

PYTHON PROGRAMMING

The Ultimate Expert Guide: Advanced Features, Object-Oriented Programming, Data Analysis, Artificial Intelligence and Machine Learning with Python

© Copyright 2019 by Clive Campbell - All rights reserved.

The content contained within this book may not be reproduced, duplicated or transmitted without direct written permission from the author or the publisher.

Under no circumstances will any blame or legal responsibility be held against the publisher, or author, for any damages, reparation, or monetary loss due to the information contained within this book. Either directly or indirectly.

Legal Notice:

This book is copyright protected. This book is only for personal use. You cannot amend, distribute, sell, use, quote or paraphrase any part, or the content within this book, without the consent of the author or publisher.

Disclaimer Notice:

The information contained in this book has been well-researched and correct during the time it as written but it should not be misconstrued as perfect and flawless. The programming language, Python, and its functionality, are gravely dependent on the specifications of the device and computer to which it has been installed. Moreover, Python, similar to other programming languages, is constantly upgraded. The publisher disclaims any liability for any form of inconsistencies due to software upgrade or damage to the device wherein the software was installed, or any other errors, whether such errors have been deliberate or caused by negligence, misunderstanding of the procedures, or accidents.

Table of Contents

Introduction

Chapter 1: Basics of the Python Programming Language

First Python Program

A program that adds two numbers

Variables and Data Types

Escape sequence in strings

Boolean Type

Naming the Python Variables

Types of Variables

Numbers

Strings

Creating Our Python Variables

Create a variable

Control Flow

If Statement

The While Statement

The for Statement

Data Structures

Tuple

Introduction to Objects and Classes

Definition of a Class

Creating an Object in Python

Deleting Objects and Attributes

Deleting an Object

Identifiers and Keywords

Comments and Statements

Multi-line Python Statement

Chapter 2: Object-Oriented Programming Using Python

Objects and classes

Class or Object Instantiation

Functions

Inheritance in Python

Data Encapsulation/Data Hiding

Function Overriding in Python

Operator Overloading in Python

Making a Class Compatible with Inbuilt Special Functions

Additional inbuilt methods

Operator + Overloading

Revisit Logical and Comparison Operators

Overloading Comparison Operators

Data Types in Python

Numbers

Number Conversion

Number Syste
 m

 Prefix

Type Conversion

Mathematics in Python

Decimal in Python

Fractions in Python

Random function in Python

Lists in Python

Nested Lists

Accessing Elements from a List

Nested List Indexing

Python Negative Indexing

Slicing Lists in Python

Manipulating Elements in a List using the Assignment Operator

Changing a range of items in a list

Appending/Extending Items in the List

Removing or Deleting Items from a List

Deleting Multiple Elements

Delete Entire List

Using Empty List to Delete an entire or specific elements

List Methods in Python

Inbuilt Python Functions that can be used to Manipulate Python Lists

Tuple in Python

Accessing Python Tuple Elements

Negative Indexing

Slicing

Available Tuple Methods in Python

Testing Membership in Tuple

Inbuilt Python Functions with Tuple

Strings in Python

Chapter 3: Machine Learning Demystified

Machine Learning Techniques

Supervised Learning

Unsupervised learning

Machine Learning Strategies

Correlation

Regression

The K-Nearest Neighbor

The KNN classification

Decision Tree

Deep Learning

Programming Languages

Human Biases

Chapter 4: Classification and Regression

Classification Algorithms

Decision Tree

K-Nearest Neighbor (KNN)

Creating Your Soft K-Means

Where Can You Apply K-means

Artificial Neural Network

Naïve Bayes

Classification Accuracy Metrics

Logarithmic Loss

Confusion Matrix

Linear regression

Choosing the Best Regression Model

Statistical Methods to Use to Find the Best Regression Model

Modified R-squared and Predicted R-squared

P-values for the Predictors

Stepwise Regression

Real-World Challenges

Finding the Correct Regression Model Theory

How to Calculate the Accuracy of the Predictive Model

Chapter 5: Clustering

Why Work with Clustering?

Types of Clustering

Partitioned-based clustering

K-mean Clustering

Hierarchical Clustering

Density-Based Clustering

Customer Segmentation with Cluster Analysis

How to Segment

Chapter 6: Python Dictionaries

What is a Python Dictionary?

How do Python Dictionaries Work?

Creating a Python dictionary

Accessing Items within the Python dictionary

How to Change Values in a Python Dictionary

How do you Loop through a Python Dictionary

How Do You Check if a Key Exists in the Dictionary

How do you determine the number of items in the Dictionary

How to add an item to the Python Dictionary

Removing Items from the Python Dictionary

A list of Common Python Dictionary Methods

Benefits of a Dictionary in Python

Disadvantages of a Python dictionary

Chapter 7: Data Structures in Python

What data structures in Python are immutable and mutable?

What data structures in Python are suited to handle binary data?

What containers and sequences are available in Python?

How can I construct some common containers?

What are iterables and iterators?

Can I convert from one data type to another?

Should I use a list or a tuple?

When to use a set and when to use a dict?

How can I implement a linked list in Python?

Chapter 8: Data Analysis, Processing, and Visualization

Understanding Data Processing

Collection

Preparation

Input

Processing

Output

Storage

Data Processing in Python

An Exploratory Analysis in Python with Pandas

Series and DataFrames

Practice Data Set – Loan Prediction Problem

Import Libraries and Data Set

Distribution Analysis

Techniques for Preprocessing Data in Python

Chapter 9: Plotting using Python Functions

What you should know about plots

Comparison Plots

Line Chart

Bar Chart

Comparative Bar Chart

Radar Chart

Activity: Employee Skill Comparison

Relation Plots

Scatter Plots

Variants: scatter plots with marginal histograms

Bubble Plot

Correlogram

Heatmap

Variants: annotated heatmaps

Activity: Road Accidents Occurring over Two Decades

Composition Plots

Pie Chart

Variants: donut chart

Matplotlib

Overview of Plots in Matplotlib

Pyplot Basics

Creating Figures

Closing Figures

Format Strings

Chapter 10: How to Create a Picture Classifier using TensorFlow

TensorFlow

Inception Model: A neural network containing many layers of abstraction

Download Training Pictures

Chapter 11: Practical Applications of Machine Learning

Recommender Systems

Advantages of using Recommendation Systems

Types of Recommender Systems

Content-based Systems

How to Represent Content

Collaborative Filtering Systems

Techniques to Apply in Collaborative Filtering

Types of Collaborative Filtering Techniques

Content-Based Filtering

a)
 ​
 Artificial Intelligence Chips

b)
 ​
 Artificial Intelligence will Enhance DevOps

c)
 ​
 The relationship between Artificial Intelligence and IoT

d)
 ​
 Personalized Drugs and Medicine

e)
 ​
 Increased Evolution of Machine Learning-Based Assistants

f)
 ​
 Computer Vision will Change and Enhance the Future of Surveillance

g)
 ​
 Good Metrics from Machines or Equipment using Artificial Intelligence

h)
 ​
 Social Credit Systems

i)
 ​
 Healthcare will Experience many Artificial Intelligence Implementations

j)
 ​
 Graphic Design and Image Processing Applications

k)
 ​
 Computational and Scientific Applications

l)
 ​
 Games

m)
 ​
 Web Applications and Web Frameworks

n)
 ​
 Predicting Earthquakes

o)
 ​
 Neural Networks for Brain Cancer Detection

p)
 ​
 Python in the Enterprise

q)
 ​
 Language Development

r)
 ​
 Prototyping

s)
 ​
 Automatic Game Playing

Conclusion

Introduction

Is this your first time programming? If not, then we assume that you want to learn how to use machine learning with Python. Also, you could be looking for information about why and how you can get started with Python. If you are an expert programmer in any language, it will be easy for you to pick up Python very fast.

[image:]

Python refers to a high-level programming language that is dynamic. It is easy to learn and supports powerful typing. Python programs are very ‘natural’, in that it is easy to understand and read them (thanks to the exclusion of braces and semicolons). Python programming language can run on any computer platform, ranging from Linux to Windows to Solaris, and Macintosh, et cetera. The simple nature of Python is what makes it popular and a perfect choice for computer
 programmers. The following points give a highlight of its features:

	

It is a highly readable programming language

	

It has a clean visual layout

	

Less syntactic exceptions

	

Excellent for rapid application and scripting

	

It supports dynamic and elegant typing

	

It can easily be interpreted

	

It is compatible with many platforms

	

It has a clean and perfect visual layout

It is a very popular language in many fields such as Artificial Intelligence, Big Data, and Automation.

Before you can get started in Python, you need to know how to install Python on your computer. Next, you need to know a few concepts about the language syntax to be able to read and understand the Python code. To learn more about installation and syntax, move to the next page.

Chapter 1: Basics of the Python Programming Language

Before you can get started with Machine Learning with Python, you must have Python installed on your computer; however, you might not need to download it.

So, the first thing to do is to confirm that Python is not installed by typing “Python” in a command window. When you see a response from a Python interpreter, it will consist of a version number in its original display. In general, any recent version will work because Python tries to maintain backward compatibility.

If you want to install Python, you might as well search for the most recent stable version. This version will have the highest number not marked as an alpha or beta release.

[image:]

First Python Progra
 m

Usually, when you start to learn any programming language, your first program to write will be “Hello, World!”. This is an easy program that prints “Hello, World!” For our first Python program, you will learn how to write a program that adds two numbers.

A program that adds two numbers

[image:]

In the coding that we have above, we are basically telling the compiler that we want to add together the number 3 and 5, so the output that we are going to get from this, if it is set up well, is 8. Let’s look at this a bit more closely too:

The first line of the program begins with a comment. Comments in Python programming are written starting with #. Python interpreters and compilers ignore comments. The reason why comments should be applied in Python programming is to describe the function of the code. Furthermore, comments help any other programmer to understand the working of your code
 .

Variables and Data Types

A data type, as the name suggests, is the category of data. It defines a collection of values plus operations that can take place on those values. The explicit value used in our programs is literal. For instance, 11, 30.22, ‘pypi’ are all literals. Each literal has a type linked to it. Please see the following example, 11 is an int type, 30.22 is a float type and ‘pypi’ is of type string. Often, the type of literal will determine the type of operations that can be done to it. The table below contains basic data types in Python.

[image:]

Python contains an in-built function called type () which is used to define the data type of the literal.

[image:]

The <class ‘int’> describes that the type of 54 is int. Also, <class ‘str’> and <class ‘float’> shows that “a string” and 98. 188 is of type str and float respectively. At first, you might say that “3.14” is of type float but since it is wrapped inside double quotes, it is definitely a string. In the same way, “99” is a string.

A sequence of character data is a string. The string type in Python is called str. String literals can either be defined by single or double-quotes. All the characters inside the opening and closing quotes are part of the string as shown below:

>>> ''

'
 '

Escape sequence in strings

There are times when you want Python to interpret a sequence of characters inside a string differently. This might happen in one or two ways:

•
 If you want to suppress the unique interpretation that specific characters are supplied within a string.

•
 You want to apply specific interpretation to characters contained in a string that is often taken literally.

You can do this by using the backslash (\) character. A backslash character in a string implies that one or more characters that follow it must be uniquely treated. This is called an escape sequence because the backslash will make subsequent character sequence to “escape” its normal meaning.

Boolean Type

Python 3 has a Boolean data type. Objects of Boolean type may contain one or two values, False or True.

[image:]

Python expressions are evaluated in a Boolean context. This means that they are interpreted to represent false or truth. A true value in Boolean is described as “Truthy” while a false value is described as “Falsy.
 ”

The truthiness of an object of the Boolean type is open. This means that objects which are equal to True are Truthy, and those that are equal to False are Falsy. However, objects that are not of Boolean type can be evaluated in a Boolean context and determined to be true or false.

Naming the Python Variables

We have used num1, num2, and sum and the variable names were not just random. They must follow certain rules and conventions. Rules are what we cannot violate while conventions are much like the recommended way. Let us start with the rules:

Some of the rules that we are able to follow when naming these variables include:

a)
 Variable names should always start with a letter or an underscore, i.e.

num1

_num1

b)
 The remaining part of the variable name may consist of numbers, letters, and underscores, i.e.

number1

num_be_r

c)
 Variable names are case sensitive meaning that capital letters and non-capital letters are treated differently.

Num1 will be treated differently with num1
 .

Write/suggest five variables for:

i)
 Hospital department.

ii)
 Bank.

iii) Media House.

Given scri=75, scr4=9, sscr2=13, Scr=18

iv)
 The variable names above are supposed to represent scores of students. Rewrite the variables to satisfy Python variable rules and conventions.

As earlier indicated, conventions are not rules, per se, are the established traditions that add value and readability to the way we name variables in Python.

1)
 Uphold readability. Your variables should give a hint of what they are handling because programs are meant to be read by other people other than the person writing them. number1 is easy to read compared to n1. Similarly, first_name is easy to read compared to the first name or first name or fn. The implication of all these is that both are valid/acceptable variables in Python, but the convention is forcing us to write them in an easy to read form.

2)
 Use descriptive names when writing your variables. For instance, number1 as a variable name is descriptive compared to yale or anything. In other words, we can write yale to capture values for number1, but the name does not outrightly hint what we are doing. Remember when writing programs; assume another person will maintain them. The person should be able to quickly
 figure out what the program is all about before running it.

3)
 Due to confusion, avoid using the uppercase ‘O,’ lowercase letter ‘l’ and the uppercase letter ‘I’ because they can be confused with numbers. In other terms, using these letters will not be a violation of writing variables, but their inclusion as variable names will breed confusion.

Example 1

Re-write the following variable names to (1) be valid variable names and follow (2) conventions of writing variable names.

i)
 23doctor

ii)
 line1

iii) Option3

iv)
 Mydesk

v)
 #cup3

Example 2

Write/Suggest variable names that are (1) valid and (2) conventional.

i)
 You want to sum three numbers.

ii)
 You want to store the names of four students.

iii) You want to store the names of five doctors in a hospital
 .

Variables are storage locations that a user specifies before writing and running a Python program. Variable names are labels of those storage locations. A variable holds a value depending on circumstances. For instance, doctor1 can be Daniel, Brenda, or Rita. Patient1 can be Luke, William, or Kelly. Variable names are written by adhering to rules and conventions. Rules are a must while conventions are optional but recommended as they help write readable variable names.

When writing a program, you should assume that another person will examine or run it without your input and thus should be well written. The next chapter will discuss Variables. In programming, declaring variables means that we explicitly state the nature of the variable. The variable can be declared as an integer, long integer, short integer, floating integer, a string, or as a character including if it is accessible locally or globally. A variable is a storage location that changes values depending on conditions. Use descriptive names when writing your variables.

Variables are names for values. In Python, the = symbol assigns the value on the right to the name on the left. The variable is created when a value is assigned to it. Here is a Python program that assigns an age to a variable age and a name in quotation marks to a variable first_name.

age = 42

first_name = 'Eunice
 '

Types of Variables

Now that we have defined what are variables are and the rules to write variable names in the last chapter, let us explore different types of variables.

Numbers

The Python accommodates two kinds of numbers, namely floating-point numbers and integer numbers. Python also supports complex numbers. When you sign a value to a number, then a number object is created. For example:

number3 =9

number4=12

Different Numerical Types Supported in Python

•
 long for example 681581903L

•
 int for example 11, 123, -151

•
 float for example 0.5, 23.1, -54.2

•
 complex for example 4.12j

Exercise

Identify the type of numerical
 below:

	
234, 19, 312

	
4.56, 2.9, 9.3

	
76189251468290127624471

Identify the numerical type suitable for the following contexts:

	
Salary amount.

	
Counting the number of students in a class.

	
Getting the census figure in an entire country of China.

Strings

A single or double quote in Python is used to indicate strings. The subsets of strings can be taken by using the slice operator ([:]) and []) with indexes beginning at () at the start of the string and operating their way from -1 at the end. Strings can be joined using the + (plus) sign known as the concatenation operator. The asterisk (*) is used as a repetition operator. Remember, counting in programming starts from index zero (the first value).

The # (hash sign) is used to indicate a single-line comment. A comment is a piece of descriptive information about a particular line(s) of code. The comment is normally ignored by when running the program. The comment should be written after the # sign in Python. Comments increase the readability of the program written
 .

Exercise

You will key in/type the following program statement:

str = 'I think I am now a Programmer.'

	
Write a program statement that will display the entire string/statement above.

	
Write a program statement to display characters of the string from the second character to the sixth.

	
Write a single program statement that will display the entire string two times. (use *).

	
Write a program statement that will add the following at the end of the statement above, “ of Python.”

Creating Our Python Variables

In the first Python program, you were introduced to Python variables. You briefly saw how you can define variables in Python and assign them some values. This section discusses more variables in Python.

Variables, like in any other programming language, are used to store values. Also, you can use variables to access data and manipulate data
 .

Create a variable

If you want to create a variable in Python, you must use the assignment operator. The format shown below is applied when you want to create a variable.

[image:]

An example can include:

number = 12.

This statement will create a variable called number and assign it to the value 12. When the Python interpreter comes across this statement, it performs the following things behind the scenes.

	
Store the variable “12” in a given location in memory.

	
Make the variable number point to it.

The crucial thing to understand is that the variable number itself doesn’t have any value, it only points to the memory location that contains the original value.

Another important thing to note is that when you assign a value to a variable, make sure that you write the variable name on the left side of the assignment (=) operator. If you fail to do this, you will get a syntax error
 .

Python always detects the type of variable and operations performed on it depending on the value it has. The programming jargon that describes this is called Dynamic Typing. This means that you can use the same variable to refer to a different type of data that initially points to.

Any time you assign a new value to a variable, the reference to the previous value is lost. For instance, if the variable number is assigned the string “ten”, the reference to value “12” is lost. At this point, there will be no variable that will point to the memory location. When this takes place, the Python interpreter will automatically remove the value from the memory through garbage collection.

If you try to access a variable before you assign a value to it, you will get a NameError.

Control Flow

The control flow in a program highlights the order of program execution. In a Python program, control flow is carried out by function calls, conditional statements, and loops. This section will deal with the If Statement, While, and For loops.

If Statement

There are occasions in which you may want to run certain statements if some condition holds, or decide the type of statements to run based on different mutually exclusive conditions. Python has the compound “If Statement” that is made up of “if”, “elif”, and “else” clauses. These compound
 statements allow you to conditionally create blocks of statements. Below is a general declaration of an If Statement.

[image:]

Here, the “elif “and “else” clause are optional. As a reminder, there are no switch statements in Python. This means that you need to apply “elif”, “if”, and “else” for conditional processing. Take a look at this example of an If program.

[image:]

The While Statement

In Python, a WHILE statement supports repeated execution of a statement or even a block of a statement under the control of a conditional expression. Take a look at a While syntax.

[image:]

A While statement can also consist of an ‘else’ clause, ‘break and continue’ statements. Below is an example of a While program example in Python.

[image:]

The for Statement

The Python language also contains a statement that supports repeated program statement execution. The for statement has an iterable expression to control the blocks of statements. Below is the general syntax of a statement.

[image:]

Keep in mind that “in” is a keyword. It is part of the syntax of the For Statement but not associated with the “in” operator which is applied in the membership testing. A for Statement can have an else clause, break, and continue statements. Here is a general declaration form of a For Statement:

[image:]

Data Structures

They are structures that assist in data storage. Data structures have a collection of data linked to each other. In Python, there are 4 built-in data structures. They are as follows:

•
 Tuple

•
 List

•
 Dictionary

•
 Set

A list describes data structures that have an ordered set of items. Consider a shopping list that has several items that you need to purchase. The only difference is that your shopping list has each item on a separate line.

However, in the case of a list in Python, you only need to separate your items with commas. The moment you create a list, you have the permission to add, remove, or search items in the same list. Since a list allows you to add and remove items, it is considered as a mutable data type. This means that you can change it anytime
 .

Tuple

Tuples store multiple objects. They are similar to lists except that they don’t have a lot of functions like a list class. One great feature about tuples is that it is immutable like strings. This implies that it is hard to change tuples.

If you remember from our earlier discussions on tuples, they are going to be considered immutable objects. This is why any operation that is going to work to modify it, like appending the tuple, is not usually allowed. The good news is that there is a workaround that we are able to use, if we know how to make it work.

The first thing that we can try here is to convert the immutable tuple over to a list. Remember that the list is something that we are able to change and modify as we wish. We can easily change the tuple over to a list with the built-in function list().

You always have the freedom of appending an item to a list object. Then we would use our second built-in function of the tuple() to help move this back. So basically, we will go from a tuple over to a list, and then in the end, when the modification and appending is done, back to a tuple again.

The code for this is pretty easy to work with. The best way to get started is with the following:

>>> T1=(10,50,20,9,40,25,60,30,1,56)

>>> L1=list(T1)

>>> L1

[10, 50, 20, 9, 40, 25, 60, 30, 1, 56
]

>>> L1.append(100)

>>> T1=tuple(L1)

>>> T1

(10, 50, 20, 9, 40, 25, 60, 30, 1, 56, 100)

Introduction to Objects and Classes

To understand more about a list in Python language, it is good to quickly introduce you to the concept of objects and classes. A list is an example of objects and classes. So, if you are going to use a variable such as j and allocate it a value, say integer 7, then it is important to look at it as if you are creating object j.

