut(x, 0)dx =

∫ x0+at0

x0−at0
ψ(x)dx.

Along the side L2, x+at = const, hence dx+adt = 0. Replacing dx with −adt and dt with
−dx/a, we find:∫

L2

(
utdx+ a2uxdt

)
= −a

∫
L2

(utdt+ uxdx) = −a
∫ R

Q

du

= −a [u(x0, t0)− u(x0 + at0, 0)] = −a [u(x0, t0)− ϕ(x0 + at0)] .
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Similarly, along the side L3 x − at = const, hence dx − adt = 0, dx = adt and dt = dx/a,
thus we get ∫

L3

(
utdx+ a2uxdt

)
= a

∫
L3

(utdt+ uxdx) = a

∫ P

R

du

= a [u(x0 − at0, 0)− u(x0, t0)] = a [ϕ(x0 − at0)− u(x0, t0)] .

Summating the expressions obtained above, we find:∫
L

(
utdx+ a2uxdt

)
=

∫ x0+at0

x0−at0
ψ(x)dx

+ a [ϕ(x0 − at0) + ϕ(x0 + at0)]− 2au(x0, t0). (5.42)

Substituting (5.42) into (5.41), we find:

u(x0, t0) =
ϕ(x0 − at0) + ϕ(x0 + at0)

2

+
1

2a

∫ x0+at0

x0−at0
ψ(x)dx+

1

2a

∫∫
∆

f(x, t)dxdt. (5.43)

To unify the notations with D’Alembert’s formula (5.31) obtained for the homogeneous
wave equation, let us replace (x0, t0) with (x, t) and (x, t) with (ξ, τ):

u(x, t) =
ϕ(x− at) + ϕ(x+ at)

2
+

1

2a

∫ x+at

x−at
ψ(ξ)dξ +

1

2a

∫∫
∆

f(ξ, τ)dξdτ. (5.44)

5.5.2 Green’s Function

Solution (5.44) is a sum of two functions,

u(x, t) = v(x, t) + w(x, t),

where

v(x, t) =
ϕ(x− at) + ϕ(x+ at)

2
+

1

2a

∫ x+at

x−at
ψ(ξ)dξ

is the contribution of nonzero initial conditions and

w(x, t) =
1

2a

∫∫
∆

f(ξ, τ)dξdτ (5.45)

is produced by the inhomogeneity. This expression can be rewritten as

w(x, t) =

∫ ∞
−∞

dξ

∫ T

0

dτG(x, t; ξ, τ)f(ξ, τ), (5.46)

where the kernel G(x, t; ξ, τ) of the linear transformation (5.46), which is called Green’s
function, is equal to 1/2a for (ξ, τ) inside the characteristic triangle of the point (x, t)
and equal to zero outside it. Green’s function can be written in a compact form using the
Heaviside step function H(y),

H(y) = 1, y ≥ 0; H(y) = 0, y < 0. (5.47)

Indeed,

G(x, t; ξ, τ) =
1

2a
H

(
t− τ − |x− ξ|

a

)
. (5.48)
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Note that Green’s function depends only on differences of its arguments, t−τ and x−ξ.
It satisfies Equation (5.38) with the nonhomogeneous term f(x, t) = δ(x− ξ)δ(t− τ),

∂2G(x, t; ξ, τ)

∂t2
− a2 ∂

2G(x, t; ξ, τ)

∂x2
= δ(x− ξ)δ(t− τ); (5.49)

−∞ < x <∞, 0 < t < T ; −∞ < ξ <∞, 0 < τ < T,

and zero initial conditions:

G(x, 0; ξ, τ) =
∂G(x, 0; ξ, τ)

∂t
= 0, (5.50)

−∞ < x <∞; −∞ < ξ <∞, 0 < τ < T.

Example 5.3 Using Green’s function (5.48), find the solution of the following initial value
problem:

∂2u

∂t2
− a2 ∂

2u

∂x2
= δ(x), −∞ < x <∞, t > 0.

with initial conditions

u(x, 0) = 0, ut(x, 0) = 0, −∞ < x <∞.

Because of zero initial conditions, the solution is determined by expression (5.46). It is
convenient to change the order of integrations,

u(x, t) =
1

2a

∫ ∞
0

dτ

∫ ∞
−∞

dξδ(ξ)H

(
t− τ − |x− ξ|

a

)
=

1

2a

∫ ∞
0

dτH

(
t− τ − |x|

a

)
.

The argument of the Heaviside function decreases monotonically from t− |x|/a at τ = 0 to
−∞ as τ → ∞. Thus, it is always negative, if |x| > at, hence u(x, t) = 0 in that region. If
|x| < at, then

u(x, t) =
1

2a

∫ t−|x|/a

0

dτ =
1

2a

(
t− |x− ξ|

a

)
.

5.5.3 Well-Posedness of the Cauchy Problem

Equation (5.44) gives the explicit solution of the Cauchy problem (5.38), (5.39). Substitut-
ing (5.44) into (5.38), one can show that solution (5.44) is the classical solution; i.e., the
derivatives of u(x, t) which appear in (5.38) exist and are continuous, if (i) ϕ(x) is twice
continuously differentiable, (ii) ψ(x) is continuously differentiable, and (iii) f(x, t), fx(x, t)
are continuous. Also, this solution is unique.

There is one more property of the solution that has to be checked. It is clear that in
reality the functions ϕ(x) and ψ(x), which describe the initial conditions, and the external
load f(x, t) cannot be measured precisely. There is always a certain difference between the
actual functions ϕ1(x), ψ1(x), f1(x, t) and the measured function ϕ2(x), ψ2(x), f2(x, t);
the corresponding solutions u1(x, t) and u2(x, t) are not equal. It is the crucial question
whether both solutions are arbitrarily close to each other if the measurements are sufficiently
precise. If that is not the case, the solution obtained with not perfectly measured data
is of no use. That argument leads to the following mathematical question: can we get
|u1(x, t) − u2(x, t)| < ε, where ε is an arbitrary small number, by means of sufficiently
precise measurements, i.e., under conditions |ϕ1(x)−ϕ2(x)| < δ(ε), |ψ1(x)−ψ2(x)| < δ(ε),
|f1(x, t)− f2(x, t)| < δ(ε)?

To estimate the difference |u1(x, t)−u2(x, t)|, we shall use the following inequalities that
can be easily checked.
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1. For any real a and b,
|a+ b| ≤ |a|+ |b|.

2. A similar inequality is correct for an arbitrary number of terms:

a1 + a2 + . . . an| ≤ |a1|+ |a2|+ . . . |an|.

3. The further generalization is for integrals:∣∣∣∣∣
∫ b

a

F (x)dx

∣∣∣∣∣ ≤
∫ b

a

|F (x)| dx.

4. If F1(x) ≤ F2(x), then ∫ b

a

F1(x)dx ≤
∫ b

a

F2(x)dx.

Using the inequalities listed above, we get the following sequence of inequalities for
|u1(x, t)− u2(x, t)|:

|u1(x, t)− u2(x, t)| =
∣∣∣∣12 [ϕ1(x− at)− ϕ2(x− at)] +

1

2
[ϕ1(x+ at)− ϕ2(x+ at)]

+
1

2a

∫ x+at

x−at
[ψ1(ξ)− ψ2(ξ)] dξ +

1

2a

∫∫
∆

[f1(ξ, τ)− f2(ξ, τ))] dξdτ

∣∣∣∣
≤ 1

2
|ϕ1(x− at)− ϕ2(x− at)|+ 1

2
|ϕ1(x+ at)− ϕ2(x+ at)|

+
1

2a

∫ x+at

x−at
|ψ1(ξ)− ψ2(ξ)| dξ +

1

2a

∫∫
∆

|f1(ξ, τ)− f2(ξ, τ)| dξdτ

<
1

2
δ +

1

2
δ +

δ

2a
· 2aT +

δ

2a
· 1

2
(2aT ) · T = δ

(
1 + T +

1

2
T 2

)
.

Thus, for any ε, if

δ <
ε

1 + T + T 2/2
,

then
|u1(x, t)− u2(x, t)| < ε.

The problem, which has a unique classical solution and depends continuously on initial
conditions, is well-posed.

In Chapter 7 we shall see that the Cauchy problem for an elliptic equation is ill-posed,
i.e., not well-posed.

5.6 Finite Intervals: The Fourier Method for Homogeneous
Equations

In this and the following sections, we introduce a powerful Fourier method for solving partial
differential equations for finite intervals. The Fourier method, or the method of separation
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of variables, is one of the most widely used methods for an analytical solution of boundary
value problems in mathematical physics. The method gives a solution in terms of a series
of eigenfunctions of the corresponding Sturm-Liouville problem (discussed in Chapter 4).

Let us apply the Fourier method in the case of the general one-dimensional homogeneous
hyperbolic equation

∂2u

∂t2
+ 2κ

∂u

∂t
− a2 ∂

2u

∂x2
+ γu = 0, (5.51)

where a, κ, γ are constants. As we discussed when deriving Equations (5.6) and (5.7) in
Section 5.1, for physical situations the requirement is: κ ≥ 0, γ ≥ 01. Here we will work on
a finite interval, 0 ≤ x ≤ l, and obviously t ≥ 0.

To obtain a unique solution of Equation (5.51), boundary and initial conditions must be
imposed on the function u(x, t). Some of them can be homogeneous, some not. Initially, we
will search for a solution of Equation (5.51) satisfying the homogeneous boundary conditions

P1[u] ≡ α1ux + β1u|x=0 = 0, P2[u] ≡ α2ux + β2u|x=l = 0, (5.52)

with constant α1, β1, α2 and β2, and initial conditions

u(x, t)|t=0 = ϕ(x), ut(x, t)|t=0 = ψ(x), (5.53)

where ϕ(x) and ψ(x) are given functions. As we discussed in Section 5.2, normally there
are physical restrictions on the signs of the coefficients in Equation (5.52) so that we have
α1/β1 < 0 and α2/β2 > 0. Obviously, only these ratios are significant in Equations (5.52),
but to formulate a solution of the Sturm-Liouville problem for functions X(x) it is more
convenient to keep all the constants α1, β1, α2 and β2.

We begin by assuming that a nontrivial (non-zero) solution of Equation (5.51) can be
found that is a product of two functions, one depending only on x, another depending only
on t :

u(x, t) = X(x)T (t). (5.54)

Substituting Equation (5.54) into Equation (5.51), we obtain

X(x)T ′′(t) + 2κX(x)T ′(t)− a2X ′′(x)T (t) + γX(x)T (t) = 0

or, by rearranging terms,

T ′′(t) + 2κT ′(t) + γT (t)

a2T (t)
=
X ′′(x)

X(x)
, (5.55)

where primes indicate derivatives with respect to t or x. The left-hand side of this equation
depends only on t, and the right-hand side only on x, which is possible only if each side
equals a constant. By using the notation −λ for this constant, we obtain

T ′′(t) + 2κT ′(t) + γT (t)

a2T (t)
≡ X ′′(x)

X(x)
= −λ

(it is seen from this relation that λ has dimension of inversed length squared).
Thus, Equation (5.55) gives two ordinary second-order linear homogeneous differential

equations:
T ′′(t) + 2κT ′(t) +

(
a2λ+ γ

)
T (t) = 0, (5.56)

1Typical wave problems do not contain terms like bux, but if included in Equation (5.51), the substitution

u(x, t) = ebx/2a
2
ν(x, t) leads to the equation for function ν(x, t) without νx term.
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and
X ′′(x) + λX(x) = 0. (5.57)

Therefore, we see that we have successfully separated the variables, resulting in separate
equations for functions X(x) and T (t). These equations share the common parameter λ.

To find λ, we apply the boundary conditions. The homogenous boundary condition of
Equation (5.52), imposed on u(x, y), gives the homogeneous boundary conditions on the
function X(x):

α1X
′ + β1X|x=0 = 0, α2X

′ + β2X|x=l = 0 (5.58)

with restrictions α1/β1 < 0 and α2/β2 > 0.
This result therefore leads to the Sturm-Liouville boundary value problem, which may

be stated in the present case as the following:

Find values of the parameter λ (eigenvalues) for which nontrivial (not identically equal
to zero) solutions to Equation (5.57), X(x) (eigenfunctions), satisfying boundary condi-
tions (5.58) exist.

Let us briefly recall the main properties of eigenvalues and eigenfunctions of the Sturm-
Liouville problem given in Equations (5.57) and (5.58) (see Chapter 4).

1. There exists an infinite set of real nonnegative discrete eigenvalues {λn} and
corresponding eigenfunctions {Xn(x)}. The eigenvalues increase as the number n
increases:

0 ≤ λ1 < λ2 < λ3 < ... < λn < ... (lim λn = +∞).

2. Eigenfunctions corresponding to different eigenvalues are linearly independent and
orthogonal : ∫ l

0

Xi(x)Xj(x)dx = 0, i 6= j. (5.59)

3. The completeness property states that any function f(x) which is twice differen-
tiable on (0, l) and satisfies the homogeneous boundary conditions in Equations
(5.58) can be resolved in an absolutely and uniformly converging series with eigen-
functions of the boundary value problem given in Equations (5.57) and (5.58):

f(x) =
∞∑
n=1

fnXn(x), fn =
1

‖Xn‖2
∫ l

0

f(x)Xn(x)dx, (5.60)

where ‖Xn‖2 =
∫ 1

0
X2
ndx.

Eigenvalues and eigenfunctions of a boundary value problem depend on the type of the
boundary conditions: Dirichlet, Neumann or mixed. The values of the constants αi and βi
in Equation (5.58) determine one of these three possible types. All possible variants are
presented in Chapter 4. For all of these variants, the solution for the problem given in
Equations (5.57) and (5.58) is

X(x) = C1 cos
√
λx+ C2 sin

√
λx. (5.61)

The coefficients C1 and C2 are determined from the system of Equations (5.58):C1β1 + C2α1

√
λ = 0,

C1

[
−α2

√
λ sin

√
λl + β2 cos

√
λl
]

+ C2

[
α2

√
λ cos

√
λl + β2 sin

√
λl
]

= 0.
(5.62)
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This system of linear homogeneous algebraic equations has a nontrivial solution only when
its determinant equals zero:

(α1α2λ+ β1β2) tan
√
λl −

√
λ(α1β2 − β1α2) = 0. (5.63)

It is easy to determine (for instance by using graphical methods) that Equation (5.63) has
an infinite number of roots {λn}, which conforms to the general Sturm-Liouville theory. For
each root λn, we obtain a nonzero solution of Equations (5.62).

It is often convenient to present the solution in a form that allows us to consider in a
unified way a mixed boundary condition and two other kinds of boundary conditions as
well, when some of the constants αi or βi may be equal to zero. We will do this in the
following way. Using the first expression in Equations (5.62), we represent C1 and C2 as

C1 = Cα1

√
λn, C2 = −Cβ1,

where C 6= 0 is an arbitrary constant (because the determinant is equal to zero, the same C1

and C2 satisfy the second equation of the system of Equations (5.62)). For these constraints
the choice

C = 1/
√
λnα2

1 + β2
1

(with positive square root and α2
1 + β2

1 6= 0) allows us to obtain a simple set of coefficients
C1 and C2. For Dirichlet boundary conditions, we assign α1 = 0, β1 = −1 (we may also use
β1 = 1 because the overall sign of Xn(x) is not important) so that C1 = 0 and C2 = 1. For
Neumann boundary conditions β1 = 0, α1 = 1, and we have C1 = 1, C2 = 0.

With this choice of C, the functions Xn(x) are bounded by the values ±1. The alternative

often used for the coefficients C1 and C2 corresponds to the normalizations ‖Xn‖2 = 1. Here
and elsewhere in the book we will use the first choice because in this case the graphs for
Xn(x) are easier to plot.

From the above discussion, the eigenfunctions of the Sturm-Liouville problem given by
the equations

X ′′ + λX = 0,

α1X
′ + β1X|x=0 = 0, α2X

′ + β2X|x=l = 0

can be written as

Xn(x) =
1√

α2
1λn + β2

1

[
α1

√
λn cos

√
λnx− β1 sin

√
λnx

]
. (5.64)

The orthogonality property in Equation (5.59) can be easily verified by the reader as a
Reading Exercise. The square norms of eigenfunctions are

‖Xn‖2 =

∫ l

0

X2
n(x)dx =

1

2

[
l +

(β2α1 − β1α2)(λnα1α2 − β1β2)

(λnα2
1 + β2

1)(λnα2
2 + β2

2)

]
. (5.65)

The eigenvalues are λn =
(
µn
l

)2
, where µn is the nth root of the equation

tanµ =
(α1β2 − α2β1)lµ

µ2α1α2 + l2β1β2
. (5.66)

This equation remains unchanged when the sign of µ changes, which indicates that
positive and negative roots are placed symmetrically on the µ axis. Because the eigenvalues
λn do not depend on the sign of µ, it is enough to find only positive roots µn of Equation
(5.66) since negative roots do not give new values of λn. Clearly, µ has no dimension.
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FIGURE 5.7
A graphical solution of Equation (5.64) for l = 100 and h = 0.07.

It is not difficult to demonstrate (for instance using a graphical solution of this equation)
that µn+1 > µn, again in accordance with the Sturm-Liouville theory. In the cases when
either both boundary conditions are of Dirichlet type, or Neumann type, or when one is
Dirichlet type and the other is Neumann type, a graphical solution of Equation (5.66) is not
needed and we leave to the reader as the Reading Exercises to obtain analytical expressions
for Xn(x). The obtained results can be compared with those collected in Chapter 4.

Let us find the roots of Equation (5.66) for mixed boundary conditions

ux(0, t)− hu(0, t) = 0 and ux(l, t) + hu(l, t) = 0. (5.67)

Such a particular case with equal values of h in both Equations (5.67) is rather common.
The eigenvalues are determined from Equation (5.66), where α1 = 1, β1 = −h, α2 = 1,

β2 = h:

tanµ =
2hlµ

µ2 − h2l2
. (5.68)

This equation has an infinite number of roots, µn. Figure 5.7 shows curves of the two
functions y = tanµ and y = 2hlµ

µ2−h2l2 , plotted on the same set of axes. The values of µ at

the intersection points of these curves are the roots of the Equation (5.68).
For the values l = 100 and h = 0.07 the first six positive roots of this equation are:

µ1 = 2.464 ∈
(
π

2
,

3π

2

)
, µ2 = 5.036 ∈

(
3π

2
,

5π

2

)
, µ3 = 7.752 ∈

(
3π

2
,

5π

2

)
,

µ4 = 10.59 ∈
(

5π

2
,

7π

2

)
, µ5 = 13.25 ∈

(
7π

2
,

9π

2

)
, µ6 = 16.51 ∈

(
9π

2
,

11π

2

)
.

The line µ = hl (dashed line in Figure 5.7) is the asymptote of the graph y = 2hlµ/(µ2−
h2l2). In our example µ = 7 ∈ (3π/2, 5π/2), and we notice that this interval includes two
roots, µ2 and µ3, whereas each of the other intervals, ((2k − 1)π/2, (2k + 1)π/2), contains
one root of Equation (5.68). This is a commonly met situation.

Each eigenvalue

λn =
(µn
l

)2

, n = 1, 2, 3, . . . (5.69)
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corresponds to an eigenfunction

Xn(x) =
1√

λn + h2

[√
λn cos

√
λnx+ h sin

√
λnx

]
. (5.70)

The norms of these eigenfunctions are

‖Xn‖2 =
l

2
+

h

λn + h2
. (5.71)

The next step of the solution is to find the function T (t). Equation (5.56) is an ordinary
linear second-order homogeneous differential equation. For λ = λn

T ′′n (t) + 2κT ′′n (t) + (a2λn + γ)Tn(t) = 0 (5.72)

and a general solution of this equation is

Tn(t) = any
(1)
n (t) + bny

(2)
n (t), (5.73)

where an and bn are arbitrary constants. Two particular solutions, y
(1)
n (t) and y

(2)
n (t), are

y(1)
n (t) =


e−κt cosωnt, if κ2 < a2λn + γ,

e−κtcoshωnt, if κ2 > a2λn + γ,

e−κt, if κ2 = a2λn + γ,

(5.74)

and

y(2)
n (t) =


e−κt sinωnt, if κ2 < a2λn + γ,

e−κtsinhωnt, if κ2 > a2λn + γ,

te−κt, if κ2 = a2λn + γ,

(5.75)

where
ωn =

√
|a2λn + γ − κ2|

(obviously, ωn has the dimension of inversed time).

Reading Exercise: Verify the above expressions.

It is clear that each function

un(x, t) = Tn(t)Xn(x) =
[
any

(1)
n (t) + bny

(2)
n (t)

]
Xn(x) (5.76)

is a solution of Equation (5.51) and satisfies boundary conditions in Equation (5.52).
Then we compose the series

u(x, t) =
∞∑
n=1

[
any

(1)
n (t) + bny

(2)
n (t)

]
Xn(x), (5.77)

which can be considered as the expansion of the unknown function u(x, t) into a Fourier
series using an orthogonal system of functions {Xn(x)}.

The superposition (5.77) allows us to satisfy the initial conditions (5.53). The first one
gives

u|t=0 = ϕ(x) =
∞∑
n=1

anXn(x). (5.78)
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If the series (5.77) converges uniformly, it can be differentiating with respect to t and the
second initial condition gives

∂u

∂t

∣∣∣∣
t=0

= ψ(x) =
∞∑
n=1

[ωnbn − κan]Xn(x) (5.79)

(here and in (5.81) we replace ωn by 1 when κ2 = a2λn + γ to consider all three cases for
κ2 in (5.75) simultaneously).

For “reasonably smooth”, like piecewise continuous, initial conditions, the series (5.78)
and (5.79) converge uniformly which allows us to find coefficients an and bn. By multiplying
both sides of these equations by Xn(x), integrating from 0 to l, and using the orthogonality
condition defined in Equation (5.59), we obtain

an =
1

||Xn||2

∫ l

0

ϕ(x)Xn(x)dx (5.80)

and

bn =
1

ωn

[
1

||Xn||2

∫ l

0

ψ(x)Xn(x)dx+ κan

]
. (5.81)

The series (5.77) with these coefficients gives the solution of the boundary value problem
given in Equations (5.51) through (5.53).

Recall that the success of this method is based on the following details: the functions
{Xn(x)} are orthogonal to each other and form a complete set (i.e., a basis for an expansion
of u(x, t)); the functions {Xn(x)} satisfy the same boundary conditions as the solutions,
u(x, t); and solutions to linear equations obey the superposition principle (i.e., sums of
solutions are also solutions).

The obtained solution describes free oscillations. Processes with not very big damping,
i.e., κ2 < a2λn + γ, are periodic (or quasi-periodic) and have a special physical interest.
For κ = 0, the motion is purely periodic; thus ωn = a

√
λn are the frequencies. The partial

solutions un(x, t) = Tn(t)Xn(x) are called normal modes. The first term, u1(x, t), called
the first (or fundamental) harmonic, has time dependence with frequency ω1 and period
2π/ω1. The second harmonic (or first overtone), u2(x, t), oscillates with greater frequency
ω2 (for Dirichlet or Neumann type boundary conditions and κ = γ = 0, it is twice ω1); the
third harmonic is called second overtone, etc. The points where Xn(x) = 0 are not moving
are called nodes of the harmonic un(x, t). Between the nodes the string oscillates up and
down. The waves un(x, t) are also called standing waves because the position of the nodes
are fixed in time. The general solution, u(x, t), is a superposition of standing waves; thus,
any oscillation can be presented in this way.

Clearly, ωn = a
√
λn increase with the tension and decrease with the length and density:

tuning any stringed instrument is based on changing the tension, and the bass strings are
longer and heavier. The loudness of a sound is characterized by the energy or amplitude
of the oscillations; tone by the period of oscillations; timbre by the ratio of energies of the
main mode and overtones. The presence of high overtones destroys the harmony of a sound
producing dissonance. Low overtones, in contrast, give a sense of completeness to a sound.

We give two examples for homogeneous wave equations with homogeneous boundary
conditions. Note, that to simplify the formulas and the graphs for Xn(x), we take them in
dimensionless form; in particular Xn(x) are bounded by the values ±1. From that it follows
that the coefficients an and bn have dimension of function u(x, t) which, for a case of string
oscillations, is a length.

Example 5.4 The ends of a uniform string of length l are fixed and all external forces
including the gravitational force can be neglected. Displace the string from equilibrium by
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FIGURE 5.8
Eigenfunctions X1(x) through X4(x) for Example 5.4.

shifting the point x = x0 by distance A at time t = 0 and then release it with zero initial
speed. Find the displacements u(x, t) of the string for times t > 0.

Solution. The boundary value problem is

utt − a2uxx = 0, 0 < x < l, t > 0,

u(x, 0) =


A

x0
x, 0 < x ≤ x0,

A(l − x)

l − x0
, x0 < x < l,

∂u

∂t
(x, 0) = 0, u(0, t) = u(l, t) = 0.

This initial condition is not differentiable in the point x = x0; it means we are searching
for a generalized solution.

The eigenvalues and eigenfunctions are those of the Dirichlet problem on 0 < x < l:

λn =
(nπ
l

)2

, Xn(x) = sin
nπx

l
, ‖Xn‖2 =

l

2
, n = 1, 2, 3, . . . .

Figure 5.8 shows the first four eigenfunctions for l = 100.
Using Equations (5.80) and (5.77), we obtain

an =
2Al2

π2x0(l − x0)n2
sin

nπx0

l
, bn = 0.

Therefore, string vibrations are given by the series

u(x, t) =
2Al2

π2x0(l − x0)

∞∑
n=1

1

n2
sin

nπx0

l
sin

nπx

l
cos

nπat

l
.

Figure 5.9 shows the space-time-dependent solution u(x, t) for Example 5.4 (for the case
when a2 = 1, l = 100, A = 6, and x0 = 25). The animation sequence in Figure 5.9 shows
snapshots of the animation at times t = 0, 1, . . . , 12. Because there is no dissipation, it is
sufficient to run the simulation until the time is equal to the period of the main harmonic
(until 2l/a = 200 in this Example).
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FIGURE 5.9
Solutions, u(x, t), at various times for Example 5.4.

For t = 0 the obtained solution gives

u(x, 0) =
∞∑
n=1

an sin
nπx

l

–this is the Fourier expansion of the initial condition function.
In the solution u(x, t) the terms for which sin(nπx0/l) = 0 vanish from the series, that

is, the solution does not contain overtones for which x = x0 is a node. For instance, if x0 is
at the middle of the string, the solution does not contain harmonics with even numbers.

The formula for u(x, t) can be presented in a more physically intuitive form. Let us denote√
λn as kn, where kn = nπ

l which are called wave numbers. The frequencies ωn = nπa
l give

the frequency spectrum of the problem. The solution to the problem now can be written as

u(x, t) =

∞∑
n=1

An cosωnt · sin knx,

where the amplitude An = D
n2 sin nπx0

l with D ≡ 2Al2

π2x0(l−x0) .

The first harmonic (or mode), u1(x, t), is zero for all x when ω1t = π/2, that is, when
t = l/2a. It becomes zero again for t = 3l/2a, t = 5l/2a, etc. The second harmonic u2(x, t)
is zero for all x for the moments of time t = l/4a, t = 3l/4a, etc.

The bar chart in Figure 5.10 represents |Vn(t)| = |An| cosωnt (in units of D) for the
case x0 = l/4 = 25 and t = 0 (i.e. |Vn(t)| = |An|). The terms with numbers n = 4k vanish
from the series. Note that the amplitudes An decrease as 1/n2.

Example 5.5 A homogeneous rod of length l elastically fixed at the end x = l is stretched
by a longitudinal force F0 = const, applied to the end at x = 0. At time t = 0 the force F0

stops acting. Find the longitudinal oscillations of the rod if initial velocities are zero; the
resistance of a medium as well as external forces are absent.

Solution. Let us first find initial displacements of locations along the rod, u|t=0 = ϕ(x).
Because in each cross section the force of tension T is constant and equals F0 we have
ϕ′(x) = −F0/EA, where E is Young’s modulus and A is the cross-sectional area of the
rod. Negative ϕ′(x) corresponds to a decrease of the longitudinal shift from the left end
to the right. If F0 is a compressing force, the expression for ϕ′(x) will have the opposite
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FIGURE 5.10
Bar charts of |Vn(t)| for Example 5.4.

sign. Integrating and using ϕ′(l) + hϕ(l) = 0 (since the rod is elastically fixed at x = l)
we obtain

ϕ(x) =
F0

EA

(
l +

1

h
− x
)
.

Here, h is the elasticity coefficient. Thus, we have the equation

utt = a2uxx, 0 < x < l, t > 0,

with initial and boundary conditions

u(x, 0) =
F0

EA

(
l +

1

h
− x
)
, ut(x, 0) = 0,

ux(0, t) = 0, ux(l, t) + hu(l, t) = 0.

Figure 5.11 shows graph curves of the two functions tanµ and hl/µ, plotted on the same
set of axes. The roots µn are at the intersection points of these curves.

The boundary conditions are the Neumann type at x = 0 (the free end) and mixed type
at x = l (an elastic connection). The eigenvalues are easily obtained and are:

λn =
(µn
l

)2

, n = 1, 2, 3, . . . ,

where µn is the nth root of the equation tanµ = hl
µ . Each eigenvalue corresponds to an

eigenfunction Xn(x) = cos
√
λnx with the norm

||Xn||2 =
1

2

(
l +

h

λn + h2

)
.

Figure 5.12 shows first four eigenfunctions for l = 100, h = 0.1.
Because the initial speeds are zero, all coefficients, bn, are zero. Coefficients an are found

using Equation (5.76):

an =
1

‖Xn‖2
∫ l

0

ϕ(x) cos(
√
λnx)dx =

2F0

EA

1− cos
√
λnl + (

√
λn/h) sin

√
λnl

λn [l + h/(λn + h2)]
.

The results of the computation of λn, ‖Xn‖2 and an for the first ten eigenfunctions are
summarized in the table presented in Figure 5.13.
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FIGURE 5.11
Graphical solution of the eigenvalue equation for l = 100, h = 0.1.

FIGURE 5.12
Eigenfunctions X1(x) through X4(x) for Example 5.5.

n λn ‖Xn‖2 an
1 0.0002042 54.9000 4.460800
2 0.0018540 54.2180 0.497415
3 0.0052247 53.2842 0.179607
4 0.0104045 52.4504 0.091622
5 0.0174615 51.8207 0.055257
6 0.0264367 51.3722 0.036816
7 0.0373534 51.0559 0.026218
8 0.0502246 50.8302 0.019585
9 0.0650576 50.6662 0.015169

10 0.0818565 50.5443 0.012085

FIGURE 5.13
Eigenvalues, norms, ‖Xn‖2, coefficients an for Example 5.5.
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Factor cos
√
λnat describing the time dependence of the solution, can be written as

cosωnt, thus harmonics’ periods are 2π/ωn = 2π/
√
λna.

Finally, we have the series that describes the rod’s oscillations:

u(x, t) =
2F0

EA

∞∑
n=1

1− cos
√
λnl + (

√
λn/h) sin

√
λnl

λn [l + h/(λn + h2)]
cos
√
λnat · cos

√
λnx.

5.7 The Fourier Method for Nonhomogeneous Equations

Consider the nonhomogeneous linear equation

∂2u

∂t2
+ 2κ

∂u

∂t
− a2 ∂

2u

∂x2
+ γu = f(x, t). (5.82)

As we will show below, generally a solution has a form of a sum of the infinite number
of terms of the (5.54) with Xn(x) being the eigenfunctions of the same Sturm-Liouville
problem as in the case of a homogeneous equation.

First, let the function u(x, t) satisfy homogeneous boundary conditions given in Equation
(5.52) and initial conditions given in Equation (5.53). The approach is to search for the
solution as a sum of two functions

u(x, y) = u1(x, y) + u2(x, y), (5.83)

where u1(x, t) is the solution of the homogeneous equation satisfying given boundary and
initial conditions

∂2u1

∂t2
+ 2κ

∂u1

∂t
− a2 ∂

2u1

∂x2
+ γu1 = 0, (5.84)

u1(x, t)|t=0 = ϕ(x),
∂u1

∂t
(x, t)

∣∣∣∣
t=0

= ψ(x), (5.85)

α1u1x + β1u1|x=0 = 0, α2u1x + β2u1|x=l = 0, (5.86)

and u2(x, t) is the solution of a nonhomogeneous equation satisfying the same boundary
conditions and zero initial conditions

∂2u2

∂t2
+ 2κ

∂u2

∂t
− a2 ∂

2u2

∂x2
+ γu2 = f(x, t), (5.87)

u2(x, t)|t=0 = 0,
∂u2

∂t
(x, t)

∣∣∣∣
t=0

= 0, (5.88)

α1u2x + β1u2|x=0 = 0, α2u2x + β2u2|x=l = 0. (5.89)

Clearly, the function u1(x, t) represents free oscillations (i.e., the oscillations due to
initial perturbation only) and the function u2(x, t) represents forced oscillations (i.e., the
oscillations due to an external force when initial disturbances are zero).

The methods for finding the solution in the case of free oscillations, u1(x, t), have been
discussed in the previous section; therefore we turn our attention in this section to finding
the forced oscillation solutions, u2(x, t). Similar to the case of free oscillations, let us search
the solution for the function u2(x, t) as the series

u2(x, t) =
∞∑
n=1

Tn(t)Xn(x), (5.90)
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where Xn(x) are eigenfunctions of the corresponding boundary value problem for u1(x, t),
and Tn(t) are unknown functions of t (they are different from the functions Tn(t) in Equation
(5.73) obtained for the homogeneous wave equation).

We choose the functions Tn(t) in such a way that the series (5.90) satisfies the nonhomo-
geneous Equation (5.87) and zero initial conditions given in Equation (5.88). Substituting
the series (5.90) into Equation (5.87), we obtain (assuming that this series can be differen-
tiated the necessary number of times)

∞∑
n=1

{
[T ′′n (t) + 2κT ′n(t) + γTn(t)]Xn(x)− a2Tn(t)X ′′n(x)

}
= f(x, t).

Because Xn(x) are the eigenfunctions of the corresponding homogeneous boundary value
problem (5.84) – (5.86), they satisfy equation

X ′′n(x) + λnXn(x) = 0.

Using this, we obtain

∞∑
n=1

[
T ′′n (t) + 2κT ′n(t) + (a2λn + γ)Tn(t)

]
Xn(x) = f(x, t). (5.91)

Because of the completeness of the set of functions {Xn(x)}, we can expand the
functionf(x, t) on the interval (0,l) into a Fourier series of the functions Xn(x) so that

f(x, t) =

∞∑
n=1

fn(t)Xn(x), (5.92)

where

fn(t) =
1

||Xn||2

∫ l

0

f(x, t)Xn(x)dx. (5.93)

Comparing the series in Equation (5.91) and that in Equation (5.92), we obtain an
ordinary second order linear differential equation with constant coefficients for each function
Tn(t):

T ′′n (t) + 2κT ′n(t) + (a2λn + γ)Tn(t) = fn(t), n = 1, 2, 3, . . . . (5.94)

In order that the function u2(x, t) represented by the series given in Equation (5.90) satisfies
initial conditions in Equation (5.88), it is clear that functions Tn(t) should satisfy the
conditions

Tn(0) = 0, T ′n(0) = 0, n = 1, 2, 3, . . . . (5.95)

Solutions of linear equation (5.94) can be easily obtained in a standard way, but here we
give the solution of the Cauchy problem given in Equations (5.94) and (5.95) for functions
Tn(t) as an integral representation which is very convenient for our further purposes:

Tn(t) =

∫ t

0

fn(τ)Yn(t− τ)dτ. (5.96)

Here

Yn(t) =



1

ωn
e−κt sinωnt, if κ2 < a2λn + γ,

1

ωn
e−κtsinhωnt, if κ2 > a2λn + γ,

te−κt, if κ2 = a2λn + γ,

(5.97)

where ωn =
√
|a2λn + γ − κ2|.
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To prove that the representation in Equation (5.96) yields Equation (5.94), we differen-
tiate Equation (5.96) with respect to t twice to get

T ′n(t) =

∫ t

0

fn(τ)
∂

∂t
Yn(t− τ)dτ + Yn(0)fn(t)

and

T ′′n (t) =

∫ t

0

fn(τ)
∂2

∂t2
Yn(t− τ)dτ + Y ′n(0)fn(t).

By using these formulas, we can prove that Equation (5.94) and the initial conditions
in Equation (5.95) are satisfied.

Reading Exercise: Verify this result for κ = 0 (i.e., for Yn(t) = sin(ωnt)/ωn).

With expression (5.96) for Tn(t) the series (5.90) gives, assuming that it converges
uniformly as well as the series obtained by differentiating by x and t up to two times, the
solution of the boundary value problem given in Equations (5.87)-(5.89).

Combining the results for the functions u1(x, t) and u2(x, t), the solution of the forced
oscillations problem with initial conditions (5.53) and homogeneous boundary conditions
(5.52) is

u(x, t) = u1(x, t) + u2(x, t)

=
∞∑
n=1

{[
any

(1)
n (t) + bny

(2)
n (t)

]
+ Tn(t)

}
Xn(x), (5.98)

where the Tn(t) are defined by Equation (5.92) and y
(1)
n (t), y

(2)
n (t), an, and bn are given by

the formulas (5.74), (5.75), (5.80) and (5.81).
Let us consider two examples of nonhomogeneous problems with homogeneous boundary

conditions.

Example 5.6 Consider a homogeneous string of mass density ρ with rigidly fixed ends.
Starting at time t = 0 a uniformly distributed harmonic force with linear density

F (x, t) = F0 sinωt

acts on the string. The initial deflection and speed are zero. Neglecting friction find the
resulting oscillations and investigate the resonance behavior.

Solution. The boundary value problem modeling this process is

∂2u

∂t2
− a2 ∂

2u

∂x2
=
F0

ρ
sinωt, 0 < x < l, t > 0, (5.99)

u(x, 0) = 0, ut(x, 0) = 0,

u(0, t) = u(l, t) = 0.

The boundary conditions here are homogeneous Dirichlet conditions, thus the eigenvalues
and eigenfunctions are

λn =
(nπ
l

)2

, Xn(x) = sin
nπx

l
, ||Xn||2 =

l

2
, n = 1, 2, 3, . . . .
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Because the initial conditions are ϕ(x) = ψ(x) = 0, the solution of the homogeneous wave
equation, u1(x, t) = 0, and the only nonzero contribution is the solution of the nonhomoge-
neous equation, u2(x, t), which is given by the series

u(x, t) =
∞∑
n=1

Tn(t) sin
nπx

l
. (5.100)

We can find Tn(t) by using Equation (5.96):

Tn(t) =

∫ t

0

fn(τ)Yn(t− τ)dτ,

where ωn = a
√
λn = nπa

l are the natural frequencies and Yn(t) = 1
ωn

sin nπat
l . We then have

fn(t) =
2

l

∫ l

0

f(x, t) sin
nπx

l
dx =

2

l

F0

ρ
sinωt

∫ l

0

sin
nπx

l
dx,

which gives

f2n−1(t) =
4F0

(2n− 1)πρ
sinωt, f2n(t) = 0.

Then, for Tn(t)we have

T2n−1(t) =
l

(2n− 1)πa

4F0

(2n− 1)πρ

∫ t

0

sinωτ sin [ω2n−1(t− τ)] dτ

=
4F0l

aπ2(2n− 1)2ρ

ω2n−1 sinωt− ω sinω2n−1t

ω2
2n−1 − ω2

,

T2n(t) = 0.

These expressions apply when, for any n, the frequency of the external force, ω, is not
equal to any of the natural frequencies of the string. Substituting Tn(t) into Equation (5.100)
we obtain the solution

u(x, t) =
4F0l

ρaπ2

∞∑
n=1

1

(2n− 1)2

ω2n−1 sinωt− ω sinω2n−1t

ω2
2n−1 − ω2

sin
nπx

l
. (5.101)

Because ωn is proportional to n, terms in (5.101) with sinωt, which are purely periodic with
frequency ω, decrease as 1/n, whereas terms with sinω2n−1t, which represent oscillations
(eigenmodes) with different frequencies, decrease as 1/n2.

Figure 5.14 shows the spatial-time-dependent solution u(x, t) for Example 5.6 (for the
case when a2 = 1, l = 100, ρ = 1, F0 = 0.025, ω = 0.3). With these parameters the period of
the main harmonic is 2l/a = 200. The animation sequence in Figure 5.14 shows snapshots
of the animation at times t = 0, 1, . . . , n.

If for some n = k, the frequency of the external force ω = ω2k−1, we have a case of
resonance. To proceed, we apply L’Hôpital’s rule to this term, taking the derivatives of the
numerator and denominator with respect to ω2k−1 to yield

− 2F0l

ρaπ2(2k − 1)2

ω2n−1t cosω2k−1t− sinω2n−1t

ω2k−1

=
2F0l

2

ρa2π3(2k − 1)3
[sinω2n−1t− ω2n−1t cosω2k−1t] .
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In this case, one can rewrite the solution in the form

u(x, t) =
4F0l

ρaπ2

∞∑
n = 1
n 6= k

1

(2n− 1)2

ω2n−1 sinωt− ω sinω2n−1t

ω2
2n−1 − ω2

sin
nπx

l

+
2F0l

2

ρa2π3(2k − 1)3
[sinωt− ωt cosωt] sin

(2k − 1)πx

l
. (5.102)

Let us obtain a periodic solution for Example 5.6. Contrary to the solution obtained
above in the form of an infinite series, a steady-state solution is described by a finite formula
which is more convenient for the analysis of the properties of the solution. Let us write the
equation as

∂2u

∂t2
− a2 ∂

2u

∂x2
= A sinωt (5.103)

and seek a steady-state solution in the form

u(x, t) = X(x) sinωt. (5.104)

For X(x) we obtain an ordinary linear differential equation

X ′′(x) +
(ω
a

)2

X(x) = − A
a2
, (5.105)

which has a general solution

X(x) = c1 cos kx+ c2 sin kx− A

ω2
(5.106)

where k = ω/a. The boundary conditions X(0) = X(l) = 0 give c1 = A/ω2 and c2 =
A
ω2

1−cos kl
sin kl . Then, using standard trigonometric formulas for double angles we obtain

u(x, t) =
2A

ω2

sin(kx/2) sin[k(l − x)/2]

cos(kl/2)
sinωt. (5.107)

Notice, that for this solution the initial speed is not zero.

FIGURE 5.14
Graph of solutions, u(x, t), at various times for Example 5.6.
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Example 5.7 The upper end of an elastic homogeneous heavy rod is rigidly attached to
the ceiling of free falling elevator. When the elevator reaches the speed v0 it stops instantly.
Set up the boundary value problem for vibrations of the rod.

Solution. The mathematical model for this problem is:

utt − a2uxx = −g, 0 < x < l, t > 0,

u(x, 0) = 0, ut(x, 0) = v0,

u(0, t) = 0, ux(l, t) = 0,

where g is the acceleration of gravity.
The boundary conditions are of Dirichlet type at x = 0 (the fixed end) and Neumann

type at x = l (the free end). From our previous work, we have eigenvalues and eigenfunctions
for the problem given by

λn =

[
(2n− 1)π

2l

]2

, Xn(x) = sin
(2n− 1)πx

2l
, n = 1, 2, 3, . . . .

From Equations (5.76), (5.77), (5.89), and (5.92), we have

an = 0, bn =
8v0l

aπ2(2n− 1)2
,

fn(t) = − 4g

π(2n− 1)
, Tn(t) = − 16gl2

a2π3(2n− 1)3

[
1− cos

(2n− 1)aπt

2l

]
.

Thus, a general solution of this boundary value problem is

u(x, t) =
8l

aπ2

∞∑
n=1

1

(2n− 1)2

×
{

−2gl

aπ(2n− 1)

[
1− cos

(2n− 1)aπt

2l

]
+ v0sin

(2n− 1)πat

2l

}
sin

(2n− 1)πx

2l
.

5.8 The Laplace Transform Method: Simple Cases

In this section we demonstrate how Laplace transform (LT) can be applied to solve heat,
or generally a PDE equation. The LT allows us to obtain an ODE from PDE and then an
algebraic equation from an ODE.

As a simple illustration, let us consider oscillations of a semi-infinite string governed by
the wave equation

utt − a2uxx = 0, x > 0, −∞ < t <∞. (5.108)

Initially, the string is at rest, u(x, t) = 0 for t ≤ 0 (hence also ut(x, 0) = 0 for t ≤ 0). At
t = 0, the left end of the string starts moving according to a certain law u(0, t) = f(t),
while at infinity, function u(∞, t) has to be bounded.

Let us find the solution of the problem at t > 0 using the Laplace transform with respect
to t.

Denote

û(x, p) =

∫ ∞
0

e−ptu(x, t)dt
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and

f̂(p) =

∫ ∞
0

e−ptf(t)dt.

Because u(x, 0) = 0, ut(x, 0) = 0 for any x > 0, the Laplace transform of Equation (5.108)
leads to the ODE with respect to x,

p2û(x, p)− a2ûxx(x, p) = 0

with the boundary condition
û(0, p) = f̂(p).

The solution of this problem bounded on infinity is

û(x, p) = f̂(p)e−px/a, x > 0.

Using the Delay Theorem, we find that u(x, t) = 0 for t < x/a, i.e., x > at, and u(x, t) =
f(x− t/a) for t > x/a, i.e., x < at.

Example 5.8 Solve the nonhomogeneous equation,

utt − a2uxx = sin
πx

l
, t > 0, (5.109)

with zero initial and boundary conditions

u(x, 0) = 0, ut(x, 0) = 0, (5.110)

u(0, t) = u(l, t) = 0, t > 0. (5.111)

Let us apply the Laplace transform to Equation (5.109) in order to obtain an ordinary
differential equation. Taking into account the initial conditions (5.110), we obtain the ODE
with respect to x:

p2û(x, p)− a2ûxx(x, p) =
1

p
sin

πx

l
,

or

ûxx(x, p)− p2

a2
û(x, p) = − 1

pa2
sin

πx

l
. (5.112)

Solving the ordinary differential equation (5.112) with boundary conditions

û(0, p) = û(l, p) = 0, (5.113)

we obtain

û(x, p) =
1

p[p2 + (πa/l)2]
sin

πx

l
=

(
l

πa

)2 [
1

p
− p

p2 + (πa/l)2]

]
sin

πx

l
.

The inverse Laplace transform (see the table in Appendix A) gives

u(x, t) =

(
l

πa

)2(
1− cos

πat

l

)
sin

πx

l
.

Let us present some general consideration for the Cauchy problem for function Tn(t)
satisfying the nonhomogeneous ODE (5.94),

T ′′n (t) + 2κT ′n(t) + (a2λn + γ)Tn(t) = fn(t), n = 1, 2, 3, . . . .
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The solution has an especially simple form when the initial conditions are zero, Tn(0) = 0,
T ′n(0) = 0.

Defining

T̂n(p) = L [Tn(t)] =

∫ ∞
0

e−ptTn(t)dt,

f̂n(p) = L [fn(t)] =

∫ ∞
0

e−ptfn(t)dt,

we obtain the following algebraic equation for T̂n(p):

(p2 + 2κp+ a2λn + γ)T̂n(p) = f̂n(p),

hence

T̂n(p) =
f̂n(p)

p2 + 2κp+ a2λn + γ
.

Using the convolution property, we find that

Tn(t) =

∫ t

0

fn(τ)Zn(t− τ)dτ,

where

Zn(t) = L−1

[
1

p2 + 2κp+ a2λn + γ

]
= L−1

[
1

(p+ κ)
2

+ (a2λn + γ − κ2)

]
.

To find the inverse Laplace transform, we can use the table given in Appendix A.
If a2λn + γ − κ2 ≡ ω2

n > 0, we can see that

Zn(t) =
1

ωn
e−κt sinωnt.

If a2λn + γ − κ2 ≡ −ω2
n < 0, we can use the Shift Theorem:

Zn(t) = L−1

[
1

(p+ κ)2 − ω2
n

]
= e−κtL−1

[
1

p2 − ω2
n

]
=

1

ωn
e−κt sinhωnt.

If a2λn + γ − κ2 = 0, we find that

Zn(t) = L−1

[
1

(p+ κ)2

]
= e−κtL−1

[
1

p2

]
= te−κt.

This is the same result as obtained in formulas (5.96), (5.97) with the replacement Yn(t) by
Zn(t).

Notice, that the LT is not really useful for PDEs without formulas for the inverse Laplace
transforms – obtaining the final results needs the technique of integration in the complex
plane.

5.9 Equations with Nonhomogeneous Boundary Conditions

With the preceding development, we are prepared to study a general boundary value
problem for the nonhomogeneous equation with nonhomogeneous boundary conditions
defined by

∂2u

∂t2
+ 2κ

∂u

∂t
− a2 ∂

2u

∂x2
+ γu = f(x, t), (5.114)



One-Dimensional Hyperbolic Equations 79

u(x, t)|t=0 = ϕ(x), ut(x, t)|t=0 = ψ(x), (5.115)

α1ux + β1u|x=0 = g1(t) , α2ux + β2u|x=l = g2(t). (5.116)

The Fourier method cannot be applied to this problem directly because the boundary
conditions are nonhomogeneous. However, we can reduce this problem to the previously
investigated case with homogeneous boundary conditions.

To proceed, let us search for the solution as a sum of two functions

u(x, t) = v(x, t) + w(x, t), (5.117)

where v(x, t) is a new, unknown function and the function w(x, t) is chosen in a way that
satisfies the given nonhomogeneous boundary conditions

α1wx + β1w|x=0 = g1(t), α2wx + β2w|x=l = g2(t). (5.118)

The function w(x, t) should also have the necessary number of continuous derivatives in x
and t.

For the function v(x, t), we obtain the boundary value problem with homogeneous bound-
ary conditions

∂2v

∂t2
+ 2κ

∂v

∂t
− a2 ∂

2v

∂x2
+ γv = f̃(x, t), (5.119)

v(x, t)|t=0 = ϕ̃(x), vt(x, t)|t=0 = ψ̃(x), (5.120)

α1vx + β1v|x=0 = 0, α2vx + β2v|x=l = 0, (5.121)

where

f̃(x, t) = f(x, t)− ∂2w

∂t2
− 2κ

∂w

∂t
+ a2 ∂

2w

∂x2
, (5.122)

ϕ̃(x) = ϕ(x)− w(x, 0), (5.123)

ψ̃(x) = ψ(x)− wt(x, 0). (5.124)

The solution to this problem has been described above.

Reading Exercise: Verify Equations (5.119)-(5.124).

For the auxiliary function, w(x, t), a number of choices are possible. One criterion is to
simplify the form of the equation for the function, v(x, t). To this end, we search for w(x, t)
in the form

w(x, t) = P1(x)g1(t) + P2(x)g2(t), (5.125)

where P1(x) and P2(x) are polynomials; we will show that in some cases we need polynomials
of the first order, and in some of the second order. Coefficients of these polynomials should
be chosen in such a way that the function w(x, t) satisfies the boundary conditions (5.118);
therefore the function v(x, t) satisfies homogeneous boundary conditions (5.121).

First, consider the situation when parameters β1 and β2 are not zero simultaneously.
Let us take P1,2(x) as polynomials of the first order and search for the function w(x, t)

in the form
w(x, t) = (γ1 + δ1x)g1(t) + (γ2 + δ2x)g2(t). (5.126)

Substituting this into boundary conditions (5.118), we obtain two equations which may be
written as{

α1[δ1g1(t) + δ2g2(t)] + β1 [γ1g1(t) + γ2g2(t)] = g1(t),

α2[δ1g1(t) + δ2g2(t)] + β2 [(γ1 + δ1l)g1(t) + (γ2 + δ2l)g2(t)] = g2(t),
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or as {
(α1δ1 + β1γ1 − 1)g1(t) + (α1δ2 + β1γ2)g2(t) = 0,

(α2δ1 + β2γ1 + β2δ1l)g1(t) + (α2δ2 + β2γ2 + β2δ2l − 1)g2(t) = 0.

To be true, the coefficients of g1(t) and g2(t) should be zero, in which case the following
system of equations is valid for arbitrary t :

α1δ1 + β1γ1 − 1 = 0,

α1δ2 + β1γ2 = 0,

α2δ1 + β2γ1 + β2δ1l = 0,

α2δ2 + β2γ2 + β2δ2l − 1 = 0.

From this system of equations we obtain coefficients γ1, δ1, γ2 and δ2 as

γ1 =
α2 + β2l

β1β2l + β1α2 − β2α1
, δ1 =

−β2

β1β2l + β1α2 − β2α1
, (5.127)

γ2 =
−α1

β1β2l + β1α2 − β2α1
, δ2 =

β1

β1β2l + β1α2 − β2α1
. (5.128)

Therefore, the choice of function w(x, t) in the form (5.118) is consistent with the boundary
conditions (5.127).

Reading Exercise: Obtain the results (5.127) and (5.128).

Now, consider the case when β1 = β2 = 0, i.e. ux|x=0 = g1(t), ux|x=l = g2(t).

In this situation, the system of Equations (5.126) is inconsistent, which is why the polyno-
mials P1,2(x) in the expression for w(x, t) must be of higher order. Let us take the second
order polynomials:

P1(x) = γ1 + δ1x+ ξ1x
2, P2(x) = γ2 + δ2x+ ξ2x

2. (5.129)

Equations (5.118) yield a system of simultaneous equations which, to be valid for arbitrary
t, leads to γ1 = γ2 = δ2 = 0 and the expression for w(x, t) given by

w(x, t) =

[
x− x2

2l

]
g1(t) +

x2

2l
g2(t). (5.130)

Reading Exercise: Check that when β1 = β2 = 0 such a choice of w(x, t) satisfies the
boundary conditions (5.118).

Combining all described types of boundary conditions, we obtain nine different auxiliary
functions, which are given in Appendix C part 2.

The following two examples are applications of the wave equation with nonhomogeneous
boundary conditions.

Example 5.9 The left end of a string is moving according to

g(t) = A sinωt,

and the right end, x = l, is secured. Initially, the string is at rest. Describe oscillations when
there are no external forces and the resistance of the surrounding medium is zero.
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Solution. The boundary value problem is

utt = a2uxx, 0 < x < l, t > 0,

u(x, 0) = 0, ut(x, 0) = 0,

u(0, t) = A sinωt, u(l, t) = 0.

Let us search for the solution as the sum

u(x, t) = v(x, t) + w(x, t),

where we use an auxiliary function

w(x, t) =
(

1− x

l

)
A sinωt,

which satisfies the same as u(x, t), boundary conditions, i.e., w(0, t) = A sinωt and
w(l, t) = 0. This obvious choice of w(x, t) can also be obtained from Equations (5.127),
(5.128) which give γ1 = 1, δ1 = −1/l, γ2 = 0, δ2 = 1/l. For v(x, t) we arrive to the bound-
ary value problem for the nonhomogeneous wave equation with external force (5.122):

f̃(x, t) = Aω2
(

1− x

l

)
sinωt,

initial conditions (5.123), (5.124):

ϕ̃(x, t) = 0, ψ̃(x, t) = −Aω
(

1− x

l

)
and homogeneous boundary conditions.

The eigenvalues and eigenfunctions are

λn =
(nπ
l

)2

, Xn(x) = sin
nπx

l
, ||Xn||2 =

l

2
, n = 1, 2, 3, . . . .

From Equations (5.80), (5.81), and (5.93), we have

an = 0, bn =
1

ωn ‖Xn‖2
∫ l

0

ψ∗(x) sin
nπx

l
xdx = − 2Aωl

an2π2
,

fn(t) =
2Aω2

nπ
sinωt.

We can find Tn(t) by using Equation (5.96):

Tn(t) =
2Aω2l

aπ2n2
· ω sinωnt− ωn sinωt

ω2 − ω2
n

.

This expression applies, when, for any n, the frequency of the external force f̃(x, t) is not
equal to any of the natural frequencies ωn = nπa

l of the string (i.e., ω 6= ωn). In this case,
the solution is

u(x, t) = w(x, t) +
∞∑
n=1

[Tn(t) + bn sinωnt] sin
nπx

l

=
(

1− x

l

)
A sinωt+

2Aωl

aπ2

∞∑
n=1

1

n2

ωn (ωn sinωnt− ω sinωt)

ω2 − ω2
n

sin
nπx

l
.

Figure 5.15 shows the spatial-time-dependent solution u(x, t) for Example 5.9 for the
case when a2 = 1, l = 100, A = 4, ω = 0.3. With these parameters the period of the main
harmonic is 2l/a = 200.



82 Partial Differential Equations: Analytical Methods and Applications

FIGURE 5.15
Graph of solutions, u(x, t) at various times for Example 5.9.

Example 5.10 Find the longitudinal vibrations of a rod, 0 ≤ x ≤ l, with the left end fixed.
To the right end at x = l the force

F (t) = Bt (A = const)

is applied starting at time t = 0. The initial deflection and speed are zero. Neglect friction.

Solution. We should solve the equation

utt = a2uxx, 0 < x < l, t > 0

with the boundary and initial conditions

u(x, 0) = 0, ut(x, 0) = 0,

u(0, t) = 0, ux(l, t) = Bt/EA.

Assuming
u(x, t) = v(x, t) + w(x, t)

it is clear that we may choose the function w(x, t) to have the form

w(x, t) =
B

EA
xt

such that w(x, t) satisfies both boundary conditions (this choice also can be formally
obtained as explained above). For v(x, t), we obtain the boundary value problem

νtt = a2νxx,

v(x, t)|t=0 = 0, νt (x, t)|t=0 = −Bx/EA,

v(0, t) = 0, νx(l, t) = 0.

Eigenvalues and eigenfunctions of this problem are

λn =
(2n− 1)π

2l
, Xn(x) = sin

(2n− 1)πx

2l
, n = 1, 2, 3, . . . .



One-Dimensional Hyperbolic Equations 83

FIGURE 5.16
Time-traces of solutions u(x, t) at various values of x for Example 5.10.

From Equations (5.80) and (5.81) we have

an = 0, bn = (−1)n
16Bl2

EAa (2n− 1)3π3

in which case the solution for v(x, t) is

v(x, t) =
16Al2

ESaπ3

∞∑
n=1

(−1)n

(2n− 1)3
sin

(2n− 1)aπt

2l
sin

(2n− 1)πx

2l
.

Thus, the solution of this problem is

u(x, t) =
B

EA
xt+

16Bl2

EAaπ3

∞∑
n=1

(−1)n

(2n− 1)3
sin

(2n− 1)aπt

2l
sin

(2n− 1)πx

2l
.

Figure 5.16 shows the solution u(x, t) as a function of t (0 ≤ t ≤ 500) for several values of
coordinate x for Example 5.10. This solution was obtained in the case when a2 = 1, l = 100,
E = 1, A = 1, B = 0.0002.

5.10 The Consistency Conditions and Generalized Solutions

Let us briefly discuss the consistency between initial and boundary conditions and situations
when functions representing these conditions are not perfectly smooth. Assuming that the
solution of a boundary value problem, u(x, t), and its first derivatives are continuous on
the closed interval [0, l], the initial condition u(x, t)|t=0 = ϕ(x) and ut(x, t)|t=0 = ψ(x) at
x = 0 and x = l lead to the relations

α1ϕx + β1ϕ|x=0 = g1(0), α2ϕx + β2ϕ|x=l = g2(0), (5.131)

and

α1ψx + β1ψ|x=0 =
∂g1

∂t
(0), α2ψx + β2ψ|x=l =

∂g2

∂t
(0). (5.132)
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If not all of these consistency relations are satisfied, or the functions f(x, t), ϕ(x), ψ(x),
g1(x, t), g2(x, t) and their derivatives are not continuous on the entire interval [0, l], we
still can solve a problem by the methods described above. In such cases, as well as for
real, physical problems in which these functions always have some limited precision, such
obtained solutions are generalized solutions.

A simple example is the problem of string oscillations in a gravitational field. The exter-
nal force (nonhomogeneous term) is not zero at the ends of the string and if the ends are
fixed, the boundary conditions are not consistent with the equation. But the situation is
not that bad because the formal (generalized) solution converges uniformly at any point in
the interval.

Also notice that in Example 5.4 from Section 5.6 the boundary condition ux(0, t) = 0
and initial condition u(x, 0) = F0 (l + 1/h− x) /EA are inconsistent. This inconsistency
may lead to the non-uniform convergence of the series for derivatives.

Reading Exercise: Solve the problem of a string oscillating in gravity field

∂2u

∂t2
= a2 ∂

2u

∂x2
− g

if the ends are fixed and initially the string was displaced at some point from the equilibrium
position and released with zero speed. Discuss the properties of the analytical solution and
its behavior at the end of the interval. Suggest inconsistent initial and boundary conditions
and analyze the obtained (generalized) solution.

5.11 Energy in the Harmonics

Next, we consider the energy associated with the motion of the string. The kinetic energy
density (energy per unit length) of the string is

1

2
ρ

(
∂u

∂t

)2

and the total kinetic energy then is

Ekin(t) =
1

2

∫ l

0

ρ

(
∂u

∂t

)2

dx. (5.133)

Next, we determine an expression for the potential energy. If a portion of the string of
initial length dx is stretched to a length ds when displaced, the increase in length is

ds− dx =

√1 +

(
∂u

∂x

)2

− 1

 dx.
In the approximation of “small vibrations” (∂u/∂x� 1), this becomes

1

2

(
∂u

∂x

)2

dx.

Since this stretching takes place against a force of tension T, the potential energy gain on
the interval dx, which is the work done against tension, is

1

2
T

(
∂u

∂x

)2

dx.
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Thus, the potential energy of the string is

Epot(t) =
1

2

∫ l

0

T

(
∂u

∂x

)2

dx. (5.134)

The total energy is therefore

Etot = Ekin + Epot =
ρ

2

∫ l

0

[(
∂u

∂t

)2

+ a2

(
∂u

∂x

)2
]
dx, (5.135)

where we have used the fact that T = ρa2.
It is easy to see (we leave the proof as the Reading Exercise), that for homogeneous

boundary conditions of Dirichlet or Neumann type (e.g., the ends of a string are rigidly
fixed or free) the derivatives of functions Xn(x) are orthogonal (like the functions Xn(x)
themselves): ∫ l

0

dXn

dx

dXm

dx
dx = 0. (5.136)

The physical significance of this equation is that in this case the individual terms in the
Fourier series solution are independent and energy in a harmonic cannot be exchanged with
the energies associated with the other terms.

The nth harmonic is

un(x, t) =
{
Tn(t) +

[
any

(1)
n (t) + bny

(2)
n (t)

]}
Xn(x) (5.137)

(for homogeneous boundary conditions the auxiliary function w(x, t) ≡ 0).
Its kinetic energy is

E
(n)
kin(t) =

ρ

2

∫ l

0

(
∂un
∂t

)2

dx =
ρ

2

[
dTn
dt

+ an
dy

(1)
n

dt
+ bn

dy
(2)
n

dt

]2 ∫ l

0

X2
n(x)dx (5.138)

and its potential energy is

E
(n)
pot (t) =

T

2

∫ l

0

(
∂un
∂x

)2

dx =
T

2

[
Tn(t) + any

(1)
n (t) + bny

(2)
n (t)

]2∫ l

0

(
dXn

dx

)2

dx. (5.139)

It is evident that there are no terms representing interactions of the harmonics in either
the kinetic or potential energy expressions. The total energy of the nth harmonic is the sum
of these two energies.

Consider, as an example, free vibrations that occur in a medium without damping,

∂2u

∂t2
= a2 ∂

2u

∂t2
. (5.140)

In this case

Tn(t) = 0, y(1)
n (t) = cos a

√
λnt, y(2)

n (t) = sin a
√
λnt, (5.141)

and the kinetic energy of the nth harmonic is

E
(n)
kin(t) =

ρa2λn
2

[
−an sin a

√
λnt+ bn cos a

√
λnt
]2
‖Xn‖2 ; (5.142)
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the potential energy of nth harmonic is

E
(n)
pot (t) =

T

2

[
an cos a

√
λnt+ bn sin a

√
λnt
]2 ∥∥∥∥dXn

dx

∥∥∥∥2

. (5.143)

For boundary conditions of Dirichlet or Neumann type we have

‖Xn‖2 =

∫ l

0

X2
n(x)dx =

l

2
,

∥∥∥∥dXn

dx

∥∥∥∥2

=

∫ l

0

(
dXn

dx

)2

dx = λn ‖Xn‖2 =
λnl

2
. (5.144)

The potential and kinetic energies of a harmonic taken together give a constant, the total
energy, which is (taking into account T = ρa2)

E
(n)
tot (t) = E

(n)
kin(t) + E

(n)
pot (t) =

ρa2λnl

4

(
a2
n + b2n

)
. (5.145)

In each harmonic, the energy oscillates between kinetic and potential forms as the string
itself oscillates. The periods of the oscillations of the string are

τn =
2π

a
√
λn

(5.146)

and those of the energy are half that value.

Reading Exercises: We leave it to the reader to work out a few more results:

1. If both ends of the string are rigidly fixed or both ends are free, then λn = π2n2

l2

and the total energy is

E
(n)
tot (t) =

ρa2π2n2

4l

(
a2
n + b2n

)
. (5.147)

2. If one end of the string is rigidly fixed and the other is free, then λn = π2(2n+1)2

4l2

and the total energy is

E
(n)
tot (t) =

ρa2π2(2n+ 1)2

16l

(
a2
n + b2n

)
. (5.148)

3. As an example of another physical system, consider energy oscillations in the RLC
circuit. Magnetic and electric energies are

EL =
Li2

2
and EC =

CV 2

2
.

With i = ∂q/∂t this gives (for a wire from 0 to l)

EL =
1

2

∫ l

0

L

(
∂q

∂t

)2

dx and EC =
1

2

∫ l

0

R2C

(
∂q

∂t

)2

dx. (5.149)

Reading Exercises: Using the material described in Section 5.3.1, obtain the expressions for
these energies for boundary conditions of Dirichlet and Neumann type.

Let us use Examples 5.3 and 5.5 from Sections 5.6 and 5.7 to find the energy of a
string under various conditions. In both examples, as the Reading Exercises, find analytical
expressions for kinetic, potential and total energies of the string as functions of time.
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FIGURE 5.17
Energies of the string for Example 5.3.

FIGURE 5.18
Distribution of kinetic, potential and total energies in harmonics at t = 200 for Example
5.3.

In Example 5.3 (fixed ends, no external forces), the string was displaced from equilibrium
by shifting the point x = x0 by a distance h at time t = 0 and then released with zero initial
speed. Figure 5.17 shows the energies on the string; the following values of the parameters
were chosen: a2 = 1, κ = 0, l = 100, h = 6, and x0 = 25.

Figures 5.18 demonstrate energy in harmonics at time t = 200.
We may solve the same problem when the force of friction is not zero. Here we again use the
same values of the parameters and with the friction coefficient, κ = 0.001 (see Figure 5.19).

In Example 5.5 from Section 5.7, we considered a string with rigidly fixed ends and no
friction. Starting at time t = 0 a harmonic force with linear density F (x, t) = F0 sinωt acts
on the string. In Figure 5.20 we present the energy graphs for the following values of the
parameters: a2 = 1, κ = 0, l = 100, ρ = 1, F0 = 0.025, ω = 0.3. Obviously, the energy is
not conserved.

Figure 5.21 represents a resonance case. As the Reading Exercises describe and explain
the difference between the cases presented in Figures 5.20 and 5.21.
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FIGURE 5.19
Energies of the string for Example 5.3 with dissipation included.

FIGURE 5.20
Energies of the string for Example 5.5.

5.12 Dispersion of Waves

5.12.1 Cauchy Problem in an Infinite Region

Let us return to hyperbolic equations in an infinite region. Is it possible to extend the
method of separation of variables to the case of an infinite region? In the case of the wave
equation,

∂2u

∂t2
(x, t) = a2 ∂

2u

∂x2
(x, t), (5.150)

there is no need in that, because the D’Alembert’s formula (5.30) provides the full solution
of the Cauchy problem. How can we tackle more general equations? As the basic example,
let us consider the following equation with constant coefficients,

∂2u

∂t2
+ 2κ

∂u

∂t
− a2 ∂

2u

∂x2
+ γu = 0, κ ≥ 0, γ ≥ 0. (5.151)
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FIGURE 5.21
Energies of the string for the same values of the parameters and with a driving frequency
ω = ω5 = 5π/100.

In Section 5.6 the initial-boundary value problem for that equation was solved in a finite
spatial region. Now we define that equation in an infinite region,

−∞ < x <∞, t ≥ 0. (5.152)

We impose initial conditions

u(x, t)|t=0 = ϕ(x), ut(x, t)|t=0 = ψ(x) (5.153)

and the boundary conditions
lim

x→±∞
u(x, t) = 0. (5.154)

Recall that in the case of a finite region, we presented the solution of the problem as an
infinite sum of particular solutions of a special kind, un(x, t) = Xn(x)Tn(t). In the case of
an infinite region, a similar role is played by particular solutions

uk(x, t) = û(k, t)eikx, (5.155)

which are spatially periodic with the period 2π/k, where k is an arbitrary real number called
wavenumber. Substituting (5.155) into Equation (5.151), we obtain the following ordinary
differential equation for function û(k, t):

d2û

dt2
+ 2κ

dû

dt
+ (γ + a2k2)û = 0. (5.156)

The general solution of Equation (5.156) is

û(k, t) = a+(k)e−iω+(k)t + a−(k)e−iω−(k)t, (5.157)

where a±(k) are arbitrary numbers and

ω±(k) = −iκ±
√
γ − κ2 + a2k2 (5.158)

are the roots of the dispersion relation

ω2(k) + 2iκω(k)− γ − a2k2 = 0. (5.159)
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If γ − κ2 + a2k2 > 0, solution (5.157) can be written as

û(k, t) = a+(k)ei(kx−
√
γ−κ2+a2k2t)−κt + a−(k)ei(kx+

√
γ−κ2+a2k2t)−κt. (5.160)

The first term in the right-hand side of (5.160) corresponds to a wave moving to the right
with phase velocity

vph(k) =

√
γ − κ2 + a2k2

k
,

while the second term describes a wave moving to the left with the same velocity; both
waves decay with the decay rate κ. If γ − κ2 + a2k2 < 0, both terms monotonically decay
with time:

û(k, t) = a+(k)eikx−(κ−
√
κ2−γ−a2k2)t + a−(k)eikx−(κ+

√
κ2−γ−a2k2)t.

Note that functions (5.157) satisfy Equation (5.151) but do not satisfy conditions (5.153)-
(5.154).

Equation (5.151) is linear; therefore any linear combinations of solutions (5.155) with
different k are also solutions of that equation (this is the superposition principle). Because k
is changed continuously, the most general expression for the linear superposition of spatially
periodic waves (5.155) is the integral

u(x, t) =

∫ ∞
−∞

û(k, t)eikx
dk

2π
(5.161)

(the factor 1/2π is introduced for convenience). Thus, the general solution of Equation
(5.151) can be written as

u(x, t) =

∫ ∞
−∞

[
a+(k)ei(kx−ω+(k)t) + a−(k)ei(kx−ω−(k)t)

] dk
2π
, (5.162)

where a+(k) and a−(k) are arbitrary functions of k.
Formula (5.161) shows that û(k, t) is just the Fourier transform of the solution u(x, t)

(see Appendix A). If û(k, t) is absolutely integrable, i.e.,
∫∞
−∞ |u(k, t)| dk2π is finite, then u(x, t)

satisfies condition (5.154) (see Appendix A).
Let us determine the coefficients a±(k) that allow us to satisfy the initial conditions

(5.153). Apply the Fourier transform to both sides of (5.153):

û(k, 0) = ϕ̂(k), ût(k, 0) = ψ̂(k), (5.163)

where

ϕ̂(k) =

∫ ∞
−∞

ϕ(x)e−ikx
dk

2π
, ψ̂(k) =

∫ ∞
−∞

ψ(x)e−ikx
dk

2π
. (5.164)

Substituting (5.157) into (5.163), we find

a+(k) + a−(k) = ϕ̂(k), −iω+(k)a+(k)− iω−(k)a−(k) = ψ̂,

hence

a+(k) =
−ω−(k)ϕ̂(k) + iψ̂(k)

ω+(k)− ω−(k)
, a−(k) =

ω+(k)ϕ̂(k)− iψ̂(k)

ω+(k)− ω−(k)
. (5.165)

Formulas (5.162), (5.164)-(5.165) describe the solution of problem (5.151)-(5.154). Note that
the solution u(x, t) is real, if a±(k) = a∗±(−k).
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We emphasize that wave equation (5.150) provides a unique example where the phase
velocity vph(k) = a does not depend on k, hence all the waves with different k move (to
the left and to the right) with the same velocity. Therefore, their superposition (5.162)
consists of two waves moving to the left and to the right without changing their shapes.
In any other cases, different constituents of (5.162) move with different velocities and/or
decay with different rates; therefore their superposition changes its shape with time. That
phenomenon is called dispersion of waves.

5.12.2 Propagation of a Wave Train

To better understand the evolution of dispersive waves, let us consider some simple
examples.

Example 5.11 First, consider a wave moving rightwards with a definite wavenumber k0

u(x, t; k0) = a+e
i(k0x−ω+(k0)t), (5.166)

which is perfectly periodic in space and time,

u(x+ 2π/k0, t; k0) = u(x, t; k0), u(x, t+ 2π/ω+t; k0) = u(x, t).

Note that this solution is complex; the real solution can be constructed as

u(x, t) = u(x, t; k0) + u∗(x, t; k0)

= 2|a+| cos(k0 − Reω+(k0)t+ arga+)eImω+(k0)t, (5.167)

where
arga+ = tan−1(Ima+/Rea+).

The Fourier transform of (5.167) is

û(k, t; k0) =

∫ ∞
−∞

u(x, t)e−ikxdx

= 2πa+δ(k − k0)e−iω+(k0)t + 2πa∗+δ(k + k0)eiω
∗
+(k0)t. (5.168)

If ω+(k0) is real

u(x, t) = 2|a+| cos(k0x− iω+(k0)t+ arga+) (5.169)

describes a monochromatic traveling wave, periodic in time and space, which moves with
velocity vph(k0) = ω+(k0)/k0 without changing its shape. Otherwise, it simultaneously
grows or decreases exponentially in time, depending on the sign of Imω+(k0).

Example 5.12 Let us consider a particular solution which is the superposition of two
monochromatic waves (5.169) with different wave numbers and equal amplitudes,

u(x, t) = 2a cos(k1x− iω+(k1)t) + 2a cos(k2x− iω+(k2)t)

= 4a cos

(
k1 − k2

2
x− ω+(k1)− ω+(k2)

2
t

)
× cos

(
k1 + k2

2
x− ω+(k1) + ω+(k2)

2
t

)
. (5.170)
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Let k1 and k2 be close: k1 = k0 + ∆k, k2 = k0 −∆k, 0 < ∆k � k0; then the solution can
be written as

u(x, t) = 4a cos

[
∆k

(
x− ω+(k0 + ∆k)− ω+(k0 −∆k)

2∆k
t

)]
× cos

[
k0

(
x− ω+(k0 + ∆k) + ω+(k0 −∆k)

2k0
t

)]
.

This modulated wave is a product of a rapidly oscillating carrier wave with the spatial
period l = 2π/k0, which moves with the velocity

ω+(k0 + ∆k) + ω+(k0 −∆k)

2k0
≈ ω+(k0)

k0
= vph(k0),

and the long-periodic envelope function with the spatial period L = 2π/∆k � l, which
moves with the velocity

ω+(k0 + ∆k)− ω+(k0 −∆k)

2∆k
≈ dω+

dk
(k0).

The latter expression,

vgr(k0) =
dω+

dk
(k0),

is called group velocity. Note that

L ·∆k = 2π = O(1)

when ∆k is small.
Of course, solutions (5.167) and (5.170) are not physically feasible: the wave can actually

occupy only a finite part of the space of a certain length ∆x. As mentioned in Appendix A,
the corresponding characteristic interval ∆k is connected with ∆x by the relation ∆x∆k ∼ 1
which in quantum mechanics is called the uncertainty relation.

Let us consider a nearly periodic wave train moving rightwards with the Fourier trans-
form concentrated in a narrow interval of the width ∆k � 1 around the mean value k0.
For sake of simplicity, assume that ω0(k) is real (e.g., κ = 0 in Equation (5.151)). The real
solution can be written as

u(x, t) =

∫ ∞
−∞

a+(k)ei[kx−ω+(k)t] dk

2π
+ c.c., (5.171)

where c.c. means the expression which is a complex conjugate to the written one.
Define q ≡ k − k0, a+(k0 + q) ≡ f̂(q) and present solution (5.171) as

u(x, 0) = ei(k0x−ω+(k0)t)

∫ ∞
−∞

f̂(q)eiqx−i[ω+(k0+q)−ω+(k0)]t dq

2π
+ c.c.

Let us expand ω+(k0 + q) into the Taylor series:

ω+(k0 + q)− ω+(k0) ≈ ω′+(k0)q +
1

2
ω′′+(k0)q2 + . . . ,

hence
u(x, t) = ei[k0x−ω+(k0)t]I(x, t) + c.c.,
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I(x, t) ≈
∫ ∞
−∞

f̂(q)eiq(x−ω
′
+(k0)t)e−iω

′′
+(k0)q2t dq

2π
. (5.172)

Because the main contribution into the integral is given by the interval of |q| � ∆k, one

can omit the term with ω′′+(k0), if t�
[
ω′′+
]−1

(∆k)−2. In that case,

u(x, t) ≈ ei[k0x−ω+(k0)t]

∫ ∞
−∞

f̂(q)eiq(x−ω
′
+(k0)t) dq

2π
+ c.c.

= eik0[x−(ω+(k0)/k0)t]f(x− ω′+(k0)t) + c.c.

Thus, the solution is a product of a rapidly oscillating carrier wave moving with the phase
velocity vph(k0) = ω+(k0)/k0 and the slowly changing (with the characteristic spatial scale
1/∆k � 1) envelope moving with the group velocity vgr(k0) = ω′+(k0). For dispersive waves
(ω+(k0) 6= ak) these two velocities do not coincide.

At large t, the term with ω′′+(k0) in (5.172) cannot be ignored. Let us calculate I(x, t)
in the point x = ω′+(k0)t moving with the group velocity of the wave:

I =

∫ ∞
−∞

f̂(q)e−iω
′′
+(k0)q2t dq

2π
.

In order to calculate the integral, let us carry out formally the change of variables,

q = z

√
2

iω′′+(k0)t

(the justification of this transformation can be done using the complex analysis). Thus,

I =

√
2

iω′′+(k0)t

∫ ∞
−∞

f̂

(
z

√
2

iω′′+(k0)t

)
e−z

2

2π.

Because only the region z = O(1) gives an essential contribution into the integral, we can

replace f̂

(
z
√

2
iω′′+(k0)t

)
with f(0). Using the relation

∫ ∞
−∞

e−z
2

dz =
√
π,

we get

I ≈ f(0)√
2πiω′′+(k0)t

.

We come to the conclusion that in the case of the dispersion (ω′′+(k0) 6= 0), the intensity
of the wave decreases with time. We shall return to this phenomenon in Chapter 10 when
considering the properties of the Schrödinger equation.

5.13 Wave Propagation on an Inclined Bottom: Tsunami Effect

In the previous sections of this chapter we considered equations with constant coefficients.
It may happen however that the wave velocity depends on the coordinate. For instance, the



94 Partial Differential Equations: Analytical Methods and Applications

velocity a of a long gravity wave in a liquid layer is determined by the relation a2 = gh,
where g is the gravity acceleration and h is the layer depth. When the depth x is not
constant, h = h(x), x ≥ 0, the wave velocity a(x) =

√
gh(x) is not constant as well. Using

equations of fluid dynamics, one can derive the following modification of the wave equation,

∂2u

∂t2
=

∂

∂x

[
a2(x)

∂u

∂x

]
, a2(x) = gh(x), (5.173)

where u(x, t) is the deviation of the liquid surface.
Let us consider a solution of (5.173) corresponding to a wave with frequency ω,

u(x, t) = v(x)eiωt + c.c.. (5.174)

For v(x) we obtain the ordinary differential equation (check this result as a Reading Exer-
cise):

d2v

dx2
+
h′(x)

h(x)

dv

dx
+

ω2

gh(x)
v = 0. (5.175)

Let us consider a gravity wave near the coast. Assume that the bottom slope is constant,
i.e., the depth is changed linearly,

h(x) = αx, x > 0.

Then we obtain,
d2v

dx2
+

1

x

dv

dx
+

ω2

gαx
v = 0, x > 0. (5.176)

Let us apply the transformation

s =

√
x

2
, v(x) ≡ w(s).

Substituting

x = 2s2,
d

dx
=
ds

dx

d

ds
=

1

2
√

2x

d

ds
=

1

4s

d

ds
,

in (5.176) we obtain the Bessel equation:

d2w

ds2
+

1

s

dw

ds
+ q2w = 0, q2 =

8ω2

gα
, s > 0. (5.177)

The appropriate bounded solution of (5.177) is

w(s) = cJ0(qs),

where c is a complex constant, i.e.,

u(x, t) = J0

(
2ω
√
gα

√
x

)(
ceiωt + c∗e−iωt

)
, x > 0. (5.178)

One can see that the wave amplitude grows significantly towards the coast, i.e., with
the decrease of x. That phenomenon, called tsunami effect, can be explained qualitatively
in the following way. The wavelength of the wave, λ(x) = 2πa(x)/ω, decreases when the
wave moves towards the coast, i.e., the wave is compressed in the horizontal direction. The
conservation of the water volume leads to the growth of the wave in the vertical direction.

Actually, everybody has observed that phenomenon when being on a beach: near the
coast, the waves are higher than far in the sea. In the case of long waves created far in the
ocean by an earthquake, that effect can lead to a catastrophic tsunami.
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Problems

Write an analytical solution, representing the motion of a string (a rod, etc.). Solve these
problems analytically which means the following: formulate the equation and initial and
boundary conditions, obtain the eigenvalues and eigenfunctions, write the formulas for coef-
ficients of the series expansion and the expression for the solution of the problem.

The reader can also obtain the graphs of eigenfunctions and illustrate the spatial-time-
dependent solution u(x, t) with Maple, Mathematica or software from books [7, 8].

When you choose the parameters of the problem and coefficients of the functions (ini-
tial and boundary conditions, and external forces) do not forget that the amplitudes of
oscillations should remain small. All the parameters and the variables (time, coordinates,
deflection u(x, t)), are considered to be dimensionless.

Infinite strings

In problems 1 through 4 an infinite stretched string is excited by the initial deflection
u(x, 0) = ϕ(x) with no initial velocities.

Find the vibrations of the string.

1. ϕ(x) =
A

1 +Bx2
.

2. ϕ(x) = Ae−Bx
2

.

3. ϕ(x) =

{
A(l2 − x2), x ∈ [−l, l],
0, x /∈ [−l, l].

4. ϕ(x) =

{
Asinπxl , x ∈ [−l, l],
0, x /∈ [−l, l] .

In problems 5 through 8 an infinite stretched string is initially at rest. Assume at time t = 0
the initial distribution of velocities is given by ut(x, 0) = ψ(x).

Find the vibrations of the string.

5. ψ(x) =
A

1 + x2
.

6. ψ(x) = Axe−Bx
2

.

7. ψ(x) =

{
v0 = const, x ∈ [−l, l],
0, x /∈ [−l, l].

8. ψ(x) =

{
x, x ∈ [−l, l],
0, x /∈ [−l, l] .

9. Let an infinite string be at rest prior to t = 0. At time t = 0 it is excited by a
sharp blow from a hammer that transmits an impulse I at point x = x0 to the
string.

Find the vibrations of the string.

10. Consider an infinite thin wire with resistance R, capacitance C, inductance L and
leakage G distributed along its length. Find the electrical current oscillations in
a circuit if GL = CR. For the following initial voltage and current in the wire

V (x, 0) = f1(x) = e−x
2

, i(x, 0) = f2(x) = e−x
2

.

find electrical voltage oscillations in the wire.
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Loaded infinite string

Find the solutions of the following initial value problems.

11. utt − uxx = cosx, u(x, 0) = cosx, ut(x, 0) = 1.

12. utt − uxx = 2 sin t, u(x, 0) = cosx, ut(x, 0) = 1.

13. utt − uxx = x+ cos t, u(x, 0) = sinx− 1, ut(x, 0) = cosx.

14. utt − uxx = − tanh3(x/
√

2) cos t, u(x, 0) = tanh(x/
√

2), ut(x, 0) = 0.

15. utt − uxx = H(x)−H(x− 1), where H(x) is the Heaviside function;

u(x, 0) = ut(x, 0) = 0.

Transverse oscillations in finite strings

Problems 16 through 39 refer to uniform finite strings with the ends at x = 0 and x = l.
In problems 16 through 20 the initial shape of a string with fixed ends is u(x, 0) = ϕ(x),
the initial speed is ut(x, 0) = ψ(x). External forces and dissipation are absent. Find the
vibrations of the string.

16. ϕ(x) = Ax
(

1− x

l

)
, ψ(x) = 0.

17. ϕ(x) = Asin
πx

l
, ψ(x) = 0.

18. ϕ(x) = 0, ψ(x) = v0 = const.

19. ϕ(x) = 0, ψ(x) =
B

l
x(l − x).

20. ϕ(x) = Ax
(

1− x

l

)
, ψ(x) =

B

l
x(l − x).

21. A string with fixed ends is displaced at point x = x0 by a small distance h from
equilibrium and released at t = 0 without initial speed. No external forces or
dissipation act. Describe the string oscillations. Find the location of x0 so that
the following overtones are absent: a) 3rd; b) 5th; c) 7th.

22. A string with fixed ends is displaced at point x = x0 by a small distance h from
the x axis and released at t = 0 without initial speed. Find the vibrations of the
string if it vibrates in the constant gravitational field g, and the resistance of a
medium is proportional to speed.

In problems 23 through 27 the end at x = 0 of a string is fixed while the end at x = l
is attached to a mass less ring that can slide along a frictionless rod perpendicular to the
x axis such that the tangent line to the string is always horizontal. The initial shape and
speed of the string are u(x, 0) = ϕ(x) and ut(x, 0) = ψ(x). No external forces act except
that the surrounding medium has a resistance with coefficient κ. Find string oscillations.

23. ϕ(x) = A
x

l
, ψ(x) = 0.

24. ϕ(x) = A sin
πx

2l
, ψ(x) = 0.

25. ϕ(x) = 0, ψ(x) = v0 = const.

26. ϕ(x) = 0, ψ(x) = Ax
(

1− x

l

)
.
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27. ϕ(x) = Ax
(

1− x

l

)
, ψ(x) = v0 cos

πx

l
.

28. The ends of a string are rigidly fixed. The string is excited by the sharp blow
of a hammer, supplying an impulse I at point x0. No external forces act, but
the surrounding medium supplies a resistance with coefficient κ. Find the string
oscillations.

In problems 29 through 32 the ends of a string are rigidly fixed. An external force F (t)
begins to acts at point x0 at time t = 0. Find the string oscillations in a medium with
resistance coefficient κ. The zero initial conditions are zero.

29. F (t) = F0 sinωt.

30. F (t) = F0 cosωt.

31. F (t) = F0e
−At sinωt.

32. F (t) = F0e
−At cosωt.

In problems 33 through 36 the ends of a string are rigidly fixed. The initial conditions
are zero with no resistance. Starting at time t = 0 a uniformly distributed force with linear
density f(x, t) acts on the string. Find oscillations of the string.

33. f(x) = Ax(x/l − 1).

34. f(x, t) = Axe−Bt.

35. f(x, t) = Ax(x/l − 1) sinωt.

36. f(x, t) = Ax(x/l − 1) cosωt.

In problems 37 through 39 the left end, x = 0, of a string is driven according to u(0, t) =
g1(t), the right end, x = l, is fixed. Initially the string is at rest.

Find oscillations of the string when there are no external forces and the resistance of a
medium is zero. Find the solution in the case of resonance.

37. g1(t) = A sinωt.

38. g1(t) = A(1− cosωt).

39. g1(t) = A(sinωt+ cosωt).

Longitudinal oscillations in rods

In problems 40 through 42 starting at t = 0 the end of a rod at x = 0 is moving horizontally
according to u(0, t) = g(t) and an external force F = F (t) is applied to the end at x = l along
the axis. Assume zero initial conditions and an embedding medium which has a resistance
proportional to speed. Describe the oscillations u(x, t) of the rod.
Hint: The equation and the boundary conditions are:

utt + 2κut − a2uxx = 0,

u(x, 0) = 0, ut(x, 0) = 0,

u(0, t) = g(t), ux(l, t) = F (t)/EA.

