

Nature-Inspired Optimization
Algorithms

http://taylorandfrancis.com

Nature-Inspired Optimization
Algorithms

A Vasuki

First edition published 2020
by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press
2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

© 2020 Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, LLC

Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have
attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright hold-
ers if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged
please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or
utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including pho-
tocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission
from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the
Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are not
available on CCC please contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks, and are used only for iden-
tification and explanation without intent to infringe.

MATLAB® and Simulink® are trademarks of the MathWorks, Inc. and are used with permission. The MathWorks does
not warrant the accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB® and Simulink®
software or related products does not constitute endorsement or sponsorship by the MathWorks of a particular peda-
gogical approach or particular use of the MATLAB® and Simulink® software.

ISBN: 978-0-367-25598-5 (hbk)
ISBN: 978-0-429-28907-1 (ebk)

http://www.copyright.com

v

Contents

Preface...xi
Author.. xiii

	 1	 Introduction..1
1.1	 Introduction..1
1.2	 Fundamentals of Optimization...1
1.3	 Types of Optimization Problems...5
1.4	 Examples of Optimization..7
1.5	 Formulation of Optimization Problem...9
1.6	 Classification of Optimization Algorithms.. 10
1.7	 Traveling Salesman Problem and Knapsack Problem.. 14
1.8	 Summary... 16

	 2	 Classical Optimization Methods... 17
2.1	 Introduction.. 17
2.2	 Mathematical Model of Optimization.. 18
2.3	 Linear Programming .. 19

2.3.1	 Simplex Method.. 20
2.3.2	 Revised Simplex Method... 20
2.3.3	 Kamarkar’s Method.. 20
2.3.4	 Duality Theorem... 21
2.3.5	 Decomposition Principle..22
2.3.6	 Transportation Problem ..22

2.4	 Non-Linear Programming..22
2.4.1	 Quadratic Programming ..23
2.4.2	 Geometric Programming...23

2.5	 Dynamic Programming ... 24
2.6	 Integer Programming..25
2.7	 Stochastic Programming .. 26
2.8	 Lagrange Multiplier Method.. 26
2.9	 Summary... 27
References..28

	 3	 Nature-Inspired Algorithms... 29
3.1	 Introduction.. 29
3.2	 Traditional versus Nature-Inspired Algorithms...30
3.3	 Bioinspired Algorithms.. 31
3.4	 Swarm Intelligence.. 32
3.5	 Metaheuristics.. 37
3.6	 Diversification and Intensification .. 39
3.7	 No Free Lunch Theorem...40
3.8	 Parameter Tuning and Control..40
3.9	 Algorithm.. 41

vi Contents

3.10	 Pseudocode...42
3.11	 Summary...43
References..44

	 4	 Genetic Algorithm... 47
4.1	 Introduction.. 47
4.2	 Basics of Genetic Algorithm... 47
4.3	 Genetic Operators.. 49
4.4	 Example of GA.. 52
4.5	 Algorithm..53
4.6	 Pseudocode...54
4.7	 Schema Theory...56
4.8	 Prisoner’s Dilemma Problem..58
4.9	 Variants and Hybrids of GA... 59
4.10	 Summary... 59
References..60

	 5	 Genetic Programming.. 61
5.1	 Introduction.. 61
5.2	 Basics of Genetic Programming... 62
5.3	 Data Structures for Genetic Programming..63
5.4	 Binary Tree Traversals...66
5.5	 Genetic Programming Operators.. 67
5.6	 Genetic Programming Algorithm... 71
5.7	 Pseudocode...72
5.8	 Variants of the Algorithm... 74
5.9	 Summary... 75
References..75

	 6	 Particle Swarm Optimization...77
6.1	 Introduction..77
6.2	 Swarm Behavior... 79
6.3	 Particle Swarm Optimization... 81

6.3.1	 Algorithm... 81
6.3.2	 Pseudocode..83

6.4	 Variants of the Algorithm...85
6.5	 Summary...86
References.. 87

	 7	 Differential Evolution.. 89
7.1	 Introduction.. 89
7.2	 Differential Evolution..90

7.2.1	 Algorithm... 92
7.2.2	 Pseudocode.. 94

7.3	 Variants of the Algorithm... 96
7.4	 Summary... 98
References.. 98

viiContents

	 8	 Ant Colony Optimization..99
8.1	 Introduction..99
8.2	 Ant Colony Characteristics...99
8.3	 Ant Colony Optimization... 104

8.3.1	 Traveling Salesman Problem .. 105
8.3.2	 Algorithm... 106
8.3.3	 Pseudocode.. 108

8.4	 Variants of the Algorithm... 110
8.5	 Summary... 112
References.. 113

	 9	 Bee Colony Optimization.. 115
9.1	 Introduction.. 115
9.2	 Honey Bee Characteristics.. 116
9.3	 Bee Colony Optimization... 121

9.3.1	 Algorithm... 121
9.3.2	 Pseudocode.. 123

9.4	 Variants of the Algorithm... 125
9.5	 Summary... 129
References.. 130

	10	 Fish School Search Algorithm.. 131
10.1	 Introduction.. 131
10.2	 Fish School Behavior... 131
10.3	 Fish School Search Optimization.. 135

10.3.1	 Algorithm... 137
10.3.2	 Pseudocode.. 139

10.4	 Variants and Applications.. 141
10.5	 Summary... 141
References.. 142

	11	 Cuckoo Search Algorithm... 143
11.1	 Introduction.. 143
11.2	 Cuckoo Bird Behavior.. 143
11.3	 Levy Flights.. 146
11.4	 Cuckoo Search Optimization... 147

11.4.1	 Algorithm... 149
11.4.2	 Pseudocode.. 150

11.5	 Variants of the Algorithm... 152
11.5.1	 Discrete Cuckoo Search Algorithm.. 152
11.5.2	 Binary Cuckoo Search (BCS) Algorithm... 152
11.5.3  Multi-Objective Cuckoo Search Algorithm (MOCS)................................. 153

11.6	 Summary... 154
References.. 155

	12	 Firefly Algorithm... 157
12.1	 Introduction.. 157
12.2	 Firefly Behavior and Characteristics... 157

viii Contents

12.3	 Firefly-Inspired Optimization.. 160
12.3.1	 Algorithm... 162
12.3.2	 Pseudocode.. 163

12.4	 Variants and Applications.. 165
12.5	 Summary... 165
References.. 166

	13	 Bat Algorithm... 167
13.1	 Introduction.. 167
13.2	 Behavior of Bats in Nature.. 168
13.3	 Bat Optimization Algorithm.. 172

13.3.1	 Algorithm... 173
13.3.2	 Pseudocode.. 174

13.4	 Variants and Applications.. 176
13.5	 Summary... 178
References.. 178

	14	 Flower Pollination Algorithm... 181
14.1	 Introduction.. 181
14.2	 Flower Pollination.. 182
14.3	 Flower Pollination Optimization... 187

14.3.1	 Algorithm... 189
14.3.2	 Pseudocode.. 190

14.4	 Variants of the Algorithm... 192
14.5	 Summary... 194
References.. 194

	15	 Gray Wolf Optimization.. 197
15.1	 Introduction.. 197
15.2	 Gray Wolf Characteristics... 197
15.3	 Gray Wolf Optimization ..200

15.3.1	 Gray Wolf Encircling Prey... 201
15.3.2	 Hunting Behavior of Gray Wolves... 202
15.3.3	 Attacking of Prey by Gray Wolves... 202
15.3.4	 Gray Wolves Searching for Prey (Exploration)... 203

15.4	 Variants and Applications.. 206
15.5	 Summary... 209
References.. 209

	16	 Elephant Herding Optimization.. 211
16.1	 Introduction.. 211
16.2	 Elephant Herding Behavior.. 212
16.3	 Elephant Herding Optimization.. 213

16.3.1	 Algorithm... 213
16.3.2	 Pseudocode.. 215

16.4	 Variants of the Algorithm... 217
16.5	 Summary... 217
References.. 218

ixContents

	17	 Crow Search Algorithm... 219
17.1	 Introduction.. 219
17.2	 Crows in Nature... 219
17.3	 Crow Search Optimization ..222

17.3.1	 Algorithm... 224
17.3.2	 Pseudocode..225

17.4	 Variants and Applications ...227
17.5	 Summary...228
References..228

	18	 Raven Roosting Optimization Algorithm...229
18.1	 Introduction..229
18.2	 Raven Roosting Behavior..230
18.3	 Raven Roosting Optimization..234

18.3.1	 Algorithm...234
18.3.2	 Pseudocode..236
Flowchart... 237

18.4	 Variants of the Algorithm...238
18.5	 Summary... 239
References.. 239

	19	 Applications.. 241
19.1	 Introduction.. 241
19.2	 Benchmark Test Functions... 241
19.3	 Applications.. 243

19.3.1	 Traveling Salesman Problem... 244
19.3.2	 Knapsack Problem.. 244
19.3.3	 Graph Coloring Problem.. 244
19.3.4	 Job Scheduling Problem... 244
19.3.5	 Feature Reduction Problem... 244
19.3.6	 Network Routing Problem.. 245

19.4	 Summary... 245

	20	 Conclusion.. 247

Index..253

http://taylorandfrancis.com

xi

Preface

This book is intended as a reference for undergraduate and postgraduate students as well
as researchers who are working on complex problems to find optimum solutions. The
book can serve as a reference for faculty who are handling classes on the topic of optimiza-
tion. It gives a general overview of optimization and its applications with simple examples
and discusses conventional optimization techniques and their limitations. Fifteen nature-
inspired optimization algorithms have been included with a detailed explanation of the
techniques.

These optimization algorithms can be applied to any real-life problem, either constrained
or unconstrained. It involves choosing values of parameters associated with the problem
in order to arrive at the optimum solution. The unconventional optimization algorithms
are broadly based on biological evolution and physical and chemical processes. These
nature-inspired algorithms have been developed from the study of swarm behavior of
animals, birds, and insects. The main advantage is that they are population-based, and
hence the search for the optimum solution can be conducted in parallel by multiple agents.
This reduces the time taken to arrive at the (best) global optimum solution to the problem.
Since the problems could be multimodal with several local optima, the algorithm should
be able to distinguish between local and global optimum solutions.

These algorithms can be tested with standard benchmark data sets and classical engi-
neering design problems. The standard problems in computer science such as the traveling
salesman, graph coloring, finding the shortest path in a graph, job scheduling, and routing
in computer networks are NP-hard. Image processing is another broad area that includes
enhancement, segmentation, compression, classification, object recognition, feature selec-
tion, clustering, and registration. The application of nature-inspired algorithms to such
intractable problems leads to optimum solutions in the shortest possible time. A list of
comprehensive problems upon which these algorithms can be tested is also provided.

I sincerely thank everyone who have helped me in completing this book.

Dr. A Vasuki

http://taylorandfrancis.com

xiii

Author

Dr. A Vasuki is currently working as Professor in the Department of Mechatronics
Engineering at Kumaraguru College of Technology, Coimbatore, India. She has 28 years
of teaching, research and academic administration experience. She has completed B.E in
Electronics and Communication Engineering from PSG College of Technology in 1989.
She has completed her postgraduate degree M.E Applied Electronics from Coimbatore
Institute of Technology in 1991. She has done her Ph.D in Image Compression from PSG
College of Technology under Anna University Chennai in 2010. Her research interests are
Signal Processing, Image Processing, Communication and Optimization. She has pub-
lished 3 Book Chapters, 38 National and International Journal papers and 60 National and
International Conference papers. She has guided 30 PG projects and 50 UG projects. She is
an approved Research Supervisor under Anna University Chennai and is currently guid-
ing 9 research scholars.

http://taylorandfrancis.com

1

1
Introduction

1.1 � Introduction

Optimization is of prime importance in most of our everyday activities and plays a vital
role in achieving desired goals. Optimization is arriving at the best set of parameters,
maybe by trial and error, so that we achieve the desired objective(s) exactly or at least
a good approximation. We optimize parameters to achieve desired objectives without
being consciously aware of it many times in our day-to-day activities. Optimization can be
applied in diverse fields such as mathematics, physics, chemistry, engineering design, pro-
duction, telecommunication, networks, computer science, economics, management, etc.
The problems range from the very simple to the highly complex ones like designing steel
structures, aircraft routes, road connectivity, routing in computer networks, unmanned
space missions, autonomous vehicles, manufacturing, automation, robots, and so on. The
goal of optimization could be to maximize quality/profit/efficiency or minimize cost/
wastage/resources utilized with reduced time, space, and computational complexity. The
problems might have constraints that have to be satisfied in finding the optimal solution.
The constraints could be limits on length, area, power consumed, cost, weight, or restric-
tion on certain variables to assume integer values (positive or negative), and some variables
need to be bounded between minimum and maximum values as specified in the problem.
In all optimization problems there will be several parameters that have to be adjusted to
get the best possible output. The problems to be solved are generally complex in nature
with many conflicting requirements. The solution attained has to accommodate all these
various conflicting requirements, and, keeping the objective(s) in focus, the optimization
technique has to be designed.

1.2 � Fundamentals of Optimization

Optimization is obtaining the optimum values of a set of variables upon which an objec-
tive function depends, and that could be either constrained or unconstrained. Any set
of values assigned to the variables always produces an output but the optimum set of
values produces the optimum output. The objectives of the problem and the constraints,
if any, can be formulated in terms of mathematical functions or equations. The mathe-
matical expression representing the goal of optimization is called the objective function.
The objective function could be defined for maximization or minimization depending on
the problem domain. Figure 1.1 illustrates the general optimization problem with input

Nature-Inspired Optimization Algorithms Introduction

2 ﻿﻿Nature-Inspired Optimization Algorithms

variables and constraints that either maximizes or minimizes the objective function. In
Figure 1.1 the objective function f(X) depends on the vector of input variables represented
byX = []x x x x1 2 3 4 .

When an objective function is to be maximized, it is called a fitness or quality function.
When it is to be minimized, it is called a cost or penalty function. For a minimization
function, if the minimum value is zero it is called an error function. The sign of the objec-
tive function can be complemented (+/–) in order to transform a maximization problem
to minimization and vice versa. An objective function that is to be maximized can also be
minimized by taking the negative of the function.

Some of the characteristics of the objective function are:

•	 The number of variables in the function is the dimension (d) of the search space.
•	 Whether the variables assume continuous or discrete values determines whether

the function is continuous or discrete.
•	 If the function is continuous, is it differentiable at all points in the search space?
•	 Whether the function has one maxima (unimodal) or multiple maxima

(multimodal).
•	 Is the function unconstrained or constrained? If constrained, how many and what

are the constraints? Are they equality or inequality constraints?

Mathematically, a function is represented as f R Rd: ® , where the function f belongs to
the d-dimensional hyperspace Rd. The domain Rd is the parameter or search space with
each XÎRd being a possible candidate solution to the objective function f(X). The func-
tion f(X) maps the search space to the function space R. The problem is to find X Rd* ,Î for
which f X f X X Rd() (),* ³ " Î . This applies to a maximization problem, and for minimiza-
tion problems, it has to be f X f X X Rd() (),* £ " Î . The search space could be either the entire
d-dimensional hyperspace or a subset of the hyperspace. When there are constraints asso-
ciated with the problem, the search space becomes a subset of the d-dimensional hyper-
space. The characteristics associated with the constraints of the problem are:

•	 Number of constraints for the problem
•	 Whether the constraints are equality or inequality constraints

Optimization
Max. f(X)or

Min. f(X)x1 = ?

x2 = ? x3 = ?

Constraint 1 Constraint 2

x4 = ?

FIGURE 1.1
General optimization problem.

3Introduction﻿﻿

Figure 1.2 shows an objective function f(X) where the vector X = [x] is one-dimensional,
since the function depends on only one variable x.

The one-dimensional plot of the objective function f(X) shown in the Figure 1.2 has a
maximum value at x = x*. This is the global optimum since this is the highest value for the
function f(X). The search space is the one-dimensional x-axis where the continuous vari-
able x ranges from zero to a maximum value xmax. In general, the search space is S Rd® .
The convergence of the algorithm or the final value attained is the optimum solution and
depends to a great extent on the starting point in the search space or the initial value of x.
If the negative of the function f(X) is taken, the maximum value becomes the minimum
value or the peak becomes a valley. The maximization problem becomes a minimization
problem when the global minimum occurs at X = x*.

Extending this concept further, the one-dimensional function f(X) could have multiple
maxima or minima, as illustrated in Figure 1.3. The function f(X) shown in Figure 1.3 has
multiple peaks and valleys, where X = [x]. The peak with the highest value is called the
global maximum and the valley with the lowest value is called the global minimum. The
other peaks which are smaller than the maximum are called local maxima, and the valleys
which have higher values than the minimum are called local minima. The search for the
optimum solution for f(X) starts somewhere along the curve and the objective is to find the
global maximum or minimum, as the case may be. The problem occurs when the search
for the optimum solution gets trapped in local maxima or minima. The optimization algo-
rithm should be such that the function should attain the global optimum value and if it
gets trapped in local optimum it should be able to come out of the local optimum point or
region in the search space.

xmaxx*
x

f(x)

0

f(x*)

FIGURE 1.2
One-dimensional function f(X) where X = [x].

x

f(x)

0

Global maxima

Local maxima

Local minima

Global minima

FIGURE 1.3
One-dimensional function f(X) having multiple maxima and minima.

4 ﻿﻿Nature-Inspired Optimization Algorithms

In the above problem the function f(X) is dependent on a single variable x; hence it is
single variable optimization. This maximization problem of one variable can be extended
to d number of variables, thus making the objective function d-dimensional and the search
space becomes a d-dimensional hyperspace. In effect, this becomes multivariable optimi-
zation. As another example, consider a function of two variables f(X) = f(x1, x2) with only
one global minima. The two-dimensional search space of a function of two variables f(X)
= f(x1, x2) is shown as a contour plot in Figure 1.4. The global minima appears nearly at the
center of the search space, as indicated.

In general,

	 f X f x x xd() (, , ...)= 1 2 	 (1.1)

and the search space isS Rd® . This is single-objective optimization problem since there
is only one objective function that is to be maximized or minimized. In contrast to this, if
there is more than one objective function to be maximized or minimized then it becomes
multi-objective optimization. If there are no constraints attached to the problem it is
unconstrained optimization whereas if there are one or more constraints in the problem it
is constrained optimization. The constraints of the problem could be equality or inequality
constraints. They are mathematically represented as:

	

g X i P

h X j Q

or h X j

i

j

j

() , , ,

() , , ,

() , , , ...

= =

³ =

£ =

0 1 2

0 1 2

0 1 2 .. Q

	 (1.2)

where the number of equality constraints is P and the number of inequality constraints is
Q. When there are multiple number of objective functions, the problem is multi-objective
optimization. This is mathematically represented as:

	 f X f x x x k Kk k k kd() (, ,,), , ,= =1 2 1 2 	 (1.3)

where K is the number of objective functions that are to be either maximized or mini-
mized. The objective function f(X) maps the search space to the function space, which will

Global minima

x1

x2

Search space

FIGURE 1.4
Two-dimensional search space of a function f(x1, x2) with one global minimum.

5Introduction﻿﻿

have a single value for single-objective optimization and multiple values in the case of
multi-objective optimization. The parameters or variables can be continuous or discrete
and belong to a finite or infinite set. The parameters could be interdependent or they may
be independent of each other. The function might have only one maximum point that is
the global maximum called a unimodal function, or it could have one global maximum
and multiple local maxima called a multimodal function. The example plotted in Figure
1.2 is unimodal whereas the plot shown in Figure 1.3 is multimodal.

1.3 � Types of Optimization Problems

Optimization problems usually start with the definition of the problem such as minimi-
zation of cost, energy, resources used, or maximization of profit and quality. From this
problem statement the objective function is formulated, either as a maximization or mini-
mization function. The next step is to identify the constraints associated with the prob-
lem, which could be either equality or inequality constraints. The parameters associated
with the objective function and the constraints have to be identified and their boundaries
clearly stated. The optimum solution for the problem has to be found by searching, for
which the search or solution space needs to be defined. The tentative location of the solu-
tion in the search space or the local region where the solution could possibly be found also
has to be initially known, because that is the point at which the search for the optimum
has to begin. If the information about the local region where the solution is likely to be
found is not available, then the search for the optimum has to start from a random location
in the search space. If the space is quite large and multidimensional, it is neither practical
nor feasible to do an exhaustive search of the solution space. If there are no objectives in
the problem but only constraints, then it is a feasibility problem. If the objective function
and constraints are separable in the design variables, it is a separable optimization problem.
Given any mathematical function of design variables and constraints, if it is possible to
separate them in terms of the variables then it is a separable problem. Let a function of three
design variables be defined as f(X) = x1x2x3. Taking logarithm on both sides, log [f(X)] =
log(x1x2x3) = log x1 + log x2 + log x3. Since this is separable in terms of the three variables x1,
x2, and x3, it is a separable problem.

The optimization problems and techniques are categorized into several classes based
on the characteristics of the objective function, the associated variables, and constraints.

Continuous and Discrete Optimization: When the objective function is a continuous func-
tion of design variables it is continuous optimization. This continuous function could be
differentiable or non-differentiable. If the function is differentiable, the traditional or clas-
sical methods of optimization can be applied. f x x x x() = + - +12 5 2 43 2 is an example of
a continuous function that is differentiable, and the traditional methods of optimization
can be applied to find the minima or maxima of the function f(x). If the function is non-
differentiable, then other methods have to be explored, or they have to be transformed
such that the classical methods can be applied. Such non-differentiable functions are usu-
ally not smooth and have sharp discontinuities where the derivatives do not exist. When
the objective function is dependent on a set of independent discrete variables it is discrete
or combinatorial optimization. Sometimes, the function could be a mix of continuous and
discrete variables and it becomes a mixed optimization problem. An example of a com-
binatorial optimization problem is finding the minimum spanning tree of a connected

6 ﻿﻿Nature-Inspired Optimization Algorithms

undirected graph. The problem is to connect all the nodes of the graph such that the total
weight of the edges connecting these nodes is minimum. In addition, there should not be
any cycles in the minimum spanning tree. Kruskal’s and Prim’s algorithms are two greedy
algorithms that are normally applied in finding the minimum spanning tree of a graph.

Figure 1.5 shows an example of a connected graph, and its minimum spanning tree is
shown highlighted. Initially starting from node a of the graph, all the edges connecting
this node are examined and the edge with the least weight of 2 is chosen and the node b
connecting this edge is included in the tree. The edges connected to nodes a and b that are
not yet included in the tree are examined, and the edge with a weight of 3 connecting node
b to node e is included in the tree. This process is repeated until all the nodes in the graph
have been covered. The algorithm for obtaining the minimum spanning tree is a greedy
algorithm since it chooses the edge with the smallest weight at each step. The final opti-
mized output is the set of edges whose total weight is minimum with all the nodes of the
graph being connected and included in the tree. This is an optimization problem with the
objective function being the total weight of all the edges in the minimum spanning tree
and the constraints being that each node be included only once and no cycles are formed.

Deterministic and Stochastic Optimization: Deterministic optimization algorithms are con-
sistent, and each time the algorithm is run, it produces the same result for the same input
values. Stochastic optimization algorithms have some randomness associated with them
and might produce different results for each run of the algorithm. An example for the
deterministic optimization algorithm is hill climbing and other traditional gradient-based
methods such as the simplex method. Genetic algorithm and particle swarm optimiza-
tion are two famous examples of population-based stochastic optimization techniques.
Stochastic optimization algorithms are heuristic or metaheuristic and have some inherent
randomness that leads to the optimum or near-optimum solution in finite time.

Constrained and Unconstrained Optimization: When there are no constraints on the problem
to be solved it is unconstrained optimization. When there are constraints related to the prob-
lem, it is constrained optimization. Let f x x x x x x(,)1 2 1

2
1 2

2
210 5 2 3= - + - + be the function to

be optimized. The problem is to find the values of x1 and x2 that will maximize f x x(,)1 2 . If
there is no restriction on the values that x1 and x2 can assume, it is unconstrained optimi-
zation. If it is stated that x1 can only be a positive integer then it is constrained optimiza-
tion. The constraints could be equality or inequality constraints. The constraint x1 0³ is an
inequality constraint whereas 2 61 2x x+ = is an equality constraint. Constrained optimiza-
tion problems are more difficult to solve than unconstrained optimization problems.

Linear and Non-linear Optimization: If the objective function to be optimized is linear then
it is linear optimization. If the objective function is non-linear then it is non-linear optimi-
zation. An example for a linear objective function is f X x x() = + -2 4 71 2 , and a non-linear
objective function is f X x x x() = + - +1

2
1 2

23 2 5. Non-linear optimization problems are more

2
7

4

1

8

3

2

46 9

b e

a

c

g

f

d

5

4

FIGURE 1.5
Minimum spanning tree.

7Introduction﻿﻿

difficult to solve than linear optimization problems. Similar to objective functions, the
constraints also could be linear or non-linear, for example, x x1 2 6+ = is a linear constraint
and x x1

2
2
2 100+ > is a non-linear constraint.