A class contains methods. Methods and functions are similar. However, methods are defined inside that class alone. Therefore, the only way to access a function is by having an object in that class. Please see the following example, in the Python language, you can join a method to a list class that allows the class of the object.

The Python language has the append method for a list class which permits the addition of an item to the end of the list. Classes in Python have fields which take the form of variables declared to be used in a specific class alone. This means that if you want to use these variables, you require to have an object of that class alone. You access fields with the help of a dotted notation. Please see the following example, my list.field.

Here’s how it work
 s

There is the variable, “shop list” which has information about a person planning to go to the market. The “shop list” allows you to store strings of names of things that you plan to buy. However, you can add any type of object like numbers.

This program also has a ‘for’ loop which will support iteration in the list. You should have started to realize that a list is similar to a sequence. Notice how the end parameters are used to call a print function. This shows that you want to end the output with space rather than a normal line break.

Next, you should add an item to the list using the append method. Check whether the item is added using the print function.

There is also a sorting method in the program. The purpose of this is to sort the list. It is important to note that this particular method affects the list itself and it can’t return an altered list.

The next thing is to complete purchasing the item from the market. This process is equivalent to removing an item from the list. You do this with the help of the del Statement. For this scenario, you need to describe the item found in the list which you want to remove. Then use the del Statement to remove it from the list.

After that, the del Statement removes it from the list. To remove an item in a list using Python, you just write the following line function del shoplist [0]
 .

Definition of a Class

The keyword def is used to define a class in Python. The first string in a Python class is used to describe the class even though it is not always needed.

Example

Start IDLE.

Navigate to the File menu and click New Window.

Kindly type the following in your programming environment:

class Dog

‘’’Briefly taking about class Dog using this docstring’’’

Pass

Example 2

Start IDLE.

Navigate to the File menu and click New Window.

Kindly type the following in your programming environment
 :

Class Bright:

“My other class”

b=10

def salute(self):

print(‘Welcome’)

print(Bright.b)

print(Bright.salute)

print(Bright.__doc__)

Creating an Object in Python

The next thing that we need to work on is how to creating an object that is in Python. These objects are important to help us to handle some of the different parts that come our coding. This is one of the things that makes the Python language strong, and will ensure that the code works the way that you want. Let’s look at an example of this.

Example from the previous class

Open the previous program file with class Bright

student1=Bright(
)

The last program will create object student1, a new instance. The attributes of objects can be accessed via the specific object name prefix. The attributes can be a method or data including the matching class functions. In other terms, Bright.salute is a function object and student1.salute will be a method object.

Example

Start IDLE.

Navigate to the File menu and click New Window.

Kindly type the following in your programming environment:

class Bright:

"Another class again!"

c = 20

def salute(self):

print('Hello')

student2 = Bright()

print(Bright.salute)

print(student2.salute)

student2.salute()

You invoked the student2.salute() despite the parameter ‘self’ and it still worked without placing arguments. The reason for this phenomenon is because each time an object calls its
 method, the object itself is passed as the first argument. The implication is that student2.salute() translates into student2.salute(student2). It is the reason for the ‘self; name.

We can look at this in another way as well.

Example

Start IDLE.

Navigate to the File menu and click New Window.

Kindly type the following in your programming environment:

class NumberComplex

class ComplexNumber:

def __init__(self,realnum = 0,i = 0):

self.real = realnum

self.imaginarynum = i

def getData(self):

print("{0}+{1}j".format(self.realnumber,self.imaginarynum))

complex1 = NumberComplex(2,3)

complex1.getData()

complex2 = NumberComplex(5)

complex2.attribute = 10

print((complex2.realnumber, complex2.imaginarynumber, complex2.attribute))

complex1.attribut
 e

Deleting Objects and Attributes

The del statement is used to delete attributes of an object at any instance.

Example

Start IDLE.

Navigate to the File menu and click New Window.

Kindly type the following in your programming environment:

complex1 = NumberComplex(2,3)

del complex1.imaginarynumber

complex1.getData()

del NumberComplex.getData

complex1.getData()

This one will ensure that we are able to go through and just delete the attribute that we no longer want for our object. This
 doesn’t delete the whole object, but will help to delete the parts that we no longer want to have there.

Deleting an Object

As we are working through this process, we are also able to delete the object we are working with. You can choose to delete one object, or you can work on deleting more than one object based on what your code would like you to do.

Example

Start IDLE.

Navigate to the File menu and click New Window.

Kindly type the following in your programming environment:

complex1=NumberComplex(1,3)

del complex1

When complex1=NumberComplex(1,3) is done, a new instance of the object gets generated in memory and the name complex1 ties with it. The object does not immediately get destroyed as it temporarily stays in memory before the garbage collector purges it from memory. The purging of the object helps free resources bound to the object and enhances system efficiency. Garbage destruction Python refers to the automatic destruction of unreferenced objects.

Identifiers and Keywords

At this point, you have been wondering why you must use print and str in that manner without the freedom or knowledge of why the stated words have to be written in that manner. The words print and str constitute a special type of words that have to be written that way always. Each programming language has a set of keywords. In most cases, some keywords are found across several programming languages. Keywords are case sensitive in Python meaning that we have to type them in their lowercase form always. Keywords cannot be used to name a function (we will explain what it is later), the name of a variable.

There are 33 keywords in Python, and all are in lowercase save for None, False, and True. They must always be written as they appear below:

[image:]

Not
 e

The print() and str are functions, but they are inbuilt/preloaded functions in Python. Functions are a set of rules and methods that act when invoked. For instance, the print function will display output when activated/invoked/called. At this point, you have not encountered all of the keywords, but you will meet them gradually. Take time to skim through, read, and try to recall as many as you can.

Exercise

Identify what is wrong with the following variable names (The practice exercise requires recalling what we have learned so far).

	
for=1

	
yield=3

	
34ball

	
m

Comments and Statements

A statement in Python refers to instructions that a Python interpreter can work on/execute. An example is str= ‘I am a Programmer’ and number1=3. A statement having an equal sign(=) is known as an assignment statement. There are other types of statements such as the if, while, and for which will be handled later
 .

Exercise

	
Write a Python statement that assigns the first number value of 18.

	
Write a programming statement that assigns the second number value of 21.

	
What type of statements are a. and b. above?

Multi-line Python Statement

Spreading a statement over multiple lines is possible. Such a statement is known as a multi-line statement. The termination of a programming statement is denoted by a new line character. To spread a statement overs several lines, in Python, we use the backslash (\) known as the line continuation character. An example of a multi-line statement is:

sum=3+6+7+\

9+1+3+\

11+4+8

The example above is also known as an explicit line continuation. In Python, the square brackets [] denote line continuation similar to parenthesis/round brackets (), and lastly braces {}. The above example can be rewritten as:

sum=(3+6+7+

9+1+3+

11+4+8
)

We have dropped the backslash(\) known as the line continuation character when we use the parenthesis(round brackets) because the parenthesis is doing the work that the line continuation \ was doing.

Chapter 2: Object-Oriented Programming Using Python

Python supports different programming approaches, as it is a multi-paradigm. An object in Python has an attribute and behavior.

[image:]

Objects and classes

It is essential to understand objects and classes when studying machine learning using Python object-oriented programming language
 .

Example

Car as an object:

Attributes: color, mileage, model, age

Behavior: reverse, speed, turn, roll, stop, start.

By convention, we write the class name with the first letter as uppercase. A class name is in singular form by convention.

The syntax that we are able to use in order to give us the name of our class is below:

class Name_of_Class:

From a class, we can construct objects by simply making an instance of the class. The class_name() operator creates an object by assigning the object to the empty method.

Class or Object Instantiation

From our class Car, we can have several objects such as a first car, second car or SUVs.

Example

Start IDLE.

Navigate to the File menu and click New Window
 .

Kindly type the following in your programming environment:

my_car=Car()

pass

Exercise

	
Create a class and an object for students.

	
Create a class and an object for the hospital.

	
Create a class and an object for a bank.

	
Create a class and an object for a police department.

Example

Start IDLE.

Navigate to the File menu and click New Window.

Kindly type the following in your programming environment:

class Car:

category=”Personal Automobile”

def __init__(self, model, insurance)
 :

self.model = model

self.insurance =insurance

subaru=Car(“Subaru”,”Insured”)

toyota=Car(“Toyota”,”Uninsured”)

print(“Subaru is a {}”.format(subaru._class_.car))

print(“Toyota is a {}”.format(toyota._class_.car))

print(“{} is {}”.format(subaru.model, subaru.insurance))

print(“{} is {}”.format(toyota.model, toyota.insurance))

Functions

Functions defined within a body of the class are known as methods and are basic parts of our code. Methods define the behaviors of an object.

Example

Start IDLE.

Navigate to the File menu and click New Window.

Type this code i
 n

def __init__(self, model, insurance):

self.model = model

self.insurance =insurance

def ignite(self, ignite):

return "{} ignites {}".format(self.model, ignition)

def stop(self):

return "{} is now stopping".format(self.model)

subaru=Car(“Subaru”,”Insured”)

print(subaru.ignite("'Fast'"))

print(subaru.stop())

The methods ignite() and stop() are referred to as instance methods because they are an instance of the object created.

Exercise

	
Create a class Dog and instantiate it.

	
Create a Python program to show the names of two dogs and their two attributes from a.

Inheritance in Python

A way of creating a new class by using details of existing class devoid of modifying it is called inheritance. The derived class or child class is the newly formed class while the existing class is called a parent or base class.

Example

Start IDLE.

Navigate to the File menu and click New Window.

Kindly type the following in your programming environment:

#Example of inheritance

#base class

class Student(object):

​
 def__init__(self, name, rollno):

​
 self.name = name

​
 self.rollno = rollno

#Graduate class inherits or derived from Student class

class GraduateStudent(Student):

​
 def__init__(self, name, rollno, graduate):

​
 Student__init__(self, name, rollno)

​
 self.graduate = graduate

def DisplayGraduateStudent(self):

​
 print”Student Name:”, self.name)

​
 print(“Student Rollno:”, self.rollno)

​
 print(“Study Group:”, self.graduate)

#Post Graduate class inherits from Student class

class PostGraduate(Student):

​
 def__init__(self, name, rollno, postgrad):

​
 Student__init__(self, name, rollno)

​
 self.postgrad = postgrad

​
 def DisplayPostGraduateStudent(self):

​
 print(“Student Name:”, self.name)

​
 print(“Student Rollno:”, self.rollno)

​
 print(“Study Group:”, self.postgrad)

#instantiate from Graduate and PostGraduate classes

​
 objGradStudent = GraduateStudent(“Mainu”, 1, “MS-Mathematics”)

​
 objPostGradStudent = PostGraduate(“Shainu”, 2, “MS-
 CS”)

​
 objPostGradStudent.DisplayPostGraduateStudent()

When you type this into your interpreter, you are going to get the results:

(‘Student Name:’, ‘Mainu’)

(‘Student Rollno:’, 1)

(‘Student Group:’, ‘MSC-Mathematics’)

(‘Student Name:’, ‘Shainu’)

(‘Student Rollno:’, 2)

(‘Student Group:’, ‘MSC-CS’)

Data Encapsulation/Data Hiding

Encapsulation in the Python Object Oriented Programming approach is meant to help prevent data from direct modification. Private attributes in Python are denoted using a single or double underscore as a prefix.

Example

Start IDLE
 .

Navigate to the File menu and click New Window.

Kindly type the following in your programming environment:

“__” or “_”.

class Tv:

def __init__(self):

self.__Finalprice = 800

def offer(self):

print("Offering Price: {}".format(self.__finalprice))

def set_final_price(self, offer):

self.__finalprice = offer

t = Tv()

t.offer()

t.__finalprice = 950

t.offer()

using setter function

t.setFinalPrice(990)

t.sell(
)

The program defined a class TV and used _init_(0 methods to hold the final offering price of the TV. Along the way, we attempted to change the price but could not manage. The reason for the inability to change is because Python treated the _finalprice as private attributes. The only way to modify this value was through using a setter function, setMaxPrice() that takes price as a parameter.

Function Overriding in Python

There are times in writing inheritances where we will need to override the original code, or the function. Being able to handle this and learning how to change it to do what the latter part of the code needs is important with inheritances.

When a method is defined in both the base class and the derived class, the method in the child class/derived class will override the parent/base class. In the above example, the _init_() method in the Rectangle class will override the _init_() in Shape class.

Operator Overloading in Python

Inbuilt classes can use operators and the same operators will behave differently with different types. An example is the + that depending on context will perform concatenation of two strings, arithmetic addition on numbers, or merge lists. Operating overloading is an OOP feature that allows assigning varying meanings to an operator subject to context
 .

Making a Class Compatible with Inbuilt Special Functions

The first thing that we need to work on with the operator overloading in Python is going to be helping to make a class compatible with an inbuilt special function.

Example

Start IDLE.

Navigate to the File menu and click New Window.

Kindly type the following in your programming environment:

class Planar:

def __init__(self, x_axis= 0, y_axis = 0):

self.x_axis = x_axis

self.y_axis = y_axis

def __str__(self):

return "({0},{1})".format(self.x_axis,self.y_axis)

Additional inbuilt method
 s

We have already taken some time to look at a few methods that we are able to handle in Python. But there are a few other options that we can focus on as well. Some of the examples of additional inbuilt methods that we are able to work with include:

Example

Start IDLE.

Navigate to the File menu and click New Window.

Kindly type the following in your programming environment:

class Planar:

def __init__(self, x_axis= 0, y_axis = 0):

self.x_axis = x_axis

self.y_axis = y_axis

str(planar1)

format(planar1)

It then follows that each time we invoke format(planar1) or str(planar1), Python is in effect executing planar1._str_() thus the name, special functions
 .

Operator + Overloading

The _add_() function addition in a class will overload the +.

Example

Start IDLE.

Navigate to the File menu and click New Window.

Kindly type the following in your programming environment:

class Planar:

def __init__(self, x_axis= 0, y_axis = 0):

self.x_axis = x_axis

self.y_axis = y_axis

def __str__(self):

return "({0},{1})".format(self.x_axis,self.y_axis)

def __add__(self,z):

x_axis = self.x_axis + z.x_axis

y_axis = self.y_axis + z.y_axis

return Planar(x_axis,y_axis
)

Exercise

	
Print planar1 + planar2 from the example above.

When you perform planar1+planar2 in Python, it will call planar._add_(planar2) and in turn Planar._add_(planar1, planar2).

Revisit Logical and Comparison Operators

In this section, we are going to take a look at those logical and comparison operators again. These allow us to check whether various parts of our codes are up to date and work the way that we would like.

For example, the comparison operators will allow us to compare the input with the expected output, and then returns a true or false answer. And the logical operators are going to help us to see if two parts of the code add up to what is expected in the code.

With this in mind, let’s take a look at some of the exercises that we are able to use here to make this work for our needs and to get some practice with the comparison and logical operators.

	
Given x=8, y=9, write a Python program that uses logical equals to test if x is equal to y.

	
Write a program that evaluates x!=y in Python programming language.

	
Write and run the following
 program

m = True

n = False

print('m and n is',m and n)

print('m or n is',m or n)

print('not m is',not n)

	
From the program in c., which program statement(s) evaluates to True, or False.

	
Write and run the following program in Python

m1 = 15

n1 = 15

m2 = 'Welcome'

n2 = 'Welcome'

m3 = [11,12,13]

n3 = [11,12,13]

print(m1 is not n1)

print(m2 is n2)

print(m3 is n3)

	
Which program statement(s) generate True or False states
 in e.

	
Write and run the following program

m = 'Welcome'

n = {11:'b',12:'c'}

print('W' in m)

print('Welcome' not in m)

print(10 in n)

print('b' in n)

	
Which program statement(s) in g. return True or False states.

The special functions needed for overloading other operators are listed below.

Overloading Comparison Operators

In Python, comparison operators can be overloaded. Doing this will help us to get the code set up well, and ensures that the code makes the right comparisons at the right times.

Exercise

	
Perform the following to the example above Planar(1,1)

	
Again, perform Planar(1,1) in the above example.

	
Finally, perform Planar(1,1) from the above example.

Python supports different programming approaches as it is a multi-paradigm. An object in Python has an attribute and behavior. From a class, we can construct objects by simply making an instance of the class. The class_name() operator creates an object by assigning the object to the empty method.

The keyword def is used to define a class in Python. The first string in a Python class is used to describe the class even though it is not always needed. When a method is defined in both the base class and the derived class, the method in the child class/derived class will override the parent/base class. In the above example, the _init_() method in the Rectangle class will override the _init_() in Shape class.

Inbuilt classes can use operators and the same operators will behave differently with different types. An example is the + that depending on context will perform concatenation of two strings, arithmetic addition on numbers, or merge lists. Operating overloading is an OOP feature that allows assigning varying meanings to an operator subject to context. From a class, we can construct objects by simply making an instance of the class. The class_name() operator creates an object by assigning the object to the empty method.

The _init_() function is a special function and gets called whenever a new object of the corresponding class is instantiated. Functions defined within a body of the class are known as methods and are basic functions. Methods define the behaviors of an object. In Python, polymorphism refers to the ability to use a shared interface for several data types. An illustration is a program that has defined two classes, Tilapia
 and Shark, all of which share the method jump() even though they have different functions. By creating common interface jumping_test(), we allowed polymorphism in the program above. We then passed objects bonny and biggy in the jumping_test() function.

Data Types in Python

Now that we have had some time to look at a few of the functions and variables and other topics in Python, we now need to look at the different types of data that are available in this language as well.

Each of these will be different and we need to make sure that we know the right times to pull each one up for our needs. Some of the different types of data that we are able to work with includes:

Numbers

As mentioned earlier, Python accommodates floating, integer, and complex numbers. The presence or absence of a decimal point separates integers and floating points. For instance, 4 is integer while 4.0 is a floating-point number.

On the other hand, complex numbers in Python are denoted as r+tj where j represents the real part and t is the virtual part. In this context, the function type() is used to determine the variable class. The Python function is an instance() is invoked to make a determination of which specific class function originates from
 .

Example

Start IDLE.

Navigate to the File menu and click New Window.

Type the following:

number=6

print(type(number))
 ​
 ​
 #should output class int

print(type(6.0))
 ​
 ​
 #should output class float

complex_num=7+5j

print(complex_num+5)

print(isinstance(complex_num, complex))
 ​
 #should output True

Important: Integers in Python can be of infinite length. Floating numbers in Python are assumed precisely up to fifteen decimal places.

Number Conversion

This segment assumes you have prior basic knowledge of how to manually or using a calculator to convert decimal into binary, octal, and hexadecimal. Check out the Windows Calculator in Windows 10, Calculator version 10.1804.911.1000,
 and choose programmer mode to automatically convert.

Programmers often need to convert decimal numbers into octal, hexadecimal, and binary forms. A prefix in Python allows the denotation of these numbers to their corresponding type.

Number System​
 ​
 Prefix

Octal​
 ​
 ‘0O’ or '0o'

Binary​
 ​
 ‘0B' or '0b'

Hexadecimal​
 ​
 '0X or '0x'

Example

print(0b1010101)​
 ​
 #Output:85

print(0x7B+0b0101)​
 ​
 #Output: 128 (123+5)

print(0o710)​
 ​
 #Output:710

Exercise

Create a program in Python to display the following:

i)
 0011 11112

ii)
 7478

iii)
 931
 6

Type Conversion

Sometimes referred to as coercion, type conversion allows us to change one type of number into another. The preloaded functions such as float(), int(), and complex() enable implicit and explicit type conversions. The same functions can be used to change from strings.

Example

Start IDLE.

Navigate to the File menu and click New Window.

Type the following:

int(5.3)
 ​
 ​
 #Gives 5

int(5.9)
 ​
 ​
 #Gives 5

The int() will produce a truncation effect when applied to float numbers. It will simply drop the decimal point part without rounding off. For the float() let us take a look:

Example

Start IDLE.

Navigate to the File menu and click New Window.

Type the following:

float(6)
 ​
 ​
 #Gives 6.0

ccomplex(‘4+2j’)
 ​
 #Gives (4+2j
)

Exercise

Apply the int() conversion to the following:

a.​
 4.1

b.​
 4.7

c.​
 13.3

d.​
 13.9

Apply the float() conversion to the following:

e.​
 7

f.​
 16

g.​
 19

Mathematics in Python

To carry out mathematical functions, Python offers modules like random and math.

Example

Start IDLE.

Navigate to the File menu and click New Window
 .

