

 [image: cover-image]

 Visual Quickpro Guide

 PHP and MySQL for Dynamic Web Sites

 Fifth Edition

 Larry Ullman

 [image: Images]

 Visual QuickPro Guide

 PHP and MySQL for Dynamic Web Sites, Fifth Edition

 Larry Ullman

 Peachpit Press
www.peachpit.com

 Copyright © 2018 by Larry Ullman

 To report errors, please send a note to: errata@peachpit.com
Peachpit Press is a division of Pearson Education.

 Editor: Mark Taber
Copy Editor: Elizabeth Welch
Technical Reviewer: Timothy Boronczyk
Production Coordinator: David Van Ness
Compositor: Danielle Foster
Proofreader: Scout Festa
Indexer: Valerie Haynes Perry
Cover Design: RHDG / Riezebos Holzbaur Design Group, Peachpit Press
Interior Design: Peachpit Press
Logo Design: MINE™ www.minesf.com

 Notice of Rights

 This publication is protected by copyright, and permission should be obtained from
 the publisher prior to any prohibited reproduction, storage in a retrieval system,
 or transmission in any form or by any means, electronic, mechanical, photocopying,
 recording, or otherwise. For information on obtaining permission for reprints and
 excerpts, please complete the form at http://www.pearsoned.com/permissions/

 Notice of Liability

 The information in this book is distributed on an “As Is” basis, without warranty.
 While every precaution has been taken in the preparation of the book, neither the
 author nor Peachpit Press shall have any liability to any person or entity with respect
 to any loss or damage caused or alleged to be caused directly or indirectly by the
 instructions contained in this book or by the computer software and hardware products
 described in it.

 Trademarks

 Visual QuickPro Guide is a registered trademark of Peachpit Press, a division of Pearson
 Education. MySQL is a registered trademark of MySQL AB in the United States and in
 other countries. Macintosh and macOS are registered trademarks of Apple, Inc. Microsoft
 and Windows are registered trademarks of Microsoft Corp. Other product names used
 in this book may be trademarks of their own respective owners. Images of Web sites
 in this book are copyrighted by the original holders and are used with their kind
 permission. This book is not officially endorsed by nor affiliated with any of the
 above companies, including MySQL AB.

 Unless otherwise indicated herein, any third party trademarks that may appear in this
 work are the property of their respective owners and any references to third party
 trademarks, logos or other trade dress are for demonstrative or descriptive purposes
 only. Such references are not intended to imply any sponsorship, endorsement, authorization,
 or promotion of Peachpit Press products by the owners of such marks, or any relationship
 between the owner and Peachpit Press or its affiliates, authors, licensees or distributors.

 ISBN-13: 978-0-13-430184-6
ISBN-10: 0-13-430184-6

 1 17

 Printed and bound in the United States of America

 Dedication

 Dedicated to the fine faculty at my alma mater, Northeast Missouri State University.
 In particular, I would like to thank Dr. Monica Barron, Dr. Dennis Leavens, Dr. Ed
 Tyler, and Dr. Cole Woodcox, whom I also have the pleasure of calling my friend. I
 would not be who I am as a writer, as a student, as a teacher, or as a person if it
 were not for the magnanimous, affecting, and brilliant instruction I received from
 these educators.

 Special Thanks to:

 My heartfelt thanks to everyone at Peachpit Press, as always.

 My gratitude to the fine editor on this project, Mark Taber, for leading the way and
 putting up with too many delayed emails and chapters!

 Thanks to David Van Ness and Elizabeth Welch for their hard work, helpful suggestions,
 and impressive attention to detail. Thanks to Scout Festa for ensuring the writing
 is “pixel perfect.” Thanks also to Valerie Perry for indexing and Danielle Foster
 for laying out the book, and thanks to Timothy Boronczyk for his technical review.

 Kudos to the good people working on PHP, MySQL, Apache, phpMyAdmin, MAMP, and XAMPP,
 among other great projects. And a hearty “cheers” to the denizens of the various newsgroups,
 mailing lists, support forums, etc., who offer assistance and advice to those in need.

 Thanks, as always, to the readers, whose support gives my job relevance. An extra
 helping of thanks to those who provided the translations in Chapter 17, “Example—Message Board,” and who offered up recommendations as to what they’d like to see in this edition.

 Finally, I would not be able to get through a single book if it weren’t for the love
 and support of my wife, Jessica. And a special shout-out to Zoe and Sam, who give
 me reasons to, and not to, write books!.

 Table of Contents

 Introduction

 Chapter 1 Introduction to PHP

 Basic Syntax

 Sending Data to the Browser

 Writing Comments

 What Are Variables?

 Introducing Strings

 Concatenating Strings

 Introducing Numbers

 Introducing Constants

 Single vs. Double Quotation Marks

 Basic Debugging Steps

 Review and Pursue

 Chapter 2 Programming with PHP

 Creating an HTML Form

 Handling an HTML Form

 Conditionals and Operators

 Validating Form Data

 Introducing Arrays

 For and While Loops

 Review and Pursue

 Chapter 3 Creating Dynamic Web Sites

 Including Multiple Files

 Handling HTML Forms, Revisited

 Making Sticky Forms

 Creating Your Own Functions

 Review and Pursue

 Chapter 4 Introduction to MySQL

 Naming Database Elements

 Choosing Your Column Types

 Choosing Other Column Properties

 Accessing MySQL

 Review and Pursue

 Chapter 5 Introduction to SQL

 Creating Databases and Tables

 Inserting Records

 Selecting Data

 Using Conditionals

 Using LIKE and NOT LIKE

 Sorting Query Results

 Limiting Query Results

 Updating Data

 Deleting Data

 Using Functions

 Review and Pursue

 Chapter 6 Database Design

 Normalization

 Creating Indexes

 Using Different Table Types

 Languages and MySQL

 Time Zones and MySQL

 Foreign Key Constraints

 Review and Pursue

 Chapter 7 Advanced SQL and MySQL

 Performing Joins

 Grouping Selected Results

 Advanced Selections

 Performing FULLTEXT Searches

 Optimizing Queries

 Performing Transactions

 Database Encryption

 Review and Pursue

 Chapter 8 Error Handling and Debugging

 Error Types and Basic Debugging

 Displaying PHP Errors

 Adjusting Error Reporting in PHP

 Creating Custom Error Handlers

 PHP Debugging Techniques

 SQL and MySQL Debugging Techniques

 Review and Pursue

 Chapter 9 Using PHP with MySQL

 Modifying the Template

 Connecting to MySQL

 Executing Simple Queries

 Retrieving Query Results

 Ensuring Secure SQL

 Counting Returned Records

 Updating Records with PHP

 Review and Pursue

 Chapter 10 Common Programming Techniques

 Sending Values to a Script

 Using Hidden Form Inputs

 Editing Existing Records

 Paginating Query Results

 Making Sortable Displays

 Review and Pursue

 Chapter 11 Web Application Development

 Sending Email

 Handling File Uploads

 PHP and JavaScript

 Understanding HTTP Headers

 Date and Time Functions

 Performing Transactions

 Review and Pursue

 Chapter 12 Cookies and Sessions

 Making a Login Page

 Making the Login Functions

 Using Cookies

 Using Sessions

 Improving Session Security

 Review and Pursue

 Chapter 13 Security Methods

 Preventing Spam

 Validating Data by Type

 Validating Files by Type

 Preventing XSS Attacks

 Using the Filter Extension

 Preventing SQL Injection Attacks

 Securing Passwords with PHP

 Review and Pursue

 Chapter 14 Perl-Compatible Regular Expressions

 Creating a Test Script

 Defining Simple Patterns

 Using Quantifiers

 Using Character Classes

 Finding All Matches

 Using Modifiers

 Matching and Replacing Patterns

 Review and Pursue

 Chapter 15 Introducing jQuery

 What Is jQuery?

 Incorporating jQuery

 Using jQuery

 Selecting Page Elements

 Event Handling

 DOM Manipulation

 Using Ajax

 Review and Pursue

 Chapter 16 An OOP Primer

 Fundamentals and Syntax

 Working with MySQL

 The DateTime Class

 Review and Pursue

 Chapter 17 Example—Message Board

 Making the Database

 Writing the Templates

 Creating the Index Page

 Creating the Forum Page

 Creating the Thread Page

 Posting Messages

 Review and Pursue

 Chapter 18 Example—User Registration

 Creating the Templates

 Writing the Configuration Scripts

 Creating the Home Page

 Registration

 Activating an Account

 Logging In and Logging Out

 Password Management

 Review and Pursue

 Appendix A Installation

 Installation on Windows

 Installation on macOS

 Managing MySQL Users

 Testing Your Installation

 Configuring PHP

 Configuring Apache

 Index

 Introduction

 Today’s web users expect exciting pages that are updated frequently and provide a
 customized experience. For them, web sites are more like communities, to which they’ll
 return time and again. At the same time, site administrators want pages that are easier
 to update and maintain, understanding that’s the only reasonable way to keep up with
 visitors’ expectations. For these reasons and more, PHP and MySQL have become the
 de facto standards for creating dynamic, database-driven web sites.

 This book represents the culmination of my many years of web development experience
 coupled with the value of having written several previous books on the technologies
 discussed herein. The focus of this book is on covering the most important knowledge
 in the most efficient manner. It will teach you how to begin developing dynamic web
 sites and give you plenty of example code to get you started. All you need to provide
 is an eagerness to learn.

 Well, that and a computer.

 What Are Dynamic Web Sites?

 Dynamic web sites are flexible and potent creatures, more accurately described as
 applications than merely sites. Dynamic web sites

 [image: Images] Respond to different parameters (for example, the time of day or the version of the
 visitor’s browser)

 [image: Images] Have a “memory,” allowing for user registration and login, e-commerce, and similar
 processes

 [image: Images] Almost always integrate HTML forms, allowing visitors to perform searches, provide
 feedback, and so forth

 [image: Images] Often have interfaces where administrators can manage the content

 [image: Images] Are easier to maintain, upgrade, and build upon than statically made sites

 Many technologies are available for creating dynamic web sites. The most common are
 ASP.NET (Active Server Pages, a Microsoft construct), JSP (JavaServer Pages), ColdFusion,
 Ruby on Rails (a web development framework for the Ruby programming language), and
 PHP. Dynamic sites don’t always rely on a database, but more and more of them do,
 particularly as excellent database applications like MySQL and MongoDB are available
 at little to no cost.

 What Happened to PHP 6?

 When I wrote a previous edition of this book, PHP 6 and MySQL 5 for Dynamic Web Sites: Visual QuickPro Guide, the next major release of PHP—PHP 6—was approximately 50 percent complete. Thinking
 that PHP 6 would therefore be released sometime after the book was published, I relied
 on a beta version of PHP 6 for a bit of that edition’s material. And then… PHP 6 died.

 One of the key features planned for PHP 6 was support for Unicode, meaning that PHP
 6 would be able to work natively with any language. This would be a great addition
 to an already popular programming tool. Unfortunately, implementing Unicode support
 went from being complicated to quite difficult, and the developers behind the language
 tabled development of PHP 6. Not all was lost, however; some of the other features
 planned for PHP 6, such as support for namespaces (an object-oriented programming concept), were added to PHP 5.3.

 When it was time to release the next major version of PHP, it was decided to name
 it PHP 7 to avoid confusion with the PHP 6 version that was started but never completed.

 What is PHP?

 PHP originally stood for “Personal Home Page” when it was created in 1994 by Rasmus
 Lerdorf to track the visitors to his online résumé. As its usefulness and capabilities
 grew (and as it started being used in more professional situations), it came to mean
 “PHP: Hypertext Preprocessor.”

 According to the official PHP web site, found at www.php.net [image: Images], PHP is a “popular general-purpose scripting language that is especially suited to
 web development.” It’s a long but descriptive definition, whose meaning I’ll explain.

 [image: Images]

 [image: Images] The home page for PHP.

 Starting at the end of that statement, to say that PHP is especially suited to web development means that although you can use PHP for non-web development purposes, it’s best suited
 for that. The corollary is that although many other technologies can be used for web
 development, that may not be what they’re best suited for. Simply put, if you’re hoping
 to do web development, PHP is an excellent choice.

 Also, PHP is a scripting language, as opposed to a compiled language: PHP was designed to write web scripts, not stand-alone applications (although,
 with some extra effort, you can create applications in PHP). PHP scripts run only
 after an event occurs—for example, when a user submits a form or goes to a URL (uniform
 resource locator, the technical term for a web site address).

 I should add to this definition that PHP is a server-side, cross-platform technology,
 both descriptions being important. Server-side refers to the fact that everything PHP does occurs on the server. A web server application,
 like Apache or Microsoft’s IIS (Internet Information Services), is required and all
 PHP scripts must be accessed through a URL (http://something). Its cross-platform nature means that PHP runs on most operating systems, including
 Windows, Unix (and its many variants), and Macintosh. More important, the PHP scripts
 written on one server will normally work on another with little or no modification.

 At the time this book was written, PHP was at version 7.1.7. Although PHP 7 is a major
 release, the most important changes are in its core, with PHP 7 being significantly
 more performant than PHP 5.

 For the most part, the examples in this book will work fine so long as you’re using
 at least version 5.4. Some functions and features covered will require more specific or current versions, like PHP 5.6 or greater.
 In those cases, I will make it clear when the functionality was added to PHP, and
 provide alternative solutions if you have a slightly older version of the language.

 More information about PHP can always be found at PHP.net.

 Why use PHP?

 Put simply, when it comes to developing dynamic web sites, PHP is better, faster,
 and easier to learn than the alternatives. What you get with PHP is excellent performance,
 a tight integration with nearly every database available, stability, portability,
 and a nearly limitless feature set due to its extendibility. All of this comes at
 no cost (PHP is open source) and with a very manageable learning curve. PHP is one
 of the best marriages I’ve ever seen between the ease with which beginning programmers
 can start using it and the ability for more advanced programmers to do everything
 they require.

 Finally, the proof is in the pudding: PHP has seen an exponential growth in use since
 its inception, and is the server-side technology of choice on over 82 percent of all
 web sites [image: Images]. In terms of all programming languages, PHP is the sixth most popular [image: Images].

 [image: Images]

 [image: Images] The Web Technology Surveys site provides this graphic regarding server-side technologies
 (www.w3techs.com/technologies/overview/programming_language/all).

 [image: Images]

 [image: Images] The Tiobe Index (https://www.tiobe.com/tiobe-index/) uses a combination of factors to rank the popularity of programming languages.

 Of course, you might assume that I, as the author of a book on PHP (several, actually),
 have a biased opinion. Although not nearly to the same extent as I have with PHP,
 I’ve also developed sites using JavaServer Pages (JSP), Ruby on Rails (RoR), Sinatra
 (another Ruby web framework), and ASP.NET. Each has its pluses and minuses, but PHP
 is the technology I always return to. You might hear that it doesn’t perform or scale
 as well as other technologies, but Yahoo, Wikipedia, and Facebook all use PHP, and
 you can’t find many sites more visited or demanding than those.

 You might have heard that PHP is less secure. But security isn’t in the language; it’s in how that language is used. Rest assured that a complete and up-to-date discussion
 of all the relevant security concerns is provided by this book.

 How PHP works

 As previously stated, PHP is a server-side language. This means that the code you
 write in PHP sits on a host computer called a server. The server sends web pages to the requesting visitors (you, the client, with your
 browser).

 When a visitor goes to a site written in PHP, the server reads the PHP code and then
 processes it according to its scripted directions. In the example shown in [image: Images], the PHP code tells the server to send the appropriate data—HTML code—to the browser,
 which treats the received code as it would a standard HTML page.

 [image: Images]

 [image: Images] How PHP fits into the client/server model when a user requests a page.

 This differs from a static HTML site where, when a request is made, the server merely
 sends the HTML data to the browser and there is no server-side interpretation occurring
 [image: Images]. Because no server-side action is required, you can run HTML pages in your browser
 without using a server at all.

 [image: Images]

 [image: Images] The client/server process when a request for a static HTML page is made.

 To the end user and the browser there is no perceptible difference between what home.html and home.php may look like, but how that page’s content was created will be significantly different.

 What is MySQL?

 MySQL (www.mysql.com) [image: Images] is the world’s most popular open source database. In fact, today MySQL is a viable
 competitor to pricey goliaths such as Oracle and Microsoft’s SQL Server (and, ironically,
 MySQL is owned by Oracle). Like PHP, MySQL offers excellent performance, portability,
 and reliability, with a moderate learning curve and little to no cost.

 [image: Images]

 [image: Images] The home page for the MySQL database application.

 MySQL is a database management system (DBMS) for relational databases (therefore,
 MySQL is an RDBMS). A database, in the simplest terms, is a collection of data, be
 it text, numbers, or binary files, stored and kept organized by the DBMS.

 There are many types of databases, from the simple flat-file to relational to object-oriented
 to NoSQL. A relational database uses multiple tables to store information in its most
 discernible parts. Although relational databases may involve more thought in the design
 and programming stages, they offer improved reliability and data integrity that more
 than make up for the extra effort required. Further, relational databases are more
 searchable and allow for concurrent users.

 By incorporating a database into a web application, some of the data generated by
 PHP can be retrieved from MySQL [image: Images]. This further moves the site’s content from a static (hard-coded) basis to a flexible
 one, flexibility being the key to a dynamic web site.

 [image: Images]

 [image: Images] How most of the dynamic applications in this book will work, using both PHP and MySQL.

 MySQL is an open source application, like PHP, meaning that it is free to use or even
 modify (the source code itself is downloadable). There are occasions when you should
 pay for a MySQL license, especially if you are making money from the sales or incorporation
 of the MySQL product. Check MySQL’s licensing policy for more information on this.

 The MySQL software consists of several pieces, including the MySQL server (mysqld, which runs and manages the databases), the MySQL client (mysql, which gives you an interface to the server), and numerous utilities for maintenance
 and other purposes. PHP has always had good support for MySQL, and that is even truer
 in the most recent versions of the language.

 MySQL has been known to handle databases as large as 60,000 tables with more than
 several billion rows. MySQL can work with tables as large as thousands of terabytes
 on some operating systems, generally a healthy 4 GB otherwise. MySQL is used by NASA
 and the U.S. Census Bureau, among many others.

 As of this writing, MySQL is on version 5.7.18. The version of MySQL you have affects
 what features you can use, so it’s important that you know what you’re working with.
 For this book, MySQL 5.7.14 was used, although you should be able to do everything
 in this book as long as you’re using a version of MySQL greater than 5.0.

 Pronunciation Guide

 Trivial as it may be, I should clarify up front that MySQL is technically pronounced
 “My Ess Cue Ell,” just as SQL should be said “Ess Cue Ell.” This is a question many
 people have when first working with these technologies. Though not a critical issue,
 it’s always best to pronounce acronyms correctly.

 What You’ll Need

 To follow the examples in this book, you’ll need the following tools:

 [image: Images] A web server application (for example, Apache, Nginx, or IIS)

 [image: Images] PHP

 [image: Images] MySQL

 [image: Images] A browser (Microsoft’s Internet Explorer or Edge, Mozilla’s Firefox, Apple’s Safari,
 Google’s Chrome, etc.)

 [image: Images] A text editor, PHP-capable WYSIWYG application (Adobe’s Dreamweaver qualifies), or
 IDE (integrated development environment)

 [image: Images] An FTP application, if using a remote server

 One of the great things about developing dynamic web sites with PHP and MySQL is that
 all of the requirements can be met at no cost whatsoever, regardless of your operating
 system! Apache, PHP, and MySQL are each free, browsers can be had without cost, and
 many good text editors are available for nothing.

 The appendix discusses the installation process on the Windows and macOS operating
 systems. If you have a computer, you are only a couple of downloads away from being
 able to create dynamic web sites (in that case, your computer would represent both
 the client and the server in [image: Images] and [image: Images]). Conversely, you could purchase web hosting for only dollars per month that will
 provide you with a PHP- and MySQL-enabled environment already online.

 About This Book

 This book teaches you how to develop dynamic web sites with PHP and MySQL, covering
 the knowledge that most developers might require. In keeping with the format of the
 Visual QuickPro series, the information is discussed using a step-by-step approach
 with corresponding images. The focus has been kept on real-world, practical examples,
 avoiding “here’s something you could do but never would” scenarios. As a practicing
 web developer myself, I wrote about the information that I use and avoided those topics
 immaterial to the task at hand. As a practicing writer, I made certain to include
 topics and techniques that I know readers are asking about.

 The structure of the book is linear, and the intention is that you’ll read it in order.
 It begins with three chapters covering the fundamentals of PHP (by the second chapter,
 you will have already developed your first dynamic web page). After that, there are
 four chapters on SQL (Structured Query Language, which is used to interact with all
 databases) and MySQL. Those chapters teach the basics of SQL, database design, and
 the MySQL application in particular. Then there’s one chapter on debugging and error
 management, information everyone needs. This is followed by a chapter introducing
 how to use PHP and MySQL together, a remarkably easy thing to do.

 The following five chapters teach more application techniques to round out your knowledge.
 Security, in particular, is repeatedly addressed in those pages. The next two chapters
 expand your newfound knowledge into subjects that, though not critical, are ones you’ll
 want to pick up in time regardless. Finally, I’ve included two example chapters, in
 which the heart of different web applications are developed, with instructions.

 Is this book for you?

 This book was written for a wide range of people within the beginner-to-intermediate
 range. The book makes use of HTML5, so solid experience with HTML is a must. Although
 this book covers many things, it does not formally teach HTML or web design. Some
 CSS is sprinkled about these pages but also not taught.

 Second, this book expects that you have one of the following:

 [image: Images] The drive and ability to learn without much hand holding, or…

 [image: Images] Familiarity with another programming language (even solid JavaScript skills would
 qualify), or…

 [image: Images] A cursory knowledge of PHP

 Make no mistake: This book covers PHP and MySQL from A to Z, teaching everything you’ll
 need to know to develop real-world web sites, but the early chapters in particular
 cover PHP at a quick pace. For this reason I recommend either some programming experience
 or a curious and independent spirit when it comes to learning new things. If you find
 that the material goes too quickly, you should probably start off with the latest
 edition of my book PHP for the World Wide Web: Visual QuickStart Guide, which goes at a much more tempered pace.

 No database experience is required, since SQL and MySQL are discussed starting at
 a more basic level.

 What’s new in this edition

 The first four editions of this book have been very popular, and I’ve received a lot
 of positive feedback on them (thanks!). In writing this new edition, I focused on
 ensuring the material is accurate, up to date, and in keeping with today’s standards
 and best practices. The changes in this edition include

 [image: Images] Updating all the code to use HTML5

 [image: Images] Use of more modern HTML design techniques, including multiple examples of the Twitter
 Bootstrap framework

 [image: Images] Updating everything for the latest versions of PHP and MySQL

 [image: Images] Additional PHP and MySQL examples, such as performing transactions from a PHP script

 [image: Images] Even more information and examples for improving the security of your scripts and
 sites

 [image: Images] Removal of outdated content (e.g., things used in older versions of PHP or no longer
 applicable)

 [image: Images] Return of the installation appendix to the printed book (in the fourth edition, the
 appendix was freely available online instead)

 For those of you that also own a previous edition (thanks, thanks, thanks!), I hope
 you find this to be a fresh and sharp update to an already excellent resource.

 How this book compares to my other books

 This is my fourth PHP and/or MySQL title, after (in order)

 [image: Images] PHP for the World Wide Web: Visual QuickStart Guide

 [image: Images] PHP Advanced and Object-Oriented Programming: Visual QuickPro Guide

 [image: Images] MySQL: Visual QuickStart Guide

 I hope this résumé implies a certain level of qualification to write this book, but
 how do you, as a reader standing in a bookstore, decide which title is for you? Of
 course, you are more than welcome to splurge and buy the whole set, earning my eternal
 gratitude, but…

 The PHP for the World Wide Web: Visual QuickStart Guide book is very much a beginner’s guide to PHP. This title overlaps it some, mostly
 in the first three chapters, but uses new examples so as not to be redundant. For
 novices, this book acts as a follow-up to that one. The advanced book is really a
 sequel to this one, as it assumes a fair amount of knowledge and builds on many things
 taught here. The MySQL book focuses almost exclusively on MySQL (there are but two
 chapters that use PHP).

 With that in mind, read the section “Is this book for you?” and see if the requirements apply. If you have no programming experience at all
 and would prefer to be taught PHP more gingerly, my first book would be better. If
 you are already very comfortable with PHP and want to learn more of its advanced capabilities,
 pick up PHP Advanced and Object-Oriented Programming: Visual QuickPro Guide. If you are most interested in MySQL and are not concerned with learning much about
 PHP, check out MySQL: Visual QuickStart Guide.

 That being said, if you want to learn everything you need to know to begin developing
 dynamic web sites with PHP and MySQL today, then this is the book for you! It references
 the most current versions of both technologies, uses techniques not previously discussed
 in other books, and contains its own unique examples.

 And whatever book you do choose, make sure you’re getting the most recent edition
 or, barring that, the edition that best matches the versions of the technologies you’ll
 be using.

 Companion Web Site

 I have developed a companion web site specifically for this book, which you may reach
 at LarryUllman.com. There you will find every script from this book, a text file containing lengthy
 SQL commands, and a list of errata that occurred during publication. (If you have
 problems with a command or script, and you are following the book exactly, check the
 errata to ensure there is not a printing error before driving yourself absolutely
 mad.) At this web site you will also find a popular forum where readers can ask and
 answer each other’s questions (I answer many of them myself), and more!

 Questions, comments, or suggestions?

 If you have any questions on PHP or MySQL, you can turn to one of the many web sites,
 mailing lists, newsgroups, and FAQ repositories already in existence. A quick search
 online will turn up virtually unlimited resources. For that matter, if you need an
 immediate answer, those sources or a quick online search will most assuredly serve
 your needs (in all likelihood, someone else has already seen and solved your exact
 problem).

 You can also direct your questions, comments, and suggestions to me. You’ll get the
 fastest reply using the book’s corresponding forum (I always answer those questions
 first). If you’d rather email me, my contact information is available on my site.
 I do try to answer every email I receive, although I cannot guarantee a quick reply.

 Accessing the free Web Edition

 Your purchase of this book in any format includes access to the corresponding Web
 Edition, which provides several special online-only features:

 [image: Images] The complete text of the book, with all the figures and in full color

 [image: Images] Updates and corrections as they become available

 The Web Edition can be viewed on all types of computers and mobile devices with any
 modern web browser that supports HTML5. To get access to the Web Edition of PHP and MySQL for Dynamic Web Sites: Visual QuickPro Guide all you need to do is register this book:

 1. Go to www.peachpit.com/register.

 2. Sign in or create a new account.

 3. Enter ISBN: 9780134301846.

 4. Answer the questions as proof of purchase.

 The Web Edition will appear under the Digital Purchases tab on your Account page.
 Click the Launch link to access the product.

 1. Introduction to PHP

 In This Chapter

 Basic Syntax

 Sending Data to the Browser

 Writing Comments

 What Are Variables?

 Introducing Strings

 Concatenating Strings

 Introducing Numbers

 Introducing Constants

 Single vs. Double Quotation Marks

 Basic Debugging Steps

 Review and Pursue

 Although this book focuses on using MySQL and PHP together, you’ll do the majority
 of your legwork using PHP alone. In this and the following chapter, you’ll learn PHP’s
 basics, from syntax to variables, operators, and language constructs (conditionals,
 loops, and whatnot). As you are picking up these fundamentals, you’ll also develop
 usable code that you’ll integrate into larger applications later in the book.

 This introductory chapter will cruise through most of the basics of the PHP language.
 You’ll learn the syntax for coding PHP, how to send data to the browser, and how to
 use two kinds of variables—strings and numbers—plus constants. Some examples may seem
 inconsequential, but they’ll demonstrate ideas you’ll need to master in order to write
 more advanced scripts further down the line. The chapter concludes with some quick
 debugging tips…you know…just in case!

 Basic Syntax

 As stated in the book’s introduction, PHP is an HTML-embedded scripting language, meaning that you can intermingle PHP and HTML code within the
 same file. So to begin programming with PHP, start with a simple web page. Script 1.1 is an example of a no-frills, no-content HTML5 document, which will be used as the
 foundation for most web pages in the book (this book does not formally discuss HTML5;
 see a resource dedicated to the topic for more information). Please also note that
 the template uses UTF-8 encoding, a topic discussed in the following sidebar.

 Script 1.1 A basic HTML5 page.

 Click here to view code image

1 <!doctype html>
2 <html lang="en">
3 <head>
4 <meta charset="utf-8">
5 <title>Page Title</title>
6 </head>
7 <body>
8 <!-- Script 1.1 - template.html -->
9 </body>
10 </html>

 To add PHP code to a page, place it within PHP tags:

 <?php
?>

 Understanding Encoding

 Encoding is a big subject, but what you most need to understand is this: the encoding you use in a file dictates what characters can be represented (and therefore, what languages can be used). To select an encoding, you must first
 confirm that your text editor or integrated development environment (IDE)—whatever
 application you’re using to create the HTML and PHP scripts—can save documents using
 that encoding. Some applications let you set the encoding in the preferences or options
 area; others set the encoding when you save the file.

 To indicate the encoding to the browser, there’s the corresponding meta tag:

 <meta charset="utf-8">

 The charset=utf-8 part says that UTF-8 encoding is being used, short for 8-bit Unicode Transformation Format. Unicode is a way of reliably representing every symbol in every alphabet. Version
 9.0.0 of Unicode—the current version as of this writing—supports over 128,000 characters!

 If you want to create a multilingual web page, UTF-8 is the way to go, and I’ll be
 using it in this book’s examples. You don’t have to, of course. But whatever encoding
 you do use, make sure that the encoding indicated by the HTML page matches the actual
 encoding set in your text editor or IDE. If you don’t, you’ll likely see odd characters
 when you view the page in a browser.

 Script 1.2 This first PHP script doesn't do anything, but it does demonstrate how a PHP script
 is written. It'll also be used as a test script, prior to getting into elaborate PHP
 code.

 Click here to view code image

 1 <!doctype html>
2 <html lang="en">
3 <head>
4 <meta charset="utf-8">
5 <title>Basic PHP Page</title>
6 </head>
7 <body>
8 <!-- Script 1.2 - first.php -->
9 <p>This is standard HTML.</p>
10 <?php
11 ?>
12 </body>
13 </html>

 Anything written within these tags will be treated by the web server as PHP, meaning
 the PHP interpreter will process the code. Any text outside of the PHP tags is immediately
 sent to the browser as regular HTML. Because PHP is most often used to create content
 displayed in the browser, the PHP tags are normally put somewhere within the page’s
 body.

 Along with placing PHP code within PHP tags, your PHP files must have a proper extension. The extension tells the server to treat the script in a special way—namely, as a
 PHP page. Most web servers use .html for standard HTML pages and .php for PHP files.

 Before getting into the steps, understand that you must already have a working PHP installation! This could be on a hosted site or your own computer, after following the instructions
 in Appendix A, “Installation.”

 To make a basic PHP script:

 1. Create a new document in your text editor or IDE, to be named first.php (Script 1.2).

 It generally does not matter what application you use, be it Adobe Dreamweaver (a
 fancy IDE), Sublime Text (a great and popular plain-text editor), or vi (a plain-text
 Unix editor, lacking a graphical interface). Still, some text editors and IDEs make
 typing and debugging HTML and PHP easier (conversely, Notepad on Windows does some
 things that make coding harder: don’t use Notepad!). If you don’t already have an application you’re attached to, search online or
 use the book’s corresponding forum (LarryUllman.com/forums/) to find one.

 2. Create a basic HTML document:

 Click here to view code image

 <!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Basic PHP Page</title>
</head>
<body>
 <!-- Script 1.2 - first.php -->
 <p>This is standard HTML.</p>
</body>
</html>

 This is a basic HTML5 page. One of the niceties of HTML5 is its minimal doctype and
 syntax.

 3. Before the closing body tag, insert the PHP tags:

 <?php
?>

 These are the formal PHP tags, also known as XML-style tags. Although PHP supports other tag types, I recommend that you use the formal
 type, and I will do so throughout this book.

 4. Save the file as first.php.

 Remember that if you don’t save the file using an appropriate PHP extension, the script
 will not execute properly. (Just one of the reasons not to use Notepad is that it
 will secretly add the .txt extension to PHP files, thereby causing many headaches.)

 5. Place the file in the proper directory of your web server.

 If you are running PHP on your own computer (presumably after following the installation
 directions in Appendix A), you just need to move, copy, or save the file to a specific
 folder on your computer. Check Appendix A or the documentation for your particular
 web server to identify the correct directory, if you don’t already know what it is.

 If you are running PHP on a hosted server (i.e., on a remote computer), you’ll need
 to use a Secure File Transfer Protocol (SFTP) application to upload the file to the
 proper directory. Your hosting company will provide you with access and the other
 necessary information.

 6. Run first.php in your browser [image: Images].

 [image: Images]

 [image: Images]While it seems like any other (simple) HTML page, this is in fact a PHP script and
 the basis for the rest of the examples in the book.

 Because PHP scripts need to be parsed by the server, you absolutely must access them via a URL (i.e., the address in the browser must begin with http:// or https://). You cannot simply open them in your browser as you would a file in other applications
 (in which case the address would start with file:// or C:\ or the like).

 If you are running PHP on your own computer, you’ll need to use a URL like http://localhost/first.php, http://127.0.0.1/first.php, or http://localhost/~<user>/first.php (on macOS, using your actual username for <user>). If you are using a hosted site, you’ll need to use http://your-domain-name/first.php (e. g., http://www.example.com/first.php).

 7. If you don’t see results like those in [image: Images], start debugging!

 Part of learning any programming language is mastering debugging. It’s a sometimes
 painful but absolutely necessary process. With this first example, if you don’t see
 a simple, but perfectly valid, web page, follow these steps:

 A. Confirm that you have a working PHP installation (see Appendix A for testing instructions).

 B. Make sure that you are running the script through a URL. The address in the browser
 must begin with http. If it starts with file://, that’s a problem [image: Images].

 [image: Images]

 [image: Images]PHP code will only be executed when run through http://.

 C. If you get a file not found (or similar) error, you’ve likely put the file in the
 wrong directory or mistyped the file’s name (either when saving it or in your browser).

 If you’ve gone through all this and you are still having problems, turn to the book’s
 corresponding forum (LarryUllman.com/forums/).

 Tip

 To find more information about HTML, check out Elizabeth Castro’s excellent HTML and CSS: Visual QuickStart Guide (Peachpit, 2013), or search online.

 Tip

 You can embed multiple sections of PHP code within a single HTML document (i.e., you
 can go in and out of the two languages). You’ll see examples of this throughout the
 book.

 Tip

 You can declare the encoding of an external CSS file by adding @charset “utf-8”; as the first line in the file. If you’re not using UTF-8, change the line accordingly.

 Sending Data to the Browser

 To create dynamic web sites with PHP, you must know how to send data to the browser.
 PHP has a number of built-in functions for this purpose; the most common are echo and print. I tend to favor echo:

 echo 'Hello, world!';
echo "What's new?";

 You could use print instead if you prefer (the name more obviously indicates what it does):

 print 'Hello, world!';
print "What's new?";

 As you can see from these examples, you can use either single or double quotation
 marks (but there is a distinction between the two types of quotation marks, which
 I’ll make clear by this chapter’s end). The first quotation mark after the function
 name indicates the start of the message to be printed. The next matching quotation
 mark (i.e., the next quotation mark of the same kind as the opening mark) indicates
 the end of the message to be printed.

 Along with learning how to send data to the browser, you should also notice that in
 PHP all statements—a line of executed code, in layman’s terms—must end with a semicolon.
 Also, PHP is case-insensitive when it comes to function names, so , , , and so forth will all work. The all-lowercase version is easiest to type, of course.

 Needing an Escape

 As you might discover, one of the complications with sending data to the browser involves
 printing single and double quotation marks. Either of the following will cause errors:

 Click here to view code image

 echo "She said, "How are you?"";
echo 'I'm just ducky.';

 There are two solutions to this problem. First, use single quotation marks when printing
 a double quotation mark, and vice versa:

 Click here to view code image

 echo 'She said, "How are you?"';
echo "I'm just ducky.";

 Or, you can escape the problematic character by preceding it with a backslash:

 Click here to view code image

 echo "She said, \"How are you?\"";
echo 'I\'m just ducky.';

 An escaped quotation mark will merely be printed like any other character. Understanding
 how to use the backslash to escape a character is an important concept, and one that
 will be covered in more depth at the end of this chapter.

 Script 1.3 Using print or echo, PHP can send data to the browser.

 Click here to view code image

 1 <!doctype html>
2 <html lang="en">
3 <head>
4 <meta charset="utf-8">
5 <title>Using Echo</title>
6 </head>
7 <body>
8 <!-- Script 1.3 - second.php -->
9 <p>This is standard HTML.</p>
10 <?php
11 echo 'This was generated using PHP!';
12 ?>
13 </body>
14 </html>

 To send data to the browser:

 1. Open first.php (refer to Script 1.2) in your text editor or IDE.

 2. Between the PHP tags (lines 10 and 11), add a simple message (Script 1.3):

 echo 'This was generated using [image: Images] PHP!';

 It truly doesn’t matter what message you type here, which function you use (echo or print), or which quotation marks, for that matter—just be careful if you are printing a
 single or double quotation mark as part of your message (see the sidebar “Needing an Escape”).

 3. If you want, change the page title to better describe this script (line 5):

 <title>Using Echo</title>

 This change affects only the browser window’s title bar.

 4. Save the file as second.php, place it in your web directory, and test it in your browser [image: Images].

 [image: Images]

 [image: Images]The results still aren’t glamorous, but this page was in part dynamically generated
 by PHP.

 Remember that all PHP scripts must be run through a URL (http://something)!

 5. If necessary, debug the script.

 If you see a parse error instead of your message [image: Images], check that you have both opened and closed your quotation marks and escaped any
 problematic characters (see the sidebar). Also be certain to conclude each statement
 with a semicolon.

 [image: Images]

 [image: Images]This may be the first of many parse errors you see as a PHP programmer (this one is
 caused by the omission of the terminating quotation mark).

 If you see an entirely blank page, this is probably for one of two reasons:

 ▸ There is a problem with your HTML. Test this by viewing the source of your page
 and looking for HTML problems there [image: Images].

 [image: Images]

 [image: Images]One possible cause of a blank PHP page is a simple HTML error, like the closing title tag here (it’s missing the slash).

 ▸ An error occurred, but display_errors is turned off in your PHP configuration, so nothing is shown. In this case, see the
 section in Appendix A on how to configure PHP so that you can turn display_errors back on.

 Tip

 Technically, echo and print are language constructs, not functions. That being said, don’t be bothered as I continue
 to call them “functions” for convenience. Also, as you’ll see later in the book, I
 include the parentheses when referring to functions—say, number_format(), not just number_format—to help distinguish them from variables and other parts of PHP. This is just my own
 little convention.

 Tip

 You can, and often will, use echo and print to send HTML code to the browser, like so [image: Images]:

 [image: Images]

 [image: Images]PHP can send HTML code (like the formatting here) as well as simple text [image: Images] to the browser.

 echo '<p>Hello,
[image: Images] world!</p>';

 Tip

 echo and print can both be used over multiple lines:

 echo 'This sentence is
printed over two lines.';

 What happens in this case is that the return (created by pressing Enter or Return)
 becomes part of the printed message and isn’t terminated until the closing quotation
 mark. The net result will be the “printing” of the return in the HTML source code
 [image: Images]. This will not have an effect on the generated page [image: Images]. For more on this, see the sidebar “Understanding White Space.”

 [image: Images]

 [image: Images] Printing text and HTML over multiple PHP lines will generate HTML source code that
 also extends over multiple lines. Note that extraneous white spacing in the HTML source
 will not affect the look of a page [image: Images] but can make the source easier to review.

 [image: Images]

 [image: Images] The return in the HTML source [image: Images] has no effect on the rendered result. The only way to alter the spacing of a displayed
 web page is to use HTML tags (like
 and <p></p>).

 Writing Comments

 Creating executable PHP code is only a part of the programming process (admittedly,
 it’s the most important part). A secondary but still crucial aspect to any programming
 endeavor is documenting your code.

 In HTML you can add comments using special tags:

 <!-- Comment goes here. -->

 HTML comments are viewable in the source but do not appear in the rendered page (see
 [image: Images] and [image: Images] in the previous section).

 PHP comments are different in that they aren’t sent to the browser at all, meaning
 they won’t be viewable to the end user, even when looking at the HTML source.

 PHP supports three comment syntaxes. The first uses what’s called the pound, hash,
 or number symbol (#):

 # This is a comment.

 The second uses two slashes:

 // This is also a comment.

 Both of these cause PHP to ignore everything that follows until the end of the line
 (when you press Return or Enter). Thus, these two comments are for single lines only.
 They are also often used to place a comment on the same line as some PHP code:

 print 'Hello!'; // Say hello.

 A third style allows comments to run over multiple lines:

 /* This is a longer comment
that spans two lines. */

 Understanding White Space

 With PHP you send data—like HTML tags and text—to the browser, which will, in turn,
 render that data as the web page the end user sees. Thus, what you are often doing
 with PHP is creating the HTML source of a web page. With this in mind, there are three areas of notable white space (extra spaces, tabs, and blank lines): in your PHP scripts, in your HTML source,
 and in the rendered web page.

 PHP is generally white space insensitive, meaning that you can space out your code
 however you want to make your scripts more legible. HTML is also generally white space
 insensitive. Specifically, the only white space in HTML that affects the rendered
 page is a single space (multiple spaces still get rendered as one). If your HTML source
 has text on multiple lines, that doesn’t mean it’ll appear on multiple lines in the
 rendered page ([image: Images] and [image: Images]).

 To alter the spacing in a rendered web page, use the HTML tags
 (line break) and <p></p> (paragraph). To alter the spacing of the HTML source created with PHP, you can

 [image: Images] Use echo or print over the course of several lines.

 or

 [image: Images] Print the newline character (\n) within double quotation marks, which is equivalent to Enter or Return.

 To comment your scripts:

 1. Begin a new PHP document in your text editor or IDE, to be named comments.php, starting with the initial HTML (Script 1.4):

 Script 1.4 These basic comments demonstrate the three comment syntaxes you can use in PHP.

 Click here to view code image

1 <!doctype html>
2 <html lang="en">
3 <head>
4 <meta charset="utf-8">
5 <title>Comments</title>
6 </head>
7 <body>
8 <?php
9
10 # Script 1.4 - comments.php
11 # Created March 16, 2011
12 # Created by Larry E. Ullman
13 # This script does nothing much.
14
15 echo '<p>This is a line of text.
This is another line of text.</p>';
16
17 /*
18 echo 'This line will not be executed.';
19 */
20
21 echo "<p>Now I'm done.</p>"; // End of PHP code.
22
23 ?>
24 </body>
25 </html>

 Click here to view code image

 <!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Comments</title>
</head>
<body>

 2. Add the initial PHP tag and write your first comments:

 Click here to view code image

 <?php
Script 1.4 - comments.php
Created April 23, 2017
Created by Larry E. Ullman
This script does nothing much.

 One of the first comments each script should contain is an introductory block that
 lists creation date, modification date, creator, creator’s contact informa-tion, purpose
 of the script, and so on. Some people suggest that the shell-style comments (#) stand out more in a script and are therefore best for this kind of notation.

 3. Send some HTML to the browser:

 Click here to view code image

 echo '<p>This is a line of text.
[image: Images]
This is another line of
[image: Images] text.</p>';

 It doesn’t matter what you do here—just make something for the browser to display.
 For the sake of variety, the echo statement will print some HTML tags, including a line break (
) to add some spacing to the generated HTML page.

 4. Use the multiline comments to comment out a second echo statement:

 Click here to view code image

 /*
echo 'This line will not be
[image: Images] executed.';
*/

 By surrounding any block of PHP code with /* and */, you can render that code inert without having to delete it from your script. By
 later removing the comment tags, you can reactivate that section of PHP code.

 5. Add a final comment after a third echo statement:

 Click here to view code image

 echo "<p>Now I'm done.</p>";
[image: Images] // End of PHP code.

 This last (superfluous) comment shows how to place a comment at the end of a line,
 a common practice. Note that double quotation marks surround this message, since single
 quotation marks would conflict with the apostrophe (see the “Needing an Escape” sidebar, earlier in the chapter).

 6. Close the PHP section and complete the HTML page:

 ?>
</body>
</html>

 7. Save the file as comments.php, place it in your web directory, and test it in your browser [image: Images].

 [image: Images]

 [image: Images] The PHP comments in Script 1.4 don’t appear in the web page or the HTML source [image: Images].

 8. If you’re the curious type, check the source code in your browser to confirm that
 the PHP comments do not appear there [image: Images].

 [image: Images]

 [image: Images] The PHP comments from Script 1.4 are nowhere to be seen in the client’s browser.

 Tip

 You shouldn’t nest—place one inside another—multiline comments (/* */). Doing so will cause problems.

 Tip

 Any of the PHP comments can be used at the end of a line (say, after a function call):

 echo 'Howdy'; /* Say 'Howdy' */

 Although this is allowed, it’s far less common.

 Tip

 In the interest of saving space, the scripts in this book will not be as well documented
 as I would suggest they should be.

 Tip

 It’s also important that you keep the comments up to date and accurate when you change
 a script. There’s nothing more confusing than a comment that says one thing when the
 code really does something else.

 Tip

 Some developers argue that it’s unnecessary to comment individual bits of code because
 the code itself should make its purpose clear. In my experience, adding comments helps.

 What Are Variables?

 Variables are containers used to temporarily store values. These values can be numbers,
 text, or much more complex data. PHP supports eight types of variables. These include
 four scalar (single-valued) types—Boolean (TRUE or FALSE), integer, floating point (decimals), and strings (one or more characters); two nonscalar (multivalued)—arrays and objects; plus resources (which you’ll see when interacting with databases) and NULL (which is a special type that has no value).

 Regardless of what type you are creating, all variable names in PHP follow certain
 syntactical rules:

 [image: Images] A variable’s name must start with a dollar sign ($)—for example, $name.

 [image: Images] The variable’s name can contain a combination of letters, numbers, and the underscore—for
 example, $my_report1.

 [image: Images] The first character after the dollar sign must be either a letter or an underscore
 (it cannot be a number).

 [image: Images] Variable names in PHP are case-sensitive! This is a very important rule. It means that $name and $Name are different variables.

 To begin working with variables, this next script will print out the value of three
 predefined variables. Whereas a standard variable is assigned a value during the execution of a script,
 a predefined variable will already have a value when the script begins its execution.
 Most of these predefined variables reflect properties of the server as a whole, such
 as the operating system in use.

 Before getting into this script, there are two more things you should know. First,
 variables can be assigned values using the equals sign (=), also called the assignment operator. Second, to display the value of a variable, you can print the variable without quotation
 marks:

 print $some_var;

 Or variables can be printed within double quotation marks:

 print "Hello, $name";

 You cannot print variables within single quotation marks:

 print 'Hello, $name';
[image: Images] // This won't work!

 To use variables:

 1. Begin a new PHP document in your text editor or IDE, to be named predefined.php, starting with the initial HTML (Script 1.5):

 Click here to view code image

 <!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Predefined Variables</title>
</head>
<body>

 2. Add the opening PHP tag and the first comment:

 <?php # Script 1.5 - predefined.php

 Script 1.5 This script prints three of PHP's many predefined variables.

 Click here to view code image

 1 <!doctype html>
2 <html lang="en">
3 <head>
4 <meta charset="utf-8">
5 <title>Predefined Variables</title>
6 </head>
7 <body>
8 <?php # Script 1.5 - predefined.php
9
10 // Create a shorthand version of the variable names:
11 $file = $_SERVER['SCRIPT_FILENAME'];
12 $user = $_SERVER['HTTP_USER_AGENT'];
13 $server = $_SERVER['SERVER_SOFTWARE'];
14
15 // Print the name of this script:
16 echo "<p>You are running the file:
$file.</p>\n";
17
18 // Print the user's information:
19 echo "<p>You are viewing this page using:
$user</p>\n";
20
21 // Print the server's information:
22 echo "<p>This server is running:
$server.</p>\n";
23
24 ?>
25 </body>
26 </html>

 From here on out, scripts will no longer comment on the creator, creation date, and
 so forth, although you should continue to document your scripts thoroughly. Scripts
 will, however, make a comment indicating the script’s number and filename for ease
 of cross-referencing (both in the book and when you download them from the book’s
 supporting web site, LarryUllman.com).

 3. Create a shorthand version of the first variable to be used in this script:

 Click here to view code image

 $file = $_SERVER['SCRIPT_FILENAME'];

 This script will use three variables, each of which comes from the larger predefined
 $_SERVER variable. $_SERVER refers to a mass of server-related information. The first variable the script uses
 is $_SERVER[‘SCRIPT_FILENAME’]. This variable stores the full path and name of the script being run (for example,
 C:\Program Files\Apache\htdocs \predefined.php).

 The value stored in $_SERVER[‘SCRIPT _FILENAME’] will be assigned to the new variable $file. Creating new variables with shorter names and then assigning them values from $_SERVER will make it easier to refer to the variables when printing them. (It also gets around
 another issue you’ll learn about in due time.)

 4. Create a shorthand version of two more variables:

 Click here to view code image

 $user = $_SERVER
[image: Images] ['HTTP_USER_AGENT'];
$server = $_SERVER
[image: Images] ['SERVER_SOFTWARE'];

 $_SERVER[‘HTTP_USER_AGENT’] represents the browser and operating system of the user accessing the script. This
 value is assigned to $user.

 $_SERVER[‘SERVER_SOFTWARE’] represents the web application on the server that’s running PHP (e.g., Apache, Abyss,
 Xitami, or IIS). This is the program that must be installed (see Appendix A) in order
 to run PHP scripts on that computer.

 5. Print out the name of the script being run:

 Click here to view code image

 echo "<p>You are running the
[image: Images] file:
$file
[image: Images] .</p>\n";

 The first variable to be printed is $file. Notice that this variable must be used within double quotation marks and that the
 statement also makes use of the PHP newline character (\n), which will add a line break in the generated HTML source. Some basic HTML tags—paragraph
 and strong—are added to give the generated page a bit of flair.

 6. Print out the information of the user accessing the script:

 Click here to view code image

 echo "<p>You are viewing this page
[image: Images] using:
$user
[image: Images] </p>\n";

 This line prints the second variable, $user. To repeat what’s said in the fourth step, $user correlates to $_SERVER[‘HTTP_USER_AGENT’] and refers to the operating system, browser type, and browser version being used
 to access the web page.

 7. Print out the server information:

 Click here to view code image

 echo "<p>This server is running:
[image: Images]
$server.
[image: Images] </p>\n";

 8. Complete the PHP block and the HTML page:

 ?>
</body>
</html>

 9. Save the file as predefined.php, place it in your web directory, and test it in your browser [image: Images].

 [image: Images]

 [image: Images] The predefined.php script reports back to the viewer information about the script, the browser being
 used to view it, and the server itself.

 Tip

 If you have problems with this, or any other script, turn to the book’s corresponding
 forum (LarryUllman.com/forums/) for assistance.

 Tip

 If possible, run this script using a different browser and/or on another server [image: Images].

 [image: Images]

 [image: Images] This is the book’s first truly dynamic script, in that the web page changes depending
 on the server running it and the browser viewing it (compare with [image: Images]).

 Tip

 Variable names cannot contain spaces. The underscore is commonly used in lieu of a
 space.

 Tip

 The most important consideration when creating variables is to use a consistent naming
 scheme. In this book you’ll see that I use all-lowercase letters for my variable names,
 with underscores separating words ($first_name). Some programmers prefer to use capitalization instead: $FirstName (known as “camel-case” style).

 Tip

 PHP is very casual in how it treats variables, meaning that you don’t need to initialize
 them (set an immediate value) or declare them (set a specific type), and you can convert
 a variable among the many types without problem.

 Introducing Strings

 Now that you’ve been introduced to the general concept of variables, let’s look at
 variables in detail. The first variable type to delve into is the string. A string is merely a quoted chunk of characters: letters, numbers, spaces, punctuation,
 and so forth. These are all strings:

 [image: Images] ‘Tobias’

 [image: Images] “In watermelon sugar”

 [image: Images] ‘100’

 [image: Images] ‘August 2, 2017’

 To make a string variable, assign a string value to a valid variable name:

 Click here to view code image

 $first_name = 'Tobias';
$today = 'August 2, 2011';

 When creating strings, you can use either single or double quotation marks to encapsulate
 the characters, just as you would when printing text. Likewise, you must use the same
 type of quotation mark for the beginning and the end of the string. If that same mark
 appears within the string, it must be escaped:

 Click here to view code image

 $var = "Define \"platitude\", please.";

 Or you can instead use the other quotation mark type:

 Click here to view code image

 $var = 'Define "platitude", please.';

 To print out the value of a string, use either echo or print:

 echo $first_name;

 To print the value of string within a context, you must use double quotation marks:

 Click here to view code image

 echo "Hello, $first_name";

 You’ve already worked with strings once—when using the predefined variables in the
 preceding section, as the values of those variables happened to be strings. In this
 next example, you’ll create and use your own strings.

 To use strings:

 1. Begin a new PHP document in your text editor or IDE, to be named strings.php, starting with the initial HTML and including the opening PHP tag (Script 1.6):

 Click here to view code image

 <!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Strings</title>
</head>
<body>
<?php # Script 1.6 - strings.php

 Script 1.6 String variables are created and their values are sent to the browser in this script.

 Click here to view code image

 1 <!doctype html>
2 <html lang="en">
3 <head>
4 <meta charset="utf-8">
5 <title>Strings</title>
6 </head>
7 <body>
8 <?php # Script 1.6 - strings.php
9
10 // Create the variables:
11 $first_name = 'Haruki';
12 $last_name = 'Murakami';
13 $book = 'Kafka on the Shore';
14
15 // Print the values:
16 echo "<p>The book $book
 was written by $first_name
 $last_name.</p>";
17
18 ?>
19 </body>
20 </html>

 2. Within the PHP tags, create three variables:

 Click here to view code image

 $first_name = 'Haruki';
$last_name = 'Murakami';
$book = 'Kafka on the Shore';

 This rudimentary example creates $first_name, $last_name, and $book variables that will then be printed out in a message.

 3. Add an echo statement:

 Click here to view code image

 echo "<p>The book $book
[image: Images] was written by
[image: Images] $first_name $last_name.</p>";

 All this script does is print a statement of authorship based on three established
 variables. A little HTML formatting—the emphasis on the book’s title—is thrown in
 to make it more attractive. Remember to use double quotation marks here for the variable
 values to be printed out appropriately (more on the importance of double quotation
 marks at this chapter’s end).

 4. Complete the PHP block and the HTML page:

 ?>
</body>
</html>

 5. Save the file as strings.php, place it in your web directory, and test it in your browser [image: Images].

 [image: Images]

 [image: Images]The resulting web page is based on printing out the values of three variables.

 6. If desired, change the values of the three variables, save the file, and run the
 script again [image: Images].

 [image: Images]

 [image: Images]The output of the script is changed by altering the variables in it.

 Tip

 If you assign another value to an existing variable (e.g., $book), the new value will overwrite the old one. For example:

 Click here to view code image

 $book = 'High Fidelity';
$book = 'The Corrections';
/* $book now has a value of
'The Corrections'. */

 Tip

 PHP has no set limits on how big a string can be. It’s theoretically possible that
 you’ll be limited by the resources of the server, but it’s doubtful that you’ll ever
 encounter such a problem.

 Concatenating Strings

 Concatenation is like addition for strings, whereby characters are added to the end of the string.
 It is performed using the concatenation operator, which is the period (•):

 Click here to view code image

 $city= 'Seattle';
$state = 'Washington';
$address = $city . $state;

 The $address variable now has the value SeattleWashington, which almost achieves the desired result (Seattle, Washington). To improve upon this, you could write

 Click here to view code image

 $address = $city . ', ' . $state;

 so that a comma and a space are concatenated to the variables as well.

 Because of how liberally PHP treats variables, concatenation is possible with strings
 and numbers. Either of these statements will produce the same result (Seattle, Washington 98101):

 Click here to view code image

 $address = $city . ', ' . $state .
 ' 98101';
$address = $city . ', ' . $state .
 ' ' . 98101;

 Let’s modify strings.php to use this new operator.

 To use concatenation:

 1. Open strings.php (refer to Script 1.6) in your text editor or IDE.

 2. After you’ve established the $first_name and $last_name variables (lines 11 and 12), add this line (Script 1.7):

 Script 1.7 Concatenation gives you the ability to append more characters onto a string.

 Click here to view code image

 1 <!doctype html>
2 <html lang="en">
3 <head>
4 <meta charset="utf-8">
5 <title>Concatenation</title>
6 </head>
7 <body>
8 <?php # Script 1.7 - concat.php
9
10 // Create the variables:
11 $first_name = 'Melissa';
12 $last_name = 'Bank';
13 $author = $first_name . ' ' .
 $last_name;
14
15 $book = 'The Girls\' Guide to Hunting and Fishing';
16
17 //Print the values:
18 echo "<p>The book $book was
 written by $author.</p>";
19
20 ?>
21 </body>
22 </html>

 Click here to view code image

 $author = $first_name . ' ' .
[image: Images] $last_name;

 As a demonstration of concatenation, a new variable—$author—will be created as the concatenation of two existing strings and a space in between.

 3. Change the echo statement to use this new variable:

 Click here to view code image

 echo "<p>The book $book
[image: Images] was written by $author.</p>";

 Since the two variables have been turned into one, the echo statement should be altered accordingly.

 4. If desired, change the HTML page title and the values of the first name, last name,
 and book variables.

 5. Save the file as concat.php, place it in your web directory, and test it in your browser [image: Images].

 [image: Images]

 [image: Images]In this revised script, the end result of concatenation is not apparent to the user.

 Tip

 PHP has a slew of useful string-specific functions, which you’ll see over the course
 of this book. For example, to calculate how long a string is (how many characters
 it contains), use strlen():

 Click here to view code image

 $num = strlen('some string'); // 11

 Tip

 You can have PHP convert the case of strings with strtolower(), which makes it entirely lowercase; strtoupper(), which makes it entirely uppercase; ucfirst(), which capitalizes the first character; and ucwords(), which capitalizes the first character of every word.

 Tip

 If you are merely concatenating one value to another, you can use the concatenation
 assignment operator (.=). The following are equivalent:

 Click here to view code image

 $title = $title . $subtitle;
$title .= $subtitle;

 Tip

 The initial example in this section could be rewritten using either

 Click here to view code image

 $address = "$city, $state";

or

$address = $city;
$address .= ',';
$address .= $state;

 Using the PHP Manual

 The PHP manual–accessible online at www.php.net/manual–lists every function and feature of the language. The manual is organized with general
 concepts (installation, syntax, variables) discussed first and ends with the functions
 by topic (MySQL, string functions, and so on).

 To quickly look up any function in the PHP manual, go to php.net/functionname in your browser (for example, php.net/print). For each function, the manual indicates the following:

 [image: Images] The versions of PHP the function is available in

 [image: Images] How many and what types of arguments the function takes (optional arguments are wrapped
 in square brackets)

 [image: Images] What type of value the function returns

 The manual also contains a description of the function.

 You should be in the habit of checking out the PHP manual whenever you’re confused
 by a function or how it’s properly used, or need to learn more about any feature of
 the language. It’s also critically important that you know what version of PHP you’re
 running, since functions and other particulars of PHP do change over time.

 Introducing Numbers

 In introducing variables, I stated that PHP has both integer and floating-point (decimal)
 number types. In my experience, though, these two types can be classified under the
 generic title numbers without losing much valuable distinction. Valid numbers in PHP can be anything like

 [image: Images] 8

 [image: Images] 3.14

 [image: Images] 10980843985

 [image: Images] –4.2398508

 [image: Images] 4.4e2

 Notice that these values are never quoted—quoted numbers are strings with numeric
 values—nor do they include commas to indicate thousands. Also, a number is assumed
 to be positive unless it is preceded by the minus sign (–).

 Along with the standard arithmetic operators you can use on numbers (Table 1.1), dozens of functions are built into PHP. Two common ones are round() and number_format(). The former rounds a decimal to the nearest integer:

 TABLE 1.1 Arithmetic Operators

 	
 Operator

 	
 Meaning

 	
 +

 	
 Addition

 	
 –

 	
 Subtraction

 	
 *

 	
 Multiplication

 	
 /

 	
 Division

 	
 %

 	
 Modulus

 	
 + +

 	
 Increment

 	
 ––

 	
 Decrement

 Click here to view code image

 $n = 3.14;
$n = round($n); // 3

 It can also round to a specified number of decimal places:

 Click here to view code image

 $n = 3.141592;
$n = round($n, 3); // 3.142

 The number_format() function turns a number into the more commonly written version, grouped into thousands
 using commas:

 Click here to view code image

 $n = 20943;
$n = number_format($n); // 20,943

 This function can also set a specified number of decimal points:

 Click here to view code image

 $n = 20943;
$n = number_format($n, 2); //
20,943.00

 To practice with numbers, let’s write a mock-up script that performs the calculations
 you might use in an e-commerce shopping cart.

 To use numbers:

 1. Begin a new PHP document in your text editor or IDE, to be named numbers.php (Script 1.8):

 Click here to view code image

 <!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Numbers</title>
</head>
<body>
<?php # Script 1.8 - numbers.php

 Script 1.8 The numbers.php script performs basic mathematical calculations, like those used in an e-commerce
 application.

 Click here to view code image

1 <!doctype html>
2 <html lang="en">
3 <head>
4 <meta charset="utf-8">
5 <title>Numbers</title>
6 </head>
7 <body>
8 <?php # Script 1.8 - numbers.php
9
10 // Set the variables:
11 $quantity = 30; // Buying 30 widgets.
12 $price = 119.95;
13 $taxrate = .05; // 5% sales tax.
14
15 // Calculate the total:
16 $total = $quantity * $price;
17 $total = $total + ($total * $taxrate); // Calculate and add the tax.
18
19 // Format the total:
20 $total = number_format ($total, 2);
21
22 // Print the results:
23 echo '<p>You are purchasing ' .
 $quantity . ' widget(s) at a
 cost of $' . $price . '
 each. With tax, the total comes to
 $' . $total . '.</p>';
24
25 ?>
26 </body>
27 </html>

 2. Establish the requisite variables:

 Click here to view code image

 $quantity = 30;
$price = 119.95;
$taxrate = .05;

 This script will use three hard-coded variables on which calculations will be made.
 Later in the book, you’ll see how these values can be dynamically determined (i.e.,
 by user interaction with an HTML form).

 3. Perform the calculations:

 Click here to view code image

 $total = $quantity * $price;
$total = $total + ($total *
[image: Images] $taxrate);

 The first line establishes the order total as the number of widgets purchased multiplied
 by the price of each widget. The second line then adds the amount of tax to the total
 (calculated by multiplying the tax rate by the total).

 4. Format the total:

 Click here to view code image

 $total = number_format($total, 2);

 The number_format() function will group the total into thousands and round it to two decimal places.
 Applying this function will properly format the calculated value.

 5. Print the results:

 Click here to view code image

 echo '<p>You are purchasing
[image: Images] ' . $quantity .
[image: Images] ' widget(s) at a cost
[image: Images] of $' . $price .
[image: Images] ' each. With tax, the
[image: Images] total comes to $' .
[image: Images] $total . '.</p>';

 The last step in the script is to print out the results. The echo statement uses both single-quoted text and concatenated variables in order to print
 out the full combination of HTML, dollar signs, and variable values. You’ll see an alternative approach in the last example of this chapter.

 6. Complete the PHP code and the HTML page:

 ?>
</body>
</html>

 7. Save the file as numbers.php, place it in your web directory, and test it in your browser [image: Images].

 [image: Images]

 [image: Images] The numbers PHP page (Script 1.8) performs calculations based on set values.

 8. If desired, change the initial three variables and rerun the script [image: Images].

 [image: Images]

 [image: Images] To change the generated web page, alter any or all of the three variables (compare
 with [image: Images]).

 Tip

 PHP supports a maximum integer of around two billion on most platforms. With numbers
 larger than that, PHP will automatically use a floating-point type.

 Tip

 When dealing with arithmetic, the issue of precedence arises—the order in which complex
 calculations are made. While the PHP manual and other sources tend to list the hierarchy
 of precedence, I find programming to be safer and more legible when I group clauses
 in parentheses to force the execution order (see line 17 of Script 1.8).

 Tip

 Computers are notoriously poor at dealing with decimals. For example, the number 2.0
 may actually be stored as 1.99999. Most of the time this won’t be a problem, but in
 cases where mathematical precision is paramount, rely on integers, not decimals. The
 PHP manual has information on this subject, as well as alternative functions for improving
 computational accuracy.

 Tip

 Many of the mathematical operators also have a corresponding assignment operator,
 letting you create a shorthand for assigning values. The line

 Click here to view code image

 $total = $total + ($total * $taxrate);

 could be rewritten as

 Click here to view code image

 $total += ($total * $taxrate);

 Tip

 If you set a $price value without using two decimals (e.g., 119.9 or 34), you would want to apply number_format() to $price before printing it.

 Tip

 New in PHP 7 is the intdiv() function, which returns the integer quotient of a division:

 echo intdiv(7, 3); // 2

 Introducing Constants

 Constants, like variables, are used to temporarily store a value, but otherwise, constants
 and variables differ in many ways. For starters, to create a constant, you use the
 define() function instead of the assignment operator (=):

 define('NAME', value);

 Notice that, as a rule of thumb, constants are named using all capitals, although
 this is not required. Most importantly, constants do not use the initial dollar sign
 as variables do (because constants are not variables).

 A constant is normally assigned a scalar value, like a string or a number:

 Click here to view code image

 define('USERNAME', 'troutocity');
define('PI', 3.14);

 And unlike variables, a constant’s value cannot be changed.

 To access a constant’s value, like when you want to print it, you cannot put the constant
 within quotation marks:

 Click here to view code image

 echo "Hello, USERNAME"; // Won't work!

 With that code, PHP literally prints Hello, USERNAME [image: Images] and not the value of the USERNAME constant because there’s no indication that USERNAME is anything other than literal text. Instead, either print the constant by itself:

 [image: Images]

 [image: Images] Constants cannot be placed within quoted strings.

 Click here to view code image

 echo 'Hello, ';
echo USERNAME;

 or use the concatenation operator:

 echo 'Hello, ' . USERNAME;

 PHP runs with several predefined constants, much like the predefined variables used
 earlier in the chapter. These include PHP_VERSION (the version of PHP running) and PHP_OS (the operating system of the server). This next script will print those two values,
 along with the value of a user-defined constant.

 To use constants:

 1. Begin a new PHP document in your text editor or IDE, to be named constants.php (Script 1.9).

 Click here to view code image

 <!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Constants</title>
</head>
<body>
<?php # Script 1.9 - constants.php

 Script 1.9 Constants are another temporary storage tool you can use in PHP, distinct from variables.

 Click here to view code image

 1 <!doctype html>
2 <html lang="en">
3 <head>
4 <meta charset="utf-8">
5 <title>Constants</title>
6 </head>
7 <body>
8 <?php # Script 1.9 - constants.php
9
10 // Set today's date as a constant:
11 define('TODAY', 'April 23, 2017');
12
13 // Print a message, using predefined constants and the TODAY constant:
14 echo '<p>Today is ' . TODAY . '.
This server is running version ' .
 PHP_VERSION . ' of PHP on the ' . PHP_OS . ' operating
 system.</p>';
15
16 ?>
17 </body>
18 </html>

 2. Create a new date constant:

 Click here to view code image

 define('TODAY', 'April 23, 2017');

 An admittedly trivial use of constants, but this example will illustrate the point.
 In Chapter 9, “Using PHP with MySQL,” you’ll see how to use constants to store your database access information.

 3. Print out the date, the PHP version, and operating system information:

 Click here to view code image

 echo '<p>Today is ' . TODAY .
[image: Images]'.
This server is running
[image: Images]version ' . PHP_VERSION .
[image: Images]' of PHP on the
[image: Images]' . PHP_OS . '
[image: Images]operating system.</p>';

 Since constants cannot be printed within quotation marks, use the concatenation operator
 in the echo statement.

 4. Complete the PHP code and the HTML page:

 ?>
</body>
</html>

 5. Save the file as constants.php, place it in your web directory, and test it in your browser [image: Images].

 [image: Images]

 [image: Images] By making use of PHP’s constants, you can learn more about your PHP setup.

 Tip

 If possible, run this script on another PHP-enabled server [image: Images].

 [image: Images]

 [image: Images] Running the same script (refer to Script 1.9) on different servers garners different results.

 Tip

 The operating system called Darwin [image: Images] is the technical name for macOS.

 Tip

 In Chapter 12, “Cookies and Sessions,” you’ll learn about another constant, SID (which stands for session ID).

 Tip

 As of PHP 7, you can now create an array constant. You’ll learn more about arrays
 in Chapter 2, “Programming with PHP.”

 Single vs. Double Quotation Marks

 In PHP, it’s important to understand how single quotation marks differ from double
 quotation marks. With echo and print, or when assigning values to strings, you can use either, as in the examples used
 so far. But there is a key difference between the two types of quotation marks and
 when you should use which. You’ve seen this difference already, but it’s an important
 enough concept to merit more discussion.

 In PHP, values enclosed within single quotation marks will be treated literally, whereas those within double quotation marks will be interpreted. In other words, placing variables and special characters (Table 1.2) within double quotes will result in their represented values printed, not their
 literal values. For example, assume that you have

 $var = 'test';

 TABLE 1.2 Escape Sequences

 	
 Code

 	
 Meaning

 	
 \”

 	
 Double quotation mark

 	
 \’

 	
 Single quotation mark

 	
 \\

 	
 Backslash

 	
 \n

 	
 Newline

 	
 \r

 	
 Carriage return

 	
 \t

 	
 Tab

 	
 \$

 	
 Dollar sign

 The code echo “var is equal to $var”; will print out var is equal to test, but the code echo ‘var is equal to $var’; will print out var is equal to $var. Using an escaped dollar sign, the code echo “\$var is equal to $var”; will print out $var is equal to test, whereas the code echo ‘\$var is equal to $var’; will print out \$var is equal to $var [image: Images].

 [image: Images]

 [image: Images] How single and double quotation marks affect what gets printed by PHP.

 As these examples should illustrate, double quotation marks will replace a variable’s
 name ($var) with its value (test) and a special character’s code (\$) with its represented value ($). Single quotes will always display exactly what you type, except for the escaped
 single quote (\’) and the escaped backslash (\\), which are printed as a single quotation mark and a single backslash, respectively.

 As another example of how the two quotation marks differ, let’s modify the numbers.php script as an experiment.

 To use single and double quotation marks:

 1. Open numbers.php (refer to Script 1.8) in your text editor or IDE.

 2. Delete the existing echo statement (Script 1.10).

 Script 1.10 This, the final script in the chapter, demonstrates the differences between using
 single and double quotation marks.

 Click here to view code image

1 <!doctype html>
2 <html lang="en">
3 <head>
4 <meta charset="utf-8">
5 <title>Quotation Marks</title>
6 </head>
7 <body>
8 <?php # Script 1.10 - quotes.php
9
10 // Set the variables:
11 $quantity = 30; // Buying 30 widgets.
12 $price = 119.95;
13 $taxrate = .05; // 5% sales tax.
14
15 // Calculate the total.
16 $total = $quantity * $price;
17 $total = $total + ($total * $taxrate); // Calculate and add the tax.
18
19 // Format the total:
20 $total = number_format ($total, 2);
21
22 // Print the results using double quotation marks:
23 echo "<h3>Using double quotation
 marks:</h3>";
24 echo "<p>You are purchasing
 $quantity widget(s)
 at a cost of \$$price
 each. With tax, the total
 comes to \$$total.
 </p>\n";
25
26 // Print the results using single quotation marks:
27 echo '<h3>Using single quotation
 marks:</h3>';
28 echo '<p>You are purchasing
 $quantity widget(s)
 at a cost of \$$price
 each. With tax, the total
 comes to \$$total.
 </p>\n';
29
30 ?>
31 </body>
32 </html>

 3. Print a caption and then rewrite the original echo statement using double quotation marks:

 Click here to view code image

 echo "<h3>Using double quotation
[image: Images]marks:</h3>";
echo "<p>You are purchasing
[image: Images]$quantity
[image: Images]widget(s) at a cost of
[image: Images]\$$price each.
[image: Images]With tax, the total comes to
[image: Images]\$$total.</p>\n";

 In the original script, the results were printed using single quotation marks and
 concatenation. The same result can be achieved using double quotation marks. When
 using double quotation marks, the variables can be placed within the string.

 There is one catch, though: trying to print a dollar amount as $12.34 (where 12.34 comes from a variable) would suggest that you would code $$var. That will not work (for complicated reasons). Instead, escape the initial dollar
 sign, resulting in \$$var, as you see twice in this code. The first dollar sign will be printed, and the second
 becomes the start of the variable name.

 4. Repeat the echo statements, this time using single quotation marks:

 Click here to view code image

 echo '<h3>Using single quotation
[image: Images] marks:</h3>';
echo '<p>You are purchasing
[image: Images] $quantity
[image: Images] widget(s) at a cost of
[image: Images] \$$price each.
[image: Images] With tax, the total comes to
[image: Images] \$$total.</p>\n';

 This echo statement is used to highlight the difference between using single or double quotation
 marks. It will not work as desired, and the resulting page will show you exactly what
 does happen instead.

 5. If you want, change the page’s title.

 6. Save the file as quotes.php, place it in your web directory, and test it in your browser [image: Images].

 [image: Images]

 [image: Images] These results demonstrate when and how you’d use one type of quotation mark as opposed
 to the other.

 7. View the source of the web page to see how using the newline character (\n) within each quotation mark type also differs.

 You should see that when you place the newline character within double quotation marks
 it creates a newline in the HTML source. When placed within single quotation marks,
 the literal characters \ and n are printed instead.

 Tip

 Because PHP will attempt to find variables within double quotation marks, using single
 quotation marks is theoretically faster. If you need to print the value of a variable,
 though, you must use double quotation marks.

 Because valid HTML often includes a lot of double-quoted attributes, it’s often easiest
 to use single quotation marks when printing HTML with PHP:

 echo '<table class="data">';

 If you were to print out this HTML using double quotation marks, you would have to
 escape all of the double quotation marks in the string:

 echo "<table class=\"data\">";

 Tip

 In newer versions of PHP, you can actually use $$price and $$total without preceding them with a backslash (thanks to some internal magic). In older
 versions of PHP, you cannot. To guarantee reliable results, regardless of PHP version,
 I recommend using the \$$var syntax when you need to print a dollar sign immediately followed by the value of
 a variable.

 Tip

 If you’re still unclear as to the difference between the types, use double quotation
 marks and you’re less likely to have problems.

 Basic Debugging Steps

 Debugging is by no means a simple concept to grasp, and unfortunately, it’s one that
 is only truly mastered by doing. The next 50 pages could be dedicated to the subject
 and you’d still only be able to pick up a fraction of the debugging skills that you’ll
 eventually acquire and need.

 The reason I introduce debugging in this somewhat harrowing way is that it’s important
 not to enter into programming with delusions. Sometimes code won’t work as expected,
 you’ll inevitably create careless errors, and some days you’ll want to pull your hair
 out, even when using a comparatively user-friendly language such as PHP. In short,
 prepare to be perplexed and frustrated at times. I’ve been coding in PHP since 1999,
 and occasionally I still get stuck in the programming muck. But debugging is a very
 important skill to have, and one that you will eventually pick up out of necessity
 and experience. As you begin your PHP programming adventure, I can offer the following
 basic but concrete debugging tips.

 Note that these are just some general debugging techniques, specifically tailored
 to the beginning PHP programmer. Chapter 8, “Error Handling and Debugging,” goes into other techniques in more detail.

 To debug a PHP script:

 [image: Images] Make sure you’re always running PHP scripts through a URL!

 This is perhaps the most common beginner’s mistake. PHP code must be run through the
 web server application, which means it must be requested via http://something. When you see actual PHP code instead of the result of that code’s execution, most
 likely you’re not running the PHP script through a URL.

 [image: Images] Know what version of PHP you’re running.

 Some problems will arise from the version of PHP in use. Before you ever use any PHP-enabled
 server, run a phpinfo.php script (see Appendix A) or reference the PHP_VERSION constant to confirm the version of PHP in use.

 [image: Images] Make sure display_errors is on.

 This is a basic PHP configuration setting (also discussed in Appendix A). You can
 confirm this setting by executing the phpinfo() function (just use your browser to search for display_errors in the resulting page). For security reasons, PHP may not be set to display the errors
 that occur. If that’s the case, you’ll end up seeing blank pages when problems occur.
 To debug most problems, you’ll need to see the errors, so turn this setting on while
 you’re learning. You’ll find instructions for doing so in Appendix A.

 [image: Images] Check the HTML source code.

 Sometimes the problem is hidden in the HTML source of the page. In fact, sometimes
 the PHP error message can be hidden there!

 [image: Images] Trust the error message.

 Another very common beginner’s mistake is to not fully read or trust the error that
 PHP reports. Although an error message can often be cryptic and may seem meaningless,
 it can’t be ignored. At the very least, PHP is normally correct as to the line on
 which the problem can be found. And if you need to relay that error message to someone
 else (like when you’re asking me for help), do include the entire error message!

 [image: Images] Take a break!

 So many of the programming problems I’ve encountered over the years, and the vast
 majority of the toughest ones, have been solved by stepping away from the computer
 for a while. It’s easy to get frustrated and confused, and in such situations, any
 further steps you take are likely to only make matters worse.

 Review and Pursue

 Each chapter ends with a “Review and Pursue” section where you’ll find questions regarding the material just covered and prompts
 for ways to expand your knowledge and experience on your own. If you have any problems
 with these sections, either in answering the questions or pursuing your own endeavors,
 turn to the book’s supporting forum (LarryUllman.com/forums/).

 Review

 [image: Images] What tags are used to surround PHP code?

 [image: Images] What extension should a PHP file have?

 [image: Images] What does a page’s encoding refer to? What impact does the encoding have on the page?

 [image: Images] What PHP functions, or language constructs, can you use to send data to the browser?

 [image: Images] How does using single versus double quotation marks differ in creating or printing
 strings?

 [image: Images] What does it mean to escape a character in a string?

 [image: Images] What are the three comment syntaxes in PHP? Which one can be used over multiple lines?

 [image: Images] What character do all variable names begin with? What characters can come next? What
 other characters can be used in a variable’s name?

 [image: Images] Are variable names case-sensitive or case-insensitive?

 [image: Images] What is the assignment operator?

 [image: Images] How do you create a string variable?

 [image: Images] What is the concatenation operator? What is the concatenation assignment operator?

 [image: Images] How are constants defined and used?

 Pursue

 [image: Images] If you don’t already know—for certain—what version of PHP you’re running, check now.

 [image: Images] Look up one of the mentioned string functions in the PHP manual. Then check out some
 of the other available string functions listed therein.

 [image: Images] Look up one of the mentioned number functions in the PHP manual. Then check out some
 of the other available number functions listed therein.

 [image: Images] Search the PHP manual for the $_SERVER variable to see what other information it contains.

 [image: Images] Create a new script, from scratch, that defines and displays the values of some string
 variables. Use double quotation marks in the echo or print statement that outputs the values. For added complexity, include some HTML in the
 output. Then rewrite the script so that it uses single quotation marks and concatenation
 instead of double quotation marks.

 [image: Images] Create a new script, from scratch, that defines, manipulates, and displays the values
 of some numeric variables.

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 2. Programming with PHP

 In This Chapter

 Creating an HTML Form

 Handling an HTML Form

 Conditionals and Operators

 Validating Form Data

 Introducing Arrays

 For and While Loops

 Review and Pursue

 Now that you have the fundamentals of the PHP scripting language down, it’s time to
 build on those basics and start truly programming. In this chapter you’ll begin creating
 more elaborate scripts while still learning some of the standard constructs, functions,
 and syntax of the language.

 You’ll start by creating an HTML form and then learn how you can use PHP to handle
 the submitted values. From there, the chapter covers conditionals and the remaining
 operators (Chapter 1, “Introduction to PHP,” presented the assignment, concatenation, and mathematical operators), arrays (another
 variable type), and one last language construct, loops.

 Creating an HTML Form

 Handling an HTML form with PHP is an important process in any dynamic web site. Two
 steps are involved: first you create the HTML form itself, and then you create the
 corresponding PHP script that will receive and process the form data.

 It is outside the realm of this book to go into HTML forms in any detail, but I will
 lead you through one quick example so that it may be used throughout the chapter.
 If you’re unfamiliar with the basics of an HTML form, including the various types
 of elements, see an HTML resource for more information.

 An HTML form is created using the form tags and various elements for taking input. The form tags look like

 Click here to view code image

 <form action="script.php"
[image: Images] method="post">
</form>

 In terms of PHP, the most important attribute of your form tag is action, which dictates to which page the form data will be sent. The second attribute—method—has its own issues (see the “Choosing a Method” sidebar), but post is the value you’ll use most frequently.

 The different inputs—be they text boxes, radio buttons, select menus, check boxes,
 etc.—are placed within the opening and closing form tags. As you’ll see in the next section, what kinds of inputs your form has makes
 little difference to the PHP script handling it. You should, however, pay attention
 to the names you give your form inputs—they’ll be of critical importance when it comes
 to your PHP code.

 Choosing a Method

 The method attribute of a form dictates how the data is sent to the handling page. The two options—get and post—refer to the HTTP (Hypertext Transfer Protocol) method to be used. The GET method sends the submitted data to the receiving page as a series of name-value pairs
 appended to the URL—for example,

 Click here to view code image

 http://www.example.com/script.php
[image: Images] ?name=Homer&gender=M&age=35

 The benefit of using the GET method is that the resulting page can be bookmarked in the user’s browser since it’s
 a complete URL. For that matter, you can also click Back in your browser to return
 to a GET page, or reload it without problems, none of which is true for POST. But there is a limit in how much data can be transmitted via GET, and this method is less secure since the data is visible.

 Generally speaking, GET is used for requesting information, like a particular record from a database or the results of a search (searches almost
 always use GET). The POST method is used when an action is expected: the updating of a database record or the sending of an email. For these reasons
 I will primarily use POST throughout this book, with noted exceptions.

 To create an HTML form:

 1. Begin a new HTML document in your text editor or IDE, to be named form.html (Script 2.1):

 Click here to view code image

 <!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Simple HTML Form</title>
 <style type="text/css">
 label {
 font-weight: bold;
 color: #300ACC;
 }
 </style>
</head>
<body>
<!-- Script 2.1 - form.html -->
<form action="handle_form.php"
[image: Images] method="post">

 Script 2.1 This simple HTML form will be used for several of the examples in this chapter.

 Click here to view code image

 1 <!doctype html>
2 <html lang="en">
3 <head>
4 <meta charset="utf-8">
5 <title>Simple HTML Form</title>
6 <style type="text/css">
7 label {
8 font-weight: bold;
9 color: #300ACC;
10 }
11 </style>
12 </head>
13 <body>
14 <!-- Script 2.1 - form.html -->
15
16 <form action="handle_form.php" method="post">
17
18 <fieldset><legend>Enter your information in the form below:</legend>
19
20 <p><label>Name: <input type="text" name="name" size="20" maxlength="40"></label></p>
21
22 <p><label>Email Address: <input type="email" name="email" size="40" maxlength="60"></label></p>
23
24 <p><label for="gender">Gender: </label><input type="radio" name="gender" value="M"> Male
 <input type="radio" name="gender" value="F"> Female</p>
25
26 <p><label>Age:
27 <select name="age">
28 <option value="0-29">Under 30</option>
29 <option value="30-60">Between 30 and 60</option>
30 <option value="60+">Over 60</option>
31 </select></label></p>
32
33 <p><label>Comments: <textarea name="comments" rows="3" cols="40"></textarea></label></p>
34
35 </fieldset>
36
37 <p align="center"><input type="submit" name="submit" value="Submit My Information"></p>
38
39 </form>
40
41 </body>
42 </html>

 The document uses the same basic syntax for an HTML page as in the previous chapter.
 I have added some inline CSS (Cascading Style Sheets) in order to style the form slightly
 (specifically, making label elements bold and blue).

 CSS is the preferred way to handle many formatting and layout issues in an HTML page.
 You’ll see a little bit of CSS here and there in this book; if you’re not familiar
 with the subject, check out a dedicated CSS reference.

 Finally, an HTML comment indicates the file’s name and number.

 2. Add the initial form tag:

 Click here to view code image

 <form action="handle_form.php"
[image: Images] method="post">

 Since the action attribute dictates to which script the form data will go, you should give it an appropriate
 name (handle_form to correspond with this page: form.html) and the .php extension (since a PHP script will handle this form’s data).

 3. Begin the HTML form:

 Click here to view code image

 <fieldset><legend>Enter your
[image: Images] information in the form
[image: Images] below:</legend>

 I’m using the and HTML tags because they group the form elements nicely (they add a box around the
 form with a title at the top). This isn’t pertinent to the form itself, though.

 4. Add a text and an email input:

 Click here to view code image

 <p><label>Name: <input type="text"
[image: Images] name="name" size="20"
[image: Images] maxlength="40"></label></p>
<p><label>Email Address:
[image: Images] <input type="email" name="email"
[image: Images] size="40" maxlength="60">
[image: Images] </label></p>

 These are just simple text inputs, allowing users to enter their name and email address
 [image: Images]. The label tags just tie each textual label to the associated element.

 [image: Images]

 [image: Images]Two form inputs.

 5. Add a pair of radio buttons:

 Click here to view code image

 <p><label for="gender">Gender:
[image: Images] </label><input type="radio"
[image: Images] name="gender" value="M"> Male
[image: Images] <input type="radio"
[image: Images] name="gender" value="F">
[image: Images] Female</p>

 The radio buttons [image: Images] both have the same name, meaning that only one of the two can be selected. They have
 different values, though.

 [image: Images]

 [image: Images]If multiple radio buttons have the same name value, only one can be selected by the user.

 6. Add a pull-down menu:

 Click here to view code image

 <p><label>Age:
<select name="age">
 <option value="0-29">Under 30
 [image: Images] </option>
 <option value="30-60">Between 30
 [image: Images] and 60</option>
 <option value="60+">Over 60
 [image: Images] </option>
</select></label></p>

 The select tag starts the pull-down menu, and then each option tag will create another line in the list of choices [image: Images].

 [image: Images]

 [image: Images]The pull-down menu offers three options, of which only one can be selected (in this
 example).

 7. Add a text box for comments:

 Click here to view code image

 <p><label>Comments: <textarea
[image: Images] name="comments" rows="3"
[image: Images] cols="40"></textarea></label></p>

 Textareas are different from text inputs; they are presented as a box [image: Images], not as a single line. They allow the user to type much more information and are
 handy for taking user comments.

 [image: Images]

 [image: Images]The textarea form element type allows for lots and lots of text.

 8. Complete the form:

 Click here to view code image

 </fieldset>
<p align="center"><input
[image: Images] type="submit" name="submit"
[image: Images] value="Submit My Information">
[image: Images] </p>

 The first tag closes the fieldset that was opened in Step 3. Then a submit button is created and centered using a p tag. Finally, the form is closed.

 9. Complete the HTML page:

 </body>
</html>

 10. Save the file as form.html, place it in your web directory, and view it in your browser [image: Images].

 [image: Images]

 [image: Images]The complete form, which requests some basic information from the user.

 Tip

 Since this page contains just HTML, it uses an .html extension. It could instead use a .php extension without harm (since code outside of the PHP tags is treated as HTML).

 Handling an HTML Form

 Now that the HTML form has been created, it’s time to write a bare-bones PHP script
 to handle it. To say that this script will be handling the form means that the PHP page will do something with the data it receives (which
 is the data the user entered in the form). In this chapter, the scripts will simply
 print the data back to the browser. In later examples, form data will be stored in
 a MySQL database, compared against previously stored values, sent in emails, and more.

 The beauty of PHP—and what makes it so easy to learn and use—is how well it interacts
 with HTML forms. PHP scripts store the received information in special variables.
 For example, say you have a form with an input defined like so:

 Click here to view code image

 <input type="text" name="city">

 Whatever the user types into that input will be accessible via a PHP variable named
 $_REQUEST[‘city’]. It is very important that the spelling and capitalization match exactly! PHP is case-sensitive when it comes to variable names, so $_REQUEST[‘city’] will work, but $_REQUEST[‘city’] and $_REQUEST[‘city’] will have no value.

 This next example will be a PHP script that handles the already-created HTML form
 (Script 2.1). This script will assign the form data to new variables (to be used as shorthand,
 just like in Script 1.5, predefined.php). The script will then print the received values.

 To handle an HTML form:

 1. Begin a new PHP document in your text editor or IDE, to be named handle_form.php, starting with the HTML (Script 2.2):

 Click here to view code image

 <!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Form Feedback</title>
</head>
<body>

 Script 2.2 This script receives and prints out the information entered into an HTML form (Script 2.1).

 Click here to view code image

1 <!doctype html>
2 <html lang="en">
3 <head>
4 <meta charset="utf-8">
5 <title>Form Feedback</title>
6 </head>
7 <body>
8 <?php # Script 2.2 - handle_form.php
9
10 // Create a shorthand for the form data:
11 $name = $_REQUEST['name'];
12 $email = $_REQUEST['email'];
13 $comments = $_REQUEST['comments'];
14 /* Not used:
15 $_REQUEST['age']
16 $_REQUEST['gender']
17 $_REQUEST['submit']
18 */
19
20 // Print the submitted information:
21 echo "<p>Thank you,
 $name, for the following
 comments:</p>
22 <pre>$comments</pre>
23 <p>We will reply to you at $email
 .</p>\n";
24
25 ?>
26 </body>
27 </html>

 2. Add the opening PHP tag and create a shorthand version of the form data variables:

 Click here to view code image

 <?php # Script 2.2 - handle_form.php
$name = $_REQUEST['name'];
$email = $_REQUEST['email'];
$comments = $_REQUEST['comments'];

 Following the rules outlined before, the data entered into the first form input, which
 is called name, will be accessible through the variable $_REQUEST[‘name’] (Table 2.1). The data entered into the email form input, which has a name value of email, will be accessible through $_REQUEST[‘email’]. The same applies to the comments data. Again, the spelling and capitalization of
 your variables here must exactly match the corresponding name values in the HTML form.

 TABLE 2.1 Form Elements to PHP Variables

 	
 Element Name

 	
 Variable Name

 	
 name

 	
 $_REQUEST[‘name ‘]

 	
 email

 	
 $_REQUEST[‘email ‘]

 	
 comments

 	
 $_REQUEST[‘comments ‘]

 	
 age

 	
 $_REQUEST[‘age ‘]

 	
 gender

 	
 $_REQUEST[‘gender ‘]

 	
 submit

 	
 $_REQUEST[‘submit’]

 At this point, you won’t make use of the age, gender, and submit form elements.

 3. Print out the received name, email, and comments values:

 Click here to view code image

 echo "<p>Thank you,
[image: Images] $name, for the
[image: Images] following comments:</p>
<pre>$comments</pre>
<p>We will reply to you at
[image: Images] $email.</p>\n";

 The submitted values are simply printed out using the echo statement, double quotation marks, and a wee bit of HTML formatting.

 4. Complete the page:

 ?>
</body>
</html>

 5. Save the file as handle_form.php and place it in the same web directory as form.html.

 6. Test both documents in your browser by loading form.html through a URL (http://something) and then filling out [image: Images] and submitting the form [image: Images].

 [image: Images]

 [image: Images]To test handle_form.php, you must load the form through a URL, then fill it out and submit it.

 [image: Images]

 [image: Images]The script should display results like this.

 Because the PHP script must be run through a URL (see Chapter 1), the form must also be run through a URL. Otherwise, when you go to submit the form,
 you’ll see PHP code [image: Images] instead of the proper result [image: Images].

 [image: Images]

 [image: Images]If you see the PHP code after submitting the form, the problem is likely that you
 did not access the form through a URL.

 Tip

 $_REQUEST is a special variable type, known as a superglobal. It stores all of the data sent
 to a PHP page through either the GET or POST method, as well as data accessible in
 cookies. Superglobals will be discussed later in the chapter.

 Tip

 If you have any problems with this script, apply the debugging techniques suggested
 in Chapter 1. If you still can’t solve the problem, check out the extended debugging techniques
 listed in Chapter 8, “Error Handling and Debugging.” If you’re still stymied, turn to the book’s supporting forum for assistance (LarryUllman.com/forums/).

 Tip

 If the PHP script shows blank spaces where a variable’s value should have been printed,
 it means that the variable has no value. The two most likely causes are 1) you failed
 to enter a value in the form, or 2) you misspelled or mis-capitalized the variable’s
 name.

 Tip

 If you see any Undefined variable: variablename errors, this is because the variables
 you refer to have no value and PHP is set on the highest level of error reporting.
 The previous tip provides suggestions as to why a variable wouldn’t have a value.
 Chapter 8 discusses error reporting in detail.

 Tip

 To see how PHP handles the different form input types, print out the $_REQUEST[‘age’] and $_REQUEST[‘gender’] values [image: Images].

 [image: Images]

 [image: Images]The values of gender and age correspond to those defined in the form’s HTML.

 Conditionals and Operators

 PHP’s three primary terms for creating conditionals are if, else, and elseif.

 Every conditional begins with an if clause:

 Click here to view code image

 if (condition) {
 // Do something!
}

 An if can also have an else clause:

 Click here to view code image

 if (condition) {
} else {
 // Do something else!
} // Do something!

 An elseif clause allows you to add more conditions:

 Click here to view code image

 if (condition1) {
 // Do something!
} elseif (condition2) {
 // Do something else!
} else {
 // Do something different!
}

 If a condition is true, the code in the following braces ({}) will be executed. If not, PHP will continue on. If there is a second condition (after
 an elseif), that will be checked for truth. The process will continue—you can use as many elseif clauses as you want—until PHP hits an else, which will be automatically executed at that point, or until the conditional terminates
 without an else. For this reason, it’s important that the else always come last and be treated as the default action unless specific criteria—the
 conditions—are met.

 A condition can be true in PHP for any number of reasons. To start, these are true
 conditions:

 [image: Images] $var, if $var has a value other than 0, an empty string, FALSE, or NULL

 [image: Images] isset($var), if $var has any value other than NULL, including 0, FALSE, or an empty string

 [image: Images] TRUE, true, True, etc.

 In the second example, a new function, isset(), is introduced. This function checks if a variable is “set,” meaning that it has
 a value other than NULL (as a reminder, NULL is a special type in PHP, representing no set value). You can also use the comparative
 and logical operators (Table 2.2) in conjunction with parentheses to make more complicated expressions.

 TABLE 2.2 Comparative and Logical Operators

 	
 Symbol

 	
 Meaning

 	
 Type

 	
 Example

 	
 ==

 	
 is equal to

 	
 comparison

 	
 $x = = $y

 	
 !=

 	
 is not equal to

 	
 comparison

 	
 $x != $y

 	
 <

 	
 less than

 	
 comparison

 	
 $x < $y

 	
 >

 	
 greater than

 	
 comparison

 	
 $x > $y

 	
 <=

 	
 less than or equal to

 	
 comparison

 	
 $x <= $y

 	
 >=

 	
 greater than or equal to

 	
 comparison

 	
 $x >= $y

 	
 !

 	
 not

 	
 logical

 	
 !$x

 	
 &&

 	
 and

 	
 logical

 	
 $x && $y

 	
 and

 	
 and

 	
 logical

 	
 $x and $y

 	
 ||

 	
 or

 	
 logical

 	
 $x || $y

 	
 or

 	
 or

 	
 logical

 	
 $x or $y

 	
 xor

 	
 exclusive or

 	
 logical

 	
 $x xor $y

 To use conditionals:

 1. Open handle_form.php (refer to Script 2.2) in your text editor or IDE, if it is not already.

 2. Before the echo statement, add a conditional that creates a $gender variable (Script 2.3):

 Click here to view code image

 if (isset($_REQUEST['gender'])) {
 $gender = $_REQUEST['gender'];
} else {
 $gender = NULL;
}

 Script 2.3 In this remade version of handle_form.php, two conditionals are used to validate the gender radio buttons.

 Click here to view code image

1 <!doctype html>
2 <html lang="en">
3 <head>
4 <meta charset="utf-8">
5 <title>Form Feedback</title>
6 </head>
7 <body>
8 <?php # Script 2.3 - handle_form.php #2
9
10 // Create a shorthand for the form data:
11 $name = $_REQUEST['name'];
12 $email = $_REQUEST['email'];
13 $comments = $_REQUEST['comments'];
14
15 // Create the $gender variable:
16 if (isset($_REQUEST['gender'])) {
17 $gender = $_REQUEST['gender'];
18 } else {
19 $gender = NULL;
20 }
21
22 // Print the submitted information:
23 echo "<p>Thank you, $name
 , for the following comments:
 </p>
24 <pre>$comments</pre>
25 <p>We will reply to you at $email
 .</p>\n";
26
27 // Print a message based upon the gender
 value:
28 if ($gender == 'M') {
29 echo '<p>Good day,
 Sir!</p>';
30 } elseif ($gender == 'F') {
31 echo '<p>Good day,
32 Madam!</p>';
33 } else { // No gender selected.
34 echo '<p>You forgot to
 enter your gender!</p>';
35 }
36
37 ?>
38 </body>
39 </html>

 This is a simple and effective way to validate a form input (particularly a radio
 button, check box, or select). If the user checks either gender radio button, then
 $_REQUEST[‘gender’] will have a value, meaning that the condition isset($_REQUEST[‘gender’]) is true. In such a case, the shorthand version of this variable—$gender—is assigned the value of $_REQUEST[‘gender’], repeating the technique used with $name, $email, and $comments. If the user does not click one of the radio buttons, then this condition is not
 true, and $gender is assigned the value of NULL, indicating that it has no value. Notice that NULL is not in quotes.

 3. After the echo statement, add another conditional that prints a message based on $gender’s value:

 Click here to view code image

 if ($gender == 'M') {
 echo '<p>Good day,
 [image: Images] Sir!</p>';
} elseif ($gender == 'F') {
 echo '<p>Good day,
 [image: Images] Madam!</p>';
} else { // No gender selected.
 echo '<p>You forgot to
 [image: Images] enter your gender!
 [image: Images] </p>';
}

 This if-elseif-else conditional looks at the value of the $gender variable and prints a different message for each possibility. It’s very important
 to remember that the double equals sign (==) means equals, whereas a single equals sign (=) assigns a value. The distinction is important because the condition $gender == ‘M’ may or may not be true, but $gender = ‘M’ will always be true.

 Also, the values used here—M and F—must be exactly the same as those in the HTML form (the values for each radio button).
 Equality is a case-sensitive comparison with strings, so m will not equal M.

 4. Save the file, place it in your web directory, and test it in your browser [image: Images], [image: Images], and [image: Images].

 [image: Images]

 [image: Images]The gender-based conditional prints a different message for each choice in the form.

 [image: Images]

 [image: Images]The same script will produce different salutations (compare with [image: Images]) when the gender value changes.

 [image: Images]

 [image: Images]If no gender was selected, a message is printed indicating the oversight to the user.

 Tip

 Although PHP has no strict formatting rules, it’s standard procedure and good programming
 form to make it clear when one block of code is a subset of a conditional. Indenting
 the block is the norm.

 Tip

 You can—and frequently will—nest conditionals (place one inside another).

 Tip

 The first conditional in this script (the isset()) is a perfect example of how to use a default value. The assumption (the else) is that $gender has a NULL value unless the one condition is met: that $_REQUEST[‘gender’] is set.

 Tip

 The braces used to indicate the beginning and end of a conditional are not required
 if you are executing only one statement. I recommend that you almost always use them,
 though, as a matter of clarity.

 Tip

 Both and and or have two representative operators, with slight technical differences between them.
 For no particular reason, I tend to use && and || instead of and and or.

 Tip

 XOR is called the exclusive or operator. The conditional $x xor $y is true if $x is true or if $y is true, but not both.

 Switch

 PHP has another type of conditional, called the switch, best used in place of a long if-elseif-else conditional. The syntax of switch is

 Click here to view code image

 switch ($variable) {
 case 'value1':
 // Do this.
 break;
 case 'value2':
 // Do this instead.
 break;
default:
 // Do this then.
 break;
}

 The switch conditional compares the value of $variable to the different cases. When it finds a match, the following code is executed, up
 until the break. If no match is found, the default is executed, assuming it exists (it’s optional). The switch conditional is limited in its usage in that it can only check a variable’s value
 for equality against certain cases; more complex conditions cannot be easily checked.

 Validating Form Data

 A critical concept related to handling HTML forms is that of validating form data.
 In terms of both error management and security, you should absolutely never trust
 the data being submitted by an HTML form. Whether erroneous data is purposefully malicious
 or just unintentionally inappropriate, it’s up to you—the web architect—to test it
 against expectations.

 Validating form data requires the use of conditionals and any number of functions,
 operators, and expressions. One standard function to be used is isset(), which tests if a variable has a value (including 0, FALSE, or an empty string, but not NULL). You saw an example of this in the preceding script.

 One issue with the isset() function is that an empty string tests as true, meaning that isset() is not an effective way to validate text inputs and text boxes from an HTML form.
 To check that a user typed something into textual elements, you can use the empty() function. It checks if a variable has an empty value: an empty string, 0, NULL, or FALSE.

 The first aim of form validation is seeing if something was entered or selected in form elements. The second goal is to ensure that submitted
 data is of the right type (numeric, string, etc.), of the right format (like an email
 address), or a specific acceptable value (like $gender being equal to either M or F). Since handling forms is a main use of PHP, validating form data is a point that
 will be reemphasized time and again in subsequent chapters. But first, let’s create
 a new handle_form.php to make sure variables have values before they’re referenced (there will be enough
 changes in this version that simply updating Script 2.3 doesn’t make sense).

 The NULL Coalescing Operator

 New in PHP 7 is the NULL coalescing operator (??), which simplifies checking whether a variable is set. Take this common construct
 (from Script 2.3):

 Click here to view code image

 if (isset($_REQUEST['gender'])) {
 $gender = $_REQUEST['gender'];
} else {
 $gender = NULL;
}

 In PHP 7, this could be more succinctly written as

 Click here to view code image

 $gender = $_REQUEST['gender'] ?? NULL;

 The meaning is the same: if $_REQUEST[‘gender’] has a value, assign that value to $gender; otherwise, assign NULL to $gender.

 Because PHP 7 hasn’t been widely adopted yet, the book’s scripts won’t make use of
 this operator, but feel free to do so if you are running PHP 7 or higher.

 To validate your forms:

 1. Begin a new PHP script in your text editor or IDE, to be named handle_form.php, starting with the initial HTML (Script 2.4):

 Click here to view code image

 <!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Form Feedback</title>
</head>
<body>

 Script 2.4 Validating HTML form data before you use it is critical to web security and achieving
 professional results. Here, conditionals check that every referenced form element
 has a value.

 Click here to view code image

1 <!doctype html>
2 <html lang="en">
3 <head>
4 <meta charset="utf-8">
5 <title>Form Feedback</title>
6 <style type="text/css>
7 .error {
8 font-weight: bold;
9 color: #C00;
10 }
11 </style>
12 </head>
13 <body>
14 <?php # Script 2.4 - handle_form.php #3
15
16 // Validate the name:
17 if (!empty($_REQUEST['name'])) {
18 $name = $_REQUEST['name'];
19 } else {
20 $name = NULL;
21 echo '<p class="error">You forgot to
 enter your name!</p>';
22 }
23
24 // Validate the email:
25 if (!empty($_REQUEST['email'])) {
26 $email = $_REQUEST['email'];
27 } else {
28 $email = NULL;
29 echo '<p class="error">You forgot to
 enter your email address!</p>';
30 }
31
32 // Validate the comments:
33 if (!empty($_REQUEST['comments'])) {
34 $comments = $_REQUEST['comments'];
35 } else {
36 $comments = NULL;
37 echo '<p class="error">You forgot to
 enter your comments!</p>';
38 }
39
40 // Validate the gender:
41 if (isset($_REQUEST['gender'])) {
42
43 $gender = $_REQUEST['gender'];
44
45 if ($gender == 'M') {
46 $greeting = '<p>Good day,
 Sir!</p>';
47 } elseif ($gender == 'F') {
48 $greeting = '<p>Good day,
 Madam!</p>';
49 } else { // Unacceptable value.
50 $gender = NULL;
51 echo '<p class="error">Gender
 should be either "M" or "F"!
 </p>';
52 }
53
54 } else { // $_REQUEST['gender']
 is not set.
55 $gender = NULL;
56 echo '<p class="error">You forgot to
 select your gender!</p>';
57 }
58
59 // If everything is OK, print the
 message:
60 if ($name && $email && $gender &&
 $comments) {
61
62 echo "<p>Thank you, $name
 , for the following
 comments:</p>
63 <pre>$comments</pre>
64 <p>We will reply to you at $email
 .</p>\n";
65
66 echo $greeting;
67
68 } else { // Missing form value.
69 echo '<p class="error">Please go back
 and fill out the form again.</p>';
70 }
71
72 ?>
73 </body>
74 </html>

 2. Within the HTML head, add some CSS code:

 Click here to view code image

 <style type="text/css"
[image: Images] title="text/css" media="all">
.error {
 font-weight: bold;
 color: #C00;
}
</style>

 This code defines one CSS class, called error. Any HTML element that has this class name will be formatted in a bold red color
 (which will be more apparent in your browser than in this black-and-white book).

 3. In the PHP block, check if the name was entered:

 Click here to view code image

 if (!empty($_REQUEST['name'])) {
 $name = $_REQUEST['name'];
} else {
 $name = NULL;
 echo '<p class="error">You
 [image: Images] forgot to enter your name!</p>';
}

 A simple way to check that a form text input was filled out is to use the empty() function. If $_REQUEST[‘name’] has a value other than an empty string, 0, NULL, or FALSE, assume that their name was entered and a shorthand variable is assigned that value.
 If $_REQUEST[‘name’] is empty, the $name variable is set to NULL and an error message is printed. This error message uses the CSS class.

 4. Repeat the same process for the email address and comments:

 Click here to view code image

 if (!empty($_REQUEST['email'])) {
 $email = $_REQUEST['email'];
} else {
 $email = NULL;
 echo '<p class="error">You
 [image: Images] forgot to enter your email
 [image: Images] address!</p>';
}
if (!empty($_REQUEST['comments'])) {
 $comments = $_REQUEST['comments'];
} else {
 $comments = NULL;
 echo '<p class="error">You
 [image: Images] forgot to enter your
 [image: Images] comments!</p>';
}

 Both variables receive the same treatment as $_REQUEST[‘name’] in Step 3.

 5. Begin validating the gender variable:

 Click here to view code image

 if (isset($_REQUEST['gender'])) {
 $gender = $_REQUEST['gender'];

 The validation of the gender is a two-step process. First, check if it has a value
 or not, using isset(). This starts the main if-else conditional, which otherwise behaves like those for the name, email address, and
 comments.

 6. Check $gender against specific values:

 Click here to view code image

if ($gender == 'M') {
 $greeting = '<p>Good
 [image: Images] day, Sir!</p>';
} elseif ($gender == 'F') {
 $greeting = '<p>Good
 [image: Images] day, Madam!</p>';
} else { // Unacceptable value.
 $gender = NULL;
 echo '<p class="error">Gender
 [image: Images] should be either "M" or
 [image: Images] "F"!</p>';
}

 Within the gender if clause is a nested if-elseif-else conditional that tests the variable’s value against what’s acceptable. This is the
 second part of the two-step gender validation.

 The conditions themselves are the same as those in the last script. If gender does
 not end up being equal to either M or F, a problem occurred and an error message will be printed. The $gender variable is also set to NULL in such cases, because it has an unacceptable value.

 If $gender does have a valid value, a gender-specific message is assigned to a new variable
 so that the message can be printed later in the script.

 7. Complete the main gender if-else conditional:

 Click here to view code image

 } else { // $_REQUEST['gender']
[image: Images] is not set.
 $gender = NULL;
 echo '<p class="error">You
forgot to select your gender!
[image: Images] </p>';
}

 This else clause applies if $_REQUEST [‘gender’] is not set. The complete, nested conditionals (see lines 41–57 of Script 2.4) successfully check every possibility:

 ▸ $_REQUEST[‘gender’] is not set

 ▸ $_REQUEST[‘gender’] has a value of M

 ▸ $_REQUEST[‘gender’] has a value of F

 ▸ $_REQUEST[‘gender’] has some other value

 You may wonder how this last case may be possible, considering the values are set
 in the HTML form. If a malicious user creates their own form that gets submitted to
 your handle_form.php script (which is very easy to do), they could give $_REQUEST[‘gender’] any value they want.

 8. Print messages indicating the validation results:

 Click here to view code image

 if ($name && $email && $gender
[image: Images] && $comments) {
 echo "<p>Thank you,
 [image: Images] $name, for the
 [image: Images] following comments:

 <pre>$comments</pre></p>
 <p>We will reply to you at
 [image: Images] $email.</p>\n";
 echo $greeting;
} else { // Missing form value.
 echo '<p class="error">Please
 [image: Images] go back and fill out the form
 [image: Images] again.</p>';
}

 The main condition is true if every listed variable has a true value. Each variable
 will have a value if it passed its test but have a value of NULL if it didn’t. If every variable has a value, the form was completed, so the Thank you message will be printed, as will the gender-specific greeting. If any of the variables
 are NULL, the second message will be printed ([image: Images] and [image: Images]).

 [image: Images]

 [image: Images]The script now checks that every form element was filled out (except the age) and
 reports on those that weren’t.

 [image: Images]

 [image: Images]If you skip even one or two fields, the Thank you message is not printed.

 9. Close the PHP section and complete the HTML page:

 ?>
</body>
</html>

 10. Save the file as handle_form.php, place it in the same web directory as form.html, and test it in your browser.

 Fill out the form to different levels of completeness to test the new script [image: Images].

 [image: Images]

 [image: Images]If the form was completed properly, the script behaves as it previously had.

 Tip

 To test if a submitted value is a number, use the is_numeric() function.

 Tip

 In Chapter 14, “Perl-Compatible Regular Expressions,” you’ll see how to validate form data using regular expressions.

 Tip

 It’s considered good form (pun intended) to let users know which fields are required
 when they’re filling out the form and, where applicable, the format of that field
 (like a date or a phone number).

 Introducing Arrays

 Chapter 1 introduced two scalar (single-valued) variable types: strings and numbers. Now it’s time to learn about
 another type: the array. Unlike strings and numbers, an array can hold multiple separate pieces of information. An array is therefore like a list
 of values, each value being a string or a number or even another array.

 Arrays are structured as a series of key-value pairs, where one pair is an item or element of that array. For each item in the list, there is a key (or index) associated with it (Table 2.3).

 TABLE 2.3 Array Example 1: $artists

 	
 Key

 	
 Value

 	
 0

 	
 The Mynabirds

 	
 1

 	
 Jeremy Messersmith

 	
 2

 	
 The Shins

 	
 3

 	
 Iron and Wine

 	
 4

 	
 Alexi Murdoch

 PHP supports two kinds of arrays: indexed, which use numbers as the keys (as in Table 2.3), and associative, which use strings as keys (Table 2.4). As in most programming languages, with indexed arrays, arrays will begin with the
 first index at 0, unless you specify the keys explicitly.

 TABLE 2.4 Array Example 2: $states

 	
 Key

 	
 Value

 	
 MD

 	
 Maryland

 	
 PA

 	
 Pennsylvania

 	
 IL

 	
 Illinois

 	
 MO

 	
 Missouri

 	
 IA

 	
 Iowa

 An array follows the same naming rules as any other variable. This means that, offhand,
 you might not be able to tell that $var is an array as opposed to a string or number. The important syntactical difference
 arises when accessing individual array elements.

 To refer to a specific value in an array, start with the array variable name, followed
 by the key within brackets:

 Click here to view code image

 $band = $artists[0]; // The Mynabirds
echo $states['MD']; // Maryland

 You can see that the array keys are used like other values in PHP: numbers (e.g.,
 0) are never quoted, whereas strings (MD) must be.

 Because arrays use a different syntax than other variables and can contain multiple
 values, printing them can be trickier. This will not work [image: Images]:

 [image: Images]

 [image: Images]Attempting to print an array using only the variable’s name results in the word Array being printed.

 Click here to view code image

 echo "My list of states: $states";

 However, printing an individual element’s value is simple if it uses indexed (numeric)
 keys:

 Click here to view code image

 echo "The first artist is
[image: Images] $artists[0].";

 But if the array uses strings for the keys, the quotes used to surround the key will
 muddle the syntax. The following code will cause a parse error [image: Images]:

 [image: Images]

 [image: Images]Attempting to print an element in an associative array without using braces results
 in a parse error.

 Click here to view code image

 echo "IL is $states['IL']."; // BAD!

 To fix this, wrap the array name and key in braces when an array uses strings for
 its keys [image: Images]:

 [image: Images]

 [image: Images]Attempting to print an element in an associative array while using braces works as
 desired.

 Click here to view code image

 echo "IL is {$states['IL']}.";

 If arrays seem slightly familiar to you already, that’s because you’ve already worked
 with two: $_SERVER (in Chapter 1) and $_REQUEST (in this chapter). To acquaint you with another array and to practice printing array
 values directly, one final, but basic, version of the handle_form.php page will be created using the more specific $_POST array (see the sidebar “Superglobal Arrays”).

 Superglobal Arrays

 PHP includes several predefined arrays called the superglobal variables. They are $_GET, $_POST, $_REQUEST, $_SERVER, $_ENV, $_SESSION, and $_COOKIE.

 The $_GET variable is where PHP stores all of the values sent to a PHP script via the GET method (possibly but not necessarily from an HTML form). $_POST stores all of the data sent to a PHP script from an HTML form that uses the POST method. Both of these—along with $_COOKIE—are subsets of $_REQUEST, which you’ve been using.

 $_SERVER, which was used in Chapter 1, stores information about the server PHP is running on, as does $_ENV. $_SESSION and $_COOKIE will both be discussed in Chapter 12, “Cookies and Sessions.”

 One aspect of good security and programming is to be precise when referring to a variable.
 This means that, although you can use $_REQUEST to access form data submitted through the POST method, $_POST would be more accurate.

 To use arrays:

 1. Begin a new PHP script in your text editor or IDE, to be named handle_form.php, starting with the initial HTML (Script 2.5):

 Click here to view code image

 <!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Form Feedback</title>
</head>
<body>
<?php # Script 2.5 -
[image: Images] handle_form.php #4

 2. Perform some basic form validation:

 Click here to view code image

 if (!empty($_POST['name']) &&
[image: Images] !empty($_POST['comments']) &&
[image: Images] !empty($_POST['email'])) {

 In the previous version of this script, the values are accessed by referring to the
 $_REQUEST array. But since these variables come from a form that uses the POST method (see
 Script 2.1), $_POST would be a more exact, and therefore more secure, reference.

 This conditional checks that these three text inputs are all not empty. Using the
 and operator (&&), the entire conditional is only true if each of the three subconditionals is true.

 3. Print the message:

 Click here to view code image

 echo "<p>Thank you,
[image: Images] {$_POST['name']}, for
[image: Images] the following comments:</p>
<pre>{$_POST['comments']}</pre>
<p>We will reply to you at
[image: Images] {$_POST['email']}.</p>\n";

 Script 2.5 The superglobal variables, like $_POST here, are just one type of array you'll use in PHP.

 Click here to view code image

1 <!doctype html>
2 <html lang="en">
3 <head>
4 <meta charset="utf-8">
5 <title>Form Feedback</title>
6 </head>
7 <body>
8 <?php # Script 2.5 - handle_form.php #4
9
10 // Print the submitted information:
11 if (!empty($_POST['name']) && !empty($_POST['comments']) && !empty($_POST['email'])) {
12 echo "<p>Thank you, {$_POST['name']}, for the following
 comments:</p>
13 <pre>{$_POST['comments']}</pre>
14 <p>We will reply to you at {$_POST['email']}.</p>\n";
15 } else { // Missing form value.
16 echo '<p>Please go back and fill out the form again.</p>';
17 }
18 ?>
19 </body>
20 </html>

 After you comprehend the concept of an array, you still need to master the syntax
 involved in printing one. When printing an array element that uses a string for its
 key, use the braces (as in {$_POST[‘name’]} here) to avoid parse errors.

 4. Complete the conditional begun in Step 2:

 Click here to view code image

 } else { // Missing form value.
 echo '<p>Please go back and
 [image: Images] fill out the form again.</p>';
}

 If any of the three subconditionals in Step 2 is not true (which is to say, if any
 of the variables has an empty value), then this else clause applies and an error message is printed [image: Images].

 [image: Images]

 [image: Images]If any of the three tested form inputs is empty, this generic error message is printed.

 5. Complete the PHP and HTML code:

 ?>
</body>
</html>

 6. Save the file as handle_form.php, place it in the same web directory as form.html, and test it in your browser [image: Images].

 [image: Images]

 [image: Images]The fact that the script now uses the $_POST array has no effect on the visible result.

 Tip

 Because PHP is lax with its variable structures, an array can even use a combination
 of numbers and strings as its keys. The only important rule is that the keys of an
 array must each be unique.

 Tip

 If you find the syntax of accessing superglobal arrays directly to be confusing (e.g.,
 $_POST[‘name’]), you can continue to use the shorthand technique at the top of your scripts as you
 have been:

 Click here to view code image

 $name = $_POST['name'];

 In this script, you would then need to change the conditional and the echo statement to refer to $name and the other elements.

 Tip

 You only need to use the braces to surround an associated array used within quotation
 marks. All of these array references are fine:

 Click here to view code image

 echo $_POST['name'];
echo "The first item is $item[0].";
$total = number_format($cart
[image: Images] ['total']);

 Creating arrays

 The preceding example uses a PHP-generated array, but there will frequently be times
 when you want to create your own. You can define your own array in one of two primary
 ways. First, you can add an element at a time to build one:

 Click here to view code image

 $band[] = 'Jemaine';
$band[] = 'Bret';
$band[] = 'Murray';

 As arrays are indexed starting at 0, $band[0] has a value of Jemaine; $band[1], Bret; and $band[2], Murray.

 Alternatively, you can specify the key when adding an element. But it’s important
 to understand that if you specify a key and a value already exists indexed with that
 same key, the new value will overwrite the existing one:

 Click here to view code image

 $band['fan'] = 'Mel';
$band['fan'] = 'Dave'; // New value
$fruit[2] = 'apple';
$fruit[2] = 'orange'; // New value

 Instead of adding one element at a time, you can use the array() function to build an entire array in one step:

 Click here to view code image

 $states = array(
 'IA' => 'Iowa',
 'MD' => 'Maryland'
);

 (As PHP is generally insensitive to white space, you can use this function over multiple
 lines and indent the array elements for added clarity.)

 The array() function can be used whether or not you explicitly set the key:

 Click here to view code image

 $artists = array('Clem Snide',
[image: Images] 'Shins', 'Eels');

 Or, if you set the first numeric key value, the added values will be keyed incrementally
 thereafter:

 Click here to view code image

 $days = array(1 => 'Sun', 'Mon', 'Tue');
echo $days[3]; // Tue

 The array() function is also used to initialize an array prior to referencing it:

 Click here to view code image

 $tv = array();
$tv[] = 'Flight of the Conchords';

 Initializing an array (or any variable) in PHP isn’t required, but it makes for clearer
 code and can help avoid errors.

 As of PHP 5.4, you can use the short array syntax instead of the array() function. These lines are equivalent to the previous examples:

 Click here to view code image

 $states = [
 'IA' => 'Iowa',
 'MD' => 'Maryland'
];
$artists = ['Clem Snide', 'Shins',
[image: Images] 'Eels'];
$days = [1 => 'Sun', 'Mon', 'Tue'];
$tv = [];

 Finally, if you want to create an array of sequential numbers, you can use the range() function:

 $ten = range(1, 10);

 Accessing entire arrays

 You’ve already seen how to access individual array elements using its keys (e.g.,
 $_POST[‘email’]). This works when you know exactly what the keys are or if you want to refer to only
 a single element. To access every array element, use the foreach loop:

 Click here to view code image

 foreach ($array as $value) {
 // Do something with $value.
}

 The foreach loop will iterate through every element in $array, assigning each element’s value to the $value variable. To access both the keys and values, use

 Click here to view code image

 foreach ($array as $key => $value) {
 echo "The value at $key is $value.";
}

 (You can use any valid variable name in place of $key and $value, like just $k and $v, if you prefer.)

 Using arrays, this next script will demonstrate how easy it is to make a set of form
 pull-down menus for selecting a date [image: Images].

 [image: Images]

 [image: Images] These pull-down menus will be created using arrays and the foreach loop.

 To create and access arrays:

 1. Begin a new PHP document in your text editor or IDE, to be named calendar.php, starting with the initial HTML (Script 2.6):

 Click here to view code image

 <!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Calendar</title>
</head>
<body>
<form action="calendar.php"
[image: Images] method="post">
<?php # Script 2.9 - calendar.php #2

 Script 2.6 This form uses arrays to dynamically create three pull-down menus.

 Click here to view code image

1 <!doctype html>
2 <html lang="en">
3 <head>
4 <meta charset="utf-8">
5 <title>Calendar</title>
6 </head>
7 <body>
8 <form action="calendar.php"
 method="post">
9 <?php # Script 2.6 - calendar.php
10
11 // This script makes three pull-down
 menus
12 // for an HTML form: months, days,
 years.
13
14 // Make the months array:
15 $months = [1 => 'January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', 'September', 'October', 'November', 'December'];
16
17 // Make the days and years arrays:
18 $days = range(1, 31);
19 $years = range(2017, 2027);
20
21 // Make the months pull-down menu:
22 echo '<select name="month">';
23 foreach ($months as $key => $value) {
24 echo "<option value=\"$key\">
 $value</option>\n";
25 }
26 echo '</select>';
27
28 // Make the days pull-down menu:
29 echo '<select name="day">';
30 foreach ($days as $value) {
31 echo "<option value=\"$value\">
 $value</option>\n";
32 }
33 echo '</select>';
34
35 // Make the years pull-down menu:
36 echo '<select name="year">';
37 foreach ($years as $value) {
38 echo "<option value=\"$value\">
 $value</option>\n";
39 }
40 echo '</select>';
41
42 ?>
43 </form>
44 </body>
45 </html>

 One thing to note here is that even though the page won’t contain a complete HTML
 form, the form tags are still required to create the pull-down menus.

 2. Create an array for the months:

 Click here to view code image

 $months = [1 => 'January',
[image: Images] 'February', 'March', 'April',
[image: Images] 'May', 'June', 'July', 'August',
[image: Images] 'September', 'October',
[image: Images] 'November', 'December'];

 This first array will use numbers for the keys, from 1 to 12. Since the value of the
 first key is specified, the following values will be indexed incrementally (in other
 words, the 1 => code creates an array indexed from 1 to 12, instead of from 0 to 11).

 3. Create the arrays for the days of the month and the years:

 Click here to view code image

 $days = range(1, 31);
$years = range(2017, 2027);

 Using the range() function, you can easily make an array of numbers.

 4. Generate the month pull-down menu:

 Click here to view code image

 echo '<select name="month">';
foreach ($months as $key =>
[image: Images] $value) {
 echo "<option value=\"$key\">
 [image: Images] $value</option>\n";
}
echo '</select>';

 The foreach loop can quickly generate all of the HTML code for the month pull-down menu. Each
 execution of the loop will create a line of code like <option value=”1”>January</option> [image: Images].

 [image: Images]

 [image: Images] Most of the HTML source was generated by just a few lines of PHP.

 5. Generate the day and year pull-down menus:

 Click here to view code image

 echo '<select name="day">';
foreach ($days as $value) {
 echo "<option value=\"$value\">
 [image: Images] $value</option>\n";
}
echo '</select>';

// Make the years pull-down menu:
echo '<select name="year">';
foreach ($years as $value) {
 echo "<option value=\"$value\">
 [image: Images] $value</option>\n";
}
echo '</select>';

 Unlike the month example, both the day and year pull-down menus will use the same
 data for the option’s value and label (a number, [image: Images]). For that reason, there’s no need to also fetch the array’s key with each loop iteration.

 6. Close the PHP, the form tag, and the HTML page:

 ?>
</form>
</body>
</html>

 7. Save the file as calendar.php, place it in your web directory, and test it in your browser.

 Tip

 To determine the number of elements in an array, use count():

 $num = count($array);

 Tip

 The range() function can also create an array of sequential letters:

 $alphabet = range('a', 'z');

 Tip

 An array’s key can be multi-worded strings, such as first name or phone number.

 Tip

 The is_array() function confirms that a variable is of the array type.

 Tip

 If you see an Invalid argument supplied for foreach() error message, that means you are trying to use a foreach loop on a variable that is not an array.

 Multidimensional arrays

 When introducing arrays, I mentioned that an array’s values could be any combination
 of numbers, strings, and even other arrays. This last option—an array consisting of
 other arrays—creates a multidimensional array.

 Multidimensional arrays are much more common than you might expect but remarkably
 easy to work with. As an example, start with an array of prime numbers:

 $primes = [2, 3, 5, 7, ...];

 Then create an array of sphenic numbers (don’t worry: I had no idea what a sphenic number was either; I had to look
 it up):

 $sphenic = [30, 42, 66, 70, ...];

 These two arrays could be combined into one multidimensional array like so:

 Click here to view code image

 $numbers = [
 'Primes' => $primes,
 'Sphenic' => $sphenic
];

 Now, $numbers is a multidimensional array. To access the prime numbers subarray, refer to $numbers[‘Primes’]. To access the prime number 5, use $numbers[‘Primes’][2] (it’s the third element in the array, but the array starts indexing at 0). To print
 out one of these values, surround the whole construct in braces:

 Click here to view code image

 echo "The first sphenic number is
[image: Images] {$numbers['Sphenic'][0]}.";

 Of course, you can also access multidimensional arrays using the foreach loop, nesting one inside another if necessary. This next example will do just that.

 To use multidimensional arrays:

 1. Begin a new PHP document in your text editor or IDE, to be named multi.php, beginning with the initial HTML (Script 2.7):

 Click here to view code image

 <!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Multidimensional
 [image: Images] Arrays</title>
</head>
<body>
<p>Some North American States,
[image: Images] Provinces, and Territories:</p>
<?php # Script 2.7 - multi.php

 Script 2.7 The multidimensional array is created by using other arrays for its values. Two foreach loops, one nested inside the other, can access every array element.

 Click here to view code image

1 <!doctype html>
2 <html lang="en">
3 <head>
4 <meta charset="utf-8">
5 <title>Multidimensional Arrays</title>
6 </head>
7 <body>
8 <p>Some North American States,
 Provinces, and Territories:</p>
9 <?php # Script 2.7 - multi.php
10
11 // Create one array:
12 $mexico = [
13 'YU' => 'Yucatan',
14 'BC' => 'Baja California',
15 'OA' => 'Oaxaca'
16];
17
18 // Create another array:
19 $us = [
20 'MD' => 'Maryland',
21 'IL' => 'Illinois',
22 'PA' => 'Pennsylvania',
23 'IA' => 'Iowa'
24];
25
26 // Create a third array:
27 $canada = [
28 'QC' => 'Quebec',
29 'AB' => 'Alberta',
30 'NT' => 'Northwest Territories',
31 'YT' => 'Yukon',
32 'PE' => 'Prince Edward Island'
33];
34
35 // Combine the arrays:
36 $n_america = [
37 'Mexico' => $mexico,
38 'United States' => $us,
39 'Canada' => $canada
40];
41
42 // Loop through the countries:
43 foreach ($n_america as $country =>
 $list) {
44
45 // Print a heading:
46 echo "<h2>$country</h2>";
47
48 // Print each state, province, or territory:
49 foreach ($list as $k => $v) {
50 echo "$k - $v\n";
51 }
52
53 // Close the list:
54 echo '';
55
56 } // End of main FOREACH.
57
58 ?>
59 </body>
60 </html>

 This PHP page will print out some of the states, provinces, and territories found
 in the three North American countries (Mexico, the United States, and Canada [image: Images]).

 [image: Images]

 [image: Images]The end result of running this PHP page (Script 2.7), where each country is printed, followed by an abbreviated list of its states, provinces,
 and territories.

 2. Create an array of Mexican states:

 Click here to view code image

 $mexico = [
 'YU' => 'Yucatan',
 'BC' => 'Baja California',
 'OA' => 'Oaxaca'
];

 This is an associative array, using the state’s postal abbreviation as its key. The
 state’s full name is the element’s value. This is obviously an incomplete list, just
 used to demonstrate the concept.

 3. Create the second and third arrays:

 Click here to view code image

 $us = [
 'MD' => 'Maryland',
 'IL' => 'Illinois',
 'PA' => 'Pennsylvania',
 'IA' => 'Iowa'
];
$canada = [
 'QC' => 'Quebec',
 'AB' => 'Alberta',
 'NT' => 'Northwest Territories',
 'YT' => 'Yukon',
 'PE' => 'Prince Edward Island'
];

 4. Combine all the arrays into one:

 Click here to view code image

 $n_america = [
 'Mexico' => $mexico,
 'United States' => $us,
 'Canada' => $canada
];

 You don’t have to create three arrays and then assign them to a fourth in order to
 make the desired multidimensional array, but I think it’s easier to read and understand
 this way (defining a multidimensional array in one step makes for some ugly code).

 The $n_america array now contains three elements. The key for each element is a string, which is
 the country’s name. The value for each element is the array of states, provinces,
 and territories found within that country.

 5. Begin the primary foreach loop:

 Click here to view code image

 foreach ($n_america as $country
[image: Images] => $list) {
 echo "<h2>$country</h2>";

 Following the syntax outlined earlier, this loop will access every element of $n_america. This means that this loop will run three times. Within each iteration of the loop, the $country variable will store the $n_america array’s key (Mexico, Canada, or United States). Also within each iteration of the loop, the $list variable will store the element’s value (the equivalent of $mexico, $us, and $canada).

 To print out the results, the loop begins by printing the country’s name within H2
 tags. Because the states and so forth should be displayed as an HTML list, the initial
 unordered list tag () is printed as well.

 6. Create a second foreach loop:

 Click here to view code image

 foreach ($list as $k => $v) {
 echo "$k - $v\n";
}

 This loop will run through each subarray (first $mexico, then $us, and then $canada). With each iteration of this loop, $k will store the abbreviation and $v will store the full name. Both are printed out within HTML list tags. The newline
 character is also used to better format the HTML source code.

 7. Complete the outer foreach loop:

 Click here to view code image

 echo '';
} // End of main FOREACH.

 After the inner foreach loop is done, the outer foreach loop has to close the unordered list begun in Step 5.

 8. Complete the PHP and HTML:

 ?>
</body>
</html>

 9. Save the file as multi.php, place it in your web directory, and test it in your browser [image: Images].

 10. If you want, check out the HTML source code to see what PHP created.

 Tip

 Multidimensional arrays can also come from an HTML form. For example, if a form has
 a series of checkboxes with the name interests[]—

 Click here to view code image

 <input type="checkbox" name=
[image: Images] "interests[]" value="Music"> Music
<input type="checkbox" name=
[image: Images] "interests[]" value="Movies"> Movies
<input type="checkbox" name=
[image: Images] "interests[]" value="Books"> Books

 —the $_POST variable in the receiving PHP page will be multidimensional. $_POST[‘interests’] will be an array, with $_POST[‘interests’][0] storing the value of the first checked box (e.g., Movies), $_POST[‘interests’][1] storing the second (Books), and so forth. Note that only the checked boxes will get
 passed to the PHP page.

 Tip

 You can also end up with a multidimensional array if an HTML form’s select menu allows
 for multiple selections:

 Click here to view code image

 <select name="interests[]"
[image: Images] multiple="multiple">
 <option value="Music">Music
 [image: Images] </option>
 <option value="Movies">Movies
 [image: Images] </option>
 <option value="Books">Books
 [image: Images] </option>
 <option value="Napping">Napping
 [image: Images] </option>
</select>

 Again, only the selected values will be passed to the PHP page.

 Sorting arrays

 One of the many advantages arrays have over the other variable types is the ability
 to sort them. PHP includes several functions you can use for sorting arrays, all simple
 in syntax:

 Click here to view code image

 $names = ['Moe', 'Larry', 'Curly'];
sort($names);

 The sorting functions perform three kinds of sorts. First, you can sort an array by
 value, discarding the original keys, using sort(). It’s important to understand that the array’s keys will be reset after the sorting
 process, so if the key-value relationship is important, you should not use sort().

 Second, you can sort an array by value while maintaining the keys, using asort(). Third, you can sort an array by key, using ksort(). Each of these can sort in reverse order if you change them to rsort(), arsort(), and krsort(), respectively.

 To demonstrate the effect sorting arrays will have, this next script will create an
 array of movie titles and ratings (how much I liked them on a scale of 1 to 10) and
 then display this list in different ways.

 To sort arrays:

 1. Begin a new PHP document in your text editor or IDE, to be named , starting with the initial HTML (Script 2.8):

 Click here to view code image

 <!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Sorting Arrays</title>
</head>
<body>

 Arrays and Strings

 Because arrays and strings are so commonly used together, PHP has two functions for
 converting between them:

 Click here to view code image

 $array = explode(separator, $string);
$string = implode (glue, $array);

 The key to using and understanding these two functions is the separator and glue relationships. When turning an array into a string, you establish the glue—the characters
 or code that will be inserted between the array values in the generated string. Conversely,
 when turning a string into an array, you specify the separator, which is the token
 that marks what should become separate array elements. For example, start with a string:

 Click here to view code image

 $s1 = 'Mon-Tue-Wed-Thu-Fri';
$days_array = explode('-', $s1);

 The $days_array variable is now a five-element array, with Mon indexed at 0, Tue indexed at 1, and so forth.

 Click here to view code image

 $s2 = implode (', ', $days_array);

 The $s2 variable is now a comma-separated list of days: Mon, Tue, Wed, Thu, Fri.

 Script 2.8 An array is defined and then sorted in two different ways: first by key, then by
 value (in reverse order).

 Click here to view code image

1 <!doctype html>
2 <html lang="en">
3 <head>
4 <meta charset="utf-8">
5 <title>Sorting Arrays</title>
6 </head>
7 <body>
8 <table border="0" cellspacing="3"
 cellpadding="3" align="center">
9 <thead>
10 <tr>
11 <th><h2>Rating</h2></th>
12 <th><h2>Title</h2></th>
13 </tr>
14 </thead>
15 <tbody>
16 <?php # Script 2.8 - sorting.php
17
18 // Create the array:
19 $movies = [
20 'Casablanca' => 10,
21 'To Kill a Mockingbird' => 10,
22 'The English Patient' => 2,
23 'Stranger Than Fiction' => 9,
24 'Story of the Weeping Camel' => 5,
25 'Donnie Darko' => 7
26];
27
28 // Display the movies in their original
 order:
29 echo '<tr><td colspan="2">
 In their original order:</td>
 </tr>';
30 foreach ($movies as $title =>
 $rating) {
31 echo "<tr><td>$rating</td>
32 <td>$title</td></tr>\n";
33 }
34
35 // Display the movies sorted by title:
36 ksort($movies);
37 echo '<tr><td colspan="2">
 Sorted by title:</td></tr>';
38 foreach ($movies as $title =>
 $rating) {
39 echo "<tr><td>$rating</td>
40 <td>$title</td></tr>\n";
41 }
42
43 // Display the movies sorted by rating:
44 arsort($movies);
45 echo '<tr><td colspan="2">
 Sorted by rating:</td>
 </tr>';
46 foreach ($movies as $title =>
 $rating) {
47 echo "<tr><td>$rating</td>
48 <td>$title</td></tr>\n";
49 }
50
51 ?>
52 </tbody>
53 </table>
54 </body>
55 </html>

 2. Create an HTML table:

 Click here to view code image

 <table border="0" cellspacing="3"
[image: Images] cellpadding="3" align="center">
<thead>
 <tr>
 <th><h2>Rating</h2></th>
 <th><h2>Title</h2></th>
 </tr>
</thead>
<tbody>

 To make the ordered list easier to read, it’ll be printed within an HTML table. The
 table is begun here.

 3. Add the opening PHP tag and create a new array:

 Click here to view code image

 <?php # Script 2.8 - sorting.php
$movies = [
 'Casablanca' => 10,
 'To Kill a Mockingbird' => 10,
 'The English Patient' => 2,
 'Stranger Than Fiction' => 9,
 'Story of the Weeping Camel' => 5,
 'Donnie Darko' => 7
];

 This array uses movie titles as the keys and their respective ratings as their values.
 This structure will open up several possibilities for sorting the whole list. Feel
 free to change the movie listings and rankings as you see fit (just don’t chastise
 me for my taste in films).

 4. Print out the array as is:

 Click here to view code image

 echo '<tr><td colspan="2">
[image: Images] In their original order:
[image: Images] </td></tr>';
foreach ($movies as $title =>
[image: Images] $rating) {
 echo "<tr><td>$rating</td>
 <td>$title</td></tr>\n";
}

 At this point in the script, the array is in the same order as it was defined. To
 verify this, print it out. A caption is first printed across both table columns. Then,
 within the foreach loop, the key is printed in the first column and the value in the second. A newline
 is also printed to improve the readability of the HTML source code.

 5. Sort the array alphabetically by title and print it again:

 Click here to view code image

 ksort($movies);
echo '<tr><td colspan="2">
[image: Images] Sorted by title:
[image: Images] </td></tr>';
foreach ($movies as $title =>
[image: Images] $rating) {
 echo "<tr><td>$rating</td>
 <td>$title</td></tr>\n";
}

 The ksort() function will sort an array by key, in ascending order, while maintaining the key-value
 relationship. The rest of the code is a repetition of Step 4.

 6. Sort the array numerically by descending rating and print again:

 Click here to view code image

 arsort($movies);
echo '<tr><td colspan="2">
[image: Images] Sorted by rating:
[image: Images] </td></tr>';
foreach ($movies as $title =>
[image: Images] $rating) {
 echo "<tr><td>$rating</td>
 <td>$title</td></tr>\n";
}

 To sort by values (the ratings) while maintaining the keys, you would use the asort() function. But since the highest-ranking films should be listed first, the order must
 be reversed, using asort().

 7. Complete the PHP, the table, and the HTML:

 Click here to view code image

 ?>
</tbody>
</table>
</body>
</html>

 8. Save the file as sorting.php, place it in your web directory, and test it in your browser [image: Images].

 [image: Images]

 [image: Images] This page demonstrates different ways arrays can be sorted.

 Tip

 To randomize the order of an array, use shuffle().

 Tip

 PHP’s natsort() function can be used to sort arrays in a more natural order (primarily handling numbers
 in strings better).

 Tip

 Multidimensional arrays can be sorted in PHP with a little effort. See the PHP manual
 for more information on the usort() function or check out my PHP Advanced and Object-Oriented Programming: Visual QuickPro Guide (Peachpit, 2013).

 For and While Loops

 The last language construct we will discuss in this chapter is the loop. You’ve already
 used one, foreach, to access every element in an array. The other two types of loops you’ll use are
 for and while.

 The while loop looks like this:

 Click here to view code image

 while (condition) {
 // Do something.
}

 As long as the condition part of the loop is true, the loop will be executed. Once it becomes false, the loop
 is stopped [image: Images]. If the condition is never true, the loop will never be executed. The while loop will most frequently be used when retrieving results from a database, as you’ll
 see in Chapter 9, “Using PHP with MySQL.”

 [image: Images]

 [image: Images]A flowchart representation of how PHP handles a while loop.

 The for loop has a more complicated syntax:

 Click here to view code image

 for (initial expression; condition;
[image: Images] closing expression) {
 // Do something.
}

 Upon first executing the loop, the initial expression is run. Then the condition is
 checked and, if true, the contents of the loop are executed. After execution, the
 closing expression is run and the condition is checked again. This process continues
 until the condition is false [image: Images]. As an example,

 [image: Images]

 [image: Images]A flowchart representation of how PHP handles the more complex for loop.

 Click here to view code image

 for ($i = 1; $i <= 10; $i++) {
 echo $i;
}

 The first time this loop is run, the $i variable is set to the value of 1. Then the condition is checked: is 1 less than
 or equal to 10? Since this is true, 1 is printed out (echo $i). Then, $i is incremented to 2 ($i++), the condition is checked, and so forth. The result of this script will be the numbers
 1 through 10 printed out.

 The functionality of both loops is similar enough that for and while can often be used interchangeably. Still, experience will reveal that the for loop is a better choice for doing something a known number of times, whereas while is used when a condition will be true an unknown number of times.

 In this chapter’s last example, the calendar script created earlier will be rewritten
 using for loops in place of two of the foreach loops.

 To use loops:

 1. Open calendar.php (refer to Script 2.6) in your text editor or IDE.

 2. Delete the $days and $years arrays (lines 18–19).

 Using loops, the same result of the two pull-down menus can be achieved without the
 extra code and memory overhead involved with creating actual arrays. So these two
 arrays should be deleted, while still keeping the $months array.

 3. Rewrite the $days foreach loop as a for loop (Script 2.9):

 Click here to view code image

 for ($day = 1; $day <= 31; $day++) {
 echo "<option value=\"$day\">
 [image: Images] $day</option>\n";
}

 This standard for loop begins by initializing the $day variable as 1. It will continue the loop until $day is greater than 31, and upon each iteration, $day will be incremented by 1. The content of the loop itself (which is executed 31 times)
 is an echo statement.

 Script 2.9 Loops are often used in conjunction with or in lieu of an array. Here, two for loops replace the arrays and foreach loops used in the script previously.

 Click here to view code image

1 <!doctype html>
2 <html lang="en">
3 <head>
4 <meta charset="utf-8">
5 <title>Calendar</title>
6 </head>
7 <body>
8 <form action="calendar.php" method="post">
9 <?php # Script 2.9 - calendar.php #2
10
11 // This script makes three pull-down menus
12 // for an HTML form: months, days, years.
13
14 // Make the months array:
15 $months = [1 => 'January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', 'September', 'October', 'November', 'December'];
16
17 // Make the months pull-down menu:
18 echo '<select name="month">';
19 foreach ($months as $key => $value) {
20 echo "<option value=\"$key\">$value
 </option>\n";
21 }
22 echo '</select>';
23
24 // Make the days pull-down menu:
25 echo '<select name="day">';
26 for ($day = 1; $day <= 31; $day++) {
27 echo "<option value=\"$day\">$day
 </option>\n";
28 }
29 echo '</select>';
30
31 // Make the years pull-down menu:
32 echo '<select name="year">';
33 for ($year = 2017; $year <= 2027;
 $year++) {
34 echo "<option value=\"$year\">
 $year</option>\n";
35 }
36 echo '</select>';
37
38 ?>
39 </form>
40 </body>
41 </html>

 4. Rewrite the $years foreach loop as a for loop:

 Click here to view code image

 for ($year = 2017; $year <= 2027;
[image: Images] $year++) {
 echo "<option value=\"$year\">
 [image: Images] $year</option>\n";
}

 The structure of this loop is fundamentally the same as the $day for loop, but the $year variable is initially set to 2017 instead of 1. As long as $year is less than or equal to 2021, the loop will be executed. Within the loop, the echo statement is run.

 5. Save the file, place it in your web directory, and test it in your browser [image: Images].

 [image: Images]

 [image: Images]This calendar form looks the same as it had previously but was created with two fewer
 arrays (compare Script 2.9 with Script 2.6).

 Tip

 PHP also has a do...while loop with a slightly different syntax (check the manual). This loop will always be
 executed at least once.

 Tip

 When using loops, watch your parameters and conditions to avoid the dreaded infinite
 loop, which occurs when a loop’s condition is never going to be false.

 Review and Pursue

 If you have any problems with the review questions or the pursue prompts, turn to
 the book’s supporting forum (LarryUllman.com/forums/).

 Note: Some of these questions and prompts rehash information covered in Chapter 1 in order to reinforce some of the most important points.

 Review

 [image: Images] What is the significance of a form’s attribute? Of its attribute?

 [image: Images] Why must an HTML form that gets submitted to a PHP script be loaded through a URL?
 What would happen upon submitting the form if it were not loaded through a URL?

 [image: Images] What are the differences between using single and double quotation marks to delineate
 strings?

 [image: Images] What control structures were introduced in this chapter?

 [image: Images] What new variable type was introduced in this chapter?

 [image: Images] What operator tests for equality? What is the assignment operator?

 [image: Images] Why are textual form elements validated using empty() but other form elements are validated using isset()?

 [image: Images] What is the difference between an indexed array and an associative array?

 [image: Images] With what value do indexed arrays begin (by default)? If an indexed array has ten
 elements in it, what would the expected index be of the last element in the array?

 [image: Images] What are the superglobal arrays? From where do the following superglobals get their values?

 ▸ $_GET

 ▸ $_POST

 ▸ $_COOKIE

 ▸ $_REQUEST

 ▸ $_SESSION

 ▸ $_SERVER

 ▸ $_ENV

 [image: Images] How can you print an individual indexed array item? How can you print an individual associative array item? Note: There is more than one answer to both questions.

 [image: Images] What does the count() function do?

 [image: Images] What impact does printing \n have on the browser?

 [image: Images] Generally speaking, when would you use a while loop? When would you use a for loop? When would you use a foreach loop? What is the syntax of each loop type?

 [image: Images] What is the ++ operator? What does it do?

 Pursue

 [image: Images] What version of PHP are you using? If you don’t know, find out now!

 [image: Images] Create a new form that takes some input from the user (perhaps base it on a form
 you know you’ll need for one of your projects). Then create the PHP script that validates
 the form data and reports upon the results.

 [image: Images] Rewrite the gender conditional in handle_form.php (Script 2.4) as one conditional instead of two nested ones. Hint: You’ll need to use the AND operator.

 [image: Images] Rewrite handle_form.php (Script 2.4) to use $_POST instead of $_REQUEST.

 [image: Images] Rewrite handle_form.php (Script 2.4) so that it validates the age element. Hint: Use the $gender validation as a template, this time checking against the corresponding pull-down
 option values (0–29, 30–60, 60+).

 [image: Images] Rewrite the echo statement in the final version of handle_form.php (Script 2.5) so that it uses single quotation marks and concatenation instead of double quotation
 marks.

 [image: Images] If you’re using PHP 7 or later, change some of the conditionals to use the NULL coalescing
 operator instead.

 [image: Images] Look up in the PHP manual one of the array functions introduced in this book. Then
 check out some of the other array-related functions built into the language.

 [image: Images] Create a new array and then display its elements. Sort the array in different ways
 and then display the array’s contents again.

 [image: Images] Create a form that contains a select menu or series of check boxes that allow for
 multiple sections. Then, in the handling PHP script, display the selected items along
 with a count of how many the user selected.

 [image: Images] For added complexity, take the suggested PHP script you just created (that handles
 multiple selections), and have it display the selections in alphabetical order.

 [image: Images] Learn about form validation in HTML5. This can provide a nicer user experience but
 does not replace server-side validation, which is always required as client-side validation
 is easily circumvented.

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 3. Creating Dynamic Web Sites

 In This Chapter

 Including Multiple Files

 Handling HTML Forms, Revisited

 Making Sticky Forms

 Creating Your Own Functions

 Review and Pursue

 With the fundamentals of PHP under your belt, it’s time to begin building truly dynamic
 web sites. Dynamic web sites, as opposed to the static ones on which the web was first built, are easier
 to maintain, are more responsive to users, and can alter their content in response
 to differing situations. This chapter introduces three new ideas, all commonly used
 to create more sophisticated web applications (Chapter 11, “Web Application Development,” covers another handful of topics along these same lines).

 The first subject involves using external files. This is an important concept, as
 more complex sites often demand compartmentalizing some HTML or PHP code. Then the
 chapter returns to the subject of handling HTML forms. You’ll learn some new variations
 on this important and standard aspect of dynamic web sites. Finally, you’ll learn
 how to define and use your own functions.

 Including Multiple Files

 To this point, every script in the book has consisted of a single file containing
 all of the required HTML and PHP code. But as you develop more complex web sites,
 you’ll see that this approach is often not practical. A better way to create dynamic
 web applications is to divide your scripts and web sites into distinct parts, each
 part being stored in its own file. Frequently, you will use multiple files to extract
 the HTML from the PHP or to separate out commonly used processes.

 PHP has four functions for incorporating external files: include(), include()_once(), require(), and require_once(). To use them, your PHP script would have a line like

 Click here to view code image

 include_once('filename.php');
require('/path/to/filename.html');

 Using any one of these functions has the end result of taking all the content of the
 included file and dropping it in the parent script (the one calling the function)
 at that juncture. An important consideration with included files is that PHP will
 treat the included code as HTML (i.e., send it directly to the browser) unless the
 file contains code within the PHP tags.

 In terms of functionality, it also doesn’t matter what extension the included file
 uses, be it .php or .html. However, giving the file a symbolic name and extension helps to convey its purpose
 (e.g., an included file of HTML might use .inc.html). Also, note that you can use either absolute or relative paths to the included file (see the sidebar for more).

 Absolute vs. Relative Paths

 When referencing any external item, be it an included file in PHP, a CSS document
 in HTML, or an image, you have the choice of using either an absolute or a relative path. An absolute file path references a file starting from the root directory of
 the computer:

 Click here to view code image

 include ('C:/php/includes/file.php');
include('/usr/xyz/includes/file.php');

 Assuming file.php exists in the named location, the inclusion will work, no matter the location of
 the referencing—parent—file, barring any permissions issues. The second example, in
 case you’re not familiar with the syntax, would be a Unix and macOS X absolute path.
 Absolute paths always start with something like C:/ or /.

 A relative path uses the referencing—parent—file as the starting point. To move up
 one folder, use two periods together. To move into a folder, use its name followed
 by a slash. So assuming the current script is in the www/ex1 folder and you want to include something in www/ex2, the code would be

 Click here to view code image

 include('../ex2/file.php');

 A relative path will remain accurate, even if the site is moved to another server,
 as long as the files maintain their current relationship to each other.

 The include() and require() functions are exactly the same when working properly but behave differently when
 they fail. If an include() function doesn’t work (it cannot include the file for some reason), a warning will
 be printed to the browser [image: Images], but the script will continue to run. If require() fails, an error is printed and the script is halted [image: Images].

 [image: Images]

 [image: Images] One failed include() call generates these two error messages (assuming that PHP is configured to display
 errors), but the rest of the page continues to execute.

 [image: Images]

 [image: Images] The failure of a require() function call will print an error and terminate the execution of the script. If PHP
 is not configured to display errors, then the script will terminate without printing
 the problem first (i.e., it’d be a blank page).

 Both functions also have a *_once() version, which guarantees that the file in question is included only once regardless
 of how many times a script may—presumably inadvertently—attempt to include it.

 Click here to view code image

 require_once('filename.php');
include_once('filename.php');

 Because require_once() and include_once() require extra work from the PHP module (i.e., PHP must first check that the file
 has not already been included), it’s best not to use these two functions unless a
 redundant include is likely to occur, which can happen on complex sites.

 In this next example, included files will separate the primary HTML formatting from
 any PHP code. Then, the rest of the examples in this chapter will be able to have
 the same appearance—as if they are all part of the same web site—without the need
 to rewrite the common HTML every time. This technique creates a template system: an easy way to make large applications consistent and manageable. The focus in these
 examples is on the PHP code itself; you should also read the “Site Structure” sidebar so that you understand the organizational scheme on the server. If you have
 any questions about the CSS (Cascading Style Sheets) or HTML used in the example,
 see a dedicated resource on those topics.

 To include multiple files:

 1. Design an HTML page in your text or WYSIWYG editor (Script 3.1 and [image: Images]).

 [image: Images]

 [image: Images]The HTML and CSS design as it appears in the browser (without using any PHP).

 Script 3.1 The HTML template for this chapter's web pages. Download the sticky-footer-navbar.css file it uses from the book's supporting web site (LarryUllman.com).

 Click here to view code image

1 <!DOCTYPE html>
2 <html lang="en">
3 <head>
4 <meta charset="utf-8">
5 <meta http-equiv="X-UA-Compatible" content="IE=edge">
6 <meta name="viewport" content="width=device-width, initial-scale=1">
7 <title>Page Title</title>
8 <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css
 /bootstrap.min.css" integrity="sha384-BVYiiSIFeK1dGmJRAkycuHAHRg32OmUcww7on3RYdg4Va+PmSTsz
 /K68vbdEjh4u" crossorigin="anonymous">
9 <link href="css/sticky-footer-navbar.css" rel="stylesheet">
10 </head>
11 <body>
12 <nav class="navbar navbar-default navbar-fixed-top">
13 <div class="container">
14 <div class="navbar-header">Your Website</div>
15 <div id="navbar" class="collapse navbar-collapse">
16 <ul class="nav navbar-nav">
17 <li class="active">Home
18 Calculator
19 Contact
20
21 </div>
22 </div>
23 </nav>
24 <div class="container">
25 <!-- Begin page content -->
26 <div class="page-header"><h1>Content Header</h1></div>
27 <p>This is where the page-specific content goes. This section, and the corresponding
 header, will change from one page to the next.</p>
28
29 <p>Volutpat at varius sed sollicitudin et, arcu. Vivamus viverra. Nullam turpis. Vestibulum
 sed etiam. Lorem ipsum sit amet dolore. Nulla facilisi. Sed tortor. Aenean felis. Quisque
 eros. Cras lobortis commodo metus. Vestibulum vel purus. In eget odio in sapien adipiscing
 blandit. Quisque augue tortor, facilisis sit amet, aliquam, suscipit vitae, cursus sed,
 arcu lorem ipsum dolor sit amet.</p>
30 <!-- End page content -->
31 </div>
32 <footer class="footer">
33 <div class="container">
34 <p class="text-muted"><p>Copyright © 2017</p>
35 </div>
36 </footer>
37 </body>
38 </html>

 To start creating a template for a web site, design the layout like a standard HTML
 page, independent of any PHP code. For this chapter’s example, I’ve created a simple
 page using the Bootstrap framework (http://getbootstrap.com).

 2. Mark where any page-specific content goes.

 Almost every web site has several common elements on each page—header, navigation,
 advertising, footer, and so on—and one or more page-specific sections. In the HTML
 page (Script 3.1), enclose the section of the layout that will change from page to page within HTML
 comments to indicate its status.

 Site Structure

 When you begin using multiple files in your web applications, the overall site structure
 becomes more important. When laying out your site, you must take into account two
 primary considerations:

 [image: Images] Ease of maintenance

 [image: Images] Security

 Using external files for holding standard procedures (i.e., PHP code), CSS, JavaScript,
 and the HTML design will greatly improve the ease of maintaining your site because
 commonly edited code is placed in one central location. I’ll frequently make an includes or templates directory to store these files apart from the main scripts (the ones that are accessed
 directly in the browser).

 I recommend using the .inc or .html file extension for documents where security is not an issue—such as HTML templates—and
 .php for files that contain more sensitive data, such as database access information.
 You can also use both .inc and .html or .php so that a file is clearly indicated as an include of a certain type: db.inc.php or header.inc.html.

 3. Copy everything from the first line of the layout’s HTML source to just before the
 page-specific content and paste it in a new document to be named header.html (Script 3.2):

 Script 3.2 The initial HTML for each page is stored in a header file.

 Click here to view code image

1 <!DOCTYPE html>
2 <html lang="en">
3 <head>
4 <meta charset="utf-8">
5 <meta http-equiv="X-UA-Compatible" content="IE=edge">
6 <meta name="viewport"
 content="width=device-width,
 initial-scale=1">
7 <title><?php echo $page_title; ?>
 </title>
8 <link rel="stylesheet" href="https://
 maxcdn.bootstrapcdn.com/bootstrap
 /3.3.7/css/bootstrap.min.css"
 integrity="sha384-BVYiiSIFeK1dGmJRAk
 ycuHAHRg32OmUcww7on3RYdg4Va+PmSTsz/
 K68vbdEjh4u" crossorigin="anonymous">
9 <link href="css/sticky-footer-navbar
 .css" rel="stylesheet">
10 </head>
11 <body>
12 <nav class="navbar navbar-default
 navbar-fixed-top">
13 <div class="container">
14 <div class="navbar-header">

 Your Website</div>
15 <div id="navbar" class="collapse
 navbar-collapse">
16 <ul class="nav navbar-nav">
17 <li class="active">Home

18 <a href="calculator
 .php">Calculator
19
 Contact
20
21 </div>
22 </div>
23 </nav>
24 <div class="container">
25 <!-- Script 3.2 - header.html -->

 Click here to view code image

 <!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible"
[image: Images]content="IE=edge">
<meta name="viewport"
[image: Images]content="width=device-width,
[image: Images]initial-scale=1">
<title>Page Title</title>
<link rel="stylesheet"
[image: Images]href="https://maxcdn
[image: Images].bootstrapcdn.com/bootstrap
[image: Images]/3.3.7/css/bootstrap.min.css"
[image: Images]integrity="sha384-BVYiiSIF
[image: Images]eK1dGmJRAkycuHAHRg32OmUcww7
[image: Images]on3RYdg4Va+PmSTsz/K68vbdEjh4u"
[image: Images]crossorigin="anonymous">
<link href="css/sticky-footer[image: Images]
-navbar.css" rel="stylesheet">
</head>
<body>
<nav class="navbar
[image: Images]navbar-default navbar-fixed-top">
 <div class="container">
 <div class="navbar-header">
 [image: Images]<a class="navbar-brand"
 [image: Images]href="#">Your Website
 [image: Images]</div>
 <div id="navbar" class=
 [image: Images]"collapse navbar-collapse">
 <ul class="nav navbar-nav">
 <li class="active">
 [image: Images]
 [image: Images]Home
 <a href="calculator
 [image: Images].php">Calculator
 [image: Images]
 [image: Images]lt;li>
 [image: Images]Contact

 </div>
 </div>
</nav>
<div class="container">
<!-- Script 3.2 - header.html -->

 This first file will contain the initial HTML tags (from DOCTYPE through the head and into the beginning of the page body). It also has the code that
 makes the web site name, plus the horizontal bar of links across the top [image: Images]. All of the page-specific content goes within the DIV that has a class value of container.

 4. Change the page’s title line to read

 <?php echo $page_title; ?>

 The page title (which appears at the top of the browser [image: Images]) should be changeable on a page-by-page basis. For that to be possible, this value
 will be based on a PHP variable, which will then be printed out. You’ll see how this
 plays out shortly.

 5. Save the file as header.html.

 As stated already, included files can use just about any extension for the filename.
 This file is called header.html, indicating that it is the template’s header file and that it contains primarily
 HTML.

 6. Copy everything in the original template from the end of the page-specific content
 to the end of the page and paste it in a new file, to be named footer.html (Script 3.3):

 Click here to view code image

 <!-- Script 3.3 - footer.html -->
</div>
<footer class="footer">
 <div class="container">
 <p class="text-muted">
 [image: Images]<p>Copyright © 2017</p>
 </div>
</footer>
</body>
</html>

 Script 3.3 The concluding HTML for each page is stored in this footer file.

 Click here to view code image

 1 <!-- Script 3.3 - footer.html -->
2 </div>
3 <footer class="footer">
4 <div class="container">
5 <p class="text-muted"><p>Copyright © 2017</p>
6 </div>
7 </footer>
8 </body>
9 </html>

 The footer file completes the container DIV and creates the footer portion of the
 page (which will be the same for every page on the site), and then the HTML document
 itself is completed.

 7. Save the file as footer.html.

 8. Begin a new PHP document in your text editor or IDE, to be named index.php (Script 3.4):

 Click here to view code image

 <?php # Script 3.4 - index.php

 Script 3.4 This script generates a complete page by including a template stored in two external
 files.

 Click here to view code image

 1 <?php # Script 3.4 - index.php
2 $page_title = 'Welcome to this Site!';
3 include('includes/header.html');
4 ?>
5
6 <div class="page-header"><h1>Content Header</h1></div>
7 <p>This is where the page-specific content goes. This section, and the corresponding header,
 will change from one page to the next.</p>
8
9 <p>Volutpat at varius sed sollicitudin et, arcu. Vivamus viverra. Nullam turpis. Vestibulum
 sed etiam. Lorem ipsum sit amet dolore. Nulla facilisi. Sed tortor. Aenean felis. Quisque
 eros. Cras lobortis commodo metus. Vestibulum vel purus. In eget odio in sapien adipiscing
 blandit. Quisque augue tortor, facilisis sit amet, aliquam, suscipit vitae, cursus sed, arcu
 lorem ipsum dolor sit amet.</p>
10
11 <?php
12 include('includes/footer.html');
13 ?>

 Since this script will use the included files for most of its HTML, it can begin and
 end with the PHP tags.

 9. Set the $page_title variable and include the HTML header:

 Click here to view code image

 $page_title = 'Welcome to this
[image: Images]Site!';
include('includes/header.html');

 The $page_title variable will store the value that appears in the top of the browser window (and
 therefore is also the default value when a person bookmarks the page). This variable
 is printed in header.html (see Script 3.2). By defining the variable prior to including the header file, the header file will
 have access to that variable. Remember that this include() line has the effect of dropping the contents of the included file into this page
 at this spot.

 The include() function call uses a relative path to header.html (see the sidebar “Absolute vs. Relative Paths”). The syntax states that in the same folder as this file is a folder called includes and in that folder is a file named header.html.

 10. Close the PHP tags and add the page-specific content:

 Click here to view code image

 ?>
<div class="page-header">
[image: Images]<h1>Content Header</h1></div>
<p>This is where the page-specific
[image: Images]content goes. This section,
[image: Images]and the corresponding header,
[image: Images]will change from one page to
[image: Images]the next.</p>

 For most pages, PHP will generate this content instead of having static text. This
 information could be sent to the browser using echo, but since there’s no dynamic content here, it’s easier and more efficient to exit
 the PHP tags temporarily. (The script and the images have a bit of extra Latin than
 is shown here, just to fatten up the page.)

 11. Create a final PHP section and include the footer file:

 Click here to view code image

 <?php
include('includes/footer.html');
?>

 12. Save the file as index.php and place it in your web directory.

 13. Create an includes directory in the same folder as index.php. Then place header.html and footer.html into this includes directory.

 14. Create a css directory in the same folder as index.php. Then place sticky-footer-navbar.css (part of the downloadable code at LarryUllman.com) in it.

 Note: To save space, the CSS file for this example—which controls the layout—is not
 included in the book. You can download the file through the book’s supporting web
 site or do without it (the template will still work; it just won’t look as nice).

 15. Test the template system by going to the index.php page in your browser [image: Images].

 [image: Images]

 [image: Images] Now the same layout [image: Images] has been created using external files in PHP.

 The index.php page is the key script in the template system. You do not need to access any of the
 included files directly, because index.php will take care of incorporating their contents. Since this is a PHP page, you still
 need to access it through a URL.

 16. If desired, view the HTML source of the page [image: Images].

 [image: Images]

 [image: Images] The generated HTML source of the page should replicate the code in the original template
 (refer to Script 3.1).

 Tip

 In the php.ini configuration file, you can adjust the include_path setting, which dictates where PHP is and is not allowed to retrieve included files.

 Tip

 As you’ll see in Chapter 9, “Using PHP with MySQL,” any included file that contains sensitive information (like database access) should
 ideally be stored outside of the web directory so it can’t be viewed within a browser.

 Tip

 Since require() has more impact on a script when it fails, it’s recommended for mission-critical
 includes, like those that connect to a database. The include() function would be used for less important inclusions.

 Tip

 If a block of PHP code contains only a single executable statement, it’s common to
 place both it and the PHP tags on a single line:

 <?php include('filename.html'); ?>

 Handling HTML Forms, Revisited

 A good portion of Chapter 2, “Programming with PHP,” involves handling HTML forms with PHP; this makes sense, as a good portion of web
 programming with PHP is exactly that. All of those examples use two separate files:
 one that displays the form and another that receives its submitted data. Although
 there’s certainly nothing wrong with this approach, there are advantages to putting
 the entire process into one script.

 To have one page both display and handle a form, a conditional must check which action—display
 or handle—should be taken:

 Click here to view code image

 if (/* form has been submitted */) {
 // Handle the form.
} else {
 // Display the form.
}

 The question, then, is how to determine if the form has been submitted. The answer
 is simple—after a bit of explanation.

 When you have a form that uses the POST method and gets submitted back to the same
 page, two different types of requests will be made of that script [image: Images]. The first request, which loads the form, will be a GET request. This is the standard
 request made of most pages. When the form is submitted, a second request of the script
 will be made, this time a POST request (assuming the form uses the POST method). Hence,
 you can test for a form’s submission by checking the request method, found in the
 $_SERVER array:

 [image: Images]

 [image: Images] The interactions between the user and this PHP script on the server involves the
 user making two requests of this script.

 Click here to view code image

 if ($_SERVER['REQUEST_METHOD'] == 'POST') {
 // Handle the form.
} else {
 // Display the form.
}

 If you want a page to handle a form and then display it again (e.g., to add a record
 to a database and then give an option to add another), drop the else clause:

 Click here to view code image

 if ($_SERVER['REQUEST_METHOD'] ==
[image: Images]'POST') {
// Handle the form.
}
// Display the form.

 Using that code, a script will handle a form if it has been submitted and display
 the form every time the page is loaded.

 To demonstrate having the same page both display and handle a form, let’s create a
 calculator that estimates the cost and time required to take a car trip, based on
 user-entered values [image: Images].

 [image: Images]

 [image: Images] The HTML form, completed by the user.

 To handle HTML forms:

 1. Begin a new PHP document in your text editor or IDE, to be named calculator.php (Script 3.5):

 Click here to view code image

 <?php # Script 3.5 - calculator.php
$page_title = 'Trip Cost Calculator';
include('includes/header.html');

 Script 3.5 The calculator.php script both displays a simple form and handles the form data; it performs some calculations
 and reports on the results.