Single- and Multi-Objective Optimization: When there is only one objective function f(X)
to be optimized it is single-objective optimization. When there are multiple objective func-
tions {f(X1), f(X2), …, f(XK)} to be optimized it is multi-objective optimization. In multi-
objective optimization there are multiple (K) objective functions and each one is a function
of d number of design variables. In multi-objective optimization, there could be multiple
functions with conflicting requirements. There will be no single design vector that will
maximize (or minimize) all the objective functions. It might not be possible to satisfy all the
constraints to get an optimum value for all the objective functions. It might be necessary
to have tradeoffs when there are conflicting requirements between multiple objectives.
A typical example with multiple objectives is manufacturing a car. One objective will be
minimization of cost, the second will be minimization of fuel consumption, the third will
be maximization of efficiency, the fourth will be minimization of resources used in manu-
facturing, the fifth will be minimization of emission of pollutants, and so on. Algorithms
that work for single-objective optimization might not work directly for multi-objective
optimization. One method to solve such multi-objective optimization problems is to con-
struct a single-objective function using a weighted combination of the multiple objective
functions such as:

	 f X c f X c f X c f XK K() () () ... ()= + + +1 1 2 2 	 (1.4)

where c1, c2, …, cK are the weighting coefficients.
A better method to take care of these conflicting requirements is that the optimal values

of all the objective functions lie on the Pareto Optimal Front. The Pareto Optimal Front
theory states that it is not possible to get the maximum value for all the multiple conflict-
ing objectives of a problem simultaneously. What is stated here for a maximization prob-
lem applies equally well for a minimization problem. The optimal method to solve this
multi-objective problem with conflicting requirements is to ensure that the solutions to
the multiple objective functions lie on the Pareto Optimal Front. When the fitness value of
one objective function is increased (improved), the fitness value of another objective func-
tion will be decreased (degraded); that means it is not possible to get the maximum value
for all the objective functions simultaneously with one solution vector. If a solution vector
Xi lies on the Pareto Optimal Front, it yields a vector of fitness values for all the objective
functions of the problem. Comparing these fitness values, it occurs that if this vector Xi
yields maximum fitness for objective function f(Xi) it might not be the case for the function
f(Xj). Another solution vector Xr which is also on the Pareto Optimal Front will produce the
maximum value for the objective function f(Xr) but not for f(Xi) or f(Xj). Therefore, any solu-
tion vector X for a multi-objective optimization problem should lie on the Pareto Optimal
Front for the solutions to be non-dominated or Pareto Optimal.

1.4 � Examples of Optimization

These algorithms have one thing in common, that is, they all strive to produce the best solu-
tion for a given problem within a limited set of resources. The problem can be a complex

8 ﻿﻿Nature-Inspired Optimization Algorithms

engineering design such as a CNC Machine, a process plant like paper manufacturing,
pattern recognition, image classification, or an NP-hard problem (non-deterministic poly-
nomial time) in computer science like the traveling salesman problem (TSP), and the limita-
tions on the resources are the constraints within which the best solution for the problem is
to be attained. It can be expressed in terms of mathematical equations that could be solved
using different methods suitable for the problem. One of the most important evaluation
criteria for these algorithms is the time, space, and computational complexity incurred in
arriving at the optimum solution.

Paper Manufacturing

In a process plant like paper manufacturing, many parameters will be involved in pro-
ducing the paper. The objective function could be a mathematical function that has
to be maximized and indicates the quality of the paper produced. There are several
processes involved in paper manufacturing such as pulp extraction, the right blend
(proportion) of chemical additives, fixing temperature and/or pressure, drying, bleach-
ing, etc. Choosing the appropriate values for the parameters involved in the various
processes plays a crucial role in the color, thickness, and quality of the paper produced.
This is an optimization problem where the parameters of the paper manufacturing pro-
cess are equivalent to the decision variables X = {x1, x2, …, xd} in the search space and the
function f(X) is the fitness or quality function. The value of the fitness function has to be
proportional to the paper quality produced. The global optimum of the objective func-
tion will be attained when the function has the highest value and the paper produced
is of the best quality.

Pattern Recognition

Consider the pattern recognition problem where the objective is to identify and classify
objects in an image with 100% accuracy. Every object such as jasmine, rose, car, lorry, bike,
building, human face, and fingerprint present in an image has its own set of features that
enables recognition and classification. Flowers have features like the number of petals,
length and width of the petals, color, diameter of the flower, etc. Similarly a fingerprint
has features like ridges and minutiae. The ridge and minutiae patterns on the fingerprint
enables classification and recognition.

Feature Reduction

Each object or pattern has its own unique set of features that enables identification. When
the number of features of an object is higher it becomes impractical to extract all the fea-
tures, compare it with the existing template, and then identify the object. So to circumvent
the problem, a technique known as feature reduction is applied. This is the technique of
selecting a minimum number of features from the entire set, for classification of objects
with a reasonable percentage of accuracy. Minimizing the number of features is nothing
but the selection of a subset of features, thus reducing the computational complexity in
searching for the optimum solution. It is equivalent to minimizing the value of dimension
d in the hyperspace. Once d is fixed, the next step is to find the value of the feature set X
= {x1, x2, x3, …, xd} so that f(X) attains the global maximum or minimum value, as the case
may be. If f(X) represents classification accuracy then it will be maximized whereas if f(X)
is a classification error then it has to be minimized.

9Introduction﻿﻿

1.5 � Formulation of Optimization Problem

The first step in any problem solving is definition of the problem statement. Once the
statement is clear, the objectives and constraints have to be outlined. The objective(s) of the
problem have to be mathematically formulated as an objective function that is to be either
maximized or minimized. The next step is to identify the limitations or boundaries of the
design variables as equality or inequality constraints and write mathematical equations
for them. When the equations are linear and differentiable, with few parameters, the stan-
dard classical methods can be applied. When the equations are non-linear and complex or
if the objective function and/or constraints have discontinuities and are not differentiable,
the classical methods could become intractable, necessitating the use of evolutionary or
metaheuristic algorithms. The nature-inspired algorithms that are basically metaheuristic,
population-based search algorithms will be a better choice for such complex problems.
Many of the heuristic methods use a greedy criterion in accepting a new solution compo-
nent that might evolve from the previous solution(s), if it is either going to increase the fit-
ness value or decrease the cost. There is also a possibility of converging at a local optimum
for such greedy algorithms, which could be overcome by the metaheuristic algorithms that
search in parallel and have good diversity properties.

Although several mathematical techniques exist for solving optimization problems, the
computational complexity involved might be too high in some of the cases. Certain approx-
imations might reduce the search and computational complexity and help in arriving at
the near-optimum solution in finite time for practical applications. When the number of
design variables upon which the objective function is dependent is large, the dimensional-
ity of the problem increases. This can be reduced by dimensionality-reduction methods
based on the specific optimization problem. Sensitivity analysis of the objective function
with respect to the parameters, i.e. change in the objective function value with changes
in the design parameters could be done to improve the parameter settings and hence the
performance of the algorithm. As another alternative, multilevel optimization could be
applied for large complex problems. When the number of design variables and/or con-
straints becomes large, the optimization problem becomes unmanageable or impractical.
Multilevel optimization involves breaking down an optimization problem of large size or
dimensions into smaller sub-problems that can be optimized easily. The smaller sub-prob-
lems are linked to put together a solution for the larger problem. Yet another approach is
parallel processing, where the sub-problems can be run independently in multiple parallel
computers to speed up the optimization process.

The problem is to be defined clearly and the physical principles governing the system to
be optimized are to be understood thoroughly. The limitations under which the solution is
to be found are formulated as constraints. For example, the number of persons cannot be
a fractional number, the resistance value cannot be negative, and so on. These restrictions
on certain parameters can be formulated as equality or inequality constraints. Based on
the mathematical equations, the problem can be categorized as linear, non-linear, integer,
quadratic, etc. When probabilistic variables are involved, it is stochastic programming.
Necessary and sufficient conditions for optimality have to be identified and the optimum
solution must satisfy these conditions. The best solution among all those available is to be
selected based on some criterion. The optimum solution gives a maximum performance
measure as compared to other non-optimal solutions. Optimization methods can also
be classified as direct and indirect. Direct methods make use of objective functions and
constraint equations whereas indirect methods use properties of functions. Most of these

10 ﻿﻿Nature-Inspired Optimization Algorithms

approaches are suitable for programming on a computer, and hence scaling or transforma-
tion of variables can be accomplished easily.

1.6 � Classification of Optimization Algorithms

The optimization algorithms are classified into the traditional or classical methods, evolu-
tionary algorithms, and swarm intelligence algorithms.

Classical Methods: The classical optimization algorithms are applicable to the traditional
continuous optimization functions that are differentiable. The traditional methods involve
computation of the first- and second-order derivatives of the objective function in order to
find maxima or minima. The solution obtained could be local or global optima but the ulti-
mate goal of optimization is to find the global optimum. They are mostly gradient-based
methods and provide deterministic solutions to optimization functions within a continu-
ous search space. The simplex method, linear and non-linear programming, Newton’s
steepest descent method, Lagrangian method, integer and dynamic programming, and
the Kuhn–Tucker conditions are famous classical methods, to name a few. Steepest descent
is one of the classical optimization techniques for finding the minimum of a unimodal dif-
ferentiable function. Figure 1.6 illustrates the trajectory of the steepest descent method. In
the classical descent methods, the step size plays a major role in approaching the minimum
of a unimodal function. The brute force method is a single point direct search method that
searches for the optimum point starting from a single point in the search region that is
bounded. The search proceeds in steps, and the step size plays a major role in convergence
of the algorithm. When the number of parameters is large, the brute force method suffers
from the curse of dimensionality.

The random walk method overcomes or circumvents the curse of dimensionality by
searching from randomly generated points in the search space of the objective function.

Global minima

x1

x2

Search space

trajectory of gradient descent

FIGURE 1.6
Illustration of gradient descent.

11Introduction﻿﻿

The Hooke–Jeeves method is a direction or pattern search since it starts the search from a
base point and has separate step size for each coordinate direction. The trial search points
are compared, and if a move is found to be better, then further moves are made in the same
direction. Thus the step sizes are adaptive in this method which makes it perform better
than the earlier two methods. When the functions are multimodal, the starting point of
the search plays a vital role in finding the global optimum since there is more than one
optimum (local as well as global) point. There are other methods that are called multi-start
since they search the solution space starting from multiple different initial points for each
search. The search could be direct or derivative-based. Clustering could be applied where
clusters of sample points are formed and one point within the cluster serves as the initial
point for the search. This is limited to problems with smaller numbers of parameters since
it is computationally intensive. An overview of the classical algorithms has been discussed
in the following chapter.

Evolutionary Algorithms: Evolutionary algorithms are a class of optimization algorithms
that are based on the biological processes of evolution. As the name implies, evolution-
ary computational methods are designed on the principles of evolution. They are based
on the Darwinian theory of survival of the fittest and use selection, mating, reproduction,
crossover, and mutation operators similar to the biological processes of evolution. Genetic
algorithm (GA), genetic programming (GP), and differential evolution (DE) are three of the
classical popular evolutionary algorithms that have been discussed in this book. Darwin’s
finches belong to a group of passerine birds that have around 15 different species within
their group. They are diversified in the shape, size, and function of their beaks. Long-
term study has shown evolutionary changes in their beaks. They are popularly known as
Darwin’s finches because Charles Darwin found and collected them from the Galapagos
Islands and they formed the basis for Darwin’s theory of evolution and natural selection.
Figure 1.7 shows the Darwin’s finches that played an important role in Darwin conceiving
his theory of evolution and are a typical example of evolution.

Additionally, other evolutionary algorithms available are gene expression programming
(GEP), evolutionary programming (EP), and evolutionary strategies (ES). Charles Darwin
developed the theory of evolution on which these algorithms are all built upon, and they
are all population-based. The fundamental goal of the theory or algorithm is survival of
the species.

The transfer of a genetic program (genotype) or code from an individual to its progeny
is reproduction. When there are mutations, there are differences in the transferred genetic
code that are either advantageous or disadvantageous. When there are more individuals
than resources, there is competition and the fitter ones tend to survive and reproduce
whereas the weaker ones perish. The genotype carries genetic information from the par-
ent to offspring with all the experience undergone by the parent so far. Phenotype is the
set of characteristics or properties of the population, which is a manifestation (behavioral
expression) of the genotype in a specific environment. In natural evolution, there is non-
linear mapping between genotype and phenotype and it is complex. The algorithms that
are developed under the evolutionary framework are broadly referred to as evolution-
ary algorithms. The evolution of the population is determined by the parents, offspring,
and the operators, and the algorithms differ from each other based on this combination.
Let P be the population size of parents, C be the number of offspring or children, and
after recombination the population size is P + C. This has to be resized or scaled down to
the original size, and the operators determine the mode of resizing. The fitness of every
member of the population is evaluated by the objective function, and the overall fitness is
determined by the individual fitness values.

12 ﻿﻿Nature-Inspired Optimization Algorithms

In evolutionary strategies the search is in parallel (multi-start) from multiple points in
the search space. The initial population is created randomly, and parents are selected for
recombination to create a population of children. The children are mutated to change their
properties or characteristics; either all of them undergo mutation or it is done selectively.
The next-generation population members are chosen from the total population consisting
of parents and children. This resizing of the population is done based on the fitness values
of the individual members.

Swarm Intelligence Algorithms: Computational intelligence (CI) is a subset of machine
learning and artificial intelligence that collectively refers to algorithms with intelligence
built into them. Most of the evolutionary algorithms and swarm intelligence algorithms
have computational intelligence built into them. Some of the popular computational intel-
ligence algorithms are neural networks, fuzzy logic, genetic algorithm, differential evolu-
tion, particle swarm optimization, firefly algorithm, ant colony optimization, and other
swarm-based algorithms. Nature-inspired (NI) algorithms are developed based on the
study of natural processes that could be physical, chemical, or biological and the behavior
of animals, birds, and insects. They are mostly population-based and utilize their collec-
tive swarm intelligence in arriving at the optimum solution. Swarm intelligence (SI) algo-
rithms have been developed based on the study of swarm behavior, and these swarms
possess computational intelligence. Swarm behavior refers to the collective behavior of
a group of insects, birds, fish, and animals, and swarm intelligence is the intelligence
exhibited by the entire group as a whole. The individual members of the swarm follow
simple rules that lead to collective and productive outcomes for the benefit of the entire
swarm. They are adaptive and flexible, have good perception capabilities, and live in

FIGURE 1.7
Darwin’s finches. [Author: John Gould (Public Domain).]

13Introduction﻿﻿

the environment utilizing the available resources efficiently. They interact within their
group as well as with the environment and behave in a self-organized manner. Most of
the swarms have a hierarchy within their group and apply principles of division of labor.
Their collective intelligence helps them in foraging for food, defending against preda-
tors, and societal interactions such as communication among the members of their group
for the benefit of the entire swarm. Such studies have motivated the research towards
development of swarm intelligence algorithms that are able to solve complex problems
efficiently in finite time. Figure 1.8 shows a group of weaver ants making an emergency
bridge between two plants that is a manifestation of group dynamism and collective
intelligence.

Many of the classical optimization algorithms require the objective function to be a con-
tinuous function whose derivative exists. If the function is discrete in nature or if there are
numerous parameters in the problem, these algorithms fail. They are not suitable for deal-
ing with functions whose derivatives do not exist or for discrete optimization problems
such as in image processing. In such cases, computational intelligence algorithms are best
suited to provide the solution. They are mostly designed for searching a solution space
trying to find the best solution or a close approximation. This involves some random-
ness in the algorithm which in itself increases the efficiency of such methods. Searching
a solution space is best done using a swarm or a group of particles, and these serve as the
basis for nature-inspired algorithms. They are all population-based and reduce the time
of searching to find the optimum solution. SI-based techniques are mostly iterative, and
they remember the past history in order to find a better solution than the previous best.
Remembering the previous solutions involves memory, and many of the SI algorithms do
have memory, either short-term or long-term. The algorithm stops either when a stopping
criterion is attained or when the predefined maximum number of iterations is reached.
The two most important components in swarm intelligence algorithms are intensification
and diversification. In intensification, the search is intensified in a particular area near the

FIGURE 1.8
Weaver ants making an emergency bridge between two plants. (Author: Rose Thumboor, CC BY-SA 4.0. https​://
cr​eativ​ecomm​ons.o​rg/li​cense​s/by-​sa/4.​0/dee​d.en.​)

https://creativecommons.org
https://creativecommons.org

14 ﻿﻿Nature-Inspired Optimization Algorithms

previous best solution, whereas in diversification, the search is conducted over a wider
area that was previously unexplored, looking for better solutions.

1.7 � Traveling Salesman Problem and Knapsack Problem

Optimizing a cost function that is defined on a set of independent variables is a com-
binatorial optimization problem since it involves finding the right set of independent
variables that maximizes or minimizes the function. The problems which generally fall
into this category can be divided into two classes – those which are easy to solve and
take up less time (can be solved in polynomial time) and those which take up a large
amount of time and are practically infeasible to solve, called NP-hard problems. The
most famous problem in computer science under the category of NP-hard is the travel-
ing salesman problem (TSP), and other similar problems in this category are the graph
partitioning (coloring) problem, job scheduling problem, and network routing problem,
to name a few. These combinatorial optimization problems could be solved by the classi-
cal optimization algorithms in an infinitely long time or by the heuristic/metaheuristic
optimization algorithms in finite short time that produces an optimum solution that
closely approximates the actual solution.

The TSP and the knapsack problem are two typical famous examples in computer sci-
ence for discrete combinatorial optimization. In the TSP, the objective function is the total
distance of the Hamiltonian tour and depends on the set of cities visited and the total dis-
tance covered which is the sum of the distance of the edges connecting the cities, and in the
knapsack problem the combination of the weights of the items loaded into the knapsack
and their total cost determines the objective function value. Consider the traveling sales-
man problem which is a typical combinatorial optimization problem in computer science
that has been found to be intractable or NP-hard. There are a set of cities that are intercon-
nected. The cities are represented by nodes in a graph and the connections between the
nodes are edges. Each edge has a value associated with it that could represent distance or
cost. The problem is for a traveling salesman to visit each of these cities once and only once
(without retracing) and go back to the starting city traveling a total minimum distance and
hence incurring the minimum cost. The path in the graph traced by the traveling salesman
is called the Hamiltonian tour. This is illustrated in Figure 1.9 which shows one possible
Hamiltonian tour in the graph.

Consider the knapsack problem in computer science which is another typical combinato-
rial optimization problem. There is a knapsack or rucksack and a set of items each with
a value and a weight. The items are represented by xk with a weight of wk and value vk,
where k = 1, 2, …, N, assuming there are N number of different items. The objective is
to fill the knapsack with as many items as possible so that the total value of the items is
maximum. The items can be included as a whole or in fractions, such as c1x1 where c1 = 1
is one instance of the item x1, c1 = 2 is two instances of the item x1, whereas c1 = 0.5 is one-
half of the item x1. The constraint is that the maximum weight of all the items put in the
knapsack should not exceed its capacity of Wmax kg. In this problem, the objective function
is the total value of all the items in the knapsack which can be formulated as the weighted
sum of the values of each item put in the knapsack. The constraint is that the sum of the
weights of all the items put in the knapsack should not exceed the limit of Wmax kg. This is
a multi-variable, constrained optimization problem with a single objective function that is

15Introduction﻿﻿

to be maximized. This is illustrated in Figure 1.10. The objective function is a cost function
that is to be maximized, given by:

	 f X c v c v c vN N() ...= + + +1 1 2 2 	 (1.5)

The constraint is:

	 c w c w c w WN N1 1 2 2+ + + £... max 	 (1.6)

where the coefficients c1, c2, …, cN are either integers or fractional numbers.

3

9

13

5 6

102

8

12

7

1

4

11

FIGURE 1.9
Hamiltonian tour for TSP.

Knapsack
Maximum Weight

Wmax kg

Item x1

w1, v1

Item x2

w2, v2

Item x3

w3, v3

Item x8

w8, v8

Item x4

w4, v4

Item x7

w7, v7

Item x6

w6, v6

Item x5

w5, v5

FIGURE 1.10
Knapsack problem.

16 ﻿﻿Nature-Inspired Optimization Algorithms

1.8 � Summary

Any problem to be optimized should be formulated in terms of an objective function and a
set of parameters. The formulation can be done either as minimization (cost) or maximiza-
tion (profit) of the objective function. The algorithms proposed for such optimization prob-
lems should be able to handle linear or non-linear, continuous or discrete, differentiable or
non-differentiable, unimodal or multimodal, and single- as well as multi-objective func-
tions or search spaces. The algorithms should be able to search for the solutions in parallel
(inherent parallelism) and be efficient in handling computationally intensive cost func-
tions. The number of parameters on which the objective function or the solution depends
should be as small as possible and easy to control. The algorithm should have a faster rate
of convergence, and it should converge to the optimum solution in finite time.

The classical algorithms have been discussed in Chapter 2, and the nature-inspired opti-
mization algorithms in general have been discussed in Chapter 3. Chapters 4 and 5 cover
the evolutionary algorithms – genetic algorithm (GA) and genetic programming (GP). The
rest of the chapters are devoted to each of the nature-inspired algorithms that are popu-
lar, with proven abilities and superiority in finding the optimum solution. The standard
benchmark functions used for testing and comparing the performance of these algorithms
and typical applications for evaluating these algorithms have been outlined in Chapter 19.
The book concludes with a summary in Chapter 20.

17

2
Classical Optimization Methods

2.1 � Introduction

The goal of optimization is to get the best possible output from the available resources
within a set of constraints. The output could be maximization of profit/efficiency or mini-
mization of cost/resources utilized. Maximization and minimization are interchangeable
since one can be converted to the other and vice versa. Optimization is applicable to diverse
fields such as engineering design, network routing, job scheduling, communications, com-
puter science, economics, business management, and a host of other complex applications.
Several optimization algorithms have been developed with each algorithm suitable for a
particular class of problems. The effectiveness of the algorithm is determined in terms of
time, space, and computational complexity. The convergence rate of the algorithm and the
computational resources utilized play a major role in the algorithm efficiency and optimal-
ity of the solution obtained for the problem. The requirement of quantitative results for
the optimization problem necessitates writing mathematical equations for the objectives
and constraints. This in turn requires mathematical techniques for solving the equations
which might have some initial conditions and bounds or constraints on variables.

Operations research is the branch of optimization concerned with the mathematical anal-
ysis techniques required for producing the optimum output [1]. It is a discipline that deals
with the analytical methods that aid in complex decision-making during problem-solving.
Operations research involves construction of mathematical models wherein computer pro-
grams can be written to solve problems that have been modeled within a mathematical
framework. When the problems involve stochasticity, statistical programming techniques
need to be employed. The probability distributions of such stochastic variables have to be
known in advance in order to fit the models correctly. The numerical programming tech-
niques are the classical methods of optimization that have been developed since the early
1940s. The earliest developments were made by Cauchy, Newton, and Lagrange, and since
then several techniques have been proposed. The advances were made possible by the par-
allel development of high-speed computing technology on which these algorithms were
programmed. The methods discussed in this chapter are quite popular and have been
used successfully in solving constrained as well as unconstrained optimization problems.

As an addition to these traditional methods, the evolutionary optimization algorithms
were developed in the 1960s. The pioneering development in the class of evolutionary algo-
rithms was made by the invention of the genetic algorithm, and since then this category of
algorithms has grown by leaps and bounds. The application of computational intelligence
in these algorithms was first done with the invention of neural networks. The inception of
evolutionary algorithms paved the way for development of search algorithms using popu-
lations of agents that search for the optimum in parallel. This inherent parallelism in these

Nature-Inspired Optimization for Image Processing Classical Optimization Methods

18 ﻿﻿Nature-Inspired Optimization for Image Processing

algorithms has made them more efficient than their classical counterparts. One major dif-
ference is that the classical algorithms are deterministic whereas the evolutionary search
algorithms are non-deterministic. The randomness incorporated into the search improves
the diversity of the algorithm and enables the algorithm to jump out of local optima. This
increases the efficiency of the algorithms in the search, and their rate of convergence on
the global optimum is higher.

2.2 � Mathematical Model of Optimization

The solution to the optimization problem commences with the definition of the problem
statement with clearly defined objectives. The constraints and parameters associated with
the problem need to be stated lucidly. The mathematical equations for the objective(s) and
constraints of the problem have to be formed. The initial values for the functions, if any,
and the bounds on the parameters have to be identified. The objective function value is an
indication of the quality of the solution attained which can be framed for either maximiza-
tion or minimization. A maximization objective function can be converted to a minimiza-
tion function by taking the negative of the function and vice versa. Similarly the constraints
could be written as equations of either the equality or inequality type. Depending on the
number of variables upon which the objective function depends, the function becomes
multidimensional; typically the dimension is d.

Let the objective function be given by,

	 f X f x x xd() (...)= 1 2 	 (2.1)

Let the constraints of the problem be given by,

	

g X i P

h X j Q

or h X j

i

j

j

() , , ,

() , , ,

() , , , ...

= =

³ =

£ =

0 1 2

0 1 2

0 1 2 .. Q

	 (2.2)

In the case of multi-objective optimization problems, the number of objective functions is
assumed as K and the multiple objective functions are given by,

	 f X f x x x k Kk k k kd() (, ,,), , ,= =1 2 1 2 	 (2.3)

These functions could be of different types such as continuous or discrete, differentiable
or non-differentiable, deterministic or non-deterministic with some random parameters
inculcated into them. The traditional algorithms are usually applicable if the function is
continuous and differentiable. When the function is constrained, it is a constrained pro-
gramming problem whereas if it is unconstrained, it is an unconstrained programming
problem. If there is only a single objective to be optimized, it is single-objective optimiza-
tion, whereas if there are multiple objectives, it is multi-objective optimization. The func-
tion could be concave or convex as determined by the contours of the surface plot of the
function. Concave functions have one maximum whereas convex functions have one min-
imum. A problem is said to be feasible if there exists at least one set of variables that satisfy

19Classical Optimization Methods﻿﻿

the objective function and the constraints. A problem is infeasible if it is not possible to
find at least one set of design variables that satisfy the objective(s) and the constraints. If
the problem is infeasible the solution set will be empty. For an unbounded problem there
is no optimal solution since it is always possible to find a solution that is better than the
existing solution to the problem.

Based on the nature and characteristics of the objective function, constraints, design
variables, and any other parameters associated with the problem, the techniques for solv-
ing the classical optimization problems can be categorized as follows:

•	 Linear programming
•	 Simplex method
•	 Revised simplex method
•	 Kamarkar’s method
•	 Decomposition principle
•	 Duality theorem
•	 Transportation problem

•	 Non-linear programming
•	 Quadratic programming
•	 Geometric programming
•	 Kuhn–Tucker conditions

•	 Dynamic programming
•	 Integer programming
•	 Stochastic programming
•	 Lagrange multiplier method

These traditional methods have been discussed in the following sections with simple
examples where applicable.

