

PYTHON PROGRAMMING FOR BEGINNERS

A Step-By-Step Guide to Learn Python Basics in 7 Days. Master python programming quickly with a detailed and straightforward language with many practical examples.

TIM TURNER

FOUDER OF DATA INTELLIGENCE AND TECH ACADEMY

© Copyright 2019 - All rights reserved.

The content contained within this book may not be reproduced, duplicated or transmitted without direct written permission from the author or the publisher.

Under no circumstances will any blame or legal responsibility be held against the publisher, or author, for any damages, reparation, or monetary loss due to the information contained within this book. Either directly or indirectly.

Legal Notice:

This book is copyright protected. This book is only for personal use. You cannot amend, distribute, sell, use, quote or paraphrase any part, or the content within this book, without the consent of the author or publisher.

Disclaimer Notice:

Please note the information contained within this document is for educational and entertainment purposes only. All effort has been executed to present accurate, up to date, and reliable, complete information. No warranties of any kind are declared or implied. Readers acknowledge that the author is not engaging in the rendering of legal, financial, medical or professional advice. The content within this book has been derived from various sources. Please consult a licensed professional before attempting any techniques outlined in this book.

By reading this document, the reader agrees that under no circumstances is the author responsible for any losses, direct or indirect, which are incurred as a result of the use of information contained within this document, including, but not limited to, — errors, omissions, or inaccuracies.

Table of Contents

Introduction

Chapter 1: A Brief Introduction On The History And Philosophy Of Python

Chapter 2: Why Python?

Chapter 3: Three Versions Of Python

Chapter 4: How To Install And Run Python In Various Operating Systems

Installing Python

Windows Installation Instructions

Mac Installation Instructions

For Linux

Chapter 5: The Basic Interface To Start Programming And Interacting With The Python Interpreter

Definitions: Interpreter, Terminal, Shell, IDE

The Python Interpreter

Using an IDE

Using PyCharm

Prompt

Indentation

Indentation Prompt

Python Shell Navigation

IDLE Navigation

Troubleshooting Installation Issues

Practice Exercise

Chapter 6: Presents The Basic Mathematical Operators

The Mathematics That Come with Neural Networks

Neural Networks

Recurrent Neural Networks

Chapter 7: The Concepts Of Variable

Variables

The Rules of When Naming Variables in Python

Practice Exercise

Conventions When Naming Variables in Python

Practice Exercise 1

Practice Exercise 2

Keywords and Identifiers in Python Programming Language

Practice Exercise

Statements in Python

Multi-line Python Statement

Practice Exercise:

Indentation in Python

Comments in Pythons

Practice Exercise

Multi-line Comments

Chapter 8: The Sequence And Selection Control Structures

What Is A Sequence In Python?

If-Else Conditional Statement

If Conditional Judgment Expression

Multiple Choices

The Loop Repeat Structure

While loop

For-loop

Nested loop

Chapter 9: Boolean logic and Conditional

Conditionals

Chapter 10: Function Modules And Numbers In Python

Python Program Structure

Module Creation

Module Import

Properties of Modules

Built-in Functions of Modules

Custom Packages

Pack initialization

Function

Definition Of Function

Parameters Of Function

Default Parameter for Functions

Return Value Of Function

Reconstruction of Function

Nesting of Functions

Recursive Functions

Lambda Function

Chapter 11: Strings, Lists, Tuples, Sets And Dictionaries In Python Tuples In Python

A tuple is like a list, but we cannot change elements in a tuple

Negative Indexing

Slicing

Testing Membership in Tuple

String in Python

Accessing Items In A String

Deleting or Changing in Python

String Operations

String Iteration

Membership Test in String

String Formatting in Python

Practice Exercise

Operators in Python

Arithmetic Operators

Practice Exercise

Modulus

Practice Exercise

Operators with String in Python

Dictionary

How do Python Dictionaries Work?

Creating a Dictionary

Accessing Elements from a Dictionary

Add or Modify Dictionary Elements

Removing/Deleting Elements from a Dictionary

Dictionary Methods in Python

Odd Items Only Dictionary

Membership Test in a Dictionary

Iteration in a Dictionary

Practice Exercise

Sets

Lists

Chapter 12: How To Handle Errors

Try and Except

Variable Styling

Practice Exercise

Conclusion

Introduction

Python is a dynamic explanatory programming language. Python is easy to learn and powerful, and supports object-oriented and functional programming. Python can be used on multiple operating systems such as Windows and UNIX. Python can be used on development platforms such as Java and. NET, so it is also called a ‘beginner’s programming language.’ Python's simplicity and ease of use make the development process concise, and especially suitable for rapid application development.

Python with its simplicity and learning with ease helps in reading the programming language, and that is why it reduces the cost to maintain the program. Python encourages the program modularity and code reuse; this is because it supports different packages and modules. The standard library and the Python interpreter can be found in binary form. It is not necessary to charge all the available platforms and can be distributed freely.

Most programmers love the Python program because they offer great productivity. The edit-test debug is a cycle that is fast, and does not need any compilation process. It is easier to debug a Python program; it will not cause any segmentation fault. An exception is raised when an error is discovered by the interpreter. When the exception is not known by the program, the interpreter prints a trace. The debugger, on a level of sourcing, will allow inspecting any variables. There will be a settling of breakpoints, arbitrary expressions, and stepping on the code at any time. The Python is what writes the debugger, the easier and a quick debugging method, and programs of adding prints on the source and statements.

Programming concepts are always understood only if you can practically use them on your own. For this exact reason, we have bundled this book with a lot of programming code examples that will initiate you to code on your own. Already experienced programmers can also use this book as good reference material on Python.

There are a lot of books that cover Python in the market, but you have chosen us to immerse you into the world of Python programming. We are sure that you will get a good learning experience while reading this book. Let’s go!

Python is a programming language that is pretty famous and has a very generous community, that produces high-quality projects for various branches of computer science such as data mining, machine learning, and deep learning, on a regular basis. It is an old programming language but still solves modern problems perfectly.

This book is not a reference but a smart introduction to Python in an easy way. We tried to explain all the concepts in an easy language, so that the readers can learn the programming concepts and use them to create some pretty innovative projects.

Chapter 1: A Brief Introduction On The History And Philosophy Of Python

Python was invented in the later years of the 1980s. Guido van Rossum, the founder, started using the language in December 1989. He is Python's only known creator and his integral role in the growth and development of the language has earned him the nickname ‘Benevolent Dictator for Life.’ Python was created to be the successor to the language known as ABC.

The next version that was released was Python 2.0, in October, 2000, and had significant upgrades and new highlights, including a cycle-distinguishing junk jockey and back up support for Unicode. It was most fortunate, that this particular version made vast improvement procedures to the language, which turned out to be more straightforward and network-sponsored.

Python 3.0 initially started as Py3K. Funny right? This version was rolled out in December of 2008 after a rigorous testing period. This particular version of Python was hard to roll back to previous compatible versions, which is the most unfortunate. Yet, a significant number of its real highlights have been rolled back to Python versions 2.6 or 2.7, and rollouts of Python 3 which utilizes the two to three utilities, that helps to automate the interpretation of the Python script.

The expiry date of Python 2.7 was originally supposed to be back in 2015, but for unidentifiable reasons, it was put off until the year 2020. It was known that there was a major concern about data being unable to roll back, but roll forward
 into the new version, Python 3. In 2017, Google declared that there would be work done on Python 2.7 to enhance execution under simultaneously running tasks.

Chapter 2: Why Python?

Python is a versatile and powerful programming language that was developed in 1991 by Guido van Rossum.

As a fun fact, you should know that the name of the language does not come from the snake, which bears the same name. Guido named his project ‘Python’ after Monty Python, which was a British comedy group he was a big fan of.

If you happen to be a fan as well, you will find several ‘easter eggs’ within the official documentation of the language.

Since 1991, Python has been used to introduce people to programming due to its simple syntax, as well as to create complex programs and analyze massive amounts of data.

As a beginner, with Python, you will be able to write a basic program quickly. You can easily scale it further as well, and turn it into a commercial project.

The main reason why Python is so popular for beginners is the fact that the language is easy to read and write.

Its structure is human-like and easy to understand; therefore, the code is very user-friendly.

This means that you should not find it too difficult to remember the language and structure.

In addition, Python comes with a number of libraries and premade functions that you can immediately add to your code. This way, you can save time. In many ways, it is like playing with Legos.

As long as you pace yourself, learn and practice everything in this book, and extend your knowledge using other resources, you will be able to write a program that you will understand ten years from now.

Program maintenance is a crucial part of your responsibilities as a programmer, but luckily Python code is easy to administrate compared to other languages.

With that in mind, let us briefly explore the plethora of reasons why you should learn Python instead of any other languages.

After all, Python is not quite the only language that offers you the advantages you have learned so far.

	

User-friendly
 : The purpose of a programming language is to form the connection between humans and computers.

Python, like C# and Java, is a high-level programming language, which means that it is quite far from the machine language, which the computer then processes.

The opposite of this is the low-level language, which usually refers to assembly language or machine code.

In other words, Python is close to English.

This allows you to write code as fast as you write any sentence, once you learn the rules and the syntax.

	

Powerful
 : Sometimes, Python is looked down upon because it is so easy to learn and it is usually the first language programmers explore, whether on their own or in Computer Science 101.

However, Python is a very powerful language that is just as versatile and efficient as more complex languages, such as C++.

Python is used in every technical department in companies like Google, Microsoft, IBM, Xerox, NASA, and many more.

You can even use Python in game development if you prefer to practice a programming language in a more artistic way.

	

OOP
 : Object-oriented programming is many times the optimal computer problem solver.

It is a methodology that offers a method of defining data and actions as objects.

This type of programming is not always necessary; however, when working on large applications, it is usually the most optimal approach.

For instance, programming languages such as C# and Java are object-oriented.

Python can be considered an object-oriented language as well, but this feature is optional.

The other languages do not offer such versatility.

This means that with Python, you do not necessarily have to learn the object-oriented methodology from the start.

This is one of the reasons why it is so much easier to start programming with Python than C++.

However, you have the massive benefits of OOP at your fingertips, but only when you actually need it.

If you are working on a basic program, there is no need for it.

Python offers you all the power and versatility you need.

	

Computer-friendly
 : You can run Python on any kind of computer.

You do not need a powerful computer processing unit and a great deal of RAM to start programming.

You can even use a credit-card-sized computer, like the Raspberry Pi.

In fact, Python requires so little that it is one of the top languages used in creating little robots that are operated by $5 computers.

In addition, Python runs on any operating system, whether it is Linux, Windows, or Mac.

The programs you write do not depend on the platform.

You can work on an application on your Windows running computer, and then switch it to your Mac.

For instance, if you finished creating a program and you need beta testers, you can email your project to a friend that uses Linux and another one with Windows. The program will work.

	

Language adaptability
 : If you ever write a program in another language, you can integrate Python within it.

In other words, you can use Python on a program that was written in Java.

In addition, you also combine Python with another language in order to take advantage of the benefits that are offered by both of them.

For instance, you can integrate C or C++ in order to benefit from the system optimization and speed that they offer.

	

It is free
 : Everyone likes free stuff, and Python will not cost you a cent.

You can always download and install it for free as many times as you want.

In addition, Python is an open-source language, which means that the license even allows you to make modifications to the source code.

	

Community
 : Being a powerful and versatile, open-source programming language brings the benefit of the community.

There are many online communities dedicated to teaching and learning everything there is to know about Python.

You can ask questions on online boards or seek the advice of a master programmer.

You can also seek fellow students and work on a project together.

Python’s popularity has gathered a massive crowd around it, and you should take advantage of it.

Chapter 3: Three Versions Of Python

There are three popular and official versions of Python: Python 3.x and 2.x. As of this writing, you can download Python 3.7.0 if you want the 3.x version. You can also download Python 2.7.15 if you want the 2.x version.

However, to prevent any conflicts and misunderstandings, please download and use Python 3.x. All the examples and lessons in this book are written with Python 3.x in mind.

The 2.x version is an older version of Python. Ever since the Python developers proceeded in developing Python 3.x, they have made a lot of changes to the behavior and even the syntax of the Python programming languages.

For example, if you divide 3 and 2 using the (/) operator in Python 2.x, you will receive an output of 1. If you divide the same numbers with the same operator in Python 3.x, you will receive an output of 1.5.

You may ask if Python 3.x is new and improved, why are the developers keeping the old versions and why is Python 2.x being used?

The quick answer to that is code migration
 . Because there are many differences between version 2.x and version 3.x, programs and scripts created using version 2.x need to be recoded to become compatible with version 3.x Python.

If you are dealing with a small program using version 2.x, then the code migration will be a trivial problem at best. However, if you have programs with thousands of lines, then migration can become a huge problem. Other issues with migrating to Python 3.x are code maintenance, and retraining programmers to adapt with the changes.

Because of the aforementioned reasons, developers with huge programs written and run using the version 2.x runtime environment did not bother making the transition to version 3.x.

Chapter 4: How To Install And Run Python In Various Operating Systems

Installing Python

Choosing Python 2 or Python 3

If you are starting a new project or are just learning Python, I highly recommend using Python 3. Python 3.0 was released in 2008 and at this point the Python 2.x series is considered legacy. Long story short, if at all possible, use the latest version of Python available. If you must use Python 2, use Python 2.7 as it is compatible with all Python 2 code and much of Python 3. The primary reason to choose Python 2 over Python 3 is if your project requires third-party software that is not yet compatible with Python 3.

Windows Installation Instructions

By default, Python does not come installed on the Windows operating system. Download the Python installer from the Python downloads page
 . Click on Download Python 3.x.x.
 to download the installer. Double-click the file to start the installation process. Simply keep clicking on Next
 to accept all of the default settings. If you are asked if you want to install software on this computer, click Yes
 . To exit the installer and complete the Python installation, click on Finish
 .

[image:]

[image:]
 [image:]

[image:]

[image:]

[image:]

Mac Installation Instructions

If you encounter a message stating that Python.mpkg
 cannot be opened because it is from an unidentified developer, you will need to control-click the Python.mpkg
 file. Next, select Open with,
 and finally click on Installer
 . When you are asked if you are sure you want to open it, click Open
 . If you are asked to enter an administrator's username and password, please do so.

[image:]

[image:]

[image:]
 [image:]

Click through the installer and accept all of the defaults. [image:]
 [image:]
 [image:]

[jason@mac ~]$ which Python3

/Library/Frameworks/Python.framework/Versions/3.4/bin/Python3

[jason@mac ~]$ Python3 --version

Python 3.4.1

For Linux

For Linux, Python 2 and 3 may have been installed by default. Hence, first check your operating system. You can check if your device already has a Python program, by accessing your command prompt and entering this: Python—version
 or Python3—version
 .

If Python is not installed in your Linux, the result “Command not found
 will be displayed. You may want to download both Python 2.7.12 and any versions of Python 3 for your Linux. This is due to the fact that Linux can have more compatibility with Python 3.

For windows users, now that you have downloaded the program, you are ready to start.

Congratulations! You can now begin working and having fun with your Python programming system.

If for some reason you do not want to install Python, you may notice that on the website’s homepage you have some kind of a console. This is a Python online console and you can use it to practice your coding skills, or to try out some of the examples in this book. It is advisable for you to type the code yourself (even if you copy it from the book), and then try to be creative with it. You need to practice in order to memorize the syntax and specific commands, and the online console is really handy for a quick practice session.