40. F (t) = F0(1− cosωt), g(t) = g0.

41. F (t) = F0, g(t) = g0 sinωt.

42. F (t) = F0e
−At sinωt, g(t) = g0 sinωt.
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Electrical oscillations in circuits

In problems 43 through 47 a conductor of length l is perfectly insulated (G = 0) and R, L
and C are known. Current at t = 0 is absent and the voltage is V (x, t)|t=0 = V (x). The
end at x = 0 is insulated and the end at x = l is grounded. Find the current i(x, t) in the
wire.

43. V (x) = V0 sin
πx

l
.

44. V (x) = V0

(
1− cos

πx

l

)
.

45. V (x) = V0x(l − x).

46. V (x) =
V0

(x− l/2)2 +A
.

47. V (x) = V0 exp
[
−A(x− l/2)2

]
.

In problems 48 through 50 initially the current and voltage in an insulated (G = 0)
conductor are zero. The left end at x = 0 is insulated; the right end at x = l is attached to
a source of emf E(t) at t = 0. The parameters R, L, G and C are known. Find the voltage
V (x, t) in the wire.

48. E(t) = E0 sinωt.

49. E(t) = E0(1− cosωt).

50. E(t) = E0(sinωt+ cosωt).

Dispersive waves

51. The evolution of the complex wavefunction u(x, t) of a quantum particle is gov-
erned by the (non-dimensional) Schrödinger equation

iut = −1

2
uxx, −∞ < x <∞, t > 0.

(a) find the dispersion relation, phase and group velocities of waves;

(b) find the exact solution of the equation with initial condition u(x, 0) = δ(x);

(c) find the exact solution of the equation with initial condition

u(x, 0) = exp(−x2 + ik0x).

52. The evolution of small-amplitude long water waves is governed by the linear
Korteweg-de Vries equation

ut + uxxx = 0, −∞ < x <∞, t > 0.

(a) find the dispersion relation, phase and group velocities of waves;

(b) find the exact solution of the equation with initial condition u(x, 0) = δ(x).

Hint : use the Airy function described in Appendix B.
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One-Dimensional Parabolic Equations

In this chapter we consider a general class of equations known as parabolic equations, and
their solutions. We start in Section 6.1 with two physical examples: heat conduction and
diffusion. General properties of parabolic equations and their solutions are discussed in
subsequent sections.

6.1 Heat Conduction and Diffusion: Boundary Value Problems

6.1.1 Heat Conduction

Heat may be defined as the flow of energy through a body due to a difference in tempera-
ture. This is a kinetic process at the molecular level and it involves energy transfer due to
molecular collisions. We introduce the equations which model heat transfer in solids where
there is no macroscopic mass transfer.

Heat flow through a solid due to a temperature change is assumed to obey the linear
heat flow equation established by Fourier:

~q = −κ∇T. (6.1)

Here ~q is the heat flux (or current density) which is the heat (or energy) that flows through
a unit cross-sectional surface area of the body per unit time. The quantity ∇T is the
temperature gradient (the difference in temperature along a line parallel to the flux) and
the coefficient κ is called the thermal conductivity.

Functions ~q and T are also connected by the continuity equation:

ρc
∂T

∂t
+ div ~q = 0, (6.2)

where ρ is the mass density of medium and c is its heat capacity.
Equation (6.2) may be stated as:

The amount of heat (or energy) obtained by a unit volume of a body during some unit
time interval equals the negative of the divergence of the current density.

Using the relation
div ~q = div [−κ ∇T ] = −κ ∇2T,

Equations (6.1) and (6.2) lead to the heat conduction equation given by

∂T

∂t
= χ∇2T. (6.3)

The coefficient χ = κ/cρ is called the thermal diffusivity.

99
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In a steady state – for instance with the help of some external heat source – the tem-
perature in the solid becomes time independent and the heat equation reduces to Laplace’s
equation given by

∇2T = 0. (6.4)

If Q is the rate at which heat is added (or removed) per unit time and unit volume, the
heat conduction equation becomes

∂T

∂t
= χ∇2T +

Q

ρc
. (6.5)

6.1.2 Diffusion Equation

Diffusion is a mixing process which occurs when one substance is introduced into a second
substance. The introduced quantity, by means of molecular or atomic transport, spreads
from locations where its concentration is higher to locations where the concentration is
lower. Examples include the diffusion of perfume molecules into a room when the bottle is
opened and the diffusion of neutrons in a nuclear reactor. Given sufficient time, diffusion will
lead to an equalizing of the concentration of the introduced substance. We may imagine
situations, however, where equilibrium is not reached. This could occur, for example, by
continually adding more of the introduced substance at one location and/or removing it at
another location.

For low concentration gradients, diffusion obeys Fick’s law in which the current den-
sity of each component of a mixture is proportional to the concentration gradient of this
component:

~I = −D∇c. (6.6)

Here I is the current density, and D is the diffusion coefficient. The case I = const. corre-
sponds to steady-state diffusion where a substance is introduced and removed at the same
rate.

Let us derive an equation that describes changes of concentration of the introduced
substance. The continuity equation

∂c

∂t
+ div ~I = 0 (6.7)

is a statement of conservation of mass:

Any increase in the amount of molecules in some volume must equal the amount of
molecules entering through the surface enclosing this volume.

Substituting ~I from Equation (6.6) we obtain the diffusion equation

∂c

∂t
= D∇2c. (6.8)

If the introduced substance is being created (or destroyed) – for example in chemical
reactions – we may describe this action by some function f of time and coordinates on the
right side of the continuity equation. The diffusion equation then takes the form

∂c

∂t
= D∇2c+ f. (6.9)

If we now compare Equations (6.8) and (6.9) to Equations (6.3) and (6.5) we see they
are identical parabolic equations: (6.3) and (6.8) are homogeneous and (6.5) and (6.9) are
nonhomogeneous.
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6.1.3 One-dimensional Parabolic Equations and Initial and Boundary
Conditions

We start by considering the boundary value problem on the bounded interval [0, l] for the
one-dimensional heat conduction equation (we use “heat terminology” just for convenience)
in its most general form

∂u

∂t
= a2 ∂

2u

∂x2
+ ξ

∂u

∂x
− γu+ f(x, t) . (6.10)

The term linear in u in the heat equation can appear ([7]) if one considers the possibility
of heat exchange with the environment in the case when the lateral surface of the body is
not insulated. In the diffusion equation such a term appears if the diffusing substance is
unstable in the sense that particles may disappear (such as an unstable gas or a gas being
absorbed) or multiply (as with neutron diffusion). If the rates of these processes at each
point in space are proportional to the concentration, the process is described by

∂c

∂t
= D∇2c+ βc, (6.11)

where D > 0, β is the coefficient of disintegration (β < 0) or multiplication (β > 0).
The term with ux can appear, for instance, if one considers the possibility of a diffusing

substance participating in the motion of the material in which it is diffusing (which can be
a fluid or gas). Suppose the fluid and diffusing substance flow along the x-axis with velocity
v. Selecting the element (x, x+ ∆x) and considering the amount of substance which flows
through cross-sections at x and x + ∆x due to diffusion as well as fluid motion we arrive
to an equation that includes the first derivative of c with respect to x in addition to the
second derivative:

∂c

∂t
= D

∂2c

∂x2
− v

∂c

∂x
. (6.12)

Knowledge of the initial temperature distribution means that, at time t = 0, the initial
condition is

u(x, 0) = ϕ(x), 0 < x < l, (6.13)

where ϕ(x) is a given function.

Boundary conditions can be specified in several ways.

1. Dirichlet’s condition

The temperature at the end x = a (here a = 0 or l) of the bar changes by a
specified law given by

u(a, t) = g(t), (6.14)

where g(t) is a known function of time t. In particular, g is constant if the end of
the bar is maintained at a steady temperature.

2. Neumann’s condition

The heat current is given at the end x = a of the bar in which case

q = −κ∂u
∂x
.

This may be written as
∂u

∂x

∣∣∣∣
x=a

= g(t), (6.15)
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where g(t) is a known function.

If one of the ends of the bar is insulated, then the boundary condition at this end
takes the form

∂u

∂x

∣∣∣∣
x=a

= 0. (6.16)

3. Mixed condition

In this case the ends of the bar are exchanging heat with the environment which
has a temperature, θ. Actual heat exchange in real physical situations is very
complicated but we may simplify the problem by assuming that it obeys Newton’s
law, q = H(u− θ), where H is the coefficient of heat exchange.

Thus, in the case of free heat exchange, the boundary conditions at the x = a
end of the rod have the form

∂u

∂x
± hu

∣∣∣∣
x=a

= g(t) (6.17)

with given function g(t) and h = const.

It may also be the case that the external environments at the ends of the bar are
different. In this case boundary conditions at the ends become

κS∆t
∂u

∂x

∣∣∣∣
x=0

= H1 [u|x=0 − θ1] ,

−κS∆t
∂u

∂x

∣∣∣∣
x=l

= H2 [u|x=l − θ2] ,

(6.18)

where the temperatures of the environment at the left and right ends, θ1 and
θ2, are considered to be known functions of time. In the simplest case they are
constants.

In general, the boundary conditions are

P1[u] ≡ α1
∂u

∂x
+ β1u

∣∣∣∣
x=0

= g1(t),

P2[u] ≡ α2
∂u

∂x
+ β2u

∣∣∣∣
x=l

= g2(t).

(6.19)

At the end x = 0 when α1 = 0 we have Dirichlet’s condition, when β1 = 0 we have
Neumann’s condition, and when both constants α1 and β1 are not zero we have the
mixed condition (clearly the constants α1 and β1 cannot be zero simultaneously).
The same holds at the end x = l. As we have discussed in Chapter 4, physical
limitations most often lead to the restrictions α1/β1 < 0 and α2/β2 > 0 for the
signs of the coefficients in boundary condition (6.19).

Now let us show how Equation (6.10) with the help of a proper substitution can be
reduced to the equation without the term with ∂u/∂x.

Substituting
u(x, t) = eµxv(x, t),

where µ = −ξ/
(
2a2
)

into Equation (6.10) yields the equation

∂v

∂t
= a2 ∂

2v

∂x2
− γ̃v + f̃(x, t),
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where

γ̃ = γ +
ξ2

4a2
, f̃(x, t) = e−µxf(x, t).

The initial condition for the function v(x, t) has the form
v(x, 0) = ϕ̃(x)

with ϕ̃(x) = e−µxϕ(x). Boundary conditions for the function v(x, t) are as follows:

P1[ν] ≡ α1
∂v

∂x
+ β̃1v

∣∣∣∣
x=0

= g1(t), P2[ν] ≡ α2
∂v

∂x
+ β̃2v

∣∣∣∣
x=l

= g̃2(t),

where
β̃1 = β1 + µ · α1, β̃2 = β2 + µ · α2, g̃2(t) = e−µl · g2(t)

(check these results as Homework). Keeping in mind this result, in future calculations we
will consider a parabolic equation without the term with ∂u/∂x.

We have focused here on the heat conduction equation because the associated terminol-
ogy is more concrete and intuitively fruitful than that for diffusion. But because the diffusion
and heat conduction equations have identical forms, the solutions to diffusion problems can
be obtained by a trivial replacement of D and c by χ and T. The boundary condition in
Equation (6.14) corresponds to the concentration maintained at the ends, condition (6.15)
corresponds to an impenetrable end, and condition (6.17) corresponds to a semi-permeable
end (when diffusion through this end is similar to that described by Newton’s law for heat
exchange). An analogue from chemistry is the case of a reaction on the boundary of a body
when the speed of reaction, i.e. the speed of creation or absorption of one of the chemical
components, is proportional to the concentration of this component.

Let us briefly notice the uniqueness of the solution of the heat conduction equation under
the conditions in Equations (6.12), (6.13) and (6.19) and the continuous dependence of this
solution on the right-hand terms of the boundary and initial conditions. This material and
the important principle of the maximum we discuss in Section 6.7.

6.2 The Fourier Method for Homogeneous Equations

Let us first find the solution of the homogeneous equation

∂u

∂t
= a2 ∂

2u

∂x2
− γu, 0 < x < l, t > 0, (6.20)

which satisfies the initial condition

u(x, t)|t=0 = ϕ(x) (6.21)

and has homogeneous boundary conditions

P1[u] = α1
∂u

∂x
+ β1u

∣∣∣∣
x=0

= 0, P2[u] = α2
∂u

∂x
+ β2u

∣∣∣∣
x=l

= 0. (6.22)

Notice that the linear parabolic equation (6.20) has no solutions in the form of propagating
waves, f(x± at), like hyperbolic equations have.
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The Fourier method of separation of variables supposes that a solution of Equation
(6.20) can be found as a product of two functions, one depending only on x, the second
depending only on t :

u(x, t) = X(x) T (t). (6.23)

Substituting Equation (6.23) into Equation (6.20) we obtain

X(x) [T ′(t) + γT (t)]− a2X ′′(x)T (t) = 0.

The variables can be separated and denoting a separation constant as −λ, we obtain

T ′(t) + γT (t)

a2T (t)
≡ X ′′(x)

X(x)
= −λ. (6.24)

Thus Equation (6.24) gives two ordinary linear homogeneous differential equations, a first
order equation for function T (t):

T ′(t) +
(
a2λ+ γ

)
T (t) = 0 (6.25)

and a second order equation for function X(x):

X ′′(x) + λ X(x) = 0. (6.26)

To find the allowed values of λ we apply the boundary conditions. Homogenous bound-
ary condition (6.22) imposed on u(x, t), yields homogeneous boundary conditions on the
function X(x) given by

α1X
′ + β1X|x=0 = 0, α2X

′ + β2X|x=l = 0. (6.27)

Thus, we obtain the Sturm-Liouville boundary problem for eigenvalues, λ, and the corre-
sponding eigenfunctions, X(x). As we know from Chapter 4, there exist infinite sets of the
real non-negative discrete spectrum of eigenvalues {λn} and corresponding set of eigenfunc-
tions {Xn(x)} (clearly λ = 0 is also possible if β1 = β2 = 0).

As we obtained in Chapter 4, the eigenvalues of the Sturm-Liouville problem stated in
Equations (6.26) and (6.27) are

λn =
(µn
l

)2

, (6.28)

where µn is nth non-negative root of the equation

tanµ =
(α1β2 − α2β1)lµ

µ2α1α2 + l2β1β2
. (6.29)

The corresponding eigenfunctions can be written as

Xn(x) =
1√

α2
1λn + β2

1

[
α1

√
λn cos

√
λnx− β1 sin

√
λnx

]
. (6.30)

Now consider Equation (6.25). It is a linear first order differential equation and the
general solution with λ = λn is

Tn(t) = Cne
−(a2λn+γ)t, (6.31)

where Cn is an arbitrary constant. Non-negative values of λn are required so that the
solution cannot grow to infinity with time. Now we have that each function

un(x, t) = Tn(t)Xn(x) = Cne
−(a2λn+γ)tXn(x)
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is a solution of Equation (6.20) satisfying boundary conditions (6.22). To satisfy the initial
conditions (6.21), we compose the series

u(x, t) =
∞∑
n=1

Cne
−(a2λn+γ)tXn(x). (6.32)

If this series converges uniformly as well as the series obtained by differentiating twice by
x and once by t, the sum gives a solution to Equation (6.20) and satisfies the boundary
conditions (6.22). The initial condition in Equation (6.21) gives

u|t=0 = ϕ(x) =
∞∑
k=1

CkXk(x), (6.33)

where we have expanded the function ϕ(x) in a series of the eigenfunctions of the boundary
value problem given by Equations (6.26) and (6.27).

Assuming uniform convergence of the series (6.32) we can find the coefficients Cn. Mul-
tiplying both sides of Equation (6.33) by Xn(x), integrating from 0 to l and imposing the
orthogonality condition of the functions Xn(x), we obtain

Cn =
1

||Xn||2

∫ l

0

ϕ(x)Xn(x)dx. (6.34)

If the series (6.32) and the series obtained from it by differentiating by t and twice differ-
entiating by x are uniformly convergent then by substituting these values of coefficients,
Cn, into the series (6.32) we obtain the solution of the problem stated in Equations (6.20)
through (6.22).

Equation (6.32) gives a solution for free heat exchange (heat exchange without sources of
heat within the body). It can be considered as the decomposition of an unknown function,
u(x, t), into a Fourier series over an orthogonal set of functions {Xn(x)}.

Let us substitute (6.34) into (6.32). Changing the order of summation and integration
(that is allowed due the uniform convergence), we obtain:

u(x, t) =

∫ l

0

g(x, ξ, t)ϕ(ξ)dξ, (6.35)

where

g(x, ξ, t) =
∞∑
n=1

Xn(x)Xn(ξ)

‖Xn‖2
e−(a2λn+γ)t. (6.36)

Note that u(x, 0) = ϕ(x), therefore, g(x, ξ, 0) in (6.35) should be equal to δ(x− ξ). That
means that

∞∑
n=1

Xn(x)Xn(ξ)

‖Xn‖2
= δ(x− ξ). (6.37)

Actually, this completeness relation is correct for an arbitrary complete set of eigenfunctions
of a Sturm-Liouville problem (see Chapter 4).

Example 6.1 Let zero temperature be maintained on both the ends, x = 0 and x = l,
of a uniform isotropic bar of length l with a heat-insulated lateral surface. Initially the
temperature distribution inside the bar is given by

u(x, 0) = ϕ(x) =


x

l
u0 for 0 < x ≤ l

2
,

l − x
l

u0 for
l

2
< x < l,



106 Partial Differential Equations: Analytical Methods and Applications

where u0 = const . There are no sources of heat inside the bar. Find the temperature
distribution for the interior of the bar for time t > 0.

Solution. The problem is described by the equation

∂u

∂t
= a2 ∂

2u

∂x2
, 0 < x < l.

with initial and boundary conditions (in this Example they are consistent)

u(x, 0) = ϕ(x), u(0, t) = u(l, t) = 0.

The boundary conditions of the problem are Dirichlet homogeneous boundary conditions,
therefore eigenvalues and eigenfunctions of problem are

λn =
(nπ
l

)2

, Xn(x) = sin
nπx

l
, ||Xn||2 =

l

2
, n = 1, 2, 3, ....

Equation (6.34) gives:

Cn =
2

l

∫ l

0

ϕ(x) sin
nπx

l
dx =

4u0

n2π2
sin

nπ

2

=

 0, n = 2k,
4u0

(2k − 1)2π2
(−1)k, n = 2k − 1.

k = 1, 2, 3, . . .

Hence the distribution of temperature inside the bar for some moment is described by the
series

u(x, t) =
4u0

π2

∞∑
k=1

(−1)k

(2k − 1)2
e−

a2(2k−1)2π2

l2
t sin

(2k − 1)πx

l
.

Figure 6.1 shows the spatial-time-dependent solution u(x, t). This solution was obtained
for the case when l = 10, u0 = 5 and a2 = 0.25. All parameters are dimensionless. The
dark gray line represents the initial temperature, black line is temperature at time t = 100.
The gray lines in between show the temperature evolution within the period of time from
0 until 100, step ∆t = 2. The series for the solution converges rather rapidly because of the
exponential factor.

FIGURE 6.1
Solution u(x, t) for Example 6.1.
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Clearly the approach to equilibrium (the time for temperature fluctuations to decay) is
governed by the factor exp[−(a2λn + γ)t].

As a Reading Exercise, choose values of parameters in real physical units and estimate
how much time it takes to reach equilibrium for different materials and for samples of
different size. Make sure that the answers are physically reasonable.

Example 6.2 Consider the case when the ends, x = 0 and x = l, of a bar are ther-
mally insulated from the environment. The lateral surface is also insulated. In this case the
derivatives of temperature with respect to x on the ends of the bar equal zero. Initially the
temperature is distributed as in the previous example:

ϕ(x) =


x

l
u0 for 0 < x ≤ l

2
,

l − x
l

u0 for
l

2
< x < l,

where u0 = const . Sources of heat are absent. Find the temperature distribution inside the
bar for t > 0.

Solution. We are to solve the equation

∂u

∂t
= a2 ∂

2u

∂x2
, 0 < x < l

with initial and boundary conditions

u(x, 0) = ϕ(x),
∂u

∂x
(0, t) =

∂u

∂x
(l, t) = 0.

Notice that the initial and boundary conditions in this case are not consistent (they are
contradictory); in such situations we can only obtain a generalized solution. The boundary
conditions of the problem are Neumann homogeneous boundary conditions. The eigenvalues
and eigenfunctions are (see Chapter 4):

λn =
(nπ
l

)2

, Xn(x) = cos
nπx

l
, ||Xn||2 =

{
l, n = 0,
l/2, n > 0,

n = 0, 1, 2, . . . .

Having applied Equation (6.34), we obtain

C0 =
u0

l2

[∫ l/2

0

xdx+

∫ l

l/2

(l − x)dx

]
=
u0

4
,

Cn =
2u0

l2

∫ l/2

0

x cos
nπx

l
dx+

2u0

l2

∫ l

l/2

(l − x) cos
nπx

l
dx

=

 0, n = 2k − 1,

u0

k2π2

[
(−1)k − 1

]
, n = 2k

k = 1, 2, 3, . . .

Thus the only nonzero Cn are those for which n = 2k with k = 2m+ 1, m = 0, 1, 2, . . . , i.e.
n = 4m+ 2; so we have

C4m+2 = − 2u0

(2m+ 1)2π2
.
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FIGURE 6.2
Solution, u(x, t), for Example 6.2.

Finally, the temperature distribution inside the bar for some moment is expressed by
the series

u(x, t) =
u0

4
− 2u0

π2

∞∑
m=0

1

(2m+ 1)2
e−

(4m+2)2a2π2

l2
t cos

(4m+ 2)πx

l
.

At x = l/4 and x = 3l/4 all cosine terms equal zero, hence at these points u = u0/4 for
any t ≥ 0. It is also clear that ∫ l

0

u(x, t)dx =
1

4
u0l.

Notice that this area (the definite integral) is proportional to the amount of energy (heat) in
the bar. The insulated ends of the bar correspond to a graph of u(x, t) which has horizontal
tangents at x = 0 and x = l. As t → ∞ the first term of the series dominates. From this
and from physical considerations we conclude that u→ u0/4 as t→∞.

Figure 6.2 shows the space-time dependent solution u(x, t). This solution was obtained
for the case when l = 10, u0 = 5 and a2 = 0.25. All parameters are dimensionless. The dark
gray line represents the initial temperature; the black line is temperature at time t = 50.
The gray lines in between show the temperature evolution within the period of time from
0 until 50, step ∆t = 2.

Example 6.3 Consider the situation where heat flux is governed by Newton’s law of cooling
and a constant temperature environment occurs at each end of a uniform isotropic bar of
length l with insulated lateral surface. The initial temperature of the bar is equal: u0 =
const. Internal sources of heat in the bar are absent. Find the temperature distribution
inside the bar for t > 0.

Solution. We need to solve the equation

∂u

∂t
= a2 ∂

2u

∂x2
, 0 < x < l, t > 0

for the initial condition
u(x, 0) = u0

and boundary conditions

∂u

∂x
(0, t)− hu(0, t) = 0,

∂u

∂x
(l, t) + hu(l, t) = 0.
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FIGURE 6.3
Graphical solution of the eigenvalue equation for Example 6.3.

Obviously, as in the previous example, we can only obtain a generalized solution.
The boundary conditions of the problem are mixed homogeneous boundary conditions,

so eigenvalues are

λn =
(µn
l

)2

, n = 1, 2, 3, . . . ,

where µn is the nth root of the equation tanµ = 2hlµ
µ2−h2l2 . Figure 6.3 shows curves of the

two functions, y = tanµ and y = 2hlµ
µ2−h2l2 , plotted on the same set of axes. The eigenvalues

are the squares of the values of µ at the intersection points of these curves divided by
length l.
Each eigenvalue corresponds to an eigenfunction

Xn(x) =
1√

λn + h2

[√
λn cos

√
λnx+ h sin

√
λnx

]
with the norm ||Xn||2 = l

2 + h
λn+h2 .

Figure 6.4 shows the first four eigenfunctions of the given boundary value problem.

FIGURE 6.4
Eigenfunctions X1(x) through X4(x) for Example 6.3.
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FIGURE 6.5
Solution u(x, t) for Example 6.3.

Applying Equation (6.34) we obtain

Cn =
1

‖Xn‖2
∫ l

0

u0√
λn + h2

[√
λn cos

√
λnx+ h sin

√
λnx

]
dx

=
2u0

√
λn + h2

l (λn + h2) + 2h

[
sin
√
λnl −

h√
λn

(
cos
√
λnl − 1

)]
.

Hence the temperature distribution inside the bar for some moment of time is expressed by
the series

u(x, t) =

∞∑
n=1

Cne
−a2λnt 1√

λn + h2

[√
λn cos

√
λnx+ h sin

√
λnx

]
.

Figure 6.5 shows the spatial time-dependent solution u(x, t) for Example 6.3. This solution
was obtained for the case when l = 10, u0 = 5 and a2 = 0.25. All parameters are dimen-
sionless. The dark gray line represents the initial temperature; the black line is temperature
at time t = 100, step ∆t = 2.

In this example the boundary and initial conditions do not match each other; as a result
at t = 0 the temperature, u(x, 0), given by the solution in the form of an eigenfunction
expansion does not converge uniformly. The convergence is poor at points close to the
ends of the rod and the solution appears to have unphysical oscillations of temperature
initially. Increasing the number of terms in the series smoothes these oscillations at all
points except the ends – this is the Gibbs phenomenon which is discussed in Appendix A.
These oscillations do not occur physically and, in fact, they disappear from the solution
for any finite time t > 0 in which case u(x, t) converges rapidly to a physically reasonable
result.

Next, let us give an example of the solution of a BVP with Laplace transform.

Example 6.4 The heat propagation in a semi-infinite rod is governed by the heat equation,

ut = a2uxx, x > 0, t > 0.

Initially, the temperature of the rod was u1. At t = 0, the temperature at the left end
suddenly becomes equal to u2 6= u1. Thus, the initial condition is u(x, 0) = u1, the boundary
conditions are u(0, t) = u2, |u(∞, t)| <∞. Find u(x, t) for t > 0.
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Applying the Laplace transform (Appendix A) to the equation we obtain

pû(x, p) = a2ûxx(x, p).

This ordinary differential equation with boundary conditions

û(0, p) = u2/p, |û(∞, p)| <∞

has the solution

u(x, p) =
u1

p
+
u2 − u1

p
e−x
√
p/a.

The inverse Laplace transform gives (see the Table of LT in Appendix A).

u(x, t) = u1 + (u2 − u1)erfc

(
x

2a
√
t

)
.

6.3 Nonhomogeneous Equations

First, let us consider an example of a nonhomogeneous equation with a simple right side:

ut − a2uxx = cos
πx

l
, t > 0, (6.38)

u(x, 0) = 0, ut(x, 0) = 0, (6.39)

ux(0, t) = ux(l, t) = 0, t > 0. (6.40)

Similarly to the example considered in Chapter 5, Section 5.8, we apply the Laplace
transform to Equation (6.38) while taking into account the initial conditions (6.39):

pû(x, p)− a2ûxx(x, p) =
1

p
cos

πx

l
,

or

ûxx(x, p)− p

a2
û(x, p) = − 1

pa2
cos

πx

l
. (6.41)

The solution of (6.41) satisfying the boundary conditions

û(0, p) = û(l, p) = 0, (6.42)

is

û(x, p) =
1

p[p+ (πa/l)2]
sin

πx

l
=

(
l

πa

)2 [
1

p
− p

p+ (πa/l)2]

]
cos

πx

l
.

Taking the inverse Laplace transform (see the table in Appendix A), we obtain

u(x, t) =

(
l

πa

)2{
1− exp

[
−
(πa
l

)2

t

]}
cos

πx

l
.

Now consider the general form of the nonhomogeneous linear equation

∂u

∂t
= a2 ∂

2u

∂x2
− γu+ f(x, t), (6.43)
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where f(x, t) is a known function, with initial condition

u(x, t)|t=0 = ϕ(x) (6.44)

and homogeneous boundary conditions

P1[u] ≡ α1ux + β1u|x=0 = 0, P2[u] ≡ α2ux + β2u|x=l = 0. (6.45)

To start, let us express the function u(x, t) as the sum of two functions:

u(x, t) = u1(x, t) + u2(x, t),

where u1(x, t) satisfies the homogeneous equation with the given boundary conditions and
the initial condition:

∂u1

∂t
= a2 ∂

2u1

∂x2
− γu1,

u1(x, t)|t=0 = ϕ(x),

P1[u1] ≡ α1u1x + β1u1|x=0 = 0, P2[u1] ≡ α2u1x + β2u1|x=l = 0.

The function u2(x, t) satisfies the nonhomogeneous equation with zero boundary and initial
conditions:

∂u2

∂t
= a2 ∂

2u2

∂x2
− γu2 + f(x, y), (6.46)

u2(x, t)|t=0 = 0, (6.47)

P1[u2] ≡ α1u2x + β1u2|x=0 = 0, P2[u2] ≡ α2u2x + β2u2|x=l = 0. (6.48)

The methods for finding u1(x, t) have been discussed in the previous section; therefore
here we concentrate our attention on finding the solutions u2(x, t). As for the case of free
heat exchange inside the bar let us expand function u2(x, t) as a series

u2(x, t) =

∞∑
n=1

Tn(t)Xn(x), (6.49)

where Xn(x) are eigenfunctions of the corresponding homogeneous boundary value problem
and Tn(t) are unknown functions of t.

Boundary conditions in Equation (6.48) for u2(x, t) are valid for any choice of functions
Tn(t) (when the series converge uniformly) because they are valid for the functions Xn(x).
Substituting the series (6.49) into Equation (6.46) we obtain

∞∑
n=1

[
T ′n(t) +

(
a2λn + γ

)
Tn(t)

]
Xn(x) = f(x, t). (6.50)

Using the completeness property we can expand the functionf(x, t), as function of x,
into a Fourier series of the functions Xn(x) on the interval (0,l) such that

f(x, t) =
∞∑
n=1

fn(t)Xn(x). (6.51)

Using the orthogonality property of the functions Xn(x) we find that

fn(t) =
1

‖Xn‖2
∫ l

0

f(x, t)Xn(x)dx. (6.52)



One-Dimensional Parabolic Equations 113

Comparing the two expansions in Equations (6.50) and (6.51) for the same functionf(x, t)
we obtain a differential equation for the functions Tn(t):

T ′n(t) +
(
a2λn + γ

)
Tn(t) = fn(t). (6.53)

In order that u2(x, t) given by Equation (6.49) satisfies the initial condition (6.47) it is
necessary that the functions Tn(t) obey the condition

Tn(0) = 0. (6.54)

The solution to the ordinary differential equation of the first order, Equation (6.53), with
initial condition (6.54) can be represented in the integral form

Tn(t) =

∫ t

0

fn(τ)e−(a2λn+γ)(t−τ)dτ, (6.55)

or

Tn(t) =

∫ t

0

fn(τ)Yn(t− τ)dτ, where Yn(t− τ) = e−(a2λn+γ)(t−τ).

Thus, the solution of the nonhomogeneous heat conduction problem for a bar with
boundary conditions equal to zero has the form

u(x, t) = u1(x, t) + u2(x, t) =
∞∑
n=1

[
Tn(t) + Cne

−(a2λn+γ)t
]
Xn(x), (6.56)

where functions Tn(t) are defined by Equation (6.55) and coefficients Cn have been found
earlier when we considered the homogeneous heat equation.

Example 6.5 A point-like heat source with power Q = const is located at x0 (0 < x0 < l)
in a uniform isotropic bar with insulated lateral surfaces. The initial temperature of the bar
is zero. Temperatures at the ends of the bar are maintained at zero. Find the temperature
inside the bar for t > 0.

Solution. The boundary value problem modeling heat propagation for this example is

∂u

∂t
= a2 ∂

2u

∂x2
+
Q

cρ
δ(x− x0),

u(x, 0) = 0, u(0, t) = u(l, t) = 0,

where δ(x− x0) is the delta function.
The boundary conditions are Dirichlet homogeneous boundary conditions, so the eigen-

values and eigenfunctions of problem are

λn =
(nπ
l

)2

, Xn(x) = sin
nπx

l
, ‖Xn‖2 =

l

2
(n = 1, 2, 3, ...).

In the case of homogeneous initial conditions, ϕ(x) = 0, we have Cn = 0 and the solution
u(x, t) is defined by the series

u(x, t) =
∞∑
n=1

Tn(t) sin
nπx

l
,
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FIGURE 6.6
Solution u(x, t) for Example 6.5.

where fn and Tn are defined by Equations (6.52) and (6.56):

fn(t) =
2

l

∫ l

0

Q

cρ
δ (x− x0) sin

nπx

l
dx =

2Q

lcρ
sin

nπx0

l
dx,

Tn(t) =
2Ql

cρa2n2π2

(
1− e− n

2a2π2t/l2
)

sin
nπx0

l
.

Substituting the expression for Tn(t) into the general formulas we obtain the solution of the
problem:

u(x, t) =
2Ql

cρa2π2

∞∑
n=1

1

n2

(
1− e− n

2a2π2t/l2
)

sin
nπx0

l
sin

nπx

l
.

Figure 6.6 shows the spatial-time-dependent solution u(x, t) for Example 4. This solution
was obtained for the case when l = 10, Q/cρ = 5, x0 = 4 and a2 = 0.25. All parameters are
dimensionless. The dark gray line represents the initial temperature; black line is tempera-
ture at time t = 100. The gray lines in between show the temperature evolution within the
period of time from 0 until 100, step ∆t = 2.

6.4 Green’s Function and Duhamel’s Principle

In the present section, we consider the relation between the solution of the homogeneous
equation with nonzero initial condition, u1(x, t), and that of the nonhomogeneous equation
with zero initial condition, u2(x, t).

In Section 6.2. we have found that u1(x, t) can be presented in the form

u1(x, t) =

∫ l

0

g(x, ξ, t)ϕ(ξ)dξ, (6.57)

where

g(x, ξ, t) =
∞∑
n=1

Xn(x)Xn(ξ)

‖Xn‖2
e−(a2λn+γ)t. (6.58)
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Let us obtain a similar formula for u2(x, t). Substituting (6.52) and (6.55) into (6.49),
we find (a uniform convergence is assumed):

u2(x, t) =

∫ t

0

dτ

∫ l

0

dξ
∞∑
n=1

Xn(x)Xn(ξ)

‖Xn‖2
e−(a2λn+γ)(t−τ)f(ξ, τ). (6.59)

Define f(ξ, τ) = 0, if τ < 0. Then expression (6.59) can be rewritten as

u2(x, t) =

∫ ∞
−∞

dτ

∫ l

0

dξG(x, ξ, t− τ)f(ξ, τ), (6.60)

where Green’s function

G(x, ξ, t− τ) = H(t− τ)g(x, ξ, t− τ) (6.61)

(H(t− τ) is the Heaviside step function). Thus, we see that the same function g appears in
expressions (6.57) and (6.60), but (6.60) contains an additional integration in time. That
circumstance allows us to find the relation between the solution of the nonhomogeneous
problem (6.46)-(6.48) with zero initial condition and that of a homogeneous problem with
an appropriate initial condition. That relation is determined below.

Let us define the following homogeneous problem for a function v(x, t; τ), which depends
on the parameter τ :

vt(x, t; τ) = a2vxx(x, t; τ)− γv(x, t; τ); 0 < x < l, t > τ ; (6.62)

v(x, τ ; τ) = f(x, τ), 0 ≤ x ≤ l; P1[v] = 0, P2[v] = 0. (6.63)

By the change of variables s = t− τ , ṽ(x, s; τ) = v(x, t; τ), we obtain the standard problem

ṽs = a2ṽxx; 0 < x < l, s > 0;

ṽ(x, 0; τ) = f(x, τ)), 0 ≤ x ≤ l; P1[ṽ] = 0, P2[ṽ] = 0.

Its solution, according to (6.35), is

ṽ(x, s; τ) =

∫ l

0

g(x, ξ, s)f(ξ, τ)dξ, s > 0,

hence

v(x, t; τ) =

∫ l

0

g(x, ξ, t− τ)f(ξ, τ)dξ, t > τ.

Let us show that the solution of the nonhomogeneous problem (6.46)-(6.48) can be found
as

u2(x, t) =

∫ t

0

v(x, t; τ)dτ. (6.64)

Indeed, u2(x, t) satisfies the initial condition (6.42) and the boundary conditions (6.48).
Substituting (6.64) into (6.46), we find:

u2,t(x, t) = v(x, t; t) +

∫ t

0

vt(x, t; τ)dτ,

u2,xx(x, t) =

∫ t

0

vxx(x, t; τ)dτ,
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hence

u2,t(x, t)− a2u2,xx(x, t) + γu2

= v(x, t; t) +

∫ t

0

[
vt(x, t; τ)− a2vxx(x, t; τ) + γv(x, t; τ)

]
dτ = f(x, t).

Relation (6.64) is called Duhamel’s principle.
Note that the dimension of the space does not influence the proof presented above. Hence,

Duhamel’s principle is valid also for parabolic problems in higher dimensions considered in
Chapter 9.

Example 6.6 Using Duhamel’s principle, find the solution of the following BVP for a
nonhomogeneous heat equation:

ut = a2uxx + t sin 2x, 0 < x < π, t > 0;

u(x, 0) = 0, 0 ≤ x ≤ π;

u(0, t) = u(π, t) = 0, t ≥ 0.

First, let us formulate problem (6.62)-(6.63) for function v(x, t; τ):

vt(x, t; τ) = a2vxx(x, t; τ), 0 < x < π, t > τ ;

v(x, τ ; τ) = τ sin 2x, 0 ≤ x ≤ π;

v(0, t; τ) = v(π, t; τ) = 0, t ≥ τ.

The latter problem can be solved by separation of variables (see Section 6.2). Because
X(x) = sin 2x is an eigenfunction satisfying (6.26), (6.27) for λ = 4, only one term in
expansion (6.32) is different from zero. The corresponding function T (t), which satisfies
equation

Tt(t; τ) + 4a2T (t; τ) = 0, t > τ

with initial condition
T (τ ; τ) = τ,

is
T (t; τ) = τe−4a2(t−τ),

thus
v(x, t; τ) = τe−4a2(t−τ) sin 2x.

Substituting v(x, t; τ) into formula (6.64), we find

u(x, t) =

∫ t

0

τe−4a2(t−τ) sin(2x)dτ = e−4a2t sin(2x)

∫ t

0

τe4a2τdτ

=
1

(4a2)2

(
4a2t− 1 + e−4a2t

)
sin(2x).

Note also that a similar relation exists for hyperbolic problems. For instance, let us
consider the nonhomogeneous wave equation with homogeneous initial conditions

utt(x, t) = a2uxx(x, t) + f(x, t), 0 < x < l, t > 0;

u(x, 0) = 0, ut(x, 0) = 0, 0 ≤ x ≤ l; u(0, t) = u(l, t) = 0, t ≥ 0.
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Define function v(x, t; τ), t ≥ τ ≥ 0, which solves the problem

vtt(x, t; τ) = a2vxx(x, t; τ), 0 < x < l, t > τ ;

v(x, τ ; τ) = 0; vt(x, τ ; τ) = f(x, τ), 0 ≤ x ≤ l.

v(x, τ ; τ) = 0; vt(x, τ ; τ) = f(x, τ), 0 ≤ x ≤ l.

v(0, t; τ) = v(l, t; τ), τ ≥ t.

One can show that

u(x, t) =

∫ t

0

v(x, t; τ)dτ.

Example 6.7 Using Duhamel’s principle, find the solution of the following BVP for a
nonhomogeneous wave equation:

utt = a2uxx + sin 3x, 0 < x < π, t > 0;

u(x, 0) = 0, 0 ≤ x ≤ π;

u(0, t) = u(π, t) = 0, t ≥ 0.

Duhamel’s principle allows us to reformulate the problem using a homogeneous wave equa-
tion:

vtt(x, t; τ) = a2vxx(x, t; τ), 0 < x < π, t > τ ;

v(x, τ ; τ) = 0; vt(x, τ ; τ) = sin 3x, 0 ≤ x ≤ π;

v(0, t; τ) = v(π, t; τ) = 0, t ≥ τ.

That problem can be solved by the method of separation of variables (see Section 5.6).
Because function X(x) = sin 3x is an eigenfunction of problem (5.57)-(5.58) with boundary
conditions X(0) = X(π) = 0, corresponding to λ = 9, only one term is nonzero in expansion
(5.77). The corresponding function T (t) satisfies equation

Ttt(t; τ) + 9a2T (t; τ) = 0

with initial condition Tt(τ ; τ) = 1, hence

T (t; τ) =
1

3a
sin(3at)

and

v(x, t; τ) =
1

3a
sin(3at) sin(3x).

Thus,

u(x, t) =

∫ t

0

v(x, t; τ)dτ =
1

9a2
[1− cos(3at)] sin(3x).
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6.5 The Fourier Method for Nonhomogeneous Equations with
Nonhomogeneous Boundary Conditions

Now consider the general boundary problem for heat conduction, Equation (6.43), given by

∂u

∂t
= a2 ∂

2u

∂x2
− γu+ f(x, t)

with nonhomogeneous initial (Equation (6.44)) and boundary conditions

u(x, t)|t=0 = ϕ(x),

P1[u] ≡ α1ux + β1u|x=0 = g1(t), P2[u] ≡ α2ux + β2u|x=l = g2(t). (6.65)

We cannot apply the Fourier method directly to obtain a solution of the problem because
the boundary conditions are nonhomogeneous. However, the problem can easily be reduced
to a problem with boundary conditions equal to zero in the following way.

Let us search for the solution of the problem in the form

u(x, t) = v(x, t) + w(x, t),

where v(x, t) is a new unknown function, and the function w(x, t) is chosen so that it satisfies
the given nonhomogeneous boundary conditions

P1[w] ≡ α1wx + β1w|x=0 = g1(t), P2[w] ≡ α2wx + β2w|x=l = g2(t).

For the function v(x, t) we obtain the following boundary value problem:

∂v

∂t
= a2 ∂

2v

∂x2
− γv + f̃(x, t),

v(x, t)|t=0 = ϕ̃(x),

P1[v] ≡ α1vx + β1v|x=0 = 0, P2[v] ≡ α2vx + β2v|x=l = 0,

where

f̃(x, t) = f(x, t)− ∂w

∂t
+ a2 ∂

2w

∂x2
− γw,

ϕ̃(x) = ϕ(x)− w(x, 0).

The solution of such a problem with homogeneous boundary conditions has been considered
in the previous section.

The auxiliary function w(x, t) is ambiguously defined. The simplest way to proceed is
to use polynomials and construct it in the form

w(x, t) = P1(x)g1(t) + P2(x)g2(t),

where P1(x) and P2(x) are polynomials of the 1st or 2nd order. Coefficients of these poly-
nomials will be chosen so that the function w(x, t) satisfies the given boundary conditions.
We have the following possibilities.

Case I. If β1 and β2 in Equation (6.65) are not zero simultaneously we may seek the
function w(x, t) in the form

w(x, t) = (γ1 + δ1x)g1(t) + (γ2 + δ2x)g2(t).
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Substituting this into boundary conditions (6.65), and taking into account that the derived
system of equations must be valid for arbitrary t, we obtain coefficients γ1, δ1, γ2 and δ2 as

γ1 =
α2 + β2lx

β1β2lx + β1α2 − β2α1
, δ1 =

−β2

β1β2lx + β1α2 − β2α1
,

γ2 =
−α1

β1β2lx + β1α2 − β2α1
, δ2 =

β1

β1β2lx + β1α2 − β2α1
.

Reading Exercise: We leave it to the reader to obtain the results above.

Case II. If β1 = β2 = 0, that is

{
ux(0, t) = g1(t)
ux(l, t) = g2(t)

the auxiliary function has the form

w(x, t) =

[
x− x2

2l

]
· g1(t) +

x2

2l
· g2(t).

Reading Exercise: Verify the statement above.
It is easily checked that, defined in such a way, the auxiliary functions w(x, t) satisfy the

boundary conditions in Equation (6.65).

Reading Exercise: Prove the statement above.

Combining the different kinds of boundary conditions listed above, we obtain nine dif-
ferent auxiliary functions which are listed in Appendix C part 2.

In the following examples we consider problems which involve the nonhomogeneous heat
conduction equation with nonhomogeneous boundary conditions.

Example 6.8 Let the pressure and temperature of air in a cylinder be equal to the atmo-
spheric pressure. One end of the cylinder at x = 0 is opened at the instant t = 0, and the
other, at x = l, remains closed. The concentration of some gas in the external environment
is constant (u0 = const). Find the concentration of gas in the cylinder for t > 0 if at the
instant t = 0 the gas begins to diffuse into the cylinder through the opened end.

Solution. This problem can be represented by the equation

∂u

∂t
= a2 ∂

2u

∂x2
, a2 = D,

under conditions

u(x, 0) = 0, u(0, t) = u0, DS
∂u

∂x
(l, t) = 0,

where D is the diffusion coefficient.
Clearly the eigenvalues and eigenfunctions of the problem are (see Chapter 4):

λn =

[
(2n− 1)π

2l

]2

, Xn(x) = sin
(2n− 1)πx

2l
, ||Xn||2 =

l

2
, n = 1, 2, 3, . . . .

and the solution will be of the form

u(x, t) = v(x, t) + w(x, t).

In general, for a specific problem an auxiliary function is easily obtained from general
formulas for w(x, t) found in Appendix C part 2. We may often guess what the function
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FIGURE 6.7
Solution u(x, t) for Example 6.8.

must look like based on the physical observation that we are searching for a terminal or
steady state solution. In the present case

w(x, t) = u0 .

We also have
f̃(x, t) = 0, ϕ̃(x) = −u0.

Applying formula (6.34), we obtain

Cn = −2u0

l

∫ l

0

sin
(2n− 1)πx

2l
dx = − 4u0

(2n− 1)π
.

Substituting the expression for Cn into the general formula, we obtain the final solution:

u(x, t) = w(x, t) +
∞∑
n=1

Cne
− a

2(2n−1)2π2

4l2
t sin

(2n− 1)πx

2l

= u0 −
4u0

π

∞∑
n=1

1

2n− 1
e−

a2(2n−1)2π2

4l2
t sin

(2n− 1)πx

2l
.

Figure 6.7 shows the spatial-time-dependent solution u(x, t). This solution was obtained for
the case when l = 10, u0 = 10 and a2 = D = 1. All parameters are dimensionless. The
dark gray line represents the initial temperature and the black line is temperature at time
t = 20, step dt = 2.

Example 6.9 Find the temperature change in a homogeneous isotropic bar of length l
(0 ≤ x ≤ l) with a heat-insulated lateral surface during free heat exchange if the initial
temperature is given by

u(x, 0) = ϕ(x) = u0
x2

l2
.

The left end of the bar at x = 0 is insulated and at the right end temperature is held
constant:

u(l, t) = u0, where u0 = const > 0.

Solution. The problem is described by the equation

∂u

∂t
= a2 ∂

2u

∂x2
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with the conditions
u(x, 0) = ϕ(x) = u0x

2/l2,

∂u

∂x
(0, t) = 0, u(l, t) = u0.

The solution of the problem will be of the form

u(x, t) = v(x, t) + w(x, t).

The auxiliary function can be easily obtained from the general formulas above (do this as
a Reading Exercise; the answers are found in Appendix C part 2) and we find

w(x, t) = u0.

This function corresponds to the steady-state regime as t→∞. The eigenvalues and eigen-
functions are easy to obtain (you can also find them in Appendix C part 1) and we leave it
to the reader as a Reading Exercise to check that they are:

λn =

[
(2n− 1)π

2l

]2

, Xn(x) = cos
(2n− 1)πx

2l
, ||Xn||2 =

l

2
, (n = 1, 2, 3, . . .).

Following the same logic as in previous problems, for the function v(x, t) we obtain the
conditions

f̃(x, t) = 0,

ϕ̃(x) = u0
x2

l2
− u0 = u0

(
x2

l2
− 1

)
.

We apply Equation (6.34) to obtain

Cn =
2

l

∫ l

0

ϕ̃(x) cos
(2n− 1)πx

2l
dx

=
2

l

∫ l

0

u0

(
x2

l2
− 1

)
cos

(2n− 1)πx

2l
dx = − 32u0

(2n− 1)3π3
(−1)n.

With these coefficients we obtain the solution of the problem:

u(x, t) = u0 −
32u0

π3

∞∑
n=1

(−1)n

(2n− 1)
e−

(2n−1)2a2π2

l 2 t cos
(2n− 1)πx

2l
.

Figure 6.8 shows the spatial-time-dependent solution u(x, t) for Example 6.9. This solution
was obtained for the case when l = 10, u0 = 5 and a2 = 0.25. All parameters are dimension-
less. The dark gray line represents the initial temperature and the black line is temperature
at time t = 250, step ∆t = 2.

Example 6.10 Let the pressure and temperature of air in a cylinder length l (0 ≤ x ≤ l)
be equal to the atmospheric pressure. One end of the cylinder at x = 0 is opened at the
instant t = 0, and the other, at x = l, remains closed. The concentration of some gas in
the external environment is constant (u0 = const). Find the concentration of gas in the
cylinder for t > 0 if at the instant t = 0 the gas begins to diffuse into the cylinder through
the opened end.
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FIGURE 6.8
Solution u(x, t) for Example 6.9.

Solution. This problem can be represented by the equation

∂u

∂t
= a2 ∂

2u

∂x2
, a2 = D,

under conditions

u(x, 0) = 0, u(0, t) = u0, DS
∂u

∂x
(l, t) = 0,

where D is the diffusion coefficient.
Clearly the eigenvalues and eigenfunctions of the problem are (see Appendix C part 1):

λn =

[
(2n− 1)π

2l

]2

, Xn(x) = sin
(2n− 1)πx

2l
, ||Xn||2 =

l

2
, n = 1, 2, 3, . . . .

and the solution will be of the form

u(x, t) = v(x, t) + w(x, t).

In general, for a specific problem an auxiliary function is easily obtained from general
formulas for w(x, t) found in Appendix C part 2. We may often guess what the function
must look like based on the physical observation that we are searching for a terminal or
steady state solution. In the present case

w(x, t) = u0 .

We also have
f̃(x, t) = 0, ϕ̃(x) = −u0.

Applying formula (6.34), we obtain

Cn = −2u0

l

∫ l

0

sin
(2n− 1)πx

2l
dx = − 4u0

(2n− 1)π
.

Substituting the expression for Cn into the general formula, we obtain the final solution:

u(x, t) = w(x, t) +
∞∑
n=1

Cne
− a

2(2n−1)2π2

4l2
t sin

(2n− 1)πx

2l

= u0 −
4u0

π

∞∑
n=1

1

2n− 1
e−

a2(2n−1)2π2

4l2
t sin

(2n− 1)πx

2l
.
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FIGURE 6.9
Solution u(x, t) for Example 6.10.

Figure 6.9 shows the spatial-time-dependent solution u(x, t) for Example 6.10 for l = 10,
u0 = 10 and a2 = D = 1.

Example 6.11 The initial temperature of a homogeneous isotropic bar of length l (0 ≤
x ≤ l) is

u(x, 0) = u0 = const.

There exists a steady heat flux from the environment into the ends of the bar which is given
by

∂u

∂x
(0, t) = Q1 = − q1

κS
,

∂u

∂x
(l, t) = Q2 =

q2

κS
.

Convective heat transfer occurs with the environment through the lateral surface. Find the
temperature u(x, t) of the bar for t > 0.

Solution. The problem is described by the equation

∂u

∂t
= a2 ∂

2u

∂x2
− γu, a2 =

κ

cρ
, γ =

h

cρ

with initial and boundary conditions

u(x, 0) = ϕ(x) = u0,

∂u

∂x
(0, t) = Q1,

∂u

∂x
(l, t) = Q2.

The boundary conditions of the problem are Neumann boundary conditions and the eigen-
values and eigenfunctions are, respectively,

λn =
(nπ
l

)2

, Xn(x) = cos
nπx

l
, ||Xn||2 =

{
l, n = 0,
l/2, n > 0.

The auxiliary function is (see Appendix C part 2):

w(x, t) =

(
x− x2

2l

)
Q1 +

x2

2l
Q2 = xQ1 +

x2

2l
(Q2 −Q1) .

We leave it to the reader as a Reading Exercise to obtain this auxiliary function and the
eigenvalues and eigenfunctions.
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FIGURE 6.10
Solution u(x, t) for Example 6.11.

The solution is

u(x, t) = w(x, t) +
∞∑
n=0

[
Tn(t) + Cn · e−(a2λn+γ)t

]
cos

nπx

l
.

To obtain the coefficients we find first

f̃(x, t) =
a2

l
(Q2 −Q1)− γ

[(
x− x2

2l

)
Q1 +

x2

2l
Q2

]
,

ϕ̃(x) = u0 −
(
x− x2

2l

)
Q1 −

x2

2l
Q2.

Applying Equations (6.34), (6.52) and (6.55), we obtain

C0 =
1

l

∫ l

0

[
u0 −

(
x− x2

2l

)
Q1 −

x2

2l
Q2

]
dx = u0 −

l

6
(2Q1 +Q2),

Cn =
2

l

∫ l

0

[
u0 −Q1x+ (Q1 −Q2)

x2

2l

]
cos

nπx

l
dx =

2l

n2π2
[Q1 − (−1)nQ2] ,

f0(t) =
1

l

∫ l

0

f∗(x, t) dx =
a2(Q2 −Q1)

l
− γl

6
(2Q1 +Q2),

T0(t) =

∫ t

0

f0(τ) · e−γ(t−τ) dτ =
1

γ
·
[
a2(Q2 −Q1)

l
− γl

6
(2Q1 +Q2)

]
·
(
1− e−γt

)
.

For n > 0,

fn(t) =
2

l

∫ l

0

f∗(x, t) cos
nπx

l
dx =

2lγ

n2π2
[Q1 − (−1)nQ2] ,

Tn(t) =

∫ t

0

fn(τ) · e−(a2λn+γ)(t−τ) dτ

=
2lγ

n2π2 (a2λn + γ)
· [Q1 − (−1)nQ2] ·

(
1− e−(a2λn+γ)t

)
.

Figure 6.10 shows the spatial-time-dependent solution u(x, t). This solution was obtained
for the case when l = 10, γ = 0.02, u0 = 10, Q1 = −5, Q2 = 10 and a2 = 0.25. All
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parameters are dimensionless. The dark gray line represents the initial temperature and the
black line is temperature at time t = 150, step ∆t = 2.

Example 6.12 Find the temperature distribution inside a thin homogeneous isotropic bar
of length l (0 ≤ x ≤ l) with insulated lateral surface if the initial temperature is zero. The
temperature is maintained at zero on the right end of the bar (x = l), and on the left it
changes as governed by

u(0, t) = u0 cosωt,

where u0, ω are known constants. There are no sources or absorbers of heat inside the bar.

Solution. The temperature is given by a solution of the equation

∂u

∂t
= a2 ∂

2u

∂x2

with conditions
u(x, 0) = 0,

u(0, t) = u0 cosωt, u(l, t) = 0.

For these Dirichlet boundary conditions the eigenvalues and eigenfunctions of the problem
are

λn =
(nπ
l

)2

, Xn(x) = sin
nπx

l
, ‖Xn‖2 =

l

2
(n = 1, 2, 3, . . .).

The solution will be of the form

u(x, t) = v(x, t) + w(x, t).

The auxiliary function follows from the general case (also see Appendix C part 2):

w(x, t) =
(

1− x

l

)
u0 cosωt.

Then
f̃(x, t) = u0ω

(
1− x

l

)
sinωt and ϕ̃(x) = −u0

(
1− x

l

)
.

Applying Equations (6.34), (6.52) and (6.55), we obtain

Cn =
2

l

∫ l

0

ϕ̃(x) sin
nπx

l
dx = −2u0

nπ
,

fn(t) =
2

l

∫ l

0

f̃(x) sin
nπx

l
dx =

2u0ω

nπ
sinωt,

Tn(t) =

∫ t

0

fn(τ) e− a
2λn(t−τ)dτ =

2u0ω

nπ

∫ t

0

sinωτ e− a
2λn(t−τ)dτ

=
2u0ω

nπ(a4λ2
n + ω2)

[
a2λn sinωt− ω cosωt+ ωe− a

2λnt
]
.

Substituting the expressions for Cn and Tn(t) into the general formulas, we obtain the
solution:

u(x, t) =
(

1− x

l

)
u0 cosωt+

∞∑
n=1

[
Tn(t) + Cne

− a2λnt
]

sin
nπx

l

=
(

1− x

l

)
u0 cosωt+

2u0

π

∞∑
n=1

1

n(a4λ2
n + ω2)

×
[
a2λnω sinωt− ω2 cosωt+ a2λne

− a2λnt
]

sin
nπx

l
.
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FIGURE 6.11
Solution u(x, t) for Example 6.12.

Figure 6.11 shows the spatial-time-dependent solution u(x, t). This solution was obtained
for the case when l = 10, ω = 0.5, u0 = 5 and a2 = 4. All parameters are dimensionless.
The dark gray line represents the initial temperature and the black line is temperature at
time t = 15, step ∆t = 2.

Reading Exercise: Check that for t → ∞ the solution obtained above is a sum of purely
periodic harmonics and can be presented in the form

u(x, t) =
(

1− x

l

)
u0 cosωt+

2u0

π

∞∑
n=1

1

n
sin δn · sin(ωt− δn) · sin nπx

l
,

where the phase shifts are given by δn = tan−1(ω/a2λn).

6.6 Large Time Behavior of Solutions

Next, we consider frequently encountered physical situations where knowledge of initial
conditions is not important. It is seen from the previous examples that the influence of the
initial conditions decreases with time for cases where heat propagates through a body. If
the moment of interest is long enough after the initial time, the temperature of a bar, for
example, is for all purposes defined by the boundary conditions since the effects of the initial
conditions have had time to decay. In this case we may suppose that after a long enough
time the initial condition vanishes. This situation also frequently applies when boundary
conditions change periodically, for example in the previous Example 6.12. In these cases we
may assume that after a large interval of time the temperature of a body varies periodically
with the same frequency as the boundary condition. After this time the initial temperature
can always be assumed to be equal to zero (even if it is not). In problems like Example 6.12
we can specify this time – as can be seen from the solution temperature does not depend
on the initial condition when t� (l/a)2.

Another situation when initial conditions are not important occurs when the equation
contains periodically changing terms so that the solution varies with the same frequency
after a long enough time. The example below presents such a situation.
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Example 6.13 Consider the motion of fluid between two parallel plates, located at x = 0
and x = H, under a periodically changing pressure gradient parallel to the y-axis. Clearly
this is a one-dimensional problem; the function for which we are searching is the y-
component of the fluid speed, u(x, t). Since we are searching for a steady-state regime we
assume the solution does not depend on the initial condition and formally we set u(x, 0) = 0.

Solution. This problem is described by the equation that follows from the Navier-Stokes
equation for fluid motion given by

∂u

∂t
= a2 ∂

2u

∂x2
+ b cosωt, (6.66)

where a2 ≡ ν is the coefficient of kinematic viscosity. The boundary conditions

u(0, t) = u(H, t) = 0

correspond to zero velocity at the plates and the initial condition is

u(x, 0) = 0.

The eigenvalues and eigenfunctions of the problem we have seen a number of times
before and are

λn =
(nπ
H

)2

, Xn(x) = sin
nπx

H
, ||Xn||2 =

H

2
, n = 1, 2, 3, . . . .

The coefficient, Cn = 0, since ϕ(x) = 0. Applying Equations (6.52) and (6.55) we obtain

fn(t) =
2

H

∫ H

0

b cosωt · sin nπx
H

dx =
2b cosωt

nπ
[1− (−1)n] ,

Tn(t) =
2b [1− (−1)n]

nπ

∫ t

0

cosωτ e−
a2n2π2

H2 (t−τ)dτ =
2bH2 [1− (−1)n]

nπ [a4n4π4 + ω2H4]

×
[
a2n2π2 cosωt+ ωH2 sinωt− a2n2π2e−

a2n2π2

H2 t
]
.

Obviously from above we see that T2k(t) = 0. Also

a2n2π2 cosωt+ ωH2 sinωt =
√
a4n4π4 + ω2H4sin(ωt+ θn),

where θn = arctana
2n2π2

ωH2 . Hence, the solution of the problem has the form

u(x, t) =
4bH2

π

∞∑
k=1

1

2k − 1

{
sin(ωt+ θ2k−1)√

a4(2k − 1)4π4 + ω2H4

− −a2(2k − 1)2π2

[a4(2k − 1)4π4 + ω2H4]
e−

a2(2k−1)2π2

H2 t

}
sin

(2k − 1)πx

H
.

Figure 6.12 shows the spatial-time-dependent solution u(x, t). This solution was obtained
for the case when H = 10, ω = 0.5, b = 5 and a2 = ν = 1. All parameters are dimensionless.
The dark gray line represents the initial temperature and the black line is velocity at time
t = 30, step ∆t = 2.

Clearly as t→∞ (more accurately, when t� H2
/
a2) we have

u(x, t) → 4bH2

π

∞∑
k=1

sin(ωt+ θ2k−1)

(2k − 1)
√
a4(2k − 1)4π4 + ω2H4

sin
(2k − 1)πx

H
.
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FIGURE 6.12
Solution u(x, t) for Example 6.13.

We can also see that u(0, t) = u(H, t) = 0 as it should be. Also u(x, t) takes its maximum
value at x = H/2.

Notice that the initial conditions and the solution formally disagree but in this periodic
problem the role of the initial condition becomes negligible for times t� H2

/
a2.

In this and similar problems it is easy to obtain an asymptotic solution in a closed form
(not as the series). From the physical point of view it follows that such a solution is periodic
with frequency ω because in systems with dissipation (described by parabolic equations)
the internal oscillations decay exponentially with time (which is exactly the opposite of the
case of hyperbolic equations). This allows us to search for a solution in the form

u(x, t) = X(x) exp(iωt). (6.67)

Notice that we cannot look for a time dependence for the solution in the form of an external
force cosωt only - the reason is that the derivative in time mix the sin and cos functions
and we have to take into account both of them. Another way is to use an exponential form
(6.67).

Substituting Equation (6.67) into Equation (6.66) we obtain the ordinary differential
equation

X ′′ − iω

a2
X = − b

a2
. (6.68)

First, we solve the homogeneous equation,

X ′′ − iω

a2
X = 0. (6.69)

The characteristic equation for this linear equation has two roots:

√
iω

a
= ±

√
ω/2

a
(1 + i). (6.70)

Thus, a general solution to the homogeneous Equation (6.69) is

X(x) = C1 exp[q(1 + i)x] + C2 exp[−q(1 + i)x], q =
1

a

√
ω

2
. (6.71)
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A particular solution of the nonhomogeneous Equation (6.68) is (−ib/ω), in which case
we may write a solution of this equation which satisfies zero boundary conditions as

X(x) = − ib
ω

(
1−

cosα
(
x− H

2

)
cosαH2

)
, α = q (1− i) . (6.72)

From this we have
u(x, t) = ReX cosωt− ImX sinωt. (6.73)

X(x) is complex and the system response will be, as follows from the previous formula,
shifted in phase relative to the external influence.

To obtain a final form we use the identity

cos z = cos (x+ iy) = cosx cos iy + sinx sin iy = cosx cosh y + i sinx sinh y (6.74)

to yield the result for ReX and ImX that, with Equation (6.73), gives the final answer for
the steady state solution:

ReX = − b
ω

sin qx sinh q (x−H)− sin q (x−H) sinh qx

cos qH + cosh qH
,

ImX = − b
ω

(
1− cos qx cosh q (x−H) + cos q (x−H) cosh qx

cos qH + cosh qH

)
.

(6.75)

6.7 Maximum Principle

Let us consider the homogeneous heat equation

∂u

∂t
= a2 ∂

2u

∂x2
, 0 < x < l, 0 < t < T (6.76)

with the initial condition
u(x, t)|t=0 = ϕ(x), 0 ≤ x ≤ l (6.77)

and Dirichlet boundary conditions

P1[u] = u|x=0 = g1(t), P2[u] = u|x=l = g2(t), 0 ≤ t ≤ T. (6.78)

The initial-boundary value problem (6.76)-(6.78) describes the temperature field in a rod
heated or cooled at the ends, when there are no sources of heating or cooling inside the rod.

Let M1 be the maximum initial temperature, M1 = maxx ϕ(x), M2 be the maximum
temperature ever imposed on the rod’s ends,

M2 = max [maxtg1(t),maxtg2(t)] ,

and M is the largest number among M1 and M2, M = max(M1,M2). It is intuitively clear
that the temperature inside the rod can never exceed M . Indeed, when the temperature does
not exceed M in the beginning, the ends of the rod are never heated to the temperature
higher than M , and there is no internal heating, there is no reason for the temperature
inside the rod to exceed M somewhere. Thus, the maximum of function u(x, t) in the whole
region 0 ≤ x ≤ l, 0 ≤ t ≤ T is reached either at the initial time instant t = 0, or at the ends
x = 0 or x = l, i.e., on the boundary γ shown in bold in Figure 6.13. The maximum
cannot be reached in an internal point x = x0 at a certain time instant t = t0, neither for
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FIGURE 6.13
Boundary γ is shown in bold.

0 < t0 < T , nor at t = T . This property of the solution is called the maximum principle.
Though this property looks rather obvious, its mathematical proof is a bit tricky, and we
present it below.

First, let us prove the maximum principle for a function v(x, t) satisfying the inequality
vt − a2vxx = f(x, t) < 0, i.e., in the case of internal cooling. Assume that the maximum
of v is reached in a certain point (x0, t0), where 0 < x0 < l, 0 < t0 < T . According to the
properties of a maximum, vt = 0 and vxx ≤ 0 in that point, hence, vt − a2vxx ≥ 0, i.e., we
get a contradiction. If we assume that the maximum of v(x, t) in the whole region 0 ≤ x ≤ l,
0 ≤ t ≤ T is reached at t = T in a certain point x0, 0 < x0 < l, then it should be vt ≥ 0,
otherwise u will take higher values at t < T . Still, vxx ≤ 0 at x = x0, hence we get again
a contradiction: vt − a2vxx ≥ 0. Thus, we have proved the maximum principle for function
v(x, t).

Let us prove now the maximum principle for function u(x, t) satisfying (6.76)-(6.78).
Let M be the maximum of u on the boundary γ indicated in Figure 6.13. Define function
v(x, t) = u(x, t) + εx2, where ε > 0. Then vt − a2vxx = −2a2ε < 0. Applying the maximum
principle to function v(x, t), we obtain the following sequence of inequalities:

u(x, t) = v(x, t)− εx2 ≤ v(x, t) ≤ v(x, t)|γ ≤M + εl2, 0 ≤ x ≤ l, 0 ≤ t ≤ T.

In the limit ε → 0, we find that u(x, t) ≤ M for 0 ≤ x ≤ l, 0 ≤ t ≤ T , i.e., u(x, t) satisfies
the maximum principle.

A similar property is correct for the minimum of function u: it is reached at γ. That is
just the maximum principle for function −u(x, t), which is the solution of the heat equation
with function −ϕ(x) in the initial condition and functions −g1(t), −g2(t) in boundary
conditions.

Note that the maximum/minimum principle guarantees the well-posedness of problem
(6.76)-(6.78). Indeed, assume that we have two solutions u1 and u2 of the homogeneous heat
equation for slightly different initial and boundary conditions, and apply the maximum and
minimum principles to function w = u1 − u2 which is also a solution of the homogeneous
heat equation. We find that the absolute value of the difference between solutions in the
whole definition region of the problem cannot exceed its maximum on γ. Thus, the solution
depends continuously on the initial and boundary conditions. If both functions u1 and u2

satisfy the same initial and boundary conditions, then their difference w = u1 − u2 is equal
to zero on γ. Because of the maximum/minimum principle, w = 0 everywhere, i.e., the
solution of (6.76)-(6.78) is unique. The conditions of the existence of a classical solution
were discussed in Section 6.2.
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6.8 The Heat Equation in an Infinite Region

Let us consider the Cauchy problem for the homogeneous heat equation in the infinite
region:

∂u1

∂t
− a2 ∂u

2
1

∂x2
= 0, ∞ < x <∞, t > 0, (6.79)

u1(x, t)|t=0 = ϕ(x), ∞ < x <∞. (6.80)

It is assumed that at infinity

lim
x→±∞

u1(x, t) = 0, t ≥ 0. (6.81)

We can solve the initial value problem (6.79)-(6.81) by means of the Fourier transform, as
was done in Section 5.11.1 in the case of a hyperbolic equation. It would be more instructive,
however, to obtain the same result taking a limit l → ∞ in the problem in a finite region.
That is done below.

First, let us consider the Cauchy problem in a symmetric finite region −l/2 < x < l/2
with homogeneous Dirichlet boundary conditions

u1

(
− l

2
, t

)
= u1

(
l

2
, t

)
= 0, t > 0.

The solution can be written in the form

u1(x, t; l) =

∫ l

0

g(x, ξ, t; l)ϕ(ξ)dξ, (6.82)

g(x, ξ, t; l) =
∞∑
n=1

Xn(x; l)Xn(ξ; l)

‖Xn‖2
e−a

2λnt, (6.83)

where

Xn(x; l) = sin
nπ

l

(
x+

l

2

)
, ‖Xn‖2 =

l

2
, λn =

(nπ
l

)2

, n = 1, 2, 3, . . .

(see (6.57), (6.58)). Note that for even n = 2m, m = 1, 2, . . .,

sin
2mπ

l

(
x+

l

2

)
= sin

(
2mπ

l
x+mπ

)
= (−1)m sin

2mπx

l
,

and for odd n = 2m+ 1, m = 0, 1, . . . ,

sin

[
(2m+ 1)π

l

(
x+

l

2

)]
= sin

[
(2m+ 1)π

l
x+

(
m+

1

2

)
π

]
= (−1)m cos

(2m+ 1)πx

l
,

thus, the kernel (6.83)

g(x, ξ, t; l) = gs(x, ξ, t; l) + gc(x, ξ, t; l),

where

gs(x, ξ, t; l) =
2

l

∞∑
m=1

exp

[
−
(

2mπa

l

)2

t

]
sin

2mπx

l
sin

2mπξ

l
, (6.84)
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gc(x, ξ, t; l) =
2

l

∞∑
m=0

exp

[
−
[

(2m+ 1)πa

l

]2

t

]
cos

(2m+ 1)πx

l
cos

(2m+ 1)πξ

l
. (6.85)

In order to find the limit of (6.84) at l→∞, let us define

ηm =
2mπ

l
, ∆η =

2π

l
,

then

gs(x, ξ, t; l) =
1

π

∞∑
m=1

e−a
2η2mt sin ηmx sin ηmξ∆η.

In the limit ∆η → 0 we obtain

gs(x, ξ, t) = lim
l→∞

gs(x, ξ, t; l) =
1

π

∫ ∞
0

e−a
2η2t sin ηx sin ηξdη.

Similarly, we can obtain

gc(x, ξ, t) = lim
l→∞

gc(x, ξ, t; l) =
1

π

∫ ∞
0

e−a
2η2t cos ηx cos ηξdη.

Thus,

g(x, ξ, t) = lim
l→∞

g(x, ξ, t; l) = gs(x, ξ, t) + gc(x, ξ, t)

=
1

π

∫ ∞
0

e−a
2η2t cos η(x− ξ)dη. (6.86)

To calculate this integral, let us present it as

g(x, ξ, t) =
1

2π

∫ ∞
−∞

e−a
2η2t cos η(x− ξ)dη =

1

2π
Re

∫ ∞
−∞

e−a
2η2t+iη(x−ξ)dη

=
1

2π

∫ ∞
−∞

exp

(
−a2t

[
η2 − i(x− ξ)

a2t
η

])
dη

=
1

2π
exp

[
− (x− ξ)2

4a2t

]
Re

∫ ∞
−∞

exp

(
−a2t

[
η − i(x− ξ)

2a2t

]2
)
.

Define

ζ = a
√
t

[
η − i(x− ξ)

2a2t

]
,

then

g(x, ξ, t) =
1

2πa
√
t
e−(x−ξ)2/4a2t

∫ ∞
−∞

e−ζ
2

dζ =
e−(x−ξ)2/4a2t

2a
√
πt

. (6.87)

Finally, the solution of the problem (6.79)-(6.80) is

u1(x, t) =

∫ ∞
−∞

g(x, ξ, t)ϕ(ξ)dξ,

where g(x, ξ, t) is determined by formula (6.87).
Similarly to (6.60), (6.61), the solution of the nonhomogeneous heat equation with zero

initial conditions,

∂u2

∂t
− a2 ∂u

2
1

∂x2
= f(x, t), ∞ < x <∞, t > 0; (6.88)
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u2(x, t)|t=0 = 0, ∞ < x <∞; lim
x→±∞

u2(x, t) = 0, t ≥ 0, (6.89)

can be found as

u2(x, t) =

∫ ∞
−∞

dτ

∫ ∞
−∞

dξG(x, ξ, t− τ)f(ξ, τ), (6.90)

where Green’s function

G(x, ξ, t− τ) = H(t− τ)g(x, ξ, t) =
H(t− τ)

2a
√
π(t− τ)

exp

[
− (x− ξ)2

4a2(t− τ)

]
. (6.91)

The solution of the nonhomogeneous heat equation with non-zero initial condition can
be found as u(x, t) = u1(x, t) + u2(x, t).

Example 6.14 Using the expression for Green’s function (6.91), solve the following BVP
for a nonhomogeneous heat equation:

ut − a2uxx = δ(x), −∞ < x <∞, t > 0,

u(x, 0) = 0, −∞ < x <∞; lim
x→±∞

u(x, t) = 0, t ≥ 0.

Substituting f(ξ, τ) = δ(ξ)H(τ) into Equation (6.90), we find:

u(x, t) =

∫ ∞
−∞

dτ
H(t− τ)H(τ)

2a
√
π(t− τ)

∫ ∞
−∞

dξ exp

[
− (x− ξ)2

4a2(t− τ)

]
δ(ξ)

=
1

2a
√
π

∫ t

0

1√
t− τ

exp

[
− x2

4a2(t− τ)

]
.

To calculate that integral, it is convenient first to apply the following change of the inte-
gration variable:

y =
1

t− τ
; τ = t− 1

y
.

Then

u(x, t) =
1

2a
√
π

∫ ∞
1/t

y−3/2 exp

[
− x2

4a2
y

]
.

Using tables of integrals, or Mathematica one finds:

u(x, t) =

√
t

a
√
π

exp

(
− x2

4a2t

)
− |x|

4a2
erfc

|x|
2a
√
t
.

Problems

Problems 1 through 30 involve the temperature distribution inside a homogeneous isotropic
rod (or bar) of length l. Solve these problems analytically which means the following: formu-
late the equation and initial and boundary conditions, obtain the eigenvalues and eigenfunc-
tions, write the formulas for coefficients of the series expansion and the expression for the
solution of the problem. You can obtain the pictures of several eigenfunctions and screen-
shots of the solution and of the auxiliary functions with Maple, Mathematica or software
from books [7, 8].

In problems 1 through 9 we consider rods which are thermally insulated over their lateral
surfaces. In the initial time, t = 0, the temperature distribution is given by u(x, 0) = ϕ(x),
0 < x < l. There are no heat sources or absorbers inside the rod.
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1. The ends of the rod are kept at zero temperature. The initial temperature of the
rod is given as

ϕ1(x) = 1, ϕ2(x) = x, ϕ3(x) = x(l − x).

2. The left end of the rod is kept at zero temperature and the right end is thermally
insulated from the environment. The initial temperature of the rod is

ϕ1(x) = x2, ϕ2(x) = x, ϕ3(x) = x
(
l − x

2

)
.

3. The left end of the rod is thermally insulated and the right end is kept at zero
temperature. The initial temperature of the rod is

ϕ1(x) = x, ϕ2(x) = 1, ϕ3(x) = l2 − x2.

4. Both ends of the rod are thermally insulated. The initial temperature of the rod
is

ϕ1(x) = x, ϕ2(x) = l2 − x2, ϕ3(x) = x2

(
1− 2x

3

)
.

5. The left end of the rod is kept at zero temperature and the right end is subject
to convective heat transfer with the environment. The initial temperature of the
rod is

ϕ1(x) = 1, ϕ2(x) = x, ϕ3(x) = x
(
l − x

2

)
.

6. The left end of the rod is subject to convective heat transfer with the environment,
which has zero temperature, and the right end is kept at zero temperature. The
initial temperature of the rod is

ϕ1(x) = 1, ϕ2(x) = l − x, ϕ3(x) =
x

3
(l − 2x) +

1

3
.

7. The left end of the rod is thermally insulated and the right end is subject to
convective heat transfer with the environment which has constant temperature
of zero. The initial temperature of the rod is

ϕ1(x) = 1, ϕ2(x) = x, ϕ3(x) =

(
1− x3

3

)
.

8. The left end of the rod is subject to convective heat transfer with the environment
(whose temperature is zero) and the right end is thermally insulated. The initial
temperature of the rod is

ϕ1(x) = 1, ϕ2(x) = x, ϕ3(x) = 1− (x− 1)3

3
.

9. Both ends of the rod are subject to convective heat transfer with the environment,
which has a temperature of zero. The initial temperature of the rod is

ϕ1(x) = 1, ϕ2(x) = x, ϕ3(x) =

(
1− x3

3

)
.

In problems 10 through 18 we consider rods whose lateral surfaces are subject to
heat transfer according to Newton’s law. In problems 10 through 14 the environ-
ment has constant temperature, which of course can be taken as zero. The initial
temperature of the rod is given as u(x, 0) = ϕ(x). Again there are no heat sources
or absorbers inside the rod.
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10. The ends of the rod are kept at a constant temperature, the left end has tem-
perature u(0, t) = u1 and the right end has temperature u(l, t) = u2. The initial
temperature of the rod is

ϕ1(x) = x2, ϕ2(x) = x, ϕ3(x) = x
(
l − x

2

)
.

11. The left end of the rod is kept at a constant temperature u(0, t) = u1, and a
constant heat flow is supplied to the right end of the rod. The initial temperature
of the rod is

ϕ1(x) = x2, ϕ2(x) = x, ϕ3(x) = x
(
l − x

2

)
.

12. A constant heat flow is supplied to the left end of the rod from outside and the
right end of the rod is kept at a constant temperature u(l, t) = u2. The initial
temperature of the rod is

ϕ1(x) = x, ϕ2(x) = 1, ϕ3(x) = l2 − x2.

13. Constant heat flows are supplied to both ends of the rod. The initial temperature
of the rod is

ϕ1(x) = x, ϕ2(x) = l2 − x2, ϕ3(x) = x2

(
1− 2x

3

)
.

14. The left end of the rod is kept at a constant temperature u(0, t) = u1 and the
right end is subject to convective heat transfer with the environment, which has
a constant temperature of u0. The initial temperature of the rod is

ϕ1(x) = 1, ϕ1(x) = 1, ϕ3(x) = x
(
l − x

2

)
.

15. The left end of the rod is subject to convective heat transfer with an environment
which has a constant temperature of u0, the right end is kept at the constant
temperature u(l, t) = u2. The initial temperature of the rod is

ϕ1(x) = 1, ϕ2(x) = l − x, ϕ3(x) =
x

3
(l − 2x) +

1

3
.

16. A constant heat flow is supplied to the left end of the rod from outside and the
right end of the rod is subject to convective heat transfer with an environment
of constant temperature, u0. The initial temperature of the rod is

ϕ1(x) = 1, ϕ2(x) = x, ϕ3(x) =

(
1− x3

3

)
.

17. The left end of the rod is subject to convective heat transfer with an environment
of constant temperature u0, and a constant heat flow is supplied to the right end
of the rod. The initial temperature of the rod is

ϕ1(x) = 1, ϕ2(x) = x, ϕ3(x) = 1− (x− 1)3

3
.
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18. Both ends of the rod are subject to convective heat transfer with an environment
of constant temperature u0. The initial temperature of the rod is

ϕ1(x) = 1, ϕ2(x) = x, ϕ3(x) =

(
1− x3

3

)
.

Problems 19 through 21 consider rods whose lateral surfaces are subjected to
heat transfer according to Newton’s law and the environment has a constant
temperature θ. One internal source of heat acts at the point x0 inside the rod
and the power of this source is Q.

19. The ends of the rod are kept at constant temperatures – the left end has a
temperature u(0, t) = u1 and the right end has a temperature u(l, t) = u2. The
initial temperature of the rod is

ϕ1(x) = x2, ϕ2(x) = x, ϕ3(x) = x
(
l − x

2

)
.

20. Constant heat flows, q1 and q2, are supplied to both ends of the rod from outside.
The initial temperature of the rod is

ϕ1(x) = x, ϕ2(x) = l2 − x2, ϕ3(x) = x2

(
1− 2x

3

)
.

21. At both ends of the rod a convective heat transfer occurs with the environment
which has a constant temperature of θ. The initial temperature of the rod is

ϕ1(x) = 1, ϕ2(x) = x, ϕ3(x) =

(
1− x3

3

)
.

In problems 22 through 24 we consider rods whose lateral surfaces are subjected
to heat transfer according to Newton’s law and the environment has a constant
temperature θ. Internal heat sources and absorbers are active in the rod and their
intensity (per unit mass of the rod) is given by f(x, t). The initial temperature
of the rod is zero, u(x, 0) = 0.

22. The ends of the rod are kept at constant temperatures – the left end has temper-
ature u(0, t) = u1 and the right end has temperature u(l, t) = u2. The intensities
of heat sources and absorbers are

f1(x, t) = A sinωt, f2(x, t) = Ae−αt sinωt,
f3(x, t) = A cosωt, f4(x, t) = Ae−αt cosωt,
f5(x, t) = A sinωt cosωt, f6(x, t) = Ae−αt(sinωt+ cosωt).

23. The constant heat flows, q1 and q2, are supplied to both ends of the rod from
outside. The intensities of heat sources and absorbers are

f1(x, t) = A sinωt, f2(x, t) = Ae−αt sinωt,
f3(x, t) = A cosωt, f4(x, t) = Ae−αt cosωt,
f5(x, t) = A sinωt cosωt, f6(x, t) = Ae−αt(sinωt+ cosωt).

24. Both ends of the rod are subjected to convective heat transfer with the environ-
ment at constant temperature θ. The intensities of heat sources and absorbers
are

f1(x, t) = A sinωt, f2(x, t) = Ae−αt sinωt,
f3(x, t) = A cosωt, f4(x, t) = Ae−αt cosωt,
f5(x, t) = A sinωt cosωt, f6(x, t) = Ae−αt(sinωt+ cosωt).
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In problems 25 through 30 we consider rods with thermally insulated lateral
surfaces. The initial temperature of the rod is zero u(x, 0) = 0. Generation (or
absorption) of heat by internal sources is absent. Find the temperature change
inside the rod for the following cases:

25. The left end of the rod is kept at the constant temperature u(0, t) = u1 and the
temperature of the right end changes according to g2(t) = A cosωt.

26. The temperature of the left end changes as g1(t) = A cosωt and the right end of
the rod is kept at the constant temperature u(l, t) = u2.

27. The left end of the rod is kept at the constant temperature u(0, t) = u1, and the
heat flow g2(t) = A sinωt is supplied to the right end of the rod from outside.

28. The heat flow g1(t) = A cosωt is supplied to the left end of the rod from outside
while the right end of the rod is kept at the constant temperature u(l, t) = u2.

29. The left end of the rod is kept at the constant temperature u(0, t) = u1 and the
right end is subjected to a convective heat transfer with the environment which
has a temperature that varies as umd(t) = A sinωt.

30. The left end of the rod is subjected to a convective heat transfer with the envi-
ronment which has a temperature that varies as umd(t) = A cosωt and the right
end is kept at the constant temperature u(l, t) = u2.

In problems 31 through 32 find Green’s functions for the following problems:

31. ut − a2uxx = F (x, t), u(0, t) = ux(L, t) = 0, t ≥ 0; u(x, 0) = 0.

32. ut − a2uxx = F (x, t), 0 < x <∞, u(0, t) = 0, t ≥ 0; u(x, 0) = 0, x ≥ 0.

33. Show that Duhamel’s principle is valid for the heat equation in an infinite region.

34. Show that the maximum principle holds for equation ut + vux = a2uxx, where
v = const.

35. The following boundary value problem is given:

ut = uxx (heat equation), 0 < x < π, 0 < t < T ; u(0, t) = u(π, t) = 0, 0 ≤ t ≤ T ;

u(x, 0) = sin2 x, 0 ≤ x ≤ π.
Without solving that problem, show that 0 ≤ u(x, t) ≤ e−t sinx in the region
0 ≤ x ≤ π, 0 ≤ t ≤ T .



http://taylorandfrancis.com


7

Elliptic Equations

7.1 Elliptic Differential Equations and Related Physical Problems

When studying different stationary (time-independent) processes, very often we meet the
Laplace equation

∇2u = 0. (7.1)

The nonhomogeneous equation
∇2u = −f (7.2)

with a given function f of the coordinates is called the Poisson equation.
Laplace and Poisson partial differential equations are of Elliptic type.

The Laplace operator (Laplacian) in Cartesian coordinates is

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (7.3)

In spherical coordinates, r, θ, ϕ, related with Cartesian coordinates as (see Figure 7.1)

x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ,

the Laplacian is

∇2 =
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂ϕ2
≡ ∇2

r +
1

r2
∇2
θϕ, (7.4)

where ∇2
r = 1

r2
∂
∂r

(
r2 ∂
∂r

)
= ∂2

∂r2 + 2
r
∂
∂r .

In cylindrical coordinates r, ϕ, z, related with Cartesian coordinates as

x = r cosϕ, y = r sinϕ, z = z,

the Laplacian is

∇2 =
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2

∂2

∂ϕ2
+

∂2

∂z2
. (7.5)

For the particular case of cylindrical coordinates, a polar coordinate system r, ϕ with no
dependence on z, we have

x = r cosϕ, y = r sinϕ

and the Laplacian is

∇2 =
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2

∂2

∂ϕ2
. (7.6)

Consider several physical problems.

139
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FIGURE 7.1
Spherical coordinates.

1. If a temperature distribution created by external heating does not change with
time, ∂T/∂t = 0, the homogeneous heat equation (7.2), Chapter 6, reduces to
the Laplace equation,

∇2T = 0. (7.7)

If a medium contains a heat source or heat absorber, Q, and the temperature is
time independent, the heat conduction equation (7.7), Chapter 6, becomes

∇2T = − Q

ρ cχ
(7.8)

which is a particular example of the Poisson equation (7.2).

2. The diffusion equation (6.9), Chapter 6, for stationary diffusion, ∂c/∂t = 0,
becomes

∇2c = −f/D, (7.9)

where c is the concentration of a material diffusing through a medium, D is the
diffusion coefficient and f is a source or sink of the diffusing material. This is also
the Poisson equation (or Laplace equation when f = 0).

3. The electrostatic potential due to a point charge q is

ϕ =
q

r
, (7.10)

where r is the distance from the charge to the point where the electric field is
measured.

For continuous charge distribution with charge density ρ, the potential ϕ is related to
ρ as:

∇2ϕ = −4πρ. (7.11)

Equation (7.11) is the Poisson equation for an electrostatic potential. In regions that do
not contain electric charges, for instance at points outside of a charged body, ρ = 0 and the
potential which the body creates obeys the Laplace equation

∇2ϕ = 0. (7.12)

Reading exercise: Prove that the scalar potential (7.10) satisfies the Laplace equation for
any r > 0.
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7.2 Harmonic Functions

Let us consider the two-dimensional Laplace equation,

∂2u

∂x2
+
∂2u

∂y2
= 0 (7.13)

in the entire x, y-plane.
In Section 3.2.2, we have obtained the general solution of elliptic equation (3.38) with

constant coefficients. The Laplace equation is its particular case with a = c = 1, b = 0.
Formula (3.42) gives the general solution of the Laplace equation:

u(x, y) = F+(y + ix) + F−(y − ix), (7.14)

where functions F+ and F− are continuously differentiable twice. Define the complex vari-
ables

z = x+ iy, z∗ = x− iy, (7.15)

then
u(x, y) = F+(iz∗) + F−(−iz). (7.16)

Define G1(z) ≡ F−(−iz) and G2(z∗) ≡ F+(iz∗), then

u(x, y) = G1(z) +G2(z∗). (7.17)

Functions G1 and G2 should be twice differentiable. It is proved in the theory of functions
of complex variables that a differentiable function of a complex variable z is actually dif-
ferentiable infinitely many times; such a function is called an analytical function. Thus, we
come to the conclusion that the arbitrary solution of the Laplace equation is a sum of two
functions, an analytical function of z and a function which is a complex conjugate to an
analytical function of z.