2.3 � Linear Programming

Linear programming is a numerical programming technique that is designed to solve opti-
mization problems where the objective function and constraints (equality and inequality)
are expressed as linear equations (functions) of the decision variables. An example of the
mathematical modeling of a linear programming problem is:

	 Minimize ()f X x x x x= + - +2 4 51 2 3 4	

subject to the constraints:
g X x x1 1 2 6() : ,+ = g X x x2 1 42 8() : - = , g X x x3 3 2 25() = + < .
In general, there are d number of variables and m number of equations (constraints)

in these variables with d ≥ m. The inequality constraints can be converted to equal-
ity constraints by the inclusion of additional terms in the constraint equations.

20 ﻿﻿Nature-Inspired Optimization for Image Processing

Usually in linear programming problems, the decision variables are positive numbers
likex x x x1 2 3 40 0 0 0³ ³ > >, , , . The set of linear equations (objective function and con-
straints) may also be rewritten in matrix notation. The feasible solution space will be con-
vex with one global optimum (minimum). When the number of decision variables is more
than two, the solution space becomes a hyperplane in d dimensions. George B. Dantzig for-
mulated the linear programming problem in 1947 and invented the simplex method to solve
linear programming problems [2]. This was a major milestone development that led to
several applications such as optimal allocation of resources, scheduling, maximizing pro-
duction in petroleum refineries, manufacturing plants, and optimal design of structures.
It had far-reaching implications in the fields of mathematics, economics, computer science,
industry, military, and various other diverse fields. This invention by George B. Dantzig
had tremendous impact on solving complex problems efficiently, and he was awarded the
US President’s National Medal of Science in 1976.

2.3.1 � Simplex Method

The simplex method was one of the earliest methods developed for solving linear program-
ming problems and it is efficient and has become very popular. In the simplex method, the
search for the optimum solution in the feasible space initially starts from a vertex and
proceeds along the edges of the space to find better solutions. A basic set of feasible solu-
tions is generated, and one solution from this set is chosen. If this solution is suboptimal,
its neighboring solution is chosen and checked to see whether it is better than the previous
one. If the second one is either the optimum or better than the previous one, this solution
replaces the previous one. This process is repeated among all the available solutions in the
set until the optimum solution is found.

2.3.2 � Revised Simplex Method

Revised simplex method is a variant of the original simplex method that has reduced
storage requirement and computational time. The simplex method requires large memory
capacity in the computer to store the several variables and the constraints involved when
the problem has a higher number of dimensions. It also takes up more time for computa-
tions. In the original simplex method, a new table has to be computed and stored in each
iteration of the algorithm. This takes up more memory and time and most of this stored
information is not used in every iteration. This memory requirement is reduced in the
revised simplex method by storing the basis of the matrix representing the constraints.
The required quantities are computed from the inverse of the current basis matrix. This
makes the computations more efficient.

2.3.3 � Kamarkar’s Method

Kamarkar’s method was developed in 1984 for solving large-scale linear programming
problems [3]. The algorithm proposed solves the linear programming problems efficiently
with reduced time complexity. The simplex method searches for the optimum solution
along the boundaries (vertices) of the feasible solution space whereas Kamarkar’s method
searches for the optimum solution in the interior of the feasible solution space. In big-
ger problems with a large number of vertices, it is computationally intensive to search
along the vertices for the feasible solution. Kamarkar’s method transforms the solution
space so that the optimum lies near the center of the bounded space. The mathematical

21Classical Optimization Methods﻿﻿

equations for the linear programming problem are transformed, and the global minimum
for the problem is required to be necessarily zero so that this technique can be applied.
Kamarkar’s method is approximately 50 times faster than the simplex method in solving
large-scale problems.

2.3.4 � Duality Theorem

With every linear programming problem there is associated another problem. The first is
called primal and the second is called dual and their names can be interchanged. They have
related properties such that from the solution of one problem, the solution to the other
can be obtained. If the primal problem can be expressed with one set of linear equations
that can be represented in matrix form, the dual problem can be expressed by transposing
the rows and columns of the matrix of the primal. Moreover, the inequalities have to be
reversed and the maximization has to be replaced with minimization.

The duality theorem states the following:

•	 Dual of the dual is primal.
•	 If the optimum solution to one of them is known, then the optimum solution of the

second one will be better than or equal to the optimum solution of the first one.
•	 If primal and dual have optimum solutions, the global maximum value of the pri-

mal function is the global minimum value of the dual function.
•	 If one of them has an unbounded solution, then the optimum solution to the other

one is also not feasible.

The set of problems in linear programming called primal possess properties that define
their dual. The primal and dual are closely related with a symmetric relationship, such that
if the solution to the primal is known, the solution to the dual can be easily obtained and
vice versa.

Let the primal problem be expressed as a set of linear equations with an objective func-
tion to be maximized and constraints with greater than or equal to inequalities. Then the
equations for the dual of the problem can be expressed by replacing the primal objective
function with an equivalent minimization function and constraints with lesser than or equal
to inequalities. The matrices of the primal and dual are transpose of each other. The dual
simplex method and the primal–dual method are widely used for solving such problems. The
dual simplex method [4] was developed by Lemke (1954), and the primal–dual method [5] was
developed by Dantzig, Ford, and Fulkerson (1956).

Consider the example given below:
Primal problem:

Maximize f X a xi i

i

d

() =
=
å

1

 subject to the following constraints:

c x bi i

i

d

1 1

1

³
=
å c x bi i

i

d

2

1

2

=
å ³ … c x bim i

i

d

m

=
å ³

1

 and the set of variables xi i

d{ } =1
constrained to be

positive.
Dual of the above problem is:

Minimize g Y b yj j

j

m

() =
=

å
1

subject to the following constraints:

22 ﻿﻿Nature-Inspired Optimization for Image Processing

c y aj j

j

m

1

1

1

=
å £ c y aj j

j

m

2

1

2

=
å £ … c y ajd

j

m

j d

=
å £

1

 and the set of variables yj j

m{ } =1
constrained to be

positive.
The optimal values of the primal and dual problems are equal. The computation time

of the problem increases with the number of constraints rather than with the number of
variables. If the dual of the problem has a lower number of constraints then it can be solved
more efficiently than the primal yielding the same solution.

2.3.5 � Decomposition Principle

The decomposition principle was proposed by George B. Dantzig and Philip Wolfe in 1960 for
solving large-scale problems which are difficult to solve in linear programming [6]. When
the number of variables involved in a problem is high and there are several constraints,
the problem becomes complicated and unwieldy. The decomposition principle can be applied
when the larger problem has a special structure that makes it possible to decompose into
smaller sub-problems which can be solved independently. Stated briefly, the principle
involves dividing a large problem into multiple smaller problems that are easier to solve.
The solutions for the sub-problems are put together to obtain the solution for the bigger
problem. This decomposition technique has made computations for solving large prob-
lems less complicated and more efficient.

2.3.6 � Transportation Problem

The transportation problem was formulated by F. L. Hitchcock [7, 8] in 1941 as a special
class of linear programming problems. The basic problem is stated as follows. There are
W number of warehouses and R number of retail outlets. The problem is to transport
a certain quantity of an item from each of the warehouses to the retail outlets with the
constraint of a maximum supply from each warehouse and maximum demand at each
retail outlet. The total cost of transportation from each warehouse to each of the retail
outlets will be the objective that is to be minimized. This type of problem is found to
have a special mathematical structure that is convenient and easy to solve. Utilizing the
properties of the matrices associated with the transportation problem, the transpor-
tation technique for solving the problem has been devised. It is computationally less
expensive compared to other linear programming problems. This transportation prob-
lem structure appears in other applications such as job scheduling, finding the shortest
path in a network, and so on.

2.4 � Non-Linear Programming

This is an optimization technique where the objective function and either all or some of
the constraints are non-linear equations of the design variables. Several algorithms have
been proposed for the solution of such non-linear programming problems, a few of which
are discussed below. Some of the techniques are applicable to both linear as well as non-
linear optimization problems.

23Classical Optimization Methods﻿﻿

2.4.1 � Quadratic Programming

When the objective function of the problem is a quadratic function of the variables with
linear constraints it is quadratic programming. This is a special case of non-linear pro-
gramming. In addition, if the optimization problem is minimization of the objective func-
tion, it is also convex. Therefore there will be only one minimum in the feasible solution
space which is the global minimum. Since the objective function has quadratic terms it
becomes a non-linear programming problem which is an extension of the linear program-
ming technique. The simplex method for solving quadratic programming problems was
proposed by Philip Wolfe in 1959 [9] and can be applied for solving the class of optimiza-
tion problems that have a quadratic function with linear inequality constraints. The con-
straints are assumed as inequalities and linear function of variables. This method can be
applied to certain types of problems like finding the least squares fit to a given set of data
(regression) and finding the quadratic approximation to the minimization problem of a
convex function (convex programming).

2.4.2 � Geometric Programming

Geometric programming is an optimization method for solving non-linear programming
problems. Duffin, Peterson, and Zener developed the geometric programming technique
in 1967 [10]. The engineering design problem has to be stated in terms of polynomials. The
objective function as well as the constraints have to be in polynomial form [11] and the algo-
rithm finds the minimum of the function. The optimal minimum value can be obtained as
the solution without the necessity of finding the values for the design variables. This is one
of the advantages of geometric programming. Another advantage is the ability to reduce
the problems into a set of simultaneous linear algebraic equations [12]. The disadvantage
is having to express the problem and its constraints in terms of polynomials. Consider the
example given below where the design problem is formulated as a polynomial:

Minimize f X x x x x x x() = + - + -2 3 2 51 2 1
2

1 2 2
2 where the design variables are x1 and x2. If

it is an unconstrained optimization problem there are no associated constraints. If it is a
constrained optimization problem, the constraints (either equality or inequality) may be
additionally expressed as:

	 g X x x1 1 2 10() : + < ()inequality constraint 	

	 g X x x2 1 24 0() : - = ()equality constraint 	

In general, the objective function and the constraints are d-dimensional and there could be
multiple constraints. For such problems the general equations are expressed as:

Minimize f X X x x xd(), { , }= 1 2 subject to the constraints:

	 g x j Jj() , , ,> = ()0 1 2 inequality constraint 	

	 h x k Kk() , , ,= = ()0 1 2 equality constraint 	

The geometric programming problem can be solved using either differential calculus or
arithmetic-geometric inequality. The solutions to geometric programming problems can be

24 ﻿﻿Nature-Inspired Optimization for Image Processing

obtained efficiently provided the design or analysis is stated in terms of mathematical
equations appropriately. This can be extended to problems from small scale to large scale.
Geometric programming also belongs to the class of convex optimization problems.

Kuhn–Tucker conditions are the conditions to be satisfied at a minimum point for a con-
strained optimization problem [13]. They include equality as well as inequality constraints.
They are necessary conditions, but they might not be sufficient for the point to be a mini-
mum in non-linear programming. For convex programming problems, Kuhn–Tucker condi-
tions are necessary and sufficient. Kuhn and Tucker first published the conditions in 1951.

2.5 � Dynamic Programming

Dynamic programming is a method to solve optimization problems that require decisions
to be taken as a sequential flow through the problem. The decisions could be required at
different levels of the system. This technique of solving such problems was developed and
presented by Richard Bellman [14] in 1954. Physical systems can be modeled as finite state
machines where the set of parameters of the system determines the system state. The sys-
tem is modeled or designed as going from one state to another state in time sequence. The
system changes state based on a decision taken at that instant of time. Finally, a function
which depends on these parameters attains a value that is determined by the sequence of
decisions taken and hence change of states (transformation of state variables) of the sys-
tem. This value attained by the function could be maximum or minimum but it should be
optimal. Examples of such systems could be the production line in a manufacturing plant
or maintenance of equipment and consumables in a factory.

Considering the set of all possible decisions that could be taken at different instances of
time (in time sequence) the change of state for each of these decisions affects the consecu-
tive states. This in turn affects the final value of the objective function or some output
equivalent to the function value. When all of these possibilities are considered the search
space for the optimal solution becomes huge. To reduce the problem dimension so that
the solution can be obtained reasonably in finite time, it is reduced to a sequence of deci-
sion problems without taking into account the effect of every decision at a later instant of
time. Therefore, the K-stage problem is broken down into K single-stage problems that can
be solved much more efficiently than the original K-stage problem. The overall solution
should be same as that of combining the K different solutions.

The initial conditions and the decisions taken at the earlier stages of the system
will not impact the decisions taken at later stages. This principle breaks the problem
down into K different sub-problems which are simpler to solve. Finally, these K solu-
tions can be combined to obtain the overall optimum solution. The system under-
goes a transformation with every decision taken (at every stage), and the subsequent
decisions should result in the optimum output. When there is a multistage decision
problem involving K variables, it can be broken down into K single-stage problems,
each being modeled as a single-variable problem. The solution to the K single-variable
problems can be combined to obtain the solution for the K-variable problem. Any of
the methods available can be used to solve these single-variable problems. Dynamic
programming can be applied for problems wherein the variables and functions are
continuous, discontinuous, discrete, differentiable, non-differentiable, etc. It can also

25Classical Optimization Methods﻿﻿

account for stochastic variations and is found to be suitable for complex design and
analysis of engineering problems.

2.6 � Integer Programming

When solving engineering design problems the variables or the function might attain real
values that could be positive or negative with integer and fractional parts. If the variable
represents length or weight, then fractional values such as 4.89 m or 78.98 kg have mean-
ing. If the variable represents people or objects, then fractional values such as 5.7 or 0.77
are meaningless. The values could be rounded off, but this might affect other values and
hence the constraints of the problem might not be satisfied. The value of the objective func-
tion could also be different from that of the optimum because of rounding off to nearest
integer values of the design variables.

Example

Minimize the objective function f X x x x() = + -3 61 2
2

3 subject to the constraints
x x x x x1 2 1 2 30 5 5³ - £ £, , , , are necessarily integers.
When all the variables in a problem are restricted to take only integer values, the opti-

mization problem becomes an integer programming problem. If only some of the variables
are constrained to take integer values, it is a mixed integer programming problem. If the
values are confined to take binary values, either zero or one, it is called a zero-one program-
ming problem. The integer programming problem could be linear or non-linear. Several
methods have been developed for solving the integer programming problem, but the
performance of the method depends on the problem or application. The techniques for
solving integer programming problems that are either linear or non-linear are the branch
and bound method, Cutting Plane method, and Balas method. For non-linear integer
programming problems the generalized penalty function method and sequential linear
integer programming methods can also be applied. Additionally, a combination of these
approaches is also developed [15]. Gomory [16] has proposed an algorithm for obtaining
integer solutions to linear programming problems as well as to solve mixed integer pro-
gramming problems. The cutting plane method and branch and bound method are efficient in
solving linear integer (including mixed integer) programming problems. The branch and
bound algorithm was first proposed by Ailsa Land in 1960. The branch and bound method
divides the feasible region (solution space) into subregions, and each subregion is further
divided (up to as many levels as required) depending on the problem. Branch and bound is
more efficient and mostly outperforms the cutting plane method for integer programming
problems. It can also be extended to solve mixed integer programming as well as program-
ming problems with binary variables. But the cutting plane method modifies the linear
programming solution to obtain the integer solution. It converges quickly in a finite num-
ber of steps and was one of the first methods to be developed from which other methods
evolved. In addition to the two methods mentioned above, the Balas method is also used in
solving zero-one integer programming and non-linear integer polynomial programming
problem. The non-linear integer programming problems can be classified as general and
polynomial. The general penalty function method and sequential linear integer programming
are used for solving general non-linear programming problems.

26 ﻿﻿Nature-Inspired Optimization for Image Processing

2.7 � Stochastic Programming

Stochastic programming is an optimization method where some of the variables associ-
ated with the objective function are random variables with a defined probability distribu-
tion. In engineering design problems there could be a minimum and maximum bound
for the associated design variables and the actual value might be randomly placed within
these bounds. Whenever there are random variables involved in the problem it becomes a
stochastic programming problem. Even though the variables associated with the problem
are random in nature, the mathematical equations related to the problem make it linear
or non-linear, geometric or dynamic, and these problems can be solved using the existing
standard techniques.

Example: Minimize the function

	 f X w x w x w xd d() ...= + + +1 1 2 2 	

subject to the constraints,

	

ax bx

xi

i

d

1 4

1

0

0

- >

=
=
å

	

where the coefficients wj, j = 1, 2, …, d and the variables a and b are random variables with
a uniform probability distribution in the interval [0, 1]. This is a stochastic linear program-
ming problem, and any of the available techniques could be applied to solve them.

2.8 � Lagrange Multiplier Method

When the objective function is continuous and differentiable with equality constraints the
Lagrange multiplier method can be used. Let f X f x x() (,)= 1 2 be the objective function to
be minimized or maximized (function of two design variables) and let the constraint be
g X g x x() (,)= =1 2 0. The Lagrange function is formulated as:

	 L x x f x x g x x(, ,) (,) (,)1 2 1 2 1 2l l= + 	 (2.4)

Let x and x1 2
* * represent the extreme points on the surface of the function where maxima

or minima occur and λ is the Lagrange multiplier. The necessary conditions for x and x1 2
* *

to be points of maxima or minima are derived from Equation 2.4 by differentiating the
function L with respect to x x and1 2, l. These conditions are given by Equations 2.5 to 2.7
as detailed below:

	
¶
¶

+
¶
¶

æ

è
ç

ö

ø
÷ =

f
x

g
x x x1 1 1 2

0l
* *

	 (2.5)

27Classical Optimization Methods﻿﻿

	
¶
¶

+
¶
¶

æ

è
ç

ö

ø
÷ =

f
x

g
x x x2 2 1 2

0l
* *

	 (2.6)

	 g x x
x x

(,) * *1 2
1 2

0() = 	 (2.7)

The above three equations are the necessary conditions for x and x1 2
* * to be the extreme

points.
The solution to these equations produces the maximum or minimum value of the func-

tion f(X) subject to the constraint g(X). This technique can be extended to problems with
multiple constraints by introducing one Lagrange multiplier for each constraint.

2.9 � Summary

The traditional optimization methods have been discussed and a few examples have been
given wherever possible. The popular traditional algorithms such as linear programming,
non-linear programming, quadratic programming, geometric programming, dynamic
programming, integer programming, and stochastic programming have been outlined.
Some of the optimization techniques under the above categories such as the simplex and
revised simplex methods, Kamarkar’s method, duality theorem, decomposition principle,
and Kuhn–Tucker conditions have been described. The various algorithms are classified
based on the number of objective functions, number and type of constraints, number of
variables involved, characteristics of the objective function, and so on. The optimization
method to be applied depends on the problem and its mathematical equations and most
of them are numerical programming methods. The choice of the algorithm depends to
a great extent on the dimension of the problem to be solved. Many of the optimization
algorithms are iterative with the solutions improving with increasing number of iterations.

The classical engineering design problems such as design of steel and civil structures,
optimizing input resources or maximizing output from manufacturing industries, food
processing industries, chemical industries, and routing in computer and communication
networks are some of the diverse applications of the traditional optimization techniques.
The standard transportation problem, duality in problems, and the decomposition prin-
ciple where large complex problems can be decomposed into smaller units can be solved
using different algorithms that are adapted for these types of problems. The sensitivity
analysis of an algorithm can be carried out by varying the different parameters associated
with the problem and studying the change in the optimal output. The effect of the change
in variables, coefficients, constraints, and the number of mathematical equations on the
performance of the algorithm and the optimum output can be an area for research. The
algorithm should be robust and provide an accurate solution or a solution that is close to
the global optimum. If there are any local minima, the algorithm should not get trapped
into it and must be able to come out of it. The choice of the algorithm depends on its diver-
sity, versatility, adaptability, flexibility, robustness, and it should be easily programmable
to solve a wide array of problems across the entire spectrum of optimization. The space
(memory required), time, and computational complexity play a major role in the choice of
the algorithm.

28 ﻿﻿Nature-Inspired Optimization for Image Processing

References

	 1. 	Singaresu S. Rao, Engineering Optimization, Theory and Practice, 4th edition, John Wiley & Sons,
2009.

	 2. 	Jon C. Nash, The (Dantzig) simplex method for linear programming, IEEE Computing in Science
and Engineering, Vol. 2, No. 1, pp. 29–31, January/February 2000.

	 3. 	N. Kamarkar, A new polynomial-time algorithm for linear programming, Combinatorica
(Springer), Vol. 4, No. 4, pp. 373–385, December 1984.

	 4. 	C. E. Lemke, The dual method of solving the linear programming problem, Naval Research
Logistics (Wiley), Vol. 1, No. 1, pp. 36–47, 1954.

	 5. 	G. B. Dantzig, L. R. Ford D. R. Fulkerson, A primal-dual algorithm for linear programs, In:
Linear Inequalities and Related Systems, H. W. Kuhn and A. W. Tucker (eds) Annals of Mathematics
Study, No. 38. Princeton: Princeton University Press, 1956.

	 6. 	George B Dantzig, Philip Wolfe, Decomposition principle for linear programs, Operations
Research, Vol. 8, No. 1, pp. 101–111, February 1960.

	 7. 	D. R. Fulkerson, Hitchcock Transportation Problem, P-890, Santa Monica, CA: Rand Corporation,
July 1956.

	 8. 	F. L. Hitchcock, The distribution of a product from several sources to numerous localities, MIT
Journal of Mathematics and Physics, Vol. 20, pp. 224–230, 1941.

	 9. 	Philip Wolfe, The simplex method for quadratic programming, Econometrica, Vol. 27, No. 3, pp.
382–398, July 1959.

	 10. 	R. J. Duffin, E. L. Peterson, and Zener, C., Geometric Programming, John Wiley, New York, 1967.
	 11. 	Stephen Boyd, Seung-Jean Kim, Lieven Vandenberghe, Arash Hassibi, A tutorial on geometric

programming, Optimization and Engineering (Springer), Vol. 8, pp. 67–127, March 2007.
	 12. 	E. L. Peterson, Geometric programming, In: Advances in Geometric Programming, Mathematical

Concepts and Methods in Science and Engineering, Vol. 21, M. Avriel (eds). Springer, Boston, MA,
pp. 31–94, 1980.

	 13. 	H. W. Kuhn and A. W. Tucker, Nonlinear Programming, Proceedings of the 2nd Berkeley
Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley,
1951, pp. 481–492.

	 14. 	Richard Bellman, The theory of dynamic programming, P-550, Presented to the American
Mathematical Society, Wyoming, July 1954.

	 15. 	J. E. Mitchell, Branch-and-cut algorithms for integer programming, In: Encyclopedia of
Optimization, C. A. Floudas and P. M. Pardalos (eds). Dordrecht, The Netherlands: Kluwer,
2001.

	 16. 	R. E. Gomory, Outline of an algorithm for integer solutions to linear programs, Bulletin of
American Mathematical Society, Vol. 64, No. 5, pp. 275–278, 1958.

29

3
Nature-Inspired Algorithms

3.1 � Introduction

Nature-inspired optimization algorithms are metaheuristic algorithms that are developed
from the principles of biological evolution, swarm behavior, and physical and chemical
processes [1]. Nature-inspired optimization algorithms are bioinspired computational
intelligence techniques since they incorporate intelligence in the algorithms. The research
into these algorithms has grown by leaps and bounds in the last two decades. The first
breakthrough occurred in the 1960s with the pioneering development of the evolutionary
genetic algorithm (GA) by John Holland and his colleagues at the University of Michigan.
Since then several evolutionary algorithms have been proposed, including many variants
and hybrids of GA. Evolutionary algorithms are based on biological evolution, and GA
is one of the classical examples under this category. GP is another popular evolutionary
algorithm that is similar to GA and has a population of evolving programs and uses the
same operators as GA. Swarm intelligence algorithms are another category of bioinspired
algorithms that are inspired by the behavior of swarms in nature such as bird flocking, ant
trailing, fish schooling, elephant herding, and so on. Using populations of search agents
combined with heuristics has a profound effect on the solutions to complex engineering
design problems. The nature-inspired algorithms are novel in attaining effective solutions
easily with the least computational resources. The sharing of information and social inter-
action among members of their own species as well as with the environment by biological
agents such as ants, bees, crows, bat, cuckoo, etc. has led to the rise of collective intelligence.
They adapt themselves to the environment and make the optimum use of resources avail-
able, whether it is sharing of food or any task to be completed, with cooperation amongst
their group. Hence any algorithm modeled on their behavior can find solutions to complex
problems easily.

The majority of nature-inspired algorithms are broadly classified under evolutionary
algorithms (EA) and swarm intelligence (SI) algorithms. The third category of nature-
inspired algorithms are based on physical and chemical processes, and simulated anneal-
ing (SA) is a famous algorithm under this class. Evolutionary Algorithms are developed
from the biological processes of evolution whereas swarm intelligence algorithms are
developed from the study of swarm behavior. There has been a breakthrough in the
development of nature-inspired algorithms that mimic the behavior of swarms of ani-
mals, birds, and insects since the invention of particle swarm optimization (PSO) in 1995.
Particle swarm optimization was the first population-based swarm intelligence algorithm
to be proposed based on the flocking behavior of birds [2]. The study of nature, flora,
fauna, and the ecosystem in general has been the inspiration behind the development
of nature-inspired optimization algorithms and hundreds of nature-inspired algorithms,

Nature-Inspired Optimization Algorithms Nature-Inspired Algorithms

30 ﻿﻿Nature-Inspired Optimization Algorithms

their variants, and hybrids have been proposed. Figure 3.1 shows a picture of Dampa Tiger
Reserve in Mizoram, India, a lush tropical forest that is home to diverse flora and fauna.

3.2 � Traditional versus Nature-Inspired Algorithms

Optimization algorithms are a broad class of algorithms with a mathematical founda-
tion that have been designed to find the optimum solution under constraints. Traditional
algorithms do not always guarantee the global optimum solution since the final solu-
tion depends on the initial conditions. If they start at the same initial point they arrive
at the same final solution since the traditional algorithms are deterministic. The classi-
cal, derivative-based algorithms are problem-dependent and rely on the objective func-
tion landscape, so they will not be suitable for problems with discontinuities. Moreover,
they will not be suitable for complex, non-linear, multimodal problems [3]. Any problem
which appears to be extremely complex or hard to solve using traditional methods can be
solved by taking a leaf out of nature. Motivation can be gained by studying nature and
how such problems are dealt with in biological species. Nature-inspired algorithms do
not require computation of derivatives; hence they are gradient-free and are not problem-
specific. Even if the algorithm starts at the same initial point for repeated runs, it will not
end up with the same solution. There is some in-built stochasticity in the algorithm, with
Levy flights and random walks. Since nature-inspired algorithms have started to develop
and show promising results, there has been an explosion in their applications in various
fields. These include engineering, industry, economics, communication, computer science,
networks, business management, etc.