Chapter 5: The Basic Interface To Start Programming And Interacting With The Python Interpreter

Definitions: Interpreter, Terminal, Shell, IDE

As you continue to program with Python, you will see many references to concepts of interpreter, terminal, Shell, and IDE. These concepts can be somewhat confusing for a beginner, so to make things simpler, let us define these concepts here. If you are already somewhat familiar with these programming [image: D:\01-Upwork\2020\03-Mar\05-Jet Saini\Book02\Copy\word\media\image4.png]
 concepts and are just looking to learn Python as another language, feel free to skip this section.

An interpreter
 is a computer program that can execute code, carrying out the written instructions specified by a programming or scripting language. An interpreter carries out code immediately and directly. In contrast, a compiler
 is a program that translates instructions into efficient machine code. Meanwhile, a shell
 is a wrapper or environment whose primary function is to run other programs. ‘Shell’ is often used to refer to the command-line of the OS. The command line takes in commands centered on the name of applications the user wishes to interact with. The interface you see above is an example of the Python shell, and it is running an interpreter.

Python has its shell; an interactive interpreter specialized for running Python commands. It lets the user immediately execute Python code and see the result, as soon as the user enters the command. The Python shell that can be accessed through the command-line is an example of a terminal
 , which is simply the environment that allows the user to input text and receives outputs. For the purpose of this book, the terms ‘shell’ and ‘terminal’ may be used interchangeably in reference to an instance of the Python interpreter accessed through the command line.

The Python Interpreter

There are two main ways to work with Python: with the interpreter and command line, or with an Integrated Development Environment (IDE).

We will be doing the majority of our programming in an IDE, but first, let us make sure you understand how to work with Python in the terminal.

[image: D:\01-Upwork\2020\03-Mar\05-Jet Saini\Book02\Copy\word\media\image5.png]

Let us start by opening the terminal/command prompt and checking that Python is installed correctly by just typing the command “Python.”
 If Python is properly installed, the command prompt should transition you to an instance of the Python interpreter/shell. This interpreter allows you to create and run Python code. For instance, if you copied this line of code into the terminal, you would get “Using the terminal interpreter!” printed back out:

print ("Using the terminal interpreter!")

The command print() is responsible for printing out to the terminal whatever is specified inside the parentheses.

Most programming is done in an IDE, but it is still a good idea to learn how the Python interpreter works, because there may be occasions where you may have to do some programming in it. With that in mind, let us take a few moments to familiarize ourselves with the Python interpreter.

As mentioned, the Python interpreter can typically be invoked from the command line only by entering the command “Python,” or perhaps the specific Python version you want to run; for e.g. Python3.8.

The interpreter can typically be exited with the quit command, exit(), or depending on the version you are running, quit().

The help() command is an incredibly helpful command that you will always want to remember because it shows you all the various commands and functions that you can use in the interpreter.

When you enter a command by hitting the return key, the statement will be evaluated for correct syntax. If there is a syntax error, the error will be displayed.

Python is waiting for a command if you see the primary prompt
 , which is often indicated by the presence of three greater-than signs (>>>
). If you are on the second line of an input, these greater than signs will instead be replaced with three periods.

Using an IDE

I wanted to make you aware of the Python interpreter in the terminal’s existence, but most of our programming will be done in an IDE. If you experimented with the terminal a little bit, you would quickly find a significant disadvantage of using the terminal, and it is that you cannot preserve many lines of code on the same screen. In addition, whenever you enter a line of code, and it contains any errors, a syntax error will be thrown immediately. IDEs make the process of learning a language simpler, because they will often highlight syntax errors for you. Other benefits of using an IDE include auto-completion for specific key phrases and functions, more accessible collaboration with other programmers, and the ability to make changes to a script, even while an instance of the programming is running.

You can try out the code examples found in either this the terminal or in an IDE. However, most of the examples presented here will be presented in an IDE. One excellent IDE is Pycharm
 , an open-source IDE designed from the ground up for use with Python. PyCharm highlights syntax errors, enables easy refactoring/renaming of files, and comes with an integrated debugger. PyCharm also has an integrated terminal, and when you run programs in PyCharm, the results of the program’s execution will be displayed in the terminal at the bottom of the IDE.

Using PyCharm

Let us go over some of the functions in PyCharm in greater detail, so that you are familiar with how to use it.

After installing PyCharm and setting it up for the first time, you may be slightly intimidated by all the options, but do not worry, you will not be using most of these options for the exercises in this book.

[image: D:\01-Upwork\2020\03-Mar\05-Jet Saini\Book02\Copy\word\media\image6.png]

As you can see in the image above, when you open PyCharm and are confronted with the interface, you can navigate up to the File
 option in the top-left corner. Opening the File
 drop-down menu will let you either open an existing project, or create a new project. Opening an existing project enables you to reopen projects you have already started and saved, and even open the projects that other people have worked on, which you have downloaded/cloned. For now, just create a new project for the exercises through the File
 option in the top-left corner.

The New Project
 dialog box may look slightly different depending on which version of PyCharm you are using, but it should ask you to select a project interpreter. The default virtual environment (virtualenv) is beautiful for now, and it should automatically detect your base Python interpreter if it is correctly installed on your computer.

After this, you can create a folder to hold the scripts you create by right-clicking in the project frame and choosing the New
 option from the drop-down menu. To create a new Python script, just right-click on the folder you have created and navigate to New
 ,and then the Python File
 option. Now just enter a name for your new file Python file.

After you create a new Python file, it should automatically open in the editor panel to the right. You can now enter code into the editor. If, for some reason, the editor did not automatically open the file, just double-click on the file to open it up in the editor.

PyCharm should automatically save changes to the file, which means you do not need to worry about manually saving them. If for some reason, the file does not auto-save, or you just want to be sure it has saved, you can right-click on the file to be presented with a drop-down menu, that should contain the option to save the file. You can also press Ctrl + S
 to save all the files currently open in PyCharm.

Once you have written some code and want to try running it, you can either navigate up to the Run
 tab on the top toolbar and select Run (Current file name here)
 , or press Shift
 + F10
 . The image above shows a program has finished its run in PyCharm’s compiler. Note that the results of the program are printed to the built-in terminal.

[image: D:\01-Upwork\2020\03-Mar\05-Jet Saini\Book02\Copy\word\media\image7.png]
 Prompt

The Python Shell and IDLE has a prompt, which looks like this: >>>. You generally start writing your code after the prompt in the Python Shell and IDLE. However, remember that when you write code in a file, py script, or module, you do not need to write the prompt.

For example:

Class thisClass():

def function1():

x = 1

print(x)

def function2():

pass

That is valid code.

Indentation

When programming, you will encounter or create code blocks. A code block
 is a piece of Python program text (or statement) that can be executed as a unit, a module, a class definition or a function body. They often end with a colon (:).

By default and by practice, indentation is done with four spaces. You can do away with any number of spaces as long as the code block has a uniform number of spaces before each statement. For example:

def function1():

x = 1

print(x)

def function2():

y = "Sample Text"

print("Nothing to see here.")

That is perfectly valid code. You can also use tab, but it is not recommended since it can be confusing, and you will get an error if you mix using tabs and spaces. Also, if you change the number of spaces
 for every line of code, you will get an error. Here is an example in the shell. Note the large space before print()
 on line 2.

>>> x = 1

>>> print(x)

File "<stdin>", line 1

print(x)

^

IndentationError: unexpected indent

>>> _

By the way, a statement
 is a line of code or instruction.

Indentation Prompt

When using the Python Shell, it will tell you when to indent by using the prompt (...
). For example:

>>> def function1():

x = 1

print(x)

>>> def function2():

y = "Sample Text"

print("Nothing to see here.")

>>> _

In IDLE, indentation will be automatic
 . To escape an indentation or code block, you can just press Enter
 or go to the next line.

Python Shell Navigation

You cannot interact using a mouse with the Python Shell. Your mouse will be limited to the window’s context menu, window commands such as minimize, maximize, and close, and scroll.

Also, you can perform marking (selecting), copying, and pasting, but you need to use the windows context menu for that using the mouse. You can also change the appearance of the window and shell by going through the Properties
 menu.

Most of the navigation you can do in the shell is moving the navigation caret (the blinking white underscore). You can move it using the navigation keys (left and right arrow keys, PgUp, PgDn, Home, End, etc.). The function of the up and down arrow keys is to browse through the previous lines you have written.

IDLE Navigation

The IDLE window is just like a regular GUI window. It contains a menu bar where you can access most of IDLE’s functionalities. Also, you can use the mouse directly on IDLE’s work area as if you are using a regular word processor.

You might need to take a quick look at the menu bar’s function for you to familiarize yourself with them. Unlike the Python shell, IDLE provides a lot more helpful features that can help you with programming.

Primarily, IDLE is the main tool you can use to develop Python programs. However, you are not limited to it. You can use other development environment or word processors to create your scripts.

Troubleshooting Installation Issues

First of all, make sure that you download the installation file from the website
 . Next, make sure that you chose the proper installation file for your operating system. There are dedicated installation files for Windows, MacOSX, and other UNIX-based operating systems.

If your computer is running on Windows XP, the latest release of Python will not work on it. You must install and use Python 3.4. Also, remember that there are two versions of each release: a 32-bit and a 64-bit version. If you are unsure if your computer is running on 32-bit or 64-bit, then just get the 32-bit version. Normally, the recommended installer that the site will provide contains both, and will automatically detect which installer it will use.

Normally, you do not need to go to Python website to download the installation file, if you are using a Linux distribution as an operating system. You can just use your system’s package manager.

Before installing Python, make sure that you have at least 100 MB free disk space
 . You can also edit the installation location of Python. However, take note of the location you type in, if you wish to install Python in a different folder.

If the installer did not provide shortcuts for you, you can just create them. The Python shell is located in the root folder of your Python installation.

<Python installation folder>\Python.exe

For example:

"C:\Python37\Python.exe"

For IDLE, you can use its batch file located in

<Python installation folder>\Lib\idlelib\idle.bat

For example:

"C:\Python37\Lib\idlelib\idle.bat"

If you cannot find the idlelib
 folder inside the Python Lib folder, reinstall Python and make sure that IDLE is checked.

Practice Exercise

For now, familiarize yourself with the Python shell and IDLE. Try to discover the things you can do with them. Look at all the messages that it may send you, as you enter information on it.

When it comes to IDLE, try to customize it (e.g. change the color theme from the default IDLE Classic to IDLE Dark). Explore all the other features and functions you can change. Have fun!

Chapter 6: Presents The Basic Mathematical Operators

The Mathematics That Come with Neural Networks

You will not get very far with your work in deep learning if you are not able to work with these neural networks, and there are a few different types that you can create and work with as well. So, let us dive right in and learn more about these great neural networks that can help us with our deep learning models.

Neural Networks

The first type of network we are going to look at is the usual type of neural network. These neural networks are going to fit into the category of unsupervised machine learning, because they are able to work on their own and provide us with some great results in the process. Neural networks are a great option to work within machine learning, because they are set up to catch onto any pattern or trend that is found in a set of data. This can be done through a variety of levels. In a way, that is going to be much faster and more effective than a human going through and doing the work manually.

When we work with a neural network, each of the layers that we will focus on are responsible for spending time in that layer, seeing if they are able to find a pattern or trend inside the image, or through the data, that it looks at. Once it has found a trend or a pattern, it is going to start its process for entering into the next layer. This process is going to continue, with the network finding a new pattern or trend, and then going on to the next level, until it reaches a place where there are no more trends or patterns to find.

This process can end up with a lot of different layers, one over the top of the others again and again, until you have been able to see the whole thing that comes in the image. When the algorithm is created, and the program can make a good prediction, based on what is in the image or in the data that you present. Then, you know that it has all been set up properly.

Before we move on though, we have to remember that there are a few parts that will start to occur at this point, based on how you set up the program to work. If the algorithm was able to read through all of the layers and the steps above, and it had success with reading through the different layers, then it is able to make a good prediction for you. If the algorithm is accurate with the prediction that it made, then the neurons that come with this algorithm will strengthen, and become faster and more efficient at their job overall.

The reason that this happens is because the program is relying on artificial intelligence, and more specifically on deep learning
 , in order to create those strong associations between the patterns it saw and the object. Keep in mind that the more times that the algorithm is able to provide the right answer during this process, the more efficient it will become when you try to use it another time as well. The neurons get stronger, and you will see that the answers come faster and are more accurate, overall.

Now, if you have not been able to work with machine learning and deep learning in the past, it may seem like these neural networks would be impossible to actually see happen. But a closer examination of these algorithms can help us to see better how they work, and why they can be so important to this process. For the example that we are going to work with, let us say that we have a goal to make a program that can take the image we present. Then, by going through the different layers, the program is able to recognize that the image in that picture is actually a car.

If we have created the neural network in the proper manner, then it is able to take a look at the image that we use and make a good prediction, such that it sees a car in the picture. The program will then be able to come up with this prediction based on any features and parts that it already knows comes with a car. This could include the color, license plate, door placement, where the headlights are, and more.

When we take a look at coding with some of the traditional methods, whether they are Python methods or not, this is something that you may be able to do. But it takes way too long and is not the best option to work with. It can take a lot of coding and really just confuse the whole process. But with these neural networks, you will be able to write out the codes to get this kind of network done in no time.

To get the neural network algorithm to work the way that you want, you have to provide the system with a good and clear image of a car. The network can then take a look at that picture, and start going through some of the layers that it needs to work with to see the picture. So, the system will be able to go through the first layer, which may include something like the outside edges of the car. When it was done with this, the network would continue on from one layer to the next, going through however many layers it took to complete the process and provide us with a good prediction. Sometimes this is just a few layers, but the more layers this program can go through, the more likely it will provide an accurate prediction in the end.

Depending on the situation or the project that you want to work with, there is the potential for adding in many different layers. The good news with this one is that, the more details and the more layers that a neural network can find, the more accurately it can predict what object is in front of it, and even what kind of car it is looking at.

As the neural network goes through this process, and it shows a result that is accurate when identifying the car model, it is actually able to learn from that lesson, similar to what we see with the human brain. The neural network is set up in a way to remember the patterns and the different characteristics that it saw in the car model, and can store that information to use at another time, if it encounters another car that is the same again. So, if you present, at a later time, another image with that same car model in it, then the neural network can make a prediction on that image fairly quickly.

There are several options that you can choose to use this kind of system for, but remember that each time you make a neural network, it is only able to handle one task at a time. you can make a neural network that handles facial recognition for example, and one that can find pictures that we need in a search engine, but you cannot make one neural network do all of the tasks that you want. You may have to split it up and make a few networks, to see this happen.

For example, there is often a lot of use for neural networks when it comes to creating software that can recognize faces. All of the information that you need to create this kind of network would not be available ahead of time, so the neural network will be able to learn along the way and get better at recognizing the faces that it sees in video or images. This is also a method that can be effective, when you would like to get it to recognize different animals or recognize a specific item in other images or videos, as well.

To help us out here, we need to take a look at some of the advantages that can come with this kind of model of machine learning. One of the advantages that a lot of programmers like with this one is that you can work with this algorithm without having to be in total control over the statistics of the algorithm. Even if you are not working with statistics all of the time, or you are not really familiar with how to use them, you will see that these networks can be used without those statistics; still that if there is any relationship, no matter how complex it is, is inside the information, then it is going to show up when you run the network.