 Click here to view code image

1 <?php # Script 3.5 - calculator.php
2
3 $page_title = 'Trip Cost Calculator';
4 include('includes/header.html');
5
6 // Check for form submission:
7 if ($_SERVER['REQUEST_METHOD'] == 'POST') {
8
9 // Minimal form validation:
10 if (isset($_POST['distance'], $_POST['gallon_price'], $_POST['efficiency']) &&
11 is_numeric($_POST['distance']) && is_numeric($_POST['gallon_price']) &&
 is_numeric($_POST['efficiency'])) {
12
13 // Calculate the results:
14 $gallons = $_POST['distance'] / $_POST['efficiency'];
15 $dollars = $gallons * $_POST['gallon_price'];
16 $hours = $_POST['distance']/65;
17
18 // Print the results:
19 echo '<div class="page-header"><h1>Total Estimated Cost</h1></div>
20 <p>The total cost of driving ' . $_POST['distance'] . ' miles, averaging ' .
 $_POST['efficiency'] . ' miles per gallon, and paying an average of $' .
 $_POST['gallon_price'] . ' per gallon, is $' . number_format ($dollars, 2) . '.
 If you drive at an average of 65 miles per hour, the trip will take approximately ' .
 number_format($hours, 2) . ' hours.</p>';
21
22 } else { // Invalid submitted values.
23 echo '<div class="page-header"><h1>Error!</h1></div>
24 <p class="text-danger">Please enter a valid distance, price per gallon, and fuel
 efficiency.</p>';
25 }
26
27 } // End of main submission IF.
28
29 // Leave the PHP section and create the HTML form:
30 ?>
31
32 <div class="page-header"><h1>Trip Cost Calculator</h1></div>
33 <form action="calculator.php" method="post">
34 <p>Distance (in miles): <input type="number" name="distance"></p>
35 <p>Ave. Price Per Gallon: <input type="radio" name="gallon_price" value="3.00"> 3.00
36 <input type="radio" name="gallon_price" value="3.50"> 3.50
37 <input type="radio" name="gallon_price" value="4.00"> 4.00
38 </p>
39 <p>Fuel Efficiency: <select name="efficiency">
40 <option value="10">Terrible</option>
41 <option value="20">Decent</option>
42 <option value="30">Very Good</option>
43 <option value="50">Outstanding</option>
44 </select></p>
45 <p><input type="submit" name="submit" value="Calculate!"></p>
46 </form>
47
48 <?php include('includes/footer.html'); ?>

 This, and all the remaining examples in the chapter, will use the same template system
 as index.php (Script 3.4). The beginning syntax of each page will therefore be the same, but the page titles
 will differ.

 2. Write the conditional that checks for a form submission:

 Click here to view code image

 if ($_SERVER['REQUEST_METHOD'] ==
[image: Images]'POST') {

 As suggested already, checking if the page is being requested via the POST method
 is a good test for a form submission (so long as the form uses POST).

 3. Validate the form:

 Click here to view code image

 if (isset($_POST['distance'],
[image: Images]$_POST['gallon_price'],
[image: Images]$_POST['efficiency']) &&
is_numeric($_POST['distance']) &&
[image: Images]is_numeric($_POST['gallon_price'])
[image: Images]&& is_numeric($_POST
[image: Images]['efficiency'])) {

 The validation here is very simple: it merely checks that three submitted variables
 are set and are all numeric types. You can certainly elaborate on this, perhaps checking
 that all values are positive (in fact, Chapter 13, “Security Methods,” has a variation on this script that does just that).

 If the validation passes all the tests, the calculations will be made; otherwise,
 the user will be asked to try again.

 4. Perform the calculations:

 Click here to view code image

 $gallons = $_POST['distance'] /
[image: Images]$_POST['efficiency'];
$dollars = $gallons * $_POST
[image: Images]['gallon_price'];
$hours = $_POST['distance']/65;

 The first line calculates the number of gallons of gasoline the trip will take, determined
 by dividing the distance by the fuel efficiency. The second line calculates the cost
 of the fuel for the trip, determined by multiplying the number of gallons times the
 average price per gallon. The third line calculates how long the trip will take, determined
 by dividing the distance by 65 (representing 65 miles per hour).

 5. Print the results:

 Click here to view code image

 echo '<div class="page-header">
[image: Images]<h1>Total Estimated Cost</h1>
[image: Images]</div>
<p>The total cost of driving '
[image: Images]. $_POST['distance'] . ' miles,
averaging ' . $_POST['efficiency']
[image: Images]. ' miles per gallon, and paying
[image: Images]an average of $' . $_POST
[image: Images]['gallon_price'] . ' per gallon,
[image: Images]is $' . number_format
[image: Images]($dollars, 2) . '. If you drive
[image: Images]at an average of 65 miles per
[image: Images]hour, the trip will take
[image: Images]approximately ' . number_format
[image: Images]($hours, 2) . ' hours.</p>';

 All of the values are printed out while formatting the cost and hours with the number_format() function. Using the concatenation operator (the period) allows the formatted numeric
 values to be appended to the printed message.

 6. Complete the conditionals and close the PHP tag:

 Click here to view code image

 } else { // Invalid submitted
 [image: Images]values.
 echo '<div class="page-header">
 [image: Images]<h1>Error!</h1></div>
 <p class="text-danger">Please
 [image: Images]enter a valid distance,
 [image: Images]price per gallon, and fuel
 [image: Images]efficiency.</p>';
 }
} // End of main submission IF.
?>

 The else clause completes the validation conditional (Step 3), printing an error if the three
 submitted values aren’t all set and numeric [image: Images]. The final closing curly brace closes the isset($_SERVER[‘REQUEST_METHOD’] == ‘POST’) conditional. Finally, the PHP section is closed so that the form can be created without
 using echo (see Step 7).

 [image: Images]

 [image: Images] If any one of the submitted values is not both set and numeric, an error message
 is displayed.

 7. Begin the HTML form:

 Click here to view code image

 <div class="page-header"><h1>Trip
[image: Images]Cost Calculator</h1></div>
<form action="calculator.php"
[image: Images]method="post">
 <p>Distance (in miles): <input
 [image: Images]type="number" name="distance">
 [image: Images]</p>

 The form itself is fairly obvious, containing only one new trick: the action attribute uses this script’s name so that the form submits back to this page instead
 of to another. The first element within the form is a number input—added in HTML5,
 where the user can enter the distance of the trip.

 8. Complete the form:

 Click here to view code image

 <p>Ave. Price Per Gallon:
 <input type="radio"
 [image: Images]name="gallon_price"
 [image: Images]value="3.00"> 3.00
 <input type="radio"
 [image: Images]name="gallon_price"
 [image: Images]value="3.50"> 3.50
 <input type="radio"
 [image: Images]name="gallon_price"
 [image: Images]value="4.00"> 4.00
 </p>
 <p>Fuel Efficiency:
 [image: Images]<select name="efficiency">
 <option value="10">Terrible
 [image: Images]</option>
 <option value="20">Decent
 [image: Images]</option>
 <option value="30">Very
 [image: Images]Good</option>
 <option value="50">
 [image: Images]Outstanding</option>
 </select></p>
 <p><input type="submit"
 [image: Images]name="submit"
 [image: Images]value="Calculate!"></p>
</form>

 The form uses radio buttons to select the average price per gallon (the buttons are
 wrapped within span tags to format them similarly to the other form elements). For the fuel efficiency,
 the user can select from a drop-down menu of four options. A submit button completes
 the form.

 9. Include the footer file:

 Click here to view code image

 <?php include('includes/footer
[image: Images].html'); ?>

 10. Save the file as calculator.php, place it in your web directory, and test it in your browser [image: Images].

 [image: Images]

 [image: Images] The page performs the calculations, reports on the results, and then redisplays the
 form.

 Tip

 You can also have a form submit back to itself by using no value for the action attribute:

 Click here to view code image

 <form action="" method="post">

 By doing so, the form will always submit back to this same page, even if you later
 change the name of the script.

 Tip

 The Bootstrap framework has many ways to make the HTML page and the form more attractive
 and usable. I’ve forgone these to save space, but check out the Bootstrap documentation
 for details.

 Making Sticky Forms

 A sticky form is simply a standard HTML form that remembers how you filled it out. This is a particularly
 nice feature for end users, especially if you are requiring them to resubmit a form
 after filling it out incorrectly in the first place (as in [image: Images] in the previous section).

 To preset what’s entered in any text-type input, including number and email, use its
 value attribute:

 Click here to view code image

 <input type="text" name="city"
[image: Images]value="Innsbruck">

 To have PHP preset that value, print the appropriate variable (this assumes that the
 referenced variable exists):

 Click here to view code image

 <input type="text" name="city"
[image: Images]value="<?php echo $city; ?>">

 This is also a nice example of the benefit of PHP’s HTML-embedded nature: you can
 place PHP code anywhere, including within HTML tags.

 To preset the status of radio buttons or check boxes—to pre-check them, add the code
 checked=”checked” to their input tags. Using PHP, you might write:

 Click here to view code image

 <input type="radio" name="gender"
[image: Images]value="F" <?php if ($gender == 'F') {
echo 'checked="checked"';
} ?>>

 As you can see, the syntax can quickly get complicated; you may find it easiest to
 create the form element and then add the PHP code as a second step.

 To preset the value of a textarea, print the value between the textarea tags:

 Click here to view code image

 <textarea name="comments" rows="10"
[image: Images]cols="50"><?php echo $comments; ?>
[image: Images]</textarea>

 Note that the textarea tag does not have a value attribute like the standard text input.

 To preselect a pull-down menu, add selected=”selected” to the appropriate option. This is easy if you also use PHP to generate the menu:

 Click here to view code image

 echo '<select name="year">';
for ($y = 2017; $y <= 2027; $y++) {
 echo "<option value=\"$y\"";
 if ($year == $y) {
 echo ' selected="selected"';
 }
 echo ">$y</option>\n";
}
echo '</select>';

 With this new information in mind, let’s rewrite calculator.php so that it’s sticky. Unlike the earlier examples, the existing values will be present
 in $_POST variables. Also, since it’s best not to refer to variables unless they exist, conditionals
 will check that a variable is set before printing its value.

 To make a sticky form:

 1. Open calculator.php (refer to Script 3.5) in your text editor or IDE, if it is not already open.

 2. Change the distance input to read (Script 3.6)

 Click here to view code image

 <p>Distance (in miles):
[image: Images]<input type="number"
[image: Images]name="distance" value="<?php if
[image: Images](isset($_POST['distance'])) echo
[image: Images]$_POST['distance']; ?>"></p>

 Script 3.6 The calculator's form now recalls the previously entered and selected values (creating
 a sticky form).

 Click here to view code image

1 <?php # Script 3.5 - calculator.php
2
3 $page_title = 'Trip Cost Calculator';
4 include('includes/header.html');
5
6 // Check for form submission:
7 if ($_SERVER['REQUEST_METHOD'] == 'POST') {
8
9 // Minimal form validation:
10 if (isset($_POST['distance'], $_POST['gallon_price'], $_POST['efficiency']) &&
11 is_numeric($_POST['distance']) && is_numeric($_POST['gallon_price']) &&
 is_numeric($_POST['efficiency'])) {
12
13 // Calculate the results:
14 $gallons = $_POST['distance'] / $_POST['efficiency'];
15 $dollars = $gallons * $_POST['gallon_price'];
16 $hours = $_POST['distance']/65;
17
18 // Print the results:
19 echo '<div class="page-header"><h1>Total Estimated Cost</h1></div>
20 <p>The total cost of driving ' . $_POST['distance'] . ' miles, averaging ' .
 $_POST['efficiency'] . ' miles per gallon, and paying an average of $' . $_POST['gallon_
 price'] . ' per gallon, is $' . number_format ($dollars, 2) . '. If you drive at an
 average of 65 miles per hour, the trip will take approximately ' .
 number_format($hours, 2) . ' hours.</p>';
21
22 } else { // Invalid submitted values.
23 echo '<div class="page-header"><h1>Error!</h1></div>
24 <p class="text-danger">Please enter a valid distance, price per gallon, and fuel
 efficiency.</p>';
25 }
26
27 } // End of main submission IF.
28
29 // Leave the PHP section and create the HTML form:
30 ?>
31
32 <div class="page-header"><h1>Trip Cost Calculator</h1></div>
33 <form action="calculator.php" method="post">
34 <p>Distance (in miles): <input type="number" name="distance" value="<?php if
 (isset($_POST['distance'])) echo $_POST['distance']; ?>"></p>
35 <p>Ave. Price Per Gallon:
36 <input type="radio" name="gallon_price" value="3.00" <?php if
 (isset($_POST['gallon_price']) && ($_POST['gallon_price'] == '3.00'))
 echo 'checked="checked" '; ?>> 3.00
37 <input type="radio" name="gallon_price" value="3.50" <?php if
 (isset($_POST['gallon_price']) && ($_POST['gallon_price'] == '3.50'))
 echo 'checked="checked" '; ?>> 3.50ç
38 <input type="radio" name="gallon_price" value="4.00" <?php if
 (isset($_POST['gallon_price']) && ($_POST['gallon_price'] == '4.00'))
 echo 'checked="checked" '; ?>> 4.00
39 </p>
40 <p>Fuel Efficiency: <select name="efficiency">
41 <option value="10"<?php if (isset($_POST['efficiency']) && ($_POST['efficiency']
 == '10')) echo ' selected="selected"'; ?>>Terrible</option>
42 <option value="20"<?php if (isset($_POST['efficiency']) && ($_POST['efficiency']
 == '20')) echo ' selected="selected"'; ?>>Decent</option>
43 <option value="30"<?php if (isset($_POST['efficiency']) && ($_POST['efficiency']
 == '30')) echo ' selected="selected"'; ?>>Very Good</option>
44 <option value="50"<?php if (isset($_POST['efficiency']) && ($_POST['efficiency']
 == '50')) echo ' selected="selected"'; ?>>Outstanding</option>
45 </select></p>
46 <p><input type="submit" name="submit" value="Calculate!"></p>
47 </form>
48
49 <?php include('includes/footer.html'); ?>

 The first change is to add the value attribute to the input. Then, print out the value of the submitted distance variable
 ($_POST[‘distance’]). Since the first time the page is loaded, $_POST[‘distance’] has no value, a conditional ensures that the variable is set before attempting to
 print it. The end result for setting the input’s value is the PHP code

 Click here to view code image

 <?php
if (isset($_POST['distance'])) {
 echo $_POST['distance'];
}
?>

 This can be condensed to the more minimal form used in the script (you can omit the
 curly braces if you have only one statement within a conditional block, although I
 very rarely recommend that you do so).

 3. Change the radio buttons to

 Click here to view code image

 <input type="radio"
[image: Images]name="gallon_price"
[image: Images]value="3.00" <?php if
[image: Images](isset($_POST['gallon_price']) &&
[image: Images]($_POST['gallon_price'] ==
[image: Images]'3.00')) echo 'checked="checked"
[image: Images]'; ?>> 3.00
<input type="radio"
[image: Images]name="gallon_price" value="3.50"
[image: Images]<?php if (isset($_POST['gallon_
[image: Images]price']) && ($_POST['gallon_
[image: Images]price'] == '3.50')) echo
[image: Images]'checked="checked" '; ?>> 3.50
<input type="radio"
[image: Images]name="gallon_price" value="4.00"
[image: Images]<?php if (isset($_POST['gallon_
[image: Images]price']) && ($_POST['gallon_
[image: Images]price'] == '4.00')) echo
[image: Images]'checked="checked" '; ?>> 4.00

 For each of the three radio buttons, the following code must be added within the input tag:

 Click here to view code image

 <?php if (isset($_POST['gallon_
[image: Images]price']) && ($_POST['gallon_
[image: Images]price'] == 'XXX')) echo
[image: Images]'checked="checked" '; ?>

 For each button, the comparison value (XXX) gets changed accordingly.

 4. Change the select menu options to

 Click here to view code image

 <option value="10"<?php if
[image: Images](isset($_POST['efficiency'])
[image: Images]&& ($_POST['efficiency']
[image: Images]== '10')) echo ' selected=
[image: Images]"selected"'; ?>>Terrible
[image: Images]</option>
<option value="20"<?php if
[image: Images](isset($_POST['efficiency'])
[image: Images]&& ($_POST['efficiency']
[image: Images]== '20')) echo ' selected=
[image: Images]"selected"'; ?>>Decent
[image: Images]</option>
<option value="30"<?php if
[image: Images](isset($_POST['efficiency'])
[image: Images]&& ($_POST['efficiency']
[image: Images]== '30')) echo ' selected=
[image: Images]"selected"'; ?>>Very Good
[image: Images]</option>
<option value="50"<?php if
[image: Images](isset($_POST['efficiency'])
[image: Images]&& ($_POST['efficiency']
[image: Images]== '50')) echo ' selected=
[image: Images]"selected"'; ?>>Outstanding
[image: Images]</option>

 For each option, within the opening option tag, add the following code:

 Click here to view code image

 <?php if (isset($_POST
[image: Images]['efficiency']) && ($_POST
[image: Images]'['efficiency'] == 'XX')) echo '
[image: Images]selected="selected"'; ?>

 Again, just the specific comparison value (XX) must be changed to match each option.

 5. Save the file as calculator.php, place it in your web directory, and test it in your browser [image: Images] and [image: Images].

 [image: Images]

 [image: Images] The form now recalls the previously submitted values…

 [image: Images]

 [image: Images] …whether or not the form was completely filled out.

 Tip

 Because the price per gallon and fuel efficiency values are numeric, you can quote
 or not quote the comparison values within the added conditionals. I choose to quote
 them, because they’re technically strings with numeric values.

 Tip

 Because the added PHP code in this example exists inside the HTML form element tags,
 error messages may not be obvious. If problems occur, check the HTML source of the
 page to see if PHP errors are printed within the value attributes and the tags themselves.

 Tip

 You should always double-quote HTML attributes, particularly the value attribute of a text input. If you don’t, multiword values like Elliott Smith will
 appear as just Elliott in the browser.

 Tip

 Some browsers will also remember values entered into forms for you; this is a separate
 but potentially overlapping issue from using PHP to accomplish this.

 Creating Your Own Functions

 PHP has a lot of built-in functions, addressing almost every need you might have.
 More importantly, though, PHP has the capability for you to define and use your own
 functions for whatever purpose. The syntax for making your own function is

 Click here to view code image

 function function_name() {
 // Function code.
}

 The name of your function can be any combination of letters, numbers, and the underscore,
 but it must begin with either a letter or the underscore. You also cannot use an existing
 function name for your function (print, echo, isset, and so on). One perfectly valid function definition is

 Click here to view code image

 function do_nothing() {
 // Do nothing!
}

 In PHP, as mentioned in the first chapter, function names are case-insensitive (unlike
 variable names), so you could call that function using do_Nothing() or DO_NOTHING() or Do_Nothing(), and so forth, but not donothing() or DoNothing().

 The code within the function can do nearly anything, from generating HTML to performing
 calculations to calling other functions.

 The most common reasons to create your own functions are as follows:

 [image: Images] To associate repeated code with one function call

 [image: Images] To separate sensitive or complicated processes from other code

 [image: Images] To make common code bits easier to reuse

 This chapter runs through a couple of examples, and you’ll see some others throughout
 the rest of the book. For this first example, a function will be defined that outputs
 the HTML code for generating theoretical ads. This function will then be called twice
 on the home page [image: Images].

 [image: Images]

 [image: Images] The two “ads” are generated by calling the same user-defined function.

 To create your own function:

 1. Open index.php (Script 3.4) in your text editor or IDE.

 2. After the opening PHP tag, begin defining a new function (Script 3.7):

 function create_ad() {

 Script 3.7 This version of the home page has a user-defined function that outputs a theoretical
 ad. The function is called twice in the script, thus creating two ads.

 Click here to view code image

1 <?php # Script 3.7 - index.php #2
2
3 // This function outputs theoretical HTML
4 // for adding ads to a web page.
5 function create_ad() {
6 echo '<div class="alert alert-info" role="alert"><p>This is an annoying ad! This is
 an annoying ad! This is an annoying ad! This is an annoying ad!</p></div>';
7 } // End of the function definition.
8
9 $page_title = 'Welcome to this Site!';
10 include('includes/header.html');
11
12 // Call the function:
13 create_ad();
14 ?>
15
16 <div class="page-header"><h1>Content Header</h1></div>
17 <p>This is where the page-specific content goes. This section, and the corresponding header,
 will change from one page to the next.</p>
18
19 <p>Volutpat at varius sed sollicitudin et, arcu. Vivamus viverra. Nullam turpis. Vestibulum
 sed etiam. Lorem ipsum sit amet dolore. Nulla facilisi. Sed tortor. Aenean felis. Quisque
 eros. Cras lobortis commodo metus. Vestibulum vel purus. In eget odio in sapien adipiscing
 blandit. Quisque augue tortor, facilisis sit amet, aliquam, suscipit vitae, cursus sed, arcu
 lorem ipsum dolor sit amet.</p>
20
21 <?php
22 // Call the function again:
23 create_ad();
24
25 include('includes/footer.html');
26 ?>

 The function to be written here would, in theory, generate the HTML required to add
 ads to a web page. The function’s name clearly states its purpose.

 Although not required, it’s conventional to place a function definition near the very
 top of a script or in a separate file.

 3. Generate the HTML:

 Click here to view code image

 echo '<div class="alert
[image: Images]alert-info" role="alert"><p>This
[image: Images]is an annoying ad! This is an
[image: Images]annoying ad! This is an
[image: Images]annoying ad! This is an
[image: Images]annoying ad!</p></div>';

 In a real function, the code would output actual HTML instead of a paragraph of text.
 For now, a simple Bootstrap component will suffice. (The actual HTML would be provided
 by the service you’re using to generate and tracks ads.)

 4. Close the function definition:

 Click here to view code image

 } // End of the function
[image: Images]definition.

 It can be helpful to place a comment at the end of a function definition so that you
 know where a definition starts and stops (it’s helpful on longer function definitions,
 at least).

 5. After including the header and before exiting the PHP block, call the function:

 create_ad();

 The call to the create_ad() function will have the result of inserting the function’s output at this point in
 the script.

 6. Just before including the footer, call the function again:

 create_ad();

 7. Save the file and test it in your browser [image: Images].

 Tip

 If you ever see a call to undefined function function_name error, this means that you are calling a function that hasn’t been defined. This
 can happen if you misspell the function’s name (either when defining or calling it)
 or if you fail to include the file where the function is defined.

 Creating a function that takes arguments

 Just like PHP’s built-in functions, those you write can take arguments. For example, the strlen() function takes as an argument the string whose character length will be determined.

 A function can take any number of arguments, but the order in which you list them
 is critical. To allow for arguments, add variables to a function’s definition:

 Click here to view code image

 function print_hello($first, $last) {
 // Function code.
}

 The variable names you use in the function definition are irrelevant to the rest of
 the script (more on this in the “Variable Scope” sidebar toward the end of this chapter), but try to use valid, meaningful names.

 Once the function is defined, you can then call it as you would any other function
 in PHP, sending literal values or variables to it:

 Click here to view code image

 print_hello('Jimmy', 'Stewart');
$surname = 'Stewart';
print_hello('Jimmy', $surname);

 As with any function in PHP, failure to send the right number of arguments results
 in an error [image: Images].

 [image: Images]

 [image: Images] Failure to send a function the proper number (and sometimes type) of arguments creates
 an error.

 (Technically speaking, an argument is the value passed when calling a function; a parameter is the variable in the function definition that is assigned the argument value.)

 To demonstrate this concept, let’s rewrite the calculator form so that a user-defined
 function creates the price-per-gallon radio buttons. Doing so will help to clean up
 the messy form code.

 To define functions that take arguments:

 1. Open calculator.php (Script 3.6) in your text editor or IDE.

 2. After the initial PHP tag, start defining the create_gallon_radio() function (Script 3.8):

 Click here to view code image

 function create_gallon_radio
[image: Images]($value) {

 Script 3.8 The calculator.php form now uses a function to create the radio buttons. Unlike the create_ad() user-defined function, this one takes an argument.

 Click here to view code image

1 <?php # Script 3.8 - calculator.php #3
2
3 // This function creates a radio button.
4 // The function takes one argument: the value.
5 // The function also makes the button "sticky."
6 function create_gallon_radio($value) {
7
8 // Start the element:
9 echo '<input type="radio" name="gallon_price" value="' . $value . '"';
10
11 // Check for stickiness:
12 if (isset($_POST['gallon_price']) && ($_POST['gallon_price'] == $value)) {
13 echo ' checked="checked"';
14 }
15
16 // Complete the element:
17 echo "> $value ";
18
19 } // End of create_gallon_radio() function.
20
21 $page_title = 'Trip Cost Calculator';
22 include('includes/header.html');
23
24 // Check for form submission:
25 if ($_SERVER['REQUEST_METHOD'] == 'POST') {
26
27 // Minimal form validation:
28 if (isset($_POST['distance'], $_POST['gallon_price'], $_POST['efficiency']) &&
29 is_numeric($_POST['distance']) && is_numeric($_POST['gallon_price']) &&
 is_numeric($_POST['efficiency'])) {
30
31 // Calculate the results:
32 $gallons = $_POST['distance'] / $_POST['efficiency'];
33 $dollars = $gallons * $_POST['gallon_price'];
34 $hours = $_POST['distance']/65;
35
36 // Print the results:
37 echo '<div class="page-header"><h1>Total Estimated Cost</h1></div>
38 <p>The total cost of driving ' . $_POST['distance'] . ' miles, averaging
 ' . $_POST['efficiency'] . ' miles per gallon, and paying an average of $' .
 $_POST['gallon_price'] . ' per gallon, is $' . number_format ($dollars, 2) . '.
 If you drive at an average of 65 miles per hour, the trip will take approximately
 ' . number_format($hours, 2) . ' hours.</p>';
39
40 } else { // Invalid submitted values.
41 echo '<div class="page-header"><h1>Error!</h1></div>
42 <p class="text-danger">Please enter a valid distance, price per gallon, and fuel
 efficiency.</p>';
43 }
44
45 } // End of main submission IF.
46
47 // Leave the PHP section and create the HTML form:
48 ?>
49
50 <div class="page-header"><h1>Trip Cost Calculator</h1></div>
51 <form action="calculator.php" method="post">
52 <p>Distance (in miles): <input type="number" name="distance" value="<?php if
 (isset($_POST['distance'])) echo $_POST['distance']; ?>"></p>
53 <p>Ave. Price Per Gallon:
54 <?php
55 create_gallon_radio('3.00');
56 create_gallon_radio('3.50');
57 create_gallon_radio('4.00');
58 ?>
59 </p>
60 <p>Fuel Efficiency: <select name="efficiency">
61 <option value="10"<?php if (isset($_POST['efficiency']) && ($_POST['efficiency']
 == '10')) echo ' selected="selected"'; ?>>Terrible</option>
62 <option value="20"<?php if (isset($_POST['efficiency']) && ($_POST['efficiency']
 == '20')) echo ' selected="selected"'; ?>>Decent</option>
63 <option value="30"<?php if (isset($_POST['efficiency']) && ($_POST['efficiency']
 == '30')) echo ' selected="selected"'; ?>>Very Good</option>
64 <option value="50"<?php if (isset($_POST['efficiency']) && ($_POST['efficiency']
 == '50')) echo ' selected="selected"'; ?>>Outstanding</option>
65 </select></p>
66 <p><input type="submit" name="submit" value="Calculate!"></p>
67 </form>
68
69 <?php include('includes/footer.html'); ?>

 The function will create code like this:

 Click here to view code image

 <input type="radio"
[image: Images]name="gallon_price" value="XXX"
[image: Images]checked="checked"> XXX

 or this:

 Click here to view code image

 <input type="radio"
[image: Images]name="gallon_price"
[image: Images]value="XXX"> XXX

 To be able to dynamically set the value of each radio button, that value must be passed
 to the function with each call. Therefore, that’s the one argument the function takes.

 Notice that the variable used in the function definition is not $_POST[‘gallon_price’]. The function’s parameter variable is particular to this function and has its own
 name.

 3. Begin creating the radio button element:

 Click here to view code image

 echo '<input type="radio"
[image: Images]name="gallon_price" value="' .
[image: Images]$value . '"';

 This code starts the HTML for the radio button, including its value attribute, but does not complete the radio button so that “stickiness” can be addressed
 next. The value for the input comes from the function argument.

 4. Make the input “sticky,” if appropriate:

 Click here to view code image

 if (isset($_POST['gallon_price'])
[image: Images]&& ($_POST['gallon_price'] ==
[image: Images]$value)) {
 echo ' checked="checked"';
}

 This code is like that in the original form, except now the comparison value comes
 from the function’s argument.

 5. Complete the form element and the function:

 Click here to view code image

 echo "> $value ";
} // End of create_gallon_radio()
[image: Images]function.

 Finally, the input tag is closed and the value is displayed afterward, with a space on either side.

 6. Replace the hard-coded radio buttons in the form with three function calls:

 Click here to view code image

 <?php
create_gallon_radio('3.00');
create_gallon_radio('3.50');
create_gallon_radio('4.00');
?>

 To create the three buttons, just call the function three times, passing different
 values for each. The numeric values are quoted here; otherwise, PHP would drop the
 trailing zeros.

 7. Save the file as calculator.php, place it in your web directory, and test it in your browser [image: Images].

 [image: Images]

 [image: Images] Although a user-defined function is used to create the radio buttons (see Script 3.8), the result is no different to the user.

 Setting default argument values

 Another variant on defining your own functions is to preset an argument’s value. To
 do so, assign the parameter a value in the function’s definition:

 Click here to view code image

 function greet($name, $msg = 'Hello') {
 echo "$msg, $name!";
}

 As the result of setting a default value, that particular argument becomes optional
 when calling the function. If a value is passed to it, the passed value is used; otherwise,
 the default value is used.

 You can set default values for as many of the parameters as you want, as long as those
 parameters come last in the function definition. In other words, the required parameters
 must always be listed first.

 With the example function just defined, any of these will work:

 Click here to view code image

 greet($surname, $message);
greet('Zoe');
greet('Sam', 'Good evening');

 However, just greet() will not work. Also, there’s no way to pass $msg a value without passing one to $name as well (argument values must be passed in order, and you can’t skip a required parameter).

 To take advantage of default argument values, let’s make a better version of the create_gallon_radio() function. As originally written, the function only creates radio buttons with a name
 of gallon_price. It’d be better if the function could be used multiple times in a form for multiple
 radio button groupings (although the function won’t be used like that in this script).

 To set default argument values:

 1. Open calculator.php (refer to Script 3.8) in your text editor or IDE, if it is not already.

 2. Change the function definition line (line 6) so that it takes a second, optional
 argument (Script 3.9):

 Click here to view code image

 function create_radio($value,
[image: Images]$name = 'gallon_price') {

 Script 3.9 The redefined function now assumes a set radio button name unless one is specified
 when the function is called.

 Click here to view code image

1 <?php # Script 3.9 - calculator.php #4
2
3 // This function creates a radio button.
4 // The function takes two arguments: the value and the name.
5 // The function also makes the button "sticky."
6 function create_radio($value, $name = 'gallon_price') {
7
8 // Start the element:
9 echo '<input type="radio" name="' . $name .'" value="' . $value . '"';
10
11 // Check for stickiness:
12 if (isset($_POST[$name]) && ($_POST[$name] == $value)) {
13 echo ' checked="checked"';
14 }
15
16 // Complete the element:
17 echo "> $value ";
18
19 } // End of create_gallon_radio() function.
20
21 $page_title = 'Trip Cost Calculator';
22 include('includes/header.html');
23
24 // Check for form submission:
25 if ($_SERVER['REQUEST_METHOD'] == 'POST') {
26
27 // Minimal form validation:
28 if (isset($_POST['distance'], $_POST['gallon_price'], $_POST['efficiency']) &&
29 is_numeric($_POST['distance']) && is_numeric($_POST['gallon_price']) &&
 is_numeric($_POST['efficiency'])) {
30
31 // Calculate the results:
32 $gallons = $_POST['distance'] / $_POST['efficiency'];
33 $dollars = $gallons * $_POST['gallon_price'];
34 $hours = $_POST['distance']/65;
35
36 // Print the results:
37 echo '<div class="page-header"><h1>Total Estimated Cost</h1></div>
38 <p>The total cost of driving ' . $_POST['distance'] . ' miles, averaging ' .
 $_POST['efficiency'] . ' miles per gallon, and paying an average of $' .
 $_POST['gallon_price'] . ' per gallon, is $' . number_format ($dollars, 2) . '.
 If you drive at an average of 65 miles per hour, the trip will take approximately ' .
 number_format($hours, 2) . ' hours.</p>';
39
40 } else { // Invalid submitted values.
41 echo '<div class="page-header"><h1>Error!</h1></div>
42 <p class="text-danger">Please enter a valid distance, price per gallon, and fuel
 efficiency.</p>';
43 }
44
45 } // End of main submission IF.
46
47 // Leave the PHP section and create the HTML form:
48 ?>
49
50 <div class="page-header"><h1>Trip Cost Calculator</h1></div>
51 <form action="calculator.php" method="post">
52 <p>Distance (in miles): <input type="number" name="distance" value="<?php if
 (isset($_POST['distance'])) echo $_POST['distance']; ?>"></p>
53 <p>Ave. Price Per Gallon:
54 <?php
55 create_radio('3.00');
56 create_radio('3.50');
57 create_radio('4.00');
58 ?>
59 </p>
60 <p>Fuel Efficiency: <select name="efficiency">
61 <option value="10"<?php if (isset($_POST['efficiency']) && ($_POST['efficiency'] ==
 '10')) echo ' selected="selected"'; ?>>Terrible</option>
62 <option value="20"<?php if (isset($_POST['efficiency']) && ($_POST['efficiency'] ==
 '20')) echo ' selected="selected"'; ?>>Decent</option>
63 <option value="30"<?php if (isset($_POST['efficiency']) && ($_POST['efficiency'] ==
 '30')) echo ' selected="selected"'; ?>>Very Good</option>
64 <option value="50"<?php if (isset($_POST['efficiency']) && ($_POST['efficiency'] ==
 '50')) echo ' selected="selected"'; ?>>Outstanding</option>
65 </select></p>
66 <p><input type="submit" name="submit" value="Calculate!"></p>
67 </form>
68
69 <?php include('includes/footer.html'); ?>

 There are two changes here. First, the name of the function is changed to be reflective
 of its more generic nature. Second, the function now takes a second argument, $name, although that argument has a default value, which makes that argument optional when
 the function is called.

 3. Change the function definition so that it uses the $name argument in lieu of gallon_price:

 Click here to view code image

 echo '<input type="radio"
[image: Images]name="' . $name .'"
[image: Images]value="' . $value . '"';
if (isset($_POST[$name]) &&
[image: Images]($_POST[$name] == $value)) {
 echo ' checked="checked"';
}

 Three changes are necessary. First, $name is used for the name attribute of the element. Second, the conditional that checks for “stickiness” now
 uses $_POST[$name] twice instead of $_POST[‘gallon_price’].

 4. Change the function call lines:

 Click here to view code image

 create_radio('3.00');
create_radio('3.50');
create_radio('4.00');

 The function calls must be changed to use the new function name. But because the second
 argument has a default value, it can be omitted in these calls. The result is the
 same as executing this call—

 create_radio('4.00', 'gallon_price');

 —but now the function could be used to create other radio buttons as well.

 5. Save the file, place it in your web directory, and test it in your browser [image: Images].

 [image: Images]

 [image: Images]The addition of the second (optional) argument has not affected the functionality
 of the function.

 Tip

 To pass a function no value for an argument, use either an empty string (‘’), NULL, or FALSE.

 Tip

 In the PHP manual, brackets ([]) are used to indicate a function’s optional parameters [image: Images].

 [image: Images]

 [image: Images] The PHP manual’s description of the number_format() function shows that only the first argument is required.

 Returning values from a function

 The final attribute of a user-defined function to discuss is that of returning values.
 Some, but not all, functions do this. For example, print will return either a 1 or a 0 indicating its success, whereas echo will not. As another example, the number_format() function returns a string, which is the formatted version of a number (see [image: Images] in the previous section).

 To have a function return a value, use the return statement. This function might return the astrological sign for a given birth month
 and day:

 Click here to view code image

 function find_sign($month, $day) {
 // Function code.
 return $sign;
}

 A function can return a literal value—say a string or a number—or the value of a variable
 that has been determined within the function.

 When calling a function that returns a value, you can assign the function result to
 a variable:

 Click here to view code image

 $my_sign = find_sign('October', 23);

 or use it as an argument when calling another function:

 Click here to view code image

 echo find_sign('October', 23);

 Let’s update the calculator.php script so that it uses a function to determine the cost of the trip.

 To have a function return a value:

 1. Open calculator.php (refer to Script 3.9) in your text editor or IDE, if it is not already.

 2. After the first function definition, begin defining a second function (Script 3.10):

 Click here to view code image

 function calculate_trip_cost
[image: Images]($miles, $mpg, $ppg) {

 The calculate_trip_cost() function takes three arguments: the distance to be traveled, the average miles per
 gallon, and the average price per gallon.

 Script 3.10 Another user-defined function is added to the script. It performs the main calculation
 and returns the result.

 Click here to view code image

1 <?php # Script 3.10 - calculator.php #5
2
3 // This function creates a radio button.
4 // The function takes two arguments: the value and the name.
5 // The function also makes the button "sticky".
6 function create_radio($value, $name = 'gallon_price') {
7
8 // Start the element:
9 echo '<input type="radio" name="' . $name .'" value="' . $value . '"';
10
11 // Check for stickiness:
12 if (isset($_POST[$name]) && ($_POST[$name] == $value)) {
13 echo ' checked="checked"';
14 }
15
16 // Complete the element:
17 echo "> $value ";
18
19 } // End of create_gallon_radio() function.
20
21 // This function calculates the cost of the trip.
22 // The function takes three arguments: the distance, the fuel efficiency, and the price per
 gallon.
23 // The function returns the total cost.
24 function calculate_trip_cost($miles, $mpg, $ppg) {
25
26 // Get the number of gallons:
27 $gallons = $miles/$mpg;
28
29 // Get the cost of those gallons:
30 $dollars = $gallons * $ppg;
31
32 // Return the formatted cost:
33 return number_format($dollars, 2);
34
35 } // End of calculate_trip_cost() function.
36
37 $page_title = 'Trip Cost Calculator';
38 include('includes/header.html');
39
40 // Check for form submission:
41 if ($_SERVER['REQUEST_METHOD'] == 'POST') {
42
43 // Minimal form validation:
44 if (isset($_POST['distance'], $_POST['gallon_price'], $_POST['efficiency']) &&
45 is_numeric($_POST['distance']) && is_numeric($_POST['gallon_price']) &&
 is_numeric($_POST['efficiency'])) {
46
47 // Calculate the results:
48 $cost = calculate_trip_cost($_POST['distance'], $_POST['efficiency'],
 $_POST['gallon_price']);
49 $hours = $_POST['distance']/65;
50
51 // Print the results:
52 echo '<div class="page-header"><h1>Total Estimated Cost</h1></div>
53 <p>The total cost of driving ' . $_POST['distance'] . ' miles, averaging ' .
 $_POST['efficiency'] . ' miles per gallon, and paying an average of $' .
 $_POST['gallon_price'] . ' per gallon, is $' . $cost . '. If you drive at
 an average of 65 miles per hour, the trip will take approximately ' .
 number_format($hours, 2) . ' hours.</p>';
54
55 } else { // Invalid submitted values.
56 echo '<div class="page-header"><h1>Error!</h1></div>
57 <p class="text-danger">Please enter a valid distance, price per gallon, and fuel
 efficiency.</p>';
58 }
59
60 } // End of main submission IF.
61
62 // Leave the PHP section and create the HTML form:
63 ?>
64
65 <div class="page-header"><h1>Trip Cost Calculator</h1></div>
66 <form action="calculator.php" method="post">
67 <p>Distance (in miles): <input type="number" name="distance" value="<?php if
 (isset($_POST['distance'])) echo $_POST['distance']; ?>"></p>
68 <p>Ave. Price Per Gallon:
69 <?php
70 create_radio('3.00');
71 create_radio('3.50');
72 create_radio('4.00');
73 ?>
74 </p>
75 <p>Fuel Efficiency: <select name="efficiency">
76 <option value="10"<?php if (isset($_POST['efficiency']) && ($_POST['efficiency'] ==
 '10')) echo ' selected="selected"'; ?>>Terrible</option>
77 <option value="20"<?php if (isset($_POST['efficiency']) && ($_POST['efficiency'] ==
 '20')) echo ' selected="selected"'; ?>>Decent</option>
78 <option value="30"<?php if (isset($_POST['efficiency']) && ($_POST['efficiency'] ==
 '30')) echo ' selected="selected"'; ?>>Very Good</option>
79 <option value="50"<?php if (isset($_POST['efficiency']) && ($_POST['efficiency'] ==
 '50')) echo ' selected="selected"'; ?>>Outstanding</option>
80 </select></p>
81 <p><input type="submit" name="submit" value="Calculate!"></p>
82 </form>
83
84 <?php include('includes/footer.html'); ?>

 3. Perform the calculations and return the formatted cost:

 Click here to view code image

 $gallons = $miles/$mpg;
 $dollars = $gallons * $ppg;
 return number_format($dollars, 2);
} // End of calculate_trip_cost()
[image: Images]function.

 The first two lines are the same calculations as the script used before, but now they
 use function variables. The last thing the function does is return a formatted version
 of the calculated cost.

 4. Replace the two lines that calculate the cost (lines 32–33 of Script 3.9) with a function call:

 Click here to view code image

 $cost = calculate_trip_cost
[image: Images]($_POST['distance'], $_
POST['efficiency'],
[image: Images]$_POST['gallon_price']);

 Invoking the function, while passing it the three required values, will perform the
 calculation. Since the function returns a value, the results of the function call—the
 returned value—can be assigned to a variable.

 5. Change the echo statement to use the new variable:

 Click here to view code image

 echo '<div class="page-header">
[image: Images]<h1>Total Estimated Cost</h1>
[image: Images]</div>
<p>The total cost of driving ' .
[image: Images]$_POST['distance'] . ' miles,
[image: Images]averaging ' . $_POST['efficiency']
[image: Images]. ' miles per gallon, and paying
[image: Images]an average of $' . $_POST
[image: Images]['gallon_price'] . ' per gallon,
[image: Images]is $' . $cost . '. If you
[image: Images]drive at an average of 65
[image: Images]miles per hour, the trip will
[image: Images]take approximately ' .
[image: Images]number_format($hours, 2) . '
[image: Images]hours.</p>';

 The echo statement uses the $cost variable here, instead of $dollars (as in the previous version of the script). Also, since the $cost variable is formatted within the function, the $cost function does not need to be applied within the echo statement to this variable.

 6. Save the file, place it in your web directory, and test it in your browser [image: Images].

 [image: Images]

 [image: Images] The calculator now uses a user-defined function to calculate and return the trip’s
 cost. But this change has no impact on what the user sees.

 Tip

 The return statement terminates the code execution at that point, so any code within a function
 after an executed return will never run.

 Tip

 A function can have multiple return statements (e.g., in a switch statement or conditional), but only one, at most, will ever be invoked. For example,
 functions commonly do something like this:

 Click here to view code image

 function some_function () {
 if (/* condition */) {
 return TRUE;
 } else {
 return FALSE;
 }
}

 Tip

 To have a function return multiple values, use the array() function—or short array syntax—to return an array of values:

 Click here to view code image

 return array($var1, $var2);

 Tip

 When calling a function that returns an array, use the list() function to assign the array elements to individual variables:

 Click here to view code image

 list($v1, $v2) = some_function();

 Variable Scope

 Every variable in PHP has a scope to it, which is to say a realm in which the variable—and therefore its value—can
 be accessed. For starters, variables have the scope of the page in which they reside.
 If you define $var, the rest of the page can access $var but other pages generally cannot.

 Since included files act as if they were part of the original (including) script,
 variables defined before an include() line are available to the included file, as you’ve already seen with $page_title and header.html. Further, variables defined within the included file are available to the parent
 (including) script after the include() line.

 User-defined functions have their own scope: variables defined within a function are
 not available outside of it, and variables defined outside of a function are not available
 within it. For this reason, a variable inside of a function can have the same name
 as one outside of it but still be an entirely different variable with a different
 value. This is a confusing concept for many beginning programmers.

 To alter the variable scope within a function, you can use the global statement:

 Click here to view code image

 function function_name() {
 global $var;
}
$var = 20;
function_name(); // Function call.

 In this example, $var inside of the function is now the same as $var outside of it. This means that the function $var already has a value of 20, and if that value changes inside of the function, the
 external $var’s value will also change.

 Another option for circumventing variable scope is to make use of the superglobals:
 $_GET, $_POST, $_REQUEST, and so forth. These variables are automatically accessible within your functions
 (hence, they are superglobal). You can also add elements to the $GLOBALS array to make them available within a function.

 All of that being said, it’s almost always best not to use global variables within
 a function. Functions should be designed so that they receive every value they need
 as arguments and return whatever value or values need to be returned. Relying on global
 variables within a function makes them more context dependent and, consequently, less
 useful.

 PHP 7 New Function Features

 PHP 7 adds new features to user-defined functions. To start, you can now declare function
 parameters as scalar types:

 Click here to view code image

 function greet(string $name) {

 or

 Click here to view code image

 function test(bool $testing) {

 PHP 5 had the ability to declare parameters as arrays or classes (via type hinting), and PHP 7 expands this to bool, float, int, and string. Failure to call the function without the right type of argument causes an error.

 PHP 7 also adds the ability to declare the type of value returned by the function:

 Click here to view code image

 function greet(string $name): string {

 That code forces the function to return a string, or creates an error if it doesn’t.

 PHP 7.1 expands these features a bit more. You can mark a parameter or a return type
 as “nullable” by preceding it with a question mark:

 Click here to view code image

 function greet(string ?$name) {

 That function definition says that if a name value is provided, it must be a string,
 but you can also provide the value null instead. Similarly, this function will return either a string or null:

 Click here to view code image

 function greet(string $name): ?string {

 Finally, PHP 7.1 adds the ability to indicate that a function returns no value:

 Click here to view code image

 function test(): void {
 // No return statement!
}

 Review and Pursue

 If you have any problems with the review questions or the pursue prompts, turn to
 the book’s supporting forum (LarryUllman.com/forums/).

 Review

 [image: Images] What is an absolute path? What is a relative path?

 [image: Images] What is the difference between include() and require()?

 [image: Images] What is the difference between include() and include_once()? Which function should you generally avoid using and why?

 [image: Images] Why does it not matter what extension is used for an included file?

 [image: Images] What is the significance of the $_SERVER[‘REQUEST_METHOD’] value?

 [image: Images] How do you make the following form elements sticky?

 ▸ Text input

 ▸ Select menu

 ▸ Radio button

 ▸ Check box

 ▸ Textarea

 [image: Images] If you have a PHP error caused by code placed within an HTML tag, where must you
 look to find the error message?

 [image: Images] What is the syntax for defining your own function?

 [image: Images] What is the syntax for defining a function that takes arguments?

 [image: Images] What is the syntax for defining a function that takes arguments with default values?
 How do default values impact how the function can be called?

 [image: Images] How do you define and call a function that returns a value?

 Pursue

 [image: Images] Create a new HTML template for the pages in this chapter. Use that new template as
 the basis for new header and footer files. By doing so, you should be able to change
 the look of the entire site without modifying any of the PHP scripts.

 [image: Images] Create a new form and give it the ability to be “sticky.” Have the form use a textarea
 and a check box (neither of which is demonstrated in this chapter).

 [image: Images] Change calculator.php so that it uses a constant in lieu of the hard-coded average speed of 65. (As written,
 the average speed is a “magic number”—a value used in a script without explanation.)

 [image: Images] Better yet, modify calculator.php so that the user can enter the average speed or select it from a list of options.

 [image: Images] Update the output of calculator.php so that it displays the number of days and hours the trip will take when the number
 of hours is greater than 24.

 [image: Images] As a more advanced trick, rewrite calculator.php so that the create_radio() function call is in the script only once but still creates three radio buttons. Hint:
 Use a loop.

 [image: Images] If you’re using PHP 7 or greater, update the function definitions to use parameter
 and return type declarations. (See the “PHP 7 New Function Features” sidebar and the PHP manual for details.)

 [image: Images] Learn more about the Bootstrap framework to better stylize the calculator form.

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 4. Introduction to MySQL

 In This Chapter

 Naming Database Elements

 Choosing Your Column Types

 Choosing Other Column Properties

 Accessing MySQL

 Review and Pursue

 Because this book discusses how to integrate several technologies—primarily PHP, SQL,
 and MySQL—a solid understanding of each is important before you begin writing PHP
 scripts that use SQL to interact with MySQL. This chapter is a departure from its
 predecessors in that it temporarily leaves PHP behind to delve into MySQL.

 MySQL is the world’s most popular open source database application (according to MySQL’s
 web site, www.mysql.com) and is commonly used with PHP. The MySQL software comes with the database server
 that stores the actual data, different client applications for interacting with the
 database server, and several utilities. In this chapter, you’ll see how to define
 a simple table using MySQL’s allowed data types and other properties. Then you’ll
 learn how to interact with the MySQL server using two different client applications.
 This information will be the foundation for the SQL taught in the next chapter.

 Naming Database Elements

 Before you start working with databases, you have to identify your needs. The purpose
 of the application (or web site, in this case) dictates how the database should be
 designed. With that in mind, the examples in this chapter and the next will use a
 database that stores some user registration information.

 When creating databases and tables, you should come up with names (formally called
 identifiers) that are clear, meaningful, and easy to type. Also, identifiers

 [image: Images] Should only contain letters, numbers, and the underscore (no spaces)

 [image: Images] Should not be the same as an existing keyword (like an SQL term or a function name)

 [image: Images] Should be treated as case-sensitive

 [image: Images] Cannot be longer than 64 characters (approximately)

 [image: Images] Must be unique within its realm

 This last rule means that a table cannot have two columns with the same name and a
 database cannot have two tables with the same name. You can, however, use the same
 column name in two different tables in the same database; in fact, you often will
 do this.

 As for the first three rules, I use the word should, as these are good policies more than exact requirements. Exceptions can be made
 to these rules, but the syntax for doing so can be complicated. Abiding by these suggestions
 is a reasonable limitation and will help avoid complications.

 To name a database’s elements:

 1. Determine the database’s name.

 This is the easiest and, arguably, least important step. Just make sure that the database
 name is unique for that MySQL server. If you’re using a hosted server, your web host
 will likely provide a database name that may or may not include your account or domain
 name.

 For this first example, the database will be called sitename, since the information and techniques could apply to any generic site.

 2. Determine the table names.

 The table names just need to be unique within this database, which shouldn’t be a
 problem. For this example, which stores user registration information, the only table
 will be called users.

 3. Determine the column names for each table.

 The users table will have columns to store a user ID, a first name, a last name, an email address,
 a password, and the registration date. Table 4.1 shows these columns, with sample data, using proper identifiers. Because MySQL has
 a function called password, I’ve changed the name of that column to just pass. This isn’t strictly necessary but is really a good idea.

 TABLE 4.1 users Table

 	
 Column Name

 	
 Example

 	
 user_id

 	
 834

 	
 first_name

 	
 Larry

 	
 last_name

 	
 David

 	
 email

 	
 ld@example.com

 	
 pass

 	
 emily07

 	
 registration_date

 	
 2017-08-31 19:21:03

 For the user_id column, there are two common approaches. Some use simply id as the identifying column name in any table so that all tables have an id column. Others use a variation on tablename_id: user_id or users_id.

 Tip

 Chapter 6, “Database Design,” discusses database design in more detail, using more complex examples.

 Tip

 To be precise, the length limit for the names of databases, tables, and columns is
 actually 64 bytes, not characters. While most characters in many languages require
 1 byte apiece, it’s possible to use a multibyte character in an identifier. But 64
 bytes is still a lot of space, so this probably won’t be an issue for you.

 Tip

 Whether or not an identifier in MySQL is case-sensitive actually depends on many things,
 because each database is actually a folder on the server and each table is actually
 one or more files. On Windows and normally on macOS, database and table names are
 generally case-insensitive. On Unix and some macOS setups, they are case-sensitive.
 Column names are always case-insensitive. It’s really best, in my opinion, to always
 use all lowercase letters and work as if case-sensitivity applied.

 Choosing Your Column Types

 Once you have identified all of the tables and columns that the database will need,
 you should determine each column’s data type. When you’re creating a table, MySQL
 requires that you explicitly state what sort of information each column will contain.
 There are three primary types, which is true for almost every database application:

 [image: Images] Text (aka strings)

 [image: Images] Numbers

 [image: Images] Dates and times

 Within each of these, there are many variants—some of which are MySQL specific. Choosing
 your column types correctly not only dictates what information can be stored and how,
 but also affects the database’s overall performance. Table 4.2 lists most of the available types for MySQL, how much space they take up, and brief
 descriptions of each type. Note that some of these limits may change in different
 versions of MySQL, and the character set (to be discussed in Chapter 6, “Database Design”) may also impact the size of the text types.

 TABLE 4.2 MySQL Data Types

 	
 Type

 	
 Size

 	
 Description

 	
 CHAR[Length]

 	
 Length bytes

 	
 A fixed-length field from 0 to 255 characters long

 	
 VARCHAR[Length]

 	
 String length + 1 or 2 bytes

 	
 A variable-length field from 0 to 65,535 characters long

 	
 TINYTEXT

 	
 String length + 1 bytes

 	
 A string with a maximum length of 255 characters

 	
 TEXT

 	
 String length + 2 bytes

 	
 A string with a maximum length of 65,535 characters

 	
 MEDIUMTEXT

 	
 String length + 3 bytes

 	
 A string with a maximum length of 16,777,215 characters

 	
 LONGTEXT

 	
 String length + 4 bytes

 	
 A string with a maximum length of 4,294,967,295 characters

 	
 TINYINT[Length]

 	
 1 byte

 	
 Range of –128 to 127 or 0 to 255 unsigned

 	
 SMALLINT[Length]

 	
 2 bytes

 	
 Range of –32,768 to 32,767 or 0 to 65,535 unsigned

 	
 MEDIUMINT[Length]

 	
 3 bytes

 	
 Range of –8,388,608 to 8,388,607 or 0 to 16,777,215 unsigned

 	
 INT[Length]

 	
 4 bytes

 	
 Range of –2,147,483,648 to 2,147,483,647 or 0 to 4,294,967,295 unsigned

 	
 BIGINT[Length]

 	
 8 bytes

 	
 Range of –9,223,372,036,854,775,808 to 9,223,372,036,854,775,807 or 0 to 18,446,744,073,709,551,615
 unsigned

 	
 FLOAT[Length, Decimals]

 	
 4 bytes

 	
 A small number with a floating decimal point

 	
 DOUBLE[Length, Decimals]

 	
 8 bytes

 	
 A large number with a floating decimal point

 	
 DECIMAL[Length, Decimals]

 	
 Length + 1 or 2 bytes

 	
 A DOUBLE stored as a string, allowing for a fixed decimal point

 	
 DATE

 	
 3 bytes

 	
 In the format YYYY-MM-DD

 	
 DATETIME

 	
 8 bytes

 	
 In the format YYYY-MM-DD HH:MM:SS

 	
 TIMESTAMP

 	
 4 bytes

 	
 In the format YYYYMMDDHHMMSS; acceptable range starts in 1970 and ends in the year
 2038

 	
 TIME

 	
 3 bytes

 	
 In the format of HH:MM:SS

 	
 ENUM

 	
 1 or 2 bytes

 	
 Short for enumeration, which means that each column can have one of several possible
 values

 	
 SET

 	
 1, 2, 3, 4, or 8 bytes

 	
 Like ENUM except that each column can have more than one of several possible values

 Many of the types can take an optional Length attribute, limiting their size. (The brackets, [], indicate an optional parameter
 to be put in parentheses.) For performance purposes, you should place some restrictions
 on how much data can be stored in any column. But understand that attempting to insert
 a string five characters long into a CHAR(2) column will result in truncation of the final three characters. Only the first two
 characters would be stored; the rest would be lost forever. This is true for any field
 in which the size is set (CHAR, VARCHAR,INT, etc.). Thus, your length should always correspond to the maximum possible value—as
 a number—or the longest possible string—as text—that might be stored.

 The various date types have all sorts of unique behaviors, the most important of which
 you’ll learn about in this book. All the behaviors are documented in the MySQL manual.
 You’ll use the DATE and TIME fields primarily without modification, so you do not have to worry too much about
 their intricacies.

 There are also two special types—ENUM and SET—that allow you to define a series of acceptable values for that column. An ENUM column can store only one value of a possible several thousand, whereas SET allows for several of up to 64 possible values. These are available in MySQL but
 aren’t present in every database application.

 To select the column types:

 1. Identify whether a column should be a text, number, or date/time type (Table 4.3).

 TABLE 4.3 users Table

 	
 Column Name

 	
 Type

 	
 user_id

 	
 number

 	
 first_name

 	
 text

 	
 last_name

 	
 text

 	
 email

 	
 text

 	
 pass

 	
 text

 	
 registration_date

 	
 date/time

 This is normally an easy and obvious step, but you want to be as specific as possible.
 For example, the date 2006-08-02 (MySQL format) could be stored as a string—August 2, 2006. But if you use the proper date format, you’ll have a more useful database (and,
 as you’ll see, there are functions that can turn 2006-08-02 into August 2, 2006).

 2. Choose the most appropriate subtype for each column (Table 4.4).

 TABLE 4.4 users Table

 	
 Column Name

 	
 Type

 	
 user_id

 	
 MEDIUMINT

 	
 first_name

 	
 VARCHAR

 	
 last_name

 	
 VARCHAR

 	
 email

 	
 VARCHAR

 	
 pass

 	
 CHAR

 	
 registration_date

 	
 DATETIME

 For this example, user_id is set as a MEDIUMINT, allowing for up to nearly 17 million values (as an unsigned, or non-negative, number). registration_date will be a DATETIME. It can store both the date and the specific time a user registered. When deciding
 among the date types, consider whether you’ll want to access just the date, the time,
 or possibly both.

 When choosing a subtype, err on the side of storing too much information.

 The other fields will be mostly VARCHAR, since their lengths will differ from record to record. The only exception is the
 password column, which will be a fixed-length CHAR (you’ll see why when inserting records in the next chapter). See the sidebar “CHAR vs. VARCHAR” for more information on these two types.

 CHAR vs. VARCHAR

 Both of these types store strings and can be set with a maximum length. The primary
 difference between the two is that anything stored as a CHAR will always be stored as a string the length of the column (using spaces to pad it;
 these spaces will be removed when you retrieve the stored value from the database).
 Conversely, strings stored in a VARCHAR column will require only as much space as the string itself. So the word cat in a VARCHAR(10) column requires 4 bytes of space (the length of the string plus 1), but in a CHAR(10) column, that same word requires 10 bytes of space. Hence, generally speaking, VARCHAR columns tend to require less disk space than CHAR columns.

 However, databases are normally faster when working with fixed-size columns, which
 is an argument in favor of CHAR. And that same three-letter word—cat—in a CHAR(3) uses only 3 bytes but in a VARCHAR(10) requires 4. So how do you decide which to use?

 If a string field will always be of a set length (e.g., a state abbreviation), use CHAR; otherwise, use VARCHAR. You may notice, though, that in some cases MySQL defines a column as the one type—like
 CHAR—even though you created it as the other: VARCHAR. This is perfectly normal and is MySQL’s way of improving performance.

 3. Set the maximum length for text columns (Table 4.5).

 TABLE 4.5 users Table

 	
 Column Name

 	
 Type

 	
 user_id

 	
 MEDIUMINT

 	
 first_name

 	
 VARCHAR(20)

 	
 last_name

 	
 VARCHAR(40)

 	
 email

 	
 VARCHAR(60)

 	
 pass

 	
 CHAR(128)

 	
 registration_date

 	
 DATETIME

 The size of any field should be restricted to the smallest possible value, based on
 the largest possible input. For example, if a column stores a state abbreviation,
 it would be defined as a CHAR(2). Other times you might have to guess: I can’t think of any first names longer than
 about 10 characters, but just to be safe I’ll allow for up to 20.

 Tip

 The length attribute for numeric types does not affect the range of values that can
 be stored in the column. Columns defined as TINYINT(1) or TINYINT(20) can store the exact same values. Instead, for integers, the length dictates the display
 width; for decimals, the length is the total number of digits that can be stored.

 Tip

 If you need absolute precision when using non-integers, DECIMAL is preferred over FLOAT or DOUBLE.

 Tip

 MySQL has a BOOLEAN type, which is just a TINYINT(1), with 0 meaning FALSE and 1 meaning TRUE.

 Tip

 Many of the data types have synonymous names: INT and INTEGER, DEC and DECIMAL, and so on.

 Tip

 Depending on the version of MySQL in use, the TIMESTAMP field type is automatically set as the current date and time when an INSERT or UPDATE occurs, even if no value is specified for that particular field. If a table has multiple
 TIMESTAMP columns, only the first one will be updated when an INSERT or UPDATE is performed.

 Tip

 MySQL also has several variants on the text types that allow for storing binary data.
 These types are BINARY, VARBINARY, TINYBLOB, MEDIUMBLOB, and LONGBLOB. Such types can be used for storing files or encrypted data.

 Choosing Other Column Properties

 Besides deciding what data types and sizes you should use for your columns, consider
 a handful of other properties.

 First, every column, regardless of type, can be defined as NOT NULL. The NULL value, in databases and programming, is equivalent to saying that the field has no
 known value. Ideally, in a properly designed database, every column of every row in
 every table should have a value, but that isn’t always the case. To force a field
 to have a value, add the NOT NULL description to its column type. For example, a required dollar amount can be described
 as

 cost DECIMAL(5,2) NOT NULL.

 Indexes, Keys, and AUTO_INCREMENT

 Two concepts closely related to database design are indexes and keys. An index in a database is a way of requesting that the database keep an eye on the values
 of a specific column or combination of columns (loosely stated). The benefit of an
 index is improved performance when retrieving records but marginally hindered performance
 when inserting records or updating them.

 A key in a database table is integral to the “normalization” process used for designing more complicated databases (see Chapter 6). There are two types of keys: primary and foreign. Each table should have exactly one primary key, and the primary key in one table
 is often linked as a foreign key in another.

 A table’s primary key is an artificial way to refer to a record and must abide by
 three rules:

 1. It must always have a value.

 2. That value must never change.

 3. That value must be unique for each record in the table.

 In the users table, user_id will be designated as a PRIMARY KEY, which is both a description of the column and a directive to MySQL to index it.
 Since user_id is a number—which primary keys almost always will be, the AUTO_INCREMENT description is also added to the column, which tells MySQL to use the next-highest
 number as the user_id value for each added record. You’ll see what this means in practice when you begin
 inserting records.

 When creating a table, you can also specify a default value for any column, regardless
 of type. In cases where a majority of the records will have the same value for a column,
 presetting a default will save you from having to specify a value when inserting new
 rows (unless that row’s value for that column is different from the norm).

 Click here to view code image

 subscribe ENUM('Yes', 'No') default 'No'

 With the subscribe column, if no value is specified when adding a record, the default will be used.

 If a column cannot be NULL and does not have a default value, and no value is specified for a new record, that
 field will be given a default value based on its type. For numeric types, the default
 value is 0. For most date and time types, the type’s version of “zero” will be the
 default (e.g., 0000-00-00). The first TIMESTAMP column in a table will have a default value of the current date and time. String
 types use an empty string (‘’) as the default value, except for ENUM, whose default value—again, if not otherwise specified—is the first possible enumerated
 value (Yes in the previous example).

 The number types can be marked as UNSIGNED, which limits the stored data to positive numbers and zero. This also effectively
 doubles the range of positive numbers that can be stored because no negative numbers
 will be kept (see Table 4.2). You can also flag the number types as ZEROFILL, which means that any extra room will be padded with zeros. ZEROFILLs are also automatically UNSIGNED.

 Finally, when designing a database, you’ll need to consider creating indexes, adding
 keys, and using the AUTO_INCREMENT property. Chapter 6 discusses these concepts in greater detail, but in the meantime, check out the sidebar
 “Indexes, Keys, and AUTO_INCREMENT” to learn how they affect the users table.

 To finish defining your columns:

 1. Identify your primary key.

 The primary key is quixotically both arbitrary and critically important. Almost always
 a number value, the primary key is a unique way to refer to a particular record. For
 example, your phone number has no inherent value but is unique to you (your home or
 mobile phone).

 In the users table, user_id will be the primary key: an arbitrary number used to refer to a row of data. Again,
 Chapter 6 will go into the concept of primary keys in more detail.

 2. Identify which columns cannot have a NULL value.

 In this example, every field is required (cannot be NULL). As an example of a column that could have NULL values, if you stored people’s addresses, you might have address_line1 and address_line2, with the latter one being optional. In general, tables that have a lot of NULL values suggest a poor design (more on this in…you guessed it…Chapter 6).

 3. Make any numeric type UNSIGNED if it won’t ever store negative numbers.

 user_id, which will be a number, should be UNSIGNED so that it’s always positive. As a rule, primary keys should always be unsigned.
 Other examples of UNSIGNED numbers would be the price of items in an e-commerce example, a telephone extension
 for a business, or a zip code.

 4. Establish the default value for any column.

 None of the columns here logically implies a default value.

 5. Confirm the final column definitions (Table 4.6).

 TABLE 4.6 users Table

 	
 Column Name

 	
 Type

 	
 user_id

 	
 MEDIUMINT UNSIGNED NOT NULL

 	
 first_name

 	
 VARCHAR(20) NOT NULL

 	
 last_name

 	
 VARCHAR(40) NOT NULL

 	
 email

 	
 VARCHAR(60) NOT NULL

 	
 pass

 	
 CHAR(128) NOT NULL

 	
 registration_date

 	
 DATETIME NOT NULL

 Before creating the tables, you should revisit the type and range of data you’ll store
 to make sure that your database effectively accounts for everything.

 Tip

 Text columns can also have defined character sets and collations. This will mean more…in
 Chapter 6.

 Tip

 Default values must always be a static value, not the result of executing a function,
 with one exception: the default value for a TIMESTAMP column can be assigned as CURRENT_TIMESTAMP.

 Tip

 TEXT columns cannot be assigned default values.

 Accessing MySQL

 To create tables, add records, and request information from a database, you need some
 sort of client to communicate with the MySQL server. Later in the book, PHP scripts will act in
 this role, but being able to use another interface is necessary.

 Although oodles of client applications are available, I’ll focus on two: the mysql client and the web-based phpMyAdmin. A third option, the MySQL Workbench, is not discussed
 in this book but can be found at the MySQL web site (https://dev.mysql.com/downloads/workbench/), should you not be satisfied with these two choices.

 The rest of this chapter assumes you have access to a running MySQL server. If you
 are working on your own computer, see Appendix A, “Installation,” for instructions on installing MySQL, starting MySQL, and creating MySQL users,
 all of which must already be done in order to finish this chapter. If you are using
 a hosted server, your web host should provide you with the database access. Depending
 on the hosting, you may be provided with phpMyAdmin but not be able to use the command-line
 mysql client.

 Using the mysql client

 The mysql client is normally installed with the rest of the MySQL software. Although
 the mysql client does not have a pretty graphical interface, it’s a reliable, standard
 tool that’s easy to use and behaves consistently on many different operating systems.

 The mysql client is accessed from a command-line interface, be it the Terminal application
 in Linux or macOS [image: Images], or a DOS prompt in Windows [image: Images]. If you’re not comfortable with command-line interactions, you might find this interface
 to be challenging, but it becomes easy to use in no time.

 [image: Images]

 [image: Images]A Terminal window in macOS.

 [image: Images]

 [image: Images]A Windows DOS prompt or console (although the default is for white text on a black
 background).

 To start the application from the command line, type its name and press Return or
 Enter:

 mysql

 Depending on the server (or your computer), you may need to enter the full path to
 start the application. For example:

 [image: Images] /Applications/MAMP/Library/bin/

 [image: Images]mysql (macOS, using MAMP)

 [image: Images] C:\xampp\mysql\bin\mysql (Windows, using XAMPP)

 When invoking this application, you can add arguments to affect how it runs. The most
 common arguments are the username, password, and hostname (computer name, URL, or
 IP address) you want to use to connect. You establish these arguments like so:

 Click here to view code image

 mysql -u username -h hostname -p

 The -p option will cause the client to prompt you for the password. You can also specify
 the password on this line if you prefer—by typing it directly after the -p prompt—but it will be visible, which is insecure. The -h hostname argument is optional, and you can leave it off unless you cannot connect to the MySQL
 server without it.

 Within the mysql client, every statement (SQL command) needs to be terminated by a
 semicolon. These semicolons are an indication to the client that the query is complete
 and should be run. The semicolons, a common point of confusion, are not part of the
 SQL itself. What this also means is that you can continue the same SQL statement over
 several lines within the mysql client, which makes it easy to read and to edit, should
 that be necessary.

 As a quick demonstration of accessing and using the mysql client, these next steps
 will show you how to start the mysql client, select a database to use, and quit the
 client. Before following these steps,

 [image: Images] The MySQL server must be running.

 [image: Images] You must have a username and password with proper access.

 Both are explained in Appendix A.

 As a side note, in the following steps and throughout the rest of the book, I will
 continue to provide images using the mysql client on both Windows and macOS. Although
 the appearance differs, the steps and results will be identical. So in short, don’t
 be concerned about why one image shows the DOS prompt and the next a Terminal.

 To use the mysql client:

 1. Access your system from a command-line interface.

 On Unix systems and macOS, this is just a matter of bringing up the Terminal or a
 similar application.

 If you are using Windows and you have installed MySQL on your computer, or press Windows
 Key+R, type cmd in the window[image: Images], and press Enter (or click OK) to bring up a DOS prompt.

 [image: Images]

 [image: Images]Executing cmd within the Run prompt in Windows is one way to access a DOS prompt interface.

 2. Invoke the mysql client, using the appropriate command [image: Images].

 [image: Images]

 [image: Images]Access the mysql client by entering the full path to the utility, along with the proper
 arguments.

 Click here to view code image

 /path/to/mysql/bin/mysql -u
[image: Images]username -p

 The pathtomysql part of this step will be largely dictated by the operating system you are running
 and where MySQL was installed. I’ve already provided two options, based on installations
 of MAMP on macOS or XAMPP on Windows (both are installed in Appendix A).

 The basic premise is that you are running the mysql client, connecting as username, and requesting to be prompted for the password. Not to overstate the point, but
 the username and password values that you use must already be established in MySQL
 as valid (see Appendix A).

 3. Enter the password at the prompt and press Return/Enter.

 The password you use here should be for the user you specified in the preceding step.
 If you used the proper username/password combination (i.e., someone with valid access),
 you should be greeted as shown in [image: Images]. If access is denied, you’re probably not using the correct values (see Appendix
 A for instructions on creating users).

 [image: Images]

 [image: Images]If you are successfully able to log in, you’ll see a welcome message like this.

 4. Select the database you want to use [image: Images].

 [image: Images]

 [image: Images]After getting into the mysql client, run a USE command to choose the database with which you want to work.

 USE test;

 The USE command selects the database to be used for every subsequent command. The test database is one that MySQL installs by default. Assuming it exists on your server,
 all users should be able to access it.

 5. Quit out of mysql [image: Images].

 [image: Images]

 [image: Images]Type either exit or quit to terminate your MySQL session and leave the mysql client.

 exit

 You can also use the command quit to leave the client. This step—unlike most other commands you enter in the mysql
 client—does not require a semicolon at the end.

 6. Quit the Terminal or DOS console session.

 exit

 The command exit will terminate the current session. On Windows, it will also close the DOS prompt
 window.

 Tip

 If you know in advance which database you will want to use, you can simplify matters
 by starting mysql with

 Click here to view code image

 /path/to/mysql/bin/mysql -u username
-p databasename

 Tip

 To see what else you can do with the mysql client, type

 Click here to view code image

 /path/to/mysql/bin/mysql --help

 Tip

 The mysql client on most systems allows you to use the up and down arrows to scroll
 through previously entered commands. If you make a mistake in typing a query, you
 can scroll up to find it, and then correct the error.

 Tip

 In the mysql client, you can also terminate SQL commands using \G instead of the semicolon. For queries that return results, using \G displays those results as a vertical list, as opposed to a horizontal table, which
 is sometimes easier to peruse.

 Tip

 If you are in a long statement and make a mistake, cancel the current operation by
 typing \c and pressing Return or Enter. If mysql thinks a closing single or double quotation
 mark is missing (as indicated by the ‘> and “> prompts), you’ll need to enter the appropriate quotation mark first.

 Using phpMyAdmin

 phpMyAdmin (www.phpmyadmin.net) is one of the best and most popular applications written in PHP. Its sole purpose
 is to provide an interface to a MySQL server. It is somewhat easier and more natural
 to use than the mysql client but requires a PHP installation and must be accessed
 through a web browser. If you’re running MySQL on your own computer, you might find
 that using the mysql client makes more sense, because installing and configuring phpMyAdmin
 constitutes unnecessary extra work (although all-in-one PHP and MySQL installers may
 do this for you). If you are using a hosted server, your web host is virtually guaranteed
 to provide phpMyAdmin as the primary way to work with MySQL and the mysql client may
 not be an option.

 Using phpMyAdmin isn’t hard, but the next steps run through the basics so that you’ll
 know what to do in the following chapters.

 To use phpMyAdmin:

 1. Access phpMyAdmin through your web browser [image: Images].

 [image: Images]

 [image: Images]The first phpMyAdmin page (when connected as a MySQL user who can access multiple
 databases).

 The URL you use will depend on your situation. If running web sites on your own computer,
 this might be http://localhost/phpMyAdmin/. If running on a hosted site, your web host will provide you with the proper URL.
 Likely, phpMyAdmin would be available through the site’s control panel (should one
 exist).

 Note that phpMyAdmin will only work if it’s been properly configured to connect to
 MySQL with a valid username/password/hostname combination.

 2. If possible and necessary, use the list on the left to select a database to use [image: Images].

 [image: Images]

 [image: Images]Use the list of databases on the left side of the window to choose with which database
 you want to work. This is the equivalent of running a USE databasename query within the mysql client.

 What options you have here will vary depending on what MySQL user phpMyAdmin is connecting
 as. That user might have access to one database, several databases, or every database.
 On a hosted site where you have just one database, that database will probably already
 be selected for you. On your own computer, with phpMyAdmin connecting as the MySQL
 root user, you would see a pull-down menu or a simple list of available databases[image: Images].

 [image: Images]

 [image: Images]Selecting a table from the left column changes the options on the right side of the
 page.

 3. Click on a table name in the left column to select that table [image: Images].

 You don’t always have to select a table—in fact, you never will if you just use the
 SQL commands in this book, but doing so can often simplify some tasks.

 4. Use the tabs and links (on the right side of the page) to perform common tasks.

 For the most part, the tabs and links are shortcuts to common SQL commands. For example,
 you can use options on the Browse tab to perform a SELECT query and options on the Insert tab to add new records.

 5. Use the SQL tab [image: Images] to enter SQL commands.

 [image: Images]

 [image: Images]The SQL tab, in the main part of the window, can be used to run any SQL command.

 The next three chapters, and a couple more later in the book, will provide SQL commands
 that must be run to create, populate, and manipulate tables. These might look like

 INSERT INTO tablename (col1, col2) VALUES (x, y)

 These commands can be run using the mysql client, phpMyAdmin, or any other interface.
 To run them within phpMyAdmin, just enter them into the SQL tab and click Go.

 Tip

 There’s a lot more that can be done with phpMyAdmin, but full coverage would require
 a chapter in its own right (and a long chapter at that). The information presented
 here will be enough for you to follow any of the examples in the book, should you
 not want to use the mysql client.

 Tip

 phpMyAdmin can be configured to use a special database that will record your query
 history, allow you to bookmark queries, and more. See the phpMyAdmin documentation
 for details.

 Tip

 One of the best reasons to use phpMyAdmin is to transfer a database from one computer
 to another. Use options on the Export tab in phpMyAdmin connected to the source computer
 to create a file of data. Then, on the destination computer, use the Import tab in
 phpMyAdmin (connected to that MySQL server) to complete the transfer.

 Review and Pursue

 If you have any problems with the review questions or the pursue prompts, turn to
 the book’s supporting forum (LarryUllman.com/forums/).

 Review

 [image: Images] What version of MySQL are you using? If you don’t know, find out now!

 [image: Images] What characters can be used in database, table, and column names?

 [image: Images] Should you treat database, table, and column names as case-sensitive or case-insensitive?

 [image: Images] What are the three general column types?

 [image: Images] What are the differences between CHAR and VARCHAR?

 [image: Images] How do you determine what size (in terms of subtype or length) a column should be?

 [image: Images] What are some of the other properties that can be assigned to columns?

 [image: Images] What is a primary key?

 [image: Images] If you’re using the command-line mysql client to connect to MySQL, what username
 and password combination is required?

 Pursue

 [image: Images] Find the online MySQL manual for your version of MySQL. Bookmark it!

 [image: Images] Start thinking about what databases you may need for your projects.

 [image: Images] If you haven’t yet changed the MySQL root user password (assuming you’ve installed
 MySQL on your own computer), use the instructions in Appendix A to do so now.

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 5. Introduction to SQL

 In This Chapter

 Creating Databases and Tables

 Inserting Records

 Selecting Data

 Using Conditionals

 Using LIKE and NOT LIKE

 Sorting Query Results

 Limiting Query Results

 Updating Data

 Deleting Data

 Using Functions

 Review and Pursue

 The preceding chapter provided a quick introduction to MySQL. That chapter focused
 on two topics: using MySQL’s rules and data types to define a database, and how to
 interact with the MySQL server. This chapter moves on to the lingua franca of databases: SQL.

 SQL, short for Structured Query Language, is a group of special words used exclusively
 for interacting with databases. SQL is surprisingly easy to learn and use, and yet
 it’s amazingly powerful. In fact, the hardest thing to do in SQL is use it to its
 full potential!

 In this chapter, you’ll learn all the SQL you need to know to create tables, populate
 them, and run other basic queries. The examples will all use the users table discussed and designed in the preceding chapter. Also, as with that other chapter,
 this chapter assumes you have access to a running MySQL server and know how to use
 a client application to interact with it.

 Creating Databases and Tables

 The first logical use of SQL will be to create a database. The syntax for creating
 a new database is simply

 CREATE DATABASE databasename

 That’s all there is to it (as I said, SQL is easy to learn)!

 The CREATE term is also used for making tables:

 Click here to view code image

 CREATE TABLE tablename (
column1name description,
column2name description
...)

 After naming the table, you define each column within parentheses. Each column-description
 pair should be separated from the next by a comma, although you shouldn’t place a
 comma after the last column definition.

 Should you choose to create indexes at this time, you can add those at the end of
 the creation statement, but you can add indexes at a later time as well. (Indexes
 are more formally discussed in Chapter 6, “Database Design,” but Chapter 4, “Introduction to MySQL,” introduced the topic.)

 In case you were wondering, SQL is case-insensitive. However, I make it a habit to capitalize the SQL keywords, as in the preceding example
 syntax and the following steps. Doing so helps to contrast the SQL terms from the
 database, table, and column names.

 To create databases and tables:

 1. Access MySQL using whichever client you prefer.

 Chapter 4 shows how to use two of the most common interfaces—the mysql command-line client and phpMyAdmin—to communicate with a MySQL server. Using the steps in the previous chapter, you
 should now connect to MySQL.

 Throughout the rest of this chapter, most of the SQL examples will be entered using
 the mysql client, but they will work just the same in phpMyAdmin or most other client
 tools.

 2. Create and select the new database [image: Images]:

 [image: Images]

 [image: Images]A new database, called sitename, is created in MySQL. It is then selected for future queries.

 Click here to view code image

 CREATE DATABASE sitename;
USE sitename;

 This first line creates the database, assuming that you are connected to MySQL as
 a user with permission to create new databases. The second line tells MySQL that you
 want to work within this database from here on out. Remember that within the mysql
 client, you must terminate every SQL command with a semicolon, although these semicolons
 aren’t technically part of SQL itself. If executing multiple queries at once within phpMyAdmin, they should also be separated by semicolons [image: Images]. If you are running only a single query within phpMyAdmin, no semicolons are necessary.

 [image: Images]

 [image: Images] The same commands for creating and selecting a database can be run within phpMyAdmin’s
 SQL window.

 If you are using a hosting company’s MySQL, they will probably create the database
 for you. In that case, just connect to MySQL and select the database.

 3. Create the users table [image: Images]:

 [image: Images]

 [image: Images]This CREATE SQL command will make the users table.

 Click here to view code image

 CREATE TABLE users (
user_id MEDIUMINT UNSIGNED NOT NULL
AUTO_INCREMENT,
first_name VARCHAR(20) NOT NULL,
last_name VARCHAR(40) NOT NULL,
email VARCHAR(60) NOT NULL,
pass CHAR(128) NOT NULL,
registration_date DATETIME NOT NULL,
PRIMARY KEY (user_id)
);

 The users table was designed in Chapter 4. There, the names, types, and attributes of each column in the table are determined
 based on a number of criteria (see that chapter for more information). Here, that
 information is placed within the CREATE table syntax to make the table in the database.

 Because the mysql client will not run a query until it encounters a semicolon (or
 \G or \g), you can enter statements over multiple lines, as in [image: Images] (by pressing Return or Enter at the end of each line). This often makes a query easier
 to read and debug. In phpMyAdmin, you can also run queries over multiple lines, although
 they will not be executed until you click Go.

 4. Confirm the existence of the table [image: Images]:

 [image: Images]

 [image: Images] Confirm the existence of, and columns in, a table using the SHOW command.

 SHOW TABLES;
SHOW COLUMNS FROM users;

 The SHOW command reveals the tables in a database or the column names and types in a table.

 Also, you might notice in [image: Images] that the default value for user_id is NULL, even though this column was defined as NOT NULL. This is correct and has to do with user_id being an automatically incremented primary key. MySQL will often make minor changes
 to a column’s definition for better performance or other reasons.

 In phpMyAdmin, a database’s tables are listed on the left side of the browser window,
 under the database’s name [image: Images]. Click a table’s name to view its columns [image: Images].

 [image: Images]

 [image: Images] phpMyAdmin shows that the sitename database contains one table, named users.

 [image: Images]

 [image: Images] phpMyAdmin shows a table’s definition on this screen (accessed by clicking the table’s
 name in the left-hand column).

 Tip

 The rest of this chapter assumes that you are using the mysql client or other tool
 and have already selected the sitename database with USE.

 Tip

 The order in which you list the columns when creating a table has no functional impact,
 but there are stylistic suggestions for how to order them. I normally list the primary-key
 column first, followed by any foreign-key columns (more on this subject in the next
 chapter), followed by the rest of the columns, concluding with any date columns.

 Tip

 When creating a table, you have the option of specifying its type. MySQL supports
 many table types, each with its own strengths and weaknesses. If you do not specify
 a table type, MySQL will automatically create the table using the default type for
 that MySQL installation. Chapter 6 discusses this in more detail.

 Tip

 When creating tables and text columns, you have the option to specify its collation
 and character set. Both come into play when using multiple languages or languages
 other than the default for the MySQL server. Chapter 6 also covers these subjects.

 Tip

 DESCRIBE tablename is the same statement as SHOW COLUMNS FROM tablename.

 Inserting Records

 After a database and its table(s) have been created, you can start populating them
 using the INSERT command. There are two ways that an INSERT query can be written. With the first method, you name the columns to be populated:

 Click here to view code image

 INSERT INTO tablename (column1,
[image: Images]column2...) VALUES (value1,
[image: Images]value2 ...)
INSERT INTO tablename (column4,
[image: Images]column8) VALUES (valueX, valueY)

 Using this structure, you can add rows of records, populating only the columns that
 matter. The result will be that any columns not given a value will be treated as NULL (or given a default value, if one was defined). Note that if a coxlumn cannot have
 a NULL value (it was defined as NOT NULL) and does not have a default value, not specifying a value will cause an error or
 warning [image: Images].

 [image: Images]

 [image: Images] Failure to provide, or predefine, a value for a NOT NULL column results in errors or warnings.

 The second format for inserting records is not to specify any columns at all but to
 include values for every one:

 Click here to view code image

 INSERT INTO tablename VALUES
[image: Images](value1, NULL, value2, value3, ...)

 If you use this second method, you must specify a value, even if it’s NULL, for every column. If there are six columns in the table, you must list six values.
 Failure to match the number of values to the number of columns will cause an error
 [image: Images]. For this and other reasons, the first format of inserting records is generally preferable.

 [image: Images]

 [image: Images] Not providing a value for every column in a table, or named in an INSERT query, also causes an error.

 MySQL also allows you to insert multiple rows at one time, separating each record
 by a comma.

 Click here to view code image

 INSERT INTO tablename (column1,
[image: Images]column4) VALUES (valueA, valueB),
(valueC, valueD),
(valueE, valueF)

 While you can do this with MySQL, it is not acceptable within the SQL standard and
 is therefore not supported by all database applications. In MySQL, however, this syntax
 is faster than using individual INSERT queries.

 Note that in these examples, placeholders are used for the actual table names, column
 names, and values. Furthermore, the examples forgo quotation marks. In real queries,
 you must abide by certain rules to avoid errors (see the “Quotes in Queries” sidebar).

 To insert data into a table:

 1. Insert one row of data into the users table, naming the columns to be populated [image: Images]:

 [image: Images]

 [image: Images]This query inserts a single record into the users table. The 1 row affected message indicates the success of the insertion.

 Click here to view code image

 INSERT INTO users
(first_name, last_name, email,
[image: Images]pass, registration_date)
VALUES ('Larry', 'Ullman',
[image: Images]'email@example.com',
[image: Images]SHA2('mypass', 512), NOW());

 Again, this syntax—where the specific columns are named—is more foolproof but not
 always the most convenient. For the first name, last name, and email columns, simple
 strings are used for the values—and strings must always be quoted.

 For the password and registration date columns, two functions are being used to generate
 the values (see the sidebar “Two MySQL Functions”). The SHA2() function will encrypt the password (mypass in this example). The NOW() function will set the registration_date as this moment.

 Quotes in Queries

 In every SQL command:

 [image: Images] Numeric values shouldn’t be quoted.

 [image: Images] String values (for CHAR, VARCHAR, and TEXT column types) must always be quoted.

 [image: Images] Date and time values must always be quoted.

 [image: Images] Functions cannot be quoted.

 [image: Images] The word NULL must not be quoted.

 Unnecessarily quoting a numeric value normally won’t cause problems (although you
 still shouldn’t do it), but misusing quotation marks in the other situations will
 almost always mess things up. Also, it does not matter if you use single or double
 quotation marks, as long as you consistently pair them (an opening mark with a matching
 closing one).

 And, as with PHP, if you need to use a quotation mark in a value, either use the other
 quotation mark type to encapsulate it or escape the mark by preceding it with a backslash:

 Click here to view code image

 INSERT INTO tablename (last_name)
[image: Images]VALUES ('O\'Toole')

 [image: Images]

 [image: Images]This query inserts a single record into the users table. The 1 row affected message
 indicates the success of the insertion.

 Two MySQL Functions

 Although functions are discussed in more detail later in this chapter, two need to
 be introduced now: SHA2() and NOW().

 The SHA2() function is one way to encrypt data. This function creates a hashed string. Hashing is a type of one-way encryption in that it cannot be reversed (i.e.,
 you cannot decrypt the string). Hashing functions are useful when you need to store
 sensitive data that need not be viewed in an unencrypted form again. Because the output
 from SHA2() cannot be decrypted, it’s obviously not a good choice for sensitive data that should
 be protected but later seen, like credit card numbers.

 The SHA2() function takes a second argument indicating the desired length. A longer hash output
 will be more secure than a shorter one. Given a length of 512, this function returns
 a string that is always exactly 128 characters long. This is why the users table’s pass column is defined as CHAR(128).

 The NOW() function is handy for populating date, time, and timestamp columns. It returns the
 current date and time on the server.

 When using any function in an SQL statement, do not place it within quotation marks.
 You also must not have any spaces between the function’s name and the following parentheses
 (so NOW() and not NOW ()).

 2. Insert one row of data into the users table without naming the columns [image: Images]:

 [image: Images]

 [image: Images]Another record is inserted into the table, this time by providing a value for every
 column in the table.

 Click here to view code image

 INSERT INTO users VALUES
(NULL, 'Zoe', 'Isabella',
[image: Images]'email2@example.com',
[image: Images]SHA2('mojito', 512), NOW());

 In this second syntactical example, every column must be provided with a value. The
 user_id column is given a NULL value, which will cause MySQL to use the next logical number, per its AUTO_INCREMENT description. In other words, the first record will be assigned a user_id of 1, the second, 2, and so on.

 3. Insert several values into the users table [image: Images]:

 [image: Images]

 [image: Images] This one query—which MySQL allows but other databases will not—inserts several records
 into the table at once.

 Click here to view code image

 INSERT INTO users
[image: Images](first_name, last_name, email,
[image: Images]pass, registration_date) VALUES
('John', 'Lennon',
[image: Images]'john@beatles.com',
[image: Images]SHA2('Happin3ss', 512), NOW()),
('Paul', 'McCartney',
[image: Images]'paul@beatles.com',
[image: Images]SHA2('letITbe', 512), NOW()),
('George', 'Harrison',
[image: Images]'george@beatles.com ',
[image: Images]SHA2('something', 512), NOW()),
('Ringo', 'Starr',
[image: Images]'ringo@beatles.com',
[image: Images]SHA2('thisboy', 512), NOW());

 Since MySQL allows you to insert multiple values at once, you can take advantage of
 this and fill up the table with records.

 4. Continue Steps 1 and 2 until you’ve thoroughly populated the users table.

 Throughout the rest of this chapter I will be performing queries based on the records
 I entered into my database. Should your database not have the same specific records
 as mine, change the particulars accordingly. The fundamental thinking behind the following
 queries should still apply regardless of the data, since the sitename database has a set column and table structure.

 Tip

 On the downloads page of the book’s supporting web site (LarryUllman.com), you can download all of the SQL commands for the book. Using some of those commands,
 you can populate your users table exactly as I have.

 Tip

 The term INTO in INSERT statements is optional in MySQL.

 Tip

 phpMyAdmin’s Insert tab allows you to insert records using an HTML form [image: Images].

 [image: Images]

 [image: Images] phpMyAdmin’s INSERT form shows a table’s columns and provides text boxes for entering values. The pull-down
 menu lists functions that can be used, like NOW() for the registration date (although the current version does not support SHA2()).

 Tip

 Depending on the version of MySQL in use, failure to provide a value for a column
 that cannot be NULL may issue warnings with the INSERT still working [image: Images] or issue errors with the INSERT failing.

 Tip

 You’ll occasionally see uses of the backtick (`) in SQL commands. This character, found on the same key as the tilde (~), is different than a single quotation mark. The backtick is used to safely reference
 a table or column name that might be the same as an existing keyword.

 Tip

 If MySQL warns you about the previous query, the SHOW WARNINGS command will display the problem [image: Images].

 Tip

 An interesting variation on INSERT is REPLACE. If the value used for the table’s primary key, or a UNIQUE index, already exists, then REPLACE updates that row. If not, REPLACE inserts a new row.

 Selecting Data

 Now that the database has some records in it, you can retrieve the stored information
 with the most used of all SQL terms, SELECT. A SELECT query returns rows of records using the syntax

 Click here to view code image

 SELECT which_columns FROM which_table

 The simplest SELECT query is

 Click here to view code image

 SELECT * FROM tablename

 The asterisk means that you want to retrieve every column. The alternative would be
 to specify the columns to be returned, with each separated from the next by a comma:

 Click here to view code image

 SELECT column1, column3 FROM tablename

 There are a few benefits to being explicit about which columns are selected. The first
 is performance: there’s no reason to fetch columns you will not be using. The second
 is order: you can return columns in an order other than their layout in the table.
 Third—and you’ll see this later in the chapter—naming the columns allows you to manipulate
 the values in those columns using functions.

 To select data from a table:

 1. Retrieve all the data from the users table [image: Images]:

 [image: Images]

 [image: Images] The SELECT * FROM tablename query returns every column for every record stored in the table.

 SELECT * FROM users;

 This very basic SQL command will retrieve every column of every row stored within
 that table.

 2. Retrieve just the first and last names from users [image: Images]:

 [image: Images]

 [image: Images] Only two of the columns for every record in the table are returned by this query.

 Click here to view code image

 SELECT first_name, last_name
FROM users;

 [image: Images]

 [image: Images]Many queries can be run without specifying a database or table. This query selects
 the result of calling the NOW() unction, which returns the current date and time (according to MySQL).

 Instead of showing the data from every column in the users table, you can use the SELECT statement to limit the results to only the fields you need.

 Tip

 In phpMyAdmin, options on the Browse tab run a simple SELECT query.

 Tip

 You can actually use SELECT without naming tables or columns—for example, SELECT NOW() [image: Images].

 Tip

 The order in which you list columns in your SELECT statement dictates the order in which the values are presented (compare [image: Images] with [image: Images]).

 [image: Images]

 [image: Images]If a SELECT query specifies the columns to be returned, they’ll be returned in that order.

 Tip

 With SELECT queries, you can even retrieve the same column multiple times, a feature that enables
 you to manipulate the column’s data in many different ways.

 Using Conditionals

 The SELECT query as used thus far will always retrieve every record from a table. But often
 you’ll want to limit what rows are returned, based on certain criteria. This can be
 accomplished by adding conditionals to SELECT queries. Conditionals use the SQL term WHERE and are written much as you’d write a conditional in PHP:

 Click here to view code image

 SELECT which_columns FROM
[image: Images]which_table WHERE condition(s)

 Table 5.1 lists the most common operators you would use within a conditional—for example, a
 simple equality check:

 Click here to view code image

 SELECT name FROM people
WHERE birth_date = '2011-01-26'

 TABLE 5.1 MySQL Operators

 	
 Operator

 	
 Meaning

 	
 =

 	
 Equals

 	
 <

 	
 Less than

 	
 >

 	
 Greater than

 	
 <=

 	
 Less than or equal to

 	
 >=

 	
 Greater than or equal to

 	
 != (also <>)

 	
 Not equal to

 	
 IS NOT NULL

 	
 Has a value

 	
 IS NULL

 	
 Does not have a value

 	
 IS TRUE

 	
 Has a true value

 	
 IS FALSE

 	
 Has a false value

 	
 BETWEEN

 	
 Within a range

 	
 NOT BETWEEN

 	
 Outside of a range

 	
 IN

 	
 Found within a list of values

 	
 NOT IN

 	
 Not found within a list of values

 	
 OR (also ||)

 	
 Where one of two conditionals is true

 	
 AND (also &&)

 	
 Where both conditionals are true

 	
 NOT (also !)

 	
 Where the condition is not true

 	
 XOR

 	
 Where only one of two conditionals is true

 The operators can be used together, along with parentheses, to create more complex
 expressions:

 Click here to view code image

 SELECT * FROM items WHERE
(price BETWEEN 10.00 AND 20.00) AND
(quantity > 0)
SELECT * FROM cities WHERE
(zip_code = 90210) OR
[image: Images](zip_code = 90211)

 This last example could also be written as

 SELECT * FROM cities WHERE
zip_code IN (90210, 90211)

 To demonstrate using conditionals, let’s run some more SELECT queries on the sitename database. The examples that follow will be just a few of the nearly limitless possibilities.
 Over the course of this chapter and the entire book, you will see how conditionals
 are used in all types of queries.

 To use conditionals:

 1. Select all of the users whose last name is Simpson [image: Images]:

 [image: Images]

 [image: Images] This query returns all of the Simpsons who have registered.

 SELECT * FROM users
WHERE last_name = 'Simpson';

 This simple query returns every column of every row whose last_name value is Simpson. (Again, if the data in your table differs, you can change any of these queries accordingly.)

 2. Select just the first names of users whose last name is Simpson [image: Images]:

 [image: Images]

 [image: Images] This query returns just the first names of all the Simpsons who have registered.

 SELECT first_name FROM users
WHERE last_name = 'Simpson';

 Here, only one column—first_name—is being returned for each row. Although it may seem strange, you do not have to
 select a column on which you are performing a WHERE. The reason for this is that the columns listed after SELECT dictate only what columns to return and the columns listed in a WHERE dictate which rows to return.

 3. Select every column from every record in the users table that does not have an email address [image: Images]:

 SELECT * FROM users
WHERE email IS NULL;

 [image: Images]

 [image: Images] No records are returned by this query because the email column cannot have a NULL value. So this query did work; it just matched no records.

 The IS NULL conditional is the same as saying does not have a value. Keep in mind that an empty string is different than NULL and therefore would not match this condition. An empty string would, however, match

 SELECT * FROM users WHERE email='';

 4. Select the user ID, first name, and last name of all records in which the password
 is mypass [image: Images]:

 Click here to view code image

 SELECT user_id, first_name,
[image: Images]last_name
FROM users
WHERE pass = SHA2('mypass', 512);

 [image: Images]

 [image: Images] Conditionals can make use of functions, like SHA2() here.

 Since the stored passwords were encrypted with the SHA2() function, you can match a password by using that same encryption function in a conditional.
 SHA2() is case-sensitive, so this query will work only if the passwords—stored vs. queried—match
 exactly. Also note you must use the same length value—512, here—as was used to store
 the password originally.

 5. Select the usernames whose user ID is less than 10 or greater than 20 [image: Images]:

 Click here to view code image

 SELECT first_name, last_name
FROM users WHERE
(user_id < 10) OR (user_id > 20);

 [image: Images]

 [image: Images] This query uses two conditions and the OR operator.

 This same query could also be written as

 Click here to view code image

 SELECT first_name, last_name FROM
users WHERE user_id
NOT BETWEEN 10 and 20;

 or even

 Click here to view code image

 SELECT first_name, last_name FROM
users WHERE user_id NOT IN
(10, 11, 12, 13, 14, 15, 16, 17,
[image: Images]18, 19, 20);

 Tip

 You can perform mathematical calculations within your queries using the mathematic
 addition (+), subtraction (-), multiplication (*), and division (/) characters.

 Tip

 MySQL supports the keywords TRUE and FALSE, case-insensitive. Internally, TRUE evaluates to 1 and FALSE evaluates to 0. So, in MySQL, TRUE + TRUE equals 2.

 Using LIKE and NOT LIKE

 Using numbers, dates, and NULLs in conditionals is a straightforward process, but strings can be trickier. You can
 check for string equality with a query such as

 SELECT * FROM users
WHERE last_name = 'Simpson'

 However, comparing strings in a more liberal manner requires extra operators and characters.
 If, for example, you wanted to match a person’s last name that could be Smith or Smiths or Smithson, you would need a more flexible conditional. This is where the LIKE and NOT LIKE terms come in. These are used—primarily with strings—in conjunction with two wildcard
 characters: the underscore (_), which matches a single character, and the percentage sign (%), which matches zero or more characters. In the last-name example, the query would
 be

 SELECT * FROM users
WHERE last_name LIKE 'Smith%'

 That query will return all rows whose last_name value begins with Smith. Because it’s a case-insensitive search by default, it would also apply to names
 that begin with smith.

 To use LIKE:

 1. Select all the records in which the last name starts with Bank [image: Images]:

 SELECT * FROM users
WHERE last_name LIKE 'Bank%';

 [image: Images]

 [image: Images]The LIKE SQL term adds flexibility to your conditionals. This query matches any record where
 the last name value begins with Bank.

 2. Select the name for every record whose email address is not of the form something@authors.com [image: Images]:

 SELECT first_name, last_name
FROM users WHERE
email NOT LIKE '%@authors.com';

 [image: Images]

 [image: Images] A NOT LIKE conditional returns records based on what a value does not contain.

 To rule out the presence of values in a string, use NOT LIKE with the wildcard.

 Tip

 Queries with a LIKE conditional are generally slower because they can’t take advantage of indexes. Use
 LIKE and NOT LIKE only if you absolutely have to.

 Tip

 The wildcard characters can be used at the front and/or back of a string in your queries.

 SELECT * FROM users WHERE last_name
[image: Images]LIKE '_smith%'

 Tip

 Although LIKE and NOT LIKE are normally used with strings, they can also be applied to numeric columns.

 Tip

 To use either the literal underscore or the percentage sign in a LIKE or NOT LIKE query, you will need to escape it (by preceding the character with a backslash) so
 that it is not confused with a wildcard.

 Tip

 The underscore can be used in combination with itself; for example, LIKE ‘__’ would find any two-letter combination.

 Tip

 In Chapter 7, “Advanced SQL and MySQL,” you’ll learn about FULLTEXT searches, which can be more useful than LIKE searches.

 Sorting Query Results

 By default, a SELECT query’s results will be returned in a meaningless order. For many new to databases,
 this is an odd concept. To give a meaningful order to a query’s results, use an ORDER BY clause:

 Click here to view code image

 SELECT * FROM tablename ORDER BY
[image: Images]column
SELECT * FROM orders ORDER BY total

 The default order when using ORDER BY is ascending (abbreviated ASC), meaning that numbers increase from small to large, dates go from oldest to most
 recent, and text is sorted alphabetically. You can reverse this by specifying a descending
 order (abbreviated DESC):

 SELECT * FROM tablename
ORDER BY column DESC

 You can even order the returned values by multiple columns:

 SELECT * FROM tablename
ORDER BY column1, column2

 You can, and frequently will, use ORDER BY with WHERE or other clauses. When doing so, place the ORDER BY after the conditions:

 Click here to view code image

 SELECT * FROM tablename WHERE
[image: Images]conditions
ORDER BY column

 To sort data:

 1. Select all the users in alphabetical order by last name [image: Images]:

 [image: Images]

 [image: Images] The records in alphabetical order by last name.

 Click here to view code image

 SELECT first_name, last_name FROM
users ORDER BY last_name;

 If you compare these results with those in [image: Images] in the “Selecting Data” section, you’ll see the benefits of using ORDER BY.

 2. Display all the users in alphabetical order by last name and then first name [image: Images]:

 Click here to view code image

 SELECT first_name, last_name FROM
users ORDER BY last_name ASC,
first_name ASC;

 [image: Images]

 [image: Images] The records in alphabetical order, first by last name, and then by first name within
 that.

 In this query, the effect would be that every row is returned, first ordered by last_name, and then by first_name within the last_names. The effect is most evident among the Simpsons.

 3. Show all the non-Simpson users by date registered [image: Images]:

 Click here to view code image

 SELECT * FROM users
WHERE last_name != 'Simpson'
ORDER BY registration_date DESC;

 [image: Images]

 [image: Images] All of the users not named Simpson, displayed by date registered, with the most recent listed first.

 You can use an ORDER BY on any column type, including numbers and dates. The clause can also be used in a
 query with a conditional, placing the ORDER BY after the WHERE.

 Tip

 Because MySQL works naturally with any number of languages, the ORDER BY will be based on the collation being used (see Chapter 6).

 Tip

 If the column that you choose to sort on is an ENUM type, the sort will be based on the order of the possible ENUM values when the column was created. For example, if you have the column gender, defined
 as ENUM(‘M’, ‘F’), the clause ORDER BY gender returns the results with the M records first.

 Limiting Query Results

 Another SQL clause that can be added to most queries is LIMIT. In a SELECT query, WHERE dictates which records to return and ORDER BY decides how those records are sorted, but LIMIT states how many records to return. It is used like so:

 Click here to view code image

 SELECT * FROM tablename LIMIT x

 In such queries, only the initial x records from the query result will be returned. To return only three matching records,
 use

 Click here to view code image

 SELECT * FROM tablename LIMIT 3

 Using this format

 Click here to view code image

 SELECT * FROM tablename LIMIT x, y

 you can have y records returned, starting at x. To have records 11 through 20 returned, you would write

 Click here to view code image

 SELECT * FROM tablename LIMIT 10, 10

 Like arrays in PHP, result sets begin at 0 when it comes to LIMITs, so 10 is the 11th record.

 Because SELECT does not return results in any meaningful order, you almost always want to apply
 an ORDER BY clause when using LIMIT. You can use LIMIT with WHERE and/or ORDER BY clauses, always placing LIMIT last:

 Click here to view code image

 SELECT which_columns FROM tablename
WHERE conditions ORDER BY column
LIMIT x

 To limit the amount of data returned:

 1. Select the last five registered users [image: Images]:

 Click here to view code image

 SELECT first_name, last_name
FROM users ORDER BY
registration_date DESC LIMIT 5;

 [image: Images]

 [image: Images]Using the LIMIT clause, a query can return a specific number of records.

 To return the latest of anything, sort the data by date, in descending order. Then,
 to see just the most recent five, add LIMIT 5 to the query.

 2. Select the second person to register [image: Images]:

 Click here to view code image

 SELECT first_name, last_name
FROM users ORDER BY
registration_date ASC LIMIT 1, 1;

 [image: Images]

 [image: Images] Thanks to the LIMIT clause, a query can even return records from the middle of a group, using the LIMIT x, y format.

 This may look strange, but it’s just a good application of the information learned
 so far. First, order all the records by registration_date ascending, so the first people to register would be returned first. Then, limit the
 returned results to start at 1 (which is the second row) and to return just one record.

 Tip

 The LIMIT x, y clause is most frequently used when paginating query results (showing them in blocks
 over multiple pages). You’ll see this in Chapter 10, “Common Programming Techniques.”

 Tip

 A LIMIT clause does not improve the execution speed of a query, since MySQL still has to
 assemble the entire result and then truncate the list. But a LIMIT clause will minimize the amount of data to handle when it comes to the mysql client
 or your PHP scripts.

 Tip

 The LIMIT term is not part of the SQL standard and is therefore (sadly) not available on all
 databases.

 Tip

 The LIMIT clause can be used with most types of queries, not just SELECTs.

 Updating Data

 Once tables contain some data, you have the potential need to edit those existing
 records. This might be necessary if information was entered incorrectly or if the
 data changes, such as a last name or email address. The syntax for updating records
 is

 Click here to view code image

 UPDATE tablename SET column=value

 You can alter multiple columns at a single time, separating each from the next by
 a comma.

 Click here to view code image

 UPDATE tablename SET column1=valueA,
column5=valueB...

 You will almost always want to use a WHERE clause to specify what rows should be updated:

 Click here to view code image

 UPDATE tablename SET column2=value
WHERE column5=value

 If you don’t use a WHERE clause, the changes would be applied to every record.

 Updates, along with deletions, are one of the most important reasons to use a primary
 key. This value—which should never change—can be a reference point in WHERE clauses, even if every other field needs to be altered.

 To update a record:

 1. Find the primary key for the record to be updated [image: Images]:

 Click here to view code image

 SELECT user_id FROM users
WHERE first_name = 'Michael'
AND last_name='Chabon';

 [image: Images]

 [image: Images] Before updating a record, determine which primary key to use in the UPDATE’s WHERE clause.

 In this example, I’ll change the email for this author’s record. To do so, I must
 first find that record’s primary key, which this query accomplishes.

 2. Update the record [image: Images]:

 Click here to view code image

 UPDATE users
SET email='mike@authors.com'
WHERE user_id = 18;

 [image: Images]

 [image: Images] This query altered the value of one column in just one row.

 To change the email address, use an UPDATE query, using the primary key (user_id) to specify to which record the update should apply. MySQL will report upon the success
 of the query and how many rows were affected.

 3. Confirm that the change was made [image: Images]:

 SELECT * FROM users
WHERE user_id=18;

 [image: Images]

 [image: Images] As a final step, you can confirm the update by selecting the record again.

 Although MySQL already indicated the update was successful [image: Images], it can’t hurt to select the record again to confirm that the proper changes occurred.

 Tip

 Be extra certain to use a WHERE conditional whenever you use UPDATE unless you want the changes to affect every row.

 Tip

 If you run an update query that doesn’t actually change any values (like UPDATE users SET first_name=’mike’ WHERE user_id=0), you won’t see any errors but no rows will be affected [image: Images].

 [image: Images]

 [image: Images] Queries that have no effect still don’t count as errors.

 Tip

 To protect yourself against accidentally updating too many rows, apply a LIMIT clause to your UPDATEs:

 Click here to view code image

 UPDATE users SET
[image: Images]email='mike@authors.com'
[image: Images]WHERE user_id = 18 LIMIT 1

 Tip

 You should never perform an UPDATE on a primary-key column, because the primary key value should never change. Altering
 the value of a primary key could have serious repercussions.

 Tip

 To update a record in phpMyAdmin, you can run an UPDATE query using the SQL window or tab. Alternatively, run a SELECT query to find the record you want to update, and then click the pencil next to the
 record. This will bring up a form like the insert form, where you can edit the record’s
 current values.

 Deleting Data

 Along with updating existing records, another step you might need to take is to entirely
 remove a record from the database. To do this, you use the DELETE command:

 DELETE FROM tablename

 That command as written will delete every record in a table, making it empty again.
 Once you have deleted a record, there is no way of retrieving it.

 In most cases, you’ll want to delete individual rows, not all of them. To do so, apply
 a WHERE clause:

 Click here to view code image

 DELETE FROM tablename WHERE condition

 To delete a record:

 1. Find the primary key for the record to be deleted [image: Images]:

 Click here to view code image

 SELECT user_id FROM users
WHERE first_name='Peter'
AND last_name='Tork';

 [image: Images]

 [image: Images] The user_id value will be used to refer to this record in a DELETE query.

 Just as in the UPDATE example, I first need to determine which primary key to use for the delete.

 2. Preview what will happen when the delete is made [image: Images]:

 SELECT * FROM users
WHERE user_id = 8;

 [image: Images]

 [image: Images] To preview the effect of a DELETE query, first run a syntactically similar SELECT query.

 A good trick for safeguarding against errant deletions is to first run the query using
 SELECT * instead of DELETE. The results of this query will represent which row(s) will be affected by the deletion.

 3. Delete the record [image: Images]:

 Click here to view code image

 DELETE FROM users
WHERE user_id = 8 LIMIT 1;

 [image: Images]

 [image: Images] Deleting one record from the table.

 As with the update, MySQL will report on the successful execution of the query and
 how many rows were affected. At this point, there is no way of reinstating the deleted
 records unless you backed up the database beforehand.

 Even though the SELECT query (Step 2 and [image: Images]) returned only the one row, just to be extra careful, a LIMIT 1 clause is added to the DELETE query.

 4. Confirm that the change was made [image: Images]:

 Click here to view code image

 SELECT user_id FROM users
WHERE first_name='Peter'
AND last_name='Tork';

 [image: Images]

 [image: Images] The record is no longer part of this table.

 Tip

 The preferred way to empty a table is to use TRUNCATE:

 TRUNCATE TABLE tablename

 Tip

 To delete all of the data in a table, as well as the table itself, use DROP TABLE:

 DROP TABLE tablename

 Tip

 To delete an entire database, including every table therein and all of its data, use

 DROP DATABASE databasename

 Using Functions

 To wrap up this chapter, you’ll learn about several functions that you can use in
 your MySQL queries. You have already seen two—NOW() and SHA2()—but those are just the tip of the iceberg. Most of the functions you’ll see here
 are used with SELECT queries to format and alter the returned data, but you may use MySQL functions in
 other types of queries as well.

 To apply a function to a column’s values, the query would look like

 Click here to view code image

 SELECT FUNCTION(column) FROM tablename

 To apply a function to one column’s values while also selecting some other columns,
 you can write a query like either of these:

 [image: Images] SELECT *, FUNCTION(column)

 [image: Images]FROM tablename

 [image: Images] SELECT column1, FUNCTION(column2),

 [image: Images]column3 FROM tablename

 Generally speaking, the latter syntax is preferred, because it returns only the columns
 you need as opposed to all of them.

 Before getting to the actual functions, make note of a couple more things. First,
 functions are often applied to stored data (i.e., columns) but can also be applied
 to literal values. Either of these applications of the UPPER() function, which capitalizes a string, is valid:

 Click here to view code image

 SELECT UPPER(first_name) FROM users
SELECT UPPER('this string')

 Second, while the function names themselves are case-insensitive, I will continue
 to write them in an all-capitalized format, to help distinguish them from table and
 column names (I also capitalize SQL terms). Third, an important rule with functions
 is that you cannot have spaces between the function name and the opening parenthesis in MySQL, although spaces within the parentheses are acceptable. And finally, when using functions
 to format returned data, you’ll often want to make uses of aliases, a concept discussed in the sidebar.

 Tip

 Just as there are different standards of SQL and different database applications have
 their own slight variations on the language, some functions are common to all database
 applications and others are particular to MySQL. This chapter, and the book, concerns
 itself only with the MySQL functions.

 Tip

 Chapter 7 discusses two more categories of MySQL functions: grouping and encryption.

 Text functions

 The first group of functions we will discuss are those meant for manipulating text.
 The most common of the functions in this category are listed in Table 5.2. As with most functions, these can be applied to either columns or literal values
 (both represented by t, t1, t2, etc.).

 TABLE 5.2 Text Functions

 	
 Function

 	
 Usage

 	
 Returns

 	
 CONCAT()

 	
 CONCAT(t1, t2, ...)

 	
 A new string of the form t1t2

 	
 CONCAT_WS()

 	
 CONCAT_WS(S, t1, t2, ...)

 	
 A new string of the form t1St2S…

 	
 LENGTH()

 	
 LENGTH(t)

 	
 The number of characters in t

 	
 LEFT()

 	
 LEFT(t, y)

 	
 The leftmost y characters from t

 	
 RIGHT()

 	
 RIGHT(t, x)

 	
 The rightmost x characters from t

 	
 TRIM()

 	
 TRIM(t)

 	
 t with excess spaces from the beginning and end removed

 	
 UPPER()

 	
 UPPER(t)

 	
 t capitalized

 	
 LOWER()

 	
 LOWER(t)

 	
 t in all-lowercase format

 	
 REPLACE()

 	
 REPLACE(t1, t2, t3)

 	
 The string t1 with instances of t2 replaced with t3

 	
 SUBSTRING()

 	
 SUBSTRING(t, x, y)

 	
 y characters from t beginning with x (indexed from 1)

 CONCAT(), perhaps the most useful of the text functions, deserves special attention. The CONCAT() function accomplishes concatenation, for which PHP uses the period (see Chapter 1, “Introduction to PHP”). The syntax for concatenation requires you to place, within parentheses, the various
 values you want assembled, in order and separated by commas:

 Click here to view code image

 SELECT CONCAT(t1, t2) FROM tablename

 While you can—and normally will—apply CONCAT() to columns, you can also incorporate strings, entered within quotation marks. For
 example, to format a person’s name as First<SPACE>Last, you would use

 Click here to view code image

 SELECT CONCAT(first_name, ' ',
[image: Images]last_name)
FROM users

 Because concatenation normally returns values in a new format, it’s an excellent time
 to use an alias (see the sidebar):

 Click here to view code image

 SELECT CONCAT(first_name, ' ',
[image: Images]last_name)
AS Name FROM users

 To format text:

 1. Concatenate the names without using an alias [image: Images]:

 Click here to view code image

 SELECT CONCAT(last_name, ', ',
[image: Images]first_name)
FROM users;

 [image: Images]

 [image: Images] This simple concatenation returns every registered user’s full name. Notice how the
 column heading is the use of the CONCAT() function.

 This query will demonstrate two things. First, the users’ last names, a comma and
 a space, plus their first names are concatenated together to make one string in the
 format of Last, First. Second, as the figure shows, if you don’t use an alias, the returned data’s column
 heading will be the function call. In the mysql client or phpMyAdmin, this is just
 unsightly; when using PHP to connect to MySQL, this will likely be a problem.

 Aliases

 An alias is merely a symbolic renaming of an item used in a query, normally applied to tables,
 columns, or function calls. Aliases are created using the term AS:

 Click here to view code image

 SELECT registration_date AS reg
FROM users

 Aliases are case-sensitive strings composed of numbers, letters, and the underscore
 but are normally kept to a very short length. As you’ll see in the following examples,
 aliases are also reflected in the captions for the returned results. For the preceding
 example, the query results returned will contain one column of data, named reg (not registration_date).

 In MySQL, if you’ve defined an alias for a table or a column used in a query, the
 entire query should consistently use that same alias rather than the original name.
 For example:

 Click here to view code image

 SELECT first_name AS name FROM
users WHERE name='Sam'

 This differs from standard SQL, which doesn’t support the use of aliases in WHERE conditionals.

 2. Concatenate the names while using an alias [image: Images]:

 Click here to view code image

 SELECT CONCAT(last_name, ', ',
[image: Images]first_name)
AS Name FROM users ORDER BY Name;

 [image: Images]

 [image: Images] By using an alias, the returned data is under the column heading of Name (compare with [image: Images]).

 To use an alias, just add AS aliasname after the item to be renamed. The alias will be the new title for the returned data.
 To make the query a little more interesting, the same alias is also used in the ORDER BY clause.

 3. Find the longest last name [image: Images]:

 Click here to view code image

 SELECT LENGTH(last_name) AS L,
last_name FROM users
ORDER BY L DESC LIMIT 1;

 [image: Images]

 [image: Images] By using the LENGTH() function, an alias, an ORDER BY clause, and a LIMIT clause, this query returns the length and value of the longest stored name.

 To determine which registered user’s last name is the longest (has the most characters
 in it), use the LENGTH() function. To find the name, select both the last name value and the calculated length,
 which is given an alias of L. To then find the longest name, order all of the results by L, in descending order, but return only the first record.

 Tip

 A query like that in Step 3 (also [image: Images]) may be useful for helping to fine-tune your column lengths once your database has
 some records in it.

 Tip

 MySQL has two functions for performing regular expression searches on text: REGEXP() and NOT REGEXP(). Chapter 14, “Perl-Compatible Regular Expressions,” introduces regular expressions using PHP.

 Tip

 CONCAT() has a corollary function called CONCAT_WS(), which stands for with separator. The syntax is CONCAT_WS(separator, t1, t2, ...). The separator will be inserted between each of the listed columns or values. For
 example, to format a person’s full name as First<SPACE>_Middle<SPACE>_Last, you would
 write

 Click here to view code image

 SELECT CONCAT_WS(' ', first, middle,
last) AS Name FROM tablename

 CONCAT_WS() has an added advantage over CONCAT() in that it will ignore columns with NULL values. So that query might return Joe Banks from one record but Jane Sojourner Adams
 from another.

 Numeric functions

 Besides the standard math operators that MySQL uses for addition, subtraction, multiplication,
 and division, there are a couple dozen functions for formatting and performing calculations
 on numeric values. Table 5.3 lists the most common of these, some of which will be demonstrated shortly. As with
 most functions, these can be applied to either columns or literal values (both represented
 by n, n1, n2, etc.).

 TABLE 5.3 Numeric Functions

 	
 Function

 	
 Usage

 	
 Returns

 	
 ABS()

 	
 ABS(n)

 	
 The absolute value of n

 	
 CEILING()

 	
 CEILING(n)

 	
 The next-highest integer based upon the value of n

 	
 FLOOR()

 	
 FLOOR(n)

 	
 The integer value of n

 	
 FORMAT()

 	
 FORMAT(n1, n2)

 	
 n1 formatted as a number with n2 decimal places and commas inserted every three spaces

 	
 MOD()

 	
 MOD(n1, n2)

 	
 The remainder of dividing n1 by n2

 	
 POW()

 	
 POW(n1, n2)

 	
 n1 to the n2 power

 	
 RAND()

 	
 RAND()

 	
 A random number between 0 and 1.0

 	
 ROUND()

 	
 ROUND(n1, n2)

 	
 n1 rounded to n2 decimal places

 	
 SQRT()

 	
 SQRT(n)

 	
 The square root of n

 I want to specifically highlight three of these functions: FORMAT(), ROUND(), and RAND(). The first—which is not technically number-specific—turns any number into a more
 conventionally formatted layout. For example, if you stored the cost of a car as 20198.20,
 FORMAT(car_cost, 2) would turn that number into the more common 20,198.20.

 ROUND() will take one value, presumably from a column, and round that to a specified number
 of decimal places. If no decimal places are indicated, it will round the number to
 the nearest integer. If more decimal places are indicated than exist in the original
 number, the remaining spaces are padded with zeros (to the right of the decimal point).

 The RAND() function, as you might infer, is used for returning random numbers [image: Images]:

 SELECT RAND()

 [image: Images]

 [image: Images] The RAND() function returns a random number between 0 and 1.0.

 A further benefit to the RAND() function is that it can be used with your queries to return the results in a random
 order:

 SELECT * FROM tablename
[image: Images]ORDER BY RAND()

 To use numeric functions:

 1. Display a number, formatting the amount as dollars [image: Images]:

 Click here to view code image

 SELECT CONCAT('$', FORMAT(5639.6, 2))
AS cost;

 [image: Images]

 [image: Images] Using an arbitrary example, this query shows how the FORMAT() function works.

 Using the FORMAT() function, as just described, with CONCAT(), you can turn any number into a currency format as you might display it in a web
 page.

 2. Retrieve a random email address from the table [image: Images]:

 Click here to view code image

 SELECT email FROM users
ORDER BY RAND() LIMIT 1;

 [image: Images]

 [image: Images] This query uses the RAND() function to select a random record. Subsequent executions of the same query return
 different random results.

 What happens with this query is: All the email addresses are selected; the order they
 are in is shuffled (ORDER BY RAND()); and then the first one is returned. Running this same query multiple times will
 produce different random results. Notice that you do not specify a column to which
 RAND() is applied.

 Tip

 Along with the mathematical functions listed here, there are several trigonometric,
 exponential, and other types of numeric functions available.

 Tip

 The MOD() function is the same as using the percent sign:

 SELECT MOD(9,2)
SELECT 9%2

 It returns the remainder of a division (1 in these examples).

 Date and time functions

 The date and time column types in MySQL are particularly flexible and useful. But
 because many database users are not familiar with all the available date and time
 functions, these options are frequently underused. Whether you want to make calculations
 based on a date or return only the month name from a value, MySQL has a function for
 that purpose. Table 5.4 lists most of these; see the MySQL manual for a complete list. As with most functions,
 these can be applied to either columns or literal values (both represented by dt, short for datetime).

 TABLE 5.4 Date and Time Functions

 	
 Function

 	
 Usage

 	
 Returns

 	
 DATE()

 	
 DATE(dt)

 	
 The date value of dt

 	
 HOUR()

 	
 HOUR(dt)

 	
 The hour value of dt

 	
 MINUTE()

 	
 MINUTE(dt)

 	
 The minute value of dt

 	
 SECOND()

 	
 SECOND(dt)

 	
 The second value of dt

 	
 DAYNAME()

 	
 DAYNAME(dt)

 	
 The name of the day for dt

 	
 DAYOFMONTH()

 	
 DAYOFMONTH(dt)

 	
 The numerical day value of dt

 	
 MONTHNAME()

 	
 MONTHNAME(dt)

 	
 The name of the month of dt

 	
 MONTH()

 	
 MONTH(dt)

 	
 The numerical month value of dt

 	
 YEAR()

 	
 YEAR(column)

 	
 The year value of dt

 	
 CURDATE()

 	
 CURDATE()

 	
 The current date

 	
 CURTIME()

 	
 CURTIME()

 	
 The current time

 	
 NOW()

 	
 NOW()

 	
 The current date and time

 	
 UNIX_TIMESTAMP()

 	
 UNIX_TIMESTAMP(dt)

 	
 The number of seconds since the epoch until the current moment or until the date specified

 	
 UTC_TIMESTAMP()

 	
 UTC_TIMESTAMP(dt)

 	
 The number of seconds since the epoch until the current moment or until the date specified,
 in Coordinated Universal Time (UTC)

 MySQL supports two data types that store both a date and a time (DATETIME and TIMESTAMP), one type that stores just the date (DATE), one that stores just the time (TIME), and one that stores just a year (YEAR). Besides allowing for different types of values, each data type also has its own
 unique behaviors (again, I recommend reading the MySQL manual’s pages on this for
 all the details). But MySQL is very flexible as to which functions you can use with
 which type. You can apply a date function to any value that contains a date (i.e.,
 DATETIME, TIMESTAMP, and DATE), or you can apply an hour function to any value that contains the time (i.e., DATETIME, TIMESTAMP, and TIME). MySQL will use the part of the value that it needs and ignore the rest. What you
 cannot do, however, is apply a date function to a TIME value or a time function to a DATE or YEAR value.

 To use date and time functions:

 1. Display the date that the last user registered [image: Images]:

 Click here to view code image

 SELECT DATE(registration_date) AS
Date FROM users ORDER BY
registration_date DESC LIMIT 1;

 [image: Images]

 [image: Images] The date functions can be used to extract information from stored values.

 The DATE() function returns the date part of a value. To see the date that the last person registered,
 an ORDER BY clause lists the users, starting with the most recently registered, and this result
 is limited to just one record.

 2. Display the day of the week that the first user registered [image: Images]:

 Click here to view code image

 SELECT DAYNAME(registration_date) AS
Weekday FROM users ORDER BY
registration_date ASC LIMIT 1;

 [image: Images]

 [image: Images] This query returns the name of the day that a given date represents.

 This is like the query in Step 1, but the results are returned in ascending order
 and the DAYNAME() function is applied to the registration_date column. This function returns Sunday, Monday, Tuesday, etc., for a given date.

 3. Show the current date and time, according to MySQL [image: Images]:

 SELECT CURDATE(), CURTIME();

 [image: Images]

 [image: Images] This query, not run on any specific table, returns the current date and time on the
 MySQL server.

 To show what date and time MySQL currently thinks it is, you can select the CURDATE() and CURTIME() functions, which return these values. This is another example of a query that can
 be run without referring to a particular table.

 4. Show the last day of the current month [image: Images]:

 Click here to view code image

 SELECT LAST_DAY(CURDATE()),
MONTHNAME(CURDATE());

 [image: Images]

 [image: Images] Among the many things MySQL can do with date and time types is determine the last
 date in a month or the name value of a given date.

 As the last query showed, CURDATE() returns the current date on the server. This value can be used as an argument to
 the LAST_DAY() function, which returns the last date in the month for a given date. The MONTHNAME() function returns the name of the current month.

 Tip

 The date and time returned by MySQL’s date and time functions correspond to those
 on the server, not to those on the client accessing the database.

 Tip

 Not mentioned in this section or in Table 5.4 are ADDDATE(), SUBDATE(), ADDTIME(), SUBTIME(), and DATEDIFF(). Each can be used to perform arithmetic on date and time values. These can be very
 useful (for example, to find everyone registered within the past week), but their
 syntax is cumbersome. As always, see the MySQL manual for more information.

 Tip

 Chapter 6 discusses the concept of time zones in MySQL.

 Tip

 As of MySQL 5.0.2, the server will also prevent invalid dates (e.g., February 31,
 2017) from being inserted into a date or date/time column.

 Formatting the date and time

 There are two additional date and time functions that you might find yourself using
 more than all the others combined: DATE_FORMAT() and TIME_FORMAT(). There is some overlap between the two and when you would use one or the other.

 DATE_FORMAT() can be used to format both the date and time if a value contains both (e.g., YYYY-MM-DD HH:MM:SS). Comparatively, TIME_FORMAT() can format only the time value and must be used if only the time value is being stored
 (e.g., HH:MM:SS). The syntax is

 SELECT DATE_FORMAT(datetime,
[image: Images]formatting)

 The formatting relies on combinations of key codes and the percent sign to indicate what values
 you want returned. Table 5.5 lists the available date- and time-formatting parameters. You can use these in any
 combination, along with literal characters, such as punctuation, to return a date
 and time in a more presentable form.

 TABLE 5.5 *_FORMAT() Parameters

 	
 Term

 	
 Usage

 	
 Example

 	
 %e

 	
 Day of the month

 	
 1–31

 	
 %d

 	
 Day of the month, two digit

 	
 01–31

 	
 %D

 	
 Day with suffix

 	
 1st–31st

 	
 %W

 	
 Weekday name

 	
 Sunday–Saturday

 	
 %a

 	
 Abbreviated weekday name

 	
 Sun–Sat

 	
 %c

 	
 Month number

 	
 1–12

 	
 %m

 	
 Month number, two digit

 	
 01–12

 	
 %M

 	
 Month name

 	
 January–December

 	
 %b

 	
 Month name, abbreviated

 	
 Jan–Dec

 	
 %Y

 	
 Year

 	
 2002

 	
 %y

 	
 Year

 	
 02

 	
 %l (lowercase L)

 	
 Hour

 	
 1–12

 	
 %h

 	
 Hour, two digit

 	
 01–12

 	
 %k

 	
 Hour, 24-hour clock

 	
 0–23

 	
 %H

 	
 Hour, 24-hour clock, two digit

 	
 00–23

 	
 %i

 	
 Minutes

 	
 00–59

 	
 %S

 	
 Seconds

 	
 00–59

 	
 %r

 	
 Time

 	
 8:17:02 PM

 	
 %T

 	
 Time, 24-hour clock

 	
 20:17:02

 	
 %p

 	
 AM or PM

 	
 AM or PM

 Assuming that a column called the_date has the date and time of 1996-04-20 11:07:45 stored in it, common formatting tasks and results would be

 [image: Images] Time (11:07:45 AM)

 TIME_FORMAT(the_date, ‘%r’)

 [image: Images] Time without seconds (11:07 AM)

 TIME_FORMAT(the_date, ‘%l:%i %p’)

 [image: Images] Date (April 20th, 1996)

 DATE_FORMAT(the_date, ‘%M %D, %Y’)

 To format the date and time:

 1. Return the current date and time as Month DD, YYYY - HH:MM [image: Images]:

 Click here to view code image

 SELECT DATE_FORMAT(NOW(),'%M %e,
[image: Images]%Y %l:%i');

 [image: Images]

 [image: Images] The current date and time, formatted.

 Using the NOW() function, which returns the current date and time, you can practice formatting to
 see what results are returned.

 2. Display the current time, using 24-hour notation [image: Images]:

 Click here to view code image

 SELECT TIME_FORMAT(CURTIME(),'%T');

 [image: Images]

 [image: Images] The current time in a 24-hour format.

 3. Select the email address and date registered, ordered by date registered, formatting
 the date as Weekday (abbreviated) Month (abbreviated) Day Year, for the last five registered users [image: Images]:

 Click here to view code image

 SELECT email,
DATE_FORMAT(registration_date,
[image: Images]'%a %b %e %Y')
AS Date FROM users
ORDER BY registration_date DESC
LIMIT 5;

 [image: Images]

 [image: Images] The DATE_FORMAT() function is used to preformat the registration date when selecting records from the
 users table.

 This is just one more example of how you can use these formatting functions to alter
 the output of an SQL query.

 Tip

 In your web applications, you should almost always use MySQL functions to format any
 dates coming from the database (as opposed to formatting the dates within PHP after
 retrieving them from the database).

 Tip

 The only way to access the date or time on the client (the user’s machine) is to use
 JavaScript. It cannot be done with PHP or MySQL.

 Review and Pursue

 If you have any problems with the review questions or the pursue prompts, turn to
 the book’s supporting forum (LarryUllman.com/forums/).

 Review

 [image: Images] What version of MySQL are you using? If you don’t know, find out now!

 [image: Images] What SQL command is used to make a new database? What command is used to make a new
 table in a database?

 [image: Images] What SQL command is used to select the database with which you want to work?

 [image: Images] What SQL commands are used for adding records to a table? Hint: There are multiple
 options.

 [image: Images] What types of values must be quoted in queries? What types of values shouldn’t be
 quoted?

 [image: Images] What does the asterisk in SELECT * FROM tablename mean? How do you restrict which columns are returned by a query?

 [image: Images] What does the NOW() function do?

 [image: Images] How do you restrict which rows are returned by a query?

 [image: Images] How do LIKE and NOT LIKE differ from simple equality comparisons? Which type of comparison will be faster?
 What are the two LIKE and NOT LIKE wildcard characters?

 [image: Images] How do you affect the sorting of the returned records? What is the default sorting
 method? How do you inverse the sort? What is the syntax for sorting by multiple columns?

 [image: Images] What does the LIMIT clause do? How does LIMIT x differ from LIMIT x, y?

 [image: Images] What SQL command is used to change the values already stored in a table? How do you
 change multiple columns at once? How do you restrict to which rows the changes are
 applied?

 [image: Images] What SQL command is used to delete rows stored in a table? How do you restrict to
 which rows the deletions are applied?

 [image: Images] What is an SQL alias? How do you create one? Why is an alias useful?

 Pursue

 [image: Images] If you haven’t done so already, bookmark the version of the MySQL manual that matches
 the version of MySQL you are running.

 [image: Images] Go through each of the step sequences in this chapter again, coming up with your
 own queries to execute (that demonstrate similar concepts as those in the steps).

 [image: Images] Check out the MySQL manual pages for operators used in conditionals.

 [image: Images] Check out the MySQL manual pages for some of MySQL’s functions.

 [image: Images] Create, populate, and manipulate your own table of data.

 [image: Images] Do some more practice using functions and aliases.

 [image: Images] Check out the MySQL manual pages for the various date and time types. Also check
 out ADDDATE() and other date-related functions.

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 6. Database Design

 In This Chapter

 Normalization

 Creating Indexes

 Using Different Table Types

 Languages and MySQL

 Time Zones and MySQL

 Foreign Key Constraints

 Review and Pursue

 Now that you have a basic understanding of databases, SQL, and MySQL, this chapter
 begins the process of taking that knowledge deeper. The focus in this chapter, as
 the title states, is real-world database design. Like the work done in Chapter 4, “Introduction to MySQL,” much of the effort in this chapter requires paper and pen—and serious thinking
 about what your applications will need to do.

 The chapter begins with thorough coverage of database normalization, a vital approach to the design process. After that, the chapter turns to design-related
 concepts specific to MySQL: working with indexes, table types, language support, times,
 and foreign key constraints.

 In this chapter, you’ll explore steps involved in proper database design and how to
 make the most of MySQL. You’ll also plan a couple of multi-table databases. In the
 next chapter, you’ll learn more advanced SQL and MySQL, and use these new databases
 as examples.

 Normalization

 Whenever you are working with a relational database management system such as MySQL,
 the first step in creating and using a database is to establish the database’s structure
 (also called the database schema). Database design, also known as data modeling, is crucial for successful long-term management of information. Using a process called
 normalization, you carefully eliminate redundancies and other problems that would undermine the
 integrity of your database.

 The techniques you will learn over the next few pages will help ensure the viability,
 usefulness, and reliability of your databases. The primary example to be discussed—a
 forum where users can post messages—will be used more explicitly in Chapter 17, “Example—Message Board,” but the principles of normalization apply to any database you might create. (The
 sitename example as created and used in the past two chapters was properly normalized, even
 though normalization was never discussed.)

 Normalization was developed by an IBM researcher named E. F. Codd in the early 1970s
 (he also invented the relational database). A relational database is merely a collection
 of data, organized in a particular manner, and Dr. Codd created a series of rules
 called normal forms that help define that organization. This chapter discusses the first three of the
 normal forms, which are sufficient for most database designs.

 Before you begin normalizing your database, you must define the role of the application
 being developed. Whether it means that you thoroughly discuss the subject with a client
 or figure it out for yourself, understanding how the information will be accessed
 dictates the modeling. Thus, this process will require paper and pen rather than the
 MySQL software itself (although database design is applicable to any relational database,
 not just MySQL).

 In this example, I want to create a message board where users can post messages and
 other users can reply. I imagine that users will need to register, and then log in
 with an email address/password combination to post messages. I also expect that there
 could be multiple forums for different subjects. I have listed a sample row of data
 in Table 6.1. The database itself will be called forum.

 TABLE 6.1 Sample Forum Data

 	
 Item

 	
 Example

 	
 username

 	
 troutster

 	
 password

 	
 mypass

 	
 actual name

 	
 Larry Ullman

 	
 user email

 	
 email@example.com

 	
 forum

 	
 MySQL

 	
 message subject

 	
 Question about normalization

 	
 message body

 	
 I have a question about…

 	
 message date

 	
 November 2, 2017 12:20 AM

 Tip

 One of the best ways to determine what information should be stored in a database
 is to think about what questions will be asked of the database and what data would
 be included in the answers.

 Tip

 Always err on the side of storing more information than you might need. It’s easy
 to ignore unnecessary data but impossible to later manufacture data that was never
 stored in the first place.

 Tip

 Normalization can be hard to learn if you fixate on the little things. Each of the
 normal forms is defined in a very cryptic way; even when put into layman’s terms,
 they can still be confounding. My best advice is to focus on the big picture as you
 follow along. Once you’ve gone through normalization and seen the end result, the
 overall process should be clear enough.

 Keys

 As briefly mentioned in Chapter 4, keys are integral to normalized databases. There are two types of keys: primary and foreign. A primary key is a unique identifier that has to abide by certain rules. They must

 [image: Images] Always have a value (they cannot be NULL)

 [image: Images] Have a value that remains the same (never changes)

 [image: Images] Have a unique value for each record in a table

 A good real-world example of a primary key is the U.S. Social Security number: everyone
 has a unique Social Security number, and that number never changes. Just as the Social
 Security number is an artificial construct used to identify people, you’ll frequently
 find creating an arbitrary primary key for each table to be the best design practice.

 The second type of key is a foreign key. Foreign keys are the representation in Table
 B of the primary key from Table A. If you have a cinema database with a movies table and a directors table, the primary key from directors would be linked as a foreign key in movies. You’ll see better how this works as the normalization process continues.

 The forum database is just a simple table as it stands (Table 6.1), but before beginning the normalization process, identify at least one primary key.
 The foreign keys will come in later steps.

 To assign a primary key:

 1. Look for any fields that meet the three tests for a primary key.

 In this example (Table 6.1), no column fits all the criteria for a primary key. The username and email address
 will be unique for each forum user but will not be unique for each record in the database
 because the same user could post multiple messages. The same subject could be used
 multiple times as well. The message body will likely be unique for each message but
 could change (if edited), violating one of the rules of primary keys.

 2. If no logical primary key exists, invent one (Table 6.2).

 TABLE 6.2 Sample Forum Data

 	
 Item

 	
 Example

 	
 message ID

 	
 325

 	
 username

 	
 troutster

 	
 password

 	
 mypass

 	
 actual name

 	
 Larry Ullman

 	
 user email

 	
 email@example.com

 	
 forum

 	
 MySQL

 	
 message subject

 	
 Question about normalization

 	
 message body

 	
 I have a question about…

 	
 message date

 	
 November 2, 2017 12:20 AM

 Frequently, you will need to create a primary key because no good solution presents
 itself. In this example, a message ID is manufactured. When you create a primary key that has no other meaning or purpose,
 it’s called a surrogate primary key.

 Tip

 As a rule of thumb, I name my primary keys using at least part of the table’s name
 (e.g., message) and the word id. Some database developers like to add the abbreviation
 pk to the name as well. Some developers just use id.

 Tip

 MySQL allows for only one primary key per table, although you can base a primary key
 on multiple columns. A multiple-column primary key means the combination of those
 columns must be unique and never change.

 Tip

 Ideally, your primary key should always be an integer, which results in better MySQL
 performance.

 Relationships

 Database relationships refer to how the data in one table relates to the data in another.
 There are three types of relationships between any two tables: one-to-one, one-to-many, or many-to-many. Two tables in a database may also be unrelated.

 A relationship is one-to-one if one and only one item in Table A applies to one and
 only one item in Table B. For example, each U.S. citizen has only one Social Security
 number, and each Social Security number applies to only one U.S. citizen; no citizen
 can have two Social Security numbers, and no Social Security number can refer to two
 citizens.

 A relationship is one-to-many if one item in Table A can apply to multiple items in
 Table B. The terms on and off will apply to many switches, but each switch can be in only one state or the other.
 A one-to-many relationship is the most common one between tables in normalized databases.

 Finally, a relationship is many-to-many if multiple items in Table A can apply to
 multiple items in Table B. A book can be written by multiple authors, and authors
 can write multiple books. Although many-to-many relationships are common in the real
 word, you should avoid many-to-many relationships in your design because they lead to data redundancy and integrity problems. Instead of having many-to-many
 relationships, properly designed databases use intermediary tables that break down one many-to-many relationship into two one-to-many relationships
 [image: Images].

 [image: Images]

 [image: Images] A many-to-many relationship between two tables will be better represented as two
 one-to-many relationships those tables have with an intermediary table.

 Relationships and keys work together in that a key in one table will normally relate
 to a key in another, as mentioned earlier.

 Tip

 Database modeling uses certain conventions to represent the structure of the database,
 which I’ll follow through a series of images in this chapter. The symbols for the
 three types of relationships are shown in [image: Images].

 [image: Images]

 [image: Images] These symbols, or variations on them, are commonly used to represent relationships
 in database modeling schemes.

 Tip

 The process of database design results in an ERD (entity-relationship diagram) or
 ERM (entity-relationship model). This graphical representation of a database uses
 shapes for tables and columns and the symbols from [image: Images] to represent the relationships.

 Tip

 Many programs are available to help create a database schema, including MySQL Workbench
 (https://www.mysql.com/products/workbench/). Many of the images in this chapter will come from MySQL Workbench.

 Tip

 The term “relational” in RDBMS actually stems from the tables, which are technically
 called relations.

 First Normal Form

 As already stated, normalizing a database is the process of changing the database’s
 structure according to several rules, called forms. Your database should adhere to each rule exactly, and the forms must be followed
 in order.

 Every table in a database must have the following two qualities to be in First Normal
 Form (1NF):

 [image: Images] Each column must contain only one value (this is sometimes described as being atomic or indivisible).

 [image: Images] No table can have repeating groups of related data.

 A table containing one field for a person’s entire address (street, city, state, zip
 code, country) would not be 1NF compliant, because it has multiple values in one column, violating the first
 property. As for the second, a movies table that had columns such as actor1, actor2, actor3, and so on would fail to be 1NF compliant because of the repeating columns all listing
 the exact same kind of information.

 To begin the normalization process, check the existing structure (Table 6.2) for 1NF compliance. Any columns that are not atomic should be broken into multiple
 columns. If a table has repeating similar columns, then those should be turned into
 their own, separate table.

 To make a database 1NF compliant:

 1. Identify any field that contains multiple pieces of information.

 Looking at Table 6.2, one field is not 1NF compliant: actual name. The example record contained both the first name and the last name in this one column.

 The message date field contains a day, a month, and a year, plus a time, but subdividing past that
 level of specificity isn’t warranted. And, as the end of the previous chapter shows,
 MySQL can handle dates and times quite nicely using the DATETIME type.

 Other examples of problems would be if a table used just one column for multiple phone
 numbers (mobile, home, work) or stored a person’s multiple interests (cooking, dancing,
 skiing, etc.) in a single column.

 2. Break up any fields found in Step 1 into distinct fields (Table 6.3).

 TABLE 6.3 Forum Database, Atomic

 	
 Item

 	
 Example

 	
 message ID

 	
 325

 	
 username

 	
 troutster

 	
 password

 	
 mypass

 	
 first name

 	
 Larry

 	
 last name

 	
 Ullman

 	
 user email

 	
 email@example.com

 	
 forum

 	
 MySQL

 	
 message subject

 	
 Question about normalization

 	
 message body

 	
 I have a question about…

 	
 message date

 	
 November 2, 2017 12:20 AM

 To fix this problem for the current example, create separate first name and last name fields, each containing only one value.

 3. Turn any repeating column groups into their own table.

 The forum database doesn’t have this problem currently, so to demonstrate what would be a violation,
 consider Table 6.4. The repeating columns—the multiple actor fields—introduce two problems. First, there’s
 no getting around the fact that each movie will be limited to a certain number of actors when stored this way. Even if you add columns
 actor 1 through actor 100, there will still be that limit (of a hundred). Second, any record that doesn’t have
 the maximum number of actors will have NULL values in those extra columns. You should generally avoid columns with NULL values in your database schema. As another concern, the actor and director columns
 are not atomic.

 TABLE 6.4 Movies Table

 	
 Column

 	
 Value

 	
 movie ID

 	
 976

 	
 movie title

 	
 Casablanca

 	
 year released

 	
 1943

 	
 director

 	
 Michael Curtiz

 	
 actor 1

 	
 Humphrey Bogart

 	
 actor 2

 	
 Ingrid Bergman

 	
 actor 3

 	
 Peter Lorre

 To fix the problems in the movies table, a second table would be created (Table 6.5). This table uses one row for each actor in a movie, which solves the problems mentioned
 in the last paragraph. The actor names are also broken up to be atomic. Notice as
 well that a primary key column should be added to the new table. The notion that each
 table has a primary key is implicit in the First Normal Form.

 TABLE 6.5 Movies-Actors Table

 	
 ID

 	
 Movie

 	
 Actor First Name

 	
 Actor Last Name

 	
 1

 	
 Casablanca

 	
 Humphrey

 	
 Bogart

 	
 2

 	
 Casablanca

 	
 Ingrid

 	
 Bergman

 	
 3

 	
 Casablanca

 	
 Peter

 	
 Lorre

 	
 4

 	
 The Maltese Falcon

 	
 Humphrey

 	
 Bogart

 	
 5

 	
 The Maltese Falcon

 	
 Peter

 	
 Lorre

 4. Double-check that all new columns and tables created in Steps 2 and 3 pass the 1NF
 test.

 Tip

 The simplest way to think about 1NF is that this rule analyzes a table horizontally:
 inspect all of the columns within a single row to guarantee specificity and avoid
 repetition of similar data.

 Tip

 Various resources will describe the normal forms in somewhat different ways, likely
 with much more technical jargon. What is most important is the spirit—and end result—of
 the normalization process, not the technical wording of the rules.

 Second Normal Form

 For a database to be in Second Normal Form (2NF), the database must first already
 be in 1NF. You must normalize in order. Then, every column in the table that is not
 a foreign key must be dependent on the primary key. You can normally identify a column
 that violates this rule when it has non-key values that are the same in multiple rows.
 Such values should be stored in their own table and related back to the original table
 through a key.

 Going back to the cinema example, a movies table (Table 6.4) would have the director Martin Scorsese listed 20+ times. This violates the 2NF
 rule, as the column(s) that store the directors’ names would not be keys and would
 not be dependent on the primary key (the movie ID). The fix is to create a separate
 directors table that stores the directors’ information and assigns each director a primary
 key. To tie the director back to the movies, the director’s primary key would also
 be a foreign key in the movies table.

 Looking at Table 6.5 (for actors in movies), both the movie name and the actor names are also in violation
 of the 2NF rule: they aren’t keys and they aren’t dependent on the table’s primary
 key. In the end, the cinema database in this minimal form requires four tables [image: Images]. Each director’s name, movie name, and actor’s name will be stored only once, and
 any non-key column in a table is dependent on that table’s primary key. In fact, normalization
 could be summarized as the process of creating more and more tables until potential
 redundancies have been eliminated.

 [image: Images]

 [image: Images] To make the cinema database 2NF compliant (given the information being represented), four tables are
 necessary. The directors are represented in the movies table through the director ID key; the movies are represented in the movies-actors table through the movie ID key; and the actors are represented in the movies-actors table through the actor ID key.

 To make a database 2NF compliant:

 1. Identify any non-key columns that aren’t dependent on the table’s primary key.

 Looking at Table 6.3, the username, first name, last name, email, and forum values are all non-keys (message
 ID is the only key column currently), and none are dependent on the message ID. Conversely,
 the message subject, body, and date are also non-keys, but these do depend on the
 message ID.

 2. Create new tables accordingly [image: Images].

 [image: Images]

 [image: Images] To make the forum database 2NF compliant, three tables are necessary.

 The most logical modification for the forum database is to make three tables: users, forums, and messages.

 In a visual representation of the database, create a box for each table, with the
 table name as a header and all its columns (also called its attributes) underneath.

 3. Assign or create new primary keys [image: Images].

 [image: Images]

 [image: Images] Each table needs its own primary key.

 Using the techniques described earlier in the chapter, ensure that each new table
 has a primary key. Here I’ve added a user ID field to the users table and a forum ID field to forums. These are both surrogate primary keys. Because the username field in the users table and the name field in the forums table must be unique for each record and must always have a value, you could have
 them act as the primary keys for their tables. However, this would mean that these
 values could never change (per the rules of primary keys) and the database would be
 a little slower, using text-based keys instead of numeric ones.

 4. Create the requisite foreign keys and indicate the relationships [image: Images].

 [image: Images]

 [image: Images] To relate the three tables, add two foreign keys to the messages table, each key representing one of the other two tables.

 The final step in achieving 2NF compliance is to incorporate foreign keys to link
 associated tables. Remember that a primary key in one table will often be a foreign
 key in another.

 With this example, the user ID from the users table links to the user ID column in the messages table. Therefore, users has a one-to-many relationship with messages: each user can post multiple messages, but each message can be posted by only one
 user.

 Also, the two forum ID columns are linked, creating a one-to-many relationship between messages and forums: each message can only be in one forum, but each forum can have multiple messages.

 There is no direct relationship between the users and forums tables.

 Tip

 Another way to test for 2NF is to look at the relationships between tables. The ideal
 is to create one-to-one or one-to-many situations. Tables that have a many-to-many
 relationship may need to be restructured.

 Tip

 Looking back at [image: Images], the movies-actors table is an intermediary table, which turns the many-to-many relationship
 between movies and actors into two one-to-many relationships. You can often tell a
 table is acting as an intermediary when all its columns are keys. In fact, in that
 table, the primary key could be the combination of the movie ID and the actor ID.

 Tip

 A properly normalized database should never have duplicate rows in the same table:
 two or more rows in which the values in every non–primary key column match.

 Tip

 To simplify how you conceive of the normalization process, remember that 1NF is a
 matter of inspecting a table horizontally, and 2NF is a vertical analysis: hunting
 for repeating values over multiple rows.

 Third Normal Form

 A database is in Third Normal Form (3NF) if it is in 2NF and every non-key column
 is mutually independent. If you followed the normalization process properly to this
 point, you may not have 3NF issues. You would know that you have a 3NF violation if
 changing the value in one column would require changing the value in another. In the
 forum example thus far, there aren’t any 3NF problems, but I’ll explain a hypothetical
 situation where this rule would come into play.

 Take, as an example, a database about books. After applying the first two normal forms,
 you might end up with one table listing the books, another listing the authors, and
 a third acting as an intermediary table between books and authors, since there’s a
 many-to-many relationship there. If the books table listed the publisher’s name and address, that table would be in violation of
 3NF [image: Images]. The publisher’s address isn’t related to the book, but rather to the publisher itself.
 In other words, that version of the books table has a column that’s dependent on a non-key column: the publisher’s name.

 [image: Images]

 [image: Images] This database as currently designed fails the 3NF test.

 As I said, the forum example is fine as is, but I’ll outline the 3NF steps just the same, showing how
 to fix the books example just mentioned.

 To make a database 3NF compliant:

 1. Identify any fields in any tables that are interdependent.

 As just stated, what you need to look for are columns that depend more on each other
 than they do on the record as a whole. In the forum database, this isn’t an issue. Just looking at the messages table, each subject will be specific to a message ID, each body will be specific to that message ID, and so forth.

 With a books example, the problematic fields are those in the books table that pertain to the publisher.

 2. Create new tables accordingly.

 If you found any problematic columns in Step 1, like address1, address2, city, state, and zip in a books example, you would create a separate publishers table. (Addresses would be more complex
 once you factor international publishers in.)

 3. Assign or create new primary keys.

 Every table must have a primary key, so add publisher ID to the new tables.

 4. Create the requisite foreign keys that link any of the relationships [image: Images].

 [image: Images]

 [image: Images] Going with a minimal version of a hypothetical books database, one new table is created for storing the publisher’s information.

 Finally, add a publisher ID to the books table. This effectively links each book to its publisher.

 Tip

 Despite the existence of set rules for how to normalize a database, two different
 people could normalize the same example in slightly different ways. Database design
 does allow for personal preference and interpretations. The important thing is that
 a database has no clear and obvious NF violations. Any NF violation will likely lead
 to problems down the road.

 Overruling Normalization

 As much as ensuring that a database is in 3NF will help guarantee reliability and
 viability, you won’t fully normalize every database with which you work. Before undermining
 the proper methods, though, understand that doing so may have devastating long-term
 consequences.

 The two primary reasons to overrule normalization are convenience and performance.
 Fewer tables are easier to manipulate and comprehend than more tables. Further, because
 of their more intricate nature, normalized databases will most likely be slower for
 updating, retrieving data from, and modifying. Normalization, in short, is a trade-off
 between data integrity/scalability and simplicity/speed. On the other hand, there
 are ways to improve your database’s performance but few to remedy corrupted data that
 can result from poor design.

 This chapter includes an example where normalization is ignored: a message’s post
 date and time is stored in one field. As mentioned, because MySQL is so good with
 dates, there are no dangers to this approach. Another situation where you would overrule
 normalization is a table that stored a person’s preference for a certain setting,
 such as “receive notifications.” If stored as just Y/N or Yes/No (instead of linking
 to an answers table), there would be many repeating values. But that is fine in this
 case, since those labels are stable values, not likely to change over time (i.e.,
 it’s unlikely that a third option will be invented, or that “Yes” will be renamed,
 forcing a mass update of half the records in the table).

 Practice and experience will teach you how best to model your database, but do try
 to err on the side of abiding by the normal forms, particularly as you are still mastering
 the concept.

 Reviewing the design

 After walking through the normalization process, it’s best to review the design one
 more time. You want to make sure that the database stores all the data you may ever
 need. Often the creation of new tables, thanks to normalization, implies additional
 information to record. For example, although the original focus of the cinema database was on the movies, now that there are separate actors and directors tables, additional facts about those people could be reflected in those tables.

 With that in mind, although there are many additional columns that could be added
 to the forum database, particularly regarding the user, one more field should be added to the
 messages table. Because one message might be a reply to another, some method of indicating
 that relationship is required. One solution is to add a parent_id column to messages [image: Images]. If a message is a reply, its parent_id value will be the message_id of the original message (so message_id is acting as a foreign key to this same table). If a message has a parent_id of 0, then it’s a new thread, not a reply [image: Images].

 [image: Images]

 [image: Images] To reflect a message hierarchy, the parent_id column is added to messages.

 After making any changes to the tables, you must run through the normal forms one
 more time to ensure that the database is still normalized. Finally, choose the column
 types and names, per the steps in Chapter 4 [image: Images]. Note that every integer column is UNSIGNED, the three primary key columns are also designated as AUTO_INCREMENT, and every column is set as NOT NULL.

 [image: Images]

 [image: Images] The final ERD for the forums database.

 Once the schema is fully developed, it can be created in MySQL, using the commands
 shown in Chapter 5, “Introduction to SQL.” You’ll do that later in the chapter, after learning a few more things.

 Tip

 When you have a primary key–foreign key link (like forum_id in forums to forum_id in messages), both columns should be of the same type (in this case, TINYINT UNSIGNED NOT NULL).

 Creating Indexes

 Indexes are a special system that databases use to improve the performance of SELECT queries. Indexes can be placed on one or more columns, of any data type, effectively
 telling MySQL to pay attention to those values.

 While the maximum number of indexes that a table can have varies, MySQL always guarantees
 that you can create at least 16 indexes for each table, and each index can incorporate
 up to 16 columns. Although the need for a multicolumn index may not seem obvious,
 it will come in handy for searches frequently performed on the same combinations of
 columns (e.g., first and last name, city and state, etc.).

 Although indexes are an integral part of any table, not everything needs to be indexed.
 An index does improve the speed of reading from databases, but it slows down queries
 that alter data in a database because the changes need to be recorded in the index.

 Indexes are best used on columns that are frequently used

 [image: Images] In the WHERE part of a query

 [image: Images] In an ORDER BY part of a query

 [image: Images] As the focal point of a JOIN (joins are discussed in the next chapter)

 Generally speaking, you should not index columns that

 [image: Images] Allow for NULL values

 [image: Images] Have a very limited range of values (such as just Y/N or 1/0)

 MySQL has four types of indexes: INDEX (the standard), UNIQUE (which requires each row to have a unique value for that column), FULLTEXT (for performing FULLTEXT searches, also discussed in Chapter 7, “Advanced SQL and MySQL”), and PRIMARY KEY (which is just a particular UNIQUE index and one you’ve already been using). Note that a column should only ever have
 a single index on it, so choose the index type that’s most appropriate.

 With this in mind, let’s continue designing the forum database by identifying appropriate indexes. Later in this chapter, the indexes will
 be defined when the tables are created in the database. To establish an index when
 creating a table, this clause is added to the CREATE TABLE command:

 Click here to view code image

 INDEX_TYPE index_name (columns)

 The index name is optional. If no name is provided, the index will take the name of
 the column, or columns, to which it is applied. When indexing multiple columns, separate
 them by commas, and put them in the order from most to least important:

 Click here to view code image

 INDEX full_name (last_name,
[image: Images]first_name)

 You’ve already seen the syntax for creating indexes in Chapter 5. This command creates a table with a PRIMARY KEY index on the user_id field:

 Click here to view code image

 CREATE TABLE users (
user_id MEDIUMINT UNSIGNED NOT NULL
[image: Images]AUTO_INCREMENT,
first_name VARCHAR(20) NOT NULL,
last_name VARCHAR(40) NOT NULL,
email VARCHAR(40) NOT NULL,
pass CHAR(128) NOT NULL,
registration_date DATETIME NOT NULL,
PRIMARY KEY (user_id)
)

 The last thing you should know about indexes are the implications of indexing multiple
 columns. If you add an index on col1, col2, and col3 (in that order), this effectively creates an index for uses of col1, col1 and col2 together, or on all three columns together. It does not provide an index for referencing
 just col2 or col3 or those two together.

 To create indexes:

 1. Add a PRIMARY KEY index on all primary keys.

 Each table should always have a primary key and therefore a PRIMARY KEY index. With the forums database, the specific columns to be indexed as primary keys are forums.forum_id, messages.message_id, and users.user_id. (The syntax table_name.column_name is a way to refer to a specific column within a specific table.)

 2. Add UNIQUE indexes to any columns whose values cannot be duplicated within the table.

 The forums database has three columns that should always be unique or else there will be problems:
 forums.name, users.username, and users.email.

 3. Add FULLTEXT indexes, if appropriate.

 FULLTEXT indexes and FULLTEXT searching are discussed in the next chapter, so I won’t discuss this topic any more
 here, but as you’ll discover, there is one index to be used in this database.

 4. Add standard indexes to columns frequently used in a WHERE clause.

 It requires some experience to know in advance which columns will often be used in
 WHERE clauses and therefore ought to be indexed. With the forums database, one common WHERE stands out: when a user logs in, she’ll provide her email address and password. The
 query to confirm the user has provided the correct information will be something like
 this:

 Click here to view code image

 SELECT * FROM users WHERE
pass=SHA2('provided_password',
[image: Images]512) AND
email='provided_email_address'

 From this query, you can reason that indexing the combination of the email address
 and password would be beneficial.

 5. Add standard indexes to columns frequently used in ORDER BY clauses.

 Again, in time such columns will stand out while designing the database. In the forums example, there’s one column left that would be used in ORDER BY clauses that isn’t already indexed: messages.date_entered. This column will frequently be used in ORDER BY clauses, since the site will, by default, show all messages in the order they were
 entered.

 6. Add standard indexes to columns frequently used in JOINs.

 You may not know what a JOIN is now (and the topic is thoroughly covered in Chapter 7), but the most obvious candidates are the foreign key columns. Remember that a foreign
 key in Table B relates to the primary key in Table A. When selecting data from the
 database, a JOIN will be written based on this relationship. For that JOIN to be efficient, the foreign key must be indexed (the primary key will already have
 been indexed). In the forums example, three foreign key fields in the messages table ought to be indexed: forum_id, parent_id, and user_id.

 Table 6.6 lists all the indexes identified through these steps.

 TABLE 6.6 The Forum Database Indexes

 	
 Column Name

 	
 Table

 	
 Index Type

 	
 forum_id

 	
 forums

 	
 PRIMARY

 	
 name

 	
 forums

 	
 UNIQUE

 	
 message_id

 	
 messages

 	
 PRIMARY

 	
 forum_id

 	
 messages

 	
 INDEX

 	
 parent_id

 	
 messages

 	
 INDEX

 	
 user_id

 	
 messages

 	
 INDEX

 	
 date_entered

 	
 messages

 	
 INDEX

 	
 user_id

 	
 users

 	
 PRIMARY

 	
 username

 	
 users

 	
 UNIQUE

 	
 pass/email

 	
 users

 	
 INDEX

 	
 email

 	
 users

 	
 UNIQUE

 Tip

 Indexes can be created after you already have a populated table. However, you’ll get
 an error and the index will not be created if you attempt to add a UNIQUE index to a column that has duplicate values.

 Tip

 MySQL uses the term KEY as synonymous for INDEX:

 Click here to view code image

 KEY full_name (last_name,
[image: Images]first_name)

 Tip

 You can limit the length of an index to a certain number of characters, such as the
 first 10:

 Click here to view code image

 INDEX index_name (column_name(10))

 You might do so in situations where the first X characters will be sufficiently useful
 in an ORDER BY clause.

 Tip

 MySQL supports another type of index: SPATIAL. It’s used to index columns that store geometric data.

 Using Different Table Types

 A MySQL feature uncommon in other database applications is the ability to use different
 types of tables. A table’s type is also called its storage engine. Each table type supports different features, has its own limits in terms of how
 much data it can store, and even performs better or worse under certain situations.
 Still, how you interact with any table type—in terms of running queries—is consistent
 across them all.

 Historically, the most important table type was MyISAM. Until version 5.5.5 of MySQL, MyISAM was the default table type on all operating
 systems (on Windows, the switch to a different default was made in an earlier version
 of MySQL). MyISAM tables are great for most applications, handling SELECTs and INSERTs very quickly. The MyISAM storage engine cannot handle transactions, though, which is its main drawback (transactions are covered in the next chapter).
 Between that feature and its lack of row-level locking (the entire table must be locked instead), MyISAM tables are more vulnerable to corruption
 and data loss should a crash occur.

 As of MySQL version 5.5.5, MySQL’s new default storage engine, on all operating systems,
 is InnoDB. InnoDB tables can be used for transactions and they perform UPDATEs nicely. InnoDB tables also support foreign key constraints (discussed at the end of the chapter) and row-level locking. But the InnoDB storage
 engine may be slower than MyISAM and requires more disk space on the server. Also,
 before MySQL 5.6.4, InnoDB tables do not support FULLTEXT indexes (covered in Chapter 7).

 All that being said, InnoDB is the default table type in MySQL and is likely the one
 you’ll want to use.

 To specify the storage engine when you define a table, add a clause to the end of
 the creation statement:

 Click here to view code image

 CREATE TABLE tablename (
column1name COLUMNTYPE,
column2name COLUMNTYPE...
) ENGINE = type

 If you don’t specify a storage engine when creating tables, MySQL will use the default
 type for that MySQL server.

 This feature of MySQL is even more significant because you can mix the table types
 within the same database. This way, you can best customize each table for optimum
 features and performance. To continue designing the forums database, the next step is to identify the storage engine to be used by each table.

 To establish a table’s type:

 1. Find your MySQL server’s available table types [image: Images]:

 SHOW ENGINES;

 [image: Images]

 [image: Images] To confirm what table types your MySQL installation supports, run this command (in
 the mysql client, here, or phpMyAdmin).

 The SHOW ENGINES command, when executed on the MySQL server, will reveal not only the available storage
 engines but also the default storage engine. It will help to know this information
 when it’s time to choose a table type for your database.

 2. If any of your tables requires a FULLTEXT index and you’re not using MySQL 5.6.4 or greater, make it a MyISAM table.

 Again, FULLTEXT indexes and searches are discussed in the next chapter, but I’ll say now that the
 messages table in the forums example will require a FULLTEXT index. Therefore, this table can use InnoDB if you’re using MySQL 5.6.4 or greater
 but must be MyISAM if you’re not.

 3. If any of your tables requires support for transactions, make it an InnoDB table.

 Yes, again, transactions are discussed in the next chapter, but the storage engines
 ought to be determined now. Neither the forums nor users tables in the forums database will require transactions.

 4. If neither of the above applies to a table, use the default storage engine.

 Table 6.7 identifies the storage engines to be used by the tables in the forums database with the caveat that if you’re not using MySQL 5.6.4 or greater, the messages table should be MyISAM.

 TABLE 6.7 The Forum Database Table Types

 	
 Table

 	
 Table Type

 	
 forums

 	
 InnoDB

 	
 messages

 	
 InnoDB

 	
 users

 	
 InnoDB

 Tip

 MySQL has several other table types, but MyISAM and InnoDB are the two most important,
 by far. The MEMORY type creates the table in memory, making it an extremely fast table but with absolutely
 no permanence.

 Languages and MySQL

 Chapter 1, “Introduction to PHP,” briefly introduced the concept of encodings. An HTML page or PHP script can specify its encoding, which dictates what characters,
 and therefore languages, are supported. The same is true for a MySQL database: by
 setting your database’s encoding, you can impact what characters can be stored in
 it. To see a list of encodings supported by your version of MySQL, run a SHOW CHARACTER SET command [image: Images]. Note that the phrase character set is being used in MySQL to mean encoding (which I’ll generally follow in this section to be consistent with MySQL).

 [image: Images]

 [image: Images] The list of character sets supported by this MySQL installation.

 Each character set in MySQL has one or more collations. Collation refers to the rules used for comparing characters in a set. It’s like
 alphabetization, but it considers numbers, spaces, and other characters as well. Collation
 is tied to the character set being used, reflecting both the kinds of characters present
 in that language and the cultural habits of people who generally use the language.
 For example, how text is sorted in English is not the same as it is in traditional
 Spanish or in Arabic. Other considerations include: Are upper- and lowercase versions
 of a character considered to be the same or different (i.e., is it a case-sensitive
 comparison)? How do accented characters get sorted? Is a space counted or ignored?

 To view MySQL’s available collations, run this query [image: Images], replacing charset with the proper value from the result in the last query [image: Images]:

 [image: Images]

 [image: Images] The list of collations available in the UTF-8 character set. The first one, utf_general_ci, is the default.

 Click here to view code image

 SHOW COLLATION LIKE 'charset%'

 The results of this query will also indicate the default collation for that character
 set. The names of collations use a concluding ci to indicate case-insensitivity, cs for case-sensitivity, and bin for binary.