FIGURE 3.1
Dampa Tiger Reserve Forest. (Author: Coolcolney – own work, CC BY-SA 3.0 https​://cr​eativ​ecomm​ons.o​rg/li​
cense​s/by-​sa/3.​0/dee​d.en.​)

https://creativecommons.org
https://creativecommons.org

31Nature-Inspired Algorithms﻿﻿

One of the major approaches to engineering optimization is to search among all the fea-
sible solutions, to find the global optimum or the best solution that fits the problem and its
constraints. Basically, nature-inspired algorithms are metaheuristic search algorithms that
search for the optimum in parallel, with a population of agents [4]. Nature-inspired algo-
rithms generate solutions that are close to the optimum (if not exactly the global optimum)
in a finite reasonable amount of time, as opposed to traditional algorithms that are intrac-
table for NP-hard problems. Even if they get stuck in local optima, the in-built randomness
enables them to jump out of the local optimum. They can solve linear as well as non-linear
problems that are either unimodal or multimodal. Heuristics and metaheuristics incor-
porate some form of approximation and randomness in the algorithms, have memory to
store the past history which could be the best solution attained so far, and they also learn
from the past successes. The disadvantage is the large number of iterations required and
the lack of consistency in the solutions attained with each iteration. The tradeoff between
traditional and metaheuristic algorithms is that the traditional algorithms have good
exploitation properties whereas the stochastic algorithms have good exploration capabili-
ties. Hybrid algorithms have been proposed by combining more than one nature-inspired
algorithm. This has been found to give better performance than each of the algorithms
acting alone. A suitable combination of algorithms is essential to utilize the best properties
and characteristics of each.

3.3 � Bioinspired Algorithms

Bioinspired computation is a branch of computational intelligence, and the different algo-
rithms in this category are based on the characteristics of biological systems, evolutionary
computing, and swarm intelligence [5]. Bioinspired computing has wide-ranging appli-
cations in all fields of engineering, especially computer science, economics, mechanical
design, and many other real-life application areas. They are more suitable for problems
that are computationally complex and data-intensive and found to be intractable to solve
using the traditional algorithms. Bioinspired algorithms are efficient in arriving at the
optimum solution to a problem when there are myriads of possibilities. They are non-
deterministic and are used in analyzing complex systems such as vehicle routing, network
routing, job scheduling, and so on. Their simplicity and inherent parallelism are two main
reasons for their popularity and wide range of applications [6]. They are flexible and can
be made adaptive to the changes in the environment.

Bioinspired algorithms could be trajectory-based or population-based. In trajectory-
based algorithms such as simulated annealing the search for the optimum solution
starts from a single point initially and gradually reaches the optimum. In population-
based algorithms such as genetic algorithm or particle swarm optimization the search
for the optimum takes place in parallel by a population of particles or agents in the
search space. The search is a tradeoff between wide-area global search (diversification)
and intense local search (intensification). A good balance between these two is essential
for finding the global optimum solution in least time [7]. The literature on metaheuristic
algorithms has expanded tremendously over the last two decades, and there is lot of
scope for development of new algorithms or a hybrid of existing algorithms that shows
improved performance over the algorithms acting alone, or variants of the existing
algorithms.

32 ﻿﻿Nature-Inspired Optimization Algorithms

Complex engineering design problems often have non-linear constraints such as bounds
on certain parameters, relationships among two or three parameters leading to a math-
ematical representation of a constraint, and the fact that the landscape of the objective
function could be unimodal or multimodal. Multiobjective optimization problems often
have conflicting objectives and constraints. There is no so-called best solution, but several
non-dominated solutions lie on the Pareto optimal front. Feature selection is one of the
important problems in image classification where selecting the appropriate features of an
object is crucial for classification and hence recognition. The number of features and the
appropriateness of the selected features are important in determining the computational
cost, memory, and classification accuracy. This is one of the typical problems in optimiza-
tion for metaheuristic algorithms to solve and prove their efficiency. In general, resources
are limited, and with these limitations and possibly some constraints, it is necessary to
solve problems to find optimum solutions which could be the maximization of profit or
efficiency, or the minimization of time or cost or resources utilized.

Most of the nature-inspired optimization algorithms are heuristic, that is, they find the
best approximation which might not be the exact solution to the problem. But these algo-
rithms produce the approximate solution in finite time, by some simplifying assumptions
which is not always true for deterministic algorithms. Metaheuristic algorithms work
at a higher level than heuristic algorithms and have a tradeoff between direct exhaus-
tive search and randomness. Most of the metaheuristic algorithms incorporate a random
parameter with a known probability distribution, to accelerate the search for the optimum
solution. There is always some trial and error involved in the search. It is like having solu-
tions lying somewhere in a huge search space that has to be entirely combed in order to
find the optimum solution [8]. Since it might not be possible to cover the entire space, we
start the search somewhere, assuming it is the right place or assuming the optimum solu-
tion lies in a particular region of the search space. This assumption on which the search is
based is heuristics, and as the search progresses it will have additional inputs to modify
the search or diversify into unexplored regions or intensify the search in a local region.
The algorithm should be designed in such a way that the search does not get trapped in
any local optimum. When there are multiple agents looking for the solutions in the search
space it is population-based, whereas if there is only one agent it is trajectory-based, such
as hill climbing or simulated annealing.

3.4 � Swarm Intelligence

The study of the self-organizing [9] collective intelligent behavior of swarms has been a
topic of extensive research since the mid-1990s. The SI algorithms are very powerful since
they have inherent parallelism and are adaptive. The swarm intelligence algorithms are
quite effective in solving complex, non-linear optimization problems with reduced time,
space, and computational complexity. SI algorithms are characterized by multiple search
agents that search for the optimal solution in parallel, thus being efficient. They share
information among the members of the swarm, use their collective intelligence, and are
self-organized and evolutionary in nature [10]. These algorithms have been designed to
solve problems that have been proven to be NP-hard for the classical algorithms. Observing
the behavior of a flock of birds flying in nature shows that there is no limit to the number
of birds in the flock. The formation of a large flock involves a large number of members

33Nature-Inspired Algorithms﻿﻿

searching over a large area for quality food and guarding themselves against predators.
Figure 3.2 shows a flock of Red-billed Queleas that form enormous flocks that could be tens
of thousands in number.

Flocks of birds usually have a natural formation irrespective of the size of the flock. The
flock is modeled using three rules: collision avoidance, velocity matching, and flock cen-
tering. The birds in the flock always maintain a safe distance from their neighbors to avoid
collision and fly with almost equal velocity to remain together. They also maintain their
position with respect to the center of the flock. Figure 3.3 shows a flock of common cranes
(Grus grus) flying over Castilla, Spain.

The swarm intelligence algorithms incorporate the foraging strategies of biological
organisms such as animals, birds, and insects. The agent with the best foraging strategy
survives in the environment since food is essential for survival. This involves a search
process, and the agents with the more efficient search strategy succeed quickly compared
to others in the competitive environment. There are several factors involved in such for-
aging activities – the characteristics and size of the agent, its intelligence, social behavior,
location of food and quantity, and the effort required to find the food. The presence of
predators and other dangers lurking in the environment and the capability of the agents to
ward off such forces and escape from them or protect themselves against such predators
also play a vital role in survival. Moreover, since the environment is dynamic, the quality,
quantity, and location of food keep changing with time due to consumption and other
changes that occur over a period of time. This necessitates the organism to be adaptive
and versatile to the changing conditions. The feedback of the past successes of the flock,
and sharing of information among the flock members regarding food quality and loca-
tion make it easier to find food. Several species exhibit social foraging which enhances
their chances of success in finding food and hence ultimately leads to better chances of
survival. This also requires good communication skills among members of the popula-
tion and a sharing strategy. To take care of this, usually there is a hierarchy in the group

FIGURE 3.2
Flock of birds. (Author: Faisal Akram from Dhaka, Bangladesh, CC BY-SA 2.0 https​://cr​eativ​ecomm​ons.o​rg/li​
cense​s/by-​sa/2.​0/dee​d.en.​)

https://creativecommons.org
https://creativecommons.org

34 ﻿﻿Nature-Inspired Optimization Algorithms

of organisms with a leader who coordinates such activities. Communication of the find
(quality and quantity of food) is done in several ways depending on the species and type
of organism. Some of the members go back to a central location where all the members of
the group are present and disseminate the information about the quality, location, and
distance of the food source. Sometimes, the members are led back to the location of food by
the member which has discovered the food source. In other species, the communication is
done through broadcasting of information which could be heard by members of their own
group as well as by predators, increasing the danger of being attacked. The advantages
and disadvantages of the different types of communication about food discovery among
the different species vary.

In some other species like ants, a visible trail is created between the food source and
the nest or their living place. Typically, creating a chemical trail is done by ants by laying
down pheromones which are followed by other ants, thus increasing the concentration of
the chemical laid on the path as more and more ants follow the trail. This increases the
chances of other insects or predators also finding the food source or attacking the ants.
Broadcasting of a food find is done by crows which invites food calls to other members
of the species. This could be heard not only by members of their own species but also by
other birds and animals, thus increasing the risk of attack. The communication of food dis-
covery by a member by going back to their group or nest is done by honey bees. The bees
perform a waggle dance where the duration of the dance and the orientation of the bee
indicate the quality and location (distance and direction) of the food source. Going back to
the nest to communicate the discovery of food and leading the pack to the food location is
done by some species of birds such as the raven. The last two strategies are advantageous
in terms of safety from predators and eavesdroppers.

The swarm behavior of biological species upon which the SI algorithms are built use
simple rules, and there seems to be no centralized control. When there is no centralized
control, the individual behavior exhibits self-organization and control. Figure 3.4 shows a
flock of Auklets exhibiting swarm behavior with no obvious centralized control.

FIGURE 3.3
Flock of cranes. (Author: Arturo de Frias Marques – own work, CC BY-SA 3.0 https​://cr​eativ​ecomm​ons.o​rg/li​
cense​s/by-​sa/3.​0/dee​d.en.​)

https://creativecommons.org
https://creativecommons.org

35Nature-Inspired Algorithms﻿﻿

Searching a vast area in parallel with many agents and sharing of information collected
during the search is the key to success in finding the optimal solution in an effective and
efficient manner. The search is started in a random manner with the agents being allot-
ted initial positions randomly. The search also proceeds randomly, and as time passes the
information about the findings is shared by the fellow members to either proceed in the
same direction or change their area or direction of search. The entire area where there is
a possibility of finding a solution has to be searched, and for this good exploration with
diversification is necessary. If there is any possibility of finding the solution in a particular
area it has to be exploited, and the search has to be intensified around that location. If there
are peaks in the region then every peak has to be climbed and searched and the findings
shared and compared. If the solution is present at the highest peak then this can be iden-
tified only after climbing and comparing the heights of the different peaks. Such simple
search strategies can achieve results effectively; this is the reason for their popularity, and
a lot of research has gone into the development of such nature-inspired metaheuristic
algorithms. The multiple agents in these algorithms interact with each other. This is the
fundamental underlying principle behind all such population-based algorithms.

The evolution process in nature has been taking place for millions of years, and new
ingenious solutions have been invented in the ever-changing environment. Almost all the
species in nature are adaptive and keep evolving to find better ways of solving problems.
According to Darwin’s theory, it is survival of the fittest in all species over the years. Hence
the population members have to adapt themselves and think ingeniously for survival.
Their success depends on their intelligence and adaptation capability to survive in the
ever-changing environment. The pressure of survival in a hostile environment forces the
members to think intelligently and adaptively so that they can improve upon the present
for the benefit of the next generation.

But many of the species such as elephants and gray wolves have a hierarchy in the herd
or pack, and they adhere to the rules laid down by the head of the group. Self-organization
requires memory to remember the past (successes or any other matter), communication

FIGURE 3.4
Auklet flock Shumagins 1986. [Author: D. Dibenski, U.S. Fish and Wildlife Service (Public Domain).]

36 ﻿﻿Nature-Inspired Optimization Algorithms

within the group (or any other interactions), adaptation to the environment, feedback to
take corrective action, and sharing of food and information. One important point regard-
ing nature-inspired algorithms is that there is no guarantee that the solution found will
be the global optimum. It could be a local optimum, or it could be close to the global opti-
mum if not the exact solution. The landscape of the objective function is used to improve
upon the existing candidate solutions so that better solutions evolve as the iterations prog-
ress. The new solutions are evaluated on the function landscape, and if a new solution
is better than the existing ones, it is included in the population. When new solutions are
included, the weaker ones or those with lesser fitness are discarded so that the population
size remains constant. Some information on the fitness function landscape can help guide
the search so that convergence takes place faster. The diversity of the population must be
maintained in order to provide quality solutions and prevent the algorithm from getting
stuck in local optima.

Stochastic operators employed in metaheuristic algorithms are responsible for the
diversity in the search and faster convergence in large-dimension search spaces [11].
Deterministic algorithms also search the same space, and even if the initial point is same,
the stochastic algorithm is faster and does not converge at local optima. Metaheuristic
algorithms are more likely to find the global optimum than the classical deterministic
algorithms. The main difference and advantage of metaheuristic algorithms over their
classical counterparts is the randomness in the search and inclusion of diversity with a
population of search agents. The starting point for metaheuristic algorithms is a popula-
tion of solutions that are initially generated randomly. These solutions are improved with
each iteration until a stopping criterion is satisfied or maximum number of iterations is
reached or the global optimum solution is attained. Nature-inspired algorithms do not
require the computation of derivatives, and they are more efficient than their classical
counterparts. The final optimal solution might not be 100% accurate, but a solution quite
close to the optimum could be attained. Individual agents could be simple and not very
intelligent, but the collective behavior of a population of agents exhibits intelligent and
self-organizing behavior able to solve a variety of complex tasks. This collective behavior
is the characteristic of flocks of animals, birds, and insects that is the main inspiration
behind nature-inspired algorithms. Nature-inspired algorithms are simple to implement
and able to tackle non-deterministic NP-hard problems effectively. The nest built by har-
vester ants using their collective intelligence and cooperation making the best use of avail-
able resources is shown in Figure 3.5.

The SI algorithms are sometimes inefficient when the dimensionality of the search
space is large. Unless the algorithms have been designed specifically, the search could
take a long time over high-dimensional spaces. The search spaces could be structured
or unstructured. Using populations of search agents combined with heuristics has a
profound effect on the solution of complex engineering design problems. The nature-
inspired algorithms are novel in attaining effective solutions easily with the least com-
putational resources. Neighborhood search refers to searching for the optimum solution
in the neighborhood of the existing solutions. This will lead to exploration of the vari-
ants of the solution. A sequence of steps where the steps are taken in a particular direc-
tion (ascent or descent) is equivalent to hill climbing. Some steps could be in the opposite
direction in order to enable the algorithm to come out of local optima. Otherwise the
search could be started from some other points in the solution space. The history of
past successes could be utilized in the current search. In almost all of the evolutionary
algorithms, there is a population of search agents that search the solution space, look-
ing for the optimum solution. They are basically iterative in nature, trying to improvise

37Nature-Inspired Algorithms﻿﻿

upon the existing solutions with each succeeding iteration. This improvisation is in the
form of a new population which includes the fittest members of the previous generation
as well as new members created by some mechanism that is specific to an algorithm.
In this process, the weaker members of the population get discarded. The advantage
of population-based search is that it takes place in parallel and it could be directed to
explore possible regions of the space that were previously unexplored where the opti-
mum solution could be found.

3.5 � Metaheuristics

Heuristics is a strategy used when it is not possible to obtain an exact solution in solving
a problem in finite time. Applying heuristics gives a satisfactory approximate solution to
the problem in practically reasonable time, but it might not be the accurate solution. Using
a rule of thumb is a problem-solving strategy that is adapted from solving a previously
similar problem and is a simple example of heuristics. Heuristics are useful in solving
problems that require approximations. Metaheuristics are higher level heuristics [12] used
to solve optimization problems, especially those that have incomplete data such as those
in artificial intelligence and machine learning. In some of the problems, when the set of
solutions is too large to be completely tested, metaheuristics may be applied. Since it is not
exhaustive, the global optimum might not be found for all the problems. Metaheuristics
might be implemented in stochastic optimization, and in combinatorial optimization it
searches over a large discrete set of feasible solutions. They require lesser computations
compared to the regular methods. Metaheuristics is a general strategy that is applied to the
implementation of a wide range of optimization algorithms [13]. Metaheuristic algorithms

FIGURE 3.5
Harvester ants’ nest. (Author: Indu MG – own work, CC BY-SA 4.0 https​://cr​eativ​ecomm​ons.o​rg/li​cense​s/by-​
sa/4.​0/dee​d.en.​)

https://creativecommons.org
https://creativecommons.org

38 ﻿﻿Nature-Inspired Optimization Algorithms

always work on any problem and find a solution even though it might not be the best or
exact solution to the problem. The highlight is that it arrives at the solution in reasonably
finite time suitable for practical applications.

Most of the metaheuristic algorithms are search algorithms, but it is impossible to search
every possible candidate solution in the search space so some heuristics are required. Since
heuristics are involved in the search, there is no guarantee that the solution will be the
best or the global optimum. The solution could be the best one for the problem (globally
optimum), or it could be close to the optimum (good approximation). These algorithms
converge in finite time in tens or hundreds of iterations, as the case may be. One of the
important characteristics of such algorithms is improvisation of the existing solutions
with each iteration. The new solutions are better than the existing ones, and the poorer
ones are discarded. Following some simple rules of nature, even non-linear problems with
constraints can be solved efficiently.

Metaheuristic algorithms are characterized by memory (many of them use past his-
tory of successes in the search for the global optimum), collective intelligence, shar-
ing of information, self-organizing, and foraging capabilities of swarms. Following the
rules of the swarm with interactions between multiple agents and feedback during the
search enables self-adjustment according to the landscape of the objective function.
Metaheuristic algorithms have become very popular because of their simplicity and
flexibility and the ability to solve NP-hard problems in finite time. They can solve con-
tinuous as well as discrete problems and do not require the computation of derivatives.
They can easily solve unimodal as well as multimodal problems that have single and
multiple optimum respectively. Almost all of the metaheuristic algorithms proposed
have been based on nature. It includes biological evolution, behavior of flocks (or herds)
of animals, birds, insects, physical and chemical processes, and other mechanisms that
occur in nature. The algorithms have been developed from scratch, or they have been
built upon an existing algorithm, or two or more algorithms have been hybridized.
The striking concept in these algorithms is that they are able to find the optimum solu-
tion very quickly and mostly they do not get trapped in local optima. There is always
a randomness in the search for the optimum solution by the algorithm. Most of these
algorithms are population-based, and they undertake the search in parallel, thus reduc-
ing the search time. The stochasticity in these algorithms is the main factor leading to
the global optimum without getting trapped in local optima. The associated parameters
have to be tuned or adjusted in order to reduce computational and time complexity,
thus speeding up the convergence.

The metaheuristic algorithms modeled on this behavior of biological species have been
found to be suitable for engineering design, machine learning, artificial intelligence, and
a host of other problems which are difficult to solve by traditional methods. There is lot
of randomness in nature, and this randomness incorporated into the algorithms helps in
improving diversity and jumping out of local optima. Many challenging applications, such
as the traveling salesman problem, knapsack problem, feature selection, and image clas-
sification, have been solved easily using the metaheuristic computational intelligence tech-
niques. The different members of the population that search in parallel use their collective
intelligence and share information which helps in narrowing down the search quickly.
Some members who are robust and are good in the search process or find good solutions
survive for the next iteration or generation whereas members who are weak and give poor
performance are discarded from the search in the next iteration. This is typically Darwin’s
theory of survival of the fittest. This is the crux of all metaheuristic algorithms that are
nature-inspired or bioinspired.

39Nature-Inspired Algorithms﻿﻿

3.6 � Diversification and Intensification

The main characteristic of metaheuristic algorithms is that the search takes place in
two phases: exploration and exploitation. The exploration capability is searching for the
optimum solution in a large search area that has been previously unexplored so as to
reach the global optimum. Exploration leads to solution diversity and the ability to
jump out of local optima, if any. The exploitation phase is for intensifying the search
in a smaller area where it is feasible to find the optimum solution. A good algorithm
should properly balance between these two phases optimally for effective and efficient
performance [14]. The nature-inspired algorithms are based on survival of the fittest
and adaptation to the environment. This leads to two crucial concepts: diversification
and intensification. Diversification is the ability to search unexplored areas in the entire
search space effectively, whereas intensification is exploiting local regions by searching
around a current best solution. Some of the techniques could use gradients for such
intense local search. The right balance of exploration (diversification) and exploitation
(intensification) is the key to the success of the metaheuristic nature-inspired optimiza-
tion algorithms [15].

Some of the species of insects and birds exhibit Levy flight behavior which is straight
flight paths punctuated by sharp 90o turns. This Levy flight trajectory can be useful for
global exploration of the search space and hence in diversification of the search. Search
algorithms mostly use variable step sizes or Levy flights to balance between diversification
and intensification. This right balance could be achieved by choosing appropriate values
for the parameters associated with the problem. More exploration leads to slower conver-
gence but increases the possibility of finding the global optimum whereas more exploita-
tion leads to faster convergence but the possibility of finding the global optimum is reduced
and the probability of the algorithm getting trapped in local optimum is increased. This
balance is one of the most important distinguishing factors among the metaheuristic
algorithms and is reflected in terms of their performance for various applications. Some
algorithms use an intermittent search strategy wherein the fast phase (global explorative
phase) and the slow phase (local intense search) are intermittently applied. This intermit-
tent search will be mainly useful for multimodal functions where the search area could be
quite large with multiple optima.

The solutions tend to move in the search space. This is possible by the movement of the
particles whose evaluation at any point in the objective function landscape is the fitness
value or solution at that point. These agents move with each iteration towards regions
where they will have a higher fitness value. Thus the average fitness value of the popula-
tion increases. This is similar to fireflies that are attracted to other fireflies which have
higher brightness than themselves. Brownian movement and diffusion of any liquid such
as ink, paint, or watercolor on a piece of cloth are equivalent to random movement of par-
ticles in exploration. Diffusion is similar to series of finite steps such as Levy flight. The
diffusion movement could follow Gaussian or uniform distribution in most of the cases.
Other probability distributions are also possible in random walks, but these two are com-
monly used. In exploitation where the local search is intensified, the randomness could be
reduced and the algorithm tends towards deterministic moves. The concept of attraction
was studied by the behavior of fireflies and how they congregate at a location because of
attraction of their flashing lights. This intensifies the search around the region where the
fireflies have congregated and leads to faster convergence of the algorithm. Exploration
looks for new solutions in the search space which could possibly be better than the existing

40 ﻿﻿Nature-Inspired Optimization Algorithms

solutions and hence the search should be randomized to explore new regions which have
been unexplored so far. The step sizes of the random walks could be adjusted between
large and small so that newer and better solutions are generated that completely cover the
search space. Using the information gained as the search proceeds, the search is intensified
in regions around which a possible solution could exist. If there is too much exploration,
it takes more time for the algorithm to converge but the probability of finding the global
optimum increases. If there is too much exploitation, it takes less time for the algorithm
to converge, but the algorithm could converge at a local optimum leading to premature
convergence.

3.7 � No Free Lunch Theorem

One of the most important concepts in metaheuristics-based nature-inspired algorithms
is the No Free Lunch Theorem. The No Free Lunch Theorem [16] was proposed by David
Wolpert and William Macready in 1997 and in effect states that all optimization algo-
rithms are comparable in performance when applied to a wide range of problems across
the entire spectrum of engineering optimization. According to the theorem, there is no
optimization algorithm that is better than any other algorithm; each one is best-suited for
a particular class of optimization problems. The better performance of an optimization
algorithm over one class of problems is offset by the performance over another class of
problems. An optimization algorithm that gives an optimum result for one problem might
not produce an optimum solution when applied to another problem, whereas another
optimization algorithm might produce the optimum result for the second problem. To
put it in another way, each algorithm is best-suited for a particular class of problems, but
it might not perform equally well for all types of problems. In essence, the theorem states
that the various optimization algorithms cannot be ranked and compared based on their
performance with one class of problems. The algorithms cannot be categorized as good
or bad, and there is no best or worst algorithm as such. The algorithms are applicable
to all disciplines like aerospace, automobile, electrical, electronics, communication, civil,
instrumentation, chemical, textile, computer science, economics, management, etc. The
No Free Lunch Theorem states that all optimization algorithms are, in effect, equal [17].
Rapid advances have taken place in the development of nature-inspired metaheuristic
algorithms with each one suitable for a particular type of application, thus enforcing the
No Free Lunch Theorem.

3.8 � Parameter Tuning and Control

The performance of nature-inspired optimization algorithms depends on the setting of the
parameters associated with the problem. Choosing the appropriate values for the parame-
ters initially and maintaining them throughout the run of the algorithm is parameter tun-
ing. As the number of iterations increases, the parameters could be kept constant or they
could be varied adaptively. If the parameter values are modified as the iterations prog-
ress, it is parameter control. In some applications, varying the parameters as the algorithm

41Nature-Inspired Algorithms﻿﻿

progresses leads to faster convergence and attaining of global optimum. This is referred to
as parameter tuning and control [18].

In most of the algorithms in the literature, the parameters have been tuned based on exper-
imental observations and results. The algorithms have been run on several different test
problems and standard benchmark functions and experimentally the parameters have been
tuned. The balance between intensification and diversification, faster convergence, lesser com-
putational time, jumping out of local optima, and approaching the global optimum can be
fine-tuned with parameter tuning and control. This leads to better performance of the algo-
rithm which could be in terms of convergence time or the accuracy of the solution attained.
When parameter control is done, it automatically takes care of the tuning problem. The initial
values of parameters could be chosen randomly, and as the iterations progress, according to
the landscape of the search space, the parameters could be changed dynamically. The feed-
back about the performance of the algorithm, probably in terms of fitness function values,
could be used for parameter control. Population size is one of the important parameters for
algorithm performance in terms of search complexity, interaction, social sharing of infor-
mation, and rate of convergence. The fitness function could also be altered dynamically in
certain algorithms. One typical example is multiobjective optimization, where the objective
(fitness) function is formulated as a weighted combination of multiple objectives, wherein
the weights could be altered as the iterations progress. In some of the constrained optimiza-
tion problems, the equations for the constraints usually have some constants or weights or
bounding values. These weights could also be possibly altered dynamically.