Solution (7.17) is real if G2(z∗) = (G1(z))∗, i.e., u(x, y) = G1(z)+(G1(z))∗. A particular
real solution of the Laplace equation is called the harmonic function. For any non-constant
analytical function G(z), we can obtain two harmonic functions taking its real part,

u1(x, y) = ReG(z) =
1

2
[G(z) + (G(z))∗] ,

and its imaginary part,

u2(x, y) = ImG(z) =
1

2i
[G(z)− (G(z))∗] .

For instance, the analytical function G(z) = ez generates two harmonic functions,
u1(x, y) = ReG(z) = ez cos y and u2(x, y) = ImG(z) = ez sin y.

If G(z) is a polynomial of z, then functions u1(x, y) and u2(x, y) are harmonic polyno-
mials. For instance, the analytical functions

G(z) = z2 = (x+ iy)2 = x2 − y2 + 2ixy

give two harmonic polynomials,

u1(x, y) = ReG(z) = x2 − y2 and u2(x, y) = ImG(z) = 2xy.

A real constant function is both analytical and harmonic.
According to the superposition principle, any linear combination of harmonic functions

is also a harmonic function.
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7.3 Boundary Conditions

As in the case of hyperbolic and parabolic equations, a unique solution of an elliptic equa-
tion can be obtained when some additional conditions are imposed. Note that because the
problems described by elliptic equations do not contain time, they do not need initial con-
ditions. Physically it is also clear that the Laplace and Poisson equations by themselves
are not sufficient to determine, for example, the temperature in all points of a body, or the
electric potential outside the conductor.

7.3.1 Example of an Ill-posed Problem

In order to understand the difference between elliptic boundary value problems and appro-
priate problems for other types of PDEs, let us consider the Laplace equation in an infinite
stripe:

uxx + uyy = 0, −∞ < x <∞, 0 < y < ym. (7.18)

In the case of a hyperbolic equation,

uyy − uxx = 0, −∞ < x <∞, 0 < y < ym. (7.19)

(variable y plays role of time) we have seen that conditions

u(x, y)|y=0 = ϕ(x), uy(x, y)|y=0 = ψ(x), −∞ < x <∞ (7.20)

with sufficiently smooth functions ϕ(x) and ψ(x) determine a unique classical solution
which depends continuously on these functions, i.e., the Cauchy problem (7.19), (7.20) for
hyperbolic equation is well-posed.

In the case of an elliptic equation, the situation is different. Though solution of problem
(7.18), (7.20) exists, and it is unique, it does not depend continuously on the boundary
functions ϕ(x) and ψ(x). That means that arbitrary small errors in measured boundary
functions lead to significant errors in the solution. Hence, the problem is ill-posed.

As an example, let us find the solutions un(x, y) of problem (7.18), (7.20) for the following
sequence of boundary conditions:

ϕn(x) = 0, ψn(x) =
1

n
sinnx, −∞ < x <∞, n = 1, 2, . . . (7.21)

Obviously,

ϕ(x) = lim
n→∞

ϕn(x) = 0, ψ(x) = lim
n→∞

ψn(x) = 0, −∞ < x <∞,

and the solution corresponding to the boundary conditions ϕ(x) = ψ(x) = 0 is just u(x, y) =
0. To find un(x, y), we can apply the method of separation of variables. One can guess that
the solution of (7.18), (7.20), (7.21) has the structure

un(x, y) = Yn(y) sinnx. (7.22)

Substituting (7.22) into (7.18), (7.20), we obtain the ordinary differential equation,

Y ′′n (y)− n2Yn(y) = 0, 0 < y < ym (7.23)

with initial conditions

Yn(0) = 0, Y ′n(y) =
1

n
. (7.24)
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Solving (7.23), (7.24), we find

Yn(y) =
1

n2
sinhny,

hence, we obtain a unique classical solution,

un(x, y) =
1

n2
sinhny sinnx, 0 ≤ y ≤ ym.

For any y > 0, the limit lim
n→∞

un(x, y) does not exist, because the expression sinhny/n2

tends to infinity, instead of tending to zero. Thus, time small-scale oscillations in the bound-
ary conditions create a catastrophic change of the solution. That means that the problem
is ill-posed, and it cannot be applied to any real physical problem.

What boundary conditions for the Laplace and Poisson equations would create well-
posed boundary value problems?

7.3.2 Well-posed Boundary Value Problems

In the present subsection, we give several examples of well-posed elliptic boundary value
problems. From physical reasoning it is clear that, for instance, if the temperature distribu-
tion on the surface of a body is known, the solution of such a boundary value problem which
consists of the Laplace or Poisson equation together with a boundary condition should exist
and be unique.

Boundary conditions can be set in several ways and in fact in our discussion above
of various physical problems we have already met several kinds of boundary conditions.
Below we categorize three primary kinds of boundary conditions which correspond to the
three different heat regimes on the surface (here we use temperature terminology but the
arguments apply equally to other physical systems).

Consider some volume V bounded by a surface S. The boundary value problem for a
stationary distribution of temperature, u(x, y, z), inside the body is stated in the following
way:
Find the function u(x, y, z) inside the volume V satisfying the equation

∇2u = −f(x, y, z)

and satisfying one of the following kinds of boundary conditions:

1. u = f1 on S (boundary value problem of the 1st kind)

2. ∂u
∂n = f2 on S (boundary value problem of the 2nd kind)

3. ∂u
∂n + h(u− f3) = 0 on S (h > 0) (boundary value problem of the 3rd kind),

where f1, f2, f3, h are known functions and ∂u/∂n is the derivative in the direction of the
outward normal to the surface, S.

We may use the above formulation in two distinct ways. If we want to find the temper-
ature, inside the volume V for the bounded region we have what is referred as an interior
boundary value problem. If instead we need to find the temperature outside of a heater, or
the electrostatic potential for an unbounded region outside the charged volume V, we have
an exterior boundary value problem.

The physical sense of each of these boundary conditions is clear. The first boundary
value problem when the surface temperature is prescribed is called Dirichlet’s problem. The
second boundary value problem when the flux across the surface is prescribed is called
Neumann’s problem. The third boundary value problem is called the mixed problem. This
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boundary condition corresponds to the well known Newton’s law of cooling, which governs
the heat flux from the surface into the ambient medium.

Obviously, a stationary temperature distribution is possible only if the net heat flow
across the boundary is equal to zero. From here it follows that for the interior Neumann’s
problem the function f2 should obey the additional requirement:∫∫

S

f2dS = 0. (7.25)

In a similar way a boundary value problem can be formulated for the two-dimensional
case when an area is bounded by a closed contour L. In this case the requirement that the
net heat flow through the boundary for the interior problem is equal to zero becomes∮

L

f2dl = 0. (7.26)

Let us demonstrate the solution of a boundary value problem for a one-dimensional case.
When the function u(x) depends only on one variable, the Laplace equation becomes an
ordinary differential equation and the solution is trivial.

Example 7.1 Solve the one-dimensional Laplace equation in Cartesian coordinates,
d2u
/
dx2 = 0, and apply Dirichlet boundary conditions to find a simple solution.

Solution. Integrating the equation gives u = ax + b. Dirichlet’s problem with boundary
conditions u(x = 0) = u1 and u(x = l) = u2 gives the solution as u(x) = (u2 − u1)x/l+ u1.

Reading exercise: In Cartesian coordinates obtain a solution of the one-dimensional Neu-
mann’s problem for the Laplace equation.

Reading exercise: Solve Dirichlet’s problem in the case of axial symmetry with boundary
conditions u(r = a) = u1, u(r = b) = u2. The result will give a solution to the problem of
a stationary distribution of heat between two cylinders with common axis when cylinders’
surfaces are kept at constant temperatures. The same solution also gives the electric poten-
tial between two equipotential cylindrical surfaces. (The solution is a harmonic function
between the surfaces with the axis r = 0 excluded.)

Hint : Use the Laplace operator in cylindrical coordinates when there is no dependence
on ϕ and z.

Reading exercise: Solve Dirichlet’s problem in the case of spherical symmetry with boundary
conditions u(r = a) = u1, u(r = b) = u2. The result will give a solution to the problem of a
static distribution of heat between two spheres with a common center when the surfaces are
kept at constant temperatures. It also gives the electric potential between two equipotential
spherical surfaces. As in the previous case, the solution is a harmonic function between the
surfaces and the center at r = 0 is excluded.

Hint : Use the Laplace operator in spherical coordinates for the case of no dependence
on ϕ and θ.

7.3.3 Maximum Principle and its Consequences

In this and the following sections, except 7.10, 7.11 and 7.15, we consider two-dimensional
problems.
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Let us prove the well-posedness of the Dirichlet problem. For that goal, we will use the
maximum principle for the Laplace equation.

Theorem 1 If the function u is harmonic in some domain D bounded by the curve S, it
reaches its maximum (minimum) value at the boundary.

The physical reasoning for that principle is clear: there is no reason for maximum sta-
tionary temperature to be inside the bulk if there are no internal sources of heat. The proof,
which is similar to the proof of the maximum principle for the heat equation (see Chapter
6), is presented below.

First, let us consider a function v(x, y) satisfying the equation

∇2v = −f > 0, (7.27)

which corresponds to the internal cooling. If its maximum is reached in an internal point
(x0, y0), then vxx(x0, y0) ≤ 0, vyy(x0, y0) ≤ 0, thus ∇2v ≤ 0, which contradicts to (7.27).
Thus, the maximum principle is valid for v(x, y).

For the harmonic function u, which satisfies the Laplace equation ∇2u = 0, define
v(x, y) = u(x, y) + ε(x2 + y2), where ε > 0. Assume that M = maxS u(x, y) and define
R = maxD(x2 + y2). Because ∇2v = 4ε > 0, the maximum of v is reached on the boundary
S, hence in any point (x, y),

v(x, y) ≤ maxS v(x, y) ≤M + εR.

Then in any point

u(x, y) = v(x, y)− ε(x2 + y2) ≤ v(x, y) ≤ maxS v(x, y) ≤M + εR.

Taking the limit ε→ 0, we get

u(x, y) ≤M = maxS u(x, y),

i.e., the maximum of the harmonic function u is reached at the boundary.

The proof for minimum is similar.
The maximum/minimum principle has important consequences.

1. The solution of the Dirichlet problem depends continuously on the boundary
conditions.

Indeed, if
∇2u1 = 0 in D, u1 = f1 on S

and
∇2u2 = 0 in D, u2 = f2 on S,

then the difference w = u1 − u2 satisfies the problem

∇2w = 0 in D, w = f1 − f2 on S.

Applying the maximum/minimum principle to w, we find

|u1 − u2| = |w| ≤ maxS |f1 − f2|.
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2. The solution of the Dirichlet problem is unique.

If u1 and u2 are solutions of the same Dirichlet problem, then for w = u1 − u2,

∇2w = 0 in D, w = 0 on S.

Applying the maximum/minimum principle to w, we find that |u1 − u2| = 0
everywhere, i.e., u1 = u2.

In the consequent sections, we present examples showing that the classical solu-
tion of the Dirichlet problem exists for a continuous boundary function. In that
case, the Dirichlet problem is well-posed.

7.4 Laplace Equation in Polar Coordinates

In Sections 7.4–7.9 we consider two-dimensional problems which have a symmetry allowing
the use of polar coordinates. Solutions to corresponding problems contain simple trigono-
metric functions of the polar angle as well as power and logarithmic functions of the radius.

In polar coordinates, (r, ϕ), the Laplacian has the form

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂ϕ2
≡ ∇2

r +
1

r2
∇2
ϕ. (7.28)

We begin by solving the Laplace equation ∇2u = 0 using the Fourier method of separa-
tion of variables. First, we represent u(r, ϕ) in the form

u(r, ϕ) = R(r)Φ(ϕ). (7.29)

Substituting Equation (7.29) into ∇2u = 0 and separating the variables we have

r2∇rR
R

= −
∇2
ϕΦ

Φ
≡ λ.

Because the first term does not depend on the angular variable ϕ and the second does not
depend on r, each term must equal a constant which we denoted as λ. From here we obtain
two separate equations for R(r) and Φ(ϕ):

Φ′′ + λΦ = 0, (7.30)

r2R′′ + rR′ − λR = 0. (7.31)

Clearly, the periodic solution of Equation (7.31),

Φ(ϕ+ 2π) = Φ(ϕ), (7.32)

exists only for positive integer values of λ(this problem was considered in detail in Chapter 4
(Example 4.4)) The periodicity condition leads to a discrete spectrum of eigenvalues:

λn = n2, n = 0, 1, 2, . . . ;

thus, the eigenfunctions are:

Φ = Φn(ϕ) =

{
cosnϕ,
sinnϕ.
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Negative values of n correspond to the same eigenfunctions and therefore need not be
included in the list of eigenvalues.

The equation for R(r)
r2R′′ + rR′ − n2R = 0 (7.33)

is known as the Euler equation. The general solution to this equation is

R = Rn(r) = C1r
n + C2r

−n, n 6= 0,

R0(r) = C1 + C2 ln r, n = 0. (7.34)

Combining the above results for Φn(ϕ) and Rn(r) we obtain the following particular and
general solutions of the Laplace equation:

a) Under the condition that the solution be finite at r = 0 we have

un(r, ϕ) = rn
{

cosnϕ
sinnϕ

}
, n = 0, 1, . . .

We can write a general solution for the Laplace problem for an interior boundary value
problem, 0 ≤ r ≤ l, via the expansion with these particular solutions un(r, ϕ) as

u(r, ϕ) =

∞∑
n=0

rn (An cosnϕ+Bn sinnϕ) .

The term with n = 0 is more conveniently written as A0/2, thus we have

u(r, ϕ) =
A0

2
+
∞∑
n=1

rn (An cosnϕ+Bn sinnϕ) . (7.35)

b) For the case that the solution is finite at r →∞ we have

un(r, ϕ) =
1

rn

{
cosnϕ
sinnϕ

}
, n = 0, 1, . . .

These functions may be used as solutions to the Laplace problem for regions outside of
a circle. The general solution of the Laplace equation for such an exterior boundary value
problem, r ≥ l, limited (i.e. bounded) at infinity, can be written as

u(r, ϕ) =
A0

2
+
∞∑
n=1

1

rn
(An cosnϕ+Bn sinnϕ) . (7.36)

c) We also have a third set of solutions,

un(r, ϕ) = 1, ln r, rn
{

cosnϕ
sinnϕ

}
,

1

rn

{
cosnϕ
sinnϕ

}
, n = 1, 2, . . .

for the cases where the solution is unbounded as r → 0, as well as r → ∞. This set
of functions is used to solve the Laplace equation for regions which form a circular ring,
l1 ≤ r ≤ l2.

7.5 Laplace Equation and Interior BVP for Circular Domain

In this section we consider the first of the three cases presented in the previous section –
solve the boundary value problem for a disk:
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∇2u = 0 in 0 ≤ r < l, (7.37)

with boundary condition
u(r, ϕ)|r=l = f(ϕ). (7.38)

Applying (7.38) to formula (7.35) we obtain

A0

2
+
∞∑
n=1

ln (An cosnϕ+Bn sinnϕ) = f(ϕ). (7.39)

From this we see that lnAn and lnBn are the Fourier coefficients of expansion of the function
f(ϕ) in the system (or basis) of trigonometric functions {cosnϕ, sinnϕ}. We may evaluate
the coefficients using the formulas

Anl
n =

1

π

∫ 2π

0

f(ϕ) cosnϕdϕ, Bnl
n =

1

π

∫ 2π

0

f(ϕ) sinnϕdϕ, n = 0, 1, 2, . . . . (7.40)

Thus, the solution of the interior Dirichlet problem for the Laplace equation is

u(r, ϕ) =
A0

2
+

∞∑
n=1

(r
l

)n
[An cosnϕ+Bn sinnϕ] . (7.41)

Example 7.2 Find the temperature distribution inside a circle if the boundary is kept at
the temperature T0 = C1 + C2 cosϕ+ C3 sin 2ϕ.

Solution. It is obvious that for this particular case the series given by Equation (7.39)
reduces to three nonzero terms:

A0 = 2C1, lA1 = C2, l2B2 = C3.

In this case the solution given by Equation (7.41) is

T = C1 + C2
r

l
cosϕ+ C3

(r
l

)2

sin 2ϕ.

Similarly, we can obtain solutions of the second and third boundary value problems for
the Laplace equation for a disk. We leave to the reader as Reading Exercises to check that
the resulting formulas presented below are correct for the following two cases of Neumann
and mixed boundary conditions.

The Neumann problem for the Laplace equation with boundary condition

∂u

∂r

∣∣∣∣
r=l

= f(ϕ) (7.42)

has the solution

u(r, ϕ) =
∞∑
n=1

rn

nln−1
[An cosnϕ+Bn sinnϕ] + C, (7.43)

where C is an arbitrary constant. We remind the reader that a solution of the interior
Neumann problem can exist only under the condition∫

Cl

fdl =

∫ 2π

0

f(ϕ)dϕ = 0. (7.44)
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We discussed the meaning of that condition in Section 7.3.2: if heating and cooling of
the body through its boundary are not balanced, the temperature of the body cannot be
time-independent. It grows if integral (7.44) is positive and decreased otherwise, hence the
problem is described by the heat equation rather than the Laplace equation.

Note that the average temperature of the body

1

πl2

∫ 2π

0

dϕ

∫ l

0

ru(r, ϕ)dr = C

is not determined by BVP (7.37), (7.42). Indeed, the boundary condition (7.42) does not
provide any reference temperature for the body: a spatially homogeneous change of the
body’s temperature does not violate that boundary condition. Thus, the solution is unique
up to an arbitrary constant.

The mixed problem for the Laplace equation with boundary condition

∂u

∂r
+ hu

∣∣∣∣
r=l

= f(ϕ), h = const, (7.45)

has the solution

u(r, ϕ) =
A0

2h
+

∞∑
n=1

rn

(n+ lh)ln−1
[An cosnϕ+Bn sinnϕ] . (7.46)

Clearly, in the case of homogeneous boundary conditions (f(ϕ) = 0) all three problems have
only trivial solutions (i.e. equal to zero, or for the Neumann problem, any constant).

Coefficients in the expansions in Equations (7.41), (7.43) and (7.46) are determined using
Equation (7.40). Let us briefly discuss the convergence of the series in these expansions. If
the function f(ϕ) defining the boundary condition can be integrated absolutely, its Fourier
coefficients are bounded and, as can be seen from the structure of these series, they converge
in any interior point of the circle (r < l). The smoother the function f(ϕ) is, the faster these
series converge. The series can be differentiated term by term any number of times and the
sums satisfy the Laplace equation, i.e. they are harmonic functions. The same can be said
for the problems discussed in the following sections.

Example 7.3 Letu(r, ϕ)|r=l = sin(ϕ/2) at 0 ≤ ϕ < 2π. Find the temperature at several
points P (r, ϕ) (here r is in units of l) of the circle: P1(0, ϕ), P2(0.2, π/18), P3(0.3, π/18).
Evaluate the precision of the calculations.

Solution. The coefficients in (7.39) are

A0 =
4

π
, An =

4

π (1− 4n2)

(for n= 1, 2, . . .), and Bn = 0. Thus, we have the expansion

u(r, ϕ) =
2

π
+
∞∑
n=1

(r
l

)n 4

π(1− 4n2)
cosnϕ.

At point P1(0, 0), the temperature is u(0, 0) = 2/π and the error is zero because r = 0.
At point P2(0.2, π/18), keeping six terms in the partial sum and rounding off the result
with accuracy, ε1 = 10−4, we obtain u(0.2, π/18) = 0.5496. Because the terms in the series
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above monotonically decrease, the error when we keep six terms is less than or equal to the
absolute value of the 7th term in the series,

ε ≤

∣∣∣∣∣
(

2

10

)7
4

π (1− 4 · 72)
· 1

1− 2
10

∣∣∣∣∣ ≈ 0.5 · 10−5.

The total error is ε+ ε1 ≈ 10−4.
Similarly, u(0.3, π/18) = 0.5031, ε ≈ 10−4 and ε+ ε1 ≈ 2 · 10−4.

Example 7.4 Let an infinite homogenous cylinder with a circular surface of radius a be
kept at a constant temperature

u(r, ϕ)|r=l =

{
T0, 0 ≤ ϕ < π,
−T0, π ≤ ϕ < 2π

for any z. After a long period of time the temperature inside the cylinder will become
constant, i.e. the system reaches equilibrium. Find the temperature distribution inside the
cylinder when this occurs.

Solution. This is the Dirichlet’s interior problem for a circle. The solution to this problem
is given by the series (7.41); the coefficients (7.40) are

An = 0, B2k = 0, B2k+1 =
4T0

π (2k + 1)
, k = 0, 1, 2 . . . .

The coefficients decrease as 1/n, rather than 1/n2 in Example 7.3, because of disconti-
nuity in the boundary condition.

The results of numerical summation of the series in Equation (7.41) with N terms are
presented in Figure 7.2 using the dimensionless variables, length in units of the radius l and
temperature in units of T0. Because of the symmetry of the problem we have

u (r, π − ϕ) = −u (r, π + ϕ)

and we can search for the solution in the half-domain (ϕ ≤ π).

Figure 7.2 shows the temperature distribution on the boundary of the cylinder for dif-
ferent values of N . As can be seen from the graphs, closer to the points ϕ 6= 0, π we need
more terms to keep the same precision. It is clear that at the discontinuity points ϕ = 0
and ϕ = π the series gives a value of zero for the temperature.

(a) (b) (c)

FIGURE 7.2
Temperature distribution on the circle boundary (r = 1) obtained with partial sums of the
series in Equation (7.41) for the number of terms; (a) N = 20, (b) N = 50, and (c) N = 100.
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7.6 Laplace Equation and Exterior BVP for Circular Domain

In this section we consider the second of the three cases presented in Section 7.4. This
problem is formulated as

∇2u = 0 for r > l.

With the boundary condition u|r=l = f(ϕ) we directly obtain the solution of the Dirichlet
problem as (7.36):

u(r, ϕ) =
A0

2
+
∞∑
n=1

(
l

r

)n
[An cosnϕ+Bn sinnϕ] . (7.47)

The Neumann problem with boundary condition

∂u

∂r

∣∣∣∣
r=l

= f(ϕ) (7.48)

has the solution

u(r, ϕ) = −
∞∑
n=1

1

n

ln+1

rn
[An cosnϕ+Bn sinnϕ] + C, (7.49)

where C is an arbitrary constant. We remind the reader again that the exterior Neumann
problem for a plane has a solution only under the condition∫

Cl

fdl =

∫ 2π

0

f(ϕ)dϕ = 0 (7.50)

and its solution has an arbitrary additive constant.
The mixed problem, with a boundary condition

∂u

∂r
− hu

∣∣∣∣
r=l

= f(ϕ) (7.51)

has the solution

u(r, ϕ) = −A0

2h
−
∞∑
n=1

ln+1

(n+ lh)rn
[An cosnϕ+Bn sinnϕ] . (7.52)

Notice that different signs for h in Equation (7.51) as compared to Equation (7.45) are
because of different directions of the vector normal to the boundary. For the interior problem
this vector is directed outward; for the exterior problem it is inward.

Coefficients An and Bn in the series (7.47), (7.49) and (7.52) are the Fourier coefficients
of function f(ϕ) and are calculated with Equations (7.40). We leave to the reader as useful
Reading Exercises to prove the results in Equations (7.47), (7.49) and (7.52).

7.7 Poisson Equation: General Notes and a Simple Case

Let us briefly discuss how to find a solution of a Poisson equation

∇2u = −f (7.53)
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with the Dirichlet boundary condition:

u(r, ϕ)|r=l = g(ϕ). (7.54)

Either the interior or exterior problem can be considered. Note that, contrary to the solu-
tion of the Laplace equation, the solution of the Poisson equation is not zero even for
homogeneous boundary conditions g(ϕ) ≡ 0.

The way to solve the problem (7.53), (7.54) is to solve the nonhomogeneous equation
(Poisson equation) without taking into consideration the boundary condition, and then
to add a solution of the Laplace equation in a way that the sum satisfies the boundary
condition. In other words, the function u is presented as the sum of two functions, u =
up + u0, where up is a particular solution of the Poisson equation

∇2up = −f (7.55)

and u0 is a solution of the Laplace equation

∇2u0 = 0. (7.56)

The function u should satisfy the necessary boundary condition from which follows the
boundary condition for u0:

u0(r, ϕ)|r=l = g(ϕ)− up. (7.57)

The boundary value problem defined by Equations (7.56) and (7.57) was considered in
Sections 7.5 and 7.6, thus now we turn to the solution of Equation (7.55). The question is
how to find a particular solution of the Poisson equation which is finite in the center (for
the interior problem) or at infinity (for the exterior problem) irrespective of the boundary
condition at r = l. It should be emphasized that changing the type of boundary condition
for the Poisson equation, (7.53), we need only to change the boundary condition for the
Laplace Equation (7.56).

Let us consider a particular case: very often the inhomogeneous term f(r, ϕ) has the
form

f(r, ϕ) = rm cosnϕ. (7.58)

(or perhaps rm sinnϕ). Here m is an arbitrary real number, n is an integer since the function
f(r, ϕ) should be periodic in ϕ, thus f(r, ϕ+2π) = f(r, ϕ). In this case a particular solution
of the Poisson equation can be obtained using the method of undetermined coefficients.
Note that m > −2 corresponds to an interior problem, while m < −2 to an exterior one.
Indeed, the function f(r, ϕ) can be infinite at r = 0 for the interior problem; we should only
ensure that the integral ∫

S

|f(r, ϕ)| dS

remains finite (for example, in electrostatics it means that the full charge inside the domain
is finite). With dS = rdrdϕ in polar coordinates, it is obvious that at m > −2 corresponds
to a finite value of ∫ l

0

f(r, ϕ)rdr.

On the other hand, at m < −2 both f (r →∞, ϕ) and the integral
∫∞
l
f(r, ϕ)rdr remain

finite – this situation corresponds to an exterior problem. The value m = −2 can be used
only for a boundary problem involving solutions inside an annulus (ring).

In polar coordinates Equation (7.53) is

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂ϕ2
= −f(r, ϕ)
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and because of
∇2rm+2 cosnϕ =

[
(m+ 2)

2 − n2
]
rm cosnϕ,

the particular solution of equation

∇2u = −rm cosnϕ

is

up = − rm+2 cosnϕ

(m+ 2)
2 − n2

. (7.59)

A difficulty occurs if m+2 = ±n in which case we cannot apply Equation (7.59). In this
case we may seek the solution in the form

up = R (r) cosnϕ

and obtain for R (r) the equation

R′′ +
1

r
R′ − n2

r2
R = −r±n−2,

where the derivatives with respect to r are denoted by primes. The particular solution of
this equation is

∓r
±n ln r

2n
at n 6= 0 (7.60)

and

− ln2 r

2
at n = 0. (7.61)

Recall that m > −2 corresponds to an interior problem, whereas n stays in the argument
of cosnϕ, i.e. there is no need to consider negative values of n. The result is the solution in
Equation (7.60) with the upper sign used for the interior problem, r ≤ l, and the lower sign
for the exterior problem, r ≥ l. The solution in Equation (7.61) with n = 0 is the particular
solution for a boundary value problem inside an annulus.

Example 7.5 Solve the boundary value problem for a disk given by

∇2u = −Axy, r ≤ l, u|r=l = 0. (7.62)

Solution. The function, f, on the right side of the Poisson equation is f = Axy =
Ar2 sin 2ϕ

/
2, thus we have the situation described by Equation (7.58) with m = n = 2.

Using the result of Equation (7.59) we obtain a particular solution of Equation (7.62) as

up(r, ϕ) = − A

2 · 12
r4 sin 2ϕ (7.63)

Taking the solution given by Equation (7.63) into account, the boundary value problem of
Equations (7.56) and (7.57) takes the following form:

∇2u0 = 0,

r = l : u0 = −up =
A

24
l4 sin 2ϕ.

Since the boundary condition contains only one Fourier harmonic, we can conclude that
u0(r, ϕ) = Cr2 sin 2ϕ with C = −Al2

/
24. Thus, the function u = up + u0 that satisfies the

given boundary condition is

u(r, ϕ) =
A

24
r2
(
l2 − r2

)
sin 2ϕ.
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7.8 Poisson Integral

It is possible to present a solution of Dirichlet’s problem for the Laplace equation as an
integral formula. Let us do this first for the interior problem for a circle. Substituting the
formulas for Fourier coefficients in Equation (7.40) into Equation (7.41) and switching the
order of summation and integration, we obtain

u(r, ϕ) =
1

π

∫ 2π

0

f(φ)

{
1

2
+
∞∑
n=1

(r
l

)n
[cosnφ cosnϕ+ sinnφ sinnϕ]

}
dφ

=
1

π

∫ 2π

0

f(φ)

{
1

2
+
∞∑
n=1

(r
l

)n
cosn(φ− ϕ)

}
dφ. (7.64)

Since t ≡ r/l < 1, the expression in the parentheses can be transformed as follows:

Z ≡ 1

2
+
∞∑
n=1

tn cosn(φ− ϕ) =
1

2
+

1

2

∞∑
n=1

tn
[
ein(ϕ−φ) + e−in(ϕ−φ)

]
=

1

2

{
1 +

∞∑
n=1

[(
tei(ϕ−φ)

)n
+
(
te−i(ϕ−φ)

)n]}
.

Using
∞∑
n=0

xn =
1

1− x
,

∞∑
n=1

xn =

∞∑
n=0

xn − 1 =
x

1− x
,

we have

Z =
1

2

[
1 +

tei(ϕ−φ)

1− tei(ϕ−φ)
+

te−i(ϕ−φ)

1− te−i(ϕ−φ)

]
=

1

2

1− t2

1− 2t cos(ϕ− φ) + t2
.

Therefore Equation (7.64) becomes

u(r, ϕ) =
1

2π

∫ 2π

0

f(φ)
l2 − r2

r2 − 2lr cos(ϕ− φ) + l2
dφ. (7.65)

This formula gives the solution to the first boundary value problem inside a circle and is
called the Poisson integral. The expression

u(r, ϕ, l, φ) =
l2 − r2

r2 − 2lr cos(ϕ− φ) + l2
(7.66)

is called the Poisson kernel.
Expression (7.65) is not applicable at r = l, but its limit as r → l for any fixed value

of ϕ is equal to f(ϕ) because the series we used to obtain Equation (7.65) is a continuous
function in the closed region r ≤ l. Thus, the function defined by the formula

u(r, ϕ) =


1

2π

∫ 2π

0

f(φ)
l2 − r2

r2 − 2lr cos(ϕ− φ) + l2
dφ, if r < l,

f(ϕ), if r = l

is a harmonic function satisfying the Laplace equation ∇2u = 0 for r < l and continuous in
the closed region r ≤ l.
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Similarly, we obtain the solution to the exterior boundary value problem for a circle as

u(r, ϕ) =


1

2π

∫ 2π

0

f(φ)
r2 − l2

r2 − 2lr cos(ϕ− φ) + l2
dφ, if r > l,

f(ϕ), if r = l.

(7.67)

Poisson integrals cannot be evaluated analytically for an arbitrary function f(ϕ); how-
ever they are often very useful in certain applications. In particular, they can be more useful
for numerical calculations than the infinite series solution.

Example 7.6 Consider a stationary membrane’s deflection from the equilibrium position.
For the stationary case the membrane surface is described by the function u = u(x, y) which
satisfies the equation

∂2u

∂x2
+
∂2u

∂y2
= 0.

If the membrane contour projection onto the xy-plane is a circle of radius l, we can consider
this problem as an interior Dirichlet’s problem for a circle.

Let the equation of the contour be given by function u = f(ϕ), where f is a z -coordinate
of the contour at angle ϕ. As an example, consider a film fixed on a firm frame that has a
circular projection onto the xy-plane with radius l and center at point O. The equation of
the film contour in polar coordinates is u = C cos 2ϕ (0 ≤ ϕ ≤ 2π), r = l. Find the shape,
u(r, ϕ), of the film.

Solution. The solution is given by the Poisson integral:

u(r, ϕ) =
1

2π

∫ 2π

0

C cos 2φ · l2 − r2

r2 − 2lr cos(φ− ϕ) + l2
dφ.

To evaluate this integral we use the substitution φ − ϕ = ζ. The limits of integration will
not change because the integrand is periodic with period 2π (an integral in the limits from
−ϕ to 2π − ϕ is equal to the same integral in the limits from 0 to 2π). Thus, we have

u(r, ϕ) =
C(l2 − r2)

2π

∫ 2π

0

cos(2ζ + 2ϕ)

r2 − 2lr cos ζ + l2
dζ

=
C(l2 − r2)

2π

[
cos 2ϕ

∫ 2π

0

cos 2ζdζ

r2 − 2lr cos ζ + l2
− sin 2ϕ

∫ 2π

0

sin 2ζdζ

r2 − 2lr cos ζ + l2

]
.

The second of these integrals is equal to zero as the integral of the odd function on the
interval (0, 2π). So, for this case

u(r, ϕ) =
C(l2 − r2)

2π
cos 2ϕ

∫ π

−π

cos 2ζ

r2 − 2lr cos ζ + l2
dζ.

With the substitution tan (ζ/2) = v finally we obtain

u(r, ϕ) =
C(l2 − r2)

2π
cos 2ϕ

2πr2

l2(l2 − r2)
=
Cr2

l2
cos 2ϕ.

The function C (r/l)
2

cos 2ϕ is harmonic and takes the values C cos 2ϕ on the contour of
the circle. It has a shape of a saddle, shown in Figure 7.3.

Reading Exercise. Solve this problem using the method of Section 7.6.
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FIGURE 7.3
Shape of the film in Example 7.6.

7.9 Application of Bessel Functions For the Solution of Poisson
Equations in a Circle

In this section we will show how to solve Poisson equations for the general form of functions
f(r, ϕ), not necessarily r±n sinnϕ, like in Section 7.7. Such solutions can be obtained with
Bessel functions.

Let us consider the following interior boundary value problem for the Poisson equation:

∇2u =
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂ϕ2
= −f (r, ϕ) , 0 ≤ r < l, 0 ≤ ϕ < 2π, (7.68)

α
∂u(r, ϕ)

∂r
+ βu(r, ϕ)

∣∣∣∣
r=l

= g(ϕ), (7.69)

u(r, ϕ) = u(r, ϕ+ 2π), |α|+ |β| 6= 0.

To separate variables when a boundary condition is nonhomogeneous, we should split
function u(r, ϕ) into two functions:

u(r, ϕ) = v(r, ϕ) + w(r, ϕ), (7.70)

where the introduced auxiliary function w(r, ϕ) must satisfy the nonhomogeneous boundary
condition (7.69) and leaves the boundary condition for the function v(r, ϕ) homogeneous.

The function w(r, ϕ) satisfying the boundary condition (7.69) can be chosen in different
ways; the only restriction is that it should be continuous and finite. Let us seek it in the
form

w(r, ϕ) = (c0 + c1r + c2r
2) · g(ϕ).

Because
1

r

∂w(r, ϕ)

∂r
=
(c1
r

+ 2c2

)
g(ϕ),

we have to put c1 = 0 and as the result

w(r, ϕ) = (c0 + c2r
2)g(ϕ). (7.71)

Case 1. For α = 0, β = 1 we have:
a) Boundary condition u(r, ϕ)|r=l = g(ϕ) with auxiliary function

w(r, ϕ) =
r2

l2
g(ϕ). (7.72)
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b) Boundary condition u(r, ϕ)|r=l = g0 = const with auxiliary function

w(r, ϕ) = g0. (7.73)

Case 2. For α = 1, β = 0 we have the boundary condition ∂u
∂r (r, ϕ)

∣∣
r=l

= g(ϕ) with
auxiliary function

w(r, ϕ) =
r2

2l
g(ϕ) + C, (7.74)

where C is an arbitrary constant.

Case 3. For α = 1, β = h > 0 we have the boundary condition ∂u
∂r (r, ϕ) + hu(r, ϕ)

∣∣
r=l

=
g(ϕ) with auxiliary function

w(r, ϕ) =
r2

l(2 + hl)
g(ϕ). (7.75)

It is easy to verify by direct substitution that the above expressions for w(r, ϕ) satisfy
boundary condition (7.69).

Thus, the simple expressions for auxiliary functions w(r, ϕ) given by one of the Equations
(7.72) through (7.75) allow us to reduce nonhomogeneous conditions given in Equation
(7.69) to homogeneous.

Let us consider now the solution of Poisson’s equation with homogeneous boundary
condition. For function v(r, ϕ) we have the BVP

∇2v =
∂2v

∂r2
+

1

r

∂v

∂r
+

1

r2

∂2v

∂ϕ2
= −f̃(r, ϕ). (7.76)

α
∂ν(l, ϕ)

∂r
+ βν(l, ϕ)

∣∣∣∣ = 0 (7.77)

with function f̃(r, ϕ)

f̃(r, ϕ) = f(r, ϕ) +
∂2w

∂r2
+

1

r

∂w

∂r
+

1

r2

∂2w

∂ϕ2
. (7.78)

Check the result (7.78) as a Reading Exercise.

Let us show that the solution to the problem of Equations (7.76) and (7.77) can be
obtained by expansion of function v(r, ϕ) in a series by eigenfunctions of the Sturm-Liouville
problem for the Laplace operator as

v(r, ϕ) =
∞∑
n=0

∞∑
m=0

[
AnmV

(1)
nm(r, ϕ) +BnmV

(2)
nm(r, ϕ)

]
, (7.79)

where V
(1)
nm(r, ϕ), V

(2)
nm(r, ϕ) are the eigenfunctions of the Laplacian satisfying the corre-

sponding homogeneous boundary value problem. As shown in Appendix D part 1, the
eigenfunctions of the Laplacian in polar coordinates for Dirichlet, Neumann and mixed
interior problems can be expressed in terms of the Bessel functions

V (1)
nm = Jn

(
µ

(n)
m

l
r

)
cosnϕ, V (2)

nm = Jn

(
µ

(n)
m

l
r

)
sinnϕ. (7.80)

Different types of boundary conditions lead to different eigenvalues µ
(n)
m .
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Because of orthogonality, the coefficients in Equation (7.79) can be obtained via the
(unknown) function v(r, ϕ) by multiplying (7.79) by dS = rdrdϕ and integrating over the
disc’s area:

Anm =
1

||V (1)
nm ||2

∫ 2π

0

∫ l

0

v(r, ϕ)V (1)
nm(r, ϕ)rdrdϕ,

Bnm =
1

||V (2)
nm ||2

∫ 2π

0

∫ l

0

v(r, ϕ)V (2)
nm(r, ϕ)rdrdϕ. (7.81)

To find a final form for these coefficients we first multiply Equation (7.76) by V
(1)
nm(r, ϕ)

and V
(2)
nm(r, ϕ), and integrate over the circular domain:∫ 2π

0

∫ l

0

∇2v V (1)
nm(r, ϕ)rdrdϕ = −

∫ 2π

0

∫ l

0

f̃(r, ϕ)V (1)
nm(r, ϕ)rdrdϕ, (7.82)

∫ 2π

0

∫ l

0

∇2v V (2)
nm(r, ϕ)rdrdϕ = −

∫ 2π

0

∫ l

0

f̃(r, ϕ)V (2)
nm(r, ϕ)rdrdϕ. (7.83)

Now substitute Equation (7.79) into Equations (7.82) and (7.83). Because V 1
nm(r, ϕ) and

V 2
nm(r, ϕ) are the eigenfunctions of the Laplacian we have

∇2V (1,2)
nm (r, ϕ) = −λnmV (1,2)

nm (r, ϕ), (7.84)

where the eigenvalues λnm =
(
µ

(n)
m /l

)2

. The left sides of Equations (7.82) and (7.83)

become:

−
∞∑
i=0

∞∑
j=0

λij

∫ 2π

0

∫ l

0

[
AijV

(1)
ij (r, ϕ) +BijV

(2)
ij (r, ϕ)

]
V (p)
nm(r, ϕ)rdrdϕ.

Due to the orthogonality relation for the functions V
(p)
nm(r, ϕ)(p = 1, 2), the only term in the

sums that differs from zero is

−λnmAnm
∥∥∥V (p)

nm

∥∥∥2

δp1 or − λnmBnm
∥∥∥V (p)

nm

∥∥∥2

δp2.

Comparing with the right sides in Equations (7.82) and (7.83) we obtain

λnmAnm = f (1)
nm, λnmBnm = f (2)

nm, n,m = 0, 1, 2, . . . ,

where

f (p)
nm =

1

||V (p)
nm ||2

∫ 2π

0

∫ a

0

f̃(r, ϕ)V (p)
nm(r, ϕ)rdrdϕ. (7.85)

From this the coefficients Anm, Bnm can be obtained.
In the case of boundary conditions of the 1st or 3rd type (Dirichlet’s condition or mixed

condition) the eigenvalues λnm 6= 0 for all n, m = 0, 1, 2, . . . in this case the solution is
defined uniquely and has the form

v(r, ϕ) =
∞∑
n=0

∞∑
m=0

1

λnm

[
f (1)
nmV

(1)
nm(r, ϕ) + f (2)

nmV
(2)
nm(r, ϕ)

]
. (7.86)

In the case of boundary conditions of the 2nd type (Neumann’s condition) the eigen-

value λ00 = 0
(
V

(1)
00 = 1, V

(2)
00 = 0

)
and all other eigenvalues are nonzero. There are

two options.
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If

f
(1)
00 =

∫ 2π

0

∫ l

0

f̃(r, ϕ) rdrdϕ = 0,

then the coefficient A00 is undefined. The other coefficients are defined uniquely. A solution
to the given problem exists but is determined only up to an arbitrary additive constant.
The solution in this case is

v(r, ϕ) =
∞∑
n=0

∞∑
m=0

1

λnm

[
f (1)
nmV

(1)
nm(r, ϕ) + f (2)

nmV
(2)
nm(r, ϕ)

]
+ const. (7.87)

If ∫ 2π

0

∫ l

0

f̃(r, ϕ) rdrdϕ 6= 0,

then the solution to the given problem does not exist.
Thus, the general solution of the Poisson problem in a circular domain with nonzero

boundary condition has the form

u(r, ϕ) = w(r, ϕ) + v(r, ϕ)

= w(r, ϕ) +

∞∑
n=0

∞∑
m=0

[
AnmV

(1)
nm(r, ϕ) +BnmV

(2)
nm(r, ϕ)

]
, (7.88)

where

Anm =
f

(1)
nm

λnm
=

1

λnm||V (1)
nm ||2

∫ 2π

0

∫ l

0

f̃(r, ϕ)V (1)
nm(r, ϕ)r drdϕ, (7.89)

Bnm =
f

(2)
nm

λnm
=

1

λnm||V (2)
nm ||2

∫ 2π

0

∫ l

0

f̃(r, ϕ)V (2)
nm(r, ϕ)r drdϕ (7.90)

with V
(p)
nm(r, ϕ) defined by Equation (7.80) and the auxiliary function w(r, ϕ) (7.71). Notice,

that the norms are different for different types of the BVP. The expressions for them are
given in Appendix D part 1.

Example 7.7 Find a stationary temperature distribution in a thin circular plate of radius
l if a boundary of the plate is kept at zero temperature and the plate contains a distributed
source of heat with

Q(r, ϕ) = r2 cos 2ϕ.

Solution. The BVP is formulated as the Poisson equation

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂ϕ2
= −r2 cos 2ϕ (0 ≤ r < l, 0 ≤ φ < 2π)

with zero boundary condition

u(l, ϕ, t) = 0.

This is the Dirichlet BVP and the eigenvalues µ
(n)
m are positive roots of equation

Jn(µr/l) = 0. From there, λnm =
(
µ

(n)
m /l

)2

and
∥∥∥V (1,2)

nm

∥∥∥2

= σnπ
l2

2

[
J ′n

(
µ

(n)
m

)]2
,

σn =

{
2, if n = 0,
1, if n 6= 0,

(see Appendix D part 1).
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The boundary condition is zero, so the solution u(r, ϕ) is defined by the series (7.79)

u(r, ϕ) =
∞∑
n=0

∞∑
m=0

[
AnmV

(1)
nm(r, ϕ) +BnmV

(2)
nm(r, ϕ)

]
,

where Anm =
f(1)
nm

λnm
=

l2f(1)
nm(

µ
(n)
m

)2 , Bnm =
f(2)
nm

λnm
=

l2f(2)
nm(

µ
(n)
m

)2 .

Next find f
(1)
nm, f

(2)
nm using formulas (7.85). Integrals in (7.85) contain∫ 2π

0

cos 2ϕ cosnϕ dϕ =

{
π, if n = 2
0, if n 6= k

,

∫ 2π

0

cos 2ϕ sinnϕ dϕ = 0,

thus f
(1)
nm = 0 for n 6= 2 and f

(2)
nm = 0 for all values of n.

Figure 7.5 shows the graph of function J2(µ) and the respective table lists the roots of
equation J2(µ) = 0.

To find f
(1)
2m let us use the recurrence formula for Bessel functions∫

xnJn−1(x)dx = xnJn(x),

which gives ∫ l

0

r3J2

(
µ

(2)
m

l
r

)
dr =

l4

µ
(2)
m

J3

(
µ(2)
m

)
.

Thus

f
(1)
2m =

1∥∥∥V (1)
2m

∥∥∥2

∫ 2π

0

∫ l

0

r2 cos 2ϕ · cos 2ϕ · J2

(
µ

(2)
m

l
r

)
rdrdϕ

=
2

πl2
[
J ′2

(
µ

(2)
m

)]2 · π · l4

µ
(2)
m

J3

(
µ(2)
m

)
=

2l2

µ
(2)
m ·

[
J ′2

(
µ

(2)
m

)]2 · J3

(
µ(2)
m

)
.

Therefore, the solution of the problem u(r, ϕ) is the series (see Figure 7.4):

u(r, ϕ) = l2 cos 2ϕ

∞∑
m=0

f
(1)
2m(

µ
(2)
m

)2 · J2

(
µ

(2)
m

l
r

)
.

The coefficients in f
(1)
2m can be evaluated, for instance by using Maple, Mathematica or

software from books [7, 8]).

7.10 Three-dimensional Laplace Equation for a Cylinder

Up to now we did not discuss three-dimensional problems. In this section we will show that
they can be solved in a way similar to two-dimensional ones.

Let us separate the variables in the three-dimensional Laplace equation

∇2u = 0 (7.91)

inside a circular bounded cylinder, r ≤ a, 0 ≤ ϕ < 2π, 0 ≤ z ≤ l.
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(a) (b)

FIGURE 7.4
Surface plot (a) and lines of equal temperature (b) of the solution u(r, ϕ) for Example 7.7.

m µ
(2)
m

0 5.1356
1 8.4173
2 11.6198
3 14.7959
4 17.9598
5 21.1169

FIGURE 7.5
Graph of function J2(µ) (a short notation for J2(µr/l) and table for the roots of equation
J2(µ) = 0.

Let us represent the unknown function u in the following form:

u (r, ϕ, z) = V (r, ϕ)Z (z) . (7.92)

Substituting (7.92) into Equation (7.91), after the separation of variables, we get

1

V r

∂

∂r

(
r
∂V

∂r

)
+

1

V r2

∂2V

∂ϕ2
= − 1

Z

∂2Z

∂z2
= −λ, (7.93)

where λ > 0 is the separation constant which will be determined from the conditions of
existence of a non-trivial solution of the problem. As a result, we obtain the equation for
the function V (r, ϕ)

1

r

∂

∂r

(
r
∂V

∂r

)
+

1

r2

∂2V

∂ϕ2
+ λV = 0 (7.94)

and the equation for the function Z(z)

Z ′′ − λZ = 0 (7.95)
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with a solution which can be written in the form

Z(z) = d1 cosh
√
λz + d2 sinh

√
λz. (7.96)

A separation of variables in Equation (7.94)

V (r, ϕ) = R(r)Φ(ϕ) (7.97)

results in
1

r

∂

∂r

(
r
∂R

∂r

)
+
(
λ− ν

r2

)
R = 0 (7.98)

and
Φ′′ + νΦ = 0, (7.99)

where ν is a separation constant. From periodicity condition, Φ(ϕ) = Φ(ϕ + 2π), we have
ν = n2, where n = 0, 1, 2, . . . , and two sets of eigenfunctions Φn(ϕ):

Φn(ϕ) = sinnϕ and Φn(ϕ) = cosnϕ. (7.100)

Equation (7.98) for the function R (r) is the Bessel equation which is bounded at r = 0;
solutions are the Bessel functions

R (r) = Jn

(√
λr
)
. (7.101)

This result explains our choice of the sign, λ > 0 - only in this case the separation of
variables leads to the Bessel function R(r). If λ < 0, the solutions of Equation (7.98) for
R(r) give the modified Bessel functions, In

(√
−λr

)
. Also, when λ < 0, the solutions of

Equation (7.95) for function Z(z) are periodic functions, sin
(√
−λz

)
and cos

(√
−λz

)
, with

the eigenvalues λ = λm determined by the boundary conditions at z = 0 and z = l. The
physics of the problems governs what sign of λ has to be chosen: in one case we expect
oscillatory behavior of function u(x, y, z) in z, in the other the exponential behavior. In
books [7, 8] the reader can find a solution of Equation (7.93) for both signs of λ.

Consider the Dirichlet boundary value problem with zero boundary condition at the
lateral surface

u|r=a = 0 (7.102)

and boundary conditions at the bottom and top surfaces

u|z=0 = g (r, ϕ) , u|z=l = F (r, ϕ) , (7.103)

where g (r, ϕ) and F (r, ϕ) are given functions.
Assume that an expected solution is not periodic in z, thus λ > 0. The boundary

condition at the lateral surface (7.102) results in R(a) = 0 which gives

Jn

(
µ(n)
m

)
= 0, (7.104)

where µ
(n)
m =

√
λa, m = 0, 1, 2 . . . numerates the roots of this equation.

Therefore, Equation (7.94) gives the eigenvalues λnm =
(
µ

(n)
m /a

)2

for Dirichlet BVP; the

corresponding eigenfunctions are

V (1)
nm = Jn

(
µ

(n)
m

a
r

)
cosnϕ, V (2)

nm = Jn

(
µ

(n)
m

a
r

)
sinnϕ. (7.105)
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The norms in the case of Dirichlet BVP are∥∥∥V (1)
nm

∥∥∥2

= πσn
a2

2

∣∣∣J ′n (µ(n)
m

)∣∣∣2 and
∥∥∥V (2)

nm

∥∥∥2

= π
a2

2

∣∣∣J ′n (µ(n)
m

)∣∣∣2 , (7.106)

where σn = 2 for n = 0 and σn = 1 for n 6= 0.

Using the above results, the solution of the first BVP for Equations (7.91) with zero
boundary condition at the lateral surface can be represented as the series

u(r, ϕ, z) =
∞∑
n=0

∞∑
m=0

{[
a1nmV

(1)
nm(r, ϕ) + b1nmV

(2)
nm(r, ϕ)

]
cosh

(√
λnmz

)
+
[
a2nmV

(1)
nm(r, ϕ) + b2nmV

(2)
nm(r, ϕ)

]
sinh

(√
λnmz

)}
. (7.107)

From the boundary condition at z = 0 we have

∞∑
n=0

∞∑
m=0

[
a1nmV

(1)
nm(r, ϕ) + b1nmV

(2)
nm(r, ϕ)

]
= g(r, ϕ),

where the coefficients a1nm and b1nm may be determined by expanding the function g(r, ϕ)

in a Fourier series in the basis functions V
(1)
nm(r, ϕ) and V

(2)
nm(r, ϕ):

a1nm =
1∥∥∥V (1)
nm

∥∥∥2

∫ a

0

∫ 2π

0

g(r, ϕ)V (1)
nm(r, ϕ)rdrdϕ,

b1nm =
1∥∥∥V (2)
nm

∥∥∥2

∫ a

0

∫ 2π

0

g (r, ϕ)V (2)
nm(r, ϕ)rdrdϕ. (7.108)

Analogously, we find the coefficients a2nm and b2nm using the boundary condition at z = l:

a2nm =
1∥∥∥V (1)
nm

∥∥∥2

∫ a

0

∫ 2π

0

F (r, ϕ)V (1)
nm(r, ϕ)rdrdϕ,

b2nm =
1∥∥∥V (2)
nm

∥∥∥2

∫ a

0

∫ 2π

0

F (r, ϕ)V (2)
nm(r, ϕ)rdrdϕ. (7.109)

In a similar way the three-dimensional Laplace and Poisson equations can be solved in
a cylindrical domain for other types of boundary conditions on the lateral surface. The only
difference is that Equations (7.104) and (7.106) should be replaced by the proper ones for
the corresponding types of the boundary conditions.

Example 7.8 Find an expression for the potential of the electrostatic field inside a cylinder
r ≤ a, 0 ≤ z ≤ l, the upper end and outside surfaces of which are grounded, and the lower
end is held at potential A sin 2ϕ.

Solution. The problem is formulated as

∇2u = 0 u|r=a = 0 u|z=0 = A sin 2ϕ, u|z=l = 0.
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Coefficients a2mn = b2mn = 0. Clearly all a1nm = 0 because of orthogonality of function
sin 2ϕ and functions cosnϕ on [0, 2π]. Among coefficients b1nm, only coefficients b12m 6= 0
are not zero:

b12m =
A∥∥∥V (2)
2m

∥∥∥2

∫ a

0

∫ 2π

0

J2

(
µ

(2)
m

a
r

)
sin 2ϕ sin 2ϕrdrdϕ =

Aπ∥∥∥V (2)
2m

∥∥∥2

∫ a

0

J2

(
µ

(2)
m

a
r

)
rdr,

and with (7.2.1) we have

b12m = 2A

a2
∣∣∣J′2(µ(2)

m

)∣∣∣2
∫ a

0
J2

(
µ(2)
m

a r
)
rdr – this integral can be calculated numerically.

Thus,

u(r, ϕ, z) = sin 2ϕ
∞∑
m=0

b12mJ2

(
µ

(2)
m

a
r

)
cosh

(
µ(2)
m z/a

)
.

7.11 Three-dimensional Laplace Equation for a Ball

The next important example is the three-dimensional Laplace equation

∇2u = 0

in a ball of radius a. Using the spherical coordinates, we obtain the following equation for
function u = u(r, θ, ϕ),

∇2u =
1

r2

∂

∂r

(
r2 ∂u

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
+

1

r2 sin2 θ

∂2u

∂ϕ2
= 0, (7.110)

r < a, 0 < θ < π, 0 ≤ ϕ ≤ 2π. We shall discuss only the Dirichlet boundary value problem,

u(a, θ, ϕ) = F (θ, ϕ), 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π. (7.111)

7.11.1 Axisymmetric Case

Let us start with the case where the function in the boundary condition does not depend
on the azimuthal angle ϕ,

u(a, θ, ϕ) = F (θ), 0 ≤ θ ≤ π, (7.112)

hence the solution also does not depend on ϕ,

u = u(r, θ). (7.113)

Equation (7.110) is reduced to

∇2u =
1

r2

∂

∂r

(
r2 ∂u

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
= 0. (7.114)

As usual, we apply the method of separation of variables and find particular solutions in
the form

u(r, θ) = R(r)Θ(θ). (7.115)

Substituting (7.115) into (7.114), we get(
r2R′(r)

)′
Θ(θ) +

R(r)

sin θ
[sin θΘ′(θ)]

′

= 0, (7.116)
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hence (
r2R′(r)

)′
R(r)

= − [sin θΘ′(θ)]
′

sin θΘ(θ)
= λ, (7.117)

where λ is constant.
It is convenient to introduce the variable x = cos θ,

d

dx
= − 1

sin θ

d

dθ
,

which allows us to rewrite the equation for Θ(θ) ≡ X(x) as

d

dx

[(
1− x2

) dX
dx

]
+ λX = 0, 1 ≤ x ≤ 1. (7.118)

Thus, function X(x) is determined by the Legendre equation.

The properties of solutions of that equation are described in Appendix B. It is shown
that the bounded solutions of that equation, the Legendre polynomials, Xn(x) ≡ Pn(x),
exist only for λn = n(n+ 1), where n = 0, 1, 2, . . .

The equation for Rn(r) [
r2R′n(r)

]′
− n(n+ 1)Rn = 0 (7.119)

has two particular solutions,
rn and r−(n+1).

The solution r−(n+1) has to be dropped because it is unbounded when r → 0.
Finally, the bounded solution of Equation (7.114) can be presented in the form

u(r, θ) =

∞∑
n=0

An

( r
a

)n
Pn(cos θ). (7.120)

The boundary condition (7.112) prescribes

u(a, θ) =
∞∑
n=0

AnPn(cos θ) = F (θ). (7.121)

Using the orthogonality property of the Legendre polynomials,∫ 1

−1

Pn(x)Pn′(x)dx =
2

2n+ 1
δnn′ , (7.122)

we find that

An =
2n+ 1

2

∫ π

0

F (θ)Pn(cos θ) sin θdθ. (7.123)

7.11.2 Non-axisymmetric Case

Let is consider now the general case of (7.110)-(7.111). First, we search particular solutions
in the form

u(r, θ, ϕ) = R(r)Θ(θ)Φ(ϕ). (7.124)

Similarly to (7.117), we find(
r2R′(r)

)′
R(r)

= − [sin θΘ′(θ)]
′

sin θΘ(θ)
− 1

sin2 θ

Φ′′(ϕ)

Φ(ϕ)
= λ. (7.125)
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The second equality in (7.125) leads to relation

λ sin2 θ + sin θ
[sin θΘ′(θ)]

′

Θ(θ)
= −Φ′′(ϕ)

Φ(ϕ)
= µ,

where µ is a constant.
Equation

Φ′′ + µΦ = 0

is solved with periodic boundary condition Φ(ϕ+ 2π) = Φ(ϕ), hence

µm = m2, m = 0, 1, 2, . . .

The eigenfunctions are

Φ0 = a0,Φm = am cosmϕ+ bm sinmϕ, m 6= 0,

where a0, am and bm are arbitrary constants.
The equation for Θ(θ) becomes

sin θ [sin θΘ′(θ)]
′

+
(
λ sin θ −m2

)
Θ(θ) = 0.

By means of the change of variables

x = cos θ, X(x) = Θ(θ),

it is transformed to

d

dx

[(
1− x2

) dX
dx

]
+

(
λ− m2

1− x2

)
X = 0. (7.126)

Its bounded solutions are associate Legendre polynomials:

Xmn(x) = Pmn (x), λn = n(n+ 1); n = 0, 1, 2, . . . , 0 ≤ m ≤ n

(see Appendix B). Thus
Θmn(θ) = Pmn (cos θ).

For Rn(r) we obtain the same Equation (7.119) for any m, hence the bounded solution
is Rn(r) = rn.

Finally, we obtain

u(r, θ, ϕ) =
∞∑
n=0

( r
a

)n n∑
m=0

Pmn (cos θ)(Amn cosmϕ+Bmn sinmϕ).

The coefficients Amn and Bmn are found from the boundary condition (7.111),

u(a, θ, ϕ) =
∞∑
n=0

n∑
m=0

Pmn (cos θ) [Amn cosmϕ+Bmn sinmϕ] .

We leave the computation of coefficients Amn and Bmn to the reader. When carrying
out the computations, one has to use the known orthogonality properties of trigonomet-
ric functions, orthogonality properties of associate Legendre polynomials (with the weight
sin θ), and the relation (see Appendix B).∫ 1

−1

[Pmn (x)]
2
dx =

∫ π

0

[Pmn (cos θ)]
2

sin θdθ =
2

2n+ 1

(n+m)!

(n−m)!
(7.127)
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7.12 BVP for Laplace Equation in a Rectangular Domain

Boundary value problems for the Laplace equation in a rectangular domain can be solved
with the method of separation of variables. We begin with the Dirichlet problem defined by

∇2u = 0 (0 < x < lx, 0 < y < ly), (7.128)
u(x, y)|x=0 = g1(y), u(x, y)|x=lx

= g2(y),

u(x, y)|y=0 = g3(x), u(x, y)|y=ly
= g4(x). (7.129)

Let us split the problem in Equations (7.128) through (7.129) into two parts, each of
which has homogeneous (zero) boundary conditions in one variable. To proceed we introduce

u(x, y) = u1(x, y) + u2(x, y), (7.130)

where u1(x, y) and u2(x, y) are the solutions to the following problems on a rectangular
boundary:

∇2u1 = 0, (7.131)

u1(x, y)|x=0 = u1(x, y)|x=lx
= 0, (7.132)

u1(x, y)|y=0 = g3(x), u1(x, y)|y=ly
= g4(x), (7.133)

and
∇2u2 = 0, (7.134)

u2(x, y)|y=0 = u2(x, y)|y=ly
= 0, (7.135)

u2(x, y)|x=0 = g1(y), u2(x, y)|x=lx
= g2(y). (7.136)

First, we consider the problem for the function u1(x, y) and search for the solution in the
form

u1(x, y) = X(x)Y (y). (7.137)

Substituting Equation (7.137) into the Laplace equation and separating the variables yields

X ′′(x)

X(x)
≡ −Y

′′(y)

Y (y)
= −λ, (7.138)

where we take λ > 0 for the further solution.
From here we obtain equations for X(x) and Y (y). With the homogeneous boundary

conditions in Equation (7.132) we obtain the one-dimensional Sturm-Liouville problem for
X(x) given by

X ′′ + λX = 0, 0 < x < lx,

X (0) = X (lx) = 0.

The solution to this problem is

Xn = sin
√
λxnx, λxn =

(
πn

lx

)2

, n = 1, 2, 3, . . . . (7.139)

With these eigenvalues, λxn, we obtain an equation for Y (y) from Equation (7.138):

Y ′′ − λxnY = 0, 0 < y < ly. (7.140)
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A general solution to this equation can be written as

Yn = C(1)
n exp

(√
λxny

)
+ C(2)

n exp
(
−
√
λxny

)
. (7.141)

Such a form of solution does not fit well the purposes of the further analysis. It is more

suitable to take a fundamental system of solution {Y (1)
n , Y

(2)
n } of Equation (7.140) in the

way that function Y
(1)
n and Y

(2)
n satisfy the homogeneous boundary condition, one at y = 0

and another at y = ly:

Y (1)
n (0) = 0, Y (2)

n (ly) = 0.

It is convenient to choose the following conditions at two other boundaries:

Y (1)
n (ly) = 1, Y (2)

n (0) = 1.

As a result the proper fundamental solutions of Equations (7.140) are:

Y (1)
n =

sinh
√
λxny

sinh
√
λxnly

and Y (2)
n =

sinh
√
λxn (ly − y)

sinh
√
λxnly

. (7.142)

It is easily verified that they both satisfy Equation (7.140) and are linearly independent;
thus they can serve as a fundamental set of particular solutions for this equation.

Using the above relations we may write a general solution of the Laplace equation
satisfying the homogeneous boundary conditions at the boundaries x = 0 and x = lx in

Equation (7.132), as a series in the functions Y
(1)
n (y) and Y

(2)
n (y):

u1 =
∞∑
n=1

[
AnY

(1)
n (y) +BnY

(2)
n (y)

]
sin
√
λxnx. (7.143)

The coefficients of this series are determined from the boundary conditions (7.133):

u1(x, y)|y=0 =
∞∑
n=1

Bn sin
√
λxnx = g3(x),

u1(x, y)|y=ly
=
∞∑
n=1

An sin
√
λxnx = g4(x). (7.144)

We see from here that Bn and An are Fourier coefficients of functions g3(x) and g4(x) in
the system of eigenfunctions

{
sin
√
λxnx

}∞
1

:

Bn =
2

lx

∫ lx

0

g3(ξ) sin
√
λxnξdξ,

An =
2

lx

∫ lx

0

g4(ξ) sin
√
λxnξdξ. (7.145)

This completes the solution of the problem given in Equations (7.131) through (7.133).
Obviously, the solution of the similar problem given in Equations (7.144) through (7.145)

can be obtained from Equations (7.143) and (7.145) by replacing y for x, ly for lx and g3(x),
g4(x) for g1(y) and g2(y). Carrying out this procedure yields

u2 =
∞∑
n=1

[
CnX

(1)
n (x) +DnX

(2)
n (x)

]
sin
√
λyny, (7.146)
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where

X(1)
n (x) =

sinh
√
λynx

sinh
√
λynlx

, X(2)
n (x) =

sinh
√
λyn (lx − x)

sinh
√
λynlx

, λyn =

(
πn

ly

)2

, (7.147)

and

Cn =
2

ly

∫ ly

0

g2 (ξ) sin
√
λynξdξ, Dn =

2

ly

∫ ly

0

g1 (ξ) sin
√
λynξdξ. (7.148)

Finally, the solution to the problem (7.128) and (7.129) has the form

u(x, y) = u1(x, y) + u2(x, y), (7.149)

where functions u1(x, y) and u2(x, y) are defined by formulas (7.143) and (7.146), respec-
tively.

In the same way can be solved a BVP for the Laplace equation in a rectangular domain
with other types of boundary conditions. The only difference is that the other fundamental
solutions should be used. Fundamental systems of solutions for different types of boundary
conditions are collected in Appendix E part 1.

Example 7.9 Find a steady state temperature distribution inside a rectangular material
which has boundaries maintained under the following conditions:

T (x, y)|x=0 = T0 + (T3 − T0)
y

ly
, T (x, y)|x=lx

= T1 + (T2 − T1)
y

ly
,

and
T (x, y)|y=0 = T0 + (T1 − T0)

x

lx
, T (x, y)|y=ly

= T3 + (T2 − T3)
x

lx
,

i.e. at the corners of the rectangle the temperatures are T0, T1, T2, T3, and on the boundaries
the temperatures are linear functions.

Solution. Introduce the function u = T − T0 so that we measure the temperature relative
to T0. Then g1(y) = (T3− T1) yly , etc. and evaluating the integrals in Equations (7.145) and

(7.148), we obtain

An =
2

πn
[T3 − T0 − (−1)

n
T2] , Bn = −2

(−1)
n

πn
(T1 − T0) ,

Cn =
2

πn
[T1 − T0 − (−1)

n
T2] , Dn = −2

(−1)
n

πn
(T3 − T0) .

These coefficients decay only as 1/n; thus the series in Equations (7.145) and (7.147) con-
verge rather slowly.

7.13 The Poisson Equation with Homogeneous Boundary
Conditions

Consider a boundary value problem for the Poisson equation

∂2u

∂x2
+
∂2u

∂y2
= −f(x, y) (0 < x < lx, 0 < y < ly) (7.150)
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with homogeneous boundary conditions

P1[u] ≡ α1
∂u

∂x
+ β1u

∣∣∣∣
x=0

= 0, P2[u] ≡ α2
∂u

∂x
+ β2u

∣∣∣∣
x=lx

= 0,

P3[u] ≡ α3
∂u

∂x
+ β3u

∣∣∣∣
y=0

= 0, P4[u] ≡ α4
∂u

∂x
+ β4u

∣∣∣∣
y=ly

= 0. (7.151)

The solution to the problem (7.150), (7.151) can be expanded in a series by eigenfunctions
of the Sturm-Liouville problem for the Laplace operator over a rectangular domain

u(x, y) =
∞∑
n=1

∞∑
m=1

CnmVnm(x, y), (7.152)

where Vnm(x, y) are eigenfunctions of the respective Laplace boundary value problem and
coefficients are

Cnm =
1

‖Vnm‖2
∫ lx

0

∫ ly

0

u(x, y)Vnm(x, y)dxdy. (7.153)

Let us multiply the Equation (7.150) by Vnm(x, y) and integrate over the rectangle
[0, lx; 0, ly]:∫ lx

0

∫ ly

0

[
∂2u

∂x2
+
∂2u

∂y2

]
· Vnm(x, y)dxdy = −

∫ lx

0

∫ ly

0

f(x, y)Vnm(x, y)dxdy. (7.154)

Now substitute Equation (7.152) into Equation (7.154). Because Vnm(x, y) are the eigen-
functions of the Laplacian we have

∇2Vnm(x, y) = −λnmVnm(x, y), (7.155)

where the eigenvalues λnm correspond to the boundary condition (7.151). The left sides of
Equations (7.154) become:

−
∞∑
i=1

∞∑
j=1

λij

∫ lx

0

∫ ly

0

Cij · Vij(x, y)Vnm(x, y)dxdy.

Due to the orthogonality relation for the functions Vnm(x, y), the only term in the sums
that differs from zero is

−λnmCnm||Vnm||2.

Comparing with the right side in Equation (7.154) we obtain

λnmCnm = fnm, n,m = 1, 2, 3, . . . , (7.156)

where

fnm =
1

||Vnm||2

∫ lx

0

∫ ly

0

f(x, y)Vnm(x, y)dxdy. (7.157)

From (7.156) and (7.157) the coefficients Cnm can be obtained.
In the case of boundary conditions of the 1st or 3rd type (Dirichlet condition or mixed

condition) eigenvalues λnm 6= 0 for all n, m = 1,2,3, . . . , thus Cnm = fnm/λnm and the
solution (7.152) is defined uniquely:

u(x, y) =
∞∑
n=1

∞∑
m=1

fnm
λnm

Vnm(x, y). (7.158)
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In the case of boundary conditions of the 2nd type (Neumann conditions) eigenvalue
λ00 = 0 (V00 = 1) and all other eigenvalues are nonzero. Then there are two options.

If

f00 =

∫ lx

0

∫ ly

0

f(x, y)dxdy = 0,

then coefficient C00 is uncertain, and the other coefficients are defined uniquely. The solution
to the given problem exists but is determined only up to an arbitrary additive constant.
The solution is

u(x, y) =
∞∑
n=1

∞∑
m=1

fnm
λnm

Vnm(x, y) + const. (7.159)

If

f00 =

∫ lx

0

∫ ly

0

f(x, y)dxdy 6= 0,

then the solution to the given problem does not exist.

The solution of the Poisson equations with nonhomogeneous boundary conditions needs
to introduce auxiliary functions to switch to homogeneous boundary conditions. It can
be done similarly to the cases we already considered several times, but for a rectangular
domain a determination of an auxiliary function needs more technical steps. That is why
this problem is placed into Appendix C part 2.

7.14 Green’s Function for Poisson Equations

7.14.1 Homogeneous Boundary Conditions

In the present subsection, we apply Green’s function approach for finding the solution of
the Poisson equation

∂2u

∂x2
+
∂2u

∂y2
= −f(x, y) (7.160)

defined in a certain region D, with some homogeneous boundary conditions imposed on
the boundary L of that region. Our goal is to find the kernel G(x, y; ξ, η) of the integral
transformation

u(x, y) = −
∫∫

D

G(x, y; ξ, η)f(ξ, η)dξdη (7.161)

that transforms the right-hand side of Equation (7.160) (heat source or charge density) into
the solution of the boundary value problem (temperature or potential field). Recall that
formerly we obtained such integral transformations for the wave equation (Section 5.5.2)
and the heat equation (Section 6.4). For that goal, it is necessary to solve the Poisson
equation with the source localized in the definite point in the region D, i.e.,

∂2G(x, y; ξ, η)

∂x2
+
∂2G(x, y; ξ, η)

∂y2
= δ(x− ξ)δ(y − η) (7.162)

with the same homogeneous boundary conditions at the boundary L. Due to the superpo-
sition principle, for an arbitrary right-hand side, f(x, y), the solution will be determined by
integral formula (7.161).

Let us consider some basic examples.
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Example 7.10 First, let us find the solution of the Poisson equation (7.162) in the whole
plane −∞ < x <∞, −∞ < y <∞.

Of course, any harmonic function can be added to that solution. However, we are inter-
ested in the particular solution which corresponds to the action of the localized source rather
than external heating. Therefore, we impose the condition of zero flux on infinity:

∂G(x, y; ξ, η)

∂x
=
∂G(x, y; ξ, η)

∂y
= 0 as x2 + y2 →∞. (7.163)

Because the right-hand side of Equation (7.127) depends only on differences

X = x− ξ, Y = y − η,

it is natural to expect that the solution of the problem (7.162), (7.163) also depends only
on those differences,

G(x, y; ξ, η) = Γ(X,Y ), (7.164)

hence

∂2Γ(X,Y )

∂X2
+
∂2Γ(X,Y )

∂Y 2
= δ(X)δ(Y ), −∞ < X <∞, −∞ < Y <∞. (7.165)

Moreover, because the point heat source is localized at the origin X = Y = 0, the
problem is rotationally invariant; hence we expect that the temperature field depends only
on the radial coordinate:

Γ = Γ(R), R =
√
X2 + Y 2. (7.166)

Except for the point R = 0, function Γ(R) satisfies the Laplace equation,

1

R

d

dR

(
R
dΓ

dR

)
= 0,

hence
Γ(R) = c1 lnR+ c2.

The constant c2 is arbitrary, and it is not related to the point source. Later on, we choose
c2 = 0. The constant c1 has to be found using the full Poisson equation (7.165).

Let us integrate both sides of (7.165) over the disk D of radius R0. Recall the formula
of vector analysis, ∫∫

D

∇ · vdxdy =

∮
L

v · nds, (7.167)

where v is a vector field, L is the boundary of D, n is the outward normal vector to L,
and the line integral over L is taken counterclockwise. Using this formula, we obtain in the
left-hand side of the equation:∫∫

D

∆Γdxdy =

∫∫
D

∇ · ∇Γdxdy =

∮
L

dΓ

dR
ds =

c1
R0
· 2πR0 = 2πc1,

while the right-hand side is equal to 1. Hence, c1 = 1/2π.

Solution

Γ(x− ξ, y − η) =
1

2π
lnR =

1

4π
ln[(x− ξ)2 + (y − η)2] (7.168)

is called the fundamental solution of the Poisson equation.
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We can use the obtained solution in order to transform the boundary value problem
(7.162) for the Poisson equation to a certain boundary value problem for the Laplace equa-
tion. For instance, let us consider Equation (7.162) in D with a homogeneous Dirichlet
boundary condition,

G(x, y; ξ, η) = 0, (x, y) ∈ L. (7.169)

Let us present the solution in the form

G(x, y; ξ, η) = Γ(x− ξ, y − η) + v(x, y; ξ, η). (7.170)

Then function v(x, y; ξ, η) satisfies the Laplace equation

∂2v(x, y; ξ, η)

∂x2
+
∂2v(x, y; ξ, η)

∂y2
= 0, (x, y) ∈ D (7.171)

with the nonhomogeneous Dirichlet boundary condition

v(x, y; ξ, η) = −Γ(x− ξ, y − η), (x, y) ∈ L. (7.172)

Example 7.11 Let us find Green’s function for the Poisson equation in the half-plane
y > 0 with the homogeneous Dirichlet boundary condition,

G(x, 0; ξ, η) = 0.

Using transformation (7.170), we obtain the Laplace equation (7.171) in the region y > 0
with the nonhomogeneous Dirichlet boundary condition,

v(x, 0, ξ, η) = −Γ(x− ξ,−η) = − 1

4π
ln[(x− ξ)2 + η2], −∞ < x <∞. (7.173)

Thus, the addition v(x, y; ξ, η) is produced in the region y > 0 by the boundary temperature
distribution (7.173) at y = 0.

The natural way to create such a temperature distribution is to extend the problem to
the region of negative y and put a negative point heat source (“an image”) in the point
x = ξ, y = −η. Indeed, let us consider the problem

∂2v(x, y; ξ, η)

∂x2
+
∂2v(x, y; ξ, η)

∂y2
= −δ(x− ξ)δ(y + η) (7.174)

in the whole plane. Using the results of Example 7.10, we find that

v(x, y; ξ, η) = −Γ(x− ξ, y + η) = − 1

4π
ln[(x− ξ)2 + (y + η)2]. (7.175)

Solution (7.175) satisfies condition (7.173) at y = 0.
Substituting (7.175) into (7.170), we obtain Green’s function for the Dirichlet problem

in a half-plane,

G(x, y; ξ, η) = Γ(x− ξ, y − η)− Γ(x− ξ, y + η) =
1

4π
ln

(x− ξ)2 + (y − η)2

(x− ξ)2 + (y + η)2
,

−∞ < x <∞, y > 0; −∞ < ξ <∞, η > 0.

Example 7.12 Let us find now Green’s function for the Poisson equation in the half-plane
y > 0 with the homogeneous Neumann boundary condition,

∂G

∂y
(x, 0; ξ, η) = 0. (7.176)
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It is easy to guess that in this case we have to put the image of the same sign in the
point (ξ,−η), i.e., v(x, y; ξ, η) should satisfy the equation

∂2v(x, y; ξ, η)

∂x2
+
∂2v(x, y; ξ, η)

∂y2
= δ(x− ξ)δ(y + η),

thus
v(x, y; ξ, η) = Γ(x− ξ, y + η).

Indeed, Green’s function

G(x, y; ξ, η) = Γ(x− ξ, y − η) + Γ(x− ξ, y + η)

=
1

4π
ln
{[

(x− ξ)2 + (y − η)2
]
·
[
(x− ξ)2 + (y + η)2

]}
is an even function of y, therefore it satisfies boundary condition (7.176).

Example 7.13 Consider now Equation (7.162) in a disk x2 +y2 < 1 with the homogeneous
Dirichlet boundary condition,

G(x, y; ξ, η) = 0 as x2 + y2 = 1,

According to formula (7.172), we have to find the solution of the Laplace equation that
creates the distribution

v(x, y; ξ, η) = −Γ(x− ξ, y − η) = − 1

4π
ln[(x− ξ)2 + (y − η)2] (7.177)

on the circle x2 + y2 = 1. Following the approach applied above, we search that solution in
the form

ṽ(x, y; ξ, η) = C − 1

4π
ln[(x− ξ̃)2 + (y − η̃)2], (7.178)

where (ξ̃, η̃) are the coordinates of the “image”. Using the symmetry arguments, we can
suggest that the image is located on the straight line that passes the points (0, 0) and (ξ, η),
i.e., it is in a certain point (ξ̃, η̃) = c(ξ, η), where c is a constant to be found.

Equating (7.177) and (7.178) on the circle x2 + y2 = 1,

C − 1

4π
ln[(x− cξ)2 + (y − cη)2] = − 1

4π
ln[(x− ξ)2 + (y − η)2]

we obtain
e−4πC [(x− cξ)2 + (y − cη)2] = [(x− ξ)2 + (y − η)2]. (7.179)

Equation (7.179) is satisfied on the whole circle x2 + y2 = 1, if

e−4πCc = 1, e−4πC [1 + c2(ξ2 + η2)] = 1 + ξ2 + η2. (7.180)

Solving (7.180), we find

c =
1

ξ2 + η2
, C = − 1

4π
ln(ξ2 + η2).

Thus,

ṽ(x, y; ξ, η) = − 1

4π
ln(ξ2 + η2)− 1

4π
ln[(x− ξ̃)2 + (y − η̃)2]
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and

G(x, y; ξ, η) =
1

4π
ln

(x− ξ)2 + (y − η)2

(ξ2 + η2)[(x− ξ̃)2 + (y − η̃)2]
, (7.181)

where

(ξ̃, η̃) =
(ξ, η)

ξ2 + η2
. (7.182)

In polar coordinates,

x = r cos θ, y = r sin θ, ξ = ρ cosϕ, η = ρ sinϕ,

formulas (7.181), (7.182) can be written as

G(r, θ; ρ, ϕ) =
1

4π
ln

r2 + ρ2 − 2rρ cos(θ − ϕ)

r2ρ2 + 1− 2rρ cos(θ − ϕ)
; 0 < r < 1, 0 < ϕ < 1. (7.183)

7.14.2 Nonhomogeneous Boundary Conditions

Green’s function can be used also for solving the nonhomogeneous boundary value problem,

uxx + uyy = −f(x, y), (x, y) ∈ D, (7.184)

u(x, y) = ϕ(x, y), (x, y) ∈ L, (7.185)

where L is the boundary of region D.
In order to obtain the generalization of formula (7.161) in the case of non-homogeneous

boundary conditions, we have first to derive some relations.
Let us integrate the obvious identity

∇ · (f∇g − g∇f) = f∇2g − g∇2f

over the region D. Using formula (7.167), we obtain Green’s identity∫
L

(fn · ∇g − gn · ∇f) ds =

∫∫
D

(
f∇2g − g∇2f

)
dxdy. (7.186)

Let us take now f = G(x, y; ξ1, η1) and g = G(x, y; ξ2, η2), where

∇2G(x, y; ξi, ηi) = δ(x− ξi)δ(y − ηi), (x, y) ∈ D, (7.187)

G(x, y; ξi, ηi) = 0, (x, y) ∈ L; i = 1, 2; (7.188)

here (ξ1, η1) and (ξ2, η2) are two different points in D. Substituting f and g into Green’s
identity, we find that Green’s function is symmetric,

G(ξ1, η1; ξ2, η2) = G(ξ2, η2; ξ1, η1). (7.189)

Let us take now f = u(x, y) and g = G(x, y; ξ, η). Substituting into the Green’s identity,
we obtain, ∫

L

(un · ∇G−Gn · ∇u) ds =

∫∫
D

(u∇2G−G∇2u)dxdy.

Taking into account (7.187), (7.188), we find that

u(ξ, η) =

∫∫
D

G(x, y; ξ, η)∇2u(x, y)dxdy +

∫
L

u(x, y) (n(x, y) · ∇xG(x, y; ξ, η)) ds,
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where ∇x = (∂/∂x, ∂/∂y). Let us interchange the notations of (x, y) and (ξ, η), and take
into account the symmetry of Green’s function (7.189):

u(x, y) =

∫∫
D

G(x, y; ξ, η)∆u(ξ, η)dξdη +

∫
L

u(ξ, η) (n(ξ, η) · ∇ξG(x, y; ξ, η)) dσ,

where ∇ξ = (∂/∂ξ, ∂/∂η), and integration over dσ is performed along the region’s boundary
in the plane (ξ, η). Using (7.184), (7.185), we obtain Green’s representation formula

u(x, y) = −
∫∫

D

G(x, y; ξ, η)f(ξ, η)dξdη

+

∫
L

ϕ(ξ, η) (n(ξ, η) · ∇ξG(x, y; ξ, η)) dσ, (7.190)

which provides the contributions of both the source and the boundary condition into the
solution.

Note that the Poisson integral formula (7.62) obtained in Section 7.8 is just a consequence
of formula (7.190) with Green’s function given by (7.183).

Example 7.14 Solve the following boundary value problem:

∇2u = −f(x, y), −∞ < x <∞, y > 0;

u(x, y) = ϕ(x), −∞ < x <∞.

Formerly, we have found Green’s function for the Poisson equation in the half-plane
y > 0 (see Example 7.12):

G(x, y, ξ, η) =
1

4π
ln

(x− ξ)2 + (y − η)2

(x− ξ)2 + (y + η)2
.

The outward normal vector is (0,−1), therefore

n(ξ, η) · ∇ξG(x, y, ξ, η)|η=0 = −∂G(x, y, ξ, η)

∂η

∣∣∣∣
η=0

=
1

2π

[
y − η

(x− ξ)2 + (y − η)2
+

y + η

(x− ξ)2 + (y + η)2

]∣∣∣∣
η=0

=
1

π

y

(x− ξ)2 + y2
.

Thus,

u(x, y) = − 1

4π

∫ ∞
−∞

dξ

∫ η

0

dη ln
(x− ξ)2 + (y − η)2

(x− ξ)2 + (y + η)2
f(ξ, η) +

y

π

∫ ∞
−∞

dξ
ϕ(ξ)

(x− ξ)2 + y2
.

7.15 Some Other Important Equations

In the present section we consider some other important equations.
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7.15.1 Helmholtz Equation

The Laplace equation considered above can be obtained as a static limit of dynamic equa-
tions which describe temporal evolution of physical fields, e.g., the wave equation

∂2u

∂t2
= a2∇2u, (7.191)

or the heat equation
∂u

∂t
= a2∇2u, (7.192)

where u = u(x, t) is a function of two or three variables (x is (x, y) or (x, y, z)). Problems
(7.191) and (7.192) will be considered in detail in Chapters 8 and 9. Here we note that
instead of time-independent solutions of Equation (7.192) we can consider a monochromatic
wave

u(x, t) = U(x) cos(ωt+ C). (7.193)

Solutions of this kind, which correspond to oscillations and waves with a definite frequency,
appear in a natural way when the method of separation of variables is applied. Substituting
(7.193) into (7.192), we find that U(x) satisfies the Helmholtz equation

∇2U + k2U = 0, (7.194)

where k = ω/a (the physical meaning of k is the wavenumber).
Note that the wave velocity a can depend on the coordinate x, when the wave propagates

in a heterogeneous medium. For instance, the velocity of light in a medium depends on the
local refraction index. In that case, the Helmholtz equation for a monochromatic wave is

∇2U + k2(x)U = 0. (7.195)

For solving the Helmholtz equation, we can apply approaches similar to those used for
the Laplace equation. Let us consider some examples.

Example 7.15 Find the general solution of the Helmholtz equation in a plane in polar
coordinates,

1

r

∂

∂r

(
r
∂U

∂r

)
+

1

r2

∂2U

∂ϕ2
+ k2U = 0.

Using the separation of variables,

U(r, ϕ) = R(r)Φ(ϕ),

we obtain two ordinary differential equations,

Φ′′ + λΦ = 0 (7.196)

and
r2R′′ + rR′ +

(
k2 − λ

)
R = 0. (7.197)

Equation (7.196) along with periodic condition, Φ(ϕ+2π) = Φ(ϕ), gives the eigenvalues

λm = m2, m = 0, 1, 2, . . . (7.198)

and the eigenfunctions

Φ0 = A0, Φm(ϕ) = Am cosmϕ+Bm sinmϕ for m 6= 0. (7.199)
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Equation (7.197) is the Bessel equation,

R′′ +
1

r
R′ +

(
k2 − m2

r2

)
R = 0;

its solution is
Rm(r) = CmJm(kr) +DmNm(kr)

(see Appendix B). Thus, the general solution of the Helmholtz equation can be written as

U(r, ϕ) =
∞∑
n=0

(Am cosmϕ+Bm sinmϕ)(CmJm(kr) +DmNm(kr)). (7.200)

If the general solution is applied for a boundary value problem in a disk, so that the
solution has to be regular in the point r = 0, thus Dn = 0 for all n. We shall use the
obtained solution in Chapter 8 when considering oscillations of a membrane.

The solution of a three-dimensional Helmholtz equation in cylindrical coordinates,

1

r

∂

∂r

(
r
∂U

∂r

)
+

1

r2

∂2U

∂ϕ2
+
∂2U

∂z2
+ k2U = 0,

can be obtained in a similar way using the separation of variables,

U(r, z, ϕ) = R(r)Z(z)Φ(ϕ).

For Φ(ϕ), we obtain the same equation (7.196) and the same set of eigenvalues (7.198) and
eigenfunctions (7.199). Also, we obtain equation

Z ′′

Z
= µ (7.201)

for function Z(z) and equation

R′′ +
1

r
R′ +

(
k2 + µ− m2

r2

)
R = 0 (7.202)

for R(r). We find that
Z(z) = E exp(

√
µz) + F exp(−√µz).

In an infinite space, µ is arbitrary; in the case of a boundary value problem, the set of
allowed values of µ is discrete, µ = µn, n = 0, 1, 2, . . . (see Section 7.10). In that case, we
get

Rmn = CmnJm(r
√
µn + k2) +DmnNm(r

√
µn + k2)

and

U(r, z, ϕ) =
∞∑
n=0

∞∑
m=0

(Am cosmϕ+Bm sinmϕ)

×
[
CmnJm

(
r
√
µn + k2

)
+DmnNm

(
r
√
µn + k2

)]
× [En exp (

√
µnz) + Fn exp (−√µnz)] .

Example 7.16 Let us consider the Helmholtz equation in spherical coordinates,

1

r

∂

∂r

(
r
∂U

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂U

∂θ

)
+

1

r2

∂2U

∂ϕ2
+ k2U = 0.



Elliptic Equations 179

Similar to the case of the Laplace equation (see Section 7.11), the general solution can be
obtained by separation of variables:

U(r, θ, ϕ) = R(r)Θ(θ)Φ(ϕ).

Like in the case of the Laplace equation, we find that functions Φm(ϕ) are linear combina-
tions of cosmϕ and sinmϕ, and functions

Θml(θ) = Pml (cos θ).

The functions Φm(ϕ) and Θml(θ) can be combined into spherical harmonics

Y ml (θ, ϕ) = NmlP
m
l (cos θ)eimϕ; l = 0, 1, 2, . . . ; m = −l,−l + 1, . . . , l,

where the coefficients Nml are determined by the normalization condition (see
Appendix B). ∫ 2π

0

dϕ

∫ π

0

dθ sin θY m1

l1
(θ, ϕ)∗Y m2

l2
(θ, ϕ) = δl1l2δm1m2

.