 Generally speaking, I recommend using the UTF-8 character set, with its default collation.
 More importantly, the character set in use by the database should match that of your PHP scripts. If you’re not using UTF-8 in your PHP scripts, use the matching encoding in the
 database. If the default collation doesn’t adhere to the conventions of the language
 primarily in use, then adjust the collation accordingly.

 In MySQL, the server as a whole, each database, each table, and even every string
 column can have a defined character set and collation. To set these values when you
 create a database, use

 Click here to view code image

 CREATE DATABASE name
CHARACTER SET charset
COLLATE collation

 To set these values when you create a table, use

 Click here to view code image

 CREATE TABLE name (
column definitions
)
CHARACTER SET charset
COLLATE collation

 To establish the character set and collation for a column, add the right clause to
 the column’s definition (you’d only use this for text types):

 Click here to view code image

 CREATE TABLE name (
something TEXT
CHARACTER SET charset
COLLATE collation
...)

 In each of these cases, both clauses are optional. If omitted, a default character
 set or collation will be used.

 Establishing the character set and collation when you define a database affects what
 data can be stored; you cannot store a character in a column if its encoding doesn’t
 support that character. A second issue is the encoding used to communicate with MySQL.
 If you want to store Chinese characters in a table with a Chinese encoding, those
 characters will need to be transferred using the same encoding. To do so within the
 mysql client, set the encoding using just

 CHARSET charset

 With phpMyAdmin, the encoding to be used is established in the application itself
 (i.e., written in the configuration file).

 At this point in time, every aspect of the database design for the forums example has been covered, so let’s create that database in MySQL, including its indexes,
 storage engines, character sets, and collations.

 To assign character sets and collations:

 1. Access MySQL using whatever client you prefer.

 Like the preceding chapter, this one will also use the mysql client for all of its
 examples. You are welcome to use phpMyAdmin or other tools as the interface to MySQL.

 2. Create the forum database [image: Images]:

 Click here to view code image

 CREATE DATABASE forum
CHARACTER SET utf8
COLLATE utf8_general_ci;
USE forum;

 [image: Images]

 [image: Images] The first steps are to create and select the database.

 Depending on your setup, you may not be allowed to create your own databases. If that’s
 the case, just use the database provided to you and add the following tables to it.
 Note that in the CREATE DATABASE command, the character set and collation are also defined. By doing so at this point,
 you ensure that every table will use those settings.

 3. Create the forums table [image: Images]:

 Click here to view code image

 CREATE TABLE forums (
forum_id TINYINT UNSIGNED NOT
[image: Images]NULL AUTO_INCREMENT,
name VARCHAR(60) NOT NULL,
PRIMARY KEY (forum_id),
UNIQUE (name)
) ENGINE = INNODB;

 [image: Images]

 [image: Images] Creating the first table.

 It does not matter in what order you create your tables, but I’ll make the forums table first. Remember that you can enter your SQL queries over multiple lines for
 convenience.

 This table contains only two columns (which will happen frequently in a normalized
 database). Because I don’t expect there to be many forums, the primary key is a really
 small type (TINYINT). If you wanted to add descriptions of each forum, a VARCHAR(255) or TINYTEXT column could be added to this table. This table uses the InnoDB storage engine.

 4. Create the messages table [image: Images]:

 Click here to view code image

 CREATE TABLE messages (
message_id INT UNSIGNED
[image: Images]NOT NULL AUTO_INCREMENT,
parent_id INT UNSIGNED
[image: Images]NOT NULL DEFAULT 0,
forum_id TINYINT UNSIGNED
[image: Images]NOT NULL,
user_id MEDIUMINT UNSIGNED
[image: Images]NOT NULL,
subject VARCHAR(100) NOT NULL,
body LONGTEXT NOT NULL,
date_entered DATETIME NOT NULL,
PRIMARY KEY (message_id),
INDEX (parent_id),
INDEX (forum_id),
INDEX (user_id),
INDEX (date_entered)
) ENGINE = INNODB;

 [image: Images]

 [image: Images] Creating the second table.

 The primary key for this table has to be big, since it could have lots and lots of
 records. The three foreign key columns—forum_id, parent_id, and user_id—will all be the same size and type as their primary key counterparts. The subject
 is limited to 100 characters and the body of each message can be a lot of text. The
 date_entered field is a DATETIME type.

 All three tables use the InnoDB storage engine, unless you’re using an older version
 of MySQL, in which case you’ll probably need to make this one MyISAM.

 5. Create the users table [image: Images]:

 Click here to view code image

 CREATE TABLE users (
user_id MEDIUMINT UNSIGNED
[image: Images]NOT NULL AUTO_INCREMENT,
username VARCHAR(30) NOT NULL,
pass CHAR(128) NOT NULL,
first_name VARCHAR(20) NOT NULL,
last_name VARCHAR(40) NOT NULL,
email VARCHAR(60) NOT NULL,
PRIMARY KEY (user_id),
UNIQUE (username),
UNIQUE (email),
INDEX login (pass, email)
) ENGINE = INNODB;

 [image: Images]

 [image: Images] The database’s third and final table.

 Most of the columns here mimic those in the sitename database’s users table, created in the preceding two chapters. The pass column is defined as , because the function will be used and it always returns a string 128 characters long (see Chapter 5).

 This table uses the InnoDB engine.

 6. If desired, confirm the database’s structure [image: Images]:

 \SHOW TABLES;
SHOW COLUMNS FROM forums;
SHOW COLUMNS FROM messages;
SHOW COLUMNS FROM users;

 [image: Images]

 [image: Images] Check the structure of any database or table using SHOW.

 The SHOW command reveals information about a database or a table. This step is optional because
 MySQL reports on the success of each query as it is entered. Still, it’s always nice
 to remind yourself of a database’s structure.

 Tip

 Collations in MySQL can also be specified within a query, to affect the results:

 SELECT ... ORDER BY column
COLLATE collation
SELECT ... WHERE column LIKE 'value'
COLLATE collation

 Tip

 The CONVERT() function can convert text from one character set to another.

 Tip

 You can change the default character set or collation for a database or table using
 an ALTER command, discussed in Chapter 7.

 Tip

 Because different character sets require more space to represent a string, you will
 likely need to increase the size of a column for UTF-8 characters. Do this before
 changing a column’s encoding so that no data is lost.

 Time Zones and MySQL

 Chapter 5 discussed how to use NOW() and other date- and time-related functions. That chapter explained that these functions
 reflect the time on the server. Therefore, values stored in a database using these
 functions are also storing the server’s time. That may not sound like a problem, but
 say you move your site from one server to another: you export all the data, import
 it into the other, and everything’s fine…unless the two servers are in different time
 zones, in which case all the dates are now technically off. For some sites, such an
 alteration wouldn’t be a big deal, but what if your site features paid memberships?
 That means some people’s membership might expire several hours early, and for others
 several hours late! The goal of a database is to reliably store information, and such
 possibilities simply won’t do.

 The solution to this particular problem is to store dates and times in a time zone–neutral
 way. Doing so requires something called UTC (Coordinated Universal Time, and, yes, the abbreviation doesn’t exactly match the term). UTC, like Greenwich
 Mean Time (GMT), provides a common point of origin, from which all times in the world
 can be expressed as UTC plus or minus some hours and minutes (Table 6.8).

 TABLE 6.8 UTC Offsets

 	
 City

 	
 Time

 	
 New York City, U.S.

 	
 UTC–4

 	
 Cape Town, South Africa

 	
 UTC+2

 	
 Mumbai, India

 	
 UTC+5:30

 	
 Auckland, New Zealand

 	
 UTC+13

 	
 Kathmandu, Nepal

 	
 UTC+5:45

 	
 Santiago, Chile

 	
 UTC[nd]3

 	
 Dublin, Ireland

 	
 UTC+1

 Fortunately, you don’t have to know these values or perform any calculations to determine
 UTC for your server. Instead, the UTC_DATE() function returns the UTC date, UTC_TIME() returns the current UTC time, and UTC_TIMESTAMP() returns the current date and time.

 Once you have stored a UTC time, you can retrieve the time adjusted to reflect the
 server’s or the user’s location. To change a date and time from any one time zone
 to another, use CONVERT_TZ() [image: Images]:

 CONVERT_TZ(dt, from, to)

 [image: Images]

 [image: Images] A conversion of the current UTC date and time to the American Eastern Daylight Time
 (EDT).

 The first argument is a date and time value, like the result of a function or what’s
 stored in a column. The second and third arguments are named time zones. To use this
 function, the list of time zones must already be stored in MySQL, which may or may
 not be the case for your installation (see the sidebar). If you see NULL results [image: Images], check out the MySQL manual for how to install the time zones on your server.

 [image: Images]

 [image: Images] The CONVERT_TZ() function will return NULL if it references an invalid time zone or if the time zones haven’t been installed
 in MySQL (which is the case here).

 To use this information, let’s start populating the forums database, recording the message posted date and time using UTC.

 Using Time Zones in MySQL

 MySQL does not necessarily install support for time zones by default. To use named
 time zones, you must make sure that five specific tables in the mysql database are populated. While MySQL may not automatically do this for you, it does
 provide the tools to do this yourself.

 This process is just complicated enough that there’s not room to discuss it in this
 book (not for every possible contingency, operating system, etc.). But you can find
 the instructions by looking up “server time zone support” in the MySQL manual.

 If you continue to use time zones in MySQL, you also need to keep this information
 in the mysql database updated. The rules for time zones, in particular when and how they observe
 daylight saving time, change often enough. Again, the MySQL manual has instructions
 for updating your time zones.

 To work with UTC:

 1. Access the forum database using whatever client you prefer.

 Like the preceding chapter, this one will also use the mysql client for all its examples.
 You are welcome to use phpMyAdmin or other tools as the interface to MySQL.

 2. If necessary, change the encoding to UTF-8 [image: Images]:

 CHARSET utf8;

 [image: Images]

 [image: Images] The character set used to communicate with MySQL should match that used in the database.

 Because the database uses UTF-8 as its character set, the communication with the database
 should use the same. This line, explained in the previous section of the chapter,
 does exactly that. Note that you only need to do this when using the mysql client.
 Also, if you’re not using UTF-8, change the command accordingly.

 3. Add some new records to the forums table [image: Images]:

 Click here to view code image

 INSERT INTO forums (name) VALUES
('MySQL'), ('PHP'), ('Sports'),
('HTML'), ('CSS'), ('Kindling');

 [image: Images]

 [image: Images] Adding records to the forums table.

 Since the messages table relies on values retrieved from both the forums and users tables, those two tables need to be populated first. With this command, only the name column must be provided a value (the table’s forum_id column will be given an automatically incremented integer by MySQL).

 4. Add some records to the users table [image: Images]:

 Click here to view code image

 INSERT INTO users (username, pass,
[image: Images]first_name, last_name, email)
[image: Images]VALUES
('troutster', SHA2('mypass', 512),
[image: Images]'Larry', 'Ullman',
[image: Images]'lu@example.com'),
('funny man', SHA2('monkey', 512),
[image: Images]'David', 'Brent',
[image: Images]'db@example.com'),
('Gareth', SHA2('asstmgr', 512),
[image: Images]'Gareth', 'Keenan',
[image: Images]'gk@example.com');
INSERT INTO users (username, pass,
[image: Images]first_name, last_name, email)
[image: Images]VALUES
('tim', SHA2('psych', 512) , 'Tim',
[image: Images]'Canterbury', 'tc@example.com'),
('finchy', SHA2('jerk', 512),
[image: Images]'Chris', 'Finch', '
[image: Images]cf@example.com');

 [image: Images]

 [image: Images] Adding records to the users table.

 If you have any questions about the INSERT syntax or use of the SHA1( ) function here, see Chapter 5.

 5. Add new records to the messages table [image: Images]:

 Click here to view code image

 SELECT * FROM forums;
SELECT user_id, username
[image: Images]FROM users;
INSERT INTO messages (parent_id,
[image: Images]forum_id, user_id, subject,
[image: Images]body, date_entered) VALUES
(0, 1, 1, 'Question about
[image: Images]normalization.', 'I''m confused
[image: Images]about normalization. For the
[image: Images]second normal form (2NF), I
[image: Images]read...', UTC_TIMESTAMP()),
(0, 1, 2, 'Database Design',
[image: Images]'I''m creating a new database
[image: Images]and am having problems with the
[image: Images]structure. How many
[image: Images]tables should I have?...',
[image: Images]UTC_TIMESTAMP()),
(2, 1, 2, 'Database Design',
[image: Images]'The number of tables
[image: Images]your database includes...',
[image: Images]UTC_TIMESTAMP()),
(0, 1, 3, 'Database Design',
[image: Images]'Okay, thanks!', UTC_TIMESTAMP()),
(0, 2, 3, 'PHP Errors', 'I''m using
[image: Images]the scripts from Chapter 3 and
[image: Images]I can''t get the first
[image: Images]calculator example to work.
[image: Images]When I submit the form...',
[image: Images]UTC_TIMESTAMP());

 [image: Images]

 [image: Images] Populating the messages table requires knowing foreign key values from users and forums.

 Because two of the fields in the messages table (forum_id and user_id) relate to values in other tables, you need to know those values before inserting
 new records into this table. For example, when the troutster user creates a new message in the MySQL forum, the INSERT will have a forum_id of 1 and a user_id of 1.

 This is further complicated by the parent_id column, which should store the message_id to which the new message is a reply. The second message added to the database will
 have a message_id of 2, so replies to that message need a parent_id of 2.

 With your PHP scripts—once you’ve created an interface for this database, this process
 will be much easier, but it’s important to comprehend the theory in SQL terms first.

 For the date_entered field, the value returned by the UTC_TIMESTAMP() function will be used. Using the UTC_TIMESTAMP() function, the record will store the UTC date and time, not the date and time on the
 server.

 6. Repeat Steps 3–5 to populate the database.

 The rest of the examples in this chapter and the next will use the populated database.
 You’ll probably want to download the SQL commands from the book’s corresponding web
 site, although you can populate the tables with your own examples and then just change
 the queries in the rest of the chapter accordingly.

 7. View the most recent record in the messages table, using the stored date and time
 [image: Images]:

 Click here to view code image

 SELECT message_id, subject,
[image: Images]date_entered FROM messages
ORDER BY date_entered DESC
[image: Images]LIMIT 1;

 [image: Images]

 [image: Images] The record that was just inserted, which reflects a time four hours ahead (the server
 is UTC-4).

 As you can see in the figure and the table definition, UTC times are stored just the
 same as non-UTC times. What’s not obvious in the figure is that the record just inserted
 reflects a time four hours ahead of the server (because my particular server is in
 a time zone four hours behind UTC).

 8. Retrieve the same record converting the date_entered to your time zone [image: Images]:

 Click here to view code image

 SELECT message_id, subject,
CONVERT_TZ(date_entered,
[image: Images]'UTC', 'US/Eastern') AS local
FROM messages ORDER BY
date_entered DESC LIMIT 1;

 [image: Images]

 [image: Images] The UTC-stored date and time converted to my local time.

 Using the CONVERT_TZ( ) function, you can convert any date and time to a different time zone. For the from time zone, use UTC. For the to time zone, use yours (see the MySQL manual to find the right value to use).

 If you get a NULL result [image: Images], either the name of one of your time zones is wrong or MySQL hasn’t had its time
 zones loaded yet (see the sidebar).

 Tip

 However you decide to handle dates, the key is to be consistent. If you decide to
 use UTC, then always use UTC.

 Tip

 UTC is also known as Zulu time, represented by the letter Z.

 Tip

 Besides being time zone and daylight saving time agnostic, UTC is also more accurate.
 It factors in irregular leap seconds that compensate for the inexact movement of the
 planet.

 Foreign Key Constraints

 A feature of the InnoDB table type, not supported in other storage engines, is the
 ability to apply foreign key constraints. When you have related tables, the foreign key in Table B relates to the primary
 key in Table A (for ease of understanding, it may help to think of Table B as the
 child to Table A’s parent). For example, in the forums database, the messages.user_id field is tied to users.user_id. If the administrator were to delete a user account, the relationship between those
 tables would be broken because the messages table would have records with a user_id value that doesn’t exist in users. Foreign key constraints set rules as to what should happen when a break would occur,
 including preventing that break.

 The syntax for creating a foreign key constraint is

 FOREIGN KEY (item_name)
REFERENCES table (column)

 This goes within a CREATE TABLE or ALTER TABLE statement.

 The item name is the foreign key column in the current table. The table(column) clause is a reference to the parent table column to which this foreign key should
 be constrained. If you just use this minimal constraint definition—only identifying
 the relationship without stating what should happen when the constraint would be broken—MySQL
 will throw an error if you attempt to delete the parent record while child records
 exist [image: Images]. MySQL will also throw an error if you attempt to create a child record using a parent
 ID that doesn’t exist [image: Images].

 [image: Images]

 [image: Images] This error indicates that MySQL is preventing a query from deleting a parent record
 because the record is constrained to one or more existing children records.

 [image: Images]

 [image: Images] Foreign key constraints also affect INSERT queries.

 You can dictate what alternative actions should occur by following the previous syntax
 with one or both of these:

 ON DELETE action
ON UPDATE action

 There are five action options, but two—RESTRICT and NO ACTION—are synonymous and also the default (i.e., the same as if you don’t specify the action
 at all). A third action option—SET DEFAULT—doesn’t work on InnoDB tables. That leaves CASCADE and SET NULL. If the action set is SET NULL, the removal of a parent record will result in setting the corresponding foreign
 keys in the child table to NULL. If that table defines that column as NOT NULL, which it almost always should, deletion of the parent record will trigger an error.

 The action is the most useful option. It tells the database to apply the same changes
 to the related table. With this instruction, if you delete the parent record, MySQL
 will also delete the child records with that parent ID as its foreign key.

 Only the InnoDB table type supports foreign key constraints, so both tables in the
 relationship must be of the InnoDB type. Also, for MySQL to be able to compare the
 foreign key–primary key values, the related columns must be of equitable types. This
 means that numeric columns must be the same type and size; text columns must use the
 same character set and collation.

 With the forums example, you can create foreign key constraints if you’re using version 5.6.4 or
 greater of MySQL (and you created the messages table using the InnoDB storage engine). If you didn’t create the messages table using the InnoDB storage engine, then it’s impossible to use foreign key constraints,
 as messages is the only table related to another—messages relates to both forums and users.

 As you may not be able to use foreign key constraints with the existing example, let’s
 instead use a new hypothetical example for banking [image: Images].

 [image: Images]

 [image: Images] The banking database could be used for virtual banking.

 The customers table stores all the information particular to a customer. It would logically also
 store contact information and so forth. The accounts table stores the accounts for each customer, including the type—Checking or Savings—and
 balance. Each customer may have more than one account, but each account is associated
 with only one customer (for a bit of simplicity). In the real world, the table might
 also store the date the account was opened and use a as the balance, thereby representing all transactions in cents instead of dollars
 with decimals. Finally, the transactions table stores every movement of money from one account to another. Again, to make
 the example a bit easier to follow, the example assumes that only accounts within
 this same system will interact. Note that the transactions table has two one-to-many relationships with accounts (not one many-to-many). Each transaction’s to_account_id value will be associated with a single account, but each account could be the “to”
 account multiple times. The same applies to the “from” account. Finally, foreign key
 constraints are applied to preserve the integrity of the data.

 In this next series of steps, you’ll create and populate this database, paying attention
 to the constraints. In the next chapter, this same database will be used to demonstrate
 transactions and encryption.

 To create foreign key constraints:

 1. Access MySQL using whatever client you prefer.

 Like the preceding chapter, this one will use the mysql client for all its examples.
 You are welcome to use phpMyAdmin or other tools as the interface to MySQL.

 2. Create the banking database [image: Images]:

 Click here to view code image

 CREATE DATABASE banking
CHARACTER SET utf8
COLLATE utf8_general_ci;
USE banking;

 [image: Images]

 [image: Images] A new database is being created for this example.

 As always, depending on your setup, you may not be allowed to create your own databases.
 If not, just use the database provided to you and add the following tables to it.

 3. If necessary, change the communication encoding to UTF-8:

 CHARSET utf8;

 4. Create the customers table [image: Images]:

 Click here to view code image

 CREATE TABLE customers (
customer_id INT UNSIGNED NOT NULL
[image: Images]AUTO_INCREMENT,
first_name VARCHAR(20) NOT NULL,
last_name VARCHAR(40) NOT NULL,
PRIMARY KEY (customer_id),
INDEX full_name (last_name,
[image: Images]first_name)
) ENGINE = INNODB;

 [image: Images]

 [image: Images] Creating the customers table.

 The customers table just stores the customer’s ID—the primary key—and name (in two columns). An
 index is also placed on the full name, in case it might be used in ORDER BY and other query clauses. So that the database can use foreign key constraints, every
 table will use the InnoDB storage engine.

 5. Create the accounts table [image: Images]:

 Click here to view code image

 CREATE TABLE accounts (
account_id INT UNSIGNED
[image: Images]NOT NULL AUTO_INCREMENT,
customer_id INT UNSIGNED
[image: Images]NOT NULL,
type ENUM('Checking', 'Savings')
[image: Images]NOT NULL,
balance DECIMAL(10,2) UNSIGNED
[image: Images]NOT NULL DEFAULT 0.0,
PRIMARY KEY (account_id),
INDEX (customer_id),
FOREIGN KEY (customer_id)
[image: Images]REFERENCES customers
[image: Images](customer_id) ON DELETE NO
[image: Images]ACTION ON UPDATE NO ACTION
) ENGINE = INNODB;

 [image: Images]

 [image: Images] Creating the accounts table.

 The accounts table stores the account ID, customer ID, account type, and balance. The customer_id column has an index on it, since it will be used in JOINs (in Chapter 7). More importantly, the column is constrained to customers.customer_id, thereby protecting both tables. Even though NO ACTION is the default constraint, I’ve included it in the definition for added clarity.

 Note that you must create the accounts table after creating customers or else the attempt will fail (due to trying to impose a constraint involving a table
 that doesn’t exist).

 6. Create the transactions table [image: Images]:

 Click here to view code image

 CREATE TABLE transactions (
transaction_id INT UNSIGNED
[image: Images]NOT NULL AUTO_INCREMENT,
to_account_id INT UNSIGNED
[image: Images]NOT NULL,
from_account_id INT UNSIGNED
[image: Images]NOT NULL,
amount DECIMAL(5,2) UNSIGNED
[image: Images]NOT NULL,
date_entered TIMESTAMP NOT NULL,
PRIMARY KEY (transaction_id),
INDEX (to_account_id),
INDEX (from_account_id),
INDEX (date_entered),
FOREIGN KEY (to_account_id)
[image: Images]REFERENCES accounts (account_id)
ON DELETE NO ACTION ON UPDATE
[image: Images]NO ACTION,
FOREIGN KEY (from_account_id)
[image: Images]REFERENCES accounts (account_id)
ON DELETE NO ACTION ON UPDATE
[image: Images]NO ACTION
) ENGINE = INNODB;

 [image: Images]

 [image: Images] Creating the third, and final, table: transactions.

 The final table will be used to record all movements of monies among the accounts.
 To do so, it stores both account IDs (the “to” and “from”), the amount, and the date/time.
 Indexes are added accordingly, and both account IDs are constrained to the accounts table.

 7. Populate the customers and accounts tables [image: Images]:

 Click here to view code image

 INSERT INTO customers
[image: Images](first_name, last_name)
VALUES ('Sarah', 'Vowell'),
[image: Images]('David', 'Sedaris'),
[image: Images]('Kojo', 'Nnamdi');
INSERT INTO accounts
[image: Images](customer_id, balance)
VALUES (1, 5460.23), (2, 909325.24),
[image: Images](3, 892.00);
INSERT INTO accounts
[image: Images](customer_id, type, balance)
VALUES (2, 'Savings', 13546.97);

 [image: Images]

 [image: Images] Three records are added to both the customers and accounts tables.

 First, sample data is entered into the first two tables (the third will be used in
 the next chapter). Note that because the accounts.type column is defined as an ENUM NOT NULL, if no value is provided for that column, the first item in the ENUM definition—Checking—will be used.

 8. Attempt to put data into the accounts table for which there is no customer [image: Images]:

 Click here to view code image

 INSERT INTO accounts
[image: Images](customer_id, type, balance)
VALUES (10, 'Savings', 200.00);

 [image: Images]

 [image: Images] Again, as in [image: Images], the constraint denies the INSERT query due to an invalid value from the parent table.

 The foreign key constraint present in the accounts table will prevent an account being created without a valid customer ID—a pretty
 useful check in the real world.

 9. Attempt to delete a record from the customers table for which there is an accounts record [image: Images]:

 [image: Images]

 [image: Images] Because the customer with an ID of 2 has one or more records in the accounts table, the customers record cannot be deleted.

 DELETE FROM customers
WHERE customer_id=2;

 The constraint will also prevent the deletion of customer records when that customer
 still has an account.

 Despite the constraint, you could still delete a customer record if the customer does
 not have any records in the accounts table.

 Tip

 To delete constrained records, you must first delete all the children records, and
 then the parent record.

 Tip

 Foreign key constraints require that all columns in the constraint be indexed. Normal
 database design would suggest this is the case, but if the correct indexes do not
 exist, MySQL will create them when the constraint is defined.

 Tip

 Similar to constraints are triggers. Simply put, a trigger is a way of telling the
 database “when X happens to this table, do Y.” For example, when inserting a record
 in Table A, another record might be created or updated in Table B. See the MySQL manual
 for more on triggers.

 Review and Pursue

 If you have any problems with the review questions or the pursue prompts, turn to
 the book’s supporting forum (LarryUllman.com/forums/).

 Review

 [image: Images] Why is normalization important?

 [image: Images] What are the two types of keys?

 [image: Images] What are the three types of table relationships?

 [image: Images] How do you fix the problem of a many-to-many relationship between two tables?

 [image: Images] What are the four types of indexes? What general types of columns should be indexed? What general types of columns should not be indexed?

 [image: Images] What are the two most common MySQL table types? What is the default table type for
 your MySQL installation?

 [image: Images] What is a character set? What is a collation? What impact does the character set have on the database? What impact does the collation
 have? What character set and collation are you using?

 [image: Images] What is UTC? How do you find the UTC time in MySQL? How do you convert from UTC to another time
 zone’s time?

 [image: Images] What are foreign key constraints? What table type supports foreign key constraints?

 Pursue

 [image: Images] You may want to consider downloading, installing, and learning to use the MySQL Workbench
 application. It can be quite useful.

 [image: Images] If you don’t fully grasp the process of normalization—and that’s perfectly understandable—search
 for additional tutorials online or ask a question in my support forums.

 [image: Images] Design your own database using the information presented here.

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 7. Advanced SQL and MySQL

 In This Chapter

 Performing Joins

 Grouping Selected Results

 Advanced Selections

 Performing FULLTEXT Searches

 Optimizing Queries

 Performing Transactions

 Database Encryption

 Review and Pursue

 This, the last chapter dedicated to SQL and MySQL (although most of the rest of the
 book will use these technologies in some form or another), discusses the higher-end
 concepts often needed to work with more complicated databases, like those created
 in the previous chapter. The first such topic is the JOIN, a critical SQL term for querying normalized databases with multiple tables. From
 there, the chapter introduces a category of functions that are specifically used when
 grouping query results, followed by more complex ways to select values from a table.

 In the middle of the chapter, you’ll learn how to perform FULLTEXT searches, which can add search engine–like functionality to any site. Next up is
 the EXPLAIN command; it provides a way to test the efficiency of your database schema and your
 queries. The chapter concludes with coverage of transactions and database encryption.

 Performing Joins

 Because relational databases are more complexly structured, they sometimes require
 special query statements to retrieve the information you need most. For example, if
 you wanted to know what messages are in the MySQL forum (using the forum database created in the previous chapter), you would need to first find the forum_id for MySQL:

 Click here to view code image

 SELECT forum_id FROM forums WHERE
[image: Images]name='MySQL'

 Then you would use that number to retrieve all the records from the messages table that have that forum_id:

 Click here to view code image

 SELECT * FROM messages WHERE
[image: Images]forum_id=1

 This one simple—and, in a forum, often necessary—task would require two separate queries.
 By using a join, you can perform both requests in a single query.

 A join is an SQL query that uses two or more tables and produces a virtual table of
 results. Whenever you need to simultaneously retrieve information from more than one
 table, a join is what you’ll probably use.

 Joins can be written in many ways, but the basic syntax is

 SELECT what_columns
FROM tableA
JOIN_TYPE tableB
JOIN_CLAUSE

 Because joins involve multiple tables, the what_columns can include columns in any named table. And since joins often return so much information,
 it’s normally best to specify exactly what columns you want returned, instead of selecting
 them all.

 When selecting from multiple tables, you must use the dot syntax (table.column) if the tables named in the query have columns with the same name. This is often
 the case when dealing with relational databases because a primary key from one table
 may have the same name as a foreign key in another. If you are not explicit when referencing
 your columns, you’ll get an error [image: Images]:

 Click here to view code image

 SELECT forum_id FROM messages
INNER JOIN forums
ON messages.forum_id=forums.forum_id

 [image: Images] Generically referring to a column name present in multiple tables will cause an ambiguity
 error.

 [image: Images]

 The two main types of joins are inner and outer, and there are subtypes within both. As you’ll see with outer joins, the order in
 which you reference the tables does matter.

 The join clause is where you indicate the relationship between the joined tables.
 For example, forums.forum_id should equal messages.forum_id in the previous code.

 You can also use WHERE and ORDER BY clauses with a join, as you would with any SELECT query.

 As a last note, before getting into joins more specifically, the SQL concept of an
 alias—introduced in Chapter 5, “Introduction to SQL”—will come in handy when writing joins. Often an alias will just be used as a shorthand
 way of referencing the same table multiple times within the same query. If you don’t
 recall the syntax for creating aliases, or how they’re used, revisit that part of
 Chapter 5.

 As in the previous two chapters, this chapter will use the command-line mysql client
 to execute queries, but you can also use phpMyAdmin or another tool. The chapter assumes
 you know how to connect to the MySQL server and declare the character set to use,
 if necessary.

 Inner joins

 An inner join returns all the records from the named tables wherever a match is made.
 For example, to find every message posted in the MySQL forum, the inner join would be written as [image: Images]

 Click here to view code image

 SELECT m.message_id, m.subject,
[image: Images]f.name
FROM messages AS m INNER JOIN
[image: Images]forums AS f
ON m.forum_id = f.forum_id
WHERE f.name ='MySQL'

 [image: Images] This join returns three columns from two tables where the forum_id value—1—represents the MySQL forum.

 [image: Images]

 This join is selecting two columns from the messages table (aliased as m) and one column from the forums table (aliased as f) under two conditions. First, the f.name column must have a value of MySQL. This will return the forum_id of 1. Second, the forum_id value in the forums table must match the forum_id value in the messages table. Because of the equality comparison being made across both tables (), this is known as an equijoin.

 As an alternative syntax, if the column in both tables being used in the equality
 comparison has the same name, you can simplify your query with USING:

 Click here to view code image

 SELECT m.message_id, m.subject,
[image: Images]f.name
FROM messages AS m INNER JOIN
[image: Images]forums AS f
USING (forum_id)
WHERE f.name = 'MySQL'

 To use inner joins:

 1. Connect to MySQL and select the forum database.

 2. Retrieve the forum name and message subject for every record in the messages table [image: Images]:

 Click here to view code image

 SELECT f.name, m.subject FROM
[image: Images]forums
AS f INNER JOIN messages AS m
USING (forum_id) ORDER BY f.name;

 [image: Images] A basic inner join that returns only two columns of values.

 [image: Images]

 This query will effectively replace the forum_id value in the messages table with the corresponding name value from the forums table for each of the records in the messages table. The result is that it displays the textual version of the forum name for each
 message subject.

 Notice that you can still use ORDER BY clauses in joins.

 3. Retrieve the subject and date entered for every message posted by the user funny man [image: Images]:

 Click here to view code image

 SELECT m.subject,
DATE_FORMAT(m.date_entered,'%M %D,
[image: Images]%Y') AS Date
FROM users AS u
INNER JOIN messages AS m
USING (user_id)
WHERE u.username = 'funny man';

 [image: Images] A slightly more complicated version of an inner join, based on the users and messages tables.

 [image: Images]

 This join also uses two tables: users and messages. The linking column for the two tables is user_id, so that’s placed in the clause. The conditional identifies the user being targeted, and the DATE_FORMAT() function will help format the date_entered value.

 4. Find the forums that have had the five most recent postings [image: Images]:

 Click here to view code image

 SELECT f.name FROM forums AS f
INNER JOIN messages AS m
USING (forum_id)
ORDER BY m.date_entered DESC
LIMIT 5;

 [image: Images] An ORDER BY clause and a LIMIT clause are applied to this join, which returns the forums with the five most recent
 messages.

 [image: Images]

 Since the only information that needs to be returned is the forum name, that’s the
 sole column selected by this query. The join is then across the forums and messages table, linked via the forum_id. The query to that point would return every message matched with the forum it’s in.
 That result is then ordered by the date_entered column, in descending order, and restricted to just the first five records.

 Tip

 Inner joins can also be written without formally using the phrase INNER JOIN. To do so, place a comma between the table names and turn the ON, or USING, clause into another WHERE condition:

 Click here to view code image

 SELECT m.message_id, m.subject,
[image: Images]f.name
FROM messages AS m, forums AS f
WHERE m.forum_id = f.forum_id
AND f.name = 'MySQL'

 Tip

 Joins that do not include a join clause (ON or USING) or a WHERE clause (e.g., SELECT * FROM urls INNER JOIN url_associations) are called full joins and will return every record from both tables. This construct
 can have unwieldy results with larger tables.

 Tip

 A NULL value in a column referenced in an inner join will never be returned, because NULL matches no other value, including NULL.

 Tip

 MySQL’s supported join types differ slightly from the SQL standard. For example, SQL
 supports a CROSS JOIN and an INNER JOIN as two separate things, but in MySQL they are syntactically the same.

 Outer Joins

 Whereas an inner join returns records based on making matches between two tables,
 an outer join will return records that are matched by both tables, and will return records that don’t match. In other words, an inner join is exclusive but an outer join is inclusive. There
 are three outer join subtypes: left, right, and full, with left being the most important. Here is an example of a left join:

 Click here to view code image

 SELECT f.*, m.subject FROM forums AS f
LEFT JOIN messages AS m
ON f.forum_id = m.forum_id

 The most important consideration with left joins is which table gets named first.
 In this example, all the forums records will be returned along with all the messages information, if a match is made. If no messages records match a forums row, then NULL values will be returned for the selected messages columns instead [image: Images].

 [image: Images] An outer join returns all the records from the first table listed, with non-matching
 records from the second table replaced with NULL values.

 [image: Images]

 As with an inner join, if the column in both tables being used in the equality comparison
 has the same name, you can simplify your query with USING:

 Click here to view code image

 SELECT f.*, m.subject FROM forums AS f
LEFT JOIN messages AS m
USING (forum_id)

 A right outer join does the opposite of a left outer join: it returns all the applicable
 records from the right-hand table, along with matches from the left-hand table. This
 query is equivalent to the previous one:

 Click here to view code image

 SELECT f.*, m.subject FROM messages
[image: Images]AS m
RIGHT JOIN forums AS f
USING (forum_id)

 Historically, the left join is preferred over the right.

 A full outer join is like a combination of a left outer join and a right outer join.
 In other words, all the matching records from both tables will be returned, along with all the records from the left-hand table that
 do not have matches in the right-hand table, along with all the records from the right-hand
 table that do not have matches in the left-hand table. MySQL does not directly support
 the full outer join, but you can replicate that functionality using a left join, a
 right join, and a UNION statement. A full outer join is not often needed, but see the MySQL manual if you’re
 curious about it or unions.

 To use outer joins:

 1. Connect to MySQL and select the forum database, if you have not already.

 2. Retrieve every username and every message ID posted by those users [image: Images]:

 Click here to view code image

 SELECT u.username, m.message_id
FROM users AS u
LEFT JOIN messages AS m
USING (user_id);

 [image: Images] This left join returns for every user, every posted message ID. If a user hasn’t
 posted a message (like finchy at the top), the message ID value will be NULL.

 [image: Images]

 If you were to run an inner join like this, a user who had not yet posted a message
 would not be listed [image: Images]. Hence, an outer join is required to be inclusive of all users. Note that the fully
 included table (here, users) must be the first table listed in a left join.

 [image: Images] This inner join will not return any users who haven’t yet posted messages (see finchy at the top of [image: Images]).

 [image: Images]

 3. Retrieve every forum name and every message submission date in that forum in order
 of submission date [image: Images]:

 Click here to view code image

 SELECT f.name,
DATE_FORMAT(m.date_entered,
[image: Images]'%M %D, %Y') AS Date
FROM forums AS f
LEFT JOIN messages AS m
USING (forum_id)
ORDER BY date_entered DESC;

 [image: Images]This left outer join returns every forum name and the date of every message posted
 in that forum.

 [image: Images]

 Performing Self-Joins

 It’s possible with SQL to perform a self-join: join a table with itself. For example, with the messages table, the parent_id column is a way of indicating which postings are replies to other postings. To retrieve
 a single hierarchy of postings, a SELECT query must join the messages table with itself, equating parent_id with message_id in the process.

 This may sound confusing or impossible, but it’s not. The trick with self-joins is
 to treat the two references to the same table as if they were single references to
 two different tables. To pull that off, assign a different alias to each table reference.
 The already described example would be written like so:

 Click here to view code image

 SELECT m1.subject, m2.subject AS Reply
FROM messages AS m1
LEFT JOIN messages AS m2
ON m1.message_id=m2.parent_id
WHERE m1.parent_id=0

 That query first selects every root-level message—those with a 0 parent_id value—in the first messages table instance, m1. Those records are then outer joined with the second messages table instance, m2. If you run this query yourself, you’ll see that the root message’s subject is selected,
 along with the subject of that message’s reply, if applicable.

 Self-joins aren’t the most popular join type, but they can sometimes solve a problem
 better than most other solutions.

 This is really just a variation on the join in Step 2, this time swapping the forums table for the users table.

 Tip

 Joins can be created using conditionals involving any columns, not just the primary
 and foreign keys, although that’s the most common basis for comparison.

 Tip

 You can perform joins across multiple databases using the database.table.column syntax, as long as every database is on the same server (you cannot do this across
 a network) and you’re connected as a user with permission to access every database
 involved.

 Tip

 The word OUTER in a left outer join is optional and often omitted. To be formal, you could write

 Click here to view code image

 SELECT f.name,
DATE_FORMAT(m.date_entered,
[image: Images]'%M %D, %Y') AS
Date FROM forums AS f
LEFT OUTER JOIN messages AS m
USING (forum_id)
ORDER BY date_entered DESC;

 Joining three or more tables

 There are two more ways joins can be used with which you ought to be familiar: self-joins, discussed in the sidebar, and joins on three or more tables.

 When joining three or more tables, it helps to remember that a join between two tables
 creates a virtual table of results. When you add a third table, the join is between
 this initial virtual table and the third referenced table [image: Images]. The syntax for a three-table join is of the format

 Click here to view code image

 SELECT what_columns FROM tableA
JOIN_TYPE tableB JOIN_CLAUSE
JOIN_TYPE tableC JOIN_CLAUSE

 [image: Images] How a join across three tables works: by first creating a virtual table of results,
 and then by joining the third table to that.

 [image: Images]

 The join types do not have to beoin across three tables works: by first creati the
 same in both cases—one could be an inner and the other an outer—and the join clauses
 are almost certain to be different. You can even add WHERE, ORDER BY, and LIMIT clauses to the end of this. Simply put, to perform a join on more than two tables,
 just continue to add JOIN_TYPE tableX JOIN_CLAUSE sections as needed.

 There are three likely problems you’ll have with joins that span three or more tables:

 [image: Images] A simple syntax error, especially when you use parentheses to separate out the clauses

 [image: Images] An ambiguous column error, which is common enough among any join type

 [image: Images] A lack of results returned

 Should the last of these happen to you, simplify the join down to just two tables
 to confirm the result, and then try to reapply the additional join clauses to find
 where the problem is.

 To use joins on three tables or more:

 1. Connect to MySQL and select the forum database, if you have not already.

 2. Retrieve the message ID, subject, and forum name for every message posted by the
 user troutster [image: Images]:

 Click here to view code image

 SELECT m.message_id, m.subject,
[image: Images]f.name
FROM users AS u
INNER JOIN messages AS m
USING (user_id)
INNER JOIN forums AS f
USING (forum_id)
WHERE u.username = 'troutster';

 [image: Images] An inner join across all three tables.

 [image: Images]

 This join is like one earlier in the chapter, but this one takes things a step further
 by incorporating a third table.

 3. Retrieve the username, message subject, and forum name for every user [image: Images]:

 Click here to view code image

 SELECT u.username, m.subject, f.name
FROM users AS u
LEFT JOIN messages AS m
USING (user_id)
LEFT JOIN forums AS f
USING (forum_id);

 [image: Images] This left join returns for every user, every posted message subject, and every forum
 name. If a user hasn’t posted a message (like finchy at the top), his or her subject and forum name values will be NULL.

 [image: Images]

 Whereas the query in Step 2 performs two inner joins, this one performs two outer
 joins. The process behind this query is visually represented by the diagram in [image: Images].

 4. Find the users who have had the five most recent postings, while also selecting the
 message subject and the forum name [image: Images]:

 [image: Images]This inner join returns values from all three tables, with applied ORDER BY and LIMIT clauses.

 [image: Images]

 Click here to view code image

 SELECT u.username, m.subject, f.name
FROM users AS u
INNER JOIN messages AS m
USING (user_id)
INNER JOIN forums AS f
USING (forum_id)
ORDER BY m.date_entered DESC
LIMIT 5;

 To retrieve the username, the message subject, and the forum name, a join across all
 three tables is required. Since the query is looking only for users who have posted,
 an inner join is appropriate. The result of the two joins will be every username,
 with every message they posted, in every forum. That result is then ordered by the
 message’s date_entered column, and limited to just the first five records.

 Grouping Selected Results

 Chapter 5 discussed and demonstrated several different categories of functions you can use
 in MySQL. Another category, used for more complex queries, is the grouping or aggregate functions (Table 7.1).

 TABLE 7.1 Grouping Functions

 	
 Function

 	
 Returns

 	
 AVG()

 	
 The average of the values in a column

 	
 COUNT()

 	
 The number of values in a column

 	
 GROUP_CONCAT()

 	
 The concatenation of a column’s values

 	
 MAX()

 	
 The largest value in a column

 	
 MIN()

 	
 The smallest value in a column

 	
 SUM()

 	
 The sum of all the values in a column

 Whereas most of the functions covered in Chapter 5 manipulate a single value in a single row at a time (e.g., formatting the value in
 a date column), what the grouping functions return is based on a value present in
 a single column over a set of rows. For example, to find the average account balance
 in the banking database, you would run this query [image: Images]:

 Click here to view code image

 SELECT AVG(balance) FROM accounts

 [image: Images]The AVG() function is used to find the average of all the account balances.

 [image: Images]

 To find the smallest and largest account balances, use [image: Images]:

 Click here to view code image

 SELECT MAX(balance), MIN(balance)
FROM accounts

 [image: Images] The MAX() and MIN() functions return the largest and smallest account values found in the table.

 [image: Images]

 To simply count the number of records in a table (or result set), apply COUNT() to either every column or every column that’s guaranteed to have a value:

 Click here to view code image

 SELECT COUNT(*) FROM accounts

 The AVG(), COUNT(), and SUM() functions can also use the DISTINCT keyword so that the aggregation applies only to distinct values. For example, SELECT COUNT(customer_id) FROM accounts will return the number of accounts, but SELECT COUNT(DISTINCT customer_ID) FROM accounts will return the number of customers that have accounts [image: Images].

 [image: Images] The COUNT() function, with or without the DISTINCT keyword, simply counts the number of records in a record set.

 [image: Images]

 The aggregate functions as used on their own return individual values, as in [image: Images], [image: Images], and [image: Images]. When the aggregate functions are used with a GROUP BY clause, a single aggregate value will be returned for each row in the result set[image: Images]:

 Click here to view code image

 SELECT AVG(balance), customer_id
FROM accounts
GROUP BY customer_id

 [image: Images] Use the GROUP BY clause with an aggregating function to group the aggregate results.

 [image: Images]

 You can apply combinations of WHERE, ORDER BY, and LIMIT conditions to a GROUP BY, structuring your query like this:

 Click here to view code image

 SELECT what_columns
FROM table
WHERE condition
GROUP BY column
ORDER BY column
LIMIT x, y

 A GROUP BY clause can also be used in a join. Remember that a join returns a new, virtual table
 of data, so any grouping would then apply to that virtual table.

 To group data:

 1. Connect to MySQL and select the banking database.

 2. Count the number of registered customers [image: Images]:

 SELECT COUNT(*) FROM customers;

 [image: Images] This aggregating query counts the number of records in the customers table.

 [image: Images]

 COUNT() is perhaps the most popular grouping function. With it, you can quickly count records,
 like the number of records in the customers table here. The COUNT() function can be applied to any column that’s certain to have a value, such as * (i.e.,
 every column) or customer_id, the primary key.

 Notice that not all queries using the aggregate functions necessarily have GROUP BY clauses.

 3. Find the total balance of all accounts by customer, counting the number of accounts
 in the process [image: Images]:

 Click here to view code image

 SELECT SUM(balance) AS Total,
COUNT(account_id) AS Number,
customer_id
FROM accounts
GROUP BY (customer_id);

 [image: Images]This GROUP BY query aggregates all of the accounts by customer_id, returning the sum of each customer’s accounts, and the total number of accounts
 the customer has, in the process.

 [image: Images]

 This query is an extension of that in Step 2, but instead of counting just the customers,
 it counts the number of accounts associated with each customer and totals the account
 balances, too.

 4. Repeat the query from Step 3, selecting the customer’s name instead of their ID [image: Images]:

 Click here to view code image

 SELECT SUM(balance) AS Total,
COUNT(account_id) AS Number,
CONCAT(c.last_name, ', ',
[image: Images]c.first_name) AS Name
FROM accounts AS a
INNER JOIN customers AS c
USING (customer_id)
GROUP BY (a.customer_id)
ORDER BY Name;

 [image: Images]This GROUP BY query is like that in [image: Images], but also returns the customer’s name and sorts the results by name (which requires
 a join).

 [image: Images]

 To retrieve the customer’s name, instead of his or her ID, a join is required: INNER JOIN customers USING (customer_id). Next, aliases are added for easier references, and the GROUP BY clause is modified to specify to which customer_id field the grouping should be applied. Thanks to the join, the customer’s name can
 be selected as the concatenation of the customer’s first and last names, a comma,
 and a space. And finally, the results can be sorted by the customer’s name (note that
 another reference to the alias is used in the ORDER BY clause).

 Remember that if you used an outer join instead of an inner join, you could then retrieve
 customers who did not have account balances.

 5. Concatenate each customer’s balance into a single string [image: Images]:

 Click here to view code image

 SELECT GROUP_CONCAT(balance),
CONCAT(c.last_name, ', ',
[image: Images]c.first_name) AS Name
FROM accounts AS a
INNER JOIN customers AS c
USING (customer_id)
GROUP BY (a.customer_id)
ORDER BY Name;

 [image: Images]A variation on the query in [image: Images], this query retrieves the concatenation of all account balances for each customer.

 [image: Images]

 The GROUP_CONCAT() function is a useful and often overlooked aggregating tool. As you can see in the
 figure, by default this function concatenates values, separating each with a comma.

 Tip

 NULL is a peculiar value, and it’s interesting to know that GROUP BY will group NULL values together, since they have the same nonvalue.

 Tip

 You should be careful how you apply the COUNT() function, since it counts only non-NULL values. Be certain to use it either on every column (*) or on columns that will never contain NULL values (like the primary key).

 Tip

 The GROUP BY clause, and the functions listed here, take some time to figure out, and MySQL will
 report an error whenever your syntax is inapplicable. Experiment within the mysql
 client or phpMyAdmin to determine the exact wording of any query you might want to
 run from a PHP script.

 Tip

 A related clause is HAVING, which is like a WHERE condition applied to a group.

 Tip

 You cannot apply SUM() and AVG() to date or time values. Instead, you’ll need to convert date and time values to seconds,
 perform the SUM() or AVG(), and then convert that value back to a date and time.

 Advanced Selections

 The previous two sections of the chapter present more advanced ways to select data
 from complex structures. But even with the use of the aggregate functions, the data
 being selected is comparatively straightforward. Sometimes, though, you’ll need to
 select data conditionally, as if you were using an if-else clause within the query itself. This is possible in SQL thanks to the control flow and advanced comparison functions.

 To start, GREATEST() returns the largest value in a list [image: Images]:

 Click here to view code image

 SELECT GREATEST(col1, col2) FROM table
SELECT GREATEST(235, 1209, 59)

 [image: Images] The GREATEST() function returns the biggest value in a list.

 [image: Images]

 LEAST() returns the smallest value in a list:

 Click here to view code image

 SELECT LEAST(col1, col2) FROM table
SELECT LEAST(235, 1209, 59)

 Note that unlike the aggregate functions, which apply to a list of values found in
 the same column over multiple rows, the comparison and control flow functions apply
 to multiple columns within the same row (or list of values).

 Another useful comparison function is COALESCE(). It returns the first non-NULL value in a list:

 Click here to view code image

 SELECT COALESCE(col1, col2) FROM table

 If none of the listed items has a value, the function returns NULL. You’ll see an example in the step sequence that follows.

 Whereas COALESCE() simply returns the first non-NULL value, you can use IF() to return any value, based on a condition:

 Click here to view code image

 SELECT IF(condition, return_if_true,
return_if_false)

 If the condition is true, the second argument to the function is returned; otherwise,
 the third argument is returned. As an example, assuming a table stored the value 0
 or 1 in a preferences column, a query could select No or Yes instead [image: Images]:

 Click here to view code image

 SELECT IF(receive_emails=1, 'Yes', 'No')
FROM preferences

 [image: Images] The IF() function can dictate the returned value based on a conditional.

 [image: Images]

 As these functions return values, they could even be used in other query types:

 Click here to view code image

 INSERT INTO prefernces
[image: Images](receive_emails) VALUES
(IF(something='Y', 1, 0))

 The CASE() function is a more complicated tool that can be used in different ways. The first
 approach is to treat CASE() like PHP’s switch conditional:

 Click here to view code image

 SELECT CASE col1
WHEN value1 THEN return_this
ELSE return_that
END
FROM table

 The preferences example could be rewritten as

 Click here to view code image

 SELECT CASE receive_emails
WHEN 1 THEN 'Yes'
ELSE 'NO'
END
FROM preferences

 The CASE() function can have additional WHEN clauses. The ELSE is also always optional:

 Click here to view code image

 SELECT CASE receive_emails
WHEN 1 THEN 'Yes'
WHEN 0 THEN 'No'
END
FROM preferences

 If you’re not looking to perform a simple equality test, you can write conditions
 into a CASE() [image: Images]:

 Click here to view code image

 SELECT message_id,
CASE WHEN date_entered >
[image: Images]NOW() THEN 'Future'
ELSE 'PAST'
END AS Posted
FROM messages

 [image: Images] CASE() can be used like IF() to customize the returned value.

 [image: Images]

 Again, you can add multiple WHEN...THEN clauses, as needed, and omit the ELSE, if that’s not necessary.

 To practice using these functions, let’s run a few more queries on the forum database. Heads up: they’re going to get a little complicated.

 To perform advanced selections:

 1. Connect to MySQL and select the forum database.

 2. For each forum, find the date and time of the most recent post, or return N/A if the forum has no posts [image: Images]:

 Click here to view code image

 SELECT f.name,
COALESCE(MAX(m.date_entered),
[image: Images]'N/A') AS last_post
FROM forums AS f
LEFT JOIN messages AS m
USING (forum_id)
GROUP BY (m.forum_id)
ORDER BY m.date_entered DESC;

 [image: Images]The COALESCE() function is used to turn NULL values into the string N/A (see the last record).

 [image: Images]

 To start, to find both the forum name and the date of the latest posting in that forum,
 a join is necessary—specifically, an outer join, as there may be forums without postings.
 To find the most recent posting in each forum, the aggregating MAX() function is applied to the date_entered column, and the results must be grouped by the forum_id (so that MAX() is applied to each subset of postings within each forum).

 The results at that point, without the COALESCE() function call, would return NULL for any forum without any messages in it. The final step is to apply COALESCE() so that the string N/A is returned should MAX(m.date_entered) have a NULL value.

 3. For each message, append the string (REPLY) to the subject if the message is a reply to another message [image: Images]:

 Click here to view code image

 SELECT message_id,
CASE parent_id WHEN 0 THEN subject
ELSE CONCAT(subject, ' (Reply) ')
END AS subject
FROM messages;

 [image: Images]Here, the string (Reply) is appended to the subject of any message that is a reply to another message.

 [image: Images]

 The records in the messages tables that have a parent_id other than 0 are replies to existing messages. For these messages, let’s append (REPLY) to the subject value to indicate that. To accomplish this, a CASE statement returns just the subject, unadulterated, if the parent_id value equals 0. If the parent_id value does not equal 0, the string (REPLY) is concatenated to the subject, again thanks to CASE. This whole construct is assigned the alias of subject, so it’s still returned under the original “subject” heading.

 4. For each user, find the number of messages they’ve posted, converting zeros to the
 string None [image: Images]:

 Click here to view code image

 SELECT u.username,
IF(COUNT(message_id) > 0,
COUNT(message_id), 'None') AS Posts
FROM users AS u
LEFT JOIN messages AS m
USING (user_id)
GROUP BY (u.user_id);

 [image: Images]Thanks to an IF() call, the count of posted messages is displayed as None for any user who has not yet posted a message.

 [image: Images]

 This is somewhat of a variation on the query in Step 2. A left join bridges users and messages, to grab both the username and the count of messages posted. To perform the count,
 the results are grouped by users.user_id. The query to this point would return 0 for every user that has not yet posted [image: Images]. To convert those zeros to the string None, while maintaining the non-zero counts, the IF() function is applied. That function’s first argument establishes the condition if
 the count is greater than zero. The second argument says that the count should be
 returned when that condition is true. The third argument says that the string None should be returned when that condition is false.

 [image: Images]What the query results would look like (compare with [image: Images]) without using IF().

 [image: Images]

 Tip

 The IFNULL() function can sometimes be used instead of COALESCE(). Its syntax is

 Click here to view code image

 IFNULL(value, return_if_null)

 If the first argument, such as a named column, has a NULL value, then the second argument is returned. If argument does not have a NULL value, the value of that argument is returned.

 Performing FULLTEXT Searches

 In Chapter 5, the LIKE keyword was introduced to perform somewhat simple string matches like

 Click here to view code image

 SELECT * FROM users
WHERE last_name LIKE 'Smith%'

 This type of conditional is effective enough but is still very limiting. For example,
 it would not allow you to do Google-like searches using multiple words. For those
 kinds of situations, you need FULLTEXT searches. Over the next several pages, you’ll learn everything you need to know about
 FULLTEXT searches and you’ll learn some more SQL tricks in the process.

 Creating a FULLTEXT Index

 To start, FULLTEXT searches require a FULLTEXT index. This index type, as previewed in Chapter 6, “Database Design,” can be created on a MyISAM table, or on an InnoDB table if you are using MySQL
 5.6.4 or greater. These next examples will use the messages table in the forum database. The first step, then, is to add a FULLTEXT index on the body and subject columns. Adding indexes to existing tables requires using the ALTER command, as described in the sidebar.

 Altering Tables

 The ALTER SQL term is primarily used to modify the structure of an existing table. Commonly
 this means adding, deleting, or changing the columns, but it also includes the addition
 of indexes. An ALTER statement can even be used for renaming the table itself. The basic syntax of ALTER is

 ALTER TABLE tablename CLAUSE

 There are many possible clauses; Table 7.2 lists the most common ones, where t represents the table’s name, c a column’s name, and i an index’s name. As always, the MySQL manual covers the topic in exhaustive detail.

 TABLE 7.2 ALTER TABLE Clauses

 	
 Clause

 	
 Usage

 	
 Meaning

 	
 ADD COLUMN

 	
 ALTER TABLE t ADD COLUMN c TYPE

 	
 Adds a new column to the table

 	
 CHANGE COLUMN

 	
 ALTER TABLE t CHANGE COLUMN c c TYPE

 	
 Changes the data type and properties of a column

 	
 DROP COLUMN

 	
 ALTER TABLE t DROP COLUMN c

 	
 Removes a column from a table, including all of its data

 	
 ADD INDEX

 	
 ALTER TABLE t ADD INDEX i (c)

 	
 Adds a new index on c

 	
 DROP INDEX

 	
 ALTER TABLE t DROP INDEX i

 	
 Removes an existing index

 	
 RENAME TO

 	
 ALTER TABLE t RENAME TO new_t

 	
 Changes the name of a table

 You can also change a table’s character set and collation using ALTER t CONVERT TO CHARACTER SET x COLLATE y.

 To add a FULLTEXT index:

 1. Connect to MySQL and select the forum database, if you have not already.

 2. Confirm the messages table’s type [image: Images]:

 [image: Images]To confirm a table’s type, use the SHOW TABLE STATUS command.

 [image: Images]

 SHOW TABLE STATUS\G

 The SHOW TABLE STATUS query returns a fair amount of information about each table in the database, including
 the table’s storage engine. Because so much information is returned by the query,
 the command concludes with \G instead of a semicolon. This tells the mysql client to return the results as a vertical
 list instead of a table (which is sometimes easier to read). If you’re using phpMyAdmin
 or another interface, you can omit the \G (just as you can omit concluding semicolons).

 To just find the information for the messages table, you can use the query SHOW TABLE STATUS LIKE ‘messages’.

 3. If the messages table does not support FULLTEXT indexes, change the storage engine:

 Click here to view code image

 ALTER TABLE messages ENGINE=MyISAM;

 This is only necessary if the table isn’t currently of the correct type. Acceptable
 types include MyISAM for any version of MySQL and InnoDB as of MySQL 5.6.4.

 4. Add the FULLTEXT index to the messages table[image: Images]:

 Click here to view code image

 ALTER TABLE messages
ADD FULLTEXT(body, subject);

 [image: Images]The FULLTEXT index is added to the messages table.

 [image: Images]

 The syntax for adding any index, regardless of type, is ALTER TABLE tablename ADD INDEX_TYPE index_name (columns). The index name is optional.

 Here, the body and subject columns get a FULLTEXT index, to be used in FULLTEXT searches later in this chapter.

 Tip

 Inserting records into tables with FULLTEXT indexes can be slower because of the complex index that’s required.

 Tip

 FULLTEXT searches can successfully be used in a simple search engine. But a index can be applied only to a single table at a time, so more elaborate sites, with
 content stored in multiple tables, would benefit from using a more formal search engine.

 Performing Basic FULLTEXT Searches

 Once you’ve established a FULLTEXT index on a column or columns, you can start querying against it, using MATCH...AGAINST in a WHERE conditional:

 Click here to view code image

 SELECT * FROM tablename WHERE
MATCH (columns) AGAINST (terms)

 MySQL will return matching rows in order of a mathematically calculated relevance,
 just like a search engine. When doing so, certain rules apply:

 [image: Images] Strings are broken down into their individual keywords.

 [image: Images] Keywords fewer than four characters long are ignored.

 [image: Images] Very popular words, called stopwords, are ignored.

 [image: Images] If more than 50 percent of the records match the keywords, no records are returned.

 This last fact is problematic to many users as they begin with FULLTEXT searches and wonder why no results are returned. When you have a sparsely populated
 table, there just won’t be sufficient records for MySQL to return relevant results.

 To perform FULLTEXT searches:

 1. Connect to MySQL and select the forum database, if you have not already.

 2. Thoroughly populate the messages table, focusing on adding lengthy bodies.

 Once again, SQL INSERT commands can be downloaded from this book’s corresponding site or you can make up
 your own and adjust the following queries accordingly.

 3. Run a simple FULLTEXT search on the word database [image: Images]:

 Click here to view code image

 SELECT subject, body FROM messages
WHERE MATCH (body, subject)
AGAINST ('database');

 [image: Images]A basic FULLTEXT search.

 [image: Images]

 This is a very simple example that will return some results if at least one and less
 than 50 percent of the records in the messages table have the word “database” in their body or subject. Note that the columns referenced
 in must be the same as those on which the index was made. In this case, you could use either body, or , but you could not use just or just [image: Images].

 [image: Images]A FULLTEXT query can be run only on the same column or combination of columns that the FULLTEXT index was created on. With this query, even though the combination of body and subject has a FULLTEXT index, attempting to run the match on just subject will fail.

 [image: Images]

 4. Run the same FULLTEXT search while also showing the relevance [image: Images]:

 Click here to view code image

 SELECT subject, body,
MATCH (body, subject)
AGAINST ('database') AS R
FROM messages
WHERE
MATCH (body, subject)
AGAINST ('database')\G

 [image: Images]The relevance of a FULLTEXT search can be selected, too. In this case, you’ll see that the two records with the
 word “database” in both the subject and body have higher relevance than the record
 that contains the word in just the subject.

 [image: Images]

 If you use the same MATCH...AGAINST expression as a selected value, the actual relevance will be returned. As in the
 previous section of the chapter, to make the results easier to view in the mysql client,
 the query is terminated using \G, thereby returning the results as a vertical list.

 5. Run a FULLTEXT search using multiple keywords [image: Images]:

 Click here to view code image

 SELECT subject, body FROM messages
WHERE MATCH (body, subject)
AGAINST ('html xhtml');

 [image: Images]Using the FULLTEXT search, you can easily find messages that contain multiple keywords.

 [image: Images]

 With this query, a match will be made if the subject or body contains either word.
 Any record that contains both words will be ranked higher.

 Tip

 Remember that if a FULLTEXT search returns no records, this means either that no matches were made or that over
 half of the records match.

 Tip

 For sake of simplicity, all the queries in this section are simple SELECT statements. You can certainly use FULLTEXT searches within joins or more complex queries.

 Tip

 MySQL comes with several hundred stopwords already defined. These are part of the
 application’s source code.

 Tip

 The minimum keyword length—four characters by default—is a configuration setting you
 can change in MySQL.

 Tip

 FULLTEXT searches are case-insensitive by default.

 Performing Boolean FULLTEXT Searches

 The basic FULLTEXT search is nice, but a more sophisticated FULLTEXT search can be accomplished using its Boolean mode. To do so, add the phrase IN BOOLEAN MODE to the AGAINST clause:

 Click here to view code image

 SELECT * FROM tablename WHERE
MATCH (columns)
AGAINST ('terms' IN BOOLEAN MODE)

 Boolean mode has a number of operators (Table 7.3) to tweak how each keyword is treated:

 Click here to view code image

 SELECT * FROM tablename WHERE
MATCH (columns)
AGAINST ('+database -mysql'
[image: Images]IN BOOLEAN MODE)

 TABLE 7.3 Boolean Mode Operators

 	
 Operator

 	
 Meaning

 	
 +

 	
 Must be present in every match

 	
 -

 	
 Must not be present in any match

 	
 ~

 	
 Lowers a ranking if present

 	
 *

 	
 Wildcard

 	
 <

 	
 Decrease a word’s importance

 	
 >

 	
 Increase a word’s importance

 	
 “ “

 	
 Must match the exact phrase

 	
 (

 	
 Create subexpressions

 In that example, a match will be made if the word database is found and mysql is not present. Alternatively, the tilde (~) is used as a milder form of the minus sign, meaning that the keyword can be present
 in a match, but such matches should be considered less relevant.

 The wildcard character (*) matches variations on a word, so cata* matches catalog, catalina, and so on. Two operators explicitly state what keywords are more (>) or less (<) important. Finally, you can use double quotation marks to hunt for exact phrases
 and parentheses to make subexpressions; just be certain to use single quotation marks
 to wrap the keywords.

 The following query would look for records with the phrase Web develop with the word html being required and the word JavaScript detracting from a match’s relevance:

 Click here to view code image

 SELECT * FROM tablename
WHERE MATCH (columns)
AGAINST('>"Web develop"
[image: Images]+html ~JavaScript'
IN BOOLEAN MODE)

 When using Boolean mode, keep in mind these differences in how FULLTEXT searches work:

 [image: Images] If a keyword is not preceded by an operator, the word is optional but a match will
 be ranked higher if it is present.

 [image: Images] Results will be returned even if more than 50 percent of the records match the search.

 [image: Images] The results are not automatically sorted by relevance.

 Because of this last fact, you’ll also want to sort the returned records by their
 relevance, as demonstrated in the next sequence of steps. One important rule that’s
 the same with Boolean searches is that the minimum word length (four characters by
 default) still applies. Trying to require a shorter word using a plus sign (+php) still won’t work.

 To perform FULLTEXT Boolean searches:

 1. Connect to MySQL and select the forum database, if you have not already.

 2. Run a simple FULLTEXT search that finds HTML, XHTML, or (X)HTML [image: Images]:

 Click here to view code image

 SELECT subject, body FROM
messages WHERE MATCH(body, subject)
AGAINST ('*HTML' IN BOOLEAN MODE)\G

 [image: Images]A simple Boolean-mode FULLTEXT search.

 [image: Images]

 The term HTML may appear in messages in many formats, including HTML, XHTML, or (X)HTML. This Boolean mode query will find all of those, thanks to the wildcard character
 (*).

 To make the results easier to view, I’m using the \G trick mentioned earlier in the chapter, which tells the mysql client to return the
 results vertically, not horizontally.

 3. Find matches involving databases, with an emphasis on normal forms [image: Images]:

 Click here to view code image

 SELECT subject, body FROM messages
WHERE MATCH (body, subject)
AGAINST ('>"normal form*"
[image: Images]+database*'
IN BOOLEAN MODE)\G

 [image: Images]This search looks for variations on two different keywords, ranking the one higher
 than the other.

 [image: Images]

 This query first finds all records that have database, databases, etc. and normal form, normal forms, etc. in them. The database* term is required (as indicated by the plus sign), but emphasis is given to the normal
 form clause (which is preceded by the greater-than sign).

 4. Repeat the query from Step 2, with a greater importance on XHTML, returning the results
 in order of relevance [image: Images]:

 Click here to view code image

 SELECT subject, body,
MATCH (body, subject)
AGAINST ('*HTML >XHTML' IN
[image: Images]BOOLEAN MODE) AS R
FROM messages WHERE MATCH
[image: Images](body, subject)
AGAINST ('*HTML >XHTML' IN
[image: Images]BOOLEAN MODE)
ORDER BY R DESC\G

 [image: Images]This modified version of an earlier query selects, and then sorts the results by,
 the relevance.

 [image: Images]

 This is like the earlier query, but now XHTML is specifically given extra weight. This query additionally selects the calculated
 relevance, and the results are returned in that order.

 Tip

 MySQL 5.1.7 added another FULLTEXT search mode: natural language. This is the default mode, if no other mode (like Boolean)
 is specified.

 Tip

 The WITH QUERY EXPANSION modifier can increase the number of returned results. Such queries perform two searches
 and return one result set. It bases a second search on terms found in the most relevant
 results of the initial search. While a WITH QUERY EXPANSION search can find results that would not otherwise have been returned, it can also
 return results that aren’t at all relevant to the original search terms.

 Optimizing Queries

 Once you have a complete and populated database, and have a sense as to what queries
 will commonly be run on it, it’s a good idea to take some steps to optimize your queries
 and your database. Doing so will ensure you’re getting the best possible performance
 out of MySQL (and therefore, your site).

 To start, the sidebar reemphasizes key design ideas that have already been suggested
 in this book. Along with these tips are two simple techniques for optimizing existing
 tables. One way to improve MySQL’s performance is to run an OPTIMIZE command on occasion. This query will rid a table of any unnecessary overhead, thereby
 improving the speed of any interactions with it:

 OPTIMIZE TABLE tablename

 Running this command is particularly beneficial after changing a table via an ALTER command, or after a table has had lots of DELETE queries run on it, leaving virtual gaps among the records.

 Second, you can occasionally use the ANALYZE command:

 ANALYZE TABLE tablename

 Executing this command updates the indexes on the table, thereby improving their usage
 in queries. You could execute it whenever massive amounts of data stored in the table
 changes (e.g., via UPDATE or INSERT commands).

 Speaking of queries, as you’re probably realizing by now, there are often many ways
 of accomplishing the same goal. To find out the most efficient approach, it helps
 to understand how exactly MySQL will run that query. This can be accomplished using
 the EXPLAIN SQL keyword. Explaining queries is an advanced topic, but I’ll introduce the fundamentals
 here, and you can always see the MySQL manual or search online for more information.

 Database Optimization

 The performance of your database is primarily dependent on its structure and indexes.
 When creating databases, try to

 [image: Images] Choose the best storage engine

 [image: Images] Use the smallest data type possible for each column

 [image: Images] Define columns as NOT NULL whenever possible

 [image: Images] Use integers as primary keys

 [image: Images] Judiciously define indexes, selecting the correct type and applying them to the right
 column or columns

 [image: Images] Limit indexes to a certain number of characters, if possible

 [image: Images] Avoid creating too many indexes

 [image: Images] Make sure that columns to be used as the basis of joins are of the same type and,
 in the case of strings, use the same character set and collation

 To explain a query:

 1. Find a query that may be resource-intensive.

 Good candidates are queries that do any of the following:

 ▸ Join two or more tables

 ▸ Use groupings and aggregate functions

 ▸ Have WHERE clauses

 For example, this query from earlier in the chapter meets two of these criteria:

 Click here to view code image

 SELECT SUM(balance) AS Total,
COUNT(account_id) AS Number,
CONCAT(c.last_name, ', ',
[image: Images]c.first_name) AS Name
FROM accounts AS a
INNER JOIN customers AS c USING
[image: Images](customer_id)
GROUP BY (a.customer_id)
ORDER BY Name;

 2. Connect to MySQL and select the applicable database, if you have not already.

 3. Execute the query on the database, prefacing it with EXPLAIN [image: Images]:

 Click here to view code image

 EXPLAIN SELECT SUM(balance)
[image: Images]AS Total,
COUNT(account_id) AS Number,
CONCAT(c.last_name, ', ',
[image: Images]c.first_name) AS Name
FROM accounts AS a
INNER JOIN customers AS c USING
[image: Images](customer_id)
GROUP BY (a.customer_id)
ORDER BY Name;

 [image: Images]This EXPLAIN output reveals how MySQL will go about processing the query.

 [image: Images]

 If you’re using the mysql client, you’ll find it also helps to use the concluding
 \G trick (instead of the semicolon) to make the output more legible. The output itself
 will be one row of information for every table used in the query. The tables are listed
 in the same order that MySQL must access them to execute the query.

 I’ll walk through the key parts of the output, but to begin, the select_type value should be SIMPLE for most SELECT queries, and would be different if the query involves a UNION or subquery (see the MySQL manual for more on either UNIONs or subqueries).

 4. Check out the type value.

 Table 7.4 lists the different type values, from best to worst. The MySQL manual discusses what
 each means in detail, but understand first that eq_ref is the best you’ll commonly see and ALL is the worst. A type of eq_ref means that an index is being properly used and an equality comparison is being made.

 TABLE 7.4 Join Types

 	
 Type

 	
 system

 	
 const

 	
 eq_ref

 	
 ref

 	
 fulltext

 	
 ref_or_null

 	
 index_merge

 	
 unique_subquery

 	
 index_subquery

 	
 range

 	
 index

 	
 ALL

 Note that you’ll sometimes see ALL because the table has very few records in it, in which case it’s more efficient for
 MySQL to scan the table rather than use an index. This is presumably the case with
 [image: Images], since the accounts table only has four records.

 5. Check out the possible_keys value.

 The possible_keys value indicates which indexes exist that MySQL might be able to use to find the corresponding
 rows in this table. If you have a NULL value here, there are no indexes that MySQL thinks would be useful. Therefore, you
 might benefit from creating an index on that table’s applicable columns.

 6. Check out the key, key_len, and ref values.

 Whereas possible_keys indicates what indexes might be usable, key says what index MySQL will actually use for that query. Occasionally, you’ll find
 a value here that’s not listed in possible_keys, which is OK. If no key is being used, that almost always indicates a problem that
 can be remedied by adding an index or modifying the query.

 The key_len value indicates the length (i.e., the size) of the key that MySQL used. Generally,
 shorter is better here, but don’t worry about it too much.

 The ref column indicates which columns MySQL compared to the index named in the key column.

 7. Check out the rows value.

 This column provides an estimate of how many rows in the table MySQL thinks it will
 need to examine. Once again, lower is better. In fact, on a join, a rough estimate
 of the efficiency can be determined by multiplying all the rows values together.

 Often in a join, the number of rows to be examined should go from more to less, as
 in [image: Images].

 [image: Images]Another explanation of a query, this one a join across three tables.

 [image: Images]

 8. Check out the Extra value.

 Finally, this column reports any additional information about how MySQL will execute
 the query that may be useful. Two phrases you don’t want to find here are Using filesort and Using temporary. Both mean that extra steps are required to complete the query (e.g., a GROUP BY clause often requires that MySQL create a temporary table).

 If Extra says anything along the lines of Impossible X or No matching Y, that means your query has clauses that are always false and can be removed.

 9. Modify your table or queries and repeat!

 If the output suggests problems with how the query is being executed, you can consider
 doing any of the following:

 [image: Images] Changing the particulars of the query

 [image: Images] Changing the properties of a table’s columns

 [image: Images] Adding or modifying a table’s indexes

 Remember that the validity of the explanation will depend, in part, on how many rows
 are in the involved tables (as explained in Step 4, MySQL may skip indexes for small
 tables). Also understand that not all queries are fixable. Simple SELECT queries and even joins can sometimes be improved, but there’s little we can do to
 improve the efficiency of a GROUP BY query, considering everything MySQL must do to aggregate data.

 Tip

 The EXPLAIN EXTENDED command provides a few more details about a query:

 EXPLAIN EXTENDED SELECT...

 Tip

 Problematic queries can also be found by enabling certain MySQL logging features,
 but that requires administrative control over the MySQL server.

 Tip

 In terms of performance, MySQL deals with more, smaller tables better than it does
 fewer, larger tables. That being said, a normalized database structure should always
 be the primary goal.

 Tip

 In MySQL terms, a “big” database has thousands of tables and millions of rows.

 Performing Transactions

 A database transaction is a sequence of queries run during a single session. For example, you might insert
 a record into one table, insert another record into another table, and maybe run an
 update. Without using transactions, each individual query takes effect immediately
 and cannot be undone (the queries, by default, are automatically committed). With
 transactions, you can set start and stop points and then enact or retract all the
 queries between those points as needed: if one query failed, all the queries can be
 undone.

 Commercial interactions commonly require transactions, even something as basic as
 transferring $100 from my bank account to yours. What seems like a simple process
 requires several steps:

 [image: Images] Confirm that I have $100 in my account.

 [image: Images] Decrease my account by $100.

 [image: Images] Verify the decrease.

 [image: Images] Increase the amount of money in your account by $100.

 [image: Images] Verify that the increase worked.

 If any of the steps failed, all of them should be undone. For example, if the money
 couldn’t be deposited in your account, it should be returned to mine until the entire
 transaction can go through.

 The ability to execute transactions depends on the features of the storage engine
 in use. To perform transactions with MySQL, you must use the InnoDB table type (or
 storage engine).

 To begin a new transaction in the mysql client, type

 START TRANSACTION;

 Once your transaction has begun, you can now run your queries. Once you have finished,
 you can either enter COMMIT to enact all the queries or ROLLBACK to undo the effect of all the queries.

 After you have either committed or rolled back the queries, the transaction is considered
 complete, and MySQL returns to an autocommit mode. This means that any queries you execute take immediate effect. To start another
 transaction, just type START TRANSACTION.

 It is important to know that certain types of queries cannot be rolled back. Specifically,
 those that create, alter, truncate (empty), or delete tables or that create or delete
 databases cannot be undone. Furthermore, using such a query has the effect of committing
 and ending the current transaction.

 Second, understand that transactions are particular to each connection. One user connected
 through the mysql client has a different transaction than another mysql client user,
 both of which are different from a connected PHP script.

 Finally, you cannot perform transactions using phpMyAdmin. Each submission of a query
 through phpMyAdmin’s SQL window or tab is an individual and complete transaction,
 which cannot be undone with subsequent submissions.

 With this in mind, let’s use transactions with the banking database to perform the
 already mentioned task.

 To perform transactions:

 1. Connect to MySQL and select the banking database.

 2. Begin a transaction and show the table’s current values [image: Images]:

 Click here to view code image

 START TRANSACTION;
SELECT * FROM accounts;

 [image: Images]A transaction is begun and the existing table records are shown.

 [image: Images]

 3. Subtract $100 from David Sedaris’s (or any user’s) checking account.

 Click here to view code image

 UPDATE accounts
SET balance = (balance-100)
WHERE account_id=2;

 Using an UPDATE query, a little math, and a WHERE conditional, you can subtract 100 from a balance. Although MySQL will indicate that
 one row was affected, the effect is not permanent until the transaction is committed.

 4. Add $100 to Sarah Vowell’s checking account:

 Click here to view code image

 UPDATE accounts
SET balance = (balance+100)
WHERE account_id=1;

 This is the opposite of Step 3, as if $100 were being transferred from the one person
 to the other.

 5. Confirm the results [image: Images]:

 SELECT * FROM accounts;

 [image: Images]Two UPDATE queries are executed and the results are viewed.

 [image: Images]

 As you can see in the figure, the one balance is 100 more and the other is 100 less
 than they originally were [image: Images].

 6. Roll back the transaction:

 ROLLBACK;

 To demonstrate how transactions can be undone, let’s undo the effects of these queries.
 The command returns the database to how it was prior to starting the transaction. The
 command also terminates the transaction, returning MySQL to its autocommit mode.

 7. Confirm the results [image: Images]:

 SELECT * FROM accounts;

 [image: Images]Because the ROLLBACK command was used, the potential effects of the UPDATE queries were ignored.

 [image: Images]

 The query should reveal the contents of the table as they originally were.

 8. Repeat Steps 2 through 4.

 To see what happens when the transaction is committed, the two UPDATE queries will be run again. Be certain to start the transaction first, though, or
 the queries will automatically take effect!

 9. Commit the transaction and confirm the results [image: Images]:

 COMMIT;
SELECT * FROM accounts;

 [image: Images]Invoking the COMMIT command makes the transaction’s effects permanent.

 [image: Images]

 Once you enter COMMIT, the entire transaction is permanent, meaning that any changes are now in place.
 COMMIT also ends the transaction, returning MySQL to autocommit mode.

 Tip

 One of the great features of transactions is that they offer protection should a random
 event occur, such as a server crash. Either a transaction is executed in its entirety
 or all the changes are ignored.

 Tip

 To alter MySQL’s autocommit nature, type

 SET AUTOCOMMIT=0;

 Then you do not need to type START TRANSACTION and no queries will be permanent until you type COMMIT (or use an ALTER, CREATE, etc., query).

 Tip

 You can create savepoints in transactions:

 SAVEPOINT savepoint_name;

 Then you can roll back to that point:

 ROLLBACK TO SAVEPOINT savepoint_name;

 Database Encryption

 Up to this point, pseudo-encryption has been accomplished in the database using the
 SHA2() function. In the sitename and forum databases, the user’s password has been stored after running it through SHA2(). Although using the function in this way is perfectly fine (and quite common), the
 function doesn’t provide real encryption; the SHA2() function returns a representation of a value, called a hash, not an encrypted version of the value. By storing the hashed version of some data,
 comparisons can still be made later (such as upon login), but the original data cannot
 be retrieved from the database. If you need to store data in a protected way while
 still being able to view the data in its original form at some later point, other
 MySQL functions are necessary.

 MySQL has several encryption and decryption functions built into the software. If
 you require data to be stored in an encrypted form that can be decrypted, you’ll want
 to use AES_ENCRYPT() and AES_DECRYPT(). The AES_ENCRYPT() function is the most secure encryption option.

 These functions take two arguments: the data being encrypted or decrypted and a salt argument. The salt argument is a string that helps to randomize the encryption. Let’s
 look at the encryption and decryption functions first, and then I’ll return to the
 salt.

 To add a record to a table while encrypting the data, the query might look like

 Click here to view code image

 INSERT INTO users (username, pass)
VALUES ('troutster', AES_ENCRYPT
('mypass', 'nacl19874salt!'))

 The encrypted data returned by the AES_ENCRYPT() function will be in binary format. To store that data in a table, the column must
 be defined as one of the binary types (e.g., VARBINARY or BLOB).

 To run a login query for the record just inserted (matching a submitted username and
 password against those in the database), you would write

 Click here to view code image

 SELECT * FROM users WHERE
username = 'troutster' AND
AES_ENCRYPT('mypass',
[image: Images]'nacl19874salt!') = pass

 Returning to the issue of the salt, the exact same salt must be used for both encryption and decryption, which means
 that the salt must be stored somewhere as well. Contrary to what you might think,
 it’s safe to store the salt in the database, even in the same row as the salted data.
 This is because the purpose of the salt is to make the encryption process harder to
 crack (specifically, by a “rainbow” attack). Such attacks are done remotely, using
 brute force. Conversely, if someone can see everything stored in your database, you
 have bigger problems to worry about (i.e., all your data has been breached).

 Finally, to get the maximum benefit from “salting” the stored data, each piece of
 stored data should use a salt that’s unique, long, and binary.

 The MySQL manual recommends running the salt through the SHA2() function to increase its length. Use the UNHEX() function to convert it to binary:

 Click here to view code image

 INSERT INTO users (username, pass)
VALUES ('troutster', AES_ENCRYPT
('mypass', UNHEX(SHA2('nacl19874salt!',
[image: Images]512))))

 To put all this together, let’s add PIN and salt columns to the banking.customers table, and then store an encrypted version of each customer’s PIN.

 To encrypt and decrypt data:

 1. Access MySQL and select the banking database:

 2. Add the two new columns to the customers table [image: Images]:

 Click here to view code image

 ALTER TABLE customers
ADD COLUMN pin VARBINARY(16)
[image: Images]NOT NULL;
ALTER TABLE customers
ADD COLUMN nacl VARBINARY(64)
[image: Images]NOT NULL;

 [image: Images]Two columns are added to the customers table.

 [image: Images]

 The first column, pin, will store an encrypted version of the user’s PIN. For a PIN of four digits, AES_ENCRYPT() returns a binary value 16 characters long, so the pin column is defined as VARBINARY(16). The second column stores the salt, which will be run through SHA2() and UNHEX(), resulting in another binary type, this time with a length of 64.

 3. Update the first customer’s PIN[image: Images]:

 Click here to view code image

 UPDATE customers SET nacl =
[image: Images]UNHEX(SHA2(RAND(), 512))
[image: Images]WHERE customer_id=1;
UPDATE customers SET
[image: Images]pin=AES_ENCRYPT(1234, nacl)
[image: Images]WHERE customer_id=1;

 [image: Images]A record is updated, using an encryption function to protect the PIN.

 [image: Images]

 The first query updates the customer’s record, adding a salt value to the nacl column. That random value is obtained by applying the SHA2() function to the output from the RAND() function. This will create a string 128 characters long, such as ee26b0dd4af7e749aa1a8ee 3c10ae9923f618980772e473f8819a 5d4940e0db27ac185f8a0e1d5f84f
 88bc887fd67b143732c304cc5fa9ad 8e6f57f50028a8ff. This is then converted to binary using UNHEX().

 The second query stores the customer’s PIN—1234, using the already-stored nacl value as the salt.

 4. Retrieve the PIN in an unencrypted form [image: Images]:

 Click here to view code image

 SELECT customer_id,
AES_DECRYPT(pin, nacl) AS pin
FROM customers
WHERE customer_id=1;

 [image: Images]The record has been retrieved, decrypting the PIN in the process.

 [image: Images]

 This query returns the decrypted PIN for the customer with a customer_id of 1. Any value stored using AES_ENCRYPT() can be retrieved (and matched) using AES_DECRYPT() if the same salt is used.

 5. Check out the customer’s record without using decryption [image: Images]:

 Click here to view code image

 SELECT * FROM customers
WHERE customer_id=1\G

 [image: Images]Encrypted data is stored in an unreadable format (here, as a binary string of data).

 [image: Images]

 As you can see in the figure, the encrypted version of the PIN and the binary version
 of the salt are unreadable.

 Tip

 As a rule of thumb, use SHA2() for information that will never need to be viewable, such as passwords and perhaps
 usernames. Use AES_ENCRYPT() for information that needs to be protected but may need to be viewable at a later
 date, such as credit card information, Social Security numbers, addresses (perhaps),
 and so forth.

 Tip

 As a reminder, never storing credit card numbers and other high-risk data is always
 the safest option.

 Tip

 The same salting technique can be applied to SHA2() and other functions.

 Tip

 Be aware that data sent to the MySQL server, or received from it, could be intercepted
 and viewed. Better security can be had by using an SSL connection to the MySQL database.

 Review and Pursue

 If you have any problems with the review questions or the pursue prompts, turn to
 the book’s supporting forum (LarryUllman.com/forums/).

 Review

 [image: Images] What are the two primary types of joins?

 [image: Images] Why are aliases often used with joins?

 [image: Images] Why is it considered often necessary and at least a best practice to use the table.column syntax in joins?

 [image: Images] What impact does the order of tables used have on an outer join?

 [image: Images] How do you create a self-join?

 [image: Images] What are the aggregate functions?

 [image: Images] What impact does the DISTINCT keyword have on an aggregate function? What impact does GROUP BY have on an aggregate function?

 [image: Images] What kind of index is required to perform FULLTEXT searches? What type of storage engine?

 [image: Images] What impact does it have when you conclude a SELECT query with \G instead of a semicolon in the mysql client?

 [image: Images] How do IN BOOLEAN MODE FULLTEXT searches differ from standard FULLTEXT searches?

 [image: Images] What commands can you use to improve a table’s performance?

 [image: Images] How do you examine the efficiency of a query?

 [image: Images] Why doesn’t the forum database support transactions?

 [image: Images] How do you begin a transaction? How do you undo the effects of a transaction in progress?
 How do you make the effects of the current transaction permanent?

 [image: Images] What kind of column type is required to store the output from the AES_ENCRYPT() function?

 [image: Images] What are the important criteria for the salt used in the encryption process?

 Pursue

 [image: Images] Come up with more join examples for the forum and banking databases. Perform inner joins, outer joins, and joins across all three tables.

 [image: Images] Check out the MySQL manual pages if you’re curious about the UNION SQL command or about subqueries.

 [image: Images] Perform some more grouping exercises on the banking or forum databases.

 [image: Images] Practice running FULLTEXT searches on the forum database.

 [image: Images] Examine other queries to see the results.

 [image: Images] Read the MySQL manual pages, and other online tutorials, on explaining queries and
 optimizing tables.

 [image: Images] Play with transactions some more.

 [image: Images] Research the subjects of salting passwords and rainbow attacks to learn more.

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 8. Error Handling and Debugging

 In This Chapter

 Error Types and Basic Debugging

 Displaying PHP Errors

 Adjusting Error Reporting in PHP

 Creating Custom Error Handlers

 PHP Debugging Techniques

 SQL and MySQL Debugging Techniques

 Review and Pursue

 If you’re working through this book sequentially (which would be for the best), the
 next subject to learn is how to use PHP and MySQL together. However, that process
 will undoubtedly generate errors, errors that can be tricky to debug. So before moving
 on to new concepts, these next few pages address the bane of the programmer: errors. As you gain experience, you’ll make fewer errors and learn your own debugging methods,
 but there are plenty of tools and techniques the beginner can use to help ease the
 learning process.

 This chapter has three main threads. One focus is on learning about the various kinds
 of errors that can occur when developing dynamic websites and what their likely causes
 are. Second, several debugging techniques are taught, in a step-by-step format. Finally,
 you’ll see different techniques for handling the errors that do occur in the most
 graceful manner possible.

 Error Types and Basic Debugging

 When developing web applications with PHP and MySQL, you end up with potential bugs
 in one of four or more technologies. You could have HTML issues, PHP problems, SQL
 errors, or MySQL mistakes. The first step in fixing any bug is identifying its source.

 HTML problems are often the least disruptive and the easiest to catch. You normally
 know there’s a problem when your layout is all messed up. Some steps for catching
 and fixing these, as well as general debugging hints, are discussed in the next section.

 PHP errors are the ones you’ll see most often, since this language will be at the
 heart of your applications. PHP errors fall into three general areas:

 [image: Images] Syntactical

 [image: Images] Run-time

 [image: Images] Logical

 Syntactical, or parse, errors are the most common and the easiest to fix. You’ll see them if you merely
 omit a semicolon. Such errors stop the script from executing, and if display_errors is on in your PHP configuration, PHP will show an error, including the line PHP thinks
 it’s on [image: Images]. If display_errors is off, you’ll see a blank page. You’ll learn more about display_errors later in this chapter.

 [image: Images]

 [image: Images] Parse errors—which you’ve probably seen many times over by now—are the most common
 sort of PHP error, particularly for beginning programmers.

 Run-time errors include those things that don’t stop a PHP script from executing (like
 parse errors do) but do stop the script from doing everything it was supposed to do.
 Examples include calling a function using the wrong number or types of parameters.
 With these errors, PHP will normally display a message indicating the exact problem
 [image: Images] (again, assuming that display_errors is on).

 [image: Images]

 [image: Images]Misusing a function (calling it with improper parameters) will create errors during
 the execution of the script.

 The final category of error—logical—is actually the worst, because PHP won’t necessarily
 report it to you. These are out-and-out bugs—problems that aren’t obvious and don’t
 stop the execution of a script. Tricks for solving these PHP errors will be demonstrated
 in just a few pages.

 SQL errors are normally a matter of syntax, and they’ll be reported when you try to
 run the query in MySQL. For example, I’ve done this too many times [image: Images]:

 DELETE * FROM tablename

 [image: Images]

 [image: Images]MySQL will report any errors found in the syntax of an SQL command.

 The syntax is just wrong, a confusion with the SELECT syntax (SELECT * FROM tablename). The correct syntax is

 DELETE FROM tablename

 The Right Mentality

 Before getting much further, a word regarding errors: they happen to the best of us.
 Even the author of this book sees more than enough errors in his development duties
 (but rest assured that the code in this book should be bug-free). Thinking that you’ll
 get to a skill level where errors never occur is a fool’s dream, but there are techniques
 for minimizing errors, and knowing how to quickly catch, handle, and fix errors is
 a major skill in its own right. So try not to become frustrated as you make errors;
 instead, bask in the knowledge that you’re becoming a better debugger!

 Again, MySQL will raise a red flag when you have SQL errors, so these aren’t that
 difficult to find and fix. With modern web sites, the catch is that you don’t always
 have static queries but often ones dynamically generated by PHP. In such cases, if
 there’s an SQL syntax problem, the issue is probably in your PHP code.

 Besides reporting on SQL errors, MySQL has its own errors to consider. An inability
 to access the database is a common one and a showstopper at that [image: Images]. You’ll also see errors when you misuse a MySQL function or ambiguously refer to
 a column in a join. Again, MySQL will report any such error in specific detail. Keep
 in mind that when a query doesn’t return the records or otherwise have the result
 you expect, that’s not a MySQL or SQL error, but rather a logical one. Toward the
 end of this chapter you’ll see how to solve SQL and MySQL problems.

 [image: Images]

 [image: Images]An inability to connect to a MySQL server or a specific database is a common MySQL
 error.

 But as you should walk before you can run, the next section covers the fundamentals
 of debugging dynamic web sites, starting with the basic checks you should make and
 how to fix HTML problems.

 Basic debugging steps

 This first sequence of steps may seem obvious, but when it comes to debugging, missing
 one of these steps leads to an unproductive and extremely frustrating debugging experience.
 And while I’m at it, I should mention that the best piece of general debugging advice
 is this:

 When you get frustrated, step away from the computer!

 I have solved almost all of the most perplexing issues I’ve come across by taking
 a break, clearing my head, and coming back to the code with fresh eyes. Readers in
 the book’s supporting forum (LarryUllman.com/forums/) have frequently found this to be true as well. Trying to forge ahead when you’re
 frustrated tends to make things worse. Much worse.

 To begin debugging any problem:

 [image: Images] Make sure that you are running the right page.

 It’s altogether too common that you try to fix a problem and no matter what you do,
 it never goes away. The reason is you’ve actually been editing a different page than
 you thought. Verify that the name and location of the file being executed matches
 that of the file you’re editing. In this regard, using an all-in-one IDE, such as
 Adobe Dreamweaver (www.adobe.com/go/dreamweaver), is an advantage.

 [image: Images] Make sure that you have saved your latest changes.

 An unsaved document will continue to have the same problems it had before you edited
 it (because the edits haven’t been enacted). One of the many reasons I like the TextMate
 (www.macromates.com) text editor is that it automatically saves every document when the application loses
 focus.

 [image: Images] Make sure that you run all PHP pages through the URL.

 Because PHP works through a web server (Apache, IIS, etc.), running any PHP code requires
 that you access the page through a URL (http://www.example.com/page.php or http://localhost/page.php). If you double-click a PHP page to open it in a browser (or use the browser’s File
 > Open option), you’ll see the PHP code, not the executed result. This also occurs
 if you load an HTML page without going through a URL (which will work on its own)
 but then submit the form to a PHP page [image: Images].

 [image: Images]

 [image: Images]PHP code will be executed only if run through a URL. This means that forms that submit
 to a PHP page must also be loaded through http://.

 [image: Images] Know what versions of PHP and MySQL you are running.

 Some problems are specific to a certain version of PHP or MySQL. For example, some
 functions are added in later versions of PHP, and MySQL added significant new features
 in version 5. Run a phpinfo() script [image: Images] (see Appendix A, “Installation,” for a script example) and open a mysql client session [image: Images] to determine this information. phpMyAdmin will often report on the versions involved
 as well (but don’t confuse the version of phpMyAdmin with the versions of PHP or MySQL).

 [image: Images]

 [image: Images]A phpinfo() script is one of your best tools for debugging, informing you of the PHP version
 and how it’s configured.

 [image: Images]

 [image: Images]When you connect to a MySQL server, it will let you know the version number in use.

 [image: Images] Know what web server you are running.

 Similarly, some problems and features are unique to your web serving application—Apache,
 IIS, or Nginx. You should know which one you are using, and which version, from when
 you installed the application. If you’re using a web host, the hosting company can
 provide you with this information.

 [image: Images] Try executing pages in a different browser.

 Every developer should have and use at least two browsers. If you test your pages
 in different ones, you’ll be able to see if the problem has to do with your script
 or a particular browser. Normally, only HTML and CSS problems can arise (or disappear)
 when you switch browsers; rarely will PHP, let alone MySQL or SQL, errors be browser
 specific.

 [image: Images] If possible, try executing the page using a different web server, version of PHP,
 and/or version of MySQL.

 PHP and MySQL errors sometimes stem from particular configurations and versions on
 one server. If something works on one server but not another, then you’ll know that
 the script isn’t inherently at fault. From there it’s a matter of using phpinfo() scripts to see what server settings may be different.

 Tip

 If taking a break is one thing you should do when you become frustrated, here’s what
 you shouldn’t do: send off one or multiple panicky and persnickety emails to a writer,
 to a newsgroup or mailing list, or to anyone else. When it comes to asking for free
 help from strangers, patience and pleasantries garner much better and faster results.

 Tip

 For that matter, I strongly advise against randomly guessing at solutions. I’ve seen
 far too many people only complicate matters further by taking stabs at solutions without
 a full understanding of what the attempted changes should or should not do.

 Tip

 There’s another different realm of errors that you could classify as usage errors:
 what goes wrong when the site’s users don’t do what you thought they would. As a golden
 rule, write your code so that it doesn’t break even if the user doesn’t do anything
 right or does everything wrong! In other words, make no assumptions. There’s a quote
 from Doug Linder that applies here: “A good programmer is someone who looks both ways
 before crossing a one-way street.”

 Book Errors

 If you’ve followed an example in this book and something’s not working right, what
 should you do?

 1. Double-check your code or steps against those in the book.

 2. Use the index at the back of the book to see if I reference a script or function
 in an earlier page (you may have missed an important usage rule or tip).

 3. View the PHP manual for a specific function to see if it’s available in your version
 of PHP and to verify how the function is used.

 4. Check out the book’s errata page (through the supporting website, LarryUllman.com) to see if an error in the code does exist and has been reported. Don’t post your
 particular problem there yet, though!

 5. Triple-check your code and use all the debugging techniques outlined in this chapter.

 6. Search the book’s supporting forum to see if others have had this problem and if
 a solution has already been determined.

 7. If all else fails, use the book’s supporting forum to ask for assistance. When you
 do, make sure you include all the pertinent information (version of PHP, version of
 MySQL, the debugging steps you took and what the results were, etc.).

 Debugging HTML

 Debugging HTML is relatively easy. The source code is very accessible, most problems
 are overt, and attempts at fixing the HTML don’t normally make things worse (as can
 happen with PHP). Still, you should follow some basic steps to find and fix an HTML
 problem.

 To debug an HTML error:

 [image: Images] Check the source code.

 If you have an HTML problem, you’ll almost always need to check the source code of
 the page to find it. How you view the source code depends on the browser being used,
 but normally it’s a matter of finding “developer tools” or “view source.”

 [image: Images] Use a validation tool [image: Images].

 [image: Images]

 [image: Images]Validation tools like the one provided by the W3C (World Wide Web Consortium) are
 good for finding problems and making sure your HTML conforms to standards.

 Validation tools, like the one at http://validator.w3.org, are great for finding mismatched tags, broken tables, and other problems.

 [image: Images] Use a great debugging browser.

 The debugging tools built into browsers have come a long way over the years, and most
 of them have comparable tools. Find a browser that you like best, that has great debugging
 tools (look online for tutorials, if you want), and master what it offers.

 [image: Images] Test the page in another browser.

 PHP code is generally browser-independent, meaning you’ll get consistent results regardless
 of the client. Not so with HTML. Sometimes a particular browser has a quirk that affects
 the rendered page. Running the same page in another browser is the easiest way to
 know if it’s an HTML problem or a browser quirk.

 Tip

 The first step toward fixing any kind of problem is understanding what’s causing it.
 Remember the role each technology—HTML, PHP, SQL, and MySQL—plays as you debug. If
 your page doesn’t look right, that’s an HTML problem. If your HTML is dynamically
 generated by PHP, it’s still an HTML problem, but you’ll need to work with the PHP
 code to make it right.

 Displaying PHP Errors

 PHP provides remarkably useful and descriptive error messages when things go awry.
 Unfortunately, PHP doesn’t show these errors when running using its default configuration.
 This policy makes sense for live servers, where you don’t want the end users seeing
 PHP-specific error messages, but it also makes everything that much more confusing
 for the beginning PHP developer. To be able to see PHP’s errors, you must turn on
 the display_errors directive, either in an individual script or for the PHP configuration as a whole.

 To turn on display_errors in a script, use the ini_set() function. As its arguments, this function takes a directive name and what setting
 that directive should have:

 [image: Images]

 ini_set('display_errors', 1);

 Including this line in a script will turn on display_errors for that script. The only downside is that if your script has a syntax error that
 prevents it from running at all, then you’ll still see a blank page. To have PHP display
 errors for the entire server, you’ll need to edit its configuration, as discussed
 in the “Configuring PHP” section of Appendix A.

 To turn on display_errors:

 1. Create a new PHP document in your text editor or IDE, to be named
 display_errors.php (Script 8.1):

 [image: Images]

 <!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Displaying Errors</title>
</head>
<body>
<h2>Testing Display Errors</h2>
<?php # Script 8.1 -
[image: Images]display_errors.php

 Script 8.1 The ini_set() function can be used to tell a PHP script to reveal any errors that might occur.

 Click here to view code image

1 <!doctype html>
2 <html lang="en">
3 <head>
4 <meta charset="utf-8">
5 <title>Displaying Errors</title>
6 </head>
7 <body>
8 <h2>Testing Display Errors</h2>
9 <?php # Script 8.1 - display_errors.php
10
11 // Show errors:
12 ini_set('display_errors', 1);
13
14 // Create errors:
15 foreach ($var as $v) {}
16 $result = 1/0;
17
18 ?>
19 </body>
20 </html>

 2. After the initial PHP tags, add

 [image: Images]

 ini_set('display_errors', 1);

 From this point in this script forward, any errors that occur will be displayed.

 3. Create some errors:

 [image: Images]

 foreach ($var as $v) { }
$result = 1/0;

 To test the display_errors setting, the script needs to have at least one error. This first line doesn’t even
 try to do anything, but it’s guaranteed to cause an error. There are actually two
 issues here: first, there’s a reference to a variable ($var) that doesn’t exist; second, a non-array ($var) is being used in the foreach loop as if it were an array.

 The second line is a classic division by zero, which is not allowed in programming
 languages or in math.

 4. Complete the page:

 ?>
</body>
</html>

 5. Save the file as display_errors.php, place it in your web directory, and test it in your browser [image: Images].

 [image: Images]

 [image: Images] With display_errors turned on (for this script), the page reports the errors when they occur.

 6. If you want, change the first line of PHP code to read

 [image: Images]

 ini_set('display_errors', 0);

 Then save and retest the script [image: Images].

 [image: Images]

 [image: Images] With display_errors turned off (for this page), the same errors are no longer reported. Unfortunately,
 they still exist.

 Tip

 There are limits as to what PHP settings the ini_set() function can be used to adjust. See the PHP manual for specifics as to what can and
 cannot be changed using it.

 Tip

 As a reminder, changing the display_ errors setting in a script only works so long as that script runs (i.e., it cannot have
 any parse errors). To be able to always see any errors that occur, you’ll need to
 enable display_errors in PHP’s configuration file (again, see the appendix).

 Adjusting Error Reporting in PHP

 Once you have PHP set to display the errors that occur, you might want to adjust the
 level of error reporting. Your PHP installation as a whole, or individual scripts,
 can be set to report or ignore different types of errors. Table 8.1 lists most of the levels, but they can generally be one of these three kinds:

 [image: Images] Notices, which do not stop the execution of a script and may not necessarily be a problem

 [image: Images] Warnings, which indicate a problem but don’t stop a script’s execution

 [image: Images] Errors, which stop a script from continuing (including the ever-common parse error, which
 prevents scripts from running at all)

 TABLE 8.1 Error-Reporting Levels

 	
 Number

 	
 Constant

 	
 Report On

 	
 1

 	
 E_ERROR

 	
 Fatal run-time errors (that stop execution of the script)

 	
 2

 	
 E_WARNING

 	
 Run-time warnings (nonfatal errors)

 	
 4

 	
 E_PARSE

 	
 Parse errors

 	
 8

 	
 E_NOTICE

 	
 Notices (things that could or could not be a problem)

 	
 256

 	
 E_USER_ERROR

 	
 User-generated error messages, generated by the trigger_error() function

 	
 512

 	
 E_USER_WARNING

 	
 User-generated warnings, generated by the trigger_error() function

 	
 1024

 	
 E_USER_NOTICE

 	
 User-generated notices, generated by the trigger_error() function

 	
 2048

 	
 E_STRICT

 	
 Recommendations for compatibility and interoperability

 	
 8192

 	
 E_DEPRECATED

 	
 Warnings about code that won’t work in future versions of PHP

 	
 32767

 	
 E_ALL

 	
 All errors, warnings, and recommendations

 As a rule of thumb, you’ll want PHP to report on any kind of error while you’re developing
 a site but report no specific errors once the site goes live. For security and aesthetic
 purposes, it’s generally unwise for a public user to see PHP’s detailed error messages.

 Suppressing Errors with @

 Individual errors can be suppressed in PHP using the error suppression operator, @. For example, if you don’t want PHP to report if it couldn’t include a file, you
 would code

 [image: Images]

 @include ('config.inc.php');

 Or if you don’t want to see a “division by zero” error:

 [image: Images]

 $x = 8;
$y = 0;
$num = @($x/$y);

 The @ symbol will work only on expressions, like function calls or mathematical operations.
 You cannot use @ before conditionals, loops, function definitions, and so forth.

 As a rule of thumb, I recommend that @ be used on functions whose execution, should they fail, will not affect the functionality
 of the script as a whole. Or you can choose not to display PHP’s errors by handling
 them more gracefully yourself (a topic discussed later in this chapter).

 Frequently, error messages—particularly those dealing with the database—will reveal
 certain behind-the-scenes aspects of your web application that are best not shown.
 Although you hope these will be worked out during the development stage, that may
 not be the case.

 You can universally adjust the level of error reporting following the instructions
 in Appendix A. Or you can adjust this behavior on a script-by-script basis using the
 error_reporting() function. This function is used to establish what type of errors PHP should report
 on within a specific page. The function takes either a number or a constant, using
 the values in Table 8.1 (the PHP manual lists a few others, related to the core of PHP itself).

 [image: Images]

 error_reporting(0); // Show no errors.

 A setting of 0 turns error reporting off entirely (errors will still occur; you just
 won’t see them anymore). Conversely, error_reporting(E_ALL) will tell PHP to report on every error that occurs. The numbers can be added up to
 customize the level of error reporting, or you could use the bitwise operators— (or), (not), (and)—with the constants. With the following setting, any non-notice error will be
 shown:

 [image: Images]

 error_reporting(E_ALL & ~E_NOTICE);

 To adjust error reporting:

 1. Open display_errors.php (Script 8.1) in your text editor or IDE, if you haven’t already.

 To play around with error reporting levels, use display_errors.php as an example.

 2. After adjusting the display_errors setting, add (Script 8.2)

 [image: Images]

 error_reporting(E_ALL);

 Script 8.2 This script will demonstrate how error reporting can be manipulated in PHP.

 Click here to view code image

 1 <!doctype html>
2 <html lang="en">
3 <head>
4 <meta charset="utf-8">
5 <title>Reporting Errors</title>
6 </head>
7 <body>
8 <h2>Testing Error Reporting</h2>
9 <?php # Script 8.2 - report_errors.php
10
11 // Show errors:
12 ini_set('display_errors', 1);
13
14 // Adjust error reporting:
15 error_reporting(E_ALL);
16
17 // Create errors:
18 foreach ($var as $v) {}
19 $result = 1/0;
20
21 ?>
22 </body>
23 </html>

 For development purposes, have PHP notify you of all errors, notices, warnings, and
 recommendations. Setting the level of error reporting to E_ALL will accomplish that.

 Because E_ALL is a constant, it’s not enclosed in quotation marks.

 3. Save the file as report_errors.php, place it in your web directory, and run it in your browser [image: Images].

 [image: Images]

 [image: Images] On the highest level of error reporting, PHP has two warnings and one notice for
 this page (Script 8.2).

 I also altered the page’s title and the heading, but both are immaterial to the point
 of this exercise.

 4. Change the level of error reporting to something different and retest [image: Images] and [image: Images].

 [image: Images]

 [image: Images] The same page (Script 8.2) after disabling the reporting of notices.

 [image: Images]

 [image: Images] The same page again (Script 8.2) with error reporting turned off (set to 0). The result is the same as if display_errors were disabled. Of course, the errors still occur; they’re just not being reported.

 Tip

 The numeric value of E_ALL in Table 8.1 can differ from one version of PHP to the next.

 Tip

 Because you’ll often want to adjust the display_errors and error_reporting for every page in a web site, you might want to place those lines of code in a separate
 PHP file that can then be included by other PHP scripts.

 Tip

 The scripts in this book were all written with PHP’s error reporting on the highest
 level (with the intention of catching every possible problem).

 Tip

 The trigger_error() function is a way to programmatically generate an error in a PHP script. Its first
 argument is an error message; its second, optional, argument is a numeric error type,
 corresponding to the values in Table 8.1. By default the type will be E_USER..

 [image: Images]

 if (/* some condition */) {
 trigger_error('Something Bad
 [image: Images]Happened!');
}

 Creating Custom Error Handlers

 Another option for error management with your sites is to alter how PHP handles errors.
 By default, if display_errors is enabled and an error is caught (that falls under the level of error reporting),
 PHP will print the error, in a somewhat simplistic form, within some minimal HTML
 tags [image: Images].

 [image: Images]

 [image: Images] The HTML source code shows how PHP formats errors by default.

 Some PHP installations will use even more elaborate error reporting [image: Images].

 [image: Images]

 [image: Images] Additional debugging information, which can include a walkthrough of the code involved,
 is output by some PHP configurations.

 You can override how errors are handled by creating your own function that will be
 called when errors occur. For example:

 [image: Images]

 function report_errors(arguments) {
 // Do whatever here.
}
set_error_handler('report_errors');

 The PHP set_error_handler() function is used to name the user-defined function to be called when an error occurs.
 The handling function (report_errors, in this case) will, at that time, receive several values that can be used in any
 possible manner.

 This function can be written to take up to five arguments. In order, these arguments
 are an error number (corresponding to Table 8.1), a textual error message, the name of the file where the error was found, the specific
 line number on which it occurred, and the variables that existed at the time of the
 error. Defining a function that accepts all these arguments might look like

 [image: Images]

 function report_errors($num, $msg,
[image: Images]$file, $line, $vars) {...

 To make use of this concept, we will rewrite the report_errors.php file (Script 8.2) one last time.

 To create your own error handler:

 1. Open report_errors.php (Script 8.2) in your text editor or IDE, if you haven’t already.

 2. Remove the ini_set() and error_reporting() lines (Script 8.3).

 Script 8.3 By defining your own error-handling function, you can customize how errors are treated
 in your PHP scripts.

 Click here to view code image

1 <!doctype html>
2 <html lang="en">
3 <head>
4 <meta charset="utf-8">
5 <title>Handling Errors</title>
6 </head>
7 <body>
8
9 <h2>Testing Error Handling</h2>
10 <?php # Script 8.3 - handle_errors.php
11
12 // Flag variable for site status:
13 define('LIVE', FALSE);
14
15 // Create the error handler:
16 function my_error_handler($e_number, $e_message, $e_file, $e_line, $e_vars) {
17
18 // Build the error message:
19 $message = "An error occurred in script '$e_file' on line $e_line: $e_message\n";
20
21 // Append $e_vars to $message:
22 $message .= print_r ($e_vars, 1);
23
24 if (!LIVE) { // Development (print the error).
25 echo '<pre>' . $message . "\n";
26 debug_print_backtrace();
27 echo '</pre>
';
28 } else { // Don't show the error.
29 echo '<div class="error">A system error occurred. We apologize for the
 inconvenience.</div>
';
30 }
31
32 } // End of my_error_handler() definition.
33
34 // Use my error handler:
35 set_error_handler('my_error_handler');
36
37 // Create errors:
38 foreach ($var as $v) {}
39 $result = 1/0;
40
41 ?>
42 </body>
43 </html>

 When you establish your own error-handling function, the error reporting levels no
 longer have any meaning, so the line that adjusts them can be removed. Adjusting the
 display_errors setting is also meaningless, since the error-handling function will control whether
 or not errors are displayed.

 3. Before the script creates the errors, add

 define('LIVE', FALSE);

 This constant will be a flag used to indicate if the site is currently live. It’s
 an important distinction, because how you handle errors and what you reveal in the
 browser should differ greatly when you’re developing a site and when a site is live.

 This constant is being set outside of the function for two reasons. First, I want
 to treat the function as a black box that does what I need it to do without having
 to go in and tinker with it. Second, in many sites, there might be other settings
 (like the database connectivity information) that are also live versus development-specific.
 Conditionals could, therefore, also refer to this constant to adjust those settings.

 4. Begin defining the error-handling function:

 [image: Images]

 function my_error_handler
[image: Images]($e_number, $e_message,
[image: Images]$e_file, $e_line, $e_vars) {

 The my_error_handler() function is set to receive the full five arguments that a custom error handler can.

 5. Create the error message using the received values.

 [image: Images]

 $message = "An error occurred in
[image: Images]script '$e_file' on line
[image: Images]$e_line: $e_message\n";

 The error message will begin by referencing the filename and line number where the
 error occurred. Added to this is the actual error message. These values are passed
 to the function when it is called (when an error occurs).

 6. Add any existing variables to the error message:

 [image: Images]

 $message .= print_r($e_vars, 1);

 The $e_vars variable will receive all the variables that exist, and their values, when the error
 happens. Because this might contain useful debugging information, it’s added to the
 message.

 The print_r() function is normally used to print out a variable’s structure and value; it is particularly
 useful with arrays. If you call the function with a second argument (1 or TRUE), the
 result is returned instead of printed. So, this line adds all of the variable information
 to $message.

 7. Print a message that will vary, depending on whether or not the site is live:

 [image: Images]

 if (!LIVE) {
 echo '<pre>' . $message . "\n";
 debug_print_backtrace();
 echo '</pre>
';
} else {
 echo '<div class="error">
[image: Images]A system error occurred.
[image: Images]We apologize for the
[image: Images]inconvenience.</div>
';
}

 If the site is not live (if LIVE is FALSE), which would be the case while the site is being developed, a detailed
 error message should be printed [image: Images]. For ease of viewing, the error message is printed within HTML PRE tags. Furthermore, a useful debugging function, debug_print_backtrace(), is also called. This function returns a slew of information about what functions
 have been called, what files have been included, and so forth.

 [image: Images]

 [image: Images] During the development phase, detailed error messages are printed in the web browser.
 (In a more real-world script, with more code, the messages would be more useful.)

 If the site is live, a simple mea culpa will be printed, letting the user know that
 an error occurred but not what the specific problem is [image: Images]. Under this situation, you could also use the error_log() function (see the sidebar) to have the detailed error message emailed or written
 to a log.

 [image: Images]

 [image: Images] Once a site has gone live, more user-friendly (and less revealing) errors are printed.
 Here, one message is printed for each of the three errors in the script.

 8. Complete the function and tell PHP to use it:

 [image: Images]

 }
set_error_handler
[image: Images]('my_error_handler');

 This second line is the important one, telling PHP to use the custom error handler
 instead of PHP’s default handler.

 Logging PHP Errors

 In Script 8.3, errors are handled by simply printing them out in detail or not printing them at
 all. Another option is to log the errors—making a permanent note of them. For this
 purpose, the error_log() function instructs PHP how to file an error. Its syntax is

 error_log(message, type,
[image: Images]destination, extra headers);

 The message value should be the text of the logged error (i.e., $message in Script 8.3). The type dictates how the error is logged. The options are the numbers 0, 1, 3,
 and 4: use the computer’s default logging method (0), send it in an email (1), write
 it to a text file (3), or send it to the web server’s logging handler (4).

 The destination parameter can be either the name of a file (for log type 3) or an
 email address (for log type 1). The extra headers argument is used only when sending
 emails (log type 1). Both the destination and extra headers are optional.

 9. Save the file as handle_errors.php, place it in your web directory, and test it in your browser [image: Images].

 10. Change the value of LIVE to TRUE, save, and retest the script [image: Images].

 To see how the error handler behaves with a live site, change just this one value.

 Tip

 If your PHP page uses special HTML formatting—like CSS tags to affect the layout and
 font treatment—add this information to your error reporting function.

 Tip

 Obviously in a live site you’ll probably need to do more than apologize for the inconvenience
 (particularly if the error significantly affects the page’s functionality). Still,
 this example demonstrates how you can easily adjust error handling to suit the situation.

 Tip

 If you don’t want the error-handling function to report on every notice, error, or
 warning, you could check the error number value (the first argument sent to the function).
 For example, to ignore notices when the site is live, you would change the main conditional
 to

 [image: Images]

 if (!LIVE) {
 echo '<pre>' . $message . "\n";
 debug_print_backtrace();
 echo '</pre>
';
} elseif ($e_number != E_NOTICE) {
 echo '<div class="error">A system
[image: Images]error occurred. We apologize
[image: Images]for the inconvenience.</div>
[image: Images]
';
}

 PHP Debugging Techniques

 When it comes to debugging, what you’ll best learn from experience are the causes
 of certain types of errors. Understanding the common causes will shorten the time
 it takes to fix errors. To expedite the learning process, Table 8.2 lists the likely reasons for the most common PHP errors.

 TABLE 8.2 Common PHP Errors

 	
 Error

 	
 Likely Cause

 	
 Blank Page

 	
 HTML problem, or PHP error and display_errors or error_reporting is off.

 	
 Parse error

 	
 Missing semicolon; unbalanced curly braces, parentheses, or quotation marks; or use
 of an unescaped quotation mark in a string.

 	
 Empty variable value

 	
 Forgot the initial $, misspelled or miscapitalized the variable name, or inappropriate variable scope
 (with functions).

 	
 Undefined variable

 	
 Reference made to a variable before it is given a value or an empty variable value
 (see those potential causes).

 	
 Call to undefined function

 	
 Misspelled function name, PHP is not configured to use that function (like a MySQL
 function), or document that contains the function definition was not included.

 	
 Cannot redeclare function

 	
 Two definitions of your own function exist; check within included files.

 	
 Headers already sent

 	
 White space exists in the script before the PHP tags, data has already been printed,
 or a file has been included.

 The first, and most common, type of error that you’ll run across is syntactical and
 will prevent your scripts from executing. An error like this will result in messages
 like the one in [image: Images], which every PHP developer has seen too many times. To avoid making this sort of
 mistake when you program, be sure to

 [image: Images]

 [image: Images] The parse error prevents a script from running because of invalid PHP syntax. This
 one was caused by omitting a semicolon.

 [image: Images] End every statement (but not language constructs like loops and conditionals) with
 a semicolon.

 [image: Images] Balance all quotation marks, parentheses, curly braces, and square brackets (each
 opening character must be closed).

 [image: Images] Be consistent with your quotation marks (single quotes can be closed only with single
 quotes and double quotes with double quotes).

 [image: Images] Escape, using the backslash, all single- and double-quotation marks within strings,
 as appropriate.

 One thing you should also understand about syntactical errors is that just because
 the PHP error message says the error is occurring on line 12, that doesn’t mean the
 mistake is on that line. At the very least, it is not uncommon for there to be a difference
 between what PHP thinks is line 12 and what your text editor indicates is line 12.
 So although PHP’s direction is useful in tracking down a problem, treat the line number
 referenced as more of a starting point than an absolute.

 If PHP reports an error on the last line of your document, this is almost always because
 a mismatched parenthesis, curly brace, or quotation mark was not caught until that
 moment.

 The second type of error you’ll encounter results from misusing a function. This error
 occurs, for example, when a function is called without the proper arguments. This
 error is discovered by PHP when attempting to execute the code. In later chapters
 you’ll probably see such errors when using the function, cookies, or sessions.

 To fix errors, you’ll need to do a little detective work to see what mistakes were
 made and where. For starters, though, always thoroughly read and trust the error message
 PHP offers. Although the referenced line number may not always be correct, a PHP error
 is very descriptive, normally helpful, and almost always 100 percent correct.

 To debug your scripts:

 [image: Images] Turn on display_errors.

 Use the earlier steps to enable display_errors for a script or, if possible, the entire server, as you develop your applications.

 [image: Images] Use comments.

 Just as you can use comments to document your scripts, you can also use them to rule
 out problematic lines. If PHP is giving you an error on line 12, then commenting out
 that line should get rid of the error. If not, then you know the error is elsewhere.
 Just be careful that you don’t introduce more errors by improperly commenting out
 only a portion of a code block: the syntax of your scripts must be maintained.

 [image: Images] Use the print and echo functions.

 In more complicated scripts, I frequently use echo statements to leave myself notes as to what is happening as the script is executed
 [image: Images]. When a script has several steps, it may not be easy to know if the problem is occurring
 in step 2 or step 5. By using an echo statement, you can narrow the problem down to the specific juncture.

 [image: Images]

 [image: Images] More complex debugging can be accomplished by leaving yourself notes as to what the
 script is doing.

 [image: Images] Check what quotation marks are being used for printing variables.

 It’s not uncommon for programmers to mistakenly use single quotation marks and then
 wonder why their variables are not printed properly. Remember that single quotation
 marks treat text literally and that you must use double quotation marks to print out
 the values of variables.

 [image: Images]

 [image: Images] Track variables [image: Images].

 [image: Images] Printing the names and values of variables is the easiest way to track them over
 the course of a script.

 It is easy for a script not to work because you referred to the wrong variable or
 the right variable by the wrong name or because the variable does not have the value
 you would expect. To check for these possibilities, use print or echo statements to print out the values of variables at important points in your scripts.
 This is simply a matter of

 echo "<p>\$var = $var</p>\n";

 or

 echo "<p>\$var is $var</p>\n";

 The first dollar sign is escaped so that the variable’s name is printed. The second
 reference of the variable will print its value.

 [image: Images] Print array values.

 For more complicated variable types (arrays and objects), the print_r() and var_dump() functions will print out their values without the need for loops. Both functions
 accomplish the same task, although var_dump() is more detailed in its reporting than print_r().

 Using die() and exit()

 Two functions that are often used with error management are die() and exit()(they’re technically language constructs, not functions, but who cares?). When a die() or exit() is called in your script, the entire script is terminated. Both are useful for stopping
 a script from continuing should something important—like establishing a database connection—fail
 to happen. You can also pass to die() and exit() a string that will be printed out in the browser.

 You’ll commonly see die() or exit() used in an OR conditional. For example:

 include('config.inc.php') OR
[image: Images]die('Could not open the file.');

 With a line like that, if PHP could not include the configuration file, the die() statement would be executed and the “Could not open the file” message would be printed.
 You’ll see variations on this throughout this book and in the PHP manual, since it’s
 a quick, but potentially excessive, way to handle errors without using a custom error
 handler.

 Tip

 Many text editors include utilities to check for balanced parentheses, brackets, and
 quotation marks.

 Tip

 If you cannot find the parse error in a complex script, begin by using the /* */ comments to render the entire PHP code inert. Then continue to uncomment sections
 at a time (by moving the opening or closing comment characters) and rerun the script
 until you deduce what lines are causing the error. Watch how you comment out control
 structures, though; the curly braces must continue to be matched in order to avoid
 parse errors. For example:

 [image: Images]

 if (condition) {
 /* Start comment.
 Inert code.
 End comment. */
}

 Tip

 To make the results of print_r() more readable in the web browser, wrap it within HTML <pre> (preformatted) tags. This one line is one of my favorite debugging tools:

 [image: Images]

 echo '<pre>' . print_r ($var, 1) .
[image: Images]'</pre>';

 SQL and MySQL Debugging Techniques

 The most common SQL errors are caused by the following issues:

 [image: Images] Unbalanced use of quotation marks or parentheses

 [image: Images] Unescaped apostrophes in column values

 [image: Images] Misspelling a column name, table name, or function

 [image: Images] Ambiguously referring to a column in a join

 [image: Images] Placing a query’s clauses (WHERE, GROUP BY, ORDER BY, LIMIT) in the wrong order

 Furthermore, when using MySQL you can also run across the following:

 [image: Images] Unpredictable or inappropriate query results

 [image: Images] Inability to access the database

 Since you’ll be running the queries for your dynamic web sites from PHP, you’ll need
 a methodology for debugging SQL and MySQL errors within that context (PHP will not
 report a problem with your SQL).

 Debugging SQL problems

 To decide if you are experiencing a MySQL (or SQL) problem rather than a PHP one,
 you need a system for finding and fixing the issue. Fortunately, the steps you should
 take to debug MySQL and SQL problems are easy to define and should be followed without
 thinking. If you ever have any MySQL or SQL errors to debug, just abide by this sequence
 of steps.

 To hammer the point home, this next sequence of steps is probably the most useful
 debugging technique in this chapter and the entire book. You’ll likely need to follow
 these steps in any PHP-MySQL web application when you’re not getting the results you
 expected.

 To debug your SQL queries:

 1. Print out any applicable queries in your PHP script [image: Images].

 [image: Images]

 [image: Images] Knowing exactly what query a PHP script is attempting to execute is the most useful
 first step for solving SQL and MySQL problems.

 As you’ll see in the next chapter, SQL queries will often be assigned to a variable,
 particularly when you use PHP to dynamically create them. Using the code echo $query (or whatever the query variable is called) in your PHP scripts, you can send to the
 browser the exact query being run. Sometimes this step alone will help you see what
 the real problem is.

 2. Run the query in the mysql client or other tool [image: Images].

 [image: Images]

 [image: Images] To understand what result a PHP script is receiving, run the same query through a
 separate interface. In this case, the problem is the reference to the password column, when the table’s column is actually called just pass.

 The most foolproof method of debugging an SQL or MySQL problem is to run the query
 used in your PHP scripts through an independent application—the mysql client, phpMyAdmin,
 or the like. Doing so will give you the same result that the original PHP script receives
 but without the overhead, hassle, or mystery.

 If the independent application returns the expected result but you are still not getting
 the proper behavior in your PHP script, then you will know that the problem lies within
 the script itself, not in your SQL command or the MySQL database.

 3. If the problem still isn’t evident, rewrite the query in its most basic form, and
 then keep adding dimensions back in until you discover which clause is causing the
 problem. Continue to use a third-party interface to MySQL to do this (i.e., put away
 the PHP script until you’ve got the SQL query working properly).

 Sometimes it’s difficult to debug a query because there’s too much going on. Like
 commenting out most of a PHP script, taking a query down to its bare minimum structure
 and slowly building it back up can be the easiest way to debug complex SQL commands.

 Debugging access problems

 Access-denied error messages are the most common problem beginning developers encounter
 when using PHP to interact with MySQL. These are among the common solutions:

 [image: Images] Reload MySQL after altering the privileges so that the changes take effect. Either
 use the mysqladmin tool or run FLUSH PRIVILEGES in the mysql client. You must be logged in as a user with the appropriate permissions
 to do this (see Appendix A for more).

 [image: Images] Double-check the password used. The error message Access denied for user: ‘user@localhost’ (Using password: YES) frequently indicates that the password is wrong or mistyped. (This is not always
 the cause but is the first thing to check.)

 [image: Images] The error message Can’t connect to… (error number 2002) indicates that MySQL either is not running or is not running
 on the socket or TCP/IP port tried by the client.

 Tip

 MySQL keeps its own error logs, which are very useful in solving MySQL problems (like
 why MySQL won’t even start). MySQL’s error log will be located in the MySQL data directory
 and titled hostname.err.

 Tip

 The MySQL manual is very detailed, containing SQL examples, function references, and
 the meanings of error codes. Make the manual your friend and turn to it when confusing
 errors pop up.

 Review and Pursue

 If you have any problems with the review questions or the pursue prompts, turn to
 the book’s supporting forum (LarryUllman.com/forums/).

 Review

 [image: Images] Why must PHP scripts be run through a URL?

 [image: Images] What version of PHP are you using? What version of MySQL? What version of what web
 server application are you using? On what operating system?

 [image: Images] What debugging steps should you take if the rendered web page doesn’t look right
 in your browser?

 [image: Images] Do you have display_errors enabled on your server? Why is enabling display_errors useful on development servers? Why is revealing errors a bad thing on production
 servers?

 [image: Images] How does the level of error_reporting affect PHP scripts? To what level of error_reporting is your PHP server set?

 [image: Images] What does the @ operator do?

 [image: Images] What are the benefits of using your own error-handling function? What impact does
 the error-reporting level have when using your own error-handling function?

 [image: Images] How can print or echo be used as debugging tools? Hint: There are many correct answers.

 [image: Images] What is the method for fixing PHP-SQL-MySQL bugs?

 Pursue

 [image: Images] Learn about the debugging tools built into your favorite browser.

 [image: Images] Enable display_errors on your development server, if you can.

 [image: Images] If you can, set PHP’s level of error reporting to E_ALL on your development server.

 [image: Images] Check out the PHP manual’s page for the debug_print_backtrace() function to learn more about it.

 [image: Images] Consider using a professional-grade IDE that provides built-in debugging tools.

 [image: Image]

 [image: Image]

 [image: Image]

 9. Using PHP with MySQL

 In This Chapter

 Modifying the Template

 Connecting to MySQL

 Executing Simple Queries

 Retrieving Query Results

 Ensuring Secure SQL

 Counting Returned Records

 Updating Records with PHP

 Review and Pursue

 Now that you have a sufficient amount of PHP, SQL, and MySQL experience under your
 belt, it’s time to put all the technologies together. PHP’s strong integration with
 MySQL is just one reason so many programmers have embraced it; it’s impressive how
 easily you can use the two together.

 This chapter will use the existing sitename database—created in Chapter 5, “Introduction to SQL”—to build a PHP interface for interacting with the users table. The knowledge taught and the examples used here will be the basis for all
 your PHP-MySQL web applications, because the principles involved are the same for
 any PHP-MySQL interaction.

 Before heading into this chapter, you should be comfortable with everything covered
 in the first eight chapters, including the error debugging and handling techniques
 just taught in the previous chapter. Finally, remember that you need a PHP-enabled
 web server and access to a running MySQL server to execute the following examples.

 Modifying the Template

 Since all the pages in this chapter and the next will be part of the same web application,
 it’ll be worthwhile to use a common template system. Instead of creating a new template
 from scratch, the layout from Chapter 3, “Creating Dynamic Web Sites,” will be used again, with only a minor modification
 to the header file’s navigation links.

 To make the header file:

 1. Open header.html (Script 3.2) in your text editor or IDE.

 2. Change the list of links to read as follows (Script 9.1):

 Click here to view code image

 <ul class=”nav navbar-nav”>
 <li class=”active”><a href=
 [image: Images]”index.php”>Home

 [image: Images]Register

 [image: Images]View Users

 [image: Images]Change Password

 Script 9.1 The site’s header file, used for the pages’ template, modified with new navigation
 links.

 Click here to view code image

 1 <!DOCTYPE html>
2 <html lang=”en”>
3 <head>
4 <meta charset=”utf-8”>
5 <meta http-equiv=”X-UA-Compatible” content=”IE=edge”>
6 <meta name=”viewport” content=”width=device-width, initial-scale=1”>
7 <title><?php echo $page_title; ?></title>
8 <link rel=”stylesheet” href=”https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css
 /bootstrap.min.css” integrity=”sha384-BVYiiSIFeK1dGmJRAkycuHAHRg32OmUcww7on3RYdg4Va+PmSTsz
 /K68vbdEjh4u” crossorigin=”anonymous”>
9 <link href=”css/sticky-footer-navbar.css” rel=”stylesheet”>
10 </head>
11 <body>
12 <nav class=”navbar navbar-default navbar-fixed-top”>
13 <div class=”container”>
14 <div class=”navbar-header”>Your Website</div>
15 <div id=”navbar” class=”collapse navbar-collapse”>
16 <ul class=”nav navbar-nav”>
17 <li class=”active”>Home
18 Register
19 View Users
20 Change Password
21
22 </div>
23 </div>
24 </nav>
25 <div class=”container”>
26 <!-- Script 9.1 - header.html -->

 All the examples in this chapter will involve the registration, view users, and change
 password pages. The date form and calculator links from Chapter 3 can be deleted.

 3. Save the file as header.html.

 4. Place the new header file in your web directory, within the includes folder, along with footer.html (Script 3.3) and style.css (available for download from the book’s supporting website, LarryUllman.com).

 5. Test the new header file by running index.php in your browser [image: Images].

 [image: Images]

 [image: Images] The dynamically generated home page with new navigation links.

 Tip

 For a preview of this site’s structure, see the sidebar “Organizing Your Documents”
 in the next section.

 Tip

 Remember that you can use any file extension for your template files, including .inc or .php.

 Connecting to MySQL

 The first step for interacting with MySQL—connecting to the server—requires the appropriately
 named mysqli_connect() function:

 Click here to view code image

 $dbc = mysqli_connect(hostname,
[image: Images]username, password, db_name);

 The first three arguments sent to the function—hostname, username, and password—are based on the users and privileges established within MySQL (see Appendix A, “Installation,”
 for more information). Commonly (but not always), the host value will be localhost.

 The fourth argument is the name of the database to use. This is the equivalent of
 saying USE databasename within the mysql client.

 If the connection was made, the $dbc variable, short for database connection (but you can use any name you want, of course), will become a reference point for
 all your subsequent database interactions. Most of the PHP functions for working with
 MySQL will take this variable as its first argument.

 If a connection problem occurred, you can call mysqli_connect_error(), which returns the connection error message. It takes no arguments and so would be
 called using just

 mysqli_connect_error();

 Once you’ve connected to the database, you should set the encoding for the interaction.
 You can do so with the mysqli_set_charset() function:

 Click here to view code image

 mysqli_set_charset($dbc, ‘utf8’);

 The value used as the encoding—the second argument—should match that of your PHP scripts
 and the collation of your database (see Chapter 6, “Database Design,” for more on MySQL collations). If you fail to do this, all data
 will be transferred using the default character set, which could cause problems.

 To start using PHP with MySQL, let’s create a special script that makes the connection.
 Other PHP scripts that require a MySQL connection can then include this file.

 To connect to and select a database:

 1. Create a new PHP document in your text editor or IDE, to be named mysqli_connect.php (Script 9.2):

 Click here to view code image

 <?php # Script 9.2 -
[image: Images]mysqli_connect.php

 Script 9.2 The mysqli_connect.php script will be used by every other script in this chapter. It establishes a connection
 to MySQL, selects the database, and sets the encoding.

 Click here to view code image

1 <?php # Script 9.2 - mysqli_connect.php
2
3 // This file contains the database access information.
4 // This file also establishes a connection to MySQL,
5 // selects the database, and sets the encoding.
6
7 // Set the database access information as constants:
8 define(‘DB_USER’, ‘username’);
9 define(‘DB_PASSWORD’, ‘password’);
10 define(‘DB_HOST’, ‘localhost’);
11 define(‘DB_NAME’, ‘sitename’);
12
13 // Make the connection:
14 $dbc = @mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME) OR die(‘Could not connect to MySQL: ‘ . mysqli_connect_error());
15
16 // Set the encoding...
17 mysqli_set_charset($dbc, ‘utf8’);

 This file will be included by other PHP scripts, so it doesn’t need to contain any
 HTML.

 2. Set the MySQL host, username, password, and database name as constants:

 Click here to view code image

 define(‘DB_USER’, ‘username’);
define(‘DB_PASSWORD’, ‘password’);
define(‘DB_HOST’, ‘localhost’);
define(‘DB_NAME’, ‘sitename’);

 I prefer to establish these values as constants for security reasons (they cannot
 be changed this way), but that isn’t required. In general, setting these values as
 some sort of variable or constant makes sense so that you can separate the configuration
 parameters from the functions that use them—but again, this is not obligatory.

 When writing your script, change these values to ones that will work on your setup.
 If you have been provided with a MySQL username/password combination and a database
 (like for a hosted site), use that information here. Or, if possible, follow the steps
 in Appendix A to create a user who has access to the sitename database, and insert those values here. Whatever you do, don’t just use the values
 written in this book’s code unless you know for certain they will work on your server!

 3. Connect to MySQL:

 Click here to view code image

 $dbc = @mysqli_connect (DB_HOST,
[image: Images]DB_USER, DB_PASSWORD, DB_NAME)
[image: Images]OR die(‘Could not connect to
[image: Images]MySQL: ‘ . mysqli_connect_
[image: Images]error());

 The mysqli_connect() function, if it successfully connects to MySQL, will return a resource link that
 corresponds to the open connection. This link will be assigned to the $dbc variable so that other functions can make use of this connection.

 The function call is preceded by the error suppression operator (@). This prevents the PHP error from being displayed in the browser. This is preferable
 in this specific case, since the error will be handled by the OR die() clause.

 If the mysqli_connect() function cannot return a valid resource link, then the OR die() part of the statement is executed (because the first part of the OR will be false, so the second part must be true). As discussed in the preceding chapter,
 the die() function terminates the execution of the script. The function can also take as an
 argument a string that will be printed to the browser. In this case, the string is
 a combination of Could not connect to MySQL: and the specific MySQL error [image: Images]. Using this blunt error management system makes debugging much easier as you develop
 your sites.

 [image: Images]

 [image: Images] If there were problems connecting to MySQL, an informative message is displayed and
 the script is halted.

 4. Set the encoding:

 Click here to view code image

 mysqli_set_charset($dbc, ‘utf8’);

 The final step in this script is to set the encoding for all future communications.

 5. Save the file as mysqli_connect.php.

 Since this file contains information—the database access data—that must be kept private,
 it will use a .php extension. With a .php extension, even if malicious users ran this script in their browser, they would not
 see the page’s actual content.

 You may also note that I did not include a terminating PHP tag: ?>. This is allowed in PHP (when the script ends with PHP code), and has a benefit to
 be explained in subsequent chapters.

 6. Ideally, place the file outside of the web document directory [image: Images].

 [image: Images]

 [image: Images] A visual representation of a server’s web documents, where mysqli_connect.php is not stored within the main directory (htdocs).

 Because the file contains sensitive MySQL access information, it ought to be stored
 securely. If you can, place it in the directory immediately above or otherwise outside of the web directory. This
 way, the file will not be accessible from a browser. See the “Organizing Your Documents”
 sidebar for more.

 7. Temporarily place a copy of the script within the web directory and run it in your
 browser [image: Images].

 [image: Images]

 [image: Images] If the MySQL connection script works properly, the end result will be a blank page
 (no HTML is generated by the script).

 To test the script, you’ll want to place a copy on the server so that it’s accessible
 from the browser, which means it must be in the web directory. If the script works
 properly, the result should be a blank page [image: Images]. If you see an Access denied… or similar message [image: Images], it means that the combination of username, password, and host does not have permission
 to access the particular database.

 8. Remove the temporary copy from the web directory.

 Organizing Your Documents

 Chapter 3 introduced the concept of site structure while developing the first web application. Now that pages will begin using a database
 connection script, the topic is more important.

 Should the database connectivity information (username, password, host, and database)
 fall into malicious hands, it could be used to steal your information or wreak havoc
 upon the database as a whole. Therefore, you cannot keep a script like mysqli_connect.php too secure.

 The best recommendation for securing such a file is to store it outside of the web
 documents directory. If, for example, the htdocs folder in [image: Images] is the root of the web directory (in other words, the URL www.example.com leads there), then not storing mysqli_connect.php anywhere within the htdocs directory means it will never be accessible via the browser. Granted, the source
 code of PHP scripts is not viewable from the browser (only the data sent to the browser
 by the script is), but you can never be too careful. If you aren’t allowed to place
 documents outside of the web directory, placing mysqli_connect.php in the web directory is less secure, but not the end of the world.

 Second, I recommend using a .php extension for your connection scripts. A properly configured and working server will
 execute rather than display code in such a file. Conversely, if you use just .inc as your extension, that page’s contents would be displayed in the browser if accessed
 directly.

 Tip

 The same values used in Chapter 5 to log in to the mysql client should work from your PHP scripts.

 Tip

 If you receive an error that claims mysqli_connect() is an “undefined function,” it means that PHP has not been compiled with support
 for the Improved MySQL Extension. See the appendix for installation information.

 Tip

 If you see a Could not connect... error message when running the script [image: Images], it likely means that MySQL isn’t running.

 [image: Images]

 [image: Images] Another reason why PHP might not be able to connect to MySQL (besides using invalid
 username/password/hostname/database information) is if MySQL isn’t currently running.

 Tip

 In case you are curious, [image: Images] shows what would happen if you didn’t use @ before mysqli_connect() and an error occurred.

 [image: Images]

 [image: Images] If you don’t use the error suppression operator (@), you’ll see both the PHP error and the custom OR die() error.

 Tip

 If you don’t need to select the database when establishing a connection to MySQL,
 omit that argument from the mysqli_connect() function:

 Click here to view code image

 $dbc = mysqli_connect(hostname,
[image: Images]username, password);

 Then, when appropriate, you can select the database using:

 Click here to view code image

 mysqli_select_db($dbc, db_name);

 Executing Simple Queries

 Once you have successfully connected to and selected a database, you can start executing
 queries. The queries can be as basic as inserts, updates, and deletions or as involved
 as complex joins returning numerous rows. Regardless of the SQL command type, the
 PHP function for executing a query is mysqli_query():

 Click here to view code image

 result = mysqli_query(dbc, query);

 The function takes the database connection as its first argument and the query itself
 as the second. Within the context of a complete PHP script, I normally assign the
 query to another variable, called $query or just $q, so running a query might look like

 Click here to view code image

 $r = mysqli_query($dbc, $q);

 For simple queries that do not return records, like INSERT, UPDATE, DELETE, etc., the $r variable—short for result—will be either TRUE or FALSE, depending on whether the query executed successfully.
 Keep in mind that “executed successfully” means that it ran without error; it doesn’t
 mean that the query’s execution necessarily had the desired result; you’ll need to
 test for that.

 For complex queries that return records (SELECT being the most important of these), $r will be a resource link to the results of the query if it worked or be FALSE if it
 did not. Thus, you can use this code to test if the query successfully ran:

 Click here to view code image

 $r = mysqli_query($dbc, $q);
if ($r) { // Worked!

 If the query did not successfully run, some sort of MySQL error must have occurred.
 To find out what that error was, call the mysqli_error() function:

 Click here to view code image

 echo mysqli_error($dbc);

 The function’s lone argument is the database connection.

 One final, albeit optional, step in your script would be to close the existing MySQL
 connection once you’re finished with it:

 Click here to view code image

 mysqli_close($dbc);

 This function call is not required, because PHP will automatically close the connection
 at the end of a script, but it does make for good programming form to incorporate
 it.

 To demonstrate this process, let’s create a registration script. It will show the
 form when first accessed [image: Images], handle the form submission, and, after validating all the data, insert the registration
 information into the users table of the sitename database.

 [image: Images]

 [image: Images] The registration form.

 As a forewarning, this script knowingly has a security hole in it (depending on the
 version of PHP in use, and its settings), to be remedied later in the chapter.

 To execute simple queries:

 1. Begin a new PHP script in your text editor or IDE, to be named register.php (Script 9.3):

 Click here to view code image

 <?php # Script 9.3 - register.php
$page_title = ‘Register’;
include(‘includes/header.html’);

 Script 9.3 The registration script adds a record to the database by running an INSERT query.

 Click here to view code image

1 <?php # Script 9.3 - register.php
2 // This script performs an INSERT query to add a record to the users table.
3
4 $page_title = ‘Register’;
5 include(‘includes/header.html’);
6
7 // Check for form submission:
8 if ($_SERVER[‘REQUEST_METHOD’] == ‘POST’) {
9
10 $errors = []; // Initialize an error array.
11
12 // Check for a first name:
13 if (empty($_POST[‘first_name’])) {
14 $errors[] = ‘You forgot to enter your first name.’;
15 } else {
16 $fn = trim($_POST[‘first_name’]);
17 }
18
19 // Check for a last name:
20 if (empty($_POST[‘last_name’])) {
21 $errors[] = ‘You forgot to enter your last name.’;
22 } else {
23 $ln = trim($_POST[‘last_name’]);
24 }
25
26 // Check for an email address:
27 if (empty($_POST[‘email’])) {
28 $errors[] = ‘You forgot to enter your email address.’;
29 } else {
30 $e = trim($_POST[‘email’]);
31 }
32
33 // Check for a password and match against the confirmed password:
34 if (!empty($_POST[‘pass1’])) {
35 if ($_POST[‘pass1’] != $_POST[‘pass2’]) {
36 $errors[] = ‘Your password did not match the confirmed password.’;
37 } else {
38 $p = trim($_POST[‘pass1’]);
39 }
40 } else {
41 $errors[] = ‘You forgot to enter your password.’;
42 }
43
44 if (empty($errors)) { // If everything’s OK.
45
46 // Register the user in the database...
47
48 require(‘../mysqli_connect.php’); // Connect to the db.
49
50 // Make the query:
51 $q = “INSERT INTO users (first_name, last_name, email, pass, registration_date)
 VALUES (‘$fn’, ‘$ln’, ‘$e’, SHA2(‘$p’, 512), NOW())”;
52 $r = @mysqli_query($dbc, $q); // Run the query.
53 if ($r) { // If it ran OK.
54
55 // Print a message:
56 echo ‘<h1>Thank you!</h1>
57 <p>You are now registered. In Chapter 12 you will actually be able to log in!
 </p><p>
</p>’;
58
59 } else { // If it did not run OK.
60
61 // Public message:
62 echo ‘<h1>System Error</h1>
63 <p class=”error”>You could not be registered due to a system error. We apologize for
 any inconvenience.</p>’;
64
65 // Debugging message:
66 cecho ‘<p>’ . mysqli_error($dbc) . ‘

Query: ‘ . $q . ‘</p>’;
67
68 } // End of if ($r) IF.
69
70 mysqli_close($dbc); // Close the database connection.
71
72 // Include the footer and quit the script:
73 include(‘includes/footer.html’);
74 exit();
75
76 } else { // Report the errors.
77
78 echo ‘<h1>Error!</h1>
79 <p class=”error”>The following error(s) occurred:
’;
80 foreach ($errors as $msg) { // Print each error.
81 echo “ - $msg
\n”;
82 }
83 echo ‘</p><p>Please try again.</p><p>
</p>’;
84
85 } // End of if (empty($errors)) IF.
86
87 } // End of the main Submit conditional.
88 ?>
89 <h1>Register</h1>
90 <form action=”register.php” method=”post”>
91 <p>First Name: <input type=”text” name=”first_name” size=”15” maxlength=”20” value=”<?php
 if (isset($_POST[‘first_name’])) echo $_POST[‘first_name’]; ?>”></p>
92 <p>Last Name: <input type=”text” name=”last_name” size=”15” maxlength=”40” value=”<?php if
 (isset($_POST[‘last_name’])) echo $_POST[‘last_name’]; ?>”></p>
93 <p>Email Address: <input type=”email” name=”email” size=”20” maxlength=”60” value=”<?php if
 (isset($_POST[‘email’])) echo $_POST[‘email’]; ?>” > </p>
94 <p>Password: <input type=”password” name=”pass1” size=”10” maxlength=”20” value=”<?php if
 (isset($_POST[‘pass1’])) echo $_POST[‘pass1’]; ?>” ></p>
95 <p>Confirm Password: <input type=”password” name=”pass2” size=”10” maxlength=”20”
 value=”<?php if (isset($_POST[‘pass2’])) echo $_POST[‘pass2’]; ?>” ></p>
96 <p><input type=”submit” name=”submit” value=”Register”></p>
97 </form>
98 <?php include(‘includes/footer.html’); ?>

 The fundamentals of this script—using included files, having the same page both display
 and handle a form, and creating a sticky form—come from Chapter 3. See that chapter if you’re confused about any of these concepts.

 2. Create the submission conditional and initialize the $errors array:

 Click here to view code image

 if ($_SERVER[‘REQUEST_METHOD’] = =
[image: Images]’POST’) {
 $errors = [];

 This script will both display and handle the HTML form. This first conditional will
 check for how the script is being requested, to know when to process the form (again,
 this comes from Chapter 3). The $errors variable will be used to store every error message (one for each form input not properly
 filled out).

 3. Validate the first name:

 Click here to view code image

 if (empty($_POST[‘first_name’])) {
 $errors[ ] = ‘You forgot to
[image: Images]enter your first name. ‘;
} else {
 $fn = trim($_POST[‘first_name’]);
}

 As discussed in Chapter 3, the empty() function provides a minimal way of ensuring that a text field was filled out. If
 the first name field was not filled out, an error message is added to the $errors array. Otherwise, $fn is set to the submitted value, after trimming off any extraneous spaces. By using
 this new variable—which is obviously short for first_name—it will be syntactically easier to write the query later.

 4. Validate the last name and email address:

 Click here to view code image

 if (empty($_POST[‘last_name’])) {
 $errors[ ] = ‘You forgot to
 [image: Images]enter your last name. ‘;
} else {
 $ln = trim($_POST[‘last_name’]);
}
if (empty($_POST[‘email’])) {
 $errors[ ] = ‘You forgot to
 [image: Images]enter your email address. ‘;
} else {
 $e = trim($_POST[‘email’]);
}

 These lines are essentially the same as those validating the first name field. In
 both cases a new variable will be created, assuming that the minimal validation was
 passed.

 5. Validate the passwords:

 Click here to view code image

 if (!empty($_POST[‘pass1’])) {

 if ($_POST[‘pass1’] !=

 [image: Images]$_POST[‘pass2’]) {

 $errors[ ] = ‘Your password

 [image: Images]did not match the confirmed

 [image: Images]password. ‘;

 } else {

 $p = trim($_POST[‘pass1’]);

 }

 } else {

 $errors[ ] = ‘You forgot to

 [image: Images]enter your password. ‘;

 }

 To validate the password, the script needs to check the pass1 input for a value and then confirm that the pass1 value matches the pass2 value (meaning the password and confirmed password are the same).

 6. Check if it’s OK to register the user:

 if (empty($errors)) {

 If the submitted data passed all the conditions, the $errors array will have no values in it (it will be empty), so this condition will be true
 and it’s safe to add the record to the database. If the $errors array is not empty, then the appropriate error messages should be printed (see Step
 11) and the user given another opportunity to register.

 7. Include the database connection:

 Click here to view code image

 require(‘../mysqli_connect.php’);

 This line of code will insert the contents of the mysqli_connect.php file into this script, thereby creating a connection to MySQL and selecting the database.
 You may need to change the reference to the location of the file as it is on your
 server (as written, this line assumes that mysqli_connect.php is in the parent folder of the current folder).

 8. Add the user to the database:

 Click here to view code image

 $q = “INSERT INTO users
[image: Images](first_name, last_name, email,
[image: Images]pass, registration_date) VALUES
[image: Images](‘$fn’, ‘$ln’, ‘$e’, SHA2(‘$p’,
[image: Images]512), NOW())”;
$r = @mysqli_query($dbc, $q);

 The query itself is like those demonstrated in Chapter 5. The SHA2() function is used to encrypt the password, and NOW() is used to set the registration date as this moment. (In Chapter 13, “Security Methods,” you’ll learn a PHP solution for hashing and matching the registration
 password.)

 After assigning the query to a variable, it is run through the mysqli_query() function, which sends the SQL command to the MySQL database. As in the mysqli_connect.php script, the mysqli_query() call is preceded by @ to suppress any ugly errors. If a problem occurs, the error will be handled more
 directly in the next step.

 9. Report on the success of the registration:

 Click here to view code image

 if ($r) {
 echo ‘<h1>Thank you!</h1>
<p>You are now registered.
[image: Images]In Chapter 12 you will actually
[image: Images]be able to log in!</p><p>

[image: Images]</p>’;
} else {
 echo ‘<h1>System Error</h1>
 <p class=”error”>You could not
 [image: Images]be registered due to a system
 [image: Images]error. We apologize for any
 [image: Images]inconvenience.</p>’;
 echo ‘<p>’ . mysqli_error($dbc)
 [image: Images]. ‘

Query: ‘ . $q .
 [image: Images]’</p>’;
} // End of if ($r) IF.

 The $r variable, which is assigned the value returned by mysqli_query(), can be used in a conditional to test for the successful operation of the query.

 If $r has a TRUE value, then a Thank you! message is displayed [image: Images]. If $r has a FALSE value, error messages are printed. For debugging purposes, the error
 messages will include both the error spit out by MySQL (thanks to the mysqli_error() function) and the query that was run [image: Images]. This information is critical to debugging the problem. You would not want to display
 this kind of information on a live site, however.

 [image: Images]

 [image: Images] If the user could be registered in the database, this message is displayed.

 [image: Images]

 [image: Images] Any MySQL errors caused by the query will be printed, as will the query that was
 being run.

 10. Close the database connection and complete the HTML template:

 Click here to view code image

 mysqli_close($dbc);
include(‘includes/footer.html’);
exit();

 Closing the connection isn’t required but is a good policy. Then the footer is included
 and the script terminated (thanks to the exit() function). If those two lines weren’t here, the registration form would be displayed
 again (which isn’t necessary after a successful registration).

 11. Print out any error messages and close the submit conditional:

 Click here to view code image

 } else { // Report the errors.
 echo ‘<h1>Error!</h1>
 <p class=”error”>The following
 [image: Images]error(s) occurred:
’;
 foreach ($errors as $msg) {
 [image: Images]// Print each error.
 echo “ - $msg
\n”;
 }
 echo ‘</p><p>Please try
 [image: Images]again.</p><p>
</p>’;
 } // End of if (empty($errors))
 [image: Images]IF.
} // End of the main Submit
[image: Images]conditional.

 The else clause is invoked if there were any errors. In that case, all of the errors are displayed
 using a foreach loop [image: Images].

 [image: Images]

 [image: Images] Each form validation error is reported to the user so that they may try registering
 again.

 The final closing brace closes the main submit conditional. The main conditional is
 a simple if, not an if-else, so that the form can be made sticky (again, see Chapter 3).

 12. Close the PHP section and begin the HTML form:

 Click here to view code image

 ?>
<h1>Register</h1>
<form action=”register.php”
[image: Images]method=”post”>
 <p>First Name:
 [image: Images]<input type=”text”
 [image: Images]name=”first_name” size=”15”
 [image: Images]maxlength=”20” value=”<?php if
 [image: Images](isset($_POST[‘first_name’]))
 [image: Images]echo $_POST[‘first_name’]; ?>”>
 [image: Images]</p>
 <p>Last Name: <input type=”text”
 [image: Images]name=”last_name” size=”15”
 [image: Images]maxlength=”40” value=”<?php if
 [image: Images](isset($_POST[‘last_name’]))
 [image: Images]echo $_POST[‘last_name’]; ?>”>
 [image: Images]</p>

 The form is simple, with one text input for each field in the users table (except for the user_id and registration_date columns, which will automatically be populated). Each input is made sticky, using
 code like

 Click here to view code image

 value=”<?php if (isset($_POST[‘v’]))
[image: Images]echo $_POST[‘v’]; ?>”

 Also, I strongly recommend that you use the same name for your form inputs as the
 corresponding column in the database where that value will be stored. Further, you
 should set the maximum input length in the form equal to the maximum column length
 in the database. Such habits help to minimize errors.

 13. Complete the HTML form:

 Click here to view code image

 <p>Email Address: <input
 [image: Images]type=”email” name=”email”
 [image: Images]size=”20” maxlength=”60”
 [image: Images]value=”<?php if
 [image: Images](isset($_POST[‘email’])) echo
 [image: Images]$_POST[‘email’]; ?>” > </p>
 <p>Password: <input
 [image: Images]type=”password” name=”pass1”
 [image: Images]size=”10” maxlength=”20”
 [image: Images]value=”<?php if
 [image: Images](isset($_POST[‘pass1’])) echo
 [image: Images]$_POST[‘pass1’]; ?>” ></p>
 <p>Confirm Password: <input
 [image: Images]type=”password” name=”pass2”
 [image: Images]size=”10” maxlength=”20”
 [image: Images]value=”<?php if
 [image: Images](isset($_POST[‘pass2’])) echo
 [image: Images]$_POST[‘pass2’]; ?>” ></p>
 <p><input type=”submit”
 [image: Images]name=”submit”
 [image: Images]value=”Register”></p>
</form>

 This is all much like that in Step 12, with the addition of a submit button.

 As a side note, I don’t need to follow my maxlength recommendation (from Step 12) with the password inputs, because they will be encrypted
 with SHA2(), which always creates a string of a fixed length. And since there are two password
 inputs, they can’t both use the same name as the column in the database.

 14. Complete the template:

 Click here to view code image

 <?php include(‘includes/
[image: Images]footer.html’); ?>

 15. Save the file as register.php, place it in your web directory, and test it in your browser.

 Note that if you use an apostrophe in one of the form values, it will likely break
 the query [image: Images]. The section “Ensuring Secure SQL” later in this chapter will show how to protect
 against this.

 [image: Images]

 [image: Images] Apostrophes in form values (like the last name here) will conflict with the apostrophes
 used to delineate values in the query.

 Tip

 After running the script, you can always ensure that it worked by using the mysql
 client or phpMyAdmin to view the records in the users table.

 Tip

 You should not end your queries with a semicolon in PHP, as you do when using the
 mysql client. When working with MySQL, this is a common, albeit harmless, mistake
 to make. When working with other database applications (Oracle, for one), doing so
 will make your queries unusable.

 Tip

 As a reminder, the mysqli_query() function returns a TRUE value if the query could be executed on the database without
 error. This does not necessarily mean that the result of the query is what you were
 expecting. Later scripts will demonstrate how to more accurately gauge the success
 of a query.

 Tip

 You are not obligated to create a $q variable as I tend to do; you could directly insert your query text into mysqli_query(). However, as the construction of your queries becomes more complex, using a variable
 will be the only option.

 Tip

 Practically any query you would run in the mysql client can also be executed using
 mysqli_query().

 Tip

 Another benefit of the Improved MySQL Extension over the standard extension is that
 the mysqli_multi_query() function lets you execute multiple queries at one time. The syntax for doing so,
 particularly if the queries return results, is a bit more complicated, so see the
 PHP manual if you have this need.

 Retrieving Query Results

 The preceding section of this chapter demonstrates how to execute simple queries on
 a MySQL database. A simple query, as I’m calling it, could be defined as one that begins with INSERT, UPDATE, DELETE, or ALTER. What all four of these have in common is that they return no data, just an indication
 of their success. Conversely, a SELECT query generates information—it will return rows of records—that has to be handled
 by other PHP functions.

 The primary tool for handling SELECT query results is mysqli_fetch_array(), which uses the query result variable (that I’ve been calling $r) and returns one row of data at a time, in an array format. You’ll want to use this
 function within a loop that will continue to access every returned row as long as
 there are more to be read. The basic construction for reading every record from a
 query is

 Click here to view code image

 while ($row = mysqli_fetch_array($r)) {
 // Do something with $row.
}

 You will almost always want to use a while loop to fetch the results from a SELECT query.

 The mysqli_fetch_array() function takes an optional second parameter specifying what type of array is returned:
 associative, indexed, or both. An associative array allows you to refer to column
 values by name, whereas an indexed array requires you to use only numbers, starting
 at 0 for the first column returned. Each parameter is defined by a constant listed
 in Table 9.1, with MYSQLI_BOTH being the default. The MYSQLI_NUM setting is marginally faster and uses less memory than the other options. Conversely,
 MYSQLI_ASSOC is more overt ($row[‘column’] rather than $row[3]) and may continue to work even if the query changes.

 TABLE 9.1 mysqli_fetch_array() Constants

 	
 Constant

 	
 Example

 	
 MYSQLI_ASSOC

 	
 $row[‘column’]

 	
 MYSQLI_NUM

 	
 $row[0]

 	
 MYSQLI_BOTH

 	
 $row[0] or $row[‘column’]

 An optional step you can take when using mysqli_fetch_array() would be to free up the query result resources once you are done using them:

 mysqli_free_result($r);

 This line removes the overhead (memory) taken by $r. It’s an optional step, since PHP will automatically free up the resources at the
 end of a script, but—like using mysqli_close()—it does make for good programming form.

 To demonstrate how to handle results returned by a query, let’s create a script for
 viewing all the currently registered users.

 To retrieve query results:

 1. Begin a new PHP document in your text editor or IDE, to be named view_users.php (Script 9.4):

 Click here to view code image

 <?php # Script 9.4 - view_users.php
$page_title = ‘View the Current
[image: Images]Users’;
include(‘includes/header.html’);
echo ‘<h1>Registered Users</h1>’;

 Script 9.4 The view_users.php script runs a static query on the database and prints all the returned rows.

 Click here to view code image

1 <?php # Script 9.4 - view_users.php
2 // This script retrieves all the records from the users table.
3
4 $page_title = ‘View the Current Users’;
5 include(‘includes/header.html’);
6
7 // Page header:
8 echo ‘<h1>Registered Users</h1>’;
9
10 require(‘../mysqli_connect.php’); // Connect to the db.
11
12 // Make the query:
13 $q = “SELECT CONCAT(last_name, ‘, ‘, first_name) AS name, DATE_FORMAT(registration_date,
 ‘%M %d, %Y’) AS dr FROM users ORDER BY registration_date ASC”;
14 $r = @mysqli_query($dbc, $q); // Run the query.
15
16 if ($r) { // If it ran OK, display the records.
17
18 // Table header.
19 echo ‘<table width=”60%”>
20 <thead>
21 <tr>
22 <th align=”left”>Name</th>
23 <th align=”left”>Date Registered</th>
24 </tr>
25 </thead>
26 <tbody>
27 ‘;
28
29 // Fetch and print all the records:
30 while ($row = mysqli_fetch_array($r, MYSQLI_ASSOC)) {
31 echo ‘<tr><td align=”left”>’ . $row[‘name’] . ‘</td><td align=”left”>’ . $row[‘dr’] .
 ‘</td></tr>
32 ‘;
33 }
34
35 echo ‘</tbody></table>’; // Close the table.
36
37 mysqli_free_result($r); // Free up the resources.
38
39 } else { // If it did not run OK.
40
41 // Public message:
42 echo ‘<p class=”error”>The current users could not be retrieved. We apologize for any
 inconvenience.</p>’;
43
44 // Debugging message:
45 echo ‘<p>’ . mysqli_error($dbc) . ‘

Query: ‘ . $q . ‘</p>’;
46
47 } // End of if ($r) IF.
48
49 mysqli_close($dbc); // Close the database connection.
50
51 include(‘includes/footer.html’);
52 ?>

 2. Connect to and query the database:

 Click here to view code image

 require(‘../mysqli_connect.php’);
$q = “SELECT CONCAT(last_name,
[image: Images]’, ‘, first_name) AS name,
[image: Images]DATE_FORMAT(registration_date,
[image: Images]’%M %d, %Y’) AS dr FROM users
[image: Images]ORDER BY registration_date ASC”;
$r = @mysqli_query ($dbc, $q);

 The query here will return two columns [image: Images]: the users’ names (formatted as Last Name, First Name) and the date they registered (formatted as Month DD, YYYY). Because both columns are formatted using MySQL functions, aliases are given to
 the returned results (name and dr, accordingly). See Chapter 5 if you are confused by any of this syntax.

 [image: Images]

 [image: Images] The query results as run within the mysql client.

 3. Create an HTML table for displaying the query results:

 Click here to view code image

 if ($r) {
 echo ‘<table width=”60%”>
 <thead>
 <tr>
 <th align=”left”>Name</th>
 <th align=”left”>Date
 [image: Images]Registered</th>
 </tr>
 </thead>
 <tbody>
‘;

 If the $r variable has a TRUE value, then the query ran without error and the results can be
 displayed. To do that, start by making a table and a header row in HTML.

 4. Fetch and print each returned record:

 Click here to view code image

while ($row = mysqli_fetch_array
[image: Images]($r, MYSQLI_ASSOC)) {
 echo ‘<tr><td align=”left”>’ .
 [image: Images]$row[‘name’] . ‘</td><td
 [image: Images]align=”left”>’ . $row[‘dr’] .
 [image: Images]’</td></tr>
 ‘;
}

 Next, loop through the results using mysqli_fetch_array() and print each fetched row. Notice that within the while loop, the code refers to each returned value using the proper alias: $row[‘name’] and $row[‘dr’]. The script could not refer to $row[‘first_name’] or $row[‘date_registered’] because no such field name was returned [image: Images].

 5. Close the HTML table and free up the query resources:

 Click here to view code image

 echo ‘</tbody></table>’;
mysqli_free_result($r);

 Again, this is an optional step but a good one to take.

 6. Complete the main conditional:

 Click here to view code image

 } else {
 echo ‘<p class=”error”>The
 [image: Images]current users could not be
 [image: Images]retrieved. We apologize for
 [image: Images]any inconvenience.</p>’;
 echo ‘<p>’ . mysqli_error($dbc)
 [image: Images]. ‘

Query: ‘ . $q .
 [image: Images]’</p>’;
} // End of if ($r) IF.

 As in the register.php example, there are two kinds of error messages here. The first is a generic message,
 the type you’d show in a live site. The second is much more detailed, printing both
 the MySQL error and the query—both are critical for debugging purposes.

 7. Close the database connection and finish the page:

 Click here to view code image

 mysqli_close($dbc);
include(‘includes/footer.html’);
?>

 8. Save the file as view_users.php, place it in your web directory, and test it in your browser [image: Images].

 [image: Images]

 [image: Images]All of the user records are retrieved from the database and displayed in the browser.

 Tip

 The function mysqli_fetch_row() is the equivalent of mysqli_fetch_array ($r, MYSQLI_NUM);.

 Tip

 The function mysqli_fetch_assoc() is the equivalent of mysqli_fetch_array ($r, MYSQLI_ASSOC);.

 Tip

 As with any associative array, when you retrieve records from the database, you must
 refer to the selected columns or aliases exactly as they are in the database or query.
 In other words, the keys are case-sensitive.

 Tip

 If you are in a situation where you need to run a second query inside your loop, be certain to use different variable names for that query. For example, the
 inner query would use and instead of and . If you don’t do this, you’ll encounter logical errors.

 Tip

 I sometimes see beginning PHP developers muddle the process of fetching query results.
 Remember that you must execute the query using mysqli_query(), and then use mysqli_fetch_array() to retrieve a single row of information. If you have multiple rows to retrieve, use
 a while loop.

 Ensuring Secure SQL

 Database security with respect to PHP comes down to three broad issues:

 [image: Images] Protecting the MySQL access information

 [image: Images] Not revealing too much about the database

 [image: Images] Being cautious when running queries, particularly those involving user-submitted
 data

 You can accomplish the first objective by securing the MySQL connection script outside
 of the web directory so that it is never viewable through a browser (see [image: Images] in “Connecting to MySQL” earlier). I discussed this in some detail earlier in the
 chapter. The second objective is attained by not letting the user see PHP’s error
 messages or your queries: in these scripts, that information is printed for your debugging
 purposes; you’d never want to do that on a live site.