Parameter tuning and control are algorithm-specific, and a tradeoff could be necessary.
Some algorithms could require parameter tuning alone while there may be others that
require parameter control also for enhanced performance. A swarm intelligence algorithm
could be tested with the traditional method of having constant parameters, with param-
eter tuning alone, and with parameter control also included. This could serve as a topic
for further research in this area. The variation in the objective function value with respect
to the parameters of the algorithm is sensitivity analysis of the optimization algorithm.
Sensitivity analysis of the algorithms will help in improving the performance of the algo-
rithms and the spectrum of applications.

3.9 � Algorithm

Let S represent the set of possible solutions for f X() and for each member of S (one possible
solution to the problem) there is a neighborhood. We start with an initial subset of solu-
tions from the set S and search in their neighborhood iteratively until the feasible solution
is found. This is the local search. If the feasible or optimum solution is not found in the
neighborhood of the chosen initial solutions, the search expands over the space. This is
the global search. The iterations continue until a stopping criteria is reached or maximum
number of iterations is attained. With each iteration the search continues in a direction
such that the cost is minimized. If the cost is smaller than that of the previous iteration,
the new solutions replace the old ones; otherwise it is discarded and the search continues.
Since the search is initially in the local neighborhood of the subset of solutions chosen,
there must be some means to make the algorithm come out of local optima and diversify
the search. The final solution attained could be the global optimum or local optimum,
depending on the effectiveness of the algorithm.

42 ﻿﻿Nature-Inspired Optimization Algorithms

The following properties are preferable in any optimization algorithm:

•	 The objective function could be linear or non-linear, differentiable or non-differ-
entiable, simple or complex, maximization (quality/fitness) or minimization (cost/
error) function.

•	 The constraints could be linear or non-linear, simple or complex, equality or
inequality, and they could be one or multiple.

•	 The number of parameters should be lower, and they must be easily tunable or
adjustable to get good performance.

•	 The dimension of the search space should be manageable by the algorithm with
the given population size.

•	 The algorithm should have a faster rate of convergence, i.e. it must converge in a
smaller number of iterations.

•	 The algorithm should have less time, space, and computational complexity.
•	 The algorithm should be self-organizing, and it should have a termination criteria

other than the maximum number of iterations.
•	 Some randomness or stochasticity should be incorporated in the algorithm in

order to diversify the search and come out of local optima, if any. The random
parameters follow a probability distribution that is usually uniform or Gaussian,
although other distributions can also be used.

3.10 � Pseudocode

Initialization

Population size N
Objective Function f(X)
Constraints g(X) and h(X)
Randomly position the members of the population in the search space
Define stopping criteria, if any
Maximum number of iterations MaxIter

iter = 1

while (iter ≤ MaxIter) do

Execute the algorithm on the population N
Evaluate the fitness of the population
Choose the fittest N members and discard the weaker ones
if stopping criteria met, exit, otherwise continue
iter = iter + 1

end while

Highest fitness value is the global optimum solution

43Nature-Inspired Algorithms﻿﻿

Flowchart

Yes

No

Yes

No

Begin

end

Initialization
· Population size N
· Objective Function f(X)
· Constraints g(X) & h(X)
· Initial position of population members
· Define stopping criteria
· Maximum number of iterations MaxIter
· iter = 1

Evaluate fitness of population

Choose fittest N members and discard
weaker ones

Highest fitness value is global optimum

Stopping criteria
met?

iter = MaxIter?

iter = iter + 1

Run the algorithm for all N members

3.11 � Summary

Nature-inspired algorithms are metaheuristic and are found to be able to solve challenging
problems in optimization efficiently. The behavior of the gray wolf, cuckoo, crow, firefly,
bee, ants, and, in general, any swarm of particles has been studied extensively in the litera-
ture, and their behavior has been put to use to solve practical real-life problems. Many of

44 ﻿﻿Nature-Inspired Optimization Algorithms

the real-world applications are highly non-linear, requiring state-of-the-art optimization
techniques for solving them. Most of the algorithms are iterative, and they converge to the
optimum or final solution in a finite, practically reasonable amount of time. The solution
depends not only on the algorithm but also on the initial conditions. Choosing the appro-
priate initial values of the associated parameters goes a long way towards faster conver-
gence of the algorithm to the optimum solution.

Nature-inspired algorithms, as the name implies, are based on some natural phenom-
enon. They have been proven to be suitable for solving problems efficiently that have
been intractable or NP-hard for the traditional algorithms to solve. The optimization
problem could be continuous or discrete (combinatorial) in nature. Nature-inspired algo-
rithms are flexible, adaptive, self-organized, and population-based with simple interac-
tions among individuals and efficient computations. More variants of existing algorithms,
improvements, and new applications are finding their way into the literature every day.
Metaheuristic algorithms outperform their traditional counterparts due to the search in
parallel by a population of agents, lesser numbers of parameters to tune, the ease and
simplicity of implementation, and the dynamic shift between exploration and exploitation
(diversification and intensification) phases. Randomization by following some stochastic dis-
tribution such as uniform or Gaussian (two of the more popular probability distributions)
helps in achieving diversity of solutions. Increasing the diversity of solutions reduces the
possibility of getting trapped in local optima. These nature-inspired algorithms can deal
with complex problems very efficiently with the least time complexity.

The problems could be the maximization of a function or minimization since one could
be converted to the other and vice versa. There are several benchmark functions that are
used as test set for testing and validating the performance of the algorithms. The test set
includes linear and non-linear, unimodal and multimodal, and constrained and uncon-
strained functions. In addition, there are certain classical engineering design problems
that are used for testing the algorithms. Of all the problems of interest, the most famous
is the traveling salesman problem (TSP) in computer science which has been researched
for several years. The nature-inspired metaheuristic algorithms have been found to be
promising for solving the TSP. Rigorous mathematical framework for these metaheuristic
algorithms are not yet available, and their performance is yet to be proven for large-scale
problems. The parameter tuning, convergence, and stability of these algorithms are to
be proven theoretically with a mathematical foundation. This could be a fertile area for
further research.

References

	 1. 	Iztok Fister Jr., Xin-She Yang, Iztok Fister, Janez Brest, Dusan Fister, A brief review of nature-
inspired algorithms for optimization, Elektrotehniški Vestnik, Vol. 80, No. 3, pp. 1–7, July 2013.

	 2. 	Petr Bujok, Josef Tvrdik, Radka Polakova, Comparison of nature-inspired population-based
algorithms on continuous optimization problems, Swarm and Evolutionary Computation
(Elsevier), Vol. 50, Article ID 100490, November 2019.

	 3. 	Xin-She Yang (Ed.), Nature inspired algorithms and applied optimization, Studies in
Computational Intelligence (Springer), 2018.

	 4. 	Xin-She Yang, Nature inspired metaheuristic algorithms: Success and new challenges, Journal
of Computer Engineering and Information Technology, Vol. 1, No. 1, pp. 1–3, November 2012.

45Nature-Inspired Algorithms﻿﻿

	 5. 	Zhihua Cui, Rajan Alex, Rajendra Akerkar, Xin-She Yang, Recent advances on bioinspired
computation, The Scientific World Journal, Hindawi Publishing Corporation, Vol. 2014, Article
ID 934890, May 2014.

	 6. 	Scott McCaulay, Biologically inspired computing algorithms: Relevance and implica-
tions for research technologies, Indiana University, Bloomington, IN. PTI Technical Report
PTI-TR12-003, February 2012.

	 7. 	Xin-She Yang, Nature-Inspired Metaheuristic Algorithms, 2nd edition, Luniver Press, 2010.
	 8. 	Xin-She Yang, Nature Inspired Optimization Algorithms, 1st edition, Elsevier, London, 2014.
	 9. 	Xin-She Yang, Swarm intelligence based algorithms: A critical analysis, Evolutionary Intelligence

(Springer), Vol. 7, No. 1, pp. 17–28, April 2014.
	 10. 	Xin-She Yang, Suash Deb, Simon Fong, Xingshi He, Yu-Xin Zhao, From swarm intelligence to

metaheuristics: Nature inspired optimization algorithms, IEEE Computer, Vol. 49, No. 9, pp.
52–59, September 2016.

	 11. 	A. Hanif Halim, I. Ismail, Bio-inspired optimization method: A review, NNGT Journal:
International Journal of Information Systems, Vol. 1, pp. 12–17, July 2014.

	 12. 	Xin-She Yang, Su Fong Chien, Tiew On Ting, Computational intelligence and metaheuristic
algorithms with applications, The Scientific World Journal, Hindawi Publishing Corporation,
Vol. 2014, Article ID 425853, December 2014.

	 13. 	Michael A. Lones, Metaheuristics in nature inspired algorithms, Proceedings of Genetic and
Evolutionary Computation Conference (GECCO Comp ‘14), Vancouver, BC, Canada, pp. 1419–1422,
July 2014.

	 14. 	Xin-She Yang, Suash Deb, Simon Fong, Metaheuristic algorithms: Optimal balance of intensifi-
cation and diversification, Applied Mathematics and Information Sciences, An International Journal,
Vol. 8, No. 3, pp. 977–983, May 2014.

	 15. 	Xin-She Yang, Suash Deb, Thomas Hanne, Xingshi He, Attraction and diffusion in nature-
inspired optimization algorithms, Neural Computing and Applications, Vol. 31, No. 7, pp. 1987–
1994, July 2019.

	 16. 	D. H. Wolpert, W. G. Macready, No free lunch theorems for optimization, IEEE Transactions on
Evolutionary Computation, Vol. 1, No. 1, pp. 67–82, April 1997.

	 17. 	C. Schumacher, M. D. Vose, L. D. Whitley, The no free lunch and problem description length,
Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation (GECCO ’01),
San Francisco, CA, United States, pp. 565–570, July 2001.

	 18. 	Giorgos Karafotias, Mark Hoogendoorn, A. E. Eiben, Parameter control in evolutionary algo-
rithms: Trends and challenges, IEEE Transactions on Evolutionary Computation, Vol. 19, No. 2, pp.
167–187, April 2015.

http://taylorandfrancis.com

47

4
Genetic Algorithm

4.1 � Introduction

The genetic algorithm (GA) belongs to the class of evolutionary optimization algorithms
that is based on the fundamental Darwinian theory of evolution and biological repro-
duction. It incorporates the principles of natural selection and survival of the fittest. GA was
developed by John Holland, Professor of Electrical Engineering and Computer Science
at the University of Michigan, and his colleagues in 1960 followed by a path-breaking
publication Adaptation in Natural and Artificial Systems, 1975, MIT Press [1]. It was later on
extended and developed by David E. Goldberg, and his book on genetic algorithms was
published in 1989 [2]. GA emulates the techniques of evolution that have been in existence
for millions of years in nature. When an algorithm is designed based on natural genetics it
will be able to solve complex problems with simple techniques in finite time.

The study of the biological evolution of humans has led to a deeper understanding of
the natural evolution process and survival of the fittest strategy, and these techniques or
principles have been applied to artificial systems that mimic natural evolution. Natural
systems are robust and efficient, and they have the capacity to adapt themselves to the
environment which is difficult to emulate in artificial systems. The inculcation of biologi-
cal evolution principles into artificial systems has led to the development of GA whose
performance has been proven and validated for a host of complex problems over the years
since its inception. GA uses heuristics as well as the history of the problem in evolving
towards newer and better solutions. It tries to mimic human behavior in evolution and
search for optimum solutions. There is an exchange of genetic material (information) in
the form of strings that are encoded based on the problem [3]. It has found wide-ranging
applications in engineering design, business, finance, and other complex scientific fields
due to its simplicity and low computational complexity.

4.2 � Basics of Genetic Algorithm

The breakthrough in developing GA by John Holland was in the 1960s when he was able
to develop codes to represent genetic information. This earliest development was with
strings of binary bits where each bit could possibly represent a characteristic or feature. If
the characteristic is present, the corresponding bit is 1, and if it is not present, the bit is 0.
The system was developed initially as a classifier, where the result or accuracy of classifica-
tion depended on the value of the string (fitness value) that encodes the features. Strings

Nature-Inspired Optimization Algorithms Genetic Algorithm

48 ﻿﻿Nature-Inspired Optimization Algorithms

with high fitness values yield good results and survive, whereas strings with low fitness
values perish. The strings evolve with every generation, leading to a population of strings
with higher average fitness (quality) values [4].

The basic genetic material is the chromosome that is composed of genes. The fundamental
element of the chromosome is the gene, and the value taken by the gene is the allele. The
alleles could be binary with an alphabet of {0, 1} or non-binary such as the decimal alphabet
{0, 1, …, 9} or hexadecimal alphabet {0, 1, 2, …, 9, A, B, C, D, E, F} or any other set of defined
alphabets. A typical chromosome structure, alleles, and encoded chromosome are shown in
Figure 4.1a–c.

Reproduction by mating ensures that the next-generation population or offspring are
different from their parents instead of being photocopies of their parents. The genetic
material of two members of the population who mate together is fused or crossed over to
produce the offspring. Thus the offspring inherits the traits of both the parents. The basic
principle underlying evolution is survival of the fittest. This ensures that only fit individu-
als are selected for mating and reproduction and the weaker ones perish naturally. The
mating process that takes place biologically is done by the operation of crossover in GA.
Two strings (members of the population with high fitness values) are chosen for mating.
Randomly a point is chosen on the string, called the crossover point. The bits in the first
string after the crossover point are exchanged with the corresponding bits in the second
string. This creates two new offspring in the population. These two offspring (children)
will replace two members of the population who have low fitness values, thus keeping the
population size constant. The next important operator in GA is mutation. Some of the bits
in the string are randomly chosen and flipped (1 to 0 or 0 to 1). The percentage of strings
undergoing mutation is very small, typically less than 1%. This ensures some diversity in
the population and the production of offspring with new characteristics. Mutation does not
require parents or mating and leads to change in the genetic characteristics of a popula-
tion. The change in the genetic code of the parent is embedded in the offspring. The best
or optimum solution to the problem will be in the form of a binary string whose fitness
value is the optimum.

The search space can be modeled by the population of strings (fitness values) and assum-
ing that the objective function is to be maximized, the peaks correspond to higher quality

gene

Chromosome

alleles
1

0

Binary Encoded
Chromosome1 0 10 01011 0

alleles

(a)

(b)

(c)

FIGURE 4.1
(a) Typical chromosome structure. (b) Allele – value assigned to gene. (c) Binary encoded chromosome.

49Genetic Algorithm﻿﻿

solutions, and valleys correspond to poor quality solutions. When the number of variables
increases, i.e. dimensionality of the problem increases, the landscape becomes complex. In
the landscape of solutions, GA exploits the regions with higher fitness values. Strings that
have matching bits (either 0 or 1) in certain positions define regions in the search space.
For example, 1100 0011 and 1101 0101 match in the first three bits and all strings with their
first three bits as ‘110’ form a region in the search space. The crossover and mutation opera-
tors produce the next-generation population with higher average fitness (replacing the
older generation members that have lower fitness). Therefore the new-generation members
will be located in the higher fitness regions of the landscape, and the population in these
regions increases with every consecutive generation in GA. One string will appear in or
belong to several regions in the landscape. This makes sampling of several regions occur
simultaneously in GA, leading to implicit parallelism [5].

Crossover creates new strings that could possibly belong to a new region different from
that of its parents. The distance between 1s and 0s determines the probability of an off-
spring leaving the region of its parents. For example, let there be a parent string 110*****
that crosses over with another string at the third position. One offspring will have the
same set of bits in the first three positions, thus belonging to the same region of the land-
scape as that of its parent. In another case, if the string is 00****11 and the crossover posi-
tion is anywhere between two and six in the string, the offspring will move to a region
different from that of its parent. The 1s and 0s of the region form building blocks, and if
they are close together (like 110*****), it is a compact building block, unlike strings such as
10****11. Regions with compact building blocks mostly produce offspring that belong to the
same region. This building block hypothesis is discussed in detail and mathematically formu-
lated in a later section of the chapter. Another operation called inversion in GA rearranges
strings in the parents so that bits that are far apart in the parents come close together in
the offspring. This inversion helps in building compact blocks so that crossover will not
displace the offspring. The more compact building blocks ensure higher fitness individu-
als are produced and automatically lower fitness individuals from less compact building
blocks will get displaced or perish. When two strings with two different building blocks
are combined together and if the combined fitness value is greater than that of their indi-
vidual fitness put together (added), it implies non-linearity. Hence, GA is also able to solve
non-linear problems. In linear problems, the presence of 1 or 0 in a position of the string
has no effect on 1 or 0 in any other position of the string. Therefore, a 4-bit binary string
will have to explore only eight possibilities. If it is non-linear, the bits at every position will
affect the bits in other positions, and the number of possibilities to be explored increases
exponentially.

4.3 � Genetic Operators

GA has three important operators in the design of the algorithm. They are selection, cross-
over, and mutation [6]. These three operators are discussed below:

Selection is an operation in GA for selecting members of the population for mating
and recombination/reproduction. The selection process has randomness built into
it because there is no deterministic rule applied for the selection of chromosomes
to carry out crossover or mutation. The three commonly used methods for selection

50 ﻿﻿Nature-Inspired Optimization Algorithms

are roulette wheel selection, tournament selection, and elitism [7]. Roulette wheel
selection is one of the important and commonly used strategies in GA for selec-
tion of parents in reproduction. A roulette wheel is a rotating wheel divided into
various regions (similar to a pie chart), with each region corresponding to one
member of the population [8]. The size of each region is proportional to the prob-
ability of choosing the member, and this in turn depends on the fitness of the
member of the population. There is a pointer associated with the wheel, and when
the wheel is spun, the region of the wheel to which the pointer points when the
wheel stops spinning is the chosen member of the population. A typical roulette
wheel is shown in Figure 4.2.

		 The roulette wheel is biased according to the fitness value of each string (mem-
ber) in the population. In the roulette wheel shown in Figure 4.2, the portion corre-
sponding to member m1 is 10%, m2 is 25%, m3 is 40%, and m4 is 25%. This division
is proportional to the fitness values of the four strings in the population. When the
wheel is spun, each string is selected according to its probability, such as 0.4 for
string 3 (m3). Strings with higher fitness values have a higher probability of get-
ting selected; hence they get selected for reproduction a greater number of times
compared to other strings with lesser fitness values and thus contribute more to
the next-generation population. By spinning the roulette wheel several times, a
mating pool is created from which members are selected randomly for crossover
and mutation.

		 In tournament selection, randomly some members are chosen from the popula-
tion (tournament size) and from these chosen few, the members with the highest fit-
ness become parents. This can be repeated until the required number of offspring
are created. Tournament size depends on the size of the population. In elitism, the
chromosome with the highest fitness value is copied into the next generation so
that it will not get modified during crossover or mutation. The members with fitness
values that are not so high (not in the highest range of individuals) are selected
for reproduction. This ensures that the highly fit individuals are retained in the
population so that the average fitness of the forthcoming generations are higher
and the fit individuals are propagated.

Crossover is an operator that produces two offspring from two parents selected for
reproduction/recombination. Crossover may be one-point, two-point, or multi-
point. In one-point crossover shown in Figure 4.3a and b, one bit of the two chromo-
somes (parents) is randomly selected and the two strings are interchanged at the
point of crossover, producing two offspring.

m1

m2

m3

m4

FIGURE 4.2
Roulette wheel.

51Genetic Algorithm﻿﻿

		 In two-point crossover shown in Figure 4.4a and b, two points are selected in the
two chromosomes (parents) randomly and one segment is interchanged between
the two parents, producing two offspring.

Mutation is the operator where one or more bits in the chromosome string are flipped
with a fixed probability defined as mutation rate. Mutation is illustrated in Figure
4.5. This introduces diversity in the population and tends to extend the search
space effectively. Mutation rate is usually kept low in order to maintain the good
characteristics of the population with every generation. A high mutation rate is not
usually desirable since it disrupts the existing good characteristics of the popula-
tion. Mutation rate is usually chosen as inverse of length of the chromosome string,
which means that for a chromosome length of 10, the mutation rate is 0.1. Mutation
rate can be changed, either increased or decreased, as the iterations progress.

0 1 0 1 0 1 1 0 1 1 Parent 1

Parent 21 1 0 0 0 0 0 1 0 1

Crossover point

Offspring 10 1 0 1 0 1 0 1 0 1

Offspring 21 1 0 0 0 0 1 0 1 1

(a)

(b)

FIGURE 4.3
(a) Single-point crossover (parents). (b) Single-point crossover (offspring).

Parent 10 1 0 1 0 1 1 0 1 1

Parent 21 1 0 0 0 0 0 1 0 1

Crossover Points

Offspring 10 1 0 0 1 10 0 0 0

Offspring 21 0 1 11 1 0 1 0 1

(a)

(b)

FIGURE 4.4
(a) Two-point crossover (parents). (b) Two-point crossover (offspring).

Chromosome
before mutation0 1 1 10 1 0 0 1 1

Chromosome
after mutation0 1 0 10 1 0 0 1 1

Bit Flipping

FIGURE 4.5
Mutation.

52 ﻿﻿Nature-Inspired Optimization Algorithms

4.4 � Example of GA

Let a function to be maximized be represented by f x x x()= + -2 10 2. The problem is to find
the maximum of this function for values of x in the range [0, 10]. The optimization problem
consists of finding the global optimum of the objective function in the one-dimensional
search space. The one-dimensional search space is bounded by the variable x taking on
values between the limits of 0 and 10. The initial population has to be chosen in the range
of 0 to 10 and encoded in the form of strings. This requires encoding the parameter x as
binary strings of 1s and 0s called chromosomes. One simple method of encoding the chro-
mosomes is to represent the values of x by their binary equivalent. The number of bits used
to represent x is the length of the chromosome. Since encoding decimal digits up to a maxi-
mum value of 10 requires a minimum of 4 bits, the chromosome length could be chosen as
4. The strings will be in the range 0000, 0001 …, 1010. Among these 11 strings, the initial
population could be randomly chosen by flipping a fair coin. The size of the initial popula-
tion is also randomly chosen, but the selection of initial population size and its members
has an effect on the performance of the search algorithm.

Let the initial population be {0010, 0011, 0101, 1001} for this problem. This could be cho-
sen with 16 flips of a fair coin. The fitness value is computed for every member of the popu-
lation by substituting the decimal value of the binary string in the fitness function, thus
yielding f(x). The next-generation population is created by crossover operation among the
selected members of the population. In this example, since there are only four members, all
of them are chosen for mating, the pairs being chosen randomly. Let {0010, 0101} and {0011,
1001} be the chosen parents. Choosing the crossover site as the second place in the string,
the offspring are {0001, 0110} and {0001, 1011}. Two sets of parents have produced four
offspring, of which three are distinct. One offspring {0001} is same from both the parents,
so only one copy of this is included in the population pool. Another offspring {1011} is out
of bounds of the search space so it is discarded from the population pool. Now we have a
population of six different chromosomes {0001, 0010, 0011, 0101, 0110, 1001} or individuals
(including parents and offspring), and their fitness values are ranked in descending order.
The four chromosomes with the highest fitness values among the six are chosen as the
next-generation population, discarding the weaker members (two out of six), keeping the
population size constant at four. Thus the next-generation population is {0011, 0101, 0110,
1001}. The above process is repeated until the maximum number of iterations is reached or
a stopping criterion is met.

Another variation that could possibly be introduced is the mutation operator, in addition
to crossover. In mutation, some strings are randomly chosen and certain bits are flipped,
again randomly. The percentage of mutation operations compared to crossover is very low,
typically less than 1%. The fitness of the strings is computed by evaluating the objective
function f(x) with the string values. The maximum value of f(x) attained at the end of the
iterations is the optimum value of the function and the optimal solution to the problem.
The value of x at which this optimum is attained is given by the decimal equivalent of the
binary string that encodes the chromosome with highest fitness. Table 4.1 shows the fitness
function values for the initial population in the example given and their percentage of the
total fitness of the entire population. The probability of a string being selected for repro-
duction is directly proportional to this percentage.

The roulette wheel that has been proportioned for the four members of the initial popu-
lation in the above example is shown in Figure 4.6. By spinning the roulette wheel several
times, the parents for the mating pool are selected.

53Genetic Algorithm﻿﻿

The operations of selection, crossover, and mutation are repeatedly applied to the popula-
tion until the maximum number of iterations is reached or the termination criterion is
satisfied.

4.5 � Algorithm

GA is a population-based metaheuristic algorithm that incorporates natural selection and
genetics. GA searches for the optimum solution in the search space with inclusion of ran-
domness in the search. It is an iterative algorithm that converges in a finite number of
iterations, with the candidate solutions evolving towards higher fitness or quality with
each iteration or generation. The algorithm terminates when either the optimum solution
is attained (convergence) or when the maximum number of iterations (generations) is com-
pleted or a stopping condition is reached. The important characteristics of GA include
initial population selection, defining an objective or fitness function, genetic operators,
and termination criteria.

The algorithm starts by defining the problem and its objective function f(X) where X is
a multidimensional vector, with a typical dimension of d. The initial population is chosen
randomly in the search space, and the members are encoded as a chromosome in the form
of a string of alphabets. The operations of selection, crossover, and mutation (optional)

TABLE 4.1

Fitness Values of the Initial Population

No. String Value of x f(x) = x2 + 10x – 2 % of Total

m1 0010 2 22 7.31
m2 0011 3 37 12.29
m3 0101 5 73 24.25
m4 1001 9 169 56.15
Total 301 100

m1

m3

m4

m2

m1: 7.31%
m2: 12.29%
m3: 24.25%
m4: 56.15%

FIGURE 4.6
Roulette wheel selection for Table 4.1.