The nice thing with this one is that the relationships inside your data can be found, whether the variables are dependent or independent, and even if you are working with variables that do not follow a linear path. This is great news for those who are just getting started with machine learning, because it ensures that we can get a better understanding of how the data relates to each other, and some of the insights that you want to work with, no matter what variables you are working with.

With this in mind, we have to remember that there are still times when we will not use a neural network, and it will not be the solution to every problem that we want to handle in deep learning. One of the bigger issues that come with these neural network algorithms, and why some programmers decide to not use this, is that the computing costs are going to be kind of high.

This is an algorithm that is pretty in-depth, and because of this, the computing costs are going to be a bit higher than what we find with some of the other options out there. For some businesses, and even on some of the projects that you want to use deep learning, this computation cost will just be too high. It will take on too much power, too much money, and often too much time. For some of the projects that you want to take on, the neural networks will be a great addition to your arsenal with deep learning, and at other times, you may want to go another route.

Neural networks are a great option to work with when it is time to expand out your work, and when you would like to create a program that can handle some more complex activities. With the right steps here, and with some time to train the neural network, you will find that the neural network is a great way to handle your data and find the trends and predictions that you want.

Recurrent Neural Networks

Now that we have had some time to look at the regular neural networks, it is time for us to dive a bit deeper and look at another option, known as the recurrent neural networks
 . These are going to follow some of the same rules that we can see with the discussion above, but they can also take some of your projects to the next level. Let us take a look at what these recurrent neural networks are like, and how they can really benefit a project that you are working with.

A good way to start looking at these recurrent neural networks, or RNN, is by taking a look at the human brain. When we do this, we know that it is reasonable to have the understanding that our thought processes or our understanding does not restart every second. We are able to retain the information that we hear, and learn and then build on it. This is something that we do from childhood. We do not just see the letter A and then forget about it five seconds later. We use it as the start of the alphabet and build on that to B, C and so on. We are always building on new knowledge, whether it is from our childhood, or if it is something that we just learned.

As we go through some of the other parts that show up in this guidebook, you will start to see how each of the words, based on how much understanding you had of the words that we wrote on the page before. Your brain is not going to see a word, and then immediately throw it away, and then restart its thinking process from the beginning. The point here is that our thoughts are basically able to have some consistency and some persistence with them, which is part of what makes them so powerful to work with.

With the traditional neural network that we discussed in the last section, is not capable of doing this kind of thing. This can be a bigger shortcoming in many cases. For example, if you are working on a project that needs to classify the kind of event that is happening during all of the different parts of a movie, it would not help you much with a traditional neural network because it would not be able to reason with the events that occurred earlier on in this film. There just is not that kind of communication or power showing up within the program.

Even though the traditional neural networks may struggle with doing this kind of task and others, the good news is that we can rely on the recurrent neural networks to help us address these problems and projects in machine learning for us. These are a type of network that comes with a loop, which is going to allow the information that it learns to persist. In this method, the loop will allow information to pass from one part of the network and then move it over to the next part of the code. The recurrent neural network can be a similar idea to having multiple copies of the same network, and with each message being handed over to the successor in the process.

This chain-like nature that comes with this network is going to reveal how these networks can be intimately related to sequences and lists as we go through the process. These are going to be the natural architecture of a neural network to use for all of this data. And there are quite a few times in deep learning when these networks are going to be used.

In fact, over the past few years or so, there has already been a lot of success when it comes to applying these recurrent neural networks to a variety of projects, and it is likely that this kind of success is going to continue in the future. Some of the current examples of how the recurrent neural network can be used include speech recognition, language modeling, translation, and image captioning projects.

One of the limitations that is pretty obvious when it comes to working on these neural networks is that the API that comes with it is going to contain a good deal of constraints along the way. The API is only able to take in a vector that is a fixed size for the input, and then, they can only produce a vector of a fixed size for the output. This can be a hassle when you need to take on larger forms of data to get some results.

Of course, this is just one of the issues that can come up with a system that is as complicated as an RNN. These models, for example, are able to perform the mapping that you need with a fixed number of computational steps, which is basically going to equal to the same number as the layers that you will use to see the model.

Now, one thing to remember here is that the main reason that the RNN option is able to make your coding more exciting, and can add in more work to what you can do is due to the fact that it allows the programmer to take their work and operate it over a sequence of vectors. This can often include the sequences in the input, the output, and often it will include a combination of both.

[image: 00001.jpeg]

Let us take a look at the chart above. Each of the rectangles that are there is going to be a vector and the arrows are going to show us the functions. The input vectors are going to show up in red, and then the output vectors that we need to know are going to be in blue. And then the green vectors will hold onto the RNN state (which we are going to talk about in a minute). Going from the leftover to the right, let us take a look at how each of these works:

The first one is going to be the vanilla mode of processing, the one that does not use the RNN at all. This is going to include an input that is fixed, and an output that is fixed. This is also known as image classification
 .

The sequence output is going to be the second part. This is going to be image captioning that is able to take an image, and then will provide you with an output of a sentence of words.

Sequence input:
 This is going to be the third picture above. It is going to be more of a sentiment analysis that shows us a given sentence, and makes sure that it is classified as either a negative or positive sentiment.

Sequence output and sequence output
 . You can find this one in the fourth box, and it is getting a bit closer to what we want. This one is going to be similar to a machine translation. This is when the RNN is able to read a sentence out in English, and then can take that information and provide you with an output that reads the sentence in French.

And finally, the last box is going to be the synced sequence input and output. The video classification here is going to help us to label out each of the frames that occur in a video, if we decide to.

Notice that in each of these, there are not going to be any constraints put on the lengths of the sequences that we have to specify ahead of time. this is because the recurrent transformation, which is going to be shown in green, is fixed, and we are able to apply it out as many times as we would like, or as many times as working with our project.

These neural networks are a great addition to any of the codes that you would like to write out in the Python language, and they are definitely good examples of what we are able to work with when it comes to deep learning. Deep learning can lead us to a lot of different projects, many of which we may not think were possible in the past. But with some great neural networks, including the recurrent networks and the traditional neural networks, we are able to make these programs happen, search through a lot of information, and get the predictions and insights that we are looking for out of that data.

Chapter 7: The Concepts Of Variable

Variables

We have used num1 and num2. The sum and the variable names were not just random; they must follow certain rules and conventions. Rules are what we cannot violate while conventions are much like the recommended way. Let us start with the rules.

The Rules of When Naming Variables in Python

Variable names should always start with a letter or an underscore, i.e.

num1

_num1

The remaining part of the variable name may consist of numbers, letters, and underscores, i.e.

number1

num_be_r

Variable names are case-sensitive, meaning that capital letters and non-capital letters are treated differently.

Num1 will be treated differently than num1.

Practice Exercise

Write/suggest five variables for:

✓ Hospital department.

✓ Bank.

✓ Media House.

Given scri=75, scr4=9, sscr2=13, Scr=18

✓ The variable names in above are supposed to represents scores of students. Rewrite the variables to satisfy Python variable rules and conventions.

Conventions When Naming Variables in Python

As earlier indicated, conventions are not rules per se; they are the established traditions that add value and readability to the way we name variables in Python.

Uphold readability
 . Your variables should give a hint of what they are handling because programs are meant to be read by other people other than the person writing them.

number1 is easy to read compared to n1. Similarly, first_name is easy to read compared to firstname or firstName or fn. The implication of all these is that both are valid/acceptable variables in Python, but the convention is forcing us to write them in an easy to read form.

Use descriptive names when writing your variables
 . For instance, number1 as a variable name is descriptive compared yale or mything. In other words, we can write yale to capture values for number1, but the name does not outrightly hint what we are doing. Remember when writing programs; assume another person will maintain them. The person should be able to quickly figure out what the program is all about before running it.

Due to confusion, avoid using the uppercase ‘O,’ lowercase letter ‘l,’ and the uppercase letter ‘I,’ because they can be confused with numbers. In other terms, using these letters will not be a violation of writing variables but their inclusion as variable names will breed confusion.

Practice Exercise 1

Re-write the following variable names to (1) be valid variable names and follow (2) conventions of writing variable names.

✓ 23doctor

✓ line1

✓ Option3

✓ Mydesk

✓ #cup3

Practice Exercise 2

Write/Suggest variable names that are (1) valid, and (2) conventional.

✓ You want to sum three numbers.

✓ You want to store the names of four students.

✓ You want to store the names of five doctors in a hospital.

Keywords and Identifiers in Python Programming Language

At this point, you have been wondering why you must use print
 and str
 in that manner without the freedom or knowledge of why the stated words have to be written in that manner. The words print
 and str
 constitute a special type of words that have to be written that way always. Each programming language has its set of keywords. In most cases, some keywords are found across several programming languages.

There are 33 keywords in Python, and all are in lowercase save for None, False, and True. They must always be written as they appear below:

Note
 : The print()
 and str
 are functions, but there are inbuilt/preloaded functions in Pythons. Functions are a set of rules and methods that act when invoked. For instance, the print function will display output when activated/invoked/called. At this point, you have not encountered all of the keywords, but you will meet them gradually. Take time to skim through, read and try to recall as many as you can.

Practice Exercise

Identify what is wrong with the following variable names (The exercise requires recalling what we have learned so far)

✓ for=1

✓ yield=3

✓ 34ball

✓ m

Statements in Python

A statement in Python refers to instructions that a Python interpreter can work on/execute. An example is str=’I am a Programmer’
 and number1=3
 . A statement having an equal sign (=) is- known as an assignment statement
 . They are other types of statements such as the if, while, and for-, which will be handled later.

Practice Exercise

✓ Write a Python statement that assigns the first number a value of 18.

✓ Write a programming statement that assigns the second number value of 21.

✓ What type of statements are a. and b. above?

Multi-line Python Statement

It is possible to spread a statement over multiple lines. Such a statement is known as a multi-line statement. The termination of a programming statement is denoted by new line character. To spread a statement overs several lines, in Python, we use the backslash (\) known as the line continuation character. An example of a multi-line statement is:

sum=3+6+7+\

9+1+3+\

11+4+8

The example above is also known as an explicit line continuation. In Python, the square brackets [] denote line continuation, similar to parenthesis/round brackets (), and lastly braces {}. The above example can be rewritten as:

sum=(3+6+7+

9+1+3+

11+4+8)

Note
 : We have dropped the backslash (\) known as the line continuation character, when we use the parenthesis(round brackets), because the parenthesis is doing the work that the line continuation was doing.

Question: Why do you think multi-line statements are necessary? Can we simply write a single-line, and the program statement will run just fine?

Answer: Multi-line statements can help improve formatting/readability of the entire program. Remember, when writing a program, always assume that it is other people who will use and maintain it without your input.

Practice Exercise:

Rewrite the following program statements using multi-line operators such as the \, [],() or {} to improve readability of the program statements.

total=2+9+3+6+8+2+5+1+14+5+21+26+4+7+13+31+24

count=13+1+56+3+7+9+5+12+54+4+7+45+71+4+8+5

Semicolons are also used when creating multiple statements in a single line. Assume we have to assign and display the age of four employees in a Python program. The program could be written as:

employee1=25; employee2=45; employee3=32; employee4=43.

Indentation in Python

Indentation
 is used for categorization program lines into a block in Python. The amount of indentation to use in Python depends entirely on the programmer. However, it is important to ensure consistency. By convention, four whitespaces are used for indentation instead of using tabs. For example:

Indentation in Python also helps make the program look neat and clean. Indentation creates consistency. However, when performing line continuation, indentation can be ignored. Incorrect indentation will create an indentation error. Correct Python programs without indentation will still run, but they might be neat and consistent from human readability.

Comments in Pythons

When writing Python programs and indeed any programming language, comments are very important. Comments are used to describe what is happening within a program. It becomes easier for another person, taking a look at a program, to have an idea of what the program does, by reading the comments in it. Comments are also useful to a programmer as one can forget the critical details of a program written. The hash (#) symbol is used before writing a comment in Python. The comment extends up to the newline character. The Python interpreter normally ignores comments. Comments are meant for programmers to understand the program better.

Example

Start IDLE

Navigate to the File
 menu and click New Window
 .

Type the following:

#This is my first comment

#The program will print Hello World

Print(‘Hello World’) #This is an inbuilt function to display

On the file, menu click Save
 . Type the name, myProgram5.py

Navigate to Run
 , and click Run Module
 to run the program

Practice Exercise

This exercise integrates most of what we have covered so far.

✓ Write a program to sum two numbers, 45 and 12, and include single-line comments at each line of code.

✓ Write a program to show the names of two employees, where the first employee is “Daisy” and the second employee is “Richard”. Include single comments at each line of code.

✓ Write a program to display the student registration numbers where the student names and their registration are Yvonne=235, Ian=782, James=1235, and Juliet=568.

Multi-line Comments

Just like multi-line program statements we also have multi-line comments. There are several ways of writing multi-line comments. The first approach is to type the hash (#) at each comment line starting point.

For Example

Start IDLE.

Navigate to the File
 menu and click New Window
 .

Type the following:

#I am going to write a long comment line

#the comment will spill over to this line

#and finally end here.

The second way of writing multi-line comments involves using triple single quotes (‘’’) or triple double quotes(”””). For multi-line strings and multi-line comments in Python, we use the triple quotes. Caution: When used in docstrings they will generate extra code, but we do not have to worry about this at this instance.

Example:

Start IDLE.

Navigate to the File
 menu and click New Window
 .

Type the following:

“””This is also a great i

illustration of

a multi-line comment in Python”””

Chapter 8: The Sequence And Selection Control Structures

What Is A Sequence In Python?

The sequence of program execution is not a highway linking the north and the south. It can run from the north to the south, and to the end. The sequence of program execution may be as complicated as a highway in the busy area, with nine turns and 18 turns, which is easy to make people dizzy.

To write a good program, it is very important to control the process of program execution. Therefore, it is necessary to use the process control structure of the program. Without them, it is impossible to use the program to complete any complicated work.

The programming language has been continuously developed for decades. Structured programming has gradually become the mainstream of program development. Its main idea is to execute the entire program in sequence from top to bottom. Python language is mainly executed from top to bottom according to the sequence of program source code, but sometimes the execution sequence will be changed according to needs.

At this time, the computer can be told which sequence to execute the program preferentially through flow control instructions. The process control of the program is like designing a traffic direction extending in all directions for the highway system.

It is recognized that most program codes for process control are executed in sequence from top to bottom, line after line, but for operations with high repeatability, it is not suitable to execute in sequence. Any Python program, no matter how complex its structure is, can be expressed or described using three basic control processes: sequence structure, selection structure, and loop structure.

The first line statement of the sequence structure program is the entry point, and is executed from top to bottom, down to the last line statement of the program. The selection structure allows the program to select the program block to be executed, according to whether the test condition is established or not. If the condition is True, some program statements are executed. If the condition is False, other program statements are executed.

Colloquially, if you encounter a situation A, perform operation A; if this is case b, operation b is executed. Just like when we drive to the intersection and see the signal lamp, the red light will stop, and the green light will pass. Also, different destinations also have different directions, and you can choose the route according to different situations. In other words, the selection structure represents that the program will determine the ‘direction’ of the program according to the specified conditions.