 For the third objective, there are numerous steps you can and should take, all based
 on the premise of never trusting user-supplied data. First, validate that some value
 has been submitted or that it is of the proper type (number, string, etc.). Second,
 use the Filter extension (discussed in Chapter 13) or regular expressions (discussed in Chapter 14, “Perl-Compatible Regular Expressions”) to make sure that submitted data matches
 what you would expect it to be. Third, you can typecast some values to guarantee that
 they’re numbers. A fourth recommendation is to run user-submitted data through the
 mysqli_real_escape_string() function. This function makes data safe to use in a query by escaping what could
 be problematic characters. It’s used like so:

 Click here to view code image

 $safe = mysqli_real_escape_string
[image: Images]($dbc, data);

 To understand why this is necessary, see [image: Images] in “Executing Simple Queries” earlier. The use of the apostrophe in the user’s last
 name made the query syntactically invalid:

 Click here to view code image

 INSERT INTO users (first_name,
[image: Images]last_name, email, pass,
[image: Images]registration_date) VALUES (‘Peter’,
[image: Images]’O’Toole’, ‘petey@example.net’,
[image: Images]SHA2(‘aPass8’, 512), NOW())

 In that example, valid user data broke the query, which is not good. But if your PHP
 script allows for this possibility, a malicious user can purposefully submit problematic
 characters—the apostrophe being one example—to hack into, or damage, your database.
 For security purposes, mysqli_real_escape_string() should be used on every text input in a form. To demonstrate this, let’s revamp register.php (Script 9.3).

 To use mysqli_real_escape_string():

 1. Open register.php (Script 9.3) in your text editor or IDE, if you haven’t already.

 2. Move the inclusion of the mysqli_ connect.php file (line 48 in Script 9.3) to just after the main conditional (Script 9.5).

 Script 9.5 The register.php script now uses the mysqli_real_escape_string() function to make submitted data safe to use in a query.

 Click here to view code image

1 <?php # Script 9.5 - register.php #2
2 // This script performs an INSERT query to add a record to the users table.
3
4 $page_title = ‘Register’;
5 include(‘includes/header.html’);
6
7 // Check for form submission:
8 if ($_SERVER[‘REQUEST_METHOD’] == ‘POST’) {
9
10 require(‘../mysqli_connect.php’); // Connect to the db.
11
12 $errors = []; // Initialize an error array.
13
14 // Check for a first name:
15 if (empty($_POST[‘first_name’])) {
16 $errors[] = ‘You forgot to enter your first name.’;
17 } else {
18 $fn = mysqli_real_escape_string($dbc, trim($_POST[‘first_name’]));
19 }
20
21 // Check for a last name:
22 if (empty($_POST[‘last_name’])) {
23 $errors[] = ‘You forgot to enter your last name.’;
24 } else {
25 $ln = mysqli_real_escape_string($dbc, trim($_POST[‘last_name’]));
26 }
27
28 // Check for an email address:
29 if (empty($_POST[‘email’])) {
30 $errors[] = ‘You forgot to enter your email address.’;
31 } else {
32 $e = mysqli_real_escape_string($dbc, trim($_POST[‘email’]));
33 }
34
35 // Check for a password and match against the confirmed password:
36 if (!empty($_POST[‘pass1’])) {
37 if ($_POST[‘pass1’] != $_POST[‘pass2’]) {
38 $errors[] = ‘Your password did not match the confirmed password.’;
39 } else {
40 $p = mysqli_real_escape_string($dbc, trim($_POST[‘pass1’]));
41 }
42 } else {
43 $errors[] = ‘You forgot to enter your password.’;
44 }
45
46 if (empty($errors)) { // If everything’s OK.
47
48 // Register the user in the database...
49
50 // Make the query:
51 $q = “INSERT INTO users (first_name, last_name, email, pass, registration_date) VALUES
 (‘$fn’, ‘$ln’, ‘$e’, SHA2(‘$p’, 512), NOW())”;
52 $r = @mysqli_query ($dbc, $q); // Run the query.
53 if ($r) { // If it ran OK.
54
55 // Print a message:
56 echo ‘<h1>Thank you!</h1>
57 <p>You are now registered. In Chapter 12 you will actually be able to log in!
 </p><p>
</p>’;
58
59 } else { // If it did not run OK.
60
61 // Public message:
62 echo ‘<h1>System Error</h1>
63 <p class=”error”>You could not be registered due to a system error. We apologize for
 any inconvenience.</p>’;
64
65 // Debugging message:
66 echo ‘<p>’ . mysqli_error($dbc) . ‘

Query: ‘ . $q . ‘</p>’;
67
68 } // End of if ($r) IF.
69
70 mysqli_close($dbc); // Close the database connection.
71
72 // Include the footer and quit the script:
73 include(‘includes/footer.html’);
74 exit();
75
76 } else { // Report the errors.
77
78 echo ‘<h1>Error!</h1>
79 <p class=”error”>The following error(s) occurred:
’;
80 foreach ($errors as $msg) { // Print each error.
81 echo “ - $msg
\n”;
82 }
83 echo ‘</p><p>Please try again.</p><p>
</p>’;
84
85 } // End of if (empty($errors)) IF.
86
87 mysqli_close($dbc); // Close the database connection.
88
89 } // End of the main Submit conditional.
90 ?>
91 <h1>Register</h1>
92 <form action=”register.php” method=”post”>
93 <p>First Name: <input type=”text” name=”first_name” size=”15” maxlength=”20” value=”<?php
 if (isset($_POST[‘first_name’])) echo $_POST[‘first_name’]; ?>”></p>
94 <p>Last Name: <input type=”text” name=”last_name” size=”15” maxlength=”40” value=”<?php
 if (isset($_POST[‘last_name’])) echo $_POST[‘last_name’]; ?>”></p>
95 <p>Email Address: <input type=”email” name=”email” size=”20” maxlength=”60” value=”<?php
 if (isset($_POST[‘email’])) echo $_POST[‘email’]; ?>” > </p>
96 <p>Password: <input type=”password” name=”pass1” size=”10” maxlength=”20” value=”<?php
 if (isset($_POST[‘pass1’])) echo $_POST[‘pass1’]; ?>” ></p>
97 <p>Confirm Password: <input type=”password” name=”pass2” size=”10” maxlength=”20” value=”<?php if
 (isset($_POST[‘pass2’])) echo $_POST[‘pass2’]; ?>” ></p>
98 <p><input type=”submit” name=”submit” value=”Register”></p>
99 </form>
100 <?php include(‘includes/footer.html’); ?>

 Because the mysqli_real_escape_string() function requires a database connection, the mysqli_connect.php script must be required earlier in the script.

 3. Change the validation routines to use the mysqli_real_escape_string() function, replacing each occurrence of $var = trim($_POST[‘var’]) with $var = mysqli_real_escape_string($dbc, trim($_POST[‘var’])):

 Click here to view code image

 $fn = mysqli_real_escape_string
[image: Images]($dbc, trim($_POST[‘first_name’]));
$ln = mysqli_real_escape_string
[image: Images]($dbc, trim($_POST[‘last_name’]));
$e = mysqli_real_escape_string
[image: Images]($dbc, trim($_POST[‘email’]));
$p = mysqli_real_escape_string
[image: Images]($dbc, trim($_POST[‘pass1’]));

 Instead of just assigning the submitted value to each variable ($fn, $ln, etc.), the values will be run through the mysqli_real_escape_string() function first. The trim() function is still used to get rid of any unnecessary spaces.

 4. Add a second call to mysqli_close() before the end of the main conditional:

 mysqli_close($dbc);

 To be consistent, since the database connection is opened as the first step of the
 main conditional, it should be closed as the last step of this same conditional. It
 still needs to be closed before including the footer and terminating the script (lines
 73 and 74), though.

 5. Save the file as register.php, place it in your web directory, and test it in your browser [image: Images] and [image: Images].

 [image: Images]

 [image: Images] Values with apostrophes in them, like a person’s last name, will no longer break
 the INSERT query, thanks to the mysqli_real_ escape_string() function.

 [image: Images]

 [image: Images] Now the registration process will handle problematic characters and be more secure.

 Tip

 The mysqli_real_escape_string() function escapes a string in accordance with the language being used (i.e., the collation),
 which is an advantage using this function has over alternative solutions.

 Tip

 If you see results like those in [image: Images], it means that the mysqli_real_escape_string() function cannot access the database (because it has no connection, like $dbc).

 [image: Images]

 [image: Images] Since the mysqli_real_escape_string() function requires a database connection, using it without that connection (e.g.,
 before including the connection script) can lead to other errors.

 Tip

 If you look at the values stored in the database (using the mysql client, phpMyAdmin,
 or the like), you will not see the apostrophes and other problematic characters stored
 with preceding backslashes. This is correct. The backslashes keep the problematic
 characters from breaking the query, but the backslashes are not themselves stored.

 Counting Returned Records

 The next function to discuss is mysqli_num_rows(). This function returns the number of rows retrieved by a SELECT query. It takes one argument, the query result variable:

 $num = mysqli_num_rows($r);

 Although simple in purpose, this function is very useful. It’s necessary if you want
 to paginate your query results (an example of this can be found in the next chapter).
 It’s also a good idea to use this function before you attempt to fetch any results
 using a while loop (because there’s no need to fetch the results if there aren’t any, and attempting
 to do so may cause errors). In this next sequence of steps, let’s modify view_users.php to list the total number of registered users.

 To modify view_users.php:

 1. Open view_users.php (refer to Script 9.4) in your text editor or IDE, if you haven’t already.

 2. Before the if ($r) conditional, add this line (Script 9.6):

 $num = mysqli_num_rows($r);

 Script 9.6 Now the view_users.php script will display the total number of registered users, thanks to the mysqli_num_rows() function.

 Click here to view code image

1 <?php # Script 9.6 - view_users.php #2
2 // This script retrieves all the records from the users table.
3
4 $page_title = ‘View the Current Users’;
5 include(‘includes/header.html’);
6
7 // Page header:
8 echo ‘<h1>Registered Users</h1>’;
9
10 require(‘../mysqli_connect.php’); // Connect to the db.
11
12 // Make the query:
13 $q = “SELECT CONCAT(last_name, ‘, ‘, first_name) AS name, DATE_FORMAT(registration_date, ‘%M %d, %Y’) AS dr FROM users ORDER BY registration_date ASC”;
14 $r = @mysqli_query($dbc, $q); // Run the query.
15
16 // Count the number of returned rows:
17 $num = mysqli_num_rows($r);
18
19 if ($num > 0) { // If it ran OK, display the records.
20
21 // Print how many users there are:
22 echo “<p>There are currently $num registered users.</p>\n”;
23
24 // Table header.
25 echo ‘<table width=”60%”>
26 <thead>
27 <tr>
28 <th align=”left”>Name</th>
29 <th align=”left”>Date Registered</th>
30 </tr>
31 </thead>
32 <tbody>
33 ‘;
34
35 // Fetch and print all the records:
36 while ($row = mysqli_fetch_array($r, MYSQLI_ASSOC)) {
37 echo ‘<tr><td align=”left”>’ . $row[‘name’] . ‘</td><td align=”left”>’ . $row[‘dr’] .
 ‘</td></tr>
38 ‘;
39 }
40
41 echo ‘</tbody></table>’; // Close the table.
42
43 mysqli_free_result($r); // Free up the resources.
44
45 } else { // If no records were returned.
46
47 echo ‘<p class=”error”>There are currently no registered users.</p>’;
48
49 }
50
51 mysqli_close($dbc); // Close the database connection.
52
53 include(‘includes/footer.html’);
54 ?>

 This line will assign the number of rows returned by the query to the $num variable.

 3. Change the original $r conditional to

 if ($num > 0) {

 The conditional as it was written before was based on whether the query did or did
 not successfully run, not whether any records were returned. Now it will be more accurate.

 4. Before creating the HTML table, print the number of registered users:

 Click here to view code image

 echo “<p>There are currently
[image: Images]$num registered users.</p>\n”;

 5. Change the else part of the main conditional to read

 Click here to view code image

 echo ‘<p class=”error”>There are
[image: Images]currently no registered users.
[image: Images]</p>’;

 Modifying register.php

 The mysqli_num_rows() function could be applied to register.php to prevent someone from registering with the same email address multiple times. Although
 the UNIQUE index on that column in the database will prevent that from happening, such attempts
 will create a MySQL error. To avoid this using PHP, run a SELECT query to confirm that the email address isn’t currently registered. That query would
 be simply

 Click here to view code image

 SELECT user_id FROM users WHERE
[image: Images]email=’$e’

 You would run this query (using the mysqli_query() function) and then call mysqli_num_rows(). If mysqli_num_rows() returns 0, you know that the email address hasn’t already been registered and it’s
 safe to run the INSERT.

 The original conditional was based on whether the query worked. Hopefully, you’ve
 successfully debugged the query so that it is working and the original error messages
 are no longer needed. Now the error message just indicates if no records were returned.

 6. Save the file as view_users.php, place it in your web directory, and test it in your browser [image: Images].

 [image: Images]

 [image: Images] The number of registered users is now displayed at the top of the page.

 Updating Records with PHP

 The last technique in this chapter shows how to update database records through a
 PHP script. Doing so requires an UPDATE query, and its successful execution can be verified with PHP’s mysqli_affected_rows() function.

 While the mysqli_num_rows() function will return the number of rows generated by a SELECT query, mysqli_affected_rows() returns the number of rows affected by an INSERT, UPDATE, or DELETE query. It’s used like so:

 Click here to view code image

 $num = mysqli_affected_rows($dbc);

 Unlike mysqli_num_rows(), the one argument the function takes is the database connection ($dbc), not the results of the previous query ($r).

 The following example will be a script that allows registered users to change their
 password. It demonstrates two important ideas:

 [image: Images] Checking a submitted username and password against registered values (the key to
 a login system as well)

 [image: Images] Updating database records using the primary key as a reference

 As with the registration example, this one PHP script will both display the form [image: Images] and handle it.

 [image: Images]

 [image: Images] The form for changing a user’s password.

 To update records with PHP:

 1. Begin a new PHP script in your text editor or IDE, to be named password.php (Script 9.7):

 Click here to view code image

 <?php # Script 9.7 - password.php
$page_title = ‘Change Your
[image: Images]Password’;
include(‘includes/header.html’);

 Script 9.7 The password.php script runs an UPDATE query on the database and uses the mysqli_affected_rows() function to confirm the change.

 Click here to view code image

 1 <?php # Script 9.7 - password.php
2 // This page lets a user change their password.
3
4 $page_title = ‘Change Your Password’;
5 include(‘includes/header.html’);
6
7 // Check for form submission:
8 if ($_SERVER[‘REQUEST_METHOD’] == ‘POST’) {
9
10 require(‘../mysqli_connect.php’); // Connect to the db.
11
12 $errors = []; // Initialize an error array.
13
14 // Check for an email address:
15 if (empty($_POST[‘email’])) {
16 $errors[] = ‘You forgot to enter your email address.’;
17 } else {
18 $e = mysqli_real_escape_string($dbc, trim($_POST[‘email’]));
19 }
20
21 // Check for the current password:
22 if (empty($_POST[‘pass’])) {
23 $errors[] = ‘You forgot to enter your current password.’;
24 } else {
25 $p = mysqli_real_escape_string($dbc, trim($_POST[‘pass’]));
26 }
27
28 // Check for a new password and match
29 // against the confirmed password:
30 if (!empty($_POST[‘pass1’])) {
31 if ($_POST[‘pass1’] != $_POST[‘pass2’]) {
32 $errors[] = ‘Your new password did not match the confirmed password.’;
33 } else {
34 $np = mysqli_real_escape_string($dbc, trim($_POST[‘pass1’]));
35 }
36 } else {
37 $errors[] = ‘You forgot to enter your new password.’;
38 }
39
40 if (empty($errors)) { // If everything’s OK.
41
42 // Check that they’ve entered the right email address/password combination:
43 $q = “SELECT user_id FROM users WHERE (email=’$e’ AND pass=SHA2(‘$p’, 512))”;
44 $r = @mysqli_query($dbc, $q);
45 $num = @mysqli_num_rows($r);
46 if ($num == 1) { // Match was made.
47
48 // Get the user_id:
49 $row = mysqli_fetch_array($r, MYSQLI_NUM);
50
51 // Make the UPDATE query:
52 $q = “UPDATE users SET pass=SHA2(‘$np’, 512) WHERE user_id=$row[0]”;
53 $r = @mysqli_query($dbc, $q);
54
55 if (mysqli_affected_rows($dbc) == 1) { // If it ran OK.
56
57 // Print a message.
58 echo ‘<h1>Thank you!</h1>
59 <p>Your password has been updated. In Chapter 12 you will actually be able to log
 in!</p><p>
</p>’;
60
61 } else { // If it did not run OK.
62
63 // Public message:
64 echo ‘<h1>System Error</h1>
65 <p class=”error”>Your password could not be changed due to a system error.
 We apologize for any inconvenience.</p>’;
66
67 // Debugging message:
68 echo ‘<p>’ . mysqli_error($dbc) . ‘

Query: ‘ . $q . ‘</p>’;
69
70 }
71
72 mysqli_close($dbc); // Close the database connection.
73
74 // Include the footer and quit the script (to not show the form).
75 include(‘includes/footer.html’);
76 exit();
77
78 } else { // Invalid email address/password combination.
79 echo ‘<h1>Error!</h1>
80 <p class=”error”>The email address and password do not match those on file.</p>’;
81 }
82
83 } else { // Report the errors.
84
85 echo ‘<h1>Error!</h1>
86 <p class=”error”>The following error(s) occurred:
’;
87 foreach ($errors as $msg) { // Print each error.
88 echo “ - $msg
\n”;
89 }
90 echo ‘</p><p>Please try again.</p><p>
</p>’;
91
92 } // End of if (empty($errors)) IF.
93
94 mysqli_close($dbc); // Close the database connection.
95
96 } // End of the main Submit conditional.
97 ?>
98 <h1>Change Your Password</h1>
99 <form action=”password.php” method=”post”>
100 <p>Email Address: <input type=”email” name=”email” size=”20” maxlength=”60” value=”<?php
 if (isset($_POST[‘email’])) echo $_POST[‘email’]; ?>” > </p>
101 <p>Current Password: <input type=”password” name=”pass” size=”10” maxlength=”20”
 value=”<?php if (isset($_POST[‘pass’])) echo $_POST[‘pass’]; ?>” ></p>
102 <p>New Password: <input type=”password” name=”pass1” size=”10” maxlength=”20”
 value=”<?php if (isset($_POST[‘pass1’])) echo $_POST[‘pass1’]; ?>” ></p>
103 <p>Confirm New Password: <input type=”password” name=”pass2” size=”10”
 maxlength=”20” value=”<?php if (isset($_POST[‘pass2’])) echo $_POST[‘pass2’]; ?>” ></p>
104 <p><input type=”submit” name=”submit” value=”Change Password”></p>
105 </form>
106 <?php include(‘includes/footer.html’); ?>

 2. Start the main conditional:

 Click here to view code image

 if ($_SERVER[‘REQUEST_METHOD’] = =
[image: Images]’POST’) {

 Since this page both displays and handles the form, it’ll use the standard conditional
 to check for the form’s submission.

 3. Include the database connection and create an array for storing errors:

 Click here to view code image

 require(‘../mysqli_connect.php’);
$errors = [];

 The initial part of this script mimics the registration form.

 4. Validate the email address and current password fields:

 Click here to view code image

 if (empty($_POST[‘email’])) {
 $errors[ ] = ‘You forgot to
 [image: Images]enter your email address. ‘;
} else {
 $e = mysqli_real_escape_string
 [image: Images]($dbc, trim($_POST[‘email’]));
}
if (empty($_POST[‘pass’])) {
 $errors[ ] = ‘You forgot to
 enter your current password. ‘;
} else {
 $p = mysqli_real_escape_string
 [image: Images]($dbc, trim($_POST[‘pass’]));
}

 The form [image: Images] has four inputs: the email address, the current password, and two for the new password.
 The process for validating each of these is the same as it is in register.php. Any data that passes the validation test will be trimmed and run through the mysqli_real_escape_string() function so that it is safe to use in a query.

 5. Validate the new password:

 Click here to view code image

 if (!empty($_POST[‘pass1’])) {
 if ($_POST[‘pass1’] !=
 [image: Images]$_POST[‘pass2’]) {
 $errors[ ] = ‘Your new
 [image: Images]password did not match the
 [image: Images]confirmed password. ‘;
 } else {
 $np = mysqli_real_escape_
 [image: Images]string($dbc, trim
 [image: Images]($_POST[‘pass1’]));
 }
} else {
 $errors[ ] = ‘You forgot to
 [image: Images]enter your new password. ‘;
}

 This code is also exactly like that in the registration script, except that a valid
 new password is assigned to a variable called $np (because $p represents the current password).

 6. If all the tests are passed, retrieve the user’s ID:

 Click here to view code image

 if (empty($errors)) {
 $q = “SELECT user_id FROM users
 WHERE (email=’$e’ AND pass=SHA2
 [image: Images](‘$p’, 512))”;
 $r = @mysqli_query($dbc, $q);
 $num = @mysqli_num_rows($r);

 This first query will return just the user_id field for the record that matches the submitted email address and password [image: Images]. To compare the submitted password against the stored one, encrypt it again with
 the SHA1() function. If the user is registered and has correctly entered both the email address
 and password, exactly one column from one row will be selected (since the email value
 must be unique across all rows). Finally, this one record is assigned as an array
 (of one element) to the $row variable.

 [image: Images] The result when running the SELECT query from the script (the first of two queries it has) within the mysql client.

 If this part of the script doesn’t work for you, apply the standard debugging methods:
 remove the error suppression operators (@) so that you can see what errors, if any, occur; use the mysqli_error() function to report any MySQL errors; and print, then run the query using another
 interface [image: Images].

 7. Update the database for the new password:

 Click here to view code image

 $q = “UPDATE users SET pass=SHA2
[image: Images](‘$np’, 512) WHERE user_id=$row
[image: Images][0]”;
$r = @mysqli_query($dbc, $q);

 This query will change the password—using the new submitted value—where the user_id column is equal to the number retrieved from the previous query.

 8. Check the results of the query:

 Click here to view code image

 if (mysqli_affected_rows($dbc) ==
[image: Images]1) {
 echo ‘<h1>Thank you!</h1>
 <p>Your password has been
 [image: Images]updated. In Chapter 12 you
 [image: Images]will actually be able to log
 [image: Images]in!</p><p>
</p>’;
} else { // If it did not run OK.
 echo ‘<h1>System Error</h1>
 <p class=”error”>Your password
 [image: Images]could not be changed due to a
 [image: Images]system error. We apologize
 [image: Images]for any inconvenience.</p>’;
 echo ‘<p>’ . mysqli_error($dbc)
 [image: Images]. ‘

Query: ‘ . $q .
 [image: Images]’</p>’;
}

 This part of the script again works like register.php. In this case, if mysqli_affected_rows() returns the number 1, the record has been updated, and a success message will be
 printed. If not, both a public, generic message and a more useful debugging message
 will be printed.

 9. Close the database connection, include the footer, and terminate the script:

 Click here to view code image

 mysqli_close($dbc);
include(‘includes/footer.html’);
exit();

 At this point in the script, the UPDATE query has been run. It either worked or it did not (because of a system error). In
 both cases, there’s no need to show the form again, so the footer is included (to
 complete the page) and the script is terminated, using the exit() function. Prior to that, just to be thorough, the database connection is closed.

 10. Complete the if ($num == 1) conditional:

 Click here to view code image

 } else {
 echo ‘<h1>Error!</h1>
 <p class=”error”>The email
 [image: Images]address and password do not
 [image: Images]match those on file.</p>’;
}

 If mysqli_num_rows() does not return a value of 1, then the submitted email address and password do not
 match those in the database and this error is printed. In this case, the form will
 be displayed again so that the user can enter the correct information.

 11. Print any validation error messages:

 Click here to view code image

 } else {
 echo ‘<h1>Error!</h1>
 <p class=”error”>The following
 [image: Images]error(s) occurred:
’;
 foreach ($errors as $msg) {
 echo “ - $msg
\n”;
 }
 echo ‘</p><p>Please try again.
 [image: Images]</p><p>
</p>’;
} // End of if (empty($errors)) IF.

 This else clause applies if the $errors array is not empty (which means that the form data did not pass all the validation
 tests). As in the registration page, the errors will be printed.

 12. Close the database connection and complete the PHP code:

 mysqli_close($dbc);
}
?>

 13. Display the form:

 Click here to view code image

 <h1>Change Your Password</h1>
<form action=”password.php”
 method=”post”>
 <p>Email Address: <input
 [image: Images]type=”email” name=”email”
 [image: Images]size=”20” maxlength=”60”
 [image: Images]value=”<?php if
 [image: Images](isset($_POST[‘email’]))
 [image: Images]echo $_POST[‘email’]; ?>” >
 [image: Images]</p>
 <p>Current Password: <input
 [image: Images]type=”password” name=”pass”
 [image: Images]size=”10” maxlength=”20”
 [image: Images]value=”<?php if
 [image: Images](isset($_POST[‘pass’])) echo
 [image: Images]$_POST[‘pass’]; ?>” ></p>
 <p>New Password: <input
 [image: Images]type=”password” name=”pass1”
 [image: Images]size=”10” maxlength=”20”
 [image: Images]value=”<?php if
 [image: Images](isset($_POST[‘pass1’])) echo
 [image: Images]$_POST[‘pass1’]; ?>” ></p>
 <p>Confirm New Password:
 [image: Images]<input type=”password”
 [image: Images]name=”pass2” size=”10”
 [image: Images]maxlength=”20” value=”<?php
 [image: Images]if (isset($_POST[‘pass2’])) echo
 [image: Images]$_POST[‘pass2’]; ?>” ></p>
 <p><input type=”submit”
 [image: Images]name=”submit” value=”Change
 [image: Images]Password”></p>
</form>

 The form takes three different inputs of type password—the current password, the new
 one, and a confirmation of the new password—and one email input for the email address.
 Every input is sticky, too.

 14. Include the footer file:

 Click here to view code image

 <?php include(‘includes/
[image: Images]footer.html’); ?>

 15. Save the file as password.php, place it in your web directory, and test it in your browser [image: Images] and [image: Images].

 [image: Images]

 [image: Images] The password was changed in the database.

 [image: Images]

 [image: Images] If the entered email address and password don’t match those on file, the password
 will not be updated.

 Tip

 If you delete every record from a table using the command TRUNCATE tablename, mysqli_affected_rows() will return 0, even if the query was successful and every row was removed. This is
 just a quirk.

 Tip

 If an UPDATE query runs but does not actually change the value of any column (for example, a password
 is replaced with the same password), mysqli_affected_rows() will return 0.

 Tip

 The mysqli_affected_rows() conditional used here could (and maybe should) also be applied to the register.php script to confirm that one record was added. That would be a more exacting condition
 to check than if ($r).

 Review and Pursue

 If you have any problems with the review questions or the pursue prompts, turn to
 the book’s supporting forum (LarryUllman.com/forums/).

 Review

 [image: Images] What version of PHP are you using? What version of MySQL? Does your PHP-MySQL combination
 support the Improved MySQL Extension?

 [image: Images] What is the most important sequence of steps for debugging PHP-MySQL problems (explicitly
 covered at the end of Chapter 8, “Error Handling and Debugging”)?

 [image: Images] What hostname, username, and password combination do you, specifically, use to connect
 to MySQL?

 [image: Images] What PHP code is used to connect to a MySQL server, select the database, and establish
 the encoding?

 [image: Images] What encoding are you using? Why is it necessary for the PHP scripts to use the same
 encoding that is used to interact with MySQL as is used for storing the text in the
 database?

 [image: Images] Why is it preferable to store the mysqli_connect.php script outside of the web root directory? And what is the web root directory?

 [image: Images] Why shouldn’t live sites show MySQL errors and the queries being run?

 [image: Images] What syntax will you almost always use to handle the results of a SELECT query? What syntax could you use if the SELECT query returns only a single row?

 [image: Images] Why is it important to use the mysqli_real_escape_string() function?

 [image: Images] After what kind of queries would you use the mysqli_num_rows() function?

 [image: Images] After what types of queries would you use the mysqli_affected_rows() function?

 Pursue

 [image: Images] If you don’t remember how the template system works, or how to use the include() function, revisit Chapter 3.

 [image: Images] Use the information covered in Chapter 8 to apply your own custom error handler to this site’s examples.

 [image: Images] Change the use of mysqli_num_rows() in view_users.php so that it’s called only if the query had a TRUE result.

 [image: Images] Apply the mysqli_num_rows() function to register.php, as suggested in the “Modifying register.php” sidebar.

 [image: Images] Apply the mysqli_affected_rows() function to register.php to confirm that the INSERT worked.

 [image: Images] If you want, create scripts that interact with the banking database. Easy projects to begin with include viewing all customers, viewing all
 accounts (do a JOIN to also show the customer’s name), and adding to or subtracting from an account’s
 balance.

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 10. Common Programming Techniques

 In This Chapter

 Sending Values to a Script

 Using Hidden Form Inputs

 Editing Existing Records

 Paginating Query Results

 Making Sortable Displays

 Review and Pursue

 Now that you have a little PHP and MySQL interaction under your belt, it’s time to
 kick things up a notch. This chapter is like Chapter 3, “Creating Dynamic Web Sites,” in that it covers myriad independent topics. But what these have in common is that
 they demonstrate common PHP-MySQL programming techniques. You won’t learn any new
 functions here; instead, you’ll see how to use the knowledge you already possess to
 create standard web functionality.

 The examples themselves will broaden the application started in the preceding chapter
 by adding new, popular features. You’ll see several tricks for managing database information,
 in particular editing and deleting records using PHP. At the same time, a couple of
 new ways of passing data to your PHP pages will be introduced. The final sections
 of the chapter add features to the view_users.php page.

 Sending Values to a Script

 In the examples so far, all the data received in the PHP script came from what the
 user entered in a form. There are, however, two different ways you can pass variables
 and values to a PHP script, both worth knowing.

 The first method is to make use of HTML’s hidden input type:

 Click here to view code image

 <input type="hidden" name="do"
[image: Images]value="this">

 If this code is anywhere between the form tags, the variable $_POST[‘do’] will have a value of this in the handling PHP script, assuming that the form uses the POST method. If the form
 uses the GET method, then $_GET[‘do’] would have that value. With that in mind, you can skip the creation of the form and
 just directly append a name=value pair to the URL:

 Click here to view code image

 www.example.com/page.php?do=this

 Again, with this specific example, page.php receives a variable called $_GET[‘do’] with a value of this.

 To demonstrate this GET method trick, a new version of the view_users.php script, first created in the previous chapter, will be written. This one will provide
 links to pages that will allow you to edit or delete an existing user’s record. The
 links will pass the user’s ID to the handling pages, both of which will also be written
 in this chapter.

 To manually send values to a PHP script:

 1. Open view_users.php (Script 9.6) in your text editor or IDE.

 2. Change the SQL query to read (Script 10.1)

 Click here to view code image

 $q = "SELECT last_name,
[image: Images]first_name, DATE_FORMAT
[image: Images](registration_date, '%M %d, %Y')
[image: Images]AS dr, user_id FROM users ORDER
[image: Images]BY registration_date ASC";

 Script 10.1 The view_users.php script, started in Chapter 9, “Using PHP with MySQL,” now modified so that it presents Edit and Delete links, passing the user's ID number
 along in each URL.

 Click here to view code image

 1 <?php # Script 10.1 - view_users.php #3
2 // This script retrieves all the records from the users table.
3 // This new version links to edit and delete pages.
4
5 $page_title = 'View the Current Users';
6 include('includes/header.html');
7 echo '<h1>Registered Users</h1>';
8
9 require('../mysqli_connect.php');
10
11 // Define the query:
12 $q = "SELECT last_name, first_name, DATE_FORMAT(registration_date, '%M %d, %Y') AS dr, user_id FROM users ORDER BY registration_date ASC";
13 $r = @mysqli_query($dbc, $q);
14
15 // Count the number of returned rows:
16 $num = mysqli_num_rows($r);
17
18 if ($num > 0) { // If it ran OK, display the records.
19
20 // Print how many users there are:
21 echo "<p>There are currently $num registered users.</p>\n";
22
23 // Table header:
24 echo '<table width="60%">
25 <thead>
26 <tr>
27 <th align="left">Edit</th>
28 <th align="left">Delete</th>
29 <th align="left">Last Name</th>
30 <th align="left">First Name</th>
31 <th align="left">Date Registered</th>
32 </tr>
33 </thead>
34 <tbody>
35 ';
36
37 // Fetch and print all the records:
38 while ($row = mysqli_fetch_array($r, MYSQLI_ASSOC)) {
39 echo '<tr>
40 <td align="left">Edit</td>
41 <td align="left">Delete</td>
42 <td align="left">' . $row['last_name'] . '</td>
43 <td align="left">' . $row['first_name'] . '</td>
44 <td align="left">' . $row['dr'] . '</td>
45 </tr>
46 ';
47 }
48
49 echo '</tbody></table>';
50 mysqli_free_result($r);
51
52 } else { // If no records were returned.
53 echo '<p class="error">There are currently no registered users.</p>';
54 }
55
56 mysqli_close($dbc);
57
58 include('includes/footer.html');
59 ?>

 The query has been changed in a couple of ways. First, the first and last names are
 selected separately, not concatenated together. Second, the user_id is also now being selected, since that value will be necessary in creating the links.

 3. Add three more columns to the main table:

 Click here to view code image

 echo '<table width="60%">
<thead>
<tr>
 <th align="left">Edit
 [image: Images]</th>
 <th align="left">
 [image: Images]Delete</th>
 <th align="left">
 [image: Images]Last Name</th>
 <th align="left">
 [image: Images]First Name</th>
 <th align="left">
 [image: Images]Date Registered</th>
</tr>
</thead>
<tbody>
';

 In the previous version of the script, there were only two columns: one for the name
 and another for the date the user registered. The name column has been separated into
 its two parts and two new columns have been added: one for the Edit link and another for the Delete link.

 4. Change the echo statement within the while loop to match the table’s new structure:

 Click here to view code image

 echo '<tr>
 <td align="left">
 [image: Images]<a href="edit_user.php?id=' .
 [image: Images]$row['user_id'] . '">Edit
 [image: Images]</td>
 <td align="left">
 [image: Images]<a href="delete_user.php?id='
 [image: Images]. $row['user_id'] . '">Delete
 [image: Images]</td>
 <td align="left">' .
 [image: Images]$row['last_name'] . '</td>
 <td align="left">' .
 [image: Images]$row['first_name'] . '</td>
 <td align="left">' . $row['dr']
 [image: Images]. '</td>
</tr>
';

 For each record returned from the database, this line will print out a row with five
 columns. The last three columns are obvious and easy to create; just refer to the
 returned column name.

 For the first two columns, which provide links to edit or delete the user, the syntax
 is slightly more complicated. The desired end result is HTML code like Edit,, where X is the user’s ID. Knowing this, all the PHP code has to do is print $row[‘user_id’] for X, being mindful of the quotation marks to avoid parse errors.

 Because the HTML attributes use a lot of double quotation marks and this echo statement requires a lot of variables to be printed, I find it easiest to use single
 quotes for the HTML and then to concatenate the variables to the printed text.

 5. Save the file as view_users.php, place it in your web directory, and run it in your browser [image: Images].

 [image: Images]

 [image: Images] The revised version of the view_users.php page, with new columns and links.

 There’s no point in clicking the new links, though, because those scripts have not
 yet been created.

 6. If you want, view the HTML source of the page to see each dynamically generated link
 [image: Images].

 [image: Images]

 [image: Images] Part of the HTML source of the page (see [image: Images]) shows how the user’s ID is added to each link’s URL.

 Tip

 To append multiple variables to a URL, use this syntax: page.php?name1=value1&name2=value2&name3=value3. It’s simply a matter of using the ampersand, plus another name-value pair.

 Tip

 One trick to adding variables to URLs is that strings should be encoded to ensure
 that the value is handled properly. For example, the space in the string Elliott Smith
 would be problematic. The solution then is to use the urlencode( ) function:

 Click here to view code image

 $url = 'page.php?name=' .
[image: Images]urlencode('Elliott Smith');

 You only need to do this when programmatically adding values to a URL. When a form
 uses the GET method, it automatically encodes the data.

 Using Hidden Form Inputs

 In the preceding example, a new version of the view_users.php script was written. It now includes links to the edit_user.php and delete_user.php pages, passing each a user’s ID through the URL. This next example, delete_user.php, will take the passed user ID and allow the administrator to delete that user. Although
 you could have this page simply execute a DELETE query as soon as the page is accessed, to prevent an inadvertent deletion there should
 be multiple steps [image: Images]:

 [image: Images]

 [image: Images] This graphic outlines the steps to be executed by the user deletion script.

 1. The page must check that it received a numeric user ID.

 2. A message will confirm that this user should be deleted.

 3. The user ID will be stored in a hidden form input.

 4. Upon submission of this form, the user will actually be deleted.

 To use hidden form inputs:

 1. Begin a new PHP document in your text editor or IDE, to be named delete_user.php (Script 10.2):

 Click here to view code image

 <?php # Script 10.2 –
[image: Images]delete_user.php

 Script 10.2 This script expects a user ID to be passed to it through the URL. It then presents
 a confirmation form and deletes the user upon submission.

 Click here to view code image

 1 <?php # Script 10.2 - delete_user.php
2 // This page is for deleting a user record.
3 // This page is accessed through view_users.php.
4
5 $page_title = 'Delete a User';
6 include('includes/header.html');
7 echo '<h1>Delete a User</h1>';
8
9 // Check for a valid user ID, through GET or POST:
10 if ((isset($_GET['id'])) && (is_numeric($_GET['id']))) { // From view_users.php
11 $id = $_GET['id'];
12 } elseif ((isset($_POST['id'])) && (is_numeric($_POST['id']))) { // Form submission.
13 $id = $_POST['id'];
14 } else { // No valid ID, kill the script.
15 echo '<p class="error">This page has been accessed in error.</p>';
16 include('includes/footer.html');
17 exit();
18 }
19
20 require('../mysqli_connect.php');
21
22 // Check if the form has been submitted:
23 if ($_SERVER['REQUEST_METHOD'] == 'POST') {
24
25 if ($_POST['sure'] == 'Yes') { // Delete the record.
26
27 // Make the query:
28 $q = "DELETE FROM users WHERE user_id=$id LIMIT 1";
29 $r = @mysqli_query($dbc, $q);
30 if (mysqli_affected_rows($dbc) == 1) { // If it ran OK.
31
32 // Print a message:
33 echo '<p>The user has been deleted.</p>';
34
35 } else { // If the query did not run OK.
36 echo '<p class="error">The user could not be deleted due to a system error.</p>';
 // Public message.
37 echo '<p>' . mysqli_error($dbc) . '
Query: ' . $q . '</p>'; // Debugging message.
38 }
39
40 } else { // No confirmation of deletion.
41 echo '<p>The user has NOT been deleted.</p>';
42 }
43
44 } else { // Show the form.
45
46 // Retrieve the user's information:
47 $q = "SELECT CONCAT(last_name, ', ', first_name) FROM users WHERE user_id=$id";
48 $r = @mysqli_query($dbc, $q);
49
50 if (mysqli_num_rows($r) == 1) { // Valid user ID, show the form.
51
52 // Get the user's information:
53 $row = mysqli_fetch_array($r, MYSQLI_NUM);
54
55 // Display the record being deleted:
56 echo "<h3>Name: $row[0]</h3>
57 Are you sure you want to delete this user?";
58
59 // Create the form:
60 echo '<form action="delete_user.php" method="post">
61 <input type="radio" name="sure" value="Yes"> Yes
62 <input type="radio" name="sure" value="No" checked="checked"> No
63 <input type="submit" name="submit" value="Submit">
64 <input type="hidden" name="id" value="' . $id . '">
65 </form>';
66
67 } else { // Not a valid user ID.
68 echo '<p class="error">This page has been accessed in error.</p>';
69 }
70
71 } // End of the main submission conditional.
72
73 mysqli_close($dbc);
74
75 include('includes/footer.html');
76 ?>

 2. Include the page header:

 Click here to view code image

 $page_title = 'Delete a User';
include('includes/header.html');
echo '<h1>Delete a User</h1>';

 This document will use the same template system as the other pages in the application.
 See Chapter 9 and Chapter 3 for clarification, if needed.

 3. Check for a valid user ID value:

 Click here to view code image

 if ((isset($_GET['id'])) &&
[image: Images](is_numeric($_GET['id'])))
[image: Images]{ // From view_users.php
 $id = $_GET['id'];
} elseif ((isset($_POST['id'])) &&
[image: Images](is_numeric($_POST['id'])))
[image: Images]{ // Form submission.
 $id = $_POST['id'];
} else { // No valid ID, kill the
[image: Images]script.
 echo '<p class="error">This
 [image: Images]page has been accessed in
 [image: Images]error.</p>';
 include('includes/footer.html');
 exit();
}

 This script relies on having a valid user ID, to be used in a DELETE query’s WHERE clause. The first time this page is accessed, the user ID should be passed in the
 URL (the page’s URL will end with delete_user.php?id=X) after clicking the Delete link in the view_users.php page. The first if condition checks for such a value and that the value is numeric.

 As you will see, the script will then store the user ID value in a hidden form input.
 When the form is submitted (back to this same page), the script will receive the ID
 through $_POST. The second condition checks this and, again, that the ID value is numeric.

 If neither of these conditions is TRUE, then the page cannot proceed, so an error
 message is displayed and the script’s execution is terminated [image: Images].

 [image: Images]

 [image: Images] If the page does not receive a number ID value, this error is shown.

 4. Include the MySQL connection script:

 Click here to view code image

 require_once('../mysqli_connect
[image: Images].php');

 Both of this script’s processes—showing the form and handling the form—require a database
 connection, so this line is outside of the main submit conditional (Step 5).

 5. Begin the main submit conditional:

 Click here to view code image

 if ($_SERVER['REQUEST_METHOD'] = =
[image: Images]'POST') {

 To test for a form submission, the script uses the same conditional first explained
 in Chapter 3 (and also used in Chapter 9).

 6. Delete the user, if appropriate:

 Click here to view code image

 if ($_POST['sure'] = = 'Yes') {
 $q = "DELETE FROM users WHERE
 [image: Images]user_id=$id LIMIT 1";
 $r = @mysqli_query($dbc, $q);

 The form [image: Images] will force the user to click a radio button to confirm the deletion. This little
 requirement prevents any accidents. Thus, the handling process first checks that the
 correct radio button was selected. If so, a basic DELETE query is defined, using the user’s ID in the WHERE clause. A LIMIT clause is added to the query as an extra precaution.

 [image: Images]

 [image: Images] The page confirms the user deletion using this simple form.

 7. Check if the deletion worked and respond accordingly:

 Click here to view code image

 if (mysqli_affected_rows($dbc) ==
[image: Images]1) {
 echo '<p>The user has been
 [image: Images]deleted.</p>';
} else {
 echo '<p class="error">The user
 [image: Images]could not be deleted due to
 [image: Images]a system error.</p>'; //
 [image: Images]Public message.
 echo '<p>' . mysqli_error($dbc)
 [image: Images]. '
Query: ' . $q . '</p>';
}

 The mysqli_affected_rows( ) function checks that exactly one row was affected by the DELETE query. If so, a happy message is displayed [image: Images]. If not, an error message is sent out.

 [image: Images]

 [image: Images] If you select Yes in the form (see [image: Images]) and click Submit, this should be the result.

 Keep in mind that it’s possible that no rows were affected without a MySQL error occurring.
 For example, suppose the query tries to delete the record where the user ID is equal
 to 42000 (and that record doesn’t exist). In that case, no rows will be deleted but
 no MySQL error will occur. Still, because of the checks made when the form is first
 loaded, it would take a fair amount of hacking by the user to get to that point.

 8. Complete the $_POST[‘sure’] conditional:

 Click here to view code image

 } else {
 echo '<p>The user has NOT been
 [image: Images]deleted.</p>';
}

 If the user did not explicitly select the Yes button, the user will not be deleted and this message will be displayed [image: Images].

 [image: Images]

 [image: Images] If you do not select Yes in the form, no database changes are made.

 9. Begin the else clause of the main submit conditional:

 } else {

 The page will either handle the form or display it. Most of the code prior to this
 takes effect if the form has been submitted (if $_SERVER[‘REQUEST_METHOD’] equals POST). The code from here on takes effect if the form has not yet been submitted, in which
 case the form should be displayed.

 10. Retrieve the information for the user being deleted:

 Click here to view code image

 $q = "SELECT CONCAT(last_name, ',
[image: Images]', first_name) FROM users WHERE
[image: Images]user_id=$id";
$r = @mysqli_query($dbc, $q);
if (mysqli_num_rows($r) = = 1) {
$row = mysqli_fetch_array($r,
[image: Images]MYSQLI_NUM);

 To confirm that the script received a valid user ID and to state exactly who is being
 deleted (refer back to [image: Images]), the to-be-deleted user’s name is retrieved from the database [image: Images].

 [image: Images]

 [image: Images]Running the same SELECT query in the mysql client.

 The conditional—checking that a single row was returned—ensures that a valid user
 ID was provided to the script. If so, that one record is fetched into the $row variable.

 11. Display the record being deleted:

 Click here to view code image

 echo "<h3>Name: $row[0]</h3>
Are you sure you want to delete
[image: Images]this user? ";

 To help prevent accidental deletions of the wrong record, the name of the user to
 be deleted is first displayed. That value is available in $row[0], because the mysqli_fetch_array( ) function (in Step 10) uses the MYSQLI_NUM constant, thereby assigning the returned record to $row as an indexed array. The user’s name is the first, and only, column in the returned
 record, so it’s indexed at 0 (as arrays normally begin indexing at 0).

 12. Create the form:

 Click here to view code image

 echo '<form action="delete_
[image: Images]user.php" method="post">
<input type="radio" name="sure"
[image: Images]value="Yes"> Yes
<input type="radio" name="sure"
[image: Images]value="No" checked="checked"> No
<input type="submit" name="submit"
[image: Images]value="Submit">
<input type="hidden" name="id"
[image: Images]value="' . $id . '">
</form>';

 The form posts back to this same page. It contains two radio buttons, with the same
 name but different values, a submit button, and a hidden input. The most important
 step here is that the user ID ($id) is stored as a hidden form input so that the handling process can also access this
 value [image: Images].

 [image: Images]

 [image: Images]The user ID is stored as a hidden input so that it’s available when the form is submitted.

 13. Complete the mysqli_num_rows( ) conditional:

 Click here to view code image

 } else {
 echo '<p class="error">This page
 [image: Images]has been accessed in error.
 [image: Images]</p>';
}

 If no record was returned by the SELECT query (because an invalid user ID was submitted), this message is displayed.

 If you see this message when you test this script but don’t understand why, apply
 the standard debugging steps outlined at the end of Chapter 8, “Error Handling and Debugging.”

 14. Complete the PHP page:

 Click here to view code image

 }
mysqli_close($dbc);
include('includes/footer.html');
?>

 The closing brace finishes the main submission conditional. Then the MySQL connection
 is closed and the footer is included.

 15. Save the file as delete_user.php and place it in your web directory (it should be in the same directory as view_users.php).

 16. Run the page by first clicking a Delete link in the view_users.php page.

 Tip

 Hidden form elements don’t display in the web browser but are still present in the
 HTML source code [image: Images]. For this reason, never store anything there that must be kept truly secure.

 Tip

 Using hidden form inputs and appending values to a URL are just two ways to make data
 available to other PHP pages. Two more methods—cookies and sessions—are thoroughly covered in Chapter 12, “Cookies and Sessions.”

 Editing Existing Records

 A common practice with database-driven websites is having a system in place so that
 you can easily edit existing records. This concept seems daunting to many beginning
 programmers, but the process is surprisingly straightforward. For the following example—editing
 registered user records—the process combines skills this book has already taught:

 [image: Images] Making sticky forms

 [image: Images] Using hidden inputs

 [image: Images] Validating registration data

 [image: Images] Executing simple queries

 This next example is generally very similar to delete_user.php and will also be linked from the view_users.php script (when a person clicks Edit). A form will be displayed with the user’s current information, allowing for those
 values to be changed [image: Images]. Once the form is submitted, if the data passes all the validation routines an UPDATE query will be run to update the database.

 [image: Images]

 [image: Images]The form for editing a user’s record.

 To edit an existing database record:

 1. Begin a new PHP document in your text editor or IDE, to be named edit_user.php (Script 10.3):

 Click here to view code image

 <?php # Script 10.3 -
[image: Images]edit_user.php
$page_title = 'Edit a User';
include('includes/header.html');
echo '<h1>Edit a User</h1>';

 Script 10.3 The edit_user.php page first displays the user's current information in a form. Upon submission of
 the form, the record will be updated in the database.

 Click here to view code image

 1 <?php # Script 10.3 - edit_user.php
2 // This page is for editing a user record.
3 // This page is accessed through view_users.php.
4
5 $page_title = 'Edit a User';
6 include('includes/header.html');
7 echo '<h1>Edit a User</h1>';
8
9 // Check for a valid user ID, through GET or POST:
10 if ((isset($_GET['id'])) && (is_numeric($_GET['id']))) { // From view_users.php
11 $id = $_GET['id'];
12 } elseif ((isset($_POST['id'])) && (is_numeric($_POST['id']))) { // Form submission.
13 $id = $_POST['id'];
14 } else { // No valid ID, kill the script.
15 echo '<p class="error">This page has been accessed in error.</p>';
16 include('includes/footer.html');
17 exit();
18 }
19
20 require('../mysqli_connect.php');
21
22 // Check if the form has been submitted:
23 if ($_SERVER['REQUEST_METHOD'] ==
 'POST') {
24
25 $errors = [];
26
27 // Check for a first name:
28 if (empty($_POST['first_name'])) {
29 $errors[] = 'You forgot to enter
 your first name.';
30 } else {
31 $fn = mysqli_real_escape_ string($dbc, trim($_POST ['first_name']));
32 }
33
34 // Check for a last name:
35 if (empty($_POST['last_name'])) {
36 $errors[] = 'You forgot to enter
 your last name.';
37 } else {
38 $ln = mysqli_real_escape_string($dbc, trim($_POST['last_name']));
39 }
40
41 // Check for an email address:
42 if (empty($_POST['email'])) {
43 $errors[] = 'You forgot to enter your email address.';
44 } else {
45 $e = mysqli_real_escape_string
 ($dbc, trim($_POST['email']));
46 }
47
48 if (empty($errors)) { // If
 everything's OK.
49
50 // Test for unique email address:
51 $q = "SELECT user_id FROM users
 WHERE email='$e' AND user_id !=
 $id";
52 $r = @mysqli_query($dbc, $q);
53 if (mysqli_num_rows($r) == 0) {
54
55 // Make the query:
56 $q = "UPDATE users SET first_name='$fn', last_name='$ln', email='$e'
 WHERE user_id=$id LIMIT 1";
57 $r = @mysqli_query($dbc, $q);
58 if (mysqli_affected_rows($dbc) == 1) { // If it ran OK.
59
60 // Print a message:
61 echo '<p>The user has been edited.</p>';
62
63 } else { // If it did not run OK.
64 echo '<p class="error">The user could not be edited due to a system error.
 We apologize for any inconvenience.</p>'; // Public message.
65 echo '<p>' . mysqli_error($dbc) . '
Query: ' . $q . '</p>';
 // Debugging message.
66 }
67
68 } else { // Already registered.
69 echo '<p class="error">The email address has already been registered.</p>';
70 }
71
72 } else { // Report the errors.
73
74 echo '<p class="error">The following error(s) occurred:
';
75 foreach ($errors as $msg) { // Print each error.
76 echo " - $msg
\n";
77 }
78 echo '</p><p>Please try again.</p>';
79
80 } // End of if (empty($errors)) IF.
81
82 } // End of submit conditional.
83
84 // Always show the form...
85
86 // Retrieve the user's information:
87 $q = "SELECT first_name, last_name, email FROM users WHERE user_id=$id";
88 $r = @mysqli_query($dbc, $q);
89
90 if (mysqli_num_rows($r) == 1) { // Valid
 user ID, show the form.
91
92 // Get the user's information:
93 $row = mysqli_fetch_array($r,
 MYSQLI_NUM);
94
95 // Create the form:
96 echo '<form action="edit_user.php"
 method="post">
97 <p>First Name: <input type="text"
 name="first_name" size="15" maxlength="15"
 value="' . $row[0] .
 '"></p>
98 <p>Last Name: <input type="text"
 name="last_name" size="15"
 maxlength="30" value="' . $row[1] .
 '"></p>
99 <p>Email Address: <input type="email"
 name="email" size="20" maxlength="60"
 value="' . $row[2] . '"> </p>
100 <p><input type="submit" name="submit"
 value="Submit"></p>
101 <input type="hidden" name="id" value="'
 . $id . '">
102 </form>';
103
104 } else { // Not a valid user ID.
105 echo '<p class="error">This page has
 been accessed in error.</p>';
106 }
107
108 mysqli_close($dbc);
109
110 include('includes/footer.html');
111 ?>

 2. Check for a valid user ID value:

 Click here to view code image

 if ((isset($_GET['id'])) &&
[image: Images](is_numeric($_GET['id']))) {
 $id = $_GET['id'];
} elseif ((isset($_POST['id'])) &&
[image: Images](is_numeric($_POST['id']))) {
 $id = $_POST['id'];
} else { // No valid ID, kill the
[image: Images]script.
 echo '<p class="error">This page
 [image: Images]has been accessed in error.
 [image: Images]</p>';
 include('includes/footer.html');
 exit();
}

 This validation routine is exactly the same as that in delete_user.php, confirming that a numeric user ID has been received, whether the page has first
 been accessed from view_users.php (the first condition) or upon submission of the form (the second condition).

 3. Include the MySQL connection script and begin the main submit conditional:

 Click here to view code image

 require_once('../mysqli_
[image: Images]connect.php');
if ($_SERVER['REQUEST_METHOD'] = =
[image: Images]'POST') {
$errors = [];

 Like the registration examples you have already done, this script makes use of an
 array to track errors.

 4. Validate the first name:

 Click here to view code image

 if (empty($_POST['first_name'])) {
 $errors[] = 'You forgot to
 [image: Images]enter your first name.';
} else {
 $fn = mysqli_real_escape_
 [image: Images]string($dbc, trim
 [image: Images]($_POST['first_name']));
}

 The form [image: Images] is like a registration page but without the password fields (see the second tip).
 The form data can therefore be validated by applying the same techniques used in a
 registration script. As with a registration example, the validated data is trimmed
 and then run through mysqli_real_escape_string() for security.

 5. Validate the last name and email address:

 Click here to view code image

 if (empty($_POST['last_name'])) {
 $errors[] = 'You forgot to
 [image: Images]enter your last name.';
} else {
 $ln = mysqli_real_escape_
 [image: Images]string($dbc, trim
 [image: Images]($_POST['last_name']));
}

// Check for an email address:
if (empty($_POST['email'])) {
 $errors[] = 'You forgot to
 [image: Images]enter your email address.';
} else {
 $e = mysqli_real_escape_
 [image: Images]string($dbc, trim($_POST
 [image: Images]['email']));
}

 6. If there were no errors, check that the submitted email address is not already in
 use:

 Click here to view code image

 if (empty($errors)) {
 $q = "SELECT user_id FROM users
 [image: Images]WHERE email='$e' AND user_id
 [image: Images]!= $id";
 $r = @mysqli_query($dbc, $q);
 if (mysqli_num_rows($r) == 0) {

 The integrity of the database and of the application as a whole partially depends
 on having unique email address values in the users table. That requirement guarantees that the login system, which uses a combination
 of the email address and password (to be developed in Chapter 12), works. Because the form allows for altering the user’s email address (see [image: Images]), special steps must be taken to ensure uniqueness of that value across every database
 record. To understand this query, let’s consider two possibilities.

 In the first, the user’s email address is being changed. In this case you just need
 to run a query making sure that that particular email address isn’t already registered:
 SELECT user_id FROM users WHERE email=’$e’.

 In the second possibility, the user’s email address will remain the same. In this
 case, it’s OK if the email address is already in use, because it’s already in use
 for this user.

 To write one query that will work for both possibilities, don’t check to see if the
 email address is being used, but rather see if it’s being used by anyone else—hence:

 SELECT user_id FROM users WHERE
email='$e' AND user_id != $id

 If this query returns no records, it’s safe to run the UPDATE query.

 7. Update the database:

 Click here to view code image

 $q = "UPDATE users SET
[image: Images]first_name='$fn', last_name=
[image: Images]'$ln', email='$e' WHERE
[image: Images]user_id=$id LIMIT 1";
$r = @mysqli_query($dbc, $q);

 The UPDATE query is like examples you could have seen in Chapter 5, “Introduction to SQL.” The query updates three fields—first name, last name, and email address—using the
 values submitted by the form. This system works because the form is preset with the
 existing values. So, if you edit the first name in the form but nothing else, the
 first name value in the database is updated using this new value, but the last name
 and email address values are “updated” using their current values. This system is
 much easier than trying to determine which form values have changed and updating just
 those in the database.

 8. Report on the results of the update:

 Click here to view code image

 if (mysqli_affected_rows($dbc) ==
[image: Images]1) {
 echo '<p>The user has been
 [image: Images]edited.</p>';
} else {
 echo '<p class="error">The user
 [image: Images]could not be edited due to a
 [image: Images]system error. We apologize
 [image: Images]for any inconvenience.</p>';
 echo '<p>' . mysqli_error($dbc)
 [image: Images]. '
Query: ' . $q . '</p>';
}

 The mysqli_affected_rows() function will return the number of rows in the database affected by the most recent
 query. If any of the three form values was altered, then this function will return
 the value 1. This conditional tests for that and prints a message indicating success
 or failure.

 Keep in mind that the mysqli_ affected_rows() function will return a value of 0 if an UPDATE command successfully ran but didn’t actually affect any records. Therefore, if you
 submit this form without changing any of the form values, a system error is displayed,
 which may not technically be correct. Once you have this script effectively working,
 you could change the error message to indicate that no alterations were made if mysqli_affected_rows() returns 0.

 9. Complete the email conditional:

 Click here to view code image

 } else { // Already registered.
 echo '<p class="error">The
 [image: Images]email address has already
 [image: Images]been registered.</p>';
}

 This else completes the conditional that checked whether an email address was already being
 used by another user. If so, that message is printed.

 10. Complete the $errors conditional:

 Click here to view code image

 } else { // Report the errors.
 echo '<p class="error">The
 [image: Images]following error(s)
 [image: Images]occurred:
';
 foreach ($errors as $msg) {
 [image: Images]// Print each error.
 echo " - $msg
\n";
 }
 echo '</p><p>Please try again.
 [image: Images]</p>';
} // End of if (empty($errors)) IF.

 The else is used to report any errors in the form (namely, a lack of a first name, last name,
 or email address), just like in the registration script.

 11. Complete the submission conditional:

 } // End of submit conditional.

 The final closing brace completes the main submit conditional. In this example, the
 form will be displayed whenever the page is accessed. After submitting the form, the
 database will be updated, and the form will be shown again, now displaying the latest
 information.

 12. Retrieve the information for the user being edited:

 Click here to view code image

 $q = "SELECT first_name,
[image: Images]last_name, email FROM users
[image: Images]WHERE user_id=$id";
$r = @mysqli_query($dbc, $q);
if (mysqli_num_rows($r) == 1) {
$row = mysqli_fetch_array($r,
[image: Images]MYSQLI_NUM);

 To populate the form elements, the current information for the user must be retrieved
 from the database. This query is like the one in delete_user.php. The conditional—checking that a single row was returned—ensures that a valid user
 ID was provided.

 13. Display the form:

 Click here to view code image

 echo '<form action="edit_user.php"
[image: Images]method="post">
<p>First Name: <input type="text"
[image: Images]name="first_name" size="15"
[image: Images]maxlength="15" value="' .
[image: Images]$row[0] . '"></p>
<p>Last Name: <input type="text"
[image: Images]name="last_name" size="15"
[image: Images]maxlength="30" value="' .
[image: Images]$row[1] . '"></p>
<p>Email Address: <input
[image: Images]type="email" name="email"
[image: Images]size="20" maxlength="60"
[image: Images]value="' . $row[2] . '"> </p>
<p><input type="submit"
[image: Images]name="submit" value="Submit">
[image: Images]</p>
<input type="hidden" name="id"
[image: Images]value="' . $id . '">
</form>';

 The form has but three text inputs, each of which is made sticky using the data retrieved
 from the database. Again, the user ID ($id) is stored as a hidden form input so that the handling process can also access this
 value.

 14. Complete the mysqli_num_rows() conditional:

 Click here to view code image

 } else {
 echo '<p class="error">This
[image: Images]page has been accessed in error.
[image: Images]</p>';
}

 If no record was returned from the database because an invalid user ID was submitted,
 this message is displayed.

 15. Complete the PHP page:

 Click here to view code image

 mysqli_close($dbc);
include('includes/footer.html');
?>

 16. Save the file as edit_user.php and place it in your web directory (in the same folder as view_users.php).

 17. Run the page by first clicking an Edit link in the view_users.php page [image: Images] and [image: Images].

 [image: Images]

 [image: Images]The new values are displayed in the form after successfully updating the database
 (compare with the form values in [image: Images]).

 [image: Images]

 [image: Images]If you try to change a record to an existing email address or if you omit an input,
 errors are reported.

 Tip

 As written, the sticky form always shows the values retrieved from the database. This
 means that if an error occurs, the database values will be used, not the ones the
 user just entered (if those are different). To change this behavior, the sticky form
 would have to check for the presence of $_POST variables, using those if they exist, or the database values if not.

 Tip

 This edit page does not include the functionality to change the password. That concept
 was already demonstrated in password.php (Script 9.7). If you would like to incorporate that functionality here, keep in mind that you
 cannot display the current password, since it is stored in a hashed format (i.e.,
 it’s not decryptable). Instead, just present two boxes for changing the password (the
 new password input and a confirmation). If these values are submitted, update the
 password in the database as well. If these inputs are left blank, do not update the
 password in the database.

 Paginating Query Results

 Pagination is a concept you’re familiar with even if you don’t know the term. When you use a
 search engine like Google, it displays the results as a series of pages and not as
 one long list. The view_users.php script could benefit from this feature.

 Paginating query results makes extensive use of the LIMIT SQL clause introduced in Chapter 5. LIMIT restricts which subset of the matched records is returned. To paginate the returned
 results of a query, each iteration of the page will run the same query using different
 LIMIT parameters. The first page viewing will request the first X records; the second page viewing, the second group of X records; and so forth. To make this work, two values must be passed from page to
 page in the URL, like the user IDs passed from the view_users.php page. The first value is the total number of pages to be displayed. The second value
 is an indicator of which records the page should display with this iteration (i.e.,
 where to begin fetching records).

 Another, more cosmetic technique will be demonstrated here: displaying each row of
 the table—each returned record—using an alternating background color [image: Images]. This effect will be achieved with ease, using the ternary operator (see the sidebar
 “The Ternary Operator”).

 [image: Images]

 [image: Images]Alternating the table row colors makes this list of users more legible (every other
 row has a light gray background).

 There’s a lot of good, new information to be covered here, so to make it easier to
 follow along, let’s write this version from scratch instead of trying to modify Script 10.1.

 To paginate view_users.php:

 1. Begin a new PHP document in your text editor or IDE, to be named view_users.php (Script 10.4):

 Click here to view code image

 <?php # Script 10.4 –
[image: Images]view_users.php #4
$page_title = 'View the Current
[image: Images]Users';
include('includes/header.html');
echo '<h1>Registered Users</h1>';
require_once('../mysqli_
[image: Images]connect.php');

 Script 10.4 This new version of view_users.php incorporates pagination so that the users are listed over multiple browser pages.

 Click here to view code image

 1 <?php # Script 10.4 - #4
2 // This script retrieves all the records from the users table.
3 // This new version paginates the query results.
4
5 $page_title = 'View the Current Users';
6 include('includes/header.html');
7 echo '<h1>Registered Users</h1>';
8
9 require_once ('../mysqli_connect.php');
10
11 // Number of records to show per page:
12 $display = 10;
13
14 // Determine how many pages there are...
15 if (isset($_GET['p']) && is_numeric($_GET['p'])) { // Already been determined.
16
17 $pages = $_GET['p'];
18
19 } else { // Need to determine.
20
21 // Count the number of records:
22 $q = "SELECT COUNT(user_id) FROM users";
23 $r = @mysqli_query($dbc, $q);
24 $row = @mysqli_fetch_array($r, MYSQLI_NUM);
25 $records = $row[0];
26
27 // Calculate the number of pages...
28 if ($records > $display) { // More than 1 page.
29 $pages = ceil ($records/$display);
30 } else {
31 $pages = 1;
32 }
33
34 } // End of p IF.
35
36 // Determine where in the database to start returning results...
37 if (isset($_GET['s']) && is_numeric($_GET['s'])) {
38 $start = $_GET['s'];
39 } else {
40 $start = 0;
41 }
42
43 // Define the query:
44 $q = "SELECT last_name, first_name, DATE_FORMAT(registration_date, '%M %d, %Y') AS dr,
 user_id FROM users ORDER BY registration_date ASC LIMIT $start, $display";
45 $r = @mysqli_query($dbc, $q);
46
47 // Table header:
48 echo '<table width="60%">
49 <thead>
50 <tr>
51 <th align="left">Edit</th>
52 <th align="left">Delete</th>
53 <th align="left">Last Name</th>
54 <th align="left">First Name</th>
55 <th align="left">Date Registered</th>
56 </tr>
57 </thead>
58 <tbody>
59 ';
60
61 // Fetch and print all the records....
62
63 $bg = '#eeeeee'; // Set the initial background color.
64
65 while ($row = mysqli_fetch_array($r, MYSQLI_ASSOC)) {
66
67 $bg = ($bg=='#eeeeee' ? '#ffffff' : '#eeeeee'); // Switch the background color.
68
69 echo '<tr bgcolor="' . $bg . '">
70 <td align="left">Edit</td>
71 <td align="left">Delete</td>
72 <td align="left">' . $row['last_name'] . '</td>
73 <td align="left">' . $row['first_name'] . '</td>
74 <td align="left">' . $row['dr'] . '</td>
75 </tr>
76 ';
77
78 } // End of WHILE loop.
79
80 echo '</tbody></table>';
81 mysqli_free_result($r);
82 mysqli_close($dbc);
83
84 // Make the links to other pages, if necessary.
85 if ($pages > 1) {
86
87 // Add some spacing and start a paragraph:
88 echo '
<p>';
89
90 // Determine what page the script is on:
91 $current_page = ($start/$display) + 1;
92
93 // If it's not the first page, make a Previous link:
94 if ($current_page != 1) {
95 echo '<a href="view_users.php?s=' . ($start - $display) . '&p=' . $pages .
 '">Previous ';
96 }
97
98 // Make all the numbered pages:
99 for ($i = 1; $i <= $pages; $i++) {
100 if ($i != $current_page) {
101 echo '<a href="view_users.php?s=' . (($display * ($i - 1))) . '&p=' . $pages .
 '">' . $i . ' ';
102 } else {
103 echo $i . ' ';
104 }
105 } // End of FOR loop.
106
107 // If it's not the last page, make a Next button:
108 if ($current_page != $pages) {
109 echo '<a href="view_users.php?s=' . ($start + $display) . '&p=' . $pages .
 '">Next';
110 }
111
112 echo '</p>'; // Close the paragraph.
113
114 } // End of links section.
115
116 include('includes/footer.html');
117 ?>

 2. Set the number of records to display per page:

 $display = 10;

 By establishing this value as a variable here, you’ll make it easy to change the number
 of records displayed on each page later. Also, this value will be used multiple times
 in this script, so it’s best represented as a single variable (you could also represent
 this value as a constant, if you’d rather).

 3. Check if the number of required pages has been already determined:

 Click here to view code image

 if (isset($_GET['p']) &&
[image: Images]is_numeric($_GET['p'])) {
 $pages = $_GET['p'];
} else {

 For this script to display the users over several page viewings, it will need to determine
 how many total pages of results will be required. The first time the script is run,
 this number must be calculated. For every subsequent call to this page, the total
 number of pages will be passed to the script in the URL, making it available in $_GET[‘p’]. If this variable is set and is numeric, its value will be assigned to the $pages variable. If not, then the number of pages will need to be calculated.

 4. Count the number of records in the database:

 Click here to view code image

 $q = "SELECT COUNT(user_id) FROM
[image: Images]users";
$r = @mysqli_query($dbc, $q);
$row = @mysqli_fetch_array($r,
[image: Images]MYSQLI_NUM);
$records = $row[0];

 Using the   function, introduced in Chapter 7, “Advanced SQL and MySQL,” you can easily find the number of records in the users table (i.e., the number of records to be paginated). This query will return a single
 row with a single column: the number of records [image: Images].

 [image: Images]

 [image: Images]The result of running the counting query in the mysql client.

 The Ternary Operator

 This example uses an operator not introduced before, called the ternary operator. Its structure is

 (condition) ? valueT : valueF

 The condition in parentheses will be evaluated; if it is TRUE, the first value will
 be returned (valueT). If the condition is FALSE, the second value (valueF) will be returned.

 Because the ternary operator returns a value, the entire structure is often used to
 assign a value to a variable or used as an argument for a function. For example, the
 line

 Click here to view code image

 echo (isset($var)) ? 'SET' : 'NOT SET';

 will print out SET or NOT SET, depending on the status of the variable $var.

 In this version of the view_users.php script, the ternary operator is used to toggle the value of a variable between two
 options. The variable itself will then be used to dictate the background color of
 each record in the table. There are certainly other ways to set this value, but the
 ternary operator is the most concise.

 5. Mathematically calculate how many pages are required:

 Click here to view code image

 if ($records > $display) {
 $pages = ceil ($records/$display);
} else {
 $pages = 1;
}

 The number of pages required to display all the records is based on the total number
 of records to be shown and the number to display per page (as assigned to the $display variable). If there are more records in the result set than there are records to
 be displayed per page, multiple pages will be required. To calculate exactly how many
 pages, take the next highest integer from the division of the two (the ceil() function returns the next highest integer). For example, if there are 25 records
 returned and 10 are being displayed per page, then 3 pages are required (the first
 page will display 10, the second page 10, and the third page 5). If $records is not greater than $display, only one page is necessary.

 6. Complete the number of pages if-else:

 } // End of p IF.

 7. Determine the starting point in the database:

 Click here to view code image

 if (isset($_GET['s']) &&
[image: Images]is_numeric($_GET['s'])) {
 $start = $_GET['s'];
} else {
 $start = 0;
}

 The second parameter that the script will receive—on subsequent viewings of the page—will
 be the starting record. This corresponds to the first number in a LIMIT x, y clause. Upon initially calling the script, the first ten records—0 through 9—should
 be retrieved (because $display has a value of 10). The second page would show records 10 through 19; the third,
 20 through 29; and so forth.

 The first time this page is accessed, the $_GET[‘s’] variable will not be set, and so $start should be 0 (the first record in a LIMIT clause is indexed at 0). Subsequent pages will receive the $_GET[‘s’] variable from the URL, and it will be assigned to $start.

 8. Write the SELECT query with a LIMIT clause:

 Click here to view code image

 $q = "SELECT last_name,
[image: Images]first_name, DATE_FORMAT
[image: Images](registration_date, '%M %d, %Y')
[image: Images]AS dr, user_id
FROM users
ORDER BY registration_date ASC
LIMIT $start, $display";
$r = @mysqli_query($dbc, $q);

 The LIMIT clause dictates with which record to begin retrieving ($start) and how many to return ($display) from that point. The first time the page is run, the query will be SELECT last_name, first_name ... LIMIT 0, 10. Clicking to the next page will result in SELECT last_name, first_name ... LIMIT 10, 10.

 9. Create the HTML table header:

 Click here to view code image

 echo '<table width="60%">
<thead>
<tr>
 <th align="left">Edit
 [image: Images]</th>
 <th align="left">
 [image: Images]Delete</th>
 <th align="left">
 [image: Images]Last Name</th>
 <th align="left">
 [image: Images]First Name</th>
 <th align="left">
 [image: Images]Date Registered</th>
</tr>
</thead>
<tbody>
';

 To simplify this script a bit, I’m assuming that there are records to be displayed.
 To be more formal, this script, prior to creating the table, would invoke the mysqli_num_rows() function and have a conditional that confirms that some records were returned.

 10. Initialize the background color variable:

 $bg = '#eeeeee';

 To make each row have its own background color, we use a variable to store that color.
 To start, the $bg variable is assigned a value of #eeeeee, a light gray. This color will alternate with white (#ffffff).

 11. Begin the while loop that retrieves every record, and then swap the background color:

 Click here to view code image

 while ($row = mysqli_fetch_array
[image: Images]($r, MYSQLI_ASSOC)) {
$bg = ($bg= ='#eeeeee' ? '#ffffff'
[image: Images]: '#eeeeee');

 The background color used by each row in the table is assigned to the $bg variable. Because the background color should alternate, this one line of code will,
 upon each iteration of the loop, assign the opposite color to $bg. If $bg is equal to #eeeeee, then it will be assigned the value of #ffffff, and vice versa (again, see the sidebar for the syntax and explanation of the ternary
 operator). For the first row fetched, $bg is initially equal to #eeeeee (see Step 10) and will therefore be assigned #ffffff, making a white background. For the second row, $bg is not equal to #eeeeee, so it will be assigned that value, making a gray background.

 12. Print the records in a table row:

 Click here to view code image

 echo '<tr bgcolor="' . $bg . '">
 <td align="left"><a href="edit_
 [image: Images]user.php?id=' . $row['user_id']
 [image: Images]. '">Edit</td>
 <td align="left">
 [image: Images]<a href="delete_user.php?id='
 [image: Images]. $row['user_id'] .
 [image: Images]'">Delete</td>
 <td align="left">' .
 [image: Images]$row['last_name'] . '</td>
 <td align="left">' .
 [image: Images]$row['first_name'] . '</td>
 <td align="left">' .
 [image: Images]$row['dr'] . '</td>
</tr>
';

 This code differs in only one way from that in the previous version of this script:
 the initial TR tag now includes the bgcolor attribute, whose value will be the $bg variable (so #eeeeee and #ffffff, alternating).

 13. Complete the while loop and the table, free up the query result resources, and close the database connection:

 } // End of WHILE loop.
echo '</tbody></table>';
mysqli_free_result($r);
mysqli_close($dbc);

 14. Begin a section for displaying links to other pages, if necessary:

 if ($pages > 1) {
 echo '
<p>';

 If the script requires multiple pages to display all the records, it needs the appropriate
 links at the bottom of the page [image: Images].

 15. Determine the current page being viewed:

 Click here to view code image

 $current_page = ($start/$display)
[image: Images]+ 1;

 To make the links, the script must first determine the current page. This can be calculated
 as the starting number divided by the display number, plus 1. For example, on the
 second viewing of this page, $start will be 10 (because on the first instance, $start is 0), making the $current_page value 2: (10/10) + 1 = 2.

 16. Create a link to the previous page, if necessary:

 Click here to view code image

 if ($current_page != 1) {
 echo '<a href="view_users.
 [image: Images]php?s=' . ($start - $display)
 [image: Images]. '&p=' . $pages . '">Previous
 [image: Images] ';
}

 If the current page is not the first page, it should also have a Previous link to the earlier result set [image: Images]. This isn’t strictly necessary, but it is nice.

 [image: Images]

 [image: Images]The Previous link will appear only if the current page is not the first one (compare with [image: Images]).

 Each link will be made up of the script name, plus the starting point and the number
 of pages. The starting point for the previous page will be the current starting point
 minus the number being displayed. These values must be passed in every link, or the
 pagination will fail.

 17. Make the numeric links:

 Click here to view code image

 for ($i = 1; $i <= $pages; $i++) {
 if ($i != $current_page) {
 echo '<a href="view_
 [image: Images]users.php?s=' . (($display *
 [image: Images]($i - 1))) . '&p=' . $pages
 [image: Images]. '">' . $i . ' ';
 } else {
 echo $i . ' ';
 }
} // End of FOR loop.

 The bulk of the links will be created by looping from 1 to the total number of pages.
 Each page will be linked except for the current one. For each link, the starting point
 value, s, will be calculated by multiplying the number of records to display per page times
 one less than $i. For example, on page 3, $i – 1 is 2, meaning s will be 20.

 18. Create a Next link:

 Click here to view code image

 if ($current_page != $pages) {
 echo '<a href="view_
 [image: Images]users.php?s=' . ($start +
 [image: Images]$display) . '&p=' . $pages .
 [image: Images]'">Next';
}

 Finally, a Next page link will be displayed, assuming this is not the final page [image: Images].

 [image: Images]

 [image: Images]The final results page will not display a Next link (compare with [image: Images] and [image: Images]).

 19. Complete the page:

 Click here to view code image

 echo '</p>';
} // End of links section.
include('includes/footer.html');
?>

 20. Save the file as view_users.php, place it in your web directory, and test it in your browser.

 Tip

 This example paginates a simple query, but if you want to paginate a more complex
 query, like the results of a search, it’s not that much more complicated. The main
 difference is that whatever terms are used in the query must be passed from page to
 page in the links. If the main query is not exactly the same from one viewing of the
 page to the next, the pagination will fail.

 Tip

 If you run this example and the pagination doesn’t match the number of results that
 should be returned (for example, the counting query indicates there are 150 records
 but the pagination only creates 3 pages, with 10 records on each), it’s most likely
 because the main query and the COUNT() query are too different. These two queries will never be the same, but they must
 perform the same join (if applicable) and have the same WHERE and/or GROUP BY clauses to be accurate.

 Tip

 No error handling has been included in this script, since I know the queries function
 as written. If you have problems, remember your MySQL/SQL debugging steps: print the
 query, run it using the mysql client or phpMyAdmin to confirm the results, and invoke
 the mysqli_error() function as needed.

 Making Sortable Displays

 There’s another common feature that could be added to view_users.php. In its current state, the list of users is displayed in order by the date they registered.
 It would be nice to be able to view them by name as well.

 From a MySQL perspective, accomplishing this task is easy: just change the ORDER BY clause of the SELECT query. Therefore, adding a sorting feature to the script merely requires additional
 PHP code that will change the ORDER BY clause. A logical way to do this is to link the column headings so that clicking
 them changes the display order. As you hopefully can guess, this involves using the
 GET method to pass a parameter back to this page indicating the preferred sort order.

 To make sortable links:

 1. Open view_users.php (Script 10.4) in your text editor or IDE, if you haven’t already.

 2. After determining the starting point ($s), define a $sort variable (Script 10.5):

 Click here to view code image

 $sort = (isset($_GET['sort'])) ?
[image: Images]$_GET['sort'] : 'rd';

 Script 10.5 This latest version of the view_users.php script creates clickable links out of the table's column headings.

 Click here to view code image

 1 <?php # Script 10.5 - #5
2 // This script retrieves all the records from the users table.
3 // This new version allows the results to be sorted in different ways.
4
5 $page_title = 'View the Current Users';
6 include('includes/header.html');
7 echo '<h1>Registered Users</h1>';
8
9 require('../mysqli_connect.php');
10
11 // Number of records to show per page:
12 $display = 10;
13
14 // Determine how many pages there are...
15 if (isset($_GET['p']) && is_numeric($_GET['p'])) { // Already been determined.
16 $pages = $_GET['p'];
17 } else { // Need to determine.
18 // Count the number of records:
19 $q = "SELECT COUNT(user_id) FROM users";
20 $r = @mysqli_query($dbc, $q);
21 $row = @mysqli_fetch_array($r, MYSQLI_NUM);
22 $records = $row[0];
23 // Calculate the number of pages...
24 if ($records > $display) { // More than 1 page.
25 $pages = ceil ($records/$display);
26 } else {
27 $pages = 1;
28 }
29 } // End of p IF.
30
31 // Determine where in the database to start returning results...
32 if (isset($_GET['s']) && is_numeric($_GET['s'])) {
33 $start = $_GET['s'];
34 } else {
35 $start = 0;
36 }
37
38 // Determine the sort...
39 // Default is by registration date.
40 $sort = (isset($_GET['sort'])) ? $_GET['sort'] : 'rd';
41
42 // Determine the sorting order:
43 switch ($sort) {
44 case 'ln':
45 $order_by = 'last_name ASC';
46 break;
47 case 'fn':
48 $order_by = 'first_name ASC';
49 break;
50 case 'rd':
51 $order_by = 'registration_date ASC';
52 break;
53 default:
54 $order_by = 'registration_date ASC';
55 $sort = 'rd';
56 break;
57 }
58
59 // Define the query:
60 $q = "SELECT last_name, first_name, DATE_FORMAT(registration_date, '%M %d, %Y') AS dr,
 user_id FROM users ORDER BY $order_by LIMIT $start, $display";
61 $r = @mysqli_query($dbc, $q); // Run the query.
62
63 // Table header:
64 echo '<table width="60%">
65 <thead>
66 <tr>
67 <th align="left">Edit</th>
68 <th align="left">Delete</th>
69 <th align="left">Last Name
 </th>
70 <th align="left">First Name
 </th>
71 <th align="left">Date Registered
 </th>
72 </tr>
73 </thead>
74 <tbody>
75 ';
76
77 // Fetch and print all the records....
78 $bg = '#eeeeee';
79 while ($row = mysqli_fetch_array($r, MYSQLI_ASSOC)) {
80 $bg = ($bg=='#eeeeee' ? '#ffffff' : '#eeeeee');
81 echo '<tr bgcolor="' . $bg . '">
82 <td align="left">Edit</td>
83 <td align="left">Delete</td>
84 <td align="left">' . $row['last_name'] . '</td>
85 <td align="left">' . $row['first_name'] . '</td>
86 <td align="left">' . $row['dr'] . '</td>
87 </tr>
88 ';
89 } // End of WHILE loop.
90
91 echo '</tbody></table>';
92 mysqli_free_result($r);
93 mysqli_close($dbc);
94
95 // Make the links to other pages, if necessary.
96 if ($pages > 1) {
97
98 echo '
<p>';
99 $current_page = ($start/$display) + 1;
100
101 // If it's not the first page, make a Previous button:
102 if ($current_page != 1) {
103 echo 'Previous ';
104 }
105
106 // Make all the numbered pages:
107 for ($i = 1; $i <= $pages; $i++) {
108 if ($i != $current_page) {
109 echo '<a href="view_users.php?s=' . (($display * ($i - 1))) . '&p=' . $pages .
 '&sort=' . $sort . '">' . $i . ' ';
110 } else {
111 echo $i . ' ';
112 }
113 } // End of FOR loop.
114
115 // If it's not the last page, make a Next button:
116 if ($current_page != $pages) {
117 echo '<a href="view_users.php?s=' . ($start + $display) . '&p=' . $pages .
 '&sort=' . $sort . '">Next';
118 }
119
120 echo '</p>'; // Close the paragraph.
121
122 } // End of links section.
123
124 include('includes/footer.html');
125 ?>

 The $sort variable will be used to determine how the query results are to be ordered. This
 line uses the ternary operator (see the sidebar in the previous section of the chapter)
 to assign a value to $sort. If $_GET[‘sort’] is set, which will be the case after the user clicks any link, then $sort should be assigned that value. If $_GET[‘sort’] is not set, then $sort is assigned a default value of rd (short for registration date).

 3. Determine how the results should be ordered:

 Click here to view code image

 switch ($sort) {
 case 'ln':
 $order_by = 'last_name ASC';
 break;
 case 'fn':
 $order_by = 'first_name ASC';
 break;
 case 'rd':
 $order_by =
 [image: Images]'registration_date ASC';
 break;
 default:
 $order_by =
 [image: Images]'registration_date A SC';
 $sort = 'rd';
 break;
}

 The switch checks $sort against several expected values. If, for example, it is equal to ln, then the results should be ordered by the last name in ascending order. The assigned
 $order_by variable will be used in the SQL query.

 If $sort has a value of fn, then the results should be in ascending order by first name. If the value is rd, then the results will be in ascending order of registration date. This is also the
 default case. Having this default case here protects against a malicious user changing
 the value of $_GET[‘sort’] to something that could break the query.

 4. Modify the query to use the new $order_by variable:

 Click here to view code image

 $q = "SELECT last_name,
[image: Images]first_name, DATE_FORMAT
[image: Images](registration_date, '%M %d, %Y')
[image: Images]AS dr, user_id
FROM users
ORDER BY $order_by
LIMIT $start, $display";

 By this point, the $order_by variable has a value indicating how the returned results should be ordered (for example,
 registration_date ASC), so it can be easily added to the query. Remember that the ORDER BY clause comes before the LIMIT clause. If the resulting query doesn’t run properly for you, print it out and inspect
 its syntax.

 5. Modify the table header echo statement to create links out of the column headings:

 Click here to view code image

 echo '<table width="60%">
<thead>
<tr>
 <th align="left">Edit
 [image: Images]</th>
 <th align="left">
 [image: Images]Delete</th>
 <th align="left">
 [image: Images]<a href="view_users.php?sort=
 [image: Images]ln">Last Name
 [image: Images]</th>
 <th align="left">
 [image: Images]<a href="view_users.php?sort=
 [image: Images]fn">First Name
 [image: Images]</th>
 <th align="left">
 [image: Images]<a href="view_users.php?sort=
 [image: Images]rd">Date Registered
 [image: Images]</th>
</tr>
</thead>
<tbody>
';

 To turn the column headings into clickable links, just surround them with the A tag. The value of the href attribute for each link corresponds to the acceptable values for $_GET[‘sort’] (see the switch in Step 3).

 6. Modify the echo statement that creates the Previous link so that the sort value is also passed:

 Click here to view code image

 echo '<a href="view_users.php?s='
[image: Images]. ($start - $display) . '&p='
[image: Images]. $pages . '&sort=' . $sort .
[image: Images]'">Previous ';

 Add another name=value pair to the Previous link so that the sort order is also sent to each page of results. If you don’t, then
 the pagination will fail, because the ORDER BY clause will differ from one page to the next.

 7. Repeat Step 6 for the numbered pages and the Next link:

 Click here to view code image

 echo '<a href="view_users.php?s='
[image: Images]. (($display * ($i - 1))) . '&p='
[image: Images]. $pages . '&sort=' . $sort .
[image: Images]'">' . $i . ' ';
echo '<a href="view_users.php?s='
[image: Images]. ($start + $display) . '&p='
[image: Images]. $pages . '&sort=' . $sort .
[image: Images]'">Next';

 8. Save the file as view_users.php, place it in your web directory, and run it in your browser [image: Images] and [image: Images].

 [image: Images]

 [image: Images]After clicking the First Name column, the results are shown in ascending order by first name.

 [image: Images]

 [image: Images]After clicking the Last Name column, and then clicking to the second paginated display, the page shows the second
 group of results in ascending order by last name.

 Tip

 An important security concept was also demonstrated in this example. Instead of using
 the value of $_GET[‘sort’] directly in the query, it’s checked against assumed values in a switch. If, for some reason, $_GET[‘sort’] has a value other than would be expected, the query uses a default sorting order.
 The point is this: don’t make assumptions about received data, and don’t use unvalidated
 data in an SQL query.

 Review and Pursue

 If you have any problems with the review questions or the pursue prompts, turn to
 the book’s supporting forum (LarryUllman.com/forums/).

 Review

 [image: Images] What is the standard sequence of steps for debugging PHP-MySQL problems (explicitly
 conveyed at the end of Chapter 8)?

 [image: Images] What are the two ways of passing values to a PHP script (aside from user input)?

 [image: Images] What security measures do the delete_user.php and edit_user.php scripts take to prevent malicious or accidental deletions?

 [image: Images] Why is it safe to use the $id value in queries without running it through mysqli_real_escape_string() first?

 [image: Images] In what situation will the mysqli_affected_rows() function return a false negative (i.e., report that no records were affected despite
 the fact that the query ran without error)?

 [image: Images] What is the ternary operator? How is it used?

 [image: Images] What two values are required to properly paginate query results?

 [image: Images] How do you alter a query so that its results are paginated?

 [image: Images] If a paginated query is based on additional criteria (beyond those used in a LIMIT clause), what would happen if those criteria are not also passed along in every pagination
 link?

 [image: Images] Why is it important not to directly use the value of $_GET[‘sort’] in a query?

 [image: Images] Why is it important to pass the sorting value along in each pagination link?

 Pursue

 [image: Images] Change the delete_user.php and edit_user.php pages so that they both display the user being affected in the browser window’s title
 bar.

 [image: Images] Modify edit_user.php so that you can also change a user’s password.

 [image: Images] If you’re up for a challenge, modify edit_user.php so that the form elements’ values come from $_POST, if set, and the database if not.

 [image: Images] Change the value of the $display variable in view_users.php to alter the pagination.

 [image: Images] Paginate another query result, such as a list of accounts or customers found in the
 banking database.

 [image: Images] Create delete and edit scripts for the banking database. You’ll have to factor in the foreign key constraints in place, which limit,
 for example, the deletion of customers that still have accounts.

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 11. Web Application Development

 In This Chapter

 Sending Email

 Handling File Uploads

 PHP and JavaScript

 Understanding HTTP Headers

 Date and Time Functions

 Performing Transactions

 Review and Pursue

 The preceding two chapters focus on using PHP and MySQL together (which is, after
 all, the primary point of this book). But there’s still a lot of PHP-centric material
 to be covered. Taking a quick break from using PHP with MySQL, this chapter covers
 a handful of techniques that are often used in more complex web applications.

 The first topic covered in this chapter is sending email using PHP. It’s a very common
 thing to do and is surprisingly simple (assuming that the server is properly set up).
 After that, the chapter has examples that cover: handling file uploads through an
 HTML form, using PHP and JavaScript together, and how to use the header() function to manipulate the browser. The chapter concludes by touching on some of
 the date and time functions available in PHP.

 Sending Email

 One of my absolute favorite things about PHP is how easy it is to send an email. On
 a properly configured server, the process is as simple as using the mail() function:

 mail(to, subject, body, [headers]);

 The to value should be an email address or a series of addresses, separated by commas. Any
 of these are allowed:

 [image: Images] email@example.com

 [image: Images] email1@example.com, email2@example.com

 [image: Images] Actual Name <email@example.com>

 [image: Images] Actual Name <email@example.com>, This Name <email2@example.com>

 The subject value will create the email’s subject line, and body is where you put the contents of the email. To make things more legible, variables
 are often assigned values and then used in the mail() function call:

 Click here to view code image

 $to = 'email@example.com';
$subject = 'This is the subject';
$body = 'This is the body.
It goes over multiple lines.';
mail($to, $subject, $body);

 As you can see in the assignment to the $body variable, you can create an email message that goes over multiple lines by having
 the text do exactly that within the quotation marks. You can also use the newline
 character (\n) within double quotation marks to accomplish this:

 Click here to view code image

 $body = "This is the body.\nIt goes
[image: Images]over multiple lines.";

 This is all very straightforward, and there are only a couple of caveats. First, the
 subject line cannot contain the newline character (\n). Second, each line of the body should be no longer than 70 characters in length (this is more of a recommendation than a requirement). You can accomplish this
 using the wordwrap() function. It will insert a newline into a string every X number of characters. To wrap text to 70 characters, use

 $body = wordwrap($body, 70);

 PHP mail() Dependencies

 PHP’s mail() function doesn’t actually send the email itself. Instead, it tells the mail server
 running on the computer to do so. What this means is that the computer on which PHP
 is running must have a working mail server for this function to work.

 If you have a computer running a Unix variant or if you are running your website through
 a professional host, this should not be a problem. But if you are running PHP on your
 own desktop or laptop computer, you’ll probably need to make adjustments.

 If you are running Windows and have an Internet service provider (ISP) that provides
 you with an SMTP server (like smtp.comcast.net), this information can be set in the php.ini file (see Appendix A, “Installation”). Unfortunately, this will only work if your
 ISP does not require authentication—a username and password combination—to use the
 SMTP server. Otherwise, you’ll need to install an SMTP server on your computer. There
 are plenty available; just search the Internet for free windows smtp server and you’ll see some options. The XAMPP application, which Appendix A recommends you
 use, includes the Mercury mail server.

 If you are running macOS, you’ll need to enable the built-in SMTP server (either sendmail
 or postfix, depending on the specific version you are running). You can find instructions
 online for doing so (search with enable sendmail “macOS”). If you’re using MAMP, per the recommendation in Appendix A, search online for
 sending email with MAMP.

 The mail() function takes a fourth, optional parameter for additional headers. This is where
 you could set the From, Reply-To, Cc, Bcc, and similar settings. For example:

 Click here to view code image

 mail($to, $subject, $body,
[image: Images]'From: reader@example.com');

 To use multiple headers of different types in your email, separate each with \r\n:

 Click here to view code image

 $headers = "From: John@example.com
[image: Images]\r\n";
$headers .= "Cc: Jane@example.com,
[image: Images]Joe@example.com\r\n";
mail($to, $subject, $body, $headers);

 Although this fourth argument is optional, it is advised that you always include a
 From value (although that can also be established in PHP’s configuration file).

 To use the mail() function, let’s create a page that shows a contact form [image: Images] and then handles the form submission, validating the data and sending it along in
 an email. This example will also provide a nice tip you’ll sometimes use on pages
 with sticky forms.

 [image: Images]

 [image: Images] A standard contact form.

 Note two things before running this script: First, for this example to work, the computer
 on which PHP is running must have a working mail server. If you’re using a hosted
 site, this shouldn’t be an issue; on your own computer, you’ll likely need to take
 preparatory steps (see the accompanying sidebar). I will say in advance that these
 steps can be daunting for the beginner; it will likely be easiest and most gratifying
 to use a hosted site for this particular script.

 Second, this example, while functional, could be manipulated by bad people, allowing
 them to send spam through your contact form (not just to you but to anyone). The steps
 for preventing such attacks are provided in Chapter 13, “Security Methods.” Following along and testing this example is just fine; relying on it as your long-term
 contact form solution is a bad idea.

 To send email:

 1. Begin a new PHP script in your text editor or IDE, to be named email.php (Script 11.1):

 Click here to view code image

 <!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Contact Me</title>
</head>
<body>
<h1>Contact Me</h1>
<?php # Script 11.1 - email.php

 Script 11.1 This page displays a contact form that, upon submission, will send an email with
 the form data to an email address.

 Click here to view code image

 1 <!doctype html>
2 <html lang="en">
3 <head>
4 <meta charset="utf-8">
5 <title>Contact Me</title>
6 </head>
7 <body>
8 <h1>Contact Me</h1>
9 <?php # Script 11.1 - email.php
10
11 // Check for form submission:
12 if ($_SERVER['REQUEST_METHOD'] == 'POST') {
13
14 // Minimal form validation:
15 if (!empty($_POST['name']) && !empty($_POST['email']) && !empty($_POST['comments'])) {
16
17 // Create the body:
18 $body = "Name: {$_POST['name']}\n\nComments: {$_POST['comments']}";
19
20 // Make it no longer than 70 characters long:
21 $body = wordwrap($body, 70);
22
23 // Send the email:
24 mail('your_email@example.com', 'Contact Form Submission', $body, "From: {$_POST['email']}");
25
26 // Print a message:
27 echo '<p>Thank you for contacting me. I will reply some day.</p>';
28
29 // Clear $_POST (so that the form's not sticky):
30 $_POST = [];
31
32 } else {
33 echo '<p style="font-weight: bold; color: #C00">Please fill out the form completely. </p>';
34 }
35
36 } // End of main isset() IF.
37
38 // Create the HTML form:
39 ?>
40 <p>Please fill out this form to contact me.</p>
41 <form action="email.php" method="post">
42 <p>Name: <input type="text" name="name" size="30" maxlength="60" value="<?php if
 (isset($_POST['name'])) echo $_POST['name']; ?>"></p>
43 <p>Email Address: <input type="email" name="email" size="30" maxlength="80" value="<?php if
 (isset($_POST['email'])) echo $_POST['email']; ?>"></p>
44 <p>Comments: <textarea name="comments" rows="5" cols="30"><?php if
 (isset($_POST['comments'])) echo $_POST['comments']; ?></textarea></p>
45 <p><input type="submit" name="submit" value="Send!"></p>
46 </form>
47 </body>
48 </html>

 None of the examples in this chapter will use a template, like those in the past two
 chapters, so it starts with the standard HTML.

 2. Create the conditional for checking if the form has been submitted and validate the
 form data:

 Click here to view code image

 if ($_SERVER['REQUEST_METHOD'] ==
[image: Images]'POST') {
 if (!empty($_POST['name']) &&
[image: Images]!empty($_POST['email']) &&
[image: Images]!empty($_POST['comments'])) {

 The form contains three text inputs (technically, one is a textarea). The empty() function will confirm that something was entered into each. In Chapter 13, you’ll learn how to use the Filter extension to confirm that the supplied email address has a valid format.

 3. Create the body of the email:

 Click here to view code image

 $body = "Name: {$_POST['name']}\n\n
[image: Images]Comments: {$_POST['comments']}";
$body = wordwrap($body, 70);

 The email’s body will start with the prompt Name:, followed by the name entered into the form. Then the same treatment is given to
 the comments. The wordwrap() function then formats the whole body so that each line is only 70 characters long.

 4. Send the email and print a message in the browser:

 Click here to view code image

 mail('your_email@example.com',
[image: Images]'Contact Form Submission',
[image: Images]$body, "From: {$_POST['email']}");
echo '<p>Thank you for
[image: Images]contacting me. I will reply
[image: Images]some day.</p>';

 Assuming the server is properly configured, this one line will send the email. You
 will need to change the to value to your actual email address. The From value will be the email address from the form. The subject will be a literal string.

 There’s no easy way of confirming that the email was successfully sent, let alone
 received, but a generic message is printed.

 5. Clear the $_POST array;

 $_POST = [];

 In this example, the form will always be shown, even upon successful submission. The
 form will be sticky in case the user omitted something [image: Images]. However, if the mail was sent, there’s no need to show the values in the form again.
 To avoid that, the $_POST array can be cleared of its values using the short array syntax.

 [image: Images]

 [image: Images] The contact form will remember the user-supplied values.

 6. Complete the conditionals:

 Click here to view code image

 } else {
 echo '<p style="font-weight:
 [image: Images]bold; color: #C00">
 [image: Images]Please fill out the form
 [image: Images]completely.</p>';
 }
} // End of main isset() IF.
?>

 The error message contains some inline CSS so that the error appears as red and bold.

 7. Begin the form:

 Click here to view code image

 <p>Please fill out this form to
[image: Images]contact me.</p>
<form action="email.php"
[image: Images]method="post">
 <p>Name: <input type="text"
 [image: Images]name="name" size="30"
 [image: Images]maxlength="60" value="<?php
 [image: Images]if (isset($_POST['name'])) echo
 [image: Images]$_POST['name']; ?>"></p>
 <p>Email Address: <input
 [image: Images]type="email" name="email"
 [image: Images]size="30" maxlength="80"
 [image: Images]value="<?php if (isset($_POST
 [image: Images]['email'])) echo $_POST
 [image: Images]['email']; ?>"></p>

 The form will submit back to this same page using the POST method. The first two inputs
 are of type text; both are made sticky by checking if the corresponding $_POST variable has a value. If so, that value is printed as the current value for that
 input. Because the $_POST array is cleared out in Step 5, $_POST[‘name’] and the like will not be set when this form is viewed again, after its previous successful
 completion and submission.

 8. Complete the form:

 Click here to view code image

 <p>Comments: <textarea
 [image: Images]name="comments" rows="5"
 [image: Images]cols="30"><?php if (isset
 [image: Images]($_POST['comments'])) echo
 [image: Images]$_POST['comments'];
 [image: Images]?></textarea></p>
 <p><input type="submit"
 [image: Images]name="submit" value="Send!">
 [image: Images]</p>
</form>

 The comments input is a textarea, which does not use a value attribute. Instead, to be made sticky, the value is printed between the opening and
 closing textarea tags.

 9. Complete the HTML page:

 </body>
</html>

 10. Save the file as email.php, place it in your web directory, and test it in your browser [image: Images].

 [image: Images]

 [image: Images] Successful completion and submission of the form.

 11. Check your email to confirm that you received the message [image: Images].

 [image: Images]

 [image: Images] The resulting email (from the data in [image: Images], albeit using a different From address).

 If you don’t actually get the email, you’ll need to do some debugging work. With this
 example, you should confirm with your host (if using a hosted site) or yourself (if
 running PHP on your server) that there’s a working mail server installed. You should
 also test this using different email addresses (for both the to and from values). Also, watch that your spam filter isn’t eating up the message.

 Tip

 The mail()function takes an optional fifth argument, for additional parameters to
 be sent to the mail-sending application.

 Tip

 The mail() function returns a 1 or a 0 indicating the success of the function call.
 This is not the same thing as the email successfully being sent or received. Again,
 you cannot easily test for either using PHP.

 Tip

 Although it’s easy to send a simple message with the mail() function, sending HTML
 emails or emails with attachments involves more work. I discuss how you can do both
 in my book PHP 5 Advanced: Visual QuickPro Guide (Peachpit Press, 2007).

 Handling File Uploads

 Chapters 2, “Programming with PHP,” and 3, “Creating Dynamic Web Sites,” go over the basics of handling HTML forms with PHP. For the most part, every type
 of form element can be handled the same in PHP, with one exception: file uploads.
 The process of uploading a file has two dimensions. First the HTML form must be displayed,
 with the proper code to allow for file uploads. Upon submission of the form, the server
 will first store the uploaded file in a temporary directory, so the next step is for
 the PHP script to copy the uploaded file to its final destination.

 For this process to work, several things must be in place:

 [image: Images] PHP must run with the correct settings.

 [image: Images] A temporary storage directory must exist with the correct permissions.

 [image: Images] The final storage directory must exist with the correct permissions.

 The next section will cover the server setup to allow for file uploads; then I’ll
 show you how to create a PHP script that does the uploading.

 Allowing for file uploads

 As I said, certain settings must be established for PHP to be able to handle file
 uploads. I’ll first discuss why or when you’d need to make these adjustments before
 walking you through the steps.

 The first issue is PHP itself. There are several settings in PHP’s configuration file
 (php.ini) that dictate how PHP handles uploads, specifically stating how large of a file can
 be uploaded and where the upload should temporarily be stored (Table 11.1). Generally speaking, you’ll need to edit this file if any of these conditions apply:

 TABLE 11.1 File Upload Configurations

 	
 Setting

 	
 Value Type

 	
 Importance

 	
 file_uploads

 	
 Boolean

 	
 Enables PHP support for file uploads

 	
 max_input_time

 	
 integer

 	
 Indicates how long, in seconds, a PHP script is allowed to run

 	
 post_max_size

 	
 integer

 	
 Size, in bytes, of the total allowed POST data

 	
 upload_max_filesize

 	
 integer

 	
 Size, in bytes, of the largest possible file upload allowed

 	
 upload_tmp_dir

 	
 string

 	
 Indicates where uploaded files should be temporarily stored

 [image: Images] file_uploads is disabled.

 [image: Images] PHP has no temporary directory to use.

 [image: Images] You will be uploading very large files (larger than 2 MB).

 If you don’t have access to your php.ini file—if you’re using a hosted site, for example—presumably the host has already configured
 PHP to allow for file uploads.

 The second issue is the location of, and permissions on, the temporary directory.
 This is where PHP will store the uploaded file until your PHP script moves it to its
 final destination. If you installed PHP on your own Windows computer, you might need to take steps here. macOS and Unix users need
 not worry about this—a temporary directory already exists for such purposes (a special
 directory called /tmp).

 Finally, the destination folder must be created and have the proper permissions established
 on it. This is a step that everyone must take for every application that handles file uploads. Because there are important security issues
 involved in this step, please also make sure that you read and understand the sidebar
 “Secure Folder Permissions.”

 With all of this in mind, let’s go through the steps.

 Secure Folder Permissions

 There’s normally a trade-off between security and convenience. With this example,
 it’d be more convenient to place the uploads folder within the web document directory (the convenience arises with respect to
 how easily the uploaded images can be viewed in the browser), but doing that is less
 secure.

 For PHP to be able to place files in the uploads folder, it needs to have write permissions on that directory. On most servers, PHP
 is running as the same user as the web server itself. On a hosted server, this means
 that all X number of sites being hosted are running as the same user. Creating a folder that
 PHP can write to means creating a folder that everyone can write to. Literally anyone with a site hosted on the server can now move, copy,
 or write files to your uploads folder (assuming that they know it exists). This even means that a malicious user
 could copy a troublesome PHP script to your uploads directory. However, since the uploads directory in this example is not within the web directory, such a PHP script cannot
 be run in a browser. It’s less convenient to do things this way, but more secure.

 If you must keep the uploads folder publicly accessible, and if you’re using the Apache web server, you could
 limit access to the uploads folder using an .htaccess file. Basically, you would state that only image files in the folder be publicly
 viewable, meaning that even if a PHP script were to be placed there, it could not
 be executed. Or, because you’ll learn how to use proxy scripts later in this chapter, you could deny all external access to that folder. Information
 on how to use .htaccess files can be found in Appendix A.

 Sometimes even the most conservative programmer will make security concessions. The
 important point is that you’re aware of the potential concerns and that you do the
 most you can to minimize the danger.

 To prepare the server:

 1. Run the phpinfo() function to confirm your server settings [image: Images].

 [image: Images]

 [image: Images] A phpinfo() script returns all the information regarding your PHP setup, including all the file-upload
 handling stuff.

 The phpinfo() function prints out a slew of information about your PHP setup. It’s one of the most
 important functions in PHP, if not the most (in my opinion). Search for the settings
 listed in Table 11.1 and confirm their values. Make sure that file_uploads has a value of On and that the limit for upload_max_filesize (2 MB, by default) and post_max_size (8 MB) won’t be a restriction for you. If you are running PHP on Windows, see whether
 upload_tmp_dir has a value. If it doesn’t, that might be a problem (you’ll know for certain after
 running the PHP script that handles the file upload). For non-Windows users, if this
 value says no value, that’s perfectly fine.

 By the way, another advantage of using an all-in-one installer, such as XAMPP for
 Windows or MAMP for macOS, is that the installer should properly configure these settings,
 too.

 2. If necessary, open php.ini in your text editor.

 If there’s anything you saw in Step 1 that needs to be changed, or if something happens
 when you go to handle a file upload using PHP, you’ll need to edit the php.ini file. To find this file, see the Configuration File (php.ini) path value in the phpinfo() output. This indicates exactly where this file is on your computer (also see Appendix
 A for more).

 If you are not allowed to edit your php.ini file (if, for instance, you’re using a hosted server), then presumably any necessary
 edits would have already been made to allow for file uploads. If not, you’ll need
 to request these changes from your hosting company (which may or may not agree to
 make them).

 3. Search the php.ini file for the configuration to be changed and make any edits [image: Images].

 [image: Images]

 [image: Images] The File Uploads subsection of the php.ini file.

 For example, in the File Uploads section, you’ll see these three lines:

 file_uploads = On
;upload_tmp_dir =
upload_max_filesize = 2M

 The first line dictates whether or not uploads are allowed. The second states where
 the uploaded files should be temporarily stored. On most operating systems, including
 macOS and Unix, this setting can be left commented out (preceded by a semicolon) without
 any problem.

 If you are running Windows and need to create a temporary directory, set this value
 to C:\tmp, making sure that the line is not preceded by a semicolon. Again, using XAMPP on Windows 7, I did not need to create
 a temporary directory, so you may be able to get away without one too.

 Finally, a maximum upload file size is set (the M is shorthand for megabytes in configuration settings).

 4. Save the php.ini file and restart your web server.

 How you restart your web server depends on the operating system and web-serving application
 being used. See Appendix A for instructions.

 5. Confirm the changes by rerunning the phpinfo() script.

 Before going any further, confirm that the necessary changes have been enacted by
 repeating Step 1.

 6. If you are running Windows and need to create a temporary directory, add a tmp folder within C:\ and make sure that everyone can write to that directory [image: Images].

 [image: Images]

 [image: Images] Windows users need to make sure that the C:\tmp (or whatever directory is used) is writable by PHP.

 PHP, through your web server, will temporarily store the uploaded file in the upload_tmp_dir. For this to work, the web user (if your web server runs as a particular user) must
 have permission to write to the folder.

 In all likelihood, you may not have to change the permissions, but to do so, depending
 on what version of Windows you are running, you can normally adjust the permissions
 by right-clicking the folder and selecting Properties. Within the Properties window
 there should be a Security tab, where you can set permissions. It may also be under
 Sharing. Windows uses a more lax permissions system, so you probably won’t have to
 change anything unless the folder is deliberately restricted.

 macOS and Unix users can skip this step since the temporary directory— /tmp—has open permissions already. XAMPP on Windows also creates its own temp directory
 for you.

 7. Create a new directory, called uploads, in a directory outside of the web root directory.

 All of the uploaded files will be permanently stored in the uploads directory. If you’ll be placing your PHP script in the C:\xampp\htdocs\ch11 directory, then create a C:\xampp\uploads directory. Or if the files are going in /Users/~<username>/Sites/ch11, make a /Users/~<username>/uploads folder. Figure [image: Images] shows the structure you should establish, and the sidebar discusses why this step
 is necessary.

 [image: Images]

 [image: Images] Assuming that htdocs is the web root directory (http://www.example.com or http://localhost points there), then the uploads directory needs to be placed outside of it.

 8. Set the permissions on the uploads directory so that the web server can write to it.

 Again, Windows users can use the Properties window to make these changes, although
 it may not be necessary. And macOS users can…

 A. Select the folder in the Finder.

 B. Press Command+I.

 C. Allow everyone to Read & Write, under the Sharing & Permissions panel [image: Images].

 [image: Images]

 [image: Images] Adjusting the properties on the uploads folder in macOS.

 If you’re using a hosted site, the host likely provides a control panel through which
 you can tweak a folder’s settings, or you might be able to do this within your FTP
 application.

 Depending on your operating system, you may be able to upload files without first
 taking this step. You can try the following script before altering the permissions,
 just to see. If you see messages like those in [image: Images], then you will need to make some adjustments.

 [image: Images]

 [image: Images] If PHP could not move the uploaded image over to the uploads folder because of a permissions issue, you’ll see an error message like this one.
 Fix the permissions on uploads to correct this.

 Tip

 Unix users can use the chmod command to adjust a folder’s permissions. The proper permissions in Unix terms can
 be either 755 or 777.

 Tip

 Because of the time it can take to upload a large file, you may also need to change
 the max_input_time value in the php.ini file or temporarily bypass it using the set_time_limit() function in your script.

 Tip

 File and directory permissions can be complicated stuff, particularly if you’ve never
 dealt with them before. If you have problems with these steps or the next script,
 search the web or turn to the book’s corresponding forum (www.LarryUllman.com/forums/).

 Uploading files with PHP

 Now that the server has (hopefully) been set up to properly allow for file uploads,
 you can create the PHP script that does the actual file handling. There are two parts
 to such a script: the HTML form and the PHP code.

 The required syntax for a form to handle a file upload has three parts:

 Click here to view code image

 <form enctype="multipart/form-data"
[image: Images]action="script.php" method="post">
<input type="hidden"
[image: Images]name="MAX_FILE_SIZE" value="30000">
File <input type="file"
[image: Images]name="upload">

 The enctype part of the initial form tag indicates that the form should be able to handle multiple types of data, including
 files. If you want to accept file uploads, you must include this enctype! Also note that the form must use the POST method. The MAX_FILE_SIZE hidden input is a form restriction on how large the chosen file can be, in bytes,
 and must come before the file input. Although it’s easy for a user to circumvent this
 restriction, it should still be used. Finally, the file input type will create the
 proper button in the form ([image: Images] and [image: Images]).

 [image: Images]

 [image: Images] The file input as it appears in Edge on Windows.

 [image: Images]

 [image: Images] The file input as it appears in Google Chrome on macOS.

 Upon form submission, the uploaded file can be accessed using the $_FILES superglobal. The variable will be an array of values, listed in Table 11.2.

 TABLE 11.2 The $_FILES Array

 	
 Index

 	
 Meaning

 	
 name

 	
 The original name of the file (as it was on the user’s computer)

 	
 type

 	
 The MIME type of the file, as provided by the browser

 	
 size

 	
 The size of the uploaded file in bytes

 	
 tmp_name

 	
 The temporary filename of the uploaded file as it was stored on the server

 	
 error

 	
 The error code associated with any problem

 Once the file has been received by the PHP script, the move_uploaded_file() function can transfer it from the temporary directory to its permanent location.

 Click here to view code image

 move_uploaded_file
[image: Images](temporary_filename,
[image: Images]/path/to/destination/filename);

 This next script will let the user select a file on his or her computer and will then
 store it in the uploads directory. The script will check that the file is of an image type, specifically
 a JPEG or PNG. In the next section of this chapter, another script will list, and
 create links to, the uploaded images.

 To handle file uploads in PHP:

 1. Create a new PHP document in your text editor or IDE, to be named upload_image.php (Script 11.2):

 Click here to view code image

 <!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Upload an Image</title>
 <style>
 .error {
 font-weight: bold;
 color: #C00;
 }
 </style>
</head>
<body>
<?php # Script 11.2 -
[image: Images]upload_image.php

 Script 11.2 This script allows the user to upload an image file from their computer to the server.

 Click here to view code image

1 <!doctype html>
2 <html lang="en">
3 <head>
4 <meta charset="utf-8">
5 <title>Upload an Image</title>
6 <style type="text/css" title="text/css" media="all">
7 .error {
8 font-weight: bold;
9 color: #C00;
10 }
11 </style>
12 </head>
13 <body>
14 <?php # Script 11.2 - upload_image.php
15
16 // Check if the form has been submitted:
17 if ($_SERVER['REQUEST_METHOD'] == 'POST') {
18
19 // Check for an uploaded file:
20 if (isset($_FILES['upload'])) {
21
22 // Validate the type. Should be
 JPEG or PNG.
23 $allowed = ['image/pjpeg', 'image/
 jpeg', 'image/JPG', 'image/X-
 PNG', 'image/PNG', 'image/png',
 'image/x-png'];
24 if (in_array($_FILES['upload']
 ['type'], $allowed)) {
25
26 // Move the file over.
27 if (move_uploaded_file ($_
 FILES['upload']['tmp_name'],
 "../uploads/{$_FILES['upload']
 ['name']}")) {
28 echo '<p>The file has
 been uploaded!</p>';
29 } // End of move... IF.
30
31 } else { // Invalid type.
32 echo '<p class="error">Please
 upload a JPEG or PNG image.
 </p>';
33 }
34
35 } // End of isset($_FILES['upload']) IF.
36
37 // Check for an error:
38 if ($_FILES['upload']['error'] > 0) {
39 echo '<p class="error">The file
 could not be uploaded because:
 ';
40
41 // Print a message based upon the
 error.
42 switch ($_FILES['upload']
 ['error']) {
43 case 1:
44 print 'The file exceeds the
 upload_max_filesize setting
 in php.ini.';
45 break;
46 case 2:
47 print 'The file exceeds the
 MAX_FILE_SIZE setting in
 the HTML form.';
48 break;
49 case 3:
50 print 'The file was only
 partially uploaded.';
51 break;
52 case 4:
53 print 'No file was
 uploaded.';
54 break;
55 case 6:
56 print 'No temporary folder
 was available.';
57 break;
58 case 7:
59 print 'Unable to write to
 the disk.';
60 break;
61 case 8:
62 print 'File upload
 stopped.';
63 break;
64 default:
65 print 'A system error
 occurred.';
66 break;
67 } // End of switch.
68
69 print '</p>';
70
71 } // End of error IF.
72
73 // Delete the file if it still exists:
74 if (file_exists ($_FILES['upload']
 ['tmp_name']) && is_file($_
 FILES['upload']['tmp_name'])) {
75 unlink ($_FILES['upload']
 ['tmp_name']);
76 }
77
78 } // End of the submitted conditional.
79 ?>
80
81 <form enctype="multipart/form-data"
 action="upload_image.php" method="post">
82
83 <input type="hidden" name="MAX_FILE_
 SIZE" value="524288">
84
85 <fieldset><legend>Select a JPEG or
 PNG image of 512KB or smaller to be
 uploaded:</legend>
86
87 <p>File: <input
 type="file" name="upload"></p>
88
89 </fieldset>
90 <div align="center"><input
 type="submit" name="submit"
 value="Submit"></div>
91
92 </form>
93 </body>
94 </html>

 This script will make use of one CSS class to format any errors.

 2. Check if the form has been submitted and that a file was selected:

 [image: Images]

 if ($_SERVER['REQUEST_METHOD'] = =
[image: Images]'POST') {
 if (isset($_FILES['upload'])) {

 Since this form will have no other fields to be validated [image: Images], this is the only conditional required. You could also validate the size of the uploaded
 file to determine if it fits within the acceptable range (refer to the $_FILES[‘upload’][‘size’] value).

 [image: Images]

 [image: Images]This very basic HTML form only takes one input: a file.

 3. Check that the uploaded file is of the proper type:

 [image: Images]

 $allowed = ['image/pjpeg',
[image: Images]'image/jpeg', 'image/JPG',
[image: Images]'image/X-PNG', 'image/PNG',
[image: Images]'image/png', 'image/x-png'];
if (in_array($_FILES['upload']
[image: Images]['type'], $allowed)) {

 The file’s type is its MIME type, indicating what kind of file it is. The browser can determine and may provide
 this information, depending on the properties of the selected file.

 To validate the file’s type, first create an array of allowed options. The list of
 allowed types is based on accepting JPEGs and PNGs. Some browsers have variations
 on the MIME types, so those are included here as well. If the uploaded file’s type
 is in this array, the file is valid and should be handled.

 4. Copy the file to its new location on the server:

 [image: Images]

 if (move_uploaded_file
[image: Images]($_FILES['upload']['tmp_name'],
[image: Images]"../uploads/{$_FILES['upload']
[image: Images]['name']}")) {
 echo '<p>The file has been
[image: Images]uploaded!</p>';
} // End of move... IF.

 The move_uploaded_file() function will move the file from its temporary to its permanent location (in the
 uploads folder). The file will retain its original name. Generally it’s best to rename uploaded
 files—for security purposes—but doing so requires a database or other system for tracking
 the original and new filenames.

 As a rule, you should always use a conditional to confirm that a file was successfully
 moved, rather than just assuming that the move worked.

 5. Complete the image type and isset ($_FILES[‘upload’]) conditionals:

 [image: Images]

 } else { // Invalid type
 echo '<p class="error">
[image: Images]Please upload a JPEG or PNG
[image: Images]image.</p>';
 }
} // End of isset($_FILES
[image: Images]['upload']) IF.

 The first else clause completes the if begun in Step 3. It applies if a file was uploaded but it wasn’t of the right MIME
 type [image: Images].

 [image: Images]

 [image: Images] If the user uploads a file that’s not a JPEG or PNG, this is the result.

 6. Check for, and report on, any errors:

 [image: Images]

 if ($_FILES['upload']['error'] >
[image: Images]0) {
 echo '<p class="error">The file
[image: Images]could not be uploaded because:
[image: Images]';

 If an error occurred, then $_FILES [‘upload’][‘error’] will have a value greater than 0. In such cases, this script will report what the
 error was.

 7. Begin a switch that prints a more detailed error:

 [image: Images]

 switch ($_FILES['upload']['error']) {

 case 1:

 print 'The file exceeds the

 [image: Images]upload_max_filesize setting

 [image: Images]in php.ini.';

 break;

 case 2:

 print 'The file exceeds the

 [image: Images]MAX_FILE_SIZE setting in the

 [image: Images]HTML form.';

 break;

 case 3:

 print 'The file was only

 [image: Images]partially uploaded.';

 break;

 case 4:

 print 'No file was uploaded.';

 break;

 There are several possible reasons a file could not be uploaded and moved. The first
 and most obvious one is if the permissions are not set properly on the destination
 directory. In such a case, you'll see an appropriate error message (see [image: Images] in the previous section of the chapter). PHP will often also store an error number
 in the $_FILES['upload']['error']variable. The numbers correspond to specific problems, from 0 to 4, plus 6 through
 8 (oddly enough, there is no 5). The conditional here prints out the problem according to the error number. The case is added for future support (if different numbers are added in later versions
 of PHP).

 For the most part, these errors are useful to you, the developer, and not things you'd
 indicate to the average user.

 8. Complete the switch:

 [image: Images]

 case 6:
 print 'No temporary folder
[image: Images]was available. ';
 break;
 case 7:
 print 'Unable to write to
[image: Images]the disk. ';
 break;
 case 8:
 print 'File upload stopped. ';
 break;
 default:
 print 'A system error
[image: Images]occurred. ';
 break;
} // End of switch.

 9. Complete the error if conditional:

 print '</p>';
} // End of error IF.

 10. Delete the temporary file if it still exists:

 [image: Images]

 if (file_exists ($_FILES['upload']
[image: Images]['tmp_name']) && is_file($_FILES
[image: Images]['upload']['tmp_name'])) {
 unlink ($_FILES['upload']
[image: Images]['tmp_name']);
}

 If the file was uploaded but it could not be moved to its final destination or some
 other error occurred, then that file is still sitting on the server in its temporary
 location. To remove it, apply the unlink() function. Just to be safe, prior to applying unlink(), a conditional checks that the file exists and that it is a file (because the file_exists() function will return TRUE if the named item is a directory).

 11. Complete the PHP section:

 } // End of the submitted conditional.
?>

 12. Create the HTML form:

 [image: Images]

 <form enctype="multipart/
[image: Images]form-data" action="upload_
[image: Images]image.php" method="post">
 <input type="hidden"
[image: Images]name="MAX_FILE_SIZE"
[image: Images]value="524288">
 <fieldset><legend>Select a JPEG
[image: Images]or PNG image of 512KB or
[image: Images]smaller to be uploaded:
[image: Images]</legend>
 <p>File:
[image: Images]<input type="file"
[image: Images]name="upload"></p>
 </fieldset>
 <div align="center"><input
[image: Images]type="submit" name="submit"
[image: Images]value="Submit"></div>
</form>

 This form is very simple [image: Images], but it contains the three necessary parts for file uploads: the form’s enctype attribute, the MAX_FILE_SIZE hidden input, and the file input.

 13. Complete the HTML page:

 </body>
</html>

 14. Save the file as upload_image.php, place it in your web directory, and test it in your browser ([image: Images] and [image: Images]).

 [image: Images]

 [image: Images] The result upon successfully uploading and moving a file.

 [image: Images]

 [image: Images] The result upon attempting to upload a file that is too large.

 If you want, you can confirm that the script works by checking the contents of the
 uploads directory.

 Tip

 Omitting the enctype form attribute is a common reason for file uploads to mysteriously fail.

 Tip

 The existence of an uploaded file can also be validated with the is_uploaded_file() function.

 Tip

 Windows users must use either forward slashes or double backslashes to refer to directories
 (so C:\\ or C:/ but not C:\). This is because the backslash is the escape character in PHP.

 Tip

 The move_uploaded_file() function will overwrite an existing file without warning if the new and existing
 files both have the same name.

 Tip

 The is a restriction in the browser as to how large a file can be, although not all browsers
 abide by this restriction. The PHP configuration file has its own restrictions. You
 can also validate the uploaded file size within the receiving PHP script.

 Tip

 In Chapter 13, you’ll learn a method for improving the security of this script by validating the
 uploaded file’s type more reliably.

 PHP and JavaScript

 Although PHP and JavaScript are fundamentally different technologies, they can be
 used together to make better websites. The most significant difference between the
 two languages is that JavaScript is primarily client-side (meaning it runs in the
 browser) and PHP is always server-side. Therefore, JavaScript can do such things as
 detect the size of the browser window, create pop-up windows, and react to mouseovers,
 whereas PHP can do nothing like these things. Conversely, PHP can interact with MySQL
 on the server, but (browser-based) JavaScript cannot.

 Although PHP cannot do certain things that JavaScript can, PHP can be used to create
 JavaScript, just as PHP can create HTML. To be clear, in a browser, JavaScript is
 incorporated by and interacts with HTML, but PHP can dynamically generate JavaScript
 code, just as you’ve been using PHP to dynamically generate HTML.

 To demonstrate this, we will create one PHP script that lists all the images uploaded
 by the upload_image.php script [image: Images]. The PHP script will also create each image name as a clickable link. The links themselves
 will call a JavaScript function [image: Images] that creates a pop-up window. The pop-up window will show the clicked image. This
 example will in no way be a thorough discussion of JavaScript, but it does adequately
 demonstrate how the various technologies—PHP, HTML, and JavaScript—can be used together.
 In Chapter 15, “Introducing jQuery,” you’ll learn how to use the jQuery JavaScript framework to add all sorts of functionality
 to PHP-based scripts.

 [image: Images]

 [image: Images] This PHP page dynamically creates a list of all the uploaded images.

 [image: Images]

 [image: Images] Each image’s name is linked as a call to a JavaScript function. The function call’s
 parameters are created by PHP.

 Creating the JavaScript File

 Even though JavaScript and PHP are two different languages, they are similar enough
 that it’s possible to dabble with JavaScript without any formal training. Before we
 create the JavaScript code for this example, I’ll explain a few of the fundamentals.

 First, JavaScript code can be added to an HTML page in one of two ways: inline or
 through an external file. To add inline JavaScript, place the JavaScript code between
 HTML script tags:

 <script>
// Actual JavaScript code.
</script>

 To use an external JavaScript file, add an src attribute to the script tag:

 [image: Images]

 <script src="somefile.js"></script>

 Your HTML pages can have multiple uses of the script tag, but each can only include an external file or have some JavaScript code—not
 both.

 In both uses, before HTML5 the script tag would include a type attribute with a value of text/javascript. As of HTML5, that’s no longer required.

 JavaScript files use a .js extension. The file should use the same encoding (as set in your text editor or IDE)
 as the HTML script that will include the file. You can indicate the file’s encoding
 in the script tag:

 [image: Images]

 <script charset="utf-8"
[image: Images]src="somefile.js">
</script>

 Whether you place your JavaScript code within script tags or in an external file, there are no opening and closing JavaScript tags, like
 the opening and closing PHP tags.

 Next, know that variables in JavaScript are case-sensitive, just like PHP, but variables
 in JavaScript do not begin with dollar signs.

 Finally, one of the main differences between JavaScript and PHP is that JavaScript
 is an object-oriented programming (OOP) language. Whereas PHP can be used in both
 a procedural approach, as most of this book demonstrates, and an object-oriented approach
 (introduced in Chapter 16, “An OOP Primer”), JavaScript is only ever an object-oriented language. This means you’ll see the
 “dot” syntax like something.something() or something.something.something.

 That’s enough of the basics; in the following script, I’ll explain the particulars
 of each bit of code in sufficient detail. In this next sequence of steps, you’ll create
 a separate JavaScript file that will define one JavaScript function. The function
 itself will take three arguments—an image’s name, its width, and its height. The function
 will use these values to create a pop-up window specifically for that image.

 To create JavaScript with PHP:

 1. Begin a new JavaScript document in your text editor or IDE, to be named function.js (Script 11.3):

 // Script 11.3 - function.js

 Script 11.3 The function.js script defines a JavaScript function for creating the pop-up window that will show
 an individual image.

 Click here to view code image

 1 // Script 11.3 - function.js
2
3 // Make a pop-up window function:
4 function create_window(image, width, height) {
5
6 // Add some pixels to the width and height:
7 width = width + 10;
8 height = height + 10;
9
10 // If the window is already open,
11 // resize it to the new dimensions:
12 if (window.popup && !window.popup.closed) {
13 window.popup.resizeTo(width, height);
14 }
15
16 // Set the window properties:
17 var specs = "location=no,scrollbars=no,menubar=no,toolbar=no,resizable=yes,left=0,top=0,
 width=" + width + ",height=" + height;
18
19 // Set the URL:
20 var url = "show_image.php?image=" + image;
21
22 // Create the pop-up window:
23 popup = window.open(url, "ImageWindow", specs);
24 popup.focus();
25
26 } // End of function.

 Again, there are no opening JavaScript tags here; you can just start writing JavaScript
 code. Comments in Java-Script can use either the single line (//) or multiline (/* */) syntax.

 2. Begin the JavaScript function:

 [image: Images]

 function create_window(image,
[image: Images]width, height) {

 The JavaScript create_window() function will accept three parameters: the image’s name, its width, and its height.
 Each of these will be passed to this function when the user clicks a link. The exact
 values of the image name, width, and height will be determined by PHP.

 The syntax for creating a function in JavaScript is like a user-defined function in
 PHP, except that the variables do not have initial dollar signs.

 3. Add 10 pixels to the received width and height values:

 width = width + 10;
height = height + 10;

 Some pixels will be added to the width and height values to create a window slightly
 larger than the image itself. Math in JavaScript uses the same operators as in pretty
 much every language.

 4. Resize the pop-up window if it is already open:

 [image: Images]

 if (window.popup &&
[image: Images]!window.popup.closed) {
 window.popup.resizeTo(width,
[image: Images]height);
}

 Later in the function, a window will be created, associated with the popup variable. If the user clicks one image name, creating the pop-up window, and then
 clicks another image’s name without having closed the first pop-up window, the new
 image will be displayed in a mis-sized window. To prevent that, a bit of code here
 first checks if the pop-up window exists and if it is not closed. If both conditions
 are TRUE (the window is already open), the window will be resized according to the
 new image dimensions. This is accomplished by calling the resizeTo() method of the popup object (a method is the OOP term for a function).

 5. Determine the properties of the pop-up window:

 [image: Images]

 var specs = "location=no,
[image: Images]scrollbars=no, menubar=no,
[image: Images]toolbar=no,resizable=yes,left=0,
[image: Images]top=0,width=" +width +
[image: Images]",height=" + height;

 This line creates a new JavaScript variable with a name of specs. The var keyword before the variable name is the preferred way to create variables within
 a function (specifically, it creates a variable local to the function). Note that the image, width, and height variables didn’t use this keyword, since they were created as the arguments to a
 function.

 This variable will be used to establish the properties of the pop-up window. The window
 will have no location bar, scroll bars, menus, or toolbars; it should be resizable;
 it will be located in the upper-left corner of the screen; and it will have a width
 of width and a height of height[image: Images].

 [image: Images]

 [image: Images] The pop-up window created by JavaScript.

 With strings in JavaScript, the plus sign is used to perform concatenation (whereas
 PHP uses the period).

 6. Define the URL:

 [image: Images]

 var url = "show_image.php?image="
[image: Images]+ image;

 This code sets the URL of the pop-up window—the page the window should load. That
 page is show_image.php, to be created later in this chapter. The show_image.php script expects to receive an image’s name in the URL, so the value of the url variable is show_image.php?image= plus the name of the image concatenated to the end [image: Images].

 7. Create the pop-up window:

 [image: Images]

 popup = window.open(url,
[image: Images]"ImageWindow", specs);
popup.focus();

 Finally, the pop-up window is created using the open() method of the window object. The window object is a global JavaScript object created by the browser to refer to the open
 windows. The open() method’s first argument is the page to load, the second is the title to be given
 to the window, and the third is a list of properties. Note that the creation of this
 window is assigned to the popup variable. Because this variable’s creation does not begin with the keyword var, popup will be a global variable. This is necessary for multiple calls of this function
 to reference that same variable.

 Finally, focus is given to the new window, meaning it should appear above the current
 window.

 8. Save the script as function.js.

 9. Place the script, or a copy, in the js folder of your web directory.

 JavaScript, like CSS, ought to be separated out when organizing your web directory.
 Normally, external JavaScript files are placed in a folder named js, javascript, or scripts.

 Creating the PHP Script

 Now that the JavaScript code required by the page has been created, it’s time to create
 the PHP script itself (which will output the HTML that calls the JavaScript function).
 The purpose of this script is to list all the images already uploaded by upload_image.php. To do this, PHP needs to dynamically retrieve the contents of the uploads directory. That can be done via the scandir() function. It returns an array listing the files in a given directory (it was added
 in PHP 5).

 The PHP script must link each displayed image name as a call to the just-defined JavaScript
 function. That function expects to receive three arguments: the image’s name, its
 width, and its height. For PHP to find these last two values, the script will use
 the getimagesize() function. It returns an array of information for a given image (Table 11.3).

 TABLE 11.3 The getimagesize() Array

 	
 Element

 	
 Value

 	
 Example

 	
 0

 	
 image’s width in pixels

 	
 423

 	
 1

 	
 image’s height in pixels

 	
 368

 	
 2

 	
 image’s type

 	
 2 (representing JPG)

 	
 3

 	
 appropriate HTML img tag data

 	
 height=”368” width=”423”

 	
 mime

 	
 image’s MIME type

 	
 image/png

 To create JavaScript with PHP:

 1. Begin a new PHP document in your text editor or IDE, to be named images.php (Script 11.4):

 <!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Images</title>

 Script 11.4 The images.php script uses JavaScript and PHP to create links to images stored on the server. The
 images will be viewable through show_image.php (Script 11.5).

 Click here to view code image

 1 <!doctype html>
2 <html lang="en">
3 <head>
4 <meta charset="utf-8">
5 <title>Images</title>
6 <script charset="utf-8" src="js/function.js"></script>
7 </head>
8 <body>
9 <p>Click on an image to view it in a separate window.</p>
10
11 <?php # Script 11.4 - images.php
12 // This script lists the images in the uploads directory.
13
14 $dir = '../uploads'; // Define the directory to view.
15
16 $files = scandir($dir); // Read all the images into an array.
17
18 // Display each image caption as a link to the JavaScript function:
19 foreach ($files as $image) {
20
21 if (substr($image, 0, 1) != '.') { // Ignore anything starting with a period.
22
23 // Get the image's size in pixels:
24 $image_size = getimagesize("$dir/$image");
25
26 // Make the image's name URL-safe:
27 $image_name = urlencode($image);
28
29 // Print the information:
30 echo "$image\n";
31
32 } // End of the IF.
33
34 } // End of the foreach loop.
35 ?>
36
37 </body>
38 </html>

 2. Include the JavaScript file:

 [image: Images]

 <script charset="utf-8"
[image: Images]src="js/function.js"></script>

 You can use the script tags anywhere in an HTML page, but inclusions of external files are commonly performed
 in the document’s head. The reference to function.js assumes that the file will be found in the js directory, with the js directory being in the same directory as this current script (see [image: Images] under “Handling File Uploads”).

 3. Complete the HTML head and begin the body:

 [image: Images]

 </head>
<body>
<p>Click on an image to view it
[image: Images]in a separate window.</p>

 4. Begin an HTML unordered list:

 To make things simple, this script displays each image as an item in an unordered
 list.

 5. Start the PHP code and create an array of images by referring to the uploads directory:

 [image: Images]

 <?php # Script 11.4 - images.php
$dir = '../uploads ';
$files = scandir($dir);

 This script will automatically list and link all of the images stored in the uploads folder (presumably put there by upload_image.php, Script 11.3). The code begins by defining the directory as a variable so that it’s easier to
 refer to. Then the scandir() function, which returns an array of files and directories found within a folder,
 assigns that information to an array called $files.

 6. Begin looping through the $files array:

 [image: Images]

 foreach ($files as $image) {
 if (substr($image, 0, 1) !=
[image: Images]'. ') {

 This loop will go through every image in the array and create a list item for it.
 Within the loop, there is one conditional that checks if the first character in the
 file’s name is a period. On non-Windows systems, hidden files start with a period,
 the current directory is referred to using just a single period, and two periods refers
 to the parent directory. Since these might be included in $files, they need to be weeded out.

 7. Get the image information and encode its name:

 [image: Images]

 $image_size = getimagesize
[image: Images]("$dir/$image");
$image_name = urlencode($image);

 The getimagesize() function returns an array of information about an image (Table 11.3). The values returned by this function will be used to set the width and height sent
 to the create_window() JavaScript function.

 Next, the urlencode() function makes a string safe to pass in a URL. Because the image name may contain
 characters not allowed in a URL (and it will be passed in the URL when invoking show_image.php), the name should be encoded.

 8. Print the list item:

 [image: Images]

 echo "<a href=\"javascript:
[image: Images]create_window('$image_name',
[image: Images]$image_size[0],$image_size[1])\">
[image: Images]$image\n";

 Finally, the loop creates the HTML list item, consisting of the linked image name.
 The link itself is a call to the JavaScript create_window() function. In order to execute the JavaScript function from within HTML, preface it
 with javascript:. (There’s much more to calling JavaScript from within HTML, but just use this syntax
 for now.)

 The function’s three arguments are the image’s name, its width, and its height. Because
 the image’s name will be a string, it must be wrapped in quotation marks.

 9. Complete the if conditional, the foreach loop, and the PHP section:

 } // End of the IF.
} // End of the foreach loop.
?>

 10. Complete the unordered list and the HTML page:

</body>
</html>

 11. Save the file as images.php, place it in your web directory (in the same directory as upload_image.php), and test it in your browser [image: Images].

 Note that clicking the links will not work yet because show_image.php—the page the pop-up window attempts to load—hasn’t been created.

 12. View the source code to see the dynamically generated links [image: Images].

 Notice how the parameters to each function call are appropriate to the specific image.

 Tip

 Different browsers will handle the sizing and display of the window differently. In
 my tests, for example, Google Chrome always required that the window be at least a
 certain width, and Internet Explorer would pad the displayed image on all four sides.

 Tip

 Some versions of Windows create a Thumbs.db file in a folder of images. You might want to check for this value in the conditional
 in Step 6 that weeds out some returned items. That code would be

 if ((substr($image, 0, 1) != '. ')
[image: Images]&& ($image != 'Thumbs.db')) {

 Tip

 Not to belabor the point, but almost everything web developers do with JavaScript
 (for example, resize or move the browser window) cannot be done using server-side
 PHP.

 Tip

 There is a little overlap between the PHP and JavaScript. Both can set and read cookies,
 create HTML, and do some browser detection.

 Understanding HTTP Headers

 The images.php script, just created, displays a list of image names, each of which is linked to
 a JavaScript function call. That JavaScript function creates a pop-up window which
 loads a PHP script that will reveal the image. This may sound like a lot of work for
 little effort, but there’s a method to my madness. A trivial reason for this approach
 is that JavaScript is required to create a window sized to fit the image (as opposed
 to creating a pop-up window of any size, with the image in it). More importantly,
 because the images are being stored in the uploads directory, ideally stored outside of the web root directory, the images cannot be
 viewed directly in the browser using either of the following:

 http://www.example.com/uploads
[image: Images]/image.png

 or

 The reason neither of these will work is that files and folders located outside of
 the web root directory are, by definition, unavailable via a browser. This is a good
 thing, because it allows you to safeguard content, providing it only when appropriate.
 To make that content available through a browser, you need to create a proxy script in PHP. A proxy script just fulfills a role, such as providing a file (displaying
 an image is the same thing as providing a file to the browser). Thus, given the proxy
 script proxy.php, the previous examples could be made to work using either [image: Images]:

 http://www.example.com/proxy.php?
[image: Images]image=image.png

 [image: Images]

 [image: Images] A proxy script is able to provide access to content on the server that would otherwise
 be unavailable.

 or

 This, of course, is exactly what’s being done with show_image.php, linked in the create_window() JavaScript function. But how does proxy.php, or show_image.php, work? The answer lies in an understanding of HTTP headers.

 HTTP (Hypertext Transfer Protocol) is the technology at the heart of the web and defines
 the way clients and servers communicate. When a browser requests a page, it receives
 a series of HTTP headers in return. This happens behind the scenes; most users aren’t
 aware of this at all.

 PHP’s built-in header() function can be used to take advantage of this protocol. The most common example
 of this will be demonstrated in the next chapter, when the header() function will be used to redirect the browser from the current page to another. Here,
 you’ll use it to send files to the browser.

 In theory, the header() function is easy to use. Its syntax is

 header(header string);

 The list of possible header strings is quite long, since headers are used for everything
 from redirecting the browser, to sending files, to creating cookies, to controlling
 page caching, and much, much more. Starting with something simple, to use header() to redirect the browser, type

 [image: Images]

 header('Location:
[image: Images]http://www.example.com/page.php');

 That line will send the browser from the page it’s on over to that other URL. You’ll
 see examples of this in the next chapter.

 In this next example, which will send an image file to the browser, three header calls
 are used. The first is Content-Type. This indicates to the browser what kind of data is about to follow. The Content-Type value matches the data’s MIME type. This line lets the browser know it’s about to
 receive a PDF file:

 [image: Images]

 header("Content-Type:application
[image: Images]/pdf\n");

 Next, you can use Content-Disposition, which tells the browser how to treat the data:

 [image: Images]

 header("Content-Disposition:
[image: Images]attachment; filename=\"somefile
[image: Images].pdf\"\n");

 The attachment value will prompt the browser to download the file [image: Images]. An alternative is to use inline, which tells the browser to display the data, assuming that the browser can. The
 filename attribute is just that: it tells the browser the name associated with the data. Some
 browsers abide by this instruction; others do not.

 [image: Images]

 [image: Images] Edge prompts the user to download the file because of the attachment Content-Disposition value.

 A third header to use for downloading files is Content-Length. This is a value, in bytes, corresponding to the amount of data to be sent.

 header("Content-Length: 4096\n");

 That’s the basics with respect to using the header() function. Before getting to the example, note that if a script uses multiple header() calls, each should be terminated by a newline (\n), as in the preceding code snippets. More importantly, the absolutely critical thing
 to remember about the header() function is that it must be called before anything is sent to the browser. This includes HTML or even blank spaces. If your code has
 any echo or print statements, has blank lines outside of PHP tags, or includes files that do any of
 these things before calling header(), you’ll see an error message like that shown in [image: Images].

 [image: Images]

 [image: Images] The headers already sent error means that the browser was sent something—HTML, plain text, even a space—prior
 to using the header() function.

 To use the header() function:

 1. Begin a new PHP document in your text editor or IDE, to be named show_image.php (Script 11.5):

 [image: Images]

 <?php # Script 11.5 -
[image: Images]show_image.php
$name = FALSE;

 Script 11.5 This script retrieves an image from the server and sends it to the browser, using
 HTTP headers.

 Click here to view code image

1 <?php # Script 11.5 - show_image.php
2 // This page displays an image.
3
4 $name = FALSE; // Flag variable:
5
6 // Check for an image name in the URL:
7 if (isset($_GET['image'])) {
8
9 // Make sure it has an image's
 extension:
10 $ext = strtolower (substr
 ($_GET['image'], -4));
11
12 if (($ext == '.jpg') OR ($ext ==
 'jpeg') OR ($ext == '.png')) {
13
14 // Full image path:
15 $image = "../uploads/
 {$_GET['image']}";
16
17 // Check that the image exists
 and is a file:
18 if (file_exists($image) &&
 (is_file($image))) {
19
20 // Set the name as this image:
21 $name = $_GET['image'];
22
23 } // End of file_exists() IF.
24
25 } // End of $ext IF.
26
27 } // End of isset($_GET['image']) IF.
28
29 // If there was a problem, use the
 default image:
30 if (!$name) {
31 $image = 'images/unavailable.png';
32 $name = 'unavailable.png';
33 }
34
35 // Get the image information:
36 $info = getimagesize($image);
37 $fs = filesize($image);
38
39 // Send the content information:
40 header ("Content-Type:
 {$info['mime']}\n");
41 header ("Content-Disposition: inline;
 filename=\"$name\"\n");
42 header ("Content-Length: $fs\n");
43
44 // Send the file:
45 readfile($image);

 Because this script will use the header() function, nothing—absolutely nothing—can be sent to the browser. That means no HTML,
 not even a blank line, tab, or space before the opening PHP tag.

 The $name variable will be used as a flag, indicating whether all the validation routines have
 been passed.

 2. Check for an image name:

 if (isset($_GET['image'])) {

 The script needs to receive a valid image name in the URL. This should be appended
 to the URL in the JavaScript function that calls this page (see function.js, Script 11.3).

 3. Validate the image’s extension:

 [image: Images]

 $ext = strtolower(
[image: Images]substr($_GET['image'], -4));
 if (($ext = = '.jpg') OR
[image: Images]($ext = ='jpeg') OR
[image: Images]($ext = = '.png')) {

 The next check is that the file to be sent to the browser has a .jpeg, .jpg, or .png extension. This way the script won’t try to send something bad to the user. For example,
 if a malicious user changed the address in the pop-up window from http://www.example.com/show_image.php?image=image.png to http://www.example.com/show_image.php?image=../../../path/to/something/important, this conditional would catch, and prevent, that hack.

 To validate the extension, the substr() function returns the last four characters from the image’s name (the -4 accomplishes this). The extension is also run through the strtolower() function so that .PNG and .png are treated the same. Then a conditional checks to see if $ext is equal to any of the three allowed values.

 4. Check that the image is a file on the server:

 [image: Images]

 $image = "../uploads/{$_GET
[image: Images]['image']} ";
if (file_exists($image) &&
[image: Images](is_file($image))) {

 Before attempting to send the image to the browser, make sure that it exists and that
 it is a file (as opposed to a directory). As a security measure, the image’s full
 path is defined as a combination of ../uploads and the received image name.

 5. Set the value of the flag variable to the image’s name:

 $name = $_GET['image'];

 Once the image has passed all of these tests, the $name variable is assigned the value of the image.

 6. Complete the conditionals begun in Steps 2, 3, and 4:

 [image: Images]

 } // End of file_exists() IF.
 } // End of $ext IF.
} // End of isset($_GET['image']) IF.

 There are no else clauses for any of these three conditions. If all three conditions aren’t TRUE, then
 the flag variable $name will still have a FALSE value.

 7. If no valid image was received by this page, use a default image:

 [image: Images]

 if (!$name) {
 $image = 'images/unavailable.png';
 $name = 'unavailable.png';
}

 If the image doesn’t exist, if it isn’t a file, or if it doesn’t have the proper extension,
 then the $name variable will still have a value of FALSE. In such cases, a default image will be
 used instead [image: Images]. The image itself can be downloaded from the book’s corresponding website (LarryUllman.com, found with all the downloadable code) and should be placed in an images folder. The images folder should be in the same directory as this script, not in the same directory
 as the uploads folder.

 [image: Images]

 [image: Images] This image will be shown whenever there’s a problem with showing the requested image.

 8. Retrieve the image’s information:

 [image: Images]

 $info = getimagesize($image);
$fs = filesize($image);

 To send a file to the browser, the script needs to know the file’s MIME type and size.
 An image file’s type can be found using getimagesize(). The file’s size, in bytes, is found using filesize(). Because the $image variable represents either ../uploads/{$_GET[‘image’]} or images/unavailable.png, these lines will work on both the correct and the unavailable image.

 9. Send the file:

 [image: Images]

 header("Content-Type: {$info
[image: Images]['mime']}\n");
header("Content-Disposition:
[image: Images]inline; filename=\"$name\"\n");
header("Content-Length: $fs\n");
readfile($image);

 These header() calls will send the file data to the browser. The first line uses the image’s MIME
 type for the value of the Content-Type header. The second line tells the browser the name of the file and that it should
 be displayed in the browser (inline). The last header() function indicates how much data is to be expected.

 The file data itself is sent using the readfile() function, which reads in a file and immediately sends the content to the browser.

 10. Save the file as show_image.php, place it in your web directory, in the same folder as images.php, and test it in your browser by clicking a link in images.php [image: Images].

 [image: Images]

 [image: Images] This image is displayed by having PHP send the file to the browser.

 Notice that this page contains no HTML. It only sends an image file to the browser.
 Also note that I omitted the terminating PHP tag. This is acceptable, and in certain
 situations like this, preferred. If you included the closing PHP tag, and you inadvertently
 had an extra space or blank line after that tag, the browser could have problems displaying
 the image (because the browser will have received the image data of X length, matching the Content-Length header, plus a bit of extra data).

 Tip

 I cannot stress strongly enough that nothing can be sent to the browser before using
 the header() function. Even an included file that has a blank line after the closing PHP tag will
 make the header() function unusable.

 Tip

 To avoid problems when using header(), you can call the headers_sent() function first. It returns a Boolean value indicating if something has already been
 sent to the browser:

 [image: Images]

 if (!headers_sent()) {
 // Use the header() function.
} else {
 // Do something else.
}

 Output buffering, demonstrated in Chapter 18, “Example—User Registration,” can also prevent problems when using header().

 Tip

 Debugging scripts like this, where PHP sends data, not text, to the browser, can be
 challenging. For help, use one of the many developer plug-ins for the Edge browser
 [image: Images].

 [image: Images]

 [image: Images] Browser debugging tools, like those in Edge shown here, include the ability to see
 what headers were sent by a page and/or server. This can be useful debugging information.

 Tip

 You can also indicate to the browser the page’s encoding using PHP and the header() function:

 [image: Images]

 <?php header('Content-Type:
[image: Images]text/html; charset=UTF-8'); ?>

 This can be more effective than using a META tag, but it does require the page to be a PHP script. If using this, it must be the
 first line in the page, before any HTML.

 Tip

 A proxy script can send to the browser only a single file (or image) at a time.

 Date and Time Functions

 Chapter 5, “Introduction to SQL,” demonstrates a handful of great date and time functions that MySQL supports. Naturally,
 PHP has its own date and time functions. To start, there’s date_default_timezone_set(). This function is used to establish the default time zone (which can also be set
 in PHP’s configuration file).

 date_default_timezone_set(tz);

 The tz value is a string like America/New_York or Pacific/Auckland. There are too many to list here (Africa alone has over 50), but see the PHP manual
 for them all. Note that as of PHP 5.1, the default time zone must be set, either in
 a script or in PHP’s configuration file, prior to calling any of the date and time
 functions, or else you’ll see a warning.

 Next up, the checkdate() function takes a month, a day, and a year and returns a Boolean value indicating
 whether that date exists (or existed). It even considers leap years. This function
 can be used to ensure that a user supplied a valid date (birth date or other):

 [image: Images]

 if (checkdate(month, day, year)) { // OK!

 Perhaps the most frequently used function is the aptly named date(). It returns the date and/or time as a formatted string. It takes two arguments:

 date(format, [timestamp]);

 The timestamp is an optional argument representing the number of seconds since the
 Unix epoch (midnight on January 1, 1970) for the date in question. It allows you to
 get information, like the day of the week, for a particular date. If a timestamp is
 not specified, PHP will just use the current time on the server.

 There are myriad formatting parameters available (Table 11.4), and they can be used in conjunction with literal text. For example:

 [image: Images]

 echo date('F j, Y'); // January 26, 2018
echo date('H:i'); // 23:14
echo date('D'); // Fri

 TABLE 11.4 Date() Function Formatting

 	
 Character

 	
 Meaning

 	
 Example

 	
 Y

 	
 Year as 4 digits

 	
 2017

 	
 y

 	
 Year as 2 digits

 	
 11

 	
 L

 	
 Is it a leap year?

 	
 1 (for yes)

 	
 n

 	
 Month as 1 or 2 digits

 	
 2

 	
 m

 	
 Month as 2 digits

 	
 02

 	
 F

 	
 Month

 	
 February

 	
 M

 	
 Month as 3 letters

 	
 Feb

 	
 j

 	
 Day of the month as 1 or 2 digits

 	
 8

 	
 d

 	
 Day of the month as 2 digits

 	
 08

 	
 l (lower- case L)

 	
 Day of the week

 	
 Monday

 	
 D

 	
 Day of the week as 3 letters

 	
 Mon

 	
 w

 	
 Day of the week as a single digit

 	
 0 (Sunday)

 	
 z

 	
 Day of the year: 0 to 365

 	
 189

 	
 t

 	
 Number of days in the month

 	
 31

 	
 S

 	
 English ordinal suffix for a day, as 2 characters

 	
 rd

 	
 g

 	
 Hour; 12-hour format as 1 or 2 digits

 	
 6

 	
 G

 	
 Hour; 24-hour format as 1 or 2 digits

 	
 18

 	
 h

 	
 Hour; 12-hour format as 2 digits

 	
 06

 	
 H

 	
 Hour; 24-hour format as 2 digits

 	
 18

 	
 i

 	
 Minutes

 	
 45

 	
 s

 	
 Seconds

 	
 18

 	
 u

 	
 Microseconds

 	
 1234

 	
 a

 	
 am or pm

 	
 am

 	
 A

 	
 AM or PM

 	
 PM

 	
 U

 	
 Seconds since the epoch

 	
 1499550481

 	
 e

 	
 Timezone

 	
 UTC

 	
 I (capital i)

 	
 Is it daylight savings?

 	
 1 (for yes)

 	
 O

 	
 Difference from GMT

 	
 +0600

 You can find the timestamp for a particular date using the mktime() function:

 [image: Images]

 $stamp = mktime(hour, minute,
[image: Images]second, month, day, year);

 If called with no arguments, mktime() returns the current timestamp, which is the same as calling the time() function.

 Finally, the getdate() function can be used to return an array of values (Table 11.5) for a date and time. For example:

 [image: Images]

 $today = getdate();
echo $today['month']; // October

 TABLE 11.5 The getdate() Array

 	
 Key

 	
 Value

 	
 Example

 	
 year

 	
 year

 	
 2017

 	
 mon

 	
 month

 	
 11

 	
 month

 	
 month name

 	
 November

 	
 mday

 	
 day of the month

 	
 24

 	
 weekday

 	
 day of the week

 	
 Thursday

 	
 hours

 	
 hours

 	
 11

 	
 minutes

 	
 minutes

 	
 56

 	
 seconds

 	
 seconds

 	
 47

 This function also takes an optional timestamp argument. If that argument is not used,
 getdate() returns information for the current date and time.

 These are just a handful of the many date and time functions PHP has. For more, see
 the PHP manual. To practice working with these functions, let’s modify images.php (Script 11.4) in a couple of ways. First, the script will show each image’s uploaded date and
 time. Second, while a change is being made to the layout, the script will show each
 image’s file size, too [image: Images].

 [image: Images]

 [image: Images] The revised images.php shows two more pieces of information about each image.

 To use the date and time functions:

 1. Open images.php (Script 11.4) in your text editor or IDE, if you haven’t already.

 2. As the first line of code after the opening PHP tag, establish the time zone (Script 11.6):

 [image: Images]

 date_default_timezone_set
[image: Images]('America/New_York');

 Script 11.6 This modified version of images.php (Script 11.4) uses PHP's date and time functions to report some information to the user.

 Click here to view code image

1 <!doctype html>
2 <html lang="en">
3 <head>
4 <meta charset="utf-8">
5 <title>Images</title>
6 <script charset="utf-8" src="js/function.js"></script>
7 </head>
8 <body>
9 <p>Click on an image to view it in a separate window.</p>
10
11 <?php # Script 11.6 - images.php
12 // This script lists the images in the uploads directory.
13 // This version now shows each image's file size and uploaded date and time.
14
15 // Set the default timezone:
16 date_default_timezone_set('America/New_York');
17
18 $dir = '../uploads'; // Define the directory to view.
19
20 $files = scandir($dir); // Read all the images into an array.
21
22 // Display each image caption as a link to the JavaScript function:
23 foreach ($files as $image) {
24
25 if (substr($image, 0, 1) != '.') { // Ignore anything starting with a period.
26
27 // Get the image's size in pixels:
28 $image_size = getimagesize("$dir/$image");
29
30 // Calculate the image's size in kilobytes:
31 $file_size = round((filesize("$dir/$image")) / 1024) . "kb";
32
33 // Determine the image's upload date and time:
34 $image_date = date("F d, Y H:i:s", filemtime("$dir/$image"));
35
36 // Make the image's name URL-safe:
37 $image_name = urlencode($image);
38
39 // Print the information:
40 echo "<a href=\"javascript:create_window('$image_name',$image_size[0],
 $image_size[1])\">$image $file_size ($image_date)\n";
41
42 } // End of the IF.
43
44 } // End of the foreach loop.
45
46 ?>
47
48 </body>
49 </html>

 Before calling any of the date and time functions, the time zone must be established.
 To find your time zone, see www.php.net/timezones.

 3. Within the foreach loop, after getting the image’s dimensions, calculate its file size:

 [image: Images]

 $file_size = round((filesize
[image: Images]("$dir/$image")) / 1024) . "kb";

 The filesize() function was first used in the show_image.php script. It returns the size of a file in bytes. To calculate the kilobytes of a file,
 divide this number by 1,024 (the number of bytes in a kilobyte) and round it off.

 4. On the next line, determine the image’s modification date and time:

 [image: Images]

 $image_date = date("F d, Y H:i:s",
[image: Images]filemtime("$dir/$image"));

 To find a file’s modification date and time, call the filemtime() function, providing the function with the file, or directory, to be examined. This
 function returns a timestamp, which can then be used as the second argument to the
 date(), which will format the timestamp accordingly.

 If you’re perplexed by what’s happening here, you can break the code into two steps:

 [image: Images]

 $filemtime = filemtime
[image: Images]("$dir/$image");
$image_date = date("F d, Y H:i:s
[image: Images]", $filemtime);

 5. Change the echo statement so that it also prints the file size and modification date:

 [image: Images]

 echo "<a href=\"javascript:
[image: Images]create_window('$image_name',
[image: Images]$image_size[0],$image_size[1])\">
[image: Images]$image $file_size
[image: Images]($image_date)\n";

 Both are printed outside of the A tag, so they aren’t part of the links.

 6. Save the file as images.php, place it in your web directory, and test it in your browser.

 Tip

 The date() function has some parameters that are used for informative purposes, not formatting.
 For example, date(‘L’) returns 1 or 0 indicating if it’s a leap year; date(‘t’) returns the number of days in the current month; and date(‘I’) returns a 1 if it’s currently daylight saving time.

 Tip

 PHP’s date functions reflect the time on the server (because PHP runs on the server);
 you’ll need to use JavaScript if you want to determine the date and time on the user’s
 computer.

 Tip

 In Chapter 16, you’ll learn how to use the new DateTime class to work with dates and times in PHP.

 Performing Transactions

 Switching gears for the last example in this chapter, let’s see how to perform database
 transactions using a PHP script. Chapter 7, “Advanced SQL and MySQL,” demonstrates how to perform transactions using the mysql client. A database transaction
 is a sequence of steps that can be guaranteed to all execute or all fail. This is
 accomplished by committing or rolling back the previously made queries.

 To perform transactions with a PHP script, first disable the autocommit behavior:

 [image: Images]

 mysqli_autocommit($dbc, FALSE);

 Next, execute queries as you otherwise would:

 $r = @mysqli_query($dbc, $q);

 Then, based on the results of the query, either commit the transactions or roll them
 back:

 mysqli_commit($dbc);

 or

 mysqli_rollback($dbc);

 As an example of this, the following script performs a transfer of funds from one
 bank account to another: just a web version of the mysql example used in Chapter 7 [image: Images].

 [image: Images]

 [image: Images] The funds transfer form.

 To handle file uploads in PHP:

 1. Create a new PHP document in your text editor or IDE, to be named transfer.php (Script 11.7):

 [image: Images]

 <!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Transfer Funds</title>
</head>
<body>
<h1>Transfer Funds</h1>
<?php # Script 11.7 - transfer.php

 Script 11.7 This script uses MySQL transactions to guarantee the complete success or failure
 of multiple queries.

 Click here to view code image

 1 <!doctype html>
2 <html lang="en">
3 <head>
4 <meta charset="utf-8">
5 <title>Transfer Funds</title>
6 </head>
7 <body>
8 <h1>Transfer Funds</h1>
9 <?php # Script 11.7 - transfer.php
10 // This page performs a transfer of funds from one account to another.
11 // This page uses transactions.
12
13 // Always need the database connection:
14 $dbc = mysqli_connect('localhost', 'root', 'password', 'banking') OR die('Could not connect to
 MySQL: ' . mysqli_connect_error());
15
16 // Check if the form has been submitted:
17 if ($_SERVER['REQUEST_METHOD'] == 'POST') {
18
19 // Minimal form validation:
20 if (isset($_POST['from'], $_POST['to'], $_POST['amount']) &&
21 is_numeric($_POST['from']) && is_numeric($_POST['to']) && is_numeric($_POST['amount'])) {
22
23 $from = $_POST['from'];
24 $to = $_POST['to'];
25 $amount = $_POST['amount'];
26
27 // Make sure enough funds are available:
28 $q = "SELECT balance FROM accounts WHERE account_id=$from";
29 $r = @mysqli_query($dbc, $q);
30 $row = mysqli_fetch_array($r, MYSQLI_ASSOC);
31 if ($amount > $row['balance']) {
32 echo '<p class="error">Insufficient funds to complete the transfer.</p>';
33 } else {
34 // Turn autocommit off:
35 mysqli_autocommit($dbc, FALSE);
36
37 $q = "UPDATE accounts SET balance=balance-$amount WHERE account_id=$from";
38 $r = @mysqli_query($dbc, $q);
39 if (mysqli_affected_rows($dbc) == 1) { // If it ran OK.
40
41 $q = "UPDATE accounts SET balance=balance+$amount WHERE account_id=$to";
42 $r = @mysqli_query($dbc, $q);
43 if (mysqli_affected_rows($dbc) == 1) { // If it ran OK.
44
45 mysqli_commit($dbc);
46 echo '<p>The transfer was a success!</p>';
47
48 } else {
49 mysqli_rollback($dbc);
50 echo '<p>The transfer could not be made due to a system error. We apologize
 for any inconvenience.</p>'; // Public message.
51 echo '<p>' . mysqli_error($dbc) . '
Query: ' . $q . '</p>'; // Debugging
 message.
52 }
53
54 } else {
55 mysqli_rollback($dbc);
56 echo '<p>The transfer could not be made due to a system error. We apologize for
 any inconvenience.</p>'; // Public message.
57 echo '<p>' . mysqli_error($dbc) . '
Query: ' . $q . '</p>';
 // Debugging message.
58 }
59
60 }
61
62 } else { // Invalid submitted values.
63 echo '<p>Please select a valid "from" and "to" account and enter a numeric amount to
 transfer.</p>';
64 }
65
66 break;
67 } // End of submit conditional.
68 // Always show the form...
69
70 // Get all the accounts and balances as OPTIONs for the SELECT menus:
71 $q = "SELECT account_id, CONCAT(last_name, ', ', first_name) AS name, type, balance FROM
 accounts LEFT JOIN customers USING (customer_id) ORDER BY name";
72 $r = @mysqli_query($dbc, $q);
73 $options = '';
74 while ($row = mysqli_fetch_array($r, MYSQLI_ASSOC)) {
75 $options .= "<option value=\"{$row['account_id']}\">{$row['name']} ({$row['type']})
 \${$row['balance']}</option>\n";
76 }
77
78 // Create the form:
79 echo '<form action="transfer.php" method="post">
80 <p>From Account: <select name="from">' . $options . '</select></p>
81 <p>To Account: <select name="to">' . $options . '</select></p>
82 <p>Amount: <input type="number" name="amount" step="0.01" min="1"></p>
83 <p><input type="submit" name="submit" value="Submit"></p>
84 </form>';
85
86 mysqli_close($dbc);
87 ?>
88 </body>
89 </html>

 2. Create a database connection:

 [image: Images]

 $dbc = mysqli_connect('localhost',
[image: Images]'root', 'password', 'banking') OR
[image: Images]die('Could not connect to MySQL:
[image: Images]' . mysqli_connect_error());

 This example uses the banking database. You’ll need to update the code to use the proper username and password
 for your setup.

 3. Check if the form has been submitted and that the minimum requirements are met:

 [image: Images]

 if ($_SERVER['REQUEST_METHOD'] = =
[image: Images]'POST') {
 if (isset($_POST['from'], $_POST
[image: Images]['to'], $_POST['amount']) &&
 is_numeric($_POST['from']) &&
[image: Images]is_numeric($_POST['to']) &&
[image: Images]is_numeric($_POST['amount'])
[image: Images]) {
 $from = $_POST['from'];
 $to = $_POST['to'];
 $amount = $_POST['amount'];

 The form only has three inputs. The most minimal validation of them confirms that
 all three have a numeric value. If so, three variables are assigned the values to
 make referring to them easier.

 The “Review and Pursue” section at the end of the chapter will make several recommendations for improving
 this script, such as checking that a positive amount is being transferred.

 4. Make sure there are enough funds to be transferred:

 [image: Images]

 $q = "SELECT balance FROM accounts
[image: Images]WHERE account_id=$from";
$r = @mysqli_query($dbc, $q);
$row = mysqli_fetch_array($r,
[image: Images]MYSQLI_ASSOC);
if ($amount > $row['balance']) {
 echo '<p class="error">
[image: Images]Insufficient funds to
[image: Images]complete the transfer.</p>';
} else {

 There’s no point in attempting to transfer more funds than are available, so this
 script first checks that the amount being transferred is not greater than the amount
 in the account. If it is, an insufficient funds message is shown [image: Images].

 [image: Images]

 [image: Images] Trying to transfer more money than the “from” account has results in an error.

 5. Turn autocommit off and update the “from” account:

 [image: Images]

 mysqli_autocommit($dbc, FALSE);
$q = "UPDATE accounts SET
[image: Images]balance=balance-$amount WHERE
[image: Images]account_id=$from";
$r = @mysqli_query($dbc, $q);
if (mysqli_affected_rows($dbc)
[image: Images]== 1) {

 This is the same query as in Chapter 7. If one row was affected, the query worked successfully.

 6. Update the “to” account:

 [image: Images]

 $q = "UPDATE accounts SET
[image: Images]balance=balance+$amount WHERE
[image: Images]account_id=$to";
$r = @mysqli_query($dbc, $q);
if (mysqli_affected_rows($dbc)
[image: Images]== 1) {

 This is the corollary query, adding funds to the other account.

 7. Commit the transactions and indicate success:

 [image: Images]

 mysqli_commit($dbc);
echo '<p>The transfer was a
[image: Images]success!</p>';

 If both queries affected one row, the transactions can be committed and the message
 shown [image: Images].

 [image: Images]

 [image: Images] A successful transfer of funds!

 8. Upon error, roll back the transaction and print a message:

 [image: Images]

 } else {
 mysqli_rollback($dbc);
 echo '<p>The transfer could
[image: Images]not be made due to a system
[image: Images]error. We apologize for any
[image: Images]inconvenience.</p>'; // Public
[image: Images]message.
 echo '<p>' . mysqli_
[image: Images]error($dbc) . '
Query:
[image: Images]' . $q . '</p>'; //
[image: Images]Debugging message.
}
} else {
 mysqli_rollback($dbc);
 echo '<p>The transfer could not
[image: Images]be made due to a system
[image: Images]error. We apologize for any
[image: Images]inconvenience.</p>'; // Public
[image: Images]message.
 echo '<p>' . mysqli_error($dbc)
[image: Images]. '
Query: ' . $q . '</p>';
[image: Images]// Debugging message.
}

 This completes the conditionals begun in Step 6 and Step 5, respectively.