Type the following:

import math

print(math.pi)
 ​
 ​
 #output:3.14159….

print(math.cos(math.pi))
 ​
 #the output will be -1.0

print(math.exp(10))
 ​
 ​
 #the output will be 22026.4….

print(math.log10(100))
 ​
 #the output will be 2

print(math.factorial(5))
 ​
 #the output will be 120

Exercise

Write a Python program that uses math functions from the math module to perform the following:

a.​
 Square of 34

b.​
 Log1010000

c.​
 Cos 45 x sin 90

d.​
 Exponent of 20

Decimal in Python

In addition to the mathematics that we did above, we are also able to work with the decimal points in Python. An example of how we are able to do this includes
 :

Example

Start IDLE.

Navigate to the File menu and click New Window.

Type the following:

(1.2+2.1)==3.3
 ​
 #Will return False, why?

The computer works with finite numbers and fractions cannot be stored in their raw form, as they will create an infinitely long binary sequence.

Fractions in Python

The fractions module in Python allows operations on fractional numbers.

Example

Start IDLE.

Navigate to the File menu and click New Window.

Type the following:

[image:]

Important

One thing to remember here is that creating my_fraction from float can lead to unusual results due to the misleading representation of binary floating-point.

Random function in Python

It is important to see some of the random functions that we are able to focus on in Python. These are often used in order to generate random numbers based on what we would like to do in the coding. The code that we are able to use to work with these random functions will include:

Example

Start IDLE.

Navigate to the File menu and click New Window.

Type the following:

import math

print(random.shuffle_num(11, 21))

y=[‘f’,’g’,’h’,’m’
]

print(random.pick(y))

random.anypic(y)

print(y)

print(your_pick.random())

Lists in Python

We create a list in Python by placing items called elements inside square brackets separated by commas. The items in a list can be of a mixed data type.

Example

Start IDLE.

Navigate to the File menu and click New Window.

Type the following:

list_mine=[]
 ​
 ​
 #empty list

list_mine=[2,5,8]
 ​
 ​
 #list of integers

list_mine=[5,”Happy”, 5.2]
 ​
 #list having mixed data types

Exercise

Write a program that captures the following in a list: “Best”, 26,89,3.9

Nested Lists

A nested list is a list as an item in another list.

Example

Start IDLE.

Navigate to the File menu and click New Window.

Type the following:

list_mine=[“carrot”, [9, 3, 6], [‘g’]]

Accessing Elements from a List

In programming and in Python specifically, the first time is always indexed zero. For a list of five items, we will access them from index0 to index4. Failure to access the items in a list in this manner will create index error. The index is always an integer as using other number types will create a type error. For nested lists, they are accessed via nested indexing
 .

Example

Start IDLE.

Navigate to the File menu and click New Window.

Type the following:

list_mine=[‘b’,’e’,’s’,’t’]

print(list_mine[0])
 ​
 ​
 #the output will be b

print(list_mine[2])
 ​
 ​
 #the output will be s

print(list_mine[3])
 ​
 ​
 #the output will be t

Exercise

Given the following list:

your_collection=[‘t’, 'd’,’v’,’w’,’z’,’n’,’f’]

	
Create a program in Python to display the second item in the list

	
Create a program in Python to display the sixth item in the last

	
Create a program in Python to display the last item in the list.

Nested List Indexing

We are also able to go through and do some nested list indexing as well with the following code:

Example

Start IDLE.

Navigate to the File menu and click New Window.

Type the following:

nested_list=[“Best’,[4,7,2,9]]

print(nested_list[0][1]

Python Negative Indexing

For its sequences, Python allows negative indexing. The last item on the list is index-1; index -2 is the second last item and so on.

Example

Start IDLE.

Navigate to the File menu and click New Window.

Type the following
 :

list_mine=[‘c’,’h’,’a’,’n’,’g’,’e’,’s’]

print(list_mine[-1])
 ​
 ​
 #Output is s

print(list_mine [-4])
 ​
 ##Output is n

Slicing Lists in Python

Slicing operator(full colon) is used to access a range of elements in a list.

Example

Start IDLE.

Navigate to the File menu and click New Window.

Type the following:

list_mine=[‘c’,’h’,’a’,’n’,’g’,’e’,’s’]

print(list_mine[3:5])
 ​
 ​
 #Picking elements from the 4 to the sixth

Example

Picking elements from start to the fifth

Start IDLE
 .

Navigate to the File menu and click New Window.

Type the following:

print(list_mine[:-6])

Exercise

Given class_names=[‘John’, ‘Kelly’, ‘Yvonne’, ‘Una’,’Lovy’,’Pius’, ‘Tracy’]

	
Write a Python program using a slice operator to display from the second students and the rest.

	
Write a Python program using a slice operator to display the first student to the third using a negative indexing feature.

	
Write a Python program using a slice operator to display the fourth and fifth students only.

Manipulating Elements in a List using the Assignment Operator

Items in a list can be changed meaning lists are mutable.

Example

Start IDLE.

Navigate to the File menu and click New Window.

Type the following
 :

list_yours=[4,8,5,2,1]

list_yours[1]=6
 ​

print(list_yours)
 ​
 ​
 #The output will be [4,6,5,2,1]

Changing a range of items in a list

At some point, you may want to go through and change up the range of items that are on your list as well. this will ensure that you are able to only get the items off that list as you would like.

Example

Start IDLE.

Navigate to the File menu and click New Window.

Type the following:

list_yours[0:3]=[12,11,10]
 ​
 #Will change first item to fourth item in the list

print(list_yours)
 ​
 ​
 #Output will be: [12,11,10,1
]

Appending/Extending Items in the List

The append() method allows extending the items on the list. The extend() can also be used.

Example

Start IDLE.

Navigate to the File menu and click New Window.

Type the following:

list_yours=[4, 6, 5]

list_yours.append(3)

print(list_yours)
 ​
 ​
 #The output will be [4,6,5, 3]

Example

Start IDLE.

Navigate to the File menu and click New Window.

Type the following:

list_yours=[4,6,5]

list_yours.extend([13,7,9])

print(list_yours)
 ​
 ​
 #The output will be [4,6,5,13,7,9
]

The plus operator(+) can also be used to combine two lists. The * operator can be used to perform an iteration of a list a given severally.

Example

Start IDLE.

Navigate to the File menu and click New Window.

Type the following:

list_yours=[4,6,5]

print(list_yours+[13,7,9])
 ​
 ​
 # Output:[4, 6, 5,13,7,9]

print([‘happy’]*4)
 ​
 ​
 #Output:[“happy”,”happy”, “happy”,”happy”]

Removing or Deleting Items from a List

The keyword del is used to delete elements or the entire list in Python.

Exampl
 e

Start IDLE.

Navigate to the File menu and click New Window.

Type the following:

list_mine=[‘t’,’r’,’o’,’g’,’r’,’a’,’m’]

del list_mine[1]

print(list_mine)
 ​
 ​
 #t, o, g, r, a, m

Deleting Multiple Elements

Sometimes we will need to go through and delete more than one element out of your list. Some of the steps that we can do to help with this includes.

Example

Start IDLE.

Navigate to the File menu and click New Window.

Type the following:

del list_mine[0:3]

With this one, we are going to delete items 1 through 4 on the list (remember that the first item is going to be 0 for lists). You can extend this out to any number of items that you would like
 .

Delete Entire List

Then there are times when we will need to delete the entire list rather than just one or two items. This can be done below.

Example

Start IDLE.

Navigate to the File menu and click New Window.

Type the following:

delete list_mine

print(list_mine)
 ​
 ​
 #It will generate an error of lost not found

The remove() method or pop() function may be used to remove a specified item. The pop() method will remove and return the last item if the index is not given and helps implement lists as stacks. The clear() method is used to empty a list.

Example

Start IDLE
 .

Navigate to the File menu and click New Window.

Type the following:

list_mine=[‘t’,’k’,’b’,’d’,’w’,’q’,’v’]

list_mine.remove(‘t’)

print(list_mine)
 ​
 ​
 #output will be [‘t’,’k’,’b’,’d’,’w’,’q’,’v’]

print(list_mine.pop(1))
 ​
 ​
 #output will be ‘k’

print(list_mine.pop())
 ​
 ​
 #output will be ‘v’

Exercise

Given list_yours=[‘K’,’N’,’O’,’C’,’K’,’E’, ’D’]

	
Pop the third item in the list, save the program as list1.

	
Remove the fourth item using remove() method and save the program as list2

	
Delete the second item in the list and save the program as list3.

	
Pop the list without specifying an index and save the program as list4.

Using Empty List to Delete an entire or specific elements

At some point, you may want to work with deleting some of the elements, or even the entire list. One of the methods that we are able to work with to make this one work for us includes:

Example

Start IDLE.

Navigate to the File menu and click New Window.

Type the following:

list_mine=[‘t’,’k’,’b’,’d’,’w’,’q’,’v’]

list_mine=[1:2]=[]
 ​

print(list_mine)
 ​
 ​
 #Output will be [‘t’,’w’,’q’,’v’]

List Methods in Python

There are many different list methods that are available to use in Python. Some of the most common of these include:

[image:]

Exercise

	
Use list access methods to display the following items in reversed order:

list_yours=[4,9,2,1,6,7]

	
Use the list access method to count the elements in a.

	
Use list access method to sort the items in a. in an ascending order/default.

Inbuilt Python Functions that can be used to Manipulate Python Lists

In addition to some of the methods that we are able to use above, we can also work with some inbuilt functions to make our codes work. Some of the most common inbuilt Python functions that we can work with includes:

[image:]

Tuple in Python

A tuple is like a list but we cannot change elements in a tuple.

Example

Start IDLE.

Navigate to the File menu and click New Window.

Type the following:

tuple_mine = (21, 12, 31)

print(tuple_mine)

tuple_mine = (31, "Green", 4.7)

print(tuple_mine
)

Accessing Python Tuple Elements

One thing that we are able to do here is access the elements that are in our tuple. The methods that you can use to do this include:

Example

Start IDLE.

Navigate to the File menu and click New Window.

Type the following:

tuple_mine=[‘t’,’r’,’o’,’g’,’r’,’a’,’m’]

​
 print(tuple_mine[1])
 ​
 ​
 #output:’r’

​
 print(tuple_mine[3])
 ​
 ​
 #output:’g’

Negative Indexing

Just like lists, tuples can also be indexed negatively.

Like lists, -1 refers to the last element on the list and -2 refer to the second last element.

Example

Start IDLE
 .

Navigate to the File menu and click New Window.

Type the following:

tuple_mine=[‘t’,’r’,’o’,’g’,’r’,’a’,’m’]

print(tuple_mine [-2])
 ​
 ​
 #the output will be ‘a’

Slicing

The slicing operator; the full colon is used to access a range of items in a tuple.

Example

Start IDLE.

Navigate to the File menu and click New Window.

Type the following:

tuple_mine=[‘t’,’r’,’o’,’g’,’r’,’a’,’m’]

print(tuple_mine [2:5])
 ​
 ​
 #Output: ‘o’,’g’,’r’,’a’

print(tuple_mine[:-4])
 ​
 ​
 #’g’,’r’,’a’,’m’

Tuple elements are immutable, meaning they cannot be changed. However, we can combine elements in a tuple using +(
 concatenation operator). We can also repeat elements in a tuple using the * operator, just like lists.

Example

Start IDLE.

Navigate to the File menu and click New Window.

Type the following:

print((7, 45, 13) + (17, 25, 76))

print(("Several",) * 4)

Since we cannot change elements in a tuple, we cannot delete the elements too. However, removing the full tuple can be attained using the keyword del.

Example

Start IDLE.

Navigate to the File menu and click New Window.

Type the following:

t_mine=[‘t’,’k’,’q’,’v’,’y’,’c’,’d’]

del t_mine

Available Tuple Methods in Pytho
 n

They are only two methods available for working Python tuples.

	
count(y) - When called, will give the item numbers that are equal to y.

	
index(y) - When called, will give index first item index that is equal to y.

Example

Start IDLE.

Navigate to the File menu and click New Window.

Type the following:

t_mine=[‘t’,’k’,’q’,’v’,’y’,’c’,’d’]

print(t_mine.count('t'))

print(t_mine.index('l'))

Testing Membership in Tuple

The keyword is used to check the specified element exists in a tuple
 .

Example

Start IDLE.

Navigate to the File menu and click New Window.

Type the following:

t_mine=[‘t’,’k’,’q’,’v’,’y’,’c’,’d’]

print('a' t_mine)
 ​
 ​
 #Output: True

print('k' in t_mine)
 ​
 ​
 #Output: False

Inbuilt Python Functions with Tuple

We can also work with a few inbuilt functions for Python that work with our tuples as well. Some of these are going to include:

[image:]

Strings in Pytho
 n

We spent some time looking at the strings a bit in the previous guidebook, but we are going to take a closer look at how these will work here to help us see what these are all about. We have to remember that these strings are going to be one of the many types of data that we are able to use. Basically, these are a series of text characters that will show up in our code, and we are able to use them to help keep things organized and more.

There are a lot of functions that we are able to work with when it comes to these strings, and knowing how to work with them, and what we can do with them as well, will make a difference in the strength of our codes. Some of the different functions that many programmers like to use with these strings will include the following:

	
Capitalize(): This one is going to take the first letter of the string and capitalize it for you.

	
Center(width, char): This is going to return to you a string that is at least the specified width and then it will be created by padding the string with the character.

	
Count(str): This is going to return the number of times that a particular string is contained in another string.

	
Find(str): This is going to return the index number of the substring in the string.

	
Isalpha(): This is going to check if all the characters of a string are alphabetic characters.

	
Isdigit(): This part is going to check whether the string contains just numbers or digits or if there is a mixture.

	
Islower): This function is going to take a look to see if the string you are checking has all lower case characters.

	
Len(): This is going to let you know the length of the string

	
Isupper(): This one is going to check to see if all the characters in the string are upper case.

	
Lower(): This will give you a return that has all the string in lower case letters.

	
Replace(): This is going to take the string that you have and replace it with a new string

	
Upper(): This is going to return the string in upper case.

	
Split(): This is going to split up the string based on the split character.

Before we end on these strings, we need to take a quick look at something known as the capitalize function. This is going to make sure that the coding that we use is already capitalized at the right times. In the example that we look at below, we are going to make sure that we are capitalizing the first letter that show sup in the string. The code that we need to use for this one will include:

This program looks at string functions

Str1= ‘hello’

Print(str1.captialize())

The output that we will be able to get for this will be the word Hello!

Chapter 3: Machine Learning Demystified

The focus of Machine Learning is to learn the nature of data and apply it to specific models. Even though ML is a field in computer science, it is not the same as the traditional computational methods. When you look at traditional computing, algorithms are described as a set of programmed instructions. These instructions provide solutions to a problem.

Machine Learning algorithms make computers to learn from data inputs and apply statistical analysis to display values found in a given range. Therefore, ML allows computers to create a model from a data sample so that it can permit the automation of decisions based on the type of data entered. Nowadays, technology users hugely benefit from the idea of machine learning. Please see the following example; the facial recognition technology provides opportunities to social media networks so that their users can tag and share photos with their friends.

There is also the optical character recognition (OCR). This type of technology is applied in movies, shows, and e-commerce to suggest to users based on their preferences. If you know self–driving cars, they also depend on machine learning to move.

This chapter will take you through some of the most common ML methods of supervised and unsupervised learning, as well as popular machine learning algorithms. Additionally, you’ll learn why you need a machine learning and some of the
 programming languages used with machine learning besides Python. Additionally, this chapter will also look at some of the biases associated with machine learning and consider a few things to help reduce these types of biases when you build an algorithm.

Machine Learning Techniques

When it comes to the field of machine learning, there are tasks that are categorized into different divisions. Most of these divisions depend on how learning is performed, or on the type of feedback delivered based on the system developed.

The most popular machine learning methods include supervised learning and unsupervised learning. For supervised learning, algorithms learn from the example of input and output data labeled by humans. On the other hand, unsupervised learning does not supply to the algorithm any labeled data, but the algorithm has to find the structure within its input data by itself. Here’s a detail discussion of these methods.

Supervised Learning

For supervised learning, the computer has an example of input data to work on. The aim of this method is to allow the algorithm to “learn” by comparing actual output using a trained output to discover errors and alter the model. In other words, this method contains patterns that assist in predicting label values on extra data that is unlabeled
 .

Please see the following example; in supervised learning, you can feed an algorithm data with shark images and label them as fish. Also, you can feed it with images of oceans and label it as water. After the algorithm is trained several times with this particular data, the algorithm must be able to differentiate unlabeled fish images and unlabeled ocean images.

One of the most popular use cases of supervised learning is the application of historical data to help forecast the statistical chance of an event to happen. It can use historical stock market data to predict future changes in the market. Additionally, supervised learning can help in the filtering of spam emails. Supervised learning makes it possible to classify untagged photos of dogs by using photos of dogs that have been tagged already.

Unsupervised learning

Unlike supervised learning where data is labeled, with unsupervised learning, you deal with unlabeled data. This means that it is the task of the learning algorithm to identify similar features in the data that it is supplied. Since unlabeled data is very popular compared to labeled data, techniques of machine learning are among the most valuable in the industry. The aim of unsupervised learning is very simple.

The largest application of unsupervised learning is within the transactional data. There can be a massive data set made up of customers and the products which they purchase, but since you are a human, you can’t manage to extract meaning and similarity from customer profile and their purchase history. The best time to apply unsupervised machine learning is when you don’t have data on expected outcomes, like defining a
 target market for a new product that your business has never sold before. But if you are attempting to understand your consumer base, supervised learning is the right technique.

Machine Learning Strategies

Machine learning is highly linked to computational statistics. For that reason, if you have some knowledge of statistics, it is important to understand and apply machine learning algorithms.

If you are new to statistics, here are some definition of terms which are popularly used in detecting the relation found in quantitative variables.

Correlation

This describes the association that exists between two variables said not to be independent or dependent.

Regression

At the lowest level, it is helpful at determining the relationship between one independent and dependent variable
 .

The K-Nearest Neighbor

This particular algorithm is applied to the pattern recognition model. The pattern recognition model is used in classification and regression. The k is a positive integer. In both regression and classification, the input contains k closest training example in a specific space.

The KNN classification

When it comes to this method, its output belongs to the class membership. This assigns a new object to the most popular class in the k-nearest neighbors. Take for example, when k = 1, the object has to be assigned a class that has one nearest neighbor. The diagram below describes this algorithm. The diagram has blue diamond objects and orange star objects. Just remember that they belong to two different classes. That is the star and diamond classes.

[image:]

Once you introduce a new object to space such as a green heart, you’ll need the learning algorithm to assign the heart into a particular class.

 [image:]

For k = 3, the algorithm will have to pick three nearest neighbors that belong to the green heart and assign it either into the diamond or star class.

In this case, the three nearest neighbors of the green heart consist of the diamond and two stars. Therefore, the algorithm can label the heart that contains the star class.

[image:]

The k-nearest neighbor algorithm is among the basic machine learning algorithms labeled as “Lazy learning”
 .

Decision Tree

In general, decision trees are important when you want to have a visual representation of decisions and display decision making. When working with ML and data mining, decision trees are key when it comes to the predictive model. The model contains observations and creates a summary related to the target value of the data.

Learning in decision trees is important when you want to create a model that is useful at predicting a value depending on the input values.

If you take a look at a predictive model, the features of the data have to be defined using observation and represented by branches. Additionally, conclusions related to the data’s target value are shown in the leaves.

This example demonstrates the various conditions that can show whether a person is supposed to go fishing or not.

[image:]

This decision tree is classified by sorting. Then it can display which classification is associated with a particular leaf. In the following example, it is a yes or no. The tree can then divide the day’s condition based on whether it is correct to go fishing or not.

A real classification tree data set will contain a lot more features compared to what is shown in this tree. All in all, ‘relationship’ will be easy to select.

Deep Learning

With deep learning, it will always try to copy the human brain and how it succeeds in processing sound and light stimuli. The underlining architecture of deep learning is powered by biological neural networks. Additionally, it contains many different multiple layers.

In the current machine learning algorithms, deep learning has succeeded in selecting most of the data as well as defeat humans in different cognitive tasks. Due to the following properties, deep learning is one of the best methods applied in AI.

Programming Languages

When a person wants to choose a language to use to learn with machine learning, there are few things that they may want to factor in such as the current status of job positions and the type of libraries available. Other languages that are used in machine language include C++, Java, and R
 .

Human Biases

While both data and computational analysis cause an individual to start to think like they aren’t being objective, is based on a given data that doesn’t mean that the output from the machine learning is neutral. The human bias affects the organization of data and algorithms that determine how ML should use data.

If you decide to use historical photographs of scientists in your specific computer training, a computer might fail to classify scientists.

Although machine learning is continuously applied in the business, a bias that goes unnoticed can lead to a systematic problem that can prevent people from receiving loans and many other things.

In short, human biases can negatively impact other people. This is very important to underline and work towards removing it as possible. One particular method which you can use to achieve zero bias is to ensure that several people work on a project. Since machine learning is an area that is continuously being improved, it is essential to remember that algorithms, approaches, and methods continue to change.