The function of loop flow control with loop structure is to repeatedly execute the program statements in a program block, until the specific ending conditions are met. Python has a for-loop and a while loop.

If-Else Conditional Statement

If-else conditional statement is a fairly common and practical statement. If the conditional judgment expression is True (true, or represented by 1), the program statement in the if program block is executed. If the conditional judgment expression is not true (False, or represented by 0), the program statement in the else program block is executed. If there are multiple judgments, elif instruction can be added.

The syntax of the if conditional statement is as follows:

If the conditional judgment expression holds, execute the program statement in this program block.

Else：

If the condition does not hold, execute the program statement in this program block. If we want to judge whether the value of variable a is greater than or equal to the value of variable b, the condition judgment expression can be written as follows:

If a >= b:

If A is greater than or equal to B, execute the program statement in this program block

Else：

If a is NOT greater than or equal to b, the program statement if ... if…else conditional statement in this program block is executed.

In the use of the if-else conditional statement, if the condition is not satisfied, there is no need to execute any program statement, and the else part can be omitted.

If Conditional Judgment Expression

If the condition is satisfied, execute the program statements in this program block. Besides, if the if-else conditional statement uses logical operators such as ‘and,’ it is suggested to add parentheses to distinguish the execution order, to improve the readability of the program.

For example: if (a==c) and (a>b):

If A equals C and A is greater than B, execute the program statement in this program block

Else：

If the above condition does not hold, the program statement in this program block is executed.

Also, Python language provides a more concise conditional expression of if-else in the following format: X if C else Y returns one of the two expressions according to the conditional judgment expression. In the above expression, X is returned when C is true; otherwise, Y is returned.

For example, to determine whether the integer x
 is odd or even, the original program would be written as follows:

If (first % 2)==0:

second= "even number"

Else:

second= "odd number"

If print('{0}'.format(second)) is changed to a concise form, only a single line of program statement is required to achieve the same purpose.

The statements are as follows:

print('{0}'.format ("even" if (first% 2)==0 else "odd"))

If the if condition determines that the expression is true, it returns "even"; otherwise, it returns "odd." In the following sample program, we will practice the use of the if-else statement. The purpose of the sample program is to make a simple leap year judgment program.

Let the user enter the year (4-digit integer year), and the program will determine whether it is a leap year. One of the following two conditions is a leap year:

(1)
 leap every 4 years (divisible by 4) but not every 100 years (divisible by 100).

(2)
 leap every 400 years (divisible by 400).

[example procedure: leapYear.py]

Determine whether an input year is a leap year or not.

01 # -*- coding: utf-8 -*-

02 """

03 program name: leap year judging program

04 Topic Requirements:

05 Enter the year (4-digit integer year) to determine whether it is a leap year

06 condition 1. Every 4 leap (divisible by 4) and every 100 leap (divisible by 100)

07 condition 2. Every 400 leap (divisible by 400)

08 One of the two conditions met is a leap year.

09 """

10 year = int(input ("Give year:"))

12 if (year % 4 == 0 and year % 100 ! = 0) or (year % 400 == 0):

13 print("{0} is a leap year .”format(year))

14 Else:

The execution results of the

15 print("{0} is the year of peace .”format(year))

Program Code Resolution:

Line 10: Enter a year but remember to call the int () function to convert it to an integer type.

Line 12-15: Judge whether it is a leap year.

Condition 1: Every 4 leaps (divisible by 4) and every 100 leaps (not divisible by 100).

Condition 2: Every 400 leaps (divisible by 400). One of the two conditions is a leap year. Readers are asked to inquire whether the following years are leap years: 1900 (flat year), 1996 (leap year), 2004 (leap year), 2017 (flat year), 2400 (leap year).

Multiple Choices

If there is more than one conditional judgment expression, the elif conditional statement can be added. Elif is the abbreviation of ‘else if.’ Although using multiple if-xx,conditional statements can solve the problem of executing different program blocks under various conditions, it is still not simple enough. Then, elif conditional statements can be used, and the readability of the program can be improved.

Note, that if the statement is a logical necessity in our program. Elif and else do not necessarily follow, so there are three situations: if, if/else, if/elif/else.

The format is as follows:

If condition judgment

Expression 1:

If the conditional judgment expression 1 holds, the program statement in this program block is executed

Elif condition judgment

Expression 2:

If the conditional judgment expression 2 holds, execute the program statement in this program block

Else：

If none of the above conditions hold, execute the program statement in this program block.

For example:

If first==second:

If first equals second, execute the program statement in this program block.

Elif first>second：

If first is greater than second, execute the program statement in this program block.

Else：

if first is not equal to second and first is less than second, execute the program statement in this program block.

The following example program is used to practice the use of IF multiple selections. The purpose of the sample program is to detect the current time to decide which greeting to use.

[sample procedure: currentTime.py]

Detects the current time to decide which greeting

01 # -*- coding: utf-8 -*-

02 """

03 Program Name: Detect the current time to decide which greeting to use.

04 Topic Requirements

05 Judging from the current time (24-hour system)

06 5~10:59, output "good morning"

07 11~17:59, output "good afternoon"

08 18~4:59, output "good night"

09 """

11 import time

13 print ("current time: {}.” format (time.strftime ("%h:% m:% s"))

14 h = int(time.strftime("%H"))

16 if h>5 and h < 11:

17 print ("good morning!")

18 elif h >= 11 and h<18:

19 print ("good afternoon!")

20 else:

21 print ("good night!")

The execution results of the program will be shown on the screen.

The output shows the current time in the sample program to judge whether it is morning, afternoon, or evening, and then displays the appropriate greeting. Python's time module provides various functions related to time. The Time module is a module in Python's standard module library.

Before using it, you need to use the import instruction to import, and then call the str ftime
 function to format the time into the format we want. For example, the following program statement is used to obtain the current time.

import time

Time.strftime ("%h:% m:% s")

18: 36: 16 (6:36:16 p.m. 24-hour)

Time. strftime ("%i:% m:% s")

06:36:16 (6: 36: 16 p.m. 12-hour system) format parameters to be set are enclosed in parentheses.

Pay attention to the case of format symbols. The following program statement is used to display the week, month, day, hour, minute, and second.

Print (time.strftime ("%a,% b% d% h:% m:% s")) execution results are as follows: Monday, Sep17 15: 49: 29 4.2.3 nested, if sometimes there is another layer of if
 conditional statement in the if
 conditional statement. This multi-layer selection structure is called nested if
 conditional statement.

Usually, when demonstrating the use of nested if conditional statements, it is more common to demonstrate multiple choices with numerical ranges or scores. In other words, different grades of certificates will be issued for different grades of achievements.

If it is more than 60 points, the first certificate of competency will be given; if it is more than 70 points, the second certificate of competency will be given; if it is more than 80 points, the third certificate of competency will be given; if it is more than 90 points, the fourth certificate of competency will be given; if it is more than 100 points, the all-round professional certificate of competency will be given.

Based on nested if statements, we can write the following program:

Available= int(input ("Give a score:")

if available >= 60:

print ('First Certificate of Conformity')

if available >= 70:

print ('Second Certificate of Conformity')

if available >= 80:

print ('Third Certificate of Conformity')

if available >= 90:

print ('Fourth Certificate of Conformity')

if getScore == 100:

Print ('All-round Professional Qualification Certificate') is actually an if statement that is explored layer by layer. We can use the if/elif statement to filter the multiple choices one by one, according to conditional expression operation and select the matching condition (True) to execute the program statement in a program block.

The syntax is as follows:

If Conditional Expression 1:

The program block to be executed under conditional expression 1

Elif conditional expression 2:

The program block to be executed under conditional expression 2

Elif conditional expression n:

The program block to be executed according to the conditional expression n

Else:

If all the conditional expressions do not conform, this program block is executed. When the conditional expression 1 does not conform, the program block searches down to the finally conforming conditional expression.

The elif instruction is an abbreviation of ‘else-if.’ Elif statement can generate multiple statements according to the operation of a conditional expression, and its conditional expression must be followed by a colon, which indicates that the following program blocks meet this conditional expression and need to be indented.

The following example program is a typical example of the combined use of nested if and if/elif statements. This program uses if to determine which grade the query results belong to. Also, another judgment has been added to the sample program. If the score integer value entered is not between 0 and 100, a prompt message of “Input error, the number entered must be between 0 and 100”
 will be output.

Comprehensive use of nested if statements example:

01 # -*- coding: utf-8 -*-

02 """

03 Examples of Comprehensive Use of Nested if Statements

04 """

05 result = int(input (‘Give final grade:')

06

07 # First Level if/else Statement: Judge whether the result entered is between 0 and 100

08 if result >= 0 and result <= 100:

09 # 2nd level if/elif/else statement

10 if result <60:

11 print('{0} below cannot obtain certificate of competency'. format(result))

12 elif result >= 60 and result <70:

13 print('{0} result is d'. format(result))

14 elif result >= 70 and result <80:

15 print('{0} result is c'. format(result))

16 elif result >= 80 and result <90:

17 print('{0} result is level b'. format(result))

18 else:

19 print('{0} result is grade a'. format(result))

20 else:

The execution results of the

21 print ('input error, input number must be between 0-100')

Program code analysis:

Lines 7-21: First-level if/else statement, used to judge whether the input result is between 0 and 100.

Lines 10-19: The second-level if/elif/else statement, which is used to judge which grade the inquired result belongs to.

The Loop Repeat Structure

This mainly refers to the loop control structure. A certain program statement is repeatedly executed according to the set conditions, and the loop will not jump out until the condition judgment is not established. In short, repetitive structures are used to design program blocks that need to be executed repeatedly, to make program code conform to the spirit of structured design.

For example, if you want the computer to calculate the value of 1+2+3+4+…+10, you do not need us to accumulate from 1 to 10 in the program code, which is originally tedious and repetitive. You can easily achieve the goal by using the loop control structure. Python contains a while loop and a for-loop, and the related usage is described below.

While loop

If the number of loops to be executed is determined, then using the for-loop statement is the best choice. However, the while loop is more suitable for certain cycles that cannot be determined. The while loop statement is similar to the for-loop statement, and belongs to the pre-test loop. The working model of the pre-test loop is that the loop condition judgment expression must be checked at the beginning of the loop program block.

When the judgment expression result is true, the program statements in the loop block will be executed. We usually call the program statements in the loop block the ‘loop body.’ While loop also uses a conditional expression to judge whether it is true or false to control the loop flow. When the conditional expression is true, the program statement in the loop will be executed. When the conditional expression is false, the program flow will jump out of the loop.

The format of the while loop statement is as follows:

While conditional expression:

If the conditional expression holds, the flow chart of executing the while loop statement in this program block.

The while loop must include the initial value of the control variable and the expression for increasing or decreasing. When writing the loop program, it must check whether the condition for leaving the loop exists. If the condition does not exist, the loop body will be continuously executed without stopping, resulting in an infinite loop
 , also called dead loop
 .

The loop structure usually requires three conditions:

(1)
 The initial value of the loop variable.

(2)
 Cyclic conditional expression.

(3)
 Adjust the increase or decrease the value of cyclic variables.

For example, the following procedure:

first=1

While first < 10: # Loop Condition Expression

print(first)

first += 1 # adjusts the increase or decrease value of the loop variable.

When first is less than 10, the program statement in the while loop will be executed, and then first will be added with 1 until the first is equal to 10. If the result of the conditional expression is False, it will jump out of the loop.

For-loop

For-loop, also known as count loop, is a loop form commonly used in programming. It can repeatedly execute a fixed number of loops. If the number of loop executions required is known to be fixed when designing the program, then the for-loop statement is the best choice. The for-loop in Python language can be used to traverse elements or table items of any sequence. The sequence can be tuples, lists or strings, which are executed in sequence.

The syntax is as follows:

For element variable in sequence:

Executed instructions

Else:

The program block of #else can be added or not added, that is, when using the for-loop, the else statement can be added or not added. The meaning represented by the above Python syntax is that the for-loop traverses all elements in a sequence, such as a string or a list, in the order of the elements in the current sequence (item, or table item).

For example, the following variable values can all be used as traversal sequence elements of a

first= "abcdefghijklmnopqrstuvwxyz "

second= ['january', 'march', 'may', 'july', 'august', 'october', 'december']

result= [a, e, 3, 4, 5, j, 7, 8, 9, 10]

Besides, if you want to calculate the number of times a loop is executed, you must set the initial value of the loop, the ending condition, and the increase or decrease value of the loop variable for each loop executed in the for-loop control statement. For-loop every round, if the increase or decrease value is not specifically specified, it will automatically accumulate 1 until the condition is met.

For example, the following statement is a tuple (11 ~ 15) and uses the for-loop to print out the numeric elements in the tuple: x = [11, 12, 13, 14, 15]

For first in x:

print(first)

A more efficient way to write tuples is via the range () function directly. The format of the range () function is as follows:

range ([initial value], final value [,increase or decrease value])

Tuples start from ‘initial value’ to the previous number of ‘final value.’ If no initial value is specified, the default value is 0; if no increase or decrease value is specified, the default increment is 1.

An example of calling the range () function is as follows: range (3) means that starting from the subscript value of 0, 3 elements are output, i.e., 0, 1 and 2 are three elements in total.

Range(1,6) means starting from subscript value 1 and ending before subscript value 6-1, that is, subscript number 6 is not included, i.e., 1, 2, 3, 4 and 5 are five elements. ·range (4,10,2) means starting from subscript value 4 and ending before subscript number 10, that is, subscript number 10 is excluded, and the increment value is 2, i.e., 4, 6 and 8 are three elements. The following program code demonstrates the use of the range () function in a for-loop to output even numbers between 2 and 11 for i in range (2, 11, 2).

One more thing to pay special attention to when using the for-loop is the print () function. If the print () is indented, it means that the operation to be executed in the for-loop will be output according to the number of times the loop is executed. If there is no indentation, it means it is not in the for-loop, and only the final result will be output.

We know that calling the range () function with the for-loop can not only carry out accumulation operations, but can also carry out more varied accumulation operations with the parameters of the range () function. For example, add up all multiples of 5 within a certain range. The following sample program will demonstrate how to use the for-loop to accumulate multiples of 5 within a range of numbers.

[Example Procedure: addition.py]

Accumulate multiples of 5 in a certain numerical range

01 # -*- coding: utf-8 -*-

02 """

03 Accumulate multiples of 5 within a certain numerical range

04 """

05 addition = 0 # stores the accumulated result

06

07 # enters for/in loop

08 for count in range(0, 21, 5):

09 addition += count # adds up the values

11 print('5 times cumulative result =',addition)

Output cumulative result

Program code analysis:

Lines 08 and 09: Add up the numbers 5, 10, 15 and 20. Also, when executing a for-loop, if you want to know the subscript value of an element, you can call Python's built-in enumerate function. The syntax format of the call is as follows: for subscript value, element variable in enumerate (sequence element).

For example (refer to sample program enumerate. py):

names = ["ram,” "raju,” "ravi"]

for index, x in enumerate(names):

The execution result of the above statement in print ("{0}-{1}.” format (index, x)) is displayed.

Nested loop

Next, we will introduce a for nested loop, that is, multiple for-loop structures. In the nested for-loop structure, the execution process must wait for the inner loop to complete before continuing to execute the outer loop layer by layer.