54 ﻿﻿Nature-Inspired Optimization Algorithms

are repeatedly applied on the population until the termination criterion is attained or the
maximum number of iterations is reached. At the end of every iteration, the fitness values
of the population of strings are calculated. The strings with higher fitness are selected for
mating and reproduction. Finally, the string with the highest fitness value is the optimum
solution to the problem.

Typical convergence characteristics of GA are shown in Figure 4.7.

4.6 � Pseudocode

Initialization

Select initial population of size N
Define objective function f(X)
Encode the population as chromosomes (bit strings) of length LC

Compute fitness values of the entire population
Define termination condition, if any
Choose maximum number of iterations MaxIter
iter = 1

while (iter ≤ MaxIter)
Selection: select parents for reproduction
Crossover: apply crossover on parents to produce offsprings
Mutation: apply mutation on selected chromosomes (optional)

Compute the fitness values of the population

Global Optimum

Average Fitness Value
of the population

No. of Generations

FIGURE 4.7
Typical convergence characteristics of GA.

55Genetic Algorithm﻿﻿

Select members for the next generation based on fitness values
If termination condition met exit, else continue
iter = iter + 1

end while

Chromosome with highest fitness is the global optimum solution

Flowchart

No

Yes

begin

end

Initialization
● Population size N
● Define objective function f(X)
● Encode population members as

chromosomes of length LC
● Compute fitness of population N
● Termination condition, if any
● Maximum number of iterations MaxIter
● Iteration number iter = 1

Selection
Select parents for reproduction based

on fitness values

Crossover
Apply crossover operator on the
selected parents for reproduction

Mutation
Apply mutation operator on the

selected chromosomes (optional)

Compute fitness of population

Termination Condition
/ Max. No. of

generations reached?

iter = iter+1

Fittest chromosome is global optimum
solution

Select members for
next generation

56 ﻿﻿Nature-Inspired Optimization Algorithms

4.7 � Schema Theory

Let the population of strings be represented by Piter where iter is the iteration or generation
number. The population size is chosen as N.

	 P p p piter iter iter
N
iter= { }1 2 	 (4.1)

where pm
iter is the mth member of the population Piter in iteration iter and m = {1, 2, …, N}.

Each member of the population pm
iter is a string of elements (alleles) whose values are taken

from the given set of alphabets. The set of alphabets that comprise the string or chromosome
or schema is assumed as {0, 1, *} where * is a don’t-care symbol that can assume a value of
either 0 or 1. As an example of a schema, consider Sch

 = *10* *0*0. The strings that match in
alleles at the fixed positions of a schema belong to that schema. Let pm

iter = 1 10 0 0 0 1 0 be a
string that is a population member among the N strings. This string belongs to and is an
example of the schema defined above since they match in the fixed positions of 2, 3, 6, 8.

There are two defining parameters for a schema: Order O(Sch) and defining length L(Sch).
Order of a schema is defined as the number of positions where the alphabets (characters) are
fixed. For the schema Sch = *10* *0*0 given above, O(Sch) = 4. The defining length of a schema is
defined as the difference between the last and first position in the schema where the alpha-
bets are fixed. In the example above, L(Sch) = 8 – 2 = 6. As another example, if the schema is
Sch = **1* ****, order O(Sch) = 1 and L(Sch) = 3 – 3 = 0. Schema that have a higher defining length
span a larger portion of the string than schema with a smaller defining length.

If the string is comprised of elements with alphabet of size two, such as {0, 1} and the
string length is three, the number of possible strings is given by the set {000, 001, 010, 011,
100, 101, 110, 111}. The number of possible strings in the above example is 23 = 8. Let the
alphabet size be a and the length of the string be ls. Then the number of possible strings is
als. If the alphabet contains a wildcard character such as *, then the alphabet size is (a + 1)
= 3, and the number of possible strings of length 3 is 33 = 27. For a string length of 4, the
number of possible strings is 34 = 81. In general, the number of possible strings is ()a ls+ 1
including the wildcard character along with the alphabet size a. The population size grows
exponentially with string length and alphabet size. The total number of strings processed
by a schema is Nals, since each schema can have als number of possible strings and the
number of schema is the size of the population equal to N. This is an indication of the mag-
nitude of the number of schema processed by GA.

Let M(Sch, iter) be the number of members of schema Sch present in the population dur-
ing the iteration (generation) iter. Let pr(m) be the probability of string pm being selected for
reproduction and fm be the fitness value of the string. Then,

	 pr m
f

f

m

m

m

N() =

=
å

1

	 (4.2)

Applying this concept to the schema of the population,

	 M S iter M S iter N
f S

f
ch ch

ch

m

m

N(,) (,). .
()

+ =

=
å

1

1

	 (4.3)

57Genetic Algorithm﻿﻿

	 M S iter M S iter
f S

f
ch ch

ch

av
(,) (,).

()
+ =1 	 (4.4)

	 f

f

N
av

m

m

N

= =
å

1 	 (4.5)

f Sch() : average fitness of schema Sch

fav : average fitness of entire population of size N
The members of the schema grow at the rate proportional to the ratio of average fitness

of the schema to the average fitness of the entire population. Schema with average fitness
value greater than the population average grow, whereas schema with average fitness less
than the population average decay. Therefore, every schema grows or decays according to
its average fitness value compared to the average fitness of the whole population.

Let f S f r fch av av() .= + where r is a positive constant. Then

	

M S iter M S iter
f r f

f

M S iter

ch ch
av av

av

ch

(,) (,).
.

(,).(

+ =
+æ

è
ç

ö

ø
÷

=

1

11

0 1

+

= +

r

M S rch
iter

)

(,).()

	 (4.6)

The schema with above average fitness contribute exponentially increasing members to the
population, whereas there is a decline in the members belonging to the schema with below
average fitness.

Let pm
iter be the mth member of the population Piter and assume pm

iter = 10101000. Let Sch(m1)
and Sch(m2) be two schema representative of the string pm

iter = 10101000 with Sch(m1) = *01*****
and Sch(m2) = **1****0. Let the crossover site be chosen between positions 4 and 5. Schema
Sch(m1) will survive after the crossover since the fixed positions in the string are on one side
of the crossover point, whereas the schema Sch(m2) will not survive since the fixed positions
are on either side of the crossover point. This implies that schema with shorter defining
length survive crossover operation whereas schema with longer defining length have lesser
chances of survival after crossover.

The defining lengths for the two chosen schema are:

	 L S m L S mch ch1 23 2 1 8 3 5()() ()()= = = = and – – 	

The probability of a schema being destroyed is

	 p S L Sd ch ch() ()= /No. of crossover points 	

	 No. of crossover points length of the string= =– –1 1ls 	

The probability of the two schema being destroyed is

	 p S m p S md ch d ch1 21 7 5 7()() ()()= =/ /and 	

58 ﻿﻿Nature-Inspired Optimization Algorithms

The probability of survival of schema is ps = (1 – probability of being destroyed)

	 ps ch d chS p S() ()= 1 – 	 (4.7)

Generalizing these concepts, the probability of destroying a schema is

	 p S
L S
l

d ch
ch

s
()

()
()

=
- 1

	 (4.8)

The probability of survival of a schema is

	 p S
L S
l

s ch
ch

s
()

()
()

= -
-

1
1

	 (4.9)

Let pc be the crossover probability, then

	 p S p
L S
l

s ch c
ch

s
()

()= -
-

1
1

	 (4.10)

The members of the schema Sch at the iteration (iter + 1) increase at the rate of

	 M S iter M S iter
f S

f
p

L S
l

ch ch
ch

av
c

ch

s
(,) (,).

() ()
+ = -

-
é

ëê
ù

ûú
1 1

1
	 (4.11)

Mutation is randomly flipping a bit in the chromosome with a probability pm. If the schema
is to survive, then all the bits in the fixed positions should be intact. One allele survives
mutation with probability (1 – pm). The alleles in the fixed positions of the schema survive
with probability {(1 – pm).(1 – pm) … (1 – pm)} = (1 – pm)O(Sch). When pm << 1, survival prob-
ability of the alleles is ~ (1 – O(Sch)pm). Hence the mathematical equation representing the
members of the population in iteration (iter + 1) based on the members at iteration (iter) and
the crossover and mutation probabilities is,

	 M S iter M S iter
f S

f
p

L S
l

O S pch ch
ch

av
c

ch

s
ch m(,) (,).

() ()
()+ ³ -

-
-1 1

1
éé

ëê
ù

ûú
	 (4.12)

Based on the mathematical discussions given above, the Schema Theorem states that short,
low-order, above-average schema receive exponentially increasing members in succeeding
generations.

4.8 � Prisoner’s Dilemma Problem

GA strikes a good balance between exploration and exploitation. This is proved in the
ability of GA to solve the problem of prisoner’s dilemma. Prisoner’s dilemma is a game where
there are two players A and B. If both Player A and Player B cooperate they receive equal
payoff each. If both Player A and Player B defect they receive a minimal (equal) payoff
each. If one of them cooperates and the other defects, the defector does not receive any pay-
off whereas the cooperator receives a higher payoff. Two researchers Robert Axelrod and
Stephanie Forest explored the application of GA in solving the prisoner’s dilemma using the

59Genetic Algorithm﻿﻿

tit-for-tat strategy. The tit-for-tat strategy begins with cooperation and later on copies the
other player’s move, i.e. cooperation for cooperation and defection for defection. The strategy
involves encoding strings, possibly bit 1 for cooperation and bit 0 for defection. In each itera-
tion there are four possible outcomes: (i) cooperation – cooperation, (ii) cooperation – defection,
(iii) defection – cooperation, (iv) defection – defection. A set of three consecutive plays yields
43 = 64 outcomes requiring 64-bit string for encoding each possible outcome. The fitness
function is the average payoff of the players A and B. GA was able to discover the tit-for-tat
strategy to maximize the average payoff. Further to this, a variation was introduced, where
players are ‘bluffed’ into cooperating in response to defection. GA discovered that players
could not be bluffed and reverted to tit-for-tat strategy.

4.9 � Variants and Hybrids of GA

The messy genetic algorithm is a variant of the classical GA in encoding genes with vari-
able length codes that are independent of the position of the gene within the chromosome.
In normal GA the gene is identified by its position in the chromosome, whereas in the
messy GA the gene is represented by an index to identify its position and an allele. The
advantage of this variant is that the genes can occupy any position in the string. Another
difference between classical GA and messy GA is the use of a cut and splice operator instead
of the normal crossover operator that facilitates mating between parents of variable length.
The Adaptive Genetic Algorithm adapts itself during the running of the algorithm. The
parameters of the algorithm such as population size, crossover, and mutation rate could be
adaptively modified during the iterations based on the average fitness values or the con-
vergence towards the global optimum.

Self-Organizing Genetic Algorithm organizes itself for encoding and applying opera-
tors on the genetic material. The encoding of the chromosomes and application of selection,
crossover, and mutation play a crucial role in the performance of the GA. Introducing addi-
tional functionality into the GA for these operations makes the GA self-organizing. Hybrid
Genetic Algorithms combine GA with some other optimization strategy such as the classi-
cal methods or swarm intelligence-based algorithms. It has been found that a hybrid com-
bination of GA with some of the other methods gives a better result in terms of the global
optimum solution or convergence rate or reduced computational complexity. The hybrid
optimization algorithms are available in the literature such as GA-PSO, GA-ACO, and a
host of other swarm intelligence algorithms combined with GA. GA has been applied to
a wide spectrum of problems over the years since its inception in the 1960s and has been
found to give good performance in terms of the optimum solution attained. Some of the
notable applications are feature extraction and classification in image processing, image
compression, job shop scheduling, and optimization of complex engineering designs.

4.10 � Summary

Biological evolution creates individuals, where there is no individual with super fitness but
groups of individuals with similar characteristics like a classifier system. The individuals

60 ﻿﻿Nature-Inspired Optimization Algorithms

interact with each other. Similarly GA also can be devised to create solutions or evolve as
a system, similar to a classifier where the characteristics or features are encoded in strings.
In such higher level problems, the strings should be made to represent rules or an hypoth-
esis and offspring will be new rules (evolved from parents) or hypothesis. GA uses a popu-
lation of search agents (strings) to search for the optimum solution in the search space.
This embeds implicit parallelism in the algorithm and helps in searching and exploiting
large regions of the search space simultaneously with fewer strings.

GA encodes the parameters of the problem to be solved in the form of strings, whose basic
elements could be binary 1s and 0s or some other non-binary alphabet. GA uses an objective or
fitness function but does not require the computation of derivatives of the objective function.
It uses stochastic rules while searching, by introducing controlled randomness into the algo-
rithm instead of being completely deterministic as in the classical optimization algorithms.
The crossover operator produces offspring equal in number to the parent population. So selec-
tion is required to choose the population for the next generation. One method is to choose the
population from the offspring only, i.e. parents are replaced with offspring. This approach
of choosing only offspring for the next generation is called generational genetic algorithm. This
increases diversity and prevents convergence to a local minimum but the rate of convergence
is reduced. The elitist strategy is another technique where the next-generation population is
chosen among the total population constituted by the previous generation parents and their
children. The fitness value of every member could be used in the selection, selecting the fittest
members. One variation in the elitist strategy is to limit the number of parents participating in
the selection based on fitness values. Randomness or stochasticity in GA occurs in the selec-
tion of population members for mating and reproduction, choosing the crossover point dur-
ing crossover operation and selecting the chromosomes and the genes within the chromosome
for mutation. Typical parameters in GA include a population size of 40, number of iterations
20, and mutation rate as 0.005. The encoding and length of the chromosome depends on the
problem, and the selection and crossover mechanism is pseudo-random.

References

	 1.	 John H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann
Arbor, MI, 1975 (re-issued by MIT Press, Cambridge, MA, 1992).

	 2.	 David E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-
Wesley, Reading, Massachussets, 1989.

	 3.	 Darrell Whitley, A genetic algorithm tutorial, Statistics and Computing, V, pp. 65–85, June 1994.
	 4.	 Melanie Mitchell, Genetic algorithms: An overview, Complexity, 1 (I), pp. 31–39, September/

October 1995.
	 5.	 John H. Holland, Genetic algorithms, Scientific American, 267 (1), pp. 66–73, July 1992.
	 6.	 Colin Reeves, Chapter 3: Genetic algorithms, In: Handbook of Metaheuristics, International Series

in Operations Research and Management Science, Michel Gendreau and Jean-Yves Potvin (eds).
Springer, Switzerland, pp. 109–139, 2010.

	 7.	 Abraham A., Nedjah N., Mourelle L. M. Evolutionary computation: From genetic algorithms
to genetic programming, In: Nedjah N., Mourelle L.M., Abraham A. (eds) Genetic Systems
Programming, Studies in Computational Intelligence (SCI), Vol. 13, pp. 1–20, Springer-Verlag, Berlin,
Heidelberg, 2006.

	 8.	 Ulrich Bodenhofer, Genetic Algorithms: Theory and Applications, Lecture Notes, 3rd edition,
Johannes Kepler University, Linz, October 2003.

61

5
Genetic Programming

5.1 � Introduction

Genetic programming (GP) belongs to the family of evolutionary computational algorithms
that can be applied to problems which are difficult to solve with the traditional methods.
Friedberg pioneered the work on evolutionary algorithms in 1958 from which genetic pro-
gramming evolved. The genetic programming technique was proposed by John R. Koza
[1] in 1989 and is an extension of the genetic algorithm (GA). Evolutionary algorithms try
to mimic the biological process and are based on the Darwinian principle of survival of the
fittest. Evolutionary algorithms could be applied to problems where heuristic techniques
might not produce optimum results. They are suitable for solving practical problems in
several domains [2]. Evolution occurs with survival of the fittest in populations that compete
for existing natural resources. The fit individuals contribute more to the process of repro-
duction, and hence they are more likely to be members of or produce offspring for the
next generation. Evolutionary algorithms are suitable for optimizing unimodal as well as
multimodal functions and are simple and easy to implement.

GP is one of the classical evolutionary programming techniques that can be simulated
on a computer. The evolutionary algorithms are based on the biological evolutionary
processes inculcating the genetic operations of selection, reproduction, crossover, and muta-
tion. These algorithms are designed to work by evolving towards higher quality solutions
that are optimal or near-optimal for a problem. The quality of the solution is related to
a numerical value obtained by evaluation of a function that is typically the objective or
fitness function related to the problem. The fitness function depends on the problem or
application, for the solution of which the evolutionary algorithm is designed. Mimicking
evolutionary strategies in nature provides solutions to complex engineering problems in
a simple and effective manner. The solution is obtained with reduced time, space, and
computational complexity and it is either the global optimum or a good approximation to
the global optimum.

GA is the predecessor to GP and has been successfully applied to practical, real-time
problems that were difficult for the traditional algorithms to solve. Evolutionary program-
ming (EP) is also a predecessor to GP and was developed in the 1960s by Fogel, Owens,
and Walsh. EP mainly applies the mutation operator on a finite-state machine (FSM). Here,
FSM is a computer program that moves from one state to another in finite time intervals.
The change of state takes place based on the present state and the current inputs to the
program. EP has a stochastic component inculcated in selection, reproduction, and mutation
and tries to evolve towards better quality solutions to the problem. GP has a population
of variable length programs that can be stored using tree, linear, or graph structures in
the computer memory. The computer programs evolve and solve problems without being

Nature-Inspired Optimization Algorithms Genetic Programming

62 ﻿﻿Nature-Inspired Optimization Algorithms

explicitly programmed. LISP is a programming language commonly used in GP because
it is simple and supports dynamic data structures. The tree structure is popular for repre-
senting programs since it is easy for traversal and evaluation. LISP has gained importance
in GP because of its ability to handle tree structures. Moreover, LISP has the advantage
of using the same data structure for programs as well as data which makes it easier to
manipulate. GP has diverse applications in areas such as financial modeling, predictive
modeling, data modeling, data mining, engineering design, feature selection and classifi-
cation, and so on. The basics of genetic programming, expression trees and their travers-
als, genetic operators, and the genetic programming algorithm along with the different
types of GP have been discussed in the subsequent sections.

5.2 � Basics of Genetic Programming

Genetic algorithm is based on a population of individuals that search the space in parallel for
the optimum solution. This search process involves the application of genetic operators on
the individual members of the population such as selection, reproduction, crossover, and muta-
tion for producing offspring [3]. Selection is selecting the individuals with high fitness values
for reproduction (parents), and reproduction is the process of producing offspring (children)
from parents. Crossover is the operator that creates offspring with exchange of genetic mate-
rial between the two parents. Mutation is the operator that introduces diversity into the pop-
ulation by changing the genetic code of an offspring randomly, and thus its character. GA is
an iterative algorithm producing members with higher average fitness in succeeding genera-
tions than the previous generation. The algorithm stops when the optimum solution based
on some predefined criteria is attained or the number of iterations reaches a maximum.

GP is similar to GA in operational procedure. GP generates a population of computer
programs from a statement of the problem [4]. The programs are created in LISP (LISt
Processor), originally developed by John McCarthy in the 1950s. In LISP, an interpreter can
respond directly to programs instead of using a compiler. Another advantage of LISP is
that the programs and data can be put in the same data structure which makes manipu-
lation and evaluation easy. An initial population of programs is created using the set of
functions and operators along with the set of operands and variables or constants, com-
prising the parameters of the problem to be solved. The population in GP is a set of com-
puter programs that are created randomly, and the size of the population depends on the
problem to be solved. The fitness values of all the members of the population are computed
by executing the programs that constitute the population. The selection, crossover, and muta-
tion operations are applied on the population in every generation to create offspring. This
is repeated until the optimum solution is attained or the maximum number of iterations
is reached. The member with the best fitness value is the global optimum solution for the
problem. The process of selection based on fitness values is used for reproduction as well as
keeping the population size constant in all generations.

The primitive elements in GP are the functions or operators and the terminals or oper-
ands from which the programs are built [5]. Functions process values whereas terminals
provide values to functions. Function set comprises logical functions like NOT, AND, OR,
XOR, arithmetic functions like ADD, SUBTRACT, MULTIPLY, DIVIDE, scientific functions
like EXP, LOG, COS, SIN, statements in a program like ASSIGN, IF-ELSE, WHEN, GOTO,
JUMP, REPEAT, or any other function created by the user. The function set chosen for GP

63Genetic Programming﻿﻿

should be of sufficient size and include functions that are necessary for solving problems.
Too many functions in the set can enlarge the search space, increasing the search complex-
ity. Smaller number of functions might not be sufficient to solve all problems. The terminal
set is comprised of variables and constants which are inputs to the functions, or they can
be functions without arguments (zero-input functions that return a value without taking
an input). Similarly, the number of terminals should be of medium size, neither too large
nor too small. On an average, it has been found that approximately 56 functions and 200
terminals can solve most of the real-time problems in finite time. Constants that form
terminals in GP can be combined to form other constants, and also functions can be com-
bined to form other higher level functions. Functions must be chosen such that they accept
all constants (or variables) as inputs.

The programs in GP are built from the fundamental constructs comprising functions and
terminals. The programs are assembled from the defined set of functions and terminals
and the rules of the programming language. The programs in GP have to be represented in
a suitable manner so that storage and manipulation are easy. Usually programs will not be
of the same or fixed length; they vary depending on the application. It is difficult to create
programs based on crossover and mutation that are syntactically correct. The programs can
be written in any computer language, but the preferred language is one in which the tree,
linear, and graph structures are easy to represent. The tree representation is more popular
because storage, traversal, and evaluation are easy. The tree is composed of internal nodes
and external nodes that consist of functions (or operators) and variables or constants (or
operands) respectively. Internal nodes have branches emanating from them, whereas the
terminal nodes are leaf nodes that do not have further branches, i.e. they terminate the
branches. GP requires the formulation of an appropriate fitness function, defining rules and
elements of the programming language, and interpretation of the programming language.
GP incorporates randomness in decision-making in the program. The functions operate on
terminals or outputs from other functions or programs and the genetic operators of selec-
tion, reproduction, crossover, and mutation are used in evolving the programs. The operation
of crossover can be done on the tree by exchanging subtrees among two trees. The subtrees
are chosen randomly just like choosing the crossover site in chromosomes in GA. The next
operator is mutation where the subtree is chosen and the operator or operand change ran-
domly. This is equivalent to flipping bits in chromosomes in GA. The programs produce
a possible solution to the problem when they are run or executed. This is equivalent to
evaluation of a fitness function in GA whose value depends on the parameters of the search
space. The optimum solution lies in the search space spanned by the population of evolv-
ing computer programs. The fitness function is used in selection of programs for reproduc-
tion and hence in evolution of the population of programs. This evolution is similar to GA
except that the programs are executed in order to produce fitness values.

5.3 � Data Structures for Genetic Programming

In GP the population of programs is comprised of functions (operators) and terminals
(operands). The programs should be assembled in executable form along with rules for
execution. The data structures used in building programs in GP reflect on the memory
requirements and program execution flow. Commonly used data structures for programs
in GP are tree, linear, and graph structures.

64 ﻿﻿Nature-Inspired Optimization Algorithms

The programs can be created as expression trees that produce a candidate solution (fit-
ness value) when executed. The trees are created in place of computer code using a basic
set of alphabets that consist of operators and operands. The operators could be simple
addition or multiplication, logical functions like OR, AND, or other functions like SIN,
LOG, etc. The operands could be variables or constants or another function/program
(expression) that represents the parameters of the problem. A typical tree structure that
represents an executable program is shown in Figure 5.1.

The program can also be organized as a linear structure with registers holding the val-
ues of variables and constants. Corresponding to the tree structure given in Figure 5.1, the
set of registers (A, B, C, D, E, F, a, b, c, p, q) can store the values of the variables and con-
stants associated with the program as shown in Figure 5.2a, and the following instructions
could be implemented in sequence as shown in Figure 5.2b:

	 A a b B b C l B D p OR q E C D F A E= + = - = = = + =; ; ; ; ; *4 og 	

+

a b

*

+

log

4b

-

OR

qp

FIGURE 5.1
Typical tree structure for a program.

pa b q A B C D E Fc

A = a+b

B = b-4

C = log B

D = p OR q

E = C+D

F = A*E

(a)

(b)

FIGURE 5.2
(a) Registers for holding variables and constants. (b) Sequence of instructions in a linear structure.

65Genetic Programming﻿﻿

A linear structure could be used to hold these instructions that can be executed sequen-
tially. In tree implementation the memory is local (that means a function node can only
access its associated terminal or non-terminal nodes; the function + in the left subtree can
only access nodes a and b), whereas in linear structure implementation, the instructions
can access any register.

A graph is yet another structure for representing programs in a compact form in GP. Graphs
consist of a set of nodes connected by edges. Edges could be undirected or directed. If the
edges are directed, they indicate the direction of program flow. The graph uses two types of
memory – stack and an indexed memory – to store values used by the program. Each node
in the graph operates on data either in the stack or indexed memory and determines which
node is the next in the sequence to execute. Every graph has necessarily two nodes, the start
and end node. The program begins execution at the start node and terminates at the end node.
The nodes in the graph are functions that operate on values stored in the stack.

Figure 5.3 shows a simple graph structure in GP. The nodes are executed in sequence
beginning from the start node and ending with the end node. The nodes are executed with
data from either stack or indexed memory. The node a pushes the value of the variable a
into the stack, and the node b pushes the value of the variable b into the stack when they
are executed. The node + fetches two items from the stack, performs addition on them, and
pushes the result into the stack.

The maximum size of the program should be fixed since it has an effect on memory and
execution time. This is physically limited by the number of nodes in the tree or graph or
the number of elements in a linear structure. In GP, the population of programs has to be
initialized. For tree structures there are two methods of initialization. The sets of functions
and terminals are defined. From these two sets, the functions and terminals are chosen
randomly and the tree is built. In this method, all subtrees will not be of equal depth since
the tree is built in a random manner to some extent. The subtree will stop growing when
it is terminated with a branch at the end of which there is a terminal, whereas if a branch
contains a function or a non-terminal node, the tree will grow to any depth desired. In
an alternative method, the tree is initially built with only function nodes to the required
depth and then the terminals are attached to the branches of the tree at the appropriate
positions. This makes the tree balanced and of equal depth. This makes the population
uniform, and to make it diverse, the technique of initializing the population can be modi-
fied. Some members of the population are created with the first method and the remain-
ing members with the second method. The depth of the trees could vary instead of being
uniform throughout. This introduces some diversity into the population.