Chapter 4: Classification and Regression

Classification refers to the process of predicting the class of a particular data point. Classes are referred to as labels, targets, or categories. Classification predictive modeling is the procedure of estimating a mapping function (f) from input variables (X) to discrete output variables (y).

Let’s take the example of spam detection in email service providers which can be selected as a classification challenge. This is an example of a binary classification because there are two classes: spam and not spam. A classifier takes advantage of training data to understand the way a specific input of variables is associated with a particular class. In the following example, known spam and non-spam emails should be used as the training data. When the classifier is accurately trained, you can use it to detect an unknown email.

Classification is a field of supervised learning where targets come with the input data. There are many areas in real life where classification is applied. Some of these areas include medical diagnosis, credit approval, target marketing, and many more.

When we are working with classification, we are going to find that there are two different types of learners that we can work with.

	
Lazy learners

Lazy learners hold training data and wait until the time when a testing data arrives. Once the data arrives, classification is performed depending on the common data found in the training data. When you compare it to eager learners, lazy learners have a minimum time of training. However, more time is required in prediction. An example includes k-nearest neighbor and case-based reasoning which we shall look later in the chapter.

	
Eager Learners

With eager learners, the classification model is created with respect to the type of training data before getting data for classification. It should be able to dedicate a single hypothesis that handles the whole instance space. Because of the construction of the model, eager learners will consume more training time and minimum time during prediction. Example of eager learners includes Artificial Neural Networks, Naive Bayes, and Decision Tree.

Classification Algorithms

There are many different kinds of classification algorithms developed, however, it is hard to pick on one which is better than the other. This is because of a few factors such as the application and nature of the existing data set. For instance, if you have linearly separable classes, the linear classifiers such as Logistic regression and Fisher’s linear discriminant can execute complex models
 .

Decision Tree

[image:]

A decision tree creates regression models and classification models just like a tree structure. This tree works with the same concept as the if-then rule set that is mutually exclusive and exhaustive for classification. Rules are learned sequentially by applying the training data one at a time. Every time a rule is learned, the tuples which the rules handle are deleted. This process is repeated on the training set until a meeting termination condition is attained.

[image:]

The tree is built through a technique called top-down recursive divide-and-conquer manner. All the features must be categorical. Nonetheless, they need to be discretized in advance. With a decision tree, it is very easy for overfitting to take place. Overfitting will produce many branches that may indicate problems of noise and outliers. In an overfitted model, the performance is very poor on the unseen data, although it provides the correct performance on training data.

However, this is can be avoided by applying pre-pruning. Pre-pruning shall stop the tree construction early or post-pruning which eliminates branches from a complete tree.

There are a number of different benefits of working with the decision tree as your chosen algorithm. Some of these benefits will include:

	
Transparency

This is one of the most important advantages of a decision tree model. Unlike other models of the decision tree, the decision tree reveals all possible alternatives and traces each alternative to the end in a single view. This makes it easy to compare the
 different alternatives. The application of different nodes to represent user-defined decisions increases transparency in decision making.

	
Specificity

Another major advantage of the decision tree in the analysis is the ability to allocate a given value to a problem and the outcomes of every decision. This is important because it helps minimize vagueness in decision making. Every possible case from a decision tree discovers a representation using a clear fork and node. This allows one to see all solutions in a clear view. The inclusion of monetary values to the decision tree reveals the costs and benefits of taking a different course of action.

	
Ease of use

The decision tree has a graphical representation of the problem and different alternatives in an easy and simple way to help any person understand without asking for an explanation.

	
Comprehensive nature

The decision tree is one of the best predictive models because it has a comprehensive analysis of the results of every possible decision. That can include what the decision leads to, if it finishes in uncertainty or whether it results in new issues that the process may require repetition.

	
They implicitly perform feature selection.

	
Decision trees can deal with categorical and numerical data.

	
Users have little to do with data preparation.

	
Nonlinear relationships between parameters cannot affect performance.

Even though there are a lot of benefits out there for working with decision trees, there are also a few negatives, which is why a programmer may choose to not go with this option overall. Some of the negatives of working with a decision tree algorithm will include:

	
There are times when decision trees can be unstable because of the little variations in the data that may lead to a totally different tree generated.

	
The greedy algorithm cannot prove that it will return a universally optimal decision tree. This can be solved by training multiple trees where the samples and features have been randomly sampled with replacement.

	
Learners of the decision tree can build advanced trees that don’t generalize the data.

	
Decision tree learners can be biased if there are classes that dominate.

For that reason, it is advised to balance the data set before fitting with the decision tree.

K-Nearest Neighbor (KNN)

[image:]

The k-nearest Neighbor belongs to the lazy learning algorithm which holds all instances that match to training data points in n-dimensional space. In case there is an unknown discrete data, it has to make an analysis of the nearest k number of instances saved and display the most popular class as the prediction. For the real-valued data, it has to return the mean of k-nearest neighbors.

In the case of the distance-weighted nearest neighbor algorithm, it measures the weight of every k-nearest neighbor based on their distance by applying the query below.

[image:]

Typically, KNN is very strong to noisy data because it averages the k-nearest neighbors.

There are a few benefits that are going to come with this kind of algorithm, and they will include:

	
A simple algorithm to explain and understand

	
It doesn’t make any assumptions about data.

	
It has a higher accuracy that is not comparable to other better-supervised learning models.

	
It is versatile for classification and regression.

Even with some of the benefits that we can see with the KNN algorithm, there are still some negatives that we need to look at too. Some of the disadvantages that come with this algorithm include:

•
 Calls for a higher memory requirement

•
 It is computationally expensive since the algorithm has all the training data
 .

Quick Features of KNN

•
 This algorithm holds the whole training dataset that uses as a representation.

•
 It doesn’t learn any model.

•
 It performs timely predictions by calculating the similarity between sample input and instance training.

Creating Your Soft K-Means

The best method that we can use to make this happen is to make sure that we get started on some standard imports, and then have them work with what is known as the utility function. This is going to be pretty similar to what we would do with the Euclidean distance, and the cost function can come in together with this. The formula that you will be able to use to ensure that this all happens will include:

import numpy as np

import matplotlib.pyplot as plt

def d(u, v):

diff = u - v

return diff.dot(diff)

def cost(X, R, M)
 :

cost = 0

for k in xrange(len(M)):

for n in xrange(len(X)):

cost += R[n,k]*d(M[k], X[n])

return cost

After we have time to write out this code, we will need to spend some time defining the function that we want to use. The purpose of the function here is that it can help us to run the algorithm for k-means before we plot out the results. This is going to provide us with a nice scatterplot where the color is going to represent how much of the set of data will fall into each of the clusters that we provide. The code that we need to use to make sure all of this happens will include:

def plot_k_means(X, K, max_iter=20, beta=1.0):

N, D = X.shape

M = np.zeros((K, D))

R = np.ones((N, K)) / K

initialize M to random

for k in xrange(K):

M[k] = X[np.random.choice(N)
]

grid_width = 5

grid_height = max_iter / grid_width

random_colors = np.random.random((K, 3))

plt.figure()

costs = np.zeros(max_iter)

for i in xrange(max_iter):

moved the plot inside the for loop

colors = R.dot(random_colors)

plt.subplot(grid_width, grid_height, i+1)

plt.scatter(X[:,0], X[:,1], c=colors)

step 1: determine assignments / resposibilities

is this inefficient?

for k in xrange(K):

for n in xrange(N):

R[n,k] = np.exp(-beta*d(M[k], X[n])) / np.sum(np.exp(-beta*d(M[j], X[n])) for j in xrange(K))

step 2: recalculate means

for k in xrange(K)
 :

M[k] = R[:,k].dot(X) / R[:,k].sum()

costs[i] = cost(X, R, M)

if i > 0:

if np.abs(costs[i] - costs[i-1]) < 10e-5:

break

plt.show()

Where Can You Apply K-means

K-means is used with data that is numeric, continuous and has a small dimension. Imagine an instance where you would like to group similar items from a randomly spread collection of things such as k-means. This list has a few interesting areas where you can apply K-means

	
Classification of Documents

The clustering of documents in numerous categories depends on topics, tags, and the content of the document. This is a normal classification problem and k-means is a great algorithm for this function. The original document processing is important when you want to replace every document as a sector and applies the frequency term to use terms that classify the document. The vectors of the document have to be
 clustered so that they can select similarity in document groups.

	
Delivery Store Optimization

If you want to improve the process of delivery, you’ll need to enhance it by applying drones and integrating the k-means algorithm to determine the optimal number of launch locations and a genetic algorithm to compute the route of the truck.

	
Fantasy League Stat Analysis

To analyze the stats of a player is one of the most critical features of the sporting world. With the rapid rise of competition, machine learning has an important function to offer here. As a great exercise, if you want to build a fantasy draft team and select similar players, k-means is a great option.

	
Rideshare Data analysis

Information about Uber is available to the public. This dataset has an extensive size of valuable data about transit time, traffic, peak pickup localities, and many more. If you analyze this particular data, you will get insight into the urban traffic patterns and help plan for the cities in the future.

	
Cyber-profiling criminals

This is the process of gathering data from people and groups to select important links. The concept behind cyber-profiling is extracted from criminal histories that provide information about the investigation division to help categorize criminals present at the crime.

	
Automatic clustering of IT Alerts

Extensive enterprise in IT infrastructure technology like network generates huge volumes of alert messages. Since alert messages refer to operational issues, it has to be manually screened for categorization. Data clustering can help provide insight into alert categories and the meantime to repair and support predictions.

	
Identify crime localities

Since data associated with crime is present in specific city localities, the type of crime, the area of the crime, and the relation between the two can provide quality insight into the most crime-prone areas in the city or a locality
 .

Artificial Neural Network

[image:]

Artificial Neural Network describes a set of connected input/output where every connection is linked to a particular weight. In the learning phase, the network adjusts the weights so that it can predict the right class label of input tuples.

There are a lot of network architectures present now. Some of them include Feed-forward, Recurrent, Convolutional, etc. The correct architecture depends on the model application. In most cases, the feed-forward models provide a reasonably accurate result and mostly for image processing applications.

There can be many hidden layers in a model based on the complexity of the function that is to be wrapped by the model.
 If you have a lot of hidden layers, it will facilitate the modeling of complex relationships like deep neural networks.

However, the presence of many hidden layers increases the time it takes to train and adjust weights. Another drawback is the poor interpretability when compared to other models such as Decision Trees.

Despite this, ANN has performed well in the majority of real-world applications. It has an intensive persistence to noisy data and can categorize untrained patterns. Generally, ANN works better with continuous-valued inputs and outputs.

Neural networks are a popular machine learning technique to work with because of the power behind them. There are many benefits that come with using these, and they include:

	
It stores information in the whole network. For example, traditional programming information is kept in the whole network and not in a database. This means that the loss of certain information in a given place does not stop the network functions.

	
It has fault tolerance. The destruction of one or more cells of ANN doesn’t affect it from producing input. Therefore, this specific feature causes the network to be fault-tolerant.

	
It can work with incomplete knowledge. Once the ANN training is over, the data can produce output using incomplete information. The loss of performance, in this case, will depend on the missing information.

	
ANN has the ability to make machine learning.

	
It has a parallel processing capability. The ANN neural networks feature a numerical strength that does more than one job at the same time.

There are many reasons why you would want to work with one of these neural networks. But there are also some times when you will not need to use this one. Maybe it doesn’t work with the project that you want to do, and maybe it costs too much for your business. Some of the disadvantages of using the ANN includes:

	
It depends on the hardware. ANN needs processors that contain parallel processing power based on their structure. In this case, the realization of the device is dependent.

	
The determination of the correct network structure. Often, there is no fixed rule to use to determine the structure of artificial neural networks. The right network structure is attained through trial and error.

	
The duration of the network is not known. The network is limited to a particular value of the error on the sample means which the training is completed. This value does not generate an optimum result.

	
There are unexplained characteristics of the network. It is one of the major problems of ANN. If an ANN generates a probing solution, it doesn’t show any hint. This always reduces trust in the network.

We can take a look at a simple neural network that we are able to use when it comes to learning how to code:

from numpy import exp, array, random, dot training_set_inputs = array([[0, 0, 1], [1, 1, 1], [1, 0, 1], [0, 1, 1]]) training_set_outputs = array([[0, 1, 1, 0]]).T random.seed(1) synaptic_weights = 2 * random.random((3, 1)) - 1 for iteration in xrange(10000): output = 1 / (1 + exp(-(dot(training_set_inputs, synaptic_weights)))) synaptic_weights += dot(training_set_inputs.T, (training_set_outputs - output) * output * (1 - output)) print 1 / (1 + exp(-(dot(array([1, 0, 0]), synaptic_weights))))

Naïve Bayes

The Naïve Bayes algorithm is a probabilistic classifier that was driven by the Bayes theorem. This is based on a simple assumption where attributes are conditionally independent.

[image:]

The classification works by extracting the maximum posterior that is the maximal P(Ci|X
) with the above-stated assumption working. This assumption always reduces the computational cost by measuring the computational cost. Although, the assumption fails many times because the properties are dependent. Despite this, the Naïve Bayes has continued to work so well.

This is a simple algorithm to implement and improve outcomes that have been generated in most instances. It is
 possible for it to be scaled into massive datasets because it assumes a linear time.

Just like with some of the other algorithms, there are going to be some benefits to working with the Naïve Bayes algorithm, and some of these benefits are going to include:

•
 It is simple and easy to implement.

•
 It requires minimal training data.

•
 It handles continuous and discrete data.

•
 It can develop probabilistic predictions.

•
 It is highly scalable.

On the other hand, the Naïve Bayes algorithm is not always going to be the right one that we need to work with. Some of the disadvantages of working with this algorithm will include:

•
 It makes a robust assumption regarding the shape of the data distribution.

•
 There are challenges related to data scarcity.

•
 The issue of continuous features that requires a binning procedure to make them discrete.

Classification Accuracy Metrics

This refers to the ratio of the number of correct predictions to the general number of input samples.

[image:]

It works better when the number of samples that belong to each class is equal. Classification accuracy is the best but provides a false notion of attaining high accuracy.

The major problem emerges when the cost of misclassification of minor class samples is high. If you are to handle a rare but dangerous disease, the cost of not diagnosing the disease of a sick individual is very high compared to the cost of testing a healthy person.

Logarithmic Loss

This operates well for multi-class classification. When you work with Log Loss, the classifier has to allocate probability for every class. For example, if you have N samples of M classes, you can compute the Log Loss as follows:

[image:]

Confusion Matrix

The confusion matrix as the name suggests creates a matrix as the output and explains the complete performance of a model.

Suppose you have a binary classification problem. Then there are some samples that belong to two classes: YES or NO. Additionally, you have your own classifier that can predict a class for a particular input sample. If the following model is tested on 165 samples, the following result is obtained.

[image:]

There are four metrics that we are able to focus our attention on here and they include:

	
True Positives. This is where our prediction was YES and final outcome YES.

	
True Negatives. This is where our prediction was NO and final outcome NO.

	
False Positives. In this case, the prediction was YES but the final outcome was NO.

	
False Negatives. In this scenario, the prediction was NO but the final outcome was YES.

Linear regression

Linear regression is one of the most popular types of predictive analysis. Linear regression involves the following two things:

	
Do the predictor variables forecast the results of an outcome variable accurately?

	
Which particular variable are key predictors of the final variable, and in what standard does it impact the outcome variable?

There are a few things that we are able to do with one of these regressions, and these will include:

	
Trend forecasting

	
Determine the strength of predictors

	
Predict an effect

There are two basic types of regression-linear and multiple regressions. Even though there are different methods for complex data and analysis. Linear regression contains an independent variable to help forecast the outcome of a dependent variable. On the other hand, multiple regression has two or more independent variables to assist in predicting a result
 .

Regression is very useful to financial and investment institutions because it is used to predict the sales of a particular product or company based on the previous sales and GDP growth among many other factors. The capital pricing model is one of the most common regression models applied in finance.

Choosing the Best Regression Model

Selecting the right linear regression model can be very hard and confusing. Trying to model it with a sample data cannot make it easier. This section reviews some of the most popular statistical methods which one can use to choose models, challenges that you might come across, and lists some practical advice to use to select the correct regression model.

It always begins with a researcher who would like to expound the relationship between the response variable and predictors. The research team that is accorded with the responsibility to perform investigation essentially measures a lot of variables but only has a few in the model. The analysts will make efforts to reduce the variables that are different and apply the ones which have an accurate relationship. As time moves on, the analysts continue to add more models.

Statistical Methods to Use to Find the Best Regression Model

If you want a great model in regression, then it is important to take into consideration the type of variables that you want to test as well as other variables that can affect the response
 .

Modified R-squared and Predicted R-squared

Your model should have a higher modified and predicted R-squared values. The statistics that are shown below help eliminate critical issues that revolve around R-squared.

	
The adjusted R squared increases once a new term improves the model.

	
Predicted R-squared belongs to the cross-validation that helps define the manner in which your model can generalize the remaining data sets.

P-values for the Predictors

When it comes to regression, a low value of P denotes statistically significant terms. The term “Reducing the model” refers to the process of factoring in all candidate predictors contained in a model.

Stepwise Regression

This is an automated technique that can select important predictors found in the exploratory stages of creating a model.

Real-World Challenges

	
There are different statistical approaches for choosing the best model. However, complications still exist.

	
The best model happens when the variables are measured by the study.

	
The sample data could be unusual because of the type of data collection method. A false positive and false negative process happens when you handle samples.

	
If you deal with enough models, you’ll get variables that are significant but only correlated by chance.

	
P-values can be different depending on the specific terms found in the model.

	
Studies have discovered that the best subset regression and stepwise regression can’t select the correct model.

Finding the Correct Regression Model Theory

Perform research done by other experts and reference them into your model. It is important that before you start the regression analysis, you should develop ideas about the most significant variables. Developing something based on the outcome from other people eases the process of collecting data.

You may think that complex problems need a complex model. Well, that is not the case because studies show that even a simple model can provide an accurate prediction. Once there is a model with the same explanatory potential, the simplest
 model is likely to be a perfect choice. You just need to start with a simple model as you slowly advance the complexity of the model.

How to Calculate the Accuracy of the Predictive Model

There are different ways in which you can compute the accuracy of your model. Some of these methods include:

	
You divide the dataset into a test and training data set.

	
Next, build the model based on the training set and apply the test set as a holdout sample to measure your trained model with the test data. The next thing to do is to compare the predicted values using actual values by computing the error by using measures like the “Mean Absolute Percent Error” (MAPE). If your MAPE is less than 10%, then you have a great model.

	
Another method is to calculate the “Confusion Matrix” to the computer False Positive Rate and False Negative Rate. These measures will allow a person to choose whether to accept the model or not. If you consider the cost of the errors, it becomes a critical stage of your decision whether to reject or accept the model.

	
Computing Receiver Operating Characteristic Curve (ROC) or the Lift Chart or Area under the curve (AUC) are other methods that you can use to decide on whether to reject or accept a model.

Chapter 5: Clustering

Clustering is the process of gathering entities with similar characteristics together. This technique belongs to unsupervised machine learning whose target is to identify similarities in the data point and group the same data points together.

Why Work with Clustering?

By grouping similar entities in one place allows one to identify the attributes of different groups. In other words, this generates insight into the underlying patterns of various groups. There are countless application areas of grouping unlabeled data.

For example, it is possible to select different groups of customers and market every group differently to take advantage of the revenue. Another example may include grouping documents together that belong to similar topics. Additionally, clustering is used to reduce the dimensionality of the data when you handle various copious variables
 .

Types of Clustering

Partitioned-based clustering

The phrase cluster doesn’t have an accurate definition. A cluster describes a set of points whereby any point in the cluster is close to any other point in the cluster than a point absent in the cluster. Sometimes, a threshold is used to define all points in a cluster close to one another.

A partitioning method will first create an original set of K-partitions where k- parameter is the number of partitions to construct. Next, it applies an iterative relocation approach that tries to enhance the partitioning by shifting objects from one group to another. These clustering techniques help generate a one-level partitioning of data points. There are various partitioning-based clustering like K-means, fuzzy C-, means, and K-medoids. This section will look at K-mean clustering.

K-mean Clustering

•
 It begins with K as the input. This refers to the number of clusters that you want to find. Assign K-centroids in random positions in your space.

•
 Now, if you use the Euclidean distance between data points and centroids, allocate each data point to the cluster close to it.

•
 Re-compute the cluster centers as a mean of data points allocated to it.

•

 Repeat 2 and 3 till there are no more changes to happen.

You might be wondering how you can select the value of K.

One method is the “Elbow” that is used to define an optimal number of clusters. In this case, you’ll run the range of K values and plot the “percentage of variance explained,” on Y-axis and “K” on the “X” axis.

In the diagram below, more clusters have been added after 3. These additional clusters affect the display of the model. The first cluster adds more information, and at a certain point, the marginal gain will start to drop.