 9. Complete the validation and form submission conditionals:

 [image: Images]

 } else { // Invalid submitted
[image: Images]values.
 echo '<p>Please select a
[image: Images]valid "from" and "to"
[image: Images]account and enter a numeric
[image: Images]amount to transfer.</p>';
 }
} // End of submit conditional.

 10. Retrieve every account:

 [image: Images]

 $q = "SELECT account_id, CONCAT
[image: Images](last_name, ', ', first_name) AS
[image: Images]name, type, balance FROM
[image: Images]accounts LEFT JOIN customers
[image: Images]USING (customer_id) ORDER BY
[image: Images]name";
$r = @mysqli_query($dbc, $q);
$options = '';
while ($row = mysqli_fetch_array
[image: Images]($r, MYSQLI_ASSOC)) {
 $options .= "<option value=\"
[image: Images]{$row['account_id']}\">
[image: Images]{$row['name']} ({$row['type']})
[image: Images]\${$row['balance']}</option>\n";
}

 As the form has two identical select menus [image: Images], it’ll be most efficient to retrieve the accounts once and reuse that information.
 To do that, a query fetches each customer’s name, account type, balance, and account
 ID [image: Images].

 [image: Images]

 [image: Images] The same query run through the mysql client.

 This information is then used to dynamically build up the series of HTML options to
 be used in the select menus. The account ID is the value and the other three columns
 are used in the displayed text [image: Images].

 [image: Images]

 [image: Images] The HTML source of the select menus.

 11. Create the HTML form:

 [image: Images]

 echo '<form action="transfer.php"
[image: Images]method="post">
<p>From Account: <select
[image: Images]name="from">' . $options .
[image: Images]'</select></p>
<p>To Account: <select name="to">'
[image: Images]. $options . '</select></p>
<p>Amount: <input type="number"
[image: Images]name="amount" step="0.01"
[image: Images]min="1"></p>
<p><input type="submit"
[image: Images]name="submit"
[image: Images]value="Submit"></p>
</form>';

 The form only has two select menus and the amount being transferred. In theory the
 HTML5 number input type ensures only a numeric value is entered. The min attribute requires a minimum value of 1, and the step value allows a decimal value to be entered.

 12. Close the database connection:

 mysqli_close($dbc);

 13. Complete the PHP and HTML page:

 ?>
</body>
</html>

 14. Save the file as transfer.php, place it in your web directory, and test it in your browser.

 Tip

 To state what is hopefully obvious, a script that actually transfers funds from one
 account to another would have layers upon layers upon layers of security added to
 it.

 Tip

 The client-side validation provided by the number input type—requiring a positive
 transfer amount—is nice, but all client-side validation is easily circumvented. Server-side
 validation matters most.

 Tip

 Although it’s not a problem that this script allows for a “transfer” from an account
 to itself, you can prevent that using validation in the PHP code. Smart JavaScript
 code could also make it impossible to select the same account in both menus.

 Review and Pursue

 If you have any problems with the review questions or the pursue prompts, turn to
 the book’s supporting forum (LarryUllman.com/forums/).

 Review

 [image: Images] What function is used to send email? What are the function’s arguments? What does
 the server need to send email?

 [image: Images] Does it make a difference whether \n is used within single or double quotation marks?

 [image: Images] Can you easily know for certain if, or when, a recipient received an email sent by
 PHP?

 [image: Images] What debugging steps can you take if you aren’t receiving any email that should be
 sent from a PHP script?

 [image: Images] How do folder permissions come into play for handling uploaded files?

 [image: Images] What two directories are used in handling file uploads?

 [image: Images] What additional attribute must be made to the opening form tag in order to handle a file upload?

 [image: Images] What is a MIME type?

 [image: Images] In what ways are PHP and JavaScript alike? How are they different?

 [image: Images] What tag is used to add JavaScript to an HTML page?

 [image: Images] What does the var keyword mean in JavaScript?

 [image: Images] What is the concatenation operator in JavaScript?

 [image: Images] What does the PHP header() function do?

 [image: Images] What do headers already sent error messages mean?

 [image: Images] What is a proxy script? When might a proxy script be necessary?

 [image: Images] What does the readfile() function do?

 [image: Images] How do you start a MySQL transaction in a PHP script? How do you commit the changes?
 How do you roll back the changes?

 Pursue

 [image: Images] Create a more custom contact form. Have the PHP script also send a more custom email,
 including any other data requested by the form.

 [image: Images] Search online using the keywords php email spam filters to learn techniques for improving the successful delivery of PHP-sent email (i.e.,
 to minimize the chances of spam filters eating legitimate emails).

 [image: Images] Make a variation on upload_image.php that supports the uploading of different file types. Create a corresponding version
 of show_image.php. Note: You’ll need to do some research on MIME types to complete these challenges.

 [image: Images] If you’re feeling adventurous, come up with a system (probably a database) for renaming—and
 storing data about—uploaded files.

 [image: Images] Check out the PHP manual page for the glob() function, which can be used instead of scandir().

 [image: Images] Add validations to the transfers script to prevent a negative transfer or the selection
 of the same account for both the “to” and “from.”

 [image: Images] If you’d like to learn another advanced database trick, look into locking and unlocking
 MySQL tables and rows. Ideally the transfers script would lock the “from” account,
 thereby preventing multiple simultaneous transfers from making the balance negative.

 [image: Images] A lot of information and new functions were introduced in this chapter. Check out
 the PHP manual for some of them to learn more.

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 12. Cookies and Sessions

 In This Chapter

 Making a Login Page

 Making the Login Functions

 Using Cookies

 Using Sessions

 Improving Session Security

 Review and Pursue

 The Hypertext Transfer Protocol (HTTP) is a stateless technology, meaning that each HTML page is an unrelated entity. HTTP has no method
 for tracking users or retaining variables as a person traverses a site. Without the
 server being able to track a user, there can be no shopping carts or custom website
 personalization. Using a server-side technology like PHP, you can overcome the statelessness
 of the web. The two best PHP tools for this purpose are cookies and sessions.

 The key difference between cookies and sessions is that cookies store data in the
 user’s browser and sessions store data on the server itself. Sessions are generally
 more secure than cookies and can store much more information. Because both technologies
 are easy to use with PHP and are worth knowing, this chapter covers both cookies and
 sessions. The examples for demonstrating this information will be a login system,
 based on the existing sitename database.

 Making a Login Page

 A login process involves just a few components [image: Images]:

 [image: Images]

 [image: Images]The login process.

 [image: Images] A form for submitting the login information

 [image: Images] A validation routine that confirms the necessary information was submitted

 [image: Images] A database query that compares the submitted information against the stored information

 [image: Images] Cookies or sessions to store data that reflects a successful login

 Subsequent pages can then have checks to confirm that the user is logged in (to limit
 access to that page or add features). There is also, of course, a logging-out process,
 which involves clearing the cookies or session data that represent a logged-in status.

 To start all this, let’s take some of these common elements and place them into separate
 files. Then the pages that require this functionality can include the necessary files.
 Breaking up the logic this way will make some of the following scripts easier to read
 and write, as well as cut down on their redundancies.

 You’ll define two includable files. This first script will contain the bulk of a login
 page, including the header, the error reporting, the form, and the footer [image: Images].

 [image: Images]

 [image: Images]The login form and page.

 To make a login page:

 1. Begin a new PHP page in your text editor or IDE, to be named login_page.inc.php (Script 12.1):

 Click here to view code image

 <?php # Script 12.1 –
[image: Images]login_page.inc.php

 Script 12.1 The login_page.inc.php script creates the complete login page, including the form, and reports any errors.
 It will be included by other pages that need to show the login page.

 Click here to view code image

 1 <?php # Script 12.1 - login_page.inc.php
2 // This page prints any errors associated with logging in
3 // and it creates the entire login page, including the form.
4
5 // Include the header:
6 $page_title = 'Login';
7 include('includes/header.html');
8
9 // Print any error messages, if they exist:
10 if (isset($errors) && !empty($errors)) {
11 echo '<h1>Error!</h1>
12 <p class="error">The following error(s) occurred:
';
13 foreach ($errors as $msg) {
14 echo " - $msg
\n";
15 }
16 echo '</p><p>Please try again.</p>';
17 }
18
19 // Display the form:
20 ?><h1>Login</h1>
21 <form action="login.php" method="post">
22 <p>Email Address: <input type="email" name="email" size="20" maxlength="60"> </p>
23 <p>Password: <input type="password" name="pass" size="20" maxlength="20"></p>
24 <p><input type="submit" name="submit" value="Login"></p>
25 </form>
26
27 <?php include('includes/footer.html'); ?>

 2. Include the header:

 Click here to view code image

 $page_title = 'Login';
include('includes/header.html');

 This chapter will make use of the same template system first created in Chapter 3, “Creating Dynamic Web Sites,” then modified in Chapter 9, “Using PHP with MySQL.”

 3. Print any error messages, if they exist:

 Click here to view code image

 if (isset($errors) &&
[image: Images]!empty($errors)) {
 echo '<h1>Error!</h1>
 <p class="error">The following
[image: Images]error(s) occurred:
';
 foreach ($errors as $msg) {
 echo " - $msg
\n";
 }
 echo '</p><p>Please try again.
[image: Images]</p>';
}

 This code was also developed back in Chapter 9, although an additional isset() clause has been added as an extra precaution. If any errors exist (in the $errors array variable), they’ll be printed [image: Images].

 [image: Images]

 [image: Images] As with other scripts in this book, form errors are displayed above the form itself.

 4. Display the form:

 Click here to view code image

 ?><h1>Login</h1>
<form action="login.php"
[image: Images]method="post">
 <p>Email Address: <input
 [image: Images]type="email" name="email"
 [image: Images]size="20" maxlength="60"> </p>
 <p>Password: <input
 [image: Images]type="password" name="pass"
 [image: Images]size="20" maxlength="20"></p>
 <p><input type="submit"
 [image: Images]name="submit" value="Login">
 [image: Images]</p>
</form>

 The HTML form needs only two text inputs: one for an email address and a second for
 the password. The names of the inputs match those in the users table of the sitename database (which this login system is based on).

 To make it easier to create the HTML form, the PHP section is closed first. The form
 is not sticky, but you could easily add code to accomplish that.

 5. Complete the page:

 <?php include('includes/footer
[image: Images].html'); ?>

 6. Save the file as login_page.inc.php and place it in your web directory (in the includes folder, along with the files from Chapter 3 and Chapter 9: header.html and footer.html).

 The page will use an .inc.php extension to indicate both that it’s an includable file and that it contains PHP
 code.

 Tip

 It may seem illogical that this script includes the header and footer file from within
 the includes directory when this script will also be within that same directory. This code works
 because this script will be included by pages within the main directory; thus the
 include references are with respect to the parent file, not this one.

 Making the Login Functions

 Along with the login page that was stored in login_page.inc.php, there’s a bit of functionality that will be common to several scripts in this chapter.
 In this next script, also to be included by other pages in the login/logout system,
 two functions will be defined.

 First, many pages will end up redirecting the user from one page to another. For example,
 upon successfully logging in, the user will be taken to loggedin.php. If a user accesses loggedin.php and they aren’t logged in, they should be taken to index.php. Redirection uses the header() function, introduced in Chapter 11, “Web Application Development.” The syntax for redirection is

 Click here to view code image

 header ('Location: http://www.example
[image: Images].com/page.php');

 Because this function will send the browser to page.php, the current script should be terminated using exit() immediately after this:

 Click here to view code image

 header ('Location: http://www.example
[image: Images].com/page.php');
exit();

 If you don’t call , the current script will continue to run (just not in the browser).

 The location value in the header() call should be an absolute URL (www.example.com/page.php instead of just page.php). You can hard-code this value into every header() call or, better yet, have PHP dynamically determine it. The first function in this
 next script will do just that, and then redirect the user to that absolute URL.

 The other bit of code that will be used by multiple scripts in this chapter validates
 the login form. This is a three-step process:

 1. Confirm that an email address was provided.

 2. Confirm that a password was provided.

 3. Confirm that the provided email address and password match those stored in the database
 (during the registration process).

 This next script will define two different functions. The details of how each function
 works will be explained in the steps that follow.

 To create the login functions:

 1. Begin a new PHP document in your text editor or IDE, to be named login_functions.inc.php (Script 12.2):

 Click here to view code image

 <?php # Script 12.2 -
[image: Images]login_functions.inc.php

 Script 12.2 The login_functions.inc.php script defines two functions that will be used by different scripts in the login/logout
 process.

 Click here to view code image

 1 <?php # Script 12.2 - login_functions.inc.php
2 // This page defines two functions used by the login/logout process.
3
4 /* This function determines an absolute URL and redirects the user there.
5 * The function takes one argument: the page to be redirected to.
6 * The argument defaults to index.php.
7 */
8 function redirect_user($page = 'index.php') {
9

10 // Start defining the URL...
11 // URL is http:// plus the host name
 plus the current directory:
12 $url = 'http://' . $_SERVER
 ['HTTP_HOST'] . dirname
 ($_SERVER['PHP_SELF']);
13
14 // Remove any trailing slashes:
15 $url = rtrim($url, '/\\');
16
17 // Add the page:
18 $url .= '/' . $page;
19
20 // Redirect the user:
21 header("Location: $url");
22 exit(); // Quit the script.
23
24 } // End of redirect_user() function.
25
26
27 /* This function validates the form data
 (the email address and password).
28 * If both are present, the database is queried.
29 * The function requires a database connection.
30 * The function returns an array of information, including:
31 * - a TRUE/FALSE variable indicating success
32 * - an array of either errors or the database result
33 */
34 function check_login($dbc, $email = '', $pass = '') {
35

36 $errors = []; // Initialize error array.
37
38 // Validate the email address:
39 if (empty($email)) {
40 $errors[] = 'You forgot to enter your email address.';
41 } else {
42 $e = mysqli_real_escape_string ($dbc, trim($email));
43 }
44
45 // Validate the password:
46 if (empty($pass)) {
47 $errors[] = 'You forgot to enter your password.';
48 } else {
49 $p = mysqli_real_escape_string ($dbc, trim($pass));
50 }
51
52 if (empty($errors)) { // If
 everything's OK.
53
54 // Retrieve the user_id and
 first_name for that email/password
 combination:
55 $q = "SELECT user_id, first_name
 FROM users WHERE email='$e' AND
 pass=SHA2('$p', 512)";
56 $r = @mysqli_query($dbc, $q);
 // Run the query.
57
58 // Check the result:
59 if (mysqli_num_rows($r) == 1) {
60
61 // Fetch the record:
62 $row = mysqli_fetch_array($r,
 MYSQLI_ASSOC);
63
64 // Return true and the record:
65 return [true, $row];
66
67 } else { // Not a match!
68 $errors[] = 'The email address
 and password entered do not
 match those on file.';
69 }
70
71 } // End of empty($errors) IF.
72
73 // Return false and the errors:
74 return [false, $errors];
75
76 } // End of check_login() function.

 Since this file will be included by other files, it does not need to contain any HTML.

 2. Begin defining a new function:

 Click here to view code image

 function redirect_user($page =
[image: Images]'index.php') {

 The redirect_user() function will create an absolute URL that’s correct for the site running these scripts,
 and then redirect the user to that page. The benefit of doing this dynamically (as
 opposed to just hard-coding http://www.example.com/page.php) is that you can develop your code on one server, such as your own computer, and
 then move it to another server without ever needing to change this code.

 The function takes one optional argument: the final destination page name. The default
 value is index.php.

 3. Start defining the URL:

 Click here to view code image

 $url = 'http://' . $_SERVER
[image: Images]['HTTP_HOST'] . dirname
[image: Images]($_SERVER['PHP_SELF']);

 To start, $url is assigned the value of http:// plus the hostname (which could be either localhost or www.example.com). To this is added the name of the current directory using the dirname() function, in case the redirection is taking place within a subfolder. $_SERVER[‘PHP_SELF’] refers to the current script (which will be the one calling this function), including
 the directory name. That whole value might be /somedir/page.php. The dirname() function will return just the directory part from that value (i.e., /somedir/).

 4. Remove any ending slashes from the URL:

 $url = rtrim($url, '/\\');

 Because the existence of a subfolder might add an extra slash (/) or backslash (\, for Windows), the function needs to remove that. To do so, apply the rtrim() function. By default, this function removes spaces from the right side of a string.
 If provided with a list of characters to remove as the second argument, it’ll chop
 those off instead. The characters to be removed are / and \. But since the backslash is the escape character in PHP, you need to use \\ to refer to a single backslash. With this one line of code, if $url concludes with either of these characters, the rtrim() function will remove them.

 5. Append the specific page to the URL:

 $url .= '/' . $page;

 Next, the specific page name is concatenated to the $url. It’s preceded by a slash because any trailing slashes were removed in Step 4 and
 you can’t have www.example.compage.php as the URL.

 This may all seem to be quite complicated, but it’s a very effective way to ensure
 that the redirection works no matter on what server, or from what directory, the script
 is being run (as long as the redirection is taking place within that directory).

 6. Redirect the user and complete the function:

 Click here to view code image

 header("Location: $url");
 exit(); // Quit the script.
} // End of redirect_user() function.

 The final steps are to send a Location header and terminate the execution of the script.

 7. Begin a new function:

 Click here to view code image

 function check_login($dbc,
[image: Images]$email = '', $pass = '') {

 This function will validate the login information. It takes three arguments: the database
 connection, which is required; the email address, which is optional; and the password,
 which is also optional.

 Although this function could access $_POST[‘email’] and $_POST[‘pass’] directly, it’s better if the function is passed these values, making the function
 more independent.

 8. Validate the email address and password:

 Click here to view code image

 $errors = []; // Initialize error
[image: Images]array.
if (empty($email)) {
 $errors[] = 'You forgot to
 [image: Images]enter your email address.';
} else {
 $e = mysqli_real_escape_string
 [image: Images]($dbc, trim($email));
}
if (empty($pass)) {
 $errors[] = 'You forgot to
 [image: Images]enter your password.';
} else {
 $p = mysqli_real_escape_string
 [image: Images]($dbc, trim($pass));
}

 This validation routine is similar to that used in the registration page. If any problems
 occur, they’ll be added to the array, which will eventually be used on the login page (see [image: Images] under “Making a Login Page”). Note that this array is local to the function. Even though it has the same name, this is not the same $errors variable that is used in the login page. Code later in the function will return this
 variable’s value, and code in the scripts that call this function will then assign
 this returned value to the proper, global array, usable on the login page.

 9. If no errors occurred, run the database query:

 Click here to view code image

 if (empty($errors)) {
 $q = "SELECT user_id, first_
 [image: Images]name FROM users WHERE email=
 [image: Images]'$e' AND pass=SHA2('$p', 512)";
 $r = @mysqli_query($dbc, $q);

 The query selects the user_id and first_name values from the database where the submitted email address (from the form) matches
 the stored email address and the SHA2() version of the submitted password matches the stored password [image: Images].

 [image: Images]

 [image: Images] The results of the login query, shown in the mysql client, if the user submitted
 the proper email address/password combination.

 Keep in mind this approach works only if both the registration and login scripts encrypt
 or hash the password using the exact same method. In Chapter 13, “Security Methods,” you’ll learn how to securely hash passwords using just PHP.

 10. Check the results of the query:

 Click here to view code image

 if (mysqli_num_rows($r) = = 1) {
 $row = mysqli_fetch_array
 [image: Images]($r, MYSQLI_ASSOC);
 return [true, $row];

 If the query returned one row, then the login information was correct. The results
 are then fetched into $row. The final step in a successful login is to return two pieces of information back
 to the requesting script: the Boolean true, indicating that the login was a success, and the data fetched from MySQL. Using
 the short array syntax (or the array() function), both the Boolean value and the $row array can be returned by this function.

 11. If no record was selected by the query, create an error:

 Click here to view code image

 } else { // Not a match!
 $errors[ ] = 'The email address
 [image: Images]and password entered do not
 [image: Images]match those on file.';
}

 If the query did not return one row, then an error message is added to the array.
 It will end up being displayed on the login page [image: Images].

 [image: Images]

 [image: Images] If the user entered an email address and password, but they don’t match the values
 stored in the database, this is the result in the browser.

 12. Complete the conditional begun in Step 9 and complete the function:

 Click here to view code image

 } // End of empty($errors) IF.
 return [false, $errors];
} // End of check_login() function.

 The final step is for the function to return a value of false, indicating that login failed, and to return the $errors array, which stores the reason(s) for failure. This return statement can be placed here—at the end of the function instead of within a conditional—because
 the function will only get to this point if the login failed. If the login succeeded,
 the return line in Step 10 will stop the function from continuing (a function stops as soon
 as it executes a return).

 13. Save the file as login_functions.inc .php and place it in your web directory (in the includes folder, along with header.html, footer.html, and login_page.inc.php).

 This page will also use an .inc.php extension to indicate both that it’s an includable file and that it contains PHP
 code.

 As with some other includable files created in this book (although not login_page.inc.php), the closing PHP tag—?>—is omitted. Doing so prevents potential complications that can arise should an includable
 file have an errant blank space or line after the closing tag.

 Tip

 The scripts in this chapter include no debugging code (like the MySQL error or query).
 If you have problems with these scripts, apply the debugging techniques outlined in
 Chapter 8, “Error Handling and Debugging.”

 Tip

 You can add name-value pairs to the URL in a header() call to pass values to the target page:

 Click here to view code image

 $url .= '?name=' . urlencode(value);

 Using Cookies

 Cookies are a way for a server to store information on the user’s machine. This is
 one way that a site can remember or track a user over the course of a visit. Think
 of a cookie as being like a name tag: you tell the server your name and it gives you
 a sticker to wear. Then it can know who you are by referring back to that name tag
 [image: Images].

 [image: Images]

 [image: Images] How cookies are sent back and forth between the server and the client.

 In this section, you will learn how to set a cookie, retrieve information from a stored
 cookie, alter a cookie’s settings, and then delete a cookie.

 Setting cookies

 The most important thing to understand about cookies is that they must be sent from
 the server to the client prior to any other information. Should the server attempt to send a cookie after the browser has already received
 HTML—even an extraneous white space—an error message will result and the cookie will
 not be sent [image: Images]. This is by far the most common cookie-related error, but it is easily fixed. If
 you see such a message:

 [image: Images]

 [image: Images] The headers already sent… error message is all too common when creating cookies. Pay attention to what the
 error message says in order to find and fix the problem.

 1. Note the script and line number following output started at.

 2. Open that script and head to that line number.

 3. Remove the blank space, line, text, HTML, or whatever that is outputted by that line.

 Testing for Cookies

 To effectively program using cookies, you need to be able to accurately test for their
 presence. The best way to do so is to have your browser ask what to do when receiving
 a cookie. In such a case, the browser will prompt you with the cookie information
 each time PHP attempts to send a cookie.

 Different versions of different browsers on different platforms all define their cookie-handling
 policies in different places. Search online for instructions for your browser of choice.

 Alternatively, most debugging tools built into browsers provide a way to view cookies.
 This information is normally located under an “Application” or “Network” section.
 Again, search online for the particulars for your browser.

 Cookies are sent via the setcookie() function:

 setcookie(name, value);
setcookie('name', 'Nicole');

 The second line of code will send a cookie to the browser with a name of name and a value of Nicole [image: Images].

 [image: Images]

 [image: Images] Viewing a received cookie in Google Chrome’s developer tools.

 You can continue to send more cookies to the browser with subsequent uses of the setcookie() function:

 Click here to view code image

 setcookie('ID', 263);
setcookie('email', 'email@example.com');

 As for the cookies name, it’s best not to use white spaces or punctuation, and pay
 attention to the exact case used.

 To send a cookie:

 1. Begin a new PHP document in your text editor or IDE, to be named login.php (Script 12.3):

 Click here to view code image

 <?php # Script 12.3 - login.php

 Script 12.3 Upon a successful login, the login.php script creates two cookies and redirects the user.

 Click here to view code image

 1 <?php # Script 12.3 - login.php
2 // This page processes the login form submission.
3 // Upon successful login, the user is redirected.
4 // Two included files are necessary.
5 // Send NOTHING to the web browser prior to the setcookie() lines!
6
7 // Check if the form has been submitted:
8 if ($_SERVER['REQUEST_METHOD'] == 'POST') {
9
10 // For processing the login:
11 require('includes/login_functions.inc.php');
12
13 // Need the database connection:
14 require('../mysqli_connect.php');
15
16 // Check the login:
17 list($check, $data) =
 check_login($dbc, $_POST['email'],
 $_POST['pass']);
18
19 if ($check) { // OK!
20
21 // Set the cookies:
22 setcookie('user_id',
 $data['user_id']);
23 setcookie('first_name',
 $data['first_name']);
24
25 // Redirect:
26 redirect_user('loggedin.php');
27
28 } else { // Unsuccessful!
29
30 // Assign $data to $errors for
 error reporting
31 // in the login_page.inc.php file.
32 $errors = $data;
33
34 }
35
36 mysqli_close($dbc); // Close the
 database connection.
37
38 } // End of the main submit conditional.
39
40 // Create the page:
41 include('includes/login_page.inc.php');
42 ?>

 For this example, let’s make a login.php script that works in conjunction with the scripts from Chapter 9. This script will also require the two files created at the beginning of the chapter.

 2. If the form has been submitted, include the two helper files:

 Click here to view code image

 if ($_SERVER['REQUEST_METHOD'] = =
[image: Images]'POST') {
 require('includes/login_
 [image: Images]functions.inc.php');
 require('../mysqli_connect.php');

 This script will do two things: handle the form submission and display the form. This
 conditional checks for the submission.

 Within the conditional, the script must include both login_functions.inc.php and mysqli_connect.php (which was created in Chapter 9 and should still be in the same location relative to this script; change your code
 here if your mysqli_connect.php is not in the parent directory of the current directory).

 I’ve chosen to use require() in both cases, instead of include(), because a failure to include either of these scripts makes the login process impossible.

 3. Validate the form data:

 Click here to view code image

 list($check, $data) =
[image: Images]check_login($dbc, $_
[image: Images]POST['email'], $_POST['pass']);

 After including both files, the check_login() function can be called. It’s passed the database connection (which comes from mysqli_connect.php), along with the email address and the password (both of which come from the form).
 As an added precaution, the script could confirm that both variables are set and not
 empty prior to invoking the function.

 This function returns an array of two elements: a Boolean value and an array (of user
 data or errors). To assign those returned values to variables, apply the list() function. The first value returned by the function (the Boolean) will be assigned
 to $check. The second value returned (either the $row or $errors array) will be assigned to $data.

 4. If the user entered the correct information, log them in:

 Click here to view code image

 if ($check) { // OK!
 setcookie('user_id',
 [image: Images]$data['user_id']);
 setcookie('first_name',
 [image: Images]$data['first_name']);

 The $check variable indicates the success of the login attempt. If it has a TRUE value, then
 $data contains the user’s ID and first name. These two values can be used in cookies.

 Generally speaking, you should never store a database table’s primary key value, such
 as $data[‘user_id’], in a cookie, because cookies can be manipulated easily. In this situation, it’s
 not going to be a problem since the user_id value isn’t actually used anywhere in the site (it’s being stored in the cookie for
 demonstration purposes).

 5. Redirect the user to another page:

 redirect_user('loggedin.php');

 Using the function defined earlier in the chapter, the user will be redirected to
 another script upon a successful login. The specific page to be redirected to is loggedin.php.

 6. Complete the $check conditional (started in Step 4) and then close the database connection:

 } else {
 $errors = $data;
}
mysqli_close($dbc);

 If $check has a FALSE value, then the $data variable is storing the errors generated within the check_login() function. If so, the errors should be assigned to the $errors variable, because that’s what the code in the script that displays the login page—login_page.inc.php—is expecting.

 7. Complete the main submit conditional and include the login page:

 Click here to view code image

 }
include('includes/login_
[image: Images]page.inc.php');
?>

 This login.php script itself primarily performs validation, by calling the check_login() function, and handles the cookies and redirection. The login_page.inc.php file contains the login page itself, so it just needs to be included.

 8. Save the file as login.php, place it in your web directory (in the same folder as the files from Chapter 9), and load this page in your browser (see [image: Images] under “Making a Login Page”).

 Tip

 If you want, you can submit the form erroneously, but you cannot correctly log in
 yet, as the final destination—loggedin.php—hasn’t been written.

 Tip

 Cookies are limited to about 4 KB of total data, and each browser can remember a limited
 number of cookies from any one site. This limit is 50 cookies for most of the current
 browsers (but if you’re sending out 50 different cookies, you may want to rethink
 how you do things).

 Tip

 The setcookie() function is one of the few functions in PHP that could have different results in
 different browsers, since each browser treats cookies in its own way. Be sure to test
 your web sites in multiple browsers on different platforms to ensure consistency.

 Tip

 If the first two included files send anything to the browser or even have blank lines
 or spaces after the closing PHP tag, you’ll see a headers already sent error. This is why neither includes the terminating PHP tag.

 Accessing cookies

 To retrieve a value from a cookie, you only need to refer to the $_COOKIE superglobal, using the appropriate cookie name as the key (as you would with any
 array). For example, to retrieve the value of the cookie established with the line

 Click here to view code image

 setcookie('username', 'Trout');

 you would refer to $_COOKIE[‘username’].

 In the following example, the cookies set by the login.php script will be accessed in two ways. First, a check will be made that the user is
 logged in (otherwise, that user shouldn’t be accessing this page). Second, the user
 will be greeted by his or her first name, which was stored in a cookie.

 To access a cookie:

 1. Begin a new PHP document in your text editor or IDE, to be named loggedin.php (Script 12.4):

 Click here to view code image

 <?php # Script 12.4 - loggedin.php

 Script 12.4 The loggedin.php script prints a greeting to a user thanks to a stored cookie.

 Click here to view code image

 1 <?php # Script 12.4 - loggedin.php
2 // The user is redirected here from login.php.
3
4 // If no cookie is present, redirect the user:
5 if (!isset($_COOKIE['user_id'])) {
6
7 // Need the functions:
8 require('includes/login_functions.inc.php');
9 redirect_user();
10
11 }
12
13 // Set the page title and include the
 HTML header:
14 $page_title = 'Logged In!';
15 include('includes/header.html');
16
17 // Print a customized message:
18 echo "<h1>Logged In!</h1>
19 <p>You are now logged in,
 {$_COOKIE['first_name']}!</p>
20 <p>Logout
 </p>";
21
22 include('includes/footer.html');
23 ?>

 The user will be redirected to this page after successfully logging in. The script
 will greet the user by first name, using the cookie.

 2. Check for the presence of a cookie:

 Click here to view code image

 if (!isset($_COOKIE['user_id'])) {

 Since a user shouldn’t be able to access this page unless he or she is logged in,
 check for a cookie that should have been set (in login.php).

 3. Redirect any user who is not logged in:

 Click here to view code image

 require('includes/login_
 [image: Images]functions.inc.php');
 redirect_user();
}

 If the user is not logged in, he or she will be automatically redirected to the main
 page. This is a simple way to limit access to content.

 4. Include the page header:

 Click here to view code image

 $page_title = 'Logged In! ';
include('includes/header.html');

 5. Welcome the user, referencing the cookie:

 Click here to view code image

 echo "<h1>Logged In!</h1>
<p>You are now logged in,
[image: Images]{$_COOKIE['first_name']}!</p>
<p>Logout
[image: Images]</p>";

 To greet the user by name, refer to the $_COOKIE[‘first_name’] variable, enclosed within braces to avoid parse errors. A link to the logout page
 (to be written later in the chapter) is also printed.

 6. Complete the HTML page:

 Click here to view code image

 include('includes/footer.html');
?>

 7. Save the file as , place it in your web directory (in the same folder as login.php), and test it in your browser by logging in through [image: Images].

 [image: Images]

 [image: Images] If you used the correct email address and password, you’ll see this page after logging
 in.

 Since these examples use the same database as those in Chapter 9, you should be able to log in using the registered username and password submitted
 at that time.

 8. Use your browser’s developer tools to see the cookies being set [image: Images], change the cookie settings for your browser, and test again.

 [image: Images]

 [image: Images] The two generated cookies.

 Tip

 Some browsers (e.g., Internet Explorer) will not adhere to your cookie-prompting preferences
 for cookies sent over localhost.

 Tip

 A cookie is not accessible until the setting page (e.g., login.php) has been reloaded or another page has been accessed (in other words, you cannot
 set and access a cookie in the same page).

 Tip

 If users decline a cookie or have their browser set not to accept them, they will
 automatically be redirected to the home page in this example, even if they successfully
 logged in. For this reason, you may want to let users know that cookies are required.

 Tip

 The European Union (EU) has laws with respect to user privacy and cookies. If your
 site serves EU users, take the time to research what steps you ought to take to be
 compliant.

 Setting cookie parameters

 Although passing just the name and value arguments to the setcookie() function will suffice, you ought to be aware of the other arguments available. The
 function can take up to five more parameters, each of which will alter the definition
 of the cookie.

 Click here to view code image

 setcookie(name, value, expiration,
[image: Images]path, host, secure, httponly);

 The expiration argument is used to set a definitive length of time for a cookie to exist, specified
 in seconds since the epoch (the epoch is midnight on January 1, 1970). If it is not set or if it’s set to a
 value of 0, the cookie will continue to be functional until the user closes the browser.
 These cookies are said to last for the browser session (also indicated in [image: Images]).

 To set a specific expiration time, add a number of minutes or hours to the current
 moment, retrieved using the time() function. The following line will set the expiration time of the cookie to be 30
 minutes (60 seconds times 30 minutes) from the current moment:

 Click here to view code image

 setcookie(name, value, time()+1800);

 The path and host arguments are used to limit a cookie to a specific folder within a web site (the
 path) or to a specific host (www.example.com or 192.168.0.1). For example, you could restrict a cookie to exist only while a user is within the
 admin folder of a domain (and the admin folder’s subfolders):

 Click here to view code image

 setcookie(name, value, expire,
[image: Images]'/admin/');

 Setting the path to / will make the cookie visible within an entire domain (web site). Setting the domain
 to .example.com will make the cookie visible within an entire domain and every subdomain (www.example.com, admin.example.com, pages.example.com, etc.).

 The secure value dictates that a cookie should be sent only over a secure HTTPS connection. A 1 indicates that a secure connection must be used, and a 0 says that
 a standard connection is fine.

 Click here to view code image

 setcookie(name, value, expire,
[image: Images]path, host, 1);

 If your site is using a secure connection, you ought to restrict any cookies to HTTPS
 as well.

 Finally, added in PHP 5.2 is the httponly argument. A Boolean value is used to make the cookie only accessible through HTTP
 (and HTTPS). Enforcing this restriction will make the cookie more secure (preventing
 some hack attempts) but is not supported by all browsers as of this writing.

 Click here to view code image

 setcookie(name, value, expire, path,
[image: Images]host, secure, TRUE);

 As with all functions that take arguments, you must pass the setcookie() values in order. To skip any parameter, use NULL, 0, or an empty string; don’t use FALSE. The expiration and secure values are both integers and are therefore not quoted.

 To demonstrate this information, let’s add an expiration setting to the login cookies
 so that they last for only one hour.

 To set a cookie’s parameters:

 1. Open in your text editor (refer to Script 12.3), if you haven’t already.

 2. Change the two setcookie() lines to include an expiration date that’s 60 minutes away (Script 12.5):

 Click here to view code image

 setcookie('user_id', $data
[image: Images]['user_id'], time()+3600,
[image: Images]'/', '', 0, 0);
setcookie('first_name', $data
[image: Images]['first_name'], time()+3600,
[image: Images]'/', '', 0, 0);

 Script 12.5 The login.php script now uses every argument the setcookie() function can take.

 Click here to view code image

 1 <?php # Script 12.5 - login.php #2
2 // This page processes the login form submission.
3 // The script now adds extra parameters to the setcookie() lines.
4
5 // Check if the form has been submitted:
6 if ($_SERVER['REQUEST_METHOD'] == 'POST') {
7
8 // Need two helper files:
9 require('includes/login_functions.inc.php');
10 require('../mysqli_connect.php');
11
12 // Check the login:
13 list ($check, $data) = check_login($dbc, $_POST['email'], $_POST['pass']);
14
15 if ($check) { // OK!
16
17 // Set the cookies:
18 setcookie('user_id', $data['user_id'], time()+3600, '/', '', 0, 0);
19 setcookie('first_name', $data['first_name'], time()+3600, '/', '', 0, 0);
20
21 // Redirect:
22 redirect_user('loggedin.php');
23
24 } else { // Unsuccessful!
25
26 // Assign $data to $errors for
 login_page.inc.php:
27 $errors = $data;
28
29 }
30
31 mysqli_close($dbc); // Close the
 database connection.
32
33 } // End of the main submit conditional.
34
35 // Create the page:
36 include('includes/login_page.inc.php');
37 ?>

 With the expiration date set to time() + 3600 (60 minutes times 60 seconds), the cookie will continue to exist for an hour after
 it is set. Next, the path, host, and secure parameters are then set to logical defaults.

 For the final parameter, which accepts a Boolean value, you can also use 0 to represent
 FALSE (PHP will handle the conversion for you). Doing so is a good idea, since using
 false in any of the cookie arguments can cause problems.

 3. Save the script, place it in your web directory, and test it in your browser by logging
 in [image: Images].

 [image: Images]

 [image: Images] Changes to the setcookie() parameters, like an expiration date and time, will be reflected in the cookie sent
 to the browser (compare with [image: Images]).

 Tip

 Some browsers have difficulties with cookies that do not list every argument. Explicitly
 stating every parameter—even as an empty string—will achieve more reliable results
 across all browsers.

 Tip

 Here are some general guidelines for cookie expirations: If the cookie should last
 as long as the user’s session, do not set an expiration time; if the cookie should
 continue to exist after the user has closed and reopened his or her browser, set an
 expiration time weeks or months ahead; and if the cookie can constitute a security
 risk, set an expiration time of an hour or fraction thereof so that the cookie does
 not continue to exist too long after a user has left his or her browser.

 Tip

 For security purposes, you could set a 5- or 10-minute expiration time on a cookie
 and have the cookie re-sent with every new page the user visits (assuming that the
 cookie exists). This way, the cookie will continue to persist as long as the user
 is active but will automatically die 5 or 10 minutes after the user’s last action.

 Tip

 E-commerce and other privacy-related web applications should use an SSL (Secure Sockets
 Layer) connection for all transactions, including the cookie.

 Tip

 Be careful with cookies created by scripts within a directory. If the path isn’t specified,
 then that cookie will be available to other scripts only within that same directory.

 Deleting cookies

 The final thing to understand about using cookies is how to delete one. Although a
 cookie will automatically expire when the user’s browser is closed or when the expiration
 date/time is met, often you’ll want to manually delete the cookie instead. For example,
 in web sites that have login capabilities, you will want to delete any cookies when
 the user logs out.

 Although the setcookie() function can take up to seven arguments, only one is required: the cookie name. If
 you send a cookie that consists of a name without a value, it will have the same effect
 as deleting the existing cookie of the same name. For example, to create the cookie
 first_name, you use this line:

 Click here to view code image

 setcookie('first_name', 'Tyler');

 To delete the first_name cookie, you would code

 setcookie('first_name');

 As an added precaution, you can also set an expiration date that’s in the past:

 Click here to view code image

 setcookie('first_name', '', time()-3600);

 To demonstrate all of this, let’s add a logout capability to the site. The link to
 the logout page appears on loggedin.php. As an added feature, the header file will be altered so that a Logout link appears when the user is logged in and a Login link appears when the user is logged out.

 To delete a cookie:

 1. Begin a new PHP document in your text editor or IDE, to be named logout.php (Script 12.6):

 Click here to view code image

 <?php # Script 12.6 - logout.php

 Script 12.6 The logout.php script deletes the previously established cookies.

 Click here to view code image

 1 <?php # Script 12.6 - logout.php
2 // This page lets the user logout.
3
4 // If no cookie is present, redirect the user:
5 if (!isset($_COOKIE['user_id'])) {
6
7 // Need the function:
8 require('includes/login_functions.inc.php');
9 redirect_user();
10
11 } else { // Delete the cookies:
12 setcookie('user_id', '',
 time()-3600, '/', '', 0, 0);
13 setcookie('first_name', '',
 time()-3600, '/', '', 0, 0);
14 }
15
16 // Set the page title and include the
 HTML header:
17 $page_title = 'Logged Out!';
18 include('includes/header.html');
19
20 // Print a customized message:
21 echo "<h1>Logged Out!</h1>
22 <p>You are now logged out,
 {$_COOKIE['first_name']}!</p>";
23
24 include('includes/footer.html');
25 ?>

 2. Check for the existence of a user_id cookie; if it is not present, redirect the user:

 Click here to view code image

 if (!isset($_COOKIE['user_id'])) {
 require('includes/login_
 [image: Images]functions.inc.php');
 redirect_user();

 As with loggedin.php, if the user is not already logged in, this page should redirect the user to the
 home page. There’s no point in trying to log out a user who isn’t logged in!

 3. Delete the cookies, if they exist:

 Click here to view code image

 } else { // Delete the cookies:
 setcookie('user_id', '',
 [image: Images]time()-3600, '/', '', 0, 0);
 setcookie('first_name', '',
 [image: Images]time()-3600, '/', '', 0, 0);
}

 If the user is logged in, these two cookies will effectively delete the existing ones.
 Except for the value and the expiration, the other arguments should have the same
 values as they do when the cookies were created.

 4. Make the remainder of the PHP page:

 Click here to view code image

 $page_title = 'Logged Out!';
include('includes/header.html');
echo "<h1>Logged Out!</h1>
<p>You are now logged out,
[image: Images]{$_COOKIE['first_name']}!</p>";
include('includes/footer.html');
?>

 The page itself is also much like the loggedin.php page. Although it may seem odd that you can still refer to the first_name cookie (that was just deleted in this script), it makes perfect sense considering
 the process:

 A. This page is requested by the client.

 B. The server reads the available cookies from the client’s browser.

 C. The page is run and does its thing (including sending new cookies that delete the
 existing ones).

 Thus, in short, the original first_name cookie data is available to this script when it first runs. The set of cookies sent
 by this page—the delete cookies—aren’t available to this page, so the original values
 are still usable.

 5. Save the file as logout.php and place it in your web directory (in the same folder as login.php).

 To create the logout link:

 1. Open header.html (refer to Script 9.1) in your text editor or IDE.

 2. Add a final navigation item (Script 12.7):

 Click here to view code image

 <?php
if ((isset($_COOKIE['user_id']))
[image: Images]&& (basename($_SERVER['PHP_SELF'])
[image: Images]!= 'logout.php')) {
 echo '
 [image: Images]Logout';
} else {
 echo '
 [image: Images]Login';
}
?>

 Script 12.7 The header.html file now displays either a Login or a Logout link, depending on the user's current status.

 Click here to view code image

 1 <!DOCTYPE html>
2 <html lang="en">
3 <head>
4 <meta charset="utf-8">
5 <meta http-equiv="X-UA-Compatible" content="IE=edge">
6 <meta name="viewport" content="width=device-width, initial-scale=1">
7 <title><?php echo $page_title; ?></title>
8 <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.
 min.css" integrity="sha384-BVYiiSIFeK1dGmJRAkycuHAHRg32OmUcww7on3RYdg4Va+PmSTsz/K68vbdEjh4u"
 crossorigin="anonymous">
9 <link href="css/sticky-footer-navbar.css" rel="stylesheet">
10 </head>
11 <body>
12 <nav class="navbar navbar-default navbar-fixed-top">
13 <div class="container">
14 <div class="navbar-header">Your Website</div>
15 <div id="navbar" class="collapse navbar-collapse">
16 <ul class="nav navbar-nav">
17 <li class="active">Home
18 Register
19 View Users
20 Change Password
21 <?php // Create a login/logout link:
22 if ((isset($_COOKIE['user_id'])) && (basename($_SERVER['PHP_SELF']) != 'logout.php')
) {
23 echo 'Logout';
24 } else {
25 echo 'Login';
26 }
27 ?>
28
29 </div>
30 </div>
31 </nav>
32 <div class="container">
33 <!-- Script 12.7 - header.html -->

 Instead of having a permanent login link in the navigation area, it should display
 a Login link if the user is not logged in [image: Images] or a Logout link if the user is [image: Images]. The preceding conditional will accomplish just that, depending on the presence of
 a cookie.

 [image: Images]

 [image: Images] The home page with a Login link.

 [image: Images]

 [image: Images] After the user logs in, the page now has a Logout link.

 For that condition, if the cookie is set, the user is logged in and can be shown the
 logout link. If the cookie is not set, the user should be shown the login link. There
 is one catch, however: because the logout.php script would ordinarily display a logout link (because the cookie exists when the
 page is first being viewed), the conditional has to also check that the current page
 is not the logout.php script. An easy way to dynamically determine the current page is to apply the basename() function to $_SERVER[‘PHP_SELF’].

 3. Save the file, place it in your web directory (within the includes folder), and test the login/logout process in your browser [image: Images].

 [image: Images]

 [image: Images]The result after logging out.

 Tip

 Due to a bug in how Internet Explorer on Windows handles cookies, you may need to
 set the host parameter to false in order to get the logout process to work when developing on your own computer (i.e.,
 through localhost).

 Tip

 When deleting a cookie, you should always use the same parameters that set the cookie
 (aside from the value and expiration, naturally). If you set the host and path in
 the creation cookie, use them again in the deletion cookie.

 Tip

 To hammer the point home, remember that the deletion of a cookie does not take effect
 until the page has been reloaded or another page has been accessed. In other words,
 the cookie will still be available to a page after that page has deleted it.

 Using Sessions

 Another method of making data available to multiple pages of a web site is to use
 sessions. The premise of a session is that data is stored on the server, not in the browser,
 and a session identifier is used to locate a particular user’s record (i.e., the session
 data). This session identifier is normally stored in the user’s browser via a cookie,
 but the sensitive data itself—like the user’s ID, name, and so on—always remains on
 the server.

 The question may arise: why use sessions at all when cookies work just fine? First,
 sessions are likely more secure in that all of the recorded information is stored
 on the server and not continually sent back and forth between the server and the client.
 Second, you can store more data in a session. Third, some users reject cookies or
 turn them off completely. Sessions, while designed to work with a cookie, can function
 without them, too.

 To demonstrate sessions—and to compare them with cookies—let’s rewrite the previous
 set of scripts.

 Setting session variables

 The most important rule with respect to sessions is that each page that will use them
 must begin by calling the session_start() function. This function tells PHP to either begin a new session or access an existing
 one. This function must be called before anything is sent to the browser!

 The first time this function is used, session_start() will attempt to send a cookie with a name of PHPSESSID (the default session name) and a value of something like a61f8670baa8e90a30c878df89a2074b (32 hexadecimal letters, the session ID). Because of this attempt to send a cookie,
 session_start() must be called before any data is sent to the browser, as is the case when using
 the setcookie() and header() functions.

 Sessions vs. Cookies

 This chapter has examples accomplishing the same tasks—logging in and logging out—using
 both cookies and sessions. Obviously, both are easy to use in PHP, but the true question
 is when to use one or the other.

 Sessions have the following advantages over cookies:

 [image: Image] They are generally more secure (because the data is being retained on the server).

 [image: Image] They allow for more data to be stored.

 [image: Image] They can be used without cookies.

 Whereas cookies have the following advantages over sessions:

 [image: Image] They are easier to program.

 [image: Image] They require less of the server.

 [image: Image] They can be made to last far longer.

 In general, to store and retrieve just a couple of small pieces of information, or
 to store information for a longer duration, use cookies. For most of your web applications,
 though, you’ll use sessions.

 Once the session has been started, values can be registered to the session using the
 normal array syntax, using the $_SESSION superglobal:

 Click here to view code image

 $_SESSION['key'] = value;
$_SESSION['name'] = 'Roxanne';
$_SESSION['id'] = 48;

 Let’s update the login.php script with this in mind.

 To begin a session:

 1. Open login.php (refer to Script 12.5) in your text editor or IDE.

 2. Replace the setcookie() lines (18–19) with these lines (Script 12.8):

 Click here to view code image

 session_start();
$_SESSION['user_id'] =
[image: Images]$data['user_id'];
$_SESSION['first_name'] =
[image: Images]$data['first_name'];

 Script 12.8 This version of the login.php script uses sessions instead of cookies.

 Click here to view code image

 1 <?php # Script 12.8 - login.php #3
2 // This page processes the login form submission.
3 // The script now uses sessions.
4
5 // Check if the form has been submitted:
6 if ($_SERVER['REQUEST_METHOD'] == 'POST') {
7
8 // Need two helper files:
9 require('includes/login_functions.inc.php');
10 require('../mysqli_connect.php');
11
12 // Check the login:
13 list ($check, $data) = check_login($dbc, $_POST['email'], $_POST['pass']);
14
15 if ($check) { // OK!
16
17 // Set the session data:
18 session_start();
19 $_SESSION['user_id'] = $data['user_id'];
20 $_SESSION['first_name'] = $data['first_name'];
21
22 // Redirect:
23 redirect_user('loggedin.php');
24
25 } else { // Unsuccessful!
26
27 // Assign $data to $errors for login_page.inc.php:
28 $errors = $data;
29
30 }
31
32 mysqli_close($dbc); // Close the database connection.
33
34 } // End of the main submit conditional.
35
36 // Create the page:
37 include('includes/login_page.inc.php');
38 ?>

 The first step is to begin the session. Since there are no echo statements, inclusions of HTML files, or even blank spaces in the script so far,
 it will be safe to use session_start() at this point in the script (although the function call could be placed at the top
 of the script as well). Then, two key-value pairs are added to the $_SESSION superglobal array to register the user’s first name and user ID to the session.

 3. Save the page as login.php, place it in your web directory, and test it in your browser [image: Images].

 [image: Images]

 [image: Images] The login form remains unchanged to the end user, but the underlying functionality
 now uses sessions.

 Although loggedin.php and the header and script will need to be rewritten, you can still test the login
 script and see the resulting cookie [image: Images]. The loggedin.php page should redirect you back to the home page, though, since it’s still checking
 for the presence of a $_COOKIE variable.

 [image: Images]

 [image: Images] This cookie, created by PHP’s session_start() function, stores the session ID in the user’s browser.

 Tip

 Because sessions will normally send and read cookies, you should always try to begin
 them as early in the script as possible. Doing so will help you avoid the problem
 of attempting to send a cookie after the headers (HTML or white space) have already
 been sent.

 Tip

 If you want, you can set session.auto_start in the php.ini file to 1, making it unnecessary to use session_start() on each page. This does put a greater toll on the server and, for that reason, shouldn’t
 be used without some consideration of the circumstances.

 Tip

 You can store arrays in sessions (making $_SESSION a multidimensional array), just as you can store strings or numbers. You cannot store
 resources (e.g., a database connection) in a session, however.

 Accessing session variables

 Once a session has been started and variables have been registered to it, you can
 create other scripts that will access those variables. To do so, each script must
 first enable sessions using session_start().

 This function will give the current script access to the previously started session
 (if it can read the PHPSESSID value stored in the cookie) or create a new session if it cannot. Understand that
 if the current session ID cannot be found and a new session ID is generated, none
 of the data stored under the old session ID will be available. I mention this here
 because if you’re having problems with sessions, checking the session ID value to
 see if it changes from one page to the next is the first debugging step.

 Assuming that there was no problem accessing the current session, to then refer to
 a session variable, use $_SESSION[‘var’], as you would refer to any other array.

 To access session variables:

 1. Open loggedin.php (refer to Script 12.4) in your text editor or IDE.

 2. Add a call to the session_start() function (Script 12.9):

 session_start();

 Script 12.9 The loggedin.php script is updated so that it refers to $_SESSION and not $_COOKIE (changes are required on two lines).

 Click here to view code image

 1 <?php # Script 12.9 - loggedin.php #2
2 // The user is redirected here from login.php.
3
4 session_start(); // Start the session.
5
6 // If no session value is present, redirect the user:
7 if (!isset($_SESSION['user_id'])) {
8
9 // Need the functions:
10 require('includes/login_functions.
 inc.php');
11 redirect_user();
12
13 }
14
15 // Set the page title and include the
 HTML header:
16 $page_title = 'Logged In!';
17 include('includes/header.html');
18
19 // Print a customized message:
20 echo "<h1>Logged In!</h1>
21 <p>You are now logged in,
 {$_SESSION['first_name']}!</p>
22 <p>Logout
 </p>";
23
24 include('includes/footer.html');
25 ?>

 Every PHP script that either sets or accesses session variables must use the session_start() function. This line must be called before the header.html file is included and before anything is sent to the browser.

 3. Replace the references to $_COOKIE with $_SESSION (lines 5 and 19 of the original file):

 if (!isset($_SESSION['user_id'])) {

 and

 Click here to view code image

 echo "<h1>Logged In!</h1>
<p>You are now logged in,
[image: Images]{$_SESSION['first_name']}!</p>
<p>Logout
[image: Images]</p>";

 Switching a script from cookies to sessions requires only that you change uses of
 $_COOKIE to $_SESSION (assuming that the same names were used).

 4. Save the file as loggedin.php, place it in your web directory, and test it in your browser [image: Images].

 5. Replace the reference to $_COOKIE with $_SESSION in header.html (from Script 12.7 to Script 12.10):

 if (isset($_SESSION['user_id'])) {

 Script 12.10 The header.html file now also references $_SESSION instead of $_COOKIE.

 Click here to view code image

 1 <!DOCTYPE html>
2 <html lang="en">
3 <head>
4 <meta charset="utf-8">
5 <meta http-equiv="X-UA-Compatible" content="IE=edge">
6 <meta name="viewport" content="width=device-width, initial-scale=1">
7 <title><?php echo $page_title; ?></title>
8 <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.
 min.css" integrity="sha384-BVYiiSIFeK1dGmJRAkycuHAHRg32OmUcww7on3RYdg4Va+PmSTsz/K68vbdEjh4u"
 crossorigin="anonymous">
9 <link href="css/sticky-footer-navbar.css" rel="stylesheet">
10 </head>
11 <body>
12 <nav class="navbar navbar-default navbar-fixed-top">
13 <div class="container">
14 <div class="navbar-header">Your Website</div>
15 <div id="navbar" class="collapse navbar-collapse">
16 <ul class="nav navbar-nav">
17 <li class="active">Home
18 Register
19 View Users
20 Change Password
21 <?php // Create a login/logout link:
22 if (isset($_SESSION['user_id'])) {
23 echo 'Logout';
24 } else {
25 echo 'Login';
26 }
27 ?>
28
29 </div>
30 </div>
31 </nav>
32 <div class="container">
33 <!-- Script 12.10 - header.html -->

 For the Login/Logout links to function properly (notice the incorrect link in [image: Images]), the reference to the cookie variable within the header file must be switched over
 to sessions. The header file does not need to call the session_start() function, since it will be included by pages that do.

 [image: Images]

 [image: Images] After logging in, the user is redirected to loggedin.php, which will welcome the user by name using the stored session value.

 Note that this conditional does not need to check if the current page is the logout
 page, because session data behaves differently than cookie data (I’ll explain this
 further in the next section of the chapter).

 6. Save the header file, place it in your web directory (in the includes folder), and test it in your browser [image: Images].

 [image: Images]

 [image: Images] With the header file altered for sessions, the proper Login/Logout links will be displayed (compare with [image: Images]).

 Tip

 For the Login/Logout links to work on the other pages (register.php, index.php, etc.), you’ll need to add the session_start() command to each of those.

 Tip

 As a reminder of what I already said, if you have an application where the session
 data does not seem to be accessible from one page to the next, it could be because
 a new session is being created on each page. To check for this, compare the session
 ID (the last few characters of the value will suffice) to see if it is the same. You
 can see the session’s ID by viewing the session cookie as it is sent or by invoking
 the session_id() function:

 echo session_id();

 Tip

 Session variables are available as soon as you’ve established them. So, unlike when
 using cookies, you can assign a value to $_SESSION[‘var’] and then refer to $_SESSION[‘var’] later in that same script.

 Tip

 The session_status() function, added in PHP 5.4, returns a constant indicating the session status: PHP_SESSION_DISABLED, PHP_SESSION_NONE, and PHP_SESSION_ACTIVE.

 Deleting session variables

 When using sessions, you ought to create a method of deleting the session data. In
 the current example, this would be necessary when the user logs out.

 Whereas a cookie system only requires that another cookie be sent to destroy the existing
 cookie, sessions are slightly more demanding, since there are both the cookie on the
 client and the data on the server to consider.

 To delete an individual session variable, use the unset() function (which works with any variable in PHP):

 unset($_SESSION['var']);

 But to delete every session variable, you shouldn’t use unset(); instead, reset the $_SESSION array:

 $_SESSION = [];

 Finally, to remove all of the session data from the server, call session_destroy():

 session_destroy();

 Note that prior to using any of these methods, the page must begin with session_start() so that the existing session is accessed. Let’s update the logout.php script to clean out the session data.

 To delete a session:

 1. Open logout.php (Script 12.6) in your text editor or IDE.

 2. Immediately after the opening PHP line, start the session (Script 12.11):

 session_start();

 Script 12.11 Destroying a session, as you would in a logout page, requires special syntax to delete
 the session cookie and the session data on the server, as well as to clear out the
 $_SESSION array.

 Click here to view code image

 1 <?php # Script 12.11 - logout.php #2
2 // This page lets the user logout.
3 // This version uses sessions.
4
5 session_start(); // Access the
 existing session.
6
7 // If no session variable exists,
 redirect the user:
8 if (!isset($_SESSION['user_id'])) {
9
10 // Need the functions:
11 require('includes/login_functions.
 inc.php');
12 redirect_user();
13
14 } else { // Cancel the session:
15
16 $_SESSION = []; // Clear the
 variables.
17 session_destroy(); // Destroy the
 session itself.
18 setcookie('PHPSESSID', '', time()-
 3600, '/', '', 0, 0); // Destroy
 the cookie.
19
20 }
21
22 // Set the page title and include the
 HTML header:
23 $page_title = 'Logged Out!';
24 include('includes/header.html');
25
26 // Print a customized message:
27 echo "<h1>Logged Out!</h1>
28 <p>You are now logged out!</p>";
29
30 include('includes/footer.html');
31 ?>

 Anytime you are using sessions, you must call the session_start() function, preferably at the very beginning of a page. This is true even if you are
 deleting a session.

 3. Change the conditional so that it checks for the presence of a session variable:

 Click here to view code image

 if (!isset($_SESSION['user_id'])) {

 As with the logout.php script in the cookie examples, if the user is not currently logged in, he or she
 will be redirected.

 4. Replace the setcookie() lines (that delete the cookies) with

 Click here to view code image

 $_SESSION = [];
session_destroy();
setcookie('PHPSESSID', '',
[image: Images]time()-3600, '/', '', 0, 0);

 The first line here will reset the entire $_SESSION variable as a new array, erasing its existing values. The second line removes the
 data from the server, and the third sends a cookie to delete the existing session
 cookie in the browser.

 Garbage Collection

 Garbage collection with respect to sessions is the process of the server automatically
 deleting the session files (where the actual data is stored). Creating a logout system
 that destroys a session is ideal, but there’s no guarantee all users will formally
 log out as they should. For this reason, PHP includes a cleanup process.

 Whenever the session_start() function is called, PHP’s garbage collection kicks in, checking the last modification
 date of each session (a session is modified whenever variables are set or retrieved).
 Two settings dictate garbage collection: session.gc_maxlifetime and session.gc_probability. The first states after how many seconds of inactivity a session is considered idle
 and will therefore be deleted. The second setting determines the probability that
 garbage collection is performed, on a scale of 1 to 100. With the default settings,
 each call to session_start() has a 1 percent chance of invoking garbage collection. If PHP does start the cleanup,
 any sessions that have not been used in more than 1,440 seconds will be deleted.

 You can change these settings using the ini_set() function, although be careful in doing so. Too frequent or too probable garbage collection
 can bog down the server and inadvertently end the sessions of slower users.

 5. Remove the reference to $_COOKIE in the message:

 echo "<h1>Logged Out!</h1>
<p>You are now logged out!</p>";

 Unlike when using the cookie version of the logout.php script, you cannot refer to the user by first name anymore, since all of that data
 has been deleted.

 6. Save the file as logout.php, place it in your web directory, and test it in your browser [image: Images].

 [image: Images]

 [image: Images] The logout page (now featuring sessions).

 Tip

 The header.html file only needs to check if $_SESSION[‘user_id’] is set, and not if the page is the logout page, because by the time the header file
 is included by logout.php, all of the session data will have already been destroyed. The destruction of session
 data applies immediately, unlike with cookies.

 Tip

 Never set $_SESSION equal to NULL and never use unset($_SESSION). Either could cause problems on some servers.

 Tip

 In case it’s not absolutely clear what’s going on, there exist three kinds of information
 within a session: the session identifier (which is stored in a cookie by default),
 the session data (which is stored in a text file on the server), and the $_SESSION array (which is how a script accesses the session data in the text file). Just deleting
 the cookie doesn’t remove the data file, and vice versa. Clearing out the $_SESSION array would erase the data from the text file, but the file itself would still exist,
 as would the cookie. The three steps outlined in this logout script effectively remove
 all traces of the session.

 Improving Session Security

 Because important information is normally stored in a session (you should never store
 sensitive data in a cookie), security becomes more of an issue. With sessions there
 are two areas to pay attention to: the session ID, which is a reference point to the
 session data, and the session data itself, stored on the server. A malicious person
 is far more likely to hack into a session through the session ID than the data on
 the server, so I’ll focus on that side of things here. In the tips at the end of this
 section I mention two ways to protect the session data itself.

 The session ID is the key to the session data. By default, PHP will store this in
 a cookie, which is preferable from a security standpoint. It is possible in PHP to
 use sessions without cookies, but that leaves the application vulnerable to session hijacking: If malicious user Alice can learn user Bob’s session ID, Alice can easily trick
 a server into thinking that Bob’s session ID is also Alice’s session ID. At that point, Alice would be riding the coattails of Bob’s session and
 would have access to Bob’s data. Storing the session ID in a cookie makes it somewhat
 harder to steal.

 Changing the Session Behavior

 As part of PHP’s support for sessions, there are over 20 different configuration options
 you can set for how PHP handles sessions. For the full list, see the PHP manual, but
 I’ll highlight a few of the most important ones here. Note two rules about changing
 the session settings:

 1. All changes must be made before calling session_start().

 2. The same changes must be made on every page that uses sessions.

 Most of the settings can be set within a PHP script using the ini_set() function (discussed in Chapter 8):

 Click here to view code image

 ini_set(parameter, new_setting);

 For example, to require the use of a session cookie (as mentioned, sessions can work
 without cookies but it’s less secure), use

 Click here to view code image

 ini_set('session.use_only_cookies', 1);

 Another change you can make is to the name of the session (perhaps to use a more user-friendly
 one). To do so, call the session_name() function:

 session_name('YourSession');

 The benefits of creating your own session name are twofold: it’s marginally more secure
 and it may be better received by the end user (since the session name is the cookie
 name the end user will see). The session_name() function can also be used when deleting the session cookie:

 Click here to view code image

 setcookie(session_name(),'', time()-3600);

 If not provided with an argument, this function instead returns the current session
 name.

 Finally, there’s also the session_set_cookie_params() function. It’s used to tweak the settings of the session cookie:

 Click here to view code image

 session_set_cookie_params(expire, path, host, secure, httponly);

 Note that the expiration time of the cookie refers only to the longevity of the cookie
 in the browser, not to how long the session data will be stored on the server.

 One method of preventing hijacking is to store some sort of user identifier in the
 session, and then to repeatedly double-check this value. The HTTP_USER_AGENT—a combination of the browser and operating system being used—is a likely candidate
 for this purpose. This adds a layer of security in that one person could hijack another
 user’s session only if they are both running the exact same browser and operating
 system. As a demonstration of this, let’s modify the examples one last time.

 To use sessions more securely:

 1. Open login.php (refer to Script 12.8) in your text editor or IDE.

 2. After assigning the other session variables, also store the HTTP_USER_AGENT value (Script 12.12):

 Click here to view code image

 $_SESSION['agent'] = sha1
[image: Images]($_SERVER['HTTP_USER_AGENT']);

 Script 12.12 This final version of the login.php script also stores an encrypted form of the user's HTTP_USER_AGENT (the browser and operating system of the client) in a session.

 Click here to view code image

 1 <?php # Script 12.12 - login.php #4
2 // This page processes the login form submission.
3 // The script now stores the HTTP_USER_AGENT value for added security.
4
5 // Check if the form has been submitted:
6 if ($_SERVER['REQUEST_METHOD'] == 'POST') {
7
8 // Need two helper files:
9 require('includes/login_functions.
 inc.php');
10 require('../mysqli_connect.php');
11
12 // Check the login:
13 list ($check, $data) = check_
 login($dbc, $_POST['email'],
 $_POST['pass']);
14
15 if ($check) { // OK!
16
17 // Set the session data:
18 session_start();
19 $_SESSION['user_id'] =
 $data['user_id'];
20 $_SESSION['first_name'] =
 $data['first_name'];
21
22 // Store the HTTP_USER_AGENT:
23 $_SESSION['agent'] = sha1
 ($_SERVER['HTTP_USER_AGENT']);
24
25 // Redirect:
26 redirect_user('loggedin.php');
27
28 } else { // Unsuccessful!
29
30 // Assign $data to $errors for
 login_page.inc.php:
31 $errors = $data;
32
33 }
34
35 mysqli_close($dbc); // Close the database connection.
36
37 } // End of the main submit conditional.
38
39 // Create the page:
40 include('includes/login_page.inc.php');
41 ?>

 The HTTP_USER_AGENT is part of the $_SERVER array (you may recall using it way back in Chapter 1, “Introduction to PHP”). It will have a value like Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1…).

 Instead of you storing this value in the session as is, it’ll be run through the sha1() function for slightly improved security. That function returns a 32-character hexadecimal
 string (called a hash) based on a value. In theory, no two strings will have the same sha1() result.

 3. Save the file and place it in your web directory.

 4. Open loggedin.php (Script 12.9) in your text editor or IDE.

 5. Change the !isset($_SESSION[‘user_id’]) conditional to (Script 12.13):

 Click here to view code image

 if (!isset($_SESSION['agent']) OR
[image: Images]($_SESSION['agent'] != sha1
[image: Images]($_SERVER['HTTP_USER_AGENT']))) {

 Script 12.13 This loggedin.php script now confirms that users accessing this page have the same HTTP_USER_AGENT as they did when they logged in.

 Click here to view code image

 1 <?php # Script 12.13 - loggedin.php #3
2 // The user is redirected here from login.php.
3
4 session_start(); // Start the session.
5
6 // If no session value is present, redirect the user:
7 // Also validate the HTTP_USER_AGENT!
8 if (!isset($_SESSION['agent'])
 OR ($_SESSION['agent'] != md5($_
 SERVER['HTTP_USER_AGENT']))) {
9
10 // Need the functions:
11 require('includes/login_functions.inc.php');
12 redirect_user();
13
14 }
15
16 // Set the page title and include the
 HTML header:
17 $page_title = 'Logged In!';
18 include('includes/header.html');
19
20 // Print a customized message:
21 echo "<h1>Logged In!</h1>
22 <p>You are now logged in,
 {$_SESSION['first_name']}!</p>
23 <p>Logout
 </p>";
24
25 include('includes/footer.html');
26 ?>

 This conditional checks two things. First, it sees if the $_SESSION[‘agent’] variable is not set (this part is just as it was before, although agent is being used instead of user_id). The second part of the conditional checks if the sha1() version of $_SERVER[‘HTTP_USER_AGENT’] does not equal the value stored in $_SESSION[‘agent’]. If either of these conditions is true, the user will be redirected.

 6. Save this file, place it in your web directory, and test in your browser by logging
 in.

 Preventing Session Fixation

 Another specific kind of session attack is known as session fixation. This approach is the opposite of session hijacking. Instead of malicious user Alice finding and using Bob’s session ID, she creates
 her own session ID (perhaps by logging in legitimately), and then gets Bob to access
 the site using that session. The hope is that Bob would then do something that would
 unknowingly benefit Alice.

 You can help protect against these types of attacks by changing the session ID after
 a user logs in. The session_regenerate_id() does just that, providing a new session ID to refer to the current session data.
 You can use this function on sites for which security is paramount (like e-commerce
 or online banking) or in situations when it’d be particularly bad if certain users
 (i.e., administrators) had their sessions manipulated.

 Tip

 For critical uses of sessions, require the use of cookies and transmit them over a
 secure connection, if at all possible. You can even set PHP to only use cookies by
 setting session.use_only_cookies to 1.

 Tip

 By default, a server stores every session file for every site within the same temporary
 directory, meaning any site could theoretically read any other site’s session data.
 If you are using a server shared with other domains, changing the session.save_path from its default setting will be more secure. For example, it’d be better if you
 stored your site’s session data in a dedicated directory particular to your site.

 Tip

 The session data itself can also be stored in a database rather than a text file.
 This is a more secure, but more programming-intensive, option. I show how to do this
 in my book PHP 5 Advanced: Visual QuickPro Guide.

 Tip

 The user’s IP address (the network address from which the user is connecting) is not
 a good unique identifier, for two reasons. First, a user’s IP address can, and normally
 does, change frequently (ISPs dynamically assign them for short periods of time).
 Second, many users accessing a site from the same network (like a home network or
 an office) could all have the same IP address.

 Review and Pursue

 If you have any problems with the review questions or the pursue prompts, turn to
 the book’s supporting forum (LarryUllman.com/forums/).

 Review

 [image: Image] What code is used to redirect the user’s browser from one page to the next?

 [image: Image] What does the headers already sent error message mean?

 [image: Image] What value does store? What value does store?

 [image: Image] What does the dirname() function do?

 [image: Image] What does the rtrim() function do? What arguments can it take?

 [image: Image] How do you write a function that returns multiple values? How do you call such a
 function?

 [image: Image] What arguments can the setcookie() function take?

 [image: Image] How do you reference values previously stored in a cookie?

 [image: Image] How do you delete an existing cookie?

 [image: Image] Are cookies available immediately after being sent (on the same page)? Why can you
 still refer to a cookie (on the same page) after it is deleted?

 [image: Image] What debugging steps can you take when you have problems with cookies?

 [image: Image] What does the basename() function do?

 [image: Image] How do you begin a session?

 [image: Image] How do you reference values previously stored in a session?

 [image: Image] Is session data available immediately after being assigned (on the same page)?

 [image: Image] How do you terminate a session?

 [image: Image] What debugging steps can you take when you have problems with sessions?

 Pursue

 [image: Image] If you have not already done so, learn how to view cookie data in your browser. When
 developing sites that use cookies, enable the option so that the browser prompts you
 when cookies are received.

 [image: Image] Make the login form sticky.

 [image: Image] Add code to the handling of the $errors variable on the login page that uses a foreach loop if $errors is an array, or just prints the value of $errors otherwise.

 [image: Image] Modify the redirect_user() function so that it can be used to redirect the user to a page within another directory.

 [image: Image] Implement another cookie example, such as storing a user’s preference in the cookie,
 and then base a look or feature of a page on the stored value (when present).

 [image: Image] Change the code in logout.php (Script 12.11) so that it uses the session_name() function to dynamically set the name value of the session cookie being deleted.

 [image: Image] Implement another session example, if you’d like more practice with sessions (you’ll
 get more practice later in the book, too).

 [image: Image] Check out the PHP manual pages for any new function introduced in this chapter with
 which you’re not comfortable.

 [image: Image] Check out the PHP manual pages on cookies and sessions (two separate sections) to
 learn more. Also read some of the user-submitted comments for additional tips.

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 13. Security Methods

 In This Chapter

 Preventing Spam

 Validating Data by Type

 Validating Files by Type

 Preventing XSS Attacks

 Using the Filter Extension

 Preventing SQL Injection Attacks

 Securing Passwords with PHP

 Review and Pursue

 The security of your web applications is such an important topic that it really cannot
 be overstressed. Although security-related issues have been mentioned throughout this
 book, this chapter will help to fill in certain gaps, finalize other points, and teach
 several new things.

 The topics discussed here include preventing spam, typecasting variables, preventing
 cross-site scripting (XSS) and SQL injection attacks, using the Filter extension,
 validating uploaded files by type, and managing passwords in PHP. This chapter will
 use six examples to best demonstrate these concepts. Some other common security issues
 and best practices will be mentioned in sidebars as well.

 Preventing Spam

 Spam is nothing short of a plague, cluttering up the Internet and email inboxes. There
 are steps you can take to avoid receiving spam at your email accounts, but in this
 book the focus is on preventing spam being sent through your PHP scripts.

 Chapter 11, “Web Application Development,” shows how easy it is to send email using PHP’s mail() function. The example there, a contact form, took some information from the user
 [image: Images] and sent it to an email address. Although it may seem like there’s no harm in this
 system, it contains a security hole. But first, here’s some background on what an
 email actually is.

 [image: Images]

 [image: Images] A simple, standard HTML contact form.

 Regardless of how an email is sent, how it’s formatted, and what it looks like when
 it’s received, an email contains two parts: a header and a body. The header includes
 such information as the to and from addresses, the subject, the date, and more [image: Images]. Each item in the header is on its own line, in the format Name: value. The body of the email is exactly what you think it is: the actual body text of the
 email.

 [image: Images]

 [image: Images] The raw source version of the email sent by the contact form [image: Images].

 In looking at PHP’s mail() function—

 mail(to, subject, body [,headers]);

 —you can see that one of the arguments goes straight to the email’s body and the rest
 appear in its header. To send spam to your address (as in Chapter 11’s example), all a person would have to do is enter the spam message into the comments
 section of the form [image: Images]. That’s bad enough, but to send spam to anyone else at the same time, all the user would have to do is add Bcc: poorsap@example.org, followed by some sort of line terminator (like a newline or carriage return), to
 the email’s header. With the example as is, this just means entering the following
 into the from value of the contact form: me@example.com\n Bcc:poorsap@example.org.

 A Security Approach

 The most important concept to understand about security is that it’s not a binary
 state: don’t think of a website or script as being either secure or not secure. Security isn’t a switch that you turn on and off; it’s a scale that you can move
 up and down. When you program, think about what you can do to make your site more secure and what you’ve done that makes it less secure. Also, keep in mind that improved security normally comes at a cost of convenience
 (both to you, the programmer, and to the end user) and performance. Increased security
 normally means more code, more checks, and more required of the server. When developing
 web applications, the goal is to achieve a level of security that’s appropriate for
 the particular situation. And then err on the side of being a tad too secure, just
 to be prudent.

 You might think that safeguarding everything that goes into an email’s header would
 be sufficiently safe, but because an email is just one document, bad input in a body
 can impact the header, too.

 You can apply a couple of preventive techniques to this contact form. First, validate
 any email addresses by using regular expressions, covered in Chapter 14, “Perl-Compatible Regular Expressions,” or by using the Filter extension, discussed in just a few pages. Second, now that
 you know what an evildoer must enter to send spam (Table 13.1), watch for those characters and strings in form values. If a value contains anything
 from that list, don’t use that value in a sent email. (The last four values in Table 13.1 are all different ways of creating newlines.)

 TABLE 13.1 Spam Tip-offs

 	
 Strings

 	
 content-type:

 	
 mime-version:

 	
 multipart-mixed:

 	
 content-transfer-encoding:

 	
 bcc:

 	
 cc:

 	
 to:

 	
 \r

 	
 \n

 	
 %0a

 	
 %0d

 In this next example, a modification of the email script from Chapter 11, I’ll define a function that scrubs all potentially dangerous characters from provided
 data. Two new PHP functions will be used as well: str_replace() and array_map(). Both will be explained in detail in the steps that follow.

 To prevent spam:

 1. Open email.php (Script 11.1) in your text editor or IDE.

 To complete this spam-purification, the email script needs to be modified.

 2. After checking for the form submission, begin defining a function (Script 13.1):

 Click here to view code image

 function spam_scrubber($value) {

 Script 13.1 This version of the script can now safely send emails without concern for spam. Any
 problematic characters will be caught by the spam_scrubber() function.

 Click here to view code image

 1 <!doctype html>
2 <html lang="en">
3 <head>
4 <meta charset="utf-8">
5 <title>Contact Me</title>
6 </head>
7 <body>
8 <h1>Contact Me</h1>
9 <?php # Script 13.1 - email.php #2
10 // This version now scrubs dangerous strings from the submitted input.
11
12 // Check for form submission:
13 if ($_SERVER['REQUEST_METHOD'] == 'POST') {
14
15 /* The function takes one argument: a string.
16 * The function returns a clean version of the string.
17 * The clean version may be either an empty string or
18 * just the removal of all newline characters.
19 */
20 function spam_scrubber($value) {
21
22 // List of very bad values:
23 $very_bad = ['to:', 'cc:', 'bcc:', 'content-type:', 'mime-version:',
 'multipart-mixed:', 'content-transfer-encoding:'];
24
25 // If any of the very bad strings are in
26 // the submitted value, return an empty string:
27 foreach ($very_bad as $v) {
28 if (stripos($value, $v) !== false) return '';
29 }
30
31 // Replace any newline characters with spaces:
32 $value = str_replace(["\r", "\n", "%0a", "%0d"], ' ', $value);
33
34 // Return the value:
35 return trim($value);
36
37 } // End of spam_scrubber() function.
38
39 // Clean the form data:
40 $scrubbed = array_map('spam_scrubber', $_POST);
41
42 // Minimal form validation:
43 if (!empty($scrubbed['name']) && !empty($scrubbed['email']) &&
 !empty($scrubbed['comments'])) {
44
45 // Create the body:
46 $body = "Name: {$scrubbed['name']}\n\nComments: {$scrubbed['comments']}";
47
48 // Make it no longer than 70 characters long:
49 $body = wordwrap($body, 70);
50
51 // Send the email:
52 mail('your_email@example.com', 'Contact Form Submission', $body, "From:
 {$scrubbed['email']}");
53
54 // Print a message:
55 echo '<p>Thank you for contacting me. I will reply some day.</p>';
56
57 // Clear $scrubbed (so that the form's not sticky):
58 $scrubbed = [];
59
60 } else {
61 echo '<p style="font-weight: bold; color: #C00">Please fill out the form completely. </p>';
62 }
63
64 } // End of main isset() IF.
65
66 // Create the HTML form:
67 ?>
68 <p>Please fill out this form to contact me.</p>
69 <form action="email.php" method="post">
70 <p>Name: <input type="text" name="name" size="30" maxlength="60" value="<?php if
 (isset($scrubbed['name'])) echo $scrubbed['name']; ?>"></p>
71 <p>Email Address: <input type="email" name="email" size="30" maxlength="80"
 value="<?php if (isset($scrubbed['email'])) echo $scrubbed['email']; ?>"></p>
72 <p>Comments: <textarea name="comments" rows="5" cols="30"><?php if
 (isset($scrubbed['comments'])) echo $scrubbed['comments']; ?></textarea></p>
73 <p><input type="submit" name="submit" value="Send!"></p>
74 </form>
75 </body>
76 </html>

 This function will take one argument: a string. Normally, I would define functions
 at the top of the script, or in a separate file, but to make things simpler, I will
 define it within the submission-handling block of code.

 3. Create a list of really bad things that wouldn’t be in a legitimate contact form
 submission:

 Click here to view code image

 $very_bad = ['to:', 'cc:', 'bcc:',
[image: Images]'content-type:', 'mime-version:',
[image: Images]'multipart-mixed:',
[image: Images]'content-transfer-encoding:'];

 Any of these strings should not be present in an honest contact form submission (it’s
 possible someone might legitimately use to: in their comments, but unlikely). If any of these strings are present, then this
 is a spam attempt. To make it easier to test for them, you place them in an array,
 which will be looped through (Step 4). The comparison in Step 4 will be case-insensitive,
 so each of the dangerous strings is written in all lowercase letters.

 4. Loop through the array. If a very bad thing is found, return an empty string instead:

 Click here to view code image

 foreach ($very_bad as $v) {
 if (stripos($value, $v) !==
[image: Images]false) return '';
}

 The foreach loop will access each item in the $very_bad array one at a time, assigning each item to $v. Within the loop, the stripos() function will check if the item is in the string provided to this function as $value. The stripos() function performs a case-insensitive search (so it would match bcc:, Bcc:, bCC:, etc.). The function returns a Boolean TRUE if the needle is found in the haystack
 (e.g., looking for occurrences of $v in $value). The conditional therefore says that if that function’s results do not equal FALSE
 (i.e., $v was found in $value), return an empty string.

 Therefore, for each of the dangerous character strings, the first time that any of
 them is found in the submitted value, the function will return an empty string and
 terminate (functions automatically stop executing once they hit a return).

 5. Replace any newline characters with spaces:

 Click here to view code image

 $value = str_replace(["\r", "\n",
[image: Images]"%0a", "%0d"], ' ', $value);

 Newline characters, which are represented by \r, \n , %0a, and %0d, may or may not be problematic. A newline character is required to send spam (or
 else you can’t create the proper header) but will also appear if a user just hits
 Enter or Return while typing in a textarea box. For this reason, any found newlines
 will just be replaced by a space. This means that the submitted value could lose some
 of its formatting, but that’s a reasonable price to pay to stop spam.

 The str_replace() function looks through the value in the third argument and replaces any occurrences
 of the characters in the first argument with the character or characters in the second.
 Or as the PHP manual puts it:

 Click here to view code image

 mixed str_replace(mixed $search,
[image: Images]mixed $replace, mixed $subject)

 This function is very flexible in that it can take strings or arrays for its three
 arguments (the mixed means it accepts a mix of argument types). Hence, this line of code in the script
 assigns to the $value variable its original value, with any newline characters replaced by a single space.

 There is a case-insensitive version of this function, but it’s not necessary here,
 as, for example, \r is a carriage return but \R is not.

 6. Return the value and complete the function:

 Click here to view code image

 return trim($value);
} // End of spam_scrubber()
[image: Images]function.

 Finally, this function returns the value, trimmed of any leading and ending spaces.
 Keep in mind that the function will get to this point only if none of the very bad things was found.

 7. After the function definition, invoke the spam_scrubber() function:

 Click here to view code image

 $scrubbed = array_map
[image: Images]('spam_scrubber', $_POST);

 This approach is beautiful in its simplicity! The function has two required arguments. The first is the name of the function to call.
 In this case, that’s spam_scrubber (without the parentheses, because you’re providing the function’s name, not calling the function). The second argument is an array.

 What array_map() does is apply the named function once for each array element, sending each array
 element’s value to that function call. In this script, $_POST has four elements—name, email, comments, and submit—meaning that the spam_scrubber() function will be called four times, thanks to array_map(). After this line of code, the $scrubbed array will end up with four elements: $scrubbed[‘name’] will have the value of $_POST[‘name’] after running it through spam_scrubber(), $scrubbed[‘email’] will have the same value as $_POST[‘email’] after running it through spam_scrubber(), and so forth.

 This one line of code then takes an entire array of potentially tainted data (), cleans it using , and assigns the result to a new variable. Here’s the most important thing about
 this technique: from here on out, the script must use the $scrubbed array (which is clean), not (which is still potentially dirty).

 8. Change the form validation to use this new array:

 Click here to view code image

 if (!empty($scrubbed['name']) &&
[image: Images]!empty($scrubbed['email']) &&
[image: Images]!empty($scrubbed['comments'])) {

 Each of these elements could have an empty value for two reasons: first, if the user
 left them empty; second, if the user entered one of the bad strings in the field[image: Images], which would be turned into an empty string by the spam_scrubber() function[image: Images].

 [image: Images]

 [image: Images] The presence of cc: in the comments field will prevent this submission from being sent in an email [image: Images].

 [image: Images]

 [image: Images] The email was not sent because of the very bad characters used in the comments, which
 gets turned into an empty string by the spam prevention function.

 9. Change the creation of the $body variable so that it uses the clean values:

 Click here to view code image

 $body="Name:
[image: Images]{$scrubbed['name']}\n\nComments:
[image: Images]{$scrubbed['comments']}";

 10. Change the invocation of the mail() function to use the clean email address:

 Click here to view code image

 mail('your_email@example.com',
[image: Images]'Contact Form Submission', $body,
[image: Images]"From: {$scrubbed['email']}");

 Remember to use your own email address in the mail() call, or you’ll never get the message!

 11. Change line 30 (of the original script) to clear the $scrubbed array instead of the $_POST array:

 $scrubbed = [];

 This line wipes out the form data upon successful submission.

 12. Change the form so that it uses the $scrubbed version of the values:

 Click here to view code image

 <p>Name: <input type="text"
[image: Images]name="name" size="30"
[image: Images]maxlength="60" value="<?php if
[image: Images](isset($scrubbed['name'])) echo
[image: Images]$scrubbed['name']; ?>"></p>
<p>Email Address: <input
[image: Images]type="email" name="email"
[image: Images]size="30" maxlength="80"
[image: Images]value="<?php if (isset($scrubbed
[image: Images]['email'])) echo $scrubbed
[image: Images]['email']; ?>"></p>
<p>Comments: <textarea
[image: Images]name="comments" rows="5" cols="30"><?php if (isset($scrubbed
[image: Images]['comments'])) echo $scrubbed
[image: Images]['comments']; ?></textarea></p>

 13. Save the script as email.php, place it in your web directory, and test it in your browser [image: Images] and [image: Images].

 [image: Images]

 [image: Images]Although the comments field contains newline characters (created by pressing Enter
 or Return), the email will still be sent [image: Images].

 [image: Images]

 [image: Images] The received email, with the newlines in the comments [image: Images] turned into spaces.

 Tip

 Using the array_map() function as I have in this example is convenient but not without its downsides. First,
 it blindly applies the spam_scrubber() function to the entire $_POST array, even to the submit button. This isn’t harmful, but it is unnecessary. Second,
 any multidimensional arrays within $_POST will be lost. In this specific example, that’s not a problem, but it is something
 to be aware of.

 Tip

 To prevent automated submissions to any form, you could use a CAPTCHA test. These
 are prompts that can only be understood by humans (in theory). Although this is commonly
 accomplished using an image of random characters, the same thing can be achieved using
 a question like “What is two plus two?” or “On what continent is China?” Checking
 for the correct answer to this question would then be part of the validation routine.

 Validating Data by Type

 For the most part, the form validation used in this book thus far has been rather
 minimal, often just checking whether a variable has any value at all. In many situations,
 this is the best you can do. For example, there’s no perfect test for what a valid
 street address is or what a user might enter in a comments field. Still, much of the
 data you’ll work with can be validated in stricter ways. In the next chapter, the
 sophisticated concept of regular expressions will demonstrate just that. But here
 I’ll cover the more approachable ways you can validate some data by type.

 PHP supports many types of data: strings, numbers (integers and floats), arrays, and
 so on. For each of these, there’s a specific function that checks if a variable is
 of that type (Table 13.2). You’ve already seen the is_numeric() function in action in earlier chapters, and is_array() is great for confirming a variable is acceptable to use in a foreach loop. Each function returns TRUE if the submitted variable is of a certain type and
 FALSE otherwise.

 TABLE 13.2 Type Validation Functions

 	
 Function

 	
 Checks For

 	
 is_array()

 	
 Arrays

 	
 is_bool()

 	
 Booleans (TRUE, FALSE)

 	
 is_float()

 	
 Floating-point numbers

 	
 is_int()

 	
 Integers

 	
 is_null()

 	
 NULLs

 	
 is_numeric()

 	
 Numeric values, even as a string (e.g., ‘20’)

 	
 is_resource()

 	
 Resources, like a database connection

 	
 is_scalar()

 	
 Scalar (single-valued) variables

 	
 is_string()

 	
 Strings

 Two Validation Approaches

 A large part of security is based on validation: if data comes from outside of the
 server—from HTML forms, the URL, cookies—it can’t be trusted. (A higher level of security
 also validates any data coming from outside of the script, including sessions and databases.) There are two types of validation: whitelist and blacklist. In the Widget Cost Calculator in this chapter, we know that all values must be positive,
 that they must all be numbers, and that the quantity must be an integer (the other
 two numbers could be integers or floats; it makes no difference). Typecasting forces
 the inputs to be numbers, and a check confirms that they are positive. At this point,
 the assumption is that the input is valid. This is a whitelist approach: these values
 are good; anything else is bad.

 The preventing spam example uses a blacklist approach. That script knows exactly which
 characters are bad and invalidates input that contains them. All other input is considered
 to be good.

 Many security experts prefer the whitelist approach, but it can’t always be used.
 Each example will dictate which approach will work best, but it’s important to use
 one or the other. Don’t just assume that data is safe without some sort of validation.

 In PHP, you can even change a variable’s type after it’s been assigned a value. Doing
 so is called typecasting, and you accomplish it by entering the destination type in parentheses before the
 variable’s name:

 $var = 20.2;
echo (int) $var; // 20

 Depending on the original and destination types, PHP will convert the variable’s value
 accordingly:

 $var = 20;
echo (float) $var; // 20.0

 With numeric values, the conversion is straightforward, but with other variable types,
 more complex rules apply:

 $var = 'trout';
echo (int) $var; // 0

 In most circumstances, you don’t need to cast a variable from one type to another,
 since PHP will often automatically do so as needed. But forcibly casting a variable’s
 type can be a good security measure in your web applications. To show how you might
 use this notion, let’s create a calculator script for determining the total purchase
 price of an item [image: Images].

 [image: Images]

 [image: Images] The HTML form takes three inputs: a quantity, a price, and a tax rate.

 Before getting into this example, let’s think a moment about the role HTML5 plays
 here. HTML5 supports built-in client-side validation[image: Images]. For example, the email.php script (Script 13.1) won’t allow the form to be submitted with a syntactically invalid email address.
 This is great in terms of the user experience; however, it’s not a true security measure.
 It’s rather easy for a malicious user to bypass client-side validation by manipulating
 the HTML source code in the browser or by submitting data to your server directly
 without using the form at all.

 [image: Images]

 [image: Images] HTML5 validation rules prevent invalid data from being submitted.

 Although you can and should take advantage of the client-side validation HTML5 offers,
 never rely on it as a security method!

 And in case you’re curious, the easiest way for you as the developer to bypass the
 HTML5 validation (for testing purposes) is to add the novalidate attribute to the opening form tag:

 Click here to view code image

 <form action="calculator.php"
[image: Images]method="post" novalidate>

 To use typecasting:

 1. Begin a new PHP document in your text editor or IDE, to be named calculator.php (Script 13.2):

 Click here to view code image

 <!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Widget Cost
[image: Images]Calculator</title>
</head>
<body>
<?php # Script 13.2 -
[image: Images]calculator.php

 Script 13.2 By typecasting variables, this script more definitively validates that data is of the correct format.

 Click here to view code image

 1 <!doctype html>
2 <html lang="en">
3 <head>
4 <meta charset="utf-8">
5 <title>Widget Cost Calculator</title>
6 </head>
7 <body>
8 <?php # Script 13.2 - calculator.php
9 // This script calculates an order total based upon three form values.
10
11 // Check if the form has been submitted:
12 if ($_SERVER['REQUEST_METHOD'] == 'POST') {
13
14 // Cast all the variables to a specific type:
15 $quantity = (int) $_POST['quantity'];
16 $price = (float) $_POST['price'];
17 $tax = (float) $_POST['tax'];
18
19 // All variables should be positive!
20 if (($quantity > 0) && ($price > 0) && ($tax > 0)) {
21
22 // Calculate the total:
23 $total = $quantity * $price;
24 $total += $total * ($tax/100);
25
26 // Print the result:
27 echo '<p>The total cost of purchasing ' . $quantity . ' widget(s) at $' . number_
 format($price, 2) . ' each, plus tax, is $' . number_format($total, 2) . '.</p>';
28
29 } else { // Invalid submitted values.
30 echo '<p style="font-weight: bold; color: #C00">Please enter a valid quantity, price,
 and tax rate.</p>';
31 }
32
33 } // End of main isset() IF.
34
35 // Leave the PHP section and create the HTML form.
36 ?>
37 <h2>Widget Cost Calculator</h2>
38 <form action="calculator.php" method="post">
39 <p>Quantity: <input type="number" name="quantity" step="1" min="1" value="<?php if
 (isset($quantity)) echo $quantity; ?>"></p>
40 <p>Price: <input type="number" name="price" step=".01" min="0.01" value="<?php if
 (isset($price)) echo $price; ?>"></p>
41 <p>Tax (%): <input type="text" name="tax" step=".01" min="0.01" value="<?php if
 (isset($tax)) echo $tax; ?>"></p>
42 <p><input type="submit" name="submit" value="Calculate!"></p>
43 </form>
44 </body>
45 </html>

 2. Check if the form has been submitted:

 Click here to view code image

 if ($_SERVER['REQUEST_METHOD'] ==
[image: Images]'POST') {

 Like many previous examples, this one script will both display the HTML form and handle
 its submission.

 3. Cast all the variables to a specific type:

 Click here to view code image

 $quantity = (int) $_POST
[image: Images]['quantity'];
$price = (float) $_POST['price'];
$tax = (float) $_POST['tax'];

 The form itself has three number boxes [image: Images]. Although the HTML5 validation requires each be a number, that check cannot be relied
 on for security purposes.

 For the calculation to be reliable, the quantity must be an integer, and both price
 and tax are acceptable as floats (i.e., could contain decimal points). To force these
 constraints, cast each one to a specific type in PHP.

 4. Check if the variables have proper values:

 Click here to view code image

 if (($quantity > 0) &&
[image: Images]($price > 0) && ($tax > 0)) {

 For this calculator to work, the three variables must be specific types (see Step
 3). More importantly, they must all be positive numbers. This conditional checks for
 that prior to performing the calculations. Note that, per the rules of typecasting,
 if the posted values are not numbers, they will be cast to 0 and therefore not pass
 this conditional.

 Again, the HTML5 validation also ensures that values greater than 0 are entered in
 the form, but you cannot assume the client-side validation applied.

 5. Calculate and print the results:

 Click here to view code image

 $total = $quantity * $price;
$total += $total * ($tax/100);
echo '<p>The total cost of
[image: Images]purchasing ' . $quantity . '
[image: Images]widget(s) at $' . number_format
[image: Images]($price, 2) . ' each, plus tax,
[image: Images]is $' . number_format
[image: Images]($total, 2) . '.</p>';

 To calculate the total, first the quantity is multiplied by the price. To apply the
 tax to the total, the value of the total times the tax divided by 100 (e.g., 6.5%
 becomes .065) is then added, using the addition assignment shortcut operator. The
 number_format() function is used to print both the price and total values in the proper format[image: Images].

 [image: Images]

 [image: Images] The results of the calculation when the form is properly completed.

 6. Complete the conditionals:

 Click here to view code image

 } else { // Invalid submitted
 [image: Images]values.
 echo '<p style="font-weight:
 [image: Images]bold; color: #C00">Please
 [image: Images]enter a valid quantity,
 [image: Images]price, and tax rate.</p>';
 }
} // End of main isset() IF.

 A little CSS is used to create a bold, red error message, should there be a problem.

 7. Begin the HTML form:

 Click here to view code image

 <h2>Widget Cost Calculator</h2>
<form action="calculator.php"
[image: Images]method="post">
 <p>Quantity: <input
 [image: Images]type="number" name="quantity"
 [image: Images]step="1" min="1" value="<?php
 [image: Images]if (isset($quantity)) echo
 [image: Images]$quantity; ?>"></p>

 The HTML form is simple and posts back to this same page. The inputs will have a sticky
 quality, so the user can see what was previously entered. For example, by referring
 to $quantity instead of $_POST[‘quantity’], the form will reflect the value for each input as it was typecast.

 To add in client-side validation, each number input requires a minimum value of either
 1 or .01. Integer inputs like the quantity use a step value of 1; the decimal inputs
 will use .01.

 8. Complete the HTML form:

 Click here to view code image

 <p>Price: <input type="number"
 [image: Images]name="price" step=".01"
 [image: Images]min="0.01" value="<?php if
 [image: Images](isset($price)) echo $price;
 [image: Images]?>"></p>
 <p>Tax (%): <input type="text"
 [image: Images]name="tax" step=".01" min="0.01"
 [image: Images]value="<?php if (isset($tax))
 [image: Images]echo $tax; ?>"></p>
 <p><input type="submit"
 [image: Images]name="submit"
 [image: Images]value="Calculate!"></p>
</form>

 9. Complete the HTML page:

 </body>
</html>

 10. Save the file as calculator.php, place it in your web directory, and test it in your browser [image: Images] and [image: Images].

 [image: Images]

 [image: Images] If invalid values are entered, such as floats for the quantity or strings for the
 tax…

 [image: Images]

 [image: Images] …they’ll be cast into more appropriate formats. The negative price will also keep
 this calculation from being made (although the casting won’t change that value).

 Tip

 You should definitely use typecasting when working with numbers within SQL queries.
 Numbers aren’t quoted in queries, so if a string is somehow used in a number’s place,
 there will be an SQL syntax error. If you typecast such variables to an integer or
 float first, the query may not work (in terms of returning a record) but will still
 be syntactically valid. You’ll frequently see this in this book’s last three chapters.

 Tip

 As I implied, regular expressions are a more advanced method of data validation and
 are sometimes your best bet. But using type-based validation, when feasible, will
 certainly be faster (in terms of processor speed) and less prone to programmer error
 (did I mention that regular expressions are complex?).

 Tip

 The rules of how values are converted from one data type to another are somewhat complicated.
 If you want to get into the details, see the PHP manual.

 Validating Files by Type

 Chapter 11 includes an example of handling file uploads in PHP. Because uploading files allows
 users to place a more potent type of content on your server (compared with just the
 text sent via a form), you cannot be too mindful of security when it comes to handling
 them. In that particular example, the uploaded file was validated by checking its
 MIME type. Specifically, with an uploaded file, $_FILES[‘upload’][‘type’] refers to the MIME type provided by the uploading browser. This is a good start,
 but it’s easy for a malicious user to trick the browser into providing a false MIME
 type. A more reliable way of confirming a file’s type is to use the Fileinfo extension.

 Added in PHP 5.3, the Fileinfo extension determines a file’s type (and encoding) by
 hunting for “magic bytes” or “magic numbers” within the file. For example, the data
 that makes up a GIF image must begin with the ASCII code that represents either GIF89a or GIF87a; the data that makes up a PDF file starts with %PDF.

 To use Fileinfo, start by creating a Fileinfo resource:

 $fileinfo = finfo_open(kind);

 The kind value will be one of several constants, indicating the type of resource you want
 to create. To determine a file’s type, the constant is FILEINFO_MIME_TYPE:

 Click here to view code image

 $fileinfo = finfo_open
[image: Images](FILEINFO_MIME_TYPE);

 Next, call the finfo_file() function, providing the Fileinfo resource and a reference to the file you want to
 examine:

 finfo_file($fileinfo, $filename);

 This function returns the file’s MIME type (given the already created resource), based
 on the file’s actual magic bytes.

 Finally, once you’re done, you should close the Fileinfo resource:

 finfo_close($fileinfo);

 Our next script will use this information to confirm that an uploaded file is an RTF
 (Rich Text Format). Note that you’ll be able to test this example only if you are
 using version 5.3 of PHP or later.

 To validate files by type:

 1. Begin a new PHP script in your text editor or IDE, to be named upload_rtf.php (Script 13.3):

 Click here to view code image

 <!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Upload an RTF Document
 [image: Images]</title>
</head>
<body>
<?php # Script 13.3 -
[image: Images]upload_rtf.php

 Script 13.3 Using the Fileinfo extension, this script does a good job of confirming an uploaded
 file's type.

 Click here to view code image

 1 <!doctype html>
2 <html lang="en">
3 <head>
4 <meta charset="utf-8">
5 <title>Upload an RTF Document</title>
6 </head>
7 <body>
8 <?php # Script 13.3 - upload_rtf.php
9
10 // Check if the form has been submitted:
11 if ($_SERVER['REQUEST_METHOD'] == 'POST') {
12

13 // Check for an uploaded file:
14 if (isset($_FILES['upload']) && file_exists($_FILES['upload']['tmp_name'])) {
15
16 // Validate the type. Should be RTF.
17 // Create the resource:
18 $fileinfo = finfo_open(FILEINFO_MIME_TYPE);
19
20 // Check the file:
21 if (finfo_file($fileinfo, $_FILES['upload']['tmp_name']) == 'text/rtf') {
22
23 // Indicate it's okay!
24 echo '<p>The file would be acceptable!</p>';
25
26 // In theory, move the file over. In reality, delete the file:
27 unlink($_FILES['upload']['tmp_name']);
28
29 } else { // Invalid type.
30 echo '<p style="font-weight: bold; color: #C00">Please upload an RTF document.</p>';
31 }
32
33 // Close the resource:
34 finfo_close($fileinfo);
35
36 } // End of isset($_FILES['upload']) IF.
37
38 // Add file upload error handling, if desired.
39
40 } // End of the submitted conditional.
41 ?>
42
43 <form enctype="multipart/form-data" action="upload_rtf.php" method="post">
44 <input type="hidden" name="MAX_FILE_SIZE" value="524288">
45 <fieldset><legend>Select an RTF document of 512KB or smaller to be uploaded:</legend>
46 <p>File: <input type="file" name="upload"></p>
47 </fieldset>
48 <div align="center"><input type="submit" name="submit" value="Submit"></div>
49 </form>
50 </body>
51 </html>

 2. Check if the form has been submitted:

 Click here to view code image

 if ($_SERVER['REQUEST_METHOD'] ==
[image: Images]'POST') {

 This same script will both display and handle the form.

 3. Check for an uploaded file:

 Click here to view code image

 if (isset($_FILES['upload']) &&
[image: Images]file_exists($_FILES['upload']
[image: Images]['tmp_name'])) {

 This script first confirms that the $_FILES[‘upload’ variable is set, which would be the case after a form submission. The conditional
 then confirms that the uploaded file exists (by default, in the temporary directory).
 This clause prevents attempts to validate the file’s type should the upload have failed
 (e.g., because the selected file was too large).

 4. Create the Fileinfo resource:

 Click here to view code image

 $fileinfo = finfo_open
[image: Images](FILEINFO_MIME_TYPE);

 This line, as already explained, creates a Fileinfo resource whose specific purpose
 is to retrieve a file’s MIME type.

 5. Check the file’s type:

 Click here to view code image

 if (finfo_file($fileinfo,
[image: Images]$_FILES['upload']['tmp_name']) ==
[image: Images]'text/rtf') {
 echo '<p>The file would be
 [image: Images]acceptable!</p>';

 If the finfo_file() function returns a value of text/rtf for the uploaded file, then the file has the proper type for the purposes of this
 script. In that case, a message is printed [image: Images].

 [image: Images]

 [image: Images]If the selected and uploaded document has a valid RTF MIME type, the user will see
 this result.

 6. Delete the uploaded file:

 Click here to view code image

 unlink($_FILES['upload']['tmp_name']);

 In a real-world example, the script would now move the file over to its final destination
 on the server. Because this script is simply for the purpose of validating a file’s
 type, the file can be removed instead.

 7. Complete the type conditional:

 Click here to view code image

 } else { // Invalid type.
 echo '<p style="font-weight:
[image: Images]bold; color: #C00">Please
[image: Images]upload an RTF document.</p>';
}

 If the uploaded file’s MIME type is not text/rtf, the script will print an error message [image: Images].

 [image: Images]

 [image: Images]Uploaded files without the proper MIME type are rejected.

 8. Close the Fileinfo resource:

 finfo_close($fileinfo);

 The final step is to close the open Fileinfo resource once it’s no longer needed.

 9. Complete the remaining conditionals:

 Click here to view code image

 } // End of isset($_FILES
[image: Images]['upload']) IF.
} // End of the submitted
[image: Images]conditional.
?>

 You could also add debugging information, such as the related uploaded error message,
 if an error occurs.

 10. Create the form:

 Click here to view code image

 <form enctype="multipart
[image: Images]/form-data" action="upload_rtf
[image: Images].php" method="post">
 <input type="hidden" name=
 [image: Images]"MAX_FILE_SIZE" value="524288">
 <fieldset><legend>Select an RTF
 [image: Images]document of 512KB or smaller
 [image: Images]to be uploaded:</legend>
 <p>File: <input
 [image: Images]type="file" name="upload"></p>
 </fieldset>
 <div align="center"><input
 [image: Images]type="submit" name="submit"
 [image: Images]value="Submit"></div>
</form>

 The form uses the proper enctype attribute, has a MAX_FILE_SIZE recommendation in a hidden form input, and uses a file input type: the three requirements
 for accepting file uploads. That’s all there is to this example (as in [image: Images] and [image: Images]).

 11. Complete the page:

 </body>
</html>

 12. Save the file as upload_rtf.php, place it in your web directory, and test it in your browser.

 Tip

 The same Fileinfo resource can be applied to multiple files. Just close the resource
 after the script is done with the resource.

 Preventing XSS Attacks

 HTML is simply plain text, like , which is given special meaning by browsers (as by making text bold). Because of
 this fact, your website’s user could easily put HTML in their form data, like in the
 comments field in the email example. What may seem trivial ends up being a significant
 concern, however.

 Many dynamically driven web applications take the information submitted by a user,
 store it in a database, and then redisplay that information on another page. Think
 of a forum, as just one example. At the very least, if a user enters HTML code in
 their data, such code could throw off the layout and aesthetic of your site. Taking
 this a step further, JavaScript is also just plain text, but text that has special
 meaning—executable meaning—within a browser. If malicious code entered into a form were redisplayed
 in a browser [image: Images], it could create pop-up windows [image: Images], steal cookies, or redirect the browser to other sites. Such attacks are referred
 to as cross-site scripting (XSS). As in the email example, where you need to look for and nullify bad strings
 found in data, prevention of XSS attacks is accomplished by addressing any potentially
 dangerous PHP, HTML, or JavaScript.

 [image: Images]

 [image: Images] The malicious and savvy user can enter HTML, CSS, and JavaScript into textual form
 fields.

 [image: Images]

 [image: Images]The JavaScript entered into the comments field [image: Images] would create this alert window when the comments were displayed in the browser.

 PHP includes a handful of functions for handling HTML and other code found within
 strings. These include the following:

 [image: Images] htmlspecialchars(), which turns &, ‘,”, <, and > into an HTML entity format (&, ", etc.)

 [image: Images] htmlentities(), which turns all applicable characters into their HTML entity format

 [image: Images] strip_tags(), which removes all HTML and PHP tags

 These three functions are roughly listed in order from least disruptive to most. Which
 function you’ll want to use depends on the application at hand. To demonstrate how
 these functions work and differ, let’s create a simple PHP page that takes some text
 and runs it through these functions, printing the results [image: Images].

 [image: Images]

 [image: Images] Thanks to the htmlentities() and strip_tags() functions, malicious code entered into a form field [image: Images] can be rendered inert.

 To prevent XSS attacks:

 1. Begin a new PHP document in your text editor or IDE, to be named xss.php (Script 13.4):

 Click here to view code image

 <!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>XSS Attacks</title>
</head>
<body>
<?php # Script 13.4 - xss.php

 Script 13.4 Applying the htmlentities() and strip_tags() functions to submitted text can prevent XSS attacks.

 Click here to view code image

 1 <!doctype html>
2 <html lang="en">
3 <head>
4 <meta charset="utf-8">
5 <title>XSS Attacks</title>
6 </head>
7 <body>
8 <?php # Script 13.4 - xss.php
9
10 if ($_SERVER['REQUEST_METHOD'] == 'POST') {
11
12 // Apply the different functions, printing the results:
13 echo "<h2>Original</h2><p>{$_POST['data']}</p>";
14 echo '<h2>After htmlentities()</h2><p>' . htmlentities($_POST['data']). '</p>';
15 echo '<h2>After strip_tags()</h2><p>' . strip_tags($_POST['data']). '</p>';
16
17 }
18 // Display the form:
19 ?>
20 <form action="xss.php" method="post">
21 <p>Do your worst! <textarea name="data" rows="3" cols="40"></textarea></p>
22 <div align="center"><input type="submit" name="submit" value="Submit"></div>
23 </form>
24 </body>
25 </html>

 2. Check for the form submission and print the received data in its original format:

 Click here to view code image

 if ($_SERVER['REQUEST_METHOD'] ==
[image: Images]'POST') {
 echo "<h2>Original</h2><p>
 [image: Images]{$_POST['data']}</p>";

 In order for us to compare and contrast what was originally received with the result
 after applying the functions, the original value must first be printed.

 3. Apply the htmlentities() function, printing the results:

 Click here to view code image

 echo '<h2>After htmlentities()
[image: Images]</h2><p>' . htmlentities
[image: Images]($_POST['data']). '</p>';

 So that submitted information does not mess up a page or hack the browser, it’s run
 through the htmlentities() function. With this function, any HTML entity will be translated; for instance, < and > will become < and >, respectively.

 4. Apply the strip_tags() function, printing the results:

 Click here to view code image

 echo '<h2>After strip_tags()
[image: Images]</h2><p>' . strip_tags
[image: Images]($_POST['data']). '</p>';

 The strip_tags() function completely takes out any HTML, JavaScript, or PHP tags. It’s therefore the
 most foolproof function to use on submitted data.

 5. Complete the PHP section:

 }
?>

 6. Display the HTML form:

 Click here to view code image

 <form action="xss.php" method="post">
 <p>Do your worst! <textarea
 [image: Images]name="data" rows="3" cols="40">
 [image: Images]</textarea></p>
 <div align="center"><input
 [image: Images]type="submit" name="submit"
 [image: Images]value="Submit"></div>
</form>

 The form [image: Images] has only one field for the user to complete: a textarea.

 7. Complete the page:

 </body>
</html>

 8. Save the page as xss.php, place it in your web directory, and test it in your browser.

 9. View the source code of the page to see the full effect of these functions [image: Images].

 [image: Images]

 [image: Images]This snippet of the page’s HTML source [image: Images] shows the original, submitted value, the value after using html_entities(), and the value after using strip_tags().

 Tip

 Both htmlspecialchars() and htmlentities() take an optional parameter indicating how quotation marks should be handled. See
 the PHP manual for specifics.

 Tip

 The strip_tags() function takes an optional parameter indicating what tags should not be stripped.

 Click here to view code image

 $var = strip_tags($var, '<p>
');

 Tip

 Unrelated to security but quite useful is the nl2br() function. It turns every return (such as those entered into a textarea) into an HTML

 tag.

 Using the Filter Extension

 Earlier, this chapter introduced the concept of typecasting, which is a good way to force a variable to be of the right type. In the next chapter,
 you’ll learn about regular expressions, which can validate both the type of data and its specific contents or format. PHP
 5.2 introduced the Filter extension (www.php.net/filter), an important tool that bridges the gap between the relatively simple approach of
 typecasting and the more complex concept of regular expressions.

 The Filter extension can be used for one of two purposes: validating data or sanitizing it. A validation process, as you know well by now, confirms that data matches expectations.
 Sanitization, by comparison, alters data by removing inappropriate characters to make
 the data meet expectations.

 The most important function in the Filter extension is filter_var():

 Click here to view code image

 filter_var(variable, filter[,options]);

 The function’s first argument is the variable to be filtered, the second is the filter
 to apply, and the optional third argument is for adding additional criteria. Table 13.3 lists the validation filters, each of which is represented as a constant.

 TABLE 13.3 Validation Filters

 	
 Constant

 	
 FILTER_VALIDATE_BOOLEAN

 	
 FILTER_VALIDATE_EMAIL

 	
 FILTER_VALIDATE_FLOAT

 	
 FILTER_VALIDATE_INT

 	
 FILTER_VALIDATE_IP

 FILTER_VALIDATE_MAC

 	
 FILTER_VALIDATE_REGEXP

 	
 FILTER_VALIDATE_URL

 For example, to confirm that a variable has a decimal value, you would use

 Click here to view code image

 if (filter_var($var,
[image: Images]FILTER_VALIDATE_FLOAT)) {

 A couple of filters take an optional parameter, the most common being the FILTER_VALIDATE_INT filter, which has min_range and max_range options for controlling the smallest and largest acceptable values. For example,
 this next bit of code confirms that the $age variable is an integer between 1 and 120 (inclusive):

 Click here to view code image

 if (filter_var($var,
[image: Images]FILTER_VALIDATE_INT, ['min_range'
[image: Images]=> 1, 'max_range' => 120])) {

 To sanitize data, you’ll still use the filter_var() function, but use one of the sanitization filters as listed in Table 13.4.

 TABLE 13.4 Sanitization Filters

 	
 Constant

 	
 FILTER_SANITIZE_EMAIL

 	
 FILTER_SANITIZE_ENCODED

 	
 FILTER_SANITIZE_MAGIC_QUOTES

 	
 FILTER_SANITIZE_NUMBER_FLOAT

 	
 FILTER_SANITIZE_NUMBER_INT

 FILTER_SANITIZE_FULL_SPECIAL_CHARS

 	
 FILTER_SANITIZE_SPECIAL_CHARS

 	
 FILTER_SANITIZE_STRING

 	
 FILTER_SANITIZE_STRIPPED

 	
 FILTER_SANITIZE_URL

 	
 FILTER_UNSAFE_RAW

 Many of the filters duplicate other PHP functions. For example, FILTER_SANITIZE_ MAGIC_QUOTES is the same as applying addslashes(), FILTER_SANITIZE_SPECIAL_CHARS can be used in lieu of htmlspecialchars(), and FILTER_SANITIZE_STRING() can be used as a replacement for strip_tags(). The PHP manual lists several additional flags, as constants, that can be used as
 the optional third argument to affect how each filter behaves. As an example of applying
 a sanitizing filter, this code is equivalent to how strip_tags() is used in xss.php (Script 13.4):

 Click here to view code image

 echo '<h2>After strip_tags()</h2><p>'
[image: Images]. filter_var($_POST['data'],
[image: Images]FILTER_SANITIZE_STRING) . '</p>';

 If you get hooked on using the Filter extension, you may appreciate the consistency
 of being able to use it for all data sanitization, even when functions such as strip_tags() exist.

 So you can practice this, the next example will update calculator.php (Script 13.2) so that it sanitizes all the incoming data.

 To use the Filter extension:

 1. Open calculator.php (Script 13.2) in your text editor or IDE.

 2. Change the assignment of the $quantity variable to (Script 13.5)

 Click here to view code image

 $quantity = (isset($_POST
[image: Images]['quantity'])) ? filter_var
[image: Images]($_POST['quantity'],
[image: Images]FILTER_VALIDATE_INT,
[image: Images]['min_range' => 1]) : NULL;

 Script 13.5 Using the Filter extension, this script sanitizes incoming data rather than typecasting
 it, as in the earlier version of the script.

 Click here to view code image

 1 <!doctype html>
2 <html lang="en">
3 <head>
4 <meta charset="utf-8">
5 <title>Widget Cost Calculator</title>
6 </head>
7 <body>
8 <?php # Script 13.5 - calculator.php #2
9 // This version of the script uses the Filter extension instead of typecasting.
10
11 // Check if the form has been submitted:
12 if ($_SERVER['REQUEST_METHOD'] == 'POST') {
13

14 // Sanitize the variables:
15 $quantity = (isset($_POST['quantity'])) ? filter_var($_POST['quantity'], FILTER_VALIDATE_INT, ['min_range' => 1]) : NULL;
16 $price = (isset($_POST['price'])) ? filter_var($_POST['price'], FILTER_SANITIZE_NUMBER_FLOAT, FILTER_FLAG_ALLOW_FRACTION) : NULL;
17 $tax = (isset($_POST['tax'])) ? filter_var($_POST['tax'], FILTER_SANITIZE_NUMBER_FLOAT, FILTER_FLAG_ALLOW_FRACTION) : NULL;
18
19 // All variables should be positive!
20 if (($quantity > 0) && ($price > 0) && ($tax > 0)) {
21
22 // Calculate the total:
23 $total = $quantity * $price;
24 $total += $total * ($tax/100);
25
26 // Print the result:
27 echo '<p>The total cost of purchasing ' . $quantity . ' widget(s) at $' . number_format($price, 2) . ' each, plus tax, is $' . number_format($total, 2) . '.</p>';
28
29 } else { // Invalid submitted values.
30 echo '<p style="font-weight: bold; color: #C00">Please enter a valid quantity, price,
 and tax rate.</p>';
31 }
32
33 } // End of main isset() IF.
34
35 // Leave the PHP section and create the HTML form.
36 ?>
37 <h2>Widget Cost Calculator</h2>
38 <form action="calculator.php" method="post">
39 <p>Quantity: <input type="number" name="quantity" step="1" min="1" value="<?php if
 (isset($quantity)) echo $quantity; ?>"></p>
40 <p>Price: <input type="number" name="price" step=".01" min="0.01" value="<?php if
 (isset($price)) echo $price; ?>"></p>
41 <p>Tax (%): <input type="text" name="tax" step=".01" min="0.01" value="<?php if
 (isset($tax)) echo $tax; ?>"></p>
42 <p><input type="submit" name="submit" value="Calculate!"></p>
43 </form>
44 </body>
45 </html>

 This version of the script will improve on its predecessor in a couple of ways. First,
 each POST variable is checked for existence using isset(), instead of assuming the variable exists. If the variable is not set, then $quantity is assigned NULL. If the variable is set, it’s run through filter_var(), sanitizing the value as an integer greater than 1.

 The sanitized value is then assigned to $quantity. All this code is written using the ternary operator, introduced in Chapter 10, “Common Programming Techniques,” for brevity’s sake. As an if-else conditional, the same code would be written as:

 Click here to view code image

 if (isset($_POST['quantity'])) {
 $quantity = filter_var($_POST
 [image: Images]['quantity'], FILTER_VALIDATE_
 [image: Images]INT, ['min_range' => 1]);
} else {
 $quantity = NULL;
}

 3. Change the assignment of the $price variable to

 Click here to view code image

 $price = (isset($_POST['price'])) ?
[image: Images]filter_var($_POST['price'],
[image: Images]FILTER_SANITIZE_NUMBER_FLOAT,
[image: Images]FILTER_FLAG_ALLOW_FRACTION) :
[image: Images]NULL;

 This code is a repetition of that in Step 2, except that the sanitizing filter insists
 that the data be a float. The additional argument, FILTER_FLAG_ALLOW_FRACTION, says that it’s acceptable for the value to use a decimal point.

 4. Change the assignment of the $tax variable to

 Click here to view code image

 $tax = (isset($_POST['tax'])) ?
[image: Images]filter_var($_POST['tax'], FILTER_
[image: Images]SANITIZE_NUMBER_FLOAT, FILTER_
[image: Images]FLAG_ALLOW_FRACTION) : NULL;

 This is a repetition of the code in Step 3.

 5. Save the page, place it in your web directory, and test it in your browser [image: Images] and [image: Images].

 [image: Images]

 [image: Images]Invalid values in submitted form data…

 [image: Images]

 [image: Images]…will be nullified by the Filter extension (as opposed to typecasting, which, for
 example, converted the string cat to the number 0).

 Tip

 The filter_has_var() function confirms whether a variable with a given name exists.

 Tip

 The filter_input_array() function allows you to apply an array of filters to an array of variables in one
 step. For details (and perhaps to be blown away), see the PHP manual.

 Preventing SQL Injection Attacks

 Another type of attack that malicious users can attempt is SQL injection. As the name implies, SQL injection is an attempt to insert bad code into a site’s
 SQL queries. One aim of such attacks is that they would create a syntactically invalid
 query, thereby revealing something about the script or database in the resulting error
 message [image: Images]. An even bigger aspiration is that the injection attack could alter, destroy, or
 expose the stored data.

 [image: Images]

 [image: Images] If a site reveals a detailed error message and doesn’t properly handle problematic
 characters in submitted values, hackers can learn a lot about your server.

 Fortunately, SQL injection attacks are rather easy to prevent. Start by validating
 all data to be used in queries (and perform typecasting, or apply the Filter extension,
 whenever possible). Second, use a function like mysqli_real_escape_string(), which makes data safe to use in queries. This function was introduced in Chapter 9, “Using PHP with MySQL.” Third, don’t show detailed errors on live sites.

 Prepared Statement Performance

 Prepared statements can be more secure than running queries in the old-fashioned way,
 but they may also be faster. If a PHP script sends the same query to MySQL multiple
 times, using different values each time, prepared statements can really speed things
 up. In such cases, the query itself is only sent to MySQL and parsed once. Then, the
 values are sent to MySQL separately.

 As a trivial example, the following code would run 100 queries in MySQL:

 Click here to view code image

 $q = 'INSERT INTO counter (num) VALUES (?)';
$stmt = mysqli_prepare($dbc, $q);
mysqli_stmt_bind_param($stmt, 'i', $n);
for ($n = 1; $n <= 100; $n++) {
mysqli_stmt_execute($stmt);
}

 Even though the query is being run 100 times, the full text is only being transferred
 to, and parsed by, MySQL once. MySQL versions 5.1.17 and later include a caching mechanism
 that may also improve the performance of other uses of prepared statements.

 An alternative to using mysqli_real_escape_string() is to use prepared statements. Prepared statements were added to MySQL in version 4.1, and PHP can use them as of version 5. When you are not using prepared statements, the entire
 query, including the SQL syntax and the specific values, is sent to MySQL as one long
 string. MySQL then parses and executes it. With a prepared query, the SQL syntax is
 sent to MySQL first, where it is parsed, making sure it’s syntactically valid (e.g.,
 confirming that the query does not refer to tables or columns that don’t exist). Then
 the specific values are sent separately; MySQL assembles the query using those values,
 and then executes it. The benefits of prepared statements are important: greater security
 and potentially better performance. I’ll focus on the security aspect here, but see
 the sidebar for a discussion of performance.

 Prepared statements can be created out of any INSERT, UPDATE, DELETE, or SELECT query. Begin by defining your query, marking placeholders using question marks. As an example, take the SELECT query from edit_user.php (Script 10.3):

 $q = "SELECT first_name, last_name,
[image: Images]email FROM users WHERE user_id=$id";

 As a prepared statement, this query becomes

 $q = "SELECT first_name, last_name,
[image: Images]email FROM users WHERE user_id=?";

 Next, prepare the statement in MySQL, assigning the results to a PHP variable:

 $stmt = mysqli_prepare($dbc, $q);

 At this point, MySQL will parse the query, but it won’t execute it.

 Next, you bind PHP variables to the query’s placeholders. In other words, you state that one variable
 should be used for the first question mark, another variable for the next question
 mark, and so on. Continuing with the same example, you would code

 mysqli_stmt_bind_param($stmt, 'i', $id);

 The i part of the command indicates what kind of value should be expected, using the characters
 listed in Table 13.5. In this case, the query expects to receive one integer. As another example, here’s
 how the login query from Chapter 12, “Cookies and Sessions,” would be handled:

 TABLE 13.5 Bound Value Types

 	
 Letter

 	
 Represents

 	
 d

 	
 Decimal

 	
 i

 	
 Integer

 	
 b

 	
 Blob (binary data)

 	
 s

 	
 All other types

 $q = "SELECT user_id, first_name
[image: Images]FROM users WHERE email=? AND
[image: Images]pass=SHA2(?, 512)";
$stmt = mysqli_prepare($dbc, $q);
mysqli_stmt_bind_param($stmt, 'ss',
[image: Images]$e, $p);

 In this example, something interesting is also revealed: even though both the email
 address and password values are strings, they are not placed within quotes in the query. This is another difference between a prepared statement and a standard
 query.

 Once the statement has been bound, you can assign values to the PHP variables (if
 that hasn’t happened already) and then execute the statement. Using the login example,
 that’d be

 $e = 'email@example.com';
$p = 'mypass';
mysqli_stmt_execute($stmt);

 The values of $e and $p will be used when the prepared statement is executed.

 To see this process in action, let’s write a script that adds a post to the messages table in the forum database (created in Chapter 6, “Database Design”). I’ll also use the opportunity to demonstrate a couple of the other prepared statement-related
 functions.

 To use prepared statements:

 1. Begin a new PHP script in your text editor or IDE, to be named post_message.php (Script 13.6):

 Click here to view code image

 <!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Post a Message</title>
</head>
<body>
<?php # Script 13.6 -
[image: Images]post_message.php

 Script 13.6 This script, which represents a simplified version of a message posting page, uses
 prepared statements as a way of preventing SQL injection attacks.

 Click here to view code image

 1 <!doctype html>
2 <html lang="en">
3 <head>
4 <meta charset="utf-8">
5 <title>Post a Message</title>
6 </head>
7 <body>
8 <?php # Script 13.6 - post_message.php
9
10 if ($_SERVER['REQUEST_METHOD'] == 'POST') {
11
12 // Validate the data (omitted)!
13
14 // Connect to the database:
15 $dbc = mysqli_connect('localhost', 'username', 'password', 'forum');
16
17 // Make the query:
18 $q = 'INSERT INTO messages (forum_id, parent_id, user_id, subject, body,
 date_entered) VALUES (?, ?, ?, ?, ?, NOW())';
19

20 // Prepare the statement:
21 $stmt = mysqli_prepare($dbc, $q);
22
23 // Bind the variables:
24 mysqli_stmt_bind_param($stmt, 'iiiss', $forum_id, $parent_id, $user_id, $subject,
 $body);
25
26 // Assign the values to variables:
27 $forum_id = (int) $_POST['forum_id'];
28 $parent_id = (int) $_POST['parent_id'];
29 $user_id = 3; // The user_id value would normally come from the session.
30 $subject = strip_tags($_POST['subject']);
31 $body = strip_tags($_POST['body']);
32
33 // Execute the query:
34 mysqli_stmt_execute($stmt);
35
36 // Print a message based upon the result:
37 if (mysqli_stmt_affected_rows($stmt) == 1) {
38 echo '<p>Your message has been posted.</p>';
39 } else {
40 echo '<p style="font-weight: bold; color: #C00">Your message could not be posted.</p>';
41 echo '<p>' . mysqli_stmt_error($stmt) . '</p>';
42 }
43
44 // Close the statement:
45 mysqli_stmt_close($stmt);
46
47 // Close the connection:
48 mysqli_close($dbc);
49
50 } // End of submission IF.
51
52 // Display the form:
53 ?>
54 <form action="post_message.php" method="post">
55
56 <fieldset><legend>Post a message:</legend>
57
58 <p>Subject: <input name="subject" type="text" size="30" maxlength="100"> </p>
59
60 <p>Body: <textarea name="body" rows="3" cols="40"></textarea></p>
61
62 </fieldset>
63 <div align="center"><input type="submit" name="submit" value="Submit"></div>
64 <input type="hidden" name="forum_id" value="1">
65 <input type="hidden" name="parent_id" value="0">
66
67 </form>
68 </body>
69 </html>

 2. Check for form submission and connect to the forum database:

 Click here to view code image

 if ($_SERVER['REQUEST_METHOD'] ==
[image: Images]'POST') {
 $dbc = mysqli_connect
[image: Images]('localhost', 'username',
[image: Images]'password', 'forum');

 Note that, for brevity’s sake, I’m omitting basic data validation and error reporting.
 Although a real site (a more realized version of this script can be found in Chapter 17, “Example—Message Board”) would check that the message subject and body aren’t empty and that the various
 ID values are positive integers, this script will still be relatively safe, thanks
 to the security offered by prepared statements.

 This example will use the forum database, created in Chapter 6.

 3. Define and prepare the query:

 Click here to view code image

 $q = 'INSERT INTO messages
[image: Images](forum_id, parent_id, user_id,
[image: Images]subject, body, date_entered)
VALUES (?, ?, ?, ?, ?, NOW())';
$stmt = mysqli_prepare($dbc, $q);

 This syntax has already been explained. The query is defined, using placeholders for
 values to be assigned later. Then the function sends this to MySQL, assigning the result to $stmt.

 The query itself was first used in Chapter 6. It populates six fields in the messages table. The value for the column will be the result of the function, not a bound value.

 4. Bind the appropriate variables and create a list of values to be inserted:

 Click here to view code image

 mysqli_stmt_bind_param($stmt,
[image: Images]'iiiss', $forum_id, $parent_id,
[image: Images]$user_id, $subject, $body);
$forum_id = (int) $_POST
[image: Images]['forum_id'];
$parent_id = (int) $_POST
[image: Images]['parent_id'];
$user_id = 3;
$subject = strip_tags($_POST
[image: Images]['subject']);
$body = strip_tags($_POST['body']);

 The first line says that three integers and two strings will be used in the prepared
 statement. The values will be found in the variables to follow.

 For those variables, the subject and body values come straight from the form [image: Images], after running them through strip_tags() to remove any potentially dangerous code. The forum ID and parent ID (which indicates
 if the message is a reply to an existing message or not) also come from the form.
 They’ll be typecast to integers (for added security, you would confirm that they’re
 positive numbers after typecasting them, or you could use the Filter extension).

 [image: Images]

 [image: Images]The simple HTML form.

 The user ID value, in a real script, would come from the session, where it would be
 stored when the user logged in.

 5. Execute the query:

 mysqli_stmt_execute($stmt);

 Finally, the prepared statement is executed.

 6. Print the results of the execution and complete the loop:

 Click here to view code image

 if (mysqli_stmt_affected_rows
[image: Images]($stmt) = = 1) {
 echo '<p>Your message has been
 [image: Images]posted.</p>';
} else {
 echo '<p style="font-weight:
 [image: Images]bold; color: #C00">Your
 [image: Images]message could not be posted.
 [image: Images]</p>';
 echo '<p>' . mysqli_stmt_error
 [image: Images]($stmt) . '</p>';
}

 The successful insertion of a record can be confirmed using the function, which works as you expect it would (returning the number of affected rows).
 In that case, a simple message is printed [image: Images]. If a problem occurred, the function returns the specific MySQL error message. This is for your debugging purposes,
 not to be used in a live site. That being said, often the PHP error message is more
 useful than that returned by mysqli_stmt_error()[image: Images].

 [image: Images]

 [image: Images] If one record in the database was affected by the query, this will be the result.

 [image: Images]

 [image: Images] Error reporting with prepared statements can be confounding sometimes!

 7. Close the statement and the database connection:

 mysqli_stmt_close($stmt);
mysqli_close($dbc);

 The first function closes the prepared statement, freeing up the resources. At this
 point, $stmt no longer has a value. The second function closes the database connection.

 8. Complete the PHP section:

 } // End of submission IF.
?>

 9. Begin the form:

 Click here to view code image

 <form action="post_message.php"
 [image: Images]method="post">
 <fieldset><legend>Post a
 [image: Images]message:</legend>
 <p>Subject:
 [image: Images]<input name="subject"
 [image: Images]type="text" size="30"
 [image: Images]maxlength="100"></p>
 <p>Body:
 [image: Images]<textarea name="body" rows="3"
 [image: Images]cols="40"></textarea></p>
</fieldset>

 The form begins with just a subject text input and a textarea for the message’s body.

 10. Complete the form:

 Click here to view code image

 <div align="center"><input
[image: Images]type="submit" name="submit"
[image: Images]value="Submit"></div>
<input type="hidden"
[image: Images]name="forum_id" value="1">
<input type="hidden"
[image: Images]name="parent_id" value="0">

 The form contains two fields the user would fill out and two hidden inputs that store
 values the query needs. In a real version of this script, the forum_id and parent_id values would be determined dynamically.

 11. Complete the page:

 </body>
</html>

 12. Save the file as post_message.php, place it in your web directory, and test it in your browser [image: Images].

 [image: Images]

 [image: Images] Selecting the most recent entry in the messages table confirms that the prepared statement (Script 13.6) worked. Notice that the HTML was stripped out of the post but the quotes are still
 present.

 Tip

 There are two kinds of prepared statements. Here I have demonstrated bound parameters,
 where PHP variables are bound to a query. The other type is bound results, where the
 results of a query are bound to PHP variables.

 Securing Passwords with PHP

 How secure a user account system is will depend largely on how passwords are handled.
 Passwords can be stored on the server in three ways:

 [image: Images] In plain text, which is a terrible thing to do

 [image: Images] In an encrypted format, which can be decrypted

 [image: Images] In a hashed format, which can’t be decrypted

 If you store passwords in an encrypted format, it’s safe from prying eyes and can
 be retrieved when necessary. But if someone gets onto your server and can find your
 code for performing the decryption, that person will be able to view every user’s
 password. And it turns out that you don’t need passwords to be decryptable; it doesn’t
 matter whether anyone can ever see the plain text in its original form again.

 An alternative is to create a hash of the password. A hash is a representation of
 data. For example, MD5 is a hashing algorithm that’s been around for years. The MD5
 hash of the word password is 5f4dcc3b5aa765d61d8327deb882cf99; the MD5 hash of the word omnivore is 04f7696e917f292f99925f80fcdb1db1. You can create a hash out of any piece of data, and, in theory, no two pieces of
 data have the same hash.

 Preventing Brute-Force Attacks

 In a brute-force attack, a malicious user tries to log in to a secure system by making
 lots of attempts in the hopes of eventual success. It’s not a sophisticated type of
 attack, hence the name “brute force.” For example, if you have a login process that
 requires a username and password, there is a limit to the possible number of username/password
 combinations. That limit may be in the billions or trillions, but still, it’s a finite
 number. Using algorithms and automated processes, brute-force attacks repeatedly try
 combinations until they succeed.

 The best way to prevent brute-force attacks from succeeding is requiring users to
 register long passwords. Although requiring a combination of characters, numbers,
 and symbols prevents dictionary attacks, using longer passwords requires exponentially
 more computing power to crack.

 Also, don’t give indications as to why a login failed: saying that a username and
 password combination isn’t correct gives away nothing, but saying that a username
 isn’t right or that the password isn’t right for that username says too much.

 To stop a brute-force attack in its tracks, you could also limit the number of incorrect
 login attempts by a given IP address. IP addresses do change frequently, but in a
 brute-force attack, the same IP address—or pool of IP addresses—would be trying to
 log in multiple times in a matter of minutes. You would have to track incorrect logins
 by IP address, and then, after X number of invalid attempts, block that IP address for, say, 24 hours. Or, if you
 didn’t want to go that far, you could use an “incremental delay” defense: each incorrect
 login from the same IP address creates an added delay in the response (use PHP’s sleep() function to create the delay). Humans might not notice or be bothered by such delays,
 but automated attacks most certainly would.

 Storing the hash version of a password is more secure in that it can’t be decrypted.
 If hackers get your data, the best they can do is create hashes of common words in
 the hopes that they find the matching hash (this is called a dictionary attack). But
 storing a hash still makes logging in possible. When a user logs in, the hashed version
 of the user’s login password just needs to equal the already stored hashed version.
 If the two hashes equate, the submitted password is correct.

 Once you’ve decided to hash the passwords, you’ll need to choose what hashing algorithm
 (or formula) to use and where the hashing should take place. By the latter I mean that you can hash the password either in the database or in your PHP code.

 More Security Recommendations

 This chapter covers many specific techniques for improving your web security. Here
 are a handful of other recommendations:

 [image: Image] Do your best to limit what information is requested from the user and what the site
 stores. The less information handled by the site in any way, the less data you have
 to worry about being stolen.

 [image: Image] Make it your job to study, follow, and abide by security recommendations. Don’t just
 rely on the advice of one chapter, one book, or one author.

 [image: Image] Don’t retain user-supplied names for uploaded files.

 [image: Image] Watch how database references are used. For example, if a person’s user ID is that
 user’s primary key from the database and this is stored in a cookie (as in Chapter 12), a malicious user just needs to change that cookie value to access another user’s
 account.

 [image: Image] Don’t show detailed error messages (this point was repeated in Chapter 8, “Error Handling and Debugging”).

 [image: Image] Use cryptography (this is discussed in Chapter 7, “Advanced SQL and MySQL,” with respect to the database, and in my book PHP 5 Advanced: Visual QuickPro Guide (Peachpit Press, 2007) with respect to the server).

 [image: Image] Don’t store credit card numbers, social security numbers, banking information, and
 the like. The only exception to this would be if you have deep enough pockets to pay
 for the best security and to cover the lawsuits that arise when this data is stolen
 from your site (which will inevitably happen).

 [image: Image] Use SSL. A secure connection is one of the best protections a server can offer a
 user.

 [image: Image] Reliably and consistently protect every page and directory that needs it. Never assume
 that people won’t find sensitive areas just because there’s no link to them. If access
 to a page or directory should be limited, make sure it is.

 My final recommendation is to be aware of your own limitations. As the programmer,
 you probably approach a script thinking how it should be used. This is not the same as to how it will be used, either accidentally or on purpose. Try to break your site to see what happens.
 Do bad things; do the wrong thing. Have other people try to break it, too (it’s normally
 easy to find such volunteers). When you code, if you assume that no one will ever
 use a page properly, it’ll be much more secure than if you assume people always will.

 Since Chapter 5, “Introduction to SQL,” the MySQL SHA2() function has been used for passwords. Normally I recommend having the database do
 as much as possible, but PHP now has a sophisticated hashing function —password_hash()—added to the language as of PHP 5.5. This means you must have a current version of
 PHP to use it (as of this writing, the most current version is only 5.5.3).

 If you aren’t running PHP 5.5 or greater, you can use an external library found at
 . This library was created by Anthony Ferrara () and is the basis for the version implemented in PHP 5.5. The library requires PHP
 5.3.7 or greater.

 This code hashes passwords securely using this new function:

 $hash = password_hash($password,
[image: Images]PASSWORD_DEFAULT);

 The function automatically creates and uses a proper salt. When provided with the
 PASSWORD_DEFAULT constant as the second argument, it also selects and uses the best, most secure hashing
 algorithm available.

 To verify a password upon login, use the password_verify() function. Its first argument is the submitted, unhashed password. The second is the
 stored, hashed password:

 Click here to view code image

 if (password_verify($password, $hash)) {
 /* Valid */
} else {
 /* Invalid */
}

 To use this, let’s update the registration and login process for the sitename database in a series of three steps:

 1. Change the pass column type in the database.

 2. Update the registration script to use PHP’s password_hash() function.

 3. Update the login script to use PHP’s password_verify() function.

 Note that changing the hashing mechanism renders all currently stored passwords in
 the database unusable (i.e., you’d never just casually change the password-handling
 methodology on a live site).

 To update the database:

 1. Connect to MySQL and select the sitename database, if you have not already.

 2. Change the users.pass column’s type [image: Images]:

 [image: Images]

 [image: Images]To change a column’s type, use a modify query.

 Click here to view code image

 ALTER TABLE users MODIFY COLUMN
[image: Images]pass VARCHAR(256) NOT NULL;

 The ALTER TABLE query lets you change an existing table, and the MODIFY COLUMN part of the query is how you change a column’s definition. The column is being converted
 to a VARCHAR up to 256 characters in length, and it cannot have null values.

 3. Wipe out all the existing passwords [image: Images]:

 [image: Images]

 [image: Images]The existing passwords are eliminated using this query.

 UPDATE users SET pass= ' ';

 Since the existing passwords won’t work with the PHP-based hashing (when someone attempts
 to log in), they might as well be erased. Because the column does not allow for null
 values, an empty string is assigned instead.

 To update the registration process:

 1. Open register.php (refer to Script 9.5) in your text editor or IDE.

 2. Change the assignment of the $p variable (line 32) so it uses PHP for the hashing (Script 13.7):

 Click here to view code image

 $p = password_hash(trim($_POST
[image: Images]['pass1']), PASSWORD_DEFAULT);

 Script 13.7 The updated registration page now hashes the password using PHP instead of MySQL.

 Click here to view code image

 1 <?php # Script 13.7 - register.php #3
2 // This script performs an INSERT query to add a record to the users table.
3
4 $page_title = 'Register';
5 include('includes/header.html');
6
7 // Check for form submission:
8 if ($_SERVER['REQUEST_METHOD'] == 'POST') {
9
10 require('../mysqli_connect.php'); // Connect to the db.
11
12 $errors = []; // Initialize an error array.
13
14 // Check for a first name:
15 if (empty($_POST['first_name'])) {
16 $errors[] = 'You forgot to enter your first name.';
17 } else {
18 $fn = mysqli_real_escape_string($dbc, trim($_POST['first_name']));
19 }
20
21 // Check for a last name:
22 if (empty($_POST['last_name'])) {
23 $errors[] = 'You forgot to enter your last name.';
24 } else {
25 $ln = mysqli_real_escape_string($dbc, trim($_POST['last_name']));
26 }
27

28 // Check for an email address:
29 if (empty($_POST['email'])) {
30 $errors[] = 'You forgot to enter your email address.';
31 } else {
32 $e = mysqli_real_escape_string($dbc, trim($_POST['email']));
33 }
34
35 // Check for a password and match against the confirmed password:
36 if (!empty($_POST['pass1'])) {
37 if ($_POST['pass1'] != $_POST['pass2']) {
38 $errors[] = 'Your password did not match the confirmed password.';
39 } else {
40 $p = password_hash(trim($_POST['pass1']), PASSWORD_DEFAULT);
41 }
42 } else {
43 $errors[] = 'You forgot to enter your password.';
44 }
45
46 if (empty($errors)) { // If everything's OK.
47
48 // Register the user in the database...
49
50 // Make the query:
51 $q = "INSERT INTO users (first_name, last_name, email, pass, registration_date) VALUES ('$fn', '$ln', '$e', '$p', NOW())";
52 $r = @mysqli_query($dbc, $q); // Run the query.
53 if ($r) { // If it ran OK.
54
55 // Print a message:
56 echo '<h1>Thank you!</h1>
57 <p>You are now registered. In Chapter 12 you will actually be able to log in!
 </p><p>
</p>';
58
59 } else { // If it did not run OK.
60
61 // Public message:
62 echo '<h1>System Error</h1>
63 <p class="error">You could not be registered due to a system error. We apologize for
 any inconvenience.</p>';
64
65 // Debugging message:
66 echo '<p>' . mysqli_error($dbc) . '

Query: ' . $q . '</p>';
67
68 } // End of if ($r) IF.
69
70 mysqli_close($dbc); // Close the database connection.
71
72 // Include the footer and quit the script:
73 include('includes/footer.html');
74 exit();
75
76 } else { // Report the errors.
77
78 echo '<h1>Error!</h1>
79 <p class="error">The following
 error(s) occurred:
';
80 foreach ($errors as $msg) { //
 Print each error.
81 echo " - $msg
\n";
82 }
83 echo '</p><p>Please try again.
 </p><p>
</p>';
84
85 } // End of if (empty($errors)) IF.
86
87 mysqli_close($dbc); // Close the
 database connection.
88
89 } // End of the main Submit conditional.
90 ?>
91 <h1>Register</h1>
92 <form action="register.php" method="post">
93 <p>First Name: <input type="text"
 name="first_name" size="15"
 maxlength="20" value="<?php if
 (isset($_POST['first_name'])) echo
 $_POST['first_name']; ?>"></p>
94 <p>Last Name: <input type="text"
 name="last_name" size="15"
 maxlength="40" value="<?php if
 (isset($_POST['last_name'])) echo
 $_POST['last_name']; ?>"></p>
95 <p>Email Address: <input type="email"
 name="email" size="20" maxlength="60"
 value="<?php if (isset($_POST['email']))
 echo $_POST['email']; ?>" > </p>
96 <p>Password: <input type="password"
 name="pass1" size="10" maxlength="20"
 value="<?php if (isset($_POST['pass1']))
 echo $_POST['pass1']; ?>" ></p>
97 <p>Confirm Password: <input
 type="password" name="pass2"
 size="10" maxlength="20" value="<?php
 if (isset($_POST['pass2'])) echo
 $_POST['pass2']; ?>" ></p>
98 <p><input type="submit" name="submit"
 value="Register"></p>
99 </form>
100 <?php include('includes/footer.html'); ?>

 The hashed password does not need to be run through the mysqli_real_escape_string() function since no hashed value could contain any problematic characters.

 3. Update the INSERT query so it no longer uses the MySQL SHA2() function:

 Click here to view code image

 $q = "INSERT INTO users
[image: Images](first_name, last_name, email,
[image: Images]pass, registration_date) VALUES
[image: Images]('$fn', '$ln', '$e', '$p', NOW())";

 The query now just uses $p as the value being stored.

 4. Save the file as register.php, place it in your web directory, and test it in your browser [image: Images] and [image: Images].

 [image: Images]

 [image: Images]To the user, the registration should look and function the same as before.

 [image: Images]

 [image: Images]Fetching the registered user from the database shows the hashed password.

 You’ll need to place it in the same directory with the other site files from Chapter 9 (and also this chapter).

 To update the login process:

 1. Open login_functions.inc.php (refer to Script 12.2) in your text editor or IDE.

 2. Change the assignment to the $p variable so it no longer uses mysqli_real_escape_string() (Script 13.8):

 Script 13.8 The updated login functions script now verifies the user's password using PHP instead
 of MySQL.

 Click here to view code image

 1 <?php # Script 13.8 - login_functions.inc.php #2
2 // This page defines two functions used by the login/logout process.
3
4 /* This function determines an absolute URL and redirects the user there.
5 * The function takes one argument: the page to be redirected to.
6 * The argument defaults to index.php.
7 */
8 function redirect_user($page = 'index.php') {
9
10 // Start defining the URL...
11 // URL is http:// plus the host name plus the current directory:
12 $url = 'http://' . $_SERVER['HTTP_HOST'] . dirname($_SERVER['PHP_SELF']);
13
14 // Remove any trailing slashes:
15 $url = rtrim($url, '/\\');
16
17 // Add the page:
18 $url .= '/' . $page;
19
20 // Redirect the user:
21 header("Location: $url");
22 exit(); // Quit the script.
23
24 } // End of redirect_user() function.
25
26
27 /* This function validates the form data (the email address and password).
28 * If both are present, the database is queried.
29 * The function requires a database connection.
30 * The function returns an array of information, including:
31 * - a TRUE/FALSE variable indicating success

32 * - an array of either errors or the database result
33 */
34 function check_login($dbc, $email = '', $pass = '') {
35
36 $errors = []; // Initialize error array.
37
38 // Validate the email address:
39 if (empty($email)) {
40 $errors[] = 'You forgot to enter your email address.';
41 } else {
42 $e = mysqli_real_escape_string($dbc, trim($email));
43 }
44
45 // Validate the password:
46 if (empty($pass)) {
47 $errors[] = 'You forgot to enter your password.';
48 } else {
49 $p = trim($pass);
50 }
51
52 if (empty($errors)) { // If everything's OK.
53
54 // Retrieve the user_id and first_name for that email/password combination:
55 $q = "SELECT user_id, first_name FROM users WHERE email='$e'";
56 $r = @mysqli_query($dbc, $q); // Run the query.
57
58 // Check the result:
59 if (mysqli_num_rows($r) == 1) {
60
61 // Fetch the record:
62 $row = mysqli_fetch_array($r, MYSQLI_ASSOC);
63
64 // Check the password:
65 if (password_verify($p, $row['pass'])) {
66 unset($row['pass']);
67 return [true, $row];
68 } else {
69 $errors[] = 'The email address and password entered do not match those on file.';
70 }
71
72 } else { // Not a match!
73 $errors[] = 'The email address and password entered do not match those on file.';
74 }
75
76 } // End of empty($errors) IF.
77
78 // Return false and the errors:
79 return [false, $errors];
80
81 } // End of check_login() function.

 $p = trim($pass);

 The password won’t be used in the query so it need not be escaped. In fact, for a
 match to be made, it shouldn’t be!

 The trim() function is still applied as the password is trimmed upon registration, too.

 3. Change the SELECT query so that it only uses the email address in the conditional and also retrieves
 the stored password:

 Click here to view code image

 $q = "SELECT user_id, first_name,
[image: Images]pass FROM users WHERE email='$e'";

 Because the password must now be verified in PHP, it must be retrieved by the query.
 The conditional only checks that the email address exists.

 4. Replace this line (line 65 of Script 12.2)—

 return [true, $row];

 with the new logic:

 Click here to view code image

 if (password_verify($p, $row
[image: Images]['pass'])) {
 unset($row['pass']);
 return [true, $row];
} else {
 $errors[] = 'The email address
 [image: Images]and password entered do not
 [image: Images]match those on file.';
}

 The previous version of this function returned the value TRUE plus the user ID and
 first name if the query returned one row. Now the logic needs to be expanded since
 the retrieval of a single row only confirms the email address exists.

 After fetching the row of data, the conditional invokes password_verify(), comparing the just-submitted password against the previously stored password. If
 password_verify() returns a true value, the check_login() function can return true and $row as it did before. However, as $row now also includes the fetched password, that should be removed—unset—from the variable
 first.

 If the password wasn’t a match, the same generic error message is returned. As you
 learned in the “Preventing Brute-Force Attacks” sidebar, it’s best not to be too specific as to why a login attempt failed.

 5. Save the page as login_functions.inc.php, place it in your web directory (in the includes folder), and test it in your browser [image: Images].

 [image: Images]

 [image: Images]The login with the new hashing mechanism worked! (Note that the user was registered
 with a first name of “Password.”)

 Tip

 Many sites today are ensuring even better security by not using a password at all,
 instead using single-access tokens. Search online to learn more.

 Review and Pursue

 If you have any problems with the review questions or the pursue prompts, turn to
 the book’s supporting forum (LarryUllman.com/forums/).

 Review

 [image: Image] What are some of the inappropriate strings and characters that could be indicators
 of potential spam attempts?

 [image: Image] What does the stripos() function do? What is its syntax?

 [image: Image] What does the str_replace() function do? What is its syntax?

 [image: Image] What does the array_map() function do? What is its syntax?

 [image: Image] What is typecasting? How do you typecast a variable in PHP?

 [image: Image] What function is used to move an uploaded file to its final destination on the server?

 [image: Image] What is the Fileinfo extension? How is it used?

 [image: Image] What does the htmlspecialchars() function do?

 [image: Image] What does the htmlentities() function do?

 [image: Image] What does the strip_tags() function do?

 [image: Image] What function converts newline characters into HTML break tags?

 [image: Image] What is the most important function in the Filter extension? How is it used?

 [image: Image] What are prepared statements? What benefits might prepared statements have over the
 standard method of querying a database?

 [image: Image] What is the syntax for using prepared statements?

 [image: Image] How do you hash a password in PHP?

 [image: Image] How do you check a previously hashed password in PHP?

 Pursue

 [image: Image] If you haven’t applied the Filter function (for email validation) and the spam_scrubber() function to a contact form used on one of your sites, do so now!

 [image: Image] Change calculator.php to allow for no tax rate.

 [image: Image] Update , from Chapter 3, “Creating Dynamic Web Sites,” so that it also uses typecasting or the Filter extension. (As a reminder, that
 calculator determined the cost of a car trip, based on the distance, average miles
 per gallon, and average price paid per gallon.)

 [image: Image] Modify upload_rtf.php so that it reports the actual MIME type for the uploaded file, should it not be text/rtf.

 [image: Image] Create a PHP script that reports the MIME type of any uploaded file.

 [image: Image] Apply the strip_tags() function to a previous script in the book, such as the registration example, to prevent
 inappropriate code from being stored in the database.

 [image: Image] Apply the Filter function to the login process in Chapter 12 to guarantee that the submitted email address meets the email address format, prior
 to using it in a query.

 [image: Image] Apply the Filter function, or typecasting, to the delete_user.php and edit_user.php scripts from Chapter 10.

 [image: Image] Apply the Fileinfo extension to the show_image.php script from Chapter 11.

 [image: Image] Add more stringent validation to the registration script, including using the Filter
 extension for the email address and requiring a longer password.

 [image: Image] Update the registration and login scripts to use prepared statements.

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 14. Perl-Compatible Regular Expressions

 In This Chapter

 Creating a Test Script

 Defining Simple Patterns

 Using Quantifiers

 Using Character Classes

 Finding All Matches

 Using Modifiers

 Matching and Replacing Patterns

 Review and Pursue

 Regular expressions are an amazingly powerful—but often taxing—tool available in most
 of today’s programming languages and even in many applications. Think of regular expressions
 as an elaborate system of matching patterns. You first write the pattern and then
 use one of PHP’s built-in functions to apply the pattern to a value (regular expressions
 are applied to strings, even if that means a string with a numeric value). Whereas
 a string function could see if the name John is in some text, a regular expression could just as easily find John, Jon, and Jonathon.

 Because the regular expression syntax is so complex, while the functions that use
 them are simple, the focus in this chapter will be on mastering the syntax in little
 bites. The PHP code will be very simple; later chapters will better incorporate regular
 expressions into real-world scripts.

 Creating a Test Script

 Regular expressions are a matter of applying patterns to values. The application of
 the pattern to a value is accomplished using one of a handful of functions; the most
 important is . This function returns a 0 or 1, indicating whether the pattern matched the string.
 Its basic syntax is

 preg_match(pattern, subject);

 The preg_match() function will stop once it finds a single match. If you need to find all the matches,
 use preg_match_all(). That function will be discussed toward the end of the chapter.

 When providing the pattern to preg_match(), it needs to be placed within quotation marks, since it’ll be a string. Because many
 escaped characters within double quotation marks have special meaning (like \n), I advocate using single quotation marks to define your patterns.

 Second, within the quotation marks, the pattern needs to be encased within delimiters. The delimiter can be any character that’s not alphanumeric or the backslash, and
 the same character must be used to mark the beginning and end of the pattern. Commonly,
 you’ll see forward slashes used. To see if the word cat contains the letter a, you would code (spoiler alert: it does)

 if (preg_match('/a/', 'cat')) {

 If you need to match a forward slash in the pattern, use a different delimiter, like
 the pipe (|) or an exclamation mark (!).

 The bulk of this chapter covers all the rules for defining patterns. To best learn
 by example, let’s start by creating a simple PHP script that takes a pattern and a
 string [image: Images] and returns the regular expression result [image: Images].

 [image: Images]

 [image: Images] The HTML form, which will be used for practicing regular expressions.

 [image: Images]

 [image: Images] The script will print what values were used in the regular expression and what the
 result was. The form will also be made sticky to remember previously submitted values.

 To match a pattern:

 1. Begin a new PHP document in your text editor or IDE, to be named pcre.php (Script 14.1).

 Click here to view code image

 <html lang="en">
<head>
 <meta charset="utf-8">
 <title>Testing PCRE</title>
</head>
<body>
<?php # Script 14.1 - pcre.php

 Script 14.1 The complex regular expression syntax will be best taught and demonstrated using
 this PHP script.

 Click here to view code image

 1 <!doctype html>
2 <html lang="en">
3 <head>
4 <meta charset="utf-8">
5 <title>Testing PCRE</title>
6 </head>
7 <body>
8 <?php # Script 14.1 - pcre.php
9 // This script takes a submitted string and checks it against a submitted pattern.
10
11 if ($_SERVER['REQUEST_METHOD'] == 'POST') {
12
13 // Trim the strings:
14 $pattern = trim($_POST['pattern']);
15 $subject = trim($_POST['subject']);
16
17 // Print a caption:
18 echo "<p>The result of checking
$pattern
against
$subject
is
 ";
19
20 // Test:
21 if (preg_match($pattern, $subject)) {
22 echo 'TRUE!</p>';
23 } else {
24 echo 'FALSE!</p>';
25 }
26
27 } // End of submission IF.
28 // Display the HTML form.
29 ?>
30 <form action="pcre.php" method="post">
31 <p>Regular Expression Pattern: <input type="text" name="pattern" value="<?php if
 (isset($pattern)) echo htmlentities($pattern); ?>" size="40"> (include the delimiters)</p>
32 <p>Test Subject: <input type="text" name="subject" value="<?php if (isset($subject)) echo
 htmlentities($subject); ?>" size="40"></p>
33 <input type="submit" name="submit" value="Test!">
34 </form>
35 </body>
36 </html>

 2. Check for the form submission:

 Click here to view code image

 if ($_SERVER['REQUEST_METHOD'] ==
[image: Images]'POST') {

 3. Treat the incoming values:

 Click here to view code image

 $pattern = trim($_POST['pattern']);
$subject = trim($_POST['subject']);

 The form will submit two values to this same script. Both should be trimmed, just
 to make sure the presence of any extraneous spaces doesn’t skew the results. I’ve
 omitted a check that each input isn’t empty, but you could include that if you wanted.

 4. Print a caption:

 Click here to view code image

 echo "<p>The result of checking
[image: Images]
$pattern
[image: Images]
against
$subject
is ";

 As you can see [image: Images], the form-handling part of this script will start by printing the values submitted.

 5. Run the regular expression:

 Click here to view code image

 if (preg_match($pattern,
[image: Images]$subject)) {
 echo 'TRUE!</p>';
} else {
 echo 'FALSE!</p>';
}

 To test the pattern against the string, feed both to the preg_match() function. If this function returns 1, that means a match was made, this condition
 will be TRUE, and the word TRUE will be printed. If no match was made, the condition will be FALSE and that will
 be stated [image: Images].

 [image: Images]

 [image: Images] If the pattern does not match the string, this will be the result. This submission
 and response also convey that regular expressions are case-sensitive by default.

 6. Complete the submission conditional and the PHP block:

 } // End of submission IF.
?>

 7. Create the HTML form:

 Click here to view code image

 <form action="pcre.php"
[image: Images]method="post">
 <p>Regular Expression
 [image: Images]Pattern: <input type="text"
 [image: Images]name="pattern" value="<?php
 [image: Images]if (isset($pattern)) echo
 [image: Images]htmlentities($pattern);
 [image: Images]?>" size="40"> (include the
 [image: Images]delimiters)</p>
 <p>Test Subject: <input
 [image: Images]type="text" name="subject"
 [image: Images]value="<?php if (isset
 [image: Images]($subject)) echo htmlentities
 [image: Images]($subject); ?>" size="40"></p>
 <input type="submit"
 [image: Images]name="submit" value="Test!">
</form>

 The form contains two text boxes, both of which are sticky (using the trimmed version
 of the values). Because the two values might include quotation marks and other characters
 that would conflict with the form’s “stickiness,” each variable’s value is sent through
 htmlentities(), too.

 8. Complete the HTML page:

 </body>
</html>

 9. Save the file as pcre.php, place it in your web directory, and test it in your browser.

 Although you don’t know the rules for creating patterns yet, you could use any other
 literal value. Remember to use delimiters around the pattern or you’ll see an error
 message [image: Images].

 [image: Images]

 [image: Images] If you fail to wrap the pattern in matching delimiters, you’ll see an error message.

 Tip

 Many text editors allow you to use regular expressions to match and replace patterns
 within and throughout several documents.

 Tip

 The PCRE functions all use the established locale. A locale reflects a computer’s
 designated country and language, among other settings.

 Tip

 Previous versions of PHP supported another type of regular expressions called POSIX.
 These have since been dropped from the language.

 Defining Simple Patterns

 Using one of PHP’s regular expression functions is really easy; defining patterns
 to use is hard. There are lots of rules for creating a pattern. You can use these
 rules separately or in combination, making your pattern either quite simple or very
 complex. To start, then, you’ll see what characters are used to define a simple pattern.
 As a formatting rule, I’ll define patterns in bold and will indicate what the pattern matches in italics. Just to keep things cleaner. the patterns in these explanations won’t be placed
 within delimiters or quotes (both are needed when used within preg_match()).

 The first type of character you will use for defining patterns is a literal. A literal is a value that is written exactly as it is interpreted. For example,
 the pattern a will match the letter a, ab will match ab, and so forth. Therefore, assuming a case-insensitive search is performed, rom will match any of the following strings, since they all contain rom:

 [image: Images] CD-ROM

 [image: Images] Rommel crossed the desert.

 [image: Images] I’m writing a roman à clef.

 Along with literals, your patterns will use meta-characters. These are special symbols that have a meaning beyond their literal value (Table 14.1). While a simply means a, the period (.) will match any single character except for a newline (. matches a, b, c, the underscore, a space, etc., just not \n). To match any meta-character, you will need to escape it, much as you escape a quotation
 mark to print it. Hence \. will match the period itself. So 1.99 matches 1.99 or 1B99 or 1299 (a 1 followed by any character followed by 99) but 1\.99 only matches 1.99.

 TABLE 14.1 Meta-Characters

 	
 Character

 	
 Meaning

 	
 \

 	
 Escape character

 	
 ^

 	
 Indicates the beginning of a string

 	
 $

 	
 Indicates the end of a string

 	
 .

 	
 Any single character except newline

 	
 |

 	
 Alternatives (or)

 	
 [

 	
 Start of a class

 	
]

 	
 End of a class

 	
 (

 	
 Start of a subpattern

 	
)

 	
 End of a subpattern

 	
 {

 	
 Start of a quantifier

 	
 }

 	
 End of a quantifier

 Two meta-characters specify where certain characters must be found. There is the caret
 (^), which marks the beginning of a pattern. There is also the dollar sign ($), which marks the conclusion of a pattern. Accordingly, ^a will match any string beginning with an a, whereas a$ will correspond to any string ending with an a. Therefore, ^a$ will only match a (a string that both begins and ends with a).

 These two meta-characters—the caret and the dollar sign—are crucial to validation, because validation normally requires checking the value of an entire string, not
 just the presence of one string in another. For example, using an email-matching pattern
 without those two characters will match any string containing an email address. Using
 an email-matching pattern that begins with a caret and ends with a dollar sign will
 match a string that contains only a valid email address.

 Regular expressions also make use of the pipe (|) as the equivalent of or: a|b will match strings containing either a or b. (Using the pipe within patterns is called alternation or branching.) So yes|no accepts either of those two words in their entirety (the alternation is not just between the two letters surrounding it: s and n).

 Once you comprehend the basic symbols, then you can begin to use parentheses to group
 characters into more involved patterns. Grouping works as you might expect: (abc) will match abc, (trout) will match trout. Think of parentheses as being used to establish a new literal of a larger size.
 Because of precedence rules in PCRE, yes|no and (yes)|(no) are equivalent. But (even|heavy) handed will match either even handed or heavy handed.

 To use simple patterns:

 1. Load pcre.php in your browser, if you haven’t already.

 2. Check whether a string contains the letters cat [image: Images].

 [image: Images]

 [image: Images] Looking for a cat in a string.

 To do so, use the literal cat as the pattern and any number of strings as the subject. Any of the following would
 be a match: catalog, catastrophe, my cat left. For the time being, use all lowercase letters, since cat will not match Cat [image: Images].

 [image: Images]

 [image: Images] PCRE performs a case-sensitive comparison by default.

 Remember to use delimiters around the pattern as well (see the figures).

 3. Check whether a string starts with cat [image: Images].

 [image: Images]

 [image: Images]The caret in a pattern means that the match has to be found at the start of the string.

 To have a pattern apply to the start of a string, use the caret as the first character
 (^cat). The sentence my cat left will not be a match now.

 4. Check whether a string contains the word color or colour [image: Images].

 [image: Images]

 [image: Images]By using the pipe meta-character, the performed search can be more flexible.

 The pattern to look for the American or British spelling of this word is col(o|ou)r. The first three letters—col—must be present. This needs to be followed by either an o or ou. Finally, an r is required.

 Tip

 If you are looking to match an exact string within another string, use the strstr() function, which is faster than regular expressions. In fact, as a rule of thumb,
 you should use regular expressions only if the task at hand cannot be accomplished
 using any other function or technique.

 Tip

 You can escape a lot of characters in a pattern using \Q and \E. Every character within those will be treated literally (so \Q$2.99?\E matches $2.99?).

 Tip

 To match a single backslash, you have to use \\\\. The reason is that matching a backslash in a regular expression requires you to
 escape the backslash, resulting in \\. Then to use a backslash in a PHP string, it also has to be escaped, so escaping
 both backslashes means a total of four.

 Using Quantifiers

 You’ve just seen and practiced with a couple of the meta-characters, the most important
 of which are the caret and the dollar sign. Next, there are three meta-characters
 that allow for multiple occurrences: a* will match zero or more a’s (no a’s, a, aa, aaa, etc.); a+ matches one or more a’s (a, aa, aaa, etc., but there must be at least one); and a? will match up to one a (a or no a’s match). These meta-characters all act as quantifiers in your patterns, as do the
 curly braces. Table 14.2 lists all the quantifiers.

 TABLE 14.2 Quantifiers

 	
 Character

 	
 Meaning

 	
 ?

 	
 0 or 1

 	
 *

 	
 0 or more

 	
 +

 	
 1 or more

 	
 {x}

 	
 Exactly x occurrences

 	
 {x,y}

 	
 Between x and y (inclusive)

 	
 {x,}

 	
 At least x occurrences

 To match a certain quantity of a thing, put the quantity between braces ({}), stating
 a specific number, just a minimum, or both a minimum and a maximum. Thus, a{3} will match aaa; a{3,} will match aaa, aaaa, etc. (three or more a’s); and a{3,5} will match just aaa, aaaa, and aaaaa (between three and five).

 Note that quantifiers apply to the thing that came before it, so a? matches zero or one a’s, ab? matches an a followed by zero or one b’s, but (ab)? matches zero or one ab’s. Therefore, to match color or colour, you could also use colou?r as the pattern.

 To use quantifiers:

 1. Load pcre.php in your browser, if you haven’t already.

 2. Check whether a string contains the letters c and t, with one or more letters in between [image: Images].

 [image: Images]

 [image: Images] The plus sign, when used as a quantifier, requires that one or more of a thing be
 present.

 To do so, use c.+t as the pattern and any number of strings as the subject. Remember that the period
 matches any character (except for the newline). Each of the following would be a match:
 cat, count, coefficient, etc. The word doctor would not match, since there are no letters between the c and the t (although doctor would match c.*t).

 3. Check whether a string matches either cat or cats [image: Images].

 [image: Images]

 [image: Images] You can check for the plural form of many words by adding s? to the pattern.

 To start, if you want to make an exact match, use both the caret and the dollar sign.
 Then you’d have the literal text cat, followed by an s, followed by a question mark (representing 0 or 1 s’s). The final pattern—^cats?$—matches cat or cats but not my cat left or I like cats.

 4. Check whether a string ends with .33, .333, or .3333 [image: Images].

 [image: Images]

 [image: Images] The braces let you dictate the acceptable range of quantities present.

 To find a period, escape it with a backslash: \.. To find a three, use a literal 3. To find a range of 3’s, use the braces ({}). Putting this together, the pattern is \.3{2,4}. Because the string should end with this (nothing else can follow), conclude the
 pattern with a dollar sign: \.3{2,4}$.