The parameter k2 appears only in the equation for the radial function R(r),

r2R′′ + 2rR′ +
[
k2r2 − l(l + 1)

]
R = 0. (7.203)

Changing the variable,

R(r) =
Z(r)

(kr)1/2
,

we obtain the Bessel equation,

r2Z ′′ + 2rZ ′ +

[
k2r2 −

(
l +

1

2

)2
]
Z = 0. (7.204)

Its solutions are Jl+1/2(kr) and Nl+1/2(kr).
Using spherical Bessel and Neumann functions (see Appendix B),

jl(x) =

√
π

2x
Jl+1/2(x), nl(x) =

√
π

2x
Nl+1/2(x) (7.205)

the general solution of the Helmholtz equation is

U(r, θ, ϕ) =
∞∑
l=0

l∑
m=−l

[Almjl(kr) +Blmnl(kr)]Y
m
l (θ, ϕ). (7.206)

A solution is regular in the point r = 0 if all Blm = 0.
Note that the wave velocity a can depend on the coordinate x, when the wave propagates

in a heterogeneous medium. For instance, the velocity of light in a medium depends on the
local refraction index. In that case, the Helmholtz equation for a monochromatic wave is

∇2U + k2(x)U = 0. (7.207)
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7.15.2 Schrödinger Equation

Let us consider a three-dimensional Helmholtz equation

uxx + uyy + uzz + k2u = 0,

which describes the propagation of a monochromatic electromagnetic wave. Assume that
the wave has a form of a beam which propagates mostly in the direction of the z-axis.
Substituting

u(x, y, z) = U(x, y, z)eikz, (7.208)

we obtain the reduced wave equation for the envelope function U(x, y, z),

Uxx + Uyy + Uzz + 2ikUz = 0. (7.209)

The physical field is the real part of (7.208). If the characteristic spatial scale of the beam
is large compared to the wavelength λ = 2π/k, then |Uzz| � |kUz|, hence the term Uzz can
be neglected. We arrive at the paraxial wave equation,

Uxx + Uyy + 2ikUz = 0. (7.210)

Equation (7.210) can be also called the Schrödinger equation, because it is equivalent,
up to rescaling of variables, to the equation governing the propagation of a free quantum
particle,

i~
∂Ψ

∂t
= − ~2

2m
∇2Ψ. (7.211)

Here Ψ is the wave function of the particle, ~ = h/2π is the reduced Planck constant, and
m is the mass of the particle.

Note that in the case of the light beam propagation, the longitudinal coordinate z plays
the role of time.

Example 7.17 As an example of the application of the paraxial wave/Schrödinger equa-
tion, let us consider the diffraction of a Gaussian beam.

Let us rewrite Equation (7.210) using cylindrical coordinates,

Urr +
1

r
Ur +

1

r2
Uϕϕ + 2ikUz = 0

and consider an axially symmetric beam (U = U(r, z)) governed by equation

Urr +
1

r
Ur + 2ikUz = 0. (7.212)

Let us search for the particular solution of this equation in the form

U(r, z) = A(z) exp

[
ikr2

2q(z)

]
, (7.213)

where A(z) and q(z) are complex functions that depend only on z. Substituting the ansatz
(7.213) into (7.212), we find:

2ik

(
A

q
+
dA

dz

)
+
k2r2A

q2

(
dq

dz
− 1

)
= 0. (7.214)

Relation (7.214) is satisfied for any r, if

dq

dz
= 1,

dA

dz
= −A

q
. (7.215)
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Let us impose the initial condition

U(r, 0) = C exp

[
−
(
r

r0

)2
]
,

i.e., at z = 0, the beam is characterized by a Gaussian distribution with the characteristic
radius r0. Then

A(0) = C, q(0) = −ikr2
0/2.

Solving (7.215) in the direction of the beam propagation, z > 0, we find that

q(z) = −ikr2
0/2 + z, A(z) =

C

1 + 2iz/kr2
0

,

i.e.,

U(r, z) =
C

1 + 2iz/kr2
0

exp

[
− r2

r2
0 (1 + 2iz/kr2

0)

]
.

Let us calculate the wave intensity

I(r, z) = |U(r, z)|2 =
C2

1 + 4z2/k2r4
0

exp

[
− 2r2

1 + 4z2/k2r4
0

]
.

One can see that the characteristic radius of the beam r̄(z) grows with z as

r̄(z) = r0

√
1 + 4z2/k2r4

0,

while the maximum intensity of the beam I(0, z) decreases as

I(0, z) =
C2r2

0

[r̄(z)]2
.

We have seen that the Schrödinger equation is obtained from the Helmholtz equation in
the paraxial approximation. Vice versa, we obtain the Helmholtz equation from the time-
dependent Schrödinger equation (7.211) when considering a particle with a definite energy
E,

Ψ(x, t) = U(x) exp

(
−iE

~
t

)
. (7.216)

Indeed, substituting (7.216) into (7.211), we obtain Equation (7.194) with

k2 = 2mE/~2.

In quantum mechanics, equation
∇2U + k2U = 0

is called the time-independent Schrödinger equation. Thus, Example 16 of this section
describes the motion of a free particle. The motion of a quantum particle with energy
E in a certain external potential V (x) is governed by Equation (7.207) with

k2(x) = 2m(E − V (x))/~2.

If the potential is spherically symmetric, V = V (r), equation

∇2U + k2(r)U = 0

can be solved by separation of variables. Acting as in Example 16, we obtain the same
functions of angular variables Y ml (θ, ϕ). Only the equation for the radial function R(r) is
modified,

r2R′′ + 2rR′ +
[
k2(r)r2 − l(l + 1)

]
R = 0. (7.217)

Solutions of Equation (7.217) for typical potentials can be found in textbooks in quantum
mechanics. For the one-electron atom the solution can be also found in books [7, 8].
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Problems

Solve these problems analytically which means the following: formulate the equation and
boundary conditions, obtain the eigenvalues and eigenfunctions, write the formulas for coef-
ficients of the series expansion and the expression for the solution of the problem. You can
obtain the pictures of several eigenfunctions and screenshots of the solution and of the
auxiliary functions with Maple, Mathematica or software from [7, 8].

In problems 1 through 5 we consider rectangular plates (0 ≤ x ≤ lx, 0 ≤ y ≤ ly) which
are thermally insulated over their lateral surfaces. There are no heat sources or absorbers
inside the plates. Find the steady-state temperature distribution in the plates.

1. The sides x = 0, y = 0 and y = ly have a fixed temperature of zero and the side
x = lx follows the temperature distribution u(lx, y) = sin2(πy/ly).

2. The sides x = 0, x = lx and y = 0 have a fixed temperature of zero and the side
y = ly follows the temperature distribution u(x, ly) = sin2(πx/lx).

3. The sides x = 0 and y = 0 have a fixed temperature of zero, the side x = lx is
thermally insulated, and the side y = ly follows the temperature distribution

u(x, ly) = sin (5πx/lx) .

4. The sides x = 0 and x = lx have a fixed temperature of zero, and the sides y = 0
and y = ly follow the temperature distributions

u(x, 0) = sin
πx

lx
and u(x, ly) = sin

3πx

lx
.

5. The sides y = 0 and y = ly have a fixed temperature of zero, and the constant
heat flows

ux(0, y) = ux(lx, y) = sin (3πy/ly)

are supplied to the sides x = 0 and x = lx of the plate from outside.

In problems 6 through 10 we consider a rectangular plate (0 ≤ x ≤ lx, 0 ≤ y ≤
ly) which is thermally insulated over its lateral surfaces. One internal source of
heat Q = const. acts at the point (x0, y0) of the plate. Find the steady-state
temperature distribution in the plate.

6. The edges x = 0, y = 0 and y = ly of the plate are kept at zero temperature and
the edge x = lx is subjected to convective heat transfer with the environment
which has a temperature of zero.

7. The edges x = 0 and y = 0 of the plate are kept at zero temperature, the edge
y = ly is thermally insulated and the edge x = lx is subjected to convective heat
transfer with the environment which has a temperature of zero.

8. The edges x = lx and y = ly of the plate are kept at zero temperature, the edge
x = 0 is thermally insulated and the edge y = 0 is subjected to convective heat
transfer with the environment which has a temperature of zero.

9. The edges y = 0 and y = ly are thermally insulated, the edge x = 0 is kept at
zero temperature and the edge x = lx is subjected to convective heat transfer
with the environment which has a temperature of zero.
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10. The edges x = 0, x = lx and y = ly are thermally insulated and the edge y = 0
is subjected to convective heat transfer with the environment which has a tem-
perature of zero.

In problems 11 through 15 we consider a heat-conducting rectangular plate (0 ≤
x ≤ lx, 0 ≤ y ≤ ly) thermally insulated over its lateral surfaces. Let heat be
generated throughout the plate; the intensity of internal sources (per unit mass
of the plate) is Q(x, y). Find the steady-state temperature distribution in the
plate.

11. Part of the plate bound (x = 0 and x = lx) is thermally insulated, and the other
part is subjected to convective heat transfer with a medium. The temperature of
the medium is umd = const. The intensity of internal sources (per unit mass of
the plate) is

Q(x, y) = A cos
πx

lx
cos

πy

ly
.

12. Part of the plate bound (y = 0 and y = ly) is thermally insulated, and the other
part is subjected to convective heat transfer with a medium. The temperature of
the medium is umd = const. The intensity of internal sources (per unit mass of
the plate) is

Q(x, y) = A cos
πx

lx
cos

πy

ly
.

13. Sides x = 0 and x = lx of the plate are thermally insulated, and sides y = 0 and
y = ly are held at fixed temperatures u(x, 0) = 0 and u(x, ly) = cos(5πx/lx). The
intensity of internal sources (per unit mass of the plate) is

Q(x, y) = Ax sin
πy

ly
.

14. Sides y = 0 and y = ly of the plate are thermally insulated , and sides x = 0 and
x = lx are held at fixed temperatures u(0, y) = 0 and u(lx, y) = cos(3πy/ly).

Q(x, y) = Ax cos
πy

ly
.

15. Sides y = 0 and y = ly of the plate are thermally insulated, side x = 0 is held at
fixed temperature u = u1 and side x = lx is subjected to convective heat transfer
with a medium. The temperature of the medium is zero. The intensity of internal
sources (per unit mass of the plate) is

Q(x, y) = Axy.

In problems 16 through 20 an infinitely long rectangular cylinder has its central
axis along the z -axis and its cross-section is a rectangle with sides of length π.
The sides of the cylinder are kept at an electric potential described by functions
u(x, y)|Γ given below. Find the electric potential within the cylinder.

16. u|x=0 = u|x=π = y2, u|y=0 = x, u|y=π = 0.

17. u|x=0 = y, u|x=π = y2, u|y=0 = u|y=π = 0.

18. u|x=0 = 0, u|x=π = y2, u|y=0 = 0, u|y=π = cosx.

19. u|x=0 = u|x=π = cos 2y, u|y=0 = u|y=π = 0.
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20. u|x=0 = cos 3y, u|x=π = 0, u|y=0 = x2, u|y=π = 0.

In problems 21 through 23 we consider a circular plate of radius l which is ther-
mally insulated over its lateral surfaces. The circular periphery of the plate is
kept at the temperature described by functions of the polar angle u(l, ϕ) = g(ϕ),
given below. Find the steady-state temperature distribution in the plate.

21. g(ϕ) = cos 3ϕ.

22. g(ϕ) = cos ϕ2 + ϕ
π .

23. g(ϕ) = cos ϕ2 + sin ϕ
2 .

In problems 24 and 26 a thin homogeneous circular plate of radius l is electrically
insulated over its lateral surfaces. The boundary of the plate is kept at an electric
potential described by functions of polar angle u(l, ϕ) = g(ϕ) given below. Find
an electric potential in the plate.

24. g(ϕ) = sin 4ϕ.

25. g(ϕ) = sin ϕ
2 + π

2 .

26. g(ϕ) = 2 cosϕ− 3 sinϕ.

In problems 27 through 29 we consider a very long (infinite) cylinder of radius
l. The constant heat flow Q(ϕ) is supplied to the surface of the cylinder from
outside. Find the steady-state temperature distribution in the cylinder.

27. Q(ϕ) = 3 sinϕ+ 2 sin3 ϕ.

28. Q(ϕ) = 4 cos3 ϕ+ 2 sinϕ.

29. Q(ϕ) = 5 sinϕ− cosϕ.

In problems 30 through 32 we consider a very long (infinite) cylinder of radius
l. At the surface of the cylinder there is a heat exchange with the medium. The
temperature of the medium is umd(ϕ). Find the steady-state temperature distri-
bution in the cylinder.

30. umd(ϕ) = sinϕ+ cos 4ϕ.

31. umd(ϕ) = 1 + 4 cos2 ϕ.

32. umd(ϕ) = 2 sin2 ϕ+ 1.

In problems 33 through 35 we consider a circular plate of radius l which is ther-
mally insulated over its lateral surfaces. One constant internal source of heat acts
at the point (r0, ϕ0) of the plate. The value of this source is Q = const. Find the
steady-state temperature distribution in the plate.

33. The edge of the plate is kept at zero temperature.

34. The edge of the plate is subjected to convective heat transfer with the environment
which has a temperature of zero.

35. The edge of the plate is subjected to convective heat transfer with the environment
which has a temperature of umd = const.
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In problems 36 through 38 we consider a circular plate of radius l which is ther-
mally insulated over its lateral surfaces. The contour of the plate is maintained
at zero temperature. A uniformly distributed source of heat with power Q(r, ϕ)
is acting in the plate. Find the steady-state temperature distribution in the plate.

36. Q(r, ϕ) = r cos 2ϕ.

37. Q(r, ϕ) = r2 sinϕ.

38. Q(r, ϕ) = r2(cos 3ϕ+ sin 3ϕ).

39. Find homogeneous harmonic polynomials of degree 3 and 4.

40. Solve the following Dirichlet problem:

∇2u = 0, 0 < r < a, 0 < θ < α, 0 ≤ ϕ ≤ 2π; 0 < α < π;

u(a, θ, φ) = 1, 0 ≤ θ ≤ α, 0 ≤ ϕ ≤ 2π;

u(r, α, φ) = 0, 0 ≤ r ≤ a, 0 ≤ ϕ ≤ 2π.

41. Solve the following Dirichlet problem:

∇2u+ k2u = 0, 0 < r < a, 0 < θ < π, 0 ≤ ϕ ≤ 2π;

u = cos2 θ, r = a, 0 < θ < π, 0 ≤ ϕ ≤ 2π.

Hint : Use the transformation of the kind f(x) = xαv(x) to transform the obtained
ODE to the Bessel equation.

42. Derive Green’s function of the Dirichlet problem for the Poisson equation in the
region 0 < r < 1, 0 < φ < π.
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Two-Dimensional Hyperbolic Equations

In this chapter we consider physical problems related to two-dimensional flexible surfaces
called membranes. A membrane may be defined as a thin film which bends but, in the
present analysis, does not stretch. The boundary of the membrane may be fixed or free or
have forces applied to it. We will also consider cases where the membrane interacts with
the material in which it is embedded and is thus subject to external forces such as driving
forces or friction. Examples of membranes include drum heads, flags, trampolines, biological
barriers such as cellular membranes. The surface of liquids may be treated as membranes
when covered by surfactant that makes it rigid.

Our consideration of the membrane behavior will parallel our previous discussion of a
vibrating string, but now we analyze the motion of a two-dimensional object oscillating in
a third direction. First let us consider a membrane in equilibrium in the x-y plane limited
by a smooth, closed boundary, l, under tension, T, which acts tangent to the surface of
the membrane. In the following we will treat external forces acting on the membrane in a
direction perpendicular to the x-y plane only, except at the boundary of the membrane.
Under the action of such a force or in the case of an initial perturbation from equilibrium,
points on the membrane move to a new position which we will describe by the distance
from equilibrium, u = u(x, y) at location (x, y). The distance of the membrane surface from
equilibrium may also vary in time so that the displacement u(x, y, t) is a function of time
as well as location.

We consider only cases where the curvature of the membrane is small; hence we can
neglect powers of u and derivatives (squared and higher orders): u2 ≈ 0, u2

x ≈ 0, etc.
In Figure 8.1 a small section, σ, of the membrane whose equilibrium position is limited

by the closed curve l is shown. When the membrane is displaced from the equilibrium
position this section is deformed to the area σ′, limited by the closed curve l′ as shown in
Figure 8.1. The new area σ′ at some instant of time is given by

σ′ =

∫∫
σ

√
1 + u2

x + u2
ydxdy ≈

∫∫
σ

dxdy = σ.

From this result we see that, for small oscillations with low curvature, we may neglect
changes of area of the membrane. As in the case of small string vibrations, we assume that
the tension in the membrane does not vary with x or y.

8.1 Derivation of the Equations of Motion

To derive an equation of motion for the membrane let us consider its fragment, the deformed
area σ′ limited by the curve l′. The tension acting on this area is evenly distributed on the
contour, l′ and is perpendicular to the contour and tangent to the surface of the deformed
area. For a segment ds′ of the curve l′ the tension acting on the segment will be Tds′ (T is
tension per unit length). Since motions of the membrane are constrained to be perpendicular

187
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FIGURE 8.1
Small surface element of a membrane, σ displaced from equilibrium into stretched element
σ′. The angle θ is between the force of tension, T, which is tangent to the curved surface
element, and the direction of the displacement, u. The vectors n and n′ are the normal
vectors to the surfaces σ and σ′, respectively.

to the x-y plane we consider the component of the tension in the direction u (perpendicular
to the x-y plane) which is Tds′ cos θ where θ is the angle between T and the direction of the
displacement u. For small oscillations of the membrane, cos θ is approximately equal to ∂u

∂n
where n is the normal perpendicular to the curve l, the boundary of the original equilibrium
area σ. From this we have that the component of tension acting on element ds′ of contour
l ′ in the direction of displacement u is

T
∂u

∂n
ds′.

We now integrate over the contour l′ to find the component of tension acting on area
element σ′ and perpendicular to the equilibrium surface as

T

∫
l′

∂u

∂n
ds′.

For small oscillations of the membrane ds ≈ ds′ (i.e. the boundary l does not deform much
as the element σ is stretched). Using Green’s formula we have, in rectangular coordinates,

T

∫
l

∂u

∂n
ds =

∫∫
σ

T

(
∂2u

∂x2
+
∂2u

∂y2

)
dxdy. (8.1)

The above only includes forces due to the original tension on the membrane. If an additional
external force per unit area F (x, y, t) (which may vary in time) acts parallel to the direction
u(x, y, t), then the component in the u direction of this force acting on area σ′ of the
membrane is given by ∫∫

σ

F (x, y, t)dxdy. (8.2)

The two forces in Equations (8.1) and (8.2) cause an acceleration of the area element σ′.
If the mass per area of the membrane is given by the surface density, ρ(x, y), the right-hand
side of Newton’s second law for the motion of this area element becomes∫∫

σ

ρ(x, y)
∂2u

∂t2
dxdy.
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Setting the forces acting on this element equal to the mass times acceleration of the area
element we have∫∫

σ

[
ρ(x, y)

∂2u

∂t2
− T

(
∂2u

∂x2
+
∂2u

∂y2

)
+ F (x, y, t)

]
dxdy = 0.

We began with an arbitrary surface element, σ, from which it follows that

ρ(x, y)
∂2u

∂t2
− T

(
∂2u

∂x2
+
∂2u

∂y2

)
= F (x, y, t). (8.3)

Equation (8.3) is the linear partial differential equation which describes small, trans-
verse, forced oscillations of a membrane.

In the case of a membrane of uniform mass density (ρ = const) we may write this
equation as

∂2u

∂t2
− a2

(
∂2u

∂x2
+
∂2u

∂y2

)
= f(x, y, t), (8.4)

where a =
√
T/ρ, f(x, y, t) = F (x, y, t)/ρ. In cases where the external force is absent,

i.e. F (x, y, t) = 0, then from Equation (8.4) we obtain the homogeneous equation for free
oscillations of a uniform membrane given by

∂2u

∂t2
= a2

(
∂2u

∂x2
+
∂2u

∂y2

)
. (8.5)

If, in addition to the internal tension, the membrane is subject to an external restoring
force proportional to displacement, we may add a force F = −αu per unit of area of the
membrane, where α is the elasticity coefficient of the ambient material. For such a membrane
embedded in an elastic or spongy environment, Equation (8.4) becomes

∂2u

∂t2
− a2

(
∂2u

∂x2
+
∂2u

∂y2

)
+ γu = f(x, y, t), (8.6)

where γ = α/ρ.
If the membrane is embedded in a material which produces a drag on the motion of

the membrane such as the case for biological membranes, which are normally immersed
in a liquid environment, a friction term must be added to Equation (8.4). Friction forces
are generally proportional to velocity and we have F = −kut as the force per unit area
of membrane where k is the coefficient of friction. The equation of oscillation in this case
includes the time derivative of displacement, ut(x, y, t)and we have

∂2u

∂t2
+ 2κ

∂u

∂t
− a2

(
∂2u

∂x2
+
∂2u

∂y2

)
= f(x, y, t), (8.7)

where 2κ = k/ρ.
All the equations from (8.4) through (8.7) are linear partial differential equations of

hyperbolic type. In the following we solve the above equations for various cases and give
examples. First, we consider the physical limitations presented by requirements at the
boundaries of the membrane.

8.1.1 Boundary and Initial Conditions

The equations of motion (8.4), (8.5), (8.6) and (8.7) are not by themselves sufficient to
entirely specify the motion of a membrane. Additional conditions need be specified: initial
conditions and boundary conditions.
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If the position and velocity of points on the membrane are known at some initial time,
t = 0 and are given by the functions ϕ(x, y) and ψ(x, y), respectively, we have the initial
conditions

u|t=0 = ϕ(x, y),
∂u

∂t

∣∣∣∣
t=0

= ψ(x, y). (8.8)

As in the case of the vibrating string we may be given, along with initial conditions,
information about the behavior of the membrane at its edges at all times, t, in which case
we have boundary conditions. In the following we outline several variants of conditions on
the boundary, L, of the membrane.

1. If the edge of the membrane is rigidly fixed then we have as the boundary condi-
tion

u|L = 0,

which is referred to as a fixed edge boundary condition.

2. If the behavior over time of the displacement, u(x, y, t), of the boundary is given
by some function g(t) then we have

u|L = g(t),

which is called a driven edge boundary condition.

3. In the case of a boundary which is free (for example the edges of a flag under
small oscillations) so that the displacement is only in a direction perpendicular
to the x-y plane we have free edge boundary conditions given by

∂u

∂n

∣∣∣∣
L

= 0.

4. The edge may also be subject to a force with linear density, f1 in the x-y plane
which affects the tension at the boundary. In this case we have the stretched edge
boundary condition, (

−T ∂u
∂n

+ f1

)∣∣∣∣
L

= 0. (8.9)

5. If the force density, f1, in the stretched edge condition, Equation (8.9), is a spring-
like force (for example the boundary of a trampoline fixed to its support with
springs) we may write −ku for f1 and we have(

∂u

∂n
+ hu

)∣∣∣∣
L

= 0, where h = k/T. (8.10)

6. If the edges to which a membrane is elastically attached are moving in some
prescribed way, the right sides of Equations (8.9) and (8.10) will contain some
function of time, g(t), describing the motion of the edges. In this case we have
nonhomogeneous boundary conditions.

We may combine all of these conditions in a generic form given by

α
∂u

∂n
+ βu

∣∣∣∣
L

= g(t). (8.11)

The Dirichlet boundary condition corresponds to α = 0, β = 1 in which case we have the
driven edge situation. The Neumann boundary condition corresponds to α = 1, β = 0
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and we have the stretched edge condition, or the free edge if g(t) = 0. Mixed boundary
conditions, when both α 6= 0 and β 6= 0, correspond to the two last cases; if g(t) = 0 we
have homogeneous (g(t) 6= 0 nonhomogeneous) mixed boundary conditions. Clearly, the
types of boundary conditions can vary along the boundary, and we will consider such a
situation in the following section.

8.2 Oscillations of a Rectangular Membrane

In this section we consider the Fourier method for a rectangular membrane limited by the
straight lines x = 0, x = lx, y = 0 and y = ly (Figure 8.2).

FIGURE 8.2
Rectangular membrane in its equilibrium position.

We begin with the most general case of a membrane subject to friction forces, a restoring
force and external forcing, f(x, y, t). From the previous discussion we see that the equation
of motion for such a problem is given by

∂2u

∂t2
+ 2κ

∂u

∂t
− a2

(
∂2u

∂x2
+
∂2u

∂y2

)
+ γu = f(x, y, t) (8.12)

with generic boundary conditions given on the boundary of the rectangle as

P1[u] ≡ α1ux + β1u|x=0 = g1(y, t), P2[u] ≡ α2ux + β2u|x=lx
= g2(y, t),

P3[u] ≡ α3uy + β3u|y=0 = g3(x, t), P4[u] ≡ α4uy + β4u|y=ly
= g4(x, t), (8.13)

where g1(y, t), . . . , g4(x, t) are the given functions of time and respective variable, and α1,
β1, α2, β2, α3, β3, α4 and β4 are constants subject to the same restrictions from physical
arguments which we saw in Chapter 4. We also consider initial conditions

u|t=0 = ϕ(x, y),
∂u

∂t

∣∣∣∣
t=0

= ψ(x, y), (8.14)

where ϕ(x, y) and ψ(x, y)are given functions. The compatibility of initial and boundary
conditions will be discussed in Subsection 8.2.3.

As in the case for the movement of a string we will use the Fourier method and separation
of variables to solve this equation. In a manner exactly parallel to the solution of a vibrating
string, but instead for an object described initially by two spatial dimensions, we will obtain
solutions in the form of a series of eigenfunctions of the corresponding Sturm-Liouville
problem.
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8.2.1 The Fourier Method for Homogeneous Equations with
Homogeneous Boundary Conditions

We start with the homogeneous equation (i.e. no external forcing)

∂2u

∂t2
+ 2κ

∂u

∂t
− a2

(
∂2u

∂x2
+
∂2u

∂y2

)
+ γu = 0 (8.15)

with homogeneous boundary conditions

P1[u] ≡ α1ux + β1u|x=0 = 0, P2[u] ≡ α2ux + β2u|x=lx
= 0,

P3[u] ≡ α3uy + β3u|y=0 = 0, P4[u] ≡ α4uy + β4u|y=ly
= 0,

(8.16)

and initial conditions in Equation (8.14) given by

u|t=0 = ϕ(x, y),
∂u

∂t

∣∣∣∣
t=0

= ψ(x, y).

As we did before, assume that solutions can be written as the product of two functions,
one a function of time and the second a function of x and y :

u(x, y, t) = V (x, y)T (t). (8.17)

Substituting Equation (8.17) into Equation (8.15), we get

V (x, y)T ′′(t) + 2κV (x, y)T ′(t)− a2[Vxx(x, y) + Vyy(x, y)]T (t) + γV (x, y)T (t) = 0

or, upon rearranging terms,

T ′′(t) + 2κT ′(t) + γT (t)

a2T (t)
=
Vxx(x, y) + Vyy(x, y)

V (x, y)
,

where we have used the shorthand notation for the derivatives in x and y and primes denote
derivatives with respect to time.

The left-hand side of the previous equality is a function of t only and the right-hand
side only of x and y, which is only possible if both sides are equal to some constant value.
Denoting this constant as −λ we have

T ′′(t) + 2κT ′(t) + γT (t)

a2T (t)
≡ Vxx(x, y) + Vyy(x, y)

V (x, y)
= −λ.

For the function T (t) we get the homogeneous linear differential equation of second order

T ′′(t) + 2κT ′(t) + (a2λ+ γ)T (t) = 0. (8.18)

For the function V (x, y) we have the equation

Vxx(x, y) + Vyy(x, y) + λV (x, y) = 0 (8.19)

with boundary conditions

P1[V ] ≡ α1Vx + β1V |x=0 = 0, P2[V ] ≡ α2Vx + β2V |x=lx
= 0,

P3[V ] ≡ α3Vy + β3V |y=0 = 0, P4[V ] ≡ α4Vy + β4V |y=ly
= 0.
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To solve Equation (8.19) for V (x, y) we again make the assumption that the variables are
independent and attempt to separate them using the substitution

V (x, y) = X(x)Y (y).

From here we obtain two separate BVP:

X ′′(x) + λxX(x) = 0 (8.20)

with boundary conditions

α1X
′(0) + β1X(0) = 0, α2X

′(lx) + β2X(lx) = 0,

and
Y ′′(y) + λyY (y) = 0 (8.21)

with boundary conditions

α3Y
′(0) + β3Y (0) = 0, α4Y

′(ly) + β4Y (ly) = 0,

where λx and λy are constants from the division of variables linked by the correlation (see
Appendix D, part 2) λx + λy = λ.

If λxn and Xn(x) are eigenvalues and eigenfunctions of Equation (8.20), and λym and
Ym(y) are eigenvalues and eigenfunctions of Equation (8.21), then

λnm = λxn + λym (8.22)

and
Vnm(x, y) = Xn(x)Ym(y) (8.23)

are eigenvalues and eigenvectors, respectively, of the problem in Equation (8.19).
The functions Vnm(x, y) are orthogonal and the square norms are given by

‖Vnm‖2 = ‖Xn‖2 ‖Ym‖2 . (8.24)

The system of eigenfunctions, Vnm, given in Equation (8.23) form a complete set of basis
functions for a two-dimensional rectangular membrane. By this we mean that any smooth
(i.e. twice differentiable) shape of the deformed rectangular membrane with the generic
boundary conditions given above can be expanded in a converging series of the functions
Vnm.

We now return to Equation (8.18) describing the time evolution of the membrane. This
is an ordinary linear differential equation of 2nd order which we have seen previously for
one-dimensional oscillations. It should clear in this case, however, that T (t) now depends
on two indexes corresponding to the eigenfunctions Xn(x) and Yn(y). Specifically we may
write λ = λnm and denote T (t) as Tnm(t) which is a general solution of Equation (8.18):

Tnm(t) = anmy
(1)
nm(t) + bnmy

(2)
nm(t), (8.25)

where anm and bnm are arbitrary constants. Similar to the case for the one-dimensional
problem, we have

y
(1)
nm(t) =


e−κt cosωnmt, ωnm =

√
a2λnm + γ − κ2, κ2 < a2λnm + γ,

e−κt coshωnmt, ωnm =
√
κ2 − a2λnm − γ, κ2 > a2λnm + γ,

e−κt, κ2 = a2λnm + γ,

y
(2)
nm(t) =


e−κt sinωnmt, ωnm =

√
a2λnm + γ − κ2, κ2 < a2λnm + γ,

e−κt sinhωnmt, ωnm =
√
κ2 − a2λnm − γ, κ2 > a2λnm + γ,

te−κt, κ2 = a2λnm + γ.

(8.26)
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Reading Exercise: Following the arguments used in the chapter for the one-dimensional case,
verify the above formulas.

Thus, particular solutions for the free oscillations of a rectangular membrane may be
written as

unm(x, y, t) = Tnm(t)Vnm(x, y) =
[
anmy

(1)
nm(t) + bnmy

(2)
nm(t)

]
Vnm(x, y), (8.27)

which form a complete set of solutions to Equation (8.15) satisfying boundary conditions
in Equation (8.16).

The general solution can be presented as a sum

u(x, y, t) =
∑
n

∑
m

Tnm(t)Vnm(x, y). (8.28)

Substituting the initial conditions in the series (8.28) and, as always, assuming the
uniform convergence of this series, which allows us to differentiate the series term-by-term,
we have:

u|t=0 = ϕ(x, y) =
∑
n

∑
m

anmVnm(x, y), (8.29)

∂u

∂t

∣∣∣∣
t=0

= ψ(x, y) =
∑
n

∑
m

[ωnmbnm − κanm]Vnm(x, y) (8.30)

(to treat simultaneously all three cases for κ2 we replace in (8.30) ωnm by 1 when κ2 =
a2λnm + γ).

Formulas (8.29) and (8.30) show that functions ϕ(x, y) and ψ(x, y) can be expanded in
a complete set of functions, Vnm(x, y), which form the solution of the Sturm-Liouville BVP
of Equation (8.19).

Again, supposing the series in Equations (8.29) and (8.30) converge uniformly we may
determine the coefficients anm and bnm by using the orthogonality of the eigenfunctions
Vnm(x, y). Multiplying Equations (8.29) and (8.30) by Vnm(x, y) and integrating over x
from 0 to lx and over y from 0 to ly, yields the Fourier coefficients

anm =
1

||Vnm||2

∫ lx

0

∫ ly

0

ϕ(x, y)Vnm(xy)dxdy, (8.31)

bnm =
1

ωnm

[
1

||Vnm||2

∫ lx

0

∫ ly

0

ψ(x, y)Vnm(xy)dxdy + κanm

]
. (8.32)

The coefficients anm and bnm substituted into the series (8.28) yield a complete solution
to Equation (8.15) with boundary conditions (8.16), and initial conditions (8.14), under the
assumption that the series in Equation (8.28) converges uniformly and can be differentiated
term by term in x, y and t. Therefore, we may say that Equation (8.28) completely describes
the free oscillations of a membrane. This solution thus has the form of a Fourier series on
the orthogonal system of functions {Vnm(x, y)}, each function of which represents a mode
characterized by two numbers, n and m.

Particular solutions unm(x, y, t) = Tnm(t)Vnm(x, y) where the time and space compo-
nents are separate are called standing wave solutions and are analogous to standing waves
on a one-dimensional string. The profile of the standing wave is defined by the function
Vnm(x, y) with an amplitude which varies as a function of time Tnm(t). Lines, along which
Vnm(x, y) = 0 does not change with time, are called node lines of the standing wave. Loose
sand placed on a vibrating membrane will collect along node lines because there is no motion
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at those locations. Locations where Vnm(x, y) has a relative maximum or minimum at some
instant of time are called antinodes of the standing wave. The general solution, u(x, y, t),
is an infinite sum of these standing waves as was the case for the vibrating string. This
property of being able to construct arbitrary shapes from a sum of component waves (or
modes) is referred to as the superposition of standing waves and is a general property of
linear systems of all dimensions.

Consider a simple case of a rectangular membrane with sides clamped at the boundary.
The vibrations are caused only by initial conditions; thus we want to solve the equation

∂2u

∂t2
= a2

(
∂2u

∂x2
+
∂2u

∂y2

)
satisfying boundary conditions

u(0, y, t) = u(lx, y, t) = u(x, 0, t) = u(x, ly, t) = 0,

and initial conditions (8.14).
We leave to the reader to check as a Reading Exercise that, using the results from the

generic case presented above, eigenvalues and eigenfunctions for this problem are

λxn =

(
nπ

lx

)2

, Xn(x) = sin
nπx

lx
, ‖Xn‖2 =

lx
2
, n = 1, 2, 3, . . . ,

λym =

(
mπ

ly

)2

, Ym(y) = sin
mπy

ly
, ‖Ym‖2 =

ly
2
, m = 1, 2, 3, . . . ,

with

λnm = λxn + λym = π2

(
n2

l2x
+
m2

l2y

)
,

and we have that

Vnm(x, y) = Xn(x)Ym(y) = sin
nπx

lx
sin

mπy

ly
with ‖Vnm‖2 =

lxly
4
.

It is obvious that these functions form a complete set of orthogonal functions for oscillations
of the rectangular membrane. The time evolution function can be written as

Tnm(t) = anm cosωnmt+ bnm sinωnmt,

where the frequencies are ωnm = aλnm = aπ
√

n2

l2x
+ m2

l2y
. Each pair of integers (n, m)

corresponds to a particular characteristic mode (called a normal mode) of vibration of the
membrane. An arbitrary membrane deflection may then be represented as a superposition
of normal modes:

u(x, y, t) =
∞∑
n=1

∞∑
m=1

TnmVnm =
∞∑
n=1

∞∑
m=1

cnm sin
nπx

lx
sin

mπy

ly
cos(ωnmt+ δnm),

where we have introduced coefficients cnm and phase shifts δnm via the relations anm =
cnm cos δnm, bnm = −cnm sin δnm.

If the membrane vibrates in one of its normal modes, then all points on the membrane
participate in harmonic motion with frequency ωnm. As an example consider the (2,1) mode
(i.e. n = 2, m = 1). The eigenfunction is

V21(x, y) = X2(x)Y1(y) = sin
2πx

lx
sin

πy

ly
.
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FIGURE 8.3
Modes of vibration Vnm(x, y) = Xn(x)Ym(y). Plus signs indicate motion out of the page,
minus signs indicate simultaneous motion into the page.

The only nodal line is the straight line x = lx/2. Similarly, the (1,2) mode (n = 1, m = 2)
has the nodal line y = ly/2 (see Figure 8.3). Nodal lines split the membrane into zones and
all points of each zone move with the same phase, i.e. all up or all down (labeled with +
and -) at some instant (although not necessarily with the same amplitude).

Generally speaking, each node vibrates with its own frequency, ωnm. However, if ly/lx is
a rational number, two or more modes could possesses the same frequency. As an example
consider a square membrane where lx = ly, in which case ω12 = ω21. This frequency is said to
be two-fold degenerate, by which we mean there are two linearly independent eigenfunctions
corresponding to the same eigenvalue.

Below we consider two examples of physical problems for free oscillations of a membrane
with homogeneous boundary conditions.

Example 8.1 Find the transverse oscillations of a uniform rectangular membrane (0 ≤
x ≤ lx, 0 ≤ y ≤ ly) having fixed edges and with an initial displacement of

u(x, y, 0) = Axy(lx − x)(ly − y),

assuming interactions with the surrounding medium can be neglected and the initial veloc-
ities of points on the membrane are zero.

Solution. This is an example of the case discussed above with the specified initial conditions;
thus the problem reduces to solutions of the equation

∂2u

∂t2
− a2

(
∂2u

∂x2
+
∂2u

∂y2

)
= 0,

with initial and boundary conditions

u(x, y, 0) = Axy(lx − x)(ly − y),
∂u

∂t
(x, y, 0) = 0,

u(0, y, t) = u(lx, y, t) = u(x, 0, t) = u(x, ly, t) = 0.

The general solution to this problem can be presented as a sum (8.28)

u(x, y, t) =

∞∑
n=1

∞∑
m=1

TnmVnm =

∞∑
n=1

∞∑
m=1

[
anmy

(1)
nm(t) + bnmy

(2)
nm(t)

]
Vnm(x, y).

As we obtained above, the eigenfunctions Vnm(x, y) are

Vnm(x, y) = Xn(x)Ym(y) = sin
nπx

lx
sin

mπy

ly
, ‖Vnm‖2 =

lxly
4
.



Two-Dimensional Hyperbolic Equations 197

(a) (b)

FIGURE 8.4
Eigenfunctions (a) V11(x, y) and (b) V22(x, y) for a membrane with fixed edges.

The three-dimensional view shown in Figure 8.4 depicts two eigenfunctions, V11(x, y)
and V22(x, y), chosen as examples, for this problem.

In our case ϕ(x, y) = Axy(lx − x)(ly − y) and ψ(x, y) = 0, so the expressions for the
coefficients of the series are (8.31) and (8.32)

anm =
1

||Vnm||2

∫ lx

0

∫ ly

0

ϕ(x, y)Vnm(xy)dxdy =
4A

lxly

∫ lx

0

x (lx − x) sin
nπx

lx
dx

×
∫ ly

0

y (ly − y) sin
mπy

ly
dy =


64A l2xl

2
y

π2n2m2
, if n and m − odd,

0, if n or m − even,

bnm = 0.

We leave to the reader as a Reading Exercise to check, using Equations (8.25) and (8.26),
that the time evolution is given by

Tnm = anm cosωnmt =


64A l2xl

2
y

π2n2m2
cosωnmt, if n and m − odd,

0, if n or m − even,

where ωnm = aλnm = aπ
√

(n/lx)2 + (m/ly)2.
Consequently, the displacements of the membrane as a function of time for this problem

can be expressed by the series

u(x, y, t) =
64Al2xl

2
y

π2

∞∑
n=1

∞∑
m=1

cosω(2n−1)(2m−1)t

(2n− 1)2(2m− 1)2
sin

(2n− 1)πx

lx
sin

(2m− 1)πy

ly
.

Figure 8.5 shows two snapshots of the solution at the times t = 2 and t = 10. This solution
was obtained for the case a2 = 1, lx = 4, ly = 6, and A = 0.01.

Example 8.2 A uniform rectangular membrane (0 ≤ x ≤ lx, 0 ≤ y ≤ ly) has edges x = lx
and y = ly which are free and edges at x = 0 and y = 0 which are firmly fixed. Find
the transverse oscillations of the membrane caused by an initial displacement u(x, y, 0) =
Axy assuming interactions with the surrounding medium can be neglected and the initial
velocities of points on the membrane are zero.

Solution. This problem reduces to finding the solution of the equation

∂2u

∂t2
− a2

(
∂2u

∂x2
+
∂2u

∂y2

)
= 0,
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(a) (b)

FIGURE 8.5
Graph of the membrane in Example 8.1 for different time instants: (a) t = 7, (b) t = 10.

(a) (b)

FIGURE 8.6
Sample eigenfunctions (a) V22(x, y) and (b) V33(x, y) for Example 8.2.

with initial and boundary conditions

u(x, y, 0) = Axy,
∂u

∂t
(x, y, 0) = 0,

u(0, y, t) =
∂u

∂x
(lx, y, t) = 0, u(0, y, t) =

∂u

∂y
(x, ly, t) = 0.

The general solution to this problem can be presented as a sum (8.28)

u(x, y, t) =
∞∑
n=1

∞∑
m=1

TnmVnm =
∞∑
n=1

∞∑
m=1

[
anmy

(1)
nm(t) + bnmy

(2)
nm(t)

]
Vnm(x, y).

Eigenfunctions Vnm(x, y) of the problem are

Vnm(x, y) = Xn(x)Ym(y) = sin
(2n− 1)πx

2lx
sin

(2m− 1)πy

2ly
, ‖Vnm‖2 =

lxly
4
.

The three-dimensional picture shown in Figure 8.6 depicts two eigenfunctions, V11(x, y) and
V22(x, y) chosen as examples for this problem.

Using formulas (8.31) and (8.32) we obtain the coefficients

anm = (−1)n+m 64Alxly
π4(2n− 1)2(2m− 1)2

and bnm = 0.

In this case displacements of the membrane as a function of time are expressed by the series

u(x, y, t) =
64Alxly
π4

∞∑
n=1

∞∑
m=1

(−1)n+m cosωnmt

(2n− 1)2(2m− 1)2
sin

(2n− 1)πx

2lx
sin

(2m− 1)πy

2ly
,
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where

ωnm = aλnm = aπ

√
(2n− 1)2

4l2x
+

(2m− 1)2

4l2y
.

8.2.2 The Fourier Method for Nonhomogeneous Equations with
Homogeneous Boundary Conditions

Building on the previous sections we now consider the problem of solutions of the nonho-
mogeneous Equation (8.12) for a two-dimensional membrane:

∂2u

∂t2
+ 2κ

∂u

∂t
− a2

(
∂2u

∂x2
+
∂2u

∂y2

)
+ γu = f(x, y, t),

where f(x, y, t) is a given function. First, we search for solutions which satisfy the homoge-
neous boundary conditions in Equation (8.16) given by

P1[u] ≡ α1ux + β1u|x=0 = 0, P2[u] ≡ α2ux + β2u|x=lx
= 0,

P3[u] ≡ α3uy + β3u|y=0 = 0, P4[u] ≡ α4uy + β4u|y=ly
= 0,

and nonhomogeneous (non-zero) initial conditions given in Equation (8.14)

u|t=0 = ϕ(x, y),
∂u

∂t

∣∣∣∣
t=0

= ψ(x, y).

Because the equation of membrane oscillations is linear, the displacement, u(x, y, t), may
be written as the sum

u(x, y, t) = u1(x, y, t) + u2(x, y, t),

where u1(x, y, t) is the solution of the homogeneous equation with homogeneous boundaries
and nonhomogeneous initial conditions:

∂2u1

∂t2
+ 2κ

∂u1

∂t
− a2

(
∂2u1

∂x2
+
∂2u1

∂y2

)
+ γu1 = 0, (8.33)

P1[u1]|x=0 = 0, P2[u1]|x=lx
= 0,

P3[u1]|y=0 = 0, P4[u1]|y=ly
= 0,

(8.34)

u1|t=0 = ϕ(x, y),
∂u1

∂t

∣∣∣∣
t=0

= ψ(x, y). (8.35)

The function u2(x, y, t) is the solution of the nonhomogeneous equation with homogeneous
boundary conditions and initial conditions:

∂2u2

∂t2
+ 2κ

∂u2

∂t
− a2

(
∂2u2

∂x2
+
∂2u2

∂y2

)
+ γu2 = f(x, y, t), (8.36)

P1[u2]|x=0 = 0, P2[u2]|x=lx
= 0, P3[u2]|y=0 = 0, P4[u2]|y=ly

= 0, (8.37)

u2|t=0 = 0,
∂u2

∂t

∣∣∣∣
t=0

= 0. (8.38)

In other words the solution u1(x, y, t) is for free oscillations, i.e. such oscillations which
occur only as a consequence of an initial perturbation and the solution u2(x, y, t) is for the
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case of forced oscillations, i.e. such oscillations which occur under the action of an external
force f(x, y, t) when initial perturbations are absent.

The problem of free oscillations was considered in the previous section for which case
the solution u1(x, y, t) is known. To proceed we need only to find the solution u2(x, y, t) for
forced oscillations. As in the case for free oscillations we may expand u2(x, y, t) in the series

u2(x, y, t) =
∑
n

∑
m

Tnm(t)Vnm(x, y), (8.39)

where Vnm(x, y) are eigenfunctions of the corresponding homogeneous boundary problem
and Tnm(t) are, at this stage, unknown functions of t. Any choice of functions Tnm(t)
satisfies the homogeneous boundary conditions (8.37) for the function u2(x, y, t) because
the functions Vnm(x, y) satisfy these conditions.

To find the functions Tnm(t) we proceed as follows. Substituting the series (8.39) into
Equation (8.36) we have∑

n

∑
m

[
T ′′nm(t) + 2κT ′nm(t) + (a2λnm + γ)Tnm(t)

]
Vnm(x, y) = f(x, y, t). (8.40)

We may also expand the function f(x, y, t) in a Fourier series using the basis functions
Vnm(x, y) on the rectangle [0, lx; 0, ly]:

f(x, y, t) =
∑
n

∑
m

fnm(t)Vnm(x, y), (8.41)

where the coefficients of expansion are given by

fnm(t) =
1

||Vnm||2

∫ lx

0

∫ ly

0

f(x, y, t)Vnm(x, y)dxdy. (8.42)

Comparing the expansions in Equations (8.40) and (8.41) for the same function f(x, y, t),
obtain a differential equation for the functions Tnm(t):

T ′′nm(t) + 2κT ′nm(t) + (a2λnm + γ)Tnm(t) = fnm(t). (8.43)

The solution u2(x, y, t), defined by the series in Equation (8.39) and satisfying initial
conditions (8.38) requires that the functions Tnm(t) in turn satisfy the conditions

Tnm(0) = 0, T ′nm(0) = 0. (8.44)

The solution of the Cauchy problem defined by Equations (8.43) and (8.44) may be written
as

Tnm(t) =

∫ t

0

fnm(τ)Ynm(t− τ)dτ, (8.45)

where (Section 5.6)

Ynm(t) =



1

ωnm
e−κt sinωnmt, ωnm =

√
a2λnm + γ − κ2, κ2 < a2λnm + γ,

1

ωnm
e−κt sinhωnmt, ωnm =

√
κ2 − a2λnm − γ, κ2 > a2λnm + γ,

te−κt, κ2 = a2λnm + γ.

Reading Exercise: Verify the above formulas.
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We can substitute the expression for fnm(t) given in Equation (8.42) to yield, finally,

Tnm(t) =
1

‖Vnm‖2
∫ t

0

dτ

∫ lx

0

∫ ly

0

f(x, y, τ)Vnm(x, y)Ynm(t− τ)dxdy. (8.46)

Substituting the above formulas for Tnm(t) into the series (8.39) yields the solution of
the boundary value problem defined by Equations (8.36) through (8.38) under the condi-
tion that the series (8.39) and the series obtained from Equation (8.39) by term-by-term
differentiation (up to second order with respect to x, y, and t) converge uniformly. Thus,
the solution of the original problem of forced oscillations is given by

u(x, y, t) = u1(x, y, t) + u2(x, y, t)

=
∑
n

∑
m

{
Tnm(t) +

[
anmy

(1)
nm(t) + bnmy

(2)
nm(t)

]}
Vnm(x, y), (8.47)

where coefficients Tnm(t) are defined by Equation (8.46) and anm, bnm are defined in the
previous section for free oscillations.

We now consider examples of solutions of physical problems involving a nonhomogeneous
equation of oscillations with homogeneous boundary conditions.

Example 8.3 Consider transverse oscillations of a rectangular membrane [0, lx; 0, ly] with
fixed edges, subjected to a transverse driving force

F (t) = A sinωt,

applied at the point (x0, y0), 0 < x0 < lx, 0 < y0 < ly. Assume that the reaction of the
surrounding medium can be ignored.

Solution. The problem can be defined as

∂2u

∂t2
− a2

(
∂2u

∂x2
+
∂2u

∂y2

)
=
A

ρ
δ(x− x0)δ(y − y0) sinωt

with initial conditions

u(x, y, 0) = 0,
∂u

∂t
(x, y, 0) = 0,

and Dirichlet homogeneous boundary conditions

u(0, y, t) = u(lx, y, t) = u(x, 0, t) = u(x, ly, t) = 0.

Using the initial conditions, ϕ(x, y) = ψ(x, y) = 0, the solution u(x, y, t) is determined
by the series

u(x, y, t) =
∞∑
n=1

∞∑
m=1

Tnm(t) sin
nπx

lx
sin

mπy

ly
,

where

Tnm(t) =
1

ωnm

∫ t

0

fnm(τ) sinωnm(t− τ)dτ,

fnm(t) =
4A

ρlxly
sinωt sin

nπx0

lx
sin

mπy0

ly
,

and ωnm = aλnm = aπ
√

n2

l2x
+ m2

l2y
, Vnm(x, y) = sin nπx

lx
sin mπy

ly
, ‖Vnm‖2 =

lxly
4 .
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FIGURE 8.7
Solution profile u(x, 2.5, t) for Example 8.3 at a driving frequency other than resonance.

Figure 8.7 shows the solution profile u(x, 2.5, t) for Example 8.3. This solution was
obtained for the case a2 = 1, lx = 4, ly = 6, ρ = 1, A = 0.5, x0 = 1.5, y0 = 2.5, and ω = 1.5
(the frequency of the external force).

If the frequency of the driving force is not equal to any of the natural frequencies of the
membrane, i.e. ω 6= ωnm, n,m = 1, 2, 3 . . . , then

Tnm(t) =
4A

ρlxly(ω2
nm − ω2)

sin
nπx0

lx
sin

mπy0

ly

[
sinωt− ω

ωnm
sinωnmt

]
and

u(x, y, t) =
4A

ρlxly

∞∑
n=1

∞∑
m=1

1

(ω2
nm − ω2)

[
sinωt− ω

ωnm
sinωnmt

]

× sin
nπx0

lx
sin

mπy0

ly
sin

nπx

lx
sin

mπy

ly
.

In the case of resonance, where the frequency of the driving force does coincide with one
of the normal mode frequencies of the membrane, (n̄, m̄), i.e. ω = ωn̄m̄, we have

Tn̄m̄(t) =
2A

ρlxlyω
sin

n0πx0

lx
sin

m0πy0

ly

[
sinωt− ωt ω

ωn̄m̄
cosωt

]
and

u(x, y, t) =
4A

ρlxly

∞∑
n6=n̄

∞∑
m6=m̄

1

(ω2
nm − ω2)

[
sinωt− ω

ωnm
sinωnmt

]

× sin
nπx0

lx
sin

mπy0

ly
sin

nπx

lx
sin

mπy

ly

+
2A

ρlxlyω

[
sinωt− ωt ω

ωn̄m̄
cosωt

]
sin

n0πx0

lx
sin

m0πy0

ly
sin

n0πx

lx
sin

m0πy

ly
.

Figure 8.8 shows the solution profile u(x, 2.5, t) in the case of resonance where the
frequency of the external force ω = ω23 = π/

√
2. Other parameters are the same as in

Figure 8.7.
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FIGURE 8.8
Solution profile u(x, 2.5, t) for Example 8.3 at resonance.

8.2.3 The Fourier Method for Nonhomogeneous Equations with
Nonhomogeneous Boundary Conditions

Consider now the boundary problem of forced oscillations of a membrane given by Equation
(8.12) with nonhomogeneous boundary and initial conditions given by Equations (8.13) and
(8.14):

∂2u

∂t2
+ 2κ

∂u

∂t
− a2

(
∂2u

∂x2
+
∂2u

∂y2

)
+ γu = f(x, y, z),

P1[u] ≡ α1ux + β1u|x=0 = g1(y, t), P2[u] ≡ α2ux + β2u|x=lx
= g2(y, t),

P3[u] ≡ α3uy + β3u|y=0 = g3(x, t), P4[u] ≡ α4uy + β4u|y=ly
= g4(x, t),

u|t=0 = ϕ(x, y),
∂u

∂t

∣∣∣∣
t=0

= ψ(x, y).

We will consider situations when the boundary conditions along the edges of membrane
are consistent at the corners of a membrane (which would be required in a physical occur-
rence), i.e. the following conforming conditions are valid:

P3[g1] ≡ α3g1y + β3g1|y=0 = P1[g3] ≡ α1g2y + β1g3|x=0 ,

P4[g1] ≡ α4g1y + β4g1|y=ly
= P1[g4] ≡ α1g4y + β1g4|x=0 ,

P3[g2] ≡ α3g2y + β3g2|y=0 = P2[g3] ≡ α2g3y + β2g3|x=lx
,

P4[g2] ≡ α4g2y + β4g2|y=ly
= P2[g4] ≡ α2g4y + β2g4|x=lx

.

We know that it is not possible to use the Fourier method immediately since the bound-
ary conditions are nonhomogeneous. However, this problem is easily reduced to the problem
with zero boundary conditions. To proceed, let us search for solutions of the problem in the
form

u(x, y, t) = v(x, y, t) + w(x, y, t), (8.48)
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where v(x, y, t) is an unknown function and the function w(x, y, t) satisfies the given non-
homogeneous boundary conditions

P1[w] ≡ α1wx + β1w|x=0 = g1(y, t), P2[w] ≡ α2wx + β2w|x=lx
= g2(y, t),

P3[w] ≡ α3wy + β3w|y=0 = g3(x, t), P4[w] ≡ α4wy + β4w|y=ly
= g4(x, t) (8.49)

and possesses the necessary number of continuous derivatives with respect to x, y and t.
For the function v(x, y, t)we have following boundary value problem (check this result

as Reading Exercise):

∂2v

∂t2
+ 2κ

∂v

∂t
− a2

(
∂2v

∂x2
+
∂2v

∂y2

)
+ γv = f̃(x, y, t),

P1[v]|x=0 = 0, P2[v]|x=lx
= 0, P3[v]|y=0 = 0, P4[v]|y=ly

= 0,

v|t=0 = ϕ̃(x, y),
∂v

∂t

∣∣∣∣
t=0

= ψ̃(x, y),

where

f̃(x, y, t) = f(x, y, t)− ∂2w

∂t2
− 2κ

∂w

∂t
+ a2

(
∂2w

∂x2
+
∂2w

∂y2

)
− γw, (8.50)

ϕ̃(x, y) = ϕ(x, y)− w(x, y, 0),

ψ̃(x, y) = ψ(x, y)− wt(x, y, 0). (8.51)

Solutions of this problem were considered in the previous section.
We seek an auxiliary function w(x, y, t) in a form

w(x, y, t) = g1(y, t)X + g2(y, t)X + g3(x, t)Y + g4(x, t)Y

+A(t)X Y +B(t)X Y + C(t)X Y +D(t)X Y , (8.52)

where X(x), X(x) and Y (y), Y (y) are polynomials of 1st or 2nd order. The coefficients
of these polynomials should be adjusted to satisfy the boundary conditions. The detailed
description of constructing function w(x, y, t) is presented in Appendix C part 2.

Example 8.4 Consider oscillations of a homogeneous rectangular membrane (0 ≤ x ≤ lx,
0 ≤ y ≤ ly), if the boundary conditions are given by

u(0, y, t) = u(lx, y, t) = 0 and u(x, 0, t) = u(x, ly, t) = h sin
πx

lx

and initially the membrane has shape and velocity given, respectively, by

ϕ(x, y, 0) = h sin
πx

lx
and ψ(x, y, 0) = v0 sin

πx

lx
.

Solution. The problem is described by equation

∂2u

∂t2
− a2

(
∂2u

∂x2
+
∂2u

∂y2

)
= 0

under the conditions

u(x, y, 0) = h sin
πx

lx
,

∂u

∂t
(x, y, 0) = v0 sin

πx

lx
,
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u(0, y, t) = u(lx, y, t) = 0, u(x, 0, t) = u(x, ly, t) = h sin
πx

lx
.

We search for a solution of this problem as the sum

u(x, y, t) = v(x, y, t) + w(x, y, t),

where the auxiliary function w(x, y, t) chosen to be

w(x, y, t) = h sin
πx

lx

satisfies the boundary conditions of the problem and therefore obviously provides homo-
geneous boundary conditions for the function v(x, y, t) (this result can be obtained from
general formula (8.52) and the scheme presented in Appendix C part 2).

For the function v(x, y, t) we have the boundary value problem for the nonhomogeneous
equation of oscillation where

f̃(x, y, t) = −a2hπ
2

l2x
sin

πx

lx
,

ϕ̃(x, y) = 0, ψ̃(x, y) = v0 sin
πx

lx

and homogeneous boundary conditions. The solution to the problem is thus

u(x, y, t) = h sin
πx

lx
+
∞∑
m=1

{
4v0

(2m− 1)πω1(2m−1)
sinω1(2m−1)t

− 4ha2π

(2m− 1) l2xω
2
1(2m−1)

[
1− cosω1(2m−1)t

]}
sin

πx

lx
sin

(2m− 1)πy

ly
.

8.3 Small Transverse Oscillations of a Circular Membrane

Suppose a membrane in its equilibrium position has the form of a circle with radius l,
is located in the x-y plane and has its center as the origin of coordinates. As before for
the case of rectangular membranes, we will consider transverse oscillations for which all
points on the membrane move perpendicular to the x-y plane. In polar coordinates, (r, ϕ),
the displacement of points of the membrane will be u = u(r, ϕ, t). The domains of the
independent variables are 0 ≤ r ≤ l, 0 ≤ ϕ < 2π, and 0 ≤ t <∞ respectively.

The Laplace operator in polar coordinates is given by

∇2u =
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂ϕ2

with the result that the equation of oscillations of a membrane in polar coordinates has the
form

∂2u

∂t2
+ 2κ

∂u

∂t
− a2

(
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂ϕ2

)
+ γu = f(r, ϕ, t). (8.53)

Boundary conditions in polar coordinates are particularly simple and in general from
can be written as

α
∂u

∂r
+ βu

∣∣∣∣
r=l

= g(ϕ, t), (8.54)
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where α, and β are constants that are not zero simultaneously, i.e. |α| + |β| 6= 0. If α = 0
we have the Dirichlet boundary condition, and if β = 0 we have the Neumann boundary
condition. If α 6= 0 and β 6= 0 then we have mixed boundary conditions. From physical
arguments it will normally be the case that β/α > 0.

The initial conditions are stated as

u|t=0 = φ(r, ϕ),
∂u

∂t

∣∣∣∣
t=0

= ψ(r, ϕ). (8.55)

Thus the deviation of points of membrane with coordinates (r, ϕ) at some arbitrary initial
moment of time is φ(r, ϕ) and initial velocities of these points are given by the function
ψ(r, ϕ). It should be clear from physical arguments that the solution u(r, ϕ, t) is to be
single-valued, periodic in ϕ with period 2π and remains finite at all points of the membrane,
including the center of membrane, r = 0.

8.3.1 The Fourier Method for Homogeneous Equations with
Homogeneous Boundary Conditions

Here we consider the homogeneous equation of oscillations

∂2u

∂t2
+ 2κ

∂u

∂t
− a2

(
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂ϕ2

)
+ γu = 0, (8.56)

with homogeneous boundary conditions

α
∂u

∂r
+ βu

∣∣∣∣
r=l

= 0. (8.57)

Let us represent the function u(r, ϕ, t) as a product of two functions. The first depends
only on r and ϕ and we denote it as V (r, ϕ), the second depends only on t and is denoted
as T (t):

u(r, ϕ, t) = V (r, ϕ)T (t). (8.58)

Substituting Equation (8.58) in Equation (8.56) and separating variables we obtain

T ′′(t) + 2κT ′(t) + γT (t)

a2T (t)
≡ 1

V (r, ϕ)

[
∂2V

∂r2
+

1

r

∂V

∂r
+

1

r2

∂2V

∂ϕ2

]
= −λ,

where λ is a separation constant. Thus, the function T (t) satisfies the ordinary linear homo-
geneous differential equation of second order

T ′′(t) + 2κT ′(t) + (a2λ+ γ)T (t) = 0, (8.59)

and the function V (r, ϕ) satisfies the equation

∂2V

∂r2
+

1

r

∂V

∂r
+

1

r2

∂2V

∂ϕ2
+ λV = 0, (8.60)

with

α
∂V (l, ϕ)

∂r
+ βV (l, ϕ) = 0, (8.61)

as a boundary condition. Using physical arguments we also require that the solutions remain
finite (everywhere, including point r = 0) so that

|V (r, ϕ)| <∞ (8.62)
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and require the solutions to be periodic

V (r, ϕ) = V (r, ϕ+ 2π). (8.63)

For the boundary value problem defined by Equations (8.60) through (8.63) we again
may separate the variables, in this case r and ϕ, using the substitution

V (r, ϕ) = R(r)Φ(ϕ). (8.64)

As shown in Appendix D part 1, for the function R(r) we obtain the Bessel equation, and
the function Φ(ϕ) are sines and cosines. The eigenvalues of the problem are

λnm =

(
µ

(n)
m

l

)2

,

and eigenfunctions can be expressed in terms of the Bessel functions

V (1)
nm(r, ϕ) = Jn

(
µ

(n)
m

l
r

)
cosnϕ and V (2)

nm(r, ϕ) = Jn

(
µ

(n)
m

l
r

)
sinnϕ. (8.65)

Different types of boundary conditions lead to different eigenvalues µ
(n)
m .

These results completely define λnm, V
(1)
nm and V

(2)
nm , the eigenvalues and eigenfunctions

of equations for the problem of free oscillations of a circular membrane in the case of
homogeneous boundary conditions.

To determine the time evolution of the oscillating membrane we return to Equation
(8.59). With λ = λnm this equation is

T ′′nm(t) + 2κT ′nm(t) + (a2λnm + γ)Tnm(t) = 0. (8.66)

This linear second order equation with constant coefficients has two linearly independent
solutions

y
(1)
nm(t) =

e
−κt cosωnmt, κ2 < a2λnm + γ,
e−κtcoshωnmt, κ2 > a2λnm + γ,
e−κt, κ2 = a2λnm + γ,

y
(2)
nm(t) =

e
−κt sinωnmt, κ2 < a2λnm + γ,
e−κtsinhωnmt, κ2 > a2λnm + γ,
te−κt, κ2 = a2λnm + γ,

(8.67)

with ωnm =
√
|a2λnm + γ − κ2|.

A general solution of Equation (8.66) is a linear combination of these y
(1)
nm(t) and y

(2)
nm(t).

Collecting the functions Φ(ϕ), R(r) and T (t) and substituting them into identity (8.58)
gives particular solutions to Equation (8.56) in the form of a product of functions satisfying
the given boundary conditions:

u
(1)
nm(r, ϕ, t) = T

(1)
nmV

(1)
nm(r, ϕ) =

[
anmy

(1)
nm + bnmy

(2)
nm

]
V

(1)
nm(r, ϕ),

u
(2)
nm(r, ϕ, t) = T

(2)
nmV

(2)
nm(r, ϕ) =

[
cnmy

(1)
nm + dnmy

(2)
nm

]
V

(2)
nm(r, ϕ).

To find solutions to the equation of motion for a membrane satisfying not only the
boundary conditions above but also initial conditions let us sum these functions as a series,
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superimposing all u
(1)
nm(r, ϕ, t) and u

(2)
nm(r, ϕ, t):

u(r, ϕ, t) =
∞∑
n=0

∞∑
m=0

{[
anmy

(1)
nm(t) + bnmy

(2)
nm(t)

]
V (1)
nm(r, ϕ)

+
[
cnmy

(1)
nm(t) + dnmy

(2)
nm(t)

]
V (2)
nm(r, ϕ)

}
. (8.68)

If this series and the series obtained from it by twice differentiating term by term with
respect to the variables r, ϕ and t converges uniformly then its sum will be a solution to
Equation (8.56), satisfying boundary condition (8.57).

To satisfy the initial conditions given in Equation (8.55) we require that

u|t=0 = φ(r, ϕ) =
∞∑
n=0

∞∑
m=0

[
anmV

(1)
nm(r, ϕ) + cnmV

(2)
nm(r, ϕ)

]
(8.69)

and

∂u

∂t

∣∣∣∣
t=0

= ψ(r, ϕ) =
∞∑
n=0

∞∑
m=0

{
[ωmnbmn − κamn]V (1)

nm(r, ϕ)

+ [ωmndmn − κcmn]V (2)
nm(r, ϕ)

}
(8.70)

(like in Section 8.2.1, to treat simultaneously all three cases for κ2 we replace ωnm by 1 in
(8.70) for κ2 = a2λnm + γ).

Multiplying these equations by the area element in polar coordinates, dS = rdrdϕ,
integrating and taking into account the orthogonality of the eigenfunctions, we obtain the
coefficients anm, bmn, cnm and dnm:

anm =
1

||V (1)
nm ||2

∫ l

0

∫ 2π

0

φ(r, ϕ) V (1)
nm(r, ϕ) rdrdϕ,

bnm =
1

ωnm

[
1

||V (1)
nm ||2

∫ l

0

∫ 2π

0

ψ(r, ϕ) V (1)
nm(r, ϕ) rdrdϕ+ κanm

]
,

cnm =
1

||V (2)
nm ||2

∫ l

0

∫ 2π

0

φ(r, ϕ) V (2)
nm(r, ϕ) rdrdϕ,

dnm =
1

ωnm

[
1

||V (2)
nm ||2

∫ l

0

∫ 2π

0

ψ(r, ϕ) V (2)
nm(r, ϕ) rdrdϕ + κcnm

]
. (8.71)

Equation (8.68) gives the evolution of free oscillations of a circular membrane when
boundary conditions are homogeneous. It can be considered as the expansion of the
(unknown) function u(r, ϕ, t) in a Fourier series using the orthogonal system of functions
Vnm(r, ϕ). This series converges under sufficiently reasonable assumptions about initial and
boundary conditions – it is enough if they are piecewise continuous (see Appendix A).

The particular solutions unm(r, ϕ, t) = T
(1)
nm(t)V

(1)
nm(r, ϕ) + T

(2)
nm(t)V

(2)
nm(r, ϕ) are standing

wave solutions. From this we see that the profile of a standing wave depends on the functions

Vnm(r, ϕ); the functions T
(1)
nm(t) and T

(2)
nm(t) only change the amplitude of the standing wave

over time, as was the case for standing waves on a string and the rectangular membrane.
Lines on the membrane defined by Vnm(r, ϕ) = 0 remain at rest for all times and are
called nodal lines of the standing wave Vnm(r, ϕ). Points, where Vnm(r, ϕ) reaches a relative
maximum or minimum for all times, are called antinodes of this standing wave. From the
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FIGURE 8.9
Drawing of the first few modes of vibrations for the mode V

(1)
nm(r, ϕ).

above discussion of the Fourier expansion we see that an arbitrary motion of the membrane
may be thought of as an infinite sum of these standing waves.

Each mode unm(r, ϕ, t) possesses a characteristic pattern of nodal lines. The first few

of these normal vibration modes for V
(1)
nm(r, ϕ) = Jn

(
µ(n)
m

l r
)

cosnϕ are sketched in Figure

8.9 with similar pictures for the modes V
(2)
nm(r, ϕ). In the fundamental mode of vibration

corresponding to µ
(0)
0 , the membrane vibrates as a whole. In the mode corresponding to

µ
(0)
1 the membrane vibrates in two parts as shown with the part labeled with a plus sign

initially above the equilibrium level and the part labeled with a minus sign initially below
the equilibrium. The nodal line in this case is a circle which remains at rest as the two

sections reverse location. The mode characterized by µ
(1)
0 is equal to zero when ϕ = ±π/2

and is positive and negative as shown.

8.3.2 Axisymmetric Oscillations of a Membrane

Oscillations of a circular membrane are said to be axisymmetric (or radial) if they do not
depend on the polar angle ϕ (i.e. the deviation of an arbitrary point M from its position
of equilibrium at time t depends only on t and the distance between point M and the
center of the membrane). Solutions for axisymmetric oscillations will have a simpler form
than more general types of oscillations. Physically we see that axisymmetric oscillations will
occur when initial displacements and initial velocities do not depend on ϕ, but rather are
functions only of r :

u(r, ϕ, t)|t=0 = φ(r),
∂u

∂t
(r, ϕ, t)

∣∣∣∣
t=0

= ψ(r). (8.72)

In this case all coefficients, anm, bnm, cnm and dnm with n ≥ 1 equal zero. We may easily
verify this, for example, for anm

anm =
1

||V (1)
nm ||2

∫ l

0

∫ 2π

0

φ(r)Jn

(
µ(n)
m r/l

)
cosnϕ rdrdϕ.

Because
∫ 2π

0
cosnϕ dϕ = 0 for any integer n ≥ 1 we have anm = 0.

Similarity bnm = 0 for n ≥ 1, cnm = 0, dnm = 0 for all n. Thus, the solution does not

contain the functions V
(2)
nm(r, ϕ). If n = 0 the coefficients a0m and b0m are nonzero and the

formulas used to calculate them can be simplified. Putting factors which are independent
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of ϕ outside the integral and using
∫ 2π

0
dϕ = 2π, we have

a0m =
2π

||V (1)
0m ||2

∫ l

0

φ(r)J0

(
µ(0)
m r/l

)
rdr. (8.73)

Similarly we find

b0m =
2π

||V (1)
0m ||2

∫ l

0

ψ(r)J0

(
µ(0)
m r/l

)
rdr. (8.74)

Substituting these coefficients into the series in Equation (8.68) we notice that the series
reduces from a double series to a single one since all terms in the second sum of this series
disappear. Only those terms in the first sum remain for which n = 0, making it necessary
to sum only on m but not on n. The final result is

u(r, ϕ, t) =
∞∑
m=0

[
a0my

(1)
0m(t) + b0my

(2)
0m(t)

]
J0

(
µ

(0)
m

l
r

)
. (8.75)

Thus, for axisymmetric oscillations the solution contains only Bessel functions of zero
order.

Example 8.5 Find the transverse oscillations of a circular membrane with radius l with a
fixed edge. Assume the initial displacement has the form of a paraboloid of rotation, initial
velocities are zero and the reaction of the environment is small enough to be neglected.

Solution. We have the following boundary value problem of a circular membrane with fixed
edge:

∂2u

∂t2
− a2

[
∂2u

∂r2
+

1

r

∂u

∂r

]
= 0, 0 ≤ r < l, 0 ≤ ϕ < 2π, t > 0,

u(r, 0) = A

(
1− r2

l2

)
,

∂u

∂t
(r, ϕ, 0) = 0, u(l, ϕ, t) = 0.

The oscillations of the membrane are axisymmetric since the initial displacement and
the initial velocities do not depend on the polar angle ϕ. Thus, only terms with n = 0 are
not zero.

Boundary conditions of the problem are of Dirichlet type, in which case eigenvalues µ
(0)
m

are the solutions of the equation J0(µ) = 0, and the eigenfunctions are

V
(1)
0m (r, ϕ) = J0

(
µ

(0)
m

l
r

)
.

The solution u(r, ϕ, t) is given by the series

u(r, ϕ, t) =
∞∑
m=0

a0m cos
aµ

(0)
m t

l
J0

(
µ(0)
m r/l

)
.

The three-dimensional picture shown in Figure 8.10 depicts the two eigenfunctions for
the given problem,

V
(1)
00 (r, ϕ) = J0

(
µ

(0)
0 r/l

)
and V

(1)
02 (r, ϕ) = J0

(
µ

(0)
2 r/l

)
(these two eigenfunctions are chosen as examples).
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(a) (b)

FIGURE 8.10
Two eigenfunctions, (a) V

(1)
01 (r, ϕ) and (b) V

(1)
04 (r, ϕ), for the Dirichlet boundary conditions

in Example 8.5.

The coefficients a0m are given by Equation (8.73):

a0m =
2π∥∥∥V (1)
0m

∥∥∥2

∫ l

0

A

(
1− r2

l2

)
J0

(
µ(0)
m r/l

)
rdr.

Using the formulas (B.15b and B.14a from Appendix B)∫
xnJn−1(x)dx = xnJn(x), Jn+1(x) =

2n

x
Jn(x)− Jn−1(x)

we calculate integrals (taking into account that J0

(
µ

(0)
m

)
= 0):∫ l

0

J0

(
µ

(0)
m

l

)
rdr =

l2(
µ

(0)
m

)2 xJ1(x)|µ
(0)
m

0 =
l2

µ
(0)
m

J1

(
µ(0)
m

)
,

1

l2

∫ l

0

r2J0

(
µ

(0)
m

l

)
rdr =

1

l2
l4(

µ
(0)
m

)4

∫ µ(0)
m

0

x2 [2J1(x)− xJ2(x)] dx

=
1

l2
l4(

µ
(0)
m

)4

[
2

∫ µ(0)
m

0

x2J1(x)dx−
∫ µ(0)

m

0

x3J2(x)dx

]
=

 l2

µ
(0)
m

− 4l2(
µ

(0)
m

)3

 J1

(
µ(0)
m

)
.

We may calculate the norms of eigenfunctions taking into account that J ′0 (x) = −J1 (x)
(see differentiation formulas B.16a). With this, we have (D.17)∥∥∥V (1)

0m

∥∥∥2

= πl2
[
J ′0

(
µ(0)
m

)]2
= πl2

[
J1

(
µ(0)
m

)]2
.

So, the coefficients a0m are given by Equation (8.73):

a0m =
8 A(

µ
(0)
m

)3

J1

(
µ

(0)
m

) .
Thus,

u(r, ϕ, t) = 8A
∞∑
m=0

1(
µ

(0)
m

)3

J1

(
µ

(0)
m

) cos
aµ

(0)
m t

l
J0

(
µ(0)
m r/l

)
.
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Example 8.6 Find the transverse oscillations of a homogeneous circular membrane of
radius l with a rigidly fixed edge where the oscillations are initiated by a localized impact,
normal to a surface of the membrane. This impact is applied at the point(r0, ϕ0) and sup-
plies an impulse I (0 < r0 < l) to the membrane. Any initial displacement is absent and
the reaction of the environment is negligible.

Solution. The boundary value problem describing the oscillations of the membrane reduces
to the solution of the equation

∂2u

∂t2
= a2

[
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂ϕ2

]
, 0 ≤ r < l, 0 ≤ ϕ < 2π, t > 0,

under the conditions

u(r, ϕ, 0) = 0,
∂u

∂t
(r, ϕ, 0) =

I

ρ
δ(r − r0)δ(ϕ− ϕ0), u(l, ϕ, t) = 0.

The product δ(r − r0)δ(ϕ− ϕ0) is a δ-function in two (polar) dimensions.
The boundary condition of the problem is of Dirichlet type, so the eigenvalues are given by
equation Jn(µ) = 0, the eigenfunctions are given by Equations (8.65), and∥∥∥V (1,2)

nm

∥∥∥2

= σn
πl2

2

[
J ′n

(
µ(n)
m

)]2
, σn =

{
2, if n = 0,
1, if n 6= 0

(see Appendix B, Equation (B.33)).

The initial displacement of the membrane is zero in which case the solution u(r, ϕ, t) is
given by the series

u(r, ϕ, t) =

∞∑
n=0

∞∑
m=0

[bnm cosnϕ+ dnm sinnϕ] · Jn
(
µ(n)
m r/l

)
sin

aµ
(n)
m t

l
.

Next, we calculate the coefficients bnm and dnm in (8.71) to get

bnm =
I

ρωnm

∥∥∥V (1)
nm

∥∥∥2

∫ l

0

∫ 2π

0

δ(r − r0)δ(ϕ− ϕ0) cosnϕJn

(
µ(n)
m r/l

)
rdrdϕ

=
2I cosnϕ0

ρωnmσnπl2
[
J ′n

(
µ

(n)
m

)]2 Jn (µ(n)
m r0/l

)
,

and

dnm =
I

ρωnm

∥∥∥V (2)
nm

∥∥∥2

∫ l

0

∫ 2π

0

δ(r − r0)δ(ϕ− ϕ0) sinnϕJn

(
µ(n)
m r/l

)
rdrdϕ =

=
2I sinnϕ0

ρωnmσnπl2
[
J ′n

(
µ

(n)
m

)]2 Jn (µ(n)
m r0/l

)
.

Therefore, the evolution of the displacements of points on the membrane is described by
series

u(r, ϕ, t) =
2I

πρl2

∞∑
n=0

∞∑
m=0

cosn(ϕ− ϕ0)Jn

(
µ

(n)
m r0/l

)
σnωnm

[
J ′n

(
µ

(n)
m

)]2 Jn

(
µ

(n)
m

l
r

)
sin

aµ
(n)
m t

l
.

Figure 8.11 shows two snapshots of the solution at the times t = 0.3 and t = 4.3. This
solution was obtained for the case a2 = 1, l = 2, r0 = 1, ϕ0 = π, I/ρ = 10.
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(a) (b)

FIGURE 8.11
Graph of the membrane in Example 8.6 at (a) t = 0.3, (b) t = 4.3.

Example 8.7 The periphery of a flexible circular membrane of radius l is fixed elastically
with coefficient h. The initial displacement is zero. Find the transversal vibrations of the
membrane if the initial velocities of the membrane are described by the function

ψ(r) = A (l − r) .

Solution. The boundary value problem consists of the solution of the equation

∂2u

∂t2
− a2

[
∂2u

∂r2
+

1

r

∂u

∂r

]
= 0, 0 ≤ r < l, 0 ≤ ϕ < 2π, t > 0,

with the conditions

u(r, ϕ, 0) = 0,
∂u

∂t
(r, ϕ, 0) = A(l − r), ∂u

∂r
+ hu

∣∣∣∣
r=l

= 0.

The oscillations of the membrane are axisymmetric since the initial functions do not
depend on the polar angle ϕ; thus only terms with n = 0 are not zero.

The boundary condition of the problem is of mixed type, in which case eigenvalues µ
(0)
m

are given by the roots of the eigenvalue equation µJ ′0(µ) + hJ0(µ) = 0. The eigenfunctions
are

V
(1)
0m (r, ϕ) = J0

(
µ(0)
m r/l

)
,
∥∥∥V (1)

0m

∥∥∥2

=
πl2(
µ

(n)
m

)2

[(
µ(n)
m

)2

+ l2h2

]
J2
n

(
µ(n)
m

)
(see Appendix B, Equation (B.35)).

The initial displacement is zero so that the coefficients a0m = 0. The coefficients b0m
are given by Equation (8.74) which result in

b0m =
2π

||V (1)
0m ||2

∫ l

0

A(l − r)J0

(
µ(0)
m r/l

)
rdr.

The oscillations of the membrane are given by the series in Bessel functions of zero-th order:

u(r, ϕ, t) =
∞∑
m=0

b0m sin
aµ

(0)
m t

l
J0

(
µ

(0)
m

l
r

)
.
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8.3.3 The Fourier Method for Nonhomogeneous Equations with
Homogeneous Boundary Conditions

In this section we are dealing with nonhomogeneous Equation (8.53),

∂2u

∂t2
+ 2κ

∂u

∂t
− a2

(
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂ϕ2

)
+ γu = f(r, ϕ, t)

satisfying the homogeneous boundary condition (8.57)

α
∂u

∂r
+ β u

∣∣∣∣
r=l

= 0

and nonhomogeneous initial conditions (8.55)

u|t=0 = φ(r, ϕ),
∂u

∂t

∣∣∣∣
t=0

= ψ(r, ϕ).

We begin by searching for a solution in the form of the sum

u(r, ϕ, t) = u1(r, ϕ, t) + u2(r, ϕ, t), (8.76)

where u1(r, ϕ, t) is the solution to the homogeneous equation with homogeneous boundary
and nonhomogeneous initial conditions given by

∂2u1

∂t2
+ 2κ

∂u1

∂t
− a2

(
∂2u1

∂r2
+

1

r

∂u1

∂r
+

1

r2

∂2u1

∂ϕ2

)
+ γu1 = 0, (8.77)

α
∂u1

∂r
+ β u1

∣∣∣∣
r=l

= 0, (8.78)

u1|t=0 = φ(r, ϕ),
∂u1

∂t

∣∣∣∣
t=0

= ψ(r, ϕ), (8.79)

and u2(r, ϕ, t) is the solution to the nonhomogeneous equation with zero boundary and
initial conditions given by

∂2u2

∂t2
+ 2κ

∂u2

∂t
− a2

(
∂2u2

∂r2
+

1

r

∂u2

∂r
+

1

r2

∂2u2

∂ϕ2

)
+ γu2 = f(r, ϕ, t), (8.80)

α
∂u2

∂r
+ βu2

∣∣∣∣
r=l

= 0, (8.81)

u2|t=0 = 0,
∂u2

∂t

∣∣∣∣
t=0

= 0. (8.82)

Physically the solution u1(r, ϕ, t) represents free oscillations, i.e. oscillations which occur
only due to an initial perturbation. The solution u2(r, ϕ, t) represents forced oscillations,
i.e. oscillations which result from the action of external forces when initial perturbations
are absent.

Methods for finding the solution u1(r, ϕ, t) for free oscillations were considered in the
previous section; our task here need only be to find the solutions u2(r, ϕ, t) for forced
oscillations. As in the case of free oscillations we search for the solution u2(r, ϕ, t) in the
form of the series

u2(r, ϕ, t) =
∞∑
n=0

∞∑
m=0

[
T (1)
nm(t)V (1)

nm(r, ϕ) + T (2)
nm(t)V (2)

nm(r, ϕ)
]
, (8.83)
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where V
(1)
nm(r, ϕ) and V

(2)
nm(r, ϕ) are eigenfunctions (8.65) of the corresponding homogeneous

boundary value problem, and T
(1)
nm(t), T

(2)
nm(t) which we have to find.

Zero boundary conditions given in Equation (8.81) for the function u2(r, ϕ, t) are satisfied

for any choice of T
(1)
nm(t) and T

(2)
nm(t) under the restriction of uniform convergence of the series

because they are known to be satisfied by the functions V
(1)
nm(r, ϕ) and V

(2)
nm(r, ϕ). However,

the functions T
(1)
nm(t) and T

(2)
nm(t) must also be selected so that the series (8.83) satisfies

Equation (8.80) and initial conditions (8.82).
Substituting the series (8.83) into Equation (8.80) we obtain

∞∑
n=0

∞∑
m=0

[
T (1)′′

nm (t) + 2κ T (1)′

nm (t) + (a2λnm + γ)T (1)
nm(t)

]
V (1)
nm(r, ϕ)

+
∞∑
n=0

∞∑
m=0

[
T (2)′′

nm (t) + 2κ T (2)′

nm (t) + (a2λnm + γ)T (2)
nm(t)

]
V (2)
nm(r, ϕ) = f(r, ϕ, t). (8.84)

Next we expand the function f(r, ϕ, t) in a series with functions V
(1)
nm(r, ϕ) and V

(2)
nm(r, ϕ)

as the basis functions:

f(r, ϕ, t) =

∞∑
n=0

∞∑
m=0

[
f (1)
nm(t)V (1)

nm(r, ϕ) + f (2)
nm(t)V (2)

nm(r, ϕ)
]
, (8.85)

where

f (1)
nm(t) =

1

||V (1)
nm ||2

∫ 2π

0

∫ l

0

f(r, ϕ, t) V (1)
nm rdrdϕ,

f (2)
nm(t) =

1

||V (2)
nm ||2

∫ 2π

0

∫ l

0

f(r, ϕ, t) V (2)
nm rdrdϕ. (8.86)

Comparing the series (8.84) and (8.85), we obtain the following equations which will deter-

mine the functions T
(1)
nm(t) and T

(2)
nm(t):

T (1)′′

nm (t) + 2κ T (1)′

nm (t) + (a2λnm + γ)T (1)
nm(t) = f (1)

nm(t),

T (2)′′

nm (t) + 2κ T (2)′

nm (t) + (a2λnm + γ)T (2)
nm(t) = f (2)

nm(t). (8.87)

The solution u2(r, ϕ, t) defined by the series (8.83) satisfies initial conditions (8.82) which

imposes on the functions T
(1)
nm(t) and T

(2)
nm(t) the conditionsT

(1)
nm(0) = 0,

T
(1)′

nm (0) = 0
and

T
(2)
nm(0) = 0,

T
(2)′

nm (0) = 0
n,m = 0, 1, 2, . . . . (8.88)

As for the one-dimensional case, solutions of the Cauchy problems defined in Equations

(8.87) and (8.88) for functions T
(1)
nm(t) and T

(2)
nm(t) can be written as

T (1)
nm(t) =

∫ t

0

f (1)
nm(τ) Ynm(t− τ) dτ,

T (2)
nm(t) =

∫ t

0

f (2)
nm(τ) Ynm(t− τ) dτ,
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where

Ynm(t) =



1

ωnm
e−κt sinωnmt, κ2 < a2λnm + γ,

1

ωnm
e−κtsinhωnmt, κ2 > a2λnm + γ,

te−κt, κ2 = a2λnm + γ,

and ωnm =
√
|a2λnm + γ − κ2|. Substituting expressions (8.86) for f

(1)
nm(τ) and f

(2)
nm(τ), we

obtain

T (1)
nm(t) =

1∥∥∥V (1)
nm

∥∥∥2

∫ t

0

dτ

∫ 2π

0

∫ l

0

f(r, ϕ, τ)V (1)
nm(r, ϕ) Ynm(t− τ) rdrdϕ,

T (2)
nm(t) =

1∥∥∥V (2)
nm

∥∥∥2

∫ t

0

dτ

∫ 2π

0

∫ l

0

f(r, ϕ, τ)V (2)
nm(r, ϕ) Ynm(t− τ) rdrdϕ. (8.89)

Substituting these expressions for T
(1)
nm(t) and T

(2)
nm(t) in the series (8.83) we obtain solu-

tions to the boundary value problem defined in Equations (8.80) through (8.82), assuming
that Equation (8.83) and the series obtained from it by twice differentiating term by term
with respect to the variables r, ϕ and t converge uniformly. Thus, the solution of the problem
of forced oscillations with zero boundary conditions is

u(r, ϕ, t) = u1(r, ϕ, t) + u2(r, ϕ, t)

=
∞∑
n=0

∞∑
m=0

{[
T (1)
nm(t) +

(
anmy

(1)
nm(t) + bnmy

(2)
nm(t)

)]
· V (1)

nm(r, ϕ) (8.90)

+
[
T (2)
nm(t) +

(
cnmy

(1)
nm(t) + dnmy

(2)
nm(t)

)]
· V (2)

nm(r, ϕ)
}
,

where coefficients anm, bnm, cnm and dnm were obtained previously in the discussion in
Section 8.3.1.

8.3.4 Forced Axisymmetric Oscillations

In the case of axisymmetric oscillations the solution of the nonhomogeneous equation
becomes simpler. In this case the initial displacement, initial velocity and function f do
not depend on ϕ and are thus functions of r and t only:

u(r, ϕ, t)|t=0 = φ(r),
∂u

∂t
(r, ϕ, t)

∣∣∣∣
t=0

= ψ(r), and f(r, ϕ, t) = f(r, t).

For axisymmetric oscillations the solution does not contain the functions V
(2)
nm(r, ϕ) and the

only nonzero coefficients are f
(1)
0m:

f
(1)
0m(t) =

1∥∥∥V (1)
0m

∥∥∥2

∫ l

0

∫ 2π

0

f(r, t)J0

(
µ

(0)
m

l
r

)
rdrdϕ =

2π∥∥∥V (1)
0m

∥∥∥2

∫ l

0

f(r, t)J0

(
µ

(0)
m

l
r

)
rdr.