In linear structures, the population is initialized in a similar way. The function set and the
terminals along with the registers are chosen initially. Every member of the population is a
linear structure that has a header, footer, and a return function. The length of the program is
fixed and the functions are chosen randomly to form the structure. The registers from which
these functions take the data are also randomly chosen. The entire population is built in this
manner. The initial population built in this manner undergoes evolution to form successive
generations with evolving (improving) fitness values until the optimum is attained.

a bstart end+

FIGURE 5.3
An example of a graph structure.

66 ﻿﻿Nature-Inspired Optimization Algorithms

The commonly used language in GP is LISP since it is a structured language suitable for
such tree representations. The data structure is same for storing functions and variables/
data which makes it easy to manipulate and LISP is more suitable for tree representation
of programs. But it is difficult to check syntax and process tree structures that include
numerals, strings, logic functions, etc. To overcome this limitation of LISP and allow flex-
ibility, a general approach has been proposed by A. Geyer-Schulz to represent programs
by syntactical derivation trees. This representation is with respect to Backus–Naur Form
(BNF) that has syntactic rules and works for any context-free language. The tree is recur-
sively derived from the grammar using the syntactic rules. BNF can be given as input the
rules and syntax of any programming language. The language should be simple and pow-
erful enough to solve the problems, reducing the search space as well as the complexity.

5.4 � Binary Tree Traversals

Tree traversal is visiting each node in a tree once. The order in which these nodes are
visited leads to three types of traversal known as PreOrder, InOrder, and PostOrder travers-
als. In PreOrder traversal, the order of visiting nodes is root left subtree right subtree® ®
as shown in Figure 5.4. In InOrder traversal, the order of visiting nodes is
left subtree root right subtree® ® as shown in Figure 5.5. In PostOrder traversal, the order
of visiting nodes is left subtree right subtree root® ® , as shown in Figure 5.6. This is done
recursively for all the subtrees until all the nodes of the tree have been visited once.

When a tree is traversed using one of the above three techniques, the same traversal
is repeatedly done for all the subtrees until the entire tree has been traversed. When the
tree is a binary expression tree, the three traversals yield expressions in three different
forms. The three types of traversals yielding prefix, infix, and postfix expressions are shown
in Figure 5.7a, b and c respectively. PreOrder traversal yields prefix expression, InOrder
traversal yields infix expression, and PostOrder traversal yields postfix expression. In prefix

Root
Left

Subtree
Right

Subtree

FIGURE 5.4
PreOrder traversal.

Left
Subtree Root

Right
Subtree

FIGURE 5.5
InOrder traversal.

Left
Subtree

Right
Subtree

Root

FIGURE 5.6
PostOrder traversal.

67Genetic Programming﻿﻿

notation, the operator appears before the operands. In infix notation, the operator appears
between the operands. In postfix notation, the operator appears after the operands. As a
simple example, consider the expression a*b, where the multiplication operator appears
between the operands. This is the standard infix notation normally used in all the evalua-
tions. In prefix notation, the expression becomes *ab, and in postfix notation, the expression
becomes ab*. When the expressions are evaluated with values assigned to the variables, all
three types produce the same result.

In a binary expression tree, the internal nodes are the functions or operators like +, –, *,
/, and the terminal nodes are the operands or variables upon which the functions operate.
The evaluation of any expression tree gives a value that is the same as that obtained by
evaluating the mathematical expression given in one of the three forms. These notations
for writing mathematical expressions to be evaluated can be obtained from the binary
expression tree by appropriate parsing.

As an example consider the binary expression tree in Figure 5.8.
The tree is traversed in PreOrder, InOrder, and PostOrder, yielding the expressions in pre-

fix, infix, and postfix notation respectively. The expressions obtained by parsing the binary
tree in Figure 5.8 are given below:

PreOrder traversal produces the prefix expression: + * A + B C D
InOrder traversal produces the infix expression: A * (B + C) + D
PostOrder traversal produces the postfix expression: A B C + * D +

5.5 � Genetic Programming Operators

Selection is choosing the individual members of the population, either for reproduction or
inclusion into the next generation based on their fitness values. Selection is done mainly to

*

a b

(a) (b)

*

a b

(c)

*

a b

FIGURE 5.7
(a) *ab (b) a*b (c) ab*.

+

+

*

A

B C

D

FIGURE 5.8
Binary expression tree.

68 ﻿﻿Nature-Inspired Optimization Algorithms

improve the average fitness of the population in successive generations and to resolve com-
petition among individuals when the population size has to be limited to a maximum. There
are several strategies adopted in evolutionary algorithms for selection of individuals. One of
the common methods employed is roulette wheel selection where the wheel is proportioned
into segments based on the fitness of the individual. This in turn reflects on the probability of
selection of the individual. Individuals with larger segments have higher probability of being
selected and individuals with smaller segments have lower probability of being selected.
The second method is tournament selection where a selection of individuals (tournament size is
number of individuals chosen) is made randomly. Competitions are conducted among those
chosen, and the winning individuals with higher fitness become parents on which crossover
or mutation could be applied. In ranking selection, the individuals are ranked according to their
fitness and those with higher fitness get selected. The probability of selection is proportional
to their rank in the list. In truncation selection, let there be p number of parents breeding to pro-
duce o number of offspring making the total population (p + o). Out of this total population,
p number of best individuals are selected to become parents for the subsequent generation.

Crossover is implemented in GP by selecting subtrees from the two parents and inter-
changing them. The selection of parents can be done using one of the methods outlined
above such as roulette wheel selection, tournament selection, etc. Figure 5.9a and b show two
parent trees and the selected subtrees identified for crossover operation. Figure 5.10a and b
show the two offspring produced as a result of the crossover. The subtree selection is done
randomly like choosing the crossover point in a chromosome.

Two trees (parents) are chosen either randomly or based on their fitness values. Their
subtrees are again chosen randomly and swapped to produce two children or offspring.
In linear structures, the segments of the two parents are chosen randomly and exchanged.
This creates two children. In graph-based structures, the selected parents are divided into
two sets of nodes and edges, called fragments. The edges which connect nodes within a frag-
ment are internal whereas those that connect to nodes in the other fragment at one end are

+

a b

*

+

-c

5 e

/

*

cb

a-

*

+

+

b

2

d

a

(a)

(b)

FIGURE 5.9
Parents with subtrees chosen for crossover.

69Genetic Programming﻿﻿

external. The nodes are labeled as output if they are a source of data to any outgoing edge
and labeled as input if they are the destination of data incoming from an edge. The frag-
ments are swapped and the nodes are interconnected through external edges accordingly.

Mutation is the operation where one subtree can be replaced with another one or one
function (operator) or terminal (operand) can be replaced with another one. In mutation,
the operators or functions in inner (internal) nodes are chosen randomly in a tree and
replaced with other functions. Similarly, the terminal (external) nodes are replaced with
some other variables or constants. Extending this concept further, an entire subtree can be
replaced with another subtree.

Figure 5.11 shows how mutation takes place by replacing randomly selected existing opera-
tors and operands with some other operators and operands. Figure 5.11a shows the expres-
sion tree selected for mutation with the identified operators and operands. Figure 5.11b shows
the expression tree after the mutation operation has taken place. Figure 5.12 shows an example
of mutation where one subtree is replaced with another one. Figure 5.12a shows the expression
tree and the identified subtree, and the Figure 5.12b shows the expression tree after mutation.

The probability of mutation in a population is very low, typically less than 0.1. In linear
GP, one member of the linear structure is chosen randomly. The chosen operator or con-
stant is changed, again in a random manner, to create a new member by mutation.

When crossover is done on trees by exchanging subtrees, the resulting tree might not be
syntactically correct. In order to overcome this problem, the exchange of subtrees should
be done between those that start from the same non-terminal symbol, so that the resulting
trees do not violate syntactical rules. For mutation, a randomly chosen subtree is replaced
with another one, and in a similar manner, the non-terminal symbol which is the root of
the subtree is chosen for replacement.

*

+

-c

5 e

/

*

cb

a

+

a b-

+

+

b

2

d

a

(a)

(b)

FIGURE 5.10
Offspring resulting from crossover.

70 ﻿﻿Nature-Inspired Optimization Algorithms

+

-

c8

4-

*

+

+

b

2

e

a

+

/

d8

4*

*

+

+

b

6

e

a

(a)

(b)

FIGURE 5.11
Mutation on operands/operators (a) before mutation, (b) after mutation.

+

-

c8

4

+

+

2 -

*

b

e

a

+

-

c8

4

+

+

2 *

fe

(a)

(b)

FIGURE 5.12
Mutation on subtree (a) before mutation, (b) after mutation.

71Genetic Programming﻿﻿

Fitness function is a mathematical function (or expression) that is problem-specific and
is used in evaluation and selection of individuals in a population. This fitness value is used
in the selection of individuals for reproduction so that individuals with higher fitness will
contribute more to the next-generation population. Also, individuals with lower values of
fitness could be removed from the population. The fitness values are computed with a train-
ing set of data applied as input to the programs and obtaining the output. The outputs of the
programs that are executed from the inputs provided are the fitness values. The fitness func-
tion should be chosen appropriately (either maximization or minimization) so that it is an
indication of the result (correctness of the output) of the program. Fitness functions that are
squared or scaled can lead to amplified or damped values which can lead to better results.

5.6 � Genetic Programming Algorithm

The algorithm for GP starts with the problem definition and constraints, if any. The objective
or fitness function has to be defined based on the optimization problem. It could be either
maximization or minimization of the objective, as the case may be. The corresponding math-
ematical equations for the fitness function and constraints have to be formulated. Since GP
uses a population of programs, the parameters such as number of members in the popula-
tion N, maximum program size, set of functions, and terminals have to be chosen carefully.
In addition, the genetic operators (crossover and mutation probabilities), maximum number of
iterations, and termination criteria, if any, have to be defined. An initial population of pro-
grams has to be created with the set of defined functions (operators) and terminals (operands).
The fitness value of the entire population has to be computed by executing the programs.

Parents are selected using a suitable strategy, and offspring are created by applying the
defined genetic operators. The fitness values of the entire population are calculated, and the
next-generation population is chosen based on higher fitness values and the weaker ones are
discarded. This keeps the population size constant at N in every generation. The processes
of selection, crossover, and mutation (optional) are repeated until the maximum number of
iterations is reached or the optimum solution is found or termination criterion is attained.
To implement the tree structure for representing and editing the programs, GP requires
appropriate data structures that are easily stored and manipulated. The performance of GP
depends on the set of functions (operators) and terminals (operands) chosen, the initial pop-
ulation and its size, depth of the trees, and the selection of parents in producing offspring.

There are broadly two ways of designing a GP algorithm. One is generational GP and the
other is steady-state GP. In generational GP, each generation of the population is distinct. An
initial population of individuals is created, and they are evaluated for their fitness values.
The parents are selected using one of the selection criteria, and the genetic operators like
crossover and mutation are applied. The resultant offspring form the new population, with
children replacing parents. This is the next generation of individuals that entirely replaces
the previous generation. If the termination criterion is met the GP run stops; otherwise it
continues until the maximum number of generations is reached. The individual with the
best fitness value is the optimum solution to the problem. In steady-state GP, there are no
distinct generations of population as in generational GP. The process of GP is a continuous
flow of operations. The initial population of individuals is created. Members of the popula-
tion are selected randomly to participate in the tournament and their fitness is evaluated.
The winners are chosen using a selection strategy, and the genetic operators are applied

72 ﻿﻿Nature-Inspired Optimization Algorithms

on them. The new members created replace the losers of the tournament. This is repeated
until the termination criterion is met or the maximum number of iterations (generations) is
reached. The individual with the best fitness value is the optimum solution to the problem.

The initial population is usually generated with a uniform distribution, and in GA it is
easy to generate an initial population of binary strings. In GP, an initial population of pro-
grams has to be generated with the maximum size of the program being one of the important
parameters. Assuming tree structure for the programs, some rules have to be adopted since
it is not as easy as generating a random population of binary strings with a uniform distribu-
tion. The maximum number of nodes in the tree or the maximum depth of the tree has to be
fixed for the problem. The trees can be generated recursively with the defined set of terminal
and non-terminal symbols using the rules of grammar. In the grow method, the functions and
terminals are selected randomly from the defined set and the tree grows. If a terminal node
is encountered at the end of an edge or branch, the branch terminates. The trees generated by
this method are not uniform or regular. In the full method, the function nodes are selected
to form the tree of the required depth and then the terminals are chosen and attached at the
appropriate branches. This method creates a population of trees that are uniform. To improve
the diversity of the population, the maximum depth of the trees is fixed and half the tree
population is generated using grow method and the other half using full method.

5.7 � Pseudocode

Initialization

Population size N
Define objective function f(X)
Define set of functions and terminals
Initialize the population of programs
Compute the fitness of the initial population
Choose the genetic operators
Termination criteria, if any
Maximum number of iterations MaxIter

iter = 1
while (iter ≤ MaxIter) do

Select parents for mating and reproduction
Apply crossover and mutation (optional) to produce offspring
Strategically choose the next generation population (N)
Compute the fitness values of the entire population
if termination criteria met exit, else continue
iter = iter + 1

end while

Program with highest fitness value is the global optimum solution

73Genetic Programming﻿﻿

Flowchart

N
f(X)

MaxIter
iter

N

Program with highest fitness is global
optimum

iter iter

74 ﻿﻿Nature-Inspired Optimization Algorithms

5.8 � Variants of the Algorithm

There are different types of GP [6] such as linear genetic programming (LGP), traceless
genetic programming (TGP), gene expression programming (GEP), multi-expression
programming (MEP), Cartesian genetic programming (CGP), grammatical evolution
(GE), genetic algorithm for deriving software (GADS), and fuzzy genetic programming
(FGP).

In linear GP, the population members are not trees or functions (expressions to be evalu-
ated) but programs written in C/C++. It is reduced to a code by a compiler that can be
evaluated on a machine to produce the fitness value. In such programs, crossover can take
place between different instructions (lines of code) and not in between an instruction.
Mutation can take place within instructions. These instructions operate on predefined sets
of variables or constants that are stored in registers. The number of registers used depends
on the number of attributes in the problem. Traceless GP is a variation of GP where the
evolved programs are not stored. So the method of obtaining the results cannot be traced,
and this method can be used when it is not required to trace the path. TGP uses the cross-
over operator as well as the insertion operator, where insertion is used when the lines of code
are very complex and do not improve the search.

Gene expression programming uses linear chromosomes encoded as expression trees.
They are the genotype and phenotype respectively that work in synchronization with
each other. Expression trees are expressions that represent the genetic information of the
chromosome. The genetic code is the one-to-one relationship between the elements of the
chromosome and the functions they represent. The genes in GEP are composed of a head
and tail. The head contains functions and terminals whereas the tail contains terminals
only. The GEP genes are linked to form a chromosome. The next-generation population is
created using processes similar to GA.

In multi-expression programming one chromosome encodes multiple expressions,
unlike in normal GP where one chromosome encodes one expression. Variable length
expressions are allowed in chromosomes in MEP. The number of genes making up every
chromosome (length of the chromosome) is the same or constant, but within a gene, the
expressions can be of different lengths. Every gene encodes either a function (operator)
or an operand (terminal). In GP every chromosome represents one tree, whereas in MEP,
every chromosome represents a forest of trees.

In Cartesian GP there are nodes with multiple inputs that serve as parameters in a
mathematical function or expression with a single output. The genotype represents the
functionality of the nodes as a string, and this is mapped to a graph (connected nodes)
that can execute similar to a program. Several genotypes map to identical genotypes,
leading to redundancy. There might also be additional nodes than the ones that are
connected to the graph leading to functional redundancy. In grammatical evolution
the Backus–Naur form grammar is used to produce code in any language. The genotype
is any number between 0 and 255, encoded as an 8-bit binary number. The phenotype
is a computer program that can be executed to produce output. The program is gener-
ated by genotype–phenotype mapping that is deterministic. The operators in GA are
applied here on the genotypes. In genetic algorithm for deriving software the geno-
type and phenotype are different from each other. Genotypes are integers, and they
are used to generate phenotypes that are programs. Fuzzy genetic programming is a
synergy of BNF and GP. The fuzzy rules of the language are specified in BNF and given
as input to GP.

75Genetic Programming﻿﻿

5.9 � Summary

Genetic programming is an integration of biological evolution and computer science with
inclusion of artificial intelligence and machine learning. GP involves computer programs
that evolve which requires computation-intensive resources, and it is an advanced concept
compared to other evolutionary algorithms. The data structures for representing programs
in GP become important with respect to the space and time complexity of the algorithm.
The possibility of using different data structures such as trees, graphs, and other linear
structures gives an added advantage in GP. The memory required to store the popula-
tion of programs and the data upon which the program operates are dependent on the
data structure used for storing the programs. The fitness function of every member of the
population has to be obtained by executing the programs which could use computational
resources depending on the length and structure of the individual program. This could
also be an advantage in GP since it gives the user some flexibility in creating variations
among the population members instead of their being identical.

Population size is one of the important parameters in GP in searching for the optimum
solution. A smaller population size evolves faster, but a large population is required for
solving complex problems and improving the diversity of the search. Typical population
size could be less than 1000 for small problems, but it can increase depending on the size
of the problem. The maximum number of generations can initially start from 20 and could
go up to 100 or even beyond that if the problem requires a higher number of iterations. The
set of terminals and functions should be small so that the computations are reduced, but
it should also be able to accommodate non-linear problems. The set of functions should
be chosen meticulously to be specific to the problem. The right balance of crossover and
mutation operations is essential to ensure the diversity of the population and also faster
convergence. Typically the genetic operations could have a tournament size of 4 (if tour-
nament selection is applied), 90% crossover and 10% mutation. For tree representations,
the choice of the depth of the tree and number of nodes (external and internal) is also
important in the computations required. The landscape of the objective or fitness function
is dependent on the population of programs that evolve, making the landscape dynamic.
The inherent parallelism in GP and its rate of convergence play an important role in the
expanding applications of GP. It can accommodate problems with smaller population size
as well as data-intensive applications. In the future, GP can be hybridized with other evo-
lutionary or swarm intelligence algorithms to improve performance. The effect of param-
eter tuning on the performance of GP is to be explored.

References

	 1. 	John R. Koza, Hierarchical genetic algorithms operating on populations of computer pro-
grams, Proceedings of the 11th International Joint Conference on Artificial Intelligence (IJCAI ’89),
Vol. 1, Detroit, MI, August 1989.

	 2.	 John R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural
Selection, MIT Press, Cambridge, Massachusetts, 1992.

	 3. 	Ulrich Bodenhofer, Genetic Algorithms: Theory and Applications, Lecture Notes, 3rd edition,
Johannes Kepler University, Linz, October 2003.

76 ﻿﻿Nature-Inspired Optimization Algorithms

	 4. 	Koza J.R., Poli R., Genetic programming. In: Burke E.K., Kendall G. (eds) Search Methodologies,
Springer, Boston, MA, pp. 127–164, 2005.

	 5. 	Wolfgang Banzhaf, Peter Nordin, Robert E. Keller, Frank D. Francone, Genetic Programming, An
Introduction, 1st Edition, Morgan Kaufmann Publishers Inc., New York, 1998.

	 6. 	Abraham A, Nedjah N, Mourelle L M, Evolutionary computation: From genetic algorithms
to genetic programming, In: Nedjah N., Mourelle L.M., Abraham A. (eds) Genetic Systems
Programming, Studies in Computational Intelligence (SCI), Vol. 13, pp. 1–20, Springer-Verlag, Berlin,
Heidelberg, 2006.

77

6
Particle Swarm Optimization

6.1 � Introduction

Particle swarm optimization (PSO) was developed by James Kennedy and Russell C.
Eberhart in 1995 at Purdue University. PSO has its roots in the flocking behavior of swarms
of birds combined with the principles of evolution [1]. A flock of birds fly together without
bumping into each other, keep optimum distance with their neighbors, and execute their
activities collectively. Figure 6.1 shows a flock of birds exhibiting collective behavior at the
Kadalundi Bird Sanctuary.

Several scientists have tried to simulate the flocking of birds based on their behavior of
keeping (flying) together, scattering, changing direction without bumping into each other,
and all these being carried out synchronously. PSO is the first population-based swarm
intelligence algorithm that is modeled on the flocking behavior of birds. Since there are
multiple agents or particles searching in the space in parallel, the algorithm has inherent
parallelism that makes it efficient.

PSO is an optimization algorithm proposed for linear as well as non-linear optimization
problems that are either constrained or unconstrained. It does not require the computa-
tion of derivatives and is suitable for continuous as well as discrete combinatorial opti-
mization problems. PSO can be applied to continuous, discrete, and mixed search spaces
containing single and multiple optima, thus making it suitable for unimodal and multi-
modal functions. PSO is easy to implement [2] and the function need not be continuous
and derivatives are not required to be computed. PSO is a population-based technique
where swarms of particles are moving in the search space. An objective or fitness function
has to be defined that is appropriate for the problem whose value is obtained by evaluat-
ing at different positions in the search space. Each particle in the search space represents a
potential solution to the problem. It is an iterative algorithm where the maximum number
of iterations has to be specified or a stopping criterion has to be defined, as appropriate.
The algorithm requires less memory, is iterative and quite fast.

PSO differs from other evolutionary algorithms such as genetic algorithm (GA) in the
manner of evolution of the population. In GA the population changes with every genera-
tion, with a mix of the older members along with new offspring created, but the popula-
tion size remains constant. In PSO the population of particles remains the same in every
iteration throughout the run of the algorithm. The same population carries from the first to
the last iteration, hence there is no concept of survival of the fittest. PSO is an algorithm that
is related to GA in using a population of particles and also based on evolutionary prin-
ciples since the solutions evolve iteratively [3]. PSO is simple to implement and effective for
different types of objective functions over a wide range. The swarm exhibits group dyna-
mism and flocking behavior. It also imitates human social behavior, wherein individuals

Nature-Inspired Optimization Algorithms

78 ﻿﻿Nature-Inspired Optimization Algorithms

Particle Swarm Optimization

interact with each other and update themselves based on social interactions [4]. Humans
learn from their own as well as the experience of others, and the collective intelligence
of swarms is similar to this. PSO combines local as well as global search which can be
modeled as intensification and diversification, where intensification is for exploitation and
diversification is for exploration.

The uniqueness of PSO lies in modeling the algorithm as flying of particles through
the search space [5], which is a d-dimensional hyperspace. The particles acquire veloci-
ties, accelerate towards better positions, and finally reach the globally best position. PSO
has several candidate solutions in the search space that are represented by particles or
birds flying through the search space. This makes it possible to search known as well as
unknown regions in the space. In each iteration, the fitness values of each of the candidate
solutions are computed based on their positions in the search space. The solutions are eval-
uated with the objective function whose inputs are the position vectors of the particles.
The initial positions of the particles (based on which fitness is calculated) are randomly
chosen, and the population size is chosen based on the problem.

The position of the bird or particle in the search space determines its fitness value, and
the present position and velocity together determine its next position and new velocity.
The velocity should be a tradeoff between being too high and too low. If it is high, the
particle can go past the optimum solution, and if it is low, it might converge on a local
optimum. Each particle has a best position that it has achieved so far (best fitness value)
called personal best (P). To store this information requires memory for every particle. The
best position among all the particles in the swarm is called global best (G), and every par-
ticle tries to move towards the global best. This will be updated with every iteration. The
algorithm is iterative in nature, and the search process is repeated until either the stopping
criterion is attained or the maximum number of iterations is reached.

FIGURE 6.1
Flocking birds at the Kadalundi Bird Sanctuary. (Author: Dhruvaraj S, originally posted to Flickr, CC BY-SA 2.0.
https​://cr​eativ​ecomm​ons.o​rg/li​cense​s/by/​2.0/d​eed.e​n.)

https://creativecommons.org

79Particle Swarm Optimization﻿﻿

6.2 � Swarm Behavior

Swarm behavior refers to the collective behavior exhibited by animals, birds, or insects
when they involve themselves in some activity [6]. The entities of the swarm move together,
forage, or migrate towards a particular direction in a disciplined manner. This swarm
behavior has been utilized in the development of several of the nature-inspired optimi-
zation algorithms of which the PSO is the pioneering development based on flocking of
birds. A flock of lesser flamingos flying together is shown in Figure 6.2.

The birds behave collectively in a self-organized manner and the flock is decentral-
ized. They fly in unison but there is a random component, which is more apt in model-
ing their behavior as a flock. This randomness makes it realistic. The members of the
population interact with each other and with the environment. This leads to a global
behavior pattern which is not written down as a rule. The underlying group dynamics
of flocking birds is assumed to be based on three rules: (i) Face the same direction as
the other birds, (ii) keep near the other birds, (iii) do not bump into any other bird in the
flock. These rules have been framed by Reynolds in his 1987 paper [7] as simple rules of
the flocking model:

	 1.	Collision avoidance – members of the flock do not collide with each other.
	 2.	Velocity matching – all birds fly at the same speed.
	 3.	Flock centering – try to move towards the center of the flock.

The members of the flock benefit from the experience of others and their own past experi-
ence in the search for food. There are advantages of collective foraging as well as competi-
tion in the search for food. The advantages outweigh the disadvantages when the food is
available in a scattered manner. The social sharing of information among cospeciates is
an evolutionary advantage, and this is the underlying fundamental principle of particle

FIGURE 6.2
Flock of lesser flamingos flying in formation. (Author: Nikunj Vasoya – own work, CC BY-SA 3.0. https​://cr​eativ​
ecomm​ons.o​rg/li​cense​s/by-​sa/3.​0/dee​d.en.​)

https://creativecommons.org
https://creativecommons.org

80 ﻿﻿Nature-Inspired Optimization Algorithms

FIGURE 6.3
Flock of barnacle geese. (Author: Thermos – own work, CC BY-SA 2.5 https​://cr​eativ​ecomm​ons.o​rg/li​cense​s/
by-​sa/2.​5/dee​d.en.​)

swarm optimization. Human social behavior is similar but not same as that of birds and
animals. Birds and animals keep together to avoid predators, forage for food, and look
for mates. Humans have a cognitive component, and they do not act in unison but their
attitudes and beliefs are in accordance (conformance) with their peers. Change in human
social behavior is equivalent to movement in bird behavior.