 Admittedly, this is kind of a silly example (I’m not sure when you’d need to do exactly
 this), but it does demonstrate several things. This pattern will match lots of things—12.333, varmit.3333, .33, look .33—but not 12.3 or 12.334.

 5. Match a five-digit number [image: Images].

 [image: Images]

 [image: Images] The proper test for confirming that a number contains five digits.

 A number can be any one of the numbers 0 through 9, so the heart of the pattern is
 (0|1|2|3|4|5|6|7|8|9). Plainly said, this means a number is a 0 or a 1 or a 2 or a 3…. To make it a five-digit
 number, follow this with a quantifier: (0|1|2|3|4|5|6|7|8|9){5}. Finally, to match this exactly (as opposed to matching a five-digit number within
 a string), use the caret and the dollar sign: ^(0|1|2|3|4|5|6|7|8|9){5}$.

 This, of course, is one way to match a U.S. zip code, a very useful pattern.

 Tip

 When using braces to specify a number of characters, you must always include the minimum
 number. The maximum is optional: a{3} and a{3,} are acceptable, but a{,3} is not.

 Tip

 Although learning how to write and execute your own regular expressions demonstrates
 good dedication to programming, numerous working examples are available already by
 searching the Internet.

 Using Character Classes

 As the last example demonstrated ([image: Images] in the previous section), relying solely on literals in a pattern can be tiresome.
 Having to write out all those digits to match any number is silly. Imagine if you
 wanted to match any four-letter word: ^(a|b|c|d…){4}$ (and that doesn’t even take
 into account uppercase letters)! To make these common references easier, you can use
 character classes.

 Classes are created by placing characters within brackets ([]). For example, you can match any one vowel with [aeiou]. This is equivalent to (a|e|i|o|u). Or you can use the hyphen to indicate a range of characters: [a-z] is any single lowercase letter and [A-Z] is any uppercase, [A-Za-z] is any letter in general, and [0-9] matches any digit. As an example, [a-z]{3} would match abc, def, oiw, etc.

 Within classes, most of the meta-characters are treated literally, except for four.
 The backslash is still the escape, but the caret (^) is a negation operator when used as the first character in the class. So [^aeiou] will match any non-vowel. The only other meta-character within a class is the dash,
 which indicates a range. (If the dash is used as the last character in a class, it’s
 a literal dash.) And, of course, the closing bracket (]) still has meaning as the terminator of the class.

 Naturally, a class can have both ranges and literal characters. A person’s first name,
 which can contain letters, spaces, apostrophes, and periods, could be represented
 by [A-z ‘.] (again, the period doesn’t need to be escaped within the class, since it loses its
 meta-meaning there).

 Along with creating your own classes, there are six already-defined classes that have
 their own shortcuts (Table 14.3). The digit and space classes are easy to understand. The term word doesn’t mean “word” in the language sense but rather as in a string unbroken by spaces
 or punctuation.

 TABLE 14.3 Character Classes

 	
 Class

 	
 Shortcut

 	
 Meaning

 	
 [0-9]

 	
 \d

 	
 Any digit

 	
 [\f\r\t\n\v]

 	
 \s

 	
 Any white space

 	
 [A-Za-z0-9_]

 	
 \w

 	
 Any word character

 	
 [^0-9]

 	
 \D

 	
 Not a digit

 	
 [^\f\r\t\n\v]

 	
 \S

 	
 Not white space

 	
 [^A-Za-z0-9_]

 	
 \W

 	
 Not a word character

 Using this information, the five-digit number (aka, zip code) pattern could more easily
 be written as ^[0-9]{5}$ or ^\d{5}$. As another example, can\s?not will match both can not and cannot (the word can, followed by zero or one space characters, followed by not).

 To use character classes:

 1. Load pcre.php in your browser, if you haven’t already.

 2. Check whether a string is formatted as a valid U.S. zip code [image: Images].

 [image: Images]

 [image: Images]The pattern to match a U.S. zip code, in either the five-digit or five-plus-four format.

 A U.S. zip code always starts with five digits (^\d{5}). But a valid zip code could also have a dash followed by another four digits (-\d{4}$). To make this last part optional, use the question mark (the 0 or 1 quantifier).
 This complete pattern is then ^(\d{5})(-\d{4})?$. To make it all clearer, the first part of the pattern (matching the five digits)
 is also grouped in parentheses, although this isn’t required in this case.

 3. Check whether a string contains no spaces [image: Images].

 [image: Images]

 [image: Images]The no-white-space shortcut can be used to ensure that a submitting string is contiguous.

 The \S character class shortcut will match non-space characters. To make sure that the entire
 string contains no spaces, use the caret and the dollar sign: ^\S$. If you don’t use those, then all the pattern is confirming is that the subject contains
 at least one non-space character.

 4. Validate an email address [image: Images].

 [image: Images]

 [image: Images]A pretty good and reliable validation for email addresses.

 The pattern ^[\w.-]+@[\w.-]+\.[A-Za-z]{2,6}$ provides for reasonably good email validation. It’s wrapped in the caret and the
 dollar sign, so the string must be a valid email address and nothing more. An email
 address starts with letters, numbers, and the underscore (represented by \w), plus a period (.) and a dash. This first block will match larryullman, larry77, larry.ullman, larry-ullman, and so on. Next, all email addresses include one and only one @. After that, there can be any number of letters, numbers, periods,
 and dashes. This is the domain name: larryullman, smith-jones, amazon.co (as in amazon.co.uk), etc. Finally, all email addresses conclude with one period and between two and
 six letters. This accounts for .com, .edu, .info, .travel, and so forth.

 Tip

 I think that the zip code example is a great demonstration of how complex and useful
 regular expressions are. One pattern accurately tests for both formats of the zip
 code, which is fantastic. But when you put this into your PHP code, with quotes and
 delimiters, it’s not easily understood:

 Click here to view code image

 if (preg_match ('/^(\d{5})(-\d{4})?$/',
[image: Images]$zip)) {

 That certainly looks like gibberish, right?

 Tip

 This email address validation pattern is pretty good, although not perfect. It will
 allow some invalid addresses to pass through (like ones starting with a period or
 containing multiple periods together). However, a 100 percent foolproof validation
 pattern is ridiculously long, and frequently using regular expressions is really a
 matter of trying to exclude the bulk of invalid entries without inadvertently excluding
 any valid ones.

 Tip

 Regular expressions, particularly PCRE ones, can be extremely complex. When you’re
 starting out, it’s just as likely that your use of them will break the validation
 routines rather than improve them. That’s why practicing like this is important.

 Using Boundaries

 Boundaries are shortcuts for helping to find, um, boundaries. In a way, you’ve already seen
 this: using the caret and the dollar sign to match the beginning or end of a value.
 But what if you wanted to match boundaries within a value?

 The clearest boundary is between a word and a non-word. A “word” in this case is not
 cat, month, or zeitgeist, but in the \w shortcut sense: the letters A through Z (both upper- and lowercase), plus the numbers
 0 through 9, and the underscore. To use words as boundaries, we have the \b shortcut. To use non-word characters as boundaries, we have \B. So the pattern \bfor\b matches they’ve come for you but doesn’t match force or forebode. Therefore, \bfor\B would match force but not they’ve come for you or informal.

 Finding All Matches

 Going back to the PHP functions used with Perl-compatible regular expressions, preg_match() has been used just to see whether or not a pattern matches a value. But the script
 hasn’t been reporting what, exactly, in the value did match the pattern. You can find
 out this information by providing a variable as a third argument to the function:

 Click here to view code image

 preg_match(pattern, subject, $match);

 The $match variable will contain the first match found (because this function only returns the
 first match in a value). To find every match, use preg_match_all(). Its syntax is the same:

 Click here to view code image

 preg_match_all(pattern, subject,
[image: Images]$matches);

 This function will return the number of matches made, or FALSE if none were found.
 It will also assign to $matches every match made. Let’s update the PHP script to print the returned matches, and
 then run a couple of more tests.

 To report all matches:

 1. Open pcre.php (Script 14.1) in your text editor or IDE, if you haven’t already.

 2. Change the invocation of preg_match() to (Script 14.2)

 Click here to view code image

 if (preg_match_all($pattern,
[image: Images]$subject, $matches)) {

 Script 14.2 To reveal exactly what values in a string match which patterns, this revised version
 of the script will print each match. You can retrieve the matches by naming a variable
 as the third argument in preg_match() or preg_match_all().

 Click here to view code image

 1 <!doctype html>
2 <html lang="en">
3 <head>
4 <meta charset="utf-8">
5 <title>Testing PCRE</title>
6 </head>
7 <body>
8 <?php # Script 14.2 - matches.php
9 // This script takes a submitted string
 and checks it against a submitted
 pattern.
10 // This version prints every match made.
11
12 if ($_SERVER['REQUEST_METHOD'] == 'POST')
 {
13
14 // Trim the strings:
15 $pattern = trim($_POST['pattern']);
16 $subject = trim($_POST['subject']);
17
18 // Print a caption:
19 echo "<p>The result of
 checking
$pattern

 against
$subject
is ";
20
21 // Test:
22 if (preg_match_all($pattern,
 $subject, $matches)) {
23 echo 'TRUE!</p>';
24
25 // Print the matches:
26 echo '<pre>' . print_r($matches, 1) . '</pre>';
27
28 } else {
29 echo 'FALSE!</p>';
30 }
31
32 } // End of submission IF.
33 // Display the HTML form.
34 ?>
35 <form action="matches.php"
 method="post">

36 <p>Regular Expression Pattern:
 <input type="text" name="pattern"
 value="<?php if (isset($pattern)) echo
 htmlentities($pattern); ?>" size="40">
 (include the delimiters)</p>
37 <p>Test Subject: <textarea
 name="subject" rows="5"
 cols="40"><?php if (isset($subject))
 echo htmlentities($subject);
 ?></textarea></p>
38 <input type="submit" name="submit"
 value="Test!">
39 </form>
40 </body>
41 </html>

 There are two changes here. First, the actual function being called is different.
 Second, the third argument is provided a variable name that will be assigned every
 match.

 3. After printing the value TRUE, print the contents of $matches:

 Click here to view code image

 echo '<pre>' . print_r($matches,
[image: Images]1) . '</pre>';

 Using print_r() to output the contents of the variable is the easiest way to know what’s in $matches (you could use a foreach loop instead). As you’ll see when you run this script, this variable will be an array
 whose first element is an array of matches made.

 4. Change the form’s action attribute to matches.php:

 Click here to view code image

 <form action="matches.php"
[image: Images]method="post">

 This script will be renamed, so the action attribute must be changed, too.

 5. Change the subject input to be a textarea:

 Click here to view code image

 <p>Test Subject: <textarea
[image: Images]name="subject" rows="5"
[image: Images]cols="40"><?php if (isset
[image: Images]($subject)) echo htmlentities
[image: Images]($subject); ?></textarea></p>

 To be able to enter in more text for the subject, this element will become a textarea.

 Being Less Greedy

 A key component to Perl-compatible regular expressions is the concept of greediness. By default, PCRE will attempt to match as much as possible. For example, the pattern
 <.+> matches any HTML tag. When tested on a string like Link, it will actually match that entire string, from the opening < to the closing one. This string contains three possible matches, though: the entire
 string, the opening tag (from <a to “>), and the closing tag ().

 To overrule greediness, make the match lazy. A lazy match will contain as little data as possible. Any quantifier can be made
 lazy by following it with the question mark. For example, the pattern <.+?> would return two matches in the preceding string: the opening tag and the closing
 tag. It would not return the whole string as a match. (This is one of the confusing
 aspects of the regular expression syntax: the same character—here, the question mark—can
 have different meanings depending on its context.)

 Another way to make patterns less greedy is to use negative classes. The pattern <[^>]+> matches everything between the opening and closing <> except for a closing >. So using this pattern would have the same result as using <.+?>. This pattern would also match strings that contain newline characters, which the
 period excludes.

 6. Save the file as matches.php, place it in your web directory, and test it in your browser.

 For the first test, use for as the pattern and This is a formulaic test for informal matches. as the subject [image: Images]. It may not be proper English, but it’s a good test subject.

 [image: Images]

 [image: Images] This first test returns three matches, since the literal text for was found three times.

 For the second test, change the pattern to for.* [image: Images]. The result may surprise you, the cause of which is discussed in the sidebar “Being Less Greedy.” To make this search less greedy, the pattern could be changed to for.*?, whose results would be the same as those in[image: Images].

 [image: Images]

 [image: Images] Because regular expressions are “greedy” by default (see the sidebar), this pattern
 finds only one match in the string. That match happens to start with the first instance
 of for and continues until the end of the string.

 For the third test, use for[\S]*, or, more simply for\S* [image: Images]. This has the effect of making the match stop as soon as a white space character
 is found (because the pattern wants to match for followed by any number of non–white space characters).

 [image: Images]

 [image: Images] This revised pattern matches strings that begin with for and end on a word.

 For the final test, use \b[a-z]*for[a-z]*\b as the pattern [image: Images]. This pattern makes use of boundaries, discussed in the sidebar “Using Boundaries,” earlier in the chapter.

 [image: Images]

 [image: Images] Unlike the pattern in [image: Images], this one matches entire words that contain for (informal here, formal in [image: Images]).

 Tip

 The preg_split() function will take a string and break it into an array using a regular expression
 pattern.

 Using Modifiers

 The majority of the special characters you can use in regular expression patterns
 are introduced in this chapter. One final type of special character is the pattern
 modifier. Table 14.4 lists these. Pattern modifiers are different from the other meta-characters in that
 they are placed after the closing delimiter.

 TABLE 14.4 Pattern Modifiers

 	
 Character

 	
 Result

 	
 A

 	
 Anchors the pattern to the beginning of the string

 	
 i

 	
 Enables case-insensitive mode

 	
 m

 	
 Enables multiline matching

 	
 s

 	
 Has the period match every character, including newline

 	
 x

 	
 Ignores most white space

 	
 U

 	
 Performs a non-greedy match

 Of these modifiers, the most important is i, which enables case-insensitive searches. All the examples using variations on for (in the previous sequence of steps) would not match the word For. However, /for.*/i would be a match. Note that I am including the delimiters in that pattern, since
 the modifier goes after the closing delimiter. Similarly, the last step in the previous
 sequence referenced the sidebar “Being Less Greedy” and stated how for.*? would perform a lazy search. So would /for.*/U.

 The multiline mode is interesting in that you can make the caret and the dollar sign
 behave differently. By default, each applies to the entire value. In multiline mode,
 the caret matches the beginning of any line and the dollar sign matches the end of
 any line.

 To use modifiers:

 1. Load matches.php in your browser, if you haven’t already.

 2. Validate a list of email addresses [image: Images].

 [image: Images]

 [image: Images] A list of email addresses, one per line, can be validated using the multiline mode.
 Each valid address is stored in $matches.

 To do so, use /^[\w.-]+@[\w.-]+\.[A-Za-z]{2,6}\r?$/m as the pattern. You’ll see that I’ve added an optional carriage return (\r?) before the dollar sign. This is necessary because some of the lines will contain
 returns and others won’t. And in multiline mode, the dollar sign matches the end of
 a line. (To be more flexible, you could use \s? instead.)

 3. Validate a list of U.S. zip codes [image: Images].

 [image: Images]

 [image: Images] Validating a list of zip codes, one per line.

 Very similar to the example in Step 2, the pattern is now /^(\d{5})(-\d{4})?\s?$/m. You’ll see that I’m using the more flexible \s? instead of \r?.

 You’ll also notice when you try this yourself (or in [image: Images]) that the $matches variable contains a lot more information now. This will be explained in the next
 section of the chapter.

 Tip

 To always match the start or end of a pattern, regardless of the multiline setting,
 you can use shortcuts. Within the pattern, the shortcut \A will match only the very beginning of the value, matches the very end, and matches any line end, like in single-line mode.

 Tip

 It’s probably best to use the Filter extension, covered in Chapter 13, “Security Methods,” to validate an email address or a URL. But if you have to validate a list of either,
 the Filter extension won’t cut it, and regular expressions will be required.

 Matching and Replacing Patterns

 The last subject to discuss in this chapter is how to match and replace patterns in
 a value. Although preg_match() and preg_match_all() will find things for you, if you want to do a search and replace, you’ll need to
 use preg_replace(). Its syntax is

 Click here to view code image

 preg_replace(pattern, replacement,
[image: Images]subject);

 This function takes an optional fourth argument limiting the number of replacements
 made.

 To replace all instances of cat with dog, you would use

 Click here to view code image

 $str = preg_replace('/cat/', 'dog',
[image: Images]'I like my cat');

 This function returns the altered value (or unaltered value if no matches were made),
 so you’ll likely want to assign it to a variable or use it as an argument to another
 function (like printing it by calling echo). Also, as a reminder, the above is just an example: you’d never want to replace
 one literal string with another using regular expressions; use str_replace() instead.

 There is a related concept to discuss that is involved with this function: back referencing. In a zip code–matching pattern—^(\d{5})(-\d{4})?$—there are two groups within parentheses: the first five digits and the optional dash
 plus four-digit extension. Within a regular expression pattern, PHP will automatically
 number parenthetical groupings beginning at 1. Back referencing allows you to refer
 to each individual section by using $ plus the corresponding number. For example, if you match the zip code 94710-0001 with this pattern, referring back to $2 will give you -0001. The code $0 refers to the whole initial string. This is why [image: Images] in the previous section shows entire zip code matches in $matches[0], the matching first five digits in $matches[1], and any matching dash plus four digits in $matches[2].

 To practice with this, let’s modify Script 14.2 to also take a replacement input [image: Images].

 [image: Images]

 [image: Images] One use of preg_replace() would be to replace variations on inappropriate words with symbols representing their
 omission.

 To match and replace patterns:

 1. Open matches.php (Script 14.2) in your text editor or IDE, if you haven’t already.

 2. Add a reference to a third incoming variable (Script 14.3):

 Click here to view code image

 $replace = trim($_POST['replace']);

 Script 14.3 To test the preg_replace() function, which replaces a matched pattern in a string with another value, you can
 use this third version of the PCRE test script.

 Click here to view code image

 1 <!doctype html>
2 <html lang="en">
3 <head>
4 <meta charset="utf-8">
5 <title>Testing PCRE Replace</title>
6 </head>
7 <body>
8 <?php # Script 14.3 - replace.php
9 // This script takes a submitted string and checks it against a submitted pattern.
10 // This version replaces one value with another.
11
12 if ($_SERVER['REQUEST_METHOD'] == 'POST') {
13
14 // Trim the strings:
15 $pattern = trim($_POST['pattern']);
16 $subject = trim($_POST['subject']);
17 $replace = trim($_POST['replace']);
18
19 // Print a caption:
20 echo "<p>The result of replacing
$pattern
with
$replace
in

 $subject

";
21
22 // Check for a match:
23 if (preg_match($pattern, $subject)) {
24 echo preg_replace($pattern, $replace, $subject) . '</p>';
25 } else {
26 echo 'The pattern was not found!</p>';
27 }
28
29 } // End of submission IF.
30 // Display the HTML form.
31 ?>
32 <form action="replace.php" method="post">
33 <p>Regular Expression Pattern: <input type="text" name="pattern" value="<?php if
 (isset($pattern)) echo htmlentities($pattern); ?>" size="40"> (include the delimiters)</p>
34 <p>Replacement: <input type="text" name="replace" value="<?php if (isset($replace))
 echo htmlentities($replace); ?>" size="40"></p>
35 <p>Test Subject: <textarea name="subject" rows="5" cols="40"><?php if (isset($subject))
 echo htmlentities($subject); ?></textarea></p>
36 <input type="submit" name="submit" value="Test!">
37 </form>
38 </body>
39 </html>

 As you can see in [image: Images], the third form input (added between the existing two) takes the replacement value.
 That value is also trimmed to get rid of any extraneous spaces.

 3. Change the caption:

 Click here to view code image

 echo "<p>The result of replacing
[image: Images]
$pattern
[image: Images]
with
$replace
in

[image: Images]$subject

";

 The caption will print all the incoming values prior to applying preg_replace().

 4. Change the regular expression conditional so that it calls preg_replace() only if a match is made:

 Click here to view code image

 if (preg_match($pattern,
[image: Images]$subject)) {
 echo preg_replace($pattern,
 [image: Images]$replace, $subject) .'</p>';
} else {
 echo 'The pattern was not
 [image: Images]found!</p>';
}

 You can call without running first. If no match was made, then no replacement will occur. But to make it clear
 when a match is or is not being made (which is always good to confirm, considering
 how tricky regular expressions are), the function will be applied first. If it returns a TRUE value, then preg_replace() is called, printing the results [image: Images]. Otherwise, a message is printed indicating that no match was made [image: Images].

 [image: Images]

 [image: Images]The resulting text has uses of bleep, bleeps, bleeped, bleeper, and bleeping replaced
 with ****.

 [image: Images]

 [image: Images]If the pattern is not found within the subject, the subject will not be changed.

 5. Change the form’s action attribute to replace.php:

 Click here to view code image

 <form action="replace.php"
[image: Images]method="post">

 This file will be renamed, so this value needs to be changed accordingly.

 6. Add a text input for the replacement string:

 Click here to view code image

 <p>Replacement: <input
[image: Images]type="text" name="replace"
[image: Images]value="<?php if (isset($replace))
[image: Images]echo htmlentities($replace); ?>"
[image: Images]size="40"></p>

 7. Save the file as replace.php, place it in your web directory, and test it in your browser [image: Images].

 [image: Images]

 [image: Images] Another use of preg_replace() is dynamically turning email addresses into clickable links. See the HTML source
 code for the full effect of the replacement.

 As a good example, you can turn an email address found within some text into its HTML
 link equivalent: email@example.com. The pattern for matching an email address should be familiar by now: ^[\w.-]+@[\w.-]+\.[A-Za-z]{2,6}$. However, because the email address could be found within some text, the caret and
 dollar sign need to be replaced by the word boundaries shortcut: \b. The final pattern is therefore /\b[\w.-]+@[\w.-]+\.[A-Za-z]{2,6}\b/.

 To refer to this matched email address, you can refer to $0 (because $0 refers to the entire match, whether or not parentheses are used). So the replacement
 value would be $0. Because HTML is involved here, look at the HTML source code of the resulting page
 for the best idea of what happened.

 Tip

 Back references can even be used within the pattern. For example, if a pattern included
 a grouping (i.e., a subpattern), that would be repeated.

 Tip

 I’ve introduced, somewhat quickly, the bulk of the PCRE syntax here, but there’s much
 more to it. Once you’ve mastered all this, you can consider moving on to anchors,
 named subpatterns, comments, lookarounds, possessive quantifiers, and more.

 Review and Pursue

 If you have any problems with the review questions or the pursue prompts, turn to
 the book’s supporting forum (LarryUllman.com/forums/).

 Review

 [image: Images] What function is used to match a regular expression? What function is used to find
 all matches of a regular expression? What function is used to replace matches of a
 regular expression?

 [image: Images] What characters can you use and not use to delineate a regular expression?

 [image: Images] How do you match a literal character or string of characters?

 [image: Images] What are meta-characters? How do you escape a meta-character?

 [image: Images] What meta-character do you use to bind a pattern to the beginning of a string? To
 the end?

 [image: Images] How do you create subpatterns (aka groupings)?

 [image: Images] What are the quantifiers? How do you require 0 or 1 of a character or string? 0 or
 more? 1 or more? Precisely X occurrences? A range of occurrences? A minimum of occurrences?

 [image: Images] What are character classes?

 [image: Images] What meta-characters still have meaning within character classes?

 [image: Images] What shortcut represents the “any digit” character class? The “any white space” class?
 “Any word”? What shortcuts represent the opposite of these?

 [image: Images] What are boundaries? How do you create boundaries in patterns?

 [image: Images] How do you make matches “lazy”? And what does that mean anyway?

 [image: Images] What are the pattern modifiers?

 [image: Images] What is back referencing? How does it work?

 Pursue

 [image: Images] Search online for a PCRE “cheat sheet” (PHP or otherwise) that lists all the meaningful
 characters and classes. Print the cheat sheet and keep it beside your computer.

 [image: Images] Practice, practice, practice!

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 15. Introducing jQuery

 In This Chapter

 What Is jQuery?

 Incorporating jQuery

 Using jQuery

 Selecting Page Elements

 Event Handling

 DOM Manipulation

 Using Ajax

 Review and Pursue

 As JavaScript has developed into a more valuable language over the past two decades,
 its meaningful usage has become commonplace in today’s web sites. Accordingly, many
 PHP developers are expected to know a bit of JavaScript as well. Often this means
 learning jQuery, a popular JavaScript framework.

 Although this chapter cannot present full coverage of JavaScript or jQuery, you’ll
 learn more than enough to be able to add to your PHP-based projects the features that
 users have come to expect. In the process, you’ll also learn some basics of programming
 in JavaScript in general, and get a sense of into which areas of jQuery you may want
 to further delve.

 What Is jQuery?

 To grasp jQuery, you must have a solid sense of what JavaScript is. As discussed in
 Chapter 11, “Web Application Development,” JavaScript is a programming language that’s primarily used to add dynamic features
 to HTML pages. Unlike PHP, which always runs on the server, JavaScript generally runs
 on the client (JavaScript is starting to be used as a server-side tool, too, although
 that’s still more on the fringe). PHP, precisely because it is server-side, is browser-agnostic
 for the most part; very few things you’ll do in PHP will have different results from
 one browser to the next. Conversely, precisely because it’s running in the browser,
 JavaScript code often has to be customized for the variations in browsers. For many
 years, this was the bane of the web developer: creating reliable cross-browser code.
 Overcoming this hurdle is one of the many strengths of jQuery (www.jquery.com [image: Images]).

 [image: Images]

 [image: Images] The home page for the jQuery JavaScript framework.

 jQuery is a JavaScript framework. A framework is defined as a library of code whose
 use can expedite and simplify development. The core of the jQuery framework can handle
 all key JavaScript functionality, as you’ll see in this chapter. But the framework
 is extendable via plug-ins to provide other features, such as the ability to create
 a dynamic, paginated, sortable table of data. In fact, several useful user interface
 tools have been wrapped inside their own bundle, jQuery UI (www.jqueryui.com [image: Images]). There’s also jQuery Mobile (www.jquerymobile.com), which supports a touch interface and other features commonly used on smartphones
 and tablets.

 [image: Images]

 [image: Images]The home page for the jQuery User Interface library (jQuery UI), which works in conjunction
 with jQuery.

 Debugging JavaScript

 To this point, you may not have thought it so wonderful that PHP dumped all its errors
 into your browser, shoving your mistakes in your face. Until now. When HTML pages
 have JavaScript errors, you rarely are notified. To debug problematic JavaScript code,
 the first thing you’ll need to do is see what actual errors exist.

 The first tool you’ll need when programming in JavaScript is a good debugging browser.
 For years, Firefox (www.mozilla.com) was the clear champion in this regard, with Opera (www.opera.com) and Google Chrome (www.google.com/chrome/) close behind.

 By now, all the major browsers, including Microsoft’s Internet Explorer and Edge,
 include a solid set of developer tools. Look online for instructions on using the
 developer tools built into your favorite browser.

 While researching, you may want to also see what additional extensions exist for your
 browser. Running your JavaScript-enabled pages in-browser with excellent developer
 tools or extensions will make it easier for you to debug any problems that occur.

 Many JavaScript frameworks are out there, and in no way am I claiming jQuery is the
 best. I do use jQuery frequently, however, and it quickly earned a place as one of
 the premier JavaScript frameworks. As you’ll soon see, jQuery has a simple, albeit
 cryptic, syntax, and by using it, you can manipulate the Document Object Model (DOM)
 with aplomb. This is to say that you can easily reference elements within an HTML
 page, thereby grabbing the values of form inputs, adding or removing any kind of HTML
 element, changing element properties, and so forth.

 Before getting into the particulars of using jQuery, I want you to understand that
 jQuery is just a JavaScript framework, meaning that what you’ll actually be doing
 over the next several pages is JavaScript programming. JavaScript as a language, though
 similar in some ways to PHP, differs in other ways, such as how variables are created,
 what character is used to perform concatenation, and so forth. Moreover, JavaScript
 is an object-oriented language, meaning the syntax you’ll sometimes see will be that much different than the procedural
 PHP programming you’ve done to this point (the next chapter introduces object-oriented
 programming [OOP] in PHP). Because you’ll inevitably have problems—like simply omitting
 a closing brace—you’llneed to know a bit about how to debug JavaScript. For a quick
 introduction to that subject, see the sidebar.

 For examples of server-side JavaScript, check out Node (www.nodejs.org).

 Incorporating jQuery

 JavaScript is built into all graphical browsers by default, meaning no special steps
 must be taken to include JavaScript in an HTML page (users have the option of disabling
 JavaScript, although statistically few do). jQuery is a framework of code, though;
 to use it, a page must first incorporate the jQuery library. Including any external
 JavaScript file in an HTML page involves the script tag, providing the name of the external file as the value of its src attribute:

 <script src="file.js"></script>

 The jQuery framework file will have a name like jquery-X.Y.Z.min.js, where X.Y.Z is the version number (3.2.1 as of this writing). The min part of the file’s name indicates that the JavaScript file has been minified. Minification is the removal of spaces, newlines, and comments from code. The result is code that’s
 barely legible [image: Images] but still completely functional. The benefit of minified code is that it will load
 in the browser slightly faster because it will be a marginally smaller file size.

 [image: Images]

 [image: Images]What the minified jQuery code looks like.

 The following set of steps will walk you through installing the jQuery library on
 your server and incorporating it into an HTML page; see the sidebar for an alternative
 approach.

 To incorporate jQuery:

 1. Load www.jquery.com in your browser.

 2. At the top of the page, click Download jQuery.

 3. On the resulting page, download the compressed, production version [image: Images].

 [image: Images]

 [image: Images]The links for downloading the current version of jQuery.

 4. If the JavaScript loads directly instead of being downloaded, save the page on your
 computer.

 Because the resulting file is just JavaScript, it may load directly in your browser
 [image: Images]. If so, save the file as jquery-X.Y.Z.min.js, where X.Y.Z is the actual version number.

 Using Hosted jQuery

 This chapter recommends that you download a copy of jQuery and place it in your web
 directory. Upon doing so, you just need to update the script tag to point to the location of the jQuery file on your site. I want to mention an
 alternative solution, though: using a hosted version of jQuery. By this, I mean that instead of using a version of the jQuery
 library stored on your own web server, you could use a version stored elsewhere online.
 For example, Google provides copies of many JavaScript frameworks for public use (http://code.google.com/apis/libraries/). To use Google’s copy of the jQuery library, you’d use the following code:

 <script src="https://ajax.googleapis.com/ajax/libs/jquery/3.2.1/jquery.min.js">
[image: Images]</script>

 If you use Google’s hosted version of jQuery, your site (i.e., your site’s visitors)
 will likely see a performance boost, due to Google’s Content Delivery Network (CDN)
 and the way browsers cache media.

 On the other hand, using a hosted version makes your site’s functionality dependent
 on another site’s uptime. And your site is more vulnerable from a security perspective
 since it’s assuming the other site is serving the jQuery library and not a virus.
 All that being said, it’s fairly safe to say that Google’s uptime and security model
 is probably better than yours (or mine)!

 5. Move the downloaded file to a js folder within your web server directory.

 All the JavaScript files to be used by this chapter’s examples will be placed within
 a subdirectory named js.

 6. Begin a new HTML document in your text editor or IDE, to be named test.html (Script 15.1):

 Click here to view code image

 <!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Testing jQuery</title>
</head>
<body>
 <!-- Script 15.1 - test.html -->
</body>
</html>

 Script 15.1 This blank HTML page shows how the jQuery library can be included.

 Click here to view code image

 1 <!doctype html>
2 <html lang="en">
3 <head>
4 <meta charset="utf-8">
5 <title>Testing jQuery</title>
6 <script src="js/jquery-3.2.1.min.js"> </script>
7 </head>
8 <body>
9 <!-- Script 15.1 - test.html -->
10 </body>
11 </html>

 This very first example will simply test the incorporation and basic use of the jQuery
 library.

 7. Within the HTML head, include jQuery:

 Click here to view code image

 <script src="js/jquery-3.2.1.min.
[image: Images]js"></script>

 The script tag is used to include a JavaScript file. Conventionally, script tags are placed within the HTML page’s head, although that’s not required (or always
 the case). The value of the src attribute needs to match the name and location of your jQuery library. In this case,
 the assumption is that this HTML page is in the same directory as the js folder, created as part of Step 5.

 8. Save the file as test.html.

 Because this script won’t be executing any PHP, it uses the .html extension.

 9. If you want, load the page in your browser and check for errors.

 As this is just an HTML page, you can load it directly in a browser, without going
 through a URL. You can then use your browser’s error console or other development
 tools (see the “Debugging JavaScript” sidebar) to check that no errors occurred in loading the JavaScript file.

 Using jQuery

 Once you successfully have jQuery incorporated into an HTML page, you can begin using
 it. jQuery, or any JavaScript code, can be written between opening and closing script tags:

 <script>
// JavaScript goes here.
</script>

 (Note that in JavaScript, the double slashes create comments, just as in PHP.)

 Alternatively, you can place jQuery and JavaScript code within a separate file, and
 then include that file using the script tags, just as you included the jQuery library. This is the route to be used in this
 chapter, to further separate the JavaScript from the HTML.

 To be clear, an HTML page can have multiple uses of the script tags, and the same script tag cannot both include an external file and contain JavaScript code.

 The code placed within a script tag will be executed as soon as the browser encounters it. This is often problematic,
 though, because JavaScript is frequently used to interact with the DOM; if immediately
 executed JavaScript code references a DOM element, the code will fail, since that
 DOM element will not have been encountered by the browser at that point [image: Images]. The only reliable way to reference DOM elements is after the browser has knowledge
 of the entire DOM.

 [image: Images]

 [image: Images] A browser reads a page as the HTML is loaded, meaning that JavaScript code cannot
 reference DOM elements until the browser has seen them all.

 In standard JavaScript, you can have code be executed after the page is completely
 loaded by referencing window.onload. In jQuery, the preferred method is to confirm that the web document is ready:

 $(document).ready(some_function);

 As mentioned already, the jQuery syntax can seem especially strange for the uninitiated,
 so I’ll explain this in detail. First of all, the code is how elements and such within the browser are selected in jQuery. In this case,
 the item being selected is the entire HTML document. To this selection, the function is applied. It takes one argument: a function to be called. Note that the
 argument is a reference to the function: its name, without quotation marks. Separately,
 would have to be defined, wherein the actual work—which should be done when the document
 is loaded—takes place.

 An alternative syntax is to use an anonymous function, which is a function definition without a name. Anonymous functions are common to
 JavaScript (anonymous functions are possible in PHP, too, but less common). To create
 an anonymous function, the function’s definition is placed in line, in lieu of the
 function’s name:

 Click here to view code image

 $(document).ready(function() {
 // Function code.
});

 Because the need to execute code when the browser is ready is so common, this whole
 construct is often simplified in jQuery to just:

 $(function() {
 // Function code.
});

 The syntax is unusual, especially the }); at the end, so be mindful of this as you program. As with any programming language,
 incorrect JavaScript syntax will make the code inoperable.

 To test jQuery, this next sequence of steps will create a JavaScript alert once the
 document is ready [image: Images]. After you have this simple test working, you can safely begin using jQuery more
 practically.

 [image: Images]

 [image: Images] This JavaScript alert is created once jQuery recognizes that the HTML document is
 ready in the browser.

 To use jQuery:

 1. Create a new JavaScript document in your text editor or IDE, to be named test.js (Script 15.2):

 // Script 15.2 - test.js

 Script 15.2 This simple JavaScript file creates an alert to test successful incorporation and
 use of the jQuery library.

 Click here to view code image

 1 // Script 15.2 - test.js
2 // This script is included by test.html.
3 // This script just creates an alert to test jQuery.
4
5 // Do something when the document is ready:
6 $(function() {
7
8 // Alert!
9 alert('Ready!');
10
11 });

 A JavaScript file has no script tags—those are in the HTML document—or other opening tags. You can just begin entering
 JavaScript code. Again, a double slash creates a comment.

 2. Create an alert when the document is ready:

 $(function() {
alert('Ready!');
});

 This is just the syntax already explained, with a call to alert() in place of the Function code comment shown earlier. The alert() function takes a string as its argument, which will be used in the presented alert
 box [image: Images].

 3. Save the file as test.js in your web server’s js directory.

 4. Open test.html (Script 15.1) in your text editor or IDE.

 The next step is to update the HTML page so that it includes the new JavaScript file.

 5. After including the jQuery library, include the new JavaScript file (Script 15.3):

 Click here to view code image

 <script src="js/test.js"></script>

 Script 15.3 The updated test HTML page loads a new JavaScript file.

 Click here to view code image

 1 <!doctype html>
2 <html lang="en">
3 <head>
4 <meta charset="utf-8">
5 <title>Testing jQuery</title>
6 <script src="js/jquery-3.2.1.min.js"> </script>
7 <script src="js/test.js"></script>
8 </head>
9 <body>
10 <!-- Script 15.3 - test.html #2 -->
11 </body>
12 </html>

 Assuming that the test.js JavaScript file is placed in the same directory as the jQuery library, with the same
 relative location to test.html, this code will successfully incorporate it.

 6. Save the HTML page and test it in your browser [image: Images].

 If you do not see the alert window, you’ll need to debug the JavaScript code.

 Tip

 Technically, in OOP, a function is called a method. For the duration of this chapter,
 I’ll continue to use the term “function,” as it’s likely to be more familiar to you.

 Tip

 The code $() is shorthand for calling the jQuery() function.

 Tip

 jQuery’s “ready” status is slightly different than JavaScript’s onload: the latter also waits for the loading of images and other media, whereas jQuery’s
 ready status is triggered by the full loading of the DOM.

 Selecting Page Elements

 Once you’ve got basic jQuery functionality working, the next thing to learn is how
 to select page elements. Being able to do so will allow you to hide and show images
 or blocks of text, manipulate forms, and more.

 You’ve already seen how to select the web document itself: $(document). To select other page elements, use CSS selectors in place of document:

 [image: Images] #something selects the element with an id value of something.

 [image: Images] .something selects every element with a class value of something.

 [image: Images] something selects every element of something type (e.g., p selects every paragraph).

 Those three rules are more than enough to get you started, but know that unlike document, each of these gets placed within quotation marks. For example, the code $(‘a’) selects every link and $(‘#caption’) selects the element with an id value of caption. By definition, no two elements in a single HTML page should have the same identifying
 value; thus, to reference individual elements on the page, #something is the easiest solution.

 These rules can be combined as well:

 [image: Images] $(‘img.landscape’) selects every image with a class of landscape.

 [image: Images] $(‘#register input’) selects every input element found within an element that has an id of register.

 For the next jQuery example, a JavaScript-driven version of the Widget Cost Calculator
 form, like the one from Chapter 13, “Security Methods,” will be developed. In these next few steps, the HTML page will be created, with
 the appropriate elements, classes, and unique identifiers to be easily manipulated
 by jQuery [image: Images].

 [image: Images]

 [image: Images]The Widget Cost Calculator as an HTML form.

 To create the HTML form:

 1. Open test.html (Script 15.3) in your text editor or IDE, if you haven’t already.

 Since this file is already jQuery enhanced, it’ll be easiest to just update it.

 2. Change the page’s title (Script 15.4):

 Click here to view code image

 <title>Widget Cost Calculator
[image: Images]</title>

 Script 15.4 In this HTML page is a form with three textual inputs for performing a calculation.

 Click here to view code image

 1 <!doctype html>
2 <html lang="en">
3 <head>
4 <meta charset="utf-8">
5 <title>Widget Cost Calculator</title>
6 <link rel="stylesheet" href="css/style.css">
7 <script src="js/jquery-3.2.1.min.js"></script>
8 <script src="js/calculator.js"></script>
9 </head>
10 <body>
11 <!-- Script 15.4 - calculator.html -->
12 <h1>Widget Cost Calculator</h1>
13 <p id="results"></p>
14 <form action="calculator.php" method="post" id="calculator">
15 <p id="quantityP">Quantity: <input type="number" name="quantity" id="quantity"
 step="1" min="1"></p>
16 <p id="priceP">Price: <input type="number" name="price" id="price" step="0.01"
 min="0.01"></p>
17 <p id="taxP">Tax (%): <input type="number" name="tax" id="tax" step="0.01"
 min="0.01"></p>
18 <p><input type="submit" name="submit" id="submit" value="Calculate!"></p>
19 </form>
20 </body>
21 </html>

 3. After the page title, incorporate a CSS file:

 Click here to view code image

 <link rel="stylesheet"
[image: Images]href="css/style.css">

 To make the form a bit more attractive, some CSS code will style it. You can find
 the CSS file in the book’s corresponding downloads at LarryUllman.com.

 The CSS file also defines two significant classes—error and errorMessage, to be manipulated by jQuery later in the chapter. The first turns everything red;
 the second italicizes text (but the class will be more meaningful as a way of identifying
 a group of similar items). In time, you’ll see how these classes are used.

 4. Change the second tag so that it references , not :

 Click here to view code image

 <script src="js/calculator.js">
[image: Images]</script>

 The JavaScript for this example will go in calculator.js, to be written subsequently. It will be stored in the same js folder as the other JavaScript documents.

 5. Within the HTML body, create an empty paragraph and begin a form:

 Click here to view code image

 <h1>Widget Cost Calculator</h1>
<p id="results"></p>
<form action="calculator.php"
[image: Images]method="post" id="calculator">

 The paragraph with the id of results but no content will be used later in the chapter to present the results of the calculations.
 It has a unique id value, for easy reference. The form, too, has a unique id value. The form, in theory, would be submitted to calculator.php (a separate script, not actually written in this chapter), but that submission will
 be interrupted by JavaScript.

 6. Create the first form element:

 Click here to view code image

 <p id="quantityP">Quantity:
[image: Images]<input type="number"
[image: Images]name="quantity" id="quantity"
[image: Images]step="1" min="1"></p>

 Each form input, as originally written in Chapter 13, involved the textual prompt, the element itself, and a paragraph surrounding both.
 To the paragraph and form input, unique id values are added.

 Note that I tend to use “camel-case” style names—quantityP—in object-oriented languages such as JavaScript. This approach just better follows
 OOP conventions (conversely, I would use quantity_p in procedural PHP code).

 7. Create the remaining two form elements:

 Click here to view code image

 <p id="priceP">Price:
[image: Images]<input type="number"
[image: Images]name="price" id="price"
[image: Images]step="0.01" min="0.01"></p>
<p id="taxP">Tax (%):
[image: Images]<input type="number" name="tax"
[image: Images]id="tax" step="0.01" min="0.01">
[image: Images]</p>

 8. Complete the form and the HTML page:

 Click here to view code image

 <p><input type="submit"
 [image: Images]name="submit" id="submit"
 [image: Images]value="Calculate!"></p>
</form>
</body>
</html>

 The submit button also has a unique id, but that’s for the benefit of the CSS; it won’t actually be referenced in the JavaScript.

 9. Save the page as calculator.html and load it in your browser [image: Images].

 Even though the second JavaScript file, calculator.js, has not yet been written, the form is still loadable.

 Tip

 jQuery has its own additional, custom selectors, allowing you to select page elements
 in more sophisticated ways. For examples, see the jQuery manual.

 Event Handling

 JavaScript, like PHP, is often used to respond to events. Differently, though, events
 in JavaScript terms are primarily user actions within the browser, such as the following:

 [image: Images] Moving the cursor over an image or piece of text

 [image: Images] Clicking a link

 [image: Images] Changing the value of a form element

 [image: Images] Submitting a form

 To handle events in JavaScript, you apply an event listener (also called an event handler) to an element; you tell JavaScript that when A event happens to B element, the C
 function should be called. In jQuery, event listeners are assigned using the syntax

 selection.eventType(function);

 The selection part would be like $(‘.something’) or $(‘a’): whatever element or elements to which the event listener should be applied. The
 eventType value will differ based on the selection. Common values are change, focus, mouseover, click, submit, and select: different events can be triggered by different HTML elements. In jQuery, these are
 all actually the names of functions being called on the selection. These functions
 take one argument: a function to be called when the event occurs on that selection.
 Commonly, the function to be invoked is written inline, anonymously. For example,
 to handle the event of any image being moused-over, you would code

 Click here to view code image

 $('img').mouseover(function() {
 // Do this!
});

 This construct should look familiar—test.js assigns an event handler that listens for the ready event occurring on the HTML document.

 Let’s take this new information and apply it to the HTML page already begun. At this
 point, an event listener can be added to the form so that its submission can be handled.
 In this case, the form’s three inputs will be minimally validated, the total calculation
 will be performed, and the results of the calculation displayed in an alert [image: Images]. To do all this, you need to know one more thing: to fetch the values entered into
 the textual form inputs requires the val() function. It returns the value for the selection, as you’ll see in these next steps.

 [image: Images]

 [image: Images]The calculations are displayed using an alert box (for now).

 To handle the form submission:

 1. Open test.js in your text editor or IDE.

 Since the test.js file already has the proper syntax for executing code when the browser is ready,
 it’ll be easiest and most foolproof to start with it.

 2. Remove the existing alert() call (Script 15.5).

 Script 15.5 This JavaScript file is included by calculator.html (Script 15.4). Upon submission of the form, the form's values are validated and a calculation
 performed.

 Click here to view code image

 1 // Script 15.5 - calculator.js
2 // This script is included by
 calculator.html.
3 // This script handles and validates
 the form submission.
4
5 // Do something when the document is
 ready:
6 $(function() {
7
8 // Assign an event handler to the
 form:
9 $('#calculator').submit(function() {
10
11 // Initialize some variables:
12 var quantity, price, tax, total;
13
14 // Validate the quantity:
15 if ($('#quantity').val() > 0) {
16
17 // Get the quantity:
18 quantity = $('#quantity').
 val();
19
20 } else { // Invalid quantity!
21
22 // Alert the user:
23 alert('Please enter a valid
 quantity!');
24
25 }
26
27 // Validate the price:
28 if ($('#price').val() > 0) {
29 price = $('#price').val();
30 } else {
31 alert('Please enter a valid
 price!');
32 }
33
34 // Validate the tax:
35 if ($('#tax').val() > 0) {
36 tax = $('#tax').val();
37 } else {
38 alert('Please enter a valid
 tax!');
39 }
40
41 // If appropriate, perform the
 calculations:
42 if (quantity && price && tax) {
43
44 total = quantity * price;
45 total += total * (tax/100);
46
47 // Display the results:
48 alert('The total is $' +
 total);
49
50 }
51
52 // Return false to prevent an
 actual form submission:
53 return false;
54
55 }); // End of form submission.
56
57 }); // End of document ready.

 All the following code will go in place of the original alert().

 3. In place of the alert() call, add an event handler to the form’s submission:

 Click here to view code image

 $('#calculator').submit(function() {
}); // End of form submission.

 The selector grabs a reference to the form, which has an id value of calculator. To this selection the submit() function is applied, so that when the form is submitted, the inline anonymous function
 will be called. Because the syntax can be so tricky, my recommendation is to add this
 block of code, and then write the contents of the anonymous function—found in the
 following steps. Note that this and the following code go within the existing $(document).ready() { } block.

 4. Within the new anonymous function, initialize four variables:

 var quantity, price, tax, total;

 In JavaScript, the var keyword is used to declare a variable. It can also declare multiple variables at
 once, if separated by commas. Note that variables in JavaScript do not have an initial
 dollar sign, like those in PHP.

 5. Validate the quantity:

 Click here to view code image

 if ($('#quantity').val() > 0) {
 quantity = $('#quantity').val();
} else {
 alert('Please enter a valid
 [image: Images]quantity!');
}

 For each of the three form inputs, the value needs to be a number greater than zero.
 The value entered can be found by calling the function on the selected element. If the returned value is greater than zero, then
 the value is assigned to the local variable . Otherwise, an alert box indicates the problem to the user [image: Images]. This is admittedly a tedious use of alerts; you’ll learn a smoother approach in
 the next section of the chapter.

 [image: Images]

 [image: Images]If a form element does not have a positive numeric value, an alert box indicates the
 error.

 As a reminder, HTML5 will also validate the inputs in supported browsers. To disable
 that while testing, add novalidate to the opening form tag:

 Click here to view code image

 <form action="calculator.php"
[image: Images]method="post" id="calculator"
[image: Images]novalidate>

 6. Repeat the validation for the other two form inputs:

 Click here to view code image

 if ($('#price').val() > 0) {
 price = $('#price').val();
} else {
 alert('Please enter a valid
 [image: Images]price!');
}
if ($('#tax').val() > 0) {
 tax = $('#tax').val();
} else {
 alert('Please enter a valid
 [image: Images]tax!');
}

 7. If all three variables have valid values, perform the calculations:

 Click here to view code image

 if (quantity && price && tax) {
 total = quantity * price;
 total += total * (tax/100);

 This code should be fairly obvious by now: it looks almost exactly as it would in
 PHP, save for the lack of dollar signs in front of each variable’s name.

 8. Report the total:

 Click here to view code image

 alert('The total is $' + total);

 Again, a crude alert window will be used to display the results of the calculation
 [image: Images]. As you can see in this code, the plus sign performs concatenation in JavaScript.

 9. Complete the conditional begun in Step 7 and return the value false:

 }
return false;

 Having the function return false prevents the form from being submitted to the script that’s identified as the form’s
 action.

 10. Save the page as calculator.js (in the js folder) and test the calculator in your browser.

 Note that if you already had calculator.html loaded in your browser, you’ll need to refresh the browser to load the updated JavaScript.

 Tip

 There are many jQuery plug-ins specifically intended for validating forms, but I wanted
 to keep this simple (and explain core JavaScript concepts in the process).

 Tip

 It is possible to format numbers in JavaScript—for example, so they always contain
 two decimals—but it’s not easily done. For this reason, and because I didn’t want
 to detract from the more important information being covered, the results of the calculation
 may not always look as good as they should.

 Tip

 With jQuery, if the browser supports it, the JavaScript code will perform the calculations.
 If the user has JavaScript disabled, or if the user has a really old browser, the
 JavaScript will not take effect and the form will be submitted as per usual (here,
 to the nonexistent calculator.php).

 DOM Manipulation

 One of the most critical uses of JavaScript in general, and jQuery in particular,
 is manipulation of the DOM: changing, in any way, the contents of the browser. Normally,
 DOM manipulation is manifested by altering what the user sees; how easily you can
 do this in jQuery is one of its strengths.

 Once you’ve selected the element or elements to be manipulated, applying any number
 of jQuery functions to the selection will change its properties. For starters, the
 hide() and show() functions …um…hide and show the selection. Thus, to hide a form (perhaps after the
 user has successfully completed it), you would use

 $('#actualFormId').hide();

 Similar to show() and hide() are fadeIn() and fadeOut(). These functions also reveal or hide the selection, but do so with a bit of effect
 added in.

 Another way to impact the DOM is to change the CSS classes that apply to a selection.
 The addClass() function applies a CSS class and removeClass() removes one. The following code adds the emphasis class to a specific blockquote and removes it from all paragraphs:

 Click here to view code image

 $('#blockquoteID').addClass
[image: Images]('emphasis');
$('p').removeClass('emphasis');

 The toggleClass() function can be used to toggle the application of a class to a selection.

 The already mentioned functions generally change the properties of the page’s elements, but you can also change the contents of those elements. In the previous section, you used the val() function, which returns the value of a form element. But when provided with an argument,
 val() assigns a new value to that form element:

 $('#something').val('cat');

 Similarly, the html() function returns the HTML contents of an element and text() returns the textual contents. Both functions can also take arguments used to assign
 new HTML and text, accordingly.

 Let’s use all this information to finish off the widget cost calculator. A few key
 changes will be made:

 [image: Images] Errors will be indicated by applying the error class.

 [image: Images] Errors will also be indicated by hiding or showing error messages [image: Images].

 [image: Images]

 [image: Images] Error messages are now displayed next to the problematic form inputs.

 [image: Images] The final total will be written to the page [image: Images].

 [image: Images]

 [image: Images] The results of the calculations are now displayed above the form.

 [image: Images] Alerts will not be used.

 There are a couple of ways of showing and hiding error messages. The simplest, to
 be implemented here, is to manually add the messages to the form and then toggle their
 visibility using JavaScript. Accordingly, these steps begin by updating the HTML page.

 To manipulate the DOM:

 1. Open calculator.html in your text editor or IDE, if you haven’t already.

 2. Between the quantity form element and its closing paragraph tag, add an error message
 (Script 15.6):

 Click here to view code image

 <p id="quantityP">Quantity:
[image: Images]<input type="number"
[image: Images]name="quantity" id="quantity"
[image: Images]step="1" min="1"><span
[image: Images]class="errorMessage"
[image: Images]id="quantityError">Please enter
[image: Images]a valid quantity!</p>

 Script 15.6 The updated HTML page has hardcoded error messages beside the key form inputs.

 Click here to view code image

 1 <!doctype html>
2 <html lang="en">
3 <head>
4 <meta charset="utf-8">
5 <title>Widget Cost Calculator</title>
6 <link rel="stylesheet" href="css/style.css" type="text/css" media="screen">
7 <script src="js/jquery-3.2.1.min.js"></script>
8 <script src="js/calculator.js"></script>
9 </head>
10 <body>
11 <!-- Script 15.6 - calculator.html #2 -->
12 <h1>Widget Cost Calculator</h1>
13 <p id="results"></p>
14 <form action="calculator.php" method="post" id="calculator">
15 <p id="quantityP">Quantity: <input type="number" name="quantity" id="quantity"
 step="1" min="1">Please enter a valid
 quantity!</p>
16 <p id="priceP">Price: <input type="number" name="price" id="price" step="0.01"
 min="0.01">Please enter a valid price!
 </p>
17 <p id="taxP">Tax (%): <input type="number" name="tax" id="tax" step="0.01"
 min="0.01">Please enter a valid tax!
 </</p>
18 <p><input type="submit" name="submit" id="submit" value="Calculate!"> p>
19 </form>
20 </body>
21 </html>

 Now following the input is a textual error, which also has a unique . The span containing the error also uses the errorMessage class. This impacts the message’s formatting, thanks to the external CSS document,
 and makes it easier for jQuery to globally hide all error messages upon first loading
 the page.

 3. Repeat Step 2 for the other two form inputs:

 Click here to view code image

 <p id="priceP">Price:
[image: Images]<input type="number"
[image: Images]name="price" id="price"
[image: Images]step="0.01" min="0.01"><span
[image: Images]class="errorMessage"
[image: Images]id="priceError">Please enter a
[image: Images]valid price!</p>
<p id="taxP">Tax (%): <input
[image: Images]type="number" name="tax" id="tax"
[image: Images]step="0.01" min="0.01"></p>
<p><input type="submit"
[image: Images]name="submit" id="submit"
[image: Images]value="Calculate!"><span
[image: Images]class="errorMessage"
[image: Images]id="taxError">Please enter a
[image: Images]valid tax!</p>

 4. Save the file.

 5. Open calculator.js in your text editor or IDE, if it is not already open.

 6. Remove all existing alert() calls (Script 15.7).

 Script 15.7 Using jQuery, the JavaScript code now manipulates the DOM instead of using alert() calls.

 Click here to view code image

 1 // Script 15.7 - calculator.js #2
2 // This script is included by calculator.html.
3 // This script handles and validates the form submission.
4
5 // Do something when the document is ready:
6 $(function() {
7
8 // Hide all error messages:
9 $('.errorMessage').hide();
10
11 // Assign an event handler to the form:
12 $('#calculator').submit(function() {
13
14 // Initialize some variables:
15 var quantity, price, tax, total;
16
17 // Validate the quantity:
18 if ($('#quantity').val() > 0) {
19
20 // Get the quantity:
21 quantity = $('#quantity').val();
22
23 // Clear an error, if one existed:
24 $('#quantityP').removeClass('error');
25

26 // Hide the error message, if it was visible:
27 $('#quantityError').hide();
28
29 } else { // Invalid quantity!
30
31 // Add an error class:
32 $('#quantityP').addClass('error');
33
34 // Show the error message:
35 $('#quantityError').show();
36
37 }
38
39 // Validate the price:
40 if ($('#price').val() > 0) {
41 price = $('#price').val();
42 $('#priceP').removeClass('error');
43 $('#priceError').hide();
44 } else {
45 $('#priceP').addClass('error');
46 $('#priceError').show();
47 }
48
49 // Validate the tax:
50 if ($('#tax').val() > 0) {
51 tax = $('#tax').val();
52 $('#taxP').removeClass('error');
53 $('#taxError').hide();
54 } else {
55 $('#taxP').addClass('error');
56 $('#taxError').show();
57 }
58
59 // If appropriate, perform the calculations:
60 if (quantity && price && tax) {
61
62 total = quantity * price;
63 total += total * (tax/100);
64
65 // Display the results:
66 $('#results').html('The total is $' + total + '.');
67
68 }
69
70 // Return false to prevent an actual form submission:
71 return false;
72
73 }); // End of form submission.
74
75 }); // End of document ready.

 7. Before the submit event handler, hide every element with the error- Message class:

 $('.errorMessage').hide();

 The selector grabs a reference to any element of any type that has a class of errorMessage. In the HTML form, this applies only to the three span tags.

 8. In the if clause code after assigning a value to the local quantity variable, remove the error class and hide the error message:

 Click here to view code image

 $('#quantityP').removeClass
[image: Images]('error');
$('#quantityError').hide();

 As you’ll see in Step 9, when the user enters an invalid quantity, the quantity paragraph
 (with an id value of quantityP) will be assigned the error class and the quantity error message (i.e., #quantityError) will be shown. If the user entered an invalid quantity but then entered a valid
 one, those two effects must be undone, using the code shown here.

 In the case that an invalid quantity was never submitted, the quantity paragraph will
 not have the error class and the quantity error message will still be hidden. In situations where jQuery
 is asked to do something that’s not possible, such as hiding an already hidden element,
 jQuery just ignores the request.

 9. If the quantity is not valid, add the error class and show the error message:

 Click here to view code image

 $('#quantityP').addClass('error');
$('#quantityError').show();

 This code does the opposite of that in Step 8. Note that it goes within the else clause.

 10. Repeat Steps 8 and 9 for the price, making that if-else read:

 Click here to view code image

 if ($('#price').val() > 0) {
 price = $('#price').val();
 $('#priceP').removeClass('error');
 $('#priceError').hide();
} else {
 $('#priceP').addClass('error');
 $('#priceError').show();
}

 11. Repeat Steps 8 and 9 for the tax, making that if-else read:

 Click here to view code image

 if ($('#tax').val() > 0) {
 tax = $('#tax').val();
 $('#taxP').removeClass('error');
 $('#taxError').hide();
} else {
 $('#taxP').addClass('error');
 $('#taxError').show();
}

 12. After calculating the total, within the same if clause, update the results paragraph:

 Click here to view code image

 $('#results').html('The total is
[image: Images]$' + total + '.');

 Instead of using an alert box, you can write the total message to the HTML page dynamically.
 One way of doing so is by changing the text or HTML of an element on the page. The
 page already has an empty paragraph for this purpose, with an value of results. To change the text found within the paragraph, you would apply the function. To change the HTML found within the paragraph, use html() instead.

 13. Save the page as calculator.js (in the js folder) and test the calculator in your browser.

 Again, remember that you must reload the HTML page (because both the HTML and the
 JavaScript have been updated).

 Tip

 jQuery will not throw an error if you attempt to select page elements that don’t exist.
 jQuery will also not throw an error if you call a function on nonexistent elements.

 Tip

 In JavaScript, as in other OOP languages, you can “chain” function calls together,
 performing multiple actions at one time. This code reveals a previously hidden paragraph,
 adds a new class, and changes its textual content, all in one line:

 Click here to view code image

 $('#pId').show().addClass('thisClass').
[image: Images]text('Hello, world! ');

 Tip

 You can change the attributes of a selection using the attr() function. Its first argument is the attribute to be impacted; the second, the new
 value. For example, the following code will disable a submit button by adding the
 property disabled=”disabled”:

 Click here to view code image

 $('#submitButtonId').attr('disabled',
[image: Images]'disabled');

 Tip

 You can add, move, or remove elements using the prepend(), append(), remove(), and other functions. See the jQuery manual for specifics.

 Using Ajax

 Along with DOM manipulation, another key use of JavaScript and jQuery is Ajax. The term Ajax was first coined in 2005, although browser support was mixed for years.
 Come 2017, Ajax is a standard feature of many dynamic web sites, and its straightforward
 use is supported by all the major browsers. But what is Ajax?

 Ajax can mean many things, involving several different technologies and approaches,
 but at the end of the day, Ajax is simply the use of JavaScript to perform a server-side
 request unbeknownst to the user. In a standard request model—which is to say pretty
 much every other example in this book—the user may begin on, say, login.html. Upon submission of the form, the browser will be taken to perhaps login.php, where the actual form validation is done, the registration in the database takes
 place, and the results are displayed [image: Images]. (Even if the same PHP script both displays and handles a form, the standard request
 model requires two separate and overt requests of that same page.)

 [image: Images]

 [image: Images] A standard client-server request model, with the browser constantly reloading entire
 HTML pages.

 With the Ajax model, the form submission will be hijacked by JavaScript, which will in turn send the form data to a server-side PHP script.
 That PHP script does whatever validation and other tasks necessary, and then returns
 only data to the client-side JavaScript, indicating the results of the operation.
 The client-side JavaScript then uses the returned data to update the HTML page [image: Images]. Although there are more steps, the user will be unaware of most of them and will
 be able to continue interacting with the HTML page while this process takes place.

 [image: Images]

 [image: Images] With Ajax, server requests are made behind the scenes, and the browser can be updated
 without reloading.

 Tip

 The foundation of the Ajax process is a JavaScript object of type XMLHttpRequest,
 sometimes abbreviated XHR. However, the request can be made over other protocols besides
 HTTP and other data types are more commonly returned than XML.

 Creating the form

 Incorporating Ajax into a web site results in an improved user experience, more similar
 to how desktop applications behave. There can also be better performance, with less
 data transmitted back and forth (e.g., an entire second page of HTML, like login.php, does not need to be transmitted).

 You already know much of the information required for performing Ajax transactions:
 form validation with JavaScript, form validation with PHP, and using JavaScript to
 update the DOM. The last bit of knowledge you need is how to perform the actual Ajax
 request using jQuery. Over the next several pages, you’ll create the HTML form, the
 server-side PHP script, and the intermediary JavaScript, all for the sake of handling
 a login form. To shorten and simplify the code a bit, I’ve cut a couple of corners,
 but I’ll indicate exactly when I do so, and every cut will be in an area you could
 easily flesh out on your own.

 Creating the form

 The login form simply needs two inputs: one for an email address and another for a
 password [image: Images]. The form will use the same techniques for displaying errors and indicating results
 as calculator.html [image: Images].

 [image: Images]

 [image: Images] The login form.

 [image: Images]

 [image: Images] Error messages are revealed beside each form element.

 To create the form:

 1. Begin a new PHP document in your text editor or IDE, to be named login.php (Script 15.8):

 Click here to view code image

 <!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Login</title>
 <link rel="stylesheet"
[image: Images]href="css/style.css">

 Script 15.8 The login form has one text input for the email address, a password input, and a
 submit button. Other elements exist to be manipulated by jQuery.

 Click here to view code image

 1 <!doctype html>
2 <html lang="en">
3 <head>
4 <meta charset="utf-8">
5 <title>Login</title>
6 <link rel="stylesheet"
 href="css/style.css">
7 <script src="js/jquery-3.2.1.min.js">
 </script>
8 <script src="js/login.js"></script>
9 </head>
10 <body>
11 <!-- Script 15.8 - login.php -->
12 <h1>Login</h1>
13 <p id="results"></p>
14 <form action="login.php" method="post" id="login">
15 <p id="emailP">Email Address:
 <input type="email" name="email"
 id="email"><span class="errorMessage"
 id="emailError">Please enter your
 email address!</p>
16 <p id="passwordP">Password:
 <input type="password"
 name="password" id="password">
 <span class="errorMessage"
 id="passwordError">Please enter your
 password!</p>
17 <p><input type="submit" name="submit"
 value="Login!"></p>
18 </form>
19 </body>
20 </html>

 This will actually be a PHP script, not just an HTML file. The page uses the same
 external CSS file as .

 2. Incorporate the jQuery library and a second JavaScript file:

 Click here to view code image

 <script src="js/jquery-3.2.1.min.
[image: Images]js"></script>
<script src="js/login.js"></script>

 The page will use the same jQuery library as . The page-specific JavaScript will go in . Both will be stored in the folder, found in the same directory as this script.

 3. Complete the HTML head and begin the body:

 Click here to view code image

 </head>
<body>
 <!-- Script 15.8 - login.php -->
<h1>Login</h1>
<p id="results"></p>

 Within the body, before the form, is an empty paragraph with an id of results, to be dynamically populated with jQuery later [image: Images].

 [image: Images]

 [image: Images] Upon successfully logging in, the form will disappear and a message will appear just
 under the header.

 4. Create the form:

 Click here to view code image

 <form action="login.php"
[image: Images]method="post" id="login">
 <p id="emailP">Email
 [image: Images]Address: <input type="email"
 [image: Images]name="email" id="email"><span
 [image: Images]class="errorMessage"
 [image: Images]id="emailError">Please enter
 [image: Images]your email address!</p>
 <p id="passwordP">Password:
 [image: Images]<input type="password"
 [image: Images]name="password"
 [image: Images]id="password"><span
 [image: Images]class="errorMessage"
 [image: Images]id="passwordError">Please
 [image: Images]enter your password!
 [image: Images]</p>
 <p><input type="submit"
 [image: Images]name="submit" value="Login!">
 [image: Images]</p>
</form>

 This form is quite like that in calculator.html. Both form elements are wrapped within paragraphs that have unique id values, making it easy for jQuery to apply the error class when needed. Both elements are followed by the default error message, to be
 hidden and shown by jQuery as warranted.

 5. Complete the HTML page:

 </body>
</html>

 6. Save the page as login.php and load it in your browser.

 Remember that this is a PHP script, so it must be accessed through a URL (http://something).

 Creating the server-side script

 The previous sequence of steps goes through creating the client side of the process:
 the HTML form. Next, I’m going to skip ahead and look at the server side: the PHP
 script that handles the form data. This script must do two things:

 1. Validate the submitted data.

 2. Return a string indicating the results.

 For simplicity’s sake, the PHP script will merely compare the submitted values against
 hardcoded ones, but you could easily modify this code to perform a database query
 instead.

 In terms of the Ajax process, the important thing is that this PHP script only ever
 returns a single string [image: Images], without any HTML or other markup [image: Images]. This is mandatory, because the entire output of the PHP script is what the JavaScript
 performing the Ajax request will receive. And, as you’ll see in the JavaScript for
 this example, the PHP script’s output will be the basis for the error reporting and
 DOM manipulation to be performed.

 [image: Images]

 [image: Images] The results of the server-side PHP script when a proper request is made.

 [image: Images]

 [image: Images] The HTML source of the server-side PHP script shows that the only output is a simple
 string, without any HTML at all.

 To handle the Ajax request:

 1. Begin a new PHP document in your text editor or IDE, to be named login_ajax.php (Script 15.9):

 <?php # Script 15.9 -
[image: Images]login_ajax.php

 Script 15.9 This PHP script will receive the Ajax request from JavaScript. It performs some validation
 and returns simple strings to indicate the results.

 Click here to view code image

 1 <?php # Script 15.9 - login_ajax.php
2 // This script is called via Ajax from
 login.php.
3 // The script expects to receive two
 values in the URL: an email address and
 a password.
4 // The script returns a string
 indicating the results.
5
6 // Need two pieces of information:
7 if (isset($_GET['email'],
 $_GET['password'])) {
8
9 // Need a valid email address:
10 if (filter_var($_GET['email'],
 FILTER_VALIDATE_EMAIL)) {
11
12 // Must match specific values:
13 if (($_GET['email'] ==
 'email@example.com') &&
 ($_GET['password'] == 'testpass')
) {
14
15 // Set a cookie, if you want,
 or start a session.
16
17 // Indicate success:
18 echo 'CORRECT';
19
20 } else { // Mismatch!
21 echo 'INCORRECT';
22 }
23
24 } else { // Invalid email address!
25 echo 'INVALID_EMAIL';
26 }
27
28 } else { // Missing one of the two
 variables!
29 echo 'INCOMPLETE';
30 }
31
32 ?>

 Again, this script is not meant to be executed directly, so it contains no HTML.

 2. Validate that an email address and a password were received in the URL:

 Click here to view code image

 if (isset($_GET['email'],
[image: Images]$_GET['password'])) {

 A GET request will be made of this script; therefore, the first thing the code does
 is confirm that both an email address and a password were passed to it.

 3. Validate that the submitted email address is of the proper syntax:

 Click here to view code image

 if (filter_var($_GET['email'],
[image: Images]FILTER_VALIDATE_EMAIL)) {

 Using the Filter extension, the provided email address is also checked for basic syntax.

 4. If the submitted values are correct, indicate success:

 Click here to view code image

 if (($_GET['email'] ==
[image: Images]'email@example.com') && ($_GET
[image: Images]['password'] == 'testpass')) {
 echo 'CORRECT';

 As already mentioned, this code just compares the submitted values against two static
 strings. You could easily swap out this code for a database query, like those in Chapter 12, “Cookies and Sessions.” At this point you could also set a cookie or begin a session (although see the
 following tip for the “gotchas” involved with doing so).

 Most importantly, the script simply echoes the word CORRECT, without any other HTML ([image: Images] and [image: Images]).

 5. Complete the three conditionals:

 Click here to view code image

 } else {
 echo 'INCORRECT';
 }
 } else {
 echo 'INVALID_EMAIL';
 }
} else {
 echo 'INCOMPLETE';
}

 These three else clauses complete the conditionals begun in Steps 2, 3, and 4. Each simply prints
 a string indicating a certain status. The JavaScript associated with the login form,
 to be written next, will take different actions based on each of the possible results.

 6. Complete the PHP page:

 ?>

 7. Save the file as login_ajax.php, and place it in the same folder of your web directory as login.php.

 The two files must be in the same directory for the Ajax request to work.

 Tip

 It’s perfectly acceptable for the server-side PHP script in an Ajax process to set
 cookies or begin a session. Keep in mind, however, that the page in the browser has
 already been loaded, meaning that page cannot access cookies or sessions created after
 the fact. You’ll need to use JavaScript to update the page after creating a cookie
 or starting a session, but subsequent pages loaded in the browser will have full access
 to cookie or session data.

 Creating the JavaScript

 The final step is to create the JavaScript that interrupts the form submission, sends
 the data to the server-side PHP script, reads the PHP script’s results, and updates
 the DOM accordingly. This is the “glue” between the client-side HTML form and the
 server-side PHP. All the JavaScript form validation and DOM manipulation will be quite
 similar to what you’ve already seen in this chapter. Two new concepts will be introduced.

 First, you’ll need to know how to create a generic object in JavaScript. In this case, one object will represent the data to be sent to the
 PHP script and another will represent the options for the Ajax request. Here is how
 you create a new object in JavaScript:

 Click here to view code image

 var objectName = new Object();

 The next chapter gets into OOP in more detail, but understand now that this just creates
 a new variable of type Object. The capital letter “O” Object is a blank template in JavaScript (since JavaScript is an object-oriented language,
 most variables are objects of some type). Once you’ve created the object, you can
 add values to it using the syntax:

 Click here to view code image

 objectName.property = value;

 If you’re new to JavaScript or OOP, it may help to think of the generic object as
 being like an indexed array, with a name and a corresponding value.

 The second new piece of information is the usage of jQuery’s ajax() function. This function performs an Ajax request. It takes as its lone argument the
 request’s settings. As part of the jQuery library, it’s invoked like so:

 $.ajax(settings);

 That’s the basic premise; the particulars will be discussed in detail in the following
 code.

 To perform an Ajax request:

 1. Begin a new JavaScript file in your text editor or IDE, to be named login.js (Script 15.10):

 // Script 15.10 - login.js

 Script 15.10 The JavaScript code in this file performs an Ajax request of a server-side script
 and updates the DOM based on the returned response.

 Click here to view code image

 1 // Script 15.10 - login.js
2 // This script is included by login.php.
3 // This script handles and validates the
 form submission.
4 // This script then makes an Ajax
 request of login_ajax.php.
5
6 // Do something when the document is ready:
7 $(function() {
8
9 // Hide all error messages:
10 $('.errorMessage').
 hide();
11
12 // Assign an event handler to the
 form:
13 $('#login').submit(function() {
14
15 // Initialize some variables:
16 var email, password;
17
18 // Validate the email address:
19 if ($('#email').val().length
 >= 6) {
20
21 // Get the email address:
22 email = $('#email').val();
23
24 // Clear an error, if one
 existed:
25 $('#emailP').removeClass
 ('error');
26
27 // Hide the error message,
 if it was visible:
28 $('#emailError').hide();
29
30 } else { // Invalid email address!
31
32 // Add an error class:
33 $('#emailP').addClass
 ('error');
34
35 // Show the error message:
36 $('#emailError').show();
37
38 }

39
40 // Validate the password:
41 if ($('#password').val().length > 0) {
42 password = $('#password').val();
43 $('#passwordP').removeClass('error');
44 $('#passwordError').hide();
45 } else {
46 $('#passwordP').addClass('error');
47 $('#passwordError').show();
48 }
49
50 // If appropriate, perform the Ajax request:
51 if (email && password) {
52
53 // Create an object for the form data:
54 var data = new Object();
55 data.email = email;
56 data.password = password;
57
58 // Create an object of Ajax options:
59 var options = new Object();
60
61 // Establish each setting:
62 options.data = data;
63 options.dataType = 'text';
64 options.type = 'get';
65 options.success = function(response) {
66
67 // Worked:
68 if (response == 'CORRECT') {
69
70 // Hide the form:
71 $('#login').hide();
72
73 // Show a message:
74 $('#results').removeClass('error');
75 $('#results').text('You are now logged in!');
76
77 } else if (response == 'INCORRECT') {
78 $('#results').text('The submitted credentials do not match those on file!');
79 $('#results').addClass('error');
80 } else if (response == 'INCOMPLETE') {
81 $('#results').text('Please provide an email address and a password!');
82 $('#results').addClass('error');
83 } else if (response == 'INVALID_EMAIL') {
84 $('#results').text('Please provide your email address!');
85 $('#results').addClass('error');
86 }
87
88 }; // End of success.
89 options.url =
 'login_ajax.php';
90
91 // Perform the request:
92 $.ajax(options);
93
94 } // End of email && password IF.
95
96 // Return false to prevent an
 actual form submission:
97 return false;
98
99 }); // End of form submission.
100
101 }); // End of document ready.

 2. Add the jQuery code for handling the “ready” state of the document:

 $(function() {
});

 The JavaScript needs to start with this code in order to set the table once the browser
 is ready. Because of the complicated syntax, I think it’s best to add this entire
 block of code first and then place all the subsequent code within the braces.

 3. Hide every element that has the errorMessage class:

 $('.errorMessage').hide();

 The selector grabs a reference to any element of any type that has a class of errorMessage. In the HTML form, this applies only to the three span tags. Those will be hidden by this code as soon as the DOM is loaded.

 4. Create an event listener for the form’s submission:

 Click here to view code image

 $('#login').submit(function() {
});

 This code is virtually the same as that in the calculator form. All the remaining
 code will go within these braces.

 5. Initialize two variables:

 var email, password;

 These two variables will act as local representations of the form data.

 6. Validate the email address:

 Click here to view code image

 if ($('#email').val().length >= 6) {
 email = $('#email').val();
 $('#emailP').removeClass('error');
 $('#emailError').hide();

 The calculator form validated that all the numbers were greater than zero, which isn’t
 an appropriate validation for the login form. Instead, the conditional confirms that
 the string length of the value of the email input is greater than or equal to 6 (six
 characters being the absolute minimum required for a valid email address, such as
 a@b.cc). You could also use regular expressions in JavaScript to perform more stringent
 validation, but I’m trying to keep this simple (and the server-side PHP script will
 validate the email address as well, as you’ve already seen).

 If the email address value passes the minimal validation, it’s assigned to the local
 variable. Next, the error class is removed from the paragraph, in case it was added previously, and the email-specific
 error is hidden, in case it was shown previously.

 7. Complete the email address conditional:

 Click here to view code image

 } else {
 $('#emailP').addClass('error');
 $('#emailError').show();
}

 This code completes the conditional begun in Step 6. The code is the same as that
 used in , adding the error class to the entire paragraph and showing the error message [image: Images].

 8. Validate the password:

 Click here to view code image

 if ($('#password').val().length >
[image: Images]0) {
 password = $('#password').val();
 $('#passwordP').removeClass
[image: Images]('error');
 $('#passwordError').hide();
} else {
 $('#passwordP').addClass('error');
 $('#passwordError').show();
}

 For the password, the minimum length would likely be determined by the registration
 process. As a placeholder, this code just confirms a positive string length. Otherwise,
 this code is essentially the same as that in the previous two steps.

 9. If both values were received, store them in a new object:

 Click here to view code image

 if (email && password) {
 var data = new Object();
 data.email = email;
 data.password = password;

 The premise behind this code was explained before these steps. First a new, generic
 object is created. Then a property of that object named email is created and then assigned the value of the email address. Finally, a property
 named password is created and then assigned the value of the entered password. If it helps to imagine
 this code in PHP terms, the equivalent would be

 Click here to view code image

 $data = array();
$data['email'] = $email;
$data['password'] = $password;

 10. Create a new object for the Ajax options, and establish the first three settings:

 Click here to view code image

 var options = new Object();
options.data = data;
options.dataType = 'text';
options.type = 'get';

 Here, another generic object is created. Next, a property named data is assigned the value of the data object. This property of the options object stores the data being passed to the PHP script as part of the Ajax request.

 The second setting is the data type expected back from the server-side request. As
 the PHP script login_ajax.php returns (i.e., prints) a simple string, the value here is text. The dataType setting impacts how the JavaScript will attempt to work with the returned response;
 it needs to match what the actual server response will be.

 The type setting is the type of request being made, with get and post the two most common. A GET request is the default, so it does not need to be assigned
 here, but the code is being explicit anyway.

 To be clear, because of the name of the properties in the data object—email and password—and because of the type value of get, the login_ajax.php script will receive $_GET[‘email’] and $_GET[‘password’]. If you were to change the names of the properties in data, or the value of options.type, the server-side PHP script would receive the Ajax data in different superglobal
 variables.

 11. Begin defining what should happen upon a successful Ajax request:

 Click here to view code image

 options.success = function
 [image: Images](response) {
}; // End of success.

 The success property defines what the JavaScript should do when the Ajax query works. By “work,”
 I mean that the JavaScript can perform a request of the server-side page and receive
 a result. For what should actually happen, an anonymous function is assigned to this property. In this step, the anonymous
 function is defined and the assignment line is completed. The code in subsequent steps
 will go between these curly brackets.

 As you can see, the anonymous function takes one argument: the response from the server-side
 script, assigned to the response variable. As already explained, the response received by the JavaScript will be the
 entirety of whatever is outputted by the PHP script.

 12. Within the anonymous function created in Step 11, if the server response equals CORRECT, hide the form and update the page:

 Click here to view code image

 if (response == 'CORRECT') {
 $('#login').hide();
 $('#results').removeClass('error');
 $('#results').text('You are now
 [image: Images]logged in!');

 When the user submits the correct credentials—email@example.com and testpass, will return the string CORRECT. In that case, the JavaScript will hide the entire login form and assign a string
 to the results paragraph, indicating such [image: Images]. Because incorrect submissions may have added the error class to this paragraph (see Step 13), that class is also removed here.

 13. If the server response equals INCORRECT, indicate an error:

 Click here to view code image

 } else if (response == 'INCORRECT') {
 $('#results').text('The submitted
 [image: Images]credentials do not match those
 [image: Images]on file! ');
 $('#results').addClass('error');

 When the user submits a password and a syntactically valid email address but does
 not provide the correct specific values, the server-side PHP script will return the
 string INCORRECT. In that case, a different string is assigned to the results paragraph and the error class is applied to the paragraph as well [image: Images].

 [image: Images]

 [image: Images] The results upon providing invalid login credentials.

 14. Add clauses for the other two possible server responses:

 Click here to view code image

 } else if (response ==
[image: Images]'INCOMPLETE') {
 $('#results').text('Please
 [image: Images]provide an email address and
 [image: Images]a password! ');
 $('#results').addClass('error');
} else if (response ==
[image: Images]'INVALID_EMAIL') {
 $('#results').text('Please
 [image: Images]provide your email address!
 [image: Images]');
 $('#results').addClass('error');
}

 These are repetitions of the code in Step 13, with different messages. This is the
 end of the code that goes within the property’s anonymous function.

 15. Add the url property and make the request:

 Click here to view code image

 options.url = 'login_ajax.php';
$.ajax(options);

 The url property of the Ajax object names the actual server-side script to which the request
 should be sent. As long as login.php and login_ajax.php are in the same directory, this reference will work.

 Finally, after establishing all of the request options, the request is performed.

 16. Complete the conditional begun in Step 9 and return false:

 Click here to view code image

 } // End of email && password IF.
return false;

 If the email and password variables do not have TRUE values, no Ajax request is made (i.e., that conditional
 has no else clause). Finally, the value false is returned here to prevent the actual submission of the form.

 17. Save the page as login.js (in the js folder) and test the login form in your browser.

 Tip

 Here’s a debugging tip: it often helps to run the server-side script directly [image: Images] to confirm that it works (e.g., that it doesn’t contain a parse or other error).

 Tip

 An improvement you could make to this process would be to have the server-side PHP
 script respond in JSON (JavaScript Object Notation) format instead. Search online
 for details on returning JSON from a PHP script and using JSON in JavaScript.

 Tip

 Because JavaScript can be disabled by users, you can never rely strictly on JavaScript
 form validation. You must always also use server-side PHP validation to protect your
 web site.

 Review and Pursue

 If you have any problems with the review questions or the pursue prompts, turn to
 the book’s supporting forum (LarryUllman.com/forums/).

 Review

 [image: Images] What is JavaScript? How does JavaScript compare to PHP?

 [image: Images] What is jQuery? What is the relationship between jQuery and JavaScript?

 [image: Images] How is an external JavaScript file incorporated into an HTML page? How is JavaScript
 code placed within the HTML page itself?

 [image: Images] Why is it important to wait until the entire DOM has been loaded to execute JavaScript
 code that references DOM elements?

 [image: Images] Why are unique identifiers in the DOM necessary?

 [image: Images] In jQuery, how do you select elements of a given tag type? How do you select elements
 that have a certain class? How do you select a specific element?

 [image: Images] In jQuery, how do you add an event listener to a page element (or elements)? What
 is an event listener?

 [image: Images] Why must you reload HTML pages after altering their JavaScript?

 [image: Images] What are some of the jQuery functions you can use to manipulate the DOM?

 [image: Images] What is Ajax? Why is Ajax a “good thing”?

 [image: Images] Why must an HTML page that performs a server-side request be loaded through a URL?

 [image: Images] How do you create a generic object in JavaScript?

 [image: Images] What impact does the Ajax request’s type property have? What impact do the names of the properties in the data object have?

 Pursue

 [image: Images] Head to the jQuery web site and start perusing the jQuery documentation.

 [image: Images] Check out jQuery UI and what it can do for your HTML pages.

 [image: Images] Use the jQuery documentation, or simply search online, for some of jQuery’s plug-ins.
 Attempt to use one or more of them in an HTML page.

 [image: Images] Once you feel comfortable with the Ajax process, search online for information about
 performing Ajax requests using JSON to represent the data transmitted back to the JavaScript.

 [image: Images] See what happens when you reference a DOM element in JavaScript before the entire
 DOM has been loaded. Witnessing this should help you recognize what’s happening when
 you inevitably and accidentally fail to wait until the browser is ready before referencing
 the DOM.

 [image: Images] Update calculator.js so that the results paragraph is initially cleared on each form submission. By doing so, the results
 of previous submissions won’t be shown upon subsequent invalid submissions.

 [image: Images] Modify login_ajax.php so that it uses a database to confirm successful login.

 [image: Images] Modify login_ajax.php so that it sends a cookie or begins a session. Create a secondary PHP script that
 accesses the created cookie or session.

 [image: Images] Modify login.php so that it also performs the login validation, should the user have JavaScript disabled.
 Hint: This is simpler than you might think—just use PHP to handle the form submission
 (in the same file) as if JavaScript were not present at all.

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 16. An OOP Primer

 In This Chapter

 Fundamentals and Syntax

 Working with MySQL

 The DateTime Class

 Review and Pursue

 PHP is somewhat unusual as a language in that it can be used both procedurally, as most of this book demonstrates, and as an object-oriented programming (OOP) language. There are merits to both approaches, and you ought to be familiar
 with each (in due time, at least).

 Unfortunately, mastery of OOP requires lots of time and information: my PHP Advanced and Object-Oriented Programming: Visual QuickPro Guide (Peachpit Press) spends 200 pages on the subject! Still, one of the great things
 about OOP is that you can use it without fully knowing it. You’ll see what this means shortly.

 This chapter is a primer for OOP in PHP. Some of the examples will replicate procedural
 ones already shown in the book to best compare and contrast the two approaches. Various
 sidebars and tips will mention other uses of OOP in PHP, many of which will not have
 procedural equivalents.

 Fundamentals and Syntax

 If you’ve never done any object-oriented programming, both the concept and the syntax
 can be quite foreign. Simply put, all applications, or scripts, involve taking actions with information: validating it, manipulating it, storing it in a database, and so forth. Philosophically,
 procedural programming is written with a focus on the actions: do this, then this,
 then this; OOP is data-centric, focusing more on the kinds of information being used.

 OOP fundamentals

 OOP in PHP begins with the definition of a class, which is a template for a particular type of data: an employee, a user, a page of
 content, and so forth. A class definition contains both variables and functions. Syntactically,
 a variable in a class definition is called an attribute or property, and a function in a class definition is called a method. Combined, the attributes and methods are the members of the class.

 As a theoretical example, you might have a class called Car. Note that class names conventionally begin with an uppercase letter. The properties
 of a Car would include make, model, year, odometer, and so forth: all information that can be known about a car. A Car’s properties can be set, changed, and retrieved, and the values of the properties
 distinguish this Car from that Car. A Car’s methods—the things that the car can do—would include start(), drive(), park(), and turnOff(). These actions are common to all Cars.

 OOP vs. Procedural

 Discussions as to the merits of OOP vs. procedural programming can quickly escalate
 to verbal wars, with each side fiercely advocating for their approach. PHP is somewhat
 unique in that you have a choice (by comparison, C is strictly a procedural language
 and Java object-oriented). In my opinion, each programming style has its strengths
 and weaknesses, but neither is “better” than the other.

 Procedural programming is arguably faster to learn and use, particularly for smaller
 projects. But procedural code can be harder to maintain and expand, especially in
 more complicated sites, and has the potential to be buggier.

 Code written using OOP, on the other hand, may be easier to maintain, specifically
 on larger projects, and may be more appropriate in team environments. But OOP is harder
 to master, and when not done well, is that much more challenging to remedy.

 In time, you’ll naturally come up with your own opinions and preferences. The real
 lesson, to me, is to take advantage of the fact that PHP allows for both syntaxes,
 and not to limit yourself to just one style regardless of the situation.

 In the introduction to this chapter, I stated that you can use OOP without really knowing it. By that I mean that it’s very easy, and common enough, to use an existing class
 definition for your own needs. In fact, the reusability of code—particularly code
 created by others—is one of the key benefits of OOP. What takes a lot of effort, at
 least to do it right, is to master the design process: understanding what members
 to define and, more importantly, how to implement sophisticated OOP concepts such
 as

 [image: Images] Inheritance

 [image: Images] Access control

 [image: Images] Overriding methods

 [image: Images] Scope resolution

 [image: Images] Abstraction

 [image: Images] And so on

 When you’re interested in learning how to properly create your own classes, you can
 read more about these subjects in my PHP Advanced and Object-Oriented Programming: Visual QuickPro Guide, among other resources, but in this chapter, let’s focus on using existing classes
 instead of creating your own custom ones.

 OOP syntax in PHP

 Let’s say someone has gone through the process of designing and defining a Car class. Most classes are not used directly; rather, you create an instance of that class—a specific variable of the class’s type. That instance is called an
 object. In PHP, an instance is created using the new keyword:

 $obj = new ClassName();
$mine = new Car();

 Whereas the code $name = ‘Larry’ creates a variable of type string, this code creates a variable of type Car. Everything that’s part of Car’s definition—every property (i.e., variable) and method (i.e., function)—is now embedded
 in $mine.

 Behind the scenes (i.e., in the class definition), a special method called the constructor is automatically invoked when a new object of that type is generated. The constructor
 normally provides whatever initial setup would be required by the subsequent usage
 of that object. For example, the MySQLi class’s constructor establishes a connection to the database and the DateTime class’s constructor creates a reference to an exact date and time (both the MySQLi and DateTime classes will be explicitly used in this chapter).

 If the constructor takes arguments, like any function can, those may be provided when
 the object is created:

 Click here to view code image

 $mine = new Car('Honda', 'Fit', 2008);

 Once you have an object, you reference its properties (i.e., variables) and call its
 methods (i.e., functions) using the syntax

 Click here to view code image

 $object_name->member_name:
$mine->color = 'Purple';
$mine->start();

 The first line (theoretically) assigns the value Purple to the object’s color property. The second line invokes the object’s start() method. As with any function call, the parentheses are required. If the method takes
 arguments, those can be provided, too:

 $mine->drive('Forward');

 Sometimes you’ll use an object’s properties as you would any other variable:

 Click here to view code image

 $mine->odometer += 20;
echo "My car currently has
[image: Images]$mine->odometer miles on it.";

 If an object’s method returns a value, the method can be invoked in the same manner
 as any function that returns a value:

 Click here to view code image

 // The fill() method takes a
[image: Images]number of
// gallons being added and returns
// how full the tank is:
$tank = $mine->fill(8.5);

 And that’s really enough to know about OOP to start using it. As you’ll see, the examples
 over the next few pages will replicate functionality explained earlier in the book
 so that the contrasting approaches to the same end result should help you better understand
 what’s going on.

 Tip

 In documentation, you’ll see the ClassName::method_name() syntax. This is a way of specifying to which class a method belongs.

 Tip

 One of the major changes in PHP 5.3 was support for namespaces. Namespaces, in layman’s
 terms, provide a way to group multiple class definitions under a single title. Namespaces
 are useful for organizing code, as well as preventing conflicts (e.g., differentiating
 between my Car class and your Car class).

 Tip

 Classes can also have their own constants, just as they have their own variables and
 functions. Class constants are normally used without an instance of that class, as
 in

 Click here to view code image

 echo ClassName::CONSTANT_NAME;

 More OOP Classes

 There are more OOP classes defined in PHP than just those illustrated in this chapter,
 although I think the MySQLi and DateTime classes are the two most obviously accessible and usable. The largest body of classes
 can be found in the Standard PHP Library (SPL), built into PHP as of version 5.0, and greatly expanded in version 5.3.

 The SPL provides high-end classes in several categories: exception handling, iterators (loops that can work on any collection of data), custom data types, and more. The
 SPL is definitely for more advanced PHP programmers and is most beneficial for otherwise
 strongly or entirely OOP-based code.

 There are several good classes defined for internationalization purposes, too (www.php.net/intl). These classes define some of the functionality originally intended as part of the
 now-defunct PHP 6, including the ability to sort words, format numbers, and so forth,
 in a manner customized to the given locale (a locale is a combination of the language, cultural habits, and other unique choices
 for a region).

 Working with MySQL

 Just as you can write PHP code in both procedural and object-oriented styles, the
 MySQL Improved extension can similarly be used either way to interact with a database.
 Chapter 9, “Using PHP with MySQL,” introduced the basics of the procedural approach. As a comparison, this chapter
 will run through the same functionality using OOP.

 There are three defined classes that you will use in this chapter:

 [image: Images] MySQLi, the primary class, provides a database connection, a querying method, and more.

 [image: Images] MySQLi_Result is used to handle the results of SELECT queries (among others).

 [image: Images] MySQLi_Stmt is for performing prepared statements (introduced in Chapter 13, “Security Methods”).

 For each, I’ll explain the basic usage and walk you through an example script. For
 a full listing of all the possibilities—all the properties and methods of each class—see
 the PHP manual.

 Creating a connection

 As with the procedural approach, creating a connection is the first step in interacting
 with MySQL when using object notation. With the MySQLi class, a connection is established when the object is instantiated (i.e., when the
 object is created), by passing the appropriate connection values to the constructor:

 Click here to view code image

 $mysqli = new MySQLi(hostname,
username, password, database);

 Even though this is OOP, you would use the same MySQL values as you would when programming
 procedurally, or when connecting to MySQL using the command-line client or other interface.

 If a connection could not be made, the connect_error property will store the reason why [image: Images]:

 Click here to view code image

 if ($mysqli->connect_error) {
 echo $mysqli->connect_error;
}

 [image: Images]

 [image: Images] A MySQL connection error.

 Next, you should establish the character set:

 Click here to view code image

 $mysqli->set_charset(charset);
$mysqli->set_charset('utf8');

 At this point, you’re ready to execute your queries, to be covered next.

 After executing the queries, call the close() method to close the database connection:

 $mysqli->close();

 To be extra tidy, you can delete the object, too:

 unset($mysqli);

 To practice this, let’s write a PHP script that connects to MySQL. Because the subsequent
 two scripts will be updates of scripts from Chapter 9 and will use the same template as Chapter 9, you’ll want to place these next three scripts in the same web directories you used
 for Chapter 9.

 To make an OOP MySQL connection:

 1. Begin a new PHP script in your text editor or IDE, to be named mysqli_oop_connect.php (Script 16.1):

 Click here to view code image

 <?php # Script 16.1 -
[image: Images]mysqli_oop_connect.php

 This script will largely follow the same approach as mysqli_connect.php in Chapter 9. It will contain no HTML.

 2. Set the database connection parameters as constants:

 Click here to view code image

 DEFINE('DB_USER', 'username');
DEFINE('DB_PASSWORD', 'password');
DEFINE('DB_HOST', 'localhost');
DEFINE('DB_NAME', 'sitename');

 As always, you’ll need to change the particulars to be correct for your server. As
 with Chapter 9, this chapter’s examples will make use of the sitename database.

 3. Create a MySQLi object:

 Click here to view code image

 $mysqli = new MySQLi(DB_HOST,
[image: Images]DB_USER, DB_PASSWORD, DB_NAME);

 This is the syntax already explained, using the constants as the values to be passed
 to the constructor.

 4. If an error occurred, show it:

 Click here to view code image

 if ($mysqli->connect_error) {
 echo $mysqli->connect_error;
 unset($mysqli);

 If the MySQLi object’s connect_error property has a value, it means that the script could not establish a connection to
 the database. In that case, the connection error is displayed [image: Images], and the object variable is unset, since it’s useless.

 5. If a connection was made, establish the encoding:

 Click here to view code image

 } else {
 $mysqli->set_charset('utf8');
}

 Remember that the encoding used to communicate with MySQL needs to match the encoding
 set by the HTML pages and by the database.

 6. Save the script as

 mysqli_oop_connect.php.

 As with most files in this book that are meant to be included by other scripts, this
 one omits the closing PHP tag.

 7. Ideally, place the file outside of the web document directory.

 Because the file contains sensitive MySQL access information, it ought to be stored
 securely. If you can, place it in the directory immediately above or otherwise outside
 of the web directory (see Chapter 9 for particulars).

 Again, the following two scripts will use the template that Chapter 9 used, so you should store this connection script in the same directory as mysqli_connect.php from Chapter 9.

 8. Temporarily place a copy of the script within the web directory and run it in your
 browser.

 To test the script, you’ll want to place a copy on the server so that it’s accessible
 from the browser (which means it must be in the web directory). If the script works
 properly, the result should be a blank page. If you see an Access denied… or similar message [image: Images], it means that the combination of username, password, and host does not have permission
 to access the particular database.

 9. Remove the temporary copy from the web directory.

 Script 16.1 This script creates a new MySQLi object, through which database interactions will take place.

 Click here to view code image

1 <?php # Script 16.1 - mysqli_oop_connect.php
2 // This file contains the database access information.
3 // This file also establishes a connection to MySQL,
4 // selects the database, and sets the encoding.
5 // The MySQL interactions use OOP!
6
7 // Set the database access information as constants:
8 DEFINE('DB_USER', 'username');
9 DEFINE('DB_PASSWORD', 'password');
10 DEFINE('DB_HOST', 'localhost');
11 DEFINE('DB_NAME', 'sitename');
12
13 // Make the connection:
14 $mysqli = new MySQLi(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME);
15
16 // Verify the connection:
17 if ($mysqli->connect_error) {
18 echo $mysqli->connect_error;
19 unset($mysqli);
20 } else { // Establish the encoding.
21 $mysqli->set_charset('utf8');
22 }

 Tip

 You can use print_r() to learn about, and debug, objects in PHP code [image: Images]:

 Click here to view code image

 echo '<pre>' . print_r($mysqli, 1) .
[image: Images]'</pre>';

 [image: Images]

 [image: Images] Using print_r() on an object, perhaps wrapped within preformatted tags to make its output easier
 to read, reveals the object’s many property names and values.

 Tip

 Since the $mysqli object is unset if no connection is made, any script that needs it can be written
 to test for a successful connection by just using

 Click here to view code image

 if (isset($mysqli)) { // Do whatever.

 For brevity’s sake, this test is omitted in subsequent scripts, but know it’s possible.

 Tip

 The MySQLi constructor takes two more arguments: the port to use and the socket. When
 running MAMP or XAMPP (see Appendix A, “Installation”), you may need to provide the
 port.

 Tip

 The MySQLi::character_set_name() method returns the current character set. The MySQLi::get_charset() method returns the character set, collation, and more.

 Tip

 You can change the database used by the current connection via the select_db() method:

 Click here to view code image

 $mysqli->select_db(dbname);

 Executing simple queries

 Once you’ve successfully established a connection to the MySQL server, you can begin
 using the MySQLi object to query the database. For that, call the appropriately named query() method:

 $mysqli->query(query);

 Its lone argument is the SQL command to be executed, which I normally assign to a
 separate variable beforehand:

 Click here to view code image

 $q = 'SELECT * FROM tablename';
$mysqli->query($q);

 You can test for the query’s error-free execution by using the method call as a condition:

 Click here to view code image

 if ($mysqli->query($q)) { // Worked!

 Alternatively, you can check the error property [image: Images]:

 Click here to view code image

 if ($mysqli->error) { // Did not work!
 echo $mysqli->error;
}

 [image: Images]

 [image: Images] A problem with a query results in a MySQL error.

 If the query just executed was an INSERT, you can retrieve the automatically generated primary key value via the insert_id property:

 $id = $mysqli->insert_id;

 If the query just executed was an UPDATE, INSERT, or DELETE, you can retrieve the number of affected rows—how many rows were updated, inserted,
 or deleted—from the affected_rows property:

 Click here to view code image

 echo "$mysqli->affected_rows rows
[image: Images]were affected by the query.";

 The last thing to know, before executing any queries, is how to sanctify data used in the query. To do so, apply the real_escape_method() to a string variable beforehand:

 Click here to view code image

 $var = $mysqli->real_escape_
[image: Images]string($var);

 This is equivalent to invoking mysqli_real_escape_string(), and it prevents apostrophes and other problematic characters from breaking the syntax
 of the SQL command.

 Using all this information, the next set of steps will rewrite register.php (Script 13.7) from Chapter 13 using OOP.

 To execute simple queries:

 1. Open register.php (Script 13.7) in your text editor or IDE.

 2. Change the inclusion of the MySQL connection script to (Script 16.2)

 Click here to view code image

 require('../mysqli_oop_connect.php');

 Assuming that mysqli_oop_connect.php is in the directory above this one, this code will work. If your directory structure
 differs, change the reference to the file accordingly.

 3. Change each use of mysqli_real_escape_string() to:

 Click here to view code image

 $mysqli->real_escape_string():
$fn = $mysqli->real_escape_string
[image: Images](trim($_POST['first_name']));
$ln = $mysqli->real_escape_string
[image: Images](trim($_POST['last_name']));
$e = $mysqli->real_escape_string
[image: Images](trim($_POST['email']));

 Three pieces of data—all strings, naturally—are escaped for added protection in the
 query. Because the script now uses the MySQL Improved extension using an object-oriented
 approach, these four lines should be changed.

 4. Update how the query is executed (line 52 of the original script):

 $mysqli->query($q);

 To execute a query on the database using OOP, call the object’s query() method, providing it with the query to be run.

 5. Change the confirmation of the query’s execution to read (originally line 53)

 Click here to view code image

 if ($mysqli->affected_rows = = 1) {

 The previous version of the script used the result variable to confirm that the query
 worked:

 if ($r) {

 Here, the conditional more formally asserts that the number of affected rows equals
 1.

 Script 16.2 This updated version of the registration script uses the MySQL Improved extension
 via OOP.

 Click here to view code image

1 <?php # Script 16.2 - register.php #4
2 // This script performs an INSERT query to add a record to the users table.
3
4 $page_title = 'Register';
5 include('includes/header.html');
6
7 // Check for form submission:
8 if ($_SERVER['REQUEST_METHOD'] == 'POST') {
9
10 require('mysqli_oop_connect.php'); // Connect to the db.
11
12 $errors = []; // Initialize an error array.
13
14 // Check for a first name:
15 if (empty($_POST['first_name'])) {
16 $errors[] = 'You forgot to enter your first name.';
17 } else {
18 $fn = $mysqli->real_escape_string(trim($_POST['first_name']));
19 }
20
21 // Check for a last name:
22 if (empty($_POST['last_name'])) {
23 $errors[] = 'You forgot to enter your last name.';
24 } else {
25 $ln = $mysqli->real_escape_string(trim($_POST['last_name']));
26 }
27
28 // Check for an email address:
29 if (empty($_POST['email'])) {
30 $errors[] = 'You forgot to enter your email address.';
31 } else {
32 $e = $mysqli->real_escape_string(trim($_POST['email']));
33 }
34
35 // Check for a password and match against the confirmed password:
36 if (!empty($_POST['pass1'])) {
37 if ($_POST['pass1'] != $_POST['pass2']) {
38 $errors[] = 'Your password did not match the confirmed password.';
39 } else {
40 $p = password_hash(trim($_POST['pass1']), PASSWORD_DEFAULT);
41 }
42 } else {
43 $errors[] = 'You forgot to enter your password.';
44 }
45
46 if (empty($errors)) { // If everything's OK.
47
48 // Register the user in the database...
49
50 // Make the query:
51 $q = "INSERT INTO users (first_name, last_name, email, pass, registration_date)
 VALUES ('$fn', '$ln', '$e', '$p', NOW())";
52 $r = @$mysqli->query($q); // Run the query.
53 if ($mysqli->affected_rows == 1) { // If it ran OK.
54
55 // Print a message:
56 echo '<h1>Thank you!</h1>
57 <p>You are now registered. In Chapter 12 you will actually be able to log in!
 </p><p>
</p>';
58
59 } else { // If it did not run OK.
60
61 // Public message:
62 echo '<h1>System Error</h1>
63 <p class="error">You could not be registered due to a system error. We apologize for
 any inconvenience.</p>';
64
65 // Debugging message:
66 echo '<p>' . $mysqli->error . '

Query: ' . $q . '</p>';
67
68 } // End of if ($r) IF.
69
70 $mysqli->close(); // Close the database connection.
71 unset($mysqli);
72
73 // Include the footer and quit the script:
74 include('includes/footer.html');
75 exit();
76
77 } else { // Report the errors.
78
79 echo '<h1>Error!</h1>
80 <p class="error">The following error(s) occurred:
';
81 foreach ($errors as $msg) { // Print each error.
82 echo " - $msg
\n";
83 }
84 echo '</p><p>Please try again.</p><p>
</p>';
85
86 } // End of if (empty($errors)) IF.
87
88 $mysqli->close(); // Close the database connection.
89 unset($mysqli);
90
91 } // End of the main Submit conditional.
92 ?>
93 <h1>Register</h1>
94 <form action="register.php" method="post">
95 <p>First Name: <input type="text" name="first_name" size="15" maxlength="20" value="<?php
 if (isset($_POST['first_name'])) echo $_POST['first_name']; ?>"></p>
96 <p>Last Name: <input type="text" name="last_name" size="15" maxlength="40" value="<?php if
 (isset($_POST['last_name'])) echo $_POST['last_name']; ?>"></p>
97 <p>Email Address: <input type="email" name="email" size="20" maxlength="60" value="<?php if
 (isset($_POST['email'])) echo $_POST['email']; ?>" > </p>
98 <p>Password: <input type="password" name="pass1" size="10" maxlength="20" value="<?php if
 (isset($_POST['pass1'])) echo $_POST['pass1']; ?>" ></p>
99 <p>Confirm Password: <input type="password" name="pass2" size="10" maxlength="20"
 value="<?php if (isset($_POST['pass2'])) echo $_POST['pass2']; ?>" ></p>
100 <p><input type="submit" name="submit" value="Register"></p>
101 </form>
102 <?php include('includes/footer.html'); ?>

 6. Update the debugging error message to use the object (line 66 of the original script):

 Click here to view code image

 echo '<p>' . $mysqli->error .
[image: Images]'

Query: ' . $q . '</p>';

 Instead of invoking the mysqli_error() function, the error property of the object will store the database reported problem [image: Images].

 7. Finally, change both instances where the database connection is closed to

 $mysqli->close();
unset($mysqli);

 The first line closes the connection. The second line removes the variable from existence.
 This step frees up the used memory and though not obligatory, is a professional touch.

 The original script closed the database connection in two places; make sure you update
 both.

 8. Save the script, place it in your web directory, and test it in your browser [image: Images].

 [image: Images]

 [image: Images] If all of the code was updated as appropriate, the registration script should work
 as it did before.

 Fetching results

 The previous section demonstrated how to execute “simple” queries, which is how I
 categorize queries that don’t return rows of results. When executing SELECT queries, the code is a bit different, because you have to handle the query’s results.
 First, after establishing the MySQLi object, you run the query on the database using the query() method. If the query is expected to return a result set, assign the results of the
 method invocation to another variable:

 Click here to view code image

 $q = 'SELECT * FROM tablename';
$result = $mysqli->query($q);

 The $result variable will be an object of type MySQLi_Result: just as some functions return a string or an integer, MySQLi::query() will return a MySQLi_Result object. Its num_rows property will reflect the number of records in the query result:

 if ($result->num_rows > 0) {
 // Handle the results.

 If you have only one row returned by the query, you can just call the fetch_array() method to get it:

 Click here to view code image

 $row = $result->fetch_array();

 This method, like the procedural mysqli_fetch_array() counterpart, takes a constant as an optional argument to indicate whether the returned
 row should be treated as an associative array (MYSQLI_ASSOC), an indexed array (MYSQLI_NUM), or both (MYSQLI_BOTH). MYSQLI_BOTH is the default value.

 When you have multiple records to fetch, you can do so using a loop:

 Click here to view code image

 while ($row = $result->fetch_array
[image: Images](MYSQLI_NUM)) {
 // Use $row.
}

 With that code, $row within the loop will be an array, meaning you access individual columns using either
 $row[0] or $row[‘column’] (assuming you’re using the appropriate constant). If you’re really enjoying the OOP
 syntax, you can use the fetch_object() method instead, thereby creating an object instead of an array:

 Click here to view code image

 $q = 'SELECT user_id, first_name
[image: Images]FROM users';
$result = $mysqli->query($q);
while ($row = $result->fetch_object
[image: Images]()) {
 // Use $row->user_id
 // Use $row->first_name
}

 Once you’re done with the results, you should free the resources they required:

 $result->free();

 Let’s take this information to update view_users.php (Script 9.6).

 To retrieve query results:

 1. Open view_users.php (Script 9.6) in your text editor or IDE.

 I’ve chosen to update this version since it’s shorter, but feel free to update a later
 version of the same script if you’d rather.

 2. Change the inclusion of the MySQL connection script to (Script 16.3)

 Click here to view code image

 require('../mysqli_oop_connect.php');

 Script 16.3 The MySQLi and MySQLi_Result classes are used in this script to fetch records from the database.

 Click here to view code image

 1 <?php # Script 16.3 - view_users.php #6
2 // This script retrieves all the records from the users table.
3 // This is an OOP version of the script from Chapter 10.
4
5 $page_title = 'View the Current Users';
6 include('includes/header.html');
7
8 // Page header:
9 echo '<h1>Registered Users</h1>';
10
11 require('../mysqli_oop_connect.php'); // Connect to the db.
12
13 // Make the query:
14 $q = "SELECT CONCAT(last_name, ', ', first_name) AS name, DATE_FORMAT(registration_date, '%M %d, %Y') AS dr FROM users ORDER BY registration_date ASC";
15 $r = $mysqli->query($q); // Run the query.
16
17 // Count the number of returned rows:
18 $num = $r->num_rows;
19
20 if ($num > 0) { // If it ran OK, display the records.
21
22 // Print how many users there are:
23 echo "<p>There are currently $num registered users.</p>\n";
24
25 // Table header.
26 echo '<table width="60%">
27 <thead>
28 <tr><td align="left">Name </td><td align="left">Date Registered</td></tr>
29 </thead>
30 <tbody>
31 ';
32
33 // Fetch and print all the records:
34 while ($row = $r->fetch_ object()) {
35 echo '<tr><td align="left">' . $row->name . '</td><td align="left">' . $row->dr . '</td></tr>
36 ';
37 }
38
39 echo '</tbody></table>'; // Close the table.
40
41 $r->free(); // Free up the resources.
42 unset($r);
43
44 } else { // If no records were returned.
45
46 echo '<p class="error">There are currently no registered users.</p>';
47
48 }
49
50 // Close the database connection.
51 $mysqli->close();
52 unset($mysqli);
53
54 include('includes/footer.html');
55 ?>

 Again, the path needs to be correct for your setup.

 3. Change the execution of the query to (originally line 14)

 $r = $mysqli->query($q);

 Regardless of the type of query being executed, the same MySQLi::query() method is called. Here, though, the results of executing the query are assigned to
 a new variable, which will be an object of type MySQLi_Result.

 For brevity, I’m calling this variable just $r, but you can use the more formal $result, if you’d prefer.

 4. Alter how the number of returned rows is determined to (line 17 of the original script):

 $num = $r->num_rows;

 The result object’s num_rows property reflects the number of records returned by the query. This value is assigned
 to the variable $num, as before.

 Note that this is a property, not a method (it’s $r->num_rows, not $r->num_rows()).

 5. Change the while loop to read

 Click here to view code image

 while ($row = $r->fetch_object()) {

 The change here is that the MySQLi_Result object’s fetch_object() function is called instead of invoking mysqli_fetch_array().

 6. Within the while loop, change how each column’s value is printed:

 Click here to view code image

 echo '<tr><td align="left">' .
[image: Images]$row->name . '</td>
[image: Images]<td align="left">' . $row->dr .
[image: Images]'</td></tr>
';

 Since the $row variable is now an object, object notation, instead of array notation, must be used
 to refer to the columns in each row: $row->name and $row->dr instead of $row[‘name’] and $row[‘dr’].

 7. Change how the resources are freed:

 $r->free();
unset($r);

 To free the memory taken by the returned results, call the MySQLi_Result object’s free() method. Furthermore, since that object won’t be used anymore in the script, it can
 be unset.

 8. Update how the database connection is closed:

 $mysqli->close();
unset($mysqli);

 9. Save the script, place it in your web directory, and test it in your browser [image: Images].

 [image: Images]

 [image: Images] The object-oriented version of view_users.php (Script 16.3) looks the same as the original procedural version.

 Tip

 The real benefit of using the fetch_object() method is that you can have the results fetched as a particular type of object. For
 example, say you have defined a Car class in PHP and a script fetches all the stored information about cars from the
 database. In the PHP script, each record can be fetched as an object of the Car class type. By doing so, you’ll have created a PHP Car object, whose data is populated from the database record, but you can still invoke
 the methods of the Car class.

 Prepared statements

 Chapter 13 introduced another way of executing queries: using prepared statements. Prepared statements can offer improved security, and possibly even better performance,
 over the standard approach to running queries. Naturally, you can execute prepared
 statements using the MySQL Improved extension as objects. The steps are the same:
 after creating a MySQLi object (and therefore a connection to the database), you

 [image: Images] Prepare the query

 [image: Images] Bind the parameters

 [image: Images] Execute the query

 In actual code that looks like:

 Click here to view code image

 $q = 'INSERT INTO tablename
[image: Images](this, that) VALUES (?, ?)';
$stmt = $mysqli->prepare($q);
$stmt->bind_param('si', $this, $that);
$this = 'Larry';
$that = 234;
$stmt->execute();

 The MySQLi::prepare() method returns an object of type MySQLi_Stmt. That object has a few key properties:

 [image: Images] affected_rows stores how many rows were affected by the statement, normally applicable to INSERT, UPDATE, and DELETE queries.

 [image: Images] num_rows reflects the number of records in the result set for a SELECT query.

 [image: Images] insert_id stores the automatically generated ID value for the previous INSERT query.

 [image: Images] error represents any error that might have occurred.

 Once you’re done executing the prepared statement, you should close the statement:

 $stmt->close();

 Let’s apply this information by updating post_message.php (Script 13.6). This is a standalone script that uses the forum database and isn’t, in Chapter 13 or this chapter, tied to any other scripts.

 To execute prepared statements:

 1. Open post_message.php (Script 13.6) in your text editor or IDE.

 2. Change the creation of the database connection to (Script 16.4)

 Click here to view code image

 $mysqli = new MySQLi('localhost',
[image: Images]'username', 'password', 'forum');
$mysqli->set_charset('utf8');

 Script 16.4 In this version of a script from Chapter 13, the MySQLi_Stmt class is used to execute a prepared statement.

 Click here to view code image

 1 <!doctype html>
2 <html lang="en">
3 <head>
4 <meta charset="utf-8">
5 <title>Post a Message</title>
6 </head>
7 <body>
8 <?php # Script 16.4 - post_message.php #2
9 // This is an OOP version of the script from Chapter 13.
10
11 if ($_SERVER['REQUEST_METHOD'] == 'POST') {
12
13 // Validate the data (omitted)!
14
15 // Connect to the database:
16 $mysqli = new MySQLi('localhost', 'username', 'password', 'forum');
17 $mysqli->set_charset('utf8');
18
19 // Make the query:
20 $q = 'INSERT INTO messages (forum_id, parent_id, user_id, subject, body,
 date_entered) VALUES (?, ?, ?, ?, ?, NOW())';
21
22 // Prepare the statement:
23 $stmt = $mysqli->prepare($q);
24
25 // Bind the variables:
26 $stmt->bind_param('iiiss', $forum_id, $parent_id, $user_id, $subject, $body);
27
28 // Assign the values to variables:
29 $forum_id = (int) $_POST['forum_id'];
30 $parent_id = (int) $_POST['parent_id'];
31 $user_id = 3; // The user_id value would normally come from the session.
32 $subject = strip_tags($_POST['subject']);
33 $body = strip_tags($_POST['body']);
34
35 // Execute the query:
36 $stmt->execute();
37
38 // Print a message based upon the result:
39 if ($stmt->affected_rows == 1) {
40 echo '<p>Your message has been posted.</p>';
41 } else {
42 echo '<p style="font-weight: bold; color: #C00">Your message could not be posted.</p>';
43 echo '<p>' . $stmt->error . '</p>';
44 }
45
46 // Close the statement:
47 $stmt->close();
48 unset($stmt);
49
50 // Close the connection:
51 $mysqli->close();
52 unset($mysqli);
53
54 } // End of submission IF.
55
56 // Display the form:
57 ?>
58 <form action="post_message.php" method="post">
59
60 <fieldset><legend>Post a message:</legend>
61
62 <p>Subject: <input name="subject" type="text" size="30" maxlength="100">
 </p>
63
64 <p>Body: <textarea name="body" rows="3" cols="40"></textarea></p>
65
66 </fieldset>
67 <div align="center"><input type="submit" name="submit" value="Submit"></div>
68 <input type="hidden" name="forum_id" value="1">
69 <input type="hidden" name="parent_id" value="0">
70
71 </form>
72 </body>
73 </html>

 The previous version of the script did not use a separate connection script, and neither
 will this one. Make sure your values are correct for connecting to the forum database on your server.

 3. Alter the preparation of the query to read (line 21 of the original script):

 $stmt = $mysqli->prepare($q);

 The MySQLi::prepare() method prepares a statement, taking the query as its lone argument. It returns an
 object of type MySQLi_Stmt, assigned to $stmt here.

 4. Change the binding of parameters to

 Click here to view code image

 $stmt->bind_param('iiiss',
[image: Images]$forum_id, $parent_id, $user_id,
[image: Images]$subject, $body);

 This code change is simply from mysqli_stmt_bind_param($stmt... to $stmt->bind_param(.... The method’s first argument is an indicator of the data types to follow. The subsequent
 arguments are the PHP variables to which the query’s placeholders are bound.

 5. Update the execution of the statement to

 $stmt->execute();

 6. Change the conditional that tests the success to

 Click here to view code image

 if ($stmt->affected_rows = = 1) {

 To confirm the success of an INSERT query, check the number of affected rows, here referencing the affected_rows property of the MySQLi_Stmt object.

 7. Change the error reporting to use

 Click here to view code image

 echo '<p>' . $stmt->error . '</p>';

 At this point in the script, an error would most likely be the result of something
 like using a duplicate value for a column that must be unique. If there was a syntactical
 error in the query, that would be in $mysqli->error after preparing the query.

 8. Update how the statement is closed:

 $stmt->close();
unset($stmt);

 9. Alter how the database connection is closed:

 $mysqli->close();
unset($mysqli);

 10. Save the script, place it in your web directory, and test it in your browser [image: Images] and [image: Images].

 [image: Images]

 [image: Images] The HTML form for posting a new message.

 [image: Images]

 [image: Images] The new message has been successfully stored in the database.

 The DateTime Class

 The DateTime class was added in PHP version 5.2. An alternative to the date- and time-related
 functions introduced in Chapter 11, “Web Application Development,” the DateTime class packages together all the functionality you might need for manipulating dates
 and times. It’s especially useful for converting and comparing dates and times.

 To begin, create a new DateTime object:

 $dt = new DateTime();

 If created without providing any arguments to the constructor, the generated DateTime argument will represent the current date and time. To create a representation of
 a specific date and time, provide that as the first argument:

 Click here to view code image

 $dt = new DateTime('2018-04-20');
$dt = new DateTime('2018-04-20 11:15');

 There are many acceptable formats for specifying the date and time, and they are detailed
 in the PHP manual. You can also establish the date or time after creating the object
 using the setDate() and setTime() methods. The setDate() method expects to receive, in order, the desired year, month, and day. The setTime() method takes the hour, minute, and optional seconds as its arguments:

 $dt = new DateTime();
$dt->setDate(2018, 4, 20);
$dt->setTime(11, 15);

 Outbound Parameters

 As in Chapter 13, the post_message.php script is a demonstration of using inbound parameters: associating placeholders in a query with PHP variables. You can also
 use outbound parameters: binding the values returned by a query to PHP variables. To start, you
 prepare the query:

 Click here to view code image

 $q = 'SELECT this, that FROM tablename';
$stmt = $mysqli->prepare($q);

 Then you bind the returned rows to variables:

 Click here to view code image

 $stmt->bind_result($this, $that);

 Next, you call the MySQLi_Stmt::fetch() method, most likely as part of a while loop:

 while ($stmt->fetch()) {
}

 Within the while loop, $this and $that will store each record’s returned columns.

 Outbound parameters don’t offer added security, like inbound parameters, or necessarily
 better performance, but if you have a query that uses prepared statements, it would
 make sense to use both inbound and outbound parameters. For example, take a login
 query:

 Click here to view code image

 SELECT user_id, first_name, pass FROM users WHERE email='?'

 You would use inbound parameters to represent the submitted email address but use
 outbound parameters for the retrieved user ID, first name, and password from that
 same query.

 The DateTime object will allow you to establish only valid dates and times, throwing an exception for invalid ones [image: Images]:

 $dt = new DateTime('2018-13-42');

 [image: Images]

 [image: Images] Attempting to create a DateTime object with an invalid date or time results in an exception.

 Exceptions are a topic not previously introduced. Whereas procedural code may generate
 errors, objects throw exceptions (yes, it’s said that they’re thrown). When you get further along with OOP, you’ll learn how to use try...catch blocks to “catch” and handle thrown exceptions.

 The DateTime constructor takes an optional second argument, which is the time zone to use. If
 not provided, the default time zone for that PHP installation applies. You can also
 change the time zone after the fact by using setTimezone(). Note that both the setTimezone() method and the constructor take DateTimeZone objects as arguments, not strings:

 Click here to view code image

 $tz = new DateTimeZone
[image: Images]('America/New_York');
$dt->setTimezone($tz);

 Once you have a DateTime object, you can manipulate its value by adding and subtracting time periods. One
 way to do so is with the modify() method:

 Click here to view code image

 $dt->modify('+1 day');
$dt->modify('-1 month');
$dt->modify('next Thursday');

 The values you can provide to the method are quite flexible, and correspond to those
 that are usable in the strtotime() function (which converts a string to a timestamp; see the PHP manual for details).

 The add() method is used to add a time period to the represented date and time. It takes as
 its lone argument an object of type DateInterval:

 Click here to view code image

 $di = new DateInterval(interval);
$dt->add($di);

 There’s a specific notation used to set the interval, always starting with the letter
 P, for “period.” After that, add an integer and a period designator: Y, for years; M, for months; D, for days; W, for weeks; H, for hours; M, for minutes; and S, for seconds. You may wonder how the letter M can represent both months and minutes; this is possible because hours, minutes, and
 seconds should also be preceded by a T, for time. These characters should be combined in order from largest to smallest
 (i.e., from years to seconds). Here are some examples:

 [image: Images] P3W represents three weeks.

 [image: Images] P2Y3M represents two years and three months.

 [image: Images] P2M3DT4H18M43S represents two months, three days, four hours, 18 minutes, and 43 seconds.

 The sub() method functions just the same as add(), but subtracts the time period from the object:

 Click here to view code image

 $di = new DateInterval('P2W');
[image: Images]// 2 weeks
$dt->sub($di);

 The diff() method returns a DateInterval object that reflects the amount of time between two DateTime objects:

 $diff = $dt->diff($dt2);

 The DateInterval class defines several properties for representing the calculated interval: y for years, m for months, d for days, h for hours, i for minutes, s for seconds, and days, which also represents days.

 The last DateTime class method you should be familiar with is format(), which returns the represented date formatted as you want it:

 echo $dt->format(format);

 For the formatting, you can use the same characters as the date() function, covered in Chapter 11.

 To demonstrate all this information, this next script will perform a task needed by
 many web sites: it allows the user to enter two dates to create a range [image: Images]. The script will make use of the new HTML5 date input type to provide a good interface
 to the user[image: Images].

 [image: Images]

 [image: Images] A simple form for entering two dates, with the format specified. Confusingly, although
 the value is set and passed as YYYY-MM-DD (check the HTML source to confirm), modern
 browsers may still format the displayed value to your regional norm (MM/DD/YYYY here).

 [image: Images]

 [image: Images] How the Microsoft Edge browser renders the input type selector.

 This script will perform top-quality validation of the submitted dates and calculate
 the number of days between them [image: Images]. The information presented could easily be applied to, say, a hotel registration
 system or the like. The script will use much of the information just presented and
 even do a straight comparison of two DateTime objects, a feature possible since PHP 5.2.2.

 [image: Images]

 [image: Images] If two valid dates are submitted, with the ending date coming after the starting
 date, the dates are displayed again, along with the calculated interval.

 To use the DateTime class:

 1. Begin a new PHP script in your text editor or IDE, to be named datetime.php, starting with the HTML (Script 16.5):

 Click here to view code image

 <!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>DateTime Usage</title>

 Script 16.5 Emulating common date selection functionality, this script accepts and validates
 two dates.

 Click here to view code image

 1 <!doctype html>
2 <html lang="en">
3 <head>
4 <meta charset="utf-8">
5 <title>DateTime Usage</title>
6 <style>
7 body {
8 font-family: Verdana, Arial, Helvetica, sans-serif;
9 font-size: 12px;
10 margin: 10px;
11 }
12 label { font-weight: bold; }
13 .error { color: #F00; }
14 </style>
15 </head>
16 <body>
17 <?php # Script 16.5 - datetime.php
18
19 // Set the start and end date as today
 and tomorrow by default:
20 $start = new DateTime();
21 $end = new DateTime();
22 $end->modify('+1 day');
23
24 // Default format for displaying dates:
25 $format = 'Y-m-d';
26
27 // This function validates a provided
 date string.
28 // The function returns an array--month,
 day, year--if valid.
29 function validate_date($date) {
30
31 // Break up the string into its
 parts:
32 $array = explode('-', $date);
33
34 // Return FALSE if there aren't 3
 items:
35 if (count($array) != 3) return false;
36
37 // Return FALSE if it's not a valid
 date:
38 if (!checkdate($array[1], $array[2], $array[0])) return false;
39
40 // Return the array:
41 return $array;
42
43 } // End of validate_date() function.
44
45 // Check for a form submission:
46 if (isset($_POST['start'],
 $_POST['end'])) {
47
48 // Call the validation function on
 both dates:
49 if ((list($sy, $sm, $sd) = validate_
 date($_POST['start'])) && (list($ey,
 $em, $ed) = validate_date($_POST
 ['end']))) {
50
51 // If it's okay, adjust the
 DateTime objects:
52 $start->setDate($sy, $sm, $sd);
53 $end->setDate($ey, $em, $ed);
54
55 // The start date must come first:
56 if ($start < $end) {
57
58 // Determine the interval:
59 $interval = $start->
 diff($end);
60
61 // Print the results:
62 echo "<p>The event has been
 planned starting on {$start->
 format($format)} and ending on
 {$end->format($format)}, which
 is a period of $interval->days
 day(s).</p>";
63
64 } else { // End date must be
 later!
65 echo '<p class="error">The
 starting date must precede the
 ending date.</p>';
66 }
67
68 } else { // An invalid date!
69 echo '<p class="error">One or
 both of the submitted dates was
 invalid.</p>';
70 }
71
72 } // End of form submission.
73
74 // Show the form:
75 ?>
76 <h2>Set the Start and End Dates for the
 Thing</h2>
77 <form action="datetime.php"
 method="post">
78
79 <p><label for="start">Start
 Date:</label> <input type="date"
 name="start" value="<?php echo
 $start->format($format); ?>">
 (YYYY-MM-DD)</p>
80 <p><label for="end">End Date:</
 label> <input type="date" name="end"
 value="<?php echo $end->format
 ($format); ?>"> (YYYY-MM-DD)</p>
81
82 <p><input type="submit"
 value="Submit"></p>
83 </form>
84 </body>
85 </html>

 2. Add a splash of CSS:

 Click here to view code image

 <style>
body {
 font-family: Verdana, Arial,
 [image: Images]Helvetica, sans-serif;
 font-size: 12px;
 margin: 10px;
}
label { font-weight: bold; }
.error { color: #F00; }
</style>

 Only the error class here is significant in terms of the functionality. It will format error messages
 in red text.

 3. Complete the head and begin the body and the PHP section:

 Click here to view code image

 </head>
<body>
<?php # Script 16.5 - datetime.php

 4. Create two DateTime objects:

 $start = new DateTime();
$end = new DateTime();

 Whether the form has been submitted or not, two DateTime objects are first created, both of which will be instantiated using the current date
 and time. Subsequently, one or both objects will be assigned new values.

 5. Add one day to the end date:

 $end->modify('+1 day');

 By default, when the page is first loaded, the form will be preset with today as the
 starting date and tomorrow as the ending date. To determine the ending date, simply
 modify the object’s current value, adding one day.

 Using the DateInterval object and the DateTime::add() method, you can do the same thing like so:

 Click here to view code image

 $day = new DateInterval('P1D');
$end->add($day);

 6. Establish the default format for displayed dates:

 $format = 'Y-m-d';

 The script will use a formatted version of the date in four places. Assigning the
 preferred format—YYYY-MM-DD—to a variable makes it easier to change later, if desired.

 This specific format string is used because that’s what the date input type requires
 to preset a value.

 7. Begin defining a function:

 Click here to view code image

 function validate_date($date) {
$array = explode('-', $date);

 Both submitted dates will need to be validated in a couple of ways, and whenever you
 have repeating code in a script or application, defining a function to execute that
 code may make sense. This function takes a date string (not a DateTime object) as its lone argument. The string will be the user-submitted value, something
 like 2018/08/02. The first thing the function does is break up the string into its three separate
 parts—year, month, and day—using the explode() function. The resulting array is assigned to the $array variable.

 8. If the array does not contain three elements, return false:

 Click here to view code image

 if (count($array) != 3) return false;

 The first thing the function does is confirm that it has exactly three discrete values
 to work with, representing a year, month, and day. If the array does not contain three
 elements, the function returns the value false to indicate an invalid date. The explode() line in Step 7 and this line invalidate any submitted value that doesn’t fit the
 pattern X-Y-Z (although that could still be cat-dog-zebra).

 Note that normally I would recommend always using brackets in conditionals, but I’ve
 made this code as short as possible by omitting them, and keeping the entire construct
 on a single line. Also remember that as soon as a function executes a return statement, the function is exited.

 9. If the provided date isn’t a valid date, return false:

 Click here to view code image

 if (!checkdate($array[1], $array[2],
[image: Images]$array[0])) return false;

 Similar to Step 8, this code invokes PHP’s checkdate() function to confirm that the provided date actually exists. If the date does not
 exist, such as 2011/13/43, the function again returns false.

 Note that the incoming format is Y-m-d but that the checkdate() function takes the arguments as month, day, and year.

 10. Return the date array and complete the function:

 Click here to view code image

 return $array;
} // End of validate_date()
[image: Images]function.

 If the provided date is of the correct format and corresponds to an existing date,
 the array of date elements is returned by the function.

 11. If the form has been submitted, validate the user-submitted values:

 Click here to view code image

 if (isset($_POST['start'],
[image: Images]$_POST['end'])) {
 if ((list($sy, $sm, $sd) =
 [image: Images]validate_date($_POST['start']))
 [image: Images]&& (list($ey, $em, $ed) =
 [image: Images]validate_date($_POST['end']))) {

 If the two variables are set, meaning the form has been submitted, both are run through
 the validate_date() function. If that function returns FALSE for either date, this conditional will be FALSE. If the function returns an array for both dates, assigned to corresponding month,
 day, and year variables, then the results can be determined and displayed.

 12. Reset the dates to the user-submitted dates:

 Click here to view code image

 $start->setDate($sy, $sm, $sd);
$end->setDate($ey, $em, $ed);

 Because the provided dates are valid at this point, both objects can be updated to
 represent the user-entered dates. To do so, the setDate() method is invoked, providing it with the individual values.

 13. If the end date comes after the start date, calculate the interval between them:

 Click here to view code image

 if ($start < $end) {
 $interval = $start->diff($end);

 Just as you can compare two numbers to see if one is greater than or less than the
 other, you can compare two DateTime objects. If the end date does come later, then the difference between the two dates
 is calculated by invoking the diff() method on one object and providing the other as its argument. The result is assigned
 to the $interval variable, which will be an object of type DateInterval.

 14. Print the results:

 echo "<p>The event has been
[image: Images]planned starting on {$start->
[image: Images]format($format)} and ending on
[image: Images]{$end->format($format)}, which
[image: Images]is a period of $interval->days
[image: Images]day(s).</p>";

 Finally, the results are displayed [image: Images]. As you can see, it’s possible to invoke object methods within quotation marks, thereby
 printing the output of that function call, but you have to wrap the whole construct
 in curly brackets. Referencing attributes, such as $interval->days, does not require the curly brackets.

 15. Complete the conditionals begun in Steps 11 and 13:

 Click here to view code image

 } else { // End date must be
 [image: Images]later!
 echo '<p class="error">The
 [image: Images]starting date must precede
 [image: Images]the ending date.</p>';
 }
} else { // An invalid date!
 echo '<p class="error">One or
 [image: Images]both of the submitted dates
 [image: Images]was invalid.</p>';
}

 The first else clause applies if both dates are valid, but the end date does not follow the start date [image: Images]. The second else clause applies if either of the submitted dates does not pass the validate_date() test. In this case, both dates will retain the default settings [image: Images].

 [image: Images]

 [image: Images] The result if the provided starting date actually follows the entered ending date.

 [image: Images]

 [image: Images] The result if either submitted date does not correspond to a valid date.

 16. Complete the form submission conditional, close the PHP block, and begin the HTML
 form:

 Click here to view code image

 } // End of form submission.
?>
<h2>Set the Start and End Dates
[image: Images]for the Thing</h2>
<form action="datetime.php"
[image: Images]method="post">

 17. Create the two inputs for the dates:

 Click here to view code image

 <p><label for="start">Start Date:
[image: Images]</label> <input type="date"
[image: Images]name="start" value="<?php echo
[image: Images]$start->format($format); ?>">
[image: Images](YYYY-MM-DD)</p>
<p><label for="end">End
[image: Images]Date:</label> <input type="date"
[image: Images]name="end" value="<?php echo
[image: Images]$end->format($format); ?>">
[image: Images](YYYY-MM-DD)</p>

 For each input, the value is preset by calling the format() method of the associated object. The required format that the date needs to be entered
 in is also indicated in parentheticals.

 18. Complete the form and the HTML page:

 Click here to view code image

 <p><input type="submit"
[image: Images]value="Submit"></p>
</form>
</body>
</html>

 19. Save the script as datetime.php, place it in your web directory, and test it in your browser.

 If, when you run this script, you see an exception about relying upon the system’s
 time zone setting, invoke date_default_timezone_set(), as explained in Chapter 11, prior to creating the DateTime objects.

 Tip

 The DateTime::getTimestamp() method returns the Unix timestamp for the represented date and time.

 Tip

 Internally, the DateTime class represents the dates and times as a 64-bit number, meaning it can represent
 dates from approximately 292 billion years ago to 292 billion years from now.

 Tip

 Several constants in the DateTime class represent common date-time formats, such as DateTime::COOKIE.

 Tip

 The DateTime methods are also represented in procedural versions.

 Review and Pursue

 If you have any problems with the review questions or the pursue prompts, turn to
 the book’s supporting forum (LarryUllman.com/forums/).

 Review

 [image: Images] What is a class? What is a method? What are variables defined within classes called?

 [image: Images] What is an object? How do you create an object in PHP? How do you call an object’s
 methods?

 [image: Images] What is a constructor?

 [image: Images] What is the syntax for creating a MySQLi object?

 [image: Images] How do you execute any kind of query using MySQLi?

 [image: Images] How do you make string data safe to use in a query, when using MySQLi? Hint: There are two answers.

 [image: Images] How do you check for, and display, a MySQLi error?

 [image: Images] How do you fetch the results of SELECT queries using the MySQLi (and other) objects? What is the difference between using MySQLi_Result::fetch_array() and MySQLi_Result::fetch_object()?

 [image: Images] How do you execute a prepared statement using the MySQLi and MySQLi_Stmt classes?

 [image: Images] What syntax is used to create a new DateTime object? What are the two ways you can set the object’s date and/or time?

 [image: Images] What is an exception?

 Pursue

 [image: Images] When you’re interested in learning more about OOP, consider reading a book or tutorial
 on the generic subject of OOP, without respect to any given programming language.

 [image: Images] Check out the PHP manual’s documentation on OOP in PHP (www.php.net/oop).

 [image: Images] Revisit Chapter 9 if you’re unclear as to the need to apply real_escape_string() to string data used in queries.

 [image: Images] Rewrite some of the other scripts from Chapter 9 and Chapter 10, “Common Programming Techniques,” using MySQLi.

 [image: Images] Read through the full documentation for the DateTime class in the PHP manual (www.php.net/datetime).

 [image: Images] Learn about the strtotime() function in the PHP manual (www.php.net/strtotime).

 [image: Images] If you want a big challenge, apply the information presented in the previous chapter,
 along with the jQuery UI Datepicker tool, to create two JavaScript date selectors for the datetime.php script.

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 17. Example—Message Board

 In This Chapter

 Making the Database

 Writing the Templates

 Creating the Index Page

 Creating the Forum Page

 Creating the Thread Page

 Posting Messages

 Review and Pursue

 The functionality of a message board (aka a forum) is rather simple: a post can either
 start a new topic or be in response to an existing one; posts are added to a database
 and then displayed on a page. That’s about it. Of course, sometimes implementing simple
 concepts can be quite hard!

 To make this example even more exciting and useful, it’s going to be not just a message
 board but rather a multilingual message board. Each language will have its own forum, and the key elements—navigation,
 prompts, introductory text, etc.—will be language-specific.

 To focus on the most important aspects of this web application, this chapter omits
 some others. The three glaring omissions will be user management, error handling,
 and administration. This shouldn’t be a problem for you, though, as the next chapter
 goes over user management and error handling in great detail. As for the administration,
 you’ll find some recommendations at the chapter’s end.

 Making the Database

 The first step, naturally, is to create the database. A sample message board database
 [image: Images] was developed in Chapter 6, “Database Design.” Although that database is perfectly fine, a variation on it will be used here instead
 [image: Images]. I’ll compare the two to better explain the changes.

 [image: images]

 [image: Images] The model for the forum database developed in Chapter 6.

 [image: images]

 [image: Images] The revised model for the forum database to be used in this chapter

 To start, the forums table is replaced with a languages table. Both serve the same purpose: allowing for multiple forums. In this new database,
 the topic—PHP and MySQL for Dynamic Web Sites—will be the same in every forum, but each forum will use a different language. The
 posts will differ in each forum (this won’t be a translation of the same forum in
 multiple languages). The languages table stores the name of a language in its own alphabet and in English, for the administrator’s
 benefit (this assumes, of course, that English is the administrator’s primary language).

 The threads table in the new database acts like the messages table in the old one, with one major difference. Just as the old messages table relates to forums, threads relates to the languages and users tables; each message can be in only one forum and by only one user; each forum can
 have multiple messages; and each user can post multiple messages. However, this threads table will store only the subject, not the message itself.

 There are a couple of reasons for this change. First, having a subject repeat multiple
 times with each reply (replies, in my experience, almost always have the same subject
 anyway) is unnecessary. Second, the same goes for the lang_id association (it doesn’t need to be in each reply if each reply is associated with
 a single thread). Third, I’m changing the way a thread’s hierarchy will be indicated
 in this database (you’ll see how in the next paragraph), and changing the table structures
 helps in that regard. Finally, the threads table will be used every time a user looks at the posts in a forum. Removing the
 message bodies from that table will improve the performance of those queries.

 Moving on to the posts table, its sole purpose is to store the actual bodies of the messages associated
 with a thread. In Chapter 6’s database, the messages table had a parent_id column, used to indicate the message to which a new message was a response. It was
 hierarchical: message 3 might be the starting post; message 18 might be a response
 to 3, message 20 a response to 18, and so on [image: Images]. That version of the database more directly indicated the responses; this version
 will store only the thread that a message goes under: messages 18 and 20 both use
 a thread_id of 3. This alteration will make showing a thread much more efficient (in terms of
 the PHP and MySQL required), and the date/time that each message was posted can be
 used to order them.

 [image: images]

 [image: Images] How the relationship among messages was indicated using the older database schema.

 Those three tables provide the bulk of the forum functionality. The database also
 needs a users table. In this version of the forum, only registered users can post messages, which
 I think is a really, really, really good policy (it cuts way down on spam and hack
 attempts). Registered users can also have their default language (from the languages table) and time zone recorded along with their account information, to give them
 a more personalized experience. A combination of their username and password would
 be used to log in.

 The final table, words, is necessary to make the site multilingual. This table will store translations of
 common elements: navigation links, form prompts, headers, and so forth. Each language
 in the site will have one record in this table. It’ll be a nice and surprisingly easy
 feature to use. Arguably, the words listed in this table could also go in the languages table, but then the implication would be that the words are also related to the threads table, which would not be the case.

 That’s the thinking behind this new database design. You’ll learn more as you create
 the tables in the following steps. As with the other examples in this book, you can
 also download the SQL necessary for this chapter—the commands suggested in these steps,
 plus more—from the book’s corresponding web site ((LarryUllman.com).).

 To make the database:

 1. Access your MySQL server and set the character set to be used for communicating [image: Images]:

 [image: images]

 [image: Images] To use Unicode data in queries, you need to change the character set used to communicate
 with MySQL.

 CHARSET utf8;

 I’ll be using the mysql client in the figures, but you can use whatever interface
 you’d like. The first step, though, has to be changing the character set to UTF-8
 for the queries to come. If you don’t do this, some of the characters in the queries
 will be stored as gibberish in the database (see the sidebar “Strange Characters”). Note that if you’re using phpMyAdmin, you’ll need to establish the character set
 in its configuration file.

 Strange Characters

 If, when you’re implementing this chapter’s example, you see strange characters—boxes,
 numeric codes, or question marks instead of actual language characters—there might
 be several reasons why. When this happens, the underlying issue is one of mismatching encodings (or, in database terms, character sets).

 A computer’s ability to display a character depends on both the file’s encoding and
 the characters (i.e., fonts) supported by the operating system. This means that every
 PHP or HTML page must use the proper encoding. In addition, the database in MySQL
 must use the proper encoding (as indicated in the steps for creating the database).
 Third, and this can be a common cause of problems, the communication between PHP and
 MySQL must also use the proper encoding. I address this issue in the mysqli_connect.php script. Finally, if you use the mysql client, phpMyAdmin, or another tool to populate
 the database, that interaction must use the proper encoding, too.

 2. Create a new database [image: Images]:

 [image: images]

 [image: Images] Creating and selecting the database for this example. This database uses the UTF-8
 character set so that it can support multiple languages.

 Click here to view code image

 CREATE DATABASE forum2 CHARACTER[image: Images]SET utf8;USE forum2;

 So as not to muddle things with the tables created in the original forum database (from Chapter 6), a new database will be created.

 If you’re using a hosted site and cannot create your own databases, use the database
 provided for you and select that. If your existing database has tables with these
 same names—words, languages, threads, users, and posts, rename the tables (either the existing or the new ones) and change the code in the
 rest of the chapter accordingly.

 Whether you create this database from scratch or use a new one, it’s very important
 that the tables use the UTF-8 encoding to be able to support multiple languages (see
 Chapter 6 for more). If you are using an existing database and don’t want to potentially cause
 problems by changing the character set for all your tables, just add the CHARACTER SET utf8 clause to each table definition (Steps 3 through 7).

 3. Create the languages table [image: Images]:

 [image: images]

 [image: Images] Creating the languages table.

 Click here to view code image

 CREATE TABLE languages (
lang_id TINYINT UNSIGNED NOT NULL
 [image: Images]AUTO_INCREMENT,
lang VARCHAR(60) NOT NULL,
lang_eng VARCHAR(20) NOT NULL,
PRIMARY KEY (lang_id),
UNIQUE (lang)
);

 This is the simplest table of the bunch. There won’t be many languages represented,
 so the primary key (lang_id) can be a TINYINT. The lang column is defined a bit larger, since it’ll store characters in other languages,
 which may require more space. This column must also be unique. Note that I don’t call
 this column “language,” because that’s a reserved keyword in MySQL (actually, I could still call it that, and you’ll see what would be required to do that in Step 7).
 The lang_eng column is the English equivalent of the language so that the administrator can easily
 see which languages are which.

 4. Create the threads table [image: Images]:

 [image: images]

 [image: Images]Creating the threads table. This table stores the topic subjects and associates them with a language (i.e.,
 a forum).

 Click here to view code image

 CREATE TABLE threads (
thread_id INT UNSIGNED NOT NULL
 [image: Images]AUTO_INCREMENT,
lang_id TINYINT(3) UNSIGNED
 [image: Images]NOT NULL,
user_id INT UNSIGNED NOT NULL,
subject VARCHAR(150) NOT NULL,
PRIMARY KEY (thread_id),
INDEX (lang_id),
INDEX (user_id)
);

 The threads table contains four columns and relates to both the languages and users tables (through the lang_id and user_id foreign keys, respectively). The subject here needs to be long enough to store subjects in multiple languages (characters
 take up more bytes in non-Western languages).

 The columns that will be used in joins and WHERE clauses—lang_id and user_id—are indexed, as is thread_id (as a primary key, it will be indexed).

 5. Create the posts table [image: Images]:

 [image: images]

 [image: Images] Creating the posts table, which links to both threads and users.

 Click here to view code image

 CREATE TABLE posts (
post_id INT UNSIGNED NOT NULL
 [image: Images]AUTO_INCREMENT,
thread_id INT UNSIGNED NOT NULL,
user_id INT UNSIGNED NOT NULL,
message TEXT NOT NULL,
posted_on DATETIME NOT NULL,
PRIMARY KEY (post_id),
INDEX (thread_id),
INDEX (user_id)
);

 The main column in this table is message, which stores each post’s body. Two columns are foreign keys, tying into the threads and users tables. The posted_on column is of type DATETIME but will use UTC (Coordinated Universal Time; see Chapter 6). Nothing special needs to be done here for that, though.

 6. Create the users table [image: Images]:

 [image: images]

 [image: Images] Creating a bare-bones version of the users table.

 Click here to view code image

 CREATE TABLE users (
user_id MEDIUMINT UNSIGNED NOT
 [image: Images]NULL AUTO_INCREMENT,
lang_id TINYINT UNSIGNED
 [image: Images]NOT NULL,
time_zone VARCHAR(30) NOT NULL,
username VARCHAR(30) NOT NULL,
pass VARCHAR(255) NOT NULL,
email VARCHAR(60) NOT NULL,
PRIMARY KEY (user_id),
UNIQUE (username),
UNIQUE (email),
INDEX login (username, pass)
);

 For the sake of brevity, I’m omitting some of the other columns you’d put in this
 table, such as registration date, first name, and last name. For more on creating
 and using a table like this, see the next chapter.

 In my thinking about this site, I expect users will select their preferred language
 and time zone when they register so that they can have a more personalized experience.
 They can also have a username, which will be displayed in posts (instead of their
 email address). Both the username and the email address must be unique, which is something
 you’d need to address in the registration process.

 7. Create the words table [image: Images]:

 [image: images]

 [image: Images] Creating the words table, which stores representations of key words in different languages.

 Click here to view code image

 CREATE TABLE words (
word_id TINYINT UNSIGNED NOT NULL
 [image: Images]AUTO_INCREMENT,
lang_id TINYINT UNSIGNED NOT NULL,
title VARCHAR(80) NOT NULL,
intro TINYTEXT NOT NULL,
home VARCHAR(30) NOT NULL,
forum_home VARCHAR(40) NOT NULL,
`language` VARCHAR(40) NOT NULL,
register VARCHAR(30) NOT NULL,
login VARCHAR(30) NOT NULL,
logout VARCHAR(30) NOT NULL,
new_thread VARCHAR(40) NOT NULL,
subject VARCHAR(30) NOT NULL,
body VARCHAR(30) NOT NULL,
submit VARCHAR(30) NOT NULL,
posted_on VARCHAR(30) NOT NULL,
posted_by VARCHAR(30) NOT NULL,
replies VARCHAR(30) NOT NULL,
latest_reply VARCHAR(40) NOT NULL,
post_a_reply VARCHAR(40) NOT NULL,
PRIMARY KEY (word_id),
UNIQUE (lang_id)
);

 This table will store different translations of common elements used on the site.
 Some elements—home, forum_home, language, register, login, logout, and new_thread—will be the names of links. Other elements—subject, body, submit—are used on the page for posting messages. Another category of elements is those
 used on the forum’s main page: posted_on, posted_by, replies, and latest_reply.

 Some of these will be used multiple times in the site, and yet, this is still an incomplete
 list. As you implement the site yourself, you’ll see other places where word definitions
 could be added.

 Each column is of VARCHAR type, except for intro, which is a body of text to be used on the main page. Most of the columns have a
 limit of 30, allowing for characters in other languages that require more bytes, except
 for a handful of columns that might need to be bigger.

 For each column, its name implies the value to be stored in that column. For one—language—I’ve used a MySQL keyword simply to demonstrate how that can be done. The fix is
 to surround the column’s name in backticks so that MySQL doesn’t confuse this column’s
 name with the keyword “language.”

 8. Populate the languages table:

 Click here to view code image

 INSERT INTO languages (lang, lang_eng) VALUES
('English', 'English'),
('Português', 'Portuguese'),
('Français', 'French'),
('Norsk', 'Norwegian'),
('Romanian', 'Romanian'),
('', 'Greek'),
('Deutsch', 'German'),
('Srpski', 'Serbian'),
('[image: images]', 'Japanese'),
('Nederlands', 'Dutch');

 This is just a handful of the languages the site will represent thanks to some assistance
 provided to me (see the sidebar “A Note on Translations”). For each, the native and English word for that language is stored [image: Images].

 [image: images]

 [image: Images] The populated languages table, with each language written in its own alphabet.

 A Note on Translations

 Several readers around the world were kind enough to provide me with translations
 of key words, names, message subjects, and message bodies. For their help, I’d like
 to extend my sincerest thanks to (in no particular order): Angelo (Portuguese), Iris
 (German), Johan (Norwegian), Gabi (Romanian), Darko (Serbian), Emmanuel and Jean-François
 (French), Andreas and Simeon (Greek), Darius (Filipino/Tagalog), Olaf (Dutch), and
 Tsutomu (Japanese).

 If you know one of these languages, you may see linguistic mistakes made in this text
 or in the corresponding images. If so, it’s almost certainly my fault, having miscommunicated
 the words I needed translated or improperly entered the responses into the database.
 I apologize in advance for any such mistakes but hope you’ll focus more on the database,
 the code, and the functionality. My thanks, again, to those who helped!

 9. Populate the users table [image: Images]:

 [image: images]

 [image: Images] A few users are added manually, since there is no registration process in this site
 (but see Chapter 18, “Example—User Registration,” for that).

 Click here to view code image

 INSERT INTO users (lang_id,
 [image: Images]time_zone, username, pass,
 [image: Images]email) VALUES
 (1, 'US/Eastern', 'troutster', '',
 [image: Images]'email@example.com'),
 (7, 'Europe/Berlin', 'Ute', '',
 [image: Images]'email1@example.com'),
 (4, 'Europe/Oslo', 'Silje', '',
 [image: Images]'email2@example.com'),
 (2, 'America/Sao_Paulo', 'João', '',
 [image: Images]'email3@example.com'),
 (1, 'Pacific/Auckland', 'kiwi', '',
 [image: Images]'kiwi@example.org');

 Because the PHP scripts will show the users associated with posts, a couple of users
 are necessary. A language and a time zone are associated with each (see Chapter 6 for more on time zones in MySQL). Each user’s password will be represented as an
 empty string for now—real password hashing would be done using PHP’s password_hash() function (see Chapter 13, “Security Methods,” for more).

 10. Populate the words table:

 Click here to view code image

 INSERT INTO words VALUES
(NULL, 1, 'PHP and MySQL for
 [image: Images]Dynamic Web Sites: The Forum!',
 [image: Images]'<p>Welcome to our site....
 [image: Images]please use the links above...
 [image: Images]blah, blah, blah.</p>\r\n<p>
 [image: Images]Welcome to our site....please
 [image: Images]use the links above...blah,
 [image: Images]blah, blah.</p>', 'Home', 'Forum
 [image: Images]Home', 'Language', 'Register',
 [image: Images]'Login', 'Logout', 'New Thread',
 [image: Images]'Subject', 'Body', 'Submit',
 [image: Images]'Posted on', 'Posted by',
 [image: Images]'Replies', 'Latest Reply', 'Post
 [image: Images]a Reply'),

 These are the words associated with each term in English. The record has a lang_id of 1, which matches the lang_id for English in the languages table. The SQL to insert words for other languages into this table is available from
 the book’s supporting website.

 Tip

 This chapter doesn’t go through the steps for creating the mysqli_connect.php page, which connects to the database. Instead, just copy the one from Chapter 9, “Using PHP with MySQL.” Then change the parameters in the script to use a valid username/password/hostname
 combination to connect to the forum2 database.

 Tip

 As a reminder, the foreign key in one table should be of the exact same type and size
 as the matching primary key in another table.

 Writing the Templates

 This example, like any site containing lots of pages, will make use of a template
 to separate out the bulk of the presentation from the logic. Following the instructions
 laid out in Chapter 3, “Creating Dynamic Web Sites,” a header file and a footer file will store most of the HTML code. Each PHP script
 will then include these files to make a complete HTML page [image: Images]. But this example is a little more complicated.

 [image: images]

 [image: Images] The basic layout and appearance of the site.

 One of the goals of this site is to serve users in many different languages. Accomplishing
 that involves not just letting them post messages in their native language but making sure they can use the whole site in their native language as well. This means that the page title, the navigation
 links, the captions, the prompts, and even the menus need to appear in their language
 [image: Images].

 [image: images]

 [image: Images] The home page viewed in Norwegian (compare with [image: Images]

 The instructions for making the database illustrate how this is accomplished: by storing
 translations of all key words in a table. The header file, therefore, needs to pull
 out all these key words so that they can be used as needed. This header file will
 also display different links based on whether the user is logged in or not. Adding
 just one more little twist: if the user is on the forum page, viewing all the threads
 in a language, the user will also be given the option to post a new thread [image: Images].

 [image: images]

 [image: Images] The added link allowing the user to start a new thread in the current forum.

 The template itself uses Bootstrap (www.getbootstrap.com) for the formatting and layout. All the required CSS and JavaScript files are either
 inline or loaded via a CDN.

 To make the template:

 1. Begin a new document in your text editor or IDE, to be named header.html (Script 17.1):

 Click here to view code image

 <?php # Script 17.1 - header.htmlheader('Content-Type: text/html;[image: Images]charset=UTF-8');

 Script 17.1 The header.html file begins the template. It also sets the page's encoding, starts the session, and
 retrieves the language-specific key words from the database.

 Click here to view code image

1 <l?php # Script 17.1 - header.html
2 /* This script...
3 * - starts the HTML template
4 * - indicates the encoding using header()
5 * - starts the session
6 <l* - gets the language-specific words from the database
7 * - lists the available languages
8 */
9
10 // Indicate the encoding:
11 header('Content-Type: text/html; charset=UTF-8');
12
13 // Start the session:
14 session_start();
15
16 // For testing purposes:
17 $_SESSION['user_id'] = 1;
18 $_SESSION['user_tz'] = 'America/New_York';
19 // For logging out:
20 //$_SESSION = [];
21
22 // Need the database connection:
23 require('../mysqli_connect.php');
24
25 // Check for a new language ID...
26 // Then store the language ID in the session:
27 if (isset($_GET['lid']) &&
28 filter_var($_GET['lid'],
 FILTER_VALIDATE_INT,
 array('min_range' => 1))
29) {
30 $_SESSION['lid'] = $_GET['lid'];
31 } elseif (!isset($_SESSION['lid'])) {
32 $_SESSION['lid'] = 1; // Default.
33 }
34
35 // Get the words for this language:
36 $q = "SELECT * FROM words WHERE lang_id = {$_SESSION['lid']}";
37 $r = mysqli_query($dbc, $q);
38 if (mysqli_num_rows($r) == 0) { // Invalid language ID!
39
40 // Use the default language:
41 $_SESSION['lid'] = 1; // Default.
42 $q = "SELECT * FROM words WHERE lang_id = {$_SESSION['lid']}";
43 $r = mysqli_query($dbc, $q);
44
45 }
46
47 // Fetch the results into a variable:
48 $words = mysqli_fetch_array ($r, MYSQLI_ASSOC);
49
50 // Free the results:
51 mysqli_free_result($r);
52 ?>
53 <l!DOCTYPE html>
54 <lhtml lang="en">
55 <lhead>
56 <lmeta charset="utf-8">
57 <lmeta http-equiv="X-UA-Compatible"
 content="IE=edge">
58 <lmeta name="viewport"
 content="width=device-width,
 initial-scale=1">
59 <ltitle><?php echo $words['title'];
 ?></title>
60 <llink rel="stylesheet"
 href="https://maxcdn.bootstrapcdn.
 com/bootstrap/3.3.7/css/bootstrap.
 min.css" integrity="sha384-BVYi
 iSIFeK1dGmJRAkycuHAHRg32OmUcww7
 on3RYdg4Va+PmSTsz/K68vbdEjh4u"
 crossorigin="anonymous">
61 <lstyle type="text/css">
62 body {
63 padding-top: 50px;
64 }
65 .starter-template {
66 padding: 40px 15px;
67 text-align: left;
68 }
69 </style>
70 </head>
71 <body>
72 <nav class="navbar navbar-inverse
 navbar-fixed-top">
73 <ldiv class="container">
74 <ldiv class="navbar-header">
75 <la class="navbar-brand" href="index.php">Site Name
76 <l/div>
77 <ldiv id="navbar" class="collapse navbar-collapse">
78 <lul class="nav navbar-nav">
79 <?php // Display links:
80
81 // Default links:
82 echo '' . $words['home'] . '
83 ' . $words['forum_home'] . '';
84
85 // Display links based upon login status:
86 if (isset($_SESSION['user_id'])) {
87
88 // If this is the forum page, add a link for posting new threads:
89 if (basename($_SERVER['PHP_SELF']) == 'forum.php') {
90 echo '' . $words['new_thread'] . '';
91 }
92
93 // Add the logout link:
94 echo '' . $words['logout'] . '';
95
96 } else {
97
98 // Register and login links:
99 echo '' . $words['register'] . '
100 <lli>' . $words['login'] . '';
101 }
102
103 // Retrieve all the languages...
104 echo '<li class="dropdown"><a href="forum.php" class="dropdown-toggle" data-toggle="dropdown"
 role="button" aria-haspopup="true" aria-expanded="false">' . $words['language'] . '
 <lspan class="caret">
105 <lul class="dropdown-menu">';
106
107 $q = "SELECT lang_id, lang FROM languages ORDER BY lang_eng ASC";
108 $r = mysqli_query($dbc, $q);
109 if (mysqli_num_rows($r) > 0) {
110 while ($menu_row = mysqli_fetch_array($r, MYSQLI_NUM)) {
111 echo '' . $menu_row[1] . '';
112 }
113 }
114 mysqli_free_result($r);
115 ?>
116 <l/ul>
117 <l/ul>
118 <l/div><!-- navbar -->
119 <l/div><!-- container -->
120 <l/nav>
121
122 <ldiv class="container">
123 <ldiv class="starter-template">

 Since this script will need to do a fair amount of data validation and retrieval,
 it starts with a PHP block. The script also indicates to the browser its encoding—UTF-8—using
 the header() function. The idea of setting the encoding via a header() function call was mentioned in a tip in Chapter 11, “Web Application Development.” This isn’t absolutely required since you could set the encoding in the HTML instead,
 but because the application may work with multiple languages, this is an extra precaution.

 2. Start a session:

 Click here to view code image

 session_start();
$_SESSION['user_id'] = 1;
$_SESSION['user_tz'] =
 [image: Images]'America/New_York';
// $_SESSION = [];

 To track users after they log in, the site will use sessions. Since the site doesn’t
 have registration and login functionality in this chapter, two lines can virtually
 log in the user. Ordinarily, both values would come from a database, but they’ll be
 set here for testing purposes. To virtually log the user out, uncomment the third
 line.

 3. Include the database connection:

 Click here to view code image

 require('../mysqli_connect.php');

 As with many other examples in this book, the assumption is that the mysqli_connect.php script is stored in the directory above the current one, outside of the web root.
 If that won’t be the case for you, change this code accordingly.

 4. Determine the language ID:

 Click here to view code image

 if (isset($_GET['lid']) &&
 filter_var($_GET['lid'],
 [image: Images]FILTER_VALIDATE_INT,
 [image: Images]array('min_range' => 1))
) {
 $_SESSION['lid'] = $_GET['lid'];
} elseif (!isset($_SESSION['lid'])) {
 $_SESSION['lid'] = 1; // Default.
}

 Next, the language ID value (abbreviated lid) needs to be established. The language ID controls what language is used for all
 the site elements, and it also dictates the forum to be viewed. The language ID could
 be found in the session, after retrieving that information upon a successful login
 (because the user’s language ID is stored in the users table). Alternatively, any user can change the displayed language on the fly using
 the language dropdown in the navigation links (see [image: Images]). In that case, the submitted language ID needs to be validated as an integer greater
 than 1; this is easily accomplished by using the Filter extension (see Chapter 13).

 The second clause applies if the page did not receive a language ID in the URL and
 the language ID has not already been established in the session. In that case, a default
 language is selected. This value corresponds to English in the languages table in the database. You can change it to any ID that matches the default language
 you’d like to use.

 5. Get the keywords for this language:

 Click here to view code image

 $q = "SELECT * FROM words WHERE
 [image: Images]lang_id = {$_SESSION['lid']} ";
$r = mysqli_query($dbc, $q);

 The next step in the header file is to retrieve from the database all the key words
 for the given language.

 6. If the query returned no records, get the default words:

 Click here to view code image

 if (mysqli_num_rows($r) == 0) {
 $_SESSION['lid'] = 1;
 $q = "SELECT * FROM words WHERE
 [image: Images]lang_id = {$_SESSION['lid']} ";
 $r = mysqli_query($dbc, $q);
}

 It’s possible, albeit unlikely, that $_SESSION[‘lid’] does not equate to a record from the words table. In that case, the query would return no records (but run without error). Consequently,
 the default language words must now be retrieved. Notice that neither this block of
 code, nor that in Step 5, actually fetches the returned record. That will happen,
 for both potential queries, in Step 7.

 7. Fetch the retrieved words into an array, free the resources, and close the PHP section:

 Click here to view code image

 $words = mysqli_fetch_array
 [image: Images]($r, MYSQLI_ASSOC);
mysqli_free_result($r);
?>

 After this point, the $words array represents all the navigation and common elements in the user’s selected language
 (or the default language).

 Calling mysqli_free_result() isn’t necessary but makes for tidy programming.

 8. Start the HTML page:

 Click here to view code image

 <!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-
 [image: Images]Compatible" content="IE=edge">
 <meta name="viewport"
 [image: Images]content="width=device-width,
 [image: Images]initial-scale=1">
 <title><?php echo
 [image: Images]$words['title']; ?></title>

 Note that the encoding is also indicated in a META tag, even though the PHP header() call already identifies the encoding. This is just a matter of being thorough.

 The header file as written uses as the title of every page a value in the $words array (i.e., the page title will always be the same for every page in a chosen language).
 You could easily modify this code so that the page’s title is a combination of the
 language word and a page-specific variable, such as $page_title used in Chapter 3 and subsequent examples.

 9. Add the CSS:

 Click here to view code image

 <link rel="stylesheet"
 [image: Images]href="https://maxcdn.
 [image: Images]bootstrapcdn.com/
 [image: Images]bootstrap/3.3.7/css/
 [image: Images]bootstrap.min.css"
 [image: Images]integrity="sha384-BVYiiSIF
 [image: Images]eK1dGmJRAkycuHAHRg32OmUcww
 [image: Images]7on3RYdg4Va+PmSTsz
 [image: Images]/K68vbdEjh4u"
 crossorigin="anonymous">
 <style type="text/css">
body {
 padding-top: 50px;
}
.starter-template {
 padding: 40px 15px;
 text-align: left;
}</style>

 This is all taken from the Bootstrap starter template. Normally you’d put all CSS
 in an external file, but because there’s so little of it, I’m putting the additional
 CSS in the document itself.

 10. Complete the HTML head and begin the page:

 Click here to view code image

 </head>
<body>
<nav class="navbar navbar-inverse
 [image: Images]navbar-fixed-top">
 <div class="container">
 <div class="navbar-
 [image: Images]header">
 <a class="navbar-
 [image: Images]brand" href="index.
 [image: Images]php">Site Name
 </div>
 <div id="navbar"
 [image: Images]class="collapse
 [image: Images]navbar-collapse">
 <ul class="nav
 [image: Images]navbar-nav">

 The only repeating content on the page is the navigation bar across the top, begun
 here.

 11. Start displaying the links:

 Click here to view code image

 <?php // Display links:
echo '' .
[image: Images]$words['home'] . '
' . $words
 [image: Images]['forum_home'] . '';

 The first two links will always appear, whether or not the user is logged in and regardless
 of the page the user is currently viewing. For each link, the text of the link itself
 will be language specific.

 12. If the user is logged in, show “new thread” and logout links:

 Click here to view code image

 if (isset($_SESSION['user_id'])) {
 if (basename($_SERVER['PHP_
 [image: Images]SELF']) == 'forum.php') {
 echo '<a href="post.
 [image: Images]php">' . $words['new_
 [image: Images]thread'] . '';
 }
 echo ''
 [image: Images]. $words['logout'] . '';

 Confirmation of the user’s logged-in status is achieved by checking for the presence
 of a $_SESSION[‘user_id’] variable. If it’s set, then the logout link can be created. Before that, a check
 is made to see if this is the forum.php page. If so, then a link to start a new thread is created (users can only create
 new threads if they’re on the forum page; you wouldn’t want them to create a new thread
 on some of the other pages, like the home page, because it wouldn’t be clear to which
 forum the thread should be posted). The code for checking what page it is, using the
 basename() function, was first introduced in Chapter 12, “Cookies and Sessions.”

 13. Display the links for users not logged in:

 Click here to view code image

 } else {
 echo ''
 [image: Images]. $words['register'] . '
 ' .
 [image: Images]$words['login'] . '';
}

 If the user isn’t logged in, links are provided for registering and logging in.

 14. Start the dropdown for choosing a language:

 Click here to view code image

 echo '<li class="dropdown">
 [image: Images]<a href="forum.php"
 [image: Images]class="dropdown-toggle"
 [image: Images]data-toggle="dropdown"
 [image: Images]role="button" aria-haspopup="true"
 [image: Images]aria-expanded="false">' .
 [image: Images]$words['language'] . '
 [image: Images]
<ul class="dropdown-menu">';

 The user can choose a language (which is also a forum) via a dropdown navigation menu
 [image: Images]. The text for the dropdown will be the word “language,” in the user’s default language.