Substituting these functions into the first of the formulas (8.89) gives T
(1)
0m(t) and the double

series (8.90) reduces to a single series:

u(r, ϕ, t) =
∞∑
m=0

{
T

(1)
0m(t) +

[
a0my

(1)
0m(t) + b0my

(2)
0m(t)

]}
· J0

(
µ

(0)
m

l
r

)
.
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Example 8.8 Find the transverse oscillations of a homogeneous circular membrane of
radius l with a rigidly fixed edge if a pressure proportional to cosωt acts on the mem-
brane. Assume that initial deviations and initial velocities are absent, and that the reaction
of the environment is negligibly small.

Solution. The boundary problem modeling the evolution of such oscillations leads to the
equation

∂2u

∂t2
− a2

[
∂2u

∂r2
+

1

r

∂u

∂r

]
= A cosωt, A = const.

under zero initial and boundary conditions given by

u(r, ϕ, 0) = 0,
∂u

∂t
(r, ϕ, 0) = 0, u(l, ϕ, t) = 0.

In this example the oscillations are axisymmetric because the initial conditions are homo-
geneous and the external pressure is a function of t only. From the previous discussion we

have that the eigenvalues µ
(0)
m are roots of equation J0(µ) = 0, the eigenfunctions are

V
(1)
0m (r, ϕ) = J0

(
µ

(0)
m

l
r

)
,
∥∥∥V (1)

0m

∥∥∥2

= πl2
[
J ′0

(
µ(0)
m

)]2
= πl2

[
J1

(
µ(0)
m

)]2
(see Appendix B, formula (B.33) and differentiation formulas (B.16)).

Consequently, the solution u(r, ϕ, t) is defined by the series

u(r, ϕ, t) =
∞∑
m=0

T
(1)
0m(t)J0

(
µ

(n)
m

l
r

)
,

where

T
(1)
0m(t) =

1

ω0m

∫ l

0

f
(1)
0m(p) sinω0m(t− p)dp, ω0m = a

µ
(0)
m

l
.

For f
(1)
0m(t) we have

f
(1)
0m(t) =

A cosωt∥∥∥V (1)
0m

∥∥∥2 2π

∫ l

0

J0

(
µ

(0)
m

l

)
rdr.

Using the integration formulas (B.15b)∫ l

0

J0

(
µ

(0)
m

l

)
rdr =

l2(
µ

(0)
m

)2 xJ1(x)|µ
(0)
m

0 =
l2

µ
(0)
m

J1

(
µ(0)
m

)
we find

f
(1)
0m(t) =

A cosωt∥∥∥V (1)
0m

∥∥∥2 2π

∫ l

0

J0

(
µ

(0)
m

l

)
rdr =

2A

µ
(0)
m J1

(
µ

(0)
m

) cosωt.

Using this result we obtain

T
(1)
0m(t) =

2A

ω0mµ
(0)
m J1

(
µ

(0)
m

) ∫ t

0

cosωp sinω0m(t− p)dp

= − 2A

µ
(0)
m J1

(
µ

(0)
m

)
(ω2 − ω2

0m)
[cosωt− cosω0mt] .
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Finally, the deflection of the membrane as a function of time is described by the series

u(r, ϕ, t) = 2A
∞∑
m=0

cosω0mt− cosωt

(ω2 − ω2
0m)µ

(0)
m J1

(
µ

(0)
m

)J0

(
µ

(0)
m

l
r

)
.

8.3.5 The Fourier Method for Equations with Nonhomogeneous
Boundary Conditions

Consider now the general boundary value problem for equations describing the forced oscil-
lations of a circular membrane with nonhomogeneous boundary and initial conditions:

∂2u

∂t2
+ 2κ

∂u

∂t
− a2

(
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂ϕ2

)
+ γu = f(r, ϕ, t),

α
∂u

∂r
+ βu

∣∣∣∣
r=l

= g(ϕ, t),

u|t=0 = φ(r, ϕ),
∂u

∂t

∣∣∣∣
t=0

= ψ(r, ϕ).

We cannot apply the Fourier method directly to this problem because the boundary condi-
tions are nonhomogeneous. First, we should reduce the problem to one with zero boundary
conditions.

To do this, we search for the solution of the problem in the form of the sum

u(r, ϕ, t) = v(r, ϕ, t) + w(r, ϕ, t),

where v(r, ϕ, t) is a new unknown function, and the function w(r, ϕ, t) is chosen so that it
satisfies the given nonhomogeneous boundary condition

α
∂w

∂r
+ β w

∣∣∣∣
r=l

= g(ϕ, t)

and has the necessary number of continuous derivatives in r, ϕ and t.
For the function v(r, ϕ, t) we obtain the following boundary value problem:

∂2v

∂t2
+ 2κ

∂v

∂t
− a2

(
∂2v

∂r2
+

1

r

∂v

∂r
+

1

r2

∂2v

∂ϕ2

)
+ γv = f̃(r, ϕ, t),

α
∂v

∂r
(l, ϕ, t) + β v(l, ϕ, t) = 0,

v(r, ϕ, t)|t=0 = φ̃(r, ϕ),
∂v

∂t
(r, ϕ, t)

∣∣∣∣
t=0

= ψ̃(r, ϕ),

where

f̃(r, ϕ, t) = f(r, ϕ, t)− ∂2w

∂t2
− 2κ

∂w

∂t
+ a2

(
∂2w

∂r2
+

1

r

∂w

∂r
+

1

r2

∂2w

∂ϕ2

)
− γw, (8.91)

φ̃(r, ϕ) = φ(r, ϕ)− w(r, ϕ, 0), (8.92)

ψ̃(r, ϕ) = ψ(r, ϕ)− ∂w

∂t
(r, ϕ, 0). (8.93)
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The solution to this problem was considered in the previous section.

Reading Exercise: Verify Equations (8.91) through (8.93).

The way to find the auxiliary function was presented in Chapter 7. The results are:

1) For the case of Dirichlet boundary conditions:

a) if u(l, ϕ, t) = g(ϕ, t),

w(r, ϕ, t) =
r2

l2
g(ϕ, t) (8.94)

b) if u(l, ϕ, t) = g(t) or u(l, ϕ, t) = g0 = const

w(r, ϕ, t) = g(t) or w(r, ϕ, t) = g0. (8.95)

2) For the case of Neumann boundary conditions ∂u
∂r (l, ϕ, t) = g(ϕ, t)

w(r, ϕ, t) =
r2

2l
· g(ϕ, t) + C, (8.96)

where C is an arbitrary constant.

3) For the case of mixed boundary conditions ∂
∂ru(l, ϕ, t) + hu(l, ϕ, t) = g(ϕ, t)

w(r, ϕ, t) =
r2

l(2 + hl)
g(ϕ, t). (8.97)

Example 8.9 Find the oscillations of a circular membrane in an environment without
resistance and with zero initial conditions where the motion is caused by movement at its
edge described by

u(l, ϕ, t) = A sinωt, t ≥ 0.

Solution. The boundary problem modeling the evolution of such oscillations is given by the
equation

∂2u

∂t2
− a2

[
∂2u

∂r2
+

1

r

∂u

∂r

]
= 0,

0 ≤ r < l, 0 ≤ ϕ < 2π, t > 0

with zero initial conditions

u(r, ϕ, 0) = 0,
∂u

∂t
(r, ϕ, 0) = 0

and boundary condition
u(l, ϕ, t) = A sinωt.

We are searching for the solution in the form of the sum u(r, ϕ, t) = w(r, ϕ, t) + v(r, ϕ, t).
Using Equation (8.95), we see that

w(r, ϕ, t) = A sinωt.

Then we obtain
f̃(r, ϕ, t) = Aω2 sinωt,

φ̃(r, ϕ) = 0, ψ̃(r, ϕ) = −Aω.
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The function f̃(r, ϕ, t) does not depend on the polar angle ϕ, thus the function v(r, ϕ, t)
defines axisymmetric oscillations of the membrane. The solution v(r, ϕ, t) is thus given by
the series

v(r, ϕ, t) =
∞∑
m=0

[
T

(1)
0m(t) + b0m sinω0mt

]
· J0

(
µ

(0)
m

l
r

)
,

where ω0m = a
√
λ0m = a

µ(0)
m

l , µ
(0)
m are the roots of equation J0(µ) = 0 and

V
(1)
0m (r, ϕ) = J0

(
µ

(0)
m

l
r

)
,
∥∥∥V (1)

0m

∥∥∥2

= πl2
[
J ′0

(
µ(0)
m

)]2
= πl2

[
J1

(
µ(0)
m

)]2
.

(see Appendix B, formula (B.33) and differentiation formulas (B.16)).
To determine the coefficients b0m we have (see (8.74))

b0m =
1

ω0m

∥∥∥V (1)
0m

∥∥∥2

∫ l

0

∫ 2π

0

(
−Aωr

2

l2

)
dϕJ0

(
µ

(0)
m

l
r

)
rdr = −

2Aω

[(
µ

(0)
m

)2

− 4

]
ω0m

(
µ

(0)
m

)3

J1

(
µ

(0)
m

) .
Next, we determine the function f

(1)
0m (using the integration formulas (B.15b)):

f
(1)
0m(t) =

1∥∥∥V (1)
0m

∥∥∥2

∫ l

0

∫ 2π

0

Aω2 sinωtJ0

(
µ

(0)
m

l
r

)
rdrdϕ

=
Aω2 sinωt

πl2
[
J1

(
µ

(0)
m

)]2 · 2π · l2J1

(
µ

(0)
m

)
(
µ

(0)
m

)2 =
2Aω2 sinωt(

µ
(0)
m

)2

J1

(
µ

(0)
m

) .
From this we have

T
(1)
0m(t) =

1

ω0m

∫ t

0

f
(1)
0m(τ) sinω0m(t− τ)dτ =

2Aω2

ω0m

(
µ

(0)
m

)2

J1

(
µ

(0)
m

)
×
∫ t

0

sinωτ sinω0m(t− τ)dτ =
2Aω2 [ω sinω0mt− ω0m sinωt]

ω0m

(
µ

(0)
m

)2

J1

(
µ

(0)
m

)
(ω2 − ω2

0m)
.

Finally, we may express the solution to the wave equation by the series

u(r, ϕ, t) = w(r, ϕ, t) + v(r, ϕ, t)

= A sinωt+
∞∑
m=0

[
T

(1)
0m(t) + b0m sinω0mt

]
J0

(
µ

(0)
m

l
r

)

= A sinωt+ 2Aω

∞∑
m=0

[ω0m sinω0mt− ω sinωt](
µ

(0)
m

)2

J1

(
µ

(0)
m

)
(ω2 − ω2

0m)
J0

(
µ

(0)
m

l
r

)
.

Problems

In problems 1 through 24 we consider transverse oscillations of a rectangular membrane
(0 ≤ x ≤ lx, 0 ≤ y ≤ ly), in problems 25 through 47 a circular membrane of radius l. Solve
these problems analytically which means the following: formulate the equation and initial
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and boundary conditions, obtain the eigenvalues and eigenfunctions, write the formulas for
coefficients of the series expansion and the expression for the solution of the problem.

The problems discussed refer to membranes, but it should be remembered that many
other, similar physical problems are described by the same two-dimensional hyperbolic
equation.

You can obtain the pictures of several eigenfunctions and screenshots of the solution and
of the auxiliary functions with Maple, Mathematica or software from books [7, 8].

When you choose the parameters of the problem and coefficients of the functions (ini-
tial and boundary conditions, and external forces) do not forget that the amplitudes of
oscillations should remain small. All the parameters and the variables (time, coordinates,
deflection u(x, t)), are considered to be dimensionless.

In problems 1 through 5 external forces and resistance of the embedding medium are
absent.

Find the free oscillations of the membrane.

1. The membrane is fixed along its edges. The initial conditions are

ϕ(x, y) = A sin
πx

lx
sin

πy

ly
, ψ(x, y) = 0.

2. The edge at x = 0 of membrane is free and other edges are fixed. The initial
conditions are

ϕ(x, y) = A cos
πx

2lx
sin

πy

ly
, ψ(x, y) = 0.

3. The edge at y = 0 of the membrane is free and the other edges are fixed. The
initial conditions are

ϕ(x, y) = A sin
πx

lx
cos

πy

2ly
, ψ(x, y) = 0.

4. The edges x = 0 and y = 0 of membrane are fixed, and edges x = lx and y = ly
are free. The initial conditions are

ϕ(x, y) = 0, ψ(x, y) = Axy
(
lx −

x

2

)(
ly −

y

2

)
.

5. The edges x = 0, x = lx and y = ly of membrane are fixed, and the edge
y = 0 is elastically constrained with the coefficient of elasticity h = 1. The initial
conditions are

ϕ(x, y) = Ax

(
1− x

lx

)
sin

πy

ly
, ψ(x, y) = 0.

In problems 6 through 10 external forces are absent and the resistance of the
embedding environment is proportional to velocity with proportionality constant
κ. Find the transverse oscillations of the membrane.

6. The edges x = 0, y = 0 and y = ly of the membrane are fixed and the edge
x = lx is attached elastically with the coefficient of elasticity h = 1. The initial
conditions are

ϕ(x, y) = 0, ψ(x, y) = Axy(ly − y).

7. The edges x = 0 and y = 0 of the membrane are fixed, the edge y = ly is free and
the edge x = lx is attached elastically with coefficient of elasticity h = 1. The
initial conditions are

ϕ(x, y) = 0, ψ(x, y) = Ax

(
1− x

lx

)
sin

πy

ly
.
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8. The edges x = lx and y = ly are fixed, the edge x = 0 is free and the edge y = 0
is attached elastically with coefficient of elasticity h = 1. The initial conditions
are

ϕ(x, y) = Ay

(
1− y

ly

)
sin

πx

lx
, ψ(x, y) = 0.

9. The edges y = 0 and y = ly are free, the edge x = 0 is fixed and the edge x = lx
is attached elastically with coefficient of elasticity h = 1. The initial conditions
are

ϕ(x, y) = Axy2

(
1− x

lx

)
, ψ(x, y) = 0.

10. The edges x = 0 and y = ly are free, the edge x = lx is attached elastically
with coefficient of elasticity h = 1 and the edge y = 0 is attached elastically with
coefficient of elasticity h = 1. The initial conditions are

ϕ(x, y) = Ay
[
1− (x/lx)

2
]
, ψ(x, y) = 0.

In problems 11 through 15 at the initial instant of time, t = 0, the membrane
is set in motion by a blow which applies an impulse, I, at the point (x0, y0)
(0 < x0 < lx, 0 < y0 < ly).

For the following cases, find free transverse oscillations of the rectangular mem-
brane assuming the initial displacement is zero, external forcing is absent and the
environment causes a resistance proportional to velocity with coefficient κ > 0.

11. The membrane is fixed along its edges.

12. The edge x = lx of the membrane is free and the other edges are fixed.

13. The edges x = 0 and y = ly of the membrane are free and the edges x = lx and
y = 0 are fixed.

14. The edges x = lx, y = 0 and y = ly of the membrane are fixed and the edge x = 0
is attached elastically with coefficient of elasticity h = 1.

15. The edges y = 0 and y = ly are free, the edge x = lx is fixed and the edge x = 0
is attached elastically with coefficient of elasticity h = 1.

In problems 16 through 20 assume that a force with density f(x, y, t) is acting
on the membrane, the initial displacement from equilibrium as well as the initial
velocity are zero, and resistance of the embedding medium is absent (κ = 0).

Solve the equations of motion with the given boundary conditions for each case
given below.

16. The membrane is fixed along its boundaries. The external force is

f(x, y, t) = Axsin
2πy

ly
(1− sinωt).

17. The edge of the membrane at x = 0 is free, and other edges are fixed. The external
force is

f(x, y, t) = A(lx − x) sin
πy

ly
sin ωt.

18. The edges x = lx and y = ly of the membrane are free and edges x = 0 and y = 0
are fixed. The external force is

f(x, y, t) = Axsin
πy

2ly
cosωt.
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19. The edges x = 0, y = 0 and y = ly of the membrane are fixed and the edge x = lx
is attached elastically with elasticity coefficient h = 1. The external force is

f(x, y, t) = Axy cos
πy

2ly
(1− sinωt).

20. The edges x = 0 and y = ly are attached elastically with elasticity coefficient
h = 1, the edge x = lx is fixed, and the edge y = 0 is free. The external force is

f(x, y, t) = Asin
πx

lx
cos

πy

2ly
sinωt.

In problems 21 through 25 the boundary of the membrane is driven. Assume
the initial velocities are zero and the resistance of embedding material is absent
(κ = 0). The initial shape of the membrane is u(x, y, 0) = ϕ(x, y).

Solve the equations of motion with the given boundary conditions for each case
given below.

21. The motion of the edge x = 0 of the membrane is given by

g1(y, t) = Asin
πy

ly
cosωt

and the other edges are fixed. Initially the membrane has the shape

ϕ(x, y) = A

(
1− x

lx

)
sin

πy

ly
.

22. The motion of the edge y = ly of the membrane is given by

g4(x, t) = Asin
πx

lx
sinωt

and the other edges are fixed. Initially the membrane has the shape

ϕ(x, y) = Axy cos
πx

2lx
.

23. Edges x = 0 and x = lxare fixed, the edge y = 0 is free and the edge y = ly
moves as

g4(x, t) = A sin
πx

lx
cosωt.

Initially the membrane has the shape

ϕ(x, y) = Ax(lx − x)sin
πy

ly
.

24. The edges x = 0 and y = lyare fixed and the edge y = 0 is subject to the action
of a harmonic force causing displacements

g3(x, t) = Asin
πx

lx
cosωt.

Initially the membrane has the shape

ϕ(x, y) = Ax(y − ly)cos
πx

2lx
.
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In the following problems consider transverse oscillations of a homogeneous
circular membrane of radius l, located in the x -y plane.

For all problems the displacement of the membrane, u(r, ϕ, 0) = φ(r, ϕ), is
given at some initial moment of time, t = 0, and the membrane is released with
initial velocity ut(r, ϕ, 0) = ψ(r, ϕ).

In problems 25 through 30 external forces and resistance of the environment are
absent.

25. The membrane is fixed along its contour. The initial conditions are

φ(r, ϕ) = Ar
(
l2 − r2

)
sinϕ, ψ(r, ϕ) = 0.

26. The membrane is fixed along its contour. The initial conditions are

φ(r, ϕ) = 0, ψ(r, ϕ) = Ar
(
l2 − r2

)
cos 4ϕ.

27. The edge of the membrane is free. The initial conditions are

φ(r, ϕ) = Ar
(
l − r

2

)
sin 3ϕ, ψ(r, ϕ) = 0.

28. The edge of the membrane is free. The initial conditions are

φ(r, ϕ) = 0, ψ(r, ϕ) = Ar
(
l − r

2

)
cos 2ϕ.

29. The edge of the membrane is fixed elastically with coefficient h = 1. The initial
conditions are

φ(r, ϕ) = Ar(1− r) sinϕ, ψ(r, ϕ) = 0.

30. The edge of the membrane is fixed elastically with coefficient h = 1. The initial
conditions are

φ(r, ϕ) = 0, ψ(r, ϕ) = Ar(1− r) cosϕ.

In problems 31 through 35 external forces are absent but the coefficient of
resistance of the environment κ 6= 0 (resistance is proportional to velocity).

31. The membrane is fixed along its contour. The initial conditions are

φ(r, ϕ) = Ar3
(
l2 − r2

)
sin 3ϕ, ψ(r, ϕ) = 0.

32. The membrane is fixed along its contour. The initial conditions are

φ(r, ϕ) = 0, ψ(r, ϕ) = Ar2
(
l2 − r2

)
sin 2ϕ.

33. The edge of the membrane is free. The initial conditions are

φ(r, ϕ) = Ar
(
l − r

2

)
sin 5ϕ, ψ(r, ϕ) = 0.

34. The edge of the membrane is free. The initial conditions are

φ(r, ϕ) = 0, ψ(r, ϕ) = Ar
(
l − r

2

)
cos 4ϕ.
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35. The edge of the membrane is fixed elastically with coefficient h = 1. The initial
conditions are

φ(r, ϕ) = Ar(r − 1) sin 3ϕ, ψ(r, ϕ) = 0.

In problems 36 through 38 the membrane is excited at time t = 0 by a sharp
impact from a hammer, transferring to the membrane an impulse I at a point
(r0, ϕ0) where 0 < r0 < l and 0 ≤ ϕ0 < 2π.

For the following situations find free transverse oscillations of the membrane
assuming the initial displacement is zero, external forcing is absent and the envi-
ronment causes a resistance proportional to velocity (κ > 0).

36. The membrane is fixed along its contour.

37. The edge of the membrane is free.

38. The edge of the membrane is attached elastically with elastic coefficient h = 1.

In problems 39 through 43 the initial displacement and initial velocity are zero.
The resistance of environment is absent (κ = 0). Find the transversal vibrations
of the membrane caused by the action of a varying external pressure f(r, ϕ, t) on
one side of the membrane surface.

39. The membrane is fixed along its contour. The external force is

f(r, ϕ, t) = A (sinωt+ cosωt) .

40. The membrane is fixed along its contour. The external force is

f(r, ϕ, t) = A(l − r) sinωt.

41. The edge of the membrane is free. The external force is

f(r, ϕ, t) = Ar cosωt.

42. The edge of the membrane is fixed elastically with coefficient h = 1. The external
force is

f(r, ϕ, t) = A
(
l2 − r2

)
sinωt.

43. The edge of the membrane is fixed elastically with coefficient h = 1. The external
force is

f(r, ϕ, t) = A (l − r) cosωt.

In problems 44 through 47 find the transverse oscillations of a membrane caused
by its border being displaced according to the function g(t) (the nonhomogeneous
term in the boundary condition). Assume external forces, initial velocities and
resistance of the environment are absent (κ = 0). The initial displacement is given
by u(r, ϕ, 0) = φ(r).

44. g(t) = A sin2 ωt, φ(r) = Br (l − r) .
45. g(t) = A (1− cosωt) , φ(r) = B

(
l2 − r2

)
.

46. g(t) = A cos2 ωt, φ(r) = Br
(r

2
− l
)
.

47. g(t) = A (1− sinωt) , φ(r) = Br (r − l) .
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9

Two-Dimensional Parabolic Equations

In this chapter we discuss parabolic equations for a two-dimensional bounded medium.
We consider rectangular and circular domains. The presentation is very similar to that for
two-dimensional hyperbolic equations in Chapter 8. As before we discuss the heat problem
in order to have a specific example at hand but it should be remembered that any other
physical problem described by a two-dimensional hyperbolic equation can be solved using
the methods discussed below.

9.1 Heat Conduction within a Finite Rectangular Domain

Let a heat-conducting, uniform rectangular plate be placed in the horizontal x-y plane with
boundaries given by edges along x = 0, x = lx, y = 0 and y = ly. The plate is assumed to be
thin enough that the temperature is the same at all points with the same x-y coordinates.

Let u(x, y, t) be the temperature of the plate at the point (x, y) at time t. The heat
conduction within such a thin uniform rectangular plate is described by the equation

∂u

∂t
= a2

[
∂2u

∂x2
+
∂2u

∂y2

]
+ ξx

∂u

∂x
+ ξy

∂u

∂y
− γu+ f(x, y, t),

0 < x < lx, 0 < y < ly, t > 0. (9.1)

Here a2, ξx, ξy and γ are real constants. In terms of heat exchange, a2 = k/cρ is the thermal
diffusivity of the material; γ = h/cρ where h is the heat exchange coefficient (for lateral heat
exchange with an external medium); f(x, y, t) = Q(x, y, t)/cρ where Q is the density of the
heat source (Q < 0 for locations where the heat is absorbed). The terms with coefficients
ξx and ξy describe the heat transfer by the flow with velocity vector (−ξx,−ξy) due to bulk
motion of the surrounding medium. Clearly these coefficients will equal zero for solids but
are non-zero for liquids or gases in which bulk movement (advection) of the medium occurs.

The initial condition defines the temperature distribution within the plate at time zero:

u(x, y, 0) = ϕ(x, y). (9.2)

The boundary conditions describe the thermal conditions at the boundary at any time
t. The boundary conditions can be written in a general form as

P1[u] ≡ α1ux + β1u|x=0 = g1(y, t), P2[u] ≡ α2ux + β2u|x=lx
= g2(y, t),

P3[u] ≡ α3uy + β3u|y=0 = g3(x, t), P4[u] ≡ α4uy + β4u|y=ly
= g4(x, t), (9.3)

where g1(y, t), g2(y, t), g3(x, t) and g4(x, t) are known functions of time and respective vari-
able and α1, β1, . . . , α4, β4 are real constants. As has been discussed previously, physical
arguments lead to the sign restrictions α1/β1 < 0 and α3/β3 < 0.

227
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As before, there are three main types of boundary conditions (here and in the following
we denote a = 0 or lx and b = 0 or ly = 6):

Case I. Boundary condition of the 1st type (Dirichlet condition) where we are given the
temperature along the y- or x -edge:

u(a, y, t) = g(y, t) or u(x, b, t) = g(x, t).

We may also have zero temperature at the edges in which case g(y, t) ≡ 0 or g(x, t) ≡ 0.

Case II. Boundary condition of the 2nd type (Neumann condition) where we are given the
heat flow along the y- or x -edge:

ux(a, y, t) = g(y, t) or uy(x, b, t) = g(x, t).

We may also have a thermally insulated edge in which case g(y, t) ≡ 0 or g(x, t) ≡ 0.

Case III. Boundary condition of the 3rd type (mixed condition) where there is heat
exchange with a medium along the y- or x - edge given by

ux(a, y, t)± hu(a, y, t) = g(y, t) or uy(x, b, t)± hu(x, b, t) = g(x, t).

We assume that h is a positive constant in which case the positive sign should be chosen in
two previous formulas when a = lx, b = ly and negative when a = 0.

The BVP formulated in Equations (9.1)–(9.3) can be reduced to the boundary value
problem

∂v

∂t
= a2

[
∂2v

∂x2
+
∂2v

∂y2

]
− γ̃v + f̃(x, y, t) (9.4)

v(x, y, 0) = ϕ̃(x, y) (9.5)

and

α1vx + β̃1v
∣∣∣
x=0

= g̃1(y, t), α2vx + β̃2v
∣∣∣
x=lx

= g̃2(y, t),

α3vy + β̃3v
∣∣∣
y=0

= g̃3(x, t), α4vy + β̃4v
∣∣∣
y=ly

= g̃4(x, t) (9.6)

with the help of the substitution

u(x, y, t) = eµx+ηyv(x, y, t), (9.7)

where

µ = − ξx
2a2

and η = − ξy
2a2

.

Here

γ̃ = γ +
ξ2
x + ξ2

y

4a2
,

f̃(x, y, t) = e−(µx+ηy)f(x, y, t),

ϕ̃(x, y) = e−(µx+ηy)ϕ(x, y),

β̃1 = β1 + µα1, g̃1(y, t) = e−ηyg1(y, t),

β̃2 = β2 + µα2, g̃2(y, t) = e−(µlx+ηy)g2(y, t),

β̃3 = β3 + ηα3, g̃3(x, t) = e−µxg3(x, t),

β̃4 = β4 + ηα4, g̃4(x, t) = e−(µx+ηly)g4(x, t).
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Reading Exercise: Make the substitution given in Equation (9.7) and verify the results above.

Therefore, below we will only consider Equations (9.1) with ξx = ξy = 0.
First, we should reduce boundary conditions to zero ones. To do that, let us present the

solution to the problem defined by Equations (9.1) through (9.3) (with ξx = ξy = 0) as the
sum of two functions:

u(x, y, t) = v(x, y, t) + w(x, y, t), (9.8)

where v(x, y, t) is a new, unknown function and w(x, y, t) is an auxiliary function satisfying
boundary conditions (9.3). We shall seek an auxiliary function, w(x, y, t), in the form

w(x, y, t) = g1(y, t)X + g2(y, t)X + g3(x, t)Y + g4(x, t)Y

+A(t)X Y +B(t)X Y + C(t)X Y +D(t)X Y , (9.9)

where X(x), X(x), Y (y) and Y (y) are polynomials of 1st or 2nd order, A(t), etc. are some
functions of t. The coefficients of these polynomials will be adjusted in such a way that
function w(x, y, t) satisfies boundary conditions given in Equations (9.3). The algorithm to
find this function is presented in Appendix C part 2.

Then, the function v(x, y, t) represents heat conduction when heat sources are present
within the plate and boundary conditions are zero:

∂v

∂t
= a2

[
∂2v

∂x2
+
∂2v

∂y2

]
− γv + f̃(x, t), (9.10)

v(x, y, 0) = ϕ̃(x, y),

P1[v]|x=0 = 0, P2[v]|x=lx
= 0, P3[v]|y=0 = 0, P4[v]|y=ly

= 0,

where

f̃(x, y, t) = f(x, y, t)− ∂w

∂t
+ a2

(
∂2w

∂x2
+
∂2w

∂y2

)
− γw,

ϕ̃(x, y) = ϕ(x, y)− w(x, y, 0).

For this problem the Fourier method can be applied.
To simplify the task even more, we present function v(x, y, t) as the sum of two functions

v(x, y, t) = u1(x, y, t) + u2(x, y, t), (9.11)

where u1(x, y, t) is the solution of the homogeneous equation with the given initial conditions
and u2(x, y, t) is the solution of a nonhomogeneous equation with zero initial conditions.
For both functions, u1 and u2, the boundary conditions are zero (i.e. homogeneous). This
step (9.11) does not necessarily have to be done, but it makes the solution more physically
transparent.

The solution u1(x, y, t) represents the case of free heat exchange, that is, heat neither
generated within nor lost from the plate, but only transferred by conduction. The solution
u2(x, y, t) represents the non-free heat exchange, that is, the diffusion of heat due to gener-
ation of (or absorption by) internal sources when the initial distribution of temperature is
zero. We find these two solutions in the following sub-sections.
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9.1.1 The Fourier Method for the Homogeneous Heat Equation (Free
Heat Exchange)

Let us first find the solution of the homogeneous equation

∂u1

∂t
= a2

[
∂2u1

∂x2
+
∂2u1

∂y2

]
− γu1 (9.12)

with the initial condition
u1(x, y, 0) = ϕ(x, y), (9.13)

and zero boundary conditions

P1[u1]|x=0 = 0, P2[u1]|x=lx
= 0, P3[u1]|y=0 = 0, P4[u1]|y=ly

= 0. (9.14)

This describes the case of free heat exchange within the plate.
Let us separate time and spatial variables:

u1(x, y, t) = T (t) · V (x, y). (9.15)

As a Reading Exercise obtain: a) the following equation for the function T (t):

T ′(t) + (a2λ+ γ)T (t) = 0, (9.16)

and b) the boundary value problem with homogeneous boundary conditions for the function
V (x, y), defined by

∂2V

∂x2
+
∂2V

∂y2
+ λV (x, y) = 0, (9.17)

α1Vx(0, y) + β1V (0, y) = 0, α2Vx(lx, y) + β2V (lx, y) = 0,

α3Vy(x, 0) + β3V (x, 0) = 0, α4Vy(0, ly) + β4V (0, ly) = 0, (9.18)

where λ is the constant of separation of variables.
Next we can again separate variables:

V (x, y) = X(x)Y (y).

As a Reading Exercise, obtain the following one-dimensional boundary value problems:

X ′′(x) + λxX(x) = 0,

α1X
′(0) + β1X(0) = 0, α2X

′(lx) + β2X(lx) = 0, (9.19)

and

Y ′′(y) + λyY (y) = 0,

α3Y
′(0) + β3Y (0) = 0, α4Y

′(ly) + β4Y (ly) = 0, (9.20)

where the separation of variables constants, λx and λy, are connected by the relation λx +
λy = λ.

If λxn, λym, Xn(x) and Ym(y) are eigenvalues and eigenfunctions, respectively of the
boundary value problems for X(x) and Y (y), then

λnm = λxn + λym (9.21)
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and
Vnm(x, y) = Xn(x)Ym(y) (9.22)

are eigenvalues and eigenfunctions of the boundary value problem for V (x, y). The functions
Vnm(x, y) are orthogonal and their norms are the products

‖Vnm‖2 = ‖Xn‖2 · ‖Ym‖2 .

Eigenvalues and eigenfunctions of the boundary value problem depend on the types of
boundary conditions. Combining different types of boundary conditions one can obtain nine
different types of boundary value problems for the solution X(x) and nine different types
for the solution Y (y) (see Appendix C part 1). Notice, that Equation (9.17) written in the
form

∇2V (x, y) = −λV (x, y),

with the Laplace operator

∇2 =
∂2

∂x2
+

∂2

∂y2

allows us to conclude that functions Vnm are eigenfunctions, and λnm are the eigenvalues
of this operator for the boundary conditions (9.18).

The eigenvalues can be written as:

λxn =

(
µxn
lx

)2

, λym =

(
µym
ly

)2

, (9.23)

where µxn is the nth root of the equation

tanµx =
(α1β2 − α2β1)lxµx
µ2
xα1α2 + l2xβ1β2

, (9.24)

and µym is the mth root of the equation

tanµy =
(α3β4 − α4β3)lyµy
µ2
yα3α4 + l2yβ3β4

. (9.25)

Similarly, as was obtained in Appendix C part 1 the eigenfunctions are

Xn(x) =
1√

α2
1λxn + β2

1

[
α1

√
λxn cos

√
λxnx− β1 sin

√
λxnx

]
,

Ym(y) =
1√

α2
3λym + β2

3

[
α3

√
λym cos

√
λymy − β3 sin

√
λymy

]
. (9.26)

Now, having the eigenvalues λnm and eigenfunctions, Vnm(x, y), of the boundary value
problem, we may obtain the solution u1(x, y, t). The solution to equation

T ′nm(t) + (a2λnm + γ)Tnm(t) = 0 (9.27)

is
Tnm(t) = Cnme

−(a2λnm+γ)t, (9.28)

from which we see that the function u1(x, y, t) can be composed as the infinite series

u1(x, y, t) =
∞∑
n=1

∞∑
m=1

Tnm(t)Vnm(x, y). (9.29)
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Using the fact that this function must satisfy the initial condition (9.13) and using the
orthogonality condition for functions Vnm(x, y) we find coefficients Cnm:

Cnm =
1

‖Vnm‖2
∫ lx

0

∫ ly

0

ϕ(x, y)Vnm(x, y)dxdy. (9.30)

It is left to the reader as a Reading Exercise to verify Equation (9.30) using the initial
conditions (9.13) and the orthogonality condition.

Example 9.1 The initial temperature distribution within a thin uniform rectangular plate
(0 ≤ x ≤ lx, 0 ≤ y ≤ ly) with thermally insulated lateral faces is

u(x, y, 0) = Axy(lx − x)(ly − y), A = const.

Find the distribution of temperature within the plate at any later time if its boundary is
kept a constant zero temperature. Generation (or absorption) of heat by internal sources is
absent.

Solution. The problem may be modeled by the solution of the equation

∂u

∂t
= a2

[
∂2u

∂x2
+
∂2u

∂y2

]
, 0 < x < lx, 0 < y < ly, t > 0,

under the conditions

u(x, y, 0) = ϕ(x, y) = Axy(lx − x)(ly − y),

u(0, y, t) = u(lx, y, t) = u(x, 0, t) = u(x, ly, t) = 0.

The general solution to this problem can be presented as a sum (9.29)

u(x, y, t) =
∞∑
n=1

∞∑
m=1

TnmVnm.

The boundary conditions of the problem are Dirichlet homogeneous boundary condi-
tions; therefore eigenvalues and eigenfunctions of the problem are

λnm = λxn + λym = π2

(
n2

l2x
+
m2

l2y

)
, n,m = 1, 2, 3, . . .

‖Vnm‖2 = ‖Xn‖2 · ‖Ym‖2 =
lxly
4
.

Applying the Equation (9.30), we obtain

Cnm =
4

lxly

∫ lx

0

∫ ly

0

Axy(lx − x)(ly − y) sin
πnx

lx
sin

πmy

ly
dxdy

=


64Al2xl

2
y

π2n2m2
, if n and m are odd,

0, if n or m are even.

Hence, the distribution of temperatures inside the plate at some instant of time is described
by the series

u(x, y, t) =
64Al2xl

2
y

π6

∞∑
n,m=1

e−λnma
2t

(2n+ 1)2(2m+ 1)2
sin

(2n+ 1)πx

lx
sin

(2m+ 1)πy

ly
.

We suggest the reader compare this example and its result with Example 1 from
Chapter 8.
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9.1.2 The Fourier Method for Nonhomogeneous Heat Equation with
Homogeneous Boundary Conditions

As mentioned previously, the solution u2(x, y, t) represents the non-free heat exchange
within the plate; that is, the diffusion of heat due to generation (or absorption) of heat
by internal sources (or sinks) for the case of an initial distribution of temperatures equal
to zero. The solution to the general problem of heat conduction in a plate consists of the
sum of the free heat exchange solutions, u1(x, y, t), found in the previous section and the
solutions, u2(x, y, t), which will be discussed in this section.

The function u2(x, y, t) is a solution of the nonhomogeneous equation

∂u2

∂t
= a2

[
∂2u2

∂x2
+
∂2u2

∂y2

]
− γu2 + f(x, y, t) (9.31)

with zero initial and boundary conditions. As above, we can separate time and spatial
variables to obtain a general solution in the form

u2(x, y, t) =
∞∑
n=1

∞∑
m=1

Tnm(t)Vnm(x, y), (9.32)

where Vnm(x, y) are eigenfunctions of the corresponding homogeneous boundary value prob-
lem given by Equation (9.29). Here Tnm(t) are, as yet, unknown functions of t. Zero bound-
ary conditions for u2(x, y, t) given by

P1[u2]|x=0 = 0, P2[u2]|x=lx
= 0, P3[u2]|y=0 = 0, P4[u2]|y=ly

= 0

are valid for any choice of functions Tnm(t) (assuming the series converge uniformly) because
they are valid for the functions Vnm(x, y). We leave it to the reader to obtain these results
as a Reading Exercise.

We now determine the functions Tnm(t) in such a way that the series (9.32) satisfies the
nonhomogeneous Equation (9.31) and the homogeneous (zero) initial condition. Substituting
the series (9.32) into Equation (9.31) we obtain

∞∑
n=1

∞∑
m=1

[
T ′nm(t) + (a2λnm + γ)Tnm(t)

]
Vnm(x, y) = f(x, y, t). (9.33)

We can expand the function f(x, y, t) in a Fourier series of the functions Vnm(x, y) in the
rectangular region [0, lx; 0, ly] such that

f(x, y, t) =
∞∑
n=1

∞∑
m=1

fnm(t)Vnm(x, y), (9.34)

where

fnm(t) =
1

||Vnm||2

∫ lx

0

∫ ly

0

f(x, y, t)Vnm(x, y)dxdy. (9.35)

Comparing the two expansions in Equations (9.33) and (9.34) for the same function f(x, y, t)
we obtain differential equations for the functions Tnm(t):

T ′nm(t) + (a2λnm + γ)Tnm(t) = fnm(t). (9.36)
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In order that the solution represented by the series u2(x, y, t) given in Equation (9.32)
satisfies the zero temperature initial condition it is necessary that the functions Tnm(t) obey
the condition

Tnm(0) = 0. (9.37)

Clearly, the solution of the ordinary differential Equation (9.36) with initial condition (9.37)
may be written in the integral form

Tnm(t) =

∫ t

0

fnm(τ)e−(a2λnm+γ)(t−τ)dτ. (9.38)

Thus the solution of the nonhomogeneous heat conduction problem for a thin uniform
rectangular plate with homogeneous boundary conditions (equal to zero) has the form

u(x, y, t) = u1(x, y, t) + u2(x, y, t) =
∞∑
n=1

∞∑
m=1

[
Tnm(t) + Cnme

−(a2λnm+γ)t
]
Vnm(x, y).

(9.39)
where the functions Tnm(t) are defined by Equation (9.38) and the coefficients Cnm have
been found earlier in Equation (9.30).

Example 9.2 Find the temperature u(x, y, t) of a thin rectangular plate (0 ≤ x ≤ lx,
0 ≤ y ≤ ly) if its boundary is kept at constant zero temperature, the initial temperature
distribution within the plate is zero, and one internal source of heat Q(t) = A sinωt acts at
the point (x0, y0) in the plate. Assume the plate is thermally insulated over its lateral faces.

Solution. The problem is expressed as

∂u

∂t
= a2

[
∂2u

∂x2
+
∂2u

∂y2

]
+
A

cρ
sinωt · δ(x− x0)δ(y − y0),

under the conditions
u(x, y, 0) = 0,

u(0, y, t) = u(lx, y, t) = u(x, 0, t) = u(x, ly, t) = 0.

The general solution to this problem can be presented as a sum

u(x, y, t) =
∞∑
n=1

∞∑
m=1

[
Tnm(t) + Cnme

−(a2λnm+γ)t
]
Vnm(x, y).

The boundary conditions of the problem are Dirichlet homogeneous boundary conditions,
therefore eigenvalues and eigenfunctions of problem are:

λnm = λxn + λym = π2

(
n2

l2x
+
m2

l2y

)
, n,m = 1, 2, 3, . . .

‖Vnm‖2 = ‖Xn‖2 · ‖Ym‖2 =
lxly
4
.

The initial condition is zero, in which case Cnm = 0. Applying Equation (9.35), we obtain

fnm(t) =
4

lxly

∫ lx

0

∫ ly

0

A

cρ
sinωt · δ(x− x0)δ(y − y0) sin

πnx

lx
sin

πmy

ly
dxdy

=
4A

cρlxly
sinωt sin

πnx0

lx
sin

πmy0

ly
.
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(a) (b)

FIGURE 9.1
Surface graph of plate temperature at (a) t = 0.6, (b) t = 6.2 for Example 9.2.

We also have from the above formulas that

Tnm(t) =

∫ t

0

fnm(τ)e−λnma
2(t−τ)dτ =

4A

cρlxly
sin

πnx0

lx
sin

πmy0

ly

× 1

ω2 + (a2λnm)
2

[
a2λnm sinωt− ω cosωt+ ωe−λnma

2t
]

so that, finally we obtain

u(x, y, t) =
4A

cρlxly

∞∑
n,m=1

1

ω2 + (a2λnm)
2

[
a2λnm sinωt− ω cosωt+ ωe−λnma

2t
]

× sin
πnx0

lx
sin

πmy0

ly
sin

πnx

lx
sin

πmy

ly
.

Figure 9.1 shows snapshots of the solution at times t = 0.6 and t = 6.2. This solution was
obtained for the case a2 = 0.25, lx = 4, ly = 6, A/cρ = 120, ω = 5, x0 = 2 and y0 = 3.

Reading Exercise: Find the periodic in time solution of this problem and compare it with
the solution u(x, y, t) obtained above when t→∞.

Hint : Search the solution in the form Re [F (x, y) exp(iωt)], then, for a complex function,
F (x, y); you will obtain the Helmholtz equation with zero boundary and initial conditions.
A similar problem was discussed for the one-dimensional heat equation.

Example 9.3 A heat-conducting, thin, uniform rectangular plate is thermally insulated
over its lateral faces. One side of the plate, at x = 0, is thermally insulated and the rest
of the boundary is kept at constant zero temperature. The initial temperature distribution
within the plate is zero.

Let heat be generated throughout the plate with the intensity of internal sources (per
unit mass of the plate) given by

Q(x, y, t) = A (lx − x) sin
πy

ly
sin t.

Find the distribution of temperature within the plate when t > 0.

Solution. The problem involves finding the solution of the equation

∂u

∂t
= a2

[
∂2u

∂x2
+
∂2u

∂y2

]
+

A

Cρ
(lx − x) sin

πy

ly
sin t,
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(a) (b)

FIGURE 9.2
Eigenfunctions (a) V11(x, y) and (b) V51(x, y) for Example 3.

under the conditions
u(x, y, 0) = 0,

∂u

∂x
(0, y, t) = 0, u(lx, y, t) = 0, u(x, 0, t) = u(x, ly, t) = 0.

Eigenvalues and eigenfunctions of the problem are given by

λnm = λxn + λym = π2

[
(2n− 1)2

4l2x
+
m2

l2y

]
, n,m = 1, 2, 3, . . . ,

Vnm(x, y) = Xn(x)Ym(y) = cos
(2n− 1)πx

2lx
sin

mπy

ly
,

‖Vnm‖2 = ‖Xn‖2 · ‖Ym‖2 =
lxly
4
.

The three-dimensional picture shown in Figure 9.2 depicts two eigenfunctions (chosen
as examples), V11(x, y) and V51(x, y) for the given problem.

The initial condition is equal to zero, in which case Cnm = 0. Applying Equation (9.35),
we obtain

fn1(t) =
4

lxly

∫ lx

0

∫ ly

0

f(x, y, t) cos
(2n− 1)πx

2lx
sin

πy

ly
dxdy =

8Alx
π2(2n− 1)2

sin(t),

and fnm = 0, if m 6= 1. Thus we have

Tn1(t) =
1

‖vn1‖2
∫ t

0

fn1(τ)e−λn1a
2(t−τ)dτ

=
8Alx

π2(2n− 1)2
[
1 + (a2λn1)

2
] {a2λn1 sin(t)− cos(t) + e−λn1a

2t
}
,

Tnm = 0, if m 6= 1.

and, finally,

u(x, y, t) =
8Alx
π2

sin
πy

ly

∞∑
n=1

a2λn1 sin t− cos t+ e−λn1a
2t

(2n− 1)2
[
ω2 + (a2λn1)

2
] cos

(2n− 1)πx

2lx
.

The BVPs for a rectangular domain in situations with nonhomogeneous boundary con-
ditions are considered in Appendix E part 2.
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9.2 Heat Conduction within a Circular Domain

Let a uniform circular plate be placed in the horizontal x-y plane and bounded at the
circular periphery by a radius of length l. The plate is assumed to be thin enough so that
the temperature is the same at all points with the same x-y coordinates.

In polar coordinates of the Laplace operator is

∇2u =
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂ϕ2

and the heat conduction is described by the equation

∂u

∂t
= a2

(
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂ϕ2

)
− γu+ f(r, ϕ, t),

0 ≤ r < l, 0 ≤ ϕ < 2π, t > 0. (9.40)

The initial condition defines the temperature distribution within the plate at zero time

u(r, ϕ, 0) = φ(r, ϕ). (9.41)

The boundary condition describes the thermal condition around the boundary at any
time t :

P [u]r=l ≡ α
∂u

∂r
+ βu

∣∣∣∣
r=l

= g(ϕ, t). (9.42)

It is obvious that function g(ϕ, t) must be a single-valued periodic function in ϕ of period
2π, that is,

g(ϕ+ 2π, t) = g(ϕ, t).

Again we consider three main types of boundary conditions:

i) Boundary condition of the 1st type (Dirichlet condition), u(l, ϕ,t) = g(ϕ,t), where
the temperature at the boundary is given or is zero in which case g(ϕ,t) ≡ 0.

ii) Boundary condition of the 2nd type (Neumann condition), ur(l, ϕ,t) = g(ϕ,t), in
which case the heat flow at the boundary is given or the boundary is thermally
insulated and g(ϕ,t) ≡ 0.

iii) Boundary condition of the 3rd type (mixed condition), ur(l, ϕ,t) + hu(l, ϕ,t) =
g(ϕ,t), where the conditions of heat exchange with a medium are specified (here
h = const).

In the case of the nonhomogeneous boundary condition we introduce an auxiliary func-
tion, w(r, ϕ, t), satisfying the given boundary condition and express the solution to the
problem as the sum of two functions:

u(r, ϕ, t) = v(r, ϕ, t) + w(r, ϕ, t),

where v(r, ϕ, t) is a new, unknown function with zero boundary condition. As in Chapter
8, we will seek function w(r, ϕ, t) in the form

w(r, ϕ, t) = (c0 + c2r
2)g(ϕ, t)

with constants c0 and c2 to be adjusted to satisfy the boundary condition.
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As we did a number of times, it helps to present the function v(r, ϕ, t) as the sum

v(r, ϕ, t) = u1(r, ϕ, t) + u2(r, ϕ, t),

where u1(r, ϕ, t) is the solution of the homogeneous equation (free heat exchange) with the
given initial condition and zero boundary condition, and u2(r, ϕ, t) is the solution of the
nonhomogeneous equation (heat exchange involving internal sources) with zero initial and
boundary conditions.

9.2.1 The Fourier Method for the Homogeneous Heat Equation

Let us find the solution of the homogeneous equation

∂u1

∂t
= a2

(
∂2u1

∂r2
+

1

r

∂u1

∂r
+

1

r2

∂2u1

∂ϕ2

)
− γu1 (9.43)

with the initial condition
u1(r, ϕ, 0) = φ(r, ϕ) (9.44)

and zero boundary condition

P [u1]r=l ≡ α
∂u1

∂r
+ βu1

∣∣∣∣
r=l

= 0. (9.45)

Presenting the unknown function as

u1(r, ϕ, t) = T (t)V (r, ϕ), (9.46)

substituting this in Equation (9.43) and separating variables we obtain,

T ′′(t) + γT (t)

a2T (t)
≡ 1

V (r, ϕ)

[
∂2V

∂r2
+

1

r

∂V

∂r
+

1

r2

∂2V

∂ϕ2

]
= −λ,

where λ is a separation of variables constant (we know that a choice of minus sign before λ
is convenient). Thus, the function T (t) is the solution of the ordinary linear homogeneous
differential equation of first order

T ′(t) + (a2λ+ γ)T (t) = 0, (9.47)

and V (r, ϕ) is the solution to the following boundary value problem:

∂2V

∂r2
+

1

r

∂V

∂r
+

1

r2

∂2V

∂ϕ2
+ λV = 0, (9.48)

α
∂V

∂r
(l, ϕ) + βV (l, ϕ) = 0. (9.49)

Two restrictions on V (r, ϕ) are that it be bounded, |V (r, ϕ)| <∞ and that it be periodic
in ϕ: V (r, ϕ) = V (r, ϕ+ 2π).

This boundary value problem for the function V (r, ϕ) we have discussed in detail in
Appendix D part 1 and in Chapter 7. After separation of variables

V (r, ϕ) = R(r)Φ(ϕ) (9.50)

we obtained the Bessel equation for the function R(r) and cosnϕ and sinnϕ for Φ(ϕ).
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The eigenvalues and eigenfunctions of the boundary value problem for function Rn(r) have
the form

λnm =

(
µ

(n)
m

l

)2

, Rnm(r) = Jn

(
µ

(n)
m

l
r

)
, n,m = 0, 1, 2, . . . , (9.51)

where µ
(n)
m is the m-th positive root of the equation

αµJ ′n(µ) + βlJn(µ) = 0, (9.52)

and Jn(µ) is the Bessel function of the 1st kind.
Collecting the above results we may write the eigenfunctions of the given BVP as

V (1)
nm(r, ϕ) = Jn

(
µ

(n)
m

l
r

)
cosnϕ and V (2)

nm(r, ϕ) = Jn

(
µ

(n)
m

l
r

)
sinnϕ. (9.53)

Functions V
(1,2)
nm (r, ϕ) are eigenfunctions of the Laplace operator in polar coordinates in the

domain 0 ≤ r ≤ l, 0 ≤ ϕ < 2π, and λnm are the corresponding eigenvalues.
With the eigenvalues λnm we can write the solution of the differential equation

T ′nm(t) + (a2λnm + γ)Tnm(t) = 0 (9.54)

as
Tnm(t) = Cnme

−(a2λnm+γ)t. (9.55)

From this we see that the general solution for function u1 is

u1(r, ϕ, t) =
∞∑
n=0

∞∑
m=0

[
anmV

(1)
nm(r, ϕ) + bnmV

(2)
nm(r, ϕ)

]
e−(a2λnm+γ)t. (9.56)

The coefficients anm and bnm are defined using the function which expresses the initial

condition and the orthogonality property of functions V
(1)
nm(r, ϕ) and V

(2)
nm(r, ϕ):

anm =
1∥∥∥V (1)
nm

∥∥∥2

∫ l

0

∫ 2π

0

φ(r, ϕ)V (1)
nm(r, ϕ)rdrdϕ, (9.57)

bnm =
1∥∥∥V (2)
nm

∥∥∥2

∫ l

0

∫ 2π

0

φ(r, ϕ)V (2)
nm(r, ϕ)rdrdϕ. (9.58)

The norms of eigenfunctions V
(1)
nm(r, ϕ) and V

(2)
nm(r, ϕ) can be found in Appendix D part 1.

Example 9.4 The initial temperature distribution within a very long (infinite) cylinder of
radius l is

φ(r, ϕ) = u0

(
1− r2

l2

)
, u0 = const.

Find the distribution of temperature within the cylinder if its surface is kept at constant
zero temperature. Generation (or absorption) of heat by internal sources is absent.
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Solution. The boundary value problem modeling the process of the cooling of an infinite
cylinder is

∂u

∂t
= a2

[
∂2u

∂r2
+

1

r

∂u

∂r

]
,

u(r, ϕ, 0) = u0

(
1− r2

l2

)
, u(l, ϕ, t) = 0.

The initial temperature does not depend on the polar angle ϕ; thus, only terms with

n = 0 are not zero and the solution includes only functions V
(1)
0m (r, ϕ) given by the first of

Equations (9.53). The solution u(r, ϕ, t) is therefore given by the series

u(r, ϕ, t) =
∞∑
m=0

a0me
−a2λ0mtJ0

(
µ

(0)
m

l
r

)
.

The boundary condition of the problem is of Dirichlet type, so eigenvalues µ
(n)
m are given

by the roots of equation
Jn(x) = 0,

where x = µr/l. As it was mentioned in Appendix D part 1 for simplicity, such equations
are often written just as Jn(µ) = 0.

The coefficients a0m are given by Equation (9.57):

a0m =
2π

||V (1)
0m ||2

∫ l

0

u0

(
1− r2

l2

)
J0

(
µ(0)
m r/l

)
rdr.

Thus, the distribution of temperature within the cylinder is given by the series in Bessel
functions of zero-th order:

u(r, ϕ, t) = 8u0

∞∑
m=0

e−a
2λ0mt(

µ
(0)
m

)3

J1

(
µ

(0)
m

)J0

(
µ

(0)
m

l
r

)
.

We see that, due to the exponential nature of the coefficients the final temperature
of the cylinder after a long time will be zero. This is due to dissipation of energy to the
surrounding space and could have been anticipated from the physical configuration of the
problem.

Example 9.5 The initial temperature distribution within a very long (infinite) cylinder of
radius l is

u(r, ϕ, 0) = u0 = const.

Find the distribution of temperature within the cylinder if it is subjected to convective heat
transfer according to Newton’s law at its surface and the temperature of the medium is
zero.

Solution. The boundary value problem modeling the process of the cooling of an infinite
cylinder is

∂u

∂t
= a2

[
∂2u

∂r2
+

1

r

∂u

∂r

]
,

u(r, ϕ, 0) = u0,

∂u

∂r
(l, ϕ, t) + hu(l, ϕ, t) = 0.
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The boundary condition of the problem is of mixed type so eigenvalues of problem λnm =

(µ
(n)
m /l)2 are the roots of the equation

µJ ′n(µ) + hlJn(µ) = 0, and

the eigenfunctions are given by (9.53).
The coefficients anm and bnm are given by Equations (9.57) and (9.58):

anm =
u0

||V (1)
nm ||2

∫ 2π

0

cosnϕdϕ

∫ l

0

rJn

(
µ

(n)
m

l
r

)
dr ,

bnm =
u0

||V (2)
nm ||2

∫ 2π

0

sinnϕdϕ

∫ l

0

rJn

(
µ

(n)
m

l
r

)
dr.

The initial temperature does not depend on the polar angle ϕ; thus, only terms with n = 0
are not zero. Obviously bnm = 0 for all n. Let us calculate coefficient a0m. First, taking into
account the relation µJ ′0(µ) + hlJ0(µ) = 0, we may write∥∥∥V (1)

0m

∥∥∥2

= π

[
l2h2 +

(
µ(0)
m

)2
]

l2(
µ

(0)
m

)2 J
2
0

(
µ(0)
m

)
.

From this we have

a0m =
2u0µ

(0)
m[(

µ
(0)
m

)2

+ h2l2
]
J2

0

(
µ

(0)
m

)J1

(
µ(0)
m

)
.

Using the above relations we may write the distribution of temperature within the cylinder
as the series in Bessel functions of zero order:

u(r, ϕ, t) = 2u0

∞∑
m=0

µ
(0)
m J1

(
µ

(0)
m

)
e−a

2λ0mt[(
µ

(0)
m

)2

+ h2l2
]
J2

0

(
µ

(0)
m

)J0

(
µ

(0)
m

l
r

)
.

As in the previous example, dissipation of energy to the environment brings the final
temperature of the plate to zero after long time periods.

9.2.2 The Fourier Method for the Nonhomogeneous Heat Equation

Function u2(r, ϕ, t) represents the non-free heat exchange within the plate; that is, the
diffusion of heat due to generation (or absorption) of heat by internal sources when the
initial distribution of temperature is zero. The function u2(r, ϕ, t) is the solution of the
nonhomogeneous equation

∂u2

∂t
= a2

(
∂2u2

∂r2
+

1

r

∂u2

∂r
+

1

r2

∂2u2

∂ϕ2

)
− γu2 + f(r, ϕ, t) (9.59)

with initial and boundary conditions equal to zero.
After the separation of variables the general solution to this equation clearly is

u2(r, ϕ, t) =
∞∑
n=0

∞∑
m=0

[
T (1)
nm(t)V (1)

nm(r, ϕ) + T (2)
nm(t)V (2)

nm(r, ϕ)
]
, (9.60)
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where V
(1)
nm(r, ϕ) and V

(2)
nm(r, ϕ) are eigenfunctions of the corresponding homogeneous bound-

ary value problem and T
(1)
nm(t) and T

(2)
nm(t) are unknown functions of t.

The zero boundary condition for u2(r, ϕ, t)

P [u2]r=l ≡ α
∂u2

∂r
+ βu2

∣∣∣∣
r=l

= 0

is valid for any choice of functions T
(1)
nm(t) and T

(2)
nm(t) because it is valid for the functions

V
(1)
nm(r, ϕ) and V

(2)
nm(r, ϕ).

Substitution of the series (9.60) into Equation (9.59) gives

∞∑
n=0

∞∑
m=0

[
dT

(1)
nm

dt
+ (a2λnm + γ)T (1)

nm(t)

]
V (1)
nm(r, ϕ)

+
∞∑
n=0

∞∑
m=0

[
dT

(2)
nm

dt
+ (a2λnm + γ)T (2)

nm(t)

]
V (2)
nm(r, ϕ) = f(r, ϕ, t). (9.61)

Next expand function f(r, ϕ, t) within a circle of radius l as

f(r, ϕ, t) =

∞∑
n=0

∞∑
m=0

[
f (1)
nm(t)V (1)

nm(r, ϕ) + f (2)
nm(t)V (2)

nm(r, ϕ)
]
, (9.62)

where, using the orthogonality of this set of functions, the coefficients are

f (1)
nm(t) =

1∥∥∥V (1)
nm

∥∥∥2

∫ l

0

∫ 2π

0

f(r, ϕ, t)V (1)
nm(r, ϕ)rdrdϕ, (9.63)

f (2)
nm(t) =

1∥∥∥V (1)
nm

∥∥∥2

∫ l

0

∫ 2π

0

f(r, ϕ, t)V (2)
nm(r, ϕ)rdrdϕ. (9.64)

Comparing the expansions (9.61) and (9.62), we obtain differential equations for deter-

mining the functions T
(1)
nm(t) and T

(2)
nm(t):

dT
(1)
nm

dt
+ (a2λnm + γ)T (1)

nm(t) = f (1)
nm(t),

dT
(2)
nm

dt
+ (a2λnm + γ)T (2)

nm(t) = f (2)
nm(t). (9.65)

In addition, these functions are necessarily subject to the initial conditions:

T (1)
nm(0) = 0 and T (2)

nm(0) = 0. (9.66)

The solutions of the differential Equations (9.65) with initial conditions (9.66) can be pre-
sented in the form of integral relations

T (1)
nm(t) =

∫ t

0

f (1)
nm(τ)e−(a2λnm+γ)(t−τ)dτ, (9.67)

T (2)
nm(t) =

∫ t

0

f (2)
nm(τ)e−(a2λnm+γ)(t−τ)dτ. (9.68)
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Thus, we have that the solution of the nonhomogeneous equation with zero initial and
boundary conditions can be written as

u(x, y, t) = u1(x, y, t) + u2(x, y, t)

=
∞∑
n=0

∞∑
m=0

{[
T (1)
nm(t) + anme

−(a2λnm+γ)t
]
V (1)
nm(x, y)

+
[
T (2)
nm(t) + bnme

−(a2λnm+γ)t
]
V (2)
nm(x, y)

}
(9.69)

with coefficients anm and bnm given by formulas (9.57), (9.58).

Example 9.6 Find the temperature within a thin circular plate of radius l if its boundary
is kept at constant zero temperature, the initial temperature distribution within the plate
is zero, and one internal source of heat Q(t) = A sinωt acts at the point (r0, ϕ0) of the plate
where 0 ≤ r0 < l, 0 ≤ ϕ0 < 2π. The plate is thermally insulated over its lateral faces.

Solution. The problem is expressed as

∂u

∂t
= a2

[
∂2u

∂r2
+

1

r

∂u

∂r

]
+
A

cρ
δ(r − r0)δ(ϕ− ϕ0) sinωt

under the conditions
u(r, ϕ, 0) = 0, u(l, ϕ, t) = 0.

The boundary condition of the problem is of Dirichlet type, so eigenvalues are given by
the equation Jn(µ) = 0, the eigenfunctions are given by formulas (9.53), the eigenfunctions
squared norms can be calculated using Equations (D.17) and (D.18) from Appendix D
part 1: ∥∥∥V (1)

nm

∥∥∥2

=
∥∥∥V (2)

nm

∥∥∥2

= σnπ
l2

2

[
J ′n

(
µ(n)
m

)]2
, σn =

{
2, if n = 0,
1, if n > 0.

The initial temperature of the plate is zero, so we have anm = 0 and bnm = 0 for all n, m.

Let us next find f
(1)
nm(t) and f

(2)
nm(t):

f (1)
nm(t) =

A

cρ

2

σnπl2
[
J ′n

(
µ

(n)
m

)]2 sinωt cosnϕ0Jn

(
µ

(n)
m

l
r0

)
,

f (2)
nm(t) =

A

cρ

2

σnπl2
[
J ′n

(
µ

(n)
m

)]2 sinωt sinnϕ0Jn

(
µ

(n)
m

l
r0

)
.

From this we have

T (1)
nm(t) =

A

cρ

2

σnπl2
[
J ′n

(
µ

(n)
m

)]2 cosnϕ0Jn

(
µ

(n)
m

l
r0

)
· I(t),

T (2)
nm(t) =

A

cρ

2

σnπl2
[
J ′n

(
µ

(n)
m

)]2 sinnϕ0Jn

(
µ

(n)
m

l
r0

)
· I(t),

where we have introduced

I(t) =
1[

ω2 + (a2λnm)
2
] {a2λnm sinωt− ω cosωt+ ωe−λnma

2t
}
.
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(a) (b)

FIGURE 9.3
Temperature of plate at (a) t = 0.5 and (b) t = 1 for Example 9.6.

Therefore, the evolution of temperature within the plate is described by the series

u(r, ϕ, t) =
∞∑
n=0

∞∑
m=0

[
T (1)
nm cos(nϕ) + T (2)

nm sin(nϕ)
]
Jn

(
µ

(n)
m

l
r

)

=
2A

cρπl2

∞∑
n=0

∞∑
m=0

I(t)

σn

[
J ′n

(
µ

(n)
m

)]2 Jn
(
µ

(n)
m

l
r0

)
Jn

(
µ

(n)
m

l
r

)
cosn(ϕ− ϕ0).

Figure 9.3 shows two snapshots of the solution at the times t = 0.5 and t = 1. This solu-
tion was obtained for the case when a2 = 0.25, l = 2, r0 = 1, ϕ0 = 1, A/cρ = 100 and ω = 5.

Reading Exercise: Discuss the above result for the equilibrium (final) state when the source
of heat is placed in the center of the plate at r0 = 0. Show that in this case the problem
can be reduced to a one-dimensional ordinary differential equation.

Example 9.7 A heat-conducting, thin, uniform, circular plate of radius l is thermally insu-
lated over its lateral faces. The boundary of the plate is kept at constant zero temperature,
and the initial temperature distribution within the plate is zero. Let heat be generated
throughout the plate with the intensity of internal sources (per unit mass of the membrane)
given by

Q(t) = A cosωt.

Find the distribution of temperature within the plate when t > 0.

Solution. The problem may be expressed by the equation

∂u

∂t
= a2

[
∂2u

∂r2
+

1

r

∂u

∂r

]
+A cosωt,

under the conditions
u(r, ϕ, 0) = 0, u(l, ϕ, t) = 0.

The boundary condition of the problem is of Dirichlet type, so eigenvalues µ
(n)
m are

given by equation Jn(µ) = 0. The initial temperature of the plate is zero and the intensity
of internal sources depends only on time t, so the solution u(r, t) includes only functions

V
(1)
0m = J0

(
µ

(0)
m r/l

)
and is given by the series

u(r, t) =
∞∑
m=0

T
(1)
0m(t)J0

(
µ

(n)
m

l
r

)
,
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(a) (b)

FIGURE 9.4
Temperature of plate at (a) t = 1 and (b) t = 3 for Example 9.7.

where

T
(1)
0m(t) =

∫ t

0

f
(1)
0m(τ)e−(a2λ0m+γ)(t−τ)dτ.

Taking into account that (see Appendix B)∥∥∥V (1)
0m

∥∥∥2

= πl2
[
J ′0

(
µ(0)
m

)]2
= πl2

[
J1

(
µ(0)
m

)]2
,

∫ l

0

J0

(
µ

(0)
m

l
r

)
rdr =

l2[
µ

(0)
m

]2 ∫ µ(0)
m

0

xJ0(x)dx =
l2

µ
(0)
m

J1

(
µ(0)
m

)
,

we find f
(1)
0m(t) in the form

f
(1)
0m(t) =

A cosωt∥∥∥V (1)
0m

∥∥∥2 2π

∫ l

0

J0

(
µ

(0)
m

l
r

)
rdr =

2A

µ
(0)
m J1

(
µ

(0)
m

) cosωt.

Then

T
(1)
0m(t) =

2A

µ
(0)
m J1

(
µ

(0)
m

) ∫ t

0

cosωτ · e−a
2λ0m(t−τ)dτ

=
2A

µ
(0)
m J1

(
µ

(0)
m

) [
ω2 + (a2λ0m)

2
] [a2λ0m cosωt+ ω sinωt− a2λ0me

−a2λ0mt
]
.

Therefore, the evolution of temperature within the plate is described by series

u(r, t) =
∞∑
m=0

T
(1)
0m(t)J0

(
µ

(n)
m

l
r

)
.

Figure 9.4 shows two snapshots of the solution at the times t = 1 and t = 3. This solution
was obtained for the case when a2 = 0.25, l = 2, A = 100 and ω = 5.

Reading Exercise: Discuss the above result for the equilibrium (final) state. Show that in
this case the problem can be reduced to a one-dimensional ordinary differential equation.
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9.2.3 The Fourier Method for the Nonhomogeneous Heat Equation
with Nonhomogeneous Boundary Conditions

Finally, we consider the general boundary problem for heat conduction, Equation (9.40),
given by

∂u

∂t
= a2

(
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂ϕ2

)
− γu+ f(r, ϕ, t)

with nonhomogeneous initial condition (9.41) and boundary condition (9.42) given by

u(r, ϕ, 0) = φ(r, ϕ),

P [u]r=l ≡ α
∂u

∂r
+ βu

∣∣∣∣
r=l

= g(ϕ, t).

To reduce the nonhomogeneous boundary condition to homogeneous, we introduce an aux-
iliary function w(r, ϕ, t) which satisfies the given nonhomogeneous boundary condition. As
always, we will search for the solution of the problem as

u(r, ϕ, t) = v(r, ϕ, t) + w(r, ϕ, t),

where v(r, ϕ, t) is a function satisfying the homogeneous boundary condition, and will seek
the auxiliary function w(r, ϕ, t) in the form

w(r, ϕ, t) =
(
c0 + c1r + c2r

2
)
g(ϕ, t).

The constants will be adjusted to satisfy the boundary condition. Because

1

r

∂w

∂r
(r, ϕ, t) =

(c1
r

+ 2c2

)
g(ϕ, t)

and r = 0 is a regular point, the coefficient c1 ≡ 0 and the auxiliary function reduce to

w(r, ϕ, t) =
(
c0 + c2r

2
)
g(ϕ, t),

where c0 and c2 are real constants.

Example 9.8 The initial temperature distribution within a very long (infinite) cylinder of
radius l is

u(r, ϕ, 0) = u0 = const.

Find the distribution of temperature within the cylinder if a constant heat flow,

∂u

∂r
(l, ϕ, t) = Q =

q

κ
,

is supplied to the surface of the cylinder from the outside starting at time t = 0. Generation
(or absorption) of heat by internal sources is absent.

Solution. This is the BVP
∂u

∂t
= a2

[
∂2u

∂r2
+

1

r

∂u

∂r

]
,

u(r, ϕ, 0) = u0,
∂u

∂r
(l, ϕ, t) = Q.

An auxiliary function satisfying the given boundary condition is

w(r, ϕ, t) =
Q

2l
r2.
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The solution to the problem should be sought in the form

u(r, ϕ, t) = w(r, ϕ, t) + v(r, ϕ, t),

where the function v(r, ϕ, t) is the solution to the boundary value problem with homogeneous
boundary conditions and

f̃(r, ϕ, t) =
2a2

l
Q, φ̃(r, ϕ) = u0 −

Q

2l
r2.

These functions (defined in Section 9.1) do not depend on the polar angle ϕ, which is why
the solution for function v(r, t) contains only the Bessel function of zero-th order:

v(r, t) =
∞∑
m=0

[
T

(1)
0m(t) + a0me

−a2λ0mt
]
J0

(
µ

(0)
m

l
r

)
.

The boundary condition of the problem is of Neumann type, so eigenvalues µ
(n)
m are

given by the equation
J ′n(µ) = 0.

The eigenfunctions and their norms are (D.16), (D.17) (Appendix D part 1)

V
(1)
0m = J0

(
µ

(0)
m

l
r

)
,
∥∥∥V (1)

0m

∥∥∥2

= πl2J2
0

(
µ(0)
m

)
,
∥∥∥V (1)

00

∥∥∥2

= πl2,

in which case we have

a0m =
1∥∥∥V (1)

0m

∥∥∥2

∫ 2π

0

∫ l

0

(
u0 −

Q

2l
r2

)
J0

(
µ

(0)
m

l
r

)
rdrdϕ = − 2Ql(

µ
(0)
m

)2

J0

(
µ

(0)
m

) ,
a00 =

1∥∥∥V (1)
00

∥∥∥2

∫ 2π

0

∫ l

0

(
u0 −

Q

2l
r2

)
rdrdϕ = u0 −

Ql

4
.

Using the Equation (9.63) we obtain

f
(1)
0m(t) =

2a2Q

l
∥∥∥V (1)

0m

∥∥∥2

∫ 2π

0

dϕ

∫ l

0

J0

(
µ

(0)
m

l
r

)
rdr =

4a2Q

lµ
(0)
m J2

0

(
µ

(0)
m

)J1

(
µ(0)
m

)
= 0,

f
(1)
00 (t) =

2a2Q

l
∥∥∥V (1)

00

∥∥∥2

∫ 2π

0

dϕ

∫ l

0

rdr =
2a2Q

l
,

and with Equations (9.67), (9.68) we have

T
(1)
0m(t) =

∫ t

0

f
(1)
0m(τ)e−a

2λ0m(t−τ)dτ = 0, T
(1)
00 (t) =

∫ t

0

f
(1)
00 (τ)dτ =

2a2Q

l
t.

Hence, the distribution of temperature within the cylinder at some instant of time is
described by the series (9.69):

u(r, t) =
Q

2l
r2 + u0 −

Ql

4
+

2a2Q

l
t− 2Ql

∞∑
m=1

e−a
2λ0mt

(µ
(0)
m )2J0(µ

(0)
m )

J0

(
µ

(0)
m

l
r

)
.

Reading Exercise: Discuss the role and the origin of each term in this solution.
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9.3 Heat Conduction in an Infinite Medium

Consider the homogeneous heat-conduction equation in three dimensions

∂u

∂t
= a2∇2u. (9.70)

For a finite medium the separation of variables procedure, u(r, t) = X(r)T (t), gives
the discrete spectrum of eigenvalues λn due to boundary conditions. For infinite medium
problems, when there is no boundary condition, let us express the function u(r, t) as a
Fourier integral with respect to the coordinates:

u(r, t) =
1

(2π)3

∫
uk(t)eikrd3k, d3k = dkxdkydkz, (9.71)

where the Fourier coefficients are

uk(t) =

∫
u(r, t)e−ikrdr, dr = dxdydz. (9.72)

Substituting expression (9.71) into Equation (9.70), we obtain

1

(2π)3

∫ (
duk
dt

+ k2a2uk

)
eikrd3k = 0.

Therefore, for each Fourier component, uk(t), Equation (9.70) gives

∂uk
∂t

+ k2a2uk = 0,

from which we obtain
uk(t) = u0ke

−k2a2t . (9.73)

It is clear that the coefficients u0k are determined by the initial temperature distribution
(initial condition) given by

u(x, 0) = u0(x) ≡ ϕ(r). (9.74)

From Equations (9.73) and (9.74) we have

u0k(t) =

∫
ϕ(r′)e−ikr

′
dr′. (9.75)

Thus, the temperature distribution as function of coordinates and time is

u(r, t) =
1

(2π)3

∫
ϕ(r′)e−k

2
a2teik(r−r′)dr′d3k. (9.76)

The integral over d3k is the product of three integrals; each of them is∫ ∞
−∞

e−αk
2
i cosβkidki =

(π
α

)1/2

e−β
2/4α, i = x, y, z (9.77)

(the integrals with sines in place of cosines are zero since the sine function is odd). Finally,
we obtain the following formula which gives the complete solution of the problem since
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it determines the temperature within the medium for any moment in time if the initial
temperature distribution is known:

u(r, t) =
1

8(πa2t)3/2

∫
ϕ(r′) exp

[
− (r − r′)2

4a2t

]
dr′. (9.78)

If the initial temperature distribution is a function of only one coordinate, x (for example
the case of a thin infinite bar), then performing an integration over y and z in Equation
(9.78), yields

u(x, t) =
1

2
√
πa2t

∫ ∞
−∞

ϕ(x′) exp

[
− (x− x′)2

4a2t

]
dx′. (9.79)

Reading Exercise. Check the step between Equations (9.78) and (9.79) and show that the
result corresponds to the one-dimensional case discussed in Chapter 6.

Let us consider a useful illustration of the result in Equation (9.78) – the case when the
temperature at t = 0 is zero everywhere except the origin of the coordinate system where
it is infinite. We assume also that the total amount of energy (or heat) is proportional to∫
ϕ(r)dr. For a point source at the origin we may write

ϕ(r) = Aδ(r), A = const,

where δ(r) = δ(x)δ(y)δ(z) is a three-dimensional delta function. From Equation (9.78) we
immediately obtain

u(r, t) = A
1

8(πa2t)3/2
exp

[
− r2

4a2t

]
. (9.80)

At the origin the temperature decreases as t−3/2 and there is a corresponding temperature
rise in the surrounding space. The size of the space where the temperature substantially
differs from zero is determined by the exponential in Equation (9.80). That is, it is given by
l ≈ a

√
t and l increases as the square root of the time. If at t = 0 the heat was concentrated

in the plane at x = 0, or more generally if it does not depend on the x and y axis, then

u(x, t) = A
1

2
√
πa2t

exp

[
− x2

4a2t

]
(9.81)

which follows from Equation (9.79).
The solution in Equation (9.80) with the delta-function as the initial condition is Green’s

function G(r−r′, t) for homogeneous heat conduction. In terms of Green’s function, the
solution in Equation (9.78) can be written as

u(r, t) =

∫
ϕ(r′)G(r−r′, t)dr′,

where

G(r−r′, t) =
1

8(πa2t)3/2
exp

[
− (r − r′)2

4a2t

]
(9.82)

We refer the reader to Chapter 6 where the properties of Green’s functions were
described; as was mentioned there, they also hold for the three-dimensional case. Using
the three-dimensional Green’s function it should be clear how to generalize the material
presented in this section to, for example, the nonhomogeneous heat conduction equation
given by

∂u

∂t
= a2∇2u+ f(~r, t).
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9.4 Heat Conduction in a Semi-Infinite Medium

We discuss several cases.

Case I. Let us consider a three-dimensional medium located at x > 0 and begin with the
case where constant temperature is maintained on the boundary plane located at x = 0.
We will take this constant temperature as zero, i.e. the boundary and initial conditions are

u(x, y, z, t = 0) = ϕ(x, y, z), u|x=0 = 0. (9.83)

To apply the methods previously developed for an infinite medium we first imagine that
the medium is extended to the left from x = 0 and an initial temperature distribution
is defined for x < 0 by the same function, ϕ, taken with a minus sign. Thus the initial
distribution for infinite space is an odd function of x :

ϕ(−x, y, z) = −ϕ(x, y, z). (9.84)

From Equation (9.83) it follows that ϕ(0, y, z) = 0. From symmetry it is clear that this
boundary condition will be valid for t > 0.

Now we can solve the Equation (9.70) for an infinite medium with an initial temperature
distribution that satisfies Equation (9.84). This solution is given by the general Equation
(9.78), in which we divide the range of integration over x into two parts, from −∞ to 0 and
from 0 to +∞. Using Equation (9.84) we have

u(r, t) =
1

8(πa2t)3/2

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
0

ϕ(r′) exp

[
− (y − y′)2 + (z − z′)2

4a2t

]

×
{

exp

[
− (x− x′)2

4a2t

]
− exp

[
− (x+ x′)2

4a2t

]}
dx′dy′dz′. (9.85)

If the initial temperature distribution is a function of only x, Equation (9.85) gives

u(x, t) =
1

2
√
πa2t

∫ ∞
0

ϕ(x′)

{
exp

[
− (x− x′)2

4a2t

]
− exp

[
− (x+ x′)2

4a2t

]}
dx′. (9.86)

Example 9.9 The temperature is maintained equal to zero on the (boundary) plane at
x = 0. The initial temperature is constant everywhere for x > 0, i.e. ϕ(x) = u0.

Solution. Performing the substitutions ξ = x′∓x
2a
√
t

in the two integrals in Equation (9.86),

with a minus sign in the first and a plus sign in the second, we obtain

u(x, t) =
u0

2

[
erf

(
x

2a
√
t

)
− erf

(
− x

2a
√
t

)]
,

where erf(x) = 2√
π

∫ x
0
e−ξ

2

dξ is the error function (erf(∞) = 1). Since erf(−x) = −erf(x),

we obtain

u(x, t) = u0 erf

(
x

2a
√
t

)
. (9.87)

This result could be written immediately since it follows from the properties of the error
function. It is easy to check that differentiating Equation (9.87) twice with respect to x and
once with respect to t we obtain the equation ut = a2uxx, thus Equation (9.87) satisfies
both the initial and boundary conditions.
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Reading Exercise. The reader is encouraged to check the preceding statement.

Thus we see that the function u(x, t) = A erf( x
2a
√
t
), where A is an arbitrary constant, is a

solution of equation ut = a2uxx.

Reading Exercises.

a) Generalize the previous result to the three-dimensional case.

b) Prove that if a semi-infinite bar is initially at zero temperature and the end at
x = 0 is kept at temperature u0, the temperature at time t is

u(x, t) = u0

[
1− erf

(
x

2a
√
t

)]
.

According to Equation (9.87) the temperature propagates into space at a rate proportional
to
√
t. The result (9.87) depends on the single dimensionless parameter x/2a

√
t.

Case II. Let us consider the case of a thermally insulated boundary plane at x = 0. That
is, a boundary with no heat flux through it. The boundary and initial conditions are

u(x, y, z, t = 0) = ϕ(x),
∂u

∂x

∣∣∣∣
x=0

= 0. (9.88)

As in the previous example, imagine the medium to extend on both sides of the plane
at x = 0, but in this case extend the initial temperature distribution, ϕ(x, y, z), as an even
function of x :

ϕ(−x, y, z) = ϕ(x, y, z), (9.89)

for which

∂ϕ

∂x
(x, y, z) = −∂ϕ

∂x
(−x, y, z) and

∂ϕ

∂x
(0, y, z) = 0 for x = 0.

From symmetry it is clear that this condition will be satisfied for all t > 0. Repeating
the calculations above but using Equation (9.89) instead of Equation (9.84), we obtain the
general solution which differs from Equations (9.85) and (9.86) by replacing the subtraction
of two terms by the summation of two terms:

u(r, t) =
1

8(πa2t)3/2

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
0

ϕ(r′) exp

[
− (y − y′)2 + (z − z′)2

4a2t

]

×
{

exp

[
− (x− x′)2

4a2t

]
+ exp

[
− (x+ x′)2

4a2t

]}
dx′dy′dz′, (9.90)

u(x, t) =
1

2
√
πa2t

∫ ∞
0

ϕ(x′)

{
exp

[
− (x− x′)2

4a2t

]
+ exp

[
− (x+ x′)2

4a2t

]}
dx′, (9.91)

Case III. Assume that a heat flux enters the medium through its boundary plane at x = 0
for a medium located at x > 0; i.e. the boundary condition is

−κ∂u
∂x

∣∣∣∣
x=0

= q(t), (9.92)
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with q(t) as a given flux function. Because q does not depend on coordinates y and z the
problem reduces to the one-dimensional case. The initial condition is

u(x, y, z, t = 0) = 0. (9.93)

To begin we first solve an auxiliary problem with q(t) = δ(t). This problem is equivalent
to the problem that led to Equation (9.81), i.e. to the problem of heat propagation in
an infinite medium from a point source which produces a given amount of heat. Indeed
Equation (9.92) means that a unit of energy enters through each unit area of the plane at
x = 0 at the instant t = 0. In this problem where the initial condition is u = 2

ρcδ(x) for

t = 0, an amount of heat
∫
ρcudx = 2 is concentrated in the same area at time t = 0. From

symmetry we may argue that half of this energy flows in the x > 0 direction, the other half
in the x < 0 direction. Since the solutions of both problems are identical, from Equation
(9.81) we obtain

u(x, t) =
1

κ

a√
πt

exp

[
− x2

4a2t

]
. (9.94)

The heat conduction equation is linear so that for arbitrary q(t) instead of δ(t) the general
solution of Equation (9.70) with the conditions in Equations (9.92) and (9.93) is

u(x, t) =
1

κ

∫ t

−∞

a√
π(t− t′)

q(t′) exp

[
− x2

4a2(t− t′)

]
dt′. (9.95)

Reading Exercise. Check in detail the derivation of Equations (9.94) and (9.95).

In particular the temperature on the plane at x = 0 varies according to

u(0, t) =
1

κ

∫ t

−∞

a√
π(t− t′)

q(t′)dt′. (9.96)

Using Equation (9.95) we can solve the problem in which the temperature on the plane
x = 0 is the given function of time,

u|x=0 = g(t), (9.97)

and the initial temperature is constant (which can be taken as zero):

u(−x, y, z, t = 0) = 0. (9.98)

Notice that if u(x, t) satisfies Equation (9.70) then so does its derivative, ∂u∂x . Differentiating
Equation (9.95) with respect to x, we obtain

−κ∂u
∂x

=

∫ t

−∞

xq(t′)

2a
√
π(t− t′)3

exp

[
− x2

4a2(t− t′)

]
dt′.

According to Equation (9.92) q(t) has the same value at x = 0. Writing u(x, t) instead of
−κ∂u∂x and using g(t) instead of q(t), we obtain the solution of the problem as

u(x, t) =
x

2a
√
π

∫ t

−∞

g(t′)√
(t− t′)3

exp

[
− x2

4a2(t− t′)

]
dt′. (9.99)

Reading Exercise. A radioactive gas is diffusing into the atmosphere from contaminated soil
(the boundary of which we can locate at x = 0).
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a) Provide the arguments to show that the density of the gas in the air, ρ(x, t), is
described by the boundary value problem

∂ρ

∂t
= D

∂2ρ

∂x2
− λρ, ∂ρ

∂x

∣∣∣∣
x=0

= −κ, ρ(x, 0) = 0, (D,λ, κ = const).

b) Show that the solution to this problem is

ρ(x, t) = κ

√
D

π

∫ t

0

1√
t′

exp

[
−λt′ − x2

4Dt′

]
dt′.

Case IV. Let us consider an important particular case when the temperature varies peri-
odically in time on the boundary plane at x = 0:

u(x = 0, y, z, t) = u0 cosωt. (9.100)

This problem is equivalent to the classical problem (G. Stokes) about waves within an
incompressible fluid generated by an infinite, rigid, flat surface harmonically oscillating in
its own plane (y-z ). If we investigate the process at a time which is sufficiently long from
the initial moment, the influence of the initial condition is practically negligible. Thus this
is a problem without an initial condition and we seek a stationary solution. Formally we
can choose the zero initial condition

u(x, y, z, t = 0) = ϕ(x, y, z) = 0.

Assume the fluid surface is at x > 0 and the plane oscillates along the y-axis, i.e. velocities
in the fluid have only a y-component. The fluid velocity satisfies the Navier–Stokes equation
which, for this geometry, reduces to a one-dimensional heat conduction equation

ut = a2uxx,

where u(x, t) is the y-component of fluid velocity and a2 = ν is the dynamic viscosity of
the fluid.

It is convenient to write the boundary condition as the real part of the complex expression
u = Re

{
u0e
−iωt}. In the following while performing intermediate (linear) operations, we

omit the symbol Re and take the real part of the final result. Thus we write the boundary
condition as

u(0, t) = u0e
−iωt. (9.101)

It is natural to seek a solution periodic in x and t given by

u(x, t) = u0e
i(kx−ωt), (9.102)

which satisfies condition (9.101). Substitution of Equation (9.102) into the equation ut =
a2uxx gives

iω = a2k2, k = (1 + i)/δ, δ =
√

2a2/ω. (9.103)

Thus
u(x, t) = u0e

−x/δ exp [i(x/δ − ωt)] . (9.104)

(the choice of the sign before the root
√
i = +(1 + i)/2 in the last of Equations (9.104) is

determined by the physical requirement that the velocity should be bounded as x increases).
From this discussion we see that transverse waves can exist in fluids with non-zero

viscosity where the velocity of the fluid is perpendicular to the wave propagation direction.
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The oscillations damp quickly as the distance from the surface increases. The constant δ
is called the penetration depth. At a distance δ from the surface the wave’s amplitude
decreases e times, in other words it decreases e2π ≈ 540 times during one wavelength.
The penetration depth, δ, decreases with increasing frequency and increases with increasing
viscosity. In a more general case, when a plane wave is moving according to some function
u(x = 0, t) = u0(t) instead of the simple harmonic motion of Equation (9.101), the solution
is given by the formula (9.99).

Similarly the temperature propagation inside a body when the temperature changes
periodically according to Equation (9.100) on the boundary at x = 0, is described by
the same Equation (9.104). Periodically changing surface temperature propagates from the
boundary into a body in the form of a temperature wave with the amplitude decreasing
exponentially with the depth (Fourier’s first law).

An analogous phenomenon exists when alternating current flows in a metal conductor.
Alternating current does not flow through a conductor with a uniform cross-sectional profile
but concentrates close to the conductor surface (the so-called skin-effect). Inside a conductor
the displacement current is insignificant in comparison to conduction current and the charge
density is zero in which case the equations for the electrical and magnetic fields inside a
homogeneous conductor become

∂ ~E

∂t
= a2∇2 ~E,

∂
⇀

H

∂t
= a2∇2 ~H, (9.105)

where a2 = c2/(4πµλ). Here c is the speed of light, µ is the magnetic susceptibility, λ is the
electric conductivity and ρ = 1/λ is the resistivity of the medium.

Let us consider the same geometry as in the previous problem, i.e. a conductor is placed
at x > 0 where the x -axis is directed inside the conductor and an external electric field
is directed along the y-axis, which is parallel to the conductor’s surface. It is clear from
symmetry that for a big surface (formally an infinite plane) the field depends on x (and on
time), but does not depend on y and z. If the electric field changes along the plane according
to Equation (9.100) or (9.101) then inside the conductor it is given by expression (9.104).
Taking its real part we obtain the equation for the electric field inside the conductor as

E(x, t) = E0e
−x/δ cos [i(x/δ − ωt)] , (9.106)

where E0 is the amplitude of the electric field on the surface of the conductor. The field
(and current density j = λE) are concentrated close to the surface in a layer of thickness δ.
For example a cooper conductor (µ ≈ 1) with an applied field, E with a wavelength of 3000
m (radio frequency) has a penetration depth of δ ≈ 0.2mm. In the case of a direct current,
ω = 0 and thus δ → ∞; i.e. a direct current is evenly distributed across the cross-section
of a conductor. A magnetic field is described by an equation identical to the one for the
electric field. From these arguments we see that high-frequency electromagnetic fields do
not penetrate deeply into a conductor but concentrate near its surface.