[image:]

A good example of coding one of these K-mean clusters with the help of the Scikit-learn library includes
 :

from sklearn
 .cluster
 import KMeans

Number of clusters

kmeans
 =
 KMeans
 (
 n_clusters
 =3)

Fitting the input data

kmeans
 =
 kmeans
 .
 fit
 (
 X
)

Getting the cluster labels

labels
 =
 kmeans
 .
 predict
 (
 X
)

Centroid values

centroids
 =
 kmeans
 .
 cluster_centers_

Comparing with scikit-learn centroids

print(
 C
)
 # From Scratch

print(
 centroids
)
 # From sci-kit learn

Hierarchical Clustering

With the hierarchical clustering, it begins by assigning all data points to belong to its own cluster. Just as the name implies, it creates the hierarchy, and in the next step, it integrates the two closest data points and combines it together into a single cluster.

i)
 Allocate every data point to its cluster
 .

ii)
 Determine the closest pair of the cluster by applying the Euclidean distance and combine it into a single cluster.

iii)
 Determine the distance between two nearest clusters and integrate them until when all items are grouped into a single cluster.

In the next method, you can choose the best number of clusters by identifying which vertical lines are cut by a horizontal line without affecting a cluster and deals with the maximum distance.

[image:]

Density-Based Clustering

The basic concept underlying the density-based clustering technique is extracted from a human perception clustering method. For example, if you look at the images below, you
 should be able to see four clusters plus different points of noise.

[image:]

As shown in the above image, the clusters are dense regions in the data space that are delineated by regions of a lower density point. In short, the density of points in a cluster is somehow higher compared to the density of points located outside the cluster.

The density-based clustering algorithm depends on an intuitive perception of “clusters” and “noise”. The point is that for every cluster, the neighborhood of a particular radius should have at least a minimum.

The most important parameters are needed for DBSCAN include (“eps”) and minimum points (“MinPts”). The parameter eps determine the radius of the neighborhood around close to a point x. The parameter MinPts describes the minimum number of neighbors in the “eps” radius.

Any point x that exists in the dataset that has a count higher than or equal to MinPts is identified as a core point
 .

Customer Segmentation with Cluster Analysis

The customer base of a company can have thousands, if not millions, of different unique persons. Marketing, to most of these people, presents a big problem because if you attempt to market to everybody, the message can be ambiguous. However, building a marketing plan which attracts every individual is not normal.

Customer segments will make you understand the patterns which distinguish your customers. Below are some important ideas that you can achieve with segmentation analysis.

	
Enhanced understanding of customer needs and wants. This can lead to improved sales and customer satisfaction.

	
Create products that appeal to different customer segments.

	
Companies cannot fulfill all possible customers all the time. By applying the segmentation procedure, companies have the ability to concentrate on fulfilling those segments which they examine to be the best attractions for their products.

	
Build loyal relationships.

While you can analyze your own customer base, soon it shall be clear that there are different groups that have customized
 requirements. This allows you to build a deeper understanding of your customers and find out what makes them tick.

It is no gem that a customer is always more profitable compared to others. However, to be profitable, businesses should have a better understanding of the way profitability relates to customer segmentation. Discovering the difference between customers will permit one to personalize your method to the desires of the customer segments.

Customer segmentation describes the practice of categorizing a customer base into different groups of individuals similar in a given way. Customer segments are often determined based on similarities such as personal characteristics, behaviors, and preferences. By understanding your customers and their differences, it becomes one of the most important stages of measuring the customers’ relationship.

How to Segment

Segmentation doesn’t need to be very complex. For a small organization or company, it can be about discovering that you have two or three unique customer types who have different needs. Some popular methods used to segment customers consist of:

	
Demographic

	
Behavioral

	
Psychographic

	
Geographic

[image:]

There are different ways that you can apply when it comes to the segmentation of a market. One of the methods that are accurate and statistically valid is the application of cluster analysis.

Chapter 6: Python Dictionaries

Believe it or not, a Python dictionary works in a very similar way to a regular dictionary. Python offers many different data structures to hold information, and the dictionary is one of the simplest and most useful. While many things in Python are iterables, not all of them are sequences and a Python dictionary falls in this category. In this article, we will talk about what a Python dictionary is, how it works, and what are its most common applications.

What is a Python Dictionary?

Getting clean and actionable data is one of the key challenges in data analysis. You can’t build and fit models to data that isn’t usable. A Python
 dictionary makes it easier to read and change data, thereby rendering it more actionable for predictive modeling.

A Python dictionary is an unordered collection of data values. Unlike other data types that hold only one value as an element, a Python dictionary holds a key: value pair. The Python dictionary is optimized in a manner that allows it to access values when the key is known.

While each key is separated by a comma in a Python Dictionary, each key-value pair is separated by a colon. Moreover, while the keys of the dictionary have to be unique and immutable (tuples, strings, integers, etcetera), the key-values can be of any type and can also be repeated any number of times. An example of a Python dictionary is shown below:

[image: Description: Python Dictionary]

How do Python Dictionaries Work?

While there are several Python dictionary methods, there are some basic operations that need to be mastered. We will walk through the most important ones in this section.

[image: Description: Python Dictionary]

Creating a Python dictionary

To create a Python dictionary, you need to put items (each having a key and a corresponding value expressed as key: value) inside curly brackets. Each item needs to be separated from the next by a comma. As discussed above, values can repeat and be of any type. Keys, on the other hand, are unique and immutable. There is also a built-in function dict() that you can use to create a dictionary. For easier understanding, note that this built-in function is written as diction() in the rest of this book. Here are some examples:

[image:]

Accessing Items within the Python dictionary

Accessing items in the dictionary in Python is simple enough. All you need to do is put the key name of the item within square brackets. This is important because the keys are unique and non-repeatable
 .

Example

To get the value of the model key:

k = thisdiction[“model”]

You can also use another of the Python dictionary methods get() to access the item. Here’s what it looks like.

k = thisdiction.get(“model”)

How to Change Values in a Python Dictionary

To change the value of an item, you once again need to refer to the key name. Here is an example.

If you have to change the value for the key “year” from 1890 to 2025:

thisdiction = {

“brand”: “Mitsubishi”,

“model”: “Toyota”,

“year”: 1890

}

thisdiction[“year”] = 202
 5

How do you Loop through a Python Dictionary

You can use a for loop function to loop through a dictionary in Python. By default, the return value while looping through the dictionary will be the keys of the dictionary. However, there are other methods that can be used to return the values.

To print the key names:

for k in thisdiction:

print(k)

To print the values in the dictionary, one by one:

for k in this diction:

print(thisdiction[k])

Another way of returning the values by using the values() function:

for k in thisdiction.values():

print(k

)

If you want to Loop through both the keys and the values, you can use the items() function:

for k, m in thisdiction.items():

print(k, m)

How Do You Check if a Key Exists in the Dictionary

Here’s how you can determine whether a particular key is actually present in the Python dictionary:

Say you have to check whether the key “model” is present in the dictionary:

thisdiction = {

“brand”: “Mitsubishi”,

“model”: “Toyota”,

“year”: 1890

}

if “model” in thisdiction:

print(“Yes, ‘model’ is one of the keys in the thisdiction dictionary”
)

How do you determine the number of items in the Dictionary

To determine the number of keys: value pairs in the dictionary, we use one of the most commonly used Python Dictionary methods, len(). Here’s how it works:

print(len(thisdiction))

How to add an item to the Python Dictionary

To add a new key: value pair to the dictionary, you have to use a new index key and then assign a value to it.

For instance:

thisdiction = {

“brand”: “Mitsubishi”,

“model”: “Toyota”,

“year”: 1890

}

thisdiction[“color”] = “pink”

print(thisdiction
)

Removing Items from the Python Dictionary

Here are some of the methods to remove an item from the Python dictionary. Each approaches the same goal from a different perspective.

Method 1

This method, pop(), removes the item which has the key name that is being specified. This works well since key names are unique and immutable.

thisdiction = {

“brand”: “Mitsubishi”,

“model”: “Toyota”,

“year”: 1890

}

thisdiction.pop(“model”)

print(thisdiction)

Method 2

The popitem() method removes the item that has been added most recently. In earlier versions, this method used to remove any random item. Here’s how it works:

thisdiction =
 {

“brand”: “Mitsubishi”,

“model”: “Toyota”,

“year”: 1890

}

thisdiction.popitem()

print(thisdiction)

Method 3

Much like the pop() method, the del keyword removes the item whose key name has been mentioned.

thisdiction = {

“brand”: “Mitsubishi”,

“model”: “Toyota”,

“year”: 1890

}

del thisdiction[“model”]

print(thisdiction)

Method
 4

Unlike the pop() method, the del keyword can also be used to delete the dictionary altogether. Here’s how it can be used to do so:

thisdiction = {

“brand”: “Mitsubishi”,

“model”: “Toyota”,

“year”: 1890

}

del thisdiction

print(thisdiction) #this will cause an error because “thisdiction” no longer exists.

Method 5

The clear() keyword empties the dictionary of all items without deleting the dictionary itself:

thisdiction = {

“brand”: “Mitsubishi”,

“model”: “Toyota”,

“year”: 1890

}

thisdiction.clear(
)

print(thisdiction)

A list of Common Python Dictionary Methods

There are a number of Python Dictionary methods that can be used to perform basic operations. Here is a list of the most commonly used ones.

	
Method

	
Description

	
clear()

	
This removes all the items from the dictionary.

	
copy()

	
This method returns a copy of the Python dictionary.

	
fromkeys()

	
This returns a different directory with only the key: value pairs that have been specified.

	
get()

	
This returns the value of the key mentioned.

	
items()

	
This method returns the tuple for every key: value pair in the dictionary.

	
keys()

	
This returns a list of all the Python dictionary keys in the dictionary.

	
popitem()

	
In the latest version, this method deletes the most recently added item.

	
pop()

	
This removes only the key that is mentioned.

	
update()

	
This method updates the dictionary with certain key-value pairs that are mentioned.

	
values()

	
This method simply returns the values of all the items in the list
 .

Benefits of a Dictionary in Python

Here are some of the major pros of a Python library:

	
It improves the readability of your code. Writing out Python dictionary keys along with values adds a layer of documentation to the code. If the code is more streamlined, it is a lot easier to debug. Ultimately, analyses get done a lot quicker and models can be fitted more efficiently.

	
Apart from readability, there’s also the question of sheer speed. You can look up a key in a Python dictionary very fast. The speed of a task like looking up keys is measured by looking at how many operations it takes to finish. Looking up a key is done in constant time compared with looking up an item in a large list which is done in linear time.

	
To look up an item in a huge list, the computer will look through every item in the list. If every item is assigned a key: value pair, then you only need to look for the key which makes the entire process much faster. A Python dictionary is basically an implementation of a hash table. Therefore, it has all the benefits of the hash table
 which includes membership checks and speedy tasks like looking up keys.

[image: Description: Python Dictionary]

Disadvantages of a Python dictionary

While a Python dictionary is easily one of the most useful tools, especially for data cleaning
 and data analysis, it does have a downside. Here are some demerits of using a Python dictionary.

	
Dictionaries are unordered. In cases where the order of the data is important, the Python dictionary is not appropriate.

	
Python dictionaries take up a lot more space than other data structures. The amount of space occupied increases drastically when there are many Python Dictionary keys. Of course, this isn’t too much of a disadvantage because memory isn’t very expensive.

At the end of the day, a Python dictionary represents a data structure that can prove valuable in cleaning data and making it actionable. It becomes even more valuable because it is inherently simple to use and much faster and more efficient as well.

Of course, if you are looking for a career in data science
 , a comprehensive course with live sessions, assessments, and placement assistance might be just what you need.

Chapter 7: Data Structures in Python

Among the basic data types and structures in Python are the following:

	

Logical: bool

	

Numeric: int, float, complex

	

Sequence: list, tuple, range

	

Text Sequence: str

	

Binary Sequence: bytes, bytearray, memoryview

	

Map: dict

	

Set: set, frozenset

All of the above are classes from which object instances can be created. In addition to the above, more data types/structures are available in modules that come as part of any default Python installation: collections, heapq, array, enum, etc. Extra numeric types are available from modules numbers, decimals, and fractions. The built-in function type() allows us to obtain the type of any object.

With respect to data types, what are the differences between Python2 and Python3?

The following are important differences:

✓
 A division such as 5/2 returns integer value 2 in Python2 due to truncation. In Python3, this will
 evaluate to float value 2.5 even when the input values are only integers.

✓
 In Python2, strings were ASCII. To use Unicode, one had to use the Unicode type by creating them with a prefix: name = u'Saṃ
 sāra'. In Python3, the str type is Unicode by default.

✓
 Python2 has int and long types but both these are integrated into Python3 as int. Integers can be as large as system memory allows.

What data structures in Python are immutable and mutable?

Mutable objects are those that can be changed after they are created such as updating, adding, and removing an element in a list. It can be said that mutable objects are changed in place.

Immutable objects can't be changed in place after they are created. Among the immutable basic data types/structures are bool, int, float, complex, str, tuple, range, frozenset, and bytes.

The mutable counterparts of frozenset and bytes are set and byte array respectively. Among the other mutable data, structures are list and dict.

With immutable objects, it may seem like we can modify their values by assignment. What actually happens is that a new immutable object is created and then assigned to the existing variable. This can be verified by checking the ID (using id() function) of the variable before and after the assignment
 .

What data structures in Python are suited to handle binary data?

The fundamental built-in types for manipulating binary data are byte array and bytes. They support memoryview that makes use of the buffer protocol to access the storage location of other binary objects without making a copy.

The module array supports the storage of simple data types such as thirty-two-bit integers and double floating-point values. Characters, integers, and floats can be stored array types, which gives low-level access to the bytes that store the data.

What containers and sequences are available in Python?

The diagram below shows the List data type and its relationship to other data types.

[image: Description: image]

Containers
 are data structures that contain one or more objects. In Python, a container object can contain objects of different types. For that matter, a container can contain other containers at any depth. Containers may also be called collections
 .

Sequences
 are containers that have inherent ordering among their items. Please see the following example, a string such as str = "hello world" is a sequence of Unicode characters h, e, l, etc. Note that there is no character data type in Python, and the expression "h" is actually a 1-character string.

Sequences support two main operations (for example, sequence variable seq):

	

Indexing
 : Access a particular element: seq[0] (first element), seq[-1] (last element).

	

Slicing
 : Access a subset of elements with syntax seq[start:stop:step]: seq[0::2] (alternate elements), seq[0:3] (first three elements), seq[-3:] (last three elements). Note that the stop point is not included in the result.

Among the basic sequence types are list, tuple, range, str, bytes, bytearray, and memoryview. Conversely, dict, set, and frozenset are simply containers in which elements don't have any particular order. More containers are part of the collections module.

How can I construct some common containers?

The following examples are self-explanatory:

✓
 str: a = '' (empty), a = "" (empty), a = 'Hello'

✓
 bytes: a = b'' (empty), a = b"" (empty), a = b'Hello'

✓
 list: a = list() (empty), a = [] (empty), a = [1, 2, 3]

✓
 tuple: a = tuple() (empty), a = (1,) (single item), a = (1, 2, 3), a = 1, 2, 3

✓
 set: a = set() (empty), a = {1, 2, 3}

✓
 dict: a = dict() (empty), a = {} (empty), a = {1:2, 2:4, 3:9}

We can construct bytearray from bytes and frozenset from set using their respective built-in functions.

What are iterables and iterators?

An
 iterable
 is a container that can be processed element by element. For sequences, elements are processed in the order they are stored. For non-sequences, elements are processed in some arbitrary order.

Formally, any object that implements the iterator protocol
 is iterable. The iterator protocol is defined by two special methods, __iter__() and __next__(). Calling iter() on iterable returns is what called an iterator
 . Calling next() on an iterator gives us the next element of the iterable. Thus, iterators help us process the iterable element by element.

When we use loops or comprehensions in Python, iterators are used under the hood. Programmers don't need to call iter() or next() explicitly.

Can I convert from one data type to another?

Yes, provided they are compatible. Here are some examples:

✓
 int('3') will convert from string to integer

✓
 int(3.4) will truncate float to integer

✓
 bool(0) and bool([]) will both return False

✓
 ord('A') will return the equivalent Unicode code point as an integer
 value

✓
 chr(65) will return the equivalent Unicode string of one character

✓
 bin(100), oct(100) and hex(100) will return string representations in their respective bases

✓
 int('45', 16) and int('0x45', 16) will convert from hexadecimal to decimal

✓
 tuple([1, 2, 3]) will convert from list to tuple

✓
 list('hello') will split the string into a list of 1-character strings

✓
 set([1, 1, 2, 3]) will remove duplicates in the list to give a set

✓
 dict([(1,2), (2,4), (3,9)]) will construct a dictionary from the given list of tuples

✓
 list({1:2, 2:4, 3:9}) will return a list based on the dictionary keys.

Should I use a list or a tuple?

If ordering is important, sets and dictionaries should not be used: prefer lists and tuples. Tuples are used to pass arguments and return results from functions. This is because they can contain multiple elements and are immutable. Tuples are also good for storing closely related data. Please see the following example, (a, b, c) coordinates or (red, green, blue) color components can be stored as tuples. Use lists instead if values can change during the lifetime of the object.

[image:]

If a sequence is to be sorted, use a list for in-place sorting. A tuple can be used, but it should return a new sorted object. A tuple cannot be sorted in-place.

For better code readability, elements of a tuple can be named. For this purpose, use collections. namedtuple class. This allows us to access the elements via their names rather than tuple indices.

It's possible to convert between lists and tuples using functions list() and tuple().

When to use a set and when to use a dict?

Sets and dictionaries have no order. However, from Python 3.7, the order in which items are inserted into a dict is preserved.

Sets store unique items. Duplicates are discarded. Dictionaries can contain duplicate values but keys must be unique. Since dict keys are unique, often dict is used for counting. Please see
 the following example, to count the number of times a word appears in a document, words can be keys and counts can be valued.

Sets are suited for finding the intersection/union of two groups, such as finding those who live in a neighborhood (set 1) and/or also own a car (set 2). Other set operations are also possible.

Strings, lists, and tuples can take only integers as indices due to their ordered nature but dictionaries can be indexed by strings as well. In general, dictionaries can be indexed by any of the built-in immutable types, which are considered hashable
 .
 Thus, dictionaries are suited for key-value pairs such as mapping country names (keys) to their capitals (values). But if capitals are the more common input to your algorithm, use them as keys instead.

How can I implement a linked list in Python?

A linked list is a group of nodes connected by pointers or links. A node is one point of statistics or details in the linked list. Not only does it hold data, but it also shows the direction to the following node in a linked list that is single. Thus, the definition of a node is recursive. For a double-linked list, the node has two pointers; one that connects to the previous node and another one that connects to the next node. Linked lists can be designed to be ordered or unordered.

The head of the linked list must be accessible. This allows us to traverse the entire list and perform all possible operations. A double-linked list might also expose the tail for traversal from
 the end. While a Node class may be enough to implement a linked list, it's common to encapsulate the head pointer and all operations within the LinkedList class. Operations on the linked lists are methods of the class. One possible implementation
 is given by Downey. A DoubleLinkedList can be a derived class from LinkedList with the addition of a tail pointer and associated methods.

Chapter 8: Data Analysis, Processing, and Visualization

If you work with data, then Data Visualization is an important part of your daily routine. And if you happen to use Python programming language for your analysis, you must be overwhelmed by the sheer number of choices available in the form of data visualization libraries.

There are some libraries such as Matplotlib which are used for initial exploration but are not so useful for showing complex relationships in data. There are some which work well with large datasets while there are still others that majorly focus on 3D renderings. There is not a single visualization library that can be considered perfectly the best. There are certain features in one that is better than the other and vice versa. In short, there are a lot of options, and it is impossible to learn and try them all or maybe, get them all to work together. So how do we get our job done? PyViz definitely has the answer.

Understanding Data Processing

Data processing is the act of changing the nature of data into a form that is more useful and desirable. In other words, it is making data more meaningful and informative. By applying machine learning algorithms, statistical knowledge, and mathematical modeling, one can automate this whole process. The output of this whole process can be in any form like tables,
 graphs, charts, images, and much more based on the activity done and the requirements of the machine.

This might appear simple, but for big organizations and companies like Facebook, Twitter, UNESCO, and health sector organizations, this whole process has to be carried out in a structured way. The diagram below shows some of the steps that are followed:

[image:]

Let’s look in detail at each step:

Collection

The most important step when getting started with Machine Learning is to ensure that the data available is of great quality. You can collect data from genuine sources such as Kaggle,
 data.gov.in, and UCI dataset repository. Please see the following example; when students are getting ready to take a competitive exam, they always find the best resources to use to ensure they attain good results. Similarly, accurate and high-quality data will simplify the learning process of the model. This means that during the time of testing, the model would output the best results.

A great amount of time, capital, and resources are involved in data collection. This means that organizations and researchers have to select the correct type of data which they want to implement or research.

For instance, to work on the Facial Expression Recognition requires a lot of images that have different human expressions. A good data will make sure that the results of the model are correct and genuine.