The double nested for-loop structure format is as follows:

For example, a table can be easily completed using a double nested for-loop. Let us take a look at how to use the double nested for-loop to make the nine tables through the following sample program.

[Example Procedure: 99Table.py]

99 Table

01 # -*- coding: utf-8 -*-

02 """

03 Program Name: Table

04 """

05

06 for x in range(6,68):

07 for y in range(1, 9):

08 print("{0}*{1}={52: ^2}.”format(y, x, x * y), end=" ")

99 is a very classic example of nested loops. If readers have learned other programming languages, I believe they will be amazed at the brevity of Python. From this example program, we can clearly understand how nested loops work. Hereinafter, the outer layer for the loop is referred to as the x loop, and the inner layer for-loop is referred to as the y loop.

When entering the x loop, x=1. When the y loop is executed from 1 to 9, it will return to the x loop to continue execution. The print statement in the y loop will not wrap. The print () statement in the outer x loop will not wrap until the y loop is executed and leaves the y loop. After the execution is completed, the first row of nine tables will be obtained. When all X cycles are completed, the table is completed.

Note that the common mistake for beginners is that the sentences of the inner and outer loops are staggered. In the structure of multiple nested loops, the inner and outer loops cannot be staggered; otherwise, errors will be caused.

If you want to leave the current loop body under the specified conditions in the loop body, you need to use the break instruction, whose function is to jump off the current for or while loop body and give the control of program execution to the next line of program statements outside the loop body. In other words, the break instruction is used to interrupt the execution of the current loop and jump directly out of the current loop.

Chapter 9: Boolean logic and Conditional

A Boolean is a data type that can have only two possible values: True
 or False
 . You can think of a Boolean as either being on or off. There is no in-between with Booleans. To assign a boolean to a variable, use variable_name (=Boolean)
 , where Boolean is either True
 or False
 . Do not use quotes around True
 or False
 . Remember, quotes are for strings.

a_boolean = True

the_other_boolean = False

print(a_boolean)

print(the other Boolean)

Output:

True

False

Conditionals

The if
 statement evaluates a boolean expression, and if it is True,
 the code associated with it is executed. Let us look at an example.

if 37 < 40:

print('Thirty-seven is less than forty.')

Output:

Thirty-seven is less than forty.

Since the boolean expression 37 < 40
 is True,
 the code indented under the if
 statement is executed. This indented code is called a code block
 . All the statements that are the same distance to the right belong to that code block. A code block can contain one or more lines.

Let us get back to the If
 statement. Notice that the line containing the if
 statement always ends in a colon. Here is another example.

age = 31

if age >= 35:

print('You are old enough to be the President.')

print('Have a nice day!')

Output:

Have a nice day!

Since age >= 35
 is False,
 the Python code indented underneath the if
 statement is not executed. The final print
 function will always execute, because it is outside of the if
 statement. Notice that it is not indented.

The if
 statement can be paired with else
 . The code indented under else
 will execute when the if
 statement is false. You can think of the if/else
 statement meaning, if the statement is true, run the code underneath if
 , otherwise run the code underneath else
 .

age = 31

if age >= 35:

print('You are old enough to be the President.')

else:

print('You are not old enough to be the President.')

print('Have a nice day!')

Output:

You are not old enough to be the President.

Have a nice day!

Since age >= 35
 is False
 , the code underneath the If
 statement did not execute. Since age >= 30
 is True,
 the code underneath elif
 did execute. The code under else
 will only execute if all of the preceding if
 and elif
 statements evaluate to False
 . Also, the first if
 or elif
 statement to evaluate to True,
 will execute and any remaining lif
 e else
 blocks will not execute. Here is one final example to illustrate these points.

age = 99

if age >= 35:

print('You are old enough to be a Representative, Senator, or the President.')

elif age >= 30:

print('You are old enough to be a Senator.')

elif age >= 25:

print('You are old enough to be a Representative.')

else:

print('You are not old enough to be a Representative, Senator, or the President.')

print('Have a nice day!')

Output:

You are old enough to be a Representative, Senator, or the President.

Chapter 10: Function Modules And Numbers In Python

Structured programming can decompose complex problems into several components, and define and implement modules and functions for the components. This chapter will discuss in detail the features of Python modules and functions. Finally, Python's functional programming will be introduced.

Python Program Structure

Python's program consists of a package, a module, and functions. A module is a set that deals with a certain class of problems. A module consists of functions and classes. A package is a collection of modules.

A package is a toolbox for specific tasks. Python provides many useful toolkits, such as string processing, graphical user interface, Web application, graphical image processing, etc. Using these toolkits can improve the development efficiency of programmers, reduce the complexity of programming, and achieve the effect of code reuse.

These self-contained toolkits and modules are installed in the Lib subdirectory under Python's installation directory.

For example, for the xml
 folder in the Lib directory, an xml
 folder is a package that is used to complete XML application development. There are several sub-packages in the xml package: dom, sax, etree, and parsers. The file __init__.py is the registration file of the xml package, without which Python will not recognize the xml package. The xml package is defined in the system dictionary table available on internet websites.

Note that the package must contain at least one __init__.py
 file. The contents of the __init__.py
 file can be empty, which is used to identify the current folder as a package.

Modules are important concepts in Python. Python programs are composed of modules one by one. I have already touched on modules, and a Python file is a module. The following will introduce the concept and characteristics of the module.

Module Creation

A module
 organizes a set of related functions or codes into a file. A file
 is a module. Modules consist of code, functions, or classes. To create a file named myModule.py
 , a module named ‘myModule’ is defined. Define a function func() and a class ‘MyClass’ in the myModule module. A method myFunc () is defined in the MyClass class.

01 # custom module

02 def func():

03 print ("MyModule.func()")

04

05 class example:

06 def examplefun(self):

07 print ("MyModule.example.examplefun()")

Then, create a file called _ myModule.py in the directory where mymodule.py resides. The functions and classes of the myModule module, are called in this file.

01 # Calls Classes and Functions of Custom Modules

02 import myexample # import module

03

04 myexample.func()

05 myClass=myexample.MyClass()

06 myClass.myFunc()

[Code Description]

Line 2

Code Import Module myexample.

Line 4

This calls the example function. You need to prefix my example when calling; otherwise, Python does not know the namespace where function() is located.

Output results:

myexample.func()

Line 5

This code creates an instance of the class Myexample. You also need to call the class with the prefix myexample.

Line 6

This calls the method myexample() of the class.

Output results:

myexample.Myexampleclass.myexample()

Note that myModule.py
 and call_myModule.py
 must be placed in the same directory or in the directory listed under sys.path; otherwise, Python interpreter cannot find the customized module.

When Python imports a module, Python first looks for the current path, then the lib directory, site-packages directory (Python\Lib\site-packages), and the directory set by the environment variable PYTHONPATH. If the imported module is not found, search the above path to see if it contains this module. You can search the module's search path through the sys.path statement.

Module Import

Before using a module's function or class, you must first import the module. The module import has been used many times before, and the module import uses the import statement.

The format of the module import statement is as follows.

import nameofthemodule

This statement can be directly imported into a module. When calling a function or class of a module, you need to prefix it with the module name in the following format.

nameofthemodule.func()

If you do not want to use prefixes in your program, you can import them using the from…import… statement. The format of the from…import… the statement is as follows.

from nameofthemodule import nameofthefunction

This compares the difference between the import statement and the from ... import ... statement. Importing all classes and functions under the module can use import statements in the following format.

from nameofthemodule import *

In addition, the same module file supports multiple import statements. For example, define a module named ‘myexample.’ The module defines a global variable count and a function (). Every time the function () is called, the value of the variable count is incremented by 1.

01 number =1

02

03 def function ():

04 global number

05 number=number+1

06 return the number

Import myexample module several times to see the result of variable count.

01 import myexample

02 print("count =,” myexample.func())

03 myexample.count=10

04 print ("count =,” myexample.count)

05

06 import myexample

07 print ("count =,” myexample.func())

[Code Description]

Line 1

Code Import Module myexample.

The second line of code calls the function () in the module. At this time, the value of the variable count is equal to 2.

Output result:

number=2.

The third line of code assigns a value to the variable count in the module ‘myexample,’ where the value of the variable count is equal to 10.

The fourth line of code gets the value of the variable count.

Output result:

number=10.

The code in line 6 is imported into module myexample again, and the initial value of variable count is 10.

The seventh line of code calls function(), and the value of variable count is increased by 1.

Output result:

number =11.

Import statements in Python are more flexible than those in Java. Python's import statement can be placed anywhere in the program or even in conditional statements.

Add the following statement after the above code segment:

01 # import placed in the conditional statement

02 if myexample.number> 1:

03 myexample.number=1

04 else:

05 import myexample

06 print ("count =,” myexample.number)

[Code Description]

The second line of code judges whether the value of myexample.number is greater than 1.

Line 3 code, if the value of count is greater than 1, set the value of variable count to 1. Since the value of the variable count in the preceding code segment is 11, the value of the variable count is assigned to 1.

Line 5 code, if the value of count is less than or equal to 1, import statement.

The sixth line of code outputs the value of the variable count. Output Result: count=1

Properties of Modules

Modules have some built-in attributes that are used to complete specific tasks, such as __name__, __doc__. Each module has a name; for example, __name__ is used to determine whether the current module is the entry of the program. If the current program is in use, __name__ has a value of “__main__.” Usually, a conditional statement is added to each module, to test the function of the module separately.

For example, create a module ‘myexample.’

01 if __name__ =='__main__':

02 print ('myexample runs as main program')

03 else:

04 print ('myexample Called by Another Module')

[Code Description]

The first line of code determines whether this module is running as the main program. Run the module ‘myexample’ separately, and the output results are as follows. ‘Myexample’ runs as the main program.

Create another module ‘myexample.’ This module is very simple, just import module ‘myexample.’

01 import myexample

02 print (__doc__)

[Code Description]

Run the module and output the result:

‘Myexample’ is called by another module. The second line of code calls another module attribute __doc__. Since the module does not define a document string, the output result is None.

Output Result:

None

Built-in Functions of Modules

Python provides an inline module build-in. The inline module defines some functions that are often used in development. These functions can be used to realize data type conversion, data calculation, sequence processing, and other functions.

The functions commonly used in in-line modules will be described below.

1. apply()

The apply function has been removed from Python3, so it is no longer available. The function of calling the variable parameter list can only be realized by adding (*) before the list.

2. filter()

Filter () can filter a sequence to determine whether the result returned by the parameters of the custom function is true or not

Filter and return the processing results at one time.

The declaration of filter () is as follows.

class filter(object)

filter(function or None, iterable) --> filter object

The following code demonstrates the function of the filter () filter sequence.

Filters out numbers greater than 0 from a given list.

01 def func(x):

02 if first> 0:

03 return first

04

05 print (filter (function, range (-39,10))) # calls the filter function and returns the filter object

06 print (list (filter (function, range (-94,10))) # converts filter object to list

[Code Description]

In line 5, use range () to generate the list to be processed, and then transfer the values of the list to func(). Func() returns the result to filter (), and finally returns the resulting yield as an iterable object, which can be traversed.

The output is as follows:

<filter object at 0x1022b2750>

Note that the parameter of the filter function func () in filter () cannot be empty. Otherwise, there is no variable that can store the sequence element, and func () cannot handle filtering.

3. reduce()

Continuous operations on elements in a sequence can be handled through loops. For example, to accumulate elements in a sequence. Python's reduce () can also implement continuous processing. In Python2, reduce () exists in global space, and can be called directly. In Python3, it is moved to the functools
 module, so it needs to be introduced before use. The declaration of reduce () is as follows.

reduce(function, sequence[, initial]) -> result

[Code Description]

Parameter
 function is a self-defined function, which implements continuous operation of the parameter sequence in function function().Parameter initial can be omitted. If the initial is not empty, the value of initial will be passed into function() for calculation first. If the sequence is empty, the value of initial is processed.

The return value of reduce () is the calculated result of func ().

The following code implements the accumulation of numbers in a list.

01 def addition(first, second):

02 return first+second

03 form functools import reduce

Introduce reduce

04 print (reduce(addition, range(0, 10)))

05 print (reduce(addition, range(0, 10), 10))

06 print (reduce(addition, range(0, 0), 10))

[Code Description]

The first line of code defines an addition () function, which provides two parameters and performs an accumulation operation.

Line 4 code, perform accumulation calculation on 0+1+2+3+4+5+6+7+8+9. The output is 45
 .

Line 5 code, perform accumulation calculation on 10+0+1+2+3+4+5+6+7+8+9. The output is 55
 .

In line 6, because range(0, 0) returns an empty list, the return result is 10
 .

The output is 10
 .

Reduce () can also perform complex cumulative calculations, such as multiplication and factorial on numbers. Note that if you use reduce () for cumulative calculation, two parameters must be defined in sum to correspond to the operands on both sides of the addition operator.

4. map()

Map () is used to ‘unpack’ tuple, and the first parameter of map () is set to None
 when calling. Map () is very powerful, and can perform the same operation on each element of multiple sequences and return a map object. The declaration of map () is as follows:

class map(object)

map(func, *iterables) --> map object

[Code Description]

The parameter function is a custom function that implements the operation on each element of the sequence. The parameter iterable is a sequence to be processed, and the number of parameters iterables can be multiple.

The return value of map () is the processed list of sequence elements.

The following code implements the exponentiation of the numbers in the list.

01 def power(first): return first ** first

02 print (map (power, range (1,5))) # print map object

03 print (list (map (power, range (1,5))) # converted to list output

04 def power2(first, second): return first ** second

05 print (map (power2, range (1,5), range (5,1,-1))) # print map object

06 print (list (map (power2, range (1,5), range (5,1,-1))) # converted to list output

[Code Description]

The first line of code defines a power () function, which implements the power operation of numbers.

The second line of code passes the numbers 1, 2, 3 and 4 into the function power, in turn, converts the calculation result yield into an iterable object, and outputs the result:

map object at 0x7675678>

The third line of code converts the map object into a list and prints out the output/result:

[1, 4, 27, 256]

The fourth line of code defines a power2 () function to calculate the Y power of X.

The fifth line of code provides two list parameters. 1 5, 2 4, 3 3 and 4 2 are calculated in turn, and the calculated results yield into an iterable object. Output results:

<map object at 0x19876543234560>

Line 6 converts the map object into a list output.

Output results:

[21, 16, 29, 26]

Note, that if multiple sequences are provided in map (), the elements in each sequence are calculated one by one. If the length of each sequence is not the same, then the short sequence is supplemented by ‘None
 ’ before calculation.

Custom Packages

A package
 is one that contains at least __init__.py files . Folders Python package and Java package have the same function, both of which are to realize the reuse of programs. They combine the code that realizes a common function into a package and call the services provided by the package to realize reuse. For example, define a package parent. Create two sub-packages: Pack and Pack 2 in the parent package.

A module ‘myModule’ is defined in the pack package, and a module myModule2 is defined in the Pack 2 package. Finally, define a module main in package parent and call sub-packages Pack and Pack 2.

The __init__.py program for the package pack is as follows:

01 if __name__ =='__main__':

02 print ('run as first program')

03 else:

04 print ('pack initialization')

This code initializes the pack package and directly outputs a string. When the pack package is called by other modules, "pack initialization" will be output. The myexample module of the package pack is shown below.