Problems

In problems 1 through 19 we consider a heat conduction within a rectangular plate (0 ≤
x ≤ lx, 0 ≤ y ≤ ly), in problems 20 through 40 within a circular plate of radius l. Solve
these problems analytically which means the following: formulate the equation and initial
and boundary conditions, obtain the eigenvalues and eigenfunctions, write the formulas for
coefficients of the series expansion and the expression for the solution of the problem.
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You can obtain the pictures of several eigenfunctions and screenshots of the solution and
of the auxiliary functions with Maple, Mathematica or software from books [7,8].

In problems 1 through 5 we consider rectangular plates which are thermally insulated
over their lateral surfaces. In the initial time, t = 0, the temperature distribution is given
by u(x, y, 0) = ϕ(x, y). There are no heat sources or absorbers inside the membrane. Find
the distribution of temperature within the membrane at any later time.

1. The boundary of the plate is kept at constant zero temperature. The initial tem-
perature of the plate membrane is given as

ϕ(x, y) = A sin
πx

lx
sin

πy

ly
.

2. The edge at x = 0 of plate is thermally insulated and other edges are kept at zero
temperature. The initial temperature of the plate is given as

ϕ(x, y) = A cos
πx

2lx
sin

πy

ly
.

3. The edge at y = 0 of the plate is thermally insulated and other edges are kept at
zero temperature. The initial temperature of the plate is given as

ϕ(x, y) = A sin
πx

lx
cos

πy

2ly
.

4. The edges x = 0 and y = 0 of the plate are kept at zero temperature, and the
edges x = lx and y = ly are thermally insulated. The initial temperature of the
plate is given as

ϕ(x, y) = Axy (lx − x) (ly − y) .

5. The edges x = 0, x = lx and y = ly of plate are kept at zero temperature, and the
edge y = 0 is subjected to convective heat transfer with the environment which
has a temperature of zero. The initial temperature of the plate is given as

ϕ(x, y) = Axy (lx − x) (ly − y) .

In problems 6 through 10 we consider a rectangular plate which is thermally
insulated over its lateral surfaces. The initial temperature distribution within the
plate is zero, and one internal source of heat acts at the point (x0, y0) of the plate.
The value of this source is Q(t). Find the temperature within the plate.

6. The edges x = 0, y = 0 and y = ly of the plate are kept at zero temperature and
the edge x = lx is subjected to convective heat transfer with the environment
which has a temperature of zero. The value of the internal source is

Q(t) = A cosωt.

7. The edges x = 0 and y = 0 of the plate are kept at zero temperature, the edge
y = ly is thermally insulated and the edge x = lx is subjected to convective heat
transfer with the environment which has a temperature of zero. The value of the
internal source is

Q(t) = A sinωt.
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8. The edges y = 0 and y = ly are thermally insulated, the edge x = 0 is kept at
zero temperature and the edge x = lx is subjected to convective heat transfer
with the environment which has a temperature of zero. The value of the internal
source is

Q(t) = Ae−t sinωt.

9. The edges x = 0 and y = ly are thermally insulated, the edge x = lx is kept
at zero temperature and the edge y = 0 is subjected to convective heat transfer
with the environment which has a temperature of zero. The value of the internal
source is

Q(t) = Ae−t cosωt.

10. Find the heat distribution in a thin rectangular plate if it is subjected to heat
transfer according to Newton’s law at its edges. The temperature of the medium
is umd = const, the initial temperature of the plate is zero, and there is a constant
source of heat, Q, uniformly distributed over the plate.

Hint: The problem is formulated as follows:

∂u

∂t
= a2

[
∂2u

∂x2
+
∂2u

∂y2

]
+Q, 0 < x < lx, 0 < y < ly, t > 0,

u(x, y, 0) = 0,

∂u

∂x
− h(u− umd)

∣∣∣∣
x=0

= 0,
∂u

∂x
+ h(u− umd)

∣∣∣∣
x=lx

= 0,

∂u

∂y
− h(u− umd)

∣∣∣∣
y=0

= 0,
∂u

∂y
+ h(u− umd)

∣∣∣∣
y=ly

= 0.

For problems 11 through 13 consider a rectangular plate which is thermally
insulated over its lateral surfaces. The edges of the plate are kept at the tempera-
tures described by the function of u(x, y, t)|Γ given below. The initial temperature
distribution within the plate is u(x, y, 0) = u0 = const. Find heat distribution in
the plate if there are no heat sources or absorbers inside the plate.

11. u|x=0 = u|y=0 = u1, u|x=lx
= u|y=ly

= u2,

12. u|x=0 = u|x=lx
= u1, u|y=0 = u|y=ly

= u2.

13. u|x=0 = u|x=lx
= u|y=0 = u1, u|y=ly

= u2.

For problems 14 through 16 a thin homogeneous plate with sides of length π lies
in the x-y plane. The edges of the plate are kept at the temperatures described
by the function of u(x, y, t)|Γ, given below. Find the temperature in the plate if
initially the temperature has a constant value A and there are no heat sources or
absorbers inside the plate.

14. u|x=0 = u|x=π = 0, u|y=0 = u|y=π = x2 − x.

15. u|x=0 = u|x=π = 0, u|y=0 = x2, u|y=π = 0.5x.

16. u|x=0 = 0, u|x=π = cos y, u|y=0 = u|y=π = 0.

In problems 17 through 19 an infinitely long rectangular cylinder has its central
axis along the z -axis and its cross-section is a rectangle with sides of length π.
The sides of the cylinder are kept at the temperature described by functions
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u(x, y, t)|Γ, given below. Find the temperature within the cylinder if initially the
temperature is u(x, y, 0) = Axy and there are no heat sources or absorbers inside
the cylinder.

17. u|x=0 = 3y2, u|x=π = 0, u|y=0 = u|y=π = 0.

18. u|x=0 = u|x=π = y2, u|y=π = 0, u|y=0 = x.

19. u|x=0 = u|x=π = cos 2y, u|y=0 = u|y=π = 0.

In problems 20 through 22 we consider circular plates of radius l which are ther-
mally insulated over their lateral surfaces. In the initial time, t = 0, the temper-
ature distribution is given by u(r, ϕ, 0) = φ(r, ϕ). There are no heat sources or
absorbers inside the membrane. Find the distribution of temperature within the
plate at any later time.

20. The boundary of the plate is kept at constant zero temperature. The initial tem-
perature of the plate is given as

φ(r, ϕ) = Ar
(
l2 − r2

)
sinϕ.

21. The boundary of the plate is thermally insulated. The initial temperature of the
plate is given as

φ(r, ϕ) = u0r cos 2ϕ.

22. The boundary of the membrane is subjected to convective heat transfer with the
environment which has a temperature of zero. The initial temperature of the plate
is given as

φ(r, ϕ) = u0

(
1− r2

/
l2
)
.

In problems 23 through 25 we consider a very long (infinite) cylinder of radius l.
The initial temperature distribution within the cylinder is given by u(r, ϕ, 0) =
φ(r, ϕ). There are no heat sources or absorbers inside the cylinder. Find the
distribution of temperature within the cylinder at any later time.

23. The surface of the cylinder is kept at constant temperature u = u0. The initial
temperature distribution within the cylinder is given by

φ(r, ϕ) = Ar
(
l2 − r2

)
sinϕ.

24. The constant heat flow ∂u/∂r(l, ϕ, t) = Q is supplied to the surface of the cylinder
from outside. The initial temperature distribution within the cylinder is given by

φ(r, ϕ) = Ar
(
l − r

2

)
sin 3ϕ.

25. The surface of the cylinder is subjected to convective heat transfer with the envi-
ronment which has a temperature u = umd. The initial temperature distribution
within the cylinder is given by

φ(r, ϕ) = u0 sin 4ϕ.

In problems 26 through 28 we consider a circular plate of radius l which is
thermally insulated over its lateral surfaces. The initial temperature distribution
within the plate is zero, and one internal source of heat acts at the point (r0, ϕ0)
of the plate. The value of this source is Q(t). Find the temperature within the
plate.
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26. The edge of the plate is kept at zero temperature. The value of the internal source
is

Q(t) = A cosωt.

27. The edge of the plate is thermally insulated. The value of the internal source is

Q(t) = A sinωt.

28. The edge of the plate is subjected to convective heat transfer with the environment
which has a temperature of zero. The value of the internal source is

Q(t) = A(sinωt+ cosωt).

In problems 29 through 32 we consider a circular plate of radius l which is
thermally insulated over its lateral surfaces. The initial temperature distribution
within the plate is zero. Heat is generated uniformly throughout the plate; the
intensity of internal sources (per unit area of the plate) is Q(t). Find the temper-
ature distribution within the plate.

29. The edge of the plate is kept at zero temperature. The intensity of the internal
sources is

Q(t) = A cosωt.

30. The edge of the plate is kept at zero temperature. The intensity of the internal
sources is

Q(t) = A(l − r) sinωt.

31. The edge of the membrane is thermally insulated. The intensity of the internal
sources is

Q(t) = A sinωt.

32. The edge of the plate is thermally insulated. The intensity of the internal sources
is

Q(t) = A
(
l2 − r2

)
sinωt.

In problems 33 through 35 we consider a very long (infinite) cylinder of radius
l. The initial temperature of the cylinder is u0 = const. Find the temperature
distribution within the cylinder.

33. The surface of the cylinder is kept at the temperature described by the function
u(l, ϕ, t) = A sinωt.

34. The heat flow at the surface is governed by ∂
∂ru(l, ϕ, t) = A cosωt.

35. The temperature exchange with the environment with zero temperature is gov-
erned according to Newton’s law ∂u

∂r + u
∣∣
r=l

= A (1− cosωt).

Problems 36 through 39 are related to Section 9.4.

36. The temperature distribution in the earth takes place with a phase displacement.
The time ∆t between the occurrence of the temperature maximum (minimum)

at depth x is described by formula
(√

1/2a2ω
)
x (Fourier’s second law). Derive

this formula.

37. For two temperature distributions with periods T1 and T2, the corresponding
depths x1 and x2 in which the relative temperature changes coincide are connected
by the equation x2 = (

√
T2/T1)x1 (Fourier’s third law). Obtain this formula.

Apply it for the daily and yearly variations to compare the depths of penetration.
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38. The estimation for thermal diffusivity of the Earth is a2 ≈ 0.4 · 10−6m2/s. How
much time does it take for (the maximum) temperature to reach a 4 m depth?

39. An infinitely long rectangular cylinder, 0 ≤ x ≤ lx, 0 ≤ y ≤ ly, with the central
axis along the z -axis is placed in a coil. At t = 0 a current in the coil turns on
and the coil starts to generate an oscillation magnetic field outside the cylinder
directed along the z-axis:

u(x, y, t) = H0 sinωt, H0 = const, 0 < t <∞.

Find the magnetic field inside the cylinder.

Hint: The problem is formulated as follows:

∂u

∂t
= a2

[
∂2u

∂x2
+
∂2u

∂y2

]
, 0 < x < lx, 0 < y < ly, t > 0,

u(x, y, 0) = 0, u|x=0 = u|x=lx
= u|y=0 = u|y=ly

= H0 sinωt.

Answer:

u(x, y, t) = H0 sin(ωt) +

∞∑
n=1

∞∑
m=1

Tnm(t) sin
nπx

lx
sin

mπy

ly
,

where

Tnm(t) = −4H0ω [1− (−1)n] [1− (−1)m]

nmπ2
[
ω2 + (a2λnm)

2
]

×
{
a2λnm cos(ωt) + ω sin(ωt)− a2λnme

−λnma2t
}
.

λnm = λxn + λym = π2

[
n2

l2x
+
m2

l2y

]
, n,m = 1, 2, 3, . . .
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10

Nonlinear Equations

In previous chapters, except Chapter 2, we dealt with linear PDEs. The present section is
devoted to some famous nonlinear PDEs that have numerous applications in physics. All
these equations are integrable in the sense that finding their solution can be reduced to
solving some linear problems.

10.1 Burgers Equation

In Chapter 2 we considered the non-viscous Burgers equation,

ut + uux = 0 (10.1)

(another notation of a variable was used), which describes the propagation of a nonlinear
sound wave in the non-viscous gas. We have seen that the nonlinearity can lead to an
unbounded growth of the wave steepness |ux| during a finite time interval. In Chapter 6 we
considered the heat equation,

ut = µuxx (10.2)

(another notation for the coefficient was used), which describes different dissipative processes
(heat transfer, diffusion, viscosity etc.). The linear term with the second derivative tends to
diminish any spatial inhomogeneities.

When a nonlinear sound wave propagates in a viscous and heat-conducting gas, both
terms are present in the governing equation,

ut + uux = µuxx. (10.3)

The exact expression for the positive coefficient µ, which is determined by the gas shear
and volume viscosities and heat conductivity, can be found in books on fluid dynamics (see,
e.g., [4]). Equation (10.3) is called Burgers equation.

10.1.1 Kink Solution

Let us consider Equation (10.3) in an infinite region, −∞ < x <∞, and assume that

u(∞, t) = u1, u(−∞, t) = u2, u2 > u1. (10.4)

One can assume that under the action of both factors, the nonlinearity which makes the
wave steeper and the linear term that makes it flatter, the wave will tend to a certain
balanced stationary shape. Let us find the particular solution in the form of traveling wave

u(x, t) = U(X), X = x− ct. (10.5)

261
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Substituting (10.5) into (10.3), we obtain the ODE

µU ′′ + cU ′ − UU ′ = 0, −∞ < X <∞, (10.6)

which has to be solved with boundary conditions

U(∞) = u1, U(−∞) = u2. (10.7)

Integrating (10.6), we find:

µU ′ + cU − U2

2
= C, (10.8)

where C is a constant which is obtained from the boundary conditions,

C = cu1 −
u2

1

2
= cu2 −

u2
2

2
. (10.9)

Relations (10.9) give

c =
u1 + u2

2
, C =

u1u2

2
. (10.10)

Substituting (10.10) into (10.8), we find that

dU

dX
=

1

2µ
(U − u1)(U − u2). (10.11)

Solving (10.11), (10.7), we obtain

U =
u1 + u2 exp[−(u2 − u1)(X − x0)/2µ]

1 + exp[−(u2 − u1)(X − x0)/2µ]
,

where x0 is an arbitrary constant, hence

u(x, t) =
u1 + u2 exp[−(u2 − u1)(X − x0)/2µ+ (u2

2 − u2
1)t/4µ]

1 + exp[−(u2 − u1)(X − x0)/2µ+ (u2
2 − u2

1)t/4µ]
. (10.12)

In the literature, one calls this solution “shock”, “step” or “kink”.
Solution (10.12) can be also written as

u(x, t) =
u1 + u2

2
− u2 − u1

2
tanh

[
u2 − u1

4µ

(
x− x0 −

u1 + u2

2
t

)]
. (10.13)

Note that the bigger the mean value (u1 + u2)/2, the faster the wave; the bigger the
amplitude (u2 − u1)/2, the steeper the wave.

10.1.2 Symmetries of the Burger’s Equation

The features of the family of solutions obtained above can be easily explained using the
symmetry properties of Equation (10.3).

Galilean Symmetry

Let us perform the following change of variables:

v = u− C, X = x− Ct, T = t,
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where C is a real number (“Galilean transformation”). We find:

u = v + C, ut = vT − CvX , ux = vX , uXX = vXX . (10.14)

Substituting (10.14) into (10.3), we obtain

vT + vvX = µvXX , (10.15)

which coincides with (10.3) up to the renaming of variables. Thus, if Equation (10.13) has
a certain solution u(x, t) = f(x, t), then (10.15) has a solution v(X,T ) = f(X,T ). That
means that

u(x, t) = f(x− Ct, t) + C (10.16)

is a solution of (10.3) for any C. Thus, any solution u(x, t) = f(x, t) is a member of a set
of solutions (10.16); addition of a constant to the solution leads to a corresponding change
of the velocity. Obviously, family (10.13) possesses that property.

Scaling Symmetry

Let us perform now a scaling transformation:

X = αx, T = βt, u(x, t) = γv(X,T ), (10.17)

hence
∂

∂x
= α

∂

∂X
,

∂

∂t
= β

∂

∂T
. (10.18)

Substituting (10.17) into (10.3), we find:

γβvT + γ2αvvX = γα2µvXX .

Hence, we obtain an equation equivalent to (10.3), if we take

β = α2, γ = α.

With that choice of coefficients, if there exists a solution u(x, t) = f(x, t), then there exists
also solution v(X,T ) = f(X,T ), i.e.,

u(x, t) = αf(αX,α2T ). (10.19)

Family (10.12) has that property: if u1 and u2 are taken α times larger, the wave becomes
α times steeper, and the temporal rate becomes α2 times larger.

Translational Symmetries

Also, the Burgers equation is invariant to the transformation of coordinates

X = x+ C1, T = t+ C2,

where C1 and C2 are arbitrary real numbers, hence solution u(x, t) = f(x, t) generates a
set of solutions u(x, t) = f(x+ C1, t+ C2).

Reflection Symmetry

Equation (10.3) is symmetric to the simultaneous transformation X = −x, v = −u. Thus,
if the sign of u is changed, the wave moves in the opposite direction.
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10.2 General Solution of the Cauchy Problem

Let us consider now the general initial value problem,

ut + uux = µuxx, −∞ < x <∞, t > 0; (10.20)

u(x, 0) = u0(x), −∞ < x <∞. (10.21)

Below we will transform this problem to a linear one and find its solution explicitly.
First, let us introduce function ψ such that u = ψx. That means that

ψ =

∫ x

x0

u(x1)dx1 + f(t),

where x0 is an arbitrary number and f(t) is an arbitrary function. The equation for ψ,

ψxt + ψxψxx − µψxxx = 0,

can be integrated:

ψt +
1

2
ψ2
x − µψxx = C(t). (10.22)

Because ψ is determined up to an arbitrary function of t, we can choose C(t) = 0.
Let us apply now the transformation

ψ = −2µ lnϕ, ϕ > 0, (10.23)

called the Hopf-Cole transformation. Substituting (10.23) into (10.22) (with C(t) = 0) and
taking into account that ϕ 6= 0, µ 6= 0, we obtain the heat equation

ϕt = µϕxx, −∞ < x <∞, t > 0. (10.24)

Equation (10.24) has to be solved with the initial condition

ϕ(x, 0) = ϕ0(x), −∞ < x <∞, (10.25)

where

ϕ0(x) = exp

[
− 1

2µ

∫ x

x0

u0(x1)dx1

]
. (10.26)

As we have seen in Section 6.8, the solution of the initial value problem (10.24), (10.25) is

ϕ(x, t) =
1√

4πµt

∫ ∞
−∞

dx1ϕ0(x1) exp

[
− (x− x1)2

4µt

]
. (10.27)

Substituting expression (10.26) into (10.27), we find that

ϕ(x, t) =
1√

4πµt

∫ ∞
−∞

dx1 exp

[
− 1

2µ
G(x, x1, t)

]
, (10.28)

where

G(x, x1, t) =

∫ x1

x0

u0(x2)dx2 +
(x− x1)2

2t
. (10.29)

The original function is

u(x, t) = ψx = −2µ
ϕx(x, t)

ϕ(x, t)
. (10.30)



Nonlinear Equations 265

Taking into account that
∂G

∂x
=
x− x1

t
,

we obtain the following exact solution of the initial value problem (10.20), (10.21):

u(x, t) =

∫∞
−∞ dx1

x−x1

t exp
[
−G(x,x1,t)

2µ

]
∫∞
−∞ dx1 exp

[
−G(x,x1,t)

2µ

] , (10.31)

10.2.1 Interaction of Kinks

Let us return to the “kink solution” (10.12) and find what solution of the linear equation
(10.24) corresponds to it. Multiplying the numerator and the denominator of (10.12) by

exp

[
−u1(x− x0)

2µ
+
u2

1t

4µ

]
,

we find that

u(x, t) =
u1 exp[−u1(x− x0)/2µ+ u2

1t/4µ] + u2 exp[−u2(x− x0)/2µ+ u2
2t/4µ]

exp[−u1(x− x0)/2µ+ u2
1t/4µ] + exp[−u2(x− x0)/2µ+ u2

2t/4µ]
.

This expression can be obtained according to Equation (10.30) from the following expression
for ϕ,

ϕ = C

{
exp

[
−u1(x− x0)

2µ
+
u2

1t

4µ

]
+ exp

[
−u2(x− x0)

2µ
+
u2

2t

4µ

]}
,

where C is an arbitrary constant. We can see that

ϕ = ϕ1 + ϕ2,

where

ϕj = exp

(
−ujx

2µ
+
u2

1t

4µ
− bj

)
, bj = − lnC − ujx0, j = 1, 2. (10.32)

Note that each ϕj is indeed a solution of the heat equation, (10.24), but expressions
(10.32), which are unbounded at infinity, are quite different from those that we obtained in
the context of the heat transfer in Chapter 6.

Because Equation (10.24) is linear, any superposition

ϕ =

N∑
j=1

exp

(
−ujx

2µ
+
u2
j t

4µ
− bj

)
, (10.33)

where ui 6= uj if i 6= j, generates an exact solution (10.30) of the Burgers equation. One
can show that solution (10.33) describes the interaction of N − 1 kinks.

Let us consider the case n = 3 in more detail. Assume u1 < u2 < u3. By means of
transformations ϕ → Cϕ, x → x + a, t → t + b, we can assign arbitrary values to bj ,
j = 1, 2, 3. Let us take b1 = b2 = 0, b3 = (u3 − u2)/2µ. Then

ϕ(x, 0) = ϕ1(x, 0) + ϕ2(x, 0) + ϕ3(x, 0), (10.34)

where

ϕ1(x, 0) = exp

(
−u1x

2µ

)
, ϕ2(x, 0) = exp

(
−u2x

2µ

)
, ϕ3(x, 0) = exp

(
−u3(x+ 1)− u2

2µ

)
.
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(a) (b)

FIGURE 10.1
The shape of u(x, t): (a) at t = 0; (b) at t > t∗.

For the sake of simplicity, assume that µ � 1. In that case, for any two real numbers
r1 and r2, if r1 < r2 and r2 − r1 = O(1), then exp(r1/µ) � exp(r2/µ). Then, as the rule,
only one of the terms in the right-hand side of (10.34) is significant, while two other terms
can be neglected, except the vicinity of the point x = −1, where ϕ2 = ϕ3, and the vicinity
of the point x = 0, where ϕ1 = ϕ2. Specifically, for x < −1, ϕ ≈ ϕ3, hence u ≈ u3; for
−1 < x < 0, ϕ ≈ ϕ2, hence u ≈ u2; for x > 0, ϕ ≈ ϕ1. Near the point x = 1, where
ϕ2 = ϕ3 � ϕ1, ϕ ≈ ϕ2 + ϕ3, which corresponds to a kink between values u3 and u2; near
the point x = 0, where ϕ1 = ϕ2 � ϕ3, ϕ ≈ ϕ1 + ϕ2, which corresponds to a kink between
values u2 and u1 (see Figure 10.1(a)).

For t > 0, we have

ϕ1 = exp

(
−u1x

2µ
+
u2

1t

4µ

)
, ϕ2 = exp

(
−u2x

2µ
+
u2

2t

4µ

)
, ϕ3 = exp

(
−u3(x+ 1)− u2

2µ
+
u2

3t

4µ

)
.

The coordinate of the right kink center x12(t) is determined by the equation ϕ1(x12) =
ϕ2(x12), which gives

x12 =
u1 + u2

2
t.

The coordinate of the left kink center x23(t) is determined by the equation ϕ2(x23) =
ϕ3(x23), which gives

x23 = −1 +
u2 + u3

2
t.

Because u3 > u1, the left kink moves faster than the right one, and both kinks collide at
t = t∗,

t∗ =
2

u3 − u1
.

For t > t∗, ϕ2 is smaller than ϕ1 and ϕ2 everywhere, therefore, ϕ ≈ ϕ1 + ϕ3, which
corresponds to a kink between u3 and u1 (see Figure 10.1(b)). Thus, the collision of two
kinks leads to their merging and formation of a kink with the center coordinate x13(t)
determined by the equation ϕ1(x13) = ϕ3(x13); one finds that

x13 =
u1 + u3

2
t− u3 − u2

u3 − u1

(see Figure 10.2). Note that the kink velocities satisfy inequalities

dx12

dt
<
dx13

dt
<
dx23

dt
.

Similar phenomena of kink merging take place for any N , i.e., for any initial number of
kinks.
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FIGURE 10.2
Trajectories of kink centers.

10.3 Korteweg-de Vries Equation

The non-viscous Burgers equation (10.1) describes long non-dispersive waves in different
physical contexts. Besides the sound waves, it governs the propagation of nonlinear gravity
waves in “shallow water”, i.e., in the case where the wavelength is large with respect to the
liquid layer depth. For gravity waves, the main physical factor that prevents the development
of a singularity is dispersion rather than dissipation (see Section 5.12). For long waves, the
dispersion is described by a term with the third spatial derivative; thus the wave propagation
is governed by the Korteweg-de Vries (KdV) equation,

ut + uux + κuxxx = 0.

We can change the coefficient κ in an arbitrary way using an appropriate scaling transfor-
mation of the kind u → Cu, x → ax, t → bt. Later on, we use the standard choice, κ = 6:

ut + uxxx + 6uux = 0, −∞ < x <∞, −∞ < t <∞. (10.35)

Physically meaningful solutions should be bounded.

10.3.1 Symmetry Properties of the KdV Equation

First, let us discuss the symmetry properties of the KdV equation which are rather similar
to those of the Burgers equation (see Subsection 10.1.2). The KdV equation is invariant
to coordinate translation. Due to the Galilean symmetry, any solution u(x, t) = f(x, t)
generates the family of solutions,

u(x, t;C) = f(x− 6Ct, t) + C, (10.36)

where C is an arbitrary number.
The major difference from the Burgers equation is in the scaling property. The scaling

transformation
X = αx, T = βt, u(x, t) = γv(X,T )

gives
γβvT + γα3vXXX + γ2αvvX = 0;

therefore, the original KdV equation is reproduced if

β = α3, γ = α2.
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The family of solutions generated by the scaling transformation of the solution u(x, t) =
f(x, t) is

u(x, t;α) = α2f(αx, α3t). (10.37)

10.3.2 Cnoidal Waves

Let us consider now traveling wave solutions

u(x, t) = U(X), X = x− ct, (10.38)

that satisfy the ODE

U ′′′ − cU ′ + 6UU ′ = 0, −∞ < X <∞. (10.39)

Obviously, any constant function is a solution of Equation (10.39). We are interested in
finding non-constant solutions.

Integrating (10.39), we obtain

U ′′ − cU + 3U2 = C, −∞ < X <∞, (10.40)

where C is an arbitrary constant. Let us multiply both sides of that equation by U ′:

U ′U ′′ − cUU ′ + 3U2U ′ − CU ′ = 0. (10.41)

The left-hand side of Equation (10.41) is a full derivative,

d

dX

[
(U ′)2

2
+ U3 − c

2
U2 − CU

]
= 0,

hence
(U ′)2

2
+ U3 − c

2
U2 − CU = D, (10.42)

where D is an arbitrary constant. Equation (10.42) can be written as

(U ′)2

2
+ V (U) = 0, (10.43)

where
V (U) = (U − U1)(U − U2)(U − U3)

is a cubic polynomial. The roots U1, U2 and U3 of the polynomial satisfy the relation

U1 + U2 + U3 =
c

2
. (10.44)

Note that a cubic polynomial with real coefficients can have either three real roots or only
one real root and two more complex-conjugate roots.

To understand the properties of the solutions of Equation (10.45), it is convenient to
use a “mechanical interpretation” of that equation. It is formally equivalent to the energy
conservation law for a fictitious particle with the mass equal to 1 (so that its kinetic energy
is (U ′)2/2) moving in a potential V (U). The energy of the particle is equal to 0. We are
interested in particle trajectories that do not tend to infinity. One can see that if the
polynomial V (U) has three real roots, U1 ≥ U2 ≥ U3, the particle can oscillate between
points U1 and U2 (see Figure 10.3(a)). That corresponds to a spatially periodic solution
U(X) with

maxXU(X) = U1, minXU(X) = U2.



Nonlinear Equations 269

(a) (b) (c)

FIGURE 10.3
Plots of the potential V (U) : (a) bounded oscillations between U1 and U2; (b) no bounded
solutions; (c) no bounded solutions.

If there is only one real root (see Figure 10.3(b), 10.3(c)), the particle with energy 0 always
escapes to infinity, which is not acceptable.

Below we assume that the polynomial V (U) has three different real roots, U1 > U2 > U3.
If U1 = U2, there are no bounded solutions except the constant ones. The case U2 = U3 is
considered in the next subsection.

Equation (10.43) can be integrated using elliptic functions. Taking into account that
U2 ≤ U(X) ≤ U1, we define a new variable ψ(X) by the relation

U(X) = U2 + (U1 − U2) cos2 ψ(X). (10.45)

Substituting (10.45) into (10.43), we find

2(ψ′)2 = (U1 − U3)− (U1 − U2) sin2 ψ(X),

hence
dX

dψ
=

√
2

U1 − U3

1√
1−m sin2 ψ

,

where parameter

m =
U1 − U2

U1 − U3
, 0 < m < 1. (10.46)

We find that

X =

√
2

U1 − U3
F (ψ|m) +X0,

where

F (ψ|m) =

∫ ψ

0

dθ√
1−m sin2 θ

is the incomplete elliptic integral of the first kind. The function inverse to the incomplete
elliptic integral,

ψ = am(ξ|m), ξ =

√
U1 − U3

2
(X −X0) , (10.47)

is called Jacobi amplitude. Substituting (10.47) into (10.45), we find

U(X) = U2 + (U1 − U2) cn2(ξ|m),
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FIGURE 10.4
Plot of the potential in the case of solution.

where cn(ξ|m) ≡ cos am(ξ|m) is the Jacobi elliptic cosine. Because

c = 2 (U1 + U2 + U3) ,

we obtain the following expression for a nonlinear spatially periodic (cnoidal) wave:

u(x, t) = U2 + (U1 − U2)

× cn2

[√
U1 − U3

2
[x−X0 − 2 (U1 + U2 + U3) t]

∣∣∣∣U1 − U2

U1 − U3

]
. (10.48)

While linear periodic waves have a sinusoidal shape, cnoidal waves (10.48) have sharper
crests and flatter troughs.

10.3.3 Solitons

Let us consider now the special case U3 = U2 ≡ U∞ which corresponds to a solitary wave
(soliton) with

lim
X→±∞

U(X) = U∞.

Because of the Galilean symmetry (10.36), it is sufficient to find a solution with U∞ = 0;
all other solutions of this kind can be obtained by transformation (10.36).
Because of relation (10.44), U1 = c/2 (see Figure 10.4). Then (10.43) gives:

(U ′)
2

2
= U2

( c
2
− U

)
,

hence
dX

du
= ± 1

U
√
c− 2U

.

Denoting
v = ±

√
c/2− U,

we find

dX/dv =

√
2

v2 − c/2
=

1√
c

(
1

v −
√
c/2
− 1

v +
√
c/2

)
,

hence

X −X0 =
1√
c

ln

√
c/2− v√
c/2 + v

,
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and

v =
√
c/2 tanh

[√
c

2
(X −X0)

]
.

Thus,

U =
c

2
− v2 =

c

2
cosh−2

[√
c

2
(X −X0)

]
.

Finally, we obtain the following family of solitary waves (solitons):

u(x, t; c) =
c

2
cosh−2

[√
c

2
(x− ct−X0)

]
.

Denote c = 4κ2, then

u(x, t;κ) = 2κ2 cosh−2
[
κ
(
x− 4κ2t−X0

)]
(10.49)

In accordance with (10.37), a higher soliton is narrower, and it moves with a higher velocity.

10.3.4 Bilinear Formulation of the KdV Equation

Below we describe an approach that will allow us to construct multisoliton solutions.
Let us start with the transformation somewhat similar to the Hopf-Cole transformation

described in Section 10.1. Define u = ψx, then

ψxt + ψxxxx + 6ψxψxx = 0

and
ψt + ψxxx + 3ψ2

x = f(t). (10.50)

Because ψ is defined up to an arbitrary function of t, we can choose f(t) = 0. Now define

ψ = 2(lnφ)x, ϕ > 0. (10.51)

Substituting (10.51) into (10.50) (with f(t) = 0), we obtain a bilinear form (i.e., all the
terms are quadratic in ϕ and its derivatives):

ϕ (ϕt + ϕxxx)x − ϕx (ϕt + ϕxxx) + 3
(
ϕ2
xx − ϕxϕxxx

)
= 0. (10.52)

The bilinear KdV equation can be written in a more compact form, if we introduce the
following bilinear operator acting on a pair of functions:

Dm
x D

n
t [f(x, t), g(x, t)] ≡

[(
∂

∂x
− ∂

∂x′

)m(
∂

∂t
− ∂

∂t′

)n
f(x, t)g(x′, t′)

]
x′=x,t′=t

(the derivatives are calculated for x, t, x′ and t′ as independent variables, then x and t
replace x′ and t′, correspondingly). With that notation,

DxDt(ϕ,ϕ) =

[(
∂2

∂x∂t
− ∂2

∂x∂t′
− ∂2

∂x′∂t
+

∂2

∂x′∂t′

)
ϕ(x, t)ϕ(x′, t′)

]
x′=x,t′=t

= 2 (ϕϕxt − ϕxϕt) ,

D4
x(ϕ,ϕ) =

(
∂

∂x
− ∂

∂x′

)4

ϕ(x, t)ϕ(x′, t′)

∣∣∣∣∣
x′=x,t′=t

= 2ϕϕxxxx − 8ϕxxxϕx + 6ϕ2
xx,

hence Equation (10.52) can be written as(
DxDt +D4

x

)
(ϕ,ϕ) = 0. (10.53)

Let us list some important properties of operator Dm
x D

n
t .
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1. Dm
x D

n
t (f, 1) =

(
∂

∂x
− ∂

∂x′

)m(
∂

∂t
− ∂

∂t′

)n
f(x, t) =

∂m

∂xm
∂n

∂tn
f(x, t).

2. A change of notations cannot change the expression, hence(
∂

∂x
− ∂

∂x′

)m(
∂

∂t
− ∂

∂t′

)n
f(x, t)g(x′, t′)

∣∣∣∣
x′=x,t′=t

=

(
∂

∂x′
− ∂

∂x

)m(
∂

∂t′
− ∂

∂t

)n
f(x′, t′)g(x, t)

∣∣∣∣
x′=x,t′=t

That relation gives

Dm
x D

n
t (f, g) = (−1)m+nDm

x D
n
t (g, f).

3. Therefore,
Dm
x D

n
t (f, f) = (−1)m+nDm

x D
n
t (f, f);

that means that
Dm
x D

n
t (f, f) = 0

if m+ n is odd.

4. Applying the operator Dm
x D

n
t to exponential functions, we find:

Dm
x D

n
t [exp (k1x− ω1t), exp (k2x− ω2t)]

= (k1 − k2)
m

(ω2 − ω1)
n

exp [(k1 + k2)x− (ω1 + ω2) t] .

If k1 = k2 or ω1 = ω2, this expression is equal to zero.

10.3.5 Hirota’s Method

Our goal is to find solutions of Equation (10.53) in a systematic way. To get a hint about how
to proceed with finding solutions, let us find ϕ corresponding to soliton solutions (10.49).
We can present (10.49) in the form

u = 2κ
∂

∂x

[
tanhκ

(
x− 4κ2t−X0

)]
and choose

ψ = 2κ
[
tanhκ

(
x− 4κ2t−X0

)
− 1
]

= 2
∂

∂x

[
ln coshκ

(
x− 4κ2t−X0

)
− κx

]
.

That gives

ϕ = C(t) cosh
[
κ
(
x− 4κ2t−X0

)]
e−κx

=
1

2
C(t)

[
exp

(
−4κ3t− κX0

)
+ exp

(
−2κx+ 4κ3t+ κX0

)]
,

where C(t) is an arbitrary function of t. Choosing

C(t) = 2 exp
(
4κ3t+ κX0

)
,

we find
ϕ = 1 + exp η, η = −2κ (x−X0) + 8κ3t. (10.54)
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Let us check directly that function (10.54) satisfies Equation (10.53):(
DxDt +D4

x

)
(1 + exp η, 1 + exp η) =

(
DxDt +D4

x

)
(1, 1)

+
(
DxDt +D4

x

)
(1, exp η) +

(
DxDt +D4

x

)
(exp η, 1)

+
(
DxDt +D4

x

)
(exp η, exp η). (10.55)

The first term and the fourth term in (10.55) vanish due to property 4 (k1 = k2 = 0 and
k1 = k2 = −2κ, correspondingly). The second term and the third term, which are equal
because of property 2, can be calculated according to property 1 as

∂

∂x

(
∂

∂t
+
∂3

∂3
t

)
exp η =

∂

∂x

[
8κ3 − (2κ)3

]
exp η = 0.

Note that
ϕ = 1 + ε exp η = 1 + exp

[
−2κ (x−X0) + 8κ3t+ ln ε

]
is also a solution of (10.53) for any ε.

Following Hirota, we search solutions of Equation (10.53) in the form

ϕ =

M∑
n=1

εnϕn, (10.56)

where ε is a formal expansion parameter. Let us substitute expansion (10.56) into (10.53),(
DtDx +D4

x

) (
ϕ0 + εϕ1 + ε2ϕ2 + . . .+ εm + . . . , ϕ0 + εϕ1 + ε2ϕ2 + . . .+ εm + . . .

)
= 0,

and collect the terms with the same power of ε.
At the zeroth order in ε, we obtain equation(

DtDx +D4
x

)
(ϕ0, ϕ0) = 0

and choose solution ϕ0 = 1.
At the first order in ε, we obtain a linear problem for ϕ1,(

DtDx +D4
x

)
(ϕ0, ϕ1) +

(
DtDx +D4

x

)
(ϕ1, ϕ0) = 0, (10.57)

and find its solution. At the second order in ε, we obtain and solve the linear problem for
ϕ2, (

DtDx +D4
x

)
(ϕ0, ϕ2) +

(
DtDx +D4

x

)
(ϕ2, ϕ0) = −

(
DtDx +D4

x

)
(ϕ1, ϕ1). (10.58)

Generally, at the mth order in ε, we obtain the linear problem for ϕm,(
DtDx +D4

x

)
(ϕ0, ϕm) +

(
DtDx +D4

x

)
(ϕm, ϕ0)

= −
(
DtDx +D4

x

)
(ϕ1, ϕm−1)− . . .−

(
DtDx +D4

x

)
(ϕm−1, ϕ1).

It is important that the sum (10.56) has to contain only a finite number M of nonzero
terms; in that case the described algorithm gives an exact solution of Equation (10.53).

The crucial point is the choice of the solution of the homogeneous linear Equation
(10.57). If we choose it as one exponential function,

ϕ1 = exp η, η = −2κ (x− x0) + 8κ3t,
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then Equation (10.58) becomes

2

(
∂2

∂x∂t
+

∂4

∂x4

)
ϕ2(x, t) = −

(
DtDx +D4

x

)
(exp η, exp η).

The right-hand side of that equation is equal to zero due to property 4; thus we can choose
ϕ2 = 0. At the third order, the right-hand side is

−2
(
DxDt +D4

x

)
(ϕ1, ϕ2) = 0

because ϕ2 = 0, hence ϕ3 = 0. Step by step, we find that ϕm = 0 for all higher values of
m. Taking ε = 1, we obtain the one-soliton solution (10.54).

10.3.6 Multisoliton Solutions

Because Equation (10.57) is linear, we can take its solution as an arbitrary sum of expo-
nential functions. Let us choose a sum of two exponential functions,

ϕ1 = exp η1 + exp η2,

where
ηn = −2κn

(
x− x0

n

)
+ 8κ3

nt, n = 1, 2; κ1 6= κ2.

It is convenient to define
xn(t) = x0

n + 4κ2
nt, (10.59)

then
ηn = −2κn [x− xn(t)] . (10.60)

The right-hand side of Equation (10.58) is non-zero:

−
(
DtDx +D4

x

)
(exp η1 + exp η2, exp η1 + exp η2) = −2

(
DtDx +D4

x

)
(exp η1, exp η2) .

Using property 4, we obtain:

2

(
∂2

∂x∂t
+

∂4

∂x4

)
ϕ2(x, t) = 96κ1κ2 (κ1 − κ2)

2
exp (η1 + η2) .

Substituting the ansatz
ϕ2 = K exp (η1 + η2) ,

we find that

K =

(
κ1 − κ2

κ1 + κ2

)2

,

hence
ϕ2 = exp(η1 + η2 +A12),

A12 = ln

[(
κ1 − κ2

κ1 + κ2

)2
]
< 0. (10.61)

At the third order, a direct calculation of the right-hand side

−2
(
DtDx +D4

x

)
[exp η1 + exp η2, exp (η1 + η2 +A12)]

shows that it is equal to zero. Indeed, according to property 4,(
DtDx +D4

x

)
[exp η1, exp (η1 + η2)] = exp (2η1 + η2)

[
2κ2

(
−8κ3

2

)
+ 16κ4

]
= 0.
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Similarly, (
DtDx +D4

x

)
[exp η2, exp (η1 + η2)] = 0.

Thus, we can choose ϕ3 = 0.
At the fourth order, the right-hand side of the equation

−
(
DtDx +D4

x

)
(ϕ2, ϕ2) = 0

due to property 4, hence we can choose φ4 = 0.
One can see that if ϕ3 = ϕ4 = 0, the right-hand side of the equation for ϕ5 is equal to

zero, hence ϕ5 = 0 etc. Finally, only ϕ1 and ϕ2 are different from zero. Taking ε = 1, we
obtain the exact solution,

ϕ(x, t) = 1 + exp η1 + exp η2 + exp (η1 + η2 +A12) , (10.62)

where η1, η2 and A12 are determined by Equations (10.61)-(10.63).
Formula (10.62) determines the solution of the original KdV equation (10.35),

u(x, t) = 2
∂2

∂x2
(lnϕ(x, t)) . (10.63)

To understand the physical meaning of solution (10.63), let us consider it in two limits,
for t < 0, |t| � 1 (“far ago”) and t > 0, t � 1 (“far future”). Below we assume that
κ1 > κ2 > 0.

For t < 0 and sufficiently large |t|, x1(t) < x2(t), x2(t) − x1(t) � 1. Let us consider
the behavior of the solution in different regions of x. First, consider x around x1(t). In that
region exp η1 = O(1), exp η2 � 1, therefore

ϕ ≈ exp η2 [1 + exp (η1 +A12)] .

Calculating u according to formula (10.63), we obtain

u(x, t) ≈ 2κ2
1 cosh−2 [κ1 (x− x1(t) + ∆1)] ,

where

∆1 = −A12

2κ1
> 0.

Thus, for |x − x1(t)| = O(1) the solution is close to a soliton solution with the center
coordinate x = x1 −∆1.

If x is near x2(t), then exp η1 � 1, exp η2 = O(1), therefore

ϕ ≈ 1 + exp η2,

which leads to
u(x, t) ≈ 2κ2

2 cosh−2 [κ2 (x− x2(t))] ,

i.e., we observe another soliton with the center coordinate x2(t). In all other regions of x,
u(x, t) is small.

Thus, at large negative t the solution describes two solitons on the large distance of each
other. The faster soliton moving with velocity 4κ2

1 is located near the point x = x1(t)−∆1,
and the slower soliton moving with velocity 4κ2

2 is located near the point x = x2(t).
With the growth of t, the faster soliton collides with the slower soliton. The collision is

described by the full expressions (10.62) and (10.63).
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FIGURE 10.5
Interaction of KdV solutions.

Let us consider now the limit t > 0, t� 1. In that case, x1(t)� x2(t). For x near x2(t),
exp η1 � 1, exp η2 = O(1), thus

ϕ ≈ exp η1 [1 + exp (η2 +A12)]

and

u(x, t) ≈ 2κ2
2 cosh−2 [κ2 (x− x2(t) + ∆2)] , ∆2 = −A12

2κ2
> 0,

i.e. the trajectory of the slower soliton center is shifted backward to x = x2(t)−∆2. For x
near x1(t), exp η1 = O(1), exp η2 � 1, thus

ϕ ≈ 1 + exp η1,

which leads to
u(x, t) ≈ 2κ2

1 cosh−2 [κ1 (x− x1(t))] ,

thus, the trajectory of the center coordinate is x = x1(t).
We see that after collision, both solitons are intact, and they keep their shape, amplitude

and velocity. The only change is the shift of the center coordinate: the faster soliton is shifted
forward by ∆1, and the slower soliton is shifted backward by ∆2 (see Figure 10.5).

Solution (10.62), (10.63) is called a two-soliton solution.
If we take the solution of (10.57) with three exponential functions, the Hirota’s expansion

allows us to obtain the three-soliton solution:

ϕ = 1 + exp η1 + exp η2 + exp η3 + exp (η1 + η2 +A12) + exp (η1 + η3 +A13)

+ exp (η2 + η3 +A23) + exp (η1 + η2 + η3 +A12 +A13 +A23) ,

where

Aij = ln

(
κi − κj
κi + κj

)2

.

Generally, the Hirota’s expansion allows us to obtain the multisoliton solutions with
arbitrary numbers of solitons.

The multisoliton solutions are, of course, only particular solutions of the KdV equation.
However, their role is crucial in the KdV dynamics. The general Cauchy problem with
initial condition u(x, 0) = u0(x) can be solved by means of the method of inverse scattering
transform that is beyond the subject of the present book [5]. One can show that in the case
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where u0(x) tends to zero sufficiently fast as x→ ±∞, the solution tends either to 0 or to
one of the soliton solutions described above. The number of solitons is determined by the
initial conditions.

10.4 Nonlinear Schrödinger Equation

In Subsection 7.16.1, we have seen that the evolution of the envelope function, which
describes the spatio-temporal modulation of a nearly unidirectional monochromatic lin-
ear wave, is governed by the linear Schrödinger equation. When the wave propagates in a
nonlinear medium, e.g., when the refraction index depends on the light intensity, the equa-
tion for the envelope function becomes nonlinear as well. By means of asymptotic methods,
one can derive a universal equation for the envelope function,

iΨt + β∇2Ψ + γ |Ψ|2 Ψ = 0, (10.64)

which is called the nonlinear Schrödinger equation (NSE) [5]. Besides the envelope function
for waves of different physical nature, including fiber optics and water waves, the NSE
provides an approximate description of the dynamics of the macroscopic wave functions in
the superfluidity theory, where it is called the Gross-Pitaevskii equation. The variable t can
be a temporal or a spatial variable, depending on the physical context. Below we consider
only the case where Ψ = Ψ(x, t) and ∇2 = d2/dx2.

The simplest class of solutions has the form

Ψ = R exp (iKx− iΩt) ,

with
Ω = βK2 − γR2.

Thus, the frequency of the nonlinear wave depends not only on the wavenumber K (disper-
sion) but also on its amplitude R (nonlinear shift of frequency).

10.4.1 Symmetry Properties of NSE

First, let us consider the symmetry properties of NSE. Assume that Equation (10.64) has
a solution Ψ(x, t) = f(x, t). Then the following functions will also be solutions of that
equation (below C is an arbitrary constant):

1. Ψ1(x, t) = f(x+ C, t) (translation in space).

2. Ψ2(x, t) = f(x, t+ C) (translation in time).

3. Ψ3(x, t) = f(x, t) exp (iC) (phase invariance). The phase change for the envelope
function corresponds to the translation of the carrying wave. Note that the change
of the sign of the solution is a particular case of the phase transformation with
C = π.

4. Ψ4(x, t) = f(−x, t) (reflection). In a contradistinction to the Burgers equation
and the KdV equation, propagation of a wave is possible in both directions. Also,
standing oscillations of the kind Ψ = R exp(−iΩt) with constant R are possible.

5. Ψ5(x, t) = f∗(x,−t) (time reversal). Note that the properties listed above are
inherited from the linear Schrödinger equation.
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6. Ψ6(x, t) = af(ax, a2t), where a is an arbitrary real number. That property can
be obtained in the same way as that has been done for the Burgers equation and
the KdV equation.

7. The Galilean invariance for the NSE has a more complex form than for the Burgers
equation and the KdV equation:

Ψ7(x, t) = f(x− vt, t) exp [i(Kx− Ωt)] . (10.65)

Substituting (10.65) into (10.64), one can find that

K =
v

2β
, Ω =

v2

4β
,

i.e.

Ψ7(x, t) = f(x− vt, t) exp

[
i

(
v

2β
x− v2

4β
t

)]
. (10.66)

Note that in the case of the quantum-mechanical linear Schrödinger equation, this transfor-
mation (with β = ~/2m) corresponds to the transformation of the momentum and energy
of a particle by the change of the reference frame, i.e., by the Galilean transformation in its
original meaning.

10.4.2 Solitary Waves

The dynamics depend qualitatively on the sign of γ/β, which cannot be changed by a scaling
transformation. If γ/β > 0, this is the focusing NSE, if γ/β < 0, this is the defocusing NSE.
As an example, let us consider a solution in the form of solitary waves. Because of the
Galilean invariance, it is sufficient to calculate the solution in the form of a standing wave,

Ψ(x, t) = R(x) exp(−iΩt). (10.67)

If that solution is found, the waves moving with a definite velocity can be found by means of
the Galilean transformation (10.66). Substituting (10.67) into (10.64), we obtain the ODE,

βR′′ + ΩR+ γR3 = 0. (10.68)

Acting like in Subsection 10.2.2, we multiply Equation (10.68) by R′ and obtain

d

dx

(
1

2
β(R

′
)2 +

1

2
ΩR2 +

1

4
γR4

)
= 0,

hence
1

2
(R′)

2
+ V (R) = E, V (R) =

Ω

2β
R2 +

γ

4β
R4. (10.69)

The constant E plays the role of the energy of a fictitious particle with the mass equal to
1 moving in the potential V (R).

A solitary wave solution tending to a constant value at infinity is possible if the function
V (R) is non-monotonic, i.e., if Ω/2β and γ/4β have different signs. Let us consider the cases
of focusing and defocusing NSE separately.
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FIGURE 10.6
Potential in the case of focusing NSE.

Bright solitons

In the case of the focusing NSE (γ/4β > 0, Ω/2β < 0), the corresponding potential V (R)
is shown in Figure 10.6.
The solitary wave with

lim
x→±∞

R(x) = 0

corresponds to E = 0; for any other admissible values of E, R(x) is a periodic function. For
E = 0, Equation (10.71) can be written as

(R′)
2

=
γ

2β
R2
(
R2
m −R2

)
, (10.70)

where

R2
m = −−2Ω

γ
. (10.71)

Let us introduce the new variable y =
√
R2
m −R2, then

dy

dx
= ±

√
γ

2β

(
R2
m − y2

)
. (10.72)

Integrating Equation (10.72), we find

x− x0 = ± 1

2Rm
ln

[
Rm + y

Rm − y

]
,

where x0 is an arbitrary number, thus

y = ±Rm tanh

[√
γ

2β
Rm (x− x0)

]
and

R = ±Rm cosh−1

[√
γ

2β
Rm (x− x0)

]
.

According to (10.71), Ω = −γR2
m/2. Thus we obtain the following family of bright solitons:

Ψ(x, t) = ±Rm cosh−1

[√
γ

2β
Rm (x− x0)

]
exp

[
i
γ

2
R2
mt
]
,
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which is invariant with respect to the scaling transformation discussed above. This family
can be further extended by means of the phase transformation and the Galilean transfor-
mation. Finally, we find:

Ψ(x, t) = Rm cosh−1

[√
γ

2β
Rm(x− vt− x0)

]
exp

[
i
γ

2
R2
m(t− t0)

]
× exp

[
i

(
v

2β
x− v2

4β
t

)]
. (10.73)

The obtained family of solutions is a member of a wider class of exact solutions of the
focusing NSE equation, which includes multisoliton solutions and so called breathers. Like
in the case of the KdV equation discussed in Section 10.2, the initial value problem for
the one-dimensional NSE equation is solvable by means of the inverse scattering transform
method (see [6]).

Dark Solitons

Let us consider now the defocusing NSE (γ/4β < 0, Ω/2β > 0). The shape of the potential
V (R) (see (10.74)) is shown in Figure 10.7. The potential has maxima in the points R =
±Rm,

R2
m = −Ω

γ
. (10.74)

FIGURE 10.7
Potential in the case of defocusing NSE.

Using the mechanical interpretation of the problem, we come to the conclusion that the
equation has unbounded solutions and bounded periodic solutions for E < Em = V (Rm)
and only unbounded solutions for E > Em.

For E = Em, the equation has two bounded non-periodic solutions corresponding to the
particle motion between to maxima, rightward, with

lim
x→±∞

R(x) = ±Rm,

or leftward, with
lim

x→±∞
R(x) = ∓Rm.

Let us find these solutions.
Taking into account that

Ω = −γR2
m (10.75)
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(see (10.74)), we find that

Em − V (Rm) =
1

4

∣∣∣∣γβ
∣∣∣∣R4

m. (10.76)

Substituting (10.75) and (10.76) into (10.69), we obtain equation

1

2
(R′)

2
=

1

4

∣∣∣∣γβ
∣∣∣∣ (R2

m −R2
)2
,

hence

R′ = ±

√
1

2

∣∣∣∣γβ
∣∣∣∣ (R2

m −R2
)
. (10.77)

Integrating (10.77), we obtain√
1

2

∣∣∣∣γβ
∣∣∣∣ (x− x0) =

1

2Rm
ln

(
Rm +R

Rm −R

)
,

therefore,

R = ±Rm tanh

[√
1

2

∣∣∣∣γβ
∣∣∣∣ (x− x0)

]
,

where x0 is an arbitrary number.
Finally, we obtain

Ψ(x, t) = ±Rm tanh

[√
1

2

∣∣∣∣γβ
∣∣∣∣ (x− x0)

]
exp(iγR2

mt). (10.78)

Solution (10.78) is called a dark soliton, because in the case of a light wave, the intensity

of light I(x, t) = |Ψ(x, t)|2 is equal to zero in the center of the solitary wavy, at x = x0.
Family (10.78) can be extended by means of the phase transformation and the Galilean
transformation.

Problems

1. Find the solution of the Burger’s equation

ut + uux = uxx, −∞ < x <∞, t > 0

with initial condition

u(x, 0) = u0(x), −∞ < x <∞,

where
u0(x) = u−, x < 0; u0(x) = u+, x ≥ 0; u− > u+.

2. Find one-soliton and two-soliton solutions by means of Hirota’s method for the
Kadomtsev-Petviashvili equation

(ut + uxxx + 6uux)x+ αuyy = 0, −∞ < x <∞, −∞ < t <∞.

3. The sine-Gordon equation

utt − uxx + sinu, −∞ < x <∞, −∞ < t <∞

is given.
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A. Find the one-soliton solutions in the form u = u(x − vt), |v| < 1, that
satisfies boundary conditions u(∞, t) = u(−∞, t) + 2π (kink) or u(∞, t) =
u(−∞, t)− 2π (antikink).

B. Find the one-soliton and two-soliton solutions by means of Hirota’s method.

Hint: using the change of the variable u = 2i ln(f∗/f), where f is a complex
function and f∗ is its complex-conjugate, transform the sine-Gordon equation
to the form (

D2
x −D2

t

)
(f, f) +

1

2
(f∗)

2
= C(x, t);

choose C in such a way that f = 1 is a solution; apply Hirota’s expansion
f = 1 + εf1 + ε2f2 + . . .; take f1 = i exp η, η = kx − ωt + c for one-soliton
solutions and f1 = i exp η1+i exp η2, ηi = kix−ωit+ci, i = 1, 2 for two-soliton
solutions.

4. Find the one-soliton solutions of the focusing NSE

iut+uxx+ |u|2 u = 0, −∞ < x <∞, −∞ < t <∞; |u(−∞, t)| = |u(∞, t)| = 0

using Hirota’s method.

Hint: substitute u = g/f , where f is a real function, and transform the equation
to the system (

iDt +D2
x

)
(g, f) = 0, D2

x(f, f) = |g|2 .

5. Using Hirota’s method, find the solution of the following boundary-value problem:

uxt = sinu+2 sin
u

2
, −∞ < x <∞, −∞ < t <∞; u(−∞, 0) = 0, u(∞, 0) = 4π.

Hint: substitute u = 4 arctan(f/g); assume DxDt(f, g) = µfg; use Hirota’s
expansion in the form: g = 1 + ε2g2 + ε4g4 + . . . , f = εf1 + ε3f3 + . . . .

6. Find the family of grey soliton solutions of the defocusing NSE in the form

Ψ(x, t) = [R(x− vt) + iQ] exp(−iΩt),

where v, Q, R(∞) and R(−∞) are some constants.
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Fourier Series, Fourier and Laplace Transforms

A.1 Periodic Processes and Periodic Functions

In the sciences and in technology very often we encounter periodic phenomena. It means
that some processes repeat after some time interval T, called the period. Alternating elec-
tric currents, an object in circular motion and wave phenomena are examples of physical
processes which are periodic. Such processes can be associated with mathematical functions
periodic in time, t, which have the property

ϕ(t+ T ) = ϕ(t).

The simplest periodic function is the sine (or cosine) function, A sin(ωt + α) (or
A cos(ωt + α)), where ω is the angular frequency related to the period by the relationship
ω = 2π/T (quantity f = 1/T is called frequency, constant α is called phase).

With these simple periodic functions more complex periodic functions can be constructed
as was noted by the French mathematician Joseph Fourier. For example if we add the
functions

y0 = A0, y1 = A1 sin(ωt+ α1), y2 = A2 sin(2ωt+ α2),

y3 = A3 sin(3ωt+ α3), . . . (A.1)

with multiple frequencies ω, 2ω, 3ω, . . . , i.e. with the periods T, T/2, T/3, . . . we obtain a
periodic function (with period T ), which, when graphed, has an appearance very distinct
from the graphs of any of the functions in Equation (A.1).

It is natural to also investigate the reverse problem. Is it possible to resolve a given
arbitrary periodic function, ϕ(t), with period T , into a sum of simple functions such as
those in Equation (A.1)? As we shall see, for a very wide class of functions the answer to
this question is positive, but to do so may require an infinite sequence of the functions in
Equation (A.1). In that case the periodic function ϕ(t) can be resolved into the infinite
trigonometric series

ϕ(t) = A0 +A1 sin(ωt+ α1) +A2 sin(2ωt+ α2) + . . .

= A0 +
∞∑
n=1

An sin(nωt+ αn), (A.2)

where An and αn are constants, and ω = 2π/T . Each term in Equation (A.2) is called a
harmonic and the decomposition of periodic functions into harmonics is called harmonic
analysis.

In many cases it is useful to introduce the dimensionless variable

x = ωt =
2πt

T

283
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and to work with the functions
f(x) = ϕ

(x
ω

)
which are also periodic but with the standard period 2π: f(x + 2π) = f(x). Using this
shorthand, Equation (A.2) becomes

f(x) = A0 +A1 sin(x+ α1) +A2 sin(2x+ α2) + . . .

= A0 +
∞∑
n=1

An sin(nx+ αn). (A.3)

With the trigonometric identity sin(α+ β) = sinα cosβ + cosα sinβ and the notation

A0 = 2a0, An sinαn = an, An cosαn = bn, n = 1, 2, 3, . . . ,

we obtain a standardized form for the harmonic analysis of a periodic function f(x) as

f(x) =
a0

2
+ (a1 cosx+ b1 sinx) + (a2 cos 2x+ b2 sin 2x) + . . .

=
a0

2
+

∞∑
n=1

(an cosnx+ bn sinnx), (A.4)

which is referred to as the trigonometric Fourier expansion.

A.2 Fourier Formulas

To determine the limits of validity for the representation in Equation (A.4) of a given
function f(x) with period 2π and to find the coefficients an and bn we follow the approach
that was originally elaborated by Fourier. We first assume that the function f(x) can be
integrated over the interval [−π, π]. If f(x) is discontinuous at any point we assume that
the integral of f(x) converges and in this case we also assume that the integral of the
absolute value of the function, |f(x)|, converges. A function with these properties is said to
be absolutely integrable. Integrating the expression (A.4) term by term we obtain∫ π

−π
f(x)dx = πa0 +

∞∑
n=1

[
an

∫ π

−π
cosnxdx+ bn

∫ π

−π
sinnxdx

]
.

Since
∫ π
−π cosnxdx =

∫ π
−π sinnxdx = 0, all the terms in the sum are zero and we obtain

a0 =
1

π

∫ π

−π
f(x)dx. (A.5)

To find coefficients an we multiply Equation (A.4) by cosmx and then integrate term
by term over the interval [−π, π]:∫ π

−π
f(x) cosmxdx = a0

∫ π

−π
cosmxdx+

∞∑
n=1

[
an

∫ π

−π
cosnx cosmxdx+ bn

∫ π

−π
sinnx cosmxdx

]
.

For any n and m we also have∫ π

−π
sinnx cosmxdx =

1

2

∫ π

−π
[sin(n+m)x+ sin(n−m)x] dx = 0 (A.6)
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and if n 6= m we obtain∫ π

−π
cosnx cosmxdx =

1

2

∫ π

−π
[cos(n+m)x+ cos(n−m)x] dx = 0. (A.7)

Using these formulas along with the identity
∫ π
−π cos2mxdx = π, we see that all the integrals

in the sum are zero except the one with the coefficient am. We thus have

am =
1

π

∫ π

−π
f(x) cosmxdx, m = 1, 2, 3, . . . . (A.8)

The usefulness of introducing the factor 1/2 in the first term in Equation (A.4) is now
apparent since it allows the same formulas to be used for all an, including n = 0.

Similarly, multiplying Equation (A.4) by sinmx and using, along with Equation (A.6),
two other simple integrals

∫ π
−π sinnx sinmxdx = 0 if n 6= m, and

∫ π
−π sin2mxdx = π, we

obtain the second coefficient

bm =
1

π

∫ π

−π
f(x) sinmxdx, m = 1, 2, 3, . . . . (A.9)

Reading Exercise: Obtain the same result as in Equations (A.6) and (A.7) using Euler’s
formula

eimx = cosmx+ i sinmx.

Equations (A.6) and (A.7) also indicate that the system of functions

1, cosx, sinx, cos 2x, sin 2x, . . . , cosnx, sinnx, . . . (A.10)

is orthogonal on [−π, π].
It is important to notice that the above system is not orthogonal on the reduced interval

[0, π] because for n and m with different parity (one odd and the other even) we have∫ π

0

sinnx cosmxdx 6= 0.

However, the system consisting of cosine functions only

1, cosx, cos 2x, . . . , cosnx, . . . (A.11)

is orthogonal on [0, π] and the same is true for

sinx, sin 2x, . . . , sinnx, . . . (A.12)

A second observation, which we will need later, is that on an interval [0, l] of arbitrary
length l, both systems of functions

1, cos
πx

l
, cos

2πx

l
, . . . , cos

nπx

l
, . . . (A.13)

and

sin
πx

l
, sin

2πx

l
, . . . , sin

nπx

l
, . . . (A.14)

are orthogonal.
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Reading Exercise: Prove the above three statements.

Equations (A.5), (A.8), and (A.9) are known as the Fourier coefficients and the series
(A.4) with these definitions is called the Fourier series. Equation (A.4) is also referred to
as the Fourier expansion of the function f(x).

Notice that for the function f(x) having period 2π, the integral∫ α+2π

α

f(x)dx

does not depend on the value of α. As a result we may also use the following expressions
for the Fourier coefficients:

am =
1

π

∫ 2π

0

f(x) cosmxdx and bm =
1

π

∫ 2π

0

f(x) sinmxdx. (A.15)

It is important to realize that to obtain the results above we used a term by term
integration of the series which is justified only if the series converges uniformly. Until we
know for sure that the series converges we can only say that the series (A.4) corresponds to
the function f(x) which usually is denoted as

f(x) ∼ a0

2
+
∞∑
n=1

(an cosnx+ bn sinnx) .

At this point we should remind the reader what is meant by uniform convergence. The
series

∑∞
n=1 fn(x) converges to the sum S(x) uniformly on the interval [a, b] if, for any

arbitrarily small ε > 0 we can find a number N such that for all n ≥ N the remainder of
the series |

∑∞
n=N fn(x)| ≤ ε for all x ∈ [a, b]. This indicates that the series approaches its

sum uniformly with respect to x.
The most important features of a uniformly converging series are:

i) If fn(x) for any n is a continuous function, then S(x) is also a continuous function;

ii) The equality
∑∞
n=1 fn(x) = S(x) can be integrated term by term along any

interval within the interval [a, b];

iii) If the series
∑∞
n=1 f

′
n(x) converges uniformly then its sum is equal to S′(x); i.e.

the formula
∑∞
n=1 fn(x) = S(x) can be differentiated term by term.

There is a simple and very practical criterion for convergence established by Karl Weier-
strass that says that if |fn(x)| < cn for each term fn(x) in the series defined on the interval
x ∈ [a, b] (i.e. fn(x) is limited by cn), where

∑∞
n=1 cn is a converging numeric series, then

the series
∞∑
n=1

fn(x)

converges uniformly on [a, b]. For example, the numeric series
∑∞
n=1

1
n2 is known to converge,

so any trigonometric series with terms such as sinnx/n2 or similar will converge uniformly
for all x because

∣∣sinnx/n2
∣∣ ≤ 1/n2.

A.3 Convergence of Fourier Series

In this section we study the range of validity of Equation (A.4) with Fourier coefficients
given by Equations (A.5), (A.8), and (A.9). To start, it is clear that if the function f(x) is
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finite on [−π, π] then the Fourier coefficients are bounded. This is easily verified, for instance
for an since

|an| =
1

π

∣∣∣∣∫ π

−π
f(x) cosnxdx

∣∣∣∣ ≤ 1

π

∫ π

−π
|f(x)| · |cosnx| dx ≤ 1

π

∫ π

−π
|f(x)| dx (A.16)

The same result is valid in cases where f(x) is not finite but is absolutely integrable, i.e.
the integral of its absolute value converges:∫ π

−π
|f(x)| dx <∞. (A.17)

The necessary condition that any series converges is that its terms tend to zero as
n → ∞. Because the absolute values of sine and cosine functions are bounded, the neces-
sary condition that the trigonometric series in Equation (A.4) converges is that coefficients
of expansion an and bn tend to zero as n → ∞. This condition is valid for functions that
are integrable (or absolutely integrable in the case of functions which are not finite) which
is clear from the following lemma.

Riemann’s lemma

If the function f(t) is absolutely integrable on [a, b], then

lim
α→∞

∫ b

a

f(t) sinαtdt = 0 and lim
α→∞

∫ b

a

f(t) cosαtdt = 0. (A.18)

We will not prove this rigorously but its sense should be obvious. In the case of very fast
oscillations the sine and cosine functions change their sign very quickly as α → ∞. Thus
these integrals vanish for “reasonable” (i.e. absolutely integrable) functions f(t) because
they do not change substantially as the sine (and cosine) alternate with opposite signs in
their semi-periods.

Thus, for absolutely integrable functions the necessary condition of convergence of
Fourier series is satisfied. Before we discuss the problem of convergence of Fourier series
in more detail, let us notice that practically any interesting function for applications can be
expanded in a converging Fourier series.

It is important to know how quickly the terms in (A.4) decrease as n → ∞. If they
decrease rapidly, the series converges rapidly. In this case, using very few terms we have a
good trigonometric approximation for f(x) and the partial sum of the series, Sn(x), is a
good approximation to the sum S(x) = f(x). If the series converges more slowly, a larger
number of terms is needed to have a sufficiently accurate approximation.

Assuming that the series (A.4) converges, the speed of its convergence to f(x) depends on
the behavior of f(x) over its period, or, in the case of non-periodic functions, on the way it is
extended from the interval [a, b] to the entire axis x, as we will discuss below. Convergence is
most rapid for very smooth functions (functions which have continuous derivatives of higher
order). Discontinuities in the derivative of the function, f ′(x), substantially reduce the rate
of convergence whereas discontinuities in f(x) reduce the convergence rate even more with
the result that many terms in the Fourier series must be used to approximate the function
f(x) with the necessary precision. This should be fairly obvious since the “smoothness” of
f(x) determines the rate of decreasing of the coefficients an and bn.

It can be shown [7, 8], that the coefficients decrease

a) faster than 1/n2 (for example 1/n3) when f(x) and f ′(x) are continuous but
f ′′(x) has a discontinuity;
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b) at about the same rate as 1/n2 when f(x) is continuous but f ′(x) has disconti-
nuities; and

c) at about the same rate as 1/n if f(x) is not continuous.

It is important to note that in the first two cases the series converges uniformly which
follows from the Weierstrass criterion, because each term of Equation (A.4) is bounded by
the corresponding term in the converging numeric series

∑∞
n=1

1
n2 <∞.

The following very important theorem describes the convergence of the Fourier series
given in Equation (A.4) for a functionf(x) at a point x0 where f(x) is continuous or where
it may have a discontinuity (the proof can be found in books [7, 8]).

The Dirichlet theorem

If the function f(x) with period 2π is piecewise continuous in [−π, π] and has a finite
number of points of discontinuity in this interval, then its Fourier series converges
to f(x0) when x0 is a continuity point, and to

S(x0) =
f(x0 + 0) + f(x0 − 0)

2

if x0 is a point of discontinuity.

At the ends of the interval [−π, π] the Fourier series converges to

f(−π + 0) + f(π − 0)

2
.

A function f(x) defined on [a, b] is called piecewise continuous if:

i) It is continuous on [a, b] except perhaps at a finite number of points;

ii) If x0 is one such point then the left and right limits of f(x) at x0 exist and are
finite;

iii) Both the limit from the right of f(x) at a and the limit from the left at b exist
and are finite.

Stated more briefly, for the Fourier series of a function f(x) to converge, this function
should be piecewise continuous with a finite number of discontinuities.

A.4 Fourier Series for Non-periodic Functions

We assumed above that the function f(x) is defined on the entire x -axis and has period
2π. But very often we need to deal with non-periodic functions defined only on the interval
[−π, π]. The theory discussed above can still be used if we extend f(x) periodically from
(−π, π) to all x. In other words, we assign the same values of f(x) to all the intervals
(π, 3π), (3π, 5π), . . . , (−3π, π), (−5π,−3π), . . . and then use Equations (A.8) and (A.9)
for the Fourier coefficients of this new function which is periodic. If f(−π) = f(π) we can
include the end points, x = ±π and the Fourier series converges to f(x) everywhere on
[−π, π]. Over the entire axis the expansion gives a periodic extension of the function f(x)
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given originally on [−π, π]. In many cases f(−π) 6= f(π) and the Fourier series at the ends
of the interval [−π, π] converges to

f(−π) + f(π)

2

which differs from both f(−π) and f(π).
The rate of convergence of the Fourier series depends on the discontinuities of the func-

tion and derivatives of the function after its extension to the entire axis. Some extensions
do not increase the number of discontinuities of the original function whereas others do
increase this number. In the latter case the rate of convergence is reduced. In Example A.2
below the function is extended to the entire axis as an even function and remains continuous
so that the coefficients of the Fourier series decrease as 1/n2. In Example A.3 the function
is extended as an odd function and has discontinuities at x = kπ (integer k) in which case
the coefficients decrease slower, as 1/n.

A.5 Fourier Expansions on Intervals of Arbitrary Length

Suppose that a function f(x) is defined on some interval [−l, l] of arbitrary length 2l (where
l > 0). Using the substitution

x =
ly

π
, −π ≤ y ≤ π,

we obtain the function f
(
yl
π

)
of the variable y on the interval [−π, π] which can be expanded

using the standard Equations (A.4), (A.8) and (A.9) as

f

(
yl

π

)
=
a0

2
+
∞∑
n=1

(an cosny + bn sinny) ,

with

an =
1

π

∫ π

−π
f

(
yl

π

)
cosnydy and bn =

1

π

∫ π

−π
f

(
yl

π

)
sinnydy.

Returning to the variable x we obtain

f (x) =
a0

2
+
∞∑
n=1

(
an cos

nπx

l
+ bn sin

nπx

l

)
(A.19)

with

an =
1

l

∫ l

−l
f(x) cos

nπx

l
dx, n = 0, 1, 2, . . . ,

bn =
1

l

∫ l

−l
f(x) sin

nπx

l
dx, n = 1, 2, . . . . (A.20)

If the function is given, but not on the interval [−l, l], and instead on an arbitrary interval
of length 2l, for instance [0, 2l], the formulas for the coefficients of the Fourier series (A.19)
become

an =
1

l

∫ 2l

0

f(x) cos
nπx

l
dx and bn =

1

l

∫ 2l

0

f(x) sin
nπx

l
dx. (A.21)
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In both cases, the series in Equation (A.19) gives a periodic function with the period T = 2l.
If the function f(x) is given on an interval [a, b] (where a and b may have the same or

opposite sign, that is, the interval [a, b] can include or exclude the point x = 0), different
periodic continuations onto the entire x -axis may be made (see Figure A.1). As an example,
consider the periodic continuation F (x) of the function f(x), defined by the condition

F (x+ n(b− a)) = f(x), n = 0,±1,±2, . . . for all x.

FIGURE A.1
Arbitrary function f(x) defined on the interval [a, b] extended to the x -axis as the function
F (x).

In this case the Fourier series is given by Equation (A.19) where 2l = b−a. Clearly, instead
of Equations (A.20) the following formulas for the Fourier coefficients should be used:

an =
2

b− a

∫ b

a

f(x) cos
2nπx

b− a
dx, bn =

2

b− a

∫ b

a

f(x) sin
2nπx

b− a
dx. (A.22)

The series in Equation (A.19) gives a periodic function with the period T = 2l = b− a;
however the original function was defined only on the interval [a, b] and is not periodic in
general.

A.6 Fourier Series in Cosine or in Sine Functions

Suppose that f (x ) is an even function on [−π, π] so that f(x) sinnx is odd. For this case

bn =
1

π

∫ π

−π
f(x) sinnxdx = 0

since the integral of an odd function over a symmetric interval equals zero. Coefficients an
can be written as

an =
1

π

∫ π

−π
f(x) cosnxdx =

2

π

∫ π

0

f(x) cosnxdx, (A.23)

since the integrand is even. Thus, for even functions, f(x) we may write

f (x) =
a0

2
+

∞∑
n=1

an cosnx. (A.24)
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Similarly, if f(x) is an odd function we have

an =
1

π

∫ π

−π
f(x) cosnxdx = 0 and bn =

2

π

∫ π

0

f(x) sinnxdx, (A.25)

in which case we have

f (x) =
∞∑
n=1

bn sinnx. (A.26)

Thus, an even on [−π, π] function is expanded in the set (A.11)

1, cosx, cos 2x, . . . , cosnx, . . .

The odd on [−π, π] function is expanded in the set (A.12)

sinx, sin 2x, . . . , sinnx, . . .

Any function can be presented as a sum of even and odd functions with set (A.10),

f(x) = f1(x) + f2(x),

where

f1(x) =
f(x) + f(−x)

2
and f2(x) =

f(x)− f(−x)

2
,

in which case f1(x) can be expanded into a cosine Fourier series and f2(x) into a sine series.
If the function f(x) is defined only on the interval [0, π] we can extend it to the interval

[−π, 0). This extension may be made in different ways corresponding to different Fourier
series. In particular, such an extension can make f(x) even or odd on [−π, π] which leads
to cosine or sine series with period 2π. In the first case on the interval [−π, 0) we have

f(−x) = f(x) (A.27)

and in the second case

f(−x) = −f(x). (A.28)

The points x = 0 and x = π need special consideration because the sine and cosine
series behave differently at these points. If f(x) is continuous at these points, because of
Equations (A.24) and (A.27) the cosine series converges to f(0) at x = 0 and to f(π) at
x = π. The situation is different for the sine series, however. At x = 0 and x = π the sum
of the sine series in Equation (A.26) is zero thus the series is equal to the functions f(0)
and f(π), respectively, only when these values are zero.

If f(x) is given on the interval [0, l] (where l > 0), the cosine is

a0

2
+
∞∑
n=1

an cos
nπx

l
with an =

2

l

∫ l

0

f(x) cos
nπx

l
dx, (A.29)

and sine series is

∞∑
n=1

bn sin
nπx

l
with bn =

2

l

∫ l

0

f(x) sin
nπx

l
dx. (A.30)
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To summarize the above discussion, we see that the Fourier series provides a way to
obtain an analytic formula for functions defined by different formulas on different intervals
by combining these intervals into a larger one. Such analytic formulas replace a discontinuous
function by a continuous Fourier series expansion which is often more convenient in a given
application. As we have seen above there are often many different choices of how to extend
the original function, defined initially on an interval, to the entire axis. The specific choice of
extension depends on the application to which the expansion is to be used. Many examples
and problems demonstrating these points will be presented in the examples at the end of
each of the following sections and the problems at the end of this chapter.

A.7 Examples

All the functions given below are differentiable or piecewise differentiable and can be rep-
resented by the Fourier series.

Example A.1 Find the cosine series for f(x) = x2 on the interval [−π, π].

Solution. The coefficients are

1

2
a0 =

1

π

∫ π

0

x2dx =
π2

3
,

an =
2

π

∫ π

0

x2 cosnxdx =
2

π
x2 sinnx

n

∣∣∣∣π
0

− 4

nπ

∫ π

0

x sinnxdx = (−1)n
4

n2
.

Thus

x2 =
π2

3
+ 4

∞∑
n=1

(−1)n
cosnx

n2
, −π ≤ x ≤ π. (A.31)

In the case where x = π we obtain a famous expansion,

π2

6
=
∞∑
n=1

1

n2
. (A.32)

Example A.2 Let the function f(x) = x on the interval [0, π]. Find the cosine series.

Solution. Figure A.2 gives an even periodic continuation of f(x) = x from [0, π] onto the
entire axis. For coefficients we have

1

2
a0 =

1

π

∫ π

0

xdx =
π

2
, an =

2

π

∫ π

0

x cosnxdx = 2
cosnπ − 1

n2π
= 2

(−1)n − 1

n2π
, n > 0,

that is,

a2k = 0, a2k−1 = − 4

(2k − 1)2π
, k = 1, 2, 3, . . . ,

and thus,

x =
π

2
− 4

π

∞∑
k=1

cos(2k − 1)x

(2k − 1)2
, 0 ≤ x ≤ π. (A.33)
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FIGURE A.2
Original function extended from [0, π] to the x -axis as even function, plotted together with
the partial sum of the first five terms.

Figure A.2 shows the graph of the partial sum

y = S5(x) =
π

2
− 4

π

(
cosx+

1

32
cos 3x+

1

52
cos 5x

)
together with the graph of the extended function.

Example A.3 Find the Fourier series for f(x) = π−x
2 on the interval(0, 2π).

Solution. The coefficients are

a0 =
1

π

∫ 2π

0

π − x
2

dx = 0, an =
1

π

∫ 2π

0

π − x
2

cosnxdx = 0, bn =
1

π

∫ 2π

0

π − x
2

sinnxdx =
1

n
.

This contains the interesting result

π − x
2

=
∞∑
n=1

sinnx

n
, 0 < x < 2π. (A.34)

This equation is not valid at x = 0 and x = 2π because the sum of the series equals zero.
The equality is also violated beyond (0, 2π).

Notice that this series converges more slowly than Example A.2, thus we need more
terms to obtain the same deviation from the original function. Also, this series does not
converge uniformly (to understand why, attempt to differentiate it term by term and note
what happens).

For x = π
2 we have another interesting result that was obtained by Leibnitz by other

means:

π

4
= 1− 1

3
+

1

5
− 1

7
+ . . . (A.35)

And for x = π
6 we obtain another representation of π:

π

4
= 1 +

1

5
− 1

7
− 1

11
+

1

13
+

1

17
− . . . (A.36)
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A.8 The Complex Form of the Trigonometric Series

For a real function f(x) with period 2π the Fourier expansion (A.4) can be rewritten in
complex form. From Euler’s formula

eiax = cos ax+ i sin ax (A.37)

we have

cosnx =
1

2

(
einx + e−inx

)
, sinnx =

i

2

(
e−inx − einx

)
,

from which we obtain

f(x) =
a0

2
+
∞∑
n=1

[
1

2
(an − bni) einx +

1

2
(an + bni) e

−inx
]
.

Using the notations

c0 =
1

2
a0, cn =

1

2
(an − bni) , c−n =

1

2
(an + bni) ,

we have

f(x) =

∞∑
n=−∞

cne
inx. (A.38)

With the Fourier coefficients an and bn (A.5), (A.8), and (A.9) it is easy to see that the
coefficients cn can be written as

cn =
1

2π

∫ π

−π
f(x)e−inxdx, n = 0,±1,±2, . . . . (A.39)

It is clear that for functions with period 2l, the Equations (A.38) and (A.39) have the form

f(x) =

∞∑
n=−∞

cne
inπx
l with cn =

1

2l

∫ l

−l
f(x)e−

inπx
l dx, n = 0,±1,±2, . . . . (A.40)

For periodic functions in time t with a period T, the same formulas can be written as

f(t) =
∞∑

n=−∞
cne

2inπt
T (A.41)

and

cn =
1

T

∫ T/2

−T/2
f(t)e−

2inπx
T dt, n = 0,±1,±2, . . . . (A.42)

Several useful properties of these results can be easily verified:

i) Because f(x) is real, cn and c−n are complex conjugate and we have c−n = c∗n;

ii) If f(x) is even, all cn are real;

iii) If f(x) is odd, c0 = 0 and all cn are pure imaginary.
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Example A.4 Represent the function f(x) =

{
0, −π < x ≤ 0,
1, 0 < x ≤ π, by a complex Fourier

series.

Solution. The coefficients are

c0 =
1

2π

∫ π

0

dx =
1

2
, cn =

1

2π

∫ π

0

e−inxdx =
1− e−inπ

2πni
=

{
0, n = even,

1

πni
, n = odd.

Thus

f (x) =
1

2
+

1

πi

+∞∑
n = −∞
n = odd

1

n
einx.

Reading Exercise: Using Euler’s formula check that from this expression follows

Imf(x) = 0 (as should be) and Ref(x) =
1

2
+

2

π

∞∑
n=1,3,...

sinnx

n
.

The same result can be obtained if we apply the real form of the Fourier series from the
beginning.

Example A.5 Find the Fourier series of the function f(x) = e−x on the interval (−π, π).

Solution. First use the complex Fourier series with coefficients

cn =
1

2π

∫ π

−π
e−xe−inxdx =

1

2π

∫ π

−π
e−(1+in)xdx =

eπeinπ − e−πe−inπ

2π(1 + in)
.

Then with e±inπ = cosnπ ± i sinnπ = (−1)n we have cn = (−1)n(eπ−e−π)
2π(1+in) , thus

e−x =

∞∑
n=−∞

cne
inπx
l =

eπ − e−π

2π

∞∑
n=−∞

(−1)neinx

1 + in
.

In the interval (−π, π) this series converges to e−x and at points x = ±π its sum is
(eπ + e−π)/2.

Reading Exercise: Apply Euler’s formula and check that this series in real form becomes

e−x =
eπ − e−π

π

[
1

2
+
∞∑
n=1

(−1)n

1 + n2
(cosnx+ n sinnx)

]
.

The same result is obtained if we apply the real form of the Fourier series from the beginning.

A.9 Fourier Series for Functions of Several Variables

In this section we extend the previous ideas to generate the Fourier series for functions of
two variables, f(x, y), which have period 2π in both the variables x and y. Analogous to the



296 Partial Differential Equations: Analytical Methods and Applications

development of Equation (A.38) we write a double Fourier series for the function f(x, y) as

f(x, y) =
+∞∑

n,m=−∞
αnme

i(nx+my) (A.43)

in the domain (D) = (−π ≤ x ≤ π,−π ≤ y ≤ π).
The coefficients αnm can be obtained by multiplying Equation (A.43) by e−i(nx+my) and

integrating over the domain (D), performing this integration for the series term by term.
Because the einx form a complete set of orthogonal functions on [−π, π] (and the same for
eimy), we obtain

αnm =
1

4π2

∫∫
(D)

f(x, y)e−i(nx+my)dxdy, n,m = 0,±1,±2, . . . . (A.44)

The previous two formulas give the Fourier series for f(x, y) in complex form. For the
real Fourier series instead of Equation (A.43) we have

f(x, y) =
+∞∑
n,m=0

[anm cosnx cosmy + bnm cosnx sinmy

+ cnm sinnx cosmy + dnm sinnx sinmy] , (A.45)

where

a00 =
1

4π2

∫∫
(D)

f(x, y)dxdy, an0 =
1

2π2

∫∫
(D)

f(x, y) cosnxdxdy,

a0m =
1

2π2

∫∫
(D)

f(x, y) cosmydxdy, anm =
1

π2

∫∫
(D)

f(x, y) cosnx cosmydxdy,

b0m =
1

2π2

∫∫
(D)

f(x, y) sinmydxdy, bnm =
1

π2

∫∫
(D)

f(x, y) cosnx sinmydxdy,

cn0 =
1

2π2

∫∫
(D)

f(x, y) sinnxdxdy, cnm =
1

π2

∫∫
(D)

f(x, y) sinnx cosmydxdy,

dnm =
1

π2

∫∫
(D)

f(x, y) sinnx sinmydxdy for n,m = 1, 2, 3, . . .

(A.46)

A.10 Generalized Fourier Series

Consider expansions similar to trigonometric Fourier series using a set of orthogonal func-
tions as a basis for the expansion. Recall that two complex functions, ϕ(x) and ψ(x), of
a real variable x are said to be orthogonal on the interval [a, b] (which can be an infinite
interval) if ∫ b

a

ϕ(x)ψ∗(x)dx = 0, (A.47)

where ψ∗(x)is the complex conjugate of ψ(x) (when ψ(x) is real ψ∗ = ψ).
Let us expand some function f(x) into a set of orthogonal functions {ϕn(x)}:

f(x) = c1ϕ1(x) + c2ϕ2(x) + . . .+ cnϕn(x) + . . . =
∞∑
n=1

cnϕn(x). (A.48)
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Multiplying by ϕn(x), integrating and using the orthogonality condition, we obtain the
coefficients

cn =

∫ b
a
f(x)ϕ∗n(x)dx∫ b

a
ϕn(x)ϕ∗n(x)dx

=
1

λn

∫ b

a

f(x)ϕ∗n(x)dx, (A.49)

where

λn =

∫ b

a

|ϕn(x)|2 (x)dx

are real numbers – squared norms of functions ϕn(x).
Series (A.48) with coefficients (A.49) is called generalized Fourier series.
If the set {ϕn(x)} is normalized, λn = 1, and the previous formula becomes

cn =

∫ b

a

f(x)ϕ∗n(x)dx. (A.50)

In the case of trigonometric Fourier series (A.4), the orthogonal functions ϕn(x) are

1, cosx, sinx, cos 2x, sin 2x, . . . , cosnx, sinnx, . . . (A.51)

This set is complete on the interval [−π, π]. Rather than the standard interval [−π, π], we
may also wish to consider any interval of length 2π, or the interval [−l, l] where instead of
the argument x in Equation (A.51) we have nπx

l , etc.
Other sets of orthogonal functions are a system of sines (A.12) or a system of cosines

(A.11) on the interval [0, π].
With the set of exponential functions

. . . , e−i2x, e−ix, 1, eix, ei2x, . . . (A.52)

orthogonal on [−π, π], we have the expansion (A.38). Another complex set of functions
which we use for expansion (A.41)

. . . , e−
i2πx
l , e−

iπx
l , 1, e−

iπx
l , e

i2πx
l , . . . (A.53)

is complete and orthogonal on [−l, l]. Notice that for this set λn = b− a and the functions
{ϕn(x)/λn} are normalized, i.e. have norms equal to one.

Let us multiply Equation (A.48) by its complex conjugated, f∗(x) =
∑∞
n=1 c

∗
nϕ
∗
n(x),

and integrate over the interval [a, b] (or the entire axis). This gives, due to the orthogonality
of the functions {ϕn(x)},∫ b

a

|f |2 (x)dx =
∞∑
n=1

|cn|2
∫ b

a

|ϕn(x)|2 dx =
∞∑
n=1

|cn|2 λn. (A.54)

Equation (A.54) is known as the completeness equation or Parsevale’s equality. If this
equation is satisfied the set of functions {ϕn(x)} is complete. Equation (A.54) is an extension
of the Pythagorean theorem to a space with an infinite number of dimensions; the square of
the diagonal of an (infinite dimensional) parallelepiped is equal to the sum of the squares
of all its sides.