Preparation

The data collected can be in raw form. Raw data cannot be directly fed into a machine. Instead, something has to be done on the data first. The preparation stage involves gathering data from a wide array of sources, analyzing the datasets, and then building a new data set for additional processing and exploration. Preparation can be done manually or automatically and the data should be prepared in numerical form to improve the rate of learning of the model
 .

Input

Sometimes, data already prepared can be in the form which the machine cannot read. In this case, it has to be converted into a readable form. For conversion to take place, it is important for a specific algorithm to be present.

To execute this task, intensive computation and accuracy are required. Please see the following example; you can collect data through sources like MNIST, audio files, Twitter comments, and video clips.

Processing

In this stage, ML techniques and algorithms are required to execute instructions generated over a large volume of data with accuracy and better computation.

Output

In this phase, results get procured by the machine in a sensible way such that the user can decide to reference it. Output can appear in the form of videos, graphs, and reports.

Storage

This is the final stage where the generated output, data model, and any other important information are saved for future use
 .

Data Processing in Python

Let’s learn something in Python libraries before looking at how you can use Python to process and analyze data. The first thing is to be familiar with some important libraries. You need to know how you can import them into the environment. There are different ways to do this in Python.

You can type:

Import math as m

From math import *

In the first way, you define an alias m to library math. Then you can use different functions from the math library by making a reference using an alias m. factorial ().

In the second method, you import the whole namespace in math. You can choose to directly apply factorial () without inferring to math.

Note:

Google recommends the first method of importing libraries because it will help you tell the origin of the functions
 .

The list below shows libraries that you’ll need to know where the functions originate from.

NumPy:
 This stands for Numerical Python. The most advanced feature of NumPy is an n-dimensional array. This library has a standard linear algebra function, advanced random number capability, and tools for integration with other low-level programming languages.

SciPy:
 It is the shorthand for Scientific Python. SciPy is designed on NumPy. It is among the most important library for different high-level science and engineering modules such as Linear Algebra, Sparse matrices, and Fourier transform.

Matplotlib
 : This is best applied when you have a lot of graphs that you need to plot. It begins from line plots to heat plots and you can apply the Pylab feature in the IPython notebook to ensure plotting features are inline.

Pandas:
 Best applied in structured data operations and manipulations. It is widely used for data preparation and mining. Pandas were introduced recently to Python and have been very useful in enhancing Python’s application in the data scientist community.

Scikit-learn:
 This is designed for machine learning. It was created on matplotlib, NumPy, and SciPy. This specific library has a lot of efficient tools for machine learning and statistical
 modeling. That includes regression, classification, clustering, and dimensionality community.

StatsModels:
 This library is designed for statistical modeling. Statsmodels refers to a Python module which permits users to explore data, approximate statistical models, and implement statistical tests.

Other Libraries

	
Requests used to access the web.

	
Blaze used to support the functionality of NumPy and Pandas.

	
Bokeh used to create dashboards, interactive plots, and data applications on the current web browsers.

	
Seaborn is used in statistical data visualization.

	
Regular expressions that are useful for discovering patterns in text data

	
NetWorx and Igraph applied to graph data manipulations.

Now that you are familiar with Python fundamentals and crucial libraries, let’s now jump into problem-solving through Python
 .

An Exploratory Analysis in Python with Pandas

If you didn’t know, Pandas is an important data analysis library in Python. This library has been key in improving the application of Python in the data science community. Our example uses Pandas to read a data set from an Analytics Vidhya competition, run exploratory analysis, and create a first categorization algorithm to solve this problem.

Before you can load the data, it is important to know the two major data structures in Pandas. That is Series and DataFrames.

Series and DataFrames

You can think of series as a 1-dimensional labeled array. These labels help you to understand the individual elements of this series via labels.

A data frame resembles an Excel workbook and contains column names that refer to columns as well as rows that can be accessed by row numbers. The most important difference is that column names and row numbers are referred to as column and row index.

Series and data frames create a major data model for Pandas in Python. At first, the datasets have to be read from data frames and different operations can easily be subjected to these columns
 .

Practice Data Set – Loan Prediction Problem

The following is the description of variables:

[image:]

First, start the iPython interface in Inline Pylab mode by typing the command below in the terminal:

[image:]

Import Libraries and Data Set

This chapter will use the following Python libraries:

	
NumPy

	
Matplotlib

	
Pandas

Once you have imported the library, you can move on and read the dataset using a function read_csv(). Below is how the code will look until this point.

Distribution Analysis

Since you are familiar with the basic features of data, this is the time to look at the distribution of different variables. Let’s begin with numeric variables-ApplicantIncome and LoanAmount.

First, type the commands below to plot the histogram of ApplicantIncome.

[image:]

[image:]

Notice that there are a few extreme values. This is why 50 bins are needed to represent the distribution clearly.

The next thing to focus on is the box plot. The box plot for the fare is plotted by:

[image:]

[image:]

This is just the tip of an iceberg when it comes to data processing in Python. Let’s look at:

Techniques for Preprocessing Data in Python

Here are the best techniques for Data Preprocessing in Python.

	
Mean Removal

This is where you remove the mean from each property to center it on zero.

	
One Hot Encoding

When you deal with a few and scattered numerical values, you might need to store them before you can carry out the One Hot Encoding. For the k-distinct values, you can change the feature into a k-dimensional vector that has a single value of 1 and 0 for the remaining values.

	
Label Encoding

Sometimes, labels can be words or numbers. If you want to label the training data, you need to use words to increase its readability. Label encoding changes word labels into numbers to allow algorithms to operate on them. Here’s an example:

Chapter 9: Plotting using Python Functions

NumPy and pandas are essential tools for data wrangling. Their user-friendly interfaces and performant implementation make data handling easy. Even though they only provide a little insight into our datasets, they are absolutely valuable for wrangling, augmenting, and cleaning our datasets. Mastering these skills will
 improve the quality of your visualizations.

In this chapter, we
 learned the basics of NumPy, Pandas, and statistics concepts. Even though the statistical concepts covered are very basic, they are necessary to enrich our visualizations with information that, in
 most cases, is
 not directly provided in
 our datasets. This hands-on experience will
 help you implement exercises and activities in
 the following chapters.

In the next chapter, we
 will
 focus on the different types of visualizations and how to decide which visualization would be best in
 your case. This will
 give you theoretical knowledge so that you know when to use a specific chart type and why. It will
 also lay
 down the fundamentals of the chapters, which will
 heavily focus on teaching you how to use Matplotlib and seaborn to create the plots discussed. After we
 have covered basic visualization techniques with Matplotlib and seaborn, we
 will
 dive deeper and explore the possibilities
 of interactive and animated charts which will
 introduce the element of storytelling into our visualizations.

What you should know about plots

➢

 Identify the best plot type for a given dataset and scenario

➢

 Explain the design practices of certain plots

➢

 Design outstanding, tangible visualizations

In this chapter, we will learn the basics of different types of plots.

In this chapter, we
 will
 focus on various visualizations and identify which visualization is
 best to show certain information for a given dataset. We will
 describe visualizations in
 detail and give practical examples, such as comparing different stocks over time or comparing the ratings for different movies. Starting with comparison plots, which are great for comparing multiple variables
 over time, we
 will
 look at their types such as line charts, bar charts, and radar charts. Relation plots are handy to show relationships among variables.
 We will
 cover scatter plots for showing the relationship between two variables,
 bubble plots for three variables,
 correlograms for variable pairs,
 and finally, heatmaps.

Composition plots, which are used to visualize variables
 that are part of a whole, as well
 as pie charts, stacked bar charts, stacked area charts, and Venn diagrams are going to be explained. To get a deeper insight into the distribution of variables,
 distribution plots are used. As a part of distribution plots, histograms, density plots, box plots, and violin
 plots will
 be covered. Finally, we
 will
 talk about dot maps, connection maps, and choropleth maps, which can be categorized into geo plots
 .

Comparison Plots

Comparison plots
 include charts that are well-suited for comparing multiple variables
 or variables
 over time. For comparison among items, bar charts (also
 called
 column charts) are the best way
 to go. Line charts are great for visualizing variables
 over time. For a certain time period (say, less
 than ten-time points), vertical bar charts can be used as well.
 Radar charts or spider plots are great for visualizing multiple variables
 for multiple groups.

Line Chart

Line charts
 are used to display
 quantitative values over a continuous time period and show information as a series.
 A line chart is
 ideal for a time series,
 which is
 connected by straight-line segments.

The value is placed on the y-axis, while the x-axis is the timescale.

Uses:

Line charts are great for comparing multiple variables
 and visualizing trends for both single as well
 as multiple variables, especially
 if
 your dataset has many time periods (roughly more than ten).

For smaller time periods, vertical bar charts might be the better choice
 .

The following diagram shows a trend of real-estate prices (in million US dollars) for two decades. Line charts are well-suited for showing data trends:

[image:]

Line
 chart for a Single Variable

The following diagram is
 a multiple variable
 line chart that compares the stock-closing prices
 for Google, Facebook, Apple, Amazon, and Microsoft. A line chart is
 great for comparing values and visualizing the trend of the stock. As we
 can see, Amazon shows the highest growth:

[image:]

Figure: Line Chart Showing Stock Trends for the Five Companies

Design practices:

	
Avoid too many lines per chart

	
Adjust your scale so that the trend is clearly visible

Note
 Design practices for plots with multiple variables. A legend should be available to describe each variable.

Bar Chart

The bar length encodes the value. There are two variants of bar charts: vertical bar charts and horizontal bar charts.

Uses
 :

While they are both used to compare numerical values across categories, vertical bar charts are sometimes used to show a single variable
 over time.

The dos and the don'ts of bar charts:

Don't confuse vertical bar charts with histograms. Bar charts compare different variables
 or categories, while histograms show the distribution for a single variable.
 Histograms will
 be discussed later in
 this chapter.

Another common mistake is
 to use bar charts to show central tendencies among groups or categories. Use box plots or violin
 plots to show statistical measures or distributions in
 these cases.

Examples:

The following diagram shows a vertical bar chart. Each bar shows the marks out of 100 that five students obtained in
 a test:

[image:]

Figure: Vertical Bar Chart using Student Test Data

The following diagram shows a horizontal bar chart. Each bar shows the marks out of 100 that five students obtained in
 a test:

[image:]

Figure: Horizontal bar chart using student test data

The following diagram compares movie ratings, giving two different scores. The Tomatometer is
 the percentage of approved critics who have given a positive review
 for the movie. The Audience Score is
 the percentage of users who have given a score of 3.5 or higher out of 5. As we
 can see, The Martian
 is
 the only movie with both a high Tomatometer score and Audience Score. The Hobbit: An Unexpected Journey
 has a relatively high Audience Score compared to the Tomatometer score, which might be due to a huge fan base:

[image:]

Comparative Bar Chart

Design practices:

The axis corresponding to the numerical variable
 should start at zero. Starting with another value might be misleading, as it
 makes a small value difference look like a big one.

Use horizontal labels,
 that is,
 as long as the number of bars is
 small and the chart doesn't look too cluttered.

Radar Chart

Radar charts
 , also
 known as spiders
 or web
 charts
 , visualize multiple variables
 with each variable
 plotted on its own
 axis, resulting in
 a polygon. All axes are arranged radially, starting at the center with equal distances between one another and have the same scale.

Uses
 :

Radar charts are great for comparing multiple quantitative variables
 for a single group or multiple groups. They are also
 useful to show which variables
 score high or low within a dataset, making them ideal to visualize performance

Examples:

The following diagram shows a radar chart for a single variable.
 This chart displays data about a student scoring marks in
 different subjects:

[image:]

Radar Chart For One Variable (student
)

The following diagram shows a radar chart for two variables/groups. Here, the chart explains the marks that were scored by two students in different subjects:

[image:]

Figure: Radar chart for Two Variables (Two Students)

The following diagram shows a radar chart for multiple variables/groups. Each chart displays data about a student's performance in
 different subjects

[image:]

[image:]

Figure: Radar chart with faceting for multiple variables (multiple subjects)

Design practices:

Try to display ten factors or fewer on one radar chart to make it easier to read. Use faceting
 for multiple variables/groups, as shown in
 the preceding diagram, to maintain clarity
 .

Activity: Employee Skill Comparison

You are given scores of four employees (A, B, C, and D) for five attributes: Efficiency, Quality, Commitment, Responsible Conduct, and Cooperation. Your task is
 to compare the employees and their skills:

Which charts are suitable for this task?

You are given the following bar and radar charts. List the advantages and disadvantages of both charts. Which is
 the better chart for this task in
 your opinion and why?

[image:]

Figure: Employee skills comparison with a bar chart

The following figure shows a radar chart for employee skills:

[image:]

Figure: Employee Skills Comparison with a Radar Chart

What could be improved in
 the respective visualizations?

Relation Plots

Relation plots
 are perfectly suited to show relationships among variables.
 A scatter plot visualizes the correlation between two variables
 for one or multiple groups. Bubble plots can be used to show relationships between three variables.
 The additional third variable
 is
 represented by the dot size. Heatmaps are great for revealing patterns or correlating between two qualitative variables.
 A correlogram is
 a perfect visualization to show the correlation among multiple variables.

Scatter Plots

Scatter plots
 show data points for two numerical variables, displaying a variable on both axes.

Uses:

You can detect whether a correlation (relationship) exists between two variables. They allow
 you to plot the relationship between multiple groups or categories using different colors.
 A bubble plot, which is
 a variation of the scatter plot, is
 an excellent tool for visualizing the correlation of a third variable.

The following diagram shows a scatter plot of height
 and weight
 of persons belonging to a single group:

[image:]

Figure: Scatter plot with a single variable (one group)

The following diagram shows the same data as in
 the previous plot but differentiates between groups. In this case, we
 have different groups: A
 , B
 , and C
 .

[image:]

Figure: Scatter plot with multiple variables (three groups)

The following diagram shows the correlation between body mass and the maximum longevity for various animals grouped by their classes.
 There is
 a positive correlation between body mass and maximum longevity:

[image:]

Figure: Correlation between body mass and maximum longevity for animals

Design practices:

Start both axes at zero to represent data accurately. Use contrasting colors for data points and avoid using symbols for scatter plots with multiple groups or categories.

Variants: scatter plots with marginal histograms

In addition to the scatter plot, which visualizes the correlation between two numerical variables,
 you can plot the marginal distribution for each variable
 in
 the form of histograms to give better insight into how each variable
 is
 distributed
 .

Examples:

The following diagram shows the correlation between body mass and the maximum longevity for animals in
 the Aves class.
 The marginal histograms are also
 shown, which helps to get a better insight into both variables:

[image:]

Figure: Correlation between
 body
 mass and maximum longevity of the Aves class with marginal histograms

Bubble Plo
 t

A bubble plot
 extends a scatter plot by introducing a third numerical variable.
 The value of the variable
 is
 represented by the size of the dots. The area of the dots is
 proportional to the value. A legend is
 used to link the size of the dot to an actual numerical value.

Uses:

To show a correlation between three variables

Example:

The following diagram shows a bubble plot that highlights the relationship between heights and age of humans:

[image:]

Figure: Bubble plot showing a relation between height and age of human
 s

Design practices:

✓
 Design practices for the scatter plot are also applicable to the bubble plot.

✓
 Don't use it
 for very large amounts of data, since too many bubbles make the chart hard to read.

Correlogram

A correlogram
 is a combination of scatter plots and histograms. Histograms will be discussed in detail later in
 this chapter. A correlogram or correlation matrix visualizes the relationship between each pair of numerical variables
 using a scatter plot.

The diagonals of the correlation matrix represent the distribution of each variable
 in
 the form of a histogram. You can also
 plot the relationship between multiple groups or categories using different colors.
 A correlogram is
 a great chart for exploratory data analysis to get a feeling for your data, especially
 the correlation between variable pairs.

Examples:

The following diagram shows a correlogram for the height, weight, and age of humans. The diagonal plots show a histogram for each variable.
 The off-diagonal elements show scatter plots between variable pairs:

[image:]

Figure: Correlogram with a Single Category

The following diagram shows the correlogram with data samples separated by color into different groups:

[image:]

Figure: Correlogram with Multiple Categories

Design practices:

✓
 Start both axes at zero to represent data accurately.

✓
 Use contrasting colors for data points and avoid using symbols for scatter plots with multiple groups or categories
 .

Heatmap

A heatmap
 is
 a visualization where values contained in
 a matrix are represented as colors or color saturation. Heatmaps are great for visualizing multivariate data, where categorical variables
 are placed in
 the rows
 and columns and a numerical or categorical variable
 is
 represented as colors or color saturation.

Uses:

	
Visualization of multivariate data

	
It is great for finding patterns in your data

Examples:

The following diagram shows a heatmap for the most popular products on the Electronics category page across various e-commerce websites:

[image:]

Figure: Heatmap for
 Popular
 Products in the Electronics Category

Variants: annotated heatmaps

Let's see the same example that we saw previously in an annotated heatmap:

[image:]

Activity: Road Accidents Occurring over Two Decades

You are given a diagram that gives information about the road accidents that have occurred over the past two decades during the months of January, April, July, and October:

Identify the year during which the number of road accidents occurred was
 the least. For the past two decades, identify the month for which accidents show a marked decrease:

[image:]

Figure: Total accidents over 20 years

Composition Plots

Composition plots
 are ideal if
 you think about something as a part of a whole. For static data, you can use pie charts, stacked bar charts, or Venn diagrams. Pie charts
 or donut charts
 help show proportions and percentages for groups. If you need an additional dimension, stacked bar charts are great. Venn diagrams are the best way
 to visualize overlapping groups, where each group is
 represented by a circle.
 For data that changes over time, you can use either stacked bar charts or stacked area charts.

Pie Char
 t

Pie charts
 illustrate the numerical proportion by dividing a circle
 into slices.
 Each arc length represents a proportion of a category. The full circle
 equals to 100%. For humans, it is
 easier
 to compare bars than arc lengths; therefore, it is
 recommended to use bar charts or stacked bar charts most of the time.

Uses:

Compare items that are part of a whole.

Examples:

The following diagram shows a pie chart that shows different fielding positions of the cricket ground, such as long on, long off, third man, and fine leg:

[image:]

Figure: Pie chart showing fielding positions in a cricket ground

The following diagram shows water usage around the world:

[image:]

Figure: Pie chart for Global Water Usage

Design practices:

Arrange the slices
 according to their size in
 increasing/decreasing order, either in
 a clockwise or anticlockwise manner.

Make sure that every slice has a different color
 .

Variants: donut chart

An alternative to a pie chart is
 a donut chart
 . In contrast to pie charts, it is
 easier
 to compare the size of slices,
 since the reader focuses more on reading the length of the arcs instead of the area. Donut charts are also
 more space-efficient because the center is
 cut out, so it
 can be used to display
 information or further divide groups into sub-groups.

The following figure shows a basic donut chart:

[image:]

Figure: Donut char
 t

Matplotlib

Matplotlib
 is probably the most popular plotting library for Python. It is used for data science and machine learning visualizations all around the world. John Hunter began developing Matplotlib in 2003. It aimed to emulate the commands of the MATLAB
 software, which was the scientific standard back then. Several features such as the global style of MATLAB were introduced into Matplotlib to make the transition to Matplotlib easier for MATLAB users.

Before we start working with Matplotlib to create our first visualizations, we will understand and try to grasp the concepts behind the plots.

Overview of Plots in Matplotlib

Plots
 in Matplotlib have a hierarchical structure that nests Python objects to create a tree-like structure. Each plot is encapsulated in a Figure
 object. This Figure
 is the top-level container of the visualization. It can have multiple axes, which are basically individual plots inside this top-level container.

Going a level deeper, we again find Python objects that control axes, tick marks, legend, title, textboxes, the grid, and many other objects. All of these objects can be customized. The two main components of a plot are as follows:

	

Figure

The Figure is an outermost container and is used as a canvas to draw on. It allows you to draw multiple plots within it. It
 not only holds the Axes object but also has the capability to configure the Title
 .

	

Axes

The Axes is an actual plot, or subplot, depending on whether you want to plot single or multiple visualizations. Its sub-objects include the x and y-axis, spines, and legends. Observing this design on a higher level, we can see that this hierarchical structure allows us to create a complex and customizable visualization.

When looking at the "anatomy" of a Figure, which is shown in the following diagram, we get an idea about the complexity of an insightful visualization. Matplotlib gives us the ability not only to simply display data, but also design the whole Figure
 around it, by adjusting the Grid
 , x
 and y ticks
 , tick
 labels
 , and the Legend
 . This implies that we can modify every single bit of a plot, starting from the Title and Legend, right down to even the major and minor ticks on the spines to make it more expressive:

The anatomy of a
 Matplotlib figure is shown below:

[image:]

Taking a deeper look into the anatomy of a Figure object, we can observe the following components:

	

Spines
 : Lines connecting the axis tick marks

	

Title
 : Text label of the whole Figure object

	

Legend
 : They describe the content of the plot

	

Grid
 : Vertical and horizontal lines used as an extension of the tick marks

	

X/Y axis label
 : Text label for the X/Y axis below the spines

	

Minor tick
 : Small value indicators between the major tick marks

	

Minor tick label
 : Text label that will be displayed at the minor ticks

	

Major tick
 : Major value indicators on the spines

	

Major tick label
 : Text label that will be displayed at the major ticks

	

Line
 : Plotting type that connects data points with a line

	

Markers
 : Plotting type that plots every data point with a defined marker

In this book, we will focus on Matplotlib's sub-module, pyplot
 , which provides MATLAB-like plotting.