 [image: images]

 [image: Images] The language dropdown menu, with each option in its native language.

 15. Retrieve every language from the database, and add each to the menu:

 Click here to view code image

 $q = "SELECT lang_id, lang FROM
 [image: Images]languages ORDER BY lang_eng ASC";
$r = mysqli_query($dbc, $q);
if (mysqli_num_rows($r) > 0) {
 while ($menu_row = mysqli_fetch_
 [image: Images]array($r, MYSQLI_NUM)) {
 echo '<a href="forum.
 [image: Images]php?lid=' . $menu_row[0] .
 [image: Images]'">' . $menu_row[1] . '
 [image: Images]';
 }
}
mysqli_free_result($r);

 This query retrieves the languages and the language ID from the languages table. Each is added as a list item to the dropdown menu.

 Each link points to forum.php and passes along the language ID in the URL, as a lid parameter. When users select their language, they’ll be taken to the forum of their
 choice.

 Again, calling mysqli_free_result() isn’t required, but doing so can help limit bugs and improve performance. In particular,
 when you have pages that run multiple SELECT queries, mysqli_free_result() can help avoid confusion issues between PHP and MySQL.

 16. Complete the PHP section and the initial content:

 Click here to view code image

 ?>

 </div><!-- navbar -->
 </div><!-- container -->
 </nav>
 <div class="container">
 <div class="starter-template">

 17. Save the file as header.html.

 Even though it contains a fair amount of PHP, this script will still use the .html extension (which I prefer to use for template files). Make sure that the file is
 saved using UTF-8 encoding.

 18. Create a new document in your text editor or IDE, to be named footer.html (Script 17.2):

 Click here to view code image

 <!-- Script 17.2 - footer.html -->

 19. Complete the HTML page:

 Click here to view code image

 </div><!-- starter-template -->
 </div><!-- container -->
 <script src="https://ajax.
 [image: Images]googleapis.com/ajax/libs/
 [image: Images]jquery/3.2.1/jquery.min.js">
 [image: Images]</script>
 <script src="https://maxcdn.
 [image: Images]bootstrapcdn.com/bootstrap/
 [image: Images]3.3.7/js/bootstrap.min.js"
 [image: Images]integrity="sha384-Tc5IQib027
 [image: Images]qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2
 [image: Images]mCWNIpG9mGCD8wGNIcPD7Txa"
 [image: Images]crossorigin="anonymous"></script>
 </body>
 </html>

 There’s no content in the footer; it just completes the DIVs begun in the header and includes two JavaScript files. Again, this comes from the
 Bootstrap template.

 20. Save the file as footer.html.

 Again, make sure that the file is saved using UTF-8 encoding.

 21. Place both files in your web directory, within a folder named includes.

 Script 17.2 The footer file completes the HTML page.

 Click here to view code image

1 <!-- Script 17.2 - footer.html -->
2 </div><!-- starter-template -->
3 </div><!-- container -->
4
5 <!-- Bootstrap core JavaScript
6 == -->
7 <!-- Placed at the end of the document so the pages load faster -->
8 <script src="https://ajax.googleapis.com/ajax/libs/jquery/3.2.1/jquery.min.js"></script>
9 <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
10 </body>
11 </html>

 Creating the Index Page

 The index page in this example won’t do that much. It will provide some introductory
 text and the links for the user to register, log in, choose the preferred language/forum,
 and so forth. From a programming perspective, it will show how the template files
 are to be used.

 To make the home page:

 1. Begin a new PHP document in your text editor or IDE, to be named index.php (Script 17.3):

 Script 17.3 The home page includes the header and footer files to make a complete HTML document.
 It also prints some introductory text in the chosen language.

 Click here to view code image

1 <?php # Script 17.3 - index.php
2 // This is the main page for the site.
3
4 // Include the HTML header:
5 include('includes/header.html');
6
7 // The content on this page is introductory text
8 // pulled from the database, based upon the
9 // selected language:
10 echo $words['intro'];
11
12 // Include the HTML footer file:
13 include('includes/footer.html');
14 ?>

 Click here to view code image

 <?php # Script 17.3 - index.php

 Because all the HTML is in the included files, this page can begin with the opening
 PHP tags.

 2. Include the HTML header:

 Click here to view code image

 include('includes/header.html');

 The included file uses the header() and session_start() functions, so you have to make sure that nothing is sent to the browser prior to
 this line. That shouldn’t be a problem as long as there are no spaces before the opening
 PHP tag.

 3. Print the language-specific content:

 echo $words['intro'];

 The $words array is defined within the header file. It can be referred to here, since the header
 file was just included. The value indexed at intro is a bit of welcoming text in the selected or default language.

 4. Complete the page:

 Click here to view code image

 include('includes/footer.html');?>

 That’s it for the home page!

 5. Save the file as index.php, place it in your web directory, and test it in your browser (see [image: Images] and [image: Images] in the previous section).

 Once again, make sure that the file is saved using UTF-8 encoding. This will be the
 last time I remind you!

 Creating the Forum Page

 The next page in the website is the forum page, which displays the threads in a forum
 (each language is its own forum). The page will use the language ID, passed to this
 page in a URL and/or stored in a session, to know what threads to display.

 The basic functionality of this page—running a query, displaying the results— is simple
 [image: Images]. The query this page uses is perhaps the most complex one in the book. It’s complicated
 for three reasons:

 [image: images]

 [image: Images] The forum page, which lists information about the threads in a given language. The
 threads are linked to a page where they can be read.

 [image: Images] It performs a JOIN across three tables.

 [image: Images] It uses three aggregate functions and a GROUP BY clause.

 [image: Images] It converts the dates to the user’s time zone, but only if the person viewing the
 page is logged in.

 So, again, the query is intricate, but I’ll go through it in detail in the following
 steps.

 To write the forum page:

 1. Begin a new PHP document in your text editor or IDE, to be named forum.php (Script 17.4):

 Script 17.4 This script performs one rather complicated query to display five pieces of information—the
 subject, the original poster, the date the thread was started, the number of replies,
 and the date of the latest reply—for each thread in a forum.

 Click here to view code image

1 <?php # Script 17.4 - forum.php
2 // This page shows the threads in a forum.
3 include('includes/header.html');
4
5 // Retrieve all the messages in this forum...
6
7 // If the user is logged in and has chosen a time zone,
8 // use that to convert the dates and times:
9 if (isset($_SESSION['user_tz'])) {
10 $first = "CONVERT_TZ(p.posted_on, 'UTC', '{$_SESSION['user_tz']}')";
11 $last = "CONVERT_TZ(p.posted_on, 'UTC', '{$_SESSION['user_tz']}')";
12 } else {
13 $first = 'p.posted_on';
14 $last = 'p.posted_on';
15 }
16
17 // The query for retrieving all the threads in this forum, along with the original user,
18 // when the thread was first posted, when it was last replied to, and how many replies it's had:
19 $q = "SELECT t.thread_id, t.subject, username, COUNT(post_id) - 1 AS responses,
 MAX(DATE_FORMAT($last, '%e-%b-%y %l:%i %p')) AS last, MIN(DATE_FORMAT($first,
 '%e-%b-%y %l:%i %p')) AS first FROM threads AS t INNER JOIN posts AS p USING (thread_id)
 INNER JOIN users AS u ON t.user_id = u.user_id WHERE t.lang_id = {$_SESSION['lid']} GROUP BY
 (p.thread_id) ORDER BY last DESC";
20 $r = mysqli_query($dbc, $q);
21 if (mysqli_num_rows($r) > 0) {
22
23 // Create a table:
24 echo '<table class="table table-striped">
25 <thead>
26 <tr>
27 <th>' . $words['subject'] . '</th>
28 <th>' . $words['posted_by'] . '</th>
29 <th>' . $words['posted_on'] . '</th>
30 <th>' . $words['replies'] . '</th>
31 <th>' . $words['latest_reply'] . '</th>
32 </tr>
33 </thead>
34 <tbody>';
35
36 // Fetch each thread:
37 while ($row = mysqli_fetch_array($r, MYSQLI_ASSOC)) {
38
39 echo '<tr>
40 <td>' . $row['subject'] . ' </td>
41 <td>' . $row['username'] . '</td>
42 <td>' . $row['first'] . '</td>
43 <td>' . $row['responses'] . '</td>
44 <td>' . $row['last'] . '</td>
45 </tr>';
46
47 }
48
49 echo '</tbody></table>'; // Complete the table.
50
51 } else {
52 echo '<p>There are currently no messages in this forum.</p>';
53 }
54
55 // Include the HTML footer file:
56 include('includes/footer.html');
57 ?>

 Click here to view code image

 <?php # Script 17.4 - forum.phpinclude('includes/header.html');

 2. Determine what dates and times to use:

 Click here to view code image

 if (isset($_SESSION['user_tz'])) {
 $first = "CONVERT_TZ
 [image: Images](p.posted_on, 'UTC',
 [image: Images]'{$_SESSION['user_tz']}')";
 $last = "CONVERT_TZ(p.posted_on,
 [image: Images]'UTC', '{$_SESSION['user_tz']}')";
} else {
 $first = 'p.posted_on';
 $last = 'p.posted_on';
}

 As already stated, the query will format the date and time to the user’s time zone
 (presumably selected during the registration process), but only if the viewer is logged
 in. Presumably, this information would be retrieved from the database and stored in
 the session upon login.

 To make the query dynamic, what exact date/time value should be selected will be stored
 in a variable to be used in the query later in the script. If the user is not logged in, which means that $_SESSION[‘user_tz’] is not set, the two dates—when a thread was started and when the most recent reply
 was posted—will be unadulterated values from the table. In both cases, the table column
 being referenced is posted_on in the posts table (p will be an alias to posts in the query).

 If the user is logged in, the $_SESSION['user_tz'] function will be used to convert the value stored in posted_on from UTC to the user’s chosen time zone. See Chapter 6 for more on this function. Note that using this function requires that your MySQL
 installation include the list of time zones (see Chapter 6 for more).

 3. Define and execute the query:

 Click here to view code image

 $q = "SELECT t.thread_id, t.subject,
 [image: Images]username, COUNT(post_id) - 1 AS
 [image: Images]responses, MAX(DATE_FORMAT($last,
 [image: Images]'%e-%b-%y %l:%i %p')) AS last,
 [image: Images]MIN(DATE_FORMAT($first, '%e-%b-%y
 [image: Images]%l:%i %p')) AS first FROM threads
 [image: Images]AS t INNER JOIN posts AS p USING
 [image: Images](thread_id) INNER JOIN users AS
 [image: Images]u ON t.user_id = u.user_id WHERE
 [image: Images]t.lang_id = {$_SESSION['lid']}
 [image: Images]GROUP BY (p.thread_id) ORDER BY
 [image: Images]last DESC";
$r = mysqli_query($dbc, $q);
if (mysqli_num_rows($r) > 0) {

 The query needs to return six things: the ID of each thread, the subject of each thread
 (which comes from the threads table), the name of the user who posted the thread in the first place (from users), the number of replies to each thread, the date the thread was started, and the
 date the thread last had a reply (all from posts).

 The overarching structure of this query is a join between threads and posts using the thread_id column (which is the same in both tables). This result is then joined with the users table using the user_id column.

 As for the selected values, three aggregate functions are used (see Chapter 7 “Advanced SQL and MySQL”): COUNT(), MIN(), and MAX(). Each is applied to a column in the posts table, so the query has a GROUP BY (p.thread_id) clause. MIN() and MAX() are used to return the earliest (for the original post) and latest dates. Both will
 be shown on the forum page (see [image: Images]). The latest date is also used to order the results so that the most recent activity
 always gets returned first. The COUNT() function is used to count the number of posts in a given thread. Because the original
 post is also in the posts table, it will be factored into COUNT() as well, so 1 is subtracted from that value.

 Finally, aliases are used to make the query shorter to write and to make it easier
 to use the results in the PHP script. If you’re confused by what this query returns,
 execute it using the mysql client [image: Images] or phpMyAdmin.

 [image: images]

 [image: Images] The results of running the complex query in the mysql client.

 4. Create a table for the results:

 Click here to view code image

 echo '<table class="table table-striped">
<thead>
 <tr>
 <th>' . $words['subject'] .
 [image: Images]'</th>
 <th>' . $words['posted_by'] .
 [image: Images]'</th>
 <th>' . $words['posted_on'] .
 [image: Images]'</th>
 <th>' . $words['replies'] .
 [image: Images]'</th>
 <th>' . $words['latest_reply'] .
 [image: Images]'</th>
 </tr>
</thead>
<tbody>';

 As with some items in the header file, the captions for the columns in this HTML page
 will use language-specific terminology.

 5. Fetch and print each returned record:

 Click here to view code image

 while ($row = mysqli_fetch_array
 [image: Images]($r, MYSQLI_ASSOC)) {
 echo '<tr>
 <td><a href="read.php?tid='
 [image: Images]. $row['thread_id'] . '">'
 [image: Images]. $row['subject'] .
 [image: Images]'</td>
 <td>' . $row['username'] .
 [image: Images]'</td>
 <td>' . $row['first'] .
 [image: Images]'</td>
 <td>' . $row['responses'] .
 [image: Images]'</td>
 <td>' . $row['last'] .
 [image: Images]'</td>
 </tr>';

}

 This code is fairly simple, and there are similar examples many times over in this
 book. The thread’s subject is linked to read.php, passing that page the thread ID in the URL.

 6. Complete the page:

 Click here to view code image

 echo '</tbody></table>';
} else {
 echo '<p>There are currently no
 [image: Images]messages in this forum.</p>';
}
include('includes/footer.html');
?>

 This else clause applies if the query returned no results. In actuality, this message should
 also be in the user’s chosen language. I’ve omitted that for the sake of brevity.
 To fully implement this feature, create another column in the words table and store for each language the translated version of this text.

 7. Save the file as forum.php, place it in your web directory, and test it in your browser [image: Images].

 [image: images]

 [image: Images] The forum.php page, viewed in another language (compare with [image: Images]

 Tip

 If you see no values for the dates and times when you run this script, it is probably
 because your MySQL installation hasn’t been updated with the full list of time zones.

 Tip

 As noted in the chapter’s introduction, I’ve omitted all error handling in this example.
 If you have problems with the queries, apply the debugging techniques outlined in
 Chapter 8, “Error Handling and Debugging.”

 Creating the Thread Page

 Next up is the page for viewing all the messages in a thread [image: Images]. This page is accessed by clicking a link in forum.php [image: Images]. Thanks to a simplified database structure, the query used by this script is not
 that complicated (with the database design from Chapter 6, this page would have been much more complex). All this page has to do, then, is
 make sure it receives a valid thread ID, display every message, and display the form
 for users to add their own replies.

 [image: images]

 [image: Images] The read.php page shows every message in a thread.

 [image: images]

 [image: Images] Part of the source code from forum.php shows how the thread ID is passed to read.php in the URL.

 To make read.php:

 1. Begin a new PHP document in your text editor or IDE, to be named read.php (Script 17.5):

 Script 17.5 The read.php page shows all of the messages in a thread, in order of ascending posted date. The
 page also shows the thread's subject at the top and includes a form for adding a reply
 at the bottom.

 Click here to view code image

1 <?php # Script 17.5 - read.php
2 // This page shows the messages in a thread.
3 include('includes/header.html');
4
5 // Check for a thread ID...
6 $tid = FALSE;
7 if (isset($_GET['tid']) && filter_var($_GET['tid'], FILTER_VALIDATE_INT, array('min_range' => 1))) {
8
9 // Create a shorthand version of the thread ID:
10 $tid = $_GET['tid'];
11
12 // Convert the date if the user is logged in:
13 if (isset($_SESSION['user_tz'])) {
14 $posted = "CONVERT_TZ(p.posted_on, 'UTC', '{$_SESSION['user_tz']}')";
15 } else {
16 $posted = 'p.posted_on';
17 }
18
19 // Run the query:
20 $q = "SELECT t.subject, p.message, username, DATE_FORMAT($posted, '%e-%b-%y %l:%i %p') AS posted FROM threads AS t LEFT JOIN posts AS p USING (thread_id) INNER JOIN users AS u ON p.user_id = u.user_id WHERE t.thread_id = $tid ORDER BY p.posted_on ASC";
21 $r = mysqli_query($dbc, $q);
22 if (!(mysqli_num_rows($r) > 0)) {
23 $tid = FALSE; // Invalid thread ID!
24 }
25
26 } // End of isset($_GET['tid']) IF.
27
28 if ($tid) { // Get the messages in this thread...
29
30 $printed = FALSE; // Flag variable.
31
32 // Fetch each:
33 while ($messages = mysqli_fetch_array($r, MYSQLI_ASSOC)) {
34
35 // Only need to print the subject once!
36 if (!$printed) {
37 echo "<h2>{$messages ['subject']}</h2>\n";
38 $printed = TRUE;
39 }
40
41 // Print the message:
42 echo "<p>{$messages['username']} ({$messages['posted']})
{$messages['message']}</p>
\n";
43
44 } // End of WHILE loop.
45
46 // Show the form to post a message:
47 include('includes/post_form.php');
48
49 } else { // Invalid thread ID!
50 echo '<p class="bg-danger">This page has been accessed in error.</p>';
51 }
52
53 include('includes/footer.html');
54 ?>

 Click here to view code image

 <?php # Script 17.5 - read.phpinclude('includes/header.html');

 2. Begin validating the thread ID:

 Click here to view code image

 $tid = FALSE;
if (isset($_GET['tid']) &&
 [image: Images]filter_var($_GET['tid'],
 [image: Images]FILTER_VALIDATE_INT,
 [image: Images]array('min_range' => 1))) {

 To start, a flag variable is defined as FALSE, a way of saying that you want to prove
 that the thread ID is valid, which is the most important aspect of this script. Next,
 a check confirms that the thread ID was passed in the URL and that it is an integer
 greater than 1. This is done using the Filter extension (see Chapter 13). Finally, the value passed to the page is assigned to the $tid variable so that it no longer has a FALSE value.

 3. Determine whether the dates and times should be adjusted:

 Click here to view code image

 if (isset($_SESSION['user_tz'])) {
 $posted = "CONVERT_TZ
 [image: Images](p.posted_on, 'UTC',
 [image: Images]'{$_SESSION['user_tz']}')";
} else {
 $posted = 'p.posted_on';
}

 As in the forum.php page (Script 17.4), the query will format all the dates and times in the user’s time zone if the user
 is logged in. To be able to adjust the query accordingly, this variable stores either
 the column’s name (posted_on, from the posts table) or the invocation of MySQL’s CONVERT_TZ() function.

 4. Run the query:

 Click here to view code image

 $q = "SELECT t.subject, p.message,
 [image: Images]username, DATE_FORMAT($posted,
 [image: Images]'%e-%b-%y %l:%i %p') AS posted
 [image: Images]FROM threads AS t LEFT JOIN
 [image: Images]posts AS p USING (thread_id)
 [image: Images]INNER JOIN users AS u ON p.user_
 [image: Images]id = u.user_id WHERE t.thread_id
 [image: Images]= $tid ORDER BY p.posted_on ASC";
$r = mysqli_query($dbc, $q);
if (!(mysqli_num_rows($r) > 0)) {
 $tid = FALSE; // Invalid
 [image: Images]thread ID!
}

 This query is like the query on the forum page, but it’s been simplified in two ways.
 First, it doesn’t use any of the aggregate functions or a GROUP BY clause. Second, it returns only one date and time. The query is still a JOIN across three tables to get the subject, message bodies, and usernames. The records
 are ordered by their posted dates in ascending order (i.e., from the first post to
 the most recent).

 If the query doesn’t return any rows, then the thread ID isn’t valid and the flag
 variable is made false again.

 5. Complete the $_GET[‘tid’] conditional and check, again, for a valid thread ID:

 Click here to view code image

 } // End of isset($_GET['tid']) IF.if ($tid) {

 Before printing the messages in the thread, one last conditional is used. This conditional
 would be false if

 ▸ No $_GET[‘tid’] value was passed to this page.

 ▸ A $_GET[‘tid’] value was passed to the page, but it was not an integer greater than 0.

 ▸ A $_GET[‘tid’] value was passed to the page and it was an integer greater than 0, but it matched
 no thread records in the database.

 6. Print each message:

 Click here to view code image

 $printed = FALSE;
 while ($messages = mysqli_fetch_
 [image: Images]array($r, MYSQLI_ASSOC)) {
 if (!$printed) {
 echo "<h2>{$messages
 [image: Images]['subject']}</h2>\n";
 $printed = TRUE;
 }
 echo "<p>{$messages['username']}
 [image: Images]({$messages['posted']})

 [image: Images]{$messages['message']}</p>
 [image: Images]
\n";
 } // End of WHILE loop.

 As you can see in [image: Images], the thread subject needs to be printed only once. However, the query will return
 the subject for each returned message [image: Images]. To achieve this effect, a flag variable is created. If $printed is FALSE, then the subject needs to be printed. This would be the case for the first
 row fetched from the database. Once that’s been displayed, $printed is set to TRUE so that the subject is not printed again. Then the username, posted
 date, and message are displayed.

 [image: images]

 [image: Images] The results of the read.php query when run in the mysql client. This version of the query converts the dates
 to the logged-in user’s preferred time zone.

 7. Include the form for posting a message:

 Click here to view code image

 include('includes/post_form.php');

 Because users could post messages in two ways—as a reply to an existing thread and
 as the first post in a new thread—the form for posting messages is defined within
 a separate file (to be created next), stored within the includes directory.

 8. Complete the page:

 Click here to view code image

 } else { // Invalid thread ID!
 echo '<p class="bg-danger">This
 [image: Images]page has been accessed in
 [image: Images]error.</p>';
}
include('includes/footer.html');
?>

 Again, in a complete site, this error message would also be stored in the words table in each language. Then you would write

 Click here to view code image

 echo "<p class="bg-danger">{$words
 [image: Images]['access_error']}</p>";

 9. Save the file as read.php, place it in your web directory, and test it in your browser [image: Images].

 [image: images]

 [image: Images] The read.php page, viewed in Japanese

 Posting Messages

 The final two pages in this application are the most important, because you won’t
 have threads to read without them. Two files for posting messages are required: one
 will make the form, and the other will handle the form.

 Creating the form

 The first page required for posting messages is post_form.php. It has some contingencies:

 [image: Images] It can only be included by other files and never accessed directly.

 [image: Images] It should be displayed only if the user is logged in (which is to say only logged-in
 users can post messages).

 [image: Images] If it’s being used to add a reply to an existing message, it only needs a message
 body input [image: Images].

 [image: images]

 [image: Images] The form for posting a message, as shown on the thread-viewing page.

 [image: Images] If it’s being used to create a new thread, it needs both subject and body inputs
 [image: Images].

 [image: images]

 [image: Images] The same form for posting a message, if being used to create a new thread.

 [image: Images] It needs to be sticky [image: Images].

 [image: images]

 [image: Images] The form will recall entered values when not completed correctly.

 Still, all of this can be accomplished in 60 lines of code and some smart conditionals.

 To create post_form.php:

 1. Begin a new PHP document in your text editor or IDE, to be named post_form.php (Script 17.6):

 Script 17.6 This script will be included by other pages (notably, read.php and post.php). It displays a form for posting messages that is also sticky.

 Click here to view code image

1 <?php # Script 17.6 - post_form.php
2 // This page shows the form for posting messages.
3 // It's included by other pages, never called directly.
4
5 // Redirect if this page is called directly:
6 if (!isset($words)) {
7 header ("Location: http://www.example.com/index.php");
8 exit();
9 }
10
11 // Only display this form if the user is logged in:
12 if (isset($_SESSION['user_id'])) {
13
14 // Display the form:
15 echo '<form action="post.php" method="post" accept-charset="utf-8">';
16
17 // If on read.php...
18 if (isset($tid) && $tid) {
19
20 // Print a caption:
21 echo '<h3>' . $words['post_a_reply'] . '</h3>';
22
23 // Add the thread ID as a hidden input:
24 echo '<input name="tid" type="hidden" value="' . $tid . '">';
25
26 } else { // New thread
27
28 // Print a caption:
29 echo '<h3>' . $words['new_thread'] . '</h3>';
30
31 // Create subject input:
32 echo '<div class="form-group"> <label for="subject">' . $words['subject'] . '</label> <input name="subject" type="text" class="form-control" size="60" maxlength="100" ';
33
34 // Check for existing value:
35 if (isset($subject)) {
36 echo "value=\"$subject\" ";
37 }
38
39 echo '></div>';
40
41 } // End of $tid IF.
42
43 // Create the body textarea:
44 echo '<div class="form-group"><label for="subject">' . $words['body'] . '</label> <textarea name="body" class="form-control" rows="10" cols="60">';
45
46 if (isset($body)) {
47 echo $body;
48 }
49
50 echo '</textarea></div>';
51
52 // Finish the form:
53 echo '<input name="submit" type="submit" class="form-control" value="' . $words['submit'] . '">
54 </form>';
55
56 } else {
57 echo '<p class="bg-warning">You must be logged in to post messages.</p>';
58 }
59
60 ?>

 Click here to view code image

 <?php # Script 17.6 - post_form.php

 2. Redirect the browser if this page has been accessed directly:

 Click here to view code image

 if (!isset($words)) {
 header ("Location: http://www.
 [image: Images]example.com/index.php");
 exit();
}

 This script does not include the header and footer and therefore won’t make a complete
 HTML page. Consequently, the script must be included by a script that does all that.
 PHP has no been_included() function that will indicate whether this page was included or loaded directly. Instead,
 since I know that the header file creates a $words variable, if that variable isn’t set, then header.html hasn’t been included prior to this script and the browser should be redirected.

 Change the URL in the header() call to match your site.

 3. Confirm that the user is logged in and begin the form:

 Click here to view code image

 if (isset($_SESSION['user_id'])) {
 echo '<form action="post.php"
 [image: Images]method="post"
 [image: Images]accept-charset="utf-8">';

 Because only registered users can post, the script checks for the presence of $_SESSION[‘user_id’] before displaying the form. The form itself will be submitted to post.php, to be written next. The accept-charset attribute is added to the form to make it clear that UTF-8 text is acceptable (although
 this isn’t technically required, since each page uses the UTF-8 encoding already).

 4. Check for a thread ID:

 Click here to view code image

 if (isset($tid) && $tid) {
 echo '<h3>' . $words['post_a_
 [image: Images]reply'] . '</h3>';
 echo '<input name="tid"
 [image: Images]type="hidden" value="' .
 [image: Images]$tid . '">';

 This is where things get a little bit tricky. As mentioned earlier, and as shown in
 [image: Images] and [image: Images], the form will differ slightly depending on how it’s being used. When included on
 read.php, the form will be used to provide a reply to an existing thread. To check for this
 scenario, the script sees if $tid (short for thread ID) is set and if it has a TRUE value. That will be the case when this page is included
 by read.php. When this script is included by post.php, $tid will be set but have a FALSE value.

 If this conditional is true, the language-specific version of “Post a Reply” will
 be printed and the thread ID will be stored in a hidden form input.

 5. Complete the conditional begun in Step 4:

 Click here to view code image

 } else { // New thread
 echo '<h3>' . $words
 [image: Images]['new_thread'] . '</h3>';
 echo '<div class="form-group">
 [image: Images]<label for="subject">' .
 [image: Images]$words['subject'] . '</label>
 [image: Images]<input name="subject"
 [image: Images]type="text" class="form-control"
 [image: Images]size="60" maxlength="100" ';
 if (isset($subject)) {
 echo "value=\"$subject\" ";
 }
 echo '></div>';
 } // End of $tid IF.

 If this is not a reply, then the caption should be the language-specific version of “New Thread” and a subject input should be created. That input needs to be sticky.
 To check for that, look for the existence of a $subject variable. This variable will be created in post.php, and that file will then include this page.

 6. Create the textarea for the message body:

 Click here to view code image

 echo '<div class="form-group">
[image: Images]<label for="subject">' . $words
[image: Images]['body'] . '</label> <textarea
[image: Images]name="body" class="form-control"
[image: Images]rows="10" cols="60">';
if (isset($body)) {
 echo $body;
}
echo '</textarea></div>';

 Both uses of this page will have this textarea. Like the subject, it will be made
 sticky if a $body variable (defined in post.php) exists. For both inputs, the prompts will be language-specific.

 7. Complete the form:

 Click here to view code image

 echo '<input name="submit"
 [image: Images]type="submit" class="form-control"
 [image: Images]value="' . $words['submit'] . '">
</form>';

 All that’s left is a language-specific submit button [image: Images].

 [image: images]

 [image: Images] The form prompts and even the submit button will be in the user’s chosen language
 (compare with the other figures in this section of the chapter).

 8. Complete the page:

 Click here to view code image

 } else {
 echo '<p class="bg-warning">You
 [image: Images]must be logged in to post
 [image: Images]messages.</p>';
}
?>

 Once again, you could store this message in the words table and use the translated version here. I didn’t only for the sake of simplicity.

 9. Save the file as post_form.php, place it in the includes folder of your web directory, and test it in your browser by accessing read.php [image: Images].

 [image: images]

 [image: Images] The result of the post_form.php page if the user is not logged in (remember that you can emulate not being logged
 in by using the $_SESSION = []; line in the header file).

 Handling the form

 This file, post.php, will primarily be used to handle the form submission from post_form.php. That sounds simple enough, but there’s a bit more to it. This page will actually
 be called in three different ways:

 [image: Images] To handle the form for a thread reply

 [image: Images] To display the form for a new thread submission

 [image: Images] To handle the form for a new thread submission

 This means that the page will be accessed using either POST (modes 1 and 3) or GET
 (mode 2). Also, the data that will be sent to the page, and therefore needs to be
 validated, will differ between modes 1 and 3 [image: Images].

 [image: images]

 [image: Images] The various uses of the post.php page.

 Adding to the complications, if a new thread is being created, two queries must be
 run: one to add the thread to the threads table and a second to add the new thread body to the posts table. If the submission is a reply to an existing thread, then only one query is
 required, inserting a record into posts.

 Of course, successfully pulling this off is just a matter of using the right conditionals,
 as you’ll see. In terms of validation, the subject and body, as text types, will just
 be checked for a non-empty value. All tags will be stripped from the subject (because
 why should it have any?) and turned into entities in the body. This will allow for
 HTML, JavaScript, and PHP code to be written in a post but still not be executed when the thread is shown (because in a forum about web development, you’ll need to
 show some code).

 To create post.php:

 1. Begin a new PHP document in your text editor or IDE, to be named post.php (Script 17.7):

 Script 17.7 The post.php page will process the form submissions when a message is posted. This page will be
 used to both create new threads and handle replies to existing threads.

 Click here to view code image

 1 <?php # Script 17.7 - post.php
2 // This page handles the message post.
3 // It also displays the form if creating a new thread.
4 include('includes/header.html');
5
6 if ($_SERVER['REQUEST_METHOD'] == 'POST') { // Handle the form.
7
8 // Language ID is in the session.
9 // Validate thread ID ($tid), which may not be present:
10 if (isset($_POST['tid']) && filter_var($_POST['tid'], FILTER_VALIDATE_INT, array('min_range' => 1))) {
11 $tid = $_POST['tid'];
12 } else {
13 $tid = FALSE;
14 }
15
16 // If there's no thread ID, a subject must be provided:
17 if (!$tid && empty($_POST['subject'])) {
18 $subject = FALSE;
19 echo '<p class="bg-danger">Please enter a subject for this post.</p>';
20 } elseif (!$tid && !empty($_POST['subject'])) {
21 $subject = htmlspecialchars(strip_tags($_POST['subject']));
22 } else { // Thread ID, no need for subject.
23 $subject = TRUE;
24 }
25
26 // Validate the body:
27 if (!empty($_POST['body'])) {
28 $body = htmlentities($_POST['body']);
29 } else {
30 $body = FALSE;
31 echo '<p class="bg-danger">Please enter a body for this post.</p>';
32 }
33
34 if ($subject && $body) { // OK!
35
36 // Add the message to the database...
37
38 if (!$tid) { // Create a new thread.
39 $q = "INSERT INTO threads (lang_id, user_id, subject) VALUES ({$_SESSION['lid']}, {$_SESSION['user_id']}, '" . mysqli_real_escape_string($dbc, $subject) . "')";
40 $r = mysqli_query($dbc, $q);
41 if (mysqli_affected_rows($dbc) == 1) {
42 $tid = mysqli_insert_id($dbc);
43 } else {
44 echo '<p class="bg-danger">Your post could not be handled due to a system error. </p>';
45 }
46 } // No $tid.
47
48 if ($tid) { // Add this to the replies table:
49 $q = "INSERT INTO posts (thread_id, user_id, message, posted_on) VALUES ($tid, {$_SESSION['user_id']}, '" . mysqli_real_escape_string($dbc, $body) . "', UTC_TIMESTAMP())";
50 $r = mysqli_query($dbc, $q);
51 if (mysqli_affected_rows($dbc) == 1) {
52 echo '<p class="bg-success">Your post has been entered.</p>';
53 } else {
54 echo '<p class="bg-danger">Your post could not be handled due to a system error.</p>';
55 }
56 } // Valid $tid.
57
58 } else { // Include the form:
59 include('includes/post_form.php');
60 }
61
62 } else { // Display the form:
63
64 include('includes/post_form.php');
65
66 }
67
68 include('includes/footer.html');
69 ?>

 Click here to view code image

 <?php # Script 17.7 - post.phpinclude('includes/header.html');

 This page will use the header and footer files, unlike post_form.php.

 2. Check for the form submission and validate the thread ID:

 Click here to view code image

 if ($_SERVER['REQUEST_METHOD'] ==
 [image: Images]'POST') {
 if (isset($_POST['tid']) &&
 [image: Images]filter_var($_POST['tid'],
 [image: Images]FILTER_VALIDATE_INT,
 [image: Images]array('min_range' => 1))) {
 $tid = $_POST['tid'];
 } else {
 $tid = FALSE;
 }

 The thread ID will be present if the form was submitted as a reply to an existing
 thread (the thread ID is stored as a hidden input [image: Images]). The validation process is fairly routine, thanks to the Filter extension.

 [image: images]

 [image: Images] The source code of read.php shows how the thread ID is stored in the form. This indicates to post.php that the submission is a reply, not a new thread.

 3. Validate the message subject:

 Click here to view code image

 if (!$tid && empty($_POST
 [image: Images]['subject'])) {
 $subject = FALSE;
 echo '<p class="bg-danger">
 [image: Images]Please enter a subject for
 [image: Images]this post.</p>';
} elseif (!$tid && !empty($_POST
 [image: Images]['subject'])) {
 $subject = htmlspecialchars
 [image: Images](strip_tags($_POST['subject']));
} else { // Thread ID, no need
 [image: Images]for subject.
 $subject = TRUE;
}

 The tricky part about validating the subject is that three scenarios exist. First,
 if there’s no valid thread ID, then this should be a new thread and the subject can’t
 be empty. If the subject element is empty, then an error occurred and a message is printed.

 In the second scenario, there’s no valid thread ID and the subject isn’t empty, meaning this is a new thread and the subject was entered, so it should be
 handled. In this case, any tags are removed, using the strip_tags() function, and htmlspecialchars() will turn any remaining quotation marks into their entity format. Calling this second
 function will prevent problems should the form be displayed again and the subject
 placed in the input to make it sticky. To be more explicit, if the submitted subject
 contains a double quotation mark but the body wasn’t completed, the form will be shown
 again with the subject placed within value=””, and the double quotation mark in the subject will cause problems.

 The third scenario is when the form has been submitted as a reply to an existing thread.
 In that case, $tid will be valid and no subject is required.

 4. Validate the body:

 Click here to view code image

 if (!empty($_POST['body'])) {
 $body = htmlentities($_POST
 [image: Images]['body']);
} else {
 $body = FALSE;
 echo '<p class="bg-danger">
 [image: Images]Please enter a body for this
 [image: Images]post.</p>';
}

 This is a much easier validation, since the body is always required. If present, it
 will be run through htmlentities().

 5. Check whether the form was properly filled out:

 if ($subject && $body) {

 6. Create a new thread, when appropriate:

 Click here to view code image

 if (!$tid) { // Create a new thread.
 $q = "INSERT INTO threads
 [image: Images](lang_id, user_id, subject)
 [image: Images]VALUES ({$_SESSION['lid']},
 [image: Images]{$_SESSION['user_id']}, '" .
 [image: Images]mysqli_real_escape_string($dbc,
 [image: Images]$subject) . "')";
 $r = mysqli_query($dbc, $q);
 if (mysqli_affected_rows($dbc) ==
 [image: Images]1) {
 $tid = mysqli_insert_id($dbc);
 } else {
 echo '<p class="bg-danger">Your
 [image: Images]post could not be handled
 [image: Images]due to a system error.</p>';
 }
} // No $tid.

 If there’s no thread ID, then this is a new thread and a query must be run on the
 threads table. That query is simple, populating the three columns. Two of these values come
 from the session (after the user has logged in). The other is the subject, which is
 run through mysqli_real_escape_string(). Because the subject already had strip_tags() and htmlspecialchars() applied to it, you could probably get away with not using this function, but there’s
 no need to take that risk.

 If the query worked, meaning it affected one row, then the new thread ID is retrieved.

 7. Add the record to the posts table:

 Click here to view code image

 if ($tid) { // Add this to the
 [image: Images]replies table:
 $q = "INSERT INTO posts
 [image: Images](thread_id, user_id, message,
 [image: Images]posted_on) VALUES ($tid,
 [image: Images]{$_SESSION['user_id']}, '" .
 [image: Images]mysqli_real_escape_string
 [image: Images]($dbc, $body) . "',
 [image: Images]UTC_TIMESTAMP())";
 $r = mysqli_query($dbc, $q);
 if (mysqli_affected_rows($dbc)
 [image: Images]== 1) {
 echo '<p class="bg-success">
 [image: Images]Your post has been entered.
 [image: Images]</p>';
 } else {
 echo '<p class="bg-danger">
 [image: Images]Your post could not be
 [image: Images]handled due to a system
 [image: Images]error.</p>';
 }
} // Valid $tid.

 This query should only be run if the thread ID exists. That will be the case if this
 is a reply to an existing thread or if the new thread was just created in the database
 (Step 6). If that query failed, then this query won’t be run.

 The query populates four columns in the table, using the thread ID; the user ID (from
 the session); the message body, run through mysqli_real_escape_string() for security; and the posted date. For this last value, the UTC_TIMESTAMP() column is used so that it’s not tied to any one time zone (see Chapter 6).

 Note that for all the printed messages in this page, I’ve just used hard-coded English.
 To finish rounding out the examples, each of these messages should be stored in the
 words table and printed here instead.

 How This Example Is Complicated

 In the introduction to this chapter, I state that the example is fundamentally simple
 but that sometimes the simple things take some extra effort to do. So how is this
 example complicated, in my opinion?

 First, supporting multiple languages does add a couple of issues. If the encoding
 isn’t handled properly everywhere—when creating the pages in your text editor or IDE,
 in communicating with MySQL, in the browser, etc.—things can go awry. Also, you must
 have the proper translations for every language for every bit of text that the site
 might need. This includes error messages (ones the user should actually see), the
 bodies of emails, and so forth.

 How the PHP files are organized and what they do also complicates things. In particular,
 some variables are created in one file but used in another. Doing this can lead to
 confusion at best and bugs at the worst. To overcome those problems, I recommend adding
 lots of comments indicating where variables come from or where else they might be
 used. Also, try to use unique variable names within pages so that they are less likely
 to conflict with variables in included files.

 Finally, this example was complicated by the way only one page is used to display
 the posting form and only one page is used to handle it, despite the fact that messages
 can be posted in two different ways, with different expectations.

 8. Complete the page:

 Click here to view code image

 } else { // Include the form:
 include('includes/
 [image: Images]post_form.php');
 }
} else { // Display the form:
 include('includes/
 [image: Images]post_form.php');
}
include('includes/footer.html');
?>

 The first else clause applies if the form was submitted but not completed. In that case, the form
 will be included again and can be sticky, since it will have access to the $subject and $body variables created by this script. The second else clause applies if this page was accessed directly (by clicking a link in the navigation),
 thereby creating a GET request (i.e., without a form submission).

 9. Save the file as post.php, place it in your web directory, and test it in your browser ([image: Images] and [image: Images]).

 [image: images]

 [image: Images] The result if no subject was provided while attempting to post a new thread.

 [image: images]

 [image: Images] The reply has been successfully added to the thread.

 Administering the Forum

 Much of the administration of the forum would involve user management, discussed in
 the next chapter. Depending on who is administering the forum, you might also create
 forms for managing the languages and lists of translated words.

 Administrators would also likely have the authority to edit and delete posts or threads.
 To accomplish this, store a user level in the session as well (the next chapter shows
 you how). If the logged-in user is an administrator, add links to edit and delete
 threads on forum.php. Each link would pass the thread ID to a new page (like edit_user.php and delete_user.php from Chapter 10, “Common Programming Techniques”). When deleting a thread, you have to make sure you delete all the records in the
 posts table that also have that thread ID. A foreign key constraint (see Chapter 6) can help in this regard.

 Finally, an administrator could edit or delete individual posts (the replies to a
 thread). Again, check for the user level and then add links to read.php (a pair of links after each message). The links would pass the post ID to edit and
 delete pages (different ones than are used on threads).

 Review and Pursue

 If you have any problems with the review questions or the pursue prompts, turn to
 the book’s supporting forum (LarryUllman.com/forums/).

 Note: Most of these questions and some of the prompts rehash information covered in
 earlier chapters to reinforce some of the most important points.

 Review

 [image: Images] What impact does a database’s character set, or a PHP or HTML page’s encoding, have?

 [image: Images] Why does the encoding and character set have to be the same everywhere? What happens
 if there are differences?

 [image: Images] What is a primary key? What is a foreign key?

 [image: Images] What is the benefit of using UTC for stored dates and times?

 [image: Images] How do you begin a session in PHP? How do you store a value in a session? How do
 you retrieve a previously stored value?

 [image: Images] How do you create an alias in an SQL command? What are the benefits of using an alias?

 Pursue

 [image: Images] Review Chapter 6 if you need a refresher on database design.

 [image: Images] Review Chapter 6 to remind yourself as to what kinds of columns in a table should be indexed.

 [image: Images] Review Chapter 6’s section on time zones if your MySQL installation is not properly converting the
 dates and times from the UTC time zone to another (i.e., if the returned converted
 date value is NULL).

 [image: Images] Review Chapter 7 for a refresher on joins and the aggregating functions.

 [image: Images] Modify the header and other files so that each page’s title uses both the default
 language page title and a subtitle based on the page being viewed (e.g., the name
 of the thread currently shown).

 [image: Images] Add pagination—see Chapter 10—to the forum.php script.

 [image: Images] If you want, add the necessary columns to the words table, and the appropriate code to the PHP scripts, so that every navigational, error,
 and other element is language specific. Use a web site such as Google Translate (https://translate.google.com/) for the translations.

 [image: Images] Apply the redirect_user() function from Chapter 12 to post_form.php here.

 [image: Images] Create a search page for this forum. If you need some help, see the search.php basic example available in the downloadable code.

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 18. Example—User Registration

 In This Chapter

 Creating the Templates

 Writing the Configuration Scripts

 Creating the Home Page

 Registration

 Activating an Account

 Logging In and Logging Out

 Password Management

 Review and Pursue

 The second example in the book—a user registration system—has already been touched
 on in several other chapters, because the registration, login, and logout processes
 make for good examples of many concepts. But this chapter will place all those ideas
 within the same context using a consistent programming approach.

 Users will be able to register, log in, log out, and change their password. This chapter
 includes three features not shown elsewhere: the ability to reset a password, should it be forgotten; the requirement that users activate their account before they can log in; and support for different user levels, allowing you to control the available content according to the type of user logged
 in.

 As in the preceding chapter, the focus here will be on the public side of things,
 but along the way you’ll see recommendations as to how this application could easily
 be expanded or modified, including how to add administrative features.

 Creating the Templates

 The application in this chapter will use a new template design [image: Images]. This template makes extensive use of Cascading Style Sheets (CSS), creating a clean
 look without the need for images. The layout for this site is derived from one freely
 provided by BlueRobot (www.bluerobot.com).

 [image: images]

 [image: Images]The basic appearance of this web application.

 Creating this chapter’s example begins with two template files: header.html and footer.html. As in the Chapter 12, “Cookies and Sessions,” examples, the footer file will display certain links depending on whether or not
 the user is logged in, determined by checking for the existence of a session variable.
 Taking this concept one step further, additional links will be displayed if the logged-in
 user is also an administrator (a session value will indicate such).

 The header file will begin sessions and output buffering, whereas the footer file will terminate output buffering. Output buffering hasn’t
 been formally covered in this book, but it’s introduced sufficiently in the sidebar.

 To make header.html:

 1. Begin a new document in your text editor or IDE, to be named header.html (Script 18.1):

 Click here to view code image

 <?php # Script 18.1 - header.html

 Script 18.1 The header file begins the HTML, starts the session, and turns on output buffering.

 Click here to view code image

 1 <?php # Script 18.1 - header.html
2 // This page begins the HTML header for
 the site.
3
4 // Start output buffering:
5 ob_start();
6
7 // Initialize a session:
8 session_start();
9
10 // Check for a $page_title value:
11 if (!isset($page_title)) {
12 $page_title = 'User Registration';
13 }
14 ?>
15 <!doctype html>
16 <html lang="en">
17 <head>
18 <meta charset="utf-8">
19 <title><?php echo $page_title;
 ?></title>
20 <link rel="includes/layout.css">
21 </head>
22 <body>
23 <div id="Header">User Registration</div>
24 <div id="Content">
25 <!-- End of Header -->

 Using Output Buffering

 By default, anything that a PHP script prints or any HTML outside of the PHP tags
 (even in included files) is immediately sent to the browser. Output buffering (or output control, as the PHP manual calls it) is a PHP feature that overrides this behavior. Instead
 of immediately sending HTML to the browser, that output will be placed in a buffer—temporary
 memory. Then, when the buffer is flushed, it’s sent to the browser. There can be a performance improvement with output buffering,
 but the main benefit is that it eradicates those pesky headers already sent error messages. Some functions—header(), setcookie(), and session_start()—can only be called if nothing has been sent to the browser. With output buffering,
 nothing will be sent to the browser until the end of the page, so you are free to
 call these functions at any point in a script.

 To begin output buffering, invoke the ob_start() function. Once you call it, the output from every echo, print, and similar function call will be sent to a memory buffer rather than the browser.
 Conversely, HTTP calls (like header() and setcookie()) will not be buffered and will operate as usual.

 At the conclusion of the script, call the ob_end_flush() function to send the accumulated buffer to the browser. Or use the ob_end_clean() function to delete the buffered data without sending it. Both functions have the
 secondary effect of turning off output buffering.

 2. Begin output buffering and start a session:

 ob_start();
session_start();

 This website will use output buffering, eliminating any error messages that could
 occur when using HTTP headers, redirecting the user, or sending cookies. Every page
 will make use of sessions as well. It’s safe to place the session_start() call after ob_start(), since nothing has been sent to the browser yet.

 Because every public page will use both output buffering and sessions, placing these
 lines in the header.html file saves the hassle of placing them in every single page. In addition, if you later
 want to change the session settings (for example), you need to edit just this one
 file.

 3. Check for a $page_title variable and close the PHP section:

 Click here to view code image

 if (!isset($page_title)) {
$page_title = 'User Registration';
}
?>

 As in the other times this book has used a template system, the page’s title—which
 appears at the top of the browser window—will be set on a page-by-page basis. This
 conditional checks if the $page_title variable has a value and, if it doesn’t, sets it to a default string. This is a nice,
 but optional, check to include in the header.

 4. Create the HTML head:

 Click here to view code image

 <!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title><?php echo $page_title;
 [image: Images]?></title>
 <link rel="includes/layout.css">
</head>

 The PHP $page_title variable is printed between the title tags here. Then, the CSS document is included. It will be called layout.css and stored in a folder called includes. You can find the CSS file in the downloadable code found at the book’s supporting
 web site (LarryUllman.com).

 Script 18.2 The footer file concludes the HTML, displaying links based on the user status (logged
 in or not, administrator or not), and flushes the output to the browser.

 Click here to view code image

 1 <!-- Start of Footer -->
2 </div><!-- Content -->
3
4 <div id="Menu">
5 Home

6 <?php # Script 18.2 - footer.html
7 // This page completes the HTML template.
8
9 // Display links based upon the login status:
10 if (isset($_SESSION['user_id'])) {
11
12 echo 'Logout

13 Change Password

14 ';
15
16 // Add links if the user is an administrator:
17 if ($_SESSION['user_level'] == 1) {
18 echo 'View Users

19 Some Admin Page

20 ';
21 }
22
23 } else { // Not logged in.
24 echo 'Register

25 Login

26 Retrieve Password

27 ';
28 }
29 ?>
30 Some Page

31 Another Page

32 </div><!-- Menu -->
33
34 </body>
35 </html>
36 <?php // Flush the buffered output.
37 ob_end_flush();
38 ?>

 5. Begin the HTML body:

 Click here to view code image

 <body>
<div id="Header">User Registration
[image: Images]</div>
<div id="Content">

 The body creates the banner across the top of the page and then starts the content
 part of the web page (up until Welcome! in [image: Images]).

 6. Save the file as header.html.

 To make footer.html:

 1. Begin a new document in your text editor or IDE, to be named footer.html (Script 18.2):

 Click here to view code image

 </div><!-- Content -->
<div id="Menu">
 <a href="index.php" title="Home
 [image: Images]Page">Home

 <?php # Script 18.2 -
 [image: Images]footer.html

 2. If the user is logged in, show logout and change password links:

 Click here to view code image

 if (isset($_SESSION['user_id'])) {
 echo '<a href="logout.php"
 [image: Images]title="Logout">Logout

<a href="change_password.php"
[image: Images]title="Change Your Password">
[image: Images]Change Password

';

 If the user is logged in (which means that $_SESSION[‘user_id’] is set), the user will see links to log out and to change his or her password [image: Images].

 [image: images]

 [image: Images]The user will see these navigation links while logged in.

 3. If the user is also an administrator, show some other links:

 Click here to view code image

 if ($_SESSION['user_level'] == 1) {
 echo '<a href="view_users.php"
 [image: Images]title="View All Users">
 [image: Images]View Users

Some Admin Page
[image: Images]

';
}

 If the logged-in user also happens to be an administrator, she or he should see some
 extra links [image: Images]. To test for this, check the user’s access level, which will also be stored in a
 session. A level value of 1 will indicate that the user is an administrator (nonadministrators
 will have a level of 0).

 [image: images]

 [image: Images] A logged-in administrator will see extra links (compare with [image: Images]).

 4. Show the links for non-logged-in users and complete the PHP block:

 Click here to view code image

 } else { // Not logged in.
 echo '<a href="register.php"
 [image: Images]title="Register for the Site">
 [image: Images]Register

[image: Images]Login

<a href="forgot_password.php"
[image: Images]title="Password Retrieval">
[image: Images]Retrieve Password

';
}
?>

 If the user isn’t logged in, she or he will see links to register, log in, and reset
 a forgotten password [image: Images].

 [image: images]

 [image: Images] If not logged in, the user will see these links.

 5. Complete the HTML:

 Click here to view code image

 Some Page

Another Page

</div>
</body>
</html>

 Two dummy links are included for other pages you could add.

 6. Flush the buffer:

 <?php
ob_end_flush();
?>

 The footer file will send the accumulated buffer to the browser, completing the output
 buffering begun in the header script (again, see the sidebar).

 7. Save the file as footer.html and place it, along with header.html and layout.css (from the book’s supporting web site), in your web directory, storing all three in
 an includes folder [image: Images].

 [image: images]

 [image: Images] The directory structure of the site on the web server, assuming htdocs is the document root (where www.example.com points).

 Tip

 If this site has any page that does not make use of the header file but does need
 to work with sessions, that script must call session_start() on its own. If you fail to do so, that page won’t be able to access the session data.

 Tip

 In more recent versions of PHP, output buffering is enabled by default. The buffer
 size—the maximum number of bytes stored in memory—is 4096, but this can be changed
 in PHP’s configuration file.

 Tip

 The ob_get_contents() function will return the current buffer so that it may be assigned to a variable,
 should the need arise.

 Tip

 The ob_flush() function will send the current contents of the buffer to the browser and then discard
 them, allowing a new buffer to be started. This function allows your scripts to maintain
 more moderate buffer sizes. Conversely, ob_end_flush() turns off output buffering after sending the buffer to the browser.

 Tip

 The ob_clean() function deletes the current contents of the buffer without stopping the buffer process.

 Tip

 PHP will automatically run ob_end_flush() at the conclusion of a script if it is not otherwise done.

 Writing the Configuration Scripts

 This web site will make use of two configuration-type scripts. One, config.inc.php, will be the most important script in the entire application. It will

 [image: Images] Have comments about the site as a whole

 [image: Images] Define constants

 [image: Images] Establish site settings

 [image: Images] Dictate how errors are handled

 [image: Images] Define any necessary functions

 Because it does all this, the configuration script will be included by every other
 page in the application.

 The second configuration-type script, mysqli_connect.php, will store all the database-related information. It will be included only by those
 pages that need to interact with the database.

 Making a configuration file

 The configuration file is going to serve many important purposes. It’ll be like a
 cross between the site’s owner’s manual and its preferences file. The first purpose
 of this file will be to document the site overall: who created it, when, why, for
 whom, and so forth. The version in the book will omit all that, but you should put
 this information in your script (or separately in a README file). The second role
 will be to define all sorts of constants and settings that the various pages will
 use.

 Third, the configuration file will establish the error-management policy for the site.
 The technique involved—creating your own error-handling function—was covered in Chapter 8, “Error Handling and Debugging.” As in that chapter, during the development stages, every error will be reported
 in the most detailed way [image: Images].

 [image: images]

 [image: Images] During the development stages of the web site, all errors should be as obvious and
 as informative as possible.

 Along with the specific error message, all the existing variables will be shown, as
 will the current date and time. The error reporting will be formatted so that it fits
 within the site’s template. During the production, or live, stage of the site, errors
 will be handled more gracefully [image: Images]. At that time, the detailed error messages will not be printed in the browser but
 instead sent to an email address.

 [image: images]

 [image: Images] If errors occur when the site is live, the user will see only a message like this
 (but a detailed error message will be emailed to the administrator).

 Finally, this script could define any functions that might be used multiple times
 in the site. This site won’t have any, but that would be another logical use of such
 a file.

 To write the configuration file:

 1. Begin a new PHP document in your text editor or IDE, to be named config.inc.php (Script 18.3):

 Script 18.3 This configuration script dictates how errors are handled, defines sitewide settings
 and constants, and could (but doesn't) declare any necessary functions.

 Click here to view code image

 <?php # Script 18.3 - config.inc.php

 1 <?php # Script 18.3 - config.inc.php
2 /* This script:
3 * - define constants and settings
4 * - dictates how errors are handled
5 * - defines useful functions
6 */
7
8 // Document who created this site, when,
 why, etc.
9
10
11 // ********************************** //
12 // ************ SETTINGS ************ //
13
14 // Flag variable for site status:
15 define('LIVE', FALSE);
16
17 // Admin contact address:
18 define('EMAIL', 'InsertRealAddressHere');
19
20 // Site URL (base for all redirections):
21 define('BASE_URL',
 'http://www.example.com/');
22
23 // Location of the MySQL connection
 script:
24 define('MYSQL',
 '/path/to/mysqli_connect.php');
25
26 // Adjust the time zone for PHP 5.1 and
 greater:
27 date_default_timezone_set
 ('America/New_York');
28
29 // ************ SETTINGS ************ //
30 // ********************************** //
31
32
33 // ** //
34 // ************ ERROR MANAGEMENT ************ //
35
36 // Create the error handler:
37 function my_error_handler($e_number, $e_message, $e_file, $e_line, $e_vars) {
38
39 // Build the error message:
40 $message = "An error occurred in script '$e_file' on line $e_line: $e_message\n";
41
42 // Add the date and time:
43 $message .= "Date/Time: " . date('n-j-Y H:i:s') . "\n";
44
45 if (!LIVE) { // Development (print the error).
46
47 // Show the error message:
48 echo '<div class="error">' . nl2br($message);
49
50 // Add the variables and a backtrace:
51 echo '<pre>' . print_r ($e_vars, 1) . "\n";
52 debug_print_backtrace();
53 echo '</pre></div>';
54
55 } else { // Don't show the error:
56
57 // Send an email to the admin:
58 $body = $message . "\n" . print_r ($e_vars, 1);
59 mail(EMAIL, 'Site Error!', $body, 'From: email@example.com');
60
61 // Only print an error message if the error isn't a notice:
62 if ($e_number != E_NOTICE) {
63 echo '<div class="error">A system error occurred. We apologize for the
 inconvenience.</div>
';
64 }
65 } // End of !LIVE IF.
66
67 } // End of my_error_handler() definition.
68
69 // Use my error handler:
70 set_error_handler('my_error_handler');
71
72 // ************ ERROR MANAGEMENT ************ //
73 // ** //

 2. Establish two constants for error reporting:

 define('LIVE', FALSE);
define('EMAIL',
[image: Images]'InsertRealAddressHere');

 The LIVE constant will be used as it was in Chapter 8. If it is FALSE, detailed error messages are sent to the browser [image: Images]. Once the site goes live, this constant should be set to TRUE so that detailed error
 messages are never revealed to the user [image: Images]. The EMAIL constant is where the error messages will be sent when the site is live. You would
 obviously use your own email address for this value.

 3. Establish two constants for sitewide settings:

 Click here to view code image

 define('BASE_URL',
[image: Images]'http://www.example.com/');
define('MYSQL',
[image: Images]'/path/to/mysqli_connect.php');

 These two constants are defined just to make it easier to do certain things in the
 other scripts. The first, BASE_URL, refers to the root domain (http://www.example.com/), with an ending slash. If developing on your own computer, this might be http://localhost/ or http://localhost/ch18/. When a script redirects the browser, the code can simply be something like

 Click here to view code image

 header('Location: ' . BASE_URL
[image: Images].'page.php');

 The second constant, MYSQL, is an absolute path to the MySQL connection script (to be written next). Setting
 this as an absolute path ensures that any file can include the connection script by
 referring to this constant:

 require(MYSQL);

 Change both values to correspond to your environment. When using XAMPP on Windows,
 for example, the proper value for the MYSQL constant may be C:\\xampp\mysqli_connect.php.

 If you move the site from one server or domain to another, just change these two constants
 and the application will still work.

 4. Establish any other sitewide settings:

 Click here to view code image

 date_default_timezone_set
[image: Images]('America/New_York);

 As mentioned in Chapter 11, “Web Application Development,” any use of a PHP date or time function requires that the time zone be set. Change
 this value to match your time zone (see the PHP manual for the list of zones).

 5. Begin defining the error-handling function:

 Click here to view code image

 function my_error_handler
[image: Images]($e_number, $e_message, $e_file,
[image: Images]$e_line, $e_vars) {
$message = "An error occurred in
[image: Images]script '$e_file' on line
[image: Images]$e_line: $e_message\n";

 The function definition will be like the one explained in Chapter 8. The function expects to receive five arguments: the error number, the error message,
 the script in which the error occurred, the line number on which PHP thinks the error
 occurred, and an array of variables that existed at the time of the error. Then the
 function begins defining the $message variable, starting with the information provided to this function.

 6. Add the current date and time:

 Click here to view code image

 $message .= "Date/Time: " .
[image: Images]date('n-j-Y H:i:s') . "\n";

 To make the error reporting more useful, it will include the current date and time
 in the message. A newline character terminates the string to make the resulting display
 more legible.

 7. If the site is not live, show the error message in detail:

 Click here to view code image

 if (!LIVE) { // Development (print
[image: Images]the error).
 echo '<div class="error">' .
 [image: Images]nl2br($message);
 echo '<pre>' . print_r
 [image: Images]($e_vars, 1) . "\n";
 debug_print_backtrace();
 echo '</pre></div>';

 As mentioned earlier, if the site isn’t live, the entire error message is printed for any type of error. The message is placed
 within <div class=”error”>, which will format the message per the rules defined in the site’s CSS file. The
 first part of the error message is the string already defined, with the added touch
 of converting newlines to HTML break tags. Then, within preformatted tags, all the
 variables that exist at the time of the error are shown, along with a backtrace (a history of function calls and such). See Chapter 8 for more explanation on any of this.

 8. If the site is live, email the details to the administrator and print a generic message
 for the visitor:

 Click here to view code image

 } else { // Don't show the error:
 $body = $message . "\n" .
 [image: Images]print_r ($e_vars, 1);
 mail(EMAIL, 'Site Error!', $body,
 [image: Images]'From: email@example.com');
 if ($e_number != E_NOTICE) {
 echo '<div class="error">
 [image: Images]A system error occurred.
 [image: Images]We apologize for the
 [image: Images]inconvenience.</div>
';
 }
} // End of !LIVE IF.

 If the site is live, the detailed message should be sent in an email and the user should see only
 a generic message. To take this one step further, the generic message will not be
 printed if the error is of a specific type: E_NOTICE. Such errors occur for things like referring to a variable that does not exist, which
 may or may not be a problem. To avoid potentially inundating the user with error messages,
 only print the error message if $e_number is not equal to E_NOTICE, which is a constant defined in PHP (see the PHP manual).

 9. Complete the function definition and tell PHP to use your error handler:

 Click here to view code image

 }
set_error_handler
[image: Images]('my_error_handler');

 You must use the set_error_handler() function to tell PHP to use your own function for errors.

 10. Save the file as config.inc.php, and place it in your web directory within the includes folder.

 Note that in keeping with many other examples in this book, because this script will
 be included by other PHP scripts it omits the terminating PHP tag.

 Making the database script

 The second configuration-type script will be mysqli_connect.php, the database connection file used multiple times in the book already. Its purpose
 is to connect to MySQL, select the database, and establish the character set in use.
 If a problem occurs, this script will make use of the error-handling tools established
 in config.inc.php. To do so, this script will call the trigger_error() function when appropriate. The trigger_error() function lets you tell PHP that an error occurred. Of course PHP will handle that
 error using the my_error_handler() function, as established in the configuration script.

 To connect to the database:

 1. Begin a new PHP document in your text editor or IDE, to be named mysqli_connect.php (Script 18.4):

 Click here to view code image

 <?php # Script 18.4 -
[image: Images]mysqli_connect.php

 Script 18.4 This script connects to the ch18 database. If it can't, then the error handler will be triggered, passing it the MySQL
 connection error.

 Click here to view code image

 1 <?php # Script 18.4 - mysqli_connect.php
2 // This file contains the database access information.
3 // This file also establishes a connection to MySQL
4 // and selects the database.
5
6 // Set the database access information as constants:
7 define('DB_USER', 'username');
8 define('DB_PASSWORD', 'password');
9 define('DB_HOST', 'localhost');
10 define('DB_NAME', 'ch18');
11
12 // Make the connection:
13 $dbc = @mysqli_connect (DB_HOST, DB_USER, DB_PASSWORD, DB_NAME);
14
15 // If no connection could be made, trigger an error:
16 if (!$dbc) {
17 trigger_error('Could not connect to MySQL: ' . mysqli_connect_error());
18 } else { // Otherwise, set the encoding:
19 mysqli_set_charset($dbc, 'utf8');
20 }

 2. Set the database access information:

 Click here to view code image

 DEFINE('DB_USER', 'username');
DEFINE('DB_PASSWORD', 'password');
DEFINE('DB_HOST', 'localhost');
DEFINE('DB_NAME', 'ch18');

 As always, change these values to those that will work for your MySQL installation.

 3. Attempt to connect to MySQL and select the database:

 Click here to view code image

 $dbc = @mysqli_connect(DB_HOST,DB_
[image: Images]USER, DB_PASSWORD, DB_NAME);

 In previous scripts, if this function didn’t return the proper result, the die() function was called, terminating the execution of the script. Since this site will
 be using a custom error-handling function instead, I’ll rewrite the connection process.

 Any errors raised by this function call will be suppressed (thanks to the @) and handled using the code in the next step.

 4. Handle any errors if the database connection was not made:

 Click here to view code image

 if (!$dbc) {
 trigger_error('Could not
 [image: Images]connect to MySQL: ' .
 [image: Images]mysqli_connect_error());

 If the script could not connect to the database, the error message should be sent
 to the my_error_handler() function. By doing so, the error will be handled according to the currently set management
 technique (live stage versus development). Instead of calling my_error_handler() directly, use trigger_error(), whose first argument is the error message [image: Images].

 [image: images]

 [image: Images] A database connection error occurring during the development of the site.

 5. Establish the encoding:

 Click here to view code image

 } else {
 mysqli_set_charset($dbc, 'utf8');
}

 If a database connection could be made, the encoding used to communicate with the
 database is then established. See Chapter 9, “Using PHP with MySQL,” for details.

 6. Save the file as mysqli_connect.php, and place it in the directory above the web document root.

 This script, as an includable file, also omits the terminating PHP tag. As with other
 examples in this book, ideally the file should not be within the web directory, but
 wherever you put it, make sure the value of the MYSQL constant (in config.inc.php) matches.

 7. Create the database [image: Images].

 See the sidebar “Database Schema” for a discussion of the database and the command required to make the one table.
 If you cannot create your own database, just add the table to whatever database you
 have access to. Also make sure that you edit the mysqli_connect.php file so that it uses the proper username/password/hostname combination to connect
 to this database.

 [image: images]

 [image: Images] Creating the database for this chapter.

 Tip

 On one hand, it might make sense to place the contents of both configuration files
 in one script for ease of reference. On the other hand, doing so would add unnecessary
 overhead (namely, connecting to and selecting the database) to scripts that don’t
 require a database connection (e.g., index.php).

 Tip

 In general, define common functions in the configuration file or a separate functions
 file. One exception would be any function that requires a database connection. If
 you know that a function will be used only on pages that also connect to MySQL, then
 defining that function within the mysqli_connect.php script is only logical.

 Database Schema

 The database being used by this application is called ch18. The database currently consists of only one table, users. To create the table, use this SQL command:

 Click here to view code image

 CREATE TABLE users (
user_id INT UNSIGNED NOT NULL AUTO_INCREMENT,
first_name VARCHAR(20) NOT NULL,
last_name VARCHAR(40) NOT NULL,
email VARCHAR(60) NOT NULL,
pass VARCHAR(255) NOT NULL,
user_level TINYINT(1) UNSIGNED NOT NULL DEFAULT 0,
active CHAR(32),
registration_date DATETIME NOT NULL,
PRIMARY KEY (user_id),
UNIQUE KEY (email)
);

 Most of the table’s structure should be familiar to you by now; it’s quite similar
 to the users table in the sitename database, used in several examples in this book. One new addition is the active column, which will indicate whether or not a user has activated their account (by
 clicking a link in the registration email). This column will either store the 32-character-long
 activation code or have a NULL value. Because the active column may have a NULL value, it cannot be defined as NOT NULL. If you do define active as NOT NULL, no one will ever be able to log in (you’ll see why later in the chapter). The other
 new addition is the user_level column, which will differentiate the kinds of users the site has.

 Creating the Home Page

 The home page for the site, called index.php, will be a model for the other pages on the public side. It will require the configuration
 file (for error management) and the header and footer files to create the HTML design.
 This page will also welcome the user by name, assuming the user is logged in [image: Images].

 [image: images]

 [image: Images] If the user is logged in, the index page will greet them by name.

 To write index.php:

 1. Begin a new PHP document in your text editor or IDE, to be named index.php (Script 18.5):

 Script 18.5 The script for the site's home page, which will greet a logged-in user by name.

 Click here to view code image

 1 	<?php # Script 18.5 -index.php 	
2 	// This is the main page for the site. 	
3 		
4 	// Include the configuration file: 	
5 	require('includes/config.inc.php'); 	
6 		
7 	// Set the page title and include the 	
	HTML header: 	
8 	$page_title = 'Welcome to this Site!'; 	
9 	include('includes/header.html'); 	
10 		
11 	// Welcome the user (by name if they are 	
	logged in): 	
12 	echo '<h1>Welcome'; 	
13 	if (isset($_SESSION['first_name'])) { 	
14 	echo ", {$_SESSION['first_name']}"; 	
15 	} 	
16 	echo '!</h1>'; 	
17 	?> 	
18 	<p>Spam spam spam spam spam spam 	
19 	spam spam spam spam spam spam 	
20 	spam spam spam spam spam spam 	
21 	spam spam spam spam spam spam.</p> 	
22 	<p>Spam spam spam spam spam spam 	
23 	spam spam spam spam spam spam 	
24 	spam spam spam spam spam spam 	
25 	spam spam spam spam spam spam.</p> 	
26 		
27 	<?php include('includes/footer.html'); ?> 	

 Click here to view code image

 <?php # Script 18.5 - index.php

 2. Include the configuration file, set the page title, and include the HTML header:

 Click here to view code image

 require('includes/config.inc.php');
$page_title = 'Welcome to this
[image: Images]Site! ';
include('includes/header.html');

 The script includes the configuration file first so that everything that happens afterward
 will be handled using the error-management processes established in this file. Then,
 the header.html file is included, which will start output buffering, begin the session, and create
 the initial part of the HTML layout.

 3. Greet the user and complete the PHP code:

 Click here to view code image

 echo '<h1>Welcome';
if (isset($_SESSION['first_name'])) {
 echo ", {$_SESSION['first_name']}
 [image: Images]";
}
echo '!</h1>';
?>

 The Welcome message will be printed to all users. If a $_SESSION[‘first_name’] variable is set, the user’s first name will also be printed. The end result will
 be either just Welcome! [image: Images] or Welcome, <Your Name>! [image: Images].

 [image: images]

 [image: Images] If the user is not logged in, this is the home page that’s displayed.

 4. Create the content for the page:

 <p>Spam spam...</p>

 You might want to consider putting something more useful on the home page of a real
 site. Just a suggestion….

 5. Include the HTML footer:

 Click here to view code image

 <?php include('includes/footer.
[image: Images]html'); ?>

 The footer file will complete the HTML layout (primarily the menu bar on the right
 side of the page) and conclude the output buffering.

 6. Save the file as index.php, place it in your web directory, and test it in a browser.

 Registration

 The registration script was first started in Chapter 9. It has since been improved on in many ways. This version of register.php will do the following:

 [image: Images] Both display and handle the form

 [image: Images] Validate the submitted data using regular expressions and the Filter extension

 [image: Images] Redisplay the form with the values remembered if a problem occurs (the form will
 be sticky)

 [image: Images] Process the submitted data using the mysqli_real_escape_string() function for security

 [image: Images] Ensure a unique email address

 [image: Images] Use PHP to securely hash the password

 [image: Images] Send an email containing an activation link (users will have to activate their account
 prior to logging in—see the “Activation Process” sidebar)

 To write register.php:

 1. Begin a new PHP document in your text editor or IDE, to be named register.php (Script 18.6):

 Click here to view code image

 <?php # Script 18.6 - register.php

 Script 18.6 The registration script uses regular expressions for security and a sticky form for
 user convenience. It sends an email to the user upon a successful registration.

 Click here to view code image

 1 <?php # Script 18.6 - register.php
2 // This is the registration page for the site.
3 require('includes/config.inc.php');
4 $page_title = 'Register';
5 include('includes/header.html');
6
7 if ($_SERVER['REQUEST_METHOD'] == 'POST') { // Handle the form.
8
9 // Need the database connection:
10 require(MYSQL);
11
12 // Trim all the incoming data:
13 $trimmed = array_map('trim', $_POST);
14
15 // Assume invalid values:
16 $fn = $ln = $e = $p = FALSE;
17
18 // Check for a first name:
19 if (preg_match('/^[A-Z \'.-]{2,20}$/i', $trimmed['first_name'])) {
20 $fn = mysqli_real_escape_string($dbc, $trimmed['first_name']);
21 } else {
22 echo '<p class="error">Please enter your first name!</p>';
23 }
24
25 // Check for a last name:
26 if (preg_match('/^[A-Z \'.-]{2,40}$/i', $trimmed['last_name'])) {
27 $ln = mysqli_real_escape_string($dbc, $trimmed['last_name']);
28 } else {
29 echo '<p class="error">Please enter your last name!</p>';
30 }
31
32 // Check for an email address:
33 if (filter_var($trimmed['email'], FILTER_VALIDATE_EMAIL)) {
34 $e = mysqli_real_escape_string($dbc, $trimmed['email']);
35 } else {
36 echo '<p class="error">Please enter a valid email address!</p>';
37 }
38
39 // Check for a password and match against the confirmed password:
40 if (strlen($trimmed['password1']) >= 10) {
41 if ($trimmed['password1'] == $trimmed['password2']) {
42 $p = password_hash($trimmed['password1'], PASSWORD_DEFAULT);
43 } else {
44 echo '<p class="error">Your password did not match the confirmed password!</p>';
45 }
46 } else {
47 echo '<p class="error">Please enter a valid password!</p>';
48 }
49
50 if ($fn && $ln && $e && $p) { // If everything's OK...
51
52 // Make sure the email address is available:
53 $q = "SELECT user_id FROM users WHERE email='$e'";
54 $r = mysqli_query($dbc, $q) or trigger_error("Query: $q\n
MySQL Error: " . mysqli_error($dbc));
55
56 if (mysqli_num_rows($r) == 0) { // Available.
57
58 // Create the activation code:
59 $a = md5(uniqid(rand(), true));
60
61 // Add the user to the database:
62 $q = "INSERT INTO users (email, pass, first_name, last_name, active, registration_date) VALUES ('$e', '$p', '$fn', '$ln', '$a', NOW())";
63 $r = mysqli_query($dbc, $q) or trigger_error("Query: $q\n
MySQL Error: " . mysqli_error($dbc));
64
65 if (mysqli_affected_rows($dbc) == 1) { // If it ran OK.
66
67 // Send the email:
68 $body = "Thank you for registering at <whatever site>. To activate your account, please click on this link:\n\n";
69 $body .= BASE_URL . 'activate.php?x=' . urlencode($e) . "&y=$a";
70 mail($trimmed['email'], 'Registration Confirmation', $body, 'From: admin@sitename.com');
71
72 // Finish the page:
73 echo '<h3>Thank you for registering! A confirmation email has been sent to your address. Please click on the link in that email in order to activate your account.</h3>';
74 include('includes/footer.html'); // Include the HTML footer.
75 exit(); // Stop the page.
76
77 } else { // If it did not run OK.
78 echo '<p class="error">You could not be registered due to a system error. We apologize for any inconvenience.</p>';
79 }
80
81 } else { // The email address is not available.
82 echo '<p class="error">That email address has already been registered. If you have forgotten your password, use the link at right to have your password sent to you.</p>';
83 }
84
85 } else { // If one of the data tests failed.
86 echo '<p class="error">Please try again.</p>';
87 }
88
89 mysqli_close($dbc);
90
91 } // End of the main Submit conditional.
92 ?>
93
94 <h1>Register</h1>
95 <form action="register.php" method="post">
96 <fieldset>
97
98 <p>First Name: <input type="text" name="first_name" size="20" maxlength="20" value="<?php if (isset($trimmed['first_name'])) echo $trimmed['first_name']; ?>"></p>
99
100 <p>Last Name: <input type="text" name="last_name" size="20" maxlength="40" value="<?php if (isset($trimmed['last_name'])) echo $trimmed['last_name']; ?>"></p>
101
102 <p>Email Address: <input type="email" name="email" size="30" maxlength="60" value="<?php if (isset($trimmed['email'])) echo $trimmed['email']; ?>"> </p>
103
104 <p>Password: <input type="password" name="password1" size="20" value="<?php if (isset($trimmed['password1'])) echo $trimmed['password1']; ?>"> <small>At least 10 characters long.</small></p>
105
106 <p>Confirm Password: <input type="password" name="password2" size="20" value="<?php if (isset($trimmed['password2'])) echo $trimmed['password2']; ?>"></p>
107 </fieldset>
108
109 <div align="center"><input type="submit" name="submit" value="Register"></div>
110
111 </form>
112
113 <?php include('includes/footer.html'); ?>

 2. Include the configuration file and the HTML header:

 Click here to view code image

 require('includes/config.inc.php');
$page_title = 'Register';
include('includes/header.html');

 3. Create the conditional that checks for the form submission and then include the database
 connection script:

 Click here to view code image

 if ($_SERVER['REQUEST_METHOD'] ==
[image: Images]'POST') {
 require (MYSQL);

 Because the full path to the mysqli_connect.php script is defined as a constant in the configuration file, the constant can be used
 as the argument to require(). The benefit to this approach is that any file stored anywhere in the site, even
 within a subdirectory, can use this same code to successfully include the connection
 script.

 4. Trim the incoming data and establish some flag variables:

 Click here to view code image

 $trimmed = array_map('trim',
[image: Images]$_POST);
$fn = $ln = $e = $p = FALSE;

 The first line runs every element in $_POST through the trim() function, assigning the returned result to the new $trimmed array. The explanation for this line can be found in Chapter 13, “Security Methods,” when array_map() was used with data to be sent in an email. In short, the trim() function will be applied to every value in $_POST, saving the hassle of applying trim() to each individually.

 The second line initializes four variables as FALSE. This one line is just a shortcut
 in lieu of

 $fn = FALSE;
$ln = FALSE;
$e = FALSE;
$p = FALSE;

 5. Validate the first and last names:

 Click here to view code image

 if (preg_match('/^[A-Z \'.-]
[image: Images]{2,20}$/i', $trimmed['first_
[image: Images]name'])) {
 $fn = mysqli_real_escape_string
 [image: Images]($dbc, $trimmed['first_name']);
} else {
 echo '<p class="error">Please
 [image: Images]enter your first name!</p>';
}
if (preg_match('/^[A-Z \'.-]
[image: Images]{2,40}$/i', $trimmed
[image: Images]['last_name'])) {
 $ln = mysqli_real_escape_string
 [image: Images]($dbc, $trimmed['last_name']);
} else {
 echo '<p class="error">Please
 [image: Images]enter your last name!</p>';
}

 Much of the form will be validated using regular expressions, covered in Chapter 14, “Perl-Compatible Regular Expressions.” For the first name value, the assumption is that it will contain only letters,
 a period (as in an initial), an apostrophe, a space, and the dash. Further, the value
 should be within the range of 2 to 20 characters long. To guarantee that the value
 contains only these characters, the caret and the dollar sign are used to match both
 the beginning and end of the string. While using Perl-compatible regular expressions,
 the entire pattern must be placed within delimiters (the forward slashes).

 If this condition is met, the $fn variable is assigned the value of the mysqli_real_escape_string() version of the submitted value; otherwise, $fn will still be FALSE and an error message is printed [image: Images].

 [image: images]

 [image: Images] If the first name value does not pass the regular expression test, an error message
 is printed.

 The same process is used to validate the last name, although that regular expression
 allows for a longer length. Both patterns are also case-insensitive, thanks to the
 i modifier.

 One thing to be aware of when using regular expressions to validate strings is cultural
 bias. The pattern used to validate these names works fine for most non-accented European
 names but fails for names with non-Latin characters. This registration script also
 assumes every user has two names, which is not always the case. Try to be aware of
 who your users are and then strike the right balance between proper validation and
 improper assumptions.

 6. Validate the email address [image: Images]:

 [image: images]

 [image: Images] The submitted email address must be of the proper format.

 Click here to view code image

 if (filter_var($trimmed['email''],
[image: Images]FILTER_VALIDATE_EMAIL)) {
 $e = mysqli_real_escape_string
 [image: Images]($dbc, $trimmed['email']);
} else {
 echo '<p class="error">Please
[image: Images]enter a valid email address!
[image: Images]</p>';
}

 An email address can easily be validated using the Filter extension, discussed in
 Chapter 13

 7. Validate the passwords:

 Click here to view code image

 if (strlen($trimmed['password1'])
[image: Images]>= 10) {
 if ($trimmed['password1'] ==
 [image: Images]$trimmed['password2']) {
 $p = password_hash
 [image: Images]($trimmed['password1'],
 [image: Images]PASSWORD_DEFAULT);
 } else {
 echo '<p class="error">Your
 [image: Images]password did not match the
 [image: Images]confirmed password!</p>';
 }
} else {
 echo '<p class="error">Please
[image: Images]enter a valid password!</p>';
}

 The password must be at least 10 characters [image: Images]. This may seem too lax, but the truth when it comes to security is that requiring
 longer passwords—ideally longer than 10 characters, even—is the most important security
 factor. Further, while requiring numbers, capital letters, and symbols may help against
 dictionary attacks, mostly they just make it harder for users to remember their password
 (i.e., themustideallydictionary is a more secure password than Password1B!).

 [image: images]

 [image: Images] The passwords are checked for the proper length and…

 There is no maximum length limit.

 Finally, the first password (password1) must match the confirmed password (password2) [image: Images].

 [image: images]

 [image: Images] …that the password value matches the confirmed password value.

 Assuming the password passes both validations, it’s run through the PHP password_hash() function so it’s ready to be stored.

 8. If every test was passed, check for a unique email address:

 Click here to view code image

 if ($fn && $ln && $e && $p) {
 $q = "SELECT user_id FROM users
 [image: Images]WHERE email='$e'";
 $r = mysqli_query($dbc, $q)
 [image: Images]or trigger_error("Query:
 [image: Images]$q\n
MySQL Error: " .
 [image: Images]mysqli_error($dbc));

 If the form passed every test, this conditional will be TRUE. Then the script must
 search the database to see whether the submitted email address is currently being
 used, since that column’s value must be unique across each record. As with the MySQL
 connection script, if a query doesn’t run, call the trigger_error() function to invoke the self-defined error reporting function. The specific error
 message will include both the query being run and the MySQL error [image: Images] so that the problem can easily be debugged.

 [image: images]

 [image: Images] If a MySQL query error occurs, it should be easier to debug thanks to this informative
 error message.

 9. If the email address is unused, register the user:

 Click here to view code image

 if (mysqli_num_rows($r) == 0)
[image: Images]{ // Available.
 $a = md5(uniqid(rand(), true));
 $q = "INSERT INTO users (email,
 [image: Images]pass, first_name, last_name,
 [image: Images]active, registration_date)
 [image: Images]VALUES ('$e', '$p', '$fn', '$ln',
 [image: Images]'$a', NOW())";
 $r = mysqli_query($dbc, $q)
 [image: Images]or trigger_error("Query:
 [image: Images]$q\n
MySQL Error: " .
 [image: Images]mysqli_error($dbc));

 The query itself is rather simple, but it does require the creation of a unique activation
 code. Generating that requires the rand(), uniqid(), and md5() functions. Of these, uniqid() is the most important; it creates a unique identifier. It’s fed the rand() function to help generate a more random value. Finally, the returned result is hashed using md5(), which creates a string exactly 32 characters long (a hash is a mathematically calculated
 representation of a piece of data). You do not need to fully comprehend these three
 functions; just note that the result will be a unique 32-character string.

 As for the query itself, it should be familiar enough to you. Most of the values come
 from variables in the PHP script, after applying trim() and mysqli_real_escape_string() to them. The MySQL NOW() function is used to set the registration date as the current moment. Because the
 user_level column has a default value of 0 (i.e., not an administrator), that column does not
 have to be provided a value in this query. Presumably the site’s main administrator
 would edit a user’s record to give him or her administrative power after the user
 has registered.

 10. Send an email if the query worked:

 Click here to view code image

 if (mysqli_affected_rows($dbc) ==
[image: Images]1) {
 $body = "Thank you for
 [image: Images]registering at <whatever
 [image: Images]site>. To activate your
 [image: Images]account, please click on this
 [image: Images]link:\n\n";
 $body .= BASE_URL . 'activate.
 [image: Images]php?x=' . urlencode($e) .
 [image: Images]"&y=$a";
 mail($trimmed['email'],
 [image: Images]'Registration Confirmation',
 [image: Images]$body, 'From: admin@sitename.
 [image: Images]com');

 With this registration process, the important thing is that the confirmation mail
 gets sent to your users, because they will not be able to log in until after they’ve
 activated their account. This email should contain a link to the activation page,
 activate.php. The link to that page starts with BASE_URL, which is defined in config.inc.php. The link also passes two values along in the URL. The first, generically called
 x, will be the user’s email address, encoded so that it’s safe to have in a URL. The
 second, y, is the activation code. The URL, then, will be something like http://www.example.com/activate.php?x=email%40example.com&y= 901e09ef25bf6e3ef95c93088450b008.

 Activation Process

 New in this chapter is an activation process, where users have to click a link in
 an email to confirm their accounts prior to being able to log in. Using a system like
 this prevents bogus registrations from being usable. If an invalid email address is
 entered, that account can never be activated. And if someone registered another person’s
 address, hopefully the maligned person would not activate this undesired account.

 From a programming perspective, this process requires the creation of a unique activation
 code for each registered user, to be stored in the users table. The code is then sent in a confirmation email to the user (as part of a link).
 When the user clicks the link, she or he will be taken to a page on the site that
 activates the account (by removing that code from the record). The result is that
 no one can register and activate an account without receiving the confirmation email
 (i.e., without having a valid email address that the registrant controls).

 11. Tell the user what to expect and complete the page:

 Click here to view code image

 echo '<h3>Thank you for
 [image: Images]registering! A confirmation
 [image: Images]email has been sent to your
 [image: Images]address. Please click on the
 [image: Images]link in that email in order to
 [image: Images]activate your account.</h3>';
include('includes/footer.html');
exit();

 A thank-you message is printed out upon successful registration, along with the activation
 instructions [image: Images]. Then the footer is included and the page is terminated.

 [image: images]

 [image: Images] The resulting page after a user has successfully registered.

 12. Print errors if the query failed:

 Click here to view code image

 } else { // If it did not run OK.
 echo '<p class="error">You could
 [image: Images]not be registered due to a
 [image: Images]system error. We apologize
 [image: Images]for any inconvenience.</p>';
}

 If the query failed for some reason, meaning that mysqli_affected_rows() did not return 1, an error message is printed to the browser. Because of the security
 methods implemented in this script, the live version of the site should never have
 a problem at this juncture.

 13. Complete the conditionals and the PHP code:

 Click here to view code image

 } else { // The email address
 [image: Images]is not available.
 echo '<p class="error">That
 [image: Images]email address has
 [image: Images]already been registered.
 [image: Images]If you have forgotten
 [image: Images]your password, use the
 [image: Images]link at right to have
 [image: Images]your password sent to
 [image: Images]you.</p>';
 }
 } else { // If one of the data
 [image: Images]tests failed.
 echo '<p class="error">Please
 [image: Images]try again.</p>';
 }
 mysqli_close($dbc);
} // End of the main Submit
[image: Images]conditional.
?>

 The first else is executed if a person attempts to register with an email address that has already
 been used [image: Images]. The second else applies when the submitted data fails one of the validation routines (see [image: Images] through [image: Images]).

 [image: images]

 [image: Images] If an email address has already been registered, the user is told as much.

 14. Begin the HTML form [image: Images]:

 [image: images]

 [image: Images] The registration form as it looks when the user first arrives.

 Click here to view code image

 <h1>Register</h1>
<form action="register.php"
[image: Images]method="post">
 <fieldset>
 <p>First Name:
 [image: Images]<input type="text"
 [image: Images]name="first_name" size="20"
 [image: Images]maxlength="20" value="<?php if
 [image: Images](isset($trimmed['first_name']))
 [image: Images]echo $trimmed['first_name'];
 [image: Images]?>"></p>

 The HTML form has text inputs for all the values. Each input has a name and a maximum
 length that match the corresponding column definition in the users table. The form will be sticky, using the trimmed values.

 15. Add inputs for the last name and email address:

 Click here to view code image

 <p>Last Name:
[image: Images]<input type="text"
[image: Images]name="last_name" size="20"
[image: Images]maxlength="40" value="<?php if
[image: Images](isset($trimmed['last_name']))
[image: Images]echo $trimmed['last_name'];
[image: Images]?>"></p>
<p>Email Address:
[image: Images]<input type="email"
[image: Images]name="email" size="30"
[image: Images]maxlength="60" value="<?php if
[image: Images](isset($trimmed['email'])) echo
[image: Images]$trimmed['email']; ?>"> </p>

 16. Add inputs for the password and the confirmation of the password:

 Click here to view code image

 <p>Password:
[image: Images]<input type="password"
[image: Images]name="password1"
[image: Images]size="20" value="<?php if
[image: Images](isset($trimmed['password1']))
[image: Images]echo $trimmed['password1']; ?>">
[image: Images]<small>At least 10 characters
[image: Images]long.</small></p>
<p>Confirm Password:
[image: Images] <input type="password"
[image: Images]name="password2" size="20"
[image: Images]value="<?php if (isset($trimmed
[image: Images]['password2'])) echo $trimmed
[image: Images]['password2']; ?>"></p>

 When you are placing restrictions for the input’s format, including its length, it’s
 best to indicate those requirements to the user in the form itself. When you do so,
 the site won’t report an error to the user for doing something the user didn’t know
 she or he couldn’t do.

 17. Complete the HTML form:

 Click here to view code image

 </fieldset>
 <div align="center"><input
 [image: Images]type="submit" name="submit"
 [image: Images]value="Register" /></div>
</form>

 18. Include the HTML footer:

 Click here to view code image

 <?php include('includes/footer.
[image: Images]html'); ?>

 19. Save the file as register.php, place it in your web directory, and test it in your browser.

 Tip

 Because every column in the users table cannot be NULL (except for active), each input must be correctly filled out. If a table has an optional field, you
 should still confirm that it is of the right type if submitted, but not require it.

 Tip

 Except for encrypted fields (such as the password), the maximum length of the form
 inputs and regular expressions should correspond to the maximum length of the column
 in the database.

 Activating an Account

 As described in the “Activation Process” sidebar earlier in the chapter, each user will have to activate his or her account
 prior to being able to log in. Upon successfully registering, the user will receive
 an email containing a link to activate.php [image: Images]. This link also passes two values to this page: the user’s registered email address
 and a unique activation code. To complete the registration process—to activate the
 account—the user will need to click that link, taking the user to the activate.php script on the web site.

 [image: images]

 [image: Images] The registration confirmation email.

 The activate.php script needs to first confirm that those two values were received in the URL. Then,
 if the received two values match those stored in the database, the activation code
 will be removed from the record, indicating an active account.

 To create the activation page:

 1. Begin a new PHP script in your text editor or IDE, to be named activate.php (Script 18.7):

 Click here to view code image

 <?php # Script 18.7 - activate.php
require('includes/config.inc.php');
$page_title = 'Activate Your
[image: Images]Account';
include('includes/header.html');

 2. Validate the values that should be received by the page:

 Click here to view code image

 if (isset($_GET['x'], $_GET['y'])
 && filter_var($_GET['x'],
 [image: Images]FILTER_VALIDATE_EMAIL)
 && (strlen($_GET['y']) == 32)
) {

 When the user clicks the link in the registration confirmation email, two values will
 be passed to this page: the email address and the activation code. Both values must
 be present and validated before attempting to use them in a query activating the user’s
 account.

 The first step is to ensure that both values are set. Since the isset() function can simultaneously check for the presence of multiple variables, the first
 part of the validation condition is isset($_GET[‘x’], $_GET[‘y’]).

 Script 18.7 To activate an account, the user must come to this page, passing it her or his email
 address and activation code (all part of the link sent in an email upon registering).

 Click here to view code image

 1 <?php # Script 18.7 - activate.php
2 // This page activates the user's account.
3 require('includes/config.inc.php');
4 $page_title = 'Activate Your Account';
5 include('includes/header.html');
6
7 // If $x and $y don't exist or aren't of the proper format, redirect the user:
8 if (isset($_GET['x'], $_GET['y'])
9 && filter_var($_GET['x'], FILTER_VALIDATE_EMAIL)
10 && (strlen($_GET['y']) == 32)
11) {
12
13 // Update the database...
14 require(MYSQL);
15 $q = "UPDATE users SET active=NULL WHERE (email='" . mysqli_real_escape_string ($dbc, $_GET['x']) . "' AND active='" . mysqli_real_escape_string($dbc, $_GET['y']) . "') LIMIT 1";
16 $r = mysqli_query($dbc, $q) or trigger_error("Query: $q\n
MySQL Error: " . mysqli_error($dbc));
17
18 // Print a customized message:
19 if (mysqli_affected_rows($dbc) == 1) {
20 echo "<h3>Your account is now active. You may now log in.</h3>";
21 } else {
22 echo '<p class="error">Your account could not be activated. Please re-check the link or contact the system administrator.</p>';
23 }
24
25 mysqli_close($dbc);
26
27 } else { // Redirect.
28
29 $url = BASE_URL . 'index.php'; // Define the URL.
30 ob_end_clean(); // Delete the buffer.
31 header("Location: $url");
32 exit(); // Quit the script.
33
34 } // End of main IF-ELSE.
35
36 include('includes/footer.html');
37 ?>

 Second, $_GET[‘x’] must be in the format of a valid email address. The same code as in the registration
 script can be used for that purpose (either the Filter extension or a regular expression).

 Third, for y (the activation code), the last clause in the conditional checks that this string’s
 length (how many characters are in it) is exactly 32. The md5() function, which created the activation code, always returns a string 32 characters
 long.

 3. Attempt to activate the user’s account:

 Click here to view code image

 require (MYSQL);
$q = "UPDATE users SET active=NULL
[image: Images]WHERE (email='" . mysqli_real_
[image: Images]escape_string($dbc, $_GET['x'])
[image: Images]. "' AND active='" . mysqli_
[image: Images]real_escape_string($dbc,
[image: Images]$_GET['y']) . "') LIMIT 1";
$r = mysqli_query($dbc, $q) or
[image: Images]trigger_error("Query: $q\n

[image: Images]MySQL Error: " . mysqli_error
[image: Images]($dbc));

 If all three conditions (in Step 2) are TRUE, an UPDATE query is run. This query removes the activation code from the user’s record by setting
 the active column to NULL. Before using the values in the query, both are run through mysqli_real_escape_string() for extra security.

 4. Report on the success of the query:

 Click here to view code image

 if (mysqli_affected_rows($dbc) ==
[image: Images]1) {
 echo "<h3>Your account is now
 [image: Images]active. You may now log in.
 [image: Images]</h3>";
} else {
 echo '<p class="error">Your
 [image: Images]account could not be
 [image: Images]activated. Please re-check
 [image: Images]the link or contact the
 [image: Images]system administrator.</p>';
}

 If one row was affected by the query, then the user’s account is now active and a
 message says as much [image: Images]. If no rows are affected, the user is notified of the problem [image: Images]. This would most likely happen if someone tried to fake the x and y values or if there’s a problem in following the link from the email to the browser.

 [image: images]

 [image: Images] If the database could be updated using the provided email address and activation code, the user is notified
 that the account is now active.

 [image: images]

 [image: Images] If an account is not activated by the query, the user is told of the problem.

 5. Complete the main conditional:

 Click here to view code image

 mysqli_close($dbc);
} else { // Redirect.
 $url = BASE_URL . 'index.php';
 ob_end_clean();
 header("Location: $url");
 exit();
} // End of main IF-ELSE.

 The else clause takes effect if $_GET[‘x’] and $_GET[‘y’] are not of the proper value and length. In such a case, the user is just redirected
 to the index page. The ob_end_clean() line here deletes the buffer (whatever was to be sent to the browser up to this point,
 stored in memory), since it won’t be used.

 6. Complete the page:

 include('includes/footer.html');
?>

 7. Save the file as activate.php, place it in your web directory, and test it by clicking the link in the registration
 email.

 Tip

 If you wanted to be a little more forgiving, you could have this page print an error
 message if the correct values are not received, rather than redirect users to the
 index page (as if they were attempting to hack the site).

 Tip

 I specifically use the vague x and y as the names in the URL for security purposes. Although someone may figure out that
 the one is an email address and the other is a code, it’s sometimes best not to be
 explicit about such things.

 Logging In and Logging Out

 In Chapter 12 you created many versions of login.php and logout.php scripts, using variations on cookies and sessions. Here both scripts will be created
 once again, this time adhering to the same practices as the rest of this chapter’s
 web application. The login query itself is slightly different in this example in that
 it must also check that the active column has a NULL value, which is the indication that the user has activated his or her account.

 To write login.php:

 1. Begin a new PHP document in your text editor or IDE, to be named login.php (Script 18.8):

 Click here to view code image

 <?php # Script 18.8 - login.php
require('includes/config.inc.php');
$page_title = 'Login';
include('includes/header.html');

 2. Check whether the form has been submitted and require the database connection:

 Click here to view code image

 if ($_SERVER['REQUEST_METHOD'] ==
[image: Images]'POST') {
 require (MYSQL);

 3. Validate the submitted data:

 Click here to view code image

 if (!empty($_POST['email'])) {
 $e = mysqli_real_escape_string
 [image: Images]($dbc, $_POST['email']);
} else {
 $e = FALSE;
 echo '<p class="error">You
 [image: Images]forgot to enter your email
 [image: Images]address!</p>';
}
if (!empty($_POST['pass'])) {
 $p = trim($_POST['pass']);
} else {
 $p = FALSE;
 echo '<p class="error">You
 [image: Images]forgot to enter your
 [image: Images]password!</p>';
}

 There are two ways of thinking about the validation. On the one hand, you could use
 regular expressions and the Filter extension, copying the same code from register.php, to validate these values. On the other hand, the true test of the values will be
 whether or not the login query returns a record, so you could arguably skip more stringent
 PHP validation. This script uses the latter thinking.

 If the user does not enter any values into the form, error messages will be printed
 [image: Images].

 [image: images]

 [image: Images] The login form checks only if values were entered without using regular expressions.

 4. If both validation routines were passed, retrieve the user information:

 Click here to view code image

 if ($e && $p) { // If
 [image: Images]everything's OK.
 $q = "SELECT user_id,
 [image: Images]first_name, user_level, pass
 [image: Images]FROM users WHERE email='$e'
 [image: Images]AND active IS NULL";
 $r = mysqli_query($dbc, $q)
 [image: Images]or trigger_error("Query:
 [image: Images]$q\n
MySQL Error: " .
 [image: Images]mysqli_error($dbc));

 The query will attempt to retrieve the user ID, first name, user level, and password
 for the record whose email address matches that submitted. The query has to retrieve
 the password since it will be validated with PHP.

 The query also checks that the active column has a NULL value, meaning that the user has successfully accessed the activate.php page.

 If you know an account has been activated but you still can’t log in using the proper values, it’s likely because your active column was erroneously defined as NOT NULL.

 Script 18.8 The login page will redirect the user to the home page after registering the user
 ID, first name, and access level in a session.

 Click here to view code image

 1 <?php # Script 18.8 - login.php
2 // This is the login page for the site.
3 require('includes/config.inc.php');
4 $page_title = 'Login';
5 include('includes/header.html');
6
7 if ($_SERVER['REQUEST_METHOD'] == 'POST') {
8 require(MYSQL);
9
10 // Validate the email address:
11 if (!empty($_POST['email'])) {
12 $e = mysqli_real_escape_string($dbc, $_POST['email']);
13 } else {
14 $e = FALSE;
15 echo '<p class="error">You forgot to enter your email address! </p>';
16 }
17
18 // Validate the password:
19 if (!empty($_POST['pass'])) {
20 $p = trim($_POST['pass']);
21 } else {
22 $p = FALSE;
23 echo '<p class="error">You forgot to enter your password!</p>';
24 }
25
26 if ($e && $p) { // If everything's OK.
27
28 // Query the database:
29 $q = "SELECT user_id, first_name, user_level, pass FROM users WHERE email='$e' AND active IS NULL";
30 $r = mysqli_query($dbc, $q) or trigger_error("Query: $q\n
MySQL Error: " . mysqli_error($dbc));
31
32 if (@mysqli_num_rows($r) == 1) { // A match was made.
33
34 // Fetch the values:
35 list($user_id, $first_name, $user_level, $pass) = mysqli_fetch_array($r, MYSQLI_NUM);
36 mysqli_free_result($r);
37
38 // Check the password:
39 if (password_verify($p, $pass)) {
40
41 // Store the info in the session:
42 $_SESSION['user_id'] = $user_id;
43 $_SESSION['first_name'] = $first_name;
44 $_SESSION['user_level'] = $user_level;
45 mysqli_close($dbc);
46
47 // Redirect the user:
48 $url = BASE_URL . 'index.php'; // Define the URL.
49 ob_end_clean(); // Delete the buffer.
50 header("Location: $url");
51 exit(); // Quit the script.
52
53 } else {
54
55 echo '<p class="error">Either the email address and password entered do not match those on file or you have not yet activated your account.</p>';
56 }
57
58 } else { // No match was made.
59 echo '<p class="error">Either the email address and password entered do not match those on file or you have not yet activated your account.</p>';
60 }
61
62 } else { // If everything wasn't OK.
63 echo '<p class="error">Please try again.</p>';
64 }
65
66 mysqli_close($dbc);
67
68 } // End of SUBMIT conditional.
69 ?>
70
71 <h1>Login</h1>
72 <p>Your browser must allow cookies in order to log in.</p>
73 <form action="login.php" method="post">
74 <fieldset>
75 <p>Email Address: <input type="email" name="email" size="20" maxlength="60"></p>
76 <p>Password: <input type="password" name="pass" size="20"></p>
77 <div align="center"><input type="submit" name="submit" value="Login"></div>
78 </fieldset>
79 </form>
80
81 <?php include('includes/footer.html'); ?>

 5. If a match was made in the database, retrieve the values:

 Click here to view code image

 if (@mysqli_num_rows($r) == 1) {
 list($user_id, $first_name,
 [image: Images]$user_level, $pass) = mysqli_
 [image: Images]fetch_array($r, MYSQLI_NUM);
 mysqli_free_result($r);

 The login process consists of storing the retrieved values in the session (which was
 already started in header.html) and then redirecting the user to the home page. But first the database values need
 to be fetched into local variables.

 The list() function has not been formally discussed in the book, but you may have run across
 it. It’s a shortcut function that allows you to assign array elements to other variables.
 Since mysqli_fetch_array() will always return an array, even if it’s an array of just one element, using list() can save having to write

 Click here to view code image

 $row = mysqli_fetch_array($r,
[image: Images]MYSQLI_NUM);
$user_id = $row[0];

 6. Verify the password and redirect the user:

 Click here to view code image

 if (password_verify($p, $pass)) {
 $_SESSION['user_id'] = $user_id;
 $_SESSION['first_name'] =
 [image: Images]$first_name;
 $_SESSION['user_level'] =
 [image: Images]$user_level;
 mysqli_close($dbc);
 $url = BASE_URL . 'index.php';
 ob_end_clean();
 header("Location: $url");
 exit();

 The first line was explained in Chapter 13. If a match is made, the user’s information is stored in the session and the user
 is redirected to the home page.

 The ob_end_clean() function will delete the existing buffer (the output buffering is also begun in header.html), since it will not be used.

 7. Complete the conditionals and close the database connection:

 Click here to view code image

 } else {
 echo '<p class="error">
 [image: Images]Either the email
 [image: Images]address and password
 [image: Images]entered do not match
 [image: Images]those on file or you
 [image: Images]have not yet activated
 [image: Images]your account.</p>';
 }
 } else { // No match was made.
 echo '<p class="error">
 [image: Images]Either the email address
 [image: Images]and password entered do
 [image: Images]not match those on
 [image: Images]file or you have not yet
 [image: Images]activated your account.
 [image: Images]</p>';
 }
 } else { // If everything
 [image: Images]wasn't OK.
 echo '<p class="error">Please
 [image: Images]try again.</p>';
 }
 mysqli_close($dbc);
} // End of SUBMIT conditional.
?>

 The error message [image: Images] indicates that the login process could fail for two possible reasons. One is that
 the submitted email address and password do not match those on file. The other reason
 is that the user has not yet activated the account.

 [image: images]

 [image: Images] An error message is displayed if the login query does not return a single record.

 8. Display the HTML login form [image: Images]:

 [image: images]

 [image: Images] The login form.

 Click here to view code image

 <h1>Login</h1>
<p>Your browser must allow
[image: Images]cookies in order to log in.</p>
<form action="login.php"
[image: Images]method="post">
 <fieldset>
 <p>Email Address:
 [image: Images] <input type="email"
 [image: Images]name="email" size="20"
 [image: Images]maxlength="60"></p>
 <p>Password:
 [image: Images]<input type="password"
 [image: Images]name="pass" size="20"></p>
 <div align="center"><input
 [image: Images]type="submit" name="submit"
 [image: Images]value="Login"></div>
 </fieldset>
</form>

 The login form, like the registration form, will submit the data back to itself. This
 one is not sticky, though, but you could add that functionality.

 Notice that the page includes a message informing the user that cookies must be enabled
 to use the site (if a user does not allow cookies, she or he will never get access
 to the logged-in user pages).

 9. Include the HTML footer:

 Click here to view code image

 <?php include('includes/footer.
[image: Images]html'); ?>

 10. Save the file as login.php, place it in your web directory, and test it in your browser [image: Images].

 [image: images]

 [image: Images] Upon successfully logging in, the user will be redirected to the home page, where
 the user will be greeted by name.

 To write logout.php:

 1. Begin a new PHP document in your text editor or IDE, to be named logout.php (Script 18.9):

 Click here to view code image

 <?php # Script 18.9 - logout.php
require('includes/config.inc.php');
$page_title = 'Logout';
include('includes/header.html');

 Script 18.9 The logout page destroys all of the session information, including the cookie.

 Click here to view code image

 1 <?php # Script 18.9 - logout.php
2 // This is the logout page for the site.
3 require('includes/config.inc.php');
4 $page_title = 'Logout';
5 include('includes/header.html');
6
7 // If no first_name session variable exists, redirect the user:
8 if (!isset($_SESSION['first_name'])) {
9
10 $url = BASE_URL . 'index.php'; // Define the URL.
11 ob_end_clean(); // Delete the buffer.
12 header("Location: $url");
13 exit(); // Quit the script.
14
15 } else { // Log out the user.
16
17 $_SESSION = []; // Destroy the variables.
18 session_destroy(); // Destroy the session itself.
19 setcookie(session_name(), '', time()-3600); // Destroy the cookie.
20
21 }
22
23 // Print a customized message:
24 echo '<h3>You are now logged out.</h3>';
25
26 include('includes/footer.html');
27 ?>

 2. Redirect the user if she or he is not logged in:

 Click here to view code image

 if (!isset($_SESSION['first_name'])) {
 $url = BASE_URL . 'index.php';
 ob_end_clean();
 header("Location: $url");
 exit();

 If the user is not currently logged in (determined by checking for a $_SESSION[‘first_name’] variable), the user will be redirected to the home page (because there’s no point
 in trying to log the user out).

 3. Log out the user if she or he is currently logged in:

 Click here to view code image

 } else { // Log out the user.
 $_SESSION = [];
 session_destroy();
 setcookie (session_name(),'',
 [image: Images]time()-3600);
}

 To log the user out, the session values will be reset, the session data will be destroyed
 on the server, and the session cookie will be deleted. These lines of code were first
 used and described in Chapter 12. The cookie name will be the value returned by the session_name() function. If you decide to change the session name later, this code will still be
 accurate.

 4. Print a logged-out message and complete the PHP page:

 Click here to view code image

 echo '<h3>You are now logged out.
[image: Images]</h3>';
include('includes/footer.html');
?>

 5. Save the file as logout.php, place it in your web directory, and test it in your browser [image: Images].

 [image: images]

 [image: Images] The results of successfully logging out.

 Password Management

 The final aspect of the public side of this site is the management of passwords. There
 are two processes to consider: resetting a forgotten password and changing an existing
 one.

 Resetting a password

 It inevitably happens that people forget their login passwords for web sites, so having
 a contingency plan for these occasions is important. One option would be to have the
 user email the administrator when this occurs, but administering a site is difficult
 enough without that extra hassle. Instead, this site will have a script whose purpose
 is to reset a forgotten password.

 Because the passwords stored in the database are encrypted using PHP’s password_hash() function, there’s no way to retrieve an unencrypted version (the database actually
 stores a hashed version of the password, not an encrypted version). The alternative is to create a new, random password and change the existing
 password to this value. Rather than just display the new password in the browser (that
 would be terribly insecure), the new password will be emailed to the address with
 which the user registered.

 To write forgot_password.php:

 1. Begin a new PHP document in your text editor or IDE, to be named forgot_password.php (Script 18.10):

 Click here to view code image

 <?php # Script 18.10 -
[image: Images]forgot_password.php
require('includes/config.inc.php');
$page_title = 'Forgot Your
[image: Images]Password';
include('includes/header.html');

 2. Check whether the form has been submitted, include the database connection, and create
 a flag variable:

 Click here to view code image

 if ($_SERVER['REQUEST_METHOD'] ==
[image: Images]'POST') {
 require (MYSQL);
 $uid = FALSE;

 An Alternative Approach

 The primary negative to this password reset approach is that it allows anyone to force-change
 anyone else’s password as long as the email address has been registered. That wouldn’t
 deny the actual registered user access, but it is annoying.

 An alternative approach that avoids this problem requires adding one more step. Instead
 of immediately resetting the password, send an email to the user with a link to reset
 the password. If it’s a legitimate request from the registered user, the user will
 click the link, the site can reset the password, and the user can then log in. If
 it’s not a legitimate request from the registered user, the user can just ignore the
 email and his or her current password is retained (add a note to the email saying
 such).

 Script 18.10 The forgot_password.php script allows users to reset their password without administrative assistance.

 Click here to view code image

 1 <?php # Script 18.10 - forgot_password.php
2 // This page allows a user to reset their password, if forgotten.
3 require('includes/config.inc.php');
4 $page_title = 'Forgot Your Password';
5 include('includes/header.html');
6
7 if ($_SERVER['REQUEST_METHOD'] == 'POST') {
8 require(MYSQL);
9
10 // Assume nothing:
11 $uid = FALSE;
12
13 // Validate the email address...
14 if (!empty($_POST['email'])) {
15
16 // Check for the existence of that email address...
17 $q = 'SELECT user_id FROM users WHERE email="'. mysqli_real_escape_string ($dbc, $_POST['email']) . '"';
18 $r = mysqli_query($dbc, $q) or trigger_error("Query: $q\n
MySQL Error: " . mysqli_error($dbc));
19
20 if (mysqli_num_rows($r) == 1) { // Retrieve the user ID:
21 list($uid) = mysqli_fetch_array($r, MYSQLI_NUM);
22 } else { // No database match made.
23 echo '<p class="error">The submitted email address does not match those on file!</p>';
24 }
25
26 } else { // No email!
27 echo '<p class="error">You forgot to enter your email address! </p>';
28 } // End of empty($_POST['email']) IF.
29
30 if ($uid) { // If everything's OK.
31
32 // Create a new, random password:
33 $p = substr(md5(uniqid(rand(), true)), 3, 15);
34 $ph = password_hash($p);
35
36 // Update the database:
37 $q = "UPDATE users SET pass='$ph' WHERE user_id=$uid LIMIT 1";
38 $r = mysqli_query($dbc, $q) or trigger_error("Query: $q\n
MySQL Error: " . mysqli_error($dbc));
39
40 if (mysqli_affected_rows($dbc) == 1) { // If it ran OK.
41
42 // Send an email:
43 $body = "Your password to log into <whatever site> has been temporarily changed to '$p'. Please log in using this password and this email address. Then you may change your password to something more familiar.";
44 mail($_POST['email'], 'Your temporary password.', $body, 'From: admin@sitename.com');
45
46 // Print a message and wrap up:
47 echo '<h3>Your password has been changed. You will receive the new, temporary password at the email address with which you registered. Once you have logged in with this password, you may change it by clicking on the "Change Password" link.</h3>';
48 mysqli_close($dbc);
49 include('includes/footer.html');
50 exit(); // Stop the script.
51
52 } else { // If it did not run OK.
53 echo '<p class="error">Your password could not be changed due to a system error. We apologize for any inconvenience.</p>';
54 }
55
56 } else { // Failed the validation test.
57 echo '<p class="error">Please try again.</p>';
58 }
59
60 mysqli_close($dbc);
61
62 } // End of the main Submit conditional.
63 ?>
64
65 <h1>Reset Your Password</h1>
66 <p>Enter your email address below and your password will be reset.</p>
67 <form action="forgot_password.php" method="post">
68 <fieldset>
69 <p>Email Address: <input type="email" name="email" size="20" maxlength="60" value="<?php if (isset($_POST['email'])) echo $_POST['email']; ?>"></p>
70 </fieldset>
71 <div align="center"><input type="submit" name="submit" value="Reset My Password"></div>
72 </form>
73
74 <?php include('includes/footer.html'); ?>

 This form will take an email address input and change the password for that record.
 To do that, the script first needs to retrieve the user ID value that matches the
 submitted email address. To begin that process, a flag variable is assigned a FALSE
 value as an assumption of no valid user ID.

 3. Validate the submitted email address:

 Click here to view code image

 if (!empty($_POST['email'])) {
 $q = 'SELECT user_id FROM
 [image: Images]users WHERE email="'.
 [image: Images]mysqli_real_escape_string
 [image: Images]($dbc, $_POST['email']) . '"';
 $r = mysqli_query($dbc, $q) or
 [image: Images]trigger_error("Query: $q\n

 [image: Images]MySQL Error: " . mysqli_error
 [image: Images]($dbc));

 This is a simple validation for a submitted email address (without using a regular
 expression or the Filter extension). If the submitted value is not empty, an attempt
 is made to retrieve the user ID for that email address in the database. You could,
 of course, add more stringent validation if you’d prefer.

 4. Retrieve the selected user ID:

 Click here to view code image

 if (mysqli_num_rows($r) == 1) {
 list($uid) = mysqli_fetch_array
 [image: Images]($r, MYSQLI_NUM);
} else {
 echo '<p class="error">The
 [image: Images]submitted email address does
 [image: Images]not match those on file!</p>';
}

 If the query returns one row, it’ll be fetched and assigned to $uid (short for user ID). This value will be needed to update the database with the new password, and it’ll
 also be used as a flag variable.

 If no matching record could be found for the submitted email address, an error message
 is displayed [image: Images]. For security purposes, you could be more vague, saying something like If the email address has been registered, a temporary password has been sent there.

 [image: images]

 [image: Images] If the user entered an email address that is not found in the database, an error
 message is shown.

 5. Report on no submitted email address:

 Click here to view code image

 } else { // No email!
 echo '<p class="error">You
 [image: Images]forgot to enter your email
 [image: Images]address!</p>';
} // End of empty($_POST['email']) IF.

 If no email address was provided, that is also reported [image: Images].

 [image: images]

 [image: Images] Failure to provide an email address also results in an error.

 6. Create a new, random password:

 Click here to view code image

 if ($uid) {
 $p = substr(md5(uniqid(rand(),
 [image: Images]true)), 3, 15);
 $ph = password_hash($p);

 Creating a new, random password will make use of four PHP functions. The first is
 uniqid(), which will return a unique identifier. It is fed the arguments rand() and true, which makes the returned string more random. This returned value is then sent through
 the md5() function, which calculates the MD5 hash of a string. At this stage, a hashed version
 of the unique ID is returned, which ends up being a string 32 characters long. This
 part of the code is similar to that used to create the activation code in activate.php (Script 18.7).

 From this string, the password is created by pulling out fifteen characters starting
 with the third one, using the substr() function. All in all, this code will return a very random and meaningless ten-character
 string (containing both letters and numbers) to be used as the temporary password.

 Note that the creation of a new, random password is only necessary if $uid has a TRUE value by this point.

 Although this represents an acceptable way of creating a new password, if you’re using
 PHP 7 or greater, you can use the more secure random_bytes() function instead.

 7. Update the password in the database:

 Click here to view code image

 $q = "UPDATE users SET pass='$ph'
[image: Images]WHERE user_id=$uid LIMIT 1";
$r = mysqli_query($dbc, $q)
[image: Images]or trigger_error("Query:
[image: Images]$q\n
MySQL Error: " .
[image: Images]mysqli_error($dbc));
if (mysqli_affected_rows($dbc) ==
[image: Images]1) {

 Using the user ID (the primary key for the table) that was retrieved earlier, the
 password for this particular user is updated to the password_hash() version of $p, the random password.

 8. Email the password to the user:

 Click here to view code image

 $body = "Your password to log
[image: Images]into <whatever site> has been
[image: Images]temporarily changed to '$p'.
[image: Images]Please log in using this
[image: Images]password and this email
[image: Images]address. Then you may change
[image: Images]your password to something more
[image: Images]familiar.";
mail($_POST['email'], 'Your
[image: Images]temporary password.', $body,
[image: Images]'From: admin@sitename.com');

 Next, the user needs to be emailed the new password so that she or he may log in [image: Images]. It’s safe to use $_POST[‘email’] in the mail() code, because to get to this point, $_POST[‘email’] must match an address already stored in the database. That address would have already
 been validated via the Filter extension (or a regular expression) in the registration
 script.

 [image: images]

 [image: Images] The email message received after resetting a password.

 9. Complete the page:

 Click here to view code image

 echo '<h3>Your password has been
[image: Images]changed. You will receive the
[image: Images]new, temporary password at the
[image: Images]email address with which you
[image: Images]registered. Once you have
[image: Images]logged in with this password,
[image: Images]you may change it by clicking
[image: Images]on the "Change Password" link.
[image: Images]</h3>';
mysqli_close($dbc);
include('includes/footer.html');
exit(); // Stop the script.

 Next, a message is printed and the page is completed so as not to show the form again
 [image: Images].

 [image: images]

 [image: Images] The resulting page after successfully resetting a password.

 10. Complete the conditionals and the PHP code:

 Click here to view code image

 } else { // If it did not
 [image: Images]run OK.
 echo '<p class="error">Your
 [image: Images]password could not be
 [image: Images]changed due to a system
 [image: Images]error. We apologize for
 [image: Images]any inconvenience.</p>';
 }
 } else { // Failed the
[image: Images]validation test.
 echo '<p class="error">Please
[image: Images]try again.</p>';
 }
 mysqli_close($dbc);
} // End of the main Submit
[image: Images]conditional.
?>

 The first else clause applies only if the UPDATE query did not work, which hopefully shouldn’t happen on a live site. The second else applies if the user didn’t submit an email address or if the submitted email address
 didn’t match any in the database.

 11. Make the HTML form [image: Images]:

 [image: images]

 [image: Images] The simple form for resetting a password.

 Click here to view code image

 <h1>Reset Your Password</h1>
<p>Enter your email address
[image: Images]below and your password will be
[image: Images]reset.</p>
<form action="forgot_password.
[image: Images]php" method="post">
 <fieldset>
 <p>Email Address:
 [image: Images] <input type="email"
 [image: Images]name="email" size="20"
 [image: Images]maxlength="60" value="<?php
 [image: Images]if (isset($_POST['email']))
 [image: Images]echo $_POST['email']; ?>"></p>
 </fieldset>
 <div align="center"><input
 [image: Images]type="submit" name="submit"
 [image: Images]value="Reset My Password">
 [image: Images]</div>
</form>

 The form takes only one input, the email address. If there is a problem when the form
 has been submitted, the submitted email address value will be shown again (i.e., the
 form is sticky).

 12. Include the HTML footer:

 Click here to view code image

 <?php include('includes/footer.
[image: Images]html'); ?>

 13. Save the file as forgot_password.php, place it in your web directory, and test it in your browser.

 14. Check your email to see the resulting message after a successful password reset [image: Images].

 Changing a password

 The change_password.php script was initially written in Chapter 9 (called just password.php), as an example of an UDPATE query. The one developed here will be very similar in functionality but will differ
 in that only users who are logged in will be able to access it. Therefore, the form
 will only need to accept the new password and a confirmation of it (the user’s existing
 password and email address will have already been confirmed by the login page).

 To write change_password.php:

 1. Begin a new PHP document in your text editor or IDE, to be named change_password.php (Script 18.11):

 Click here to view code image

 <?php # Script 18.11 -
[image: Images]change_password.php
require('includes/config.inc.php');
$page_title = 'Change Your
[image: Images]Password';
include('includes/header.html');

 Script 18.11 With this page, users can change an existing password (if they are logged in).

 Click here to view code image

 1 <?php # Script 18.11 - change_password.php
2 // This page allows a logged-in user to change their password.
3 require('includes/config.inc.php');
4 $page_title = 'Change Your Password';
5 include('includes/header.html');
6
7 // If no user_id session variable exists, redirect the user:
8 if (!isset($_SESSION['user_id'])) {
9
10 $url = BASE_URL . 'index.php'; // Define the URL.
11 ob_end_clean(); // Delete the buffer.
12 header("Location: $url");
13 exit(); // Quit the script.
14
15 }
16
17 if ($_SERVER['REQUEST_METHOD'] == 'POST') {
18 require(MYSQL);
19
20 // Check for a new password and match against the confirmed password:
21 $p = FALSE;
22 if (strlen($_POST['password1']) >= 10) {
23 if ($_POST['password1'] == $_POST['password2']) {
24 $p = password_hash($_POST['password1'], PASSWORD_DEFAULT);
25 } else {
26 echo '<p class="error">Your password did not match the confirmed password!</p>';
27 }
28 } else {
29 echo '<p class="error">Please enter a valid password!</p>';
30 }
31
32 if ($p) { // If everything's OK.
33
34 // Make the query:
35 $q = "UPDATE users SET pass='$p' WHERE user_id={$_SESSION['user_id']} LIMIT 1";
36 $r = mysqli_query($dbc, $q) or trigger_error("Query: $q\n
MySQL Error: " . mysqli_error($dbc));
37 if (mysqli_affected_rows($dbc) == 1) { // If it ran OK.
38
39 // Send an email, if desired.
40 echo '<h3>Your password has been changed.</h3>';
41 mysqli_close($dbc); // Close the database connection.
42 include('includes/footer.html'); // Include the HTML footer.
43 exit();
44
45 } else { // If it did not run OK.
46
47 echo '<p class="error">Your password was not changed. Make sure your new password is different than the current password. Contact the system administrator if you think an error occurred.</p>';
48
49 }
50
51 } else { // Failed the validation test.
52 echo '<p class="error">Please try again.</p>';
53 }
54
55 mysqli_close($dbc); // Close the database connection.
56
57 } // End of the main Submit conditional.
58 ?>
59
60 <h1>Change Your Password</h1>
61 <form action="change_password.php" method="post">
62 <fieldset>
63 <p>New Password: <input type="password" name="password1" size="20"> <small>At least 10 characters long.</small></p>
64 <p>Confirm New Password: <input type="password" name="password2" size="20"></p>
65 </fieldset>
66 <div align="center"><input type="submit" name="submit" value="Change My Password"></div>
67 </form>
68
69 <?php include('includes/footer.html'); ?>

 2. Redirect if the user is not logged in:

 Click here to view code image

 if (!isset($_SESSION['user_id'])) {
 $url = BASE_URL . 'index.php';
[image: Images]ob_end_clean();
 header("Location: $url");
 exit();
}

 The assumption is that this page is only to be accessed by logged-in users. To enforce
 this idea, the script checks for the existence of the $_SESSION[‘user_id’] variable (which would be required by the UPDATE query). If this variable is not set, then the user will be redirected.

 3. Check if the form has been submitted and include the MySQL connection:

 Click here to view code image

 if ($_SERVER['REQUEST_METHOD'] ==
[image: Images]'POST') {
 require (MYSQL);

 The key to understanding how this script performs is remembering that there are three
 possible scenarios: the user is not logged in (and therefore redirected), the user
 is logged in and viewing the form, and the user is logged in and has submitted the
 form.

 The user will get to this point in the script only if she or he logged in. Otherwise,
 the user would have been redirected by now. At this point the script just needs to
 determine whether or not the form has been submitted.

 4. Validate the submitted password:

 Click here to view code image

 $p = FALSE;
if (strlen($_POST['password1']) >=
[image: Images]10) {
 if ($_POST['password1'] ==
 [image: Images]$_POST['password2']) {
 $p = password_hash($_POST
 [image: Images]['password1'] , PASSWORD_
 [image: Images]DEFAULT);
 } else {
 echo '<p class="error">Your
 [image: Images]password did not match the
 [image: Images]confirmed password!</p>';
 }
 } else {
 echo '<p class="error">Please
 [image: Images]enter a valid password!</p>';
 }

 The new password should be validated using the same tests as those in the registration
 process. Error messages will be displayed if problems are found [image: Images].

 5. Update the password in the database:

 [image: images]

 [image: Images] As in the registration process, the user’s new password must pass the length requirement;
 otherwise, the user will see error messages.

 Click here to view code image

 if ($p) { // If everything's OK.
 $q = "UPDATE users SET pass='$p'
 [image: Images]WHERE user_id={$_SESSION
 [image: Images]['user_id']} LIMIT 1";
 $r = mysqli_query($dbc, $q)
 [image: Images]or trigger_error("Query: $q\n
 [image: Images]
MySQL Error: " .
 [image: Images]mysqli_error($dbc));

 Using the user’s ID—stored in the session when the user logged in—the password field
 can be updated in the database. The LIMIT 1 clause isn’t strictly necessary but adds extra insurance.

 6. If the query worked, complete the page:

 Click here to view code image

 if (mysqli_affected_rows($dbc) ==
 [image: Images]1) {
 echo '<h3>Your password has been
 [image: Images]changed.</h3>';
 mysqli_close($dbc);
 include('includes/footer.html');
 exit();

 If the update worked, a confirmation message is printed to the browser [image: Images].

 [image: images]

 [image: Images] The script has successfully changed the user’s password.

 Site Administration

 For this application, how the site administration works depends on what you want it
 to do. One additional page you would probably want for an administrator would be a
 view_users.php script, like the one created in Chapter 9 and modified in Chapter 10, “Common Programming Techniques.” It’s already listed in the administrator’s links. You could use such a script to
 link to an edit_user.php page, which would allow the administrator to manually activate an account, declare
 that a user is an administrator, or change a person’s password. An administrator could
 also delete a user using such a page.

 Although the footer file creates links to administrative pages only if the logged-in
 user is an administrator, every administration page should also include such a check.

 7. Complete the conditionals and the PHP code:

 Click here to view code image

 } else { // If it did not
 [image: Images]run OK.
 echo '<p class="error">
 [image: Images]Your password was not
 [image: Images]changed. Make sure your
 [image: Images]new password is different
 [image: Images]than the current password.
 [image: Images]Contact the system
 [image: Images]administrator if you think
 [image: Images]an error occurred.</p>';
 }
 } else { // Failed the
 [image: Images]validation test.
 echo '<p class="error">
[image: Images]Please try again.</p>';
 }
 mysqli_close($dbc);
} // End of the main Submit
[image: Images]conditional.
?>

 The first else clause applies if the mysqli_affected_rows() function did not return a value of 1. This could occur for two reasons. The first
 is that a query or database error happened. Hopefully, that’s not likely on a live
 site, after you’ve already worked out all the bugs. The second reason is that the
 user tried to “change” the password but entered the same password again. In that case,
 the UPDATE query wouldn’t affect any rows because the password column in the database wouldn’t
 be changed. A message implying such is printed.

 8. Create the HTML form [image: Images]:

 [image: images]

 [image: Images] The Change Your Password form.

 Click here to view code image

 <h1>Change Your Password</h1>
<form action="change_password.php"
[image: Images]method="post">
 <fieldset>
 <p>New Password:
 [image: Images] <input
 [image: Images]type="password"
 [image: Images]name="password1" size="20">
 [image: Images]<small>At least 10 characters
 [image: Images]long.</small></p>
 <p>Confirm New
 [image: Images]Password: <input
 [image: Images]type="password"
 [image: Images]name="password2" size="20">
 [image: Images]</p>
 </fieldset>
 <div align="center"><input
 [image: Images]type="submit" name="submit"
 [image: Images]value="Change My Password">
 [image: Images]</div>
</form>

 This form takes two inputs: the new password and a confirmation of it. A description
 of the proper format is given as well. Because the form is so simple it’s not sticky,
 but that’s a feature you could add.

 9. Complete the HTML page:

 Click here to view code image

 <?php include('includes/footer.
[image: Images]html'); ?>

 10. Save the file as change_password.php, place it in your web directory, and test it in your browser.

 Tip

 Once this script has been completed, users can reset their password with the previous
 script and then log in using the temporary, random password. After logging in, users
 can change their password back to something easier to remember with this page.

 Tip

 Because the site’s authentication does not rely on the user’s password from page to
 page (in other words, the password is not checked on each subsequent page after logging
 in), changing a password will not require the user to log back in.

 Review and Pursue

 If you have any problems with the review questions or the pursue prompts, turn to
 the book’s supporting forum (LarryUllman.com/forums/).

 Note: Most of these questions and some of the prompts rehash information covered in
 earlier chapters to reinforce some of the most important points.

 Review

 [image: Images] What is output buffering? What are the benefits of using it?

 [image: Images] Why shouldn’t detailed error information be displayed on live sites?

 [image: Images] Why must the active column in the users table allow for NULL values? What is the result if active is defined as NOT NULL?

 [image: Images] What are the three steps in terminating a session?

 [image: Images] What does the session_name() function do?

 [image: Images] What are the differences between truly encrypting data and creating a hash representation of some data?

 Pursue

 [image: Images] Check out the PHP manual’s pages for output buffering (or output control).

 [image: Images] Check out the PHP manual’s pages for the rand(), uniqid(), and md5() functions.

 [image: Images] Check out the PHP manual’s page for the trigger_error() function.

 [image: Images] Apply the same validation techniques to login.php as used in register.php.

 [image: Images] Make the login form sticky.

 [image: Images] Add a last_login DATETIME field to the users table and update its value when a user logs in. Use this information to indicate
 to the user how long it has been since the last time she or he accessed the site.

 [image: Images] If you’ve added the last_login field, use it to print a message on the home page as to how many users have logged
 in in the past, say, hour or day.

 [image: Images] Validate the submitted email address in forgot_password.php using the Filter extension or a regular expression.

 [image: Images] Check out the PHP manual’s page for the list() function.

 [image: Images] Create view_users.php and edit_user.php scripts as recommended in the final sidebar. Restrict access to these scripts to
 administrators (those users whose access level is 1).

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 A. Installation

 In This Appendix

 Installation on Windows

 Installation on macOS

 Managing MySQL Users

 Testing Your Installation

 Configuring PHP

 Configuring Apache

 There are three technical requirements for executing all this book’s examples: MySQL
 (the database application), PHP (the scripting language), and the web server application
 (that PHP runs through). This appendix describes the installation of these tools on
 two different platforms—Windows 10 and macOS. If you are using a hosted web site,
 all of this will already be provided for you, but these products are all free and
 easy enough to install, so putting them on your own computer still makes sense.

 After covering installation, the appendix discusses related issues that will be of
 importance to almost every user. First, I introduce how to create users in MySQL.
 Next, I demonstrate how to test your PHP and MySQL installation, showing techniques
 you’ll want to use when you begin working on any server for the first time. Then,
 you’ll learn how to configure PHP to change how it runs. Finally, I introduce how
 to change the Apache web server’s behavior to address common needs.

 Installation on Windows

 Although you can certainly install a web server (such as Apache, Nginx, or IIS), PHP,
 and MySQL individually on a Windows computer, I strongly recommend you use an all-in-one
 installer instead. It’s simply easier and more reliable to do so.

 Several all-in-one installers are out there for Windows. The four that I see mentioned
 most frequently are

 [image: Images] XAMPP (www.apachefriends.org)

 [image: Images] WAMP (www.wampserver.com/en/)

 [image: Images] AMPPS (www.ampps.com)

 [image: Images] Bitnami (www.bitnami.com), which also partners with XAMPP

 For this appendix, I’ll use XAMPP, which runs on most modern versions of Windows.

 Along with Apache, PHP, and MySQL, XAMPP also installs the following:

 [image: Images] phpMyAdmin, the web-based interface to a MySQL server

 [image: Images] OpenSSL, for secure connections

 [image: Images] A mail server (for sending email)

 [image: Images] Several useful extensions

 As of this writing, XAMPP (Version 7.1.7) installs PHP 7.1.7, Apache 2.4.26, and phpMyAdmin
 4.7.0. There is one catch, however!

 As of XAMPP 5.5.30, the installer includes MariaDB (www.mariadb.com) instead of MySQL. MariaDB is an open source fork of MySQL that is functionally equivalent.
 Despite the fact that XAMPP installs MariaDB instead of MySQL, you shouldn’t have
 any problems following all the MySQL-specific instructions or code in this book.

 On Firewalls

 Modern versions of Windows include a firewall, which prevents communications in many
 ways, the most common of which is over ports: an access point to a computer. You can also download and install third-party firewalls.
 Firewalls improve the security of your computer, but they may also interfere with
 your ability to run Apache, MySQL, and some of the other tools used by XAMPP because
 they all use ports.

 When running XAMPP for the first time, or during the installation process, if you
 see a security prompt indicating that the firewall is blocking Apache, MySQL, or the
 like, choose Unblock or Allow access. Otherwise, you can configure your firewall manually through the operating system
 settings.

 The ports that need to be open are as follows: 80 for Apache, 3306 for MySQL, and
 25 for the Mercury mail server. If you have any problems starting or accessing one
 of these, disable your firewall and see if it works then. If so, you’ll know the firewall
 is the problem and that it needs to be reconfigured.

 Just to be clear, firewalls aren’t found just on Windows, but in terms of the instructions
 in this appendix, the presence of a firewall will more likely trip up a Windows user
 than any other.

 I’ll run through the installation process in these next steps. Note that if you have
 any problems, you can use the book’s supporting forum (LarryUllman.com/forums/), but you’ll probably have more luck turning to the XAMPP site (it is their product,
 after all). Also, the installer works well and isn’t that hard to use, so rather than
 detail every single step in the process, I’ll highlight the most important considerations.

 To install XAMPP on Windows:

 1. Download the latest release of XAMPP for Windows from www.apachefriends.org [image: Images].

 [image: Images]

 [image: Images] From the Apache Friends web site, grab the latest installer for Windows.

 I suggest that you grab the latest version of PHP available, although you’ll be fine
 with most of this book’s content if you use a PHP 5 version instead.

 2. On your computer, double-click the downloaded file to begin the installation process.

 3. When prompted [image: Images], install all the components.

 [image: Images]

 [image: Images] The XAMPP components that can be installed.

 Admittedly, you don’t need Tomcat—a Java server—or Perl, but it’s fine to install
 them, too.

 4. When prompted [image: Images], install XAMPP somewhere other than in the Program Files directory.

 [image: Images]

 [image: Images] Select where XAMPP should be installed.

 You shouldn’t install it in the Program Files directory because of a permissions issue
 in Windows. I recommend installing XAMPP in your root directory (e.g., C:\).

 Wherever you decide to install the program, make note of that location, because you’ll
 need to know it several other times as you work through this appendix.

 5. After the installation process has done its thing, opt to start the XAMPP Control
 Panel.

 6. To start, stop, and configure XAMPP, use the XAMPP Control Panel [image: Images].

 [image: Images]

 [image: Images] The XAMPP Control Panel, used to manage the software.

 Apache has to be running for every chapter in this book. MySQL must be running for
 about half of the chapters. Mercury is the mail server that XAMPP installs. It needs
 to be running in order to send email using PHP (see Chapter 11, “Web Application Development”).

 7. Immediately set a password for the root MySQL user.

 How you do this is explained in the “Managing MySQL Users” section later in this appendix.

 Tip

 The XAMPP Control Panel’s various admin links will take you to different web pages
 (on your server) and other resources.

 Tip

 See the “Configuring PHP” section to learn how to configure PHP by editing the php.ini file.

 Tip

 Whenever you restart your computer, you’ll need to restart the XAMPP services.

 Tip

 Your web root directory—where your PHP scripts should be placed to test them—is the
 htdocs folder in the directory where XAMPP was installed. Following my installation instructions,
 this would be C:\xampp\htdocs.

 Installation on macOS

 macOS is at its heart a version of Unix, and because PHP and MySQL were originally
 written for Unix-like systems, numerous options are available for installing them
 on macOS. In fact, macOS already comes with Apache installed, saving you that step.

 Seasoned developers and those at home in the Terminal will likely want to install
 PHP and MySQL using package installers such as http://php-osx.liip.ch/ and Homebrew (http://brew.sh/). But for beginners, I recommend using an all-in-one installer such as

 [image: Images] XAMPP (www.apachefriends.org)

 [image: Images] AMPPS (www.ampps.com)

 [image: Images] Bitnami (www.bitnami.com), which also partners with XAMPP

 [image: Images] MAMP (www.mamp.info)

 Not only are these installers relatively foolproof, but they also won’t leave you
 scrambling when an operating system update overwrites your Apache configuration file.
 For this appendix, I’ll use XAMPP, which runs on macOS 10.6 and later.

 Along with Apache, PHP, and MySQL, XAMPP also installs the following:

 [image: Images] phpMyAdmin, the web-based interface to a MySQL server

 [image: Images] OpenSSL, for secure connections

 [image: Images] Several useful extensions

 As of this writing, XAMPP (Version 7.1.7) installs PHP 7.1.7, Apache 2.4.26, and phpMyAdmin
 4.7.0. There is one catch, however!

 As of XAMPP 5.5.30, the installer includes MariaDB (www.mariadb.com) instead of MySQL. MariaDB is an open source fork of MySQL that is functionally equivalent.
 Despite the fact that XAMPP installs MariaDB instead of MySQL, you shouldn’t have
 any problems following all the MySQL-specific instructions or code in this book.

 I’ll run through the installation process in these next steps. Note that if you have
 any problems, you can use the book’s supporting forum (LarryUllman.com/forums/), but you’ll probably have more luck turning to the XAMPP site (it is their product,
 after all). Also, the installer works well and isn’t that hard to use, so rather than
 detail every single step in the process, I’ll highlight the most important considerations.

 To install XAMPP on macOS:

 1. Download the latest release of XAMPP for macOS from www.apachefriends.org [image: Images].

 [image: Images]

 [image: Images] From the Apache Friends web site, grab the latest installer for macOS.

 I suggest that you grab the latest version of PHP available, although you’ll be fine
 with most of this book’s content if you use a PHP 5 version instead.

 2. On your computer, double-click the downloaded file to mount the disc image.

 3. In the mounted disk image, double-click the package installer to begin the installation
 process.

 4. When prompted [image: Images], install all the components.

 [image: Images]

 [image: Images] The XAMPP components that can be installed.

 You’ll see only two, broad options; install both.

 5. After the installation process has done its thing [image: Images], opt to launch XAMPP.

 [image: Images]

 [image: Images] The installation of XAMPP is complete!

 6. To start, stop, and configure XAMPP, use the XAMPP Control Panel [image: Images].

 [image: Images]

 [image: Images] The XAMPP Control Panel, used to manage the software.

 Apache has to be running for every chapter in this book. MySQL must be running for
 about half of the chapters. You probably won’t ever need the FTP application, because
 you can just move your files directly.

 7. Immediately set a password for the root MySQL user.

 How you do this is explained in the “Managing MySQL Users” section later in this appendix.

 Tip

 See the “Configuring PHP” section to learn how to configure PHP by editing the php.ini file.

 Tip

 Whenever you restart your computer, you’ll need to restart the XAMPP services.

 Tip

 Your web root directory—where your PHP scripts should be placed in order to test them—is
 the htdocs folder in the directory where XAMPP was installed. This would be /Applications/XAMPP/xamppfiles/htdocs.

 Managing MySQL Users

 Once you’ve successfully installed MySQL, you can begin creating MySQL users. A MySQL
 user is a fundamental security concept, limiting access to, and influence over, stored
 data. Just to clarify, your databases can have several different users, just as your
 operating system might. But MySQL users are different from operating system users.
 While learning PHP and MySQL on your own computer, you don’t necessarily need to create
 new users, but live production sites need to have dedicated MySQL users with appropriate
 permissions.

 The initial MySQL installation comes with one user (named root) with no password set (except when using MAMP, which sets a default password of root). At the very least, you should create a new, secure password for the root user after
 installing MySQL. After that, you can create other users with more limited permissions.
 As a rule, you shouldn’t use the root user for normal, day-to-day operations.

 I’ll walk you through both processes over the next couple of pages. Note that if you’re
 using a hosted server, they’ll likely create the MySQL users for you. These instructions
 require use of either the command-line mysql client or phpMyAdmin. If you don’t know
 how to access either of these on your computer, quickly read the “Accessing MySQL” section of Chapter 4, “Introduction to MySQL.”

 Setting the root user password

 When you install MySQL, no value—or no secure password—is established for the root
 user. This is certainly a security risk that should be remedied before you begin to
 use the server (since the root user has unlimited powers).

 You can set any user’s password using either phpMyAdmin or the mysql client, as long
 as the MySQL server is running. If MySQL isn’t currently running, start it now using
 the steps outlined earlier in the appendix.

 Second, you must be connected to MySQL as the root user in order to be able to change
 the root user’s password.

 To assign a password to the root user via the MySQL client:

 1. Connect to the MySQL client.

 See Chapter 4 for detailed instructions, if needed.

 2. Enter the following command, replacing the password with the password you want to use [image: Images]:

 [image: Images]

 [image: Images]Updating the root user’s password using SQL within the MySQL client.

 Click here to view code image

 SET PASSWORD FOR
[image: Images]'root'@' localhost' =
[image: Images]PASSWORD('thepassword');

 Keep in mind that passwords in MySQL are case-sensitive, so Kazan and kazan aren’t interchangeable. The term PASSWORD that precedes the actual quoted password tells MySQL to encrypt that string. And
 there cannot be a space between PASSWORD and the opening parenthesis.

 3. Exit the MySQL client:

 exit

 4. Test the new password by logging in to the MySQL client again.

 Now that a password has been established, you need to add the -p flag to the connection command. You’ll see an Enter password: prompt, where you enter the just-created password.

 To assign a password to the root user via phpMyAdmin:

 1. Open phpMyAdmin in your browser.

 See the preceding set of steps for detailed instructions.

 2. On the home page, click the Privileges tab.

 You can always click the home icon, in the upper-left corner, to get to the home page.

 3. In the list of users, click the Edit Privileges icon on the root user’s row [image: Images].

 [image: Images]

 [image: Images]The list of MySQL users, as shown in phpMyAdmin.

 4. Use the Change Password form [image: Images], found farther down the resulting page, to change the password.

 [image: Images]

 [image: Images]The form for updating a MySQL user’s password within phpMyAdmin.

 5. Change the root user’s password in phpMyAdmin’s configuration file, if necessary.

 The result of changing the root user’s password will likely be that phpMyAdmin is
 denied access to the MySQL server. This is because phpMyAdmin, on a local server,
 normally connects to MySQL as the root user, with the root user’s password hard-coded
 into a configuration file. After following Steps 1–4, find the config.inc.php file in the phpMyAdmin directory—likely /Applications/MAMP/bin/phpMyAdmin (macOS with MAMP) or C:\xampp\phpMyAdmin (Windows with XAMPP). Open that file in any text editor or IDE and change this next
 line to use the new password:

 $cfg['Servers'][$i]['password'] =
'the_new_password';

 Then save the file and reload phpMyAdmin in your browser.

 Creating users and privileges

 After you have MySQL successfully up and running, and after you’ve established a password
 for the root user, you can add other users. To improve the security of your databases,
 you should always create new users to access your databases rather than always using
 the root user.

 The MySQL privileges system was designed to ensure proper authority for certain commands
 on specific databases. This technology is how a web host, for example, can let several
 users access several databases without concern. Each user in the MySQL system can
 have specific capabilities on specific databases from specific hosts (computers).
 The root user—the MySQL root user, not the system’s—has the most power and is used
 to create subusers, although subusers can be given rootlike powers (inadvisably so).

 When a user attempts to do something with the MySQL server, MySQL first checks to
 see if the user has permission to connect to the server at all (based on the username,
 the user’s host, the user’s password, and the information in the mysql database’s user table). Second, MySQL checks to see if the user has permission to run the specific
 SQL statement on the specific databases—for example, to select data, insert data,
 or create a new table. Table A.1 lists most of the various privileges you can set on a user-by-user basis.

 TABLE A.1 MySQL Privileges

 	
 PRIVILEGE

 	
 ALLOWS

 	
 SELECT

 	
 Read rows from tables.

 	
 INSERT

 	
 Add new rows of data to tables.

 	
 UPDATE

 	
 Alter existing data in tables.

 	
 DELETE

 	
 Remove existing data from tables.

 	
 INDEX

 	
 Create and drop indexes in tables.

 	
 ALTER

 	
 Modify the structure of a table.

 	
 CREATE

 	
 Create new tables or databases.

 	
 DROP

 	
 Delete existing tables or databases.

 	
 RELOAD

 	
 Reload the grant tables (and therefore enact user changes).

 	
 SHUTDOWN

 	
 Stop the MySQL server.

 	
 PROCESS

 	
 View and stop existing MySQL processes.

 	
 FILE

 	
 Import data into tables from text files.

 	
 GRANT

 	
 Create new users.

 	
 REVOKE

 	
 Remove users’ permissions.

 There are a handful of ways to set users and privileges in MySQL, but to start, you
 should formally create the user:

 Click here to view code image

 CREATE USER 'username'@'hostname'
IDENTIFIED BY 'password';

 This command creates a user without any abilities. The username has a maximum length
 of 32 characters. When creating a username, be sure to avoid spaces (use the underscore
 instead), and note that usernames are case-sensitive.

 The hostname is the computer from which the user is allowed to connect. This could
 be a domain name, such as www.example.com, or an IP address. Normally, localhost is specified as the hostname, meaning that the MySQL user must be connecting from
 the same computer that the MySQL database is running on. To allow for any host, use
 the hostname wildcard character (%):

 Click here to view code image

 CREATE USER 'username'@'%'
IDENTIFIED BY 'password';

 But that is also not recommended. When it comes to creating users, it’s best to be
 explicit and confining.

 The password has no length limit but is also case-sensitive. The passwords are encrypted
 in the MySQL database, meaning they can’t be recovered in a plain-text format. Omitting
 the IDENTIFIED BY ‘password’ clause results in that user not being required to enter a password (which, once again,
 should be avoided).

 Next the user needs to be granted permissions. The syntax goes like this:

 Click here to view code image

 GRANT privileges ON database.*
TO 'username'@'hostname'
IDENTIFIED BY 'password';

 For the privileges aspect of this statement, you can list specific privileges from Table A.1, or you
 can allow for all of them by using ALL (which isn’t prudent). The database.* part of the statement specifies which database and tables the user can work on. You
 can name specific tables using the database.tablename syntax or allow for every database with *.* (again, not prudent). Finally, you can specify the username, the hostname, and a
 password.

 As an example of this process, you’ll create two new users with specific privileges
 on a new database named temp. Keep in mind that you can grant permissions only to users on existing databases.
 This next sequence will also show how to create a database.

 To create new users:

 1. Log in to the MySQL client as a root user.

 Use the steps explained in Chapter 4 to do this, if you don’t already know. You must be logged in as a user capable of
 creating databases and other users.

 2. Create the temp database:

 CREATE DATABASE temp;

 Creating a database is quite easy, using the preceding syntax. This command will work
 as long as you’re connected as a user with the proper privileges.

 3. Create a user that has basic-level privileges on the temp database [image: Images]:

 [image: Images]

 [image: Images]Creating a user that can perform basic tasks on one database.

 Click here to view code image

 CREATE USER 'webuser'@'localhost'
IDENTIFIED BY 'BroWs1ng';
GRANT SELECT, INSERT, UPDATE, DELETE
ON temp.* TO 'webuser'@'localhost';

 The generic webuser user can browse through records (from tables) and add (), modify (), or them. The user can only connect from localhost (from the same computer) and can only access the temp database.

 4. Apply the changes [image: Images]:

 [image: Images]

 [image: Images]Don’t forget this step before you try to access MySQL using the newly created users.

 FLUSH PRIVILEGES;

 The changes just made won’t take effect until you’ve told MySQL to reset the list
 of acceptable users and privileges, which is what this command does. Forgetting this
 step and then being unable to access the database using the newly created users is
 a common mistake.

 Tip

 Any database whose name begins with test_ can be modified by any user who has permission to connect to MySQL. Therefore, be
 careful not to create a database named this way unless it truly is experimental.

 Tip

 The DROP command removes users and the REVOKE command removes permissions.

 Creating Users in phpMyAdmin

 To create users in phpMyAdmin, start by clicking the Privileges tab on the phpMyAdmin
 home page. On the Privileges page, click Add A New User. Complete the Add A New User
 form to define the user’s name, host, password, and privileges. Then click Go. This
 creates the user with general privileges but no database-specific privileges.

 On the resulting page, select the database to apply the user’s privileges to and then
 click Go. On the next page, select the privileges this user should have on that database,
 and then click Go again. This completes the process of creating rights for that user
 on that database. Note that this process allows you to easily assign a user different
 rights on different databases.

 Finally, click your way back to the Privileges tab on the home page and then click
 the Reload The Privileges link.

 Testing Your Installation

 Now that you’ve installed everything and created the necessary MySQL users, you should
 test the installation. Two quick PHP scripts can be used for this purpose. In all
 likelihood, if an error occurred, you would already know it by now, but these steps
 will allow you to perform tests on your (or any other) server before getting into
 complicated PHP, or PHP and MySQL, programming.

 The first script being run is phpinfo.php. It both tests if PHP is enabled and shows a ton of information about the PHP installation.
 As simple as this script is, it is one of the most important scripts PHP developers
 ever write, in my opinion, because it provides so much valuable knowledge.

 The second script will serve two purposes. It will first see if support for MySQL
 has been enabled. If not, you’ll need to see the next section of this chapter to change
 that. The script will also test if the MySQL user has permission to connect to a specific
 MySQL database.

 To test PHP:

 1. Create the following PHP document in a text editor or IDE (Script A.1):

 <?php
phpinfo();
?>

 Script A.1 The phpinfo.php script tests and reports on the PHP installation.

 Click here to view code image

1 <?php
2 phpinfo();
3 ?>

 The phpinfo() function returns the configuration information for a PHP installation in a table.
 It’s the perfect tool to test that PHP is working properly.

 You can use almost any application to create your PHP script as long as it can save
 the file in a plain-text format.

 2. Save the file as phpinfo.php.

 You need to be certain that the file’s extension is just .php. Be careful when using Notepad on Windows; it will secretly append .txt. Similarly, TextEdit on macOS wants to save everything as .rtf.

 3. Place the file in the proper directory on your server.

 What the proper directory is depends on your operating system and your web server.
 If you are using a hosted site, check with the hosting company. For users who installed
 XAMPP, the directory is called htdocs and is within the XAMPP directory.

 4. Test the PHP script by accessing it in your browser [image: Images].

 [image: Images]

 [image: Images]The information for this server’s PHP configuration.

 Run this script in your browser by going to http://your.url.here/phpinfo.php. On your own computer, this may be something like http://localhost/phpinfo.php (XAMPP).

 To test PHP and MySQL:

 1. Create a new PHP document in your text editor or IDE (Script A.2):

 Script A.2 The mysqli_test.php script tests for MySQL support in PHP and if the proper MySQL user privileges have
 been set.

 Click here to view code image

1 <?php
2 mysqli_connect('localhost', 'webuser', 'BroWs1ng', 'temp');
3 ?>

 Click here to view code image

 <?php
mysqli_connect('localhost',
'webuser', 'BroWsIng', 'temp');
?>

 This script will attempt to connect to the MySQL server using the username and password
 just established in this appendix.

 2. Save the file as mysqli_test.php, place it in the proper directory for your web server, and test it in your browser.

 If the script was able to connect, the result will be a blank page. If it could not
 connect, you should see an error message like [image: Images]. Most likely this indicates a problem with the MySQL user’s privileges or the provided
 information (see the preceding section of this chapter).

 [image: Images]

 [image: Images]The script was not able to connect to the MySQL server.

 Tip

 For security reasons, you should not leave the phpinfo.php script on a live server because it gives away too much information.

 Tip

 If you run a PHP script in your browser and it attempts to download the file, then
 your web server is not recognizing that file extension as PHP. Check your Apache (or
 other web server) configuration to correct this.

 Tip

 PHP scripts must always be run from a URL starting with http://. They cannot be run
 directly off a hard drive (as if you had opened it in your browser).

 Tip

 If a PHP script cannot connect to a MySQL server, it is normally because of a permissions
 issue. Double-check the username, password, and host being used, and be absolutely
 certain to flush the MySQL privileges.

 Enabling Extension Support

 Many PHP configuration options can be altered by just editing the php.ini file. But enabling (or disabling) an extension—in other words, adding support for
 extended functionality—requires more effort. To enable support for an extension for
 just a single PHP page, you can use the dl() function. Enabling support for an extension for all PHP scripts requires a bit of
 work. Unfortunately, for Unix and macOS users, you’ll need to rebuild PHP with support
 for this new extension (a process that’s not for the faint of heart). Windows users
 have it easier:

 First, edit the php.ini file (see the steps in this section), removing the semicolon before the extension
 you want to enable. For example, to enable Improved MySQL Extension support, you’ll
 need to find the line that says

 ;extension=php_mysqli.dll

 and remove that semicolon.

 Next, find the line that sets the extension__dir and adjust this for your PHP installation. Assuming you installed PHP using XAMPP
 into C:\xampp, then your php.ini file should say

 Click here to view code image

 extension_dir = "C:/xampp/php/ext"

 This tells PHP where to find the extension.

 Next, make sure that the actual extension file, php_mysqli.dll in this example, exists in the extension directory.

 Save the php.ini file and restart your web server. If the restart process indicates an error finding
 the extension, double-check to make sure that the extension exists in the extension_dir and that your pathnames are correct. If you continue to have problems, search the
 web or use the book’s corresponding forum for assistance.

 Configuring PHP

 One of the benefits of installing PHP on your own computer is that you can configure
 it however you prefer. How PHP runs is determined by the php.ini configuration file, which is normally created when PHP is installed.

 Changing PHP’s behavior is very simple and will most likely be required at some point
 in time. Just a few of the things you’ll want to consider adjusting are

 [image: Images] Whether or not display_errors is on

 [image: Images] The default level of error reporting

 [image: Images] Support for the Improved MySQL Extension functions

 [image: Images] SMTP values for sending emails

 What each of these means—if you don’t already know—is covered in the book’s chapters
 and in the PHP manual. But for starters, I highly recommend that you make sure that
 display_errors is on and that you set error reporting to its highest level.

 Changing PHP’s configuration is simple. The short version is: edit the file and then restart the web server. But because many different problems can arise,
 I’ll cover configuration in more detail. If you are looking to enable support for
 an extension, like the MySQL functions, the configuration is more complicated (see
 the sidebar).

 To alter PHP’s configuration:

 1. In your browser, execute a script that invokes the phpinfo() function.

 The phpinfo() function, discussed in the previous section of the appendix (see [image: Images]), reveals oodles of information about the PHP installation.

 2. In the browser’s output, search for Loaded Configuration File [image: Images].

 [image: Images]

 [image: Images]Use a phpinfo() script to confirm the active PHP configuration file to be edited.

 The value next to this text is the location of the active configuration file. This
 will be something like C:\xampp\php\php.ini or /Applications/MAMP/conf/php5.3/php.ini. Your server may have multiple php.ini files on it, but this is the one that counts.

 If there is no value for the Loaded Configuration File, your server has no active
 php.ini file. In that case, you’ll need to download the PHP source code, from www.php.net, to find a sample configuration file.

 3. Open the php.ini file in any text editor.

 If you go to the directory listed and there’s no php.ini file there, you’ll need to download this file from the PHP web site (it’s part of
 the PHP source code).

 Enabling Mail

 The PHP mail() function works only if the computer running PHP has access to sendmail or another
 mail server. One way to enable the mail() function is to set the smtp value in the php.ini file (for Windows only). This approach works, for example, if your Internet provider
 has an SMTP address you can use. Unfortunately, you can’t use this value if your ISP’s
 SMTP server requires authentication.

 For Windows, there are also a number of free SMTP servers, like Mercury. It’s installed
 along with XAMPP, or you can install it yourself if you’re not using XAMPP.

 macOS comes with a mail server installed—postfix and/or sendmail—that needs to be
 enabled. Search Google for instructions on manually enabling your mail server on macOS.

 Alternatively, you can search some of the PHP code libraries to learn how to use an
 SMTP server that requires authentication.

 4. Make any changes you want, keeping in mind the following:

 ▸ Comments are marked using a semicolon. Anything after the semicolon is ignored.

 ▸ Instructions on what most of the settings mean are included in the file.

 ▸ The top of the file lists general information with examples. Do not change these
 values! Change the settings where they appear later in the file.

 ▸ For safety purposes, don’t change any original settings. Just comment them out (by
 preceding the line with a semicolon) and then add the new, modified line afterward.

 ▸ Add a comment (using the semicolon) to mark what changes you made and when. For
 example:

 Click here to view code image

 ; display_errors = Off
; Next line added by LEU 08/28/2017
display_errors = On

 5. Save the php.ini file.

 6. Restart your web server.

 You do not have to restart the entire computer, just the web serving application (Apache,
 IIS, etc.). How you do this depends on the application being used, the operating system,
 and the installation method. XAMPP users can use the XAMPP Control Panel.

 7. Rerun the phpinfo.php script to make sure the changes took effect.

 Tip

 If you edit the php.ini file and restart the web server but your changes don’t take effect, make sure you’re
 editing the proper php.ini file (you may have more than one on your computer).

 Configuring Apache

 Like PHP, Apache is an open source technology and has become a dominant force in web
 technologies. If you installed XAMPP on your computer, you now have a functional version
 of Apache. If you’re using a hosted web site, more than likely you’re being provided
 with Apache there as well.

 Once Apache with support for PHP has successfully been installed, many PHP programmers
 never think twice about the web server. But as you continue to learn about web development,
 picking up a bit more knowledge of Apache is a logical next step.

 The most common reasons you’ll need to know more about Apache include being able to
 do the following:

 [image: Images] Create virtual hosts

 [image: Images] Add Secure Sockets Layer (SSL) support

 [image: Images] Protect directories

 [image: Images] Enable URL rewrites

 These, and other changes to Apache’s behavior, can be made in two ways: by editing
 the primary configuration file or by creating directory-specific files. The primary
 configuration file is httpd.conf, found within a directory, and it dictates how the entire Apache web server runs. An .htaccess (pronounced “H-T access”) file is placed within the web directories and is used to
 affect how Apache behaves within just that folder and subfolders.

 Generally speaking, it’s preferred to make changes in the httpd.conf file, since this file needs to be read only by the web server each time the server
 is started. Conversely, .htaccess files must be read by the web server once for every request to to which an .htaccess file might apply. For example, if you have www.example.com/ somedir/.htaccess, any request to www.example.com/somedir/whatever requires reading the .htaccess file, as well as reading an .htaccess file that might exist in www.example.com/. On the other hand, in shared hosting environments, individual users are not allowed
 to customize the entire Apache configuration, but they may be allowed to use .htaccess to make changes that affect only their sites.

 Over the next few pages, I’ll explain some of the fundamentals for working with these
 two types of files. In the process, you’ll learn how to perform some standard Apache
 customizations.

 Tip

 To be safe, I recommend making a backup copy of your original Apache configuration
 file before pursuing any of the subsequent edits.

 Tip

 In this book, I cannot adequately explain how to enable HTTPS (HTTP over an SSL) as
 the key component—obtaining and installing an SSL certificate varies too much from
 one person and server to the next. Look online for specific details, or post a message
 in my support forums (LarryUllman.com/forums/), if you need assistance. If you have a hosted account wherein you want to enable
 SSL, speak with your hosting company.

 Creating virtual hosts

 When you install Apache on a computer, Apache is set up to serve one web site, such
 as www.example.com. For the web site being served, Apache associates a hostname (and/or an IP address)
 with a directory on the server, called the web document root. When a user visits www.example.com, Apache provides files from that site’s directory[image: Images].

 [image: Images]

 [image: Images]The web server associates a URL or hostname with a directory or file on the computer.

 But Apache can easily be configured to serve several different sites, all hosted on
 the same computer, by creating virtual hosts. After establishing one or more virtual hosts, Apache will know that when a user
 makes a request of www.example.com, documents from X directory should be served but requests of www.example.net should be pointed to the documents from Y directory[image: Images].

 [image: Images]

 [image: Images]Thanks to virtual hosts, different directories on the computer can be associated with
 different hostnames.

 Understand that setting up virtual hosts does not, in fact, make www.example.com or www.example.net a valid domain name, accessible over the Internet. Accomplishing that requires use
 of DNS (Domain Name System), a much more complicated subject. You can, however, use
 virtual hosts to create different hosts for your own development projects on your
 home computer, as explained in the following sequence.

 To create a virtual host:

 1. Open httpd.conf in any text editor or IDE.

 If you’re using XAMPP on Windows, the file to open is C:\xampp\apache\conf\httpd.conf (assuming XAMPP is installed in the root of the C drive). If you’re using XAMPP on
 macOS, the file to open is /Applications/XAMPP/xampfiles/etc/httpd.conf.

 2. At the very end of the configuration file, add

 NameVirtualHost 127.0.0.1

 Virtual hosts are conventionally defined at the end of the configuration file (or
 in a separate configuration file, to be included by this one). This line says that
 Apache should watch for named virtual hosts (as opposed to IP address-based virtual hosts) on the 127.0.0.1 IP
 address. This is a special IP address, always equating to localhost (i.e., this same computer).

 Depending on your server, this line may already be present in the configuration file,
 but prefaced by a #, which makes it a comment (i.e., renders it ineffectual). In that case, just remove
 the #.

 3. On the next line, add

 <VirtualHost 127.0.0.1>
</VirtualHost>

 The VirtualHost tags are used to create a new virtual host. For each opening tag, there needs to
 be a closing one. Within the opening tag, the IP address or hostname to watch for
 is identified here: 127.0.0.1. This value needs to match that used on the NameVirtualHost line.

 The rest of the virtual host definition will go between these opening and closing
 tags.

 4. Within the virtual host tags, add

 DocumentRoot /path/to/folder
ServerName servername

 The DocumentRoot directive indicates the web root directory for the virtual host: in other words,
 where the actual files for this site can be found. On XAMPP on Windows, this value
 might be C:/xampp/htdocs/something. On XAMPP on macOS, this value might be /Applications/XAMPP/xamppfiles/htdocs/something.

 The ServerName is where you put the hostname: what you’ll enter into the browser to access this site.

 As an example, if you wanted to create a virtual host for the forums site from Chapter 17, “Example—Message Board,” you could create a new folder within htdocs, called forums, and copy all the applicable scripts there. Then you would use C:/xampp/htdocs/forums or /Applications/XAMPP/xamppfiles/htdocs/forums as the DocumentRoot value. For the ServerName value, I would use something meaningful, such as forums.local: a local version of a forums site.

 5. Add a second virtual host for localhost[image: Images]:

 [image: Images]

 [image: Images]The new directives added to the end of the Apache configuration file.

 Click here to view code image

 <VirtualHost 127.0.0.1>
 DocumentRoot "C:/xampp/htdocs"
 ServerName localhost
</VirtualHost>

 The previous set of steps created a new virtual host, but in the process, the one
 original web site (localhost, the default for your own computer) will become unusable. The fix is to create another
 virtual host for that site.

 6. Save the configuration file.

 7. Restart Apache.

 Any changes to the configuration file will not take effect until the web server is
 restarted. You can restart Apache using the XAMPP control panel.

 If there is an error in the configuration file, Apache will not be able to start and
 you’ll need to check the error logs to find out why.

 Note that you can’t access the virtual host using your browser yet, as you still need
 to update your computer’s list of hosts.

 Tip

 The default Apache configuration file, httpd.conf, has comments in it indicating what each section of code does. You can browse through
 it to learn some things about configuring Apache.

 Tip

 The DocumentRoot value, or any value in the httpd.conf file, must be quoted if it contains spaces.

 Tip

 The definition of a virtual host can contain other directives, but I’m trying to introduce
 these fundamental Apache concepts as simply as possible.

 Tip

 It’s actually preferable to have Apache only listen for activity on a specific port,
 commonly 80. In that case, the virtual hosts configuration would start

 NameVirtualHost 127.0.0.1:80
<VirtualHost 127.0.0.1:80>

 Tip

 On a full-scale web server, it’s preferable to create multiple configuration files,
 which will then be read and used by the primary configuration file. On your own personal
 computer, without too much customization, a single configuration file is fine.

 Updating your computer’s hosts

 The previous sequence of steps created a virtual host in Apache, allowing you to access,
 in this example, the forums web site by going to http://forums.local in your browser. There is a catch, however: if you were to enter that URL into your
 browser, the browser would attempt to find forums.local on the Internet and would be unable to do so[image: Images]. To solve this dilemma, you need to tell your browser(s) that forums.local can be found on your computer. This is done by modifying your operating system’s
 hosts file, per these directions.

 [image: Images]

 [image: Images]The error that Edge displays when it can’t find the local virtual host.

 To update your computer’s hosts:

 1. Open your computer’s hosts file in any text editor or IDE.

 This is the only tricky part of this process: finding and opening the hosts file. On macOS and Unix, the hosts file is /etc/hosts (there’s no file extension), where / refers to the computer’s root directory. On macOS, /etc is a hidden directory, making hosts a hidden file. There are three easy ways of finding this file:

 ▸ Use your editing application to open it directly, if the application is capable
 of opening hidden files.

 ▸ In the Finder, select Go > Go To Folder, and enter /etc in the prompt [image: Images] to open the /etc directory in the Finder. Then drag the hosts file onto the editing application in the Dock.

 [image: Images]

 [image: Images]The Finder’s Go > Go To Folder option can be used to access hidden directories.

 ▸ Use the Terminal to find and open the file.

 On Windows, barring a nonstandard installation, the file in question is C:\Windows\System32\drivers\etc\hosts. Unfortunately, you may have permissions issues in trying to edit this file. I had
 good luck by opening Notepad in administrator mode (right-click on Notepad in the
 Start Menu to be given this option[image: Images]), and then opening the file within Notepad.

 [image: Images]

 [image: Images]You can open Notepad in administrator mode in order to edit system files.

 2. At the very end of the file, add

 127.0.0.1 forums.local

 This associates the name forums.local with the IP address 127.0.0.1, which is to say the same computer.