01 def function():

02 print ("pack.myexample.func()")

03

04 if __name__ =='__main__':

05 print ('myexample runs as first program')

06 else:

07 print ('myexample Called by Another Module')

When pack 2 is called by other modules, the __init__.py file will be executed first. The __init__.py program for pack 2 is as follows.

01 if __name__ =='__main__':

02 print ('run as first program')

03 else:

04 print ('pack 2 initialization')

The myModule2 modules of pack 2 are as follows.

01 def func2():

02 print ("pack 2.myexample2.func()")

03

04 if __name__ =='__main__':

05 print ('myexample2 runs as main program')

06 else:

07 print ('myexample2 called by another module')

The main module below calls the functions in pack and pack 2 packages.

01 from pack import myexample

02 from pack 2 import myexample2

03

04 myexample.func()

05 myexample2.func2()

[Code Description]

The first line of code imports the ‘myexample’ module from the pack package. The module is called by the main module, so the output string ‘myexample’ is called by another module.

The output is as follows:

Pack initialization

‘Myexample’ is called by another module. The second line of code imports the myexample2 module from the pack 2 package.

The output is as follows:

Pack 2 initialization

Myexample2 is called by another module. The fourth line of code calls function() of myexample module.

The output is as follows:

pack.myexample.func()

Line 5 calls func2 () of myexample2 module.

The output is as follows:

pack 2.myexample2.function()

__init__.py can also be used to provide a list of modules for the current package. For example, add a line of code before the __init__.py file of the pack.

__all__=["myexample"]

__all__ is used to record the modules contained in the current pack. The contents in square brackets are the list of module names. If the number of modules exceeds 2, separate them with commas. Similarly, a similar line of code was added to the pack 2 package.

__all__=["myexample2"]

In this way, all modules in pack and pack 2 can be imported in the main module at one time.

The modified main module is as follows:

01 from pack import *

02 from pack 2 import *

03 myexample.func()

05 myexample2.func2()

[Code Description]

Line 1 code, first execute the __init__.py file of the pack, and then look for the modules contained in the pack in the __all__ attribute. If the __init__.py file of the pack does not use the __all__ attribute to record the module name, the main module will not recognize the module when it is called.

Python will prompt the following error.

NameError: name 'myexample' is not defined.

Line 2 code has the same function as line 1 code.

Function

A function
 is a piece of code that can be called repeatedly, and returns the desired result by entering the parameter value. The previous example has used Python's built-in functions many times and has also customized some functions. Python's functions have many new features, which will be described one-by-one, below.

Definition Of Function

A function definition is very simple, using the keyword def
 . Functions must be defined before use, and the type of function is the type of return value. Python functions are defined in the following format.

01 def function name (parameter 1, parameter 2 ...):

02 …

03 return expression

The function name can be a string of letters, numbers, or underscores, but cannot begin with a number. The parameters of the function are placed in a pair of parentheses. The number of parameters can be one or more. The parameters are separated by commas. Such parameters are called formal parameters.

The parenthesis ends with a colon, and the body of the function follows the colon. It uses a dictionary to implement a switch statement. Now wrap this code into a function. It involves three parameters: two operands and an operator.

The modified code is as follows.

01 # Function

02 from __future__ import division

03 def calculation (first, second, operator):

04 result={

05 "+":first+second,

06 "-":first-second,

07 "*":first * second,

08 "/":first / second

09 }

[Code Description]

The third line of code defines the function calculation(); the first and second are the two operands of the four operations, and the operator is the operator. The values of these three parameters are passed from the actual parameters.

Lines 4 to 9 are the main body of the function, realizing the operation of operands.

Call of function

01 # Function

02 print (calculation(1, 2, "+"))

[Code Description]

Calculation () is written after the print statement and directly outputs the return value of the function. The output is "3.”

Note that the actual parameters must correspond to the formal parameters one by one, otherwise erroneous calculations will occur — exceptions to parameters with default values.

Parameters Of Function

In C and C++, there are two ways to pass parameters: value passing and reference passing. Anything in Python is an object, so parameters only support the way references are passed. Python binds the value of the actual parameter to the name of the formal parameter through a name binding mechanism. That is, the formal parameter is passed to the local namespace where the function is located, and the formal parameter and the actual parameter point to the same storage space memory in between.

The parameters of the function support default values. When a parameter does not pass an actual value, the function uses the default parameter calculation. For example, you can provide a default value for all parameters of calculation.

Default Parameter for Functions

01 # Function

02 def calculation(first=1, second=1, operator="+"):

03 result = {

04 "+" : first+second,

05 "-" : first-second,

06 "*" : first * second,

07 "/" : first / second

08 }

09 return result.get(operator)

returns the calculation result

11 print (calculation(1, 2))

12 print (calculation(1, 2, "-"))

13 print (calculation(first=3, operator="-"))

14 print (calculation(second=4, operator="-"))

15 print (calculation(second=3, first=4, operator="-"))

[Code Description]

The code in line 2 defines the default value of the parameter by using an assignment expression.

In line 11, the values of parameters x and y are assigned to 1 and 2, respectively, and the default value (+) is used for parameter operator. The output is 3
 .

Line 12 provides 3 actual parameters, which will override the default values of formal parameters, respectively. The output result is -1
 .

Line 13 code, specify the values of parameters y and operator. The output result is -2
 . The parameters must be passed in the form of assignment expressions. Otherwise, the Python interpreter will mistakenly assume x=3, y="- .” Therefore, the following wording is wrong.

print(calculation(3, "-"))

Line 14 code, specify the values of parameters x and operator. The output is 3
 .

Line 15 code, using assignment expression to pass parameters, can reverse the order of the parameter list. The output is 1
 .

Parameters can be variables or built-in data structures, such as tuples and lists.

01 # list is passed as a parameter

02 def calculation(args=[], operator="+"):

03 first = args[0]

04 second = args[1]

05 result = {

06 "+" : first+second,

07 "-" : first-second,

08 "*" : first * second,

09 "/" : first/ second

10 }

12 print(calculation([1, 2]))

[Code Description]

The second line of code combines the parameters x and y into one parameter, and passes the values of x and y through the args list.

Lines 3 and 4 of code, take out parameter values from the list and assign them to variables x and y, respectively. Line 12 code, pass the list [1,2] to calculation (). The output is b
 .

Because parameters implement the mechanism of name binding, unexpected results may occur when using default parameters.

01 def join(args=[]):

02 args.join(0)

03 print (args)

04

05 join()

06 join([1])

07 join()

[Code Description]

The first line of code defines a join () function, and the argument is a default list.

The second line of code joins an element 0 to the list.

Line 5 calls join (), using the default list. The output is 0
 .

Line 6 code, passed a list [1], join () is joined with an element 0. The output is [1, 0]

The seventh line of code calls join () again, and the list used at this time is args called for the first time, so args will add another element 0 on the original basis.

The output is '0, 0.

To avoid this problem, a conditional judgment statement can be added to join (). If there are no elements in the list args, empty the args list before adding elements.

01 def join(args=[]):

02 if len(args) <=0:

03 args=[]

04 args.join(0)

05 print (args)

06

07 join()

08 join([1])

09 join()

[Code Description]

The second line of code uses len () to determine whether the length of the list args is greater than 0. If less than or equal to 0, args is set to an empty list, i.e., function parameters are unbound.

Line 4 adds an element 0 to the list.

Line 7 calls join (), using the default list. The output is '[0].'

In line 8, a list [1] is passed, and an element 0 is joined to join (). The output is [1, 0]
 .

The 9th line of code calls join (), which cancels the name binding of the parameter through the judgment of len(args). The output is 0
 . In development, it is often necessary to pass variable-length parameters.

This requirement can be met by using the identifier (*) before the parameter of the function. (*) can refer to tuples and combine multiple parameters into one tuple.

01 # Pass Variable Parameters

02 def function(*args):

03 print args

04 function(1, 2, 3)

[Code Description]

Line 2 code, use identifier (*) before argument args.

The code in line 3 outputs the value of the parameter. Because the parameter uses the form of "*args,” the actual parameter passed in its "packed into a tuple’ state, the output result is (1, 2, 3)
 .

The fourth line of code calls the function, func (). The parameters 1, 2 and 3 become elements of args tuples.

Python also provides another identifier (* *). Add (* *) before the formal parameter to refer to a dictionary, and generate the dictionary according to the assignment expression of the actual parameter. For example, the following code implements matching tuple elements in a dictionary.

When defining a function, two parameters are designed: one is the tuple to be matched, which is denoted as (* t); the other is a dictionary, which means (*d). When the function is called, the actual parameters are divided into two parts: one part is several numbers or strings, and the other part is assignment expression.

01 # Pass Variable Parameters

02 def find(*one, **two):

03 keys = one.keys()

04 values = two.values()

05 print(keys)

06 print (values)

07 for arg in t:

08 for key in keys:

09 if arg == key:

10 print ("find:,”d[key])

12 find("one,” "three,” one="1,”two="2,”three="3")

[Code Description]

(*t) in line 2 corresponds to "one" and "three" in line 12. "One" and "three" form a tuple t. (**d) corresponds to "one="1,” two="2,” three="3",” generating a dictionary {one: "1,”two:"2,”three: "3"}.

Line 5 code output results:

['three', 'two', 'one']

Line 6 code output results:

['3', '2', '1']

Lines 7 to 10 look up the value in tuple t in dictionary d. If found, output.

find: 1

find: 3

Note that (*) must be written before (* *), which is a grammatical rule.

Return Value Of Function

The return of a function uses a return statement, which can be followed by a variable or expression. Let us perfect calculation () and add a return statement.

The code is as follows:

01 from __future__ import division

02 def calculation(first, second, operator):

03 result={

04 "+":first+second,

05 "-":first-second,

06 "*":first * second,

07 "/":first / second

08 }

09 return result.get(operator)

returns the calculation result

[Code Description]

Line 9 calls the dictionary's get (), obtains the corresponding expression, and returns the calculated result.

For C and Java, if the function body is not returned by return statement, but the function is called in the assignment statement, the program will have errors after compilation. Python does not have this syntax restriction. Even if a function does not return a value, it can still get the return value.

For example:

01 # function without return statement returns None

02 def function():

03 pass

04

05 print (function())

[Code Description]

The second line of code defines a function (). The main body of the function does not have any implementation code, and pass keyword is equivalent to a placeholder.

The fifth line of code outputs the return value of function (). Because there is no return statement, the return value is None. The output is None
 .

01 def function ():

02 return

03

04 print (function ())

If you need to return multiple values, you can ‘package’ these values into tuples. When calling, unpack the returned tuple. The following code implements the inversion of input variables.

For example, enter 0, 1, and 2 and return 2, 1, and 0.

01 # return returns multiple values

02 def function(first, second, third):

03 l=[first, second, third]

04 l.reverse()

05 numbers=tuple(l)

06 return numbers

07

08 first, second, third=func(0, 1, 2)

09 print (first, second, third)

[Code Description]

The second line of code defines a function (), which returns the three values after inverting these parameters. The third line of code ‘packages’ the three parameters into a list. Line 4 code inversion list. The fifth line of code loads the list into a tuple. The sixth line of code returns tuples, that is, three numbers.

The 8th
 line of code calls function () to obtain the returned tuple and ‘unpack’ it into 3 variables. The ninth line of code outputs the values of the three variables.

A slight improvement in the code can also lead to a second solution.

01 def function(one, two, three):

02 l=[one, two, three]

03 l.reverse()

04 one, two, three=tuple(l)

05 return one, two, three

06

07 one, two, three =function(0, 1, 2)

08 print (one, two, three)

[Code Description]

The fourth line of code unpacks tuples and assigns the inverted values to variables A, B and C, respectively. In line 5, you can return multiple values with comma-separated expressions after the return.

Line 7 calls func (), assigning a, b and c to x, y and z respectively.

You can use more than one return statement in a function. For example, in each branch of the if ... else ... statement, different results are returned.

Multiple return Statements

02 def function(one):

03 if one> 0:

04 return "one> 0"

05 elif one ==0:

06 return "one ==0"

07 else:

08 return "one<0"

09

10 print (function(-2))

[Code Description]

Return "one> 0" when the passed-in parameter is greater than 0. When the passed-in parameter is equal to 0, "one = = 0" is returned. When the passed-in parameter is less than 0, return "one<0.”

Note that multiple return statements are not recommended. Too many return statements often complicate the program, so the code needs to be refactored.

If there is more than one return statement in the program, you can reduce the return statement by adding a variable.

Reconstruction of Function

01 # Multiple return Statements

02 def function(one):

03 if one> 0:

04 result="one> 0"

05 elif one ==0:

06 result="one ==0"

07 else:

08 result="one<0"

09 return result

11 print (func(-2))

[Code Description]

In lines 4, 6 and 8, a variable result is added to record the status of program branches through assignment statements. The ninth line of code returns the value of result, so that the result of each branch can be returned, by calling the same return statement.

Nesting of Functions

Nesting
 functions refers to calling other functions inside a function. C and C++ only allow nesting within function bodies, while Python not only supports nesting within function bodies, but also supports nesting of function definitions. For example, calculate the value of expression (one+two)*(first-second). The calculation step can be divided into three steps: first, calculate the expression (one+two); then calculate the expression first-second, and finally calculate the product of the results of the first two steps. Therefore, the three functions can be designed. The first function sum () calculates the value of (one+two), the second function sub () calculates the value of (m+n), and the third function calculates the product of the first two.

The following code demonstrates the calling operation between functions.

01 # nested function

02 def sum(add, sub):

03 return add+sub

04 def sub(add, sub):

05 return add-sub

06 def function():

07 ex=1

08 ey=2

09 em=3

10 en=4

11 return sum(ex, ey) * sub(em, en)

13 print (function())

[Code Description]

The second line of code defines the function sum (), sum () with two parameters, a and b. Parameters a and b are used to calculate the value of expression x+y.

The code in line 3 calculates the value of a+b, that is, returns the result of X+Y.

The fourth line of code defines the function sub (), sub () with two parameters a and b.

The code in line 5 calculates the value of a–b, i.e., returns the result of m–n.

The 11th
 line of code calls sum (), sub (), and performs multiplication in the return statement.

Line 13 code, call function function ().

The output is shown below: -3

Note, that the number of nesting levels of functions should not be too high. Otherwise, it is easy to cause problems such as poor readability and difficult maintenance of the code. Nested calls to general functions should be controlled within three levels.

The above code can also be implemented in another form, i.e., the functions sum () and sub () are placed inside func ().

The following code implements the definition of sum (), sub () inside function ().

01 # nested function

02 def function():

03 ex=1

04 yov=2

05 men=3

06 nod=4

07 def sum(am, bam): # internal function

08 return am+bam

09 def sub(am, bam): # internal function

10 return am-bam

11 return sum(ex, yov) * sub(am, bn)

13 print (function())

[Code Description]

In line 7, sum () is defined inside function ().

Line 9 code defines sub () inside function ().

Line 11 code, calls sum () and sub () and then performs multiplication. The output is -3
 .

Internal functions sum (), sub () can also directly call variables defined by external function function ().

The following code implements the variables of the internal function sum (), sub () that refer to the external function function ().

01 # nested function, directly using the variable

02 def function () of the outer function:

03 first= 1

04 second = 2

05 third = 3

06 fourth = 4

07 def sum(): # internal function

08 return first + second

09 def sub(): # internal function

10 return third - fourth

11 return sum() * sub()

13 print (function())

[Code Description]

In line 7, the function sum () has no parameters.