Pyplot Basics

Pyplot
 contains a simpler interface for creating visualizations, which allows the users to plot the data without explicitly configuring the Figure
 and Axes
 themselves. They are implicitly and automatically configured to achieve the desired output. It is handy to use the alias plt
 to reference the imported sub-module, as follows
 :

import matplotlib.pyplot as plt

The following sections describe some of the common operations that are performed when using pyplot.

Creating Figures

We use plt.figure()
 to create a new Figure
 . This function returns a Figure instance, but it is also passed to the backend. Every Figure-related command that follows is applied to the current Figure and does not need to know the Figure instance.

By default, the Figure has a width of 6.4 inches and a height of 4.8 inches with a dpi of 100. To change the default values of the Figure, we can use the parameters figsize
 and dpi
 . The following code snippet shows how we can manipulate a Figure:

plt.figure(figsize=(10, 5)) #To change the width and the height

plt.figure(dpi=300) #To change the dpi

Closing Figures

Figures that are not used anymore should be closed by explicitly calling plt.close()
 , which also cleans up memory efficiently. If nothing is specified, the current Figure will be closed. To close a specific Figure, you can either provide a reference to a Figure instance or provide the Figure number.
 To find the number
 of a figure object, we can make use of the number
 attribute, like so:

plt.gcf().number

By using plt.close('all')
 , all Figures will be closed. The following example shows how a Figure can be created and closed:

plt.figure(num=10) #Create Figure with Figure number 10

plt.close(10) #Close Figure with Figure number 10

Format Strings

Before we actually plot something, let's quickly discuss format strings
 . They are a neat way to specify colors
 , marker types
 , and line styles
 . A format string is specified as "[color][marker][line]
 ", where each item is optional. If the color
 is the only argument of the format string, you can use any matplotlib.colors
 . Matplotlib recognizes the following formats, among others:

RGB or RGBA float tuples (for example, (0.2, 0.4, 0.3) or (0.2, 0.4, 0.3, 0.5))

RGB or RGBA hex strings (for example, '#0F0F0F' or '#0F0F0F0F')

The following diagram shows a color wheel with RGB pixels of the colors:

[image:]

Chapter 10: How to Create a Picture Classifier using TensorFlow

The thought of combining computer vision with machine learning makes me chill! It is interesting how we can train and build models to come up with machines that identify images with great precision such as the picture of a cat or a dog. In this chapter, I will show you how to build an image classifier with the help of TensorFlow, which was made by Google.

TensorFlow

Before we start, I feel it is necessary to provide some information about the origin of TensorFlow. TensorFlow is defined as an open-source library made by Google that deals with machine learning applications. For any person who is getting started with machine learning and computer vision, TensorFlow is a great beginning point to comprehend the complex process of classifying images.

Making an image classifier is a daunting and colossal task. There are many things that require to be considered. Fortunately, Google has an open-source image classifier model known as Inception that was trained on approximately 1.3 million pictures or images from 1000 distinct categories for a period of three weeks using some machines with the highest processing power in the world of Deep Learning.

[image:]

Inception Model: A neural network containing many layers of abstraction

Let us use this existing model to build our own. This approach has many merits such as saving time. Some of the parameters that the inception has learned can be used again and they can still make an accurate classifier with less training data. The process of reusing pre-trained models on related but different tasks is called Transfer Learning
 in the field of Deep Learning.

Download Training Pictures

The initial procedure is to download training pictures to be used by your image classifier. These consist of the images that you expect your classifier to learn how to recognize. You need to divide them neatly and label them into separate folders. The folder_names
 should be the label for the photos that they contain.

Please see the following example, we can download pictures of five kinds of flowers containing over 700 pictures for every type. You may choose to classify something else but ensure your index is divided neatly as shown in the photo above. In the best possible way, you are supposed to have approximately over a hundred images for every category. That is over 100 images of dogs or cats or mice et cetera). The greater the number of pictures you provide and the more distinct they are, the more accurate your image classifier will be
 .

TIPS:
 There is a chrome extension known as Fatkun Batch Download that you can use to download images or pictures from Google.

i)

 Download TensorFlow codes

All the codes that are required can be found in the Google code lab’s Git central file storage location.
 You can clone the central file storage location to your computer. Bear in mind that you need to install Git on your computer before you begin. After installing Git, open your computer terminal and type the following command to clone the central file storage location.

[image:]

The git central file storage location has the following codes:

[image:]

Proceed and copy the flower_photos folder,
 which has all your training pictures in the tf_files
 folder of the central file storage location. To verify the components of your index, use the command ls:

[image:]

The above command will show the folders that you intend to use to retrain your image classifier. You should see the following output:

ii)

 Retrain the network

As indicated before, the image classification models have millions of parameters. Our intention is to create a classifier on top of it. In simple words, we will train the final layer of the network. Although it is not necessary to code the whole code from scratch, it is recommended that we comprehend some of the parameters used by the code.

Theoretical Details

In image retraining documentation, the term bottleneck
 is the layer that is found just before the final layer, which does the real image classification. The bottleneck
 layer is perfect at coming up with values that are an excellent representation of the images. The set of values is also used by the classifier to differentiate between distinct classes it has been tasked to recognize (please read the documentation for further information).

The index below stores the cache of the entire bottleneck values so that they do not have to be calculated again and hence save time.

[image:]

The following commands can direct the user to the different directories of the codes:

[image:]

Finally, add the index of your training images using the following command:

[image:]

Implementation

After going through the steps above, you end up with the following commands. Start your computer terminal and type the following commands to begin the retraining process. The commands will download the pre-trained model, add a brand new final layer, and train the final layer on the pictures you have downloaded.

[image:]

Training the classifier on all the pictures will take approximately half an hour. The training time usually varies depending on the number of pictures that you have fed in the classifier. Once in a while, you may encounter errors, but do not give up. Use StackOverflow or Quora to find solutions to any problems you may encounter while training your image classifier.

iii)

 Classify Pictures/Images

After training the image classifier, the next step is to test it. You may achieve this by downloading a new picture of one of the categories of flowers which you trained your classifier on or choose an image from the existing sets of already trained pictures. Proceed and call/invoke label_image
 code.

Explanation

A list of all the categories together with their respective confidence score will be displayed. The results shown above indicate that the test_image
 is a daisy with roughly 99 percent confidence. It means that your image classifier has predicted accurately. Building an image classifier is as simple as that. I wish you the best of luck in training your image classifier with other types of data
 .

Chapter 11: Practical Applications of Machine Learning

Recommender Systems

Most e-commerce and retail companies are taking advantage of the massive potential of data to boost sales by implementing a Recommender system on their particular websites. These systems focus on suggesting to the user’s items that they may like or have an interest in.

The data needed for recommendation engines comes from explicit user ratings to watch a movie or listen to a song from implicit search engine purchase histories and queries. Sites such as Spotify, Youtube, and Netflix have data to use to recommend playlists.

Advantages of using Recommendation Systems

Companies that apply the Recommender system concentrate on raising sales due to personalized offers and improved customer experience. Recommendations usually increase searches and make it easy for users to access content which they are interested in, and surprise them with offers that they have never searched before.

What is interesting is that companies can now gain and retain customers by sending out email links to new offers that fulfill the interests of their profiles. By creating an added advantage
 to users through suggesting products and systems, it creates a great feeling among buyers. This is a great thing because it will allow companies to stay ahead of their competitors.

Types of Recommender Systems

Recommender systems operate with two types of information:

i)
 User-item interactions

ii)
 Characteristic information

This helps us reach the first classification of recommender systems. This includes a content-based system that has characteristic information and collaborative filtering which depends on user-item interactions. The hybrid systems shall combine both information with the goal to avoid problems generated when you work with only one specific type.

Content-based Systems

Content-based systems are built from the idea of applying the content of each product for purposes of recommendation. Below are some pros and cons of a content-based recommender system.

Advantages

✓
 It is simple to create a more transparent system. You use the same content to describe the recommendations.

✓
 Content representations are different and they open up the options to apply unique approaches like text
 processing techniques, inferences, and semantic information.

✓
 In case the items have enough descriptions, there is no need for the “new item problem”.

Disadvantages

✓
 The content-based Recsys seem to over-specialize. They will suggest items similar to that which is already consumed, with a notion to create a “filter bubble”.

✓
 Another issue is that new users don’t have a defined profile not unless they are explicitly requested for information. Despite this, it is very simple to add new items to the system. You simply require allocating them a group based on their features.

Three Principal Components

✓
 A Content Analyzer - This classifies items using a given type of representation.

✓
 A Filtering Component - It accepts all the inputs and creates a list of recommendations for every user.

✓
 A Profile Learner - It creates a profile that represents every user’s preference
 .

How to Represent Content

The content of a particular item is abstract and provides more options. You can use many different variables. For instance, for a book, you can include the genre, author, the text of the book, and many other factors. Once you know which content you will factor. You need to convert all the data into a vector space model, which is an algebraic representation of text documents.

You perform this using a Bag of Words model which represents documents disregarding the sequence of words. In this particular model, every document appears like a bag with some words. Therefore, this method will permit word modeling with respect to dictionaries, where every bag has some words from the dictionary. The exact implementation of a Bag of Words is the TF-IDF representation. In full, TF stands for Term Frequency and IDF stands for Inverse Document Frequency. This particular model combines the significance of the word in the document with the significance of the world in the corpus.

This was just a general aspect of Content-based recommendation engines. It is important to recognize that a Bag of Words representation doesn’t factor in the context of words. If it is necessary to include that, Semantic Content Representation becomes useful. Below are two options that one has, just in case you want to know more about it.

❖

 Explicit Semantic Representation

✓
 Wordnet

✓
 ConceptNet

✓
 Ontologies for Semantic Representation

❖

 Infer Semantic Representation

✓
 Latent Dirichlet Allocation

✓
 Latent Semantic Indexing

Collaborative Filtering Systems

These types of recommendation engines implement user interactions to evaluate items of interest. You can visualize the set of interactions using a matrix where every entry (I, j) represents the interactions between user i and item j. One way of looking at collaborative filtering is to look at it as a generalization of regression and classification. In the following case, you aim to predict a variable directly which depends on other variables in the collaborative filtering.

Visualizing a problem as a matrix allows us not only to predict the values of a unique column but also help us predict the values of any entry.

Techniques to Apply in Collaborative Filtering

There is a lot of research that has been done on collaborative filtering, and most common techniques depend on low-dimensional factor models that depend on matrix factorization. The CF techniques are divided into 2 types:

[image:]

Types of Collaborative Filtering Techniques

Below is a short explanation of some of these techniques

a)

 Model-Based Approach

In this particular approach, CF models are created using machine learning algorithms to predict the ratings of items unrelated to the user.

b)

 Memory-Based Technique

This approach can further be divided into two sections: User-item filtering and item-item filtering. The user-item filtering selects a given user, searches for users that are similar to the user depending on the similarity of the ratings, and suggest items that the same users recommended. On the other hand, item filtering will identify an item, search users who liked an item and look for other products that the same users liked. In
 other words, this approach takes items and displays the items as recommendations.

The major difference of memory-based technique from the model-based techniques is that no parameter is learned using gradient descent.

Content-Based Filtering

This system will suggest an item to users depending on their past history. The greatest advantage of content-based filtering is that it can start to suggest items immediately information related to items is available.

A content-based system will work with the information which the user provides. This can be explicitly or implicitly. Depending on data, a user profile is created that provides a lot of inputs or takes actions about recommendations.

[image:]

Cloud, Agile, and DevOps are making new demands that Information Technology can meet only through the use of Artificial Intelligence and its ilk. Professionals who wish to advance their Information Technology Operations career in the future will need to get a handle on Artificial Intelligence Operations, the term used to describe what it takes for Information Technology Operations to handle the digital transformation.

The shift that has greatly changed application development has begun remolding Information Technology operations. To keep pace with digital transformation, Information Technology Operations is changing how it manages its ecosystem, turning to artificial intelligence, analytics, and Machine Learning.

Another way to get the knowledge needed to advance in the coming brave new world of Information Technology Operations is to attend conferences where experts are discussing Artificial Intelligence, analytics, and machine-learning developments and trends and where you can consult with your peers about their experience with Artificial Intelligence Operations.

This year, people will witness not only big advancements in Machine Learning but also unimaginable steps and new applications that will force people to go back to square one and reconsider whether ML is a bane or a boon.

The following are examples of machine learning applications that have already being implemented in the real world
 .

a)

 Artificial Intelligence Chips

Can you recall when you used to play arcade Personal Computer games before the advanced consoles such as Xbox? When playing simple games, the Central Processing Unit (AMD or Intel) was sufficient, but when playing sophisticated games such as Assasin’s Creed and Tomb Raider, you would require a specific graphics card or GPU. These are known as specialized chips that boost your experience with computer graphics. Why is it necessary that we discuss chips? Well, a new advanced chip is about to be released in the market.

Artificial Intelligence chips are already in use on phones such as Honor Play, Galaxy Note 8, and iPhone XR. These entire phone models have a specific Artificial Intelligence chip that does the heavy lifting during functionalities such as Machine Language-based voice assistant, Artificial Intelligence-powered camera, and many more. By doing this, the Artificial Intelligence chip reduces the workload of the main processor and prevents the cell phone from being slow. However, Artificial Intelligence chips in cell-phones are just a small advancement.

Technology companies such as Intel, Google, Amazon, Microsoft, and Facebook have all began investing in specialized infrastructure that will enhance Artificial Intelligence-based roles, be it an AI chip that you can purchase and plugin or a cloud-based Central Processing Unit that can be used for neural networks and Machine Learning. The most recent in the market and news among these are the Intel Nervana that was made by Intel. Facebook also contributed significantly to the development of Intel Nervana. Other major developments include Amazon’s AWS Inferential, Microsoft’s Project Brainwave, and Google Cloud TPU
 .

The majority of these projects are still in a Beta stage. Therefore, this year could be the most probable year when the projects will be completed. Implementation of these projects will make Artificial Intelligence projects a reality because most of the predictions will be made in real-time.

b)

 Artificial Intelligence will Enhance DevOps

IT infrastructure and services are uphill tasks that you have to undertake to ensure your business continues functioning smoothly. In spite of that, many actions that are done by DevOps personnel can be done by machines. Examples of such actions include scaling up, debugging, and monitoring. DevOps has started to give way to AIOps gradually, and this, in turn, will simplify the work of software developers taking care of pipelines and procedures without the need of considering the challenges of maintenance and setups. There are many papers available on the internet that predicts the future of DevOps using AIOps.

c)

 The relationship between Artificial Intelligence and IoT

Many things have transpired in both IoT and AI. However, a perfect implementation of AI combined with IoT is yet to happen. The best example of a use case stated about this project is an attempt to capture information from vehicles using a sensor and using the information captured to make a decision on an insurance amount. So far, no insurance
 company has managed to use this method to calculate the total insurance premium amount.

I have high hopes that the situation will change this year as a result of the emergence of Artificial Intelligence enabled chips. Also, the emergence of newer and less costly cloud-based services coupled with huge investments in AI and IOT will change the marriage between IoT and AI. Numerous companies are going to manufacture self-driving vehicles and other self-driving automated machines. This year has provided a glance into how IOT and Artificial Intelligence have made companies have big dreams.

d)

 Personalized Drugs and Medicine

Do you use the same sleeping pills as your neighbor? Most of the time, you may realize the dosage may not be sufficient for you or you may be allergic to one of the ingredients used to make the medicine. Or sometimes, the sleeping pill may not have any effect on you due to specific reasons. Why shouldn’t you have medicine manufactured specifically for your body? Personalized drugs and medicine follow a strict procedure that entails analyzing a patient by considering his or her habits and lifestyles. After that, a pill that is made up of specific substances is recommended.

By the aid of the 100,000 Genomes project, personalized medicine should grow hugely before 2022. Even though they may be unavailable in public currently; several conferences such as the Predictive and Preventive conference, Preventive Medicine, and Preventive Medicine Diagnostics are supposed to take place this year
 .

Machine Learning will assist in analyzing patient information to decide on the kind of medicine that will suit each patient; doing away with the ancient one size is suitable for all theory.

e)

 Increased Evolution of Machine Learning-Based Assistants

Last year, we were all impressed and dumbfounded by the advanced and new Google Assistant. What did not happen is its commercial application. But that could be seen in 2019. Voice assistants such as Alexa have been collecting a lot of information from customers, and this year is likely to see voice assistants advancing technologically by being more human-like and intelligent. Voice assistants are expected to move on from your sitting room to public places, your vehicles, automated teller machines, and announcement systems.

f)

 Computer Vision will Change and Enhance the Future of Surveillance

Surveillance and computer vision have become a requirement in places such as city crossroads, airports, and malls. Technology companies have been secretly implementing their software in many places around the globe to track, report, and spot happenings whenever necessary. Would it not be nice if your home surveillance camera spots a thief trying to break into your house, and Google Assistant alerts you about it
 ?

Big companies such as Google are investing heavily in computer vision (recall how it asks you to choose images or pictures with street signs or vehicles sometimes when trying to login to your account). This year is likely to witness more advancement in computer vision by many players in the market. Surveillance systems will be faster, and surveillance will no longer be about video streaming but a stimulus to automated responses based on the situation on the ground.

g)

 Good Metrics from Machines or Equipment using Artificial Intelligence

How good would it be if you could tell which machine in your factory is almost worn out and needs repair before it breaks down and causes loss of work for a day?

Industrial and technical machines are normally serviced using a specified schedule. This always leads to the risk of unexpected and sudden machine failures and wasted labor most of the time. I believe we can have more effective servicing schedules and achieve better performance when sensors used with these machines and information gathered are fed to Machine Learning models.

An example of the implementation of the following is GE’s manufacturing of Digital Twins, where a virtual model is created for big equipment and machines. Many sensors, either in hundreds or thousands, are used to ensure that the twin is made aware of the condition of the real equipment or machine. This ensures that the twins’ currently deployed (approximately 650,000 twins) are serviced and managed. It
 is expected that there will be a further implementation of digital twins in intelligent factories across the world.

h)

 Social Credit Systems

It is a new application of Machine Learning that has already been implemented in China. It is a large ranking system that monitors the behavior of all the Chinese citizens using online activity monitors and surveillance cameras, to rank group them based on social credit.

Although it is supposed to be fully in use next year, its implementation has already taken China by storm, and people are being marked down or up based on practices such as giving donations to charity, boarding a bus or an airplane without a ticket, and smoking in public. The specific strategy is not known, but a sophisticated Machine Learning model uses information from multiple sources to make decisions on whether to lower a person’s score, hike it, or let it remain constant.

i)

 Healthcare will Experience many Artificial Intelligence Implementations

Healthcare has advanced over the years, and Machine Learning has resulted in many changes, such as the emergence of personalized medicines. In the last few months, China announced that it had made its first gene-edited newborns. The tool used by China is known as CRISPR-CAS9; it is made
 in such a way that it operates on DNA to provide a needed gene or disable the one that is causing illness. Even though the work hasn’t been published in journals, and it is yet to be verified, artificial intelligence has been successfully to predict changes in genomes that leads to cancer.

Next year, the world is likely to witness newer applications of genetic changes using Artificial Intelligence to get rid of newer illnesses and increase the lifespan of human beings. Nevertheless, the legal and ethical arguments, challenges, and dilemmas behind such medical miracles are still debatable in the scientific world.

j)

 Graphic Design and Image Processing Applications

In making a 2D imaging software that is similar to GIMP and Inkscape, Python was used. Furthermore, 3D animation packages also use Python in variable parts and criteria such as Blender, 3ds Max, Lightwave, Cinema 4D, Maya, and Houdini.

k)

 Computational and Scientific Applications

The greater velocities, profitability, and accessibility of instruments, for example, Numeric Python and Scientific Python had brought about Python turning into the primary piece of utilization programming engaged with calculation and preparing of logical information. 3D demonstrating programming, for example, FreeCAD, and limited component strategy programming, for example, Abaqus, are coded in
 .

l)

 Games

Python and Pygame are
 a decent dialect
 and system for fast amusement prototyping or for apprentices figuring out how to make straightforward recreations. To total up, Python isn't generally the best dialect
 for programming games; however, it is
 an essential instrument in
 a game software engineer’s toolbox. Python has different modules, libraries,
 and stages that support game improvement. For instance, PyGame gives usefulness and a library
 to game advancement. There have been various games manufactured utilizing Python including Civilization-IV, Disney's Toontown Online, and Vega Strike.

m)

 Web Applications and Web Frameworks

Python has been utilized to make an assortment of web-systems including Django, Bottle, Flask, and so forth. These structures give standard libraries
 and modules which rearrange undertakings identified with content the administration, collaboration with a database, and interfacing with various web
 conventions, for example, HTTP, SMTP, XML-RPC, FTP, and POP. Plone, a substance administration framework; ERP5, an open-source ERP which is
 utilized in
 aviation, clothing, and keeping the money; Odoo-a merged suite of business applications; and Google App motor are a couple of the well-
 known web
 applications in
 light of Python.