The completeness of set {ϕn(x)}means that any function f(x) (for which
∫ b
a
|f(x)|2 dx <

∞) can be expanded in this set (formula(A.48)) and no other functions except {ϕn(x)} need
to be included.
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When the norms of the functions equal unity, i.e. λn = 1, Equation (A.54) has its
simplest form: ∫ b

a

|f(x)|2 dx =
∞∑
n=1

|cn|2 . (A.55)

Note that from formula (A.55) it follows that cn → 0 as n→∞.
For the trigonometric Fourier series (A.4) on [−π, π], Equation (A.55) becomes∫ π

−π
f2(x)dx =

1

2
πa2

0 + π
∞∑
n=1

(
a2
n + b2n

)
, (A.56)

and for a series on the interval [−l, l] we have∫ l

−l
f2(x)dx =

1

2
la2

0 + l
∞∑
n=1

(
a2
n + b2n

)
. (A.57)

A.11 The Gibbs Phenomenon

In this section we take a closer look at the behavior of the Fourier series of a function
f(x) near a point of discontinuity (a finite jump) of the function. At these points the series
cannot converge uniformly and, in addition, partial sums exhibit specific defects.

Let us begin with an example. The Fourier series for the function

f(x) =


−π/2, if −π < x < 0,

0, if x = 0,±π,
π/2, if 0 < x < π,

is

2
∞∑
n=1

sin(2n− 1)x

2n− 1
= 2

[
sinx+

sin 3x

3
+

sin 5x

5
+ . . .

]
. (A.58)

This expansion gives (an odd) continuation of the function f(x) from the interval
(−π/2, π/2) to the entire x -axis. Because of the periodicity we can restrict the analysis
to the interval (0, π/2). The partial sums, shown in Figure A.3, like the original function
f(x), have jumps at points x = 0 and x = π.

We may isolate these discontinuity points within infinitely small regions, [0, ε) and (π−
ε, π], so that on the rest of the interval, [ε, π − ε], this series converges uniformly. In the
figure this corresponds to the fact that the graphs of the partial sums, for large enough n,
are very close to the line y = π/2 along the interval [ε, π − ε]. Close to the points x = 0
and x = π it is clear that the uniformity of the approximation of f(x) with partial sums is
violated because of the jump discontinuity in f(x).

Next we point out another phenomenon that can be observed near the points x = 0 and
x = π. Near x = 0, approaching the origin from the right, the graphs of the partial sums
(shown in Figure A.3) oscillate about the line y = π/2. The significant thing to note is that
the amplitudes of these oscillations do not diminish to zero as n → ∞. On the contrary,
the height of the first bump (closest to x = 0) approaches the value of δ = 0.281 above the
y = π/2 line. This corresponds to an additional δ : (π/2) = 18% of the height of the partial
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FIGURE A.3
The first partial sums of the expansion of (A.58) demonstrating the Gibb’s phenomena –
S1, S3, S15, S30.

sum above the “expected” value. The situation is similar when x approaches the value π
from the left. Such a defect of the convergence was first found by Josian Gibbs and is known
as the Gibbs phenomenon. In general if the function f(x) has a finite jump |D| at some point
x, the maximum elevation of the partial sum value near x when n → ∞ is bigger than |D|
by

2|D|δ/π

i.e. by about 11.46%.

A.12 Fourier Transforms

A Fourier series is a representation of a function which uses a discrete system of orthogonal
functions. This idea may be expanded to a continuous set of orthogonal functions. The
corresponding expansion in this case is referred to as a Fourier transform.

Lets start with the complex form of the Fourier series for function f(x) on the interval
[−l, l]

f(x) =

∞∑
n=−∞

cne
inπx
l (A.59)

with coefficients

cn =
1

2l

∫ l

−l
f(x)e−

inπx
l dx, n = 0,±1,±2, . . . . (A.60)

In physics terminology, Equation (A.60) gives a discrete spectrum of function f(x) with
wave numbers kn = nπ

l . Here cne
iknx is a harmonic with complex amplitude cn defined by

Equation (A.60) or

cn =
1

2l

∫ l

−l
f(x)e−iknxdx. (A.61)
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Suppose now that l is very large, thus the distance between two neighboring wave
numbers, ∆k = π

l , is very small. Using the notation

f̂(k) =

∫ ∞
−∞

f(x)e−ikxdx (A.62)

we may write Equation (A.61) in the form

cn =
1

2π

∫ ∞
−∞

f(x)e−iknxdx · π
l

=
1

2π
f̂(kn)∆k. (A.63)

Using this definition Equation (A.59) can be written as

f(x) =
∑
n

cne
iknx =

1

2π

∑
n

f̂(kn)eiknx∆k, −l < x < l. (A.64)

In the limit l→∞ this becomes the integral

f(x) =
1

2π

∫ ∞
−∞

f̂(k)eikxdk, −∞ < x <∞. (A.65)

In this limit the wave number takes all the values from −∞ to ∞, i.e. when l →
∞ the spectrum is continuous. The amplitudes are distributed continuously and for each
infinitesimal interval from k to k + dk there is an infinitesimal amplitude

dc =
1

2π
f̂(k)dk. (A.66)

With this equation as a definition,f̂(k) is called the spectral density of f(x).
Equations (A.62) and (A.65) define the Fourier transform. Equation (A.62) is called the

direct Fourier transform and Equation (A.65) is referred to as the inverse Fourier transform.
These formulas are valid if the function f(x) is absolutely integrable on (−∞,∞):∫ ∞

−∞
|f(x)|dx <∞. (A.67)

It should be noted that there are different ways to deal with the factor 1/2π in the
formulas for direct and inverse transforms. Often, this factor is placed in the direct transform
formula while other authors split this factor into two identical factors, 1/

√
2π, one in each

equation. Using the definition given by Equations (A.62) and (A.65) has the advantage that
the Fourier transform of the Dirac delta function

δ(x) =
1

2π

∫ ∞
−∞

eikxdk (A.68)

equals one, as can be seen by comparing Equations (A.65) and (A.68). Here we remind the
reader that the most useful property of the delta function is∫ ∞

−∞
f(x′)δ(x− x′)dx′ = f(x). (A.69)

The delta function defined with the coefficient in Equation (A.68) obeys the normalization
condition ∫ ∞

−∞
δ(x− x′)dx′ = 1. (A.70)
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The step or Heaviside function is defined as

H(x) =

{
1, x ≥ 0,

0, x < 0,

and is related to the delta function by the relation

d

dx
H(x) = δ(x). (A.71)

Reading Exercise: Prove the following two properties of the delta function:

δ(−x) = δ(x) and δ(ax) =
1

|a|
δ(x). (A.72)

For many practical applications it is useful to present Fourier transform formulas for
another pair of physical variables, time and frequency. Using Equations (A.62) and (A.65)
we may write the direct and inverse transforms as

f̂(ω) =

∫ ∞
−∞

f(t)e−iωtdt and f(t) =
1

2π

∫ ∞
−∞

f̂(ω)eiωtdω. (A.73)

Fourier transform equations are easy to generalize to cases of higher dimensions. For
instance, for an application with spatial variables represented as vectors, Equations (A.62)
and (A.65) become

f̂(~k) =

∫ ∞
−∞

f(~x)e−i
~k~xd~x and f(~x) =

1

2π

∫ ∞
−∞

f̂(~k)ei
~k~xd~k. (A.74)

Next we briefly discuss Fourier transforms of even or odd functions. If the function f(x)
is even we have

f̂(k) =

∫ ∞
−∞

f(x) cos kxdx− i
∫ ∞
−∞

f(x) sin kxdx = 2

∫ ∞
0

f(x) cos kxdx.

From here we see that f̂(k) is also even and with Equation (A.65) we obtain

f(x) =
1

π

∫ ∞
0

f̂(k) cos kxdk. (A.75)

These formulas give what is known as the Fourier cosine transform. Similarly if f(x) is odd
we obtain the Fourier sine transform

if̂(k) = 2

∫ ∞
0

f(x) sin kxdx, f(x) =
1

π

∫ ∞
0

if̂(k) sin kxdk. (A.76)

In this case usually if̂(k) (rather than f̂(k)) is called the Fourier transform. We leave it to
the reader to obtain Equations (A.76) as a Reading Exercise.

If the function f(x) is given on the interval 0 < x <∞ it can be extended to −∞ < x < 0
in either an even or odd way and we may use either sine or cosine transforms.

Example A.6 Let f(x) = 1 on −1 < x < 1 and zero outside this interval. This is an even
function thus with the cosine Fourier transform we have

f̂(k) = 2

(∫ 1

0

1 · cos kxdx+

∫ ∞
1

0 · cos kxdx

)
=

2 sin k

k
.
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The inverse transform gives

f(x) = 2

∫ ∞
0

sin k

πk
cos kxdk. (A.77)

As in the case for the regular Fourier series, if we substitute some value, x0, into the
formula for the inverse transform we obtain the valuef(x0) at the point where this function
is continuous. The equation

[f(x0 + 0) + f(x0 − 0)]/2

gives the value at a point where it has a finite discontinuity. For instance, substituting x = 0
in (A.77) gives

1 = 2

∫ ∞
0

sin k

πk
dk,

from which we obtain the interesting result∫ ∞
0

sin k

k
dk =

π

2
. (A.78)

Example A.7 Investigate the connection between a Gaussian function and its Fourier
transform.

Solution. The Fourier transform of a Gaussian, f(x) = e−ax
2

, a > 0 is given by

f̂(k) =

∫ ∞
−∞

e−ax
2

e−ikxdx.

Since

f̂ ′(k) =

∫ ∞
−∞

(−ix)e−ax
2

e−ikxdx =
i

2a

∫ ∞
−∞

d

dx
(e−ax

2

)e−ikxdx

= − k

2a

∫ ∞
−∞

e−ax
2

e−ikxdx = − k

2a
f̂(k)

f̂(k) can be obtained as a solution of a simple differential equation (by separation of vari-
ables):

f̂(k) = f̂(0)e−k
2/4a.

Here f̂(0) =
∫∞
−∞ e−ax

2

dx. With the substitution z = x
√
a we obtain f̂(0) = 1√

a

∫∞
−∞ e−z

2

dz.

Because it is well known that
∫∞
−∞ e−z

2

dz =
√
π we have that f̂(0) =

√
π
a andf̂(k) =√

π
a e
−k2/4a. Thus we have obtained a remarkable result: the Fourier transform of a Gaus-

sian is also a Gaussian. Both functions are bell-shaped and their widths are determined by
the value of a. If a is small, then f(x) is a broadly spread Gaussian and its Fourier transform
is sharply peaked near k = 0. On the other hand, if f(x) is a narrowly peaked Gaussian
function corresponding to a being large, its Fourier transform is broadly spread. An appli-
cation of this result is the uncertainty principle in quantum mechanics where momentum
and position probabilities may be represented as Fourier transforms of each other with the
result that a narrow uncertainty in the probable location of an object results in a broad
uncertainty in the momentum of the object and vice versa.

Reading Exercises:
Here are several important properties of Fourier transform proofs which we leave to the

reader.
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i) Prove that the Fourier transform of f(−x) is equal to f̂(−k).

ii) Prove that the Fourier transform of f ′(x) is equal to ikf̂(k). Hint : The Fourier
transform of f ′(x) is

∫∞
−∞ f ′(x)e−ikxdx; differentiate it by parts and take into

account that
∫∞
−∞ |f(x)|dx <∞.

iii) Prove that the Fourier transform of f(x − x0) (a shift of origin) is equal to

e−kx0 f̂(k).

iv) Prove that the Fourier transform of f(αx) (where α is constant) is equal to
1
α f̂
(
k
α

)
. This property shows that if we stretch the size of an “object” along the

x -axis, then the size of the Fourier “image” compresses by the same factor. This
means that it is not possible to localize a function in both “x -and k -spaces” which
is a mathematical expression representing the uncertainty principle in quantum
mechanics.

v) Prove Parsevale’s equality for the Fourier transform∫ ∞
−∞
|f(x)|2dx = 2π

∫ ∞
−∞
|f̂(k)|2dk.

A.13 Laplace Transforms

A Laplace transform L [f(x)] of a real function of a real variable f(x) is defined as follows:

f̂(p) = L [f(x)] =

∫ ∞
0

e−pxf(x)dx, (A.79)

where p is, generally, a complex parameter. Function f̂(p) is often called the image of the
original function f(x).

The right side of Equation (A.79) is called the Laplace integral. For its convergence in the
case where p is real, it is necessary that p > 0, when p is complex; then for convergence it is
necessary that Re p > 0. Also for convergence a growth of function f(x) should be restricted.
We will consider only functions f(x) that are increasing slower than some exponential
function as x→∞. This means that for any x there exist positive constants M and a, such
that

|f(x)| ≤Meax.

Clearly, for the convergence of the integral it should be Re p > a.
And obviously, function f(x) should be regular on (0,∞), for instance, for f(x) =
1/xβ , β> 0, the LT does not exist.

To determine the original function from the image, f̂(p), one has to perform the inverse
Laplace transform, which is denoted as

f(x) = L−1
[
f̂(p)

]
. (A.80)

As an example, find Laplace transforms of two functions:

Let f(x) = 1, then L[f(x)] =
∫∞

0
e−pxdx = − 1

pe
−px |∞0 = 1

p ;

Let f(x) = eax, then

L[f(x)] =

∫ ∞
0

e−pxeatdx =

∫ ∞
0

e(a−p)xdx =
1

a− p
e(a−p)x |∞0 =

1

p− a
.
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TABLE A.1
Laplace transforms of some functions.

f(x) L [f(x)] Convergence condition

1
1

p
Re p > 0

xn
n!

pn+1
n ≥ 0 is integer, Re p > 0

xa
Γ(a+ 1)

pa+1
a > −1, Re p > 0

eax
1

p− a
Re p >Re a

sin cx
c

p2 + c2
Re p > |Im c|

cos cx
p

p2 + c2
Re p > |Im c|

sinh bx
b

p2 − b2
Re p > |Re b|

cosh bx
p

p2 − b2
Re p > |Re b|

xneax
n!

(p− a)n+1
Re p > Re a

x sin cx
2pc

(p2 + c2)2
Re p > |Im c|

x cos cx
p2 − c2

(p2 + c2)2
Re p > |Im c|

eax sin cx
c

(p− a)2 + c2
Re p > (Re a+ |Im c|)

eax cos cx
p− a

(p− a)2 + c2
Re p > (Re a+ |Im c|)

erf(x)
ep

2/4 [1− erf(p/2)]

p
Re p > 0

It is seen that for the convergence of the integral, Re p should be larger than a.
Laplace transforms of some functions can be found in Table A.1.

Properties of the Laplace Transform

Property 1. A Laplace transform is linear:

L [C1f1(x) + C2f2(x)] = C1L [f1(x)] + C2L [f2(x)] . (A.81)

This follows from the linearity of the integral (A.76).
An inverse transform is also linear:

L−1
[
C1f̂1(p) + c2f̂2(p)

]
= C1L

−1
[
f̂1(p)

]
+ C2L

−1
[
f̂2(p)

]
. (A.82)
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Property 2. Let L [f(x)] = f̂(p). Then

L [f(kx)] =
1

k
f̂
(p
k

)
. (A.83)

This can be proven using the change of a variable, x = t/k:∫ ∞
0

e−pxf(kx)dx =
1

k

∫ ∞
0

e−
p
k tf(t)dt =

1

k
f̂
(p
k

)
.

Property 3. Let L [f(x)] = f̂(p), and

fa(x) =

{
0, x < a,

f(x− a), x ≥ a,

where a > 0. Then

f̂a(p) = e−paf̂(p). (A.84)

This property is also known as the Delay theorem.

Property 4. Let L [f(x)] = f̂(p). Then for any complex constant c:

L [ecxf(x)] =

∫ ∞
0

e−pxecxf(x)dx = f̂(p− c). (A.85)

This property is also known as the Shift theorem.

Property 5. First define convolution of functions f1(x) and f2(x) as function f(x) given by

f(x) =

∫ x

0

f1(x− t)f2(t)dt. (A.86)

Convolution is symbolically denoted as:

f(x) = f1(x) ∗ f2(x).

The property states that if f(x) is a convolution of functions f1(x) and f2(x), then:

f̂(p) = f̂1(p)f̂2(p), (A.87)

in other words

L [f(x)] = L

[∫ x

0

f1(x− t)f2(t)dt

]
= f̂1(p)f̂2(p) (A.88)

(the integral should converge absolutely), where

f̂1(p) =

∫ ∞
0

f1(x)e−pxdx, f̂2(p) =

∫ ∞
0

f2(x)e−pxdx, f̂(p) =

∫ ∞
0

f(x)e−pxdx.

Property 6. The Laplace transform of a derivative is:

L [f ′(x)] = pf̂(p)− f(0). (A.89)
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Indeed, integration by parts gives:∫ ∞
0

e−pxf ′(x)dx = f(x)e−px |∞0 + p

∫ ∞
0

e−pxf(x)dx = −f(0) + pf̂(p).

Analogously, for the second derivative we obtain:

L [f ′′(x)] = p2f̂(p)− pf(0)− f ′(0). (A.90)

And for the nth derivative:

L
[
f (n)(x)

]
= pnf̂(p)− pn−1f(0)− pn−2f ′(0)− . . .− f (n−1)(0). (A.91)

Property 7. If L [f(x)] = f̂(p), then the Laplace transform of the integral can be represented
as

L

[∫ t

0

f(t)dt

]
=

1

p
f̂(p). (A.92)

This property can be proven by writing the Laplace transform of the integral as a double
integral and then interchanging the order of the integrations.

Property 8. The Laplace transform of the delta function, δ(x), is:

L [δ(x)] =

∫ +0

−0

e−pxδ(x)dx+

∫ ∞
+0

e−pxδ(x)dx =

∫ +0

−0

δ(x)dx+ 0 = 1. (A.93)

A.14 Applications of Laplace Transform for ODE

One of the applications of the Laplace transform is the solution of initial value problems
(IVPs) for differential equations. After the transform has been found, it must be inverted,
that is, the original function (the solution of a differential equation) must be obtained. Often
this step needs a calculation of integrals of a complex variable, but in many situations,
such as, for example, the case of linear equations with constant coefficients, the inverted
transforms just can be found in the LT Table. Some partial differential equations also can
be solved using the method of Laplace transform.

Consider the IVP for the 2nd-order linear equation with constant coefficients:

ax′′ + bx′ + cx = f(t), (A.94)

x(0) = β, x′(0) = γ. (A.95)

Let us apply the Laplace transform to the both sides of Equation (A.94). Using linearity
of the transform and Property 6 gives the algebraic equation for the transform function
x̂(p):

a(p2x̂− βp− γ) + b(px̂− β) + cx̂ = f̂(p). (A.96)

We have used the initial conditions (A.95). Solving this algebraic equation, one finds:

x̂(p) =
f̂(p) + aβp+ aγ + bβ

ap2 + bp+ c
. (A.97)
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Note that when the initial conditions are zero, the transform takes a simple form:

x̂(p) =
f̂(p)

ap2 + bp+ c
. (A.98)

Next, inverting the transform, gives the function x(t) – the solution of the IVP.

Example A.8 Solve differential equation

x′′ + 9x = 6 cos 3t

with zero initial conditions.

Solution. Applying the LT to both sides of the equation and taking into account that
x(0) = 0, x′(0) = 0, gives:

p2x̂(p) + 9x̂(p) =
6p

p2 + 9
.

Then,

x̂(p) =
6p

(p2 + 9)2
=

2 · 3p
(p2 + 32)2

.

The original function x(t) is read out directly from the Laplace transform table:

x(t) = t sin 3t.

This function is the solution of the IVP.

Example A.9 Solve the IVP

x′′ + 4x = et, x(0) = 4, x′(0) = −3.

Solution.
Applying the LT to both sides of the equation and taking into the account the initial

conditions, we obtain:

p2x̂(p)− 4p+ 3 + 4x̂(p) =
1

p− 1
.

Solving for x̂(p) gives

x̂(p) =
4p2 − 7p+ 4

(p2 + 4)(p− 1)
.

Next, using the partial fractions we can write

4p2 − 7p+ 4

(p2 + 4)(p− 1)
=

A

p− 1
+
Bp+ C

p2 + 4
.

From there
4p2 − 7p+ 4 = Ap2 + 4A+Bp2 + Cp−Bp− C,

and equating the coefficients of the second, first, and zeroth degrees of p, we have

4 = A+B, −7 = C −B, 4 = 4A− C.

The solution to this system of equations is

A = 1/5, B = 19/5, C = −16/5.

Then

x(t) =
1

5
L−1

[
1

p− 1

]
+

19

5
L−1

[
p

p2 + 4

]
− 16

5
L−1

[
1

p2 + 4

]
.

Using the inverse transform from the Table gives the solution of the IVP :

x(t) = (et + 19 cos 2t− 16 sin 2t)/5.

It is easy to check that this solution satisfies the equation and the initial conditions.
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Problems

Expand the function into a trigonometric Fourier series using

a) the general method of expansion (cosine & sine series)

b) the even terms only method of expansion (cosine series)

c) the odd terms only method of expansion (sine series):

1. f(x) = x2 on the interval [0, π].

2. f(x) = eax on the interval [0, π].

3. f(x) = cos ax on the interval [−π, π].

4. f(x) = sin ax on the interval [−π, π].

5. f(x) = π − 2x on the interval [0, π].

6. Prove the Fourier transform of f(x) = e−a|x| equals 2a
a2+k2 where a is a positive

constant.

7. Show that cosine and sine transforms of the function f(x) = 1/
√
x are equal to

the original function 1/
√
x.

Solve the IVPs for ordinary differential equations using the Laplace transform.

1. x′′ + x = 4 sin t, x(0) = 0, x′(0) = 0.

2. x′′ + 16x = 3 cos 2t, x(0) = 0, x′(0) = 0.

3. x′′ + 4x = et, x(0) = 0, x′(0) = 0.

4. x′′ + 25x = e−2t, x(0) = 1, x′(0) = 0.

5. x′′ + x′ = tet, x(0) = 0, x′(0) = 0.

6. x′′ + 2x′ + 2x = te−t, x(0) = 0, x′(0) = 0.

7. x′′ − 9x = e3t cos t, x(0) = 0, x′(0) = 0.

8. x′′ − x = 2et − t2 x(0) = 0, x′(0) = 0.



B

Bessel and Legendre Functions

In this chapter we discuss the Bessel and Legendre equations and their solutions: Bessel
and Legendre functions. These famous functions are widely used in the sciences, in partic-
ular Bessel functions serve as a set of basis functions for BVP with circular or cylindrical
symmetry, the Legendre functions serve as a set of basis functions for BVP in spherical
coordinates.

B.1 Bessel Equation

In many problems one often encounters a differential equation

r2y′′(r) + ry′(r) +
(
λr2 − p2

)
y(r) = 0, (B.1)

where p is given fixed value and λ is an additional parameter. Equation (B.1) is called
the Bessel equation of order p. In application of the Bessel equation we will, in addition
to Equation (B.1), encounter boundary conditions. For example the function y(r), defined
on a closed interval [0, l], could be restricted to a specified behavior at the points r = 0
and r = l. For instance at r = l the value of the solution, y(l), could be prescribed, or
its derivative y′(l), or their linear combination αy′(l) + βy(l). Generally, Equation (B.1)
has nontrivial solutions which correspond to a given set of boundary conditions only for
certain values of the parameter λ, which are called eigenvalues. The goal then becomes to
find eigenvalues for these boundary conditions and the corresponding solutions, y(r), which
are called eigenfunctions.

The Bessel equation (B.1) is often presented in the form which we use in Chapters 7-9:

y′′ +
y′

r
+

(
λ− p2

r2

)
y = 0, (B.2)

where we meet the Bessel functions as the eigenfunctions of the Laplace operator in polar
coordinates.

To start solving Equation (B.1) make the change of variables x =
√
λr to yield

x2y′′(x) + xy′(x) +
(
x2 − p2

)
y(x) = 0, (B.3)

or

y′′ +
y′

x
+

(
1− p2

x2

)
y = 0. (B.4)

Let us first consider integer values of the parameter p. Try to find the solution in the form
of power series in x and let a0 be the first non-zero coefficient of the series, then

y = a0x
m + a1x

m+1 + a2x
m+2 + . . .+ anx

m+n + . . . (B.5)

where m ≥ 0, a0 6= 0 and, by construction, m is an integer.
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Substituting the series (B.5) into Equation (B.4) and equating coefficients of powers of
x to zero we obtain (the details can be found in books [7, 8]):

y = a02pp!

[(
x
2

)p
p!
−

(
x
2

)p+2

1!(p+ 1)!
+

(
x
2

)p+4

2!(p+ 2)!
− . . .+ (−1)k

(
x
2

)p+2k

k!(p+ k)!
+ . . .

]
.

The series in the square brackets is absolutely convergent for all values of x which is
easy to confirm using the D’Alembert criterion: lim

k→∞
|ak+1/ak| = 0. Due to the presence of

factorials in the denominator this series converges very fast; its sum is called Bessel function
of order p and it is denoted as Jp(x):

Jp(x) =

(
x
2

)p
p!
−

(
x
2

)p+2

1!(p+ 1)!
+

(
x
2

)p+4

2!(p+ 2)!
− . . .+ (−1)k

(
x
2

)p+2k

k!(p+ k)!
+ . . . (B.6)

that is

Jp(x) =
∞∑
k=0

(−1)
k

k! (p+ k)!

(x
2

)p+2k

. (B.7)

Thus we have obtained the solution of Equation (B.4) in the case that the function y(x)
is finite at x = 0. (The constant coefficient a02pp! in the series for y(x) can be dropped
because the Bessel equation is homogeneous.) Note that this solution was obtained for
integer, nonnegative values of p only.

Now let us generalize the above case for arbitrary real p. To do this it is necessary to
replace the integer-valued function p! by the Gamma function Γ(p + 1), which is defined
for arbitrary real values of p. The definition and main properties of the Gamma function
are listed in Appendix B (section B.5). Using the Gamma function, the Bessel function of
order p, where p is real, can be defined by a series which is built analogously to the series
in Equation (B.6):

a2 = − a0

2 (2 + 2p)
= − a0

22 (1 + p)
= −a0Γ (p+ 1)

22Γ (p+ 2)
,

a4 = − a2

23 (p+ 2)
=

a0

2!24 (p+ 1) (p+ 2)
=

a0Γ (p+ 1)

2!24Γ (p+ 3)
,

..............................................

a2k =
(−1)ka0Γ (p+ 1)

22kk!Γ(p+ k + 1)!
,

........................................

Jp (x) =
∞∑
k=0

(−1)
k

Γ (k + 1) Γ (k + p+ 1)

(x
2

)p+2k

=
(x

2

)p ∞∑
k=0

(−1)
k

Γ (k + 1) Γ (k + p+ 1)

(x
2

)2k

, (B.8)

which converges for any p. In particular, replacing p by −p we obtain

J−p (x) =
(x

2

)−p ∞∑
k=0

(−1)
k

Γ (k + 1) Γ (k − p+ 1)

(x
2

)2k

. (B.9)

Since Bessel equation (B.4) contains p2, functions Jp(x) and J−p(x) are solutions of the
equation for the same p. If p is non-integer, these solutions are linearly independent, since
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TABLE B.1
Positive roots of J0(x), J1(x), J2(x).

Function
———————

Roots µ1 µ2 µ3 µ4 µ5

J0(x) 2.4048 5.5201 8.6537 11.7915 14.9309
J1(x) 3.8317 7.0156 10.1735 13.3237 16.4706
J2(x) 5.136 8.417 11.620 14.796 17.960

the first terms in Equations (B.8) and (B.9) contain different powers of x ; xp and x−p,
respectively, then the general solution of Equation (B.4) can be written in the form

y = C1Jp(x) + C2J−p(x). (B.10)

Point x = 0 must be excluded from the domain of definition of the function (B.9), since
x−p for p > 0 diverges at this point.

The functions Jp(x) are bounded as x → 0. In fact the functions Jp(x) are continuous
for all x since they are the sum of a converging power series. For non-integer values of p
this follows from the properties of the Gamma function and the series (B.8).

Reading Exercise: 1) Show that J−n(x) = (−1)nJn(x) for n = 1, 2, 3 . . . ;

2) Show that lim
x→0

J1 (x)

x
=

1

2
.

For integer values of p Jp(x) and J−p(x) that are not linearly independent, the general
solution can be formed from the linear combination of the functions Jp(x) and Np(x) as

y = C1Jp(x) + C2Np(x). (B.11)

The functions Np(x) are singular at x = 0, thus if the physical formulation of the problem
requires regularity of the solution at zero, the coefficient C2 in the solution in Equation
(B.10) must be zero.

We conclude this section presenting several first Bessel functions Jn(x) of integer order.
The first few terms of the expansion in Equation (B.6) near zero for the first three functions
are:

J0(x) = 1− x2

22
+

x4

24 · 2! · 2!
− . . . , J1(x) =

x

2
− x3

23 · 2!
+

x5

25 · 2! · 3!
− . . .

J2(x) =
x2

22 · 2!
− x4

24 · 3!
+

x6

26 · 2! · 4!
− . . . , J3(x) = . . . . . . (B.12)

Note that the Jn(x) are even if n is integer and odd if n is non-integer functions of x
(although in general, problems with physical boundary values have x ≥ 0, and we do not
need to consider the behavior of the function for x < 0). For future reference we present
the useful fact that at x = 0 we have J0(0) = 1 and Jn(0) = 0 for n ≥ 1. Figure B.1
shows graphs of functions J0(x), J1(x) and J2(x). Table B.1 lists a few first roots of Bessel
functions of orders 0, 1 and 2.

A convenient notation for roots of equation Jn (x) = 0 is µ
(n)
k , where n stands for the

order of the Bessel function and k stands for the root number. Often we will write equation
Jn (x) = 0 in the form Jn (µ) = 0. In cases when the value of n is clear we will omit the
upper index in µk (like in Table B.1).
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FIGURE B.1
Graphs of functions J0(x), J1(x) and J2(x).

B.2 Properties of Bessel Functions

The properties of functions Jp(x) listed below follow from the expansion in Equation (B.6).

1. All Bessel functions are defined and continuous on the real axis and have deriva-
tives of all orders. This is because any Bessel function can be expanded in a power
series which converges for all x, and the sum of the power series is a continuous
function which has derivatives of all orders.

2. For integer p = n Bessel functions of even orders are even functions (since their
expansion contains only even powers of the argument). Bessel functions of odd
orders are odd functions.

3. Each Bessel function has an infinite number of real roots. Roots located on the
positive semi-axis can be marked by integer numbers in the increasing order.
Zeros of Jp(x) = 0 fall between the zeros of Jp+1(x) = 0.

4. Behavior of Bessel functions in the vicinity of zero is given by the first terms of
the series in Equation (B.6); for large x the asymptotic formula may be used

Jp(x) ≈
√

2

πx
cos
(
x− pπ

2
− π

4

)
. (B.13)

With increasing x the accuracy of this formula quickly increases. When Jp(x) is
replaced by the right hand side of Equation (B.13), the error is very small for
large x and has the same order as x−3/2.

From Equation (B.1) it follows, in particular, that the function Jp(x) has roots
that are close (for large x ) to the roots of the equation

cos
(
x− pπ

2
− π

4

)
= 0;

thus the difference between two adjacent roots of the function Jp(x) tends to
π when roots tend to infinity. A graph of Jp(x) has the shape of a curve which
depicts decaying oscillation; the “wavelength” is almost constant (close to π), and
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the amplitude decays inversely proportional to the square root of x. In fact we
have lim

x→∞
Jp (x) = 0.

5. Recurrence formulas

Jp+1(x) =
2p

x
Jp(x)− Jp−1(x), (B.14a)

Jp+1(x) =
p

x
Jp(x)− J ′p(x), (B.14b)

J ′p(x) = − p
x
Jp(x) + Jp−1(x). (B.14c)

6. Integration formulas ∫
x−pJp+1(x)dx = −x−pJp(x), (B.15a)

∫
xpJp−1(x)dx = xpJp(x), (B.15b)∫ x

0

zJ0(z)dz = xJ1(x), (B.15c)∫ x

0

z3J0(z)dz = 2x2J0(x) + x(x2 − 4)J1(x). (B.15d)

7. Differentiation formulas

d

dx
[x−pJp(x)] ≡ −x−pJp+1(x), p = 0, 1, 2, . . . (B.16a)

d

dx
[xpJp(x)] ≡ xpJp−1(x), p = 1, 2, 3, . . . (B.16b)

In particular, J ′0(x) = −J1(x), J ′1(x) = J0(x)− J1(x)

x
.

These identities are easily established by operating on the series which defines the func-
tion.

In many physical problems with spherical symmetry one encounters Bessel functions of
half-integer orders where p = (2n+ 1) /2 for n = 0, 1, 2, . . . For instance, solving Equation
(B.4) with p = 1/2 and p = −1/2 by using the series expansion

y (x) = x1/2
∞∑
k=0

akx
k (a0 6= 0) , (B.17)

we obtain

J1/2(x) =

(
2

πx

)1/2 ∞∑
k=0

(−1)k
x2k+1

(2k + 1)!
(B.18)

and

J−1/2(x) =

(
2

πx

)1/2 ∞∑
k=0

(−1)k
x2k

(2k)!
. (B.19)

By comparing expansions in Equations (B.18) and (B.19) to the McLaren series expansions
in sinx and cosx, we obtain

J1/2 =

(
2

πx

)1/2

sinx. (B.20)
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FIGURE B.2
Graphs of functions J1/2(x), J3/2(x) and J5/2(x).

J−1/2 =

(
2

πx

)1/2

cosx. (B.21)

Note that J1/2(x) is bounded for all x and function J−1/2(x) diverges at x = 0. Recall
that Equation (B.8) gives an expansion of Jp(x) which is valid for any value of p. Figure
B.2 shows graphs of functions J1/2(x), J3/2(x) and J5/2(x); Figure B.3 shows graphs for
J−1/2(x), J−3/2(x) and J−5/2(x).

FIGURE B.3
Graphs of J−1/2(x), J−3/2(x) and J−5/2(x).

Reading Exercise:
Using the recurrence Equations (B.14) and the expression for J1/2 (x), obtain the functions
J3/2(x), J−3/2(x), J5/2(x) and J−5/2(x). For instance, the answer for J3/2(x) is

J3/2 =

(
2

πx

)1/2(
sinx

x
− cosx

)
. (B.22)
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TABLE B.2
Positive roots of the functions N0(x), N1(x) and N2(x).

Function
———————

Roots µ1 µ2 µ3 µ4 µ5

N0(x) 0.8936 3.9577 7.0861 10.2223 13.3611
N1(x) 2.1971 5.4297 8.5960 11.7492 14.8974
N2(x) 3.3842 6.7938 10.0235 13.2199 16.3789

Let us now briefly consider Bessel functions of the second kind, or Neumann functionsNp(x).
Table B.2 lists a few roots of Neumann functions with p = 1, 2, 3. Neumann functions for
non-integer p can be obtained as

Np(x) =
Jp(x) cos pπ − J−p(x)

sin pπ
. (B.23)

It is easy to check, that Np(x) satisfies the Bessel equation (B.4). Figure B.4 shows graphs
of Neumann functions with p = 1, 2, 3. In case of integer order n, this function is defined as
Nn(x) = lim

p→n
Np(x).

FIGURE B.4
Graphs of N0(x), N1(x) and N2(x).

For integer n
N−n(x) = (−1)

n
Nn(x). (B.24)

Other useful properties are that as x → 0 the functions Nn(x) diverge logarithmically; as
x→∞, Nn(x)→ 0, oscillating with decaying amplitude. At large x we have the asymptotic
form

Nn(x) ≈
√

2

πx
sin
(
x− nπ

2
− π

4

)
. (B.25)

B.3 Boundary Value Problems and Fourier-Bessel Series

In applications it is often necessary to solve Bessel equations (B.1) accompanied by boundary
condition(s). For instance function y(x) defined on the interval [0, l] is finite at x = 0 and
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at x = l obeys a homogeneous boundary condition αy′(l) + βy(l) = 0 (notice, that starting
from here we will use letter x instead of r considering equation (B.1)). When α = 0 this
mixed boundary condition becomes the Dirichlet type, when β = 0 it is the Neumann type.
The Bessel equation and boundary condition(s) form the Sturm-Liouville problem, thus it
has the nontrivial solutions only for nonnegative discrete eigenvalues λk:

0 ≤ λ1 < λ2 < . . . < λk < . . . . (B.26)

The corresponding eigenfunctions are:

Jp

(√
λ1x

)
, Jp

(√
λ2x

)
, . . ., Jp

(√
λkx

)
, . . . (B.27)

(if function y(x) has not to be finite at x = 0, we can also consider the set of eigenfunctions
Np
(√
λkx

)
). The boundary condition at x = l gives

α
√
λ J ′p

(√
λl
)

+ βJp

(√
λl
)

= 0.

Setting
√
λl ≡ µ we obtain a transcendental equation for µ:

αµJ ′p(µ) + βlJp(µ) = 0, (B.28)

which has an infinite number of roots which we label as µ
(p)
k . From there the eigenvalues

are λk = (µk/l)
2
; we see that we need only positive roots, µ

(n)
m , because negative roots do

not give new values of λk.

For example, for the Dirichlet problem µ
(p)
k are the positive roots of the Bessel function

Jp(x).

Thus, for fixed p we have the set of eigenfunctions (index p in µ
(p)
k is dropped)

Jp

(µ1

l
x
)
, Jp

(µ2

l
x
)
, . . . , Jp

(µk
l
x
)
, . . . . (B.29)

As follows from the Sturm-Liouville theory, these functions form a complete set and are
pair-wise orthogonal (with weight x ) on the interval [0, l]:∫ l

0

Jp

(µk
l
x
)
Jp

(µj
l
x
)
xdx = 0, i 6= j. (B.30)

A Fourier series expansion (or generalized Fourier series) of an arbitrary function f(x)
using the set of functions (B.29) is called Fourier-Bessel series and is given by the expression

f(x) =
∞∑
k=0

ckJp

(µk
l
x
)
. (B.31)

The orthogonality property allows us to find the coefficients of this series. We multiply
Equation (B.31) by Jp

(
µk
l x
)

and integrate term by term with weight x. This gives an
expression for the coefficient as

ck =

∫ l

0

f (x) Jp

(µk
l
x
)
xdx∫ l

0

x
[
Jp

(µk
l
x
)]2

dx

. (B.32)
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The squared norm ‖Rpk‖2 =
∫ l

0
xJ2

p

(
µ
(p)
k

l x

)
dx is:

1) For the Dirichlet boundary condition α = 0 and β = 1, in which case eigenvalues are
obtained from the equation

Jp(µ) = 0

and we have

‖Rpk‖2 =
l2

2

[
J ′p

(
µ

(p)
k

)]2
. (B.33)

2) For the Neumann boundary condition α = 1 and β = 0, in which case eigenvalues are
obtained from the equation

J ′p(µ) = 0

and we have

‖Rpk‖2 =
l2

2
(
µ

(p)
k

)2

[(
µ

(p)
k

)2

− p2

]
J2
p

(
µ

(p)
k

)
. (B.34)

3) For the mixed boundary condition α = 1 and β = h, in which case eigenvalues are
obtained from the equation

µJ ′p(µ) + hlJp(µ) = 0

and we have

‖Rpk‖2 =
l2

2

1 +
l2h2 − p2(
µ

(p)
k

)2

 J2
p

(
µ

(p)
k

)
. (B.35)

In Chapters 7-9 we use solutions of different BVP in the form

V (1)
nm = Jn

(
µ

(n)
m

l
r

)
cosnϕ, V (2)

nm = Jn

(
µ

(n)
m

l
r

)
sinnϕ.

Clearly, ||V (1,2)
nm ||2 = σnπ ‖Rnm‖2, where σn = 2 for n = 0 and σn = 1 for n 6= 0.

The completeness of the set of functions Jp
(
µk
l x
)

on the interval (0, l) means that for
any square integrable on [0, l] function f(x) the following is true:∫ l

0

xf2(x)dx =
∑
k

∥∥∥Jp (µk
l
x
)∥∥∥ 2

c2k. (B.36)

This is Parseval’s equality for the Fourier-Bessel series. It has the same significance of
completeness as in the case of the trigonometric Fourier series with sines and cosines as the
basis functions where the weight function equals one instead of x as in the Bessel series.

Regarding the convergence of the series (B.31), we note that the sequence of the partial
sums of the series, Sn(x), converges on the interval (0, l) on average (i.e. in the mean) to
f(x) (with weight x ), which may be written as∫ l

0

[f(x)− Sn(x)]
2
xdx→ 0, if n→∞.

This property is true for any function f(x) from the class of piecewise-continuous func-
tions because the orthogonal set of functions (B.29) is complete on the interval [0, l]. For
such functions, f(x), the series (B.31) converges absolutely and uniformly. We present the
following theorem without the proof which states a somewhat stronger result about the
convergence of the series in Equation (B.31) than convergence in the mean:
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Theorem

If the function f(x) is piecewise-continuous on the interval (0, l), then the Fourier-
Bessel series converges to f(x) at the points where the function f(x) is continuous,
and to

1

2
[f(x0 + 0) + f(x0 − 0)] ,

if x0 is a point of finite discontinuity of the function f(x).

Below we consider several examples of the expansion of functions into the Fourier-Bessel
series using the functions Jp(x).

Example B.1 Let us expand the function f(x) = A, A = const, in a series using the Bessel

functions Xk(x) = J0

(
µ

(0)
k x/l

)
on the interval [0, l], where µ

(0)
k are the positive roots of

the equation J0(µ) = 0.

Solution. First, we calculate the norm, ‖Xk‖2 =
∥∥∥J0

(
µ

(0)
k x/l

)∥∥∥2

using the relation J ′0(x) =

−J1(x) to obtain ∥∥∥J0

(
µ

(0)
k x/l

)∥∥∥ 2

=
l2

2

[
J ′0

(
µ

(0)
k

)]2
=
l2

2
J2

1

(
µ

(0)
k

)
.

Using the substitution z = µ
(0)
k x/l and second of relations (B.14b) we may calculate the

integral∫ l

0

J0

(
µ

(0)
k

l
x

)
xdx =

l2(
µ

(0)
k

)2

∫ µ
(0)
k

0

J0 (z) zdz =
l2(

µ
(0)
k

)2 [zJ1(z)]
µ
(0)
k

0 =
l2

µ
(0)
k

J1

(
µ

(0)
k

)
.

For the coefficients ck of the expansion (B.31) we have

ck =

∫ l
0
A J0

(
µ

(0)
k x/l

)
xdx∥∥∥J0

(
µ

(0)
k x/l

)∥∥∥2 =
2A

l2
[
J1

(
µ

(0)
k

)]2 l2

µ
(0)
k

J1

(
µ

(0)
k

)
=

2A

µ
(0)
k J1

(
µ

(0)
k

) .
Thus, the expansion is

f(x) = 2A

∞∑
k=0

1

µ
(0)
k J1

(
µ

(0)
k

)J0

(
µ

(0)
k

l
x

)
.

Figure B.5 shows the function f(x) = 1 and the partial sum of its Fourier-Bessel series
when l = 1. From this figure it is seen that the series converges very slowly (see Figure
B.5d) and even when 50 terms are kept in the expansion (Figure B.5c) the difference from
f(x) = 1 can easily be seen. This is because at the endpoints of the interval the value of

the function f(x) = 1 and the functions J0

(
µ

(0)
k x

)
are different. The obtained expansion

does not converge well near the endpoints.

Example B.2 Let us modify the boundary condition in the previous problem. We expand
the function f(x) = A, A = const, given on the interval [0, l], in a Fourier series in Bessel

functions Xk(x) = J0

(
µ

(0)
k x/l

)
, where µ

(0)
k are now the positive roots of the equation

J
′

0(µ) = 0.
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FIGURE B.5
The function f(x) = 1 and the partial sum of its Fourier-Bessel series. The graph of f(x)
is shown in grey, the graph of the series by the black line. a) 11 terms are kept in the series
(N = 10); b) N = 20; c) N = 50; d) values of the coefficients ck of the series.

Solution. For Neumann boundary condition, J
′

0(µ) = 0, for k = 0 we have

µ
(0)
0 = 0, X0(x) = J0(0) = 1, ‖X0‖2 = ‖J0(0)‖2 =

l2

2
,

The first coefficient of the expansion (B.31) is

c0 =
A

‖J0(0)‖2
∫ l

0

J0(0)xdx =
2A

l2

∫ l

0

xdx = A.

The next coefficients ck can be evaluated by using the substitution z = µ
(0)
k x/l and using

the integration formula∫ l

0

J0

(
µ

(0)
k

l
x

)
xdx =

l2(
µ

(0)
k

)2 [zJ1(z)]
µ
(0)
k

0 =
l2

µ
(0)
k

J1

(
µ

(0)
k

)
.

Applying the relation J ′0(x) = −J1(x) and then recalling that J ′0

(
µ

(0)
k

)
= 0 we find

ck =
2A

µ
(0)
k

J1

(
µ

(0)
k

)
= 0, when k > 0.

Thus, we obtain simple expansion, f (x) = c0J0

(
µ

(0)
0 x/l

)
= A. In fact, this means that

the given function is actually one of the functions from the set of eigenfunctions used for
eigenfunction expansion.
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B.4 Spherical Bessel Functions

In this section we briefly consider spherical Bessel functions which are related to the solu-
tions of certain boundary value problems in spherical coordinates.

Consider the following equation:

d2R(x)

dx2
+

2

x

dR(x)

dx
+

[
1− l(l + 1)

x2

]
R(x) = 0. (B.37)

Parameter l takes discrete non-negative integer values: l = 0, 1, 2, . . . Equation (B.37) is
called the spherical Bessel equation. It differs from the cylindrical Bessel equation, Equa-
tion (B.4) by the coefficient 2 in the second term. Equation (B.37) can be transformed to a
Bessel cylindrical equation by the substitution R(x) = y(x)/

√
x.

Reading Exercise: Check that equation for y(x) is

d2y(x)

dx2
+

1

x

dy(x)

dx
+

[
1− (l + 1/2)2

x2

]
y(x) = 0. (B.38)

If we introduce s = l + 1/2 in Equation (B.38) we recognize this equation as the Bessel
equation which has the general solution

y(x) = C1Js(x) + C2Ns(x), (B.39)

where Js(x) and Ns(x) are (cylindrical) Bessel and Neumann functions. Because
s = l + 1/2 these functions are of half-integer order. Inverting the transformation we have
that the solution, R(x), to Equation (B.37) is

R(x) = C1

Jl+1/2(x)
√
x

+ C2

Nl+1/2(x)
√
x

. (B.40)

If we consider a regular at x = 0 solution, the coefficient C2 ≡ 0.
The spherical Bessel function jl(x) is defined to be a solution finite at x = 0 thus it is a

multiple of Jl+1/2(x)/
√
x. The coefficient of proportionality is usually chosen to be

√
π/2

so that

jl(x) =

√
π

2x
Jl+1/2(x). (B.41)

For l = 0, J1/2(x) =
√

2
πx sinx, thus

j0(x) =
sinx

x
. (B.42)

Analogously we may define the spherical Neumann functions as

nl(x) =

√
π

2x
Nl+1/2(x), (B.43)

from where (using Equation (B.22))

n0(x) =

√
π

2x
J−1/2(x) = −cosx

x
. (B.44)
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Expressions for the first few terms of the functions jl(x) and nl(x) are

j1(x) =
sinx

x2
− cosx

x
+ . . . , j2(x) =

(
3

x3
− 1

x

)
sinx− 3

x2
cosx+ . . . , (B.45)

n1(x) = −cosx

x2
− sinx

x
+ . . . , n2(x) = −

(
3

x3
− 1

x

)
cosx− 3

x2
sinx+ . . . (B.46)

The spherical Bessel functions with l = 0, 1, 2 are sketched in Figures B.6 and B.7.

FIGURE B.6
Graphs of functions j0(x), j1(x) and j2(x).

FIGURE B.7
Graphs of functions n0(x), n1(x) and n2(x).

The following recurrence relations are valid (here the symbol f is written to stand for j
or n):

fl−1(x) + fl+1(x) = (2l + 1)x−1fl(x), (B.47)

lfl−1(x)− (l + 1)fl+1(x) = (2l + 1)
d

dx
fl(x). (B.48)
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Differentiation formulas:

d

dx

[
xl+1jl(x)

]
= xl+1jl−1(x),

d

dx

[
x−ljl(x)

]
= −x−1jl+1(x). (B.49)

Asymptotic values:

jl(x) ∼ 1

x
cos
[
x− π

2
(l + 1)

]
, nl(x) ∼ 1

x
sin
[
x− π

2
(l + 1)

]
as x→∞ (B.50)

(the last expression has good precision for x� l(l + 1)).

B.5 The Gamma Function

In this section we develop the essential properties of the Gamma function. One of the most
important applications of the Gamma function is that it allows us to find factorials of
positive numbers which are not integers. The gamma function is defined by the integral

Γ(x) =

∫ ∞
0

tx−1e−tdt, x > 0. (B.51)

Here x is an arbitrary, real, non-negative number. In the case that x is an integer and
x ≥ 2, the integral in Equation (B.51) can be evaluated by parts and we have, after the
substitution tx−1 = u, e−tdt = dv:

Γ(x) = tx−1e−t
∣∣∞
0

+ (x− 1)

∫ ∞
0

tx−2e−tdt = (x− 1)

∫ ∞
0

tx−2e−tdt. (B.52)

The obtained integral is equal to Γ(x− 1), i.e. we may write

Γ(x) = (x− 1)Γ(x− 1). (B.53)

Substituting into Equation (B.53) we have

Γ(x− 1) = (x− 2)Γ(x− 2),

Γ(x− 2) = (x− 3)Γ(x− 3),

etc., and thus we obtain the general expression

Γ(x) = (x− 1)(x− 2) . . .Γ(1), (B.54)

where

Γ(1) =

∫ ∞
0

e−tdt = 1. (B.55)

Substituting Equation (B.55) into Equation (B.54) we have

Γ(x) = (x− 1)! for x = 2, 3, . . . . (B.56)

We derived Equation (B.56) for integer values x ≥ 2, but it is possible to generalize it
to define factorials of any numbers. First, we verify that Equation (B.56) is valid for x = 1.
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Let x = 1 in Equation (B.56) in which case we have Γ(1) = 0! = 1 which does agree with
Equation (B.55). Thus, for integer values of the argument, n = 1, 2, 3, . . .

Γ(1) = 1, Γ(2) = 1, . . . ,Γ(n) = (n− 1)! (B.57)

Now consider non-integer values of x. For x = 1/2, taking into account definition (B.51)
and with the substitution t = z2, we obtain

Γ(1/2) =

∫ ∞
0

t−1/2e−tdt = 2

∫ ∞
0

e−z
2

dz =
√
π. (B.58)

Now using Equation (B.53), we find

Γ(3/2) = (1/2)Γ(1/2) =
√
π/2. (B.59)

Reading Exercise: Show that for any integer n ≥ 1,

Γ

(
n+

1

2

)
=

1 · 3 · 5 · . . . (2n− 1)

2n
Γ

(
1

2

)
. (B.60)

We can also generalize definition (B.51) to negative values of x using Equation (B.52).
First replace x by x+ 1 which gives

Γ(x) =
Γ(x+ 1)

x
. (B.61)

We may use this equation to find, for example, Γ(−1/2) in the following way:

Γ

(
−1

2

)
=

Γ(1/2)

−1/2
= −2

√
π. (B.62)

It is clear from this that using Equations (B.51) and (B.62) we can find a value of Γ(x) for
all values of x except 0 and negative integers.

The function Γ(x) diverges at x = 0 as is seen from Equation (B.51). Then, from
Equation (B.61) we see that Γ(−1) is not defined because it involves Γ(0). Thus, Γ(x) does
not exist for negative integer values of x. From Equation (B.61) it is obvious (taking into
account that Γ(1) = 1) that at all these values of x the function Γ(x) has simple poles. A
graph of Γ(x) is plotted in Figure B.8. Table B.3 contains the values of Gamma function
for interval [1, 2].

Equation (B.61) allows us to find the value of Γ(x) for any non-negative integer x using
the value of Γ(x) on the interval 1 ≤ x ≤ 2. For example, Γ(3.4) = 3.4 · Γ(2.4) = 3.4 · 2.4 ·
Γ(1.4). Based on this fact, a table of values for Γ(x) only need include the interval [1, 2] as
values of x. The minimum value of Γ(x) is reached at x = 1.46116321 . . .

Equation (B.57), which is now valid for all non-negative integer values of x, can be
written as

Γ(x+ 1) = x! (B.63)

On the other hand, from Equation (B.51) we have

Γ(x+ 1) =

∫ ∞
0

txe−tdt. (B.64)

The integrand txe−t has a sharp peak at t = x that allows us to obtain a famous approx-
imation formula, known as Stirling’s approximation, for x ! which works very well for large
x :

x! ∼ (2πx)1/2xxe−x. (B.65)

This formula agrees very well with the precise value of x ! even for values of x which are not
very large. For instance, for x = 10 the relative error of Equation (B.65) is less than 0.8%.
Most of the applications of Equation (B.65) belong to statistical physics where it is often
necessary to evaluate factorials of very large numbers.
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FIGURE B.8
Graph of the Gamma function, Γ(x).

TABLE B.3
Values of Γ(x) for x ∈ [1, 2].

x Γ(x) x Γ(x) x Γ(x)

1 1 1.35 0.8911514420 1.7 0.9086387329
1.05 0.9735042656 1.4 0.8872638175 1.75 0.9190625268
1.1 0.9513507699 1.45 0.8856613803 1.8 0.9313837710
1.15 0.9330409311 1.5 0.8862269255 1.85 0.9456111764
1.2 0.9181687424 1.55 0.8888683478 1.9 0.9617658319
1.25 0.9064024771 1.6 0.8935153493 1.95 0.9798806513
1.3 0.8974706963 1.65 0.9001168163 2 1

B.6 Legendre Equation and Legendre Polynomials

In applications one often encounters an eigenvalue problem containing a second order linear
homogeneous differential equation(

1− x2
)
y′′ − 2xy′ + λy = 0, − 1 ≤ x ≤ 1, (B.66)

where λ is a real parameter. Equation (B.66) can be rewritten in Sturm-Liouville form given
by

d

dx

[(
1− x2

) dy
dx

]
+ λy = 0, −1 ≤ x ≤ 1 (B.67)

and is called the Legendre equation. Such an equation frequently arises after a separation of
variables procedure in spherical coordinates (in those problems the variable x is x = cos θ,
where θ is a meridian angle) in many problems of mathematical physics. Prominent examples
include heat conduction in a spherical domain, vibrations of spherical solids and shells as
well as boundary value problems for the electric potential in spherical coordinates (see
[7, 8]).
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Because this problem is a particular example of a Sturm-Liouville problem we can expect
that the eigenvalues are nonnegative real discrete λn, and the eigenfunctions corresponding
to different eigenvalues are orthogonal on the interval [−1, 1] with the weight r(x) = 1:∫ 1

−1

yn(x)ym(x)dx = 0, n 6= m. (B.68)

Let us solve Equation (B.67) on the interval x ∈ [−1, 1] assuming that the function y(x)
is finite at the points x = −1 and x = 1. Let us search for a solution in the form of a power
series in x:

y(x) =
∞∑
n=0

anx
n. (B.69)

Substitution of Equation (B.69) into Equation (B.67) results in the following equality:

∞∑
n=2

n(n− 1)anx
n−2 −

∞∑
n=2

n(n− 1)anx
n −

∞∑
n=2

2nanx
n + λ

∞∑
n=2

anx
n = 0.

Changing the index of summations in the first term from n to n+ 2 to yield

∞∑
n=0

(n+ 2)(n+ 1)an+2x
n

allows us to group all the terms with n ≥ 2 leaving the terms with n = 0 and n = 1 which
we write separately and we have

(6a3 − 2a1 + λa1)x+ 2a2 + λa0

+
∞∑
n=2

[
(n+ 2) (n+ 1) an+2 −

(
n2 + n− λ

)
an
]
xn = 0.

By setting coefficients of each power of x to zero we obtain an infinite system of equations
for the coefficients an:

n = 0 2a2 + λa0 = 0, (B.70)

n = 1 6a3 − 2a1 + λa1 = 0, (B.71)

n ≥ 2 (n+ 2) (n+ 1) an+2 −
(
n2 + n− λ

)
an = 0. (B.72)

Equation (B.72) is the recurrence formula for coefficients.
From Equation (B.70) we have

a2 = −λ
2
a0. (B.73)

Using Equations (B.73) and (B.72) we obtain

a4 =
6− λ
3 · 4

a2 =
−λ (6− λ)

4!
a0,

a6 =
20− λ
5 · 6

a4 =
−λ (6− λ) (20− λ)

6!
a0,

etc. Each coefficient a2n with even index is multiplied by a0 and depends on n and the
parameter λ.
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Similarly let us proceed with the odd terms, a2k+1. From Equation (B.71) we have

a3 =
2− λ

6
a1 =

2− λ
3!

a1.

Then from the recurrence formula (B.72) we obtain

a5 =
12− λ
4 · 5

a3 =
(2− λ) (12− λ)

5!
a1,

a7 =
30− λ
6 · 7

a5 =
(2− λ) (12− λ) (30− λ)

7!
a1,

etc. Each coefficient, a2k+1, with odd index is multiplied by a1 and depends on n and λ.
Substituting the obtained coefficients in Equation (B.69) we have

y(x) =
∞∑
n=0

anx
n = a0

[
1− λ

2
x2 − λ (6− λ)

4!
x4 − . . .

]
+ a1

[
x+

2− λ
3!

x3 +
(2− λ) (12− λ)

5!
x5 + . . .

]
. (B.74)

In Equation (B.74) there are two sums, one of which contains coefficients with even indexes
and another with odd indexes. As a result, we obtain two linearly independent solutions of
Equation (B.67); one contains even powers of x, the other odd:

y(1)(x) =
∞∑
n=0

a2nx
2n = a0

[
1− λ

2
x2 − λ (6− λ)

4!
x4 − . . .

]
, (B.75)

y(2)(x) =
∞∑
n=0

a2n+1x
2n+1 = a1

[
x+

2− λ
3!

x3 +
(2− λ) (12− λ)

5!
x5 + . . .

]
. (B.76)

Now from the recurrence relation (B.72) for the coefficients,

an+2 =

(
n2 + n− λ

)
(n+ 2) (n+ 1)

an, (B.77)

we can state an important fact. The series in Equation (B.69) converges on an open interval

−1 < x < 1, as can be seen from a ratio test, lim
n→∞

∣∣∣an+2x
n+2

anxn

∣∣∣ = x2, but diverges at

the points x = ±1. Therefore, this series cannot be used as an acceptable solution of the
differential equation on the entire interval −1 ≤ x ≤ 1 unless it terminates as a polynomial
with a finite number of terms. This can occur if the numerator in Equation (B.77) is zero
for some index value, nmax, such that

λ = nmax (nmax + 1) .

This gives anmax+2 = 0 and consequently anmax+4 = 0, anmax+6 = 0, . . . thus y(x) will
contain a finite number of terms and thus turn out to be a polynomial of degree nmax. In
order not to overcomplicate the notation, from here on we will denote nmax as n. We may
conclude from this discussion that λ can take only nonnegative integer values:

λ = n(n+ 1). (B.78)

Let us consider several particular cases. If n = 0 (which means that the highest degree
of the polynomial is 0), a0 6= 0 and a2 = 0, a4 = 0, etc. The value of λ for this case is
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λ = 0, and we have y(1)(x) = a0. If n = 1, a1 6= 0 and a3 = a5 = . . . = 0 then λ = 2
and y(2)(x) = a1x. If n = 2, the highest degree of the polynomial is 2; we have a2 6= 0,
a4 = a6 = . . . = 0, λ = 6 and from the recurrence relation we obtain a2 = −3a0. This
results in y(1)(x) = a0

(
1− 3x2

)
. If n = 3, a3 6= 0 and a5 = a7 = . . . = 0, λ = 12 and from

the recurrence relation we obtain a3 = −5/3a1 and as the result, y(2)(x) = a1

(
1− 5x3/3

)
.

Constants a0 and a1 remain arbitrary unless we impose some additional requirement. A
convenient requirement is that the solutions (the polynomials) obtained in this way should
have the value 1 when x = 1.

The polynomials obtained above are denoted as Pn(x) and called the Legendre polyno-
mials. The first few, which we derived above, are

P0(x) = 1, P1(x) = x, P2(x) =
1

2

(
3x2 − 1

)
, P3(x) =

1

2

(
5x3 − 3x

)
. (B.79)

Let us list two more (which the reader may derive as a Reading Exercise using the above
relationships):

P4 (x) =
1

8

(
35x4 − 30x2 + 3

)
, P5 (x) =

1

8

(
63x5 − 70x3 + 15x

)
. (B.80)

Reading Exercise: Obtain Pn(x) for n = 6, 7.
Reading Exercise: Show by direct substitution that P2(x) and P3(x) satisfy Equation (B.67).

As we see, Pn(x) are even functions for even values of n, and odd functions for odd n.
The functions y(1)(x) and y(2)(x), bounded on the closed interval −1 ≤ x ≤ 1, are

y(1)(x) = P2n(x), y(2)(x) = P2n+1(x). (B.81)

Rodrigues’ formula allows us to calculate the Legendre polynomials:

Pn (x) =
1

2nn!

dn

dxn
(
x2 − 1

)n
(B.82)

(here a zero-order derivative means the function itself).
Reading Exercise: Using Rodrigues’ formula show that

Pn(−x) = (−1)nPn(x), (B.83)

Pn(−1) = (−1)n. (B.84)

Let us state few more useful properties of Legendre polynomials:

Pn(1) = 1, P2n+1(0) = 0, P2n(0) = (−1)n
1 · 3 · . . . · (2n− 1)

2 · 4 · . . . · 2n
. (B.85)

The Legendre polynomial Pn(x) has n real and simple (i.e. not repeated) roots, all lying
in the interval −1 < x < 1. Zeroes of the polynomials Pn(x) and Pn+1(x) alternate as x
increases. In Figure B.9 the first four polynomials, Pn(x), are shown and their properties,
as listed in Equations (B.82) through (B.84), are reflected in these graphs.
The following recurrence formula relates three polynomials

(n+ 1)Pn+1(x)− (2n+ 1)xPn(x) + nPn−1(x) = 0. (B.86)

This formula gives a simple (and the most practical) way to obtain the Legendre polyno-
mials of any order, one by one, starting with P0(x) = 1 and P1(x) = x.
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FIGURE B.9
First four polynomials, Pn(x).

The following recurrence relations for Legendre polynomials are often useful:

P ′n−1(x)− xP ′n(x) + nPn(x) = 0, (B.87)

P ′n(x)− xP ′n−1(x)− nPn−1(x) = 0. (B.88)

To summarize, the solution of the Sturm-Liouville problem for Equation (B.67) with
boundary conditions stating that the solution is bounded on the closed interval −1 ≤ x ≤ 1
is a set of Legendre polynomials, Pn(x), which are the eigenfunctions of the Sturm-Liouville
operator. The eigenvalues are λ = n(n + 1), n = 0, 1, 2, . . . As a solution of the Sturm-
Liouville problem, the Legendre polynomials, Pn(x), form a complete orthogonal set of
functions on the closed interval [−1, 1], a property we will find very useful in the applications
considered below.

If the points x = ±1 are excluded from a domain the solution in the form of an infinite
series is also acceptable. In this case logarithmically diverges at x = ±1 functions Qn(x)
are also the solutions of Legendre equation (for details see books [7, 8]).

B.7 Fourier-Legendre Series in Legendre Polynomials

The Legendre polynomials are orthogonal on the interval [−1, 1]:∫ 1

−1

Pn(x)Pm(x)dx = 0, m 6= n. (B.89)

The norm squared of Legendre polynomials are (see [7, 8])

‖Pn‖2 =

∫ 1

−1

P 2
n(x)dx =

2

2n+ 1
. (B.90)
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Equations (B.89) and (B.92) can be combined and written as∫ 1

−1

Pn(x)Pm(x)dx =


0, m 6= n,

2

2n+ 1
, m = n.

(B.91)

The Legendre polynomials form a complete set of functions on the interval [−1, 1], thus
{Pn(x)}, n = 0, 1, 2, . . . provide a basis for an eigenfunction expansion for functions f(x),
bounded on the interval [−1, 1]:

f(x) =
∞∑
n=0

cnPn(x). (B.92)

Due to the orthogonality of the functions Pn(x) with different indexes, the coefficients cn
are

cn =
1

‖Pn‖2
∫ 1

−1

f(x)Pn(x)dx =
2n+ 1

2

∫ 1

−1

f(x)Pn(x)dx. (B.93)

As we know from general theory discussed previously in Chapter 4, the sequence of the
partial sums of this series, SN (x), converges on the interval (−1, 1) on average (i.e. in the
mean) to f(x), which may be written as∫ 1

−1

[f(x)− SN (x)]
2
dx→ 0 as N →∞. (B.94)

The function f(x) should be square integrable, that is we require that the integral∫ 1

−1
f2(x)dx exists.
For an important class of piecewise-continuous functions the series in Equation (B.92)

converges absolutely and uniformly. The following theorem states a stronger result about
the convergence of the series (B.92) than convergence in the mean.

Theorem

If the function f(x) is piecewise-continuous on the interval (−1, 1), then the Fourier-
Legendre series converges to f(x) at the points where the function f(x) is continuous
and

1

2
[f(x0 + 0) + f(x0 − 0)] (B.95)

if x0 is a point of finite discontinuity of the function f(x).

Because the Legendre polynomials form a complete set, for any square integrable function,
f(x), we have ∫ 1

−1

f2(x)dx =
∞∑
n=0

‖Pn‖2 c2n =
∞∑
n=0

2

2n+ 1
c2n. (B.96)

This is Parserval’s equality (the completeness equation) for the Fourier-Legendre series.
Clearly, for a partial sum on the right we have Bessel’s inequality∫ 1

−1

f2(x)dx ≥
N∑
n=0

2

2n+ 1
c2n. (B.97)

Below we consider several examples of the expansion of functions into the Fourier-
Legendre series. In some cases the coefficients can be found analytically; otherwise we may
calculate them numerically using Maple, Mathematica, or software from [7, 8].
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Example B.3 Expand function f(x) = A, A = const, in a Fourier-Legendre series in Pn(x)
on the interval −1 ≤ x ≤ 1.

Solution. The series is
A = c0P0(x) + c1P1(x) + . . . ,

where coefficients cn are

cn =
1

‖P 2
n(x)‖

∫ 1

−1

APn(x)dx =
(2n+ 1)A

2

∫ 1

−1

Pn(x)dx.

From this formula it is clear that the only nonzero coefficient is c0 = A.

Example B.4 Expand the function f(x) = x in a Fourier-Legendre series in Pn(x) on the
interval −1 ≤ x ≤ 1.

Solution. The series is
x = c0P0(x) + c1P1(x) + . . . ,

where cn are

cn =
1

‖P 2
n(x)‖

∫ 1

−1

xPn(x)dx =
2n+ 1

2

∫ 1

−1

xPn(x)dx.

Clearly the only nonzero coefficient is

c1 =
3

2

∫ 1

−1

xP1(x)dx =
3

2

∫ 1

−1

x2dx = 1.

As in the previous example this result is apparent because one of the polynomials, P1(x) in
this example, coincides with the given function, f(x) = x.

Example B.5 Expand the function f(x) given by

f(x) =

{
0, −1 < x < 0,

1, 0 < x < 1

in a Fourier-Legendre series.

Solution. The expansion f(x) =
∑∞
n=0 cnPn(x) has coefficients

cn =
1

‖Pn‖2
∫ 1

−1

f(x)Pn(x)dx =
2n+ 1

2

∫ 1

0

Pn(x)dx.

The first several are

c0 =
1

2

∫ 1

0

dx =
1

2
, c1 =

3

2

∫ 1

0

xdx =
3

4
, c2 =

5

2

∫ 1

0

1

2

(
3x2 − 1

)
dx = 0.

Continuing, we find for the given function f(x),

f(x) =
1

2
P0(x) +

3

4
P1(x)− 7

16
P3(x) +

11

32
P5(x) + . . . .

The series converges slowly because of discontinuity of a given function f(x) at point x = 0
(see Figure B.10).
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FIGURE B.10
The function f(x) and the partial sum of its Fourier-Legendre series. The graph of f(x) is
shown by the dashed line, and the graph of the series is shown by the solid line. (N +1)
terms are kept in the series. (a) (N = 5). (b) N = 15. (c) N = 50. (d) Values of the
coefficients cn of the series.

B.8 Associated Legendre Functions

In this section we consider a generalization of Equation (B.66):

(
1− x2

)
y′′ − 2xy′ +

(
λ− m2

1− x2

)
y = 0, −1 ≤ x ≤ 1, (B.98)

where m is a specified number. Like Equation (B.67), Equation (B.98) has nontrivial solu-
tions bounded at x = ±1 only for the values of λ = n(n + 1). In mathematical physics
problems the values of m are integer, also the values of m and n are related by inequal-
ity |m| ≤ n. Equation (B.98) is called the associated Legendre equation of order m. In
Sturm-Liouville form this equation can be written as

d

dx

[(
1− x2

) dy
dx

]
+

(
λ− m2

1− x2

)
y = 0, −1 ≤ x ≤ 1. (B.99)

To solve Equation (B.99) we can use a solution of Equation (B.67). First, we will discuss
positive values of m. Let us introduce a new function, z(x), to replace y(x) in Equation
(B.99) using the definition

y(x) =
(
1− x2

)m
2 z(x). (B.100)
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Substituting Equation (B.100) into Equation (B.99) we obtain(
1− x2

)
z′′ − 2(m+ 1)xz′ + [λ−m(m+ 1)] z = 0. (B.101)

If m = 0, Equation (B.101) reduces to Equation (7.1), thus its solutions are Legendre
polynomials Pn(x).

Let us solve Equation (B.101) expanding z(x) in a power series:

z =
∞∑
k=0

akx
k. (B.102)

With this we have

z′ =
∞∑
k=1

kakx
k−1 =

∞∑
k=0

kakx
k−1,

z′′ =
∞∑
k=2

k(k − 1)akx
k−2 =

∞∑
k=0

(k + 2)(k + 1)ak+2x
k,

x2z′′ =

∞∑
k=2

k(k − 1)akx
k =

∞∑
k=0

k(k − 1)akx
k.

Substituting these into Equation (B.101) we obtain

∞∑
k=0

{(k + 2)(k + 1)ak+2 + [λ− (k +m)(k +m+ 1)] ak}xk = 0.

Functions xk are linearly independent, thus the coefficients of each power of xk must be
zero which leads to a recurrence relation for coefficients ak:

ak+2 = −λ− (k +m)(k +m+ 1)

(k + 2)(k + 1)
ak. (B.103)

Reading Exercise: Using this recurrence relation check that the series in Equation (B.102)
converges for −1 < x < 1 and diverges at the ends of the intervals, x = ±1.

Below we will discuss only solutions which are regular on the closed interval, −1 ≤ x ≤ 1.
This means that the series (B.102) should terminate as a polynomial of some maximum
degree. Denoting this degree as q we obtain aq 6= 0 and aq+2 = 0 so that if λ = (q+m)(q+
m+ 1), q = 0, 1, . . . , then aq+2 = aq+4 = . . . = 0. Introducing n = q +m, because q and m
are nonnegative integers, we have n = 0, 1, 2, . . . and n ≥ m. Thus, we see that λ = n(n+1)
as in the case of Legendre polynomials. Clearly if n = 0 the value of m = 0, thus λ = 0 and
the function z(x) = a0 and y(x) = P0(x).

From the above discussion we obtain that z(x) is an even or odd polynomial of degree
(n−m):

z(x) = an−mx
n−m + an−m−2x

n−m−2 + . . .+

{
a0,

a1x .
(B.104)

Let us present several examples for m = 1. If n = 1, then q = 0, thus z(x) = a0. If n = 2
then q = 1, thus z(x) = a1x. If n = 3, q = 2 and z(x) = a0 + a2x

2, and from the recurrence
formula we have a2 = −5a0.
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Reading Exercises:

1. Find z(x) for m = 1 and n = 4.

2. Find z(x) for m = 2 and n = 4.

3. For all above examples check that (keeping the lowest coefficients arbitrary)
z(x) = dm

dxmPn(x).

Given that λ = n(n+1) we can obtain a solution of Equation (B.101) using the solution of
the Legendre equation, Equation (B.67). Let us differentiate Equation (B.101) with respect
to the variable x :(

1− x2
)

(z′)
′′

− 2 [(m+ 1) + 1]x (z′)
′

+ [n(n+ 1)− (m+ 1)(m+ 2)] z′ = 0. (B.105)

It is seen that if in this equation we replace z′ by z and (m+1) by m, the obtained equation
becomes Equation (B.101). In other words, if Pn(x) is a solution of Equation (B.101) for
m = 0, then P ′n(x) is a solution of Equation (B.105) for m = 1. Repeating this we obtain
that P ′′n (x) is a solution for m = 2, P ′′′n (x) is a solution for m = 3, etc. For arbitrary integer
m, where 0 ≤ m ≤ n, a solution of Equation (B.101) is the function dm

dxmPn(x), thus

z(x) =
dm

dxm
Pn(x), 0 ≤ m ≤ n. (B.106)

With Equations (B.105) and (B.100) we have a solution of Equation (B.99) given by

y(x) =
(
1− x2

)m
2
dm

dxm
Pn(x), 0 ≤ m ≤ n. (B.107)

The functions defined in Equation (B.106) are called the associated Legendre functions and
denoted as Pmn (x):

Pmn (x) =
(
1− x2

)m
2
dm

dxm
Pn(x). (B.108)

Notice that dm

dxmPn(x) is a polynomial of degree n−m, thus

Pmn (−x) = (−1)n−mPmn (x), (B.109)

which is referred to as the parity property. From Equation (B.107) it is directly seen that
Pmn (x) = 0 for |m| > n because in this case m-th order derivatives of polynomial Pn(x) of
degree n are equal to zero. The graphs of several Pmn (x) are plotted in Figure B.11.
Thus, from the above discussion, we see that Equation (B.98) has eigenvalues λ

m(m+ 1), (m+ 1)(m+ 2), (m+ 2)(m+ 3), (B.110)

with corresponding eigenfunctions, bounded on [−1, 1], are

Pmm (x), Pmm+1(x), Pmm+2(x), . . . (B.111)

Equation (B.98) (or (B.99)) does not change when the sign of m changes. Therefore, a
solution of Equation (B.51) for positive m is also a solution for negative values − |m|. Thus,

we can define Pmn (x) as equal to P
|m|
n (x) for −n ≤ m ≤ n.

P−|m|n (x) = P |m|n (x). (B.112)
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FIGURE B.11
Graphs of P 2

2 (x), P 2
3 (x), P 2

4 (x) and P 2
5 (x).

The first several associated Legendre functions P 1
n(x) for m = 1 are

P 1
1 (x) =

√
1− x2 · [P1(x)]

′
=
√

1− x2,

P 1
2 (x) =

√
1− x2 · [P2(x)]

′
=
√

1− x2 · 3x ,

P 1
3 (x) =

√
1− x2 · [P3(x)]

′
=
√

1− x2 · 3

2

(
5x2 − 1

)
and the first several associated Legendre functions, P 2

n(x), for m = 2 are

P 2
2 (x) =

(
1− x2

)
· [P2(x)]

′′
=
(
1− x2

)
· 3,

P 2
3 (x) =

(
1− x2

)
· [P3(x)]

′′
=
(
1− x2

)
· 15x,

P 2
4 (x) =

(
1− x2

)
· [P4(x)]

′′
=
(
1− x2

)
· 15

2

(
7x2 − 1

)
.

Associated Legendre function Pmn (x) has (n−m) simple (not repeating) real roots on the
interval −1 < x < 1.

The following recurrence formula is often useful:

(2n+ 1)xPmn (x)− (n−m+ 1)Pmn+1(x)− (n+m)Pmn−1(x) = 0. (B.113)

B.9 Fourier-Legendre Series in Associated Legendre Functions

Functions Pmn (x) for fixed value of |m| (the upper index of the associated Legendre func-
tions) and all possible values of the lower index,

Pmm (x), Pmm+1(x), Pmm+2(x), . . . (B.114)

form an orthogonal (with respect to the weight function r(x) = 1) and complete set of
functions on the interval [−1, 1]. In other words, for each value of m there is an orthogonal
and complete set of Equations (B.112). This follows from the fact that these functions are
also the solutions of a Sturm-Liouville problem. Thus the set of Equations (B.112) for any
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given m is a basis for an eigenfunction expansion for functions bounded on [−1, 1] and we
may write

f(x) =
∞∑
k=0

ckP
m
m+k(x). (B.115)

The formula for the coefficients ck (k = 0, 1, 2, . . .) follows from the orthogonality of the
functions in Equation (B.112):

ck =
1∥∥Pmm+k

∥∥2

∫ 1

−1

f(x)Pmm+k(x)dx =
[2(m+ k) + 1] k!

2 (2m+ k)!

∫ 1

−1

f(x)Pmm+k(x)dx. (B.116)

As previously, the sequence of the partial sums SN (x) of series (B.113) converges on the
interval (−1, 1) in the mean to the square integrable function f(x), i.e.∫ 1

−1

[f(x)− SN (x)]
2
dx→ 0 as N →∞.

For piecewise-continuous functions the same theorem as in the previous section is valid.

Example B.6 Expand the function

f(x) =

{
1 + x, − 1 ≤ x < 0,

1− x, 0 ≤ x ≤ 1

in terms of associated Legendre functions Pmn (x) of order m = 2.

Solution. The series is

f(x) = c0P
2
2 (x) + c1P

2
3 (x) + c2P

2
4 (x) + c3P

2
5 (x) . . . ,

where coefficients ck are

ck =
2k + 5

2

k!

(k + 4)!

[∫ 0

−1

(1 + x)P 2
k+2(x)dx+

∫ 1

0

(1− x)P 2
k+2(x)dx

]
.

Because f(x) is an even function of x, c1 = c3 = c5 = . . . = 0.
The first two coefficients with even index are

c0 =
5

48

[∫ 0

−1

(1 + x)3
(
1− x2

)
dx+

∫ 1

0

(1− x)3
(
1− x2

)
dx

]
=

25

96
,

c2 =
1

80

[∫ 0

−1

(1 + x)
15

2

(
1− x2

) (
7x2 − 1

)
dx+

∫ 1

0

(1− x)
15

2

(
1− x2

) (
7x2 − 1

)
dx

]
= − 1

80
.

The graph of f(x) and the partial sum of respective Fourier-Legendre series is shown on
Figure B.12.

B.10 Airy Functions

The Airy functions are the particular solution of the equation (Airy equation):

y′′ − xy = 0.
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FIGURE B.12
The function f(x) and the partial sum of its Fourier-Legendre series in terms of associated
Legendre functions P 2

n(x). a) The graph of f(x) is shown by the dashed line, the graph of
the partial sum with N = 10 terms of series by the solid line; b) values of the coefficients
ck of the series.

This simple equation has a turning point where the character of the solution changes from
oscillatory to exponential.

There are Airy functions of the first kind, Ai(x), and the second kind, Bi(x); when
x → −∞ both oscillate (with equal decaying amplitude, the phase shift between them is
π/2, see Figure B.13). For x→ +∞, function Ai(x)exponentially decays and function Bi(x)
exponentially increases.

For real x functions Ai(x) and Bi(x)can be presented by the integrals

Ai(x) =
1

π

∫ ∞
0

cos

(
t3

3
+ xt

)
dt,

Bi(x) =
1

π

∫ ∞
0

[
exp

(
− t

3

3
+ xt

)
+ sin

(
t3

3
+ xt

)]
dt.

This can be easily proven - differentiating these integrals we obtain the Airy equation in
both cases.

FIGURE B.13
Functions Ai(x) (black) and Bi(x) (gray).
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Relation to Bessel functions of different kinds

For x > 0 the Airy functions are related to modified Bessel functions:

Ai(x) =
1

π

√
1

3
xK1/3

(
2

3
x3/2

)
,

Bi(x) =

√
1

3
x

[
I1/3

(
2

3
x3/2

)
+ I−1/3

(
2

3
x3/2

)]
,

where I±1/3 and K1/3 are solutions of the equation x2y′′ + xy′ −
(
x2 + 1/9

)
y = 0.

For x < 0 the Airy functions are related to Bessel functions:

Ai(−x) =
1

3

√
x

[
J1/3

(
2

3
x3/2

)
+ J−1/3

(
2

3
x3/2

)]
,

Bi(−x) =

√
1

3
x

[
J−1/3

(
2

3
x3/2

)
− J1/3

(
2

3
x3/2

)]
,

where J±1/3 are solutions of the equation x2y′′ + xy′ −
(
x2 + 1/9

)
y = 0.

Problems

Bessel Equation

1. Find the eigenfunctions of the Sturm-Liouville problems for the Bessel equation
on [0, l] assuming that function y(x) is finite at x = 0 – this a boundary condition
at x = 0. Equations below are the same as Equation (B.1) where x is used for r.

(a) x2y′′ + xy′ + (λx2 − 1)y = 0, y(1) = 0;

(b) x2y′′ + xy′ + (λx2 − 4)y = 0, y(1) = 0;

(c) x2y′′ + xy′ + λx2y = 0, y′(2) = 0;

(d) x2y′′ + xy′ + (λx2 − 9)y = 0, y(3) + 2y′(3) = 0.

2. Expand the function f(x), given on the interval [0, 1], in a Fourier series in Bessel

functions of the first kind, Xk(x) = J0 (µkx), where µ
(0)
k are positive roots of the

equation J0 (µ) = 0 (in Problems 2 through 8 coefficients of expansion you can
find with Maple, Mathematica, or with the software from books [7, 8]), if:

(a) f(x) = sinπx;

(b) f(x) = x2;

(c) f(x) = sin2 πx;

(d) f(x) = 1− x2;

(e) f(x) = cos
πx

2
.

3. Expand the function f(x), given on the interval [0, 1], in a Fourier series in

Bessel functions Xk(x) = J1 (µkx), where µ
(1)
k are positive roots of the equation

J1(µ) = 0, if:

(a) f(x) = x;

(b) f(x) = sinπx;

(c) f(x) = sin2 πx;

(d) f(x) = x(1− x);
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(e) f(x) = x(1− x2).

4. Expand the functionf(x), given on the interval [0, 1], in a Fourier series in Bessel

functions Xk(x) = J0 (µkx), where µ
(0)
k are positive roots of the equation J ′0(µ) =

0, if:

(a) f(x) = x(1− x);

(b) f(x) = x(1− x3);

(c) f(x) = x(1− x2);

(d) f(x) = x3.

5. Expand the function

f(x) = A

(
1− x2

l2

)
, A = const,

given on the interval [0, l], in Fourier series in Bessel functions Xk(x) =

J0(µ
(0)
k x/l), where µ

(0)
k are positive roots of the equation J0 (µ) = 0.

6. Expand the function
f(x) = Ax, A = const,

given on the interval [0, l], in a Fourier series in Bessel functions Xk(x) =

J1(µ
(1)
k x/l), where µ

(1)
k are positive roots of the equation J ′1 (µ) = 0.

7. Expand the function
f(x) = Ax2, A = const,

given on the interval [0, l], in Fourier series in Bessel functions of the first kind

Xk(x) = J0(µ
(0)
k x/l), where µ

(0)
k are positive roots of the equation J ′0 (µ) = 0.

8. Expand the function

f(x) =

{
x2, 0 ≤ x < 1,

x, 1 ≤ x < 2,

given on the interval [0, 2], in Fourier series in Bessel functions of the first kind

Xk(x) = J2

(
µ

(2)
k x/l

)
(l = 2), where µ

(2)
k are positive roots of the equation

µJ ′2(µ) + hlJ2(µ) = 0.

Fourier-Legendre functions

For each of Problems 1 through 8 expand the function f(x) in the Fourier-Legendre functions
Pmn (x) on [−1, 1]. Do expansion for a) m = 0 – in this case the functions Pmn (x) are the
Legendre polynomials Pn(x); b) for m = 1; c) for m = 2.

Write the formulas for coefficients of the series expansion and the expression for the
Fourier-Legendre series. If the integrals in the coefficients are not easy to evaluate, try to
evaluate them numerically.

Using Maple or Mathematica, or software from books [7, 8], obtain the pictures of several
orthonomal functions Pmm+k(x), plot the graphs of the given function f(x) and of the partial
sums SN (x) and build the histograms of coefficients ck of the series.

1. f(x) = 2x− 1.

2. f(x) = 1− x2.
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3. f(x) =

{
−1, − 1 < x < 0,

1, 0 < x < 1.

4. f(x) =

{
0, − 1 < x < 0,

x, 0 < x < 1.

5. f(x) = cos
πx

2
for −1 ≤ x ≤ 1.

6. f(x) =

{
0, − 1 < x < 0,
√

1− x, 0 < x < 1.

7. f(x) = sinπx.

8. f(x) = ex.
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C

Sturm-Liouville Problem and Auxiliary Functions
for One and Two Dimensions

C.1 Eigenvalues and Eigenfunctions of 1D Sturm-Liouville
Problem for Different Types of Boundary Conditions

The one-dimensional Sturm-Liouville boundary value problem for eigenvalues and eigen-
functions is formulated as:

Find values of parameter λ for which there exist nontrivial (not identically equal to zero)
solutions of the boundary value problem:

X ′′ + λX = 0, 0 < x < l,

P1[X] ≡ α1X
′ + β1X|x=0 = 0, |α1|+ |β1| 6= 0,

P2[X] ≡ α2X
′ + β2X|x=l = 0, |α2|+ |β2| 6= 0.

The eigenfunctions of this Sturm-Liouville problem are

Xn(x) =
1√

α2
1λn + β2

1

[
α1

√
λn cos

√
λnx− β1 sin

√
λnx

]
.

These eigenfunctions are orthogonal. Their square norms are

‖Xn‖2 =

∫ l

0

X2
n(x)dx =

1

2

[
l +

(β2α1 − β1α2)(λnα1α2 − β1β2)

(λnα2
1 + β2

1)(λnα2
2 + β2

2)

]
.

The eigenvalues are

λn =
(µn
l

)2

,

where µn is the nth root of the equation

tanµ =
(α1β2 − α2β1)lµ

µ2α1α2 + l2β1β2
.

Below we consider all possible cases (combinations) of boundary conditions.

1. Boundary conditions (α1 = α2 = 0, β1 = β2 = 1):{
X(0) = 0 − Dirichlet condition,

X(l) = 0 − Dirichlet condition.

Eigenvalues: λn =
[πn
l

]2
, n = 1, 2, . . . .,∞.

Eigenfunctions: Xn(x) = sin
πn

l
x, ||Xn||2 =

l

2
.

341
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2. Boundary conditions (α1 = 0, β1 = 1, α2 = 0, β2 = 1):{
X(0) = 0 − Dirichlet condition,

X ′(l) = 0 − Neumann condition.

Eigenvalues: λn =

[
π(2n+ 1)

2l

]2

, n = 0, 1, 2, . . . .,∞.

Eigenfunctions: Xn(x) = sin
π(2n+ 1)

2l
x, ||Xn||2 =

l

2
.

3. Boundary conditions (α1 = 0, β1 = 1, α2 = 1, β2 = h2):{
X(0) = 0 − Dirichlet condition,

X ′(l) + h2X(l) = 0 − mixed condition.

Eigenvalues: λn =
[µn
l

]2
, where µn is n-th root of the equation tanµ = − µ

h2l
,

n = 0, 1, 2, . . . .,∞.

Eigenfunctions: Xn(x) = sin
√
λnx, ||Xn||2 =

1

2

(
l +

h2

λn + h2
2

)
.

4. Boundary conditions (α1 = 1, β1 = 0, α2 = 0, β2 = 1):{
X ′(0) = 0 − Neumann condition,

X(l) = 0 − Dirichlet condition.

Eigenvalues: λn =

[
π(2n+ 1)

2l

]2

, n = 0, 1, 2, . . . .,∞.

Eigenfunctions: Xn(x) = cos
π(2n+ 1)

2l
x, ||Xn||2 =

l

2
.

5. Boundary conditions (α1 = α2 = 1, β1 = β2 = 0):{
X ′(0) = 0 − Neumann condition,

X ′(l) = 0 − Neumann condition.