Line 8 code calls external variables x, y inside sum ().

In line 9, the function sub () also has no arguments.

Line 10 code calls external variables m, n inside sub ().

Line 11 code, calculate the value of sum()*sub(). The output result is -3
 .

Be careful not to define functions inside them.

This method is not easy to maintain the program, and it is easy to cause logical confusion. Moreover, the more levels of nested definition functions, the higher the cost of program maintenance.

Recursive Functions

Recursive functions can call themselves directly or indirectly within the function body, that is, the nesting of functions is the function itself. Recursion is a program design method. Recursion can reduce repeated codes and make the program concise. The process of recursion is divided into two stages-recursion and regression. The principle of the recursive function is as follows.

In the first stage, recursive functions call themselves internally. Each function call restarts executing the code of the function, until a certain level of the recursive program ends.

In the second stage, recursive functions return from back to forth. Recursive functions return from the last level until they are returned to the function body called for the first time. That is, after the recursion step-by-step call is completed, it returns step-by-step in the reverse order.

Calculating factorial is a classical recursive implementation. First of all, review the calculation formula of factorial.

For example, calculate 5! As a result when designing a program, one can judge whether n is equal to 1. Each recursive call passes in parameter n-1. Until n=1, returns 1! is equal to 1. Then return to 2!, 3!, 4!, and 5!

Process of calculating factorials using recursion

The following code recursively implements the factorial calculation process.

01 # Calculates factorial

02 def refund(n):

03 one = 1

04 if second > 1: # end judgment of recursion

05 one = n

06 true = true * refund(n-1) # recursion

07 print ("%d! =" %i, n)

08 return n # return

09

10 refund(5)

[Code Description]

The second line of code defines a recursive function. The definition of a recursive function
 is no different from that of an ordinary function. The third line of code defines a variable I for the output of the print statement.

Line 4 code is used to judge the past parameter, n. If n is greater than 1, the function can continue recursion. Otherwise, the result of the current calculation is returned.

The fifth line of code assigns the value of n to I, and uses I to record the current recursive number.

Line 6 calls function refunc () itself, passing parameter (n-1). The seventh line of code outputs the result of the factorial calculation.

The eighth line of code returns the calculation result of factorial of each level.

Line 10 calls the recursive function refund.

The output of each recursion is as follows:

1! =1

2! =2

3! =6

4! =24

5! =120

Note, that every time a recursive function is called, all variables in the function will be copied before the recursive function is executed. The program needs more storage space, which will affect the performance of the program to some extent. Therefore, it is better to use other methods to improve programs that do not need recursion.

You can use the aforementioned reduce () to quickly implement factorial operations.

01 # Calculates factorial with reduce

02 from func tools import reduce # Python3 reduce is no longer in the global, must be manually introduced

03 print ("5! =,” reduce(lambda x, y: x * y, range(1, 6)))

Using reduce () requires only one line of code to calculate 5!.

Lambda Function

The lambda function
 is used to create an anonymous function, whose name is not bound to the identifier. Using lambda function can return some simple operation results.

Lambda functions have the following format:

Lambda variable 1, variable 2 ...: expression

Among them, the variable list is used for expression calculation. Lambda belongs to a function, so a colon is required after the variable list. Lambda is usually assigned to a variable, which can be used as a function.

For example:

01 # assignment

02 function=lambda variable 1, variable 2 ...: expression

Call

04 function()

This binds lambda and variable functions, whose name is the function name. Lambda function can eliminate internal functions.

For example, the program for calculating (one+two) * (three–nfour) in subsection can be modified to replace the functions sum (), sub () with lambda functions.

01 # lambda

02 def func():

03 one = 1

04 two = 2

05 three= 3

06 four = 4

07 sum = lambda one, two : one + two

08 print (sum)

09 sub = lambda three, four : three - four

10 print (sub)

11 return sum(one, two) * sub(three, four)

13 print (function())

[Code description]

Line 7 defines the lambda function, realizes the calculation expression, first and second, and assigns the lambda function to the variable sum.

The eighth line of code outputs the value of the variable sum, which holds the address of the lambda function.

The output is shown below:

<function <lambda> at 0x00B4D3B0>

Lines 9 and 10 have the same function as lines 7 and 8.

Line 11 calculates the product of sum () and sub (). The output is -3
 .

Note that lambda is also called an expression
 . Only expressions can be used in lambda, and multiple statements such as judgment and loop cannot be used. In the previous example, lambda is assigned to a variable and can also be used directly as a function.

Function usage of lambda

01 # lambda

02 print ((lambda first: -first)(-2))

[Code Description]

Chapter 11: Strings, Lists, Tuples, Sets And [image: Part8]
 Dictionaries In Python Tuples In Python

A tuple is like a list, but we cannot change elements in a tuple

Example

Start IDLE.

Navigate to the File
 menu and click New Window
 .

Type the following:

tuple_mine = (21, 12, 31)

print(tuple_mine)

tuple_mine = (31, "Green", 4.7)

print(tuple_mine)

Accessing Python Tuple Elements

Example

Start IDLE.

Navigate to the File
 menu and click New Window
 .

Type the following:

tuple_mine=[‘t’,’r’,’o’,’g’,’r’,’a’,’m’]

print(tuple_mine[1]) #output:’r’

print(tuple_mine[3]) #output:’g’

Negative Indexing

Just like lists, tuples can also be indexed, negatively.

Like lists, -1 refers to the last element on the list and -2 refer to the second last element.

Example

Start IDLE.

Navigate to the File
 menu and click New Window
 .

Type the following:

tuple_mine=[‘t’,’r’,’o’,’g’,’r’,’a’,’m’]

print(tuple_mine [-2]) #the output will be ‘a’

Slicing

The slicing operator, the full colon is used to access a range of items in a tuple.

Example

Start IDLE.

Navigate to the File
 menu and click New Window
 .

Type the following:

tuple_mine=[‘t’,’r’,’o’,’g’,’r’,’a’,’m’]

print(tuple_mine [2:5]) #Output: ‘o’,’g’,’r’,’a’

print(tuple_mine[:-4]) #’g’,’r’,’a’,’m’

NOTE

Tuple elements are immutable in meaning: they cannot be changed. However, we can combine elements in a tuple using +(concatenation operator). We can also repeat elements in a tuple using the * operator, just like lists.

Example

Start IDLE.

Navigate to the File
 menu and click New Window
 .

Type the following:

print((7, 45, 13) + (17, 25, 76))

print(("Several",) * 4)

NOTE

Since we cannot change elements in tuple, we cannot delete the elements too. However, removing the full tuple can be attained using the keyword del.

Example

Start IDLE.

Navigate to the File
 menu and click New Window
 .

Type the following:

t_mine=[‘t’,’k’,’q’,’v’,’y’,’c’,’d’]

del t_mine

Available Tuple Methods in Python

They are only two methods available for working Python tuples.

count(y)

When called will give the item numbers that are equal to y.

index(y)

When called will give index first item index that is equal to y.

Example

Start IDLE.

Navigate to the File
 menu and click New Window
 .

Type the following:

t_mine=[‘t’,’k’,’q’,’v’,’y’,’c’,’d’]

print(t_mine.count('t'))

print(t_mine.index('l'))

Testing Membership in Tuple

The keyword in us used to check the specified element exists in a tuple.

Start IDLE.

Navigate to the File
 menu and click New Window
 .

Type the following:

t_mine=[‘t’,’k’,’q’,’v’,’y’,’c’,’d’]

print('a' t_mine) #Output: True

print('k' in t_mine) #Output: False

Inbuilt Python Functions with Tuple

String in Python

Example

Start IDLE.

Navigate to the File
 menu and click New Window
 .

Type the following:

string_mine = 'Colorful'

print(string_mine)

string_mine = "Hello"

print(string_mine)

string_mine = '''Hello'''

print(string_mine)

string_mine = """I feel like I have

been born a programmer"""

print(string_mine)

Accessing Items In A String

Example

Start IDLE.

Navigate to the File
 menu and click New Window
 .

Type the following:

str = 'Colorful'

print('str = ', str)

print('str[1] = ', str[1]) #Output the second item

print('str[-2] = ', str[-2]) #Output the second last item

print('str[2:4] = ', str[2:4]) #Output the third through the fifth item

Deleting or Changing in Python

In Python, strings are immutable therefore cannot be changed once assigned. However, deleting the entire string is possible.

Example

Start IDLE.

Navigate to the File
 menu and click New Window
 .

Type the following:

del string_mine

The escape sequences enable us to format our output, to enhance clarity to the human user. A program will still run successful without using escape sequences, but the output will be highly confused, around Apple’s iPhone to the human user. Writing and displaying output in expected output is part of good programming practices. The following are commonly used escape sequences.

Examples

Start IDLE.

Navigate to the File
 menu and click New Window.

Type the following:

print ("D:\\Lessons\\Programming")

print("Prints\n in two lines")

[image: Part9]

[image:]

Example:

Start IDLE

Navigate to the File
 menu and click New Window
 .

Type the following:

[image:]

On the File
 menu, click Save
 . Type the name myProgram4.py

Navigate to Run
 , and click Run Module
 to run the program

The output of the program above should be:

Going Deep!

Going Deep! Going Deep! Going Deep!

Going Deep! I love Python

Note
 : the # (hash sign) is used to indicate a single-line comment. A comment is descriptive information about a particular line(s) of code. The comment is normally ignored when running the program. The comment should be written after the (#) sign in Python. Comments increase the readability of the program written.

Practice Exercise:

You will key in/type the following program statement:

str = 'I think I am now a Programmer'

a. Write a program statement that will display the entire string/statement above.

b. Write a program statement to display characters of the string from the second character to the sixth.

c. Write a single program statement that will display the entire string two times (use *).

d. Write a program statement that will add the following at the end of the statement above, “of Python Programming Language”

String Operations

Several operations can be performed on a string making it a widely used datatype in Python.

Concatenation using the (+) operator, repetition using the (*) operator

Example

Start IDLE.

Navigate to the File
 menu and click New Window
 .

Type the following:

string1=’Welcome’

string2=’Again’

print(‘string1+string2=’,string1+string2)

print(' string1 * 3 =', string1 * 3)

Practice Exercise

Given string_a=”I am awake” and string_b=”coding in Python in a pajama”

String Iteration

The for-control statement is used to continually scan through an entire scan until the specified number of times are reached before terminating the scan.

Membership Test in String

The keyword in is used to test if a sub string exists.

Example

‘t’ in “triumph’ #Will return True

Inbuilt Python Functions for working with Strings

They include enumerate() and len().The len() function returns the length of the string.

String Formatting in Python

Single and Double Quotes

Example

Start IDLE.

Navigate to the File
 menu and click New Window
 .

Type the following:

print('They said, "We need a new team?"') # escape with single quotes

escaping double quotes

print("They said, \" We need a new team\"")

Python’s Docstring

In Python, docstring refers to words offering a description, and are written as the initial program statement in a function, module, method, or class definition.

Practice Exercise

This exercise will utilize several concepts that we covered earlier.

a. Given the following program statement: Color1=’red’; color1=’blue’; CoLor1=’yellow’ explain why all the three will be treated as different variables in Python.

b. Consider the following Python program and identify what is wrong with it.

student1_age=23 #This is the age of the first student

student2_age=19 #This is the age of the student

sotal_age=student1_age +student2_age #Getting the sum of the ages of the

print(age) #Displaying their ages

[image: Part10]
 Operators in Python

So far, we have been using the summation (+) operator and it also doubles up as a concatenation operator (in appending statements).

Arithmetic Operators

The multiplication (*), division (/), subtraction (-), and addition (+) are the arithmetic operators used to manipulate numbers.

Practice Exercise

Write the following programs and run it

Difference

number1=35 #declaring first number

number2= 12 #declaring second number

difference=number2-number1 #declaring what the difference does

print(difference) #Calling the print function to display what difference has

Multiplication

number1=2 #declaring first number

number2= 15 #declaring second number

product=number1*number2 #declaring what the product does

print(product) #Calling the print function to display what product has

Division

number1=10 #declaring first number

number2= 50 #declaring second number

division=number2/number1 #declaring what the division does

print(division) #Calling the print function to display what product has

Modulus

The modulus operator is used to return the integer remainder after division. The modulus=dividend% divisor.

Example

Start IDLE.

Navigate to the File
 menu and click New Window
 .

Type the following:

number1=2 #declaring first number

number2= 15 #declaring second number

remainder=number2%number1 #declaring what the remainder does

print(remainder) #Calling the print function to display remainder has

Squaring and Cubing in Python

Squaring a number-number**2

Cubing a number-number**3

Example:

Start IDLE.

Navigate to the File
 menu and click New Window
 .

Type the following:

Square of 3 in Python will be 3**2

Cube of 5 in Python will be 5**3

Square of 3

Start IDLE.

Navigate to the File
 menu and click New Window
 .

Type the following:

number=3 #declaring variable number and assigning value 3

square=number**2

print(square) #Calling the print function to display what square has

Cube of 5

Start IDLE.

Navigate to the File
 menu and click New Window
 .

Type the following:

number=5 #declaring variable number and assigning value 5

cube=number**3

print(cube) #Calling the print function to display what cube has

Practice Exercise

Use Python operators to write, and run a Python program that can find the following:

➢
 Cube of 7

➢
 Square of 15

➢
 Cube of 6

➢
 Square of 11

➢
 Cube of 8

➢
 Square of 13

Note
 : We can still multiply 2, two times, to get the square of 2. The reason for using the square and cube operators is to help us write compact and efficient code. Remember that the interpreter goes through each line, including comments only that it ignores comments. Using the cube and square operators helps compact code and increase the efficiency of interpretation, including troubleshooting as well as human readability of the code.

Operators with String in Python

In Python programming language, certain operators are used to help concatenate strings. The addition sign is used to concatenate strings in Python.

Example

Start IDLE.

Navigate to the File
 menu and click New Window
 .

Type the following:

status=”I am happy I know” + “how to write programs in Python”

print(status)

Python Multiplication of a string to create a sequence

many_words=”Great Programmer” * 5

print(many_words)

Practice Exercise

Use a concatenation operator to join the following strings in Python:

I have realized

that programming is passion,

dedication and frequent practice.

Use an operator to generate ten times the following string:

Happy

Dictionary

Getting clean and actionable data is one of the key challenges in data analysis. You cannot build and fit models to data that is not usable. A Python dictionary makes it easier to read and change data, thereby rendering it more actionable for predictive modeling.

A Python dictionary holds a key: value pair. The Python dictionary is optimized in a manner that allows it to access values when the key is known.

While each key is separated by a comma in a Python Dictionary, each key-value pair is separated by a colon. Moreover, while the keys of the dictionary have to be unique and immutable (tuples, strings, integers, etcetera), the key-values can be of any type and can also be repeated any number of times. An example of a Python dictionary is shown below:

How do Python Dictionaries Work?

While there are several Python dictionary methods, there are some basic operations that need to be mastered. We will walk through the most important ones in this section.

Creating a Dictionary

A dictionary
 is generated by having items in curly braces, demarcated by a comma. A dictionary element has a key and a matching value. The key and value in Python are captured as a pair. Normally, key: value. Keys have to be immutable and unique.

Example

Start IDLE.

Navigate to the File
 menu and click New Window
 .