These structures are dependable for genuine applications. For Example, Plone, an outstanding open-source content administration framework—to which the creator is
 a donor—keeps running on Zope and has been actualized in
 associations,
 for example, Novell and Oxfam. The high-movement Reddit.com runs Pylons. The Revver.com video sharing site utilizes Django. Zope was
 a rising open-source application server that demonstrated Python's feasibility in
 the undertaking (albeit
 numerous Python engineers nowadays feel it is
 a bit "unPythonic").

Sending a Python Web application is
 normally direct, in
 spite of the fact that it
 is
 not exactly as simple as conveying a PHP application in
 Apache. The database network is
 extremely all
 around took into account by the question/social mappers, for example, SQLAlchemy. Nonetheless, most Python Web structures still can't seem to get up to speed to big business review
 application servers
 for Java or .Net regarding support for high-accessibility bunching, failover, and server administration.

n)

 Predicting Earthquakes

There was
 a Harvard scientist that figured out how to use deep learning to teach a computer system to perform viscoelastic computations. These are the computations that are used to predict earthquakes. Until they figured this out, these types of computations were
 computer-intensive, but the deep learning application helped to improve calculations by 50,000%. When we
 are talking about earthquake calculation, timing plays a large and important role.
 This improvement may just be able to save a life
 .

o)

 Neural Networks for Brain Cancer Detection

A French research
 team found that finding invasive brain
 cancer cells
 while in
 surgery was
 hard, mainly because of the lighting in
 the OR. They discovered that when they used neural networks along with Raman spectroscopy during surgery, it allowed
 them to be able to detect the cancer cells
 more easily
 and lowered
 leftover cancer. Actually, this is
 only a single piece of many over the last
 couple of months that have matched the workings of advanced classification and recognition with several kinds of cancers and screening tools.

p)

 Python in the Enterprise

The conventional venture stages are by need expansive and complex. They rely
 upon expounding devices to oversee code, assembles, and organizations. For some reason, this is a
 needless excess. Any software engineer ought to have the capacity to go after her most loved dialect
 when motivation hits her, and Python's instantaneousness makes it
 appropriate for basic mechanization assignments and speedy prototyping. Engineers, as a rule, likewise feel that Python gives them the headroom to move past a model without discarding their past work. Without a doubt, Python can be utilized for substantial and complex programming frameworks. YouTube, for example, runs primarily on Python, and it is
 an oft-favored dialect
 at associations including Google, NASA and Industrial Light, and Magic. Particular Python libraries
 and structures exist for logical programming, information control, Web administrations, XML exchange, and numerous different things
 .

q)

 Language Development

The module and design of Python’s architecture have shaken the development of many languages. Boo language uses a syntax, object model, and indentation related to Python. Moreover, the syntax of these shares common features with Python such as Apple’s Swift, Cobra, CoffeeScript, and OCaml.

r)

 Prototyping

Python is easy and simple to learn. It also has the advantage of being open source and free with the help and support of an enormous community. This makes it the preferred choice for prototype development. Further, the nimbleness, scalability, and extensibility and ease of refactoring code associated with Python allow faster development from the initial prototype.

s)

 Automatic Game Playing

This task involves a model learning how to play a computer-based game using only the pixels that are on the screen. This is
 a pretty hard task in
 the realm
 of deep reinforcement models, which has also
 been a breakthrough for DeepMind which was
 part of Google. Google DeepMind’s AlphaGo has expanded and culminated in this.

Activision-Blizzard, Nintendo, Sony, Zynga, and EA Sports have been the leaders in
 the gaming world
 and brought it
 to the next level through data science. Games are now being created by using machine learning algorithms that are able to upgrade and improve playing as the player moves through the game. When
 you are playing a motion game, the computer analyzes the previous moves to change the way the game performs.

Conclusion

Thank you for making it to the last page of the book Python Programming.
 I hope that you found it helpful and educative. Every measure was taken to see to it that all the topics are simple and easy to understand. I intentionally used simple language throughout the book especially when explaining machine learning concepts to make sure that you understand everything easily. The book has deliberately avoided complicated theories and used simple discussions that you can use at your convenience.

This book has taken you through many concepts of Python programming such as Data Analysis, Polymorphism, Inheritance, Lists, Classes, Loops, Objects, Variables, Methods, and many more. There is no one specific thing that you can do to learn object-oriented programming overnight. However, if you follow the right steps with commitment and dedication, you will get the results you desire. Make it your routine to combine a number of practical sessions to improve your Python programming skills.

The next step is to stop reading and start applying the lessons you have learned in real life. Do whatever you have identified as necessary to improve applications of programming in real life. You will realize that the majority of those who seem to have it all together lack the basic Python programming skills.

You might also need to refer to this book at a later date. Keep it and review it as often as you can. Just because you have reached the end of the book, it does not mean that there is nothing else to learn about Python Programming. Read more and expand your knowledge. It is the only way you will achieve
 the results you desire. Use some of the tips provided in the book to make the world a better place by coming up with solutions to real-life problems
 .

OEBPS/Image00081.jpg
--bottleneck dir=tf_files/bottlenecks

OEBPS/Image00080.jpg
1s tf_files/flower_photos

OEBPS/Image00083.jpg
--image_dir=tf files/flower_photos

OEBPS/Image00082.jpg
model_dir=tf files/models/"${ARCHITECTURE}" \
-sumaries_dir=tf files/training summaries/"${ARCHITECTURE}" \
--output_graph=tf_files/retrained graph.pb \
--output_labels=tf _files/retrained labels.txt \

OEBPS/Image00085.jpg
Advantage/
Techniques Definitions Disadvantage

Advantage
Easy creation and
explanability of results

Find similar users based on cosine
similarity or pearson correlation
and take weighted avg. of ratings

Disadvantage
Performance reduces
when data is sparse.
50, non scalable

Collaborative
Filtering (CF)

Advantage

Dimentionality
reduction deals with
missing/ sparse data

Use machine learning to find user

Model b ratings of unrated items. e.g. PCA,
approach SVD, Neural Nets, Matrix

Factorization

Disadvantage
Inference is intracable
because of

hidden/latent factors

OEBPS/Image00084.jpg
python -m scripts.retrain \

bottleneck dir=tf files/bottlenecks \

model_dir=tf files/models/"${ARCHITECTURE}" \

summaries dir=tf files/training summaries/"${ARCHITECTURE}" \
output_graph=tf files/retrained graph.pb \

ocutput_labels=tf files/retrained labels.txt \

--image_dir=tf files/flower_photos

OEBPS/Image00086.jpg
Recommender

interaction

Teedback

OEBPS/Image00001.jpg
THE ULTIMATE EXPERT GUIDE

PYTHON

ADVANCED FEATURES, OBJECT-ORIENTED
PROGRAMMING, DATA ANALYSIS, ARTIFICIAL
INTELLIGENCE AND MACHINE LEARNING WITH PYTHON

CLIVE CAMPBELL

OEBPS/Image00002.jpg
Reasons Why You Should Learn @ Python

o1 Perfect For Rookies.

Int

05 Learning

)

03 Opportinities) Startups and Corporate:
07 Python for Both

Pythonin Web
04 Development

02

Career

OEBPS/Image00077.jpg
Input: 299x299x3, Output:8x8x2048

Final part:8x8x2048 -> 1001

OEBPS/Image00079.jpg
=N
=

& |

gopnsbtb o

é

a |

& |

auentiz g s showima

counops e

i

OEBPS/Image00078.jpg
git clonme https://github.com/googlecodelabs/tensorflow-for—
poets-2

OEBPS/Image00005.jpg
Types of data

In Python we call them

Examples

Integers int 12, -999, 0, 980000, etc
Real Numbers | 1oat 4 9.5, 3.0; etc
Characters | str “hello’, “100", "$33", ""; etc

OEBPS/Image00006.jpg
>>>
>>> type(54)
<class 'int'>

>>>

>>> type("a string’
<class 'str'>

>>>

>>> type(98.188)
<class 'float'>
>>>

>>> type("3.14")
<class 'str'>

>>>

>>> type("99")
<class 'str'>

>>>

OEBPS/Image00003.jpg

OEBPS/Image00004.jpg
Add two numbers
numl = 3

num2 = 5

sum = numlnum2
print(sum)

OEBPS/Image00076.jpg

OEBPS/Image00000.jpg
THE ULTIMATE EXPERT GUIDE

PYTHON

ADVANCED FEATURES, OBJECT-ORIENTED
PROGRAMMING, DATA ANALYSIS, ARTIFICIAL
INTELLIGENCE AND MACHINE LEARNING WITH PYTHON

CLIVE CAMPBELL

OEBPS/Image00074.jpg
Group A

OEBPS/Image00075.jpg
Analy of a figure
Tiie

s label

a

X axiz tabel

OEBPS/Image00072.jpg
Long Off

Third Man Fine Leg

OEBPS/Image00073.jpg
Water usage

Clothes Washer

Leak

Other

Shower

Toilet

OEBPS/Image00070.jpg
500
400

300

200

400
350
480
450

400
550

370
550

420
520
520
490

370
370
450

‘Amazon
TechBargains
Micro Center
B&H

SaUsqam S013WW00-3

Electronic products.

OEBPS/Image00071.jpg
Months

January

April

July

October

1995

2000

2005
Years

2010

2015

700

600

500

400

300

200

100

OEBPS/Image00068.jpg
. . ~Grous &
+ Group3
- Group

V33

L

(R}

i
s
i
H

OEBPS/Image00069.jpg
400
300
200

Amazon

TechBargains
Micro Center
B&H

SaUSqaM S01aWW09-3

Electronic products

OEBPS/Image00067.jpg
100

80

60

Age

40

20

200

Height

100

50

50
Age

100

100 150
Height

200

II__Ill‘II
50 100

Weight

OEBPS/Image00065.jpg
0.0010
0.0008
0.0006
0.0004
0.0002

0.0000

2

Maximum longevity in years

20

2000

4000

6000 8000
Body mass in gramé

10000

12000

14600

000

OEBPS/Image00066.jpg
200

180

160

140

Height in cm

100

80

60

Relation between age, height, and weight for humans

@ o)
® (©]
A £, o0’
® ‘." o® .‘ L) ..:..
") @
.J... @ i ao
.o

Age

OEBPS/Image00063.jpg
Height

200

180

140

120

100

e GroupA . "
e Groups .
e GroupC
° .
% .
.
.
.
°
» o
. .
.
.
30 40 50 60 70 80 %0 100

Weight

OEBPS/Image00064.jpg
® Amphibia
® Aves

2
5
LN}

105

10t

100

1024

s1eak uj A&3nabuol wnwixew

10°

10° 104

Body mass in grams

10?

OEBPS/Image00061.jpg
Quality Quality

Commit Commit

iciency Efficiency

Responsible Responsible

Cooperation Cooperation

€ D
Quality Quality

Efficiency Efficiency

Responsible Responsible

Cooperation Cooperation

OEBPS/Image00062.jpg
200

180

60
0

yb1aH

120

100

50 60 70 80 920
Weight

40

30

OEBPS/Image00059.jpg
waths
Geography

10

History
englisn

aths

10

History
englisn

OEBPS/Image00060.jpg
w
L

N
L

[
L

o0 w>»

Efficiency

Quality

Commitment

Responsible Conduct

Cooperation

OEBPS/Image00057.jpg
Maths
Geography

History!
English

science

OEBPS/Image00058.jpg
waths
Geography,

Hstory
englsn

Geograhy

History
Englsn

Science

OEBPS/Image00056.jpg

OEBPS/Image00054.jpg
ssoy Aeof POO¥ uyor wes

SUBPNIS JO AweN

100

80

60

40

20

Marks in a test

OEBPS/Image00055.jpg
Movie comparison

100%
== Tomatometer

s Audience Score
80%
60%
40%
20%
0%

e shepe of WA

ack parther punkitk e Martian pected]9

OEBPS/Image00052.jpg
ihil
LLILL

IEEREEEEN RN
o A

OEBPS/Image00053.jpg
Marks in a test

100-

sam John Rock Joey Ross
Name of students

OEBPS/Image00050.jpg
90000

0000

70000

0000

50000

40000

30000

20000

10000

opicantincome

OEBPS/Image00051.jpg
140

8 8 g

w up) seou 33353 B3y

2

2015

2005 2010
Years

2000

1995

OEBPS/Image00048.jpg
0

20

150

100

o
o

10000 20000 30000 40000 50000 E0000 70000 B0000 50000

OEBPS/Image00049.jpg
dfboxplot (column="ApplicantIncome")

OEBPS/Image00047.jpg
df['ApplicantIncome’].hist(bins=50)

OEBPS/Image00045.jpg
VARIABLE DESCRIPTIONS:

Variable Description
Loan_10 Unique Loan 1D

Gender Hale/ Femsle

Married Applicant married (V/N)

Dependents Namber. of dependents

education Applicant Education (araduste/ Under Gradust
D)

Self_Employed Se1f employed (¥/1)

Applicantincone Applicant incone

Coapplicantincone Coapplicant incone

LoanAmount Loan amount.in thousands

Loan_Anount_Tern Term of Loan in months

Credit_History credit history meets guidelines
Property_ares Urban/ Semi Urban/ Rural

Loan_Status Loan approved (Y/N)

OEBPS/Image00046.jpg
ipython notebook -pylab-inline

OEBPS/Image00043.jpg
Vector

1179

Data Frame
(Table)

=H

OEBPS/Image00044.jpg
Collection

Preparation

DATA
PROCESSING

Processing

Storage

OEBPS/Image00041.jpg
-values-

'alpha'

'omega'

'gamma'

OEBPS/Image00042.jpg
Sets
- Dictionaries
Arrays X
i -

are other
types of
/ A
Collections |¢— 2are the most i
- popular type of Lists
\ are are created
are not using syntax

Mutable
have

are iterated

by are ordered & (17
. « groups of
- often Loops
Gaoms)e—ion (o)
' are reviewed N

such as sequentially by —_

i i are /
for elem in mylist: located by
‘/
n use

// \ be modified by
run forward are needed

from run backward for
from

(O to length-lj [-1 to Iengthj

uses syntax

mylist[ind] = X

Elements

sudlas *

which are

actually
can be of

OEBPS/Image00039.jpg
A)Data

Flair jm———— Creating a Dictionary
'
i
' In-Built Methods on
: a Dictionary
'
(R) 1
:. - Accessing a Dictionary
- i
' o] on
! a Dictionary
i
'
Rl L Reassigning a Dictionary
Python !
Dictionaries : Iterating on a Dictionary
'
i
'
:- - Deleting a Dictionary
'
i
! Nested Dictionary
'
'
g In-Built Functions on
e a Dictionary

OEBPS/Image00040.jpg
empty dictionary

my_diction = {}

dictionary with integer keys

my_diction = {1: “orange’, 2: “ball’}

dictionary with mixed keys

my_diction = {‘name’: ‘James’, 1: [2, 4, 3]}

using diction()

my_diction = diction({1:‘orange’, 2:ball’})

from sequence having each item as a pair

my_diction = diction([(1,‘orange”).

ball)])

OEBPS/Image00037.jpg
Common Segmentation Varisbles

» \ ** Behavioural
Geographle
i Demographic Psychographic ‘
Ity
Country Social C185S Nymber of Products Purchased
Region Personalty Uer Rate Frequency consumers
City Lifestyle use of buy products)
® Readiness Sage
City Size Family Size User Status
Education Purchase Oceasion

Religion
rionality

OEBPS/Image00038.jpg
NII.B_te am

'Colorado' | - -

'Boston' - -

"Minnesota'}f - -

"™Milwaukee'

'Seattle’

'Rockies'’

'Red Sox'

'"Twins'

'Brewers'

"Mariners'

OEBPS/Image00034.jpg
Si01ia porerbs joung

o

i %

Number of lusters (K]

3

OEBPS/Image00035.jpg
Similarity

Observations

OEBPS/Image00032.jpg
M
-1
LogarithmicLoss = <=3~ 3y os(py)
==t
where,

v_i, indicates whether sample i belongs to class j or not

p_ij, indicates the probability of sample i belonging to class j

OEBPS/Image00033.jpg
Predicted: | Predicted:
n=165 NO YES
Actual:

NO 50 10
Actual:
YES 5 100

OEBPS/Image00030.jpg
n
PX|cp=TI P(x [Ci)=P(x |C)xP(x,|Ci)x-xPlx [C)
k=1

OEBPS/Image00031.jpg
N Number of Correct predictions
Accuracy = —umber of Correct predictions
Y = Total number of predictions made

OEBPS/Image00028.jpg
1
d(x, x,.)2

w=

Distance calculating query

OEBPS/Image00029.jpg
Artificial Neural Network

| Update weights

Hidden
Units

Compare output with Target

OEBPS/Image00036.jpg
database 1 database 2 database 3

(From Ester et al. 1996)

OEBPS/Image00027.jpg
K-Nearest Neighbors,
Clearly Explained!!!

&
o || S

Stem Cells Blood Vessel Cells

OEBPS/Image00023.jpg
o
<><><>

5
< AN Ac
& O) e T
< < (e N

X I
S

OEBPS/Image00024.jpg
==

Barometric Overcast

Rising Faling Light Heavy

<G> Lo 0

OEBPS/Image00021.jpg

OEBPS/Image00022.jpg

OEBPS/Image00019.jpg
Method

Description

Method

Description

enumerate() | Reum an enumerate Ten) | Retum thelengih in thelist
object and contains the
index and value of all the
items oflist as a tuple.

sorted) | Retum a new sorted list any() | Rerum True if any clement of the
but does not sort the list list is true. If thelist is empty,
itself. retum False.

sm0 Retum the sum of all min0) | Retum the smallest item in thelist
clements in the list.

max() Retum the largest item in ally Retum True if all clements of

the list

the list are true

OEBPS/Image00020.jpg
Method | Description Method | Description
enumerate() | Retum an enumerate object. It | | tuple) | Convert an fterable|to tuple.
contains the index and value
of all the items of tuple as
pairs.
sorted() | Take clements in the tuple and | | max(0 | Retum the largest item in the
retum a new sorted lst (does tuple.
not sort the tuple tself).
ally Retum True if all clements of | | sum(| Retrun the sum of all clements
the tuple are frue (or if the in the tuple.
tuple is empty).
Ten() Retum thelength (the number | | min0) | Retum the smallest item in the
ofitems) in the tuple. tuple
any) | Revum True if any clement of

the tuple is true. If the tuple is
empty, retum False.

OEBPS/Image00017.jpg
import fractions

print(fractions.my_fraction(2.5)) #Output 5/2
print(fractions.my_fraction(4)) #Output 5
print(fractions.my_fraction(2,5)) #output 2/5

OEBPS/Image00018.jpg
Method | Description Method | Description

Tnsert) | - Insert an item at the defined opy() | - Retums a shallow copy of the
index. st

append() | - Add an clement tothe end of | | countQ | - Retums the count of mumber of
the list items passed as an argument

pop0) ~Removes and retums an dear) “Removes all items from the
clement at the given index. list

Tndex() | - Retums the index of the first SortQ) | - Sort items in a list in ascending,
matched item order

remove() | - Removes an item from the extend() | - Addall clements of a list to the

list another list
Teverse() | - Reverse the order of items in

the list

OEBPS/Image00025.jpg
Decision Tree for PlayTennis

Suniy overcast

Yes

Humidity

High Noviol ong Wegk
/ 4 5

No Yes Yes

OEBPS/Image00026.jpg
No
N N

Uniit

o

OEBPS/Image00012.jpg
count = @
while x > @:
x=x//2 # truncating division
count += 1
print "The approximate log2 is", count

OEBPS/Image00013.jpg
for target in iterable:
statement(s)

OEBPS/Image00010.jpg
if x < 0: print "x is negative"
elif x % 2: print "x is positive and odd
else: print "x is even and non-negative"

OEBPS/Image00011.jpg
while expression:
statement(s)

OEBPS/Image00008.jpg
variable_name = expression

OEBPS/Image00009.jpg
if expression:
statement (s)
elif expression:
statement (s)
elif expression:
statement (s)

else:
statement (s)

OEBPS/Image00007.jpg
>>> type(True)
<class 'bool’>
>>> type(False)
<class 'bool’>

OEBPS/Image00016.jpg

OEBPS/Image00014.jpg
for letter in
print "give me a", letter, "..."

OEBPS/Image00015.jpg
for [dass |remm |is and | nonlocal | import | vield
Ty def | dd Gif | with | pass Tambda | except
as Fom | if while | not global | else
Fnally |Nome |Tme |or False |assent | continue | break

raise