Eigenvalues: λn =
[πn
l

]2
, n = 0, 1, 2, . . . .,∞.

Eigenfunctions: Xn(x) = cos
πn

l
x, ||Xn||2 =

{
l, n = 0

l/2, n > 0
.

6. Boundary conditions (α1 = 1, β1 = 0, α2 = 1, β2 = h2):{
X ′(0) = 0 − Neumann condition,

X ′(l) + h2X(l) = 0 − mixed condition.

Eigenvalues: λn =
[µn
l

]2
, where µn is n-th root of the equation tanµ =

h2l

µ
,

n = 0, 1, 2, . . . .,∞.

Eigenfunctions: Xn(x) = cos
√
λnx, ||Xn||2 =

1

2

(
l +

h2

λn + h2
2

)
.

7. Boundary conditions (α1 = 1, β1 = h1, α2 = 1, β2 = 0):{
X ′(0)− h1X(0) = 0 − mixed condition,

X ′(l) = 0 − Neumann condition.
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Eigenvalues: λn =
[µn
l

]2
, where µn is n-th root of the equation tanµ =

h1l

µ
,

n = 0, 1, 2, . . . .,∞.

Eigenfunctions: Xn(x) =
1√

λn + h2
1

[√
λn cos

√
λnx+ h1 sin

√
λnx

]
,

||Xn||2 =
1

2

(
l +

h1

λn + h2
1

)
.

8. Boundary conditions (α1 = 1, β1 = h1, α2 = 1, β2 = h2):{
X ′(0)− h1X(0) = 0 − mixed condition,

X ′(l) + h2X(l) = 0 − mixed condition.

Eigenvalues: λn =
[µn
l

]2
, where µn is n-th root of the equation

tanµ =
(h1 + h2)lµ

µ2 − h1h2l2
, n = 0, 1, 2, . . . .,∞.

Eigenfunctions: Xn(x) =
1√

λn + h2
1

[√
λn cos

√
λnx+ h1 sin

√
λnx

]
,

||Xn||2 =
1

2

(
l +

(h1 + h2)(λn + h1h2)

(λn + h2
1)(λn + h2

2)

)
.

C.2 Auxiliary Functions

1. Auxiliary Functions w(x, t) for 1D Hyperbolic and Parabolic Equations
In the case of nonhomogeneous boundary conditions

P1[u] ≡ α1
∂u

∂x
+ β1u

∣∣∣∣
x=0

= g1(t), |α1|+ |β1| 6= 0,

P2[u] ≡ α2
∂u

∂x
+ β2u

∣∣∣∣
x=l

= g2(t), |α2|+ |β2| 6= 0 (C.1)

the solution to the BVP can be expressed as the sum of two functions

u(x, t) = v(x, t) + w(x, t), (C.2)

where w(x, t) is an auxiliary function satisfying the boundary conditions and v(x, t) is a
solution of the boundary value problem with zero boundary conditions.

We seek an auxiliary function w(x, t) in a form

w(x, t) = g1(t)X(x) + g2(t)X(x), (C.3)

where X(x) and X(x) are polynomials of 1st or 2nd order. The coefficients of these polyno-
mials are adjusted to satisfy the boundary conditions.

Functions X(x) and X(x) should be chosen in such a way that

P1

[
X(0)

]
= 1, P2

[
X(l)

]
= 0,
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P1

[
X(0)

]
= 0, P2

[
X(l)

]
= 1.

If β1 6= 0 or β2 6= 0 then functions X(x) and X(x) are polynomials of the 1st order

X(x) = γ1 + δ1x, X(x) = γ2 + δ2x. (C.4)

Coefficients γ1, δ1,γ2,δ2 of these polynomials are defined uniquely and depend on the types
of boundary conditions:

γ1 =
α2 + β2l

β1β2l + β1α2 − β2α1
, δ1 =

−β2

β1β2l + β1α2 − β2α1
,

γ2 =
−α1

β1β2l + β1α2 − β2α1
, δ2 =

β1

β1β2l + β1α2 − β2α1
. (C.5)

If β1 = β2 = 0 then functions X(x) and X(x) are polynomials of the 2nd order

X(x) = x− x2

2l
, X(x) =

x2

2l
. (C.6)

Below we present auxiliary functions for different types of boundary conditions.

1. Boundary conditions:

{
u(0, t) = g1(t),

u(l, t) = g2(t).

Auxiliary function: w(x, t) =
[
1− x

l

]
· g1(t) +

x

l
· g2(t).

2. Boundary conditions:

{
u(0, t) = g1(t),

ux(l, t) = g2(t).

Auxiliary function: w(x, t) = g1(t) + xg2(t).

3. Boundary conditions:

{
u(0, t) = g1(t),

ux(l, t) + h2u(l, t) = g2(t).

Auxiliary function: w(x, t) =

[
1− h2

1 + h2l
x

]
· g1(t) +

x

1 + h2l
· g2(t).

4. Boundary conditions:

{
ux(0, t) = g1(t),

u(l, t) = g2(t).

Auxiliary function: w(x, t) = (x− l)g1(t) + g2(t).

5. Boundary conditions:

{
ux(0, t) = g1(t),

ux(l, t) = g2(t).

Auxiliary function: w(x, t) =

[
x− x2

2l

]
· g1(t) +

x2

2l
· g2(t).

6. Boundary conditions:

{
ux(0, t) = g1(t),

ux(l, t) + h2u(l, t) = g2(t).

Auxiliary function: w(x, t) =

[
x− 1 + h2l

h2

]
· g1(t) +

1

h2
· g2(t).
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7. Boundary conditions:

{
ux(0, t)− h1u(0, t) = g1(t),

u(l, t) = g2(t).

Auxiliary function: w(x, t) =
x− l

1 + h1l
· g1(t) +

1 + h1x

1 + h1l
· g2(t).

8. Boundary conditions

{
ux(0, t)− h1u(0, t) = g1(t),

ux(l, t) = g2(t).

Auxiliary function: w(x, t) = − 1

h1
· g1(t) +

[
x+

1

h1

]
· g2(t).

9. Boundary conditions

{
ux(0, t)− h1u(0, t) = g1(t),

ux(l, t) + h2u(l, t) = g2(t).

Auxiliary function: w(x, t) =
h2(x− l)− 1

h1 + h2 + h1h2l
· g1(t) +

1 + h1x

h1 + h2 + h1h2l
· g2(t).

2. Auxiliary Functions w(x, y) for Poisson Equation in Rectangular Domain

Consider the boundary value problem for Poisson equation with nonhomogeneous bound-
ary conditions

P1[u] ≡ α1
∂u

∂x
+ β1u

∣∣∣∣
x=0

= g1(y), P2[u] ≡ α2
∂u

∂x
+ β2u

∣∣∣∣
x=lx

= g2(y),

P3[u] ≡ α3
∂u

∂y
+ β3u

∣∣∣∣
y=0

= g3(x), P4[u] ≡ α4
∂u

∂y
+ β4u

∣∣∣∣
y=ly

= g4(x). (C.7)

The solution to the BVP can be expressed as the sum of two functions

u(x, y) = v(x, y) + w(x, y), (C.8)

where w(x, y) is an auxiliary function satisfying the boundary conditions and v(x, y) is a
solution of the boundary value problem with zero boundary conditions.

We seek an auxiliary function w(x, y, t) in a form

w(x, y, t) = g1(y)X + g2(y)X + g3(x)Y + g4(x)Y

+A ·XY +B ·XY + C·XY +D ·XY , (C.9)

where X(x), X(x) and Y (y), Y (y) are polynomials of 1st or 2nd order. The coefficients of
these polynomials are adjusted to satisfy the boundary conditions.

We will choose the functions
{
X, X

}
in such a way that the function X(x) satisfies

homogeneous boundary condition at x = lx and the function X(x) satisfies homogeneous
boundary condition at x = 0,

P2

[
X(lx)

]
= 0, P1

[
X(0)

]
= 0.

Also, it is convenient to normalize the functions X(x) and X(x) so that

P1

[
X(0)

]
= 1, P2

[
X(lx)

]
= 1.
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The final choice of functions {X, X} depends on the type of boundary conditions for the
function u(x, y).

Suppose β1 and β2 are not both zero. In this case we can search for X(x) and X(x) as
polynomials of the first order:

X(x) = γ1 + δ1x and X(x) = γ2 + δ2x. (C.10)

This choice yields the system of equations{
P1

[
X
]
≡ α1 Xx + β1X

∣∣
x=0

= β1γ1 + α1δ1 = 1,

P2

[
X
]
≡ α2 Xx + β2X

∣∣
x=lx

= β2γ1 + (α2 + β2lx) δ1 = 0,

and P1

[
X
]
≡ α1Xx +β1X

∣∣∣
x=0

= β1γ2 + α1δ2 = 0,

P2

[
X
]
≡ α2Xx +β2X

∣∣∣
x=lx

= β2γ2 + (α2 + β2lx) δ2 = 1.

From the above conditions we may find a unique solution for coefficients γ1, δ1, γ2, δ2:

γ1 =
α2 + β2lx

β1β2lx + β1α2 − β2α1
, δ1 =

−β2

β1β2lx + β1α2 − β2α1
,

γ2 =
−α1

β1β2lx + β1α2 − β2α1
, δ2 =

β1

β1β2lx + β1α2 − β2α1
. (C.11)

If β1 = β2 = 0 then functions X(x) and X(x) are polynomials of the 2nd order

X(x) = x− x2

2l
, X(x) =

x2

2l
. (C.12)

Similarly, we will choose the functions {Y , Y } in such a way that

P3

[
Y (0)

]
= 1, P3

[
Y (ly)

]
= 0,

P4

[
Y (0)

]
= 0, P4

[
Y (ly)

]
= 1.

If β3 6= 0 or β4 6= 0 then the functions Y (y) and Y (y) are polynomials of the 1st order and
we may write

Y (y) = γ3 + δ3y, Y (y) = γ4 + δ4y. (C.13)

The coefficients γ3, δ3, γ4, δ4 of these polynomials are defined uniquely and depend on the
types of boundary conditions:

γ3 =
α4 + β4ly

β3β4ly + β3α4 − β4α3
, δ3 =

−β4

β3β4ly + β3α4 − β4α3
,

γ4 =
−α3

β3β4ly + β3α4 − β4α3
, δ4 =

β3

β3β4ly + β3α4 − β4α3
. (C.14)

If β3 = β4 = 0, then Y (y) and Y (y) can be taken as polynomials of the second order:

Y (y) = y − y2

2ly
, Y (y) =

y2

2ly
. (C.15)

Coefficients A, B, C, and D of the auxiliary function w(x, y) are defined from the bound-
ary conditions:
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At the edge: x = 0: P1[w]x=0 = g1(y) + (P1[g3(0)] +A)Y + (P1[g4(0)] +B)Y ,

At the edge: x = lx: P2[w]x=lx = g2(y) + (P2[g3(lx)] + C)Y + (P2[g4(lx)] +D)Y ,

At the edge: y = 0: P3[w]y=0 = g3(x) + (P3[g1(0)] +A)X + (P3[g2(0)] + C)X,

At the edge: y = ly: P4[w]y=ly = g4(x) + (P4[g1(ly)] +B)X + (P4[g2(ly)] +D)X.

3. Auxiliary Functions, w(x,y, t), for 2D Hyperbolic or Parabolic Equations in
Rectangular Domain

Consider the boundary value problem for hyperbolic or parabolic equation with nonho-
mogeneous boundary conditions

P1[u] ≡ α1
∂u

∂x
+ β1u

∣∣∣∣
x=0

= g1(y, t), P2[u] ≡ α2
∂u

∂x
+ β2u

∣∣∣∣
x=lx

= g2(y, t),

P3[u] ≡ α3
∂u

∂y
+ β3u

∣∣∣∣
y=0

= g3(x, t), P4[u] ≡ α4
∂u

∂y
+ β4u

∣∣∣∣
y=ly

= g4(x, t). (C.16)

The solution to the boundary value problem can be expressed as the sum of two functions

u(x, y, t) = v(x, y, t) + w(x, y, t), (C.17)

where w(x, y, t) is an auxiliary function satisfying the boundary conditions (C.17) and
v(x, y, t) is a solution of the boundary value problem with zero boundary conditions.

We seek an auxiliary function w(x, y, t) in a form

w(x, y, t) = g1(y, t)X + g2(y, t)X + g3(x, t)Y + g4(x, t)Y

+A(t)XY +B(t)XY + C(t)XY +D(t)XY , (C.18)

where X(x), X(x) and Y (y), Y (y) are polynomials of 1st or 2nd order. The coefficients of
these polynomials are adjusted to satisfy the boundary conditions. Formulas (C.10)–(C.12)

are used to construct functions X(x), X(x), and formulas (C.13)–(C.15) – to construct

functions Y (y), Y (y).
Using these results we can find the coefficients A(t), B(t), C(t) and D(t) in the auxiliary

function w(x, y, t).
At the boundary x = 0 we have

P1[w]x=0 = g1(y, t) + (P1[g3(0, t)] +A)Y + (P1[g4(0, t)] +B)Y .

At the boundary x = lx we have

P2[w]x=lx = g2(y, t) + (P2[g3(lx, t)] + C)Y + (P2[g4(lx, t)] +D)Y .

At the boundary y = 0 we have

P3[w]y=0 = g3(x, t) + (P3[g1(0, t)] +A)X + (P3[g2(0, t)] + C)X.

At the boundary y = ly we have

P4[w]y=ly = g4(x, t) + (P4[g1(ly, t)] +B)X + (P4[g2(ly, t)] +D)X.

To simplify the above we may choose

A(t) = −P3[g1(y, t)]y=0, B(t) = −P4[g1(y, t)]y=ly ,

C(t) = −P3[g2(y, t)]y=0, D(t) = −P4[g2(y, t)]y=ly .
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D

The Sturm-Liouville Problem for Circular and
Rectangular Domains

D.1 The Sturm-Liouville Problem for a Circle

Let us consider the following Sturm-Liouville problem for a circle:

∇2u+ λy = 0, 0 ≤ r < l, 0 ≤ ϕ < 2π, (D.1)

α
∂u(r, ϕ)

∂r
+ βu(r, ϕ)

∣∣∣∣
r=l

= 0, (D.2)

u(r, ϕ) = u(r, ϕ+ 2π), |α|+ |β| 6= 0.

In polar coordinates, (r, ϕ), the Laplacian has the form

∇2u =
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2

∂2u

∂ϕ2
.

Separating the variables
u(r, ϕ) = R(r)Φ(ϕ) (D.3)

we obtain from Equation (D.1):

r ∂∂r
(
r ∂R∂r

)
+ λr2R

R(r)
≡ −Φ′′(ϕ)

Φ(ϕ)
= ν. (D.4)

For periodic in ϕ function Φ(ϕ) we have the following Sturm-Liouville problem:

Φ′′ + νΦ = 0, 0 ≤ ϕ < 2π,

Φ(ϕ) ≡ Φ(ϕ+ 2π).

Its solutions are

Φ = Φn(ϕ) =

{
cosnϕ,
sinnϕ,

ν = νn = n2, n = 0, 1, 2, . . . (D.5)

For each ν = n2 we have equation for R(r):

r
∂

∂r

(
r
∂R

∂r

)
+
(
λr2 − n2

)
R = 0, 0 ≤ r < l. (D.6)

Function R(r)should satisfy the boundary condition

α
∂R

∂r
+ βR

∣∣∣∣
r=l

= 0, |α|+ |β| 6= 0,

349
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which follows from Equation (D.2); also this function should be bounded r = 0:

|R(0)| <∞.

Therefore, we have the following Sturm-Liouville for R(r):

r2R′′(r) + rR′(r) +
(
λr2 − n2

)
R(r) = 0, 0 ≤ r < l. (D.7)

α
∂R

∂r
+ βR

∣∣∣∣
r=l

= 0, |α|+ |β| 6= 0, (D.8)

|R(0)| <∞. (D.9)

Equation (D.7) by a substitution x = r
√
λ becomes the Bessel equation of n-th order:

x2y′′ + xy′ +
(
x2 − n2

)
y = 0.

It has two particular solutions Jn(
√
λr) and Nn(

√
λr), but because the second one is

unbounded at r → 0 it has to be dropped for the internal problem, thus the eigenfunc-
tion of the BVP (D.7)-(D.9) is

Rn(r) = Jn

(√
λr
)
. (D.10)

From the homogeneous boundary condition given in Equation (D.8) we have

α
√
λ J ′n

(√
λl
)

+ βJn

(√
λl
)

= 0.

Setting
√
λl ≡ µ we obtain a transcendental equation defining µ

αµJ ′n(µ) + βlJn(µ) = 0, (D.11)

which has an infinite number of roots which we label as

µ
(n)
0 , µ

(n)
1 , µ

(n)
2 , . . .

The corresponding values of λ are thus

λnm =

(
µ

(n)
m

l

)2

, n,m = 0, 1, 2, . . . (D.12)

From here we see that we need only positive roots, µ
(n)
m , because negative roots do not give

new values of λnm.
The eigenfunctions are

Rnm(r) = Jn

(
µ

(n)
m

l
r

)
. (D.13)

The index m = 0 corresponds to the first root of Equation (D.11). (It should be noted that
very often the roots are labeled with the starting value m = 1 in the literature.).

Eigenfunctions Rnm(r) belonging to different eigenvalues λnm for some fixed value of n
are orthogonal with weight r : ∫ l

0

rRnm1
(r)Rnm2

(r)dr = 0, (D.14)
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or ∫ l

0

rJn

(
µ(n)
m1
r/l
)
Jn

(
µ(n)
m2
r/l
)
dr = 0 for m1 6= m2. (D.15)

Combining the results for the functions Φn(ϕ) andRnm(r) we see that for each eigenvalue
λnm there are two linearly independent eigenfunctions:

V (1)
nm(r, ϕ) = Jn

(
µ

(n)
m

l
r

)
cosnϕ and V (2)

nm(r, ϕ) = Jn

(
µ

(n)
m

l
r

)
sinnϕ. (D.16)

Since ∫ 2π

0

dϕ = 2π,

∫ 2π

0

cos2 nϕ dϕ = π,

∫ 2π

0

sin2 nφ dφ = π(n > 0)

the norms of the eigenfunctions V
(1)
nm(r, ϕ) and V

(2)
nm(r, ϕ) are∥∥∥V (1)

0m

∥∥∥2

= 2π ‖Rnm(r)‖2 ,
∥∥∥V (1)

nm

∥∥∥2

=
∥∥∥V (2)

nm

∥∥∥2

= π ‖Rnm(r)‖2 for n > 0. (D.17)

The squared norm ‖Rnm‖2 =
∫ l

0
rJ2
n

(
µ(n)
m

l r
)
dr is:

1) For the Dirichlet boundary condition α = 0 and β = 1, in which case eigenvalues
are obtained from the equation

Jn(µ) = 0

and we have

‖Rnm‖2 =
l2

2

[
J ′n

(
µ(n)
m

)]2
. (D.18)

2) For the Neumann boundary condition α = 1 and β = 0, in which case eigenvalues
are obtained from the equation

J ′n(µ) = 0

and we have

‖Rnm‖2 =
l2

2
(
µ

(n)
m

)2

[(
µ(n)
m

)2

− n2

]
J2
n

(
µ(n)
m

)
. (D.19)

3) For the mixed boundary condition α = 1 and β = h, in which case eigenvalues
are obtained from the equation

µJ ′n(µ) + hlJn(µ) = 0

and we have

‖Rnm‖2 =
l2

2
(
µ

(n)
m

)2

[(
µ(n)
m

)2

+ l2h2 − n2

]
J2
n

(
µ(n)
m

)
. (D.20)
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D.2 The Sturm-Liouville Problem for the Rectangle

Let us consider the following Sturm-Liouville problem for the rectangle:

Vxx(x, y) + Vyy(x, y) + λV (x, y) = 0, 0 < x < a, 0 < y < b, (D.21)

P1[V ] ≡ α1Vx + β1V |x=0 = 0, P2[V ] ≡ α2Vx + β2V |x=lx
= 0,

P3[V ] ≡ α3Vy + β3V |y=0 = 0, P4[V ] ≡ α4Vy + β4V |y=ly
= 0. (D.22)

To solve Equation (D.21) for V (x, y) we make the assumption that the variables are inde-
pendent and attempt to separate them using the substitution

V (x, y) = X(x)Y (y).

From here we obtain two separate one dimensional BVP:

X ′′(x) + λxX(x) = 0,

α1X
′(0) + β1X(0) = 0, α2X

′(lx) + β2X(lx) = 0 (D.23)

and

Y ′′(x) + λyY (y) = 0,

α3Y
′(0) + β3Y (0) = 0, α4Y

′(ly) + β4Y (ly) = 0, (D.24)

where
λx + λy = λ.

The boundary conditions for X(x) and Y (y) follow from the corresponding conditions for
the function V (x, y). For example, from the condition

α1Vx(0, y) + β1V (0, y) = α1X
′(0)Y (y) + β1X(0)Y (y)

= [α1X
′(0) + β1X(0)]Y (y) = 0

it follows (since Y (y) 6= 0) that

α1X
′(0) + β1X(0) = 0.

Solutions to Equations (D.23) and (D.24) (given in Appendix C) depend on the boundary
conditions and have the generic forms

X(x) = C1 cos
√
λxx+ C2 sin

√
λxx,

and
Y (y) = D1 cos

√
λyy +D2 sin

√
λyy.

Boundary conditions for problem (D.23) lead to the system for defining coefficients C1

and C2 
C1β1 + C2α1

√
λx = 0,

C1

[
−α2

√
λx sin

√
λxlx + β2 cos

√
λxlx

]
+C2

[
α2

√
λx cos

√
λxlx + β2 sin

√
λxlx

]
= 0.

(D.25)
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This system of linear homogeneous algebraic equations has a nontrivial solution only when
its determinant equals zero

(α1α2λx + β1β2) tan
√
λxx−

√
λx (α1β2 − β1α2) = 0.

It is easy to determine (for instance by using graphical methods) that this equation has an
infinite number of roots {λxn}∞1 , which conforms to the general Sturm-Liouville theory. For
each root λxn, we obtain a nonzero solution of Equations (D.25)

C1 = C
α1

√
λxn√

λxnα2
1 + β2

1

, C2 = −C β1√
λxnα2

1 + β2
1

,

where C 6= 0 is an arbitrary constant.
Similarly boundary conditions for problem (D.24) lead to the system for defining coef-

ficients D1 and D2:
D1β3 +D2α3

√
λy = 0,

D1

[
−α4

√
λy sin

√
λyly + β4 cos

√
λyly

]
+D2

[
α4

√
λy cos

√
λyly + β4 sin

√
λyly

]
= 0.

(D.26)

This system of linear homogeneous algebraic equations has a nontrivial solution only when
its determinant equals zero:

(α3α4λy + β3β4) tan
√
λyy −

√
λy (α3β4 − β3α4) = 0.

This equation has an infinite number of roots {λym}∞1 . For each root λym we obtain a
nonzero solution of Equations (D.26):

D1 = D
α3

√
λym√

λymα2
3 + β2

3

, D2 = −D β3√
λymα2

3 + β2
3

,

where D 6= 0 is an arbitrary constant.

Collecting the above results we have eigenfunctions for the Sturm-Liouville problem
defined by Equations (D.23) and (D.24) given by

Xn(x) =
1√

α2
1λxn + β2

1

[
α1

√
λxn cos

√
λxnlx − β1 sin

√
λxnlx

]
,

Ym(y) =
1√

α2
3λym + β2

3

[
α3

√
λym cos

√
λymly − β3 sin

√
λymly

]
(D.27)

(square roots should be taken with positive signs).
The eigenvalues of the problem are

λxn =

[
µxn
lx

]2

and λym =

[
µym
ly

]2

, (D.28)

where µxn is the n-th root of the equation

tanµx =
(α1β2 − α2β1) lxµx
µ2
xα1α2 + l2xβ1β2

, (D.29)
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and µym is the m-th root of the equation

tanµy =
(α3β4 − α4β3) lyµy
µ2
yα3α4 + l2yβ3β4

. (D.30)

The norms of the eigenfunctions are given by

‖Xn‖2 =

∫ lx

0

X2
n(x)dx =

1

2

[
lx +

(α1β2 − α2β1)(λxnα1α2 − β1β2)

(λxnα2
1 + β2

1)(λxnα2
2 + β2

2)

]
,

‖Ym‖2 =

∫ ly

0

Y 2
m(y)dy =

1

2

[
ly +

(α3β4 − α4β3)(λymα3α4 − β3β4)

(λymα2
3 + β2

3)(λymα2
4 + β2

4)

]
(D.31)

in which case functions Xn(x) and Ym(y) are bounded by the values ±1.

If λxn and Xn(x) are eigenvalues and eigenfunctions of Equation (D.23), and λym and
Ym(y) are eigenvalues and eigenfunctions of Equation (D.24), then

λnm = λxn + λym (D.32)

and

Vnm(x, y) = Xn(x)Ym(y) (D.33)

are the eigenvalues and eigenvectors, respectively, of the problem in Equation (D.21).

The functions Vnm(x, y) are orthogonal and their norms are

‖Vnm‖2 = ‖Xn‖2 ‖Ym‖2 . (D.34)

Any twice differentiable function F (x, y) obeying the same boundary conditions as the
functions Vnm, can be resolved in absolutely and uniformly converging to F (x, y) series in
these functions.



E

The Heat Conduction and Poisson Equations for
Rectangular Domains – Examples

E.1 The Laplace and Poisson Equations for a Rectangular Domain
with Nonhomogeneous Boundary Conditions – Examples

Consider the general boundary value problem for Poisson equation given by

∇2u =
∂2u

∂x2
+
∂2u

∂y2
= −f(x, y), (E.1)

with nonhomogeneous boundary conditions

P1[u] ≡ α1
∂u

∂x
+ β1u

∣∣∣∣
x=0

= g1(y), P2[u] ≡ α2
∂u

∂x
+ β2u

∣∣∣∣
x=lx

= g2(y),

P3[u] ≡ α3
∂u

∂y
+ β3u

∣∣∣∣
y=0

= g3(x), P4[u] ≡ α4
∂u

∂y
+ β4u

∣∣∣∣
y=ly

= g4(x). (E.2)

To deal with nonhomogeneous boundary conditions we introduce an auxiliary function,
w(x, y), and seek a solution of the problem in the form

u(x, y) = v(x, y) + w(x, y),

where v(x, y) is a new unknown function, and the function w(x, y) is chosen so that it satisfies
the given non-homogeneous boundary conditions (E.2). Then function v(x, y) satisfies the
homogeneous boundary conditions – the solution to this problem was discussed in Section
7.13.

We shall seek an auxiliary function, w(x, y), in the form

w(x, y) = g1(y)X + g2(y)X + g3(x)Y + g4(x)Y

+AXY +BXY + CXY +DXY , (E.3)

where X(x), X(x), Y (y) and Y (y) are polynomials of 1st or 2nd order. The coefficients
of these polynomials will be adjusted in such a way that function w(x, y) satisfies the
boundary conditions given in Equations (E.2). Notice, that function w(x, y) depends only
on the boundary conditions (E.2), i.e. is the same for Poisson and Laplace equations.

Consistent Boundary Conditions

Let the boundary functions satisfy consistency conditions (i.e. the boundary functions take
the same values at the corners of the domain), in which case we have

P1[g3(x)]x=0 = P3[g1(y)]y=0, P1[g4(x)]x=0 = P4[g1(y)]y=ly ,

P2[g3(x)]x=lx = P3[g2(y)]y=0, P2[g4(x)]x=lx = P4[g2(y)]y=ly . (E.4)
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In this case functions X(x), X(x) are constructed via formulas (C.10)–(C.12), and functions

Y (y), Y (y) – via formulas (C.13)–(C.15) (see Appendix C part 2).
It is easy to verify that the auxiliary function, w(x, y), satisfies the given boundary condi-
tions:

P1[w]x=0 = g1(y), P2[w]x=lx = g2(y),

P3[w]y=0 = g3(x), P4[w]y=ly = g4(x).

Inconsistent Boundary Conditions

Suppose the boundary functions do not satisfy consistency conditions. We shall search for
an auxiliary function as the sum of two functions:

w(x, y) = w1(x, y) + w2(x, y). (E.5)

Function w1(x, y) is an auxiliary function satisfying the consistent boundary conditions

P1[w1]x=0 = g1(y), P2[w1]x=lx = g2(y),

P3[w1]y=0 = −AX(x)− CX(x),

P4[w1]y=ly = −BX(x)−DX(x), (E.6)

where

A = −P3[g1(y)]y=0, B = −P4[g1(y)]y=ly ,

C = −P3[g2(y)]y=0, D = −P4[g2(y)]y=ly . (E.7)

Such a function was constructed above. In this case it has the form

w1(x, y) = g1(y)X + g2(y)X. (E.8)

The function w2(x, y) is a particular solution of the Laplace problem with the following
boundary conditions

P1[w2]x=0 = 0, P2[w2]x=lx = 0,

P3[w2]y=0 = g3(x) +AX(x) + CX(x),

P4[w2]y=ly = g4(x) +BX(x) +DX(x). (E.9)

This problem was considered in detail in Section 7.12. The solution of this problem has a
form

w2(x, y) =

∞∑
n=1

[AnY1n(y) +BnY2n(y)]Xn(x), (E.10)

where λxn and Xn(x) are eigenvalues and eigenfunctions of the Sturm-Liouville problem

X ′′ + λX = 0 (0 < x < lx),

P1[X]|x=0 = P2[X]|x=lx
= 0. (E.11)

The coefficients An and Bn are defined by the formulas

An =
1

||Xn||2

∫ lx

0

[
g4(x) +BX(x) +DX(x)

]
Xn(x)dx,

Bn =
1

||Xn||2

∫ lx

0

[
g3(x) +AX(x) + CX(x)

]
Xn(x)dx. (E.12)
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Thus, we see that eigenvalues and eigenfunctions of this boundary value problem depend
on the types of boundary conditions (see Appendix C part 1 for a detailed account).

Having the eigenvalues, λxn, we obtain a similar equation for Y (y) given by

Y ′′ − λxnY = 0 (0 < y < ly). (E.13)

We shall choose fundamental system {Y1, Y2} of solutions in such a way that

P3 [Y1(0)] = 0, P3 [Y1(ly)] = 1,

P4 [Y2(0)] = 1, P4 [Y2(ly)] = 0. (E.14)

Two particular solutions of the previous Equation (E.13) are exp(±
√
λny) but for future

analysis it is more convenient to choose two linearly independent functions Y1(y) and Y2(y)
in the form

Y1(y) = a sinh
√
λny + b cosh

√
λny,

Y2(y) = c sinh
√
λn(ly − y) + d cosh

√
λn(ly − y). (E.15)

The values of coefficients a, b, c, and d depend on the types of boundary conditions
P3[u]y=0 and P4[u]y=ly . It can be verified that the auxiliary function

w(x, y) = w1(x, y) + w2(x, y)

= w1(x, y) +
∞∑
n=1

[AnY1n(y) +BnY2n(y)]Xn(x) (E.16)

satisfies the given boundary conditions when n→∞.

Below we present auxiliary functions for different types of boundary condition.

1. Boundary conditions

{
P3[u] ≡ u|y=0 = g3(x) (Dirichlet condition),

P4[u] ≡ u|y=ly
= g4(x) (Dirichlet condition).

Fundamental system:

Y1n(y) =
sinh
√
λxny

sinh
√
λxnly

, Y2n(y) =
sinh
√
λxn(ly − y)

sinh
√
λxnly

.

If λx0 = 0, X0(x) ≡ 1 then

Y1n(y) =
y

ly
, Y2n(y) = 1− y

ly
.

2. Boundary conditions


P3[u] ≡ u|y=0 = g3(x) (Dirichlet condition),

P4[u] ≡ ∂u

∂y

∣∣∣∣
y=ly

= g4(x) (Neumann condition).

Fundamental system:

Y1n(y) =
sinh
√
λxny

sinh
√
λxnly

, Y2n(y) =
sinh
√
λxn(ly − y)

sinh
√
λxnly

.

If λx0 = 0, X0(x) ≡ 1 then

Y1n(y) =
y

ly
, Y2n(y) = 1− y

ly
.
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3. Boundary conditions


P3[u] ≡ u|y=0 = g3(x) (Dirichlet condition),

P4[u] ≡ ∂u

∂y
+ h4u

∣∣∣∣
y=ly

= g4(x) (mixed condition).

Fundamental system:

Y1n(y) =
sinh
√
λxny

h4 sinh
√
λxnly +

√
λxn cosh

√
λxnly

,

Y2n(y) =
h4 sinh

√
λxn(ly − y) +

√
λxn cosh

√
λxn(ly − y)

h4 sinh
√
λxnly +

√
λxn cosh

√
λxnly

.

If λx0 = 0, X0(x) ≡ 1 then

Y1n(y) =
y

1 + h4ly
, Y2n(y) = 1− h4

1 + h4ly
y.

4. Boundary conditions

P3[u] ≡ ∂u

∂y

∣∣∣∣
y=0

= g3(x) (Neumann condition),

P4[u] ≡ u|y=ly
= g4(x) (Dirichletcondition).

Fundamental system:

Y1n(y) =
cosh

√
λxny

cosh
√
λxnly

, Y2n(y) = − sinh
√
λxn(ly − y)√

λxn cosh
√
λxnly

.

If λx0 = 0, X0(x) ≡ 1 then

Y1n(y) = 1, Y2n(y) = y − ly.

5. Boundary conditions


P3[u] ≡ ∂u

∂y

∣∣∣∣
y=0

= g3(x) (Neumann condition),

P4[u] ≡ ∂u

∂y

∣∣∣∣
y=ly

= g4(x) (Neumann condition).

Fundamental system:

Y1n(y) =
cosh

√
λxny√

λxn sinh
√
λxnly

, Y2n(y) = −cosh
√
λxn(ly − y)√

λxn sinh
√
λxnly

.

If λx0 = 0, X0(x) ≡ 1 then

Y1n(y) =
1

2ly
y2, Y2n(y) = y − 1

2ly
y2.

6. Boundary conditions


P3[u] ≡ ∂u

∂y

∣∣∣∣
y=0

= g3(x) (Neumann condition),

P4[u] ≡ ∂u

∂y
+ h4u

∣∣∣∣
y=ly

= g4(x) (mixed condition).

Fundamental system:

Y1n(y) =
cosh

√
λxny√

λxn sinh
√
λxnly + h4 cosh

√
λxnly

,
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Y2n(y) = −h4 sinh
√
λxn(ly − y) +

√
λxn cosh

√
λxn(ly − y)√

λxn
[√
λxn sinh

√
λxnly + h4 cosh

√
λxnly

] .

If λx0 = 0, X0(x) ≡ 1 then

Y1n(y) =
y

h4
, Y2n(y) = y − 1 + h4ly

h4
.

7. Boundary conditions

P3[u] ≡ ∂u

∂y
− h3u

∣∣∣∣
y=0

= g3(x) (mixed condition),

P4[u] ≡ u|y=ly
= g4(x) (Dirichlet condition).

Fundamental system:

Y1n(y) =
h3 sinh

√
λxny +

√
λxn cosh

√
λxny

h3 sinh
√
λxnly +

√
λxn cosh

√
λxnly

,

Y2n(y) = − sinh
√
λxn(ly − y)

h3 sinh
√
λxnly +

√
λxn cosh

√
λxnly

.

If λx0 = 0, X0(x) ≡ 1 then

Y1n(y) =
1 + h3y

1 + h3ly
, Y2n(y) =

y − ly
1 + h3ly

.

8. Boundary conditions


P3[u] ≡ ∂u

∂y
− h3u

∣∣∣∣
y=0

= g3(x) (mixed condition),

P4[u] ≡ ∂u

∂y

∣∣∣∣
y=ly

= g4(x) (Neumann condition).

Fundamental system:

Y1n(y) =
h3 sinh

√
λxny +

√
λxn cosh

√
λxny√

λxn
[√
λxn sinh

√
λxnly + h3 cosh

√
λxnly

] ,
Y2n(y) = − cosh

√
λxn(ly − y)√

λxn sinh
√
λxnly + h3 cosh

√
λxnly

.

If λx0 = 0, X0(x) ≡ 1 then

Y1n(y) =
1 + h3y

1 + h3ly
, Y2n(y) =

y − ly
1 + h3ly

.

9. Boundary conditions


P3[u] ≡ ∂u

∂y
− h3u

∣∣∣∣
y=0

= g3(x) (mixed condition),

P4[u] ≡ ∂u

∂y
+ h4u

∣∣∣∣
y=ly

= g4(x) (mixed condition).

Fundamental system:

Y1n(y) =
h3 sinh

√
λxny +

√
λxn cosh

√
λny

(λxn + h3h4) sinh
√
λxnly +

√
λxn (h3 + h4) cosh

√
λxnly

,

Y2n(y) = − h4 sinh
√
λxn(ly − y) +

√
λxn cosh

√
λxn(ly − y)

(λxn + h3h4) sinh
√
λxnly +

√
λxn (h3 + h4) cosh

√
λxnly

.

If λx0 = 0, X0(x) ≡ 1 then

Y1(y) =
1 + h3y

h3 + h4 + h3h4ly
, Y2(y) =

h4 (y − ly)− 1

h3 + h4 + h3h4ly
.
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Examples

Example E.1 Find the stationary distribution of temperature within a very long (infinite)
parallelepiped of rectangular cross section (0 ≤ x ≤ π,0 ≤ y ≤ π) if the faces y = 0 and
y = π follow the temperature distributions

u(x, 0) = cosx and u(x, π) = cos 3x

respectively and the constant heat flows are supplied to the faces x = 0 and x = π from
outside:

∂u

∂x
(0, y) = sin y and

∂u

∂x
(π, y) = sin 5y.

Generation (or absorption) of heat by internal sources is absent.

Solution. The problem is expressed as Laplace equation

∂2u

∂x2
+
∂2u

∂y2
= 0

under the conditions

P1[u]x=0 ≡
∂u

∂x
(0, y) = sin y (α1 = 1, β1 = 0−Neumann condition),

P2[u]x=π ≡
∂u

∂x
(π, y) = sin 5y (α2 = 1, β2 = 0−Neumann condition),

P3[u]y=0 ≡ u(x, 0) = cosx (α3 = 0, β3 = 1−Dirichlet condition),

P4[u]y=π ≡ u(x, π) = cos 3x (α4 = 0, β4 = 1−Dirichlet condition).

The solution to this problem can be expressed as the sum of two functions

u(x, y) = w(x, y) + v(x, y),

where v(x, y) is a new unknown function and w(x, y) is an auxiliary function satisfying the
boundary conditions.

The boundary functions satisfy the consistent conditions, that is, (see formulas (E.4))

P1[cosx]x=0 =
∂(cosx)

∂x

∣∣∣∣
x=0

= 0 = P3[sin y]y=0 = sin y|y=0 = 0,

P1[cos 3x]x=0 =
∂(cos 3x)

∂x

∣∣∣∣
x=0

= 0 = P4[sin y]y=π = sin y|y=π = 0,

P2[cosx]x=π =
∂(cosx)

∂x

∣∣∣∣
x=π

= 0 = P3[sin 5y]y=0 = sin 5y|y=0 = 0,

P2[cos 3x]x=π =
∂(cos 3x)

∂x

∣∣∣∣
x=π

= 0 = P4[sin 5y]y=π = sin 5y|y=π = 0.

Let construct the auxiliary function (E.3) satisfying the given boundary condition. In
our problem β1 = β2 = 0, so (see formulas (C.12))

X(x) = x− x2

2lx
, X(x) =

x2

2lx
.

From formulas (C.13), (C.14) we have γ3 = 1, δ3 = −1/ly, γ4 = 0, δ4 = 1/ly, so

Y (y) = 1− y

π
, Y (y) =

y

π
.
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Coefficients (C.16) of the auxiliary function (E.3) are zero:

A = −P3[sin y]y=0 = − sin y|y=0 = 0,

B = −P4[sin y]y=π = − sin y|y=π = 0,

C = −P3[sin 5y]y=0 = − sin 5y|y=0 = 0,

D = −P4[sin 5y]y=π = − sin 5y|y=π = 0.

So, the auxiliary function (E.3) has the form:

w(x, y) = sin y ·X + sin 5 ·X + cosx · Y + cos 3x · Y

= sin y

(
x− x2

2π

)
+ sin 5y

x2

2π
+ cosx

(
1− y

π

)
+ cos 3x

y

π
.

Function v(x, y) is the solution to the Poisson problem with zero boundary conditions

∂2u

∂x2
+
∂2u

∂y2
= f̃(x, y),

where

f̃(x, y) =
∂2w

∂x2
+
∂2w

∂y2
=

1

2π

[
sin y ·

(
x2 − 2πx− 2

)
+ sin 5y ·

(
2− 25x2

)
+2 cosx · (y − π)− 18y · cos 3x] .

Eigenvalues and eigenfunctions are (see Appendix C part 1)

λnm = λxn + λym = n2 +m2, n = 0, 1, 2, . . . , m = 1, 2, . . . ,

Vnm(x, y) = Xn(x) · Ym(y) = cosnx · sinmy,

‖Vnm‖2 = ‖Xn‖2 · ‖Ym‖2 =

{
π2/2, if n = 0,
π2/4, if n > 0.

The solution v(x, y) is defined by the series

v(x, y) =

∞∑
n=0

∞∑
m=1

Cnm cosnx · sinmy,

where Cnm = fnm
λnm

, fnm = 1
‖Vnm‖2

∫ π
0

∫ π
0
f̃(x, y) · cosnx · sinmy dxdy.

Thus,

C01 =
f01

λ01
= − 1

π

(
π2

3
+ 1

)
, Cn1 =

fn1

λn1
=

2

πn2(n2 + 1)
,

C05 =
f05

λ05
=

1

π

(
1

25
− π2

6

)
, Cn5 =

fn5

λn5
= (−1)n+1 50

πn2(n2 + 25)
,

C1m =
f1m

λ1m
= − 2

πm(m2 + 1)
, C3m =

f3m

λ3m
= (−1)m

18

πm(m2 + 9)
,

Cnm = 0 in other cases.

The final solution is (see Figure E.1):

u(x, y) = w(x, y) + v(x, y) = sin y ·
(
x− x2

2π

)
+ sin 5y · x

2

2π
+ cosx ·

(
1− y

π

)
+ cos 3x · y

π

+
∞∑
n=0

[Cn1 sin y + Cn5 sin 5y] · cosnx+
∞∑
n=1

[C1m cosx+ C3m cos 3x] · sinmy.
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(a) (b)

FIGURE E.1
Surface plot (a) and lines of equal temperature (b) for Example E.1.

Example E.2 A heat-conducting thin uniform rectangular membrane (0 ≤ x ≤ lx, 0 ≤
y ≤ ly) is thermally insulated over its lateral faces. The bounds x = 0 and y = 0 are
thermally insulated, the other bounds, x = lx and y = ly, are held at fixed temperature
u = u0. One constant internal source of heat acts at the point (x0, y0) of the membrane.
The value of this source is Q = const. Find the steady-state temperature distribution in
the membrane.

Solution. The problem may be explored in the solution of the Poisson equation

∂2u

∂x2
+
∂2u

∂y2
= −Q · δ(x− x0)δ(y − y0)

under the conditions

P1[u]x=0 ≡
∂u

∂x
(0, y) = 0 (α1 = 1, β1 = 0−Neumann condition),

P2[u]x=lx ≡ u(lx, y) = u0 (α2 = 0, β2 = 1−Dirichlet condition),

P3[u]y=0 ≡
∂u

∂y
(x, 0) = 0 (α3 = 1, β3 = 0−Neumann condition),

P4[u]y=ly ≡ u(x, ly) = u0 (α4 = 0, β4 = 1−Dirichlet condition).

The solution to this problem can be expressed as the sum of two functions

u(x, y) = v(x, y) + w(x, y),

where v(x, y) is a new unknown function and w(x, y) is an auxiliary function satisfying the
boundary conditions.



The Heat Conduction and Poisson Equations for Rectangular Domains – Examples 363

The boundary functions satisfy the consistent conditions, that is, (see formulas (E.4))

P1[g3]x=0 =
∂(g3 ≡ 0)

∂x

∣∣∣∣
x=0

= 0 = P3[g1]y=0 =
∂(g1 ≡ 0)

∂y

∣∣∣∣
y=0

= 0,

P1[g4]x=0 =
∂(g4 ≡ u0)

∂x

∣∣∣∣
x=0

= 0 = P4[g1]y=ly = g1|y=ly
= 0,

P2[g3]x=lx = g3|x=lx
= 0 = P3[g2]y=0 =

∂(g2 ≡ u0)

∂y

∣∣∣∣
y=0

= 0,

P2[g4]x=lx = g4|x=lx
= u0 = P4[g2]y=ly = g2|y=ly

= u0.

Let us construct the auxiliary function (E.3) satisfying the given boundary condition.
In our problem γ1 = −lx, δ1 = 1, γ2 = 1, δ2 = 0 and γ3 = −ly, δ3 = 1, γ4 = 1, δ4 = 0
(see formulas (C.10), (C.11) and (C.13), (C.14)), so

X(x) = x− lx, X(x) = 1, Y (y) = y − ly, Y (y) = 1.

Coefficients (C.16) of the auxiliary function (E.3) are zeros:

A = −P3[g1]y=0 = 0, B = −P4[g1]y=ly = 0,

C = −P3[g2]y=0 = 0, D = −P4[g2]y=ly = u0.

So, the auxiliary function (E.3) has the form:

w(x, y) = u0X + u0Y + u0XY = 3u0.

This function w(x, y) in this example is a harmonic function, that is ∇2w(x, y) = 0.
Function v(x, y) is the solution to the Poisson problem with zero boundary conditions

∂2v

∂x2
+
∂2v

∂y2
= f̃(x, y),

where f̃(x, y) = f(x, y) + ∂2w
∂x2 + ∂2w

∂y2 = −Q · δ(x− x0)δ(y − y0).

Eigenvalues and eigenfunctions are (see Appendix C part 1)

λnm = λxn + λym = π2

(
(2n− 1)2

4l2x
+

(2m− 1)2

4l2y

)
, n,m = 1, 2, . . .

Vnm(x, y) = Xn(x) · Ym(y) = cos
π(2n− 1)x

2lx
cos

π(2m− 1)y

2ly
,

‖Vnm‖2 = ‖Xn‖2 · ‖Ym‖2 =
lxly
4
.

The solution v(x, y) is defined by the series

v(x, y) =
∞∑
n=1

∞∑
m=1

Cnm cos
(2n− 1)πx

2lx
cos

(2m− 1)πy

2ly
,

where Cnm = fnm
λnm

with

fnm =
1

‖Vnm‖2
∫ lx

0

∫ ly

0

f(x, y) · cos
(2n− 1)πx

2lx
cos

(2m− 1)πy

2ly
dxdy

=
4Q

lxly
cos

(2n− 1)πx0

2lx
cos

(2m− 1)πy0

2ly
,

Cnm =
fnm
λnm

=
16Qlxly

π2
[
(2n− 1)2l2y + (2m− 1)2l2x

] cos
(2n− 1)πx0

2lx
cos

(2m− 1)πy0

2ly
.
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(a) (b)

FIGURE E.2
Surface plot (a) and lines of equal temperature (b) for Example E.2.

The final solution is:

u(x, y) = w(x, y) + v(x, y) = 3u0 +

∞∑
n=1

∞∑
m=1

Cnm cos
(2n− 1)πx

2lx
cos

(2m− 1)πy

2ly
.

This solution was obtained for the case x0 = 2, y0 = 3, u0 = 10, Q = 100 (see
Figure E.2).

Example E.3 Find the electrostatic potential in a change-free rectangular domain (0 ≤
x ≤ lx, 0 ≤ y ≤ ly), if one part of the bound (x = 0 and y = 0) is held at fixed potential
u = u1 and the other part (x = lx and y = ly) at fixed potential u = u2.

Solution. The problem is the Laplace equation

∂2u

∂x2
+
∂2u

∂y2
= 0,

under the conditions

P1[u]x=0 ≡ u(0, y) = u1 (α1 = 0, β1 = 1−Dirichlet condition),

P2[u]x=lx ≡ u(lx, y) = u2 (α2 = 0, β2 = 1−Dirichlet condition),

P3[u]y=0 ≡ u(x, 0) = u1 (α3 = 0, β3 = 1−Dirichlet condition),

P4[u]y=ly ≡ u(x, ly) = u2 (α4 = 0, β4 = 1−Dirichlet condition).

The solution to this problem can be expressed as the sum of two functions

u(x, y) = v(x, y) + w(x, y),

where v(x, y) is a new unknown function and w(x, y) is an auxiliary function satisfying the
boundary conditions.
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The boundary functions do not satisfy the consistent conditions at points (0, ly) and
(lx, 0):

P1[g3]x=0 = g3(0) = u1 = P3[g1]y=0 = g1(0) = u1,

P1[g4]x=0 = g4(0) = u2 6= P4[g1]y=ly = g1(ly) = u1,

P2[g3]x=lx = g3(lx) = u1 6= P3[g2]y=0 = g2(0) = u2,

P2[g4]x=lx = g4(lx) = u2 = P4[g2]y=ly = g2(ly) = u2.

Thus, we seek function w(x, y) as a sum of two functions

w(x, y) = w1(x, y) + w2(x, y),

where w1(x, y) is the auxiliary function satisfying the consistent boundary conditions (see
(E.6))

P1[w1]x=0 = g1(y), P2[w1]x=lx = g2(y),

P3[w1]y=0 = −AX(x)− CX(x),

P4[w1]y=ly = −BX(x)−DX(x),

and has the form (E.8)

w1(x, y) = g1(y)X + g2(y)X.

Like in the previous situations, we find functions X(x) and X(x)

X(x) = 1− x

lx
, X(x) =

x

lx
,

and coefficients A, B, C, D (see (E.7))

A = −P3[g1(y)]y=0 = −u1, B = −P4[g1(y)]y=ly = −u1,

C = −P3[g2(y)]y=0 = −u2, D = −P4[g2(y)]y=ly = −u2.

Thus, the auxiliary function w1(x, y), which satisfies the consistent boundary conditions

P1[w1]x=0 = u1, P2[w1]x=lx = u2,

P3[w1]y=0 = u1 + (u2 − u1)
x

lx
, P4[w1]y=ly = u1 + (u2 − u1)

x

lx
,

is
w1(x, y) = u1 + (u2 − u1)

x

lx
.

Function w1(x, y) is harmonic, i.e. ∇2w1(x, y) = 0.
The function w2(x, y) is a particular solution of the Laplace problem with the following

boundary conditions (see (E.9)):

P1[w2]x=0 = 0, P2[w2]x=lx = 0,

P3[w2]y=0 = g3(x) +AX(x) + CX(x) =
x

lx
(u1 − u2) ,

P4[w2]y=ly = g4(x) +BX(x) +DX(x) = (u2 − u1)

(
1− x

lx

)
.

The solution of this problem has the form (E.10):

w2(x, y) =
∞∑
n=1

{AnY1n(y) +BnY2n(y)} ·Xn(x),
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where λxn, Xn(x) – eigenvalues and eigenfunctions of the respective Sturm-Liouville prob-
lem:

λxn =

[
nπ

lx

]2

, Xn(x) = sin
nπx

lx
, ‖Xn‖2 =

lx
2
, n = 1, 2, . . .

and functions Y1n(y) and Y2n(y) for the given boundary functions are

Y1n(y) =
sinh
√
λny

sinh
√
λnly

, Y2n(y) =
sinh
√
λn(ly − y)

sinh
√
λnly

.

Coefficients An and Bn are determined with formulas (E.12):

An =
1

||Xn||2

∫ lx

0

[
g4(x) +BX +DX

]
Xn(x)dx

=
2

lx

∫ lx

0

(u2 − u1)

(
1− x

lx

)
sin

nπx

lx
dx =

2

nπ
(u2 − u1) ,

Bn =
1

||Xn||2

∫ lx

0

[
g3(x) +AX + CX

]
Xn(x)dx

=
2

lx

∫ lx

0

x

lx
(u1 − u2) sin

nπx

lx
dx = (−1)

n 2

nπ
(u2 − u1) .

So,

w2(x, y) = 2 (u2 − u1)
∞∑
n=1

1

nπ · sinh
√
λnly

{
sinh

√
λny + (−1)

n
sinh

√
λn(ly − y)

}
· sin nπx

lx
.

Function w2(x, y) is a particular solution of the Laplace problem ∇2w2(x, y) = 0.
Function v(x, y) is the solution to the Poisson problem with zero boundary conditions,

where

f̃(x, y) =
∂2w1

∂x2
+
∂2w1

∂y2
+
∂2w2

∂x2
+
∂2w2

∂y2
≡ 0,

so, in this example
v(x, y) ≡ 0.

The solution to the problem is:

u(x, y) = w1(x, y) + w2(x, y) = u1 + (u2 − u1)
x

lx

+ 2 (u2 − u1)
∞∑
n=1

1

nπ · sinh
√
λnly

{
sinh

√
λny + (−1)

n
sinh

√
λn(ly − y)

}
· sin nπx

lx
.

This solution was obtained for the case u1 = 10, u2 = 20 (see Figure E.3).

E.2 The Heat Conduction Equations with Nonhomogeneous
Boundary Conditions – Examples

Consider the general boundary value problem for heat equation given by

∂u

∂t
= a2

[
∂2u

∂x2
+
∂2u

∂y2

]
− γu+ f(x, y, t), (E.17)
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(a) (b)

FIGURE E.3
Surface plot (a) and lines of equal potential (b) for Example E.3.

with nonhomogeneous initial and boundary conditions

u(x, y, t)|t=0 = ϕ(x, y),

P1[u] ≡ α1
∂u

∂x
+ β1u

∣∣∣∣
x=0

= g1(y, t), P2[u] ≡ α2
∂u

∂x
+ β2u

∣∣∣∣
x=lx

= g2(y, t),

P3[u] ≡ α3
∂u

∂y
+ β3u

∣∣∣∣
y=0

= g3(x, t), P4[u] ≡ α4
∂u

∂y
+ β4u

∣∣∣∣
y=ly

= g4(x, t). (E.18)

To deal with nonhomogeneous boundary conditions we introduce an auxiliary function,
w(x, y, t), and seek a solution of the problem in the form

u(x, y, t) = v(x, y, t) + w(x, y, t),

where v(x, y, t) is a new unknown function, and the function w(x, y, t) is chosen so that
it satisfies the given nonhomogeneous boundary conditions (E.18). Then function v(x, y, t)
satisfies the homogeneous boundary conditions – the solution to this problem was discussed
in Section 9.1.2.

We shall seek an auxiliary function, w(x, y), in the form

w(x, y, t) = g1(y, t)X + g2(y, t)X + g3(x, t)Y + g4(x, t)Y

+A(t)XY +B(t)XY + C(t)XY +D(t)XY , (E.19)

where X(x), X(x), Y (y) and Y (y) are polynomials of 1st or 2nd order. The coefficients
of these polynomials will be adjusted in such a way that function w(x, y, t) satisfies the
boundary conditions given in Equations (E.18).
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Consistent Boundary Conditions

Let the boundary functions satisfy consistency conditions (i.e. the boundary functions take
the same values at the corners of the domain), in which case we have

P1[g3(x, t)]x=0 = P3[g1(y, t)]y=0, P1[g4(x, t)]x=0 = P4[g1(y, t)]y=ly ,

P2[g3(x, t)]x=lx = P3[g2(y, t)]y=0, P2[g4(x, t)]x=lx = P4[g2(y, t)]y=ly . (E.20)

In this case functions X(x), X(x) are constructed via formulas (C.10)–(C.12), and functions

Y (y), Y (y) – via formulas (C.13)–(C.15) (see Appendix C part 2).
It is easy to verify that the auxiliary function, w(x, y, t), satisfies the given boundary con-
ditions:

P1[w]x=0 = g1(y, t), P2[w]x=lx = g2(y, t),

P3[w]y=0 = g3(x, t), P4[w]y=ly = g4(x, t).

Inconsistent Boundary Conditions

Suppose the boundary functions do not satisfy consistency conditions. Then we shall search
for an auxiliary function as the sum of two functions:

w(x, y, t) = w1(x, y, t) + w2(x, y, t). (E.21)

Function w1(x, y, t) is an auxiliary function satisfying the consistent boundary conditions

P1[w1]x=0 = g1(y, t), P2[w1]x=lx = g2(y, t),

P3[w1]y=0 = −A(t)X(x)− C(t)X(x),

P4[w1]y=ly = −B(t)X(x)−D(t)X(x), (E.22)

where

A(t) = −P3[g1(y, t)]y=0, B(t) = −P4[g1(y, t)]y=ly ,

C(t) = −P3[g2(y, t)]y=0, D(t) = −P4[g2(y, t)]y=ly . (E.23)

Such a function was constructed above (for the case of consistent boundary conditions). In
this case it has the form

w1(x, y, t) = g1(y, t)X + g2(y, t)X. (E.24)

Reading Exercise. Verify Equation (E.24).

The function w2(x, y, t) is a particular solution of the Laplace problem

∂2w2

∂x2
+
∂2w2

∂y2
= 0

with the following boundary conditions

P1[w2]x=0 = 0, P2[w2]x=lx = 0,

P3[w2]y=0 = g3(x, t) +A(t)X(x) + C(t)X(x),

P4[w2]y=ly = g4(x, t) +B(t)X(x) +D(t)X(x). (E.25)
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This problem was considered in detail in Section 7.12. The solution of this problem has a
form

w2(x, y, t) =
∞∑
n=1

[An(t)Y1n(y) +Bn(t)Y2n(y)]Xn(x), (E.26)

where λxn and Xn(x) are eigenvalues and eigenfunctions of the Sturm-Liouville problem

X ′′ + λX = 0 (0 < x < lx),

P1[X]|x=0 = P2[X]|x=lx
= 0. (E.27)

The coefficients An(t) and Bn(t) are defined by the formulas

An(t) =
1

||Xn||2

∫ lx

0

[
g4(x, t) +B(t)X(x) +D(t)X(x)

]
Xn(x)dx,

Bn(t) =
1

||Xn||2

∫ lx

0

[
g3(x, t) +A(t)X(x) + C(t)X(x)

]
Xn(x)dx. (E.28)

Thus, we see that eigenvalues and eigenfunctions of this boundary value problem depend
on the types of boundary conditions (see Appendix C, part 1 for a detailed account).

Having the eigenvalues, λxn, we obtain a similar equation for Y (y) given by

Y ′′ − λxnY = 0 (0 < y < ly). (E.29)

We shall choose fundamental system {Y1, Y2} of solutions in such a way that

P3 [Y1(0)] = 0, P3 [Y1(ly)] = 1,

P4 [Y2(0)] = 1, P4 [Y2(ly)] = 0. (E.30)

Two particular solutions of the previous Equation (F.13) are exp(±
√
λny) but for future

analysis it is more convenient to choose two linearly independent functions Y1(y) and Y2(y)
in the form

Y1(y) = a sinh
√
λny + b cosh

√
λny,

Y2(y) = c sinh
√
λn(ly − y) + d cosh

√
λn(ly − y). (E.31)

Reading Exercise. Prove that the two functions in Equation (E.31) are the solutions to
Equation (E.29).

The values of coefficients a, b, c, and d depend on the types of boundary conditions
P3[u]y=0 and P4[u]y=ly . It can be verified that the auxiliary function

w(x, y, t) = w1(x, y, t) + w2(x, y, t)

= w1(x, y, t) +
∞∑
n=1

[An(t)Y1n(y) +Bn(t)Y2n(y)]Xn(x) (E.32)

satisfies the given boundary conditions when n→∞.

Fundamental systems of functions Y1(y) and Y2(y) for different types of boundary con-
ditions are presented at the first part of this Appendix.



370 Partial Differential Equations: Analytical Methods and Applications

Examples

Example E.4 A heat-conducting thin uniform rectangular plate (0 ≤ x ≤ lx, 0 ≤ y ≤ ly)
is thermally insulated over its lateral faces. The edge at y = 0 of the plate is kept at
the constant temperature u = u1, the edge y = ly at constant temperature u = u2, the
remaining boundary is thermally insulated. The initial temperature distribution within the
plate is

u(x, y, 0) = u0 = const.

Find the temperature u(x, y, t) of the plate at any later time, if generation (or absorption)
of heat by internal sources is absent.

Solution. The problem may be resolved by solving the equation

∂u

∂t
= a2

[
∂2u

∂x2
+
∂2u

∂y2

]
,

under the conditions
u(x, y, 0) = ϕ(x, y) = u0,

∂u

∂x
(0, y, t) =

∂u

∂x
(lx, y, t) = 0, u(x, 0, t) = u1, u(x, ly, t) = u2.

The solution to this problem can be expressed as the sum of two functions, as explained
above,

u(x, y, t) = w(x, y, t) + v(x, y, t).

The boundary value functions satisfy the conforming conditions, that is,

g1|y=0 =
∂g3

∂x

∣∣∣∣
x=0

= 0, g1|y=ly
=
∂g4

∂x

∣∣∣∣
x=0

= 0,

g2|y=0 =
∂g3

∂x

∣∣∣∣
x=lx

= 0, g2|y=ly
=
∂g4

∂x

∣∣∣∣
x=lx

= 0.

An auxiliary function satisfying the given boundary condition is giving by formula (F.3)
with

X(x) = x− x2

2lx
, X(x) =

x2

2lx
, Y (y) = 1− y

ly
, Y (y) =

y

ly
,

A(t) = B(t) = C(t) = D(t) = 0 (because boundary functions are zero),

in which case we have
w(x, y, t) = u1 + (u2 − u1)

y

ly
.

Given this expression for w(x, y, t) we see that the separation of the function u(x, y, t) into
functions w(x, y, t) and v(x, y, t) is a separation into a stationary solution corresponding to
the boundary conditions and the solution describing the relaxation of the temperature to
the stationary state.

The relaxation process to a steady state described by the function v(x, y, t) is the solution
to the boundary value problem with zero boundary conditions where the stationary solution
is described by

f̃(x, y, t) = −∂w
∂t

+ a2

(
∂2w

∂x2
+
∂2w

∂y2

)
= 0,

ϕ̃(x, y) = u0 − u1 − (u2 − u1)
y

ly
.
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(a) (b)

FIGURE E.4
Eigenfunctions (a) V01(x, y) and (b) V05(x, y) for the free surface in Example E.4.

Eigenvalues and eigenfunctions of this problem can be easily obtained:

λnm = λxn + λym = π2

[
n2

l2x
+
m2

l2y

]
, n = 0, 1, 2, . . . m = 1, 2, 3, . . .

Vnm(x, y) = Xn(x)Ym(y) = cos
nπx

lx
sin

mπy

ly
,

‖Vnm‖2 = ‖Xn‖2 ‖Ym‖2 =

{
lxly/2, n = 0
lxly/4, n > 0.

The three-dimensional picture shown in Figure E.4 depicts the two eigenfunctions, V01(x, y)
and V05(x, y), chosen as examples.

Applying Equation (9.30), we obtain

Cnm =
1

‖vnm‖2
∫ lx

0

∫ ly

0

[
u0 − u1 − (u2 − u1)

y

ly

]
cos

nπx

lx
sin

mπy

ly
dxdy.

From this formula we have

C0m =
2

ly

∫ ly

0

[
u0 − u1 − (u2 − u1) · y

ly

]
sin

mπy

ly
dxdy

=
2

mπ
{(u0 − u1) [1− (−1)

m
] + (u2 − u1) (−1)

m} ,

for n > 0, Cnm = 0. And as we obtained, the temperature distribution does not depend
on x at all. This result could be anticipated from the very beginning, since the initial and
boundary conditions do not depend on x. In other words, the solution is actually one-
dimensional for this problem. Hence, the distribution of temperature inside the rectangular
plate for some instant of time is described by the series

u(x, y, t) = u1 + (u2 − u1)
y

ly
+
∞∑
m=1

C0me
−λ0ma

2t sin
mπy

ly
.

Figure E.5 shows two snapshots of the solution at the times t = 0 and t = 10. This solution
was obtained in the case when a2 = 0.25, lx = 4, ly = 6, u0 = 10, u1 = 20, u2 = 50.

It is interesting to compare the first and second pictures in Figure F.2. The first one is
very rough, the second is smooth. The explanation of the roughness is that at t = 0 the
initial and boundary conditions do not match (the solution is non-physical). But at any
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(a) (b)

FIGURE E.5
Surface graph of temperature at (a) t = 0 and (b) t = 10 for Example E.4.

nonzero time the temperature distribution very quickly becomes smooth, as it should be
for real, physical situations. Here we see that this method of solution works quite well in
approximating a real, physical situation.

Example E.5 A heat-conducting thin uniform rectangular plate (0 ≤ x ≤ lx, 0 ≤ y ≤ ly)
is thermally insulated over its lateral faces. The edge at y = 0 is thermally insulated, the
edge at y = ly is kept at constant zero temperature, the edge at x = 0 is kept at constant
temperature u = u1 and the edge at x = lx is kept at the temperature

u(ly, x, t) = cos
3πy

2ly
e−t.

The initial temperature distribution within the plate is u(x, y, 0) = u0 = const. Find the
temperature u(x, y, t) of the plate at any later time, if generation (or absorption) of heat
by internal sources is absent.

Solution. The problem is described by the equation

∂u

∂t
= a2

[
∂2u

∂x2
+
∂2u

∂y2

]
under the conditions

u(x, y, 0) = ϕ(x, y) = u0,

u(0, y, t) = u1, u(lx, y, t) = cos
3πy

2ly
· e−t, ∂u

∂y
(x, 0, t) = 0, u(x, ly, t) = 0.

The boundary functions do not satisfy the conforming conditions at point (0, ly), that
is,

g1|y=ly
= u1 6= g4|x=0 = 0.

So, in this case we shall search for an auxiliary function as the sum of two functions

w(x, y, t) = w1(x, y, t) + w2(x, y, t),

where w1(x, y, t) is an auxiliary function satisfying the conforming boundary value functions

P1[w1]x=0 = g1(y, t) = u1, P2[w1]x=lx = g2(y, t) = cos
3πy

2ly
e−t,

P3[w1]y=0 =
∂w1

∂y
(x, 0) = g3(x, t) = 0, P4[w1]y=ly = w1(x, ly) = u1

(
1− x

lx

)
,
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FIGURE E.6
Surface graph of the particular solution w2(x, y, t) to Example E.5.

and w2(x, y, t) is a particular solution of the Laplace equation

∇2w2(x, y, t) =

[
∂2w2

∂x2
+
∂2w2

∂y2

]
= 0

with the following boundary conditions

P1[w2]x=0 = w2(0, y, t) = 0, P2[w2]x=lx = w2(lx, y, t) = 0,

P3[w2]y=0 =
∂u

∂y
(x, 0, t) = 0, P4[w2]y=ly = w2(x, ly, t) = u1

(
x

lx
− 1

)
.

The auxiliary function, w1(x, y, t), is

w1(x, y, t) = u1

(
1− x

lx

)
+ cos

3πy

2ly
e−t

x

lx
= u1 +

x

lx

(
cos

3πy

2ly
e−t − u1

)
.

The particular solution, w2(x, y, t), of the problem has the form

w2(x, y, t) =
∞∑
n=1

{An(t)Y1n(y) +Bn(t)Y2n(y)}Xn(x),

where λxn and Xn(x) are eigenvalues and eigenfunctions of the respective Sturm-Liouville
problem:

λxn =

[
nπ

lx

]2

, Xn(x) = sin
nπx

lx
, ‖Xn‖2 =

lx
2
, n = 1, 2, 3, . . .

The functions Y1n(y) and Y2n(y) for the given boundary conditions are (see formulas (C.12))

Y1n(y) =
cosh

√
λny

cosh
√
λnly

, Y2n(y) = − sinh
√
λn(ly − y)√

λn cosh
√
λnly

.

Coefficients An(t) and Bn(t) are given by

An =
2

lx

∫ lx

0

u1

(
x

lx
− 1

)
sin

nπx

lx
dx = −2u1

nπ
, Bn = 0.

Thus,

w2(x, y, t) = −2u1

π

∞∑
n=1

1

n

cosh
√
λny

cosh
√
λnly

sin
nπx

lx

as graphed in Figure E.6.
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(a) (b)

FIGURE E.7
Surface graph of the plate temperature at (a) t = 0 and (b) t = 2 for Example E.5.

The function v(x, y, t) is the solution to the boundary value problem with zero boundary
conditions where

f̃(x, y, t) =
x

lx
cos

3πy

2ly
e−t

[
1− a2

(
3π

2ly

)2
]
,

ϕ̃(x, y) = u0 − u1 −
x

lx

(
cos

3πy

2ly
e−t − u1

)
+

2u1

π

∞∑
n=1

1

n

cosh
√
λny

cosh
√
λnly

sin
nπx

lx
.

Therefore, the eigenvalues and eigenfunctions of problem are

λnm = λxn + λym = π2

[
n2

l2x
+

(2m− 1)2

4l2y

]
, n,m = 1, 2, 3, . . .

Vnm(x, y) = Xn(x)Ym(y) = sin
nπx

lx
cos

(2m− 1)πy

2ly
, ‖Vnm‖2 = ‖Xn‖2 · ‖Ym‖2 =

lxly
4
.

(As before, these eigenvalues and eigenfunctions can be found in Appendix C part 1 or
easily derived by the reader.)

Applying the Equations (9.30) and (9.35), we obtain

Cnm =
4

lxly

∫ lx

0

∫ ly

0

ϕ̃(x, y) sin
nπx

lx
cos

(2m− 1)πy

2ly
dxdy,

fnm(t) =
4

lxly

∫ lx

0

∫ ly

0

f̃(x, y, t) sin
nπx

lx
cos

(2m− 1)πy

2ly
dxdy.

Thus, we have

Tnm(t) =

∫ t

0

fnm(τ)e−a
2λnm(t−τ)dτ

and

u(x, y, t) = [w1(x, y, t) + w2(x, y, t)] + v(x, y, t)

= u1 +
x

lx

(
cos

3πy

2ly
e−t − u1

)
− 2u1

π

∞∑
n=1

1

n

cosh
√
λny

cosh
√
λnly

sin
nπx

lx

+
∞∑
n=1

∞∑
m=1

[
Tnm(t) + Cnme

−λnma2t
]

sin
nπx

lx
cos

(2m− 1)πy

2ly
.

Figure E.7 shows two snapshots of the solution at the times t = 0 and t = 2. This solution
was obtained for the case when a2 = 1, lx = 4, ly = 6, u0 = −1 and u1 = 1.
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Index

A

Airy functions, 335–337
Analytical function, 141
Analytic formula for functions, 292
Angular frequency, 283
Antinodes, 208
Arbitrary constant, 4
Arbitrary differentiable functions, 6, 9
Arbitrary function, 4
Arbitrary length, Fourier expansions on

intervals of, 289–290
Associated Legendre Functions,

331–334
Fourier-Legendre series in, 334–335

Auxiliary functions, 118
for 1D hyperbolic and parabolic

equations, 343–345
for 2D hyperbolic or parabolic

equations in rectangular domain,
347

for Poisson equation in rectangular
domain, 345–347

Axisymmetric case for three-dimensional
Laplace equation, 164–165

Axisymmetric oscillations of membrane,
209–213

B

Bessel equation, 309–312
Bessel functions, 207, 309, 315

of order, 310
properties, 312–315
spherical Bessel functions, 320–322

Bessel’s inequality, 329
Bilinear formulation of KdV equation,

271–272
Boundary conditions, 2, 45–48, 101–103,

142, 227, 229
eigenvalues and eigenfunctions of 1D

Sturm-Liouville problem, 341–343
Ill-posed problem, 142–143

maximum principle and consequences,
144–146

in two-dimensional hyperbolic
equations, 189–191

well-posed boundary value problems,
143–144

Boundary value problems (BVP), 38, 99,
101, 315–319

diffusion equation, 100
heat conduction, 99–100
for Laplace equation in rectangular

domain, 167–169
Breathers, 280
Bright solitons, 279–280
Burgers equation, 261; see also Nonlinear

Schrödinger equation (NSE)
kink solution, 261–262
symmetries, 262–263

BVP, see Boundary value problems

C

Canonical forms, 22
elliptic equations, 24–26
hyperbolic equations, 23–24
parabolic equations, 26–27

Cartesian coordinates, 139
Cauchy problem, 52, 142

D’Alembert’s formula, 57–58
general solution of, 264–267
Green’s function, 58–59
in infnite region, 88–91
interaction of kinks, 265–267
for nonhomogeneous wave equation,

57–60
well-posedness of, 59–60

Characteristic curves, 12–19
Circle, Sturm-Liouville problem for,

349–351
Circular domain; see also Finite rectangular

domain
heat conduction within, 237

377



378 Index

Circular domain (Continued)
homogeneous heat equation, Fourier

method for, 238–241
nonhomogeneous heat equation,

Fourier method for, 241–247
Cnoidal waves, 268–270
Completeness

equation, 297
property, 33, 62

Consistency conditions, 83–84
Consistent boundary conditions, 355–356,

368
Continuity equation, 99
Convergence of Fourier series, 286–288
Cosine functions, Fourier series in,

290–292
Cosine series, 292–293
Cylindrical coordinates, 178

D

D’Alembert method, 52–58, 88
characteristic triangle, 53, 57
propagation of initial displacement,

54
propagation of initial pulse, 55

Dark solitons, 280–281
Defocusing NSE, 278
Delay theorem, 305
Differential equation, 29, 45–46
Diffusion equation, 100, 140, 142
Dirac delta function, 300
Directional derivative, 12
Dirichlet boundary condition, 30, 47, 190,

317, 351
Dirichlet boundary value problem, 164
Dirichlet condition, 228, 237
Dirichlet homogeneous boundary

conditions, 234
Dirichlet problem, 143, 151, 167
Dirichlet theorem, 288
Dirichlet type, 240
Dispersion of waves, 88, 91

cauchy problem in infnite region,
88–91

propagation of wave train, 91–93
Dissipative processes, 2
Double Fourier series for function, 296
Driven edge boundary condition, 190
Duhamel’s principle, 114–118
Dynamic equations, 177

E

Eigenfunctions, 30, 231, 309, 350–351
of 1D Sturm-Liouville problem,

341–343
Eigenvalues, 31, 231, 309

of 1D Sturm-Liouville problem,
341–343

problem, 30
Elastic boundary, 47
Elastic end boundary condition, 50
Electrical oscillations in circuit, 50–51
Electric energies, 86
Electro-motive force (emf), 51
Elliptic differential equations, 139–140
Elliptic equations, 22, 24–26, 60, 139, 141

application of Bessel functions for
solution of Poisson equations in
circle, 156–160

ball, three-dimensional Laplace
equation for, 164–166

boundary conditions, 142–146
BVP for Laplace equation in a

rectangular domain, 167–169
cylinder, three-dimensional Laplace

equation for, 160–164
elliptic differential equations, 139–140
Green’s function for Poisson equations,

171–176
harmonic functions, 141
Helmholtz equation, 177–179
Laplace equation in polar coordinates,

146–147
Poisson equation, 151–153, 169–171
Poisson integral, 154–156
related physical problems, 139–140
Schrödinger equation, 180–181
spherical coordinates, 140

emf, see Electro-motive force
Envelope function, 277
Equations of motion, 187–191
Error function, 250
Euler’s formula, 295

F

f-fold degeneracy, 31
Fick’s law, 100
Finite rectangular domain; see also Circular

domain
heat conduction within, 227–236
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homogeneous heat equation, Fourier
method for, 230–232

nonhomogeneous heat equation,
Fourier method for, 233–236

types of boundary conditions, 228–229
First-order equations

linear, 7–12
quasilinear, 12–19

First-order partial differential equations,
23

First harmonic function, 66
Fixed edge boundary condition, 190
Fixed end boundary conditions, 46
Focusing NSE, 278–279
Force, 189
Forced axisymmetric oscillations, 216–218
Forced oscillations, 71

of uniform rod, 50
Fourier-Bessel Series, 40, 315–319
Fourier-Legendre series

in associated Legendre functions,
334–335

in Legendre polynomials, 328–331
Fourier coefficients, 286
Fourier cosine transform, 301
Fourier expansion

of function, 286
on intervals of arbitrary length,

289–290
method, 29

Fourier formulas, 284–286
Fourier method, 146, 229

graphical solution of eigenvalue
equation, 70, 109

for homogeneous equations, 60–71,
103–111

for nonhomogeneous equations, 71–76,
118–126

in oscillations of rectangular
membrane, 192–205

small transverse oscillations of circular
membrane, 206–209, 214–216

in two-dimensional parabolic equations,
230–236, 238–247

Fourier series, 286, 293
convergence of, 286–288
in cosine or sine functions, 290–292
for functions of several variables,

295–296
generalized Fourier series, 296–298
for non-periodic functions, 288–289

Fourier transforms, 90, 299–303; see also
Laplace transforms

of even or odd functions, 301
Free edge boundary conditions, 190
Free end boundary conditions, 46
Free heat exchange, 105, 230–232
Frequency spectrum, 68
Friction forces, 189
Fundamental harmonic function, 66

G

Galilean symmetry, 262–263
Gamma function, 310–311, 322–324
Gaussian beam, 180
Generalized Fourier series, 33, 296–298
Generalized solution, 107
General solution, 7–10
Gibbs phenomenon, 298–299
Green’s formula, 188
Green’s function, 58–59, 114–118, 249

homogeneous boundary conditions,
171–175

nonhomogeneous boundary conditions,
175–176

for Poisson equations, 171
Green’s theorem, 57
Gross-Pitaevskii equation, 277
Group velocity, 92–93

H

Harmonic analysis, 283–284
Harmonic functions, 141, 154
Harmonic polynomials, 141
Heat

exchange, 227
terminology, 101

Heat conduction, 99–100
within circular domain, 237–247
equations with nonhomogeneous

boundary conditions, 366–374
within finite rectangular domain,

227–236
in infinite medium, 248–249

Heat equation, 1, 21, 145, 264
in infinite region, 131–133

Heaviside function, 301
Helmholtz equation, 177–179
Hermitian operator, 31
Hirota’s method, 272–274



380 Index

Homogeneous boundary conditions, 29, 61,
71, 103, 112

in finite rectangular domain, 233–236
in oscillations of rectangular

membrane, 192–203
in small transverse oscillations of

circular membrane, 206–209,
214–216

Homogeneous equations, 30, 112
Homogeneous heat equation, 229

Fourier method for, 230–232, 238–241
homogeneous heat-conduction

equation, 248
Hook’s law, 50
Hopf-Cole transformation, 264
Hyperbolic equations, 21, 23–24, 142

I

Ill-posed problem, 142–143
Incomplete elliptic integral, 269
Inconsistent boundary conditions, 355–366,

368–374
Infinite medium, heat conduction in,

248–249
Infinite trigonometric series, 283
Initial-boundary value problem, 2
Initial conditions, 10–12, 45–48, 101–103,

227
in two-dimensional hyperbolic

equations, 189–191
Initial value problems (IVPs), 10, 48,

306–307
Integral surface, 12
Integrating factor, 5
Interior Dirichlet problem, 148
Interior Neumann’s problem, 144
Inverse Laplace transform, 303
Inverse scattering transform, 276
IVPs, see Initial value problems

J

Jacobi amplitude, 269
Jacobian of transformation, 15, 22
Jacobi elliptic cosine, 270

K

KdV equation, see Korteweg-de Vries
equation

Kinetic energy, 84–87
Kink

interaction, 265–267
solution, 261–262
trajectories of kink centers, 267

Korteweg-de Vries equation (KdV
equation), 267; see also Poisson
equation

bilinear formulation, 271–272
cnoidal waves, 268–270
Hirota’s method, 272–274
multisoliton solutions, 274–277
solitons, 270–271
symmetry properties, 267–268

L

Laplace equation, 3, 26, 100, 139–144, 152,
173

and exterior BVP for circular domain,
151

and interior BVP for circular domain,
147–150

in polar coordinates, 146–147
for rectangular domain with

nonhomogeneous boundary
conditions, 355–366

Laplace integral, 303
Laplace transforms (LT), 76–79, 110–111,

303
applications for ODE, 306–307
of functions, 304
properties, 304–306

Legendre equation, 165–166, 324–328
Legendre function, 309

associated Legendre Functions, 331–334
Legendre polynomials, 324–328

Fourier-Legendre series in, 328–331
Linear equation, 3, 8, 14, 128
Linear Euclidian space, 33
Linear heat flow equation, 99
Linear mass density, 44
Linear operator, 30
Linear periodic waves, 270
Longitudinal free oscillations of uniform

rod, 49
Longitudinal vibrations, 48

electrical oscillations in circuit,
50–51

rod oscillations, 48–50
LT, see Laplace transforms
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M

Magnetic energies, 86
Maximum principle, 129–131

and consequences, 144–146
Measurement error, 2
Membranes, 187
Minimum principle, 130
Mixed boundary condition, 30, 47,

317, 351
Mixed condition, 102, 228, 237
Mixed problem, 143
Mnemonic rule, 24
Modulated wave, 92
Monochromatic traveling wave, 91
Multisoliton solutions, 274–277

N

Navier-Stokes equation, 127
Neumann boundary condition, 30, 47,

190–191, 317, 351
Neumann conditions, 101–102, 171,

228, 237
Neumann functions, 315
Neumann problem, 143, 148, 151
Neumann type, 247
Newton’s law, 103, 108

of cooling, 144
Newton’s second law, 1

for motion, 188
Non-axisymmetric case for

three-dimensional Laplace
equation, 165–166

Non-free heat exchange, 229, 233
Non-periodic functions, Fourier series for,

288–289
Non-viscous Burgers equation, 3, 18, 261
Nonhomogeneous boundary conditions,

118–126, 175–176
in circular domain, 246–247
equations, 78–83
heat conduction equations with,

366–374
Laplace and Poisson equations

for rectangular domain with,
355–366

in oscillations of rectangular
membrane, 203–205

in small transverse oscillations of
circular membrane, 218–220

Nonhomogeneous equations, 111–114,
152, 233

Nonhomogeneous heat equation, 229
Fourier method for, 233–236,

241–245
with nonhomogeneous boundary

conditions, 246–247
Nonhomogeneous linear equation, 71, 111
Nonhomogeneous wave equation, 44, 57–60
Nonlinear equations, 261

Burgers equation, 261–263
general solution of Cauchy problem,

264–267
KdV equation, 267–277
NSE, 277–281

Nonlinear medium, 277
Nonlinear Schrödinger equation (NSE), 277;

see also Burgers equation
solitary waves, 278–281
symmetry properties, 277–278

Nonlinear spatially periodic waves, 270
Nonnegative real discrete eigenvalues, 325
NSE, see Nonlinear Schrödinger equation

O

ODE, see Ordinary differential equation
One-dimension (1D), 38, 144

auxiliary functions for 1D hyperbolic
and parabolic equations, 343–345

eigenvalues and eigenfunctions of 1D
Sturm-Liouville problem, 341–343

heat conduction equation, 101
problem, 127
wave equations, 51

One-dimensional hyperbolic equations, 61
boundary and initial conditions, 45–48
consistency conditions and generalized

solutions, 83–88
dispersion of waves, 88–93
finite intervals, 60–71
fourier method for nonhomogeneous

equations, 71–76
longitudinal vibrations of rod and

electrical oscillations, 48–51
LT method, 76–79
nonhomogeneous boundary conditions

equations, 78–83
traveling waves, 52–57
tsunami effect, 93–94
wave equation, 43–45



382 Index

One-dimensional parabolic equations,
101–103

fourier method for homogeneous
equations, 103–111

fourier method for nonhomogeneous
equations, 118–126

Green’s function and Duhamel’s
principle, 114–118

heat conduction and diffusion,
99–100

heat equation in infinite region,
131–133

and initial and boundary conditions,
101–103

large time behavior of solutions,
126–129

maximum principle, 129–131
nonhomogeneous boundary conditions,

118–126
nonhomogeneous equations, 111–114

One-parametric family, 13
Ordinary differential equation (ODE), 1, 8,

18
applications of Laplace transform for,

306–307
problems, 29

Orthogonal equation, 31
Orthogonal functions, 296–297
Orthonormal eigenfunctions, 35
Oscillations of rectangular membrane,

191
Fourier method for homogeneous

equations, 192–199
Fourier method for nonhomogeneous

equations, 199–205

P

Parabolic equations, 21, 26–27, 100,
142

Parity property, 333
Parsevale’s equality, 297, 317, 329
Partial differential equation (PDE), 1,

4, 46
equations, 29

PDE, see Partial differential equation
Periodic functions, 283–284
Periodic processes, 283–284
Physical laws, 29–30
Piecewise continuous function, 288
Point of discontinuity, 288

Poisson equation, 3, 21, 139–140, 142–143,
151–153, 156, 171–173; see also
Korteweg-de Vries equation (KdV
equation)

auxiliary functions for 2D hyperbolic or
parabolic equations in, 347

auxiliary functions in rectangular
domain, 345–347

with homogeneous boundary
conditions, 169–171

for rectangular domain with
nonhomogeneous boundary
conditions, 355–366

Poisson integral, 154
Poisson kernel, 154
Polar coordinates equation, 152
Potential energy, 85, 87

Q

Quadratic equation, 1
Quasilinear equation, 4

R

Rectangle, Sturm-Liouville problem for,
352–354

Rectangular domain
auxiliary functions for Poisson equation

in, 345–347
Laplace and Poisson equations with

nonhomogeneous boundary
conditions, 355–366

Recurrence relations, 321
Reflection symmetry, 263
Riemann’s lemma, 287–288
Rod oscillations, 48–50
Rodrigues’ formula, 327

S

Scalar product, 40
functions, 33

Scaling
symmetry, 263
transformation, 263

Schrödinger equation, 180–181
Second-order equations

canonical forms, 22–27
classification of, 21–22

Second boundary value problems, 148
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Second harmonic function, 66
Second order linear PDEs, 29
Self-adjoint operator, 31
Semi-infinite medium, heat conduction in,

250–254
Shift theorem, 78, 305
Shock wave, 19
Sine function, 283

Fourier series in, 290–292
Small transverse oscillations of circular

membrane, 205
axisymmetric oscillations of membrane,

209–213
boundary conditions, 205–206
equations, Fourier method for,

218–220
forced axisymmetric oscillations,

216–218
homogeneous equations, Fourier

method for, 206–209
nonhomogeneous equations, Fourier

method for, 214–216
Solitary waves, 270–271, 278–281
Solitons, 270–271
Spectral density, 300
Spherical Bessel functions, 320–322
Spherical coordinates, 164
Spherical Neumann functions, 320
Standing waves, 66
Static distributions of temperature, 3
Stretched edge boundary condition, 190
Sturm-Liouville boundary problem,

104–105
Sturm-Liouville problem, 29, 61–63, 157,

170, 356
for circle, 349–351
examples, 34–40
for rectangle, 352–354
theorem, 32–34

Superposition principle, 25
Symmetry

of Burger’s equation, 262–263
properties of KdV equation,

267–268
properties of NSE, 277–278

T

Telegraph equations, 51
Thermal conductivity, 99
Thermal diffusivity, 99

Third boundary value problems, 148
Third harmonic function, 66
Three-dimensional Green’s function, 249
Three-dimensional Helmholtz equation, 180
Three-dimensional Laplace equation

axisymmetric case, 164–165
for ball, 164
for cylinder, 160–164
graph of function, 161
non-axisymmetric case, 165–166
surface plot, 161

Three-dimensional space, 12–13
Three-soliton solution, 276
Time-independent Schrödinger equation,

181
Transcendental equation, 316
Translational symmetries, 263
Traveling wave form, 261–262
Trigonometric Fourier expansion, 38, 284
Trigonometric series, complex form of,

294–295
Tsunami effect, 93–94
Two-dimension (2D)

hyperbolic or parabolic equations in
rectangular domain, auxiliary
functions for, 347

Laplace equation, 141
Two-dimensional hyperbolic equations

derivation of equations of motion,
187–191

oscillations of rectangular membrane,
191–205

small transverse oscillations of circular
membrane, 205–220

Two-dimensional parabolic equations
circular domain, heat conduction

within, 237–247
finite rectangular domain, heat

conduction within, 227–236
infinite medium, heat conduction in,

248–249
semi-infinite medium, heat conduction

in, 250–254
Two-fold degeneracy, 37
Two-soliton solution, 276

U

Uncertainty relation, 92
Uniform convergence, 286
Uniform mass density, 189
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W

Wave
equation, 3, 21, 24, 43–45, 180
number, 89
numbers, 299
propagation of wave train, 91–93

propagation on inclined bottom,
93–94

speed, 45
Weierstrass criterion, 288
Well-posed boundary value problems,

143–144
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