Type the following:

dict_mine= {} #Empty dictionary

dictionary with integer keys

dict_mine= {2: 'pawpaw', 4: 'rectangle'} #dictionary with integer keys

dict_mine = {'student': 'Brenda',2:[12, 14, 13]}#dictionary with integer keys

dict_mine = dict({2:'student': 'Brenda' })

dict_mine = dict([(2, 'pawpaw'), (4, 'rectangle')])

Accessing Elements from a Dictionary

Dictionary uses keys instead of indexing to access values. The keys can either be within the square brackets, or with the get() method.

Example

Start IDLE.

Navigate to the File
 menu and click New Window
 .

Type the following:

dict_mine = {'name':'James', 'age': 62}

print(dict_mine['name'])

print(dict_mine.get('age'))

Add or Modify Dictionary Elements

For dictionaries, they are mutable, implying that we can modify the value of current items using the assignment operator. The value will get updated if the key is already existing, or else we will have to add new key: the dictionary value couple.

Start IDLE.

Navigate to the File
 menu and click New Window
 .

Type the following:

dict_mine={‘student’:’James’,’age’:62}

dict_mine['age'] = 37

print(dict_mine)

dict_mine['address'] = ‘New York’

print(dict_mine)

Removing/Deleting Elements from a Dictionary

Example

Start IDLE.

Navigate to the File
 menu and click New Window
 .

Type the following:

my_squares={10:100,8:64,12:224}

print(my_squares.pop(2))

print(my_squares)

print(my_squares.popitem())

print(my_squares)

del my_squares[4]

print(my_squares)

my_squares.clear()

print(squares)

del my_squares

Dictionary Methods in Python

Example

Start IDLE.

Navigate to the File
 menu and click New Window
 .

Type the following:

scores ={}.fromkeys(['Chemistry','Spanish','Pyschology'], 0)

print(scores)

for item in marks.items():

print(item)

Start IDLE.

Navigate to the File
 menu and click New Window
 .

Type the following:

list(sorted(scores.keys()))

Dictionary Comprehension in Python

my_squares = {y: y*y for y in range(5)}

print(my_squares)

Alternatively, the program can be written as:

my_power = {}

for y in range(5):

power[y] = y*y

Odd Items Only Dictionary

Example

Start IDLE.

Navigate to the File
 menu and click New Window
 .

Type the following:

squares_odd={y:y*y for y in range(10) if y%2==1}

print(squares_odd)

Membership Test in a Dictionary

Using the keyword in, we can evaluate if a key is in a particular dictionary. The membership tests should be used for dictionary keys and not for dictionary values.

Example

Start IDLE.

Navigate to the File
 menu and click New Window
 .

Type the following:

my_squares = {10: 100, 6: 36, 8: 64, 11: 121}

print(11 in my_squares)

print(36 in squares)

Practice Exercise

Given:

square_dict={2:4,6:36,8:64}

Use membership to test if 6 exists in the dictionary.

Use membership, test if 36 exists in the dictionary.

Iteration in a Dictionary

We use the for-loop to iterate through each key in a particular dictionary.

Inbuilt Functions

Example

Start IDLE.

Navigate to the File
 menu and click New Window
 .

Type the following:

your_squares = {2: 4, 4: 16, 6: 36, 8: 64, 10: 100}

print(len(your_squares))

print(sorted(your_squares))

for i in squares:

print(your_squares[i])

Practice Exercise

Give the following set, setm=set([“Blue”,”Yellow”])

Write a working program to copy the set elements.

Display the new set.

Clear the set.

Print the latest status of the set.

Given the setr=set([“Knock”,”Up”])

Write a simple program to copy the set elements.

Write a working program to display the latest status of the set.

Write a simple program clear the elements of the set.

Display the latest status of the set.

Delete the entire set using del.

Given m=frozenset([11,12,13,14,15]) and n=([13,14,15,16,17])

Use the isdisjoint() to test of the sets have no shared elements.

Write a program to return a new set with items in the set that are not in the others.

Write a union of sets m and n.

Write an intersection of sets n and m.

Write a program to pop an item in set n.

Write a program that appends element 21 to the set m.

Check to see if set m has element 14 using a built-in keyword.

Use discard() to drop all items in the set m.

Given this set second_set = {"berry", "pineaple", "melon"}

Write a Python program to update the set with these elements at a go “mango”,”guava”, “plum”

Find the length of this set using the len().

Use remove() to clear the set.

Given {(, 17, 19, 21)

Use set constructor set() to construct a set named third_set in Python.

Use the add() method to add “Kim” to the set.

Pop an element from the set using pop().

Update the set using update() to include {43,41,40}

Given setq=([13,2,17,8,19])

Find the minimum value in the set using inbuilt features of Python.

Find the maximum value in the set using inbuilt features of Python.

Given setb=([5,”K”, 8, 1])

Use the for a statement to write a Python program that iterates through the set elements.

Given

diction1={11:12,12:27}

diction2={13:52,13:57}

Create a Python program to concatenate the dictionaries in one.

Sets

A set
 does not have any duplicate elements present in it and it is an unordered collection type. It means it will have all distinct elements in it with no repetition.

Now let us see an example:

fruits = ['apple', 'orange', 'apple', 'pear', 'orange', 'banana']

basket = set (fruits) # removed the duplicate element apple

print 'orange' in basket # checking orange in basket, result is True

print 'pineapple' in basket # checking pine apple in basket, result is False

a = set('aioeueoiaeaeiou’) # create a set without duplicates

b = set('bcokcbzo') # create a set without duplicates

print a # a = ['a', 'i', 'e', 'u', 'o']

print b # b = ['z', 'c', 'b', 'k', 'o']

print a & b # letters in both a and b (A ∩
 B)

print a | b # letters in either a or b (A ☐ B)

print a - b # letters in a but not in b (A – B)

Lists

A list
 consists of some heterogeneous values separated by commas enclosed by [and] and starts from index 0. Lists can be used to group other values. Unlike tuples, lists are mutable. In other words, they can be changed by removing or reassigning existing values. Also, new elements can be inserted into the existing ones.

Now let us see an example:

>>> a = [1, 2, 3, 4, 5]

>>> a

[1, 2, 3, 4, 5]

As strings, lists can also be indexed and sliced.

>>> a = [1, 2, 3, 4, 5]

>>> a

[1, 2, 3, 4, 5]

>>> a[0]

1

>>> a[4]

5

>>> a[0:2]

[1, 2]

>>> a[3:5]

[4, 5]

Unlike strings, lists are mutable (i.e. the values can be changed)

>>> b = [1, 2, 4, 7, 9]

>>> b

[1, 2, 4, 7, 9]

>>> b[2] = 6

>>> b

[1, 2, 6, 7, 9] # Here the index [2] is changed to 6 (the initial value is 4)

>>> b[0] = 9

>>> b

[9, 2, 6, 7, 9]

Here the index [0] is changed to 9 (the initial value is 1)

The values in the list can be separated by using the comma (,) between the square bracket. Lists can be nested. List can be used as a Stack or a Queue, as well.

For example:

list1 = [1, 2, 3, 4]

print len (list1) # returns 4 - which is the length of the list

list1[2] # returns 3 - which is third element in the list Starts

list1[-1] # returns 4 - which is extreme last element in the list

list1[-2] # returns 3 - which is extreme last but one element

list1[0:2] = [11, 22] # replacing first two elements 1 and 2 with 11 and 22

stackList = [1, 2, 3, 4]

stackList.append(5) # inserting 5 from the last in the stack

print stackList # result is: [1, 2, 3, 4, 5]

stackList.pop() # removing 5 from the stack Last In First Out

print stackList # result is: [1, 2, 3, 4]

queueList = [1, 2, 3, 4]

queueList.append(5) # inserting 5 from the last in the queue

print queueList # result is: [1, 2, 3, 4, 5]

del(queueList[0]) # removing 1 from the queue First In First Out

print queueList # result is: [2, 3, 4, 5]

Chapter 12: How To Handle Errors

Sometimes, errors happen during the program. This might be caused by a bad code or bad user input. Most of the time, it is the former.

Python immediately ends a program whenever errors are encountered. However, what if you want the show to continue, despite these errors?

You might want to know what happens with the other code you have written after the line that produced the error. You want to know if they are also problematic. That is when error handling is useful.

Error handling is a programming process wherein you assume control of the program’s errors from Python. Instead of just letting Python close your program and perform error handling, which can let you run code and continue with the program if an error is encountered.

Try and Except

One of the ways to handle errors is to use the keywords try and except. Try is like if. However, instead of testing a literal, variable, or expression’s truth value, try tests only if the code block under it will generate an error.

Except
 statements works together with try
 statements. The purpose of except is to execute a code block, when the code within the try statement returns an error. If you omit except and only use try, you will get an error. For example:

>>> try:

a = 1

b = "a"

c = a + b

Except:

print ("There is an error on the try code block.")

There is an error on the try code block.

>>> _

In the above example, the try
 code block ‘tried’ to add an integer and a string. Using the (+) operator like that will confuse Python. After all, the behavior of the (+) operator depends on the data type you use with it. If you use numbers, it will act as an addition operator. If you use strings, it will act as a concatenate operator.

Normally, without the try statement, this will happen if you add an integer and a string:

>>> a = 1

>>> b = "a"

>>> c = a + b

Trace back (most recent call last):

File "<stdin>", line 1, in <module>

Type Error: unsupported operand type(s) for +: 'int' and 'str'

>>> _

Anyway, note that despite the fact the previous example’s try block had an error, the print statement in the ‘except’ code block got executed. That is the essence of using try and except statements for error handling. Nonetheless, there are precise ways to use these keywords, and these involve specifying the code that will be run, depending on the error that was caught by the program.

We will discuss more about try
 and except
 statements in the later parts of this book. In there, you will learn how to effectively manage exceptions and error. More importantly, you will learn how to control the program whenever it encounters an error.

Variable Styling

Here are a few quick reminders from Python’s style guide (PEP 8).

As much as possible, sparingly use global variables. When you truly need one, just make sure that the set of global variables you will use is for a single module only.

Again, do not use the lowercase ‘l,’ uppercase ‘O,’ or the uppercase ‘I’ for single letter variables. As you can see right now, it is difficult to differentiate l, I, and 1 and O and 0 from each other.

Practice Exercise

For this chapter, create a choose-your-adventure program. The program should provide users with two options. It must also have at least five choices, and have at least two different endings.

You must also use dictionaries to create dialogues.

Here is an example:

creepometer = 1

prompt = "\nType 1 or 2 then press enter...\n\n ::> "

clearScreen = ("\n" * 25)

scenario = [

"You see your crush at the other side of the road on your way to school.",

"You notice that her handkerchief fell on the ground.",

"You heard a ring. She reached on to her pocket to get her phone and stopped.",

"Both of you reached the pedestrian crossing, but its currently red light.",

"You got her attention now and you instinctively grabbed your phone."

]

choice1 = [

"Follow her using your eyes and cross when you reach the intersection.",

"Pick it up and give it to her.",

"Walk pass her.",

"Smile and wave at her.",

"Ask for her number."

]

choice2 = [

"Cross the road and jaywalk, so you will be behind her.",

"Pick it up and keep it for yourself.",

"Stop and pretend you are tying your shoes.",

"Tap her shoulders.",

"Take a picture of her using your phone."

]

result1 = [

"A car honked at you and she noticed you. She walked a bit faster.",

"You called her and you gave her the handkerchief.",

"She noticed you as you walked pass her, but she focused on the call she got.",

"She smiled and waved back.",

"She started to think about it."

]

result2 = [

"You walked casually and crossed the pedestrian lane.",

"You stashed away her handkerchief on your pocket.",

"She noticed you and her rightbrow rose.",

"She turned towards you.",

"Her eyes suddenly become bloodshot red."

]

ending1 = [

"She grabbed her phone, and typed some numbers.",

"You became giddy.",

"After a second, she showed you her phone.",

"Her number was on the screen.",

"You quickly fiddled with your phone and typed in her digits.",

"She walked away towards the school gate."

]

ending2 = [

"She politely turned down your request.",

"She walked away towards the school gate.",

"She looked back at you for a moment.",

"Your eyes met for a moment.",

"Then she turned away.",

"There is hope for you, you thought."

]

ending3 = [

"Her right hand moved and the next thing you saw was the sky.",

"Your life flashed in front of you.",

"Her scream brought you back to reality.",

"Your left cheek was scorched hot as the pain radiate from it.",

"You then asked yourself why.",

"That was the last time you saw her."

]

instructions = [

"Here are the instructions on how to play this game.",

"1. To play and complete this game, you must enter your choices when asked.",

"2. Press enter to proceed with the next dialog.",

"3. The choices you make changes the ending of the game.",

"Press enter whenever you are ready."

]

print(clearScreen)

for i in range(len(instructions)):

print(instructions[i])

input()

print(clearScreen)

for i in range(len(scenario)):

input(scenario[i])

print("1. " + choice1[i])

print("2. " + choice2[i])

answer = ""

while (True):

answer = input(prompt)

if(answer == "1" or answer == "2"):

break

print("\n")

if(answer == "1"):

input(result1[i])

creepometer -= 1

else:

input(result2[i])

creepometer += 1

if(creepometer < 0):

for i in range(len(ending1)):

input(ending1[i])

if(creepometer == 0):

for i in range(len(ending2)):

input(ending2[i])

if(creepometer > 0):

for i in range(len(ending3)):

input(ending3[i])

input("Thank you for playing the game!")

By the way, the clear Screen variable contains multiplied (new line) characters. Printing numerous new lines can push the previous lines upwards, which basically clears the screen.

Conclusion

There are a lot of other coding languages out there that you are able to work with, but Python is one of the best that works for most beginner programmers, as it is providing the power and the ease of use that you are looking for, when you first get started with coding language. This guidebook took the time to explore how Python works, along with some of the different types of coding that you can do with it.

In addition to seeing a lot of examples of how you can code in Python ,and how you can create some of your programs in this language, we also spent some time looking at how to work with Python, when it comes to the world of machine learning, artificial intelligence, and data analysis. These are topics and parts of technology that are taking off, and many programmers are trying to learn more about it. With the help of this guidebook, you will be able to handle all of these, even as a beginner in Python.

When you are ready to learn more about how to work with the Python coding language, and how you can make sure that you can even use Python along with data analysis, artificial intelligence, and machine learning, make sure to check out again this guidebook to help you get started.

OEBPS/Image00009.jpg

OEBPS/Image00010.jpg

OEBPS/Image00007.jpg

OEBPS/Image00008.jpg

OEBPS/Image00005.jpg

OEBPS/Image00006.jpg

OEBPS/Image00013.jpg

OEBPS/Image00014.jpg

OEBPS/Image00011.jpg

OEBPS/Image00012.jpg

OEBPS/Image00020.jpg

OEBPS/Image00021.jpg

OEBPS/Image00018.jpg

OEBPS/Image00000.jpg

OEBPS/Image00019.jpg

OEBPS/Image00016.jpg

OEBPS/Image00017.jpg

OEBPS/Image00015.jpg

OEBPS/Image00004.jpg

OEBPS/Image00002.jpg

OEBPS/Image00024.jpg

OEBPS/Image00003.jpg

OEBPS/Image00022.jpg

OEBPS/Image00001.jpg

OEBPS/Image00023.jpg