 3. Save the file.

 4. Load http://forums.local in your browser[image: Images].

 [image: Images]

 [image: Images]The forums site, available locally through the URL http://forums.local.

 Tip

 Repeat these two sequences of steps—creating the virtual host in Apache and adding
 the host to your hosts file—anytime you want to create a new web site project with
 its own associated hostname.

 Using .htaccess files

 As already stated, all Apache configuration can be accomplished within the httpd.conf file. In fact, doing so is preferred. But the configuration file is not always available
 for you to edit, so it’s worth also knowing how to use .htaccess files to change how a site functions.

 An .htaccess file is just a plain-text file, with the name .htaccess (again, no file extension, and the initial period makes this a hidden file). When
 placed within a web directory, the directives defined in the .htaccess file will apply to that directory and its subdirectories.

 A common hang-up when using .htaccess files is that permission must be granted to allow .htaccess to make server behavior changes. Depending on the installation and configuration,
 Apache, on the strictest level of security, will not allow .htaccess files to change Apache behavior. This is accomplished with code like the following,
 in httpd.conf:

 <Directory />
AllowOverride None
</Directory>

 The Directory directive is used within httpd.conf to modify Apache’s behavior within a specific directory. In the previous code, the
 root directory (/) is the target, meaning that Apache will not allow overrides—changes—made within
 any directories on the computer at all. Prior to creating .htaccess files, then, the main configuration file must be set to allow overrides in the applicable
 web directory (or directories).

 The AllowOverride directive takes one or more flags indicating what, specifically, can be overridden:

 [image: Images] AuthConfig, for using authorization and authentication

 [image: Images] FileInfo, for performing redirects and URL rewriting

 [image: Images] Indexes, for listing directory contents

 [image: Images] Limit, for restricting access to the directory

 [image: Images] Options, for setting directory behavior, such as the ability to execute CGI scripts or to
 index folder contents

 [image: Images] All

 [image: Images] None

 Setting the Default Directory Page

 Commonly, browsers make requests without specifying a file, such as www.example.com/ or www.example.com/folder/. In these cases, Apache must decide as to what to do. Historically, Apache provides
 an index.htm or index.html file, if one exists in the directory. If no index file exists, and if directory browsing
 is allowed by the server, Apache will instead reveal a list of files in the directory
 (this is not secure, but you’ve no doubt seen this online before).

 The applicable directive to tell Apache what to do in these situations is DirectoryIndex. Following it, you list the file to use as the folder’s index, with multiple options
 placed in order of preference. For example, the following will attempt to load index.htm, then index.html if index.htm does not exist, then index.php if index.html does not exist:

 Click here to view code image

 DirectoryIndex index.htm index.html index.php

 Similarly, the ErrorDocument directive tells Apache what file to provide when a server error occurs. Its syntax
 is

 Click here to view code image

 ErrorDocument error_code /page.html

 The error code value comes from the server status codes, such as 401 (Unauthorized),
 403 (Forbidden), and 500 (Internal Server Error). For each code you can dictate what
 page should be served. Note that you’ll want to provide an absolute path to the error
 files (i.e., start them with /, which is the web root directory).

 For example, to allow AuthConfig and FileInfo to be overridden within the forums directory (just created), the httpd.conf file should include

 Click here to view code image

 <Directory /path/to/forums>
AllowOverride AuthConfig FileInfo
</Directory>

 As long as this code comes after any AllowOverride None block, an .htaccess file in the forums directory will be able to make some changes to Apache’s behavior when serving files
 from that directory (and its subdirectories).

 To allow .htaccess overrides:

 1. Open httpd.conf in any text editor or IDE.

 2. Within the VirtualHost tag for the site in question, add

 Click here to view code image

 <Directory /path/to/directory>
</Directory>

 The Directory tag is how you customize Apache behavior within a specific directory or its subdirectories.
 Within the opening tag, provide an absolute path to the directory in question, such
 as C:\xampp\htdocs\somedir or /Applications/MAMP/htdocs/somedir.

 3. Within the Directory tags, add [image: Images]:

 [image: Images]

 [image: Images]The updated virtual hosts configuration, now allowing for overrides within the forums
 web directory.

 AllowOverride All

 This is a heavy-handed solution, but it will do the trick. On a live, publicly available
 server, you’d want to be more specific about what exact settings can be overridden,
 but on your home computer, this won’t be a problem.

 4. Save the configuration file.

 5. Restart Apache.

 Tip

 The Directory directive does not have to go within the VirtualHost tag for the involved site, but it makes sense to place it there.

 Tip

 If a directory is not allowed to override a setting, the file will just be ignored.

 Tip

 Anything accomplished within an .htaccess file can also be achieved using a Directory tag within httpd.conf.

 Enabling URL rewriting

 The final topic to be discussed in this appendix is how to perform URL rewriting. URL rewriting has gained attention as part of the overbearing focus on search engine optimization (SEO), but URL rewriting has been a useful tool for years. With a dynamically driven
 site, like an e-commerce store, a value will often be passed to a page in the URL
 to indicate what category of products to display, resulting in URLs such as www.example.com/category.php?id=23. The PHP script, category.php, would then use the value of $_GET[‘id’] to know what products to pull from the database and display. (There are oodles of
 similar examples in this book.)

 With URL rewriting applied, the URL shown in the browser, visible to the end user,
 and referenced in search engine results can be transformed into something more obviously
 meaningful, such as www.example.com/category/23/ or, better yet, www.example.com/category/garden+gnomes/. Apache, via URL rewriting, takes the more user-friendly URL and parses it into something
 usable by the PHP scripts. This is made possible by the Apache mod_rewrite module. To use it, the .htaccess file must first check for the module and turn on the rewrite engine:

 <IfModule mod_rewrite.c>
RewriteEngine on
</IfModule>

 After enabling the engine, and before the closing IfModule tag, you add rules dictating the rewrites. The syntax is

 RewriteRule match rewrite

 For example, you could do the following (although it’s not a good use of mod_rewrite):

 RewriteRule somepage.php otherpage.php

 Part of the complication with performing URL rewrites is that Perl-compatible regular
 expressions (PCRE) are needed to most flexibly find matches. If you’re not already
 comfortable with regular expressions, you’ll need to read Chapter 14, “Perl-Compatible Regular Expressions,” to follow the rest of this material.

 For example, to treat www.example.com/category/23 as if it were www.example.com/category.php?id=23, you would have the following rule:

 Click here to view code image

 RewriteRule ^category/([0-9]+)/?$
category.php?id=$1

 The initial caret (^) says that the expression must match the beginning of the string. After that should
 be the word category, followed by a slash. Then, any quantity of digits follows, concluding with an optional
 slash (allowing for both category/23 and category/23/). The dollar sign closes the match, meaning that nothing can follow the optional
 slash. That’s the pattern for the example match (and it’s a simple pattern at that,
 really).

 Changing PHP’s Configuration

 If PHP is running as an Apache module, you can also change how PHP runs within specific
 directories using an Apache .htaccess file. The directives to use are php_flag and php_value:

 php_flag item value
php_value item value

 The php_flag directive is for any setting that has an on or off value; php_value is for any other setting. For example:

 Click here to view code image

 php_flag display_errors on
php_value error_reporting 30719

 Note that you cannot use PHP constants, such as E_ALL for the highest level of error reporting, since this code is within Apache configuration
 files, not within PHP scripts.

 (You can also change how PHP runs by editing the httpd.conf file, but if you’re going to make a global server change that requires a restart
 of Apache anyway, you might as well just edit the PHP configuration file instead.)

 The rewrite part is what will actually be executed, unbeknownst to the browser and
 the end user. In this line, that’s category.php?id=$1. The $1 is a backreference to the first parenthetical grouping in the match (e.g., 23). Thus, www.example.com/category/23 is treated by the server as if the URL were actually www.example.com/category.php?id=23.

 This is the underlying premise with mod_rewrite. Unfortunately, mastering mod_rewrite requires mastery, or near mastery, of PCRE, which can be daunting. If you want to
 practice this, you can take the simple example just explained and apply it to any
 of the examples in the book in which a value is passed in the URL. For example, in
 Chapter 10, “Common Programming Techniques,” a user ID is passed in the URL to delete_user.php and edit_user.php. Both could be transformed into “prettier” URLs, such as www.example.com/delete/45/ or www.example.com/edit/895/.

 As always, search online for more information on this subject, should you be interested,
 and post a question in the supporting forums (LarryUllman.com/forums/) if you run into problems.

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 [image: Image]

 Index

 Numbers

 1NF (first normal form), 171–173

 2NF (second normal form), 174–176

 3NF (third normal form), 177–178

 8-bit Unicode Transformation Format, 2

 Comment and Operator Symbols

 -- operator, 23

 – operator, 23

 ! operator, 45

 != operator, 142

 % operator, 23

 && operator, 45, 48, 142

 * operator, 23

 /* and */, using with comments, 10

 ?? operator, 49

 @ operator, using to suppress errors, 252, 274

 | operator, 142

 || operator, 45, 48, 142

 + + operator, 23

 + operator, 23

 < operator, 45, 142

 <!-- and --> tags, using with comments, 10

 <= operator, 45, 142

 <> operator, 142

 = = operator, 45

 = operator, 142

 > operator, 45, 142

 >= operator, 45, 142

 Symbols

 \ (backslash)

 escape sequence, 29

 matching, 466

 escaping characters, 6

 ` (backtick) in SQL commands, 139

 (Boolean mode) operator, 229

 – (Boolean mode operator), 229

 + (Boolean mode) operator, 229

 < (Boolean mode operator), 229

 > (Boolean mode operator), 229

 ((Boolean mode operator), 229

 * (Boolean mode operator), 229

 = (Boolean mode) operator, 229

 [] (brackets), 104, 469–471

 {} (braces)

 arrays, 56, 58, 62

 conditionals, 45

 using with characters, 468

 using with conditionals, 48

 .= (concatenation operator), 22

 $ (dollar sign)

 escape sequence, 29

 preceding variables, 14

 “ (double quotation mark), 29–31, 94

 ‘ ‘ (empty string), using, 49, 51, 104

 = (equals sign), using with variables, 14, 142

 \ \ (escape sequence), 29

 % (percentage sign), using to match records, 145–146

 # (pound sign), using with comments, 10

 ‘ (single quotation mark), 29–31

 . (period) operator, 21–22

 ; (semicolons), using with queries, 132–133

 / and // (slashes), 8, 10, 23

 _ (underscore), using to match records, 145–146

 A

 ABS() function, 159

 absolute vs. relative paths, 76

 access problems, debugging, 265

 account activation, 614–616

 accounts table, 202

 creating, 200

 populating, 202

 action attribute, using with form tag, 36, 90

 activation page, creating, 614–617

 activation process, 611

 ADD COLUMN clause, 224

 ADD INDEX clause, 224

 ADDDATE() function, 163

 addition operator, 23

 ADDTIME() function, 163

 administration, 633

 Adobe Dreamweaver, 3

 ads, creating, 96

 advanced selections, performing, 222–223. See also SELECT command

 AES_ENCRYPT() function, 239

 age element, using with HTML forms, 42, 44

 aggregate functions, 216

 Ajax. See also jQuery

 creating form, 506–509

 JavaScript, 511

 overview, 505–506

 server requests, 506

 server-side script, 509–511

 Ajax request

 anonymous functions, 516

 debugging, 517

 event listener, 512

 handling, 510

 performing, 512–517

 aliases, 157

 ALTER privilege, 643

 ALTER statement, 224

 AMPPS installer, 636

 ANALYZE command, 232

 and and AND operators, 45, 142

 anonymous functions

 Ajax request, 516

 jQuery, 489–490

 Apache

 AllowOverride directive, 658

 changing PHP’s configuration, 661

 configuring, 652–661

 default directory page, 658

 Directory directive, 659

 .htaccess file, 657–659

 updating hosts, 656–657

 URL rewriting, 660

 virtual hosts, 653–655

 applications, finding, 3

 arithmetic operators

 precedence, 25

 types, 23

 using, 144

 array elements, assigning to variables, 109

 array_map() function, 424

 arrays. See also associative arrays

 asort() function, 66

 braces ({}), 56, 58, 62

 combining, 64

 count() function, 62

 creating and accessing, 59–62

 features, 14, 55–56

 foreach loop, 59–60

 is_array() function, 62

 keys, 55, 58

 ksort() function, 66

 multidimensional, 62–65

 natsort() function, 69

 number of elements, 62

 $_POST, 57–58

 range() function, 62

 rsort() function, 66

 sorting, 66–69

 storing in sessions, 406

 and strings, 66

 superglobal, 56

 using, 57–58

 usort() function, 69

 AS term, 157

 ASC and DESC sorting, 147–148

 asort() and arsort() functions, 66

 assignment operator, using with variables, 14, 25

 associative arrays, 287. See also arrays

 attr() function, using with jQuery, 504

 AUTO_INCREMENT, 120–121

 AUTOCOMMIT, altering, 238

 AVG() function, 216–217, 219

 B

 background color variable, initializing, 328

 backslash (\)

 escape sequence, 29

 matching, 466

 using to escape characters, 6

 backtick (`) in SQL commands, 139

 banking database, 198

 BETWEEN operator, 142

 “big” databases, 235. See also databases

 BIGINT[] data types, 117, 198

 binary, converting to, 239

 BINARY text type, 119

 Bitnami installer, 636

 blacklist validation, 425

 blank pages, debugging, 8, 260

 blank spaces, 44

 body tag, placement, 4

 Boolean FULLTEXT searches, performing, 229–231

 Boolean variables, 14

 Bootstrap framework, 90

 bound variable types, 443. See also variables

 boundaries, using, 471

 braces ({})

 arrays, 56, 68, 62

 conditionals, 45

 using with characters, 468

 using with conditionals, 48

 brackets ([]), 104, 469–471

 break element, 48

 browser

 sending data to, 6–9

 sending HTML code, 8, 11–12

 brute-force attacks, preventing, 449

 buffer size, limit, 593

 C

 calculator.html file

 DOM manipulation, 500–504

 jQuery, 496–497

 calculator.js page, saving, 498

 calculator.php script

 creating, 86–90

 default argument values, 101–104

 Filter extension, 439–441

 radio buttons, 98–100

 rewriting, 91–94

 validating data by type, 430

 values from functions, 105–109

 calendar form, 60, 72

 calendar.php, creating, 60–62

 call to undefined function error, 260

 cannot redeclare function error, 260

 capitalizing characters, 22

 CAPTCHA test, 424

 carriage return, 29

 CASCADE action, 198

 CASE() function, 221

 case insensitivity, 6

 CEILING() function, 159

 CHANGE COLUMN clause, 224

 CHAR[Length] data type, 117–118

 character classes, using, 469–471

 character sets

 assigning, 188–190

 changing, 224

 listing, 186

 characters. See also meta-characters

 capitalizing, 22

 escaping, 6

 escaping in patterns, 466

 mismatching encodings, 550

 representing, 2

 chmod command, adjusting folder permissions, 349

 cinema database, 174

 class meta-characters, 464

 classes, using brackets ([]) with, 469–471

 client-server request model, 505

 closing database connections, 281

 COALESCE() function, 220

 code blocks, indenting, 48

 collations

 assigning, 188–190

 changing, 224

 using with character sets, 186–187

 column lengths, fine tuning, 158

 column names, determining, 115

 column properties, choosing, 120–122

 column types, choosing, 116–119

 columns

 applying functions, 155

 changing definition, 452

 including in indexes, 181

 listing in SELECT statements, 141

 listing in tables, 134

 populating, 137

 comments

 using with HTML forms, 42

 writing, 10–13

 COMMIT, using with transactions, 236, 238

 comparative operators, 45

 comparison functions, 220. See also functions

 CONCAT() function, 156–158, 219

 CONCAT_WS() function, 158

 concatenating strings, 21–22

 conditionals

 and operators, 45–48

 in SQL, 142–144

 configuration file, making, 594–598

 configuration script

 connecting to database, 599–601

 database script, 598

 using, 594

 configuring

 Apache, 652–661

 PHP, 649–651

 connecting to MySQL, 270–274

 connection script, securing, 288

 constants

 vs. triggers, 203

 using, 26–28

 vs. variables, 26

 contact form, 339

 CONVERT() function, 190

 CONVERT_TZ() function, 192, 567

 cookies

 accessing, 394–396

 data limitation, 394

 deleting, 399–400, 403

 in directories, 398

 generating, 396

 logout link, 400–403

 requiring, 415

 sending, 392–394

 vs. sessions, 404

 setting, 390–391

 setting parameters, 396–398

 testing for, 391

 COUNT() function

 grouping selected results, 216–217, 219

 paginating query results, 324, 330

 creating forum page, 569

 count() function, using with arrays, 62

 counting returned records, 293–295

 CREATE privilege, 643

 CREATE SQL command, 132–133

 create_ad() function, defining, 96–97

 create_window() function, 358

 CROSS JOIN, 209

 CSS (Cascading Style Sheets), 37

 CSS files, declaring encoding, 5

 CSS selectors, using with jQuery, 492

 CURDATE() function, 161–162

 CURTIME() function, 161–162

 customers table, populating, 202

 D

 Darwin operating system, 28

 data

 deleting, 153–154

 encrypting, 137

 encrypting and decrypting, 240–241

 grouping, 218–219

 inserting into tables, 136–139

 limiting amount returned, 149–150

 selecting, 140–141

 selecting conditionally, 220

 sending to browser, 6–9

 sorting, 147–148

 updating, 151–152

 validating by type, 425–430

 data types, 116–117, 119

 data validation. See validating

 database connection

 changing, 526

 closing, 281

 database design. See also normalization

 conventions, 171

 ERD (entity-relationship diagram), 171

 explained, 168

 foreign key constraints, 197–203

 indexes, 181–183

 languages, 186–190

 reviewing, 179–180

 table types, 184–185

 time zones, 191–196

 database structure, confirming, 190

 databases. See also “big” databases; MySQL; SQL (Structured Query Language)

 AUTO_INCREMENT, 120

 connecting to, 270–274

 creating in SQL, 132–134

 DATE and TIME fields, 116

 deciding on contents, 168

 default values, 122

 deleting, 154

 encrypting, 239–241

 ENUM data type, 116

 forms, 171

 identifiers, 114

 indexes and keys, 120

 Length attribute, 116

 length limits, 115

 message board, 548–556

 naming elements, 114–115

 optimizing, 232

 PRIMARY KEY, 120

 relationships, 170–171

 revealing information about, 190

 schema, 168, 171, 601

 selecting, 270–274

 SET data type, 116

 table names, 114–115

 TEXT columns, 122

 DATE and TIME fields, 116

 date and time functions, 161–165, 370–373

 date constant, creating, 27

 DATE data type, 117

 DATE() function, 161

 DATEDIFF() function, 163

 DateTime class, 538–545. See also time and date functions

 DATETIME data type, 117

 DateTime::COOKIE, 545

 DateTime::getTimestamp() method, 545

 DAYNAME() function, 161–162

 DAYOFMONTH() function, 161

 debugging. See also errors

 access problems, 265

 Ajax request, 517

 beginning, 246–248

 best practices, 248

 blank pages, 8

 HTML errors, 8, 249

 JavaScript, 485

 overview, 244–245

 PHP objects, 526

 PHP scripts, 5, 8, 261–263, 369

 SQL queries, 264–265

 steps, 32–33, 246

 techniques, 260–264

 DECIMAL[Length, Decimals] data type, 117, 119

 decimals, 14, 25

 decrement operator, 23

 decrypting data, 240–241

 default element, 48

 define() function, constants, 26

 DELETE privilege, 643

 delete.user.php script, 310–312. See also users table

 deleting

 cookies, 399–400, 403

 data, 153–154

 databases, 154

 records, 203

 session variables, 409–411

 DESC and ASC sorting, 147–148

 DESCRIBE tablename, 134

 die() function, 263

 directories, referring to, 355

 display_errors, 33, 250–251, 261–263

 division

 operator, 23

 returning integer quotient, 25

 documents, organizing, 273

 dollar sign ($)

 escape sequence, 29

 preceding variables, 14

 DOM manipulation, 498–504. See also jQuery

 DOS prompt, accessing and exiting, 124–126

 double quotation mark (“), 29–31, 94

 DOUBLE[Length, Decimals] data type, 117, 119

 do.while loops, 72

 DROP COLUMN clause, 224

 DROP INDEX clause, 224

 DROP privilege, 643

 dynamic scripts, 17

 dynamic web sites

 HTML forms, 85–90

 multiple files, 76–84

 sticky forms, 91–94

 E

 E_* constants, 252

 echo function, 6–7. See also print function

 arrays, 68

 calculator.php script, 87

 constants, 27

 debugging scripts, 261–263

 handle_form.php, 43, 46

 language construct, 8

 mathematical calculations, 25

 over multiple lines, 9

 quotation marks, 29, 31

 strings, 18, 20

 Trip Cost Calculator, 88

 validation results, 53

 variables, 16

 echo statement, sortable links, 335

 editing records, 316–322

 edit.user.php script, 316–319

 else clause, 89

 else conditional, 45–48

 elseif conditional, 45–48

 email, sending, 338–343

 email addresses, validating, 470–471

 email conditional, 320

 email element, using with HTML forms, 42

 email input, adding to HTML forms, 39

 email.php script, 339–343, 420

 embedding PHP code, 5

 empty() function, 49, 51, 104

 empty variable value error, 260

 encoding. See also mismatching encodings

 declaring, 5

 displaying, 186

 indicating to browser, 2

 encrypting data, 137, 239–241, 350

 enctype, using with form tag, 350, 355

 Enter and Return, 10

 ENUM data type, 116–117, 121, 148

 equals (=) operator, 14, 142

 ERD (entity-relationship diagram), 171, 180

 error handlers, customizing, 255–259

 error management, die() and exit(), 263

 error reporting, adjusting, 252–254

 error types, overview, 244–245

 error_log() function, 259

 errors. See also debugging; warnings

 causes, 264

 displaying, 33

 echo, 6

 INSERT, 139

 NULL, 139

 revealing in PHP, 250

 suppressing with @, 252, 274

 $errors conditional, 321

 escape meta-character, 464

 escape sequences, 29

 escaping characters, 6

 event handling, jQuery, 495–498

 event listener, creating for Ajax request, 512

 exclusive or operator, 45, 48

 executing queries, 276–283, 526–531

 exit command, 126

 exit() function, 263

 EXPLAIN EXTENDED command, 235

 EXPLAIN keyword, 232–235

 extension support, enabling, 649

 extensions, 3, 269

 external files. See files; multiple files PHP files

 F

 FALSE keyword, 144

 fetch_object() method, 534

 FILE privilege, 643

 file uploads

 allowing for, 344–345

 configurations, 344

 directory access, 348

 with PHP, 350–355

 preparing server, 346–349

 secure folder permissions, 345

 set_time_limit() function, 349

 validating, 355

 Fileinfo extension, 432–434

 files, validating by type, 431–434. See also multiple files; PHP files

 $_FILES array, 350

 Filter extension

 vs. regular expressions, 477

 using, 438–441

 firewalls and installation, 636

 first normal form (1NF), 171–173

 first.php script

 creating, 3–5

 sending data to browser, 7

 FLOAT[Length, Decimals] data type, 117, 119

 floating-point type, 14, 25

 FLOOR() function, 159

 folder permissions, securing, 345

 footer.html file

 saving, 564

 user registration, 590–593

 for loops, 70–72

 foreach loop, using with arrays, 59–60, 63–65

 foreign key constraints

 action options, 197

 CASCADE action, 198

 creating, 199–203

 requirement, 203

 foreign keys

 adding, 176

 message board, 556

 forgot_pasword.php, writing, 624–629

 form data, validating, 49–54

 form tag, using, 36, 38

 FORMAT() function, 159–160

 form.html script, 37–38

 forms. See hidden forms; HTML forms; sticky forms

 forum administration, 585

 forum data, 168–169

 forum database

 Atomic, 172

 ERD (entity-relationship diagram), 180

 indexes, 183

 message board, 548

 forum page, making for message board, 566–570

 forum.php file, saving, 570

 forums table

 character sets and collations, 189–190

 UTC (Coordinated Universal Time), 193

 FULLTEXT index, 181, 185, 224–226

 FULLTEXT searches, performing, 226–228

 function calls, chaining, 504

 function parameters, declaring, 111. See also parameters

 function.js script, 358–360

 functions. See also comparison functions

 applying to columns, 155

 arguments without values, 104

 array() function, 109

 creating, 95–97

 default argument values, 101–104

 grouping, 216–217

 looking up, 22

 multiple values, 109

 $name argument, 103

 naming, 95

 return statement, 109

 returning values, 105–109

 in SQL, 155–165

 syntax, 95

 taking arguments, 97–100

 text, 156–158

 user-defined, 111

 funds transfer form, 374

 G

 garbage collection, 411

 gender element

 using with HTML forms, 42, 44, 47

 validating, 52

 get and post, using with HTML forms, 36

 GET method

 sending values to scripts, 306

 using with HTML forms, 36

 GET request, 85

 getdate() function, 370–371

 getimagesize() array, 360

 $GLOBALS array, 110

 GMT (Greenwich Mean Time), 191

 GRANT privilege, 643

 greater than operator, 45, 142

 greater than or equal to operator, 45, 142

 GREATEST() function, 220

 greet() function, 111

 GROUP BY clause

 aggregate functions, 217

 message board, 566

 GROUP_CONCAT() function, 216–217, 219

 grouping

 data, 218–219

 functions, 216–217

 H

 handle_errors.php, saving, 259

 handle_form.php

 conditionals, 46–47

 creating, 42

 testing, 43

 validating forms, 50, 54

 HAVING clause, 219

 header file, making for template, 268–269

 header() function, 365–369

 header.html file

 creating, 80–81

 login and logout links, 400–401

 $_SESSION, 408

 templates for message board, 557–564

 user registration, 588–593

 headers already sent error, 260

 hex. See UNHEX() function

 hidden forms, inputs, 310–315. See also sticky forms; HTML forms

 home page

 message board, 565

 user registration, 602–603

 HOUR() function, 161

 .htaccess file, 345, 652, 657–659

 HTML attributes, double-quoting, 94

 HTML code, sending to browser, 8, 11–12

 HTML document, creating, 4

 HTML errors, debugging, 8, 249

 .html extension, 3, 40

 HTML forms, 54. See also hidden forms; sticky forms

 action attribute, 90

 creating, 36–40

 elements to variables, 42

 fields, 54

 GET and POST methods, 36

 GET request, 85

 handling, 41–44, 85–90

 input types, 44

 inputs, 39, 41

 jQuery, 492–494

 multidimensional arrays, 65

 POST method, 85

 pull-down menus, 39, 61–62

 radio buttons, 39

 select menu options, 94

 submitting back, 90

 text and email inputs, 39

 text box, 40

 textarea element, 40

 Trip Cost Calculator, 86

 validating, 50

 HTML resources, 5

 HTML table, using with arrays, 67

 HTML templates, 78–79

 HTML5 page, 2

 HTML5 validation rules, 426

 HTML-embedded scripted language, 2

 htmlentities() function, 435–436

 htmlspecialchars() function, 435–437, 583

 HTTP (Hypertext Transfer Protocol), 381

 http://, using with PHP code, 5, 7

 HTTP headers, 364–369

 httpd.conf file, 652

 I

 IDE (integrated development environment), 2–3

 identifiers in databases, 114–115

 if conditional, 45–48, 52

 IF() function, 220–221, 223

 if-else conditional, 52

 if-elseif-else conditional, 47

 IFNULL() function, 223

 images.php script

 date and time functions, 371–373

 HTTP headers, 364

 JavaScript and PHP, 361–362

 IN operator, 142

 include() functions, 76–77, 84

 increment operator, 23

 indenting code blocks, 48

 index page for message board, 565

 INDEX privilege, 643

 INDEX type, 181

 indexes

 creating, 181–183

 and keys, 120

 index.php file

 creating, 82–83

 creating functions, 96–97

 home page for user registration, 602–603

 ini_set() function, 250–251

 inner joins, 207–209, 211

 InnoDB storage engine, 184

 INSERT command

 errors, 139

 records, 135–139

 INSERT privilege, 643

 INSERT query, running, 276–279

 installation

 firewalls, 636

 macOS, 639–640

 testing, 646–648

 Windows, 636–638

 INT[Length] data type, 117

 intdiv() function, 25

 integers, 14, 25

 INTO term, 139

 is equal to operator, 45

 IS FALSE operator, 142

 is not equal to operator, 45

 IS NOT NULL operator, 142

 IS NULL operator, 142

 IS TRUE operator, 142

 is_* type validation functions, 425

 is_array() function, 62

 is_numeric() function, 54

 is_uploaded_file() function, 355

 isset() function, 45, 48–49

 J

 JavaScript. See also jQuery

 chaining function calls, 504

 creating for Ajax, 511

 debugging, 485

 and PHP, 356–363

 JavaScript files, creating for PHP, 357–360

 JOIN, using with message board, 566

 joining tables, 213–215

 joins

 across databases, 213

 and conditionals, 213

 inner joins, 207–209

 outer joins, 210–212

 performing, 206–207

 self-joins, 212–213

 types, 209, 234

 jQuery. See also Ajax; DOM manipulation; JavaScript

 anonymous functions, 489–490

 append() function, 504

 attr() function, 504

 CSS selectors, 492

 DOM manipulation, 499–504

 event handling, 495–498

 hosted version, 487

 HTML page and browser load, 489

 incorporating, 486–488

 overview, 484–485

 page elements, 492–494

 prepend() function, 504

 “ready” status, 491

 remove() function, 504

 using, 489–491

 jQuery() function, calling, 491

 JSON (JavaScript Object Notation), 517

 K

 KEY vs. INDEX, 183

 keys

 explained, 169

 and indexes, 120

 ksort() and krsort() functions, 66, 68

 L

 language encoding, 2

 languages, 186, 584

 languages table, including in message board, 548, 551

 LEAST() function, 220

 LEFT() function, 156

 left joins, 211–212

 Length attribute, 116

 LENGTH() function, 156, 158

 less than operator, 45, 142

 less than or equal to operator, 45, 142

 LIKE and NOT LIKE, 145–146

 LIKE keyword, 224

 LIMIT clause, 149–150, 323

 limiting query results, in SQL, 149–150

 links, making sortable, 331–335. See also URLs

 list() function, 109

 loggedin.php script, 394–395

 securing sessions, 413–414

 session variables, 407–409

 logging PHP errors, 259

 logical errors, 244

 logical operators, 45

 login functions, making, 385–389

 login page, making, 382–384

 login process, updating to secure passwords, 455–457

 login_ajax.php script, creating, 510

 login_function.inc.php script, 455–457

 login.js file, creating, 512

 Login/Logout links, using, 409

 login.php script, 392

 Ajax form, 506–509

 encrypting data, 413

 sessions, 405

 setcookie() function, 397–398

 user registration, 617–622

 logout link, creating, 400–403

 logout.php script, user registration, 622–623

 LONGBLOB text type, 119

 LONGTEXT data type, 117

 loops, for and while, 70–72

 LOWER() function, 156

 lowercase strings, 22

 M

 macOS

 Darwin, 28

 XAMPP installer, 639–640

 mail() function, 650

 dependencies in PHP, 338

 using, 339–343

 malicious code, protecting against, 435

 many-to-many relationships, 170

 MariaDB, 636

 matches, finding, 472–475

 matches.php file, saving, 474

 matching

 backslash (\), 466

 patterns, 461–463

 records, 145–146

 and replacing patterns, 478–481

 strings, 466

 math operators, 23

 mathematical calculations, 144

 MAX() function, 216–217, 569

 MAX_FILE_SIZE restriction, 355

 MEDIUMBLOB text type, 119

 MEDIUMINT[Length] data type, 117

 MEDIUMTEXT data type, 117

 MEMORY table type, 185

 message board

 complications, 584

 database, 548–556

 foreign keys, 556

 forum administration, 585

 forum page, 566–570

 index page, 565

 language dropdown menu, 563

 languages, 554

 languages table, 548, 551

 mismatching encodings, 550

 posting messages, 576–585

 posts table, 549, 552

 relationships, 549

 removing tags, 583

 tables, 548–549

 templates, 557–564

 thread page, 571–575

 threads table, 548–549, 552, 583

 translations, 555

 users table, 553, 555

 words table, 549, 553–554, 556

 message hierarchy, reflecting, 179

 messages table

 creating, 189

 UTC (Coordinated Universal Time), 194

 meta tag, indicating encoding, 2

 meta-characters, using in patterns, 464. See also characters

 method attribute, using with form tag, 36

 MIME type, 433

 MIN() function, 216–217, 569

 MINUTE() function, 161

 mismatching encodings, 550. See also encoding

 MOD() function, 159–160

 modifiers, using, 476–477

 modulus operator, 23

 MONTH() function, 161

 MONTHNAME() function, 161

 move_uploaded_file() function, 355

 movies table, 172

 movies-actors table, 173

 multidimensional arrays, 62–65

 multiple files. See also files; PHP files

 absolute vs. relative paths, 76

 functions, 76–77

 includes directory, 78

 including, 78–84

 site structure, 78

 templates directory, 78

 multiplication operator, 23

 multivalued variables, 14

 MylSAM table type, 184

 MySQL. See also databases; SQL (Structured Query Language)

 accessing, 123–129

 column properties, 120–122

 column types, 116–119

 connecting to, 270–272

 data types, 117

 database elements, 114–115

 default values, 123

 operators, 142

 testing, 648

 text types for binary data, 119

 web site, 113

 MySQL and OOP

 creating connections, 523–526

 executing queries, 526–531

 fetching results, 531–533

 outbound parameters, 538

 prepared statements, 534

 mysql client, 123–127

 MySQL Extension, 283

 MySQL users, managing, 641–645

 MySQL version, confirming, 247

 MySQLi constructor, arguments, 526

 MySQLi object, creating, 525

 mysqli_affected_rows() conditional, 303, 313, 320

 mysqli_close() function, 291

 mysqli_connect() function, 270–274

 mysqli_fetch_array() constants, 284, 287

 mysqli_num_rows() function, 296

 mysqli_query() function, 280, 283, 287

 mysqli_real_escape_string() vs. prepared statements, 442–443

 mysqli_real_escape_string(), using, 288–292, 318

 MySQLi::character_set_name() method, 526

 MySQLi::prepare() method, 534

 N

 \n (newline character), 10

 \n escape sequence, 29

 name element, using with HTML forms, 42

 natsort() function, 69

 nesting conditionals, 48

 newline character (\n), 10, 29

 nonscalar variables, 14

 normalization. See also database design

 1NF (first normal form), 171–173

 2NF (second normal form), 174–176

 3NF (third normal form), 177–178

 flexibility, 178

 keys, 169

 overruling, 178

 overview, 167–168

 primary keys, 169

 relationships, 170–171

 NOT BETWEEN operator, 142

 not equal to operator, 142

 NOT IN operator, 142

 NOT LIKE and LIKE, 145–146

 NOT NULL columns, 120

 NOT NULL values, in tables, 135

 not operator, 45

 NOT operator, 142

 NOT REGEXP() function, 158

 Notepad, warning against, 3

 NOW() function, 137, 139, 141, 161

 NULL coalescing operator, 49

 NULL columns, 120–121

 NULL values

 grouping results, 219

 inner joins, 209

 and quotation marks, 136

 in tables, 135

 NULL variables, 14, 45

 number types, UNSIGNED, 121

 number_format() function, 23, 88

 numbers

 is_numeric() function, 54

 testing for, 54

 using, 23–25

 numeric functions, 159–160

 O

 ob_clean() function, 593

 ob_end_flush() function, 593

 ob_flush() function, 593

 ob_get_contents() function, 593

 objects, 14

 one-to-many relationships, 170, 176

 one-to-one relationships, 170, 176

 OOP (object-oriented programming)

 classes, 522

 DateTime class, 522, 538–545

 fundamentals, 520–521

 MySQLi class, 522

 vs. procedural, 520

 syntax in PHP, 521–522

 OOP and MySQL

 creating connections, 523–526

 executing queries, 526–531

 fetching results, 531–533

 outbound parameters, 538

 prepared statements, 534

 operators

 and conditionals, 45–48, 142

 ternary, 324

 OPTIMIZE command, 232

 OR operator, 142, 144

 or operator, 45

 ORDER BY clause, 147–148

 organizing documents, 273

 outbound parameters, 538. See also parameters

 outer joins, 210–212

 output buffering, 589

 P

 paginating query results, 323–330

 parameters, indicating, 104. See also function parameters; outbound parameters

 parse errors, debugging, 8, 244, 260

 password_verify() function, 451, 457

 password.php script, 297–302

 passwords

 changing, 296, 629–633

 resetting, 624–629

 root user, 641–642

 securing with PHP, 449–457

 storing hash versions, 450

 validating, 299

 passwords, validating, 279

 patterns

 back referencing, 478, 481

 defining, 464–466

 escaping characters, 466

 greediness, 473–474

 matching, 461–463

 matching and replacing, 478–481

 matching start and end, 477

 meta-characters, 464

 pcre.php file

 character classes, 470–471

 creating, 465

 quantifiers, 467–468

 reporting matches, 472–475

 saving, 463

 percentage sign (%), using to match records, 145–146

 period (.) operator, 21–22

 permissions forum, 349

 PHP

 changing configuration for Apache, 661

 configuring, 649–651

 confirming server settings, 346

 and JavaScript, 356–363

 mail() dependencies, 338

 securing passwords, 449–457

 testing, 646–648

 updating records, 296–303

 uploading files, 350–355

 PHP code

 adding, 2

 embedding, 5

 in HTML tags, 91

 running through http://, 5

 test script, 3

 PHP errors

 displaying, 250–251

 examples, 260

 logging, 259

 .php extension, 3

 PHP files, extensions, 3. See also files; multiple files

 PHP manual, accessing, 22

 PHP objects, debugging, 526

 PHP scripts

 accessing via URLs, 4–5

 altering output, 20

 commenting, 11–13

 debugging, 5, 33, 261–263, 369

 for JavaScript, 360–363

 making, 3–5

 revealing errors, 250

 sending values to, 306–309

 PHP tags, inserting, 4

 PHP validation, 517

 PHP version, confirming, 247

 phpinfo() function

 display_errors, 33

 file uploads, 346

 invoking, 650

 version confirmation, 247

 php.ini configuration file

 altering configuration, 650–651

 file uploads, 344

 include_path setting, 84

 phpMyAdmin client

 accessing tables, 134

 creating users, 645

 executing queries, 132–133

 inserting records, 139

 listing tables, 134

 root user password, 642

 SELECT queries, 141

 using, 123–129

 pipe (|), using with regular expressions, 465

 pop-up window

 creating, 360

 resizing, 359

 $_POST array, 57–58

 POST method, using with HTML forms, 36, 85

 post_form.php script, creating, 576–580

 post_message.php

 prepared statements, 535–537

 saving, 448

 posting messages, 576–585

 post.php script, creating, 580–585

 pound sign (#), using with comments, 10

 POW() function, 159

 predefined variables, 14–17

 preg_match() function, 460, 472

 preg_replace() function, 478, 480–481

 preg_split() function, 475

 prepared statements

 OOP and MySQL, 534–537

 using, 442–448

 PRIMARY KEY, 120–121, 181–182

 primary keys

 assigning, 169

 2NF (second normal form), 175

 foreign-key link, 180

 print function. See also echo function

 debugging scripts, 261–263

 language construct, 8

 over multiple lines, 9

 using, 6–7

 privileges in MySQL, 643–644

 procedural vs. OOP, 520

 PROCESS privilege, 643

 proxy scripts, 364, 369

 pull-down menus, using on HTML forms, 39, 61–62, 91

 Q

 quantifiers

 meta-characters, 464

 using, 467–468

 queries. See also simple queries

 executing, 132–133, 275–283, 526–531

 explaining, 233–235

 optimizing, 232–235

 quotation marks, 136

 running, 141

 query results

 fetching, 531–534

 limiting, 149–150

 paginating, 323–330

 retrieving, 284–287

 sorting, 147–148

 quit command, 126

 quotation marks

 vs. ` (backtick), 139

 printing, 6

 in queries, 136

 single vs. double, 29–31

 variables, 18

 R

 \r escape sequence, 29

 radio buttons, using on HTML forms, 39, 92, 98–100

 RAND() function, 159–160, 240

 range() function, using with arrays, 62

 ranges, MySQL operators, 142

 read.php page, 571–575, 582

 records. See also returned records

 adding to databases, 276–279

 deleting, 153–154, 203

 editing, 316–322

 inserting in phpMyAdmin, 139

 inserting in SQL, 135–139

 matching, 145–146

 updating with PHP, 296–303

 REGEXP() function, 158

 register.php script

 executing queries, 526–531

 modifying, 295

 mysqli_real_escape_string(), 289–291

 securing passwords, 452–454

 user registration, 604–613

 registration script, creating, 275–283, 604–613

 regular expressions

 character classes, 469–471

 data validation, 430

 defining patterns, 464–466

 vs. Filter extension, 477

 finding matches, 472–475

 greediness, 473–474

 lazy matches, 473

 matching and replacing patterns, 478–481

 matching patterns, 461–463

 modifiers, 476–477

 pipe (|), 465

 preg_match() function, 460

 quantifiers, 467–468

 searches, 158

 test script, 460–463

 relationships, 170–171

 relative vs. absolute paths, 76

 RELOAD privilege, 643

 RENAME TO clause, 224

 REPLACE command, 139

 REPLACE() function, 156

 report_errors script, saving, 254

 $_REQUEST variable, 42, 44

 require() functions, 76–77, 84

 resetting passwords, 624–629

 resource variable type, 14

 return, creating, 9–10

 return statement, using with functions, 109

 returned records, counting, 293–295. See also records

 REVOKE privilege, 643

 RIGHT() function, 156

 right joins, 210–211

 ROLLBACK, using with transactions, 236

 root user password, setting, 641–642

 ROUND() function, 159

 round() function, 23

 rsort() function, 66

 RTF MIME type, 433

 run-time errors, 244

 S

 sanitization filters, 438

 savepoints, creating in transactions, 238

 scalar values, using with constants, 26

 scalar variables, 14

 schema, 168, 171, 601

 scripts. See PHP scripts

 searches, FULLTEXT, 224–231

 SECOND() function, 161

 second normal form (2NF), 174–176

 second.php script, saving, 7

 security. See also SQL security

 approach, 419

 recommendations, 450

 of sortable links, 335

 SELECT command, 140. See also advanced selections

 and joins, 206–207

 listing columns, 141

 SELECT privilege, 643

 select_db() method, 526

 selecting data, 140–141, 158

 self-joins, 212–213

 semicolons (;), using with queries, 132–133

 sending email, 338–343

 server settings, confirming, 346

 server-side PHP validation, 517

 $_SESSION, 408, 411

 session behavior, changing, 412

 session fixation, preventing, 415

 session hijacking, 412–413

 session security, improving, 412–415

 session variables

 accessing, 407–409

 deleting, 409–411

 setting, 404

 session_start(), calling, 593

 sessions

 beginning, 405–406

 vs. cookies, 404

 garbage collection, 411

 storing arrays in, 406

 SET data type, 116–117

 setcookie() function, 394, 396, 398

 sha1() function, 413–414

 SHA2() function, 137, 139, 144, 239

 SHOW CHARACTER SET command, 186

 SHOW COLLATION LIKE command, 187

 SHOW command, 189–190

 SHOW ENGINES command, 185

 SHOW WARNINGS command, 139

 show_image.php, 361, 367–368

 SHUTDOWN privilege, 643

 simple queries, 284. See also queries

 single quotation mark (‘), 29–31

 site administration, 633

 site structure, 78

 sitename database, 132–134

 slashes (/ and //), including with tags, 8, 10, 23

 SMALLINT[Length] data type, 117

 sortable displays, making, 331–335

 sorting

 arrays, 66–69

 query results, 147–148

 source, readability, 9

 spacing, altering, 9–10

 spam, preventing, 418–424

 spam_scrubber() function, 421–424

 SPATIAL index, 183

 SQL (Structured Query Language). See also databases; MySQL

 conditionals, 142–144

 databases, 132–134

 deleting data, 153–154

 functions, 155–165

 LIKE and NOT LIKE, 145–146

 limiting query results, 149–150

 records, 135–139

 selecting data, 140–141

 sorting query results, 147–148

 tables, 132–134

 updating data, 151–152

 SQL commands

 ` (backtick), 139

 downloading, 139

 entering, 129

 SQL errors, causes, 264

 SQL injection attacks, preventing, 442–448

 SQL queries, debugging, 264–265

 SQL security, ensuring, 288–292. See also security

 SQRT() function, 159

 sticky forms, making, 91–94, 321–322. See also hidden forms; HTML forms

 sticky-footer-navbar.css file, 79

 storage engine, specifying, 184

 string meta-characters, 464

 strings

 and arrays, 66

 concatenating, 21–22

 converting case, 22

 functions, 22

 matching, 466

 meta-characters, 466

 using, 18–21

 variable type, 14

 strip_tags() function, 435–437, 583

 strstr() function, 466

 strtolower() function, 22

 strtoupper() function, 22

 SUBDATE() function, 163

 Sublime Text, 3

 submission conditional, 321

 submit element, using with HTML forms, 42

 subpattern meta-characters, 464

 SUBSTRING() function, 156

 SUBTIME() function, 163

 subtraction operator, 23

 SUM() function, 216–217, 219

 superglobal arrays, 56–58, 110

 switch conditional, 48

 syntactical errors, 244–245

 syntax

 basics, 2

 comments, 11

 for making functions, 95

 T

 \t escape sequence, 29

 tab escape sequence, 29

 table names, determining, 114–115

 table types, using, 184–185

 tables

 analyzing horizontally, 173

 analyzing vertically, 176

 confirming, 134

 creating in SQL, 132–134

 emptying, 154

 inserting data, 136–139

 as intermediaries, 176

 joining, 213–215

 listing columns, 134

 relationships, 170

 revealing information about, 190

 selecting data, 140–141

 and text columns, 134

 types, 134

 tags

 including slashes, 8

 removing, 583

 templates

 directory, 78

 message board, 557–564

 modifying, 268–269

 storing in external files, 82

 user registration, 588–593

 Terminal, accessing and exiting, 124–126

 ternary operator, 324

 test() function, 111

 test.html file

 HTML form for jQuery, 492–494

 jQuery, 488–491

 test.js document

 creating, 490

 event handling, 496–498

 text, converting character sets, 190

 text box, adding to HTML form, 40

 text columns, using with tables, 134

 TEXT data type, 117, 122

 text functions, 156–158

 text input, adding to HTML forms, 39

 textarea element, 40

 third normal form (3NF), 177–178

 thread page, creating for message board, 571–575

 Thumbs.db file, 363

 time and date functions, 161–165, 370–373. See also DateTime class

 TIME data type, 117

 time zones, 191–196

 TIMESTAMP data type, 117, 119, 121

 TINYTEXT data type, 117

 TINYBLOB text type, 119

 TINYINT[Length] data type, 117, 119

 transactions

 performing, 236–238

 uploads in PHP, 374–379

 transactions table, creating, 201

 transfer.php, 374–379

 translations, noting in message board, 555

 triggers vs. constraints, 203

 TRIM() function, 156

 Trip Cost Calculator, 86, 89–90, 94, 100, 104

 TRUE keyword, 144

 TRUE or FALSE variables, 14

 TRUNCATE command, 154, 303

 type validation functions, 425

 typecasting variables, 427–430, 438

 U

 ucfirst() function, 22

 ucwords() function, 22

 undefined variables, 44, 260

 underscore (_), using to match records, 145–146

 UNHEX() function, 239–240

 Unicode data, using in queries, 550

 Unicode version 9.0.0, 2

 UNION statement

 explaining queries, 233

 using with joins, 211

 UNIQUE index, 139, 181

 UNIX_TIMESTAMP() function, 161

 UNSIGNED number types, 121–122

 UPDATE privilege, 643

 updating

 data, 151–152

 records with PHP, 296–303

 upload_rtf.php script, creating, 431

 uploading files. See file uploads

 UPPER() function, 155–156

 uppercase strings, 22

 URL rewriting, enabling in Apache, 660

 URLs. See also links

 appending variables, 309

 using to access PHP scripts, 4–5, 7

 user ID value, validating, 317

 user registration

 account activation, 614–616

 activation process, 611

 configuration scripts, 594–601

 database schema, 601

 home page, 602–603

 logging in and out, 617–623

 output buffering, 589

 password management, 624–633

 registration, 604–613

 site administration, 633

 templates, 588–593

 user-defined functions, 111

 users. See MySQL users

 users and privileges, creating, 643–645

 users table, 114–115, 119, 122. See also delete.user.php script

 character sets and collations, 189–190

 creating, 133

 inserting values, 138

 UTC (Coordinated Universal Time), 193

 usort() function, 69

 UTC (Coordinated Universal Time), 191–196

 UTC_TIMESTAMP() function, 161

 UTF-8 encoding, 2, 187, 199

 V

 validating

 data by type, 425–430

 email addresses, 470–471

 files by type, 431–434

 form data, 49–54, 88

 passwords, 279

 server-side PHP, 517

 validation, approaches, 425

 values

 MySQL operators, 142

 sending to scripts, 306–309

 VARBINARY text type, 119

 VARCHAR[Length] data type, 117–118

 variable scope, 110

 variables. See also bound variable types

 altering output, 20

 appending to URLs, 309

 checking, 49

 vs. constants, 26

 HTML forms, 42

 and numbers, 24

 and strings, 19

 typecasting, 427–428

 undefined, 44

 using, 14–17

 versions, confirming, 247

 vi editor, 3

 view_users.php script

 counting returned records, 293–295

 object-oriented version, 534

 paginating, 323–330

 retrieving query results, 285–286

 sending values to scripts, 306–307

 sortable links, 331–335

 virtual hosts, using with Apache, 653–655

 W

 W3C validation tools, using, 249

 WAMP installer, 636

 warnings, showing, 139. See also errors

 web server, confirming, 247–248

 WHEN clauses, advanced selections, 221

 WHERE conditional, using with UPDATE, 151–152

 while loops, 70–72, 284, 287

 white space, 10

 whitelist validation, 425

 Widget Cost Calculator, 425

 Windows, XAMPP installer, 637–638

 WITH QUERY EXPANSION modifier, 231

 X

 XAMPP installer

 accessing, 636

 Windows, 636–637

 XML-style tags, 4

 XOR operator, 142

 xor operator, 45, 48

 XSS attacks, preventing, 435–437

 Y

 YEAR() function, 161

 Z

 ZEROFILL number type, 121

 zones. See time zones

 Zulu time. See UTC (Coordinated Universal Time)

 OEBPS/xhtml/graphics/08figure_16_C.jpg

OEBPS/xhtml/graphics/06figure_19_G.jpg

OEBPS/xhtml/graphics/p0163_01.jpg

OEBPS/xhtml/graphics/05figure_23_B.jpg

OEBPS/xhtml/graphics/p0036_01.jpg

OEBPS/xhtml/graphics/p0311_01.jpg

OEBPS/xhtml/graphics/p0609_01.jpg

OEBPS/xhtml/graphics/11figure_05_A.jpg

OEBPS/xhtml/graphics/p0036_02.jpg

OEBPS/xhtml/graphics/18figure_27_E.jpg

OEBPS/xhtml/graphics/p0151_05.jpg

OEBPS/xhtml/graphics/p0151_01.jpg

OEBPS/xhtml/graphics/p0151_02.jpg

OEBPS/xhtml/graphics/p0151_03.jpg

OEBPS/xhtml/graphics/p0151_04.jpg

OEBPS/xhtml/graphics/p0564_03.jpg

OEBPS/xhtml/graphics/p0564_02.jpg

OEBPS/xhtml/graphics/p0289_01.jpg

OEBPS/xhtml/graphics/p0564_01.jpg

OEBPS/xhtml/graphics/afigure_05_A.jpg

OEBPS/xhtml/graphics/03figure_04_D.jpg

OEBPS/xhtml/graphics/p0335_01.jpg

OEBPS/xhtml/graphics/p0576_02.jpg

OEBPS/xhtml/graphics/p0610_01.jpg

OEBPS/xhtml/graphics/p0335_02.jpg

OEBPS/xhtml/graphics/p0610_02.jpg

OEBPS/xhtml/graphics/p0576_01.jpg

OEBPS/xhtml/graphics/02figure17_B.jpg

OEBPS/xhtml/graphics/16figure_08_A.jpg

OEBPS/xhtml/graphics/10scr01b.jpg

OEBPS/xhtml/graphics/10scr01a.jpg

OEBPS/xhtml/graphics/p0024_04.jpg

OEBPS/xhtml/graphics/p0024_03.jpg

OEBPS/xhtml/graphics/p0024_02.jpg

OEBPS/xhtml/graphics/17figure_31_H.jpg

OEBPS/xhtml/graphics/p0024_01.jpg

OEBPS/xhtml/graphics/afigure_18_B.jpg

OEBPS/xhtml/graphics/01figure_07_E.jpg

OEBPS/xhtml/graphics/04figure_09_I.jpg

OEBPS/xhtml/graphics/05figure_01_A.jpg

OEBPS/xhtml/graphics/13figure_15_B.jpg

OEBPS/xhtml/graphics/11figure_27_A.jpg

OEBPS/xhtml/graphics/p0061_01.jpg

OEBPS/xhtml/graphics/p0061_02.jpg

OEBPS/xhtml/graphics/18figure_05_E.jpg

OEBPS/xhtml/graphics/p0208_02.jpg

OEBPS/xhtml/graphics/p0437_01.jpg

OEBPS/xhtml/graphics/10scr02b.jpg

OEBPS/xhtml/graphics/p0208_01.jpg

OEBPS/xhtml/graphics/p0392_02.jpg

OEBPS/xhtml/graphics/10scr02a.jpg

OEBPS/xhtml/graphics/p0392_01.jpg

OEBPS/xhtml/graphics/p0437_03.jpg

OEBPS/xhtml/graphics/p0437_02.jpg

OEBPS/xhtml/graphics/p0539_02.jpg

OEBPS/xhtml/graphics/p0539_01.jpg

OEBPS/xhtml/graphics/07figure_20_G.jpg

OEBPS/xhtml/graphics/15figure_12_A.jpg

OEBPS/xhtml/graphics/p0539_03.jpg

OEBPS/xhtml/graphics/p0253_02.jpg

OEBPS/xhtml/graphics/p0253_03.jpg

OEBPS/xhtml/graphics/p0494_03.jpg

OEBPS/xhtml/graphics/13figure_24_E.jpg

OEBPS/xhtml/graphics/p0253_04.jpg

OEBPS/xhtml/graphics/p0494_02.jpg

OEBPS/xhtml/graphics/12scr10.jpg

OEBPS/xhtml/graphics/p0494_01.jpg

OEBPS/xhtml/graphics/10scr03d.jpg

OEBPS/xhtml/graphics/10scr03c.jpg

OEBPS/xhtml/graphics/10scr03b.jpg

OEBPS/xhtml/graphics/p0379_01.jpg

OEBPS/xhtml/graphics/10scr03a.jpg

OEBPS/xhtml/graphics/12scr08.jpg

OEBPS/xhtml/graphics/12scr09.jpg

OEBPS/xhtml/graphics/p0588_01.jpg

OEBPS/xhtml/graphics/07figure_11_K.jpg

OEBPS/xhtml/graphics/12scr01.jpg

OEBPS/xhtml/graphics/12scr02.jpg

OEBPS/xhtml/graphics/12scr03.jpg

OEBPS/xhtml/graphics/12scr04.jpg

OEBPS/xhtml/graphics/12scr05.jpg

OEBPS/xhtml/graphics/12scr06.jpg

OEBPS/xhtml/graphics/12scr07.jpg

OEBPS/xhtml/graphics/p0527_02.jpg

OEBPS/xhtml/graphics/p0527_03.jpg

OEBPS/xhtml/graphics/p0527_04.jpg

OEBPS/xhtml/graphics/03figure_17_F.jpg

OEBPS/xhtml/graphics/10scr04d.jpg

OEBPS/xhtml/graphics/10scr04c.jpg

OEBPS/xhtml/graphics/10scr04b.jpg

OEBPS/xhtml/graphics/10scr04a.jpg

OEBPS/xhtml/graphics/12figure_10_E.jpg

OEBPS/xhtml/graphics/p0527_01.jpg

OEBPS/xhtml/graphics/07figure_46_C.jpg

OEBPS/xhtml/graphics/p0187_01.jpg

OEBPS/xhtml/graphics/p0462_01.jpg

OEBPS/xhtml/graphics/p0367_02.jpg

OEBPS/xhtml/graphics/p0187_03.jpg

OEBPS/xhtml/graphics/p0367_01.jpg

OEBPS/xhtml/graphics/p0462_03.jpg

OEBPS/xhtml/graphics/p0187_02.jpg

OEBPS/xhtml/graphics/p0462_02.jpg

OEBPS/xhtml/graphics/05figure_32_D.jpg

OEBPS/xhtml/graphics/01figure_16_A.jpg

OEBPS/xhtml/graphics/18figure_18_G.jpg

OEBPS/xhtml/graphics/11figure_14_J.jpg

OEBPS/xhtml/graphics/10scr05d.jpg

OEBPS/xhtml/graphics/10scr05c.jpg

OEBPS/xhtml/graphics/10scr05b.jpg

OEBPS/xhtml/graphics/10scr05a.jpg

OEBPS/xhtml/graphics/554icon1.jpg

OEBPS/xhtml/graphics/p0241_02.jpg

OEBPS/xhtml/graphics/p0515_02.jpg

OEBPS/xhtml/graphics/07figure_33_E.jpg

OEBPS/xhtml/graphics/p0241_01.jpg

OEBPS/xhtml/graphics/p0515_01.jpg

OEBPS/xhtml/graphics/03scr09b.jpg

OEBPS/xhtml/graphics/p0515_04.jpg

OEBPS/xhtml/graphics/03scr09a.jpg

OEBPS/xhtml/graphics/p0515_03.jpg

OEBPS/xhtml/graphics/p0515_05.jpg

OEBPS/xhtml/graphics/09figure_08_B.jpg

OEBPS/xhtml/graphics/14figure_07_C.jpg

OEBPS/xhtml/graphics/15figure_03_A.jpg

OEBPS/xhtml/graphics/08figure_03_C.jpg

OEBPS/xhtml/graphics/05figure_45_I.jpg

OEBPS/xhtml/graphics/02figure08_C.jpg

OEBPS/xhtml/graphics/p0048_01.jpg

OEBPS/xhtml/graphics/p0323_01.jpg

OEBPS/xhtml/graphics/03scr08a.jpg

OEBPS/xhtml/graphics/D_img.jpg

OEBPS/xhtml/graphics/03scr01.jpg

OEBPS/xhtml/graphics/12scr11.jpg

OEBPS/xhtml/graphics/12scr12.jpg

OEBPS/xhtml/graphics/12scr13.jpg

OEBPS/xhtml/graphics/05figure_10_D.jpg

OEBPS/xhtml/graphics/13figure_02_B.jpg

OEBPS/xhtml/graphics/p0405_01.jpg

OEBPS/xhtml/graphics/p0405_02.jpg

OEBPS/xhtml/graphics/p0016_06.jpg

OEBPS/xhtml/graphics/p0228_02.jpg

OEBPS/xhtml/graphics/p0658_01.jpg

OEBPS/xhtml/graphics/p0016_05.jpg

OEBPS/xhtml/graphics/p0658_02.jpg

OEBPS/xhtml/graphics/p0228_01.jpg

OEBPS/xhtml/graphics/F_img.jpg

OEBPS/xhtml/graphics/afigure_01_A.jpg

OEBPS/xhtml/graphics/p0584_01.jpg

OEBPS/xhtml/graphics/p0532_01.jpg

OEBPS/xhtml/graphics/18figure_09_D.jpg

OEBPS/xhtml/graphics/p0016_02.jpg

OEBPS/xhtml/graphics/rarr.jpg

OEBPS/xhtml/graphics/11figure_01_A.jpg

OEBPS/xhtml/graphics/p0016_01.jpg

OEBPS/xhtml/graphics/p0016_04.jpg

OEBPS/xhtml/graphics/14figure_20_A.jpg

OEBPS/xhtml/graphics/13figure_19_B.jpg

OEBPS/xhtml/graphics/07figure_37_I.jpg

OEBPS/xhtml/graphics/p0216_02.jpg

OEBPS/xhtml/graphics/p0216_01.jpg

OEBPS/xhtml/graphics/00figure_02_B.jpg

OEBPS/xhtml/graphics/03scr06a.jpg

OEBPS/xhtml/graphics/p0216_03.jpg

OEBPS/xhtml/graphics/07figure_02_B.jpg

OEBPS/xhtml/graphics/16figure_04_D.jpg

OEBPS/xhtml/graphics/17figure_09_I.jpg

OEBPS/xhtml/graphics/p0004_01.jpg

OEBPS/xhtml/graphics/04figure_05_E.jpg

OEBPS/xhtml/graphics/p0270_04.jpg

OEBPS/xhtml/graphics/p0270_03.jpg

OEBPS/xhtml/graphics/afigure_14_A.jpg

OEBPS/xhtml/graphics/p0270_02.jpg

OEBPS/xhtml/graphics/p0270_01.jpg

OEBPS/xhtml/graphics/09figure_21_D.jpg

OEBPS/xhtml/graphics/11figure_23_D.jpg

OEBPS/xhtml/graphics/p0355_01.jpg

OEBPS/xhtml/graphics/p0199_01.jpg

OEBPS/xhtml/graphics/p0199_02.jpg

OEBPS/xhtml/graphics/p0097_01.jpg

OEBPS/xhtml/graphics/07figure_24_C.jpg

OEBPS/xhtml/graphics/p0457_01.jpg

OEBPS/xhtml/graphics/p0097_03.jpg

OEBPS/xhtml/graphics/p0097_02.jpg

OEBPS/xhtml/graphics/10figure_09_G.jpg

OEBPS/xhtml/graphics/p0282_04.jpg

OEBPS/xhtml/graphics/13figure_28_D.jpg

OEBPS/xhtml/graphics/03scr02a.jpg

OEBPS/xhtml/graphics/p0413_01.jpg

OEBPS/xhtml/graphics/p0282_01.jpg

OEBPS/xhtml/graphics/p0507_01.jpg

OEBPS/xhtml/graphics/p0282_02.jpg

OEBPS/xhtml/graphics/p0507_02.jpg

OEBPS/xhtml/graphics/p0282_03.jpg

OEBPS/xhtml/graphics/p0041_01.jpg

OEBPS/xhtml/graphics/p0622_01.jpg

OEBPS/xhtml/graphics/12figure_14_I.jpg

OEBPS/xhtml/graphics/p0622_02.jpg

OEBPS/xhtml/graphics/08figure_07_G.jpg

OEBPS/xhtml/graphics/07figure_15_B.jpg

OEBPS/xhtml/graphics/16figure_13_F.jpg

OEBPS/xhtml/graphics/p0155_03.jpg

OEBPS/xhtml/graphics/p0399_01.jpg

OEBPS/xhtml/graphics/p0399_02.jpg

OEBPS/xhtml/graphics/p0155_01.jpg

OEBPS/xhtml/graphics/06figure_32_E.jpg

OEBPS/xhtml/graphics/p0540_01.jpg

OEBPS/xhtml/graphics/p0399_03.jpg

OEBPS/xhtml/graphics/11figure_10_F.jpg

OEBPS/xhtml/graphics/p0085_01.jpg

OEBPS/xhtml/graphics/p0085_02.jpg

OEBPS/xhtml/graphics/p0387_02.jpg

OEBPS/xhtml/graphics/13figure_06_F.jpg

OEBPS/xhtml/graphics/00figure_06_F.jpg

OEBPS/xhtml/graphics/12figure_01_A.jpg

OEBPS/xhtml/graphics/17figure_18_B.jpg

OEBPS/xhtml/graphics/p0331_01.jpg

OEBPS/xhtml/graphics/03figure_13_B.jpg

OEBPS/xhtml/graphics/p0387_01.jpg

OEBPS/xhtml/graphics/05figure_41_E.jpg

OEBPS/xhtml/graphics/p0552_02.jpg

OEBPS/xhtml/graphics/p0294_01.jpg

OEBPS/xhtml/graphics/p0552_01.jpg

OEBPS/xhtml/graphics/00figure_07_G.jpg

OEBPS/xhtml/graphics/p0490_01.jpg

OEBPS/xhtml/graphics/07figure_06_F.jpg

OEBPS/xhtml/graphics/17figure_17_A.jpg

OEBPS/xhtml/graphics/p0077_01.jpg

OEBPS/xhtml/graphics/p0352_01.jpg

OEBPS/xhtml/graphics/p0649_01.jpg

OEBPS/xhtml/graphics/09figure_03_B.jpg

OEBPS/xhtml/graphics/01figure_21_A.jpg

OEBPS/xhtml/graphics/10figure_18_B.jpg

OEBPS/xhtml/graphics/04figure_01_A.jpg

OEBPS/xhtml/graphics/14figure_24_C.jpg

OEBPS/xhtml/graphics/12figure_05_B.jpg

OEBPS/xhtml/graphics/p0512_01.jpg

OEBPS/xhtml/graphics/14scr02.jpg

OEBPS/xhtml/graphics/14scr03.jpg

OEBPS/xhtml/graphics/p0089_02.jpg

OEBPS/xhtml/graphics/18figure_32_E.jpg

OEBPS/xhtml/graphics/p0089_01.jpg

OEBPS/xhtml/graphics/07figure_28_G.jpg

OEBPS/xhtml/graphics/06figure_23_D.jpg

OEBPS/xhtml/graphics/16figure_12_E.jpg

OEBPS/xhtml/graphics/p0500_01.jpg

OEBPS/xhtml/graphics/08figure_20_C.jpg

OEBPS/xhtml/graphics/02figure21_F.jpg

OEBPS/xhtml/graphics/14scr01.jpg

OEBPS/xhtml/graphics/06figure_01_A.jpg

OEBPS/xhtml/graphics/p0224_01.jpg

OEBPS/xhtml/graphics/18figure_10_A.jpg

OEBPS/xhtml/graphics/10figure_05_C.jpg

OEBPS/xhtml/graphics/14figure_11_C.jpg

OEBPS/xhtml/graphics/06figure_36_I.jpg

OEBPS/xhtml/graphics/12figure_18_D.jpg

OEBPS/xhtml/graphics/05figure_06_F.jpg

OEBPS/xhtml/graphics/p0021_04.jpg

OEBPS/xhtml/graphics/p0021_03.jpg

OEBPS/xhtml/graphics/afigure_10_B.jpg

OEBPS/xhtml/graphics/p0021_02.jpg

OEBPS/xhtml/graphics/p0021_01.jpg

OEBPS/xhtml/graphics/p0625_01.jpg

OEBPS/xhtml/graphics/p0625_02.jpg

OEBPS/xhtml/graphics/p0212_02.jpg

OEBPS/xhtml/graphics/17figure_04_D.jpg

OEBPS/xhtml/graphics/p0212_01.jpg

OEBPS/xhtml/graphics/p0053_01.jpg

OEBPS/xhtml/graphics/09figure_12_A.jpg

OEBPS/xhtml/graphics/p0339_02.jpg

OEBPS/xhtml/graphics/05figure_19_C.jpg

OEBPS/xhtml/graphics/p0339_01.jpg

OEBPS/xhtml/graphics/p0339_03.jpg

OEBPS/xhtml/graphics/p0396_01.jpg

OEBPS/xhtml/graphics/p0396_03.jpg

OEBPS/xhtml/graphics/p0396_02.jpg

OEBPS/xhtml/graphics/p0274_02.jpg

OEBPS/xhtml/graphics/p0274_01.jpg

OEBPS/xhtml/graphics/p0065_04.jpg

OEBPS/xhtml/graphics/p0065_03.jpg

OEBPS/xhtml/graphics/p0340_03.jpg

OEBPS/xhtml/graphics/12scr02b.jpg

OEBPS/xhtml/graphics/p0065_02.jpg

OEBPS/xhtml/graphics/p0340_02.jpg

OEBPS/xhtml/graphics/07figure_19_F.jpg

OEBPS/xhtml/graphics/12scr02c.jpg

OEBPS/xhtml/graphics/p0065_01.jpg

OEBPS/xhtml/graphics/p0340_01.jpg

OEBPS/xhtml/graphics/p0158_01.jpg

OEBPS/xhtml/graphics/p0433_01.jpg

OEBPS/xhtml/graphics/p0158_02.jpg

OEBPS/xhtml/graphics/p0433_02.jpg

OEBPS/xhtml/graphics/06figure_14_B.jpg

OEBPS/xhtml/graphics/p0158_03.jpg

OEBPS/xhtml/graphics/p0433_03.jpg

OEBPS/xhtml/graphics/p0433_04.jpg

OEBPS/xhtml/graphics/p0433_05.jpg

OEBPS/xhtml/graphics/17figure_26_C.jpg

OEBPS/xhtml/graphics/12scr03a.jpg

OEBPS/xhtml/graphics/afigure_23_G.jpg

OEBPS/xhtml/graphics/1B_img.jpg

OEBPS/xhtml/graphics/03scr09.jpg

OEBPS/xhtml/graphics/17scr06.jpg

OEBPS/xhtml/graphics/03scr08.jpg

OEBPS/xhtml/graphics/17scr05.jpg

OEBPS/xhtml/graphics/03scr07.jpg

OEBPS/xhtml/graphics/03scr06.jpg

OEBPS/xhtml/graphics/17scr07.jpg

OEBPS/xhtml/graphics/03scr05.jpg

OEBPS/xhtml/graphics/03scr04.jpg

OEBPS/xhtml/graphics/03scr03.jpg

OEBPS/xhtml/graphics/15figure_16_E.jpg

OEBPS/xhtml/graphics/03scr02.jpg

OEBPS/xhtml/graphics/p0045_03.jpg

OEBPS/xhtml/graphics/p0045_02.jpg

OEBPS/xhtml/graphics/p0045_01.jpg

OEBPS/xhtml/graphics/15scr09a.jpg

OEBPS/xhtml/graphics/09figure_07_A.jpg

OEBPS/xhtml/graphics/17figure_13_A.jpg

OEBPS/xhtml/graphics/14figure_06_B.jpg

OEBPS/xhtml/graphics/02figure12_C.jpg

OEBPS/xhtml/graphics/03scr10.jpg

OEBPS/xhtml/graphics/13figure_10_D.jpg

OEBPS/xhtml/graphics/p0384_01.jpg

OEBPS/xhtml/graphics/p0057_01.jpg

OEBPS/xhtml/graphics/18figure_23_A.jpg

OEBPS/xhtml/graphics/p0544_04.jpg

OEBPS/xhtml/graphics/p0544_03.jpg

OEBPS/xhtml/graphics/10figure_14_B.jpg

OEBPS/xhtml/graphics/p0544_02.jpg

OEBPS/xhtml/graphics/p0544_01.jpg

OEBPS/xhtml/graphics/p0428_01.jpg

OEBPS/xhtml/graphics/p0544_05.jpg

OEBPS/xhtml/graphics/06figure_27_H.jpg

OEBPS/xhtml/graphics/12figure_09_D.jpg

OEBPS/xhtml/graphics/p0629_03.jpg

OEBPS/xhtml/graphics/05figure_15_C.jpg

OEBPS/xhtml/graphics/p0629_04.jpg

OEBPS/xhtml/graphics/p0057_02.jpg

OEBPS/xhtml/graphics/p0629_01.jpg

OEBPS/xhtml/graphics/p0057_03.jpg

OEBPS/xhtml/graphics/p0629_02.jpg

OEBPS/xhtml/graphics/p0428_02.jpg

OEBPS/xhtml/graphics/p0441_02.jpg

OEBPS/xhtml/graphics/p0183_01.jpg

OEBPS/xhtml/graphics/p0441_01.jpg

OEBPS/xhtml/graphics/p0183_02.jpg

OEBPS/xhtml/graphics/p0441_03.jpg

OEBPS/xhtml/graphics/17scr01c.jpg

OEBPS/xhtml/graphics/17scr01b.jpg

OEBPS/xhtml/graphics/17scr01a.jpg

OEBPS/xhtml/graphics/17scr01e.jpg

OEBPS/xhtml/graphics/17scr01d.jpg

OEBPS/xhtml/graphics/05figure_28_B.jpg

OEBPS/xhtml/graphics/arrow.jpg

OEBPS/xhtml/graphics/p0256_04.jpg

OEBPS/xhtml/graphics/01figure_03_A.jpg

OEBPS/xhtml/graphics/p0256_03.jpg

OEBPS/xhtml/graphics/p0200_01.jpg

OEBPS/xhtml/graphics/p0630_01.jpg

OEBPS/xhtml/graphics/p0630_02.jpg

OEBPS/xhtml/graphics/18figure_01_A.jpg

OEBPS/xhtml/graphics/p0372_01.jpg

OEBPS/xhtml/graphics/p0372_05.jpg

OEBPS/xhtml/graphics/p0372_04.jpg

OEBPS/xhtml/graphics/p0069_02.jpg

OEBPS/xhtml/graphics/p0372_03.jpg

OEBPS/xhtml/graphics/p0069_01.jpg

OEBPS/xhtml/graphics/p0372_02.jpg

OEBPS/xhtml/graphics/p0126_01.jpg

OEBPS/xhtml/graphics/02figure25_A.jpg

OEBPS/xhtml/graphics/p0126_02.jpg

OEBPS/xhtml/graphics/p0556_01.jpg

OEBPS/xhtml/graphics/13figure_23_D.jpg

OEBPS/xhtml/graphics/17scr02.jpg

OEBPS/xhtml/graphics/p0256_02.jpg

OEBPS/xhtml/graphics/17scr01.jpg

OEBPS/xhtml/graphics/p0256_01.jpg

OEBPS/xhtml/graphics/17scr04.jpg

OEBPS/xhtml/graphics/17scr03.jpg

OEBPS/xhtml/graphics/17scr07b.jpg

OEBPS/xhtml/graphics/03figure_09_D.jpg

OEBPS/xhtml/graphics/11figure_19_C.jpg

OEBPS/xhtml/graphics/18figure_14_C.jpg

OEBPS/xhtml/graphics/p0138_01.jpg

OEBPS/xhtml/graphics/15scr05a.jpg

OEBPS/xhtml/graphics/06figure_05_E.jpg

OEBPS/xhtml/graphics/14figure_15_C.jpg

OEBPS/xhtml/graphics/05figure_02_B.jpg

OEBPS/xhtml/graphics/17scr06b.jpg

OEBPS/xhtml/graphics/17scr06a.jpg

OEBPS/xhtml/graphics/p0315_03.jpg

OEBPS/xhtml/graphics/p0090_02.jpg

OEBPS/xhtml/graphics/p0315_02.jpg

OEBPS/xhtml/graphics/p0090_01.jpg

OEBPS/xhtml/graphics/p0315_01.jpg

OEBPS/xhtml/graphics/p0497_02.jpg

OEBPS/xhtml/graphics/10scr05.jpg

OEBPS/xhtml/graphics/10scr04.jpg

OEBPS/xhtml/graphics/10scr03.jpg

OEBPS/xhtml/graphics/10scr02.jpg

OEBPS/xhtml/graphics/10scr01.jpg

OEBPS/xhtml/graphics/09figure_16_C.jpg

OEBPS/xhtml/graphics/p0497_01.jpg

OEBPS/xhtml/graphics/02figure03_C.jpg

OEBPS/xhtml/graphics/17scr07a.jpg

OEBPS/xhtml/graphics/01figure_12_B.jpg

OEBPS/xhtml/graphics/p0360_01.jpg

OEBPS/xhtml/graphics/17scr05b.jpg

OEBPS/xhtml/graphics/17scr05a.jpg

OEBPS/xhtml/graphics/15scr07b.jpg

OEBPS/xhtml/graphics/p0524_05.jpg

OEBPS/xhtml/graphics/p0524_04.jpg

OEBPS/xhtml/graphics/15scr07a.jpg

OEBPS/xhtml/graphics/p0524_03.jpg

OEBPS/xhtml/graphics/18scr02a.jpg

OEBPS/xhtml/graphics/p0524_02.jpg

OEBPS/xhtml/graphics/08figure_11_A.jpg

OEBPS/xhtml/graphics/p0524_01.jpg

OEBPS/xhtml/graphics/B_img.jpg

OEBPS/xhtml/graphics/06figure_18_F.jpg

OEBPS/xhtml/graphics/15figure_07_A.jpg

OEBPS/xhtml/graphics/17scr04b.jpg

OEBPS/xhtml/graphics/p0359_01.jpg

OEBPS/xhtml/graphics/17scr04a.jpg

OEBPS/xhtml/graphics/p0359_02.jpg

OEBPS/xhtml/graphics/11figure_06_B.jpg

OEBPS/xhtml/graphics/p0195_01.jpg

OEBPS/xhtml/graphics/p0359_03.jpg

OEBPS/xhtml/graphics/14figure_02_B.jpg

OEBPS/xhtml/graphics/p0617_02.jpg

OEBPS/xhtml/graphics/p0617_01.jpg

OEBPS/xhtml/graphics/18scr03b.jpg

OEBPS/xhtml/graphics/18scr03a.jpg

OEBPS/xhtml/graphics/18scr03c.jpg

OEBPS/xhtml/graphics/10figure_01_A.jpg

OEBPS/xhtml/graphics/04figure_10_J.jpg

OEBPS/xhtml/graphics/17figure_22_C.jpg

OEBPS/xhtml/graphics/07figure_41_B.jpg

OEBPS/xhtml/graphics/05figure_37_A.jpg

OEBPS/xhtml/graphics/11figure_17_A.jpg

OEBPS/xhtml/graphics/1E_img.jpg

OEBPS/xhtml/graphics/p0541_01.jpg

OEBPS/xhtml/graphics/13scr07a.jpg

OEBPS/xhtml/graphics/16scr01.jpg

OEBPS/xhtml/graphics/16scr02.jpg

OEBPS/xhtml/graphics/p0541_02.jpg

OEBPS/xhtml/graphics/16scr03.jpg

OEBPS/xhtml/graphics/p0541_03.jpg

OEBPS/xhtml/graphics/13scr07d.jpg

OEBPS/xhtml/graphics/13scr07b.jpg

OEBPS/xhtml/graphics/17figure_32_I.jpg

OEBPS/xhtml/graphics/13scr07c.jpg

OEBPS/xhtml/graphics/p0140_03.jpg

OEBPS/xhtml/graphics/01figure_06_D.jpg

OEBPS/xhtml/graphics/p0140_01.jpg

OEBPS/xhtml/graphics/p0461_02.jpg

OEBPS/xhtml/graphics/p0140_02.jpg

OEBPS/xhtml/graphics/p0461_01.jpg

OEBPS/xhtml/graphics/p0461_03.jpg

OEBPS/xhtml/graphics/08figure_04_D.jpg

OEBPS/xhtml/graphics/p0254_01.jpg

OEBPS/xhtml/graphics/02figure05_E.jpg

OEBPS/xhtml/graphics/16scr04.jpg

OEBPS/xhtml/graphics/16scr05.jpg

OEBPS/xhtml/graphics/J1_img.jpg

OEBPS/xhtml/graphics/p0025_03.jpg

OEBPS/xhtml/graphics/p0025_02.jpg

OEBPS/xhtml/graphics/p0025_01.jpg

OEBPS/xhtml/graphics/07figure_21_H.jpg

OEBPS/xhtml/graphics/13figure_03_C.jpg

OEBPS/xhtml/graphics/03figure_03_C.jpg

OEBPS/xhtml/graphics/p0358_01.jpg

OEBPS/xhtml/graphics/08figure_17_D.jpg

OEBPS/xhtml/graphics/p0152_01.jpg

OEBPS/xhtml/graphics/p0528_02.jpg

OEBPS/xhtml/graphics/p0528_01.jpg

OEBPS/xhtml/graphics/p0322_01.jpg

OEBPS/xhtml/graphics/p0094_02.jpg

OEBPS/xhtml/graphics/13scr05a.jpg

OEBPS/xhtml/graphics/p0094_01.jpg

OEBPS/xhtml/graphics/p0553_02.jpg

OEBPS/xhtml/graphics/p0553_01.jpg

OEBPS/xhtml/graphics/03figure_16_E.jpg

OEBPS/xhtml/graphics/11figure_04_D.jpg

OEBPS/xhtml/graphics/13figure_16_C.jpg

OEBPS/xhtml/graphics/18figure_28_A.jpg

OEBPS/xhtml/graphics/p0655_01.jpg

OEBPS/xhtml/graphics/afigure_06_B.jpg

OEBPS/xhtml/graphics/13scr06a.jpg

OEBPS/xhtml/graphics/01figure_19_B.jpg

OEBPS/xhtml/graphics/16figure_09_B.jpg

OEBPS/xhtml/graphics/05figure_35_C.jpg

OEBPS/xhtml/graphics/07figure_43_D.jpg

OEBPS/xhtml/graphics/01figure_15_A.jpg

OEBPS/xhtml/graphics/02figure18_C.jpg

OEBPS/xhtml/graphics/p0230_01.jpg

OEBPS/xhtml/graphics/p0391_01.jpg

OEBPS/xhtml/graphics/13scr02a.jpg

OEBPS/xhtml/graphics/afigure_19_C.jpg

OEBPS/xhtml/graphics/p0049_02.jpg

OEBPS/xhtml/graphics/14figure_08_D.jpg

OEBPS/xhtml/graphics/p0049_01.jpg

OEBPS/xhtml/graphics/07figure_34_F.jpg

OEBPS/xhtml/graphics/09figure_09_C.jpg

OEBPS/xhtml/graphics/13scr03a.jpg

OEBPS/xhtml/graphics/13figure_12_A.jpg

OEBPS/xhtml/graphics/05figure_44_H.jpg

OEBPS/xhtml/graphics/18figure_06_A.jpg

OEBPS/xhtml/graphics/11figure_26_A.jpg

OEBPS/xhtml/graphics/07figure_12_L.jpg

OEBPS/xhtml/graphics/p0565_01.jpg

OEBPS/xhtml/graphics/p0565_02.jpg

OEBPS/xhtml/graphics/p0565_03.jpg

OEBPS/xhtml/graphics/p0516_02.jpg

OEBPS/xhtml/graphics/p0516_03.jpg

OEBPS/xhtml/graphics/p0103_03.jpg

OEBPS/xhtml/graphics/p0070_03.jpg

OEBPS/xhtml/graphics/p0070_02.jpg

OEBPS/xhtml/graphics/p0103_01.jpg

OEBPS/xhtml/graphics/p0070_01.jpg

OEBPS/xhtml/graphics/15figure_13_B.jpg

OEBPS/xhtml/graphics/p0516_01.jpg

OEBPS/xhtml/graphics/p0037_01.jpg

OEBPS/xhtml/graphics/p0473_01.jpg

OEBPS/xhtml/graphics/p0473_02.jpg

OEBPS/xhtml/graphics/p0268_01.jpg

OEBPS/xhtml/graphics/05figure_22_A.jpg

OEBPS/xhtml/graphics/p0643_02.jpg

OEBPS/xhtml/graphics/p0643_01.jpg

OEBPS/xhtml/graphics/p0504_04.jpg

OEBPS/xhtml/graphics/p0229_03.jpg

OEBPS/xhtml/graphics/p0504_03.jpg

OEBPS/xhtml/graphics/p0229_02.jpg

OEBPS/xhtml/graphics/p0504_02.jpg

OEBPS/xhtml/graphics/p0229_01.jpg

OEBPS/xhtml/graphics/p0504_01.jpg

OEBPS/xhtml/graphics/p0577_01.jpg

OEBPS/xhtml/graphics/p0082_01.jpg

OEBPS/xhtml/graphics/p0504_06.jpg

OEBPS/xhtml/graphics/p0504_05.jpg

OEBPS/xhtml/graphics/13scr01b.jpg

OEBPS/xhtml/graphics/p0082_02.jpg

OEBPS/xhtml/graphics/13scr01a.jpg

OEBPS/xhtml/graphics/p0082_03.jpg

OEBPS/xhtml/graphics/00figure_01_A.jpg

OEBPS/xhtml/graphics/18figure_19_H.jpg

OEBPS/xhtml/graphics/13figure_25_A.jpg

OEBPS/xhtml/graphics/M_img.jpg

OEBPS/xhtml/graphics/13figure_07_A.jpg

OEBPS/xhtml/graphics/p0400_04.jpg

OEBPS/xhtml/graphics/11figure_13_I.jpg

OEBPS/xhtml/graphics/p0561_04.jpg

OEBPS/xhtml/graphics/p0561_02.jpg

OEBPS/xhtml/graphics/p0561_03.jpg

OEBPS/xhtml/graphics/p0561_01.jpg

OEBPS/xhtml/graphics/p0366_01.jpg

OEBPS/xhtml/graphics/p0366_02.jpg

OEBPS/xhtml/graphics/p0400_01.jpg

OEBPS/xhtml/graphics/p0400_02.jpg

OEBPS/xhtml/graphics/12scr02a.jpg

OEBPS/xhtml/graphics/p0400_03.jpg

OEBPS/xhtml/graphics/p0493_02.jpg

OEBPS/xhtml/graphics/02figure09_D.jpg

OEBPS/xhtml/graphics/p0493_01.jpg

OEBPS/xhtml/graphics/p0378_01.jpg

OEBPS/xhtml/graphics/p0378_03.jpg

OEBPS/xhtml/graphics/p0378_02.jpg

OEBPS/xhtml/graphics/p0281_02.jpg

OEBPS/xhtml/graphics/p0281_01.jpg

OEBPS/xhtml/graphics/07figure_25_D.jpg

OEBPS/xhtml/graphics/p0378_04.jpg

OEBPS/xhtml/graphics/afigure_24_H.jpg

OEBPS/xhtml/graphics/01scr10.jpg

OEBPS/xhtml/graphics/p0132_01.jpg

OEBPS/xhtml/graphics/12figure_11_F.jpg

OEBPS/xhtml/graphics/p0132_02.jpg

OEBPS/xhtml/graphics/01scr09.jpg

OEBPS/xhtml/graphics/01scr08.jpg

OEBPS/xhtml/graphics/p0217_01.jpg

OEBPS/xhtml/graphics/p0217_02.jpg

OEBPS/xhtml/graphics/01scr05.jpg

OEBPS/xhtml/graphics/p0188_03.jpg

OEBPS/xhtml/graphics/01scr04.jpg

OEBPS/xhtml/graphics/01scr07.jpg

OEBPS/xhtml/graphics/p0188_01.jpg

OEBPS/xhtml/graphics/01scr06.jpg

OEBPS/xhtml/graphics/p0188_02.jpg

OEBPS/xhtml/graphics/01scr01.jpg

OEBPS/xhtml/graphics/01scr03.jpg

OEBPS/xhtml/graphics/01scr02.jpg

OEBPS/xhtml/graphics/p0086_02.jpg

OEBPS/xhtml/graphics/1C_img.jpg

OEBPS/xhtml/graphics/p0086_03.jpg

OEBPS/xhtml/graphics/p0086_01.jpg

OEBPS/xhtml/graphics/p0508_01.jpg

OEBPS/xhtml/graphics/p0508_02.jpg

OEBPS/xhtml/graphics/p0412_04.jpg

OEBPS/xhtml/graphics/04figure_04_D.jpg

OEBPS/xhtml/graphics/p0412_03.jpg

OEBPS/xhtml/graphics/p0412_02.jpg

OEBPS/xhtml/graphics/p0412_01.jpg

OEBPS/xhtml/graphics/05figure_31_C.jpg

OEBPS/xhtml/graphics/07figure_47_D.jpg

OEBPS/xhtml/graphics/afigure_02_B.jpg

OEBPS/xhtml/graphics/16figure_05_E.jpg

OEBPS/xhtml/graphics/p0573_02.jpg

OEBPS/xhtml/graphics/p0573_01.jpg

OEBPS/xhtml/graphics/16figure_01_A.jpg

OEBPS/xhtml/graphics/p0144_01.jpg

OEBPS/xhtml/graphics/p0144_02.jpg

OEBPS/xhtml/graphics/06figure_20_A.jpg

OEBPS/xhtml/graphics/p0144_03.jpg

OEBPS/xhtml/graphics/p0310_01.jpg

OEBPS/xhtml/graphics/p0144_04.jpg

OEBPS/xhtml/graphics/p0597_02.jpg

OEBPS/xhtml/graphics/p0597_01.jpg

OEBPS/xhtml/graphics/p0436_02.jpg

OEBPS/xhtml/graphics/p0436_01.jpg

OEBPS/xhtml/graphics/p0436_03.jpg

OEBPS/xhtml/graphics/00figure_05_E.jpg

OEBPS/xhtml/graphics/12figure_02_B.jpg

OEBPS/xhtml/graphics/p0050_02.jpg

OEBPS/xhtml/graphics/p0050_01.jpg

OEBPS/xhtml/graphics/07figure_38_A.jpg

OEBPS/xhtml/graphics/05figure_40_D.jpg

OEBPS/xhtml/graphics/04figure_08_H.jpg

OEBPS/xhtml/graphics/afigure_15_B.jpg

OEBPS/xhtml/graphics/p0597_05.jpg

OEBPS/xhtml/graphics/03figure_12_A.jpg

OEBPS/xhtml/graphics/p0597_04.jpg

OEBPS/xhtml/graphics/p0597_03.jpg

OEBPS/xhtml/graphics/p0310_02.jpg

OEBPS/xhtml/graphics/11figure_22_C.jpg

OEBPS/xhtml/graphics/p0050_03.jpg

OEBPS/xhtml/graphics/p0611_02.jpg

OEBPS/xhtml/graphics/p0250_02.jpg

OEBPS/xhtml/graphics/p0250_01.jpg

OEBPS/xhtml/graphics/p0250_04.jpg

OEBPS/xhtml/graphics/p0309_01.jpg

OEBPS/xhtml/graphics/p0250_03.jpg

OEBPS/xhtml/graphics/p0611_01.jpg

OEBPS/xhtml/graphics/p0342_01.jpg

OEBPS/xhtml/graphics/p0342_02.jpg

OEBPS/xhtml/graphics/p0342_03.jpg

OEBPS/xhtml/graphics/p0585_01.jpg

OEBPS/xhtml/graphics/p0424_01.jpg

OEBPS/xhtml/graphics/p0424_02.jpg

OEBPS/xhtml/graphics/p0424_03.jpg

OEBPS/xhtml/graphics/p0062_02.jpg

OEBPS/xhtml/graphics/13figure_29_E.jpg

OEBPS/xhtml/graphics/p0062_03.jpg

OEBPS/xhtml/graphics/p0062_01.jpg

OEBPS/xhtml/graphics/p0354_01.jpg

OEBPS/xhtml/graphics/p0156_03.jpg

OEBPS/xhtml/graphics/p0156_02.jpg

OEBPS/xhtml/graphics/p0156_01.jpg

OEBPS/xhtml/graphics/p0354_03.jpg

OEBPS/xhtml/graphics/p0354_02.jpg

OEBPS/xhtml/graphics/08figure_08_H.jpg

OEBPS/xhtml/graphics/17figure_19_C.jpg

OEBPS/xhtml/graphics/06figure_33_F.jpg

OEBPS/xhtml/graphics/p0481_02.jpg

OEBPS/xhtml/graphics/p0623_02.jpg

OEBPS/xhtml/graphics/p0481_01.jpg

OEBPS/xhtml/graphics/p0623_01.jpg

OEBPS/xhtml/graphics/p0623_03.jpg

OEBPS/xhtml/graphics/squ.jpg

OEBPS/xhtml/graphics/07figure_03_C.jpg

OEBPS/xhtml/graphics/afigure_20_D.jpg

OEBPS/xhtml/graphics/03scr10b.jpg

OEBPS/xhtml/graphics/03scr10a.jpg

OEBPS/xhtml/graphics/p0111_05.jpg

OEBPS/xhtml/graphics/p0111_06.jpg

OEBPS/xhtml/graphics/p0111_01.jpg

OEBPS/xhtml/graphics/06figure_11_K.jpg

OEBPS/xhtml/graphics/p0111_02.jpg

OEBPS/xhtml/graphics/p0111_03.jpg

OEBPS/xhtml/graphics/p0111_04.jpg

OEBPS/xhtml/graphics/p0570_01.jpg

OEBPS/xhtml/graphics/p0570_02.jpg

OEBPS/xhtml/graphics/p0420_02.jpg

OEBPS/xhtml/graphics/p0420_03.jpg

OEBPS/xhtml/graphics/p0420_04.jpg

OEBPS/xhtml/graphics/p0363_01.jpg

OEBPS/xhtml/graphics/15figure_08_A.jpg

OEBPS/xhtml/graphics/p0569_01.jpg

OEBPS/xhtml/graphics/p0042_01.jpg

OEBPS/xhtml/graphics/p0042_02.jpg

OEBPS/xhtml/graphics/p0237_01.jpg

OEBPS/xhtml/graphics/07figure_29_A.jpg

OEBPS/xhtml/graphics/p0237_02.jpg

OEBPS/xhtml/graphics/p0237_03.jpg

OEBPS/xhtml/graphics/11figure_31_E.jpg

OEBPS/xhtml/graphics/p0420_01.jpg

OEBPS/xhtml/graphics/10figure_08_F.jpg

OEBPS/xhtml/graphics/14figure_12_D.jpg

OEBPS/xhtml/graphics/p0582_01.jpg

OEBPS/xhtml/graphics/p0066_01.jpg

OEBPS/xhtml/graphics/p0066_02.jpg

OEBPS/xhtml/graphics/p0066_03.jpg

OEBPS/xhtml/graphics/p0066_04.jpg

OEBPS/xhtml/graphics/p0066_05.jpg

OEBPS/xhtml/graphics/07figure_16_C.jpg

OEBPS/xhtml/graphics/05figure_09_C.jpg

OEBPS/xhtml/graphics/p0225_02.jpg

OEBPS/xhtml/graphics/12figure_15_A.jpg

OEBPS/xhtml/graphics/18figure_20_A.jpg

OEBPS/xhtml/graphics/17figure_05_E.jpg

OEBPS/xhtml/graphics/p0602_02.jpg

OEBPS/xhtml/graphics/p0602_01.jpg

OEBPS/xhtml/graphics/09figure_13_B.jpg

OEBPS/xhtml/graphics/p0030_01.jpg

OEBPS/xhtml/graphics/11scr03.jpg

OEBPS/xhtml/graphics/11scr04.jpg

OEBPS/xhtml/graphics/11scr05.jpg

OEBPS/xhtml/graphics/11scr06.jpg

OEBPS/xhtml/graphics/p0201_01.jpg

OEBPS/xhtml/graphics/p0488_01.jpg

OEBPS/xhtml/graphics/11scr01.jpg

OEBPS/xhtml/graphics/p0488_02.jpg

OEBPS/xhtml/graphics/11scr02.jpg

OEBPS/xhtml/graphics/18figure_33_F.jpg

OEBPS/xhtml/graphics/06figure_24_E.jpg

OEBPS/xhtml/graphics/11scr07.jpg

OEBPS/xhtml/graphics/p0285_03.jpg

OEBPS/xhtml/graphics/p0135_01.jpg

OEBPS/xhtml/graphics/p0135_02.jpg

OEBPS/xhtml/graphics/p0285_02.jpg

OEBPS/xhtml/graphics/p0285_01.jpg

OEBPS/xhtml/graphics/p0135_03.jpg

OEBPS/xhtml/graphics/17figure_27_D.jpg

OEBPS/xhtml/graphics/p0533_01.jpg

OEBPS/xhtml/graphics/p0533_02.jpg

OEBPS/xhtml/graphics/02figure22_G.jpg

OEBPS/xhtml/graphics/I_img.jpg

OEBPS/xhtml/graphics/07figure_07_G.jpg

OEBPS/xhtml/graphics/p0614_01.jpg

OEBPS/xhtml/graphics/p0614_02.jpg

OEBPS/xhtml/graphics/p0306_03.jpg

OEBPS/xhtml/graphics/18figure_11_B.jpg

OEBPS/xhtml/graphics/p0306_01.jpg

OEBPS/xhtml/graphics/p0306_02.jpg

OEBPS/xhtml/graphics/06figure_02_B.jpg

OEBPS/xhtml/graphics/17figure_14_B.jpg

OEBPS/xhtml/graphics/p0098_02.jpg

OEBPS/xhtml/graphics/p0098_01.jpg

OEBPS/xhtml/graphics/p0213_02.jpg

OEBPS/xhtml/graphics/06figure_37_J.jpg

OEBPS/xhtml/graphics/p0098_03.jpg

OEBPS/xhtml/graphics/p0213_01.jpg

OEBPS/xhtml/graphics/p0297_04.jpg

OEBPS/xhtml/graphics/p0297_01.jpg

OEBPS/xhtml/graphics/p0297_02.jpg

OEBPS/xhtml/graphics/p0297_03.jpg

OEBPS/xhtml/graphics/p0147_04.jpg

OEBPS/xhtml/graphics/01figure_20_C.jpg

OEBPS/xhtml/graphics/afigure_11_C.jpg

OEBPS/xhtml/graphics/p0521_01.jpg

OEBPS/xhtml/graphics/p0521_02.jpg

OEBPS/xhtml/graphics/10figure_17_A.jpg

OEBPS/xhtml/graphics/14figure_21_B.jpg

OEBPS/xhtml/graphics/12figure_06_A.jpg

OEBPS/xhtml/graphics/p0351_01.jpg

OEBPS/xhtml/graphics/p0351_02.jpg

OEBPS/xhtml/graphics/09scr04.jpg

OEBPS/xhtml/graphics/09scr05.jpg

OEBPS/xhtml/graphics/09scr06.jpg

OEBPS/xhtml/graphics/05figure_18_B.jpg

OEBPS/xhtml/graphics/09scr07.jpg

OEBPS/xhtml/graphics/p0147_01.jpg

OEBPS/xhtml/graphics/09scr01.jpg

OEBPS/xhtml/graphics/09scr02.jpg

OEBPS/xhtml/graphics/p0147_03.jpg

OEBPS/xhtml/graphics/09scr03.jpg

OEBPS/xhtml/graphics/p0147_02.jpg

OEBPS/xhtml/graphics/p0314_03.jpg

OEBPS/xhtml/graphics/p0314_02.jpg

OEBPS/xhtml/graphics/p0314_01.jpg

OEBPS/xhtml/graphics/09scr05c.jpg

OEBPS/xhtml/graphics/09scr05a.jpg

OEBPS/xhtml/graphics/p0022_04.jpg

OEBPS/xhtml/graphics/09scr05b.jpg

OEBPS/xhtml/graphics/p0452_01.jpg

OEBPS/xhtml/graphics/p0022_02.jpg

OEBPS/xhtml/graphics/p0022_03.jpg

OEBPS/xhtml/graphics/08figure_12_B.jpg

OEBPS/xhtml/graphics/p0022_01.jpg

OEBPS/xhtml/graphics/05figure_27_A.jpg

OEBPS/xhtml/graphics/15figure_04_B.jpg

OEBPS/xhtml/graphics/01figure_02_B.jpg

OEBPS/xhtml/graphics/06figure_15_C.jpg

OEBPS/xhtml/graphics/11figure_09_E.jpg

OEBPS/xhtml/graphics/09scr06a.jpg

OEBPS/xhtml/graphics/p0107_01.jpg

OEBPS/xhtml/graphics/p0395_01.jpg

OEBPS/xhtml/graphics/p0107_02.jpg

OEBPS/xhtml/graphics/p0395_02.jpg

OEBPS/xhtml/graphics/1G_img.jpg

OEBPS/xhtml/graphics/p0395_03.jpg

OEBPS/xhtml/graphics/p0395_04.jpg

OEBPS/xhtml/graphics/p0589_01.jpg

OEBPS/xhtml/graphics/p0537_01.jpg

OEBPS/xhtml/graphics/p0537_02.jpg

OEBPS/xhtml/graphics/p0383_01.jpg

OEBPS/xhtml/graphics/03figure_08_C.jpg

OEBPS/xhtml/graphics/15figure_17_F.jpg

OEBPS/xhtml/graphics/p0383_03.jpg

OEBPS/xhtml/graphics/p0383_02.jpg

OEBPS/xhtml/graphics/09scr03a.jpg

OEBPS/xhtml/graphics/09scr03b.jpg

OEBPS/xhtml/graphics/p0618_02.jpg

OEBPS/xhtml/graphics/14figure_16_A.jpg

OEBPS/xhtml/graphics/p0618_01.jpg

OEBPS/xhtml/graphics/10figure_04_B.jpg

OEBPS/xhtml/graphics/p0302_01.jpg

OEBPS/xhtml/graphics/p0302_02.jpg

OEBPS/xhtml/graphics/12figure_19_E.jpg

OEBPS/xhtml/graphics/13figure_11_E.jpg

OEBPS/xhtml/graphics/02figure13_A.jpg

OEBPS/xhtml/graphics/05figure_05_E.jpg

OEBPS/xhtml/graphics/18figure_24_B.jpg

OEBPS/xhtml/graphics/p0338_01.jpg

OEBPS/xhtml/graphics/p0338_02.jpg

OEBPS/xhtml/graphics/p0525_05.jpg

OEBPS/xhtml/graphics/09scr04a.jpg

OEBPS/xhtml/graphics/p0525_04.jpg

OEBPS/xhtml/graphics/p0525_03.jpg

OEBPS/xhtml/graphics/p0525_02.jpg

OEBPS/xhtml/graphics/p0525_01.jpg

OEBPS/xhtml/graphics/09figure_17_A.jpg

OEBPS/xhtml/graphics/p0160_01.jpg

OEBPS/xhtml/graphics/p0160_02.jpg

OEBPS/xhtml/graphics/p0590_01.jpg

OEBPS/xhtml/graphics/p0196_01.jpg

OEBPS/xhtml/graphics/01figure_11_A.jpg

OEBPS/xhtml/graphics/p0545_01.jpg

OEBPS/xhtml/graphics/06figure_28_A.jpg

OEBPS/xhtml/graphics/p0545_03.jpg

OEBPS/xhtml/graphics/p0545_02.jpg

OEBPS/xhtml/graphics/18figure_02_B.jpg

OEBPS/xhtml/graphics/p0233_02.jpg

OEBPS/xhtml/graphics/08figure_21_A.jpg

OEBPS/xhtml/graphics/14figure_03_C.jpg

OEBPS/xhtml/graphics/p0046_02.jpg

OEBPS/xhtml/graphics/17figure_23_D.jpg

OEBPS/xhtml/graphics/p0407_01.jpg

OEBPS/xhtml/graphics/A1_img.jpg

OEBPS/xhtml/graphics/p0046_01.jpg

OEBPS/xhtml/graphics/06figure_06_F.jpg

OEBPS/xhtml/graphics/05figure_36_D.jpg

OEBPS/xhtml/graphics/p0091_01.jpg

OEBPS/xhtml/graphics/p0233_01.jpg

OEBPS/xhtml/graphics/p0091_02.jpg

OEBPS/xhtml/graphics/02figure26_B.jpg

OEBPS/xhtml/graphics/p0091_03.jpg

OEBPS/xhtml/graphics/13figure_20_A.jpg

OEBPS/xhtml/graphics/p0091_04.jpg

OEBPS/xhtml/graphics/07figure_42_C.jpg

OEBPS/xhtml/graphics/p0091_05.jpg

OEBPS/xhtml/graphics/18figure_15_D.jpg

OEBPS/xhtml/graphics/p0501_01.jpg

OEBPS/xhtml/graphics/11figure_18_B.jpg

OEBPS/xhtml/graphics/p0608_01b.jpg

OEBPS/xhtml/graphics/09scr07c.jpg

OEBPS/xhtml/graphics/09scr07d.jpg

OEBPS/xhtml/graphics/09scr07a.jpg

OEBPS/xhtml/graphics/09scr07b.jpg

OEBPS/xhtml/graphics/10figure_13_A.jpg

OEBPS/xhtml/graphics/09figure_04_C.jpg

OEBPS/xhtml/graphics/17figure_10_J.jpg

OEBPS/xhtml/graphics/p0326_01.jpg

OEBPS/xhtml/graphics/p0326_02.jpg

OEBPS/xhtml/graphics/1I_img.jpg

OEBPS/xhtml/graphics/p0184_01.jpg

OEBPS/xhtml/graphics/K_img.jpg

OEBPS/xhtml/graphics/02figure04_D.jpg

OEBPS/xhtml/graphics/14figure_25_D.jpg

OEBPS/xhtml/graphics/p0651_01.jpg

OEBPS/xhtml/graphics/05figure_49_M.jpg

OEBPS/xhtml/graphics/p0221_04.jpg

OEBPS/xhtml/graphics/p0221_03.jpg

OEBPS/xhtml/graphics/p0221_02.jpg

OEBPS/xhtml/graphics/p0221_01.jpg

OEBPS/xhtml/graphics/05figure_14_B.jpg

OEBPS/xhtml/graphics/18figure_16_E.jpg

OEBPS/xhtml/graphics/02scr01a.jpg

OEBPS/xhtml/graphics/p0083_01.jpg

OEBPS/xhtml/graphics/p0517_03.jpg

OEBPS/xhtml/graphics/p0517_01.jpg

OEBPS/xhtml/graphics/p0517_02.jpg

OEBPS/xhtml/graphics/03figure_15_D.jpg

OEBPS/xhtml/graphics/p0472_04.jpg

OEBPS/xhtml/graphics/p0472_03.jpg

OEBPS/xhtml/graphics/p0357_02.jpg

OEBPS/xhtml/graphics/p0472_02.jpg

OEBPS/xhtml/graphics/p0632_02.jpg

OEBPS/xhtml/graphics/p0357_01.jpg

OEBPS/xhtml/graphics/p0472_01.jpg

OEBPS/xhtml/graphics/p0632_01.jpg

OEBPS/xhtml/graphics/p0632_03.jpg

OEBPS/xhtml/graphics/06figure_08_H.jpg

OEBPS/xhtml/graphics/p0095_02.jpg

OEBPS/xhtml/graphics/p0370_02.jpg

OEBPS/xhtml/graphics/p0370_03.jpg

OEBPS/xhtml/graphics/p0095_01.jpg

OEBPS/xhtml/graphics/p0370_01.jpg

OEBPS/xhtml/graphics/p0370_04.jpg

OEBPS/xhtml/graphics/13figure_26_B.jpg

OEBPS/xhtml/graphics/05figure_34_B.jpg

OEBPS/xhtml/graphics/07figure_44_A.jpg

OEBPS/xhtml/graphics/01figure_18_A.jpg

OEBPS/xhtml/graphics/13figure_04_D.jpg

OEBPS/xhtml/graphics/p0496_01.jpg

OEBPS/xhtml/graphics/11figure_16_L.jpg

OEBPS/xhtml/graphics/10figure_11_B.jpg

OEBPS/xhtml/graphics/14figure_09_A.jpg

OEBPS/xhtml/graphics/02scr04a.jpg

OEBPS/xhtml/graphics/07figure_31_C.jpg

OEBPS/xhtml/graphics/15figure_01_A.jpg

OEBPS/xhtml/graphics/05figure_47_K.jpg

OEBPS/xhtml/graphics/p0231_01.jpg

OEBPS/xhtml/graphics/p0598_03.jpg

OEBPS/xhtml/graphics/08figure_05_E.jpg

OEBPS/xhtml/graphics/p0598_02.jpg

OEBPS/xhtml/graphics/p0598_01.jpg

OEBPS/xhtml/graphics/p0231_02.jpg

OEBPS/xhtml/graphics/p0542_01.jpg

OEBPS/xhtml/graphics/p0542_02.jpg

OEBPS/xhtml/graphics/p0369_01.jpg

OEBPS/xhtml/graphics/p0644_01.jpg

OEBPS/xhtml/graphics/p0369_02.jpg

OEBPS/xhtml/graphics/p0644_02.jpg

OEBPS/xhtml/graphics/E_img.jpg

OEBPS/xhtml/graphics/05figure_12_F.jpg

OEBPS/xhtml/graphics/02figure06_A.jpg

OEBPS/xhtml/graphics/17figure_20_A.jpg

OEBPS/xhtml/graphics/p0058_02.jpg

OEBPS/xhtml/graphics/p0333_02.jpg

OEBPS/xhtml/graphics/p0058_01.jpg

OEBPS/xhtml/graphics/p0333_01.jpg

OEBPS/xhtml/graphics/08figure_14_A.jpg

OEBPS/xhtml/graphics/p0026_03.jpg

OEBPS/xhtml/graphics/p0026_02.jpg

OEBPS/xhtml/graphics/p0026_01.jpg

OEBPS/xhtml/graphics/p0427_04.jpg

OEBPS/xhtml/graphics/p0427_03.jpg

OEBPS/xhtml/graphics/p0427_02.jpg

OEBPS/xhtml/graphics/p0058_03.jpg

OEBPS/xhtml/graphics/p0333_03.jpg

OEBPS/xhtml/graphics/p0427_01.jpg

OEBPS/xhtml/graphics/02scr06a.jpg

OEBPS/xhtml/graphics/05figure_21_E.jpg

OEBPS/xhtml/graphics/11figure_03_C.jpg

OEBPS/xhtml/graphics/18figure_29_B.jpg

OEBPS/xhtml/graphics/11scr07a.jpg

OEBPS/xhtml/graphics/p0206_01.jpg

OEBPS/xhtml/graphics/p0439_01.jpg

OEBPS/xhtml/graphics/11scr07c.jpg

OEBPS/xhtml/graphics/p0206_03.jpg

OEBPS/xhtml/graphics/11scr07b.jpg

OEBPS/xhtml/graphics/p0206_02.jpg

OEBPS/xhtml/graphics/13scr06.jpg

OEBPS/xhtml/graphics/13scr05.jpg

OEBPS/xhtml/graphics/13scr08.jpg

OEBPS/xhtml/graphics/p0439_02.jpg

OEBPS/xhtml/graphics/13scr07.jpg

OEBPS/xhtml/graphics/13scr02.jpg

OEBPS/xhtml/graphics/13scr01.jpg

OEBPS/xhtml/graphics/p0301_01.jpg

OEBPS/xhtml/graphics/13scr04.jpg

OEBPS/xhtml/graphics/p0301_02.jpg

OEBPS/xhtml/graphics/13scr03.jpg

OEBPS/xhtml/graphics/p0301_03.jpg

OEBPS/xhtml/graphics/p0301_04.jpg

OEBPS/xhtml/graphics/afigure_07_C.jpg

OEBPS/xhtml/graphics/p0619_01.jpg

OEBPS/xhtml/graphics/p0619_02.jpg

OEBPS/xhtml/graphics/p0619_03.jpg

OEBPS/xhtml/graphics/02scr07a.jpg

OEBPS/xhtml/graphics/16figure_06_F.jpg

OEBPS/xhtml/graphics/p0279_01.jpg

OEBPS/xhtml/graphics/p0554_01.jpg

OEBPS/xhtml/graphics/p0141_01.jpg

OEBPS/xhtml/graphics/p0279_03.jpg

OEBPS/xhtml/graphics/p0279_02.jpg

OEBPS/xhtml/graphics/02figure19_D.jpg

OEBPS/xhtml/graphics/11scr06a.jpg

OEBPS/xhtml/graphics/p0280_01.jpg

OEBPS/xhtml/graphics/p0566_01.jpg

OEBPS/xhtml/graphics/p0566_02.jpg

OEBPS/xhtml/graphics/p0071_01.jpg

OEBPS/xhtml/graphics/02scr08a.jpg

OEBPS/xhtml/graphics/13figure_13_B.jpg

OEBPS/xhtml/graphics/01figure_05_C.jpg

OEBPS/xhtml/graphics/11figure_25_F.jpg

OEBPS/xhtml/graphics/18figure_07_B.jpg

OEBPS/xhtml/graphics/13scr13a.jpg

OEBPS/xhtml/graphics/13scr13b.jpg

OEBPS/xhtml/graphics/p0153_02.jpg

OEBPS/xhtml/graphics/p0153_01.jpg

OEBPS/xhtml/graphics/p0218_01.jpg

OEBPS/xhtml/graphics/p0218_02.jpg

OEBPS/xhtml/graphics/14figure_18_C.jpg

OEBPS/xhtml/graphics/15figure_14_C.jpg

OEBPS/xhtml/graphics/02scr09a.jpg

OEBPS/xhtml/graphics/07figure_22_A.jpg

OEBPS/xhtml/graphics/03figure_06_A.jpg

OEBPS/xhtml/graphics/11scr04a.jpg

OEBPS/xhtml/graphics/p0612_03.jpg

OEBPS/xhtml/graphics/p0308_02.jpg

OEBPS/xhtml/graphics/p0308_01.jpg

OEBPS/xhtml/graphics/p0612_02.jpg

OEBPS/xhtml/graphics/p0612_01.jpg

OEBPS/xhtml/graphics/12figure_12_G.jpg

OEBPS/xhtml/graphics/p0389_01.jpg

OEBPS/xhtml/graphics/p0389_02.jpg

OEBPS/xhtml/graphics/p0389_03.jpg

OEBPS/xhtml/graphics/p0423_02.jpg

OEBPS/xhtml/graphics/p0423_01.jpg

OEBPS/xhtml/nav.xhtml

Contents

		Cover Page

		Title Page

		Copyright Page

		Dedication Page

		Table of Contents

		Introduction

		Chapter 1 Introduction to PHP

		Basic Syntax

		Sending Data to the Browser

		Writing Comments

		What Are Variables?

		Introducing Strings

		Concatenating Strings

		Introducing Numbers

		Introducing Constants

		Single vs. Double Quotation Marks

		Basic Debugging Steps

		Review and Pursue

		Chapter 2 Programming with PHP

		Creating an HTML Form

		Handling an HTML Form

		Conditionals and Operators

		Validating Form Data

		Introducing Arrays

		For and While Loops

		Review and Pursue

		Chapter 3 Creating Dynamic Web Sites

		Including Multiple Files

		Handling HTML Forms, Revisited

		Making Sticky Forms

		Creating Your Own Functions

		Review and Pursue

		Chapter 4 Introduction to MySQL

		Naming Database Elements

		Choosing Your Column Types

		Choosing Other Column Properties

		Accessing MySQL

		Review and Pursue

		Chapter 5 Introduction to SQL

		Creating Databases and Tables

		Inserting Records

		Selecting Data

		Using Conditionals

		Using LIKE and NOT LIKE

		Sorting Query Results

		Limiting Query Results

		Updating Data

		Deleting Data

		Using Functions

		Review and Pursue

		Chapter 6 Database Design

		Normalization

		Creating Indexes

		Using Different Table Types

		Languages and MySQL

		Time Zones and MySQL

		Foreign Key Constraints

		Review and Pursue

		Chapter 7 Advanced SQL and MySQL

		Performing Joins

		Grouping Selected Results

		Advanced Selections

		Performing FULLTEXT Searches

		Optimizing Queries

		Performing Transactions

		Database Encryption

		Review and Pursue

		Chapter 8 Error Handling and Debugging

		Error Types and Basic Debugging

		Displaying PHP Errors

		Adjusting Error Reporting in PHP

		Creating Custom Error Handlers

		PHP Debugging Techniques

		SQL and MySQL Debugging Techniques

		Review and Pursue

		Chapter 9 Using PHP with MySQL

		Modifying the Template

		Connecting to MySQL

		Executing Simple Queries

		Retrieving Query Results

		Ensuring Secure SQL

		Counting Returned Records

		Updating Records with PHP

		Review and Pursue

		Chapter 10 Common Programming Techniques

		Sending Values to a Script

		Using Hidden Form Inputs

		Editing Existing Records

		Paginating Query Results

		Making Sortable Displays

		Review and Pursue

		Chapter 11 Web Application Development

		Sending Email

		Handling File Uploads

		PHP and JavaScript

		Understanding HTTP Headers

		Date and Time Functions

		Performing Transactions

		Review and Pursue

		Chapter 12 Cookies and Sessions

		Making a Login Page

		Making the Login Functions

		Using Cookies

		Using Sessions

		Improving Session Security

		Review and Pursue

		Chapter 13 Security Methods

		Preventing Spam

		Validating Data by Type

		Validating Files by Type

		Preventing XSS Attacks

		Using the Filter Extension

		Preventing SQL Injection Attacks

		Securing Passwords with PHP

		Review and Pursue

		Chapter 14 Perl-Compatible Regular Expressions

		Creating a Test Script

		Defining Simple Patterns

		Using Quantifiers

		Using Character Classes

		Finding All Matches

		Using Modifiers

		Matching and Replacing Patterns

		Review and Pursue

		Chapter 15 Introducing jQuery

		What Is jQuery?

		Incorporating jQuery

		Using jQuery

		Selecting Page Elements

		Event Handling

		DOM Manipulation

		Using Ajax

		Review and Pursue

		Chapter 16 An OOP Primer

		Fundamentals and Syntax

		Working with MySQL

		The DateTime Class

		Review and Pursue

		Chapter 17 Example—Message Board

		Making the Database

		Writing the Templates

		Creating the Index Page

		Creating the Forum Page

		Creating the Thread Page

		Posting Messages

		Review and Pursue

		Chapter 18 Example—User Registration

		Creating the Templates

		Writing the Configuration Scripts

		Creating the Home Page

		Registration

		Activating an Account

		Logging In and Logging Out

		Password Management

		Review and Pursue

		Appendix A Installation

		Installation on Windows

		Installation on macOS

		Managing MySQL Users

		Testing Your Installation

		Configuring PHP

		Configuring Apache

		Index

		i

		ii

		iii

		iv

		v

		vi

		vii

		viii

		ix

		x

		xi

		xii

		xiii

		xiv

		xv

		xvi

		xvii

		xviii

		xix

		xx

		xxi

		xxii

		xxiii

		xxiv

		xxv

		xxvi

		1

		2

		3

		4

		5

		6

		7

		8

		9

		10

		11

		12

		13

		14

		15

		16

		17

		18

		19

		20

		21

		22

		23

		24

		25

		26

		27

		28

		29

		30

		31

		32

		33

		34

		35

		36

		37

		38

		39

		40

		41

		42

		43

		44

		45

		46

		47

		48

		49

		50

		51

		52

		53

		54

		55

		56

		57

		58

		59

		60

		61

		62

		63

		64

		65

		66

		67

		68

		69

		70

		71

		72

		73

		74

		75

		76

		77

		78

		79

		80

		81

		82

		83

		84

		85

		86

		87

		88

		89

		90

		91

		92

		93

		94

		95

		96

		97

		98

		99

		100

		101

		102

		103

		104

		105

		106

		107

		108

		109

		110

		111

		112

		113

		114

		115

		116

		117

		118

		119

		120

		121

		122

		123

		124

		125

		126

		127

		128

		129

		130

		131

		132

		133

		134

		135

		136

		137

		138

		139

		140

		141

		142

		143

		144

		145

		146

		147

		148

		149

		150

		151

		152

		153

		154

		155

		156

		157

		158

		159

		160

		161

		162

		163

		164

		165

		166

		167

		168

		169

		170

		171

		172

		173

		174

		175

		176

		177

		178

		179

		180

		181

		182

		183

		184

		185

		186

		187

		188

		189

		190

		191

		192

		193

		194

		195

		196

		197

		198

		199

		200

		201

		202

		203

		204

		205

		206

		207

		208

		209

		210

		211

		212

		213

		214

		215

		216

		217

		218

		219

		220

		221

		222

		223

		224

		225

		226

		227

		228

		229

		230

		231

		232

		233

		234

		235

		236

		237

		238

		239

		240

		241

		242

		243

		244

		245

		246

		247

		248

		249

		250

		251

		252

		253

		254

		255

		256

		257

		258

		259

		260

		261

		262

		263

		264

		265

		266

		267

		268

		269

		270

		271

		272

		273

		274

		275

		276

		277

		278

		279

		280

		281

		282

		283

		284

		285

		286

		287

		288

		289

		290

		291

		292

		293

		294

		295

		296

		297

		298

		299

		300

		301

		302

		303

		304

		305

		306

		307

		308

		309

		310

		311

		312

		313

		314

		315

		316

		317

		318

		319

		320

		321

		322

		323

		324

		325

		326

		327

		328

		329

		330

		331

		332

		333

		334

		335

		336

		337

		338

		339

		340

		341

		342

		343

		344

		345

		346

		347

		348

		349

		350

		351

		352

		353

		354

		355

		356

		357

		358

		359

		360

		361

		362

		363

		364

		365

		366

		367

		368

		369

		370

		371

		372

		373

		374

		375

		376

		377

		378

		379

		380

		381

		382

		383

		384

		385

		386

		387

		388

		389

		390

		391

		392

		393

		394

		395

		396

		397

		398

		399

		400

		401

		402

		403

		404

		405

		406

		407

		408

		409

		410

		411

		412

		413

		414

		415

		416

		417

		418

		419

		420

		421

		422

		423

		424

		425

		426

		427

		428

		429

		430

		431

		432

		433

		434

		435

		436

		437

		438

		439

		440

		441

		442

		443

		444

		445

		446

		447

		448

		449

		450

		451

		452

		453

		454

		455

		456

		457

		458

		459

		460

		461

		462

		463

		464

		465

		466

		467

		468

		469

		470

		471

		472

		473

		474

		475

		476

		477

		478

		479

		480

		481

		482

		483

		484

		485

		486

		487

		488

		489

		490

		491

		492

		493

		494

		495

		496

		497

		498

		499

		500

		501

		502

		503

		504

		505

		506

		507

		508

		509

		510

		511

		512

		513

		514

		515

		516

		517

		518

		519

		520

		521

		522

		523

		524

		525

		526

		527

		528

		529

		530

		531

		532

		533

		534

		535

		536

		537

		538

		539

		540

		541

		542

		543

		544

		545

		546

		547

		548

		549

		550

		551

		552

		553

		554

		555

		556

		557

		558

		559

		560

		561

		562

		563

		564

		565

		566

		567

		568

		569

		570

		571

		572

		573

		574

		575

		576

		577

		578

		579

		580

		581

		582

		583

		584

		585

		586

		587

		588

		589

		590

		591

		592

		593

		594

		595

		596

		597

		598

		599

		600

		601

		602

		603

		604

		605

		606

		607

		608

		609

		610

		611

		612

		613

		614

		615

		616

		617

		618

		619

		620

		621

		622

		623

		624

		625

		626

		627

		628

		629

		630

		631

		632

		633

		634

		635

		636

		637

		638

		639

		640

		641

		642

		643

		644

		645

		646

		647

		648

		649

		650

		651

		652

		653

		654

		655

		656

		657

		658

		659

		660

		661

		662

		663

		664

		665

		666

		667

		668

		669

		670

		671

		672

		673

		674

		675

		676

		677

		678

OEBPS/xhtml/graphics/p0063_01.jpg

OEBPS/xhtml/graphics/06figure_30_C.jpg

OEBPS/xhtml/graphics/p0063_02.jpg

OEBPS/xhtml/graphics/05figure_30_B.jpg

OEBPS/xhtml/graphics/p0600_01.jpg

OEBPS/xhtml/graphics/11scr02d.jpg

OEBPS/xhtml/graphics/11scr02c.jpg

OEBPS/xhtml/graphics/13figure_08_B.jpg

OEBPS/xhtml/graphics/11scr02b.jpg

OEBPS/xhtml/graphics/p0251_01.jpg

OEBPS/xhtml/graphics/11scr02a.jpg

OEBPS/xhtml/graphics/11figure_12_H.jpg

OEBPS/xhtml/graphics/00figure_04_D.jpg

OEBPS/xhtml/graphics/07figure_35_G.jpg

OEBPS/xhtml/graphics/p0624_01.jpg

OEBPS/xhtml/graphics/p0624_02.jpg

OEBPS/xhtml/graphics/05figure_43_G.jpg

OEBPS/xhtml/graphics/03figure_11_B.jpg

OEBPS/xhtml/graphics/p0165_01.jpg

OEBPS/xhtml/graphics/p0165_02.jpg

OEBPS/xhtml/graphics/p0165_03.jpg

OEBPS/xhtml/graphics/11scr01a.jpg

OEBPS/xhtml/graphics/p0038_01.jpg

OEBPS/xhtml/graphics/p0038_02.jpg

OEBPS/xhtml/graphics/07figure_13_M.jpg

OEBPS/xhtml/graphics/08figure_09_A.jpg

OEBPS/xhtml/graphics/p0562_03.jpg

OEBPS/xhtml/graphics/p0562_04.jpg

OEBPS/xhtml/graphics/p0562_01.jpg

OEBPS/xhtml/graphics/p0562_02.jpg

OEBPS/xhtml/graphics/08figure_18_A.jpg

OEBPS/xhtml/graphics/p0574_01.jpg

OEBPS/xhtml/graphics/p0121_01.jpg

OEBPS/xhtml/graphics/p0006_01.jpg

OEBPS/xhtml/graphics/p0006_03.jpg

OEBPS/xhtml/graphics/p0006_02.jpg

OEBPS/xhtml/graphics/G_img.jpg

OEBPS/xhtml/graphics/p0574_02.jpg

OEBPS/xhtml/graphics/13figure_17_D.jpg

OEBPS/xhtml/graphics/p0321_02.jpg

OEBPS/xhtml/graphics/p0321_03.jpg

OEBPS/xhtml/graphics/p0321_04.jpg

OEBPS/xhtml/graphics/12figure_03_C.jpg

OEBPS/xhtml/graphics/p0321_01.jpg

OEBPS/xhtml/graphics/afigure_03_C.jpg

OEBPS/xhtml/graphics/p0353_03.jpg

OEBPS/xhtml/graphics/p0353_02.jpg

OEBPS/xhtml/graphics/p0353_01.jpg

OEBPS/xhtml/graphics/07figure_04_D.jpg

OEBPS/xhtml/graphics/06figure_21_B.jpg

OEBPS/xhtml/graphics/p0492_01.jpg

OEBPS/xhtml/graphics/p0492_02.jpg

OEBPS/xhtml/graphics/16figure_02_B.jpg

OEBPS/xhtml/graphics/p0226_01.jpg

OEBPS/xhtml/graphics/p0100_02.jpg

OEBPS/xhtml/graphics/p0100_01.jpg

OEBPS/xhtml/graphics/p0226_02.jpg

OEBPS/xhtml/graphics/p0100_04.jpg

OEBPS/xhtml/graphics/p0100_03.jpg

OEBPS/xhtml/graphics/17figure_07_G.jpg

OEBPS/xhtml/graphics/afigure_16_A.jpg

OEBPS/xhtml/graphics/04figure_07_G.jpg

OEBPS/xhtml/graphics/01figure_09_A.jpg

OEBPS/xhtml/graphics/p0530_01.jpg

OEBPS/xhtml/graphics/11figure_21_B.jpg

OEBPS/xhtml/graphics/p0447_02.jpg

OEBPS/xhtml/graphics/p0189_01.jpg

OEBPS/xhtml/graphics/p0447_01.jpg

OEBPS/xhtml/graphics/p0365_02.jpg

OEBPS/xhtml/graphics/p0365_03.jpg

OEBPS/xhtml/graphics/15figure_10_A.jpg

OEBPS/xhtml/graphics/p0133_01.jpg

OEBPS/xhtml/graphics/p0051_01.jpg

OEBPS/xhtml/graphics/07figure_26_E.jpg

OEBPS/xhtml/graphics/p0365_01.jpg

OEBPS/xhtml/graphics/p0189_02.jpg

OEBPS/xhtml/graphics/03figure_02_B.jpg

OEBPS/xhtml/graphics/10figure_07_E.jpg

OEBPS/xhtml/graphics/17figure_06_F.jpg

OEBPS/xhtml/graphics/14figure_13_A.jpg

OEBPS/xhtml/graphics/12figure_16_B.jpg

OEBPS/xhtml/graphics/p0603_02.jpg

OEBPS/xhtml/graphics/p0603_01.jpg

OEBPS/xhtml/graphics/p0031_01.jpg

OEBPS/xhtml/graphics/07figure_17_D.jpg

OEBPS/xhtml/graphics/p0272_01.jpg

OEBPS/xhtml/graphics/05figure_08_B.jpg

OEBPS/xhtml/graphics/p0202_02.jpg

OEBPS/xhtml/graphics/p0202_01.jpg

OEBPS/xhtml/graphics/06figure_34_G.jpg

OEBPS/xhtml/graphics/p0455_01.jpg

OEBPS/xhtml/graphics/14scr02a.jpg

OEBPS/xhtml/graphics/p0558_01.jpg

OEBPS/xhtml/graphics/09figure_14_A.jpg

OEBPS/xhtml/graphics/A_img.jpg

OEBPS/xhtml/graphics/01figure_10_B.jpg

OEBPS/xhtml/graphics/p0284_02.jpg

OEBPS/xhtml/graphics/17figure_28_E.jpg

OEBPS/xhtml/graphics/p0284_01.jpg

OEBPS/xhtml/graphics/1A_img.jpg

OEBPS/xhtml/graphics/07figure_39_B.jpg

OEBPS/xhtml/graphics/p0018_01.jpg

OEBPS/xhtml/graphics/p0018_02.jpg

OEBPS/xhtml/graphics/p0018_03.jpg

OEBPS/xhtml/graphics/p0534_01.jpg

OEBPS/xhtml/graphics/p0018_04.jpg

OEBPS/xhtml/graphics/p0443_01.jpg

OEBPS/xhtml/graphics/p0443_02.jpg

OEBPS/xhtml/graphics/06figure_12_A.jpg

OEBPS/xhtml/graphics/p0386_01.jpg

OEBPS/xhtml/graphics/15figure_09_B.jpg

OEBPS/xhtml/graphics/p0627_03.jpg

OEBPS/xhtml/graphics/p0214_01.jpg

OEBPS/xhtml/graphics/afigure_21_E.jpg

OEBPS/xhtml/graphics/p0055_01.jpg

OEBPS/xhtml/graphics/p0330_01.jpg

OEBPS/xhtml/graphics/p0330_03.jpg

OEBPS/xhtml/graphics/p0627_02.jpg

OEBPS/xhtml/graphics/p0330_02.jpg

OEBPS/xhtml/graphics/p0627_01.jpg

OEBPS/xhtml/graphics/11figure_30_D.jpg

OEBPS/xhtml/graphics/p0362_03.jpg

OEBPS/xhtml/graphics/07figure_08_H.jpg

OEBPS/xhtml/graphics/p0660_01.jpg

OEBPS/xhtml/graphics/p0362_02.jpg

OEBPS/xhtml/graphics/p0362_01.jpg

OEBPS/xhtml/graphics/p0522_03.jpg

OEBPS/xhtml/graphics/p0522_01.jpg

OEBPS/xhtml/graphics/p0522_02.jpg

OEBPS/xhtml/graphics/p0479_01.jpg

OEBPS/xhtml/graphics/17figure_15_C.jpg

OEBPS/xhtml/graphics/p0479_03.jpg

OEBPS/xhtml/graphics/p0479_02.jpg

OEBPS/xhtml/graphics/02figure10_A.jpg

OEBPS/xhtml/graphics/09figure_01_A.jpg

OEBPS/xhtml/graphics/p0193_01.jpg

OEBPS/xhtml/graphics/p0193_02.jpg

OEBPS/xhtml/graphics/18figure_21_B.jpg

OEBPS/xhtml/graphics/10figure_16_D.jpg

OEBPS/xhtml/graphics/04figure_03_C.jpg

OEBPS/xhtml/graphics/14figure_22_A.jpg

OEBPS/xhtml/graphics/12figure_07_B.jpg

OEBPS/xhtml/graphics/p0374_01.jpg

OEBPS/xhtml/graphics/p0329_03.jpg

OEBPS/xhtml/graphics/p0374_02.jpg

OEBPS/xhtml/graphics/p0329_02.jpg

OEBPS/xhtml/graphics/p0374_03.jpg

OEBPS/xhtml/graphics/p0258_01.jpg

OEBPS/xhtml/graphics/p0329_01.jpg

OEBPS/xhtml/graphics/05figure_17_A.jpg

OEBPS/xhtml/graphics/p0258_02.jpg

OEBPS/xhtml/graphics/p0258_03.jpg

OEBPS/xhtml/graphics/p0124_01.jpg

OEBPS/xhtml/graphics/p0296_02.jpg

OEBPS/xhtml/graphics/18figure_34_G.jpg

OEBPS/xhtml/graphics/06figure_25_F.jpg

OEBPS/xhtml/graphics/p0043_01.jpg

OEBPS/xhtml/graphics/p0136_02.jpg

OEBPS/xhtml/graphics/p0136_01.jpg

OEBPS/xhtml/graphics/p0108_01.jpg

OEBPS/xhtml/graphics/pub.jpg

OEBPS/xhtml/graphics/afigure_12_D.jpg

OEBPS/xhtml/graphics/16figure_10_C.jpg

OEBPS/xhtml/graphics/p0659_02.jpg

OEBPS/xhtml/graphics/02figure23_H.jpg

OEBPS/xhtml/graphics/p0583_02.jpg

OEBPS/xhtml/graphics/p0583_01.jpg

OEBPS/xhtml/graphics/p0659_01.jpg

OEBPS/xhtml/graphics/p0181_01.jpg

OEBPS/xhtml/graphics/p0317_01.jpg

OEBPS/xhtml/graphics/p0510_03.jpg

OEBPS/xhtml/graphics/p0317_02.jpg

OEBPS/xhtml/graphics/p0510_02.jpg

OEBPS/xhtml/graphics/p0317_03.jpg

OEBPS/xhtml/graphics/p0510_01.jpg

OEBPS/xhtml/graphics/p0181_03.jpg

OEBPS/xhtml/graphics/p0181_02.jpg

OEBPS/xhtml/graphics/03figure_07_B.jpg

OEBPS/xhtml/graphics/p0578_02.jpg

OEBPS/xhtml/graphics/p0578_01.jpg

OEBPS/xhtml/graphics/18figure_12_A.jpg

OEBPS/xhtml/graphics/06figure_03_C.jpg

OEBPS/xhtml/graphics/10figure_03_A.jpg

OEBPS/xhtml/graphics/p0092_01.jpg

OEBPS/xhtml/graphics/p0092_02.jpg

OEBPS/xhtml/graphics/p0092_03.jpg

OEBPS/xhtml/graphics/p0092_04.jpg

OEBPS/xhtml/graphics/16scr05b.jpg

OEBPS/xhtml/graphics/05figure_04_D.jpg

OEBPS/xhtml/graphics/16scr05a.jpg

OEBPS/xhtml/graphics/p0148_01.jpg

OEBPS/xhtml/graphics/16scr05d.jpg

OEBPS/xhtml/graphics/16scr05c.jpg

OEBPS/xhtml/graphics/p0080_01.jpg

OEBPS/xhtml/graphics/p0080_02.jpg

OEBPS/xhtml/graphics/09figure_18_A.jpg

OEBPS/xhtml/graphics/14figure_17_B.jpg

OEBPS/xhtml/graphics/16scr04a.jpg

OEBPS/xhtml/graphics/p0011_03.jpg

OEBPS/xhtml/graphics/p0011_02.jpg

OEBPS/xhtml/graphics/02figure01_A.jpg

OEBPS/xhtml/graphics/p0011_01.jpg

OEBPS/xhtml/graphics/16scr04b.jpg

OEBPS/xhtml/graphics/08figure_13_C.jpg

OEBPS/xhtml/graphics/01figure_14_B.jpg

OEBPS/xhtml/graphics/p0222_01.jpg

OEBPS/xhtml/graphics/p0350_02.jpg

OEBPS/xhtml/graphics/p0350_01.jpg

OEBPS/xhtml/graphics/p0222_02.jpg

OEBPS/xhtml/graphics/15figure_05_A.jpg

OEBPS/xhtml/graphics/16scr03b.jpg

OEBPS/xhtml/graphics/16scr03a.jpg

OEBPS/xhtml/graphics/p0313_04.jpg

OEBPS/xhtml/graphics/p0313_03.jpg

OEBPS/xhtml/graphics/p0313_02.jpg

OEBPS/xhtml/graphics/p0313_01.jpg

OEBPS/xhtml/graphics/p0607_02.jpg

OEBPS/xhtml/graphics/C_img.jpg

OEBPS/xhtml/graphics/p0607_01.jpg

OEBPS/xhtml/graphics/p0607_04.jpg

OEBPS/xhtml/graphics/11figure_08_D.jpg

OEBPS/xhtml/graphics/p0607_03.jpg

OEBPS/xhtml/graphics/06figure_16_D.jpg

OEBPS/xhtml/graphics/p0514_01.jpg

OEBPS/xhtml/graphics/17figure_24_A.jpg

OEBPS/xhtml/graphics/16scr02c.jpg

OEBPS/xhtml/graphics/16scr02b.jpg

OEBPS/xhtml/graphics/05figure_39_C.jpg

OEBPS/xhtml/graphics/p0499_01.jpg

OEBPS/xhtml/graphics/16scr02d.jpg

OEBPS/xhtml/graphics/16scr02a.jpg

OEBPS/xhtml/graphics/p0276_01.jpg

OEBPS/xhtml/graphics/p0276_02.jpg

OEBPS/xhtml/graphics/15figure_18_G.jpg

OEBPS/xhtml/graphics/p0276_03.jpg

OEBPS/xhtml/graphics/p0276_04.jpg

OEBPS/xhtml/graphics/p0209_01.jpg

OEBPS/xhtml/graphics/p0209_02.jpg

OEBPS/xhtml/graphics/09figure_05_D.jpg

OEBPS/xhtml/graphics/p0394_01.jpg

OEBPS/xhtml/graphics/p0394_02.jpg

OEBPS/xhtml/graphics/14figure_04_D.jpg

OEBPS/xhtml/graphics/p0394_03.jpg

OEBPS/xhtml/graphics/p0394_04.jpg

OEBPS/xhtml/graphics/02figure14_B.jpg

OEBPS/xhtml/graphics/07figure_30_B.jpg

OEBPS/xhtml/graphics/p0502_01.jpg

OEBPS/xhtml/graphics/05figure_48_L.jpg

OEBPS/xhtml/graphics/18figure_25_C.jpg

OEBPS/xhtml/graphics/p0067_01.jpg

OEBPS/xhtml/graphics/p0067_02.jpg

OEBPS/xhtml/graphics/17figure02_B.jpg

OEBPS/xhtml/graphics/10figure_12_C.jpg

OEBPS/xhtml/graphics/05figure_13_A.jpg

OEBPS/xhtml/graphics/06figure_29_B.jpg

OEBPS/xhtml/graphics/p0431_03.jpg

OEBPS/xhtml/graphics/p0288_02.jpg

OEBPS/xhtml/graphics/p0431_02.jpg

OEBPS/xhtml/graphics/p0288_01.jpg

OEBPS/xhtml/graphics/p0431_01.jpg

OEBPS/xhtml/graphics/05figure_26_C.jpg

OEBPS/xhtml/graphics/p0591_01.jpg

OEBPS/xhtml/graphics/p0591_02.jpg

OEBPS/xhtml/graphics/p0591_03.jpg

OEBPS/xhtml/graphics/p0591_04.jpg

OEBPS/xhtml/graphics/18figure_03_C.jpg

OEBPS/xhtml/graphics/02figure27_C.jpg

OEBPS/xhtml/graphics/p0210_01.jpg

OEBPS/xhtml/graphics/p0210_02.jpg

OEBPS/xhtml/graphics/17figure_11_K.jpg

OEBPS/xhtml/graphics/p0210_03.jpg

OEBPS/xhtml/graphics/08figure_22_B.jpg

OEBPS/xhtml/graphics/p0023_03.jpg

OEBPS/xhtml/graphics/p0023_04.jpg

OEBPS/xhtml/graphics/p0023_01.jpg

OEBPS/xhtml/graphics/p0023_02.jpg

OEBPS/xhtml/graphics/06figure_07_G.jpg

OEBPS/xhtml/graphics/13figure_21_B.jpg

OEBPS/xhtml/graphics/p0060_01.jpg

OEBPS/xhtml/graphics/18scr08c.jpg

OEBPS/xhtml/graphics/18scr08b.jpg

OEBPS/xhtml/graphics/L.jpg

OEBPS/xhtml/graphics/p0060_03.jpg

OEBPS/xhtml/graphics/p0060_02.jpg

OEBPS/xhtml/graphics/p0220_06.jpg

OEBPS/xhtml/graphics/p0220_04.jpg

OEBPS/xhtml/graphics/10figure_10_A.jpg

OEBPS/xhtml/graphics/p0220_05.jpg

OEBPS/xhtml/graphics/afigure_17_A.jpg

OEBPS/xhtml/graphics/p0220_02.jpg

OEBPS/xhtml/graphics/p0220_03.jpg

OEBPS/xhtml/graphics/p0220_01.jpg

OEBPS/xhtml/graphics/13figure_14_A.jpg

OEBPS/xhtml/graphics/02figure16_A.jpg

OEBPS/xhtml/graphics/p0219_01.jpg

OEBPS/xhtml/graphics/03figure_14_C.jpg

OEBPS/xhtml/graphics/07figure_32_D.jpg

OEBPS/xhtml/graphics/p0575_01.jpg

OEBPS/xhtml/graphics/p0575_02.jpg

OEBPS/xhtml/graphics/11figure_28_B.jpg

OEBPS/xhtml/graphics/05figure_46_J.jpg

OEBPS/xhtml/graphics/18figure_04_D.jpg

OEBPS/xhtml/graphics/p0414_01.jpg

OEBPS/xhtml/graphics/p0621_01.jpg

OEBPS/xhtml/graphics/p0621_02.jpg

OEBPS/xhtml/graphics/17figure_21_B.jpg

OEBPS/xhtml/graphics/15figure_11_B.jpg

OEBPS/xhtml/graphics/05figure_11_E.jpg

OEBPS/xhtml/graphics/p0633_01.jpg

OEBPS/xhtml/graphics/13figure_27_C.jpg

OEBPS/xhtml/graphics/p0633_02.jpg

OEBPS/xhtml/graphics/18scr06a.jpg

OEBPS/xhtml/graphics/18scr06c.jpg

OEBPS/xhtml/graphics/18scr06b.jpg

OEBPS/xhtml/graphics/18scr06d.jpg

OEBPS/xhtml/graphics/05figure_24_A.jpg

OEBPS/xhtml/graphics/18scr07a.jpg

OEBPS/xhtml/graphics/L_img.jpg

OEBPS/xhtml/graphics/06figure_09_I.jpg

OEBPS/xhtml/graphics/p0072_01.jpg

OEBPS/xhtml/graphics/18scr08a.jpg

OEBPS/xhtml/graphics/18figure_17_F.jpg

OEBPS/xhtml/graphics/03figure_05_E.jpg

OEBPS/xhtml/graphics/11figure_15_K.jpg

OEBPS/xhtml/graphics/p0324_02.jpg

OEBPS/xhtml/graphics/p0324_01.jpg

OEBPS/xhtml/graphics/17figure_30_G.jpg

OEBPS/xhtml/graphics/08scr03.jpg

OEBPS/xhtml/graphics/p0324_03.jpg

OEBPS/xhtml/graphics/08scr02.jpg

OEBPS/xhtml/graphics/08scr01.jpg

OEBPS/xhtml/graphics/01figure_04_B.jpg

OEBPS/xhtml/graphics/15figure_02_B.jpg

OEBPS/xhtml/graphics/02figure07_B.jpg

OEBPS/xhtml/graphics/p0451_02.jpg

OEBPS/xhtml/graphics/p0451_01.jpg

OEBPS/xhtml/graphics/08figure_02_B.jpg

OEBPS/xhtml/graphics/14figure_19_D.jpg

OEBPS/xhtml/graphics/13figure_01_A.jpg

OEBPS/xhtml/graphics/1F_img.jpg

OEBPS/xhtml/graphics/p0015_01.jpg

OEBPS/xhtml/graphics/07figure_23_B.jpg

OEBPS/xhtml/graphics/08figure_15_B.jpg

OEBPS/xhtml/graphics/p0599_01.jpg

OEBPS/xhtml/graphics/p0599_02.jpg

OEBPS/xhtml/graphics/p0599_03.jpg

OEBPS/xhtml/graphics/p0608_01.jpg

OEBPS/xhtml/graphics/p0599_04.jpg

OEBPS/xhtml/graphics/p0207_02.jpg

OEBPS/xhtml/graphics/p0207_01.jpg

OEBPS/xhtml/graphics/p0438_03.jpg

OEBPS/xhtml/graphics/p0438_01.jpg

OEBPS/xhtml/graphics/p0438_02.jpg

OEBPS/xhtml/graphics/p0543_02.jpg

OEBPS/xhtml/graphics/p0543_01.jpg

OEBPS/xhtml/graphics/15scr10b.jpg

OEBPS/xhtml/graphics/p0538_01.jpg

OEBPS/xhtml/graphics/15scr10c.jpg

OEBPS/xhtml/graphics/15scr10a.jpg

OEBPS/xhtml/graphics/p0368_03.jpg

OEBPS/xhtml/graphics/07figure_10_J.jpg

OEBPS/xhtml/graphics/p0368_02.jpg

OEBPS/xhtml/graphics/p0142_03.jpg

OEBPS/xhtml/graphics/p0368_01.jpg

OEBPS/xhtml/graphics/p0142_02.jpg

OEBPS/xhtml/graphics/p0142_01.jpg

OEBPS/xhtml/graphics/p0538_04.jpg

OEBPS/xhtml/graphics/15scr10d.jpg

OEBPS/xhtml/graphics/p0538_03.jpg

OEBPS/xhtml/graphics/11figure_02_B.jpg

OEBPS/xhtml/graphics/p0538_02.jpg

OEBPS/xhtml/graphics/p0252_01.jpg

OEBPS/xhtml/graphics/p0252_02.jpg

OEBPS/xhtml/graphics/p0059_03.jpg

OEBPS/xhtml/graphics/p0495_01.jpg

OEBPS/xhtml/graphics/p0059_02.jpg

OEBPS/xhtml/graphics/p0059_01.jpg

OEBPS/xhtml/graphics/05figure_33_A.jpg

OEBPS/xhtml/graphics/p0059_07.jpg

OEBPS/xhtml/graphics/p0059_06.jpg

OEBPS/xhtml/graphics/p0059_05.jpg

OEBPS/xhtml/graphics/p0059_04.jpg

OEBPS/xhtml/graphics/16figure_07_G.jpg

OEBPS/xhtml/graphics/01figure_17_B.jpg

OEBPS/xhtml/graphics/07figure_45_B.jpg

OEBPS/xhtml/graphics/afigure_08_D.jpg

OEBPS/xhtml/graphics/p0059_08.jpg

OEBPS/xhtml/graphics/p0039_03.jpg

OEBPS/xhtml/graphics/p0446_03.jpg

OEBPS/xhtml/graphics/p0039_02.jpg

OEBPS/xhtml/graphics/p0446_02.jpg

OEBPS/xhtml/graphics/16figure_03_C.jpg

OEBPS/xhtml/graphics/p0039_01.jpg

OEBPS/xhtml/graphics/p0446_01.jpg

OEBPS/xhtml/graphics/p0320_03.jpg

OEBPS/xhtml/graphics/00figure_03_C.jpg

OEBPS/xhtml/graphics/p0320_02.jpg

OEBPS/xhtml/graphics/p0320_01.jpg

OEBPS/xhtml/graphics/p0154_02.jpg

OEBPS/xhtml/graphics/p0154_01.jpg

OEBPS/xhtml/graphics/04figure_06_F.jpg

OEBPS/xhtml/graphics/afigure_13_E.jpg

OEBPS/xhtml/graphics/07figure_36_H.jpg

OEBPS/xhtml/graphics/03figure_10_A.jpg

OEBPS/xhtml/graphics/05figure_42_F.jpg

OEBPS/xhtml/graphics/11figure_24_E.jpg

OEBPS/xhtml/graphics/18figure_08_C.jpg

OEBPS/xhtml/graphics/p0240_01.jpg

OEBPS/xhtml/graphics/p0319_02.jpg

OEBPS/xhtml/graphics/p0240_02.jpg

OEBPS/xhtml/graphics/p0319_01.jpg

OEBPS/xhtml/graphics/p0027_01.jpg

OEBPS/xhtml/graphics/p0434_01.jpg

OEBPS/xhtml/graphics/p0027_02.jpg

OEBPS/xhtml/graphics/p0434_02.jpg

OEBPS/xhtml/graphics/p0027_03.jpg

OEBPS/xhtml/graphics/05figure_20_D.jpg

OEBPS/xhtml/graphics/p0052_01.jpg

OEBPS/xhtml/graphics/p0052_02.jpg

OEBPS/xhtml/graphics/p0052_03.jpg

OEBPS/xhtml/graphics/06figure_31_D.jpg

OEBPS/xhtml/graphics/p0101_04.jpg

OEBPS/xhtml/graphics/p0531_03.jpg

OEBPS/xhtml/graphics/p0613_01.jpg

OEBPS/xhtml/graphics/p0531_04.jpg

OEBPS/xhtml/graphics/p0101_02.jpg

OEBPS/xhtml/graphics/p0531_05.jpg

OEBPS/xhtml/graphics/p0613_03.jpg

OEBPS/xhtml/graphics/p0613_02.jpg

OEBPS/xhtml/graphics/p0239_01.jpg

OEBPS/xhtml/graphics/07figure_01_A.jpg

OEBPS/xhtml/graphics/p0239_03.jpg

OEBPS/xhtml/graphics/p0239_02.jpg

OEBPS/xhtml/graphics/p0101_01.jpg

OEBPS/xhtml/graphics/p0531_01.jpg

OEBPS/xhtml/graphics/13figure_05_E.jpg

OEBPS/xhtml/graphics/p0551_01.jpg

OEBPS/xhtml/graphics/p0551_02.jpg

OEBPS/xhtml/graphics/11figure_11_G.jpg

OEBPS/xhtml/graphics/p0471_01.jpg

OEBPS/xhtml/graphics/17figure_08_H.jpg

OEBPS/xhtml/graphics/p0215_01.jpg

OEBPS/xhtml/graphics/01figure_08_F.jpg

OEBPS/xhtml/graphics/p0096_02.jpg

OEBPS/xhtml/graphics/p0215_02.jpg

OEBPS/xhtml/graphics/09figure_20_C.jpg

OEBPS/xhtml/graphics/1D_img.jpg

OEBPS/xhtml/graphics/p0227_01.jpg

OEBPS/xhtml/graphics/p0388_03.jpg

OEBPS/xhtml/graphics/08figure_06_F.jpg

OEBPS/xhtml/graphics/p0110_01.jpg

OEBPS/xhtml/graphics/07figure_27_F.jpg

OEBPS/xhtml/graphics/p0271_01.jpg

OEBPS/xhtml/graphics/03figure_01_A.jpg

OEBPS/xhtml/graphics/p0388_02.jpg

OEBPS/xhtml/graphics/p0388_01.jpg

OEBPS/xhtml/graphics/08figure_19_B.jpg

OEBPS/xhtml/graphics/18figure_30_C.jpg

OEBPS/xhtml/graphics/p0563_03.jpg

OEBPS/xhtml/graphics/p0563_02.jpg

OEBPS/xhtml/graphics/p0563_01.jpg

OEBPS/xhtml/graphics/p0601_01.jpg

OEBPS/xhtml/graphics/12figure_13_H.jpg

OEBPS/xhtml/graphics/07figure_14_A.jpg

OEBPS/xhtml/graphics/13figure_18_A.jpg

OEBPS/xhtml/graphics/p0376_01.jpg

OEBPS/xhtml/graphics/p0040_01.jpg

OEBPS/xhtml/graphics/B1_img.jpg

OEBPS/xhtml/graphics/p0040_02.jpg

OEBPS/xhtml/graphics/afigure_04_D.jpg

OEBPS/xhtml/graphics/p0376_02.jpg

OEBPS/xhtml/graphics/p0376_03.jpg

OEBPS/xhtml/graphics/p0376_04.jpg

OEBPS/xhtml/graphics/17figure_29_F.jpg

OEBPS/xhtml/graphics/18figure_31_D.jpg

OEBPS/xhtml/graphics/18scr10.jpg

OEBPS/xhtml/graphics/06figure_22_C.jpg

OEBPS/xhtml/graphics/12figure_04_A.jpg

OEBPS/xhtml/graphics/18scr11.jpg

OEBPS/xhtml/graphics/18scr07.jpg

OEBPS/xhtml/graphics/18scr06.jpg

OEBPS/xhtml/graphics/p0328_03.jpg

OEBPS/xhtml/graphics/18scr09.jpg

OEBPS/xhtml/graphics/p0328_02.jpg

OEBPS/xhtml/graphics/18scr08.jpg

OEBPS/xhtml/graphics/p0328_01.jpg

OEBPS/xhtml/graphics/p0295_01.jpg

OEBPS/xhtml/graphics/11figure_20_A.jpg

OEBPS/xhtml/graphics/p0295_02.jpg

OEBPS/xhtml/graphics/p0088_04.jpg

OEBPS/xhtml/graphics/16figure_11_D.jpg

OEBPS/xhtml/graphics/H_img.jpg

OEBPS/xhtml/graphics/p0088_01.jpg

OEBPS/xhtml/graphics/p0088_03.jpg

OEBPS/xhtml/graphics/07figure_18_E.jpg

OEBPS/xhtml/graphics/p0088_02.jpg

OEBPS/xhtml/graphics/18scr03.jpg

OEBPS/xhtml/graphics/18scr02.jpg

OEBPS/xhtml/graphics/18scr05.jpg

OEBPS/xhtml/graphics/p0523_02.jpg

OEBPS/xhtml/graphics/18scr04.jpg

OEBPS/xhtml/graphics/p0523_03.jpg

OEBPS/xhtml/graphics/p0523_01.jpg

OEBPS/xhtml/graphics/18scr01.jpg

OEBPS/xhtml/graphics/14figure_01_A.jpg

OEBPS/xhtml/graphics/02scr03.jpg

OEBPS/xhtml/graphics/02scr04.jpg

OEBPS/xhtml/graphics/02scr01.jpg

OEBPS/xhtml/graphics/02scr02.jpg

OEBPS/xhtml/graphics/02scr07.jpg

OEBPS/xhtml/graphics/02scr08.jpg

OEBPS/xhtml/graphics/02scr05.jpg

OEBPS/xhtml/graphics/02scr06.jpg

OEBPS/xhtml/graphics/p0019_02.jpg

OEBPS/xhtml/graphics/02scr09.jpg

OEBPS/xhtml/graphics/p0019_01.jpg

OEBPS/xhtml/graphics/02figure20_E.jpg

OEBPS/xhtml/graphics/p0454_01.jpg

OEBPS/xhtml/graphics/17figure_16_D.jpg

OEBPS/xhtml/graphics/p0316_01.jpg

OEBPS/xhtml/graphics/p0511_03.jpg

OEBPS/xhtml/graphics/p0511_02.jpg

OEBPS/xhtml/graphics/p0511_01.jpg

OEBPS/xhtml/graphics/p0259_01.jpg

OEBPS/xhtml/graphics/09figure_02_A.jpg

OEBPS/xhtml/graphics/01figure_22_B.jpg

OEBPS/xhtml/graphics/p0661_01.jpg

OEBPS/xhtml/graphics/p0491_01.jpg

OEBPS/xhtml/graphics/06figure_35_H.jpg

OEBPS/xhtml/graphics/14figure_23_B.jpg

OEBPS/xhtml/graphics/p0157_03.jpg

OEBPS/xhtml/graphics/p0109_03.jpg

OEBPS/xhtml/graphics/p0157_02.jpg

OEBPS/xhtml/graphics/p0397_02.jpg

OEBPS/xhtml/graphics/p0109_02.jpg

OEBPS/xhtml/graphics/p0157_01.jpg

OEBPS/xhtml/graphics/p0397_01.jpg

OEBPS/xhtml/graphics/p0397_03.jpg

OEBPS/xhtml/graphics/07figure_05_E.jpg

OEBPS/xhtml/graphics/p0109_01.jpg

OEBPS/xhtml/graphics/p0385_02.jpg

OEBPS/xhtml/graphics/p0385_03.jpg

OEBPS/xhtml/graphics/p0064_03.jpg

OEBPS/xhtml/graphics/p0064_02.jpg

OEBPS/xhtml/graphics/p0385_01.jpg

OEBPS/xhtml/graphics/p0064_01.jpg

OEBPS/xhtml/graphics/13figure_09_C.jpg

OEBPS/xhtml/graphics/p0385_04.jpg

OEBPS/xhtml/graphics/p0182_01.jpg

OEBPS/xhtml/graphics/p0559_03.jpg

OEBPS/xhtml/graphics/05figure_29_A.jpg

OEBPS/xhtml/graphics/p0559_02.jpg

OEBPS/xhtml/graphics/p0559_01.jpg

OEBPS/xhtml/graphics/p0410_01.jpg

OEBPS/xhtml/graphics/06figure_13_A.jpg

OEBPS/xhtml/graphics/p0410_02.jpg

OEBPS/xhtml/graphics/afigure_22_F.jpg

OEBPS/xhtml/graphics/p0604_01.jpg

OEBPS/xhtml/graphics/ascr02.jpg

OEBPS/xhtml/graphics/ascr01.jpg

OEBPS/xhtml/graphics/10figure_06_D.jpg

OEBPS/xhtml/graphics/14figure_10_B.jpg

OEBPS/xhtml/graphics/p0020_01.jpg

OEBPS/xhtml/graphics/12figure_17_C.jpg

OEBPS/xhtml/graphics/05figure_07_A.jpg

OEBPS/xhtml/graphics/p0572_01.jpg

OEBPS/xhtml/graphics/02figure11_B.jpg

OEBPS/xhtml/graphics/p0572_02.jpg

OEBPS/xhtml/graphics/p0572_03.jpg

OEBPS/xhtml/graphics/04figure_02_B.jpg

OEBPS/xhtml/graphics/18figure_22_C.jpg

OEBPS/xhtml/graphics/17figure_03_C.jpg

OEBPS/xhtml/graphics/p0076_03.jpg

OEBPS/xhtml/graphics/p0263_01.jpg

OEBPS/xhtml/graphics/p0263_02.jpg

OEBPS/xhtml/graphics/p0076_01.jpg

OEBPS/xhtml/graphics/p0076_02.jpg

OEBPS/xhtml/graphics/06figure_26_G.jpg

OEBPS/xhtml/graphics/p0478_01.jpg

OEBPS/xhtml/graphics/p0478_02.jpg

OEBPS/xhtml/graphics/p0422_01.jpg

OEBPS/xhtml/graphics/09figure_11_E.jpg

OEBPS/xhtml/graphics/p0648_01.jpg

OEBPS/xhtml/graphics/p0422_02.jpg

OEBPS/xhtml/graphics/01figure_13_A.jpg

OEBPS/xhtml/graphics/18figure_35_H.jpg

OEBPS/xhtml/graphics/p0498_03.jpg

OEBPS/xhtml/graphics/p0068_02.jpg

OEBPS/xhtml/graphics/p0068_01.jpg

OEBPS/xhtml/graphics/p0211_01.jpg

OEBPS/xhtml/graphics/p0498_01.jpg

OEBPS/xhtml/graphics/p0641_01.jpg

OEBPS/xhtml/graphics/p0125_01.jpg

OEBPS/xhtml/graphics/p0498_02.jpg

OEBPS/xhtml/graphics/p0555_01.jpg

OEBPS/xhtml/graphics/02figure24_I.jpg

OEBPS/xhtml/graphics/p0223_01.jpg

OEBPS/xhtml/graphics/p0223_02.jpg

OEBPS/xhtml/graphics/15scr02.jpg

OEBPS/xhtml/graphics/15scr01.jpg

OEBPS/xhtml/graphics/14figure_05_A.jpg

OEBPS/xhtml/graphics/17figure_25_B.jpg

OEBPS/xhtml/graphics/afigure_09_A.jpg

OEBPS/xhtml/graphics/9780134301914.jpg

OEBPS/xhtml/graphics/05figure_38_B.jpg

OEBPS/xhtml/graphics/13figure_22_C.jpg

OEBPS/xhtml/graphics/15figure_15_D.jpg

OEBPS/xhtml/graphics/07figure_40_A.jpg

OEBPS/xhtml/graphics/p0275_05.jpg

OEBPS/xhtml/graphics/p0275_04.jpg

OEBPS/xhtml/graphics/p0275_03.jpg

OEBPS/xhtml/graphics/p0275_02.jpg

OEBPS/xhtml/graphics/p0275_01.jpg

OEBPS/xhtml/graphics/18scr10b.jpg

OEBPS/xhtml/graphics/07figure_09_I.jpg

OEBPS/xhtml/graphics/18scr10a.jpg

OEBPS/xhtml/graphics/18scr10c.jpg

OEBPS/xhtml/graphics/p0194_01.jpg

OEBPS/xhtml/graphics/18figure_13_B.jpg

OEBPS/xhtml/graphics/1J_img.jpg

OEBPS/xhtml/graphics/06figure_04_D.jpg

OEBPS/xhtml/graphics/J_img.jpg

OEBPS/xhtml/graphics/p0081_01.jpg

OEBPS/xhtml/graphics/p0429_01.jpg

OEBPS/xhtml/graphics/p0429_02.jpg

OEBPS/xhtml/graphics/09figure_06_E.jpg

OEBPS/xhtml/graphics/p0429_03.jpg

OEBPS/xhtml/graphics/p0361_02.jpg

OEBPS/xhtml/graphics/18scr11b.jpg

OEBPS/xhtml/graphics/p0361_01.jpg

OEBPS/xhtml/graphics/p0567_01.jpg

OEBPS/xhtml/graphics/10figure_15_C.jpg

OEBPS/xhtml/graphics/p0287_03.jpg

OEBPS/xhtml/graphics/08figure_01_A.jpg

OEBPS/xhtml/graphics/18scr11a.jpg

OEBPS/xhtml/graphics/p0287_01.jpg

OEBPS/xhtml/graphics/p0137_01.jpg

OEBPS/xhtml/graphics/p0287_02.jpg

OEBPS/xhtml/graphics/12figure_08_C.jpg

OEBPS/xhtml/graphics/02figure02_B.jpg

OEBPS/xhtml/graphics/05figure_16_D.jpg

OEBPS/xhtml/graphics/p0012_01.jpg

OEBPS/xhtml/graphics/p0012_02.jpg

OEBPS/xhtml/graphics/p0299_01.jpg

OEBPS/xhtml/graphics/p0442_01.jpg

OEBPS/xhtml/graphics/p0616_03.jpg

OEBPS/xhtml/graphics/p0616_01.jpg

OEBPS/xhtml/graphics/p0150_01.jpg

OEBPS/xhtml/graphics/p0616_02.jpg

OEBPS/xhtml/graphics/08figure_10_B.jpg

OEBPS/xhtml/graphics/p0580_01.jpg

OEBPS/xhtml/graphics/p0580_02.jpg

OEBPS/xhtml/graphics/06figure_17_E.jpg

OEBPS/xhtml/graphics/15figure_06_B.jpg

OEBPS/xhtml/graphics/p0299_03.jpg

OEBPS/xhtml/graphics/p0299_02.jpg

OEBPS/xhtml/graphics/05figure_25_B.jpg

OEBPS/xhtml/graphics/1H_img.jpg

OEBPS/xhtml/graphics/01914.jpg

OEBPS/xhtml/graphics/p0149_06.jpg

OEBPS/xhtml/graphics/11figure_07_C.jpg

OEBPS/xhtml/graphics/17figure_12_L.jpg

OEBPS/xhtml/graphics/04figure_11_K.jpg

OEBPS/xhtml/graphics/p0149_01.jpg

OEBPS/xhtml/graphics/p0579_01.jpg

OEBPS/xhtml/graphics/p0592_01.jpg

OEBPS/xhtml/graphics/p0579_02.jpg

OEBPS/xhtml/graphics/p0149_04.jpg

OEBPS/xhtml/graphics/p0579_03.jpg

OEBPS/xhtml/graphics/p0149_05.jpg

OEBPS/xhtml/graphics/p0592_02.jpg

OEBPS/xhtml/graphics/p0149_02.jpg

OEBPS/xhtml/graphics/p0162_02.jpg

OEBPS/xhtml/graphics/p0149_03.jpg

OEBPS/xhtml/graphics/p0162_01.jpg

OEBPS/xhtml/graphics/15figure_19_H.jpg

OEBPS/xhtml/graphics/14figure_14_B.jpg

OEBPS/xhtml/graphics/p0393_02.jpg

OEBPS/xhtml/graphics/15scr10.jpg

OEBPS/xhtml/graphics/p0393_01.jpg

OEBPS/xhtml/graphics/10figure_02_B.jpg

OEBPS/xhtml/graphics/15scr09.jpg

OEBPS/xhtml/graphics/15scr08.jpg

OEBPS/xhtml/graphics/15scr07.jpg

OEBPS/xhtml/graphics/15scr06.jpg

OEBPS/xhtml/graphics/15scr05.jpg

OEBPS/xhtml/graphics/15scr04.jpg

OEBPS/xhtml/graphics/15scr03.jpg

OEBPS/xhtml/graphics/p0056_03.jpg

OEBPS/xhtml/graphics/p0628_01.jpg

OEBPS/xhtml/graphics/p0056_04.jpg

OEBPS/xhtml/graphics/p0056_01.jpg

OEBPS/xhtml/graphics/p0628_03.jpg

OEBPS/xhtml/graphics/02figure15_C.jpg

OEBPS/xhtml/graphics/p0056_02.jpg

OEBPS/xhtml/graphics/p0628_02.jpg

OEBPS/xhtml/graphics/05figure_03_C.jpg

OEBPS/xhtml/graphics/18figure_26_D.jpg

OEBPS/xhtml/graphics/11figure_29_C.jpg

OEBPS/xhtml/graphics/09figure_15_B.jpg

OEBPS/xhtml/graphics/17figure01_A.jpg

OEBPS/xhtml/graphics/p0105_01.jpg

OEBPS/xhtml/graphics/p0105_02.jpg

OEBPS/xhtml/graphics/p0105_03.jpg

OEBPS/xhtml/graphics/p0105_04.jpg

OEBPS/xhtml/graphics/p0535_02.jpg

OEBPS/xhtml/graphics/p0535_01.jpg