The elements of the swarm have their own personal manifestation as well as the mani-
festation of the swarm. These are referred to as cognitive and social behavior respec-
tively. The members of the swarm behave based on their own past as well as that of the
entire swarm. The position and velocity change based on their own past behavior as
well as collective social behavior of the swarm. They move around in the search space
which is also the solution space. Each particle/bird has a position and velocity that vary
with time. Birds avoid predators, look for food, and keep near their neighbors but do not
collide with each other or any other entity. The birds move in the same direction while
looking for food or mates or during migration. A flock of barnacle geese flying together in
formation during autumn migration is shown in Figure 6.3. When birds fly together as a
flock, their velocities have to be adjusted to be the same or close to those of their neigh-
bors. The movement has to be synchronous and in the same direction with different
positions within the same flock. This can be modeled with some randomness introduced
into the movement of the birds. The swarm has to have memory so that it remembers its
previous best position.

The five characteristics or principles on which swarm behavior is modeled are [8]:

	 (i)	 Proximity – population should be able to carry out simple space and time
computations.

	 (ii)	 Quality – population should be able to respond to quality factors in the environment.
	(iii)	 Diversity – population should not commit its activities along excessively narrow

channels.

https://creativecommons.org
https://creativecommons.org

81Particle Swarm Optimization﻿﻿

	 (iv)	 Stability – population should not change its mode of behavior every time the envi-
ronment changes.

	 (v)	 Adaptability – population should be able to change its behavior mode when it is
worth the computational price.

The underlying paradigm of PSO is computations carried out in a d-dimensional search
space over a sequence of time intervals. This is the first principle of swarm intelligence.
The members of the population respond to the quality factors personal best and global best;
this is in conformance with the second principle. The diversity specified in the third char-
acteristic occurs because of allocation of response between personal best and global best.
The population changes state only when global best changes; this makes it stable, and the
fact that the population does change when global best changes makes it adaptive. This is in
conformance with the fourth and fifth principles stated above.

6.3 � Particle Swarm Optimization

The algorithm begins with a problem statement and associated constraints, if any. The
population size N of the swarm and the objective or fitness function are defined based on
the criteria to be optimized in the problem. The population of particles or agents is dis-
tributed uniformly throughout the search space with their positions and velocities chosen
randomly within the defined boundaries. The search space is assumed as d-dimensional,
so each particle position and velocity is represented by a d-dimensional vector. The veloc-
ity of the particles may be initialized to zero or to some other value within defined bounds.
The fitness values for the swarm of particles at their current positions are calculated, and
this is their personal best since this is the initial fitness value of the swarm. The maxi-
mum fitness value among the entire swarm is the global best. The particles are accelerated
towards the global best position of the swarm since their own positions are the current
personal best. The new fitness values of the particles are calculated based on their new posi-
tions. The personal best and global best of the swarm are updated among all the positions
attained by the particles so far. During exploration of the search space in this manner,
the particles find solutions which may correspond to either local or global optima. This
process is repeated iteratively until the global optimum solution is attained or a maximum
number of iterations is reached or a stopping criterion is met [9].

6.3.1 � Algorithm

Let X x x xi
iter

i
iter

i
iter

id
iter= [, , ...,]1 2 be the ith particle in the d-dimensional search space in iteration

indexed by the variable iter and N be the population (swarm) size, where i = 1, 2, …, N. Let
P p p pi

iter
i
iter

i
iter

id
iter= [...]1 2 be the personal best position of the ith particle, G g g giter iter iter

d
iter= [...]1 2

be the global best position of the swarm, and f Xi
iter() be the objective or fitness function

evaluated for the ith particle in iteration iter. Each particle has a fitness value based on its
position in the search space as obtained by evaluation of the fitness function. The highest
fitness value attained by the particle so far in some position of the search space is the per-
sonal best position of the particle. The highest fitness value attained so far in some position
of the search space among all the particles of the swarm is the global best position of the

82 ﻿﻿Nature-Inspired Optimization Algorithms

swarm. The velocity and position update equations for the particles are given by Equation
6.1 and Equation 6.2 respectively.

	 V w V c R P X c R G Xi
iter

v i
iter

i
iter

i
iter iter

i
iter+ = + -() + -()1

1 1 2 2 	 (6.1)

	 X X Vi
iter

i
iter

i
iter+ += +1 1 	 (6.2)

where V v v vi
iter

i
iter

i
iter

id
iter= [...]1 2 , R r r r d1 11 12 1= [...] , R r r r d2 21 22 2= [...].

These equations are for the ith particle in general. Since the search space is d-dimen-
sional, the position and velocity of every particle are d-dimensional vectors, and they have
to be updated for every dimension. The velocity and position update equations for the jth
dimension of the ith particle are given by Equation 6.3 and Equation 6.4 respectively.

	 v w v c r p x c r gi j
iter

v i j
iter

j i j
iter

i j
iter

j j
ite

, , , , ,
+ = + -() +1

1 1 2 2
rr

i j
iterx-(), 	 (6.3)

	 x x vi j
iter

i j
iter

i j
iter

, . ,
+ += +1 1 	 (6.4)

i = 1, 2, …, N; j = 1, 2, …, d
The vectors in the above equations are d-dimensional since the search space is assumed as

d-dimensional hyperspace. The maximum number of iterations for the algorithm is repre-
sented as MaxIter and a stopping criterion for the algorithm could also be defined, such as a
threshold ε. The variable wv is the inertia coefficient, and a smaller value for wv accelerates the
particle movement whereas a larger value for wv dampens the movement. The inertia coeffi-
cient is responsible for the movement of the particle in any direction in the search space. If the
particles move faster it will result in faster convergence of the algorithm, and if the particles
move slowly it will result in slower convergence and more exploration of the search space.

The second term in the velocity update equation c R P Xi
iter

i
iter

1 1()- is the cognitive com-
ponent that causes the ith particle to move towards the best positions found by itself so far.
This inherently leads to memory being included in the particle so that it can return to its
better positions found in the past. The constants c1 and c2 influence the maximum step size
the particle can take in the direction of the personal best and global best in any iteration, so
they are called acceleration constants or coefficients. The coefficient c1 is the cognitive coef-
ficient, and its value determines the step size of the particle taken towards its personal best
position. The third term in the velocity update equation c R G Xiter

i
iter

2 2()- is the social com-
ponent and determines the movement of the ith particle towards the best positions found
by the swarm so far. The coefficient c2 is the social coefficient, and its value determines the
step size that the particle takes towards the global best position found by the swarm so far.
The coefficients R1 and R2 are random numbers that introduce a stochastic component in
the movement of the particles of the swarm. This makes it appear that the particles move
in a pseudo-random manner towards the personal best and global best positions. If only the
cognitive term is included, the performance will be poorer since there is no interaction
between particles. If only the social term is included, the performance will either be supe-
rior or inferior to the performance with both cognitive and social terms included, depend-
ing on the problem to which it is applied. The parameters wv, c1, and c2 could be in the
range 0.8 ≤ wv ≤ 1.2, 0 ≤ c1 ≤ 2, 0 ≤ c2 ≤ 2 which has been found to be satisfactory for most
applications. The actual values are chosen based on the problem to be solved. The values

83Particle Swarm Optimization﻿﻿

of r1j and r2j (j = 1, 2, …, d) are randomly chosen in the range (0 ≤ rij ≤ 1 and 0 ≤ r2j ≤ 1), and
they are regenerated every time the velocity is updated. This brings in the stochastic com-
ponent into the algorithm where the random component is introduced into the trajectory
of the particle as it flies towards its personal best and global best positions.

Let the search space be bounded by [–Xmax to +Xmax]. The particles must move in the
search space within this range and not go beyond this. So a technique called velocity
clamping is proposed to limit the maximum velocity of each particle. The bounding limits
for the particle velocity are [–Vmax to +Vmax], where Vmax = k·Xmax. k is the velocity-clamping
factor taking values in the range 0.1 ≤ k ≤ 1.0. In many of the optimization tasks the search
space is bounded by [Xmin to Xmax] instead of [–Xmax to +Xmax]. For such problems, the maxi-
mum velocity is given by Vmax = k·(Xmax – Xmin)/2. As mentioned earlier, the velocity of the
particles is clamped to the limits [–Vmax to +Vmax] where Vmax = k·Xmax. In the velocity update
equation if the magnitude of the new velocity Vi

iter+1 is less than Vmax then this value is the
new velocity; otherwise if it exceeds this limit, it is clamped to ±Vmax. If the velocity is not
bounded within limits, the particles will fly out of the search space.

The velocity and position of the particles are updated according to Equation 6.1 and
Equation 6.2 in every iteration until the algorithm converges. This process is repeated until
the stopping criterion is met or the maximum number of iterations is reached. At the end
of the iterations, the current global best position (fitness function evaluated at the global best
position) is the global optimum solution to the problem. Some of the stopping criteria used
are maximum number of iterations reached, target fitness value of the objective function
is attained, no improvement is observed over a number of iterations, normalized swarm
radius is close to zero, etc. The optimum solution is attained when the global best position is
the global optimum. When the global optimum is not reached within a preset number of
iterations or the swarm diverges, the algorithm is deemed to have failed. The diverging of
the swarm is controlled by the parameter Vmax. The inertia parameter wv has to be selected
carefully and may be decreased as the iterations progress. This makes the algorithm go
from exploration (diversification) to exploitation (intensification) mode. If the inertia weight
is large, the search is global, and if the inertia weight is small, the search is local. The particle
velocities have to be clamped to a maximum of Vmax. If the velocity is too large, the particles
will fly past the optimum solution; if the velocity is too small, the particles might get stuck
in local optima. The PSO algorithm is stable and adaptive. It is stable because it changes state
only when the personal or global best positions change. It is adaptable because it changes state
when the global best changes. It has a diverse response between personal best and global best.

6.3.2 � Pseudocode

Initialization

Population (swarm) size N
Define objective function f(X) of dimension d
Initial positions and velocities of the particles
Compute fitness values of the particles
Initial personal best and global best

Parameters: inertia weight wv, coefficients c1 and c2
Random parameters R1 and R2

Maximum number of iterations MaxIter

84 ﻿﻿Nature-Inspired Optimization Algorithms

Stopping criteria, if any
iter = 1

for iter = 1 to MaxIter do

Update velocity and position of the particles
Calculate fitness values for all the particles
Update personal best and global best

if stopping criteria met then exit, otherwise continue
end for
global best is the optimum solution

Flowchart

Yes

No

• Population size N
• Objective function f(X) of dimension d
• Initial particle positions and velocities
• Compute fitness values of population
• Initial values of personal & global best
• Parameters wv, c1 & c2, R1 & R2

• Define stopping criteria, if any
• Maximum number of iterations MaxIter
• iter = 1

Update personal best and global best

global best is the global optimum
solution

Stopping criteria /
Max. No. of

iterations reached?

Update particle positions and velocities

end

iter = iter + 1

Calculate fitness values of the particles

Initialization

Begin

85Particle Swarm Optimization﻿﻿

6.4 � Variants of the Algorithm

In the original PSO algorithm proposed by James Kennedy and Russell C. Eberhart in 1995,
the inertia coefficient wv is assumed as one, since it is not present in the velocity update
equation (Equation 6.1). It has been included in the modified particle swarm optimizer [10]
proposed by Shi and Eberhart in their 1998 paper. The inertia component wv balances the
local and global search and mostly it is a constant but it could also be a function. Based
on experimental results it is found that when wv is small (<0.8) PSO is like a local search
algorithm and finds the global optimum fast if it is within the initial search space. When
wv is large (>1.2) PSO is like a global search algorithm and explores new areas and hence
convergence takes time. When wv is medium (0.8 ≤ wv ≤ 1.2) PSO finds the global optimum
in a moderate number of iterations. The larger the value for wv the lesser is the dependency
of the algorithm on the initial population. Gradually reducing the inertia weight in a linear
manner with each iteration gives the PSO exploration as well as exploitation capabilities.
If the first term in the velocity equation is not present, the particles will fly towards the
personal and global best of the swarm and the search space will tend to shrink. If the global
optimum is within the initial search space, it has a chance of being found, otherwise not.
Therefore, the solution depends on the initial population. With the inclusion of the first
term in the velocity update equation, the search space expands. The inertia coefficient bal-
ances the local and global search and hence the exploitation and exploration abilities of the
algorithm [11].

In one of the modifications to the PSO algorithm proposed by Clerc [1999] a constriction
factor has been introduced into the velocity update equation [12]. The modified velocity
update equation is given in Equation 6.5.

	 V K V c R P X c R G Xi
iter

i
iter

i
iter

i
iter iter

i
iter+ = + -() + -()éë ù1

1 1 2 2 ûû 	 (6.5)

The constriction factor is defined as,

	 K c c=
- - -

= + >2

2 4
4

2
1 2

| |
... ,

f f f
j j 	 (6.6)

PSO with the constriction factor has been found to have improved convergence. Choosing
appropriate values for wv, c1, and c2 ensures convergence without the need for velocity
clamping. The PSO algorithm (Shi and Eberhart) with only a constriction factor included
results in an improved rate of convergence, but sometimes the threshold might not be
reached within the specified number of iterations. To overcome this problem, the velocity
was clamped to the maximum limit and the performance improved. Therefore, using the
constriction factor along with velocity clamping improves the rate of convergence, and the
convergence was reached within the specified number of iterations [13]. A typical value
for φ is equal to 4.1 (>4), leading to K = 0.7298 and since φ = c1 + c2, c1 = c2 = 2.05 is a good
choice for the coefficients.

The discrete binary version of PSO [14] was proposed by Kennedy and Eberhart in 1997.
In binary PSO, the components of the vector representing present position, personal best,
and global best are binary in nature, meaning they assume values of either 0 or 1. The posi-
tion of a particle is represented by a binary number, the length of the number being equal
to the dimension d of the search space. The velocity vector components are thresholded to

86 ﻿﻿Nature-Inspired Optimization Algorithms

lie in the range [0, 1] using the sigmoidal function defined as sig x
e x()=

+ -
1

1
. The velocity

update equations in binary PSO are same as those in the original PSO. The position update
equations are modified as

	 x
if r sig v

if r sig v
i j
iter

i j
iiter

i j
iter

,

,

,

)
+

+

+
=

< ()
³ ()

ì
í
ï

îï

1

1

1

1

0
	 (6.7)

where r is a random number that takes on values between [0, 1] with a uniform probability.
Equation 6.7 represents the components of the position vector where j = 1, 2, …, d.

When vi j
iter
,

+ >1 10, sig vi j
iter(),

+1 is saturated at the value of 1. When vi j
iter
,

+ < -1 10, sig vi j
iter(),

+1
is approximately 0. Hence, vi j

iter
,

+1 may be clamped to ±4 or ±6, as suggested in the litera-
ture. This makes sig vi j

iter(),
+1 vary between 0.0180 and 0.9820 for vi j

iter
,

+1 clamped to ±4 and
sig vi j

iter(),
+1 varies between 0.0025 and 0.9975 for vi j

iter
,

+1 clamped to ±6. In binary PSO the
particles move by flipping bits, since the components of the vectors are binary 1s and 0s.
The Hamming distance between two binary vectors is defined as the number of positions
in which the elements of the vector differ. The Hamming distance between Xi

iter+1 and
Xi

iter is the change in velocity or acceleration of the particle. When there is no change in
the bits, the particle is in the same position, whereas if all the bits are flipped the particle
moves the farthest distance.

There may be multiple objective functions [15] or there may be a single objective func-
tion with multiple constraints. In these cases, the optimum has to be found that is a trad-
eoff between the multiple functions or constraints. There will be a set of solutions that
satisfy the multiple objectives which could be a tradeoff between the multiple conflicting
objectives and constraints.

6.5 � Summary

The algorithm is stochastic, does not require computation of gradients, and is based
on the behavior and movement dynamics of swarms of birds. There are only a few
parameters to be controlled, and it is computationally efficient, derivative-free, simple
to implement, and applicable to a wide range of problems. Because there is no necessity
for calculation of derivatives, computational complexity is reduced. It requires less code
size and memory and is quite fast in execution, leading to reduced space and time com-
plexity. Unlike GA where the population changes with every generation or iteration, in
PSO the population remains constant throughout the run of the algorithm. The typical
population size is 10 to 50, chosen depending on the problem. The uniqueness of PSO
lies in the fact that possible solutions (particles) fly through the solution space (hyper-
space) accelerating towards better solutions. It is a stochastic algorithm that has a certain
amount of randomness built into it. If there are constraints in the problem, in effect, the
search space is reduced. The global optimum solution should satisfy all the constraints
and the objective(s) of the problem.

87Particle Swarm Optimization﻿﻿

The algorithm must strike a balance between exploration and exploitation. Exploration
will lead to exploring the search space in new areas whereas exploitation will make the
algorithm search in a local (smaller) region intensely. The choice of parameters is crucial
for this balance. Smaller values of wv result in faster convergence. The particle converges
usually on the line between the personal best and the global best positions. As the number
of dimensions increases, the time taken for the algorithm to converge also increases. The
parameters c1, c2, and wv may be held constant for all the iterations, or c1, c2 may be held
constant with linearly decreasing inertia weight wv for the iterations. An initial large iner-
tia weight leads to exploration of the search space, and as the weight decreases, it increases
the exploitation abilities of the swarm. Objective functions can be unimodal or multi-
modal. Multimodal functions require more diversity among the swarm than unimodal
functions. Several hybrid algorithms have been proposed where evolutionary operators
have been applied with PSO, or other swarm intelligence algorithms have been combined
with PSO leading to enhanced performance for certain applications.

References

	 1. 	James Kennedy, Russell Eberhart, Particle swarm optimization, Proceedings of the IEEE
International Conference on Neural Networks, Piscataway, NJ, Vol. IV, pp. 1942–1948. IEEE Press,
1995.

	 2. 	Mahamed G. H. Omran, Particle swarm optimization methods for pattern recognition and
image processing. Ph.D. thesis. University of Pretoria, Pretoria, 2005.

	 3. 	Frans van den Bergh, An analysis of particle swarm optimizers. Ph.D. thesis. University of
Pretoria, Pretoria, 2001.

	 4. 	E. O. Wilson, Sociobiology: The New Synthesis, Cambridge, MA: Belknap Press, pp. 697, 1975.
	 5. 	James Blondin, Particle swarm optimization: A tutorial, September 2009. http:​//cs.​armst​rong.​

edu/s​aad/c​sci81​00/ps​o_tut​orial​.pdf
	 6. 	James Kennedy, Russell Eberhart, Yuhui Shi, Swarm Intelligence, Morgan Kaufmann Publishers,

San Francisco, 2001.
	 7. 	Reynolds, C. W., Flocks, herds, and schools: A distributed behavioral model, Computer Graphics,

Vol. 21, No. 4, SIGGRAPH '87 Conference Proceedings, pp. 25–34, 1987.
	 8. 	Millonas M. M, Swarms, Phase transitions and collective intelligence, In: Artificial Life III, C. G.

Langton (ed). Reading, MA: Addison Wesley, pp. 417–443, 1993.
	 9. 	M. Clerc, J. Kennedy, The particle swarm - Explosion, stability, and convergence in a multi-

dimensional complex space, IEEE Transactions on Evolutionary Computation, Vol. 6, No. 1, pp.
58–73, 2002.

	 10. 	Y. Shi, R. Eberhart, A modified particle swarm optimizer, 1998 IEEE International Conference
on Evolutionary Computation Proceedings, IEEE World Congress on Computational Intelligence,
Anchorage, AK, USA, pp. 69–73, 1998.

	 11. 	Dian Palupi Rini, Siti Mariyam Shamsuddin, Siti Sophiyati Yuhaniz, Particle swarm optimiza-
tion: Technique, system and challenges, International Journal of Computer Applications, Vol. 14,
No. 1, pp. 19–27, January 2011.

	 12. 	M. Clerc, The swarm and the queen: Towards a deterministic and adaptive particle swarm
optimization, Proceedings of the Congress on Evolutionary Computation, Washington, DC, United
States, pp. 1951–1957, July 1999.

	 13. 	Russ C. Eberhart, Y. Shi, Comparing inertia weights and constriction factors in particle swarm
optimization, Proceedings of the Congress on Evolutionary Computation, San Diego, CA, United
States, pp. 84–89, 2000.

http://cs.armstrong.edu/
http://cs.armstrong.edu/

88 ﻿﻿Nature-Inspired Optimization Algorithms

	 14. 	James Kennedy, Russell Eberhart, A discrete binary version of the particle swarm algorithm,
Proceedings of the Conference on Systems, Man and Cybernetics, Orlando, FL, USA, pp. 4104–4109,
1997.

	 15. 	E. Zitzler, M. Laumanns, S. Bleuler, A tutorial on evolutionary multiobjective optimization, In:
Metaheuristics for Multiobjective Optimization, X. Gandibleux, M. Sevaux, K. Sörensen, V. T’kindt
(eds), Lecture Notes in Economics and Mathematical Systems, Vol. 535. Berlin, Heidelberg:
Springer, pp. 3–37, 2004.

89

7
Differential Evolution

7.1 � Introduction

Differential evolution (DE) was invented in 1995 by Price and Storn and has been found to
be robust in solving global optimization problems [1]. Any good optimization algorithm
should converge in finite time and produce the best (optimized) output. The complex
engineering problems are stated in terms of objective(s) to be achieved and constraints
within which the optimum solution is to be attained. These objective(s) and constraints
are expressed as mathematical equations that can be solved using standard numerical
techniques in the case of traditional optimization methods. The mathematical function
representing the objective(s) to be attained is termed as the objective function that is to
be either minimized or maximized. When the function is minimization of an objective,
it becomes a cost or error function. When the function is maximization of an objective, it
becomes a profit or quality function. The problem to be solved might have constraints that
could be incorporated into the formulation of the objective function, or they might be sepa-
rately expressed as mathematical equations. The objective function could be continuous or
discrete, linear or non-linear, differentiable or non-differentiable. The objective function
is dependent on a set of variables whose values determine the value of the function (out-
put). In addition, the objective function might be dependent on a set of parameters related
to the problem. The appropriate choice of parameters for the problem leads to the global
optimum solution [2].

In DE, it is assumed that the fitness or objective function is a cost function that is to be
minimized. Differential evolution was proposed to be a stochastic direct search method
to find the global minimum, with inherent parallelism to take care of computationally
intensive cost functions. DE basically uses a population of vectors whose perturbations
can be done independently in the search space which is a polyhedron. Each vertex of
the search space is represented by a d-dimensional population vector. When the popu-
lation vectors need to be transformed or evolved, change in the control variables or
parameters might be required. DE has a self-organizing capability to determine pertur-
bations of the population vectors in the search space without having to apply changes
in the control variables or parameters. The perturbations are applied for all the popu-
lation vectors independently. This is in contrast to traditional algorithms that apply
pseudorandom parameters with a uniform probability distribution to bring about such
perturbations. DE has a lower number of control variables to tune the algorithm. DE
has been proven experimentally to have good convergence properties. DE can handle
linear or non-linear, differentiable or non-differentiable, unimodal or multimodal func-
tions. DE is a derivative-free search strategy that is suitable for unimodal as well as
multimodal functions.

Nature-Inspired Optimization Algorithms

90 ﻿﻿Nature-Inspired Optimization Algorithms

Differential Evolution

7.2 � Differential Evolution

Differential evolution, as the name suggests, is an optimization strategy where evolution
of the population members or vectors takes place based on differences between existing
vectors of the population [3]. DE starts with an initial population of randomly chosen
points in the search space, where each point is represented by a vector. The population
size is assumed as N and the dimension of the search space is d. Hence, each vector of
the population is d-dimensional and has d number of components. The search space is
bounded by the limits on the parameters, and the initial population should be chosen
so that it is distributed uniformly (pseudorandom distribution) throughout the search
space. If there is a vector already available in the search space (preliminary nominal
solution vector), the initial population is generated by adding randomly generated devia-
tions to the available vector. This process creates the initial population of vectors in the
search space.

New population members or vectors are generated from perturbations of existing vec-
tors [4]. Two vectors from the existing population are chosen randomly and their difference
is taken. This difference vector is multiplied by a weighting factor to create the perturba-
tion vector. The perturbation vector is added to a third randomly chosen population vec-
tor, to generate a new vector in the search space. This process of generating new vectors is
called mutation in DE.

A population vector is randomly chosen in the search space called the target vector. The
vector obtained as a result of mutation is mixed with the target vector to generate a new
vector called the trial vector. This process of mixing vectors is called crossover in DE. The
objective function is evaluated with the trial vector and target vector and they are com-
pared. The vector with the lower cost value is retained in the next generation of the popu-
lation. This process of replacing the target vector with the trial vector if the trial vector
has lower cost than the target vector is called selection. This procedure of applying muta-
tion, crossover, and selection is repeated until all the members of the population have been
covered. Every member of the population of size N becomes a target vector once during
every iteration. The survivors of mutation, crossover, and selection operations are the next-
generation members of the population.

DE starts with an initial population size N. The population consists of d-dimensional
vectors; in other words, every vector of the population has length d. The upper and lower
bounds for all the parameters involved in the problem are defined. One notable factor in
DE is that all parameter values are real numbers and are represented in floating point
notation. As already stated, randomly chosen population vectors are mutated by adding
the weighted difference of two randomly chosen vectors that are different from the origi-
nal vector. The weighting factor is also a random number that normally assumes positive
values in the range [0, 2]. In addition to mutation, DE also employs crossover operation. In
crossover, the trial vector is created by building the vector element by element from the
mutant vector and the chosen target vector. The crossover constant cr controls the number
of elements that are copied from the mutant vector. The crossover constant is randomly
chosen between [0, 1], and it is compared with another random number rand(i) generated.
Depending on whether crossover constant cr is higher or lower than the random number
rand(i) and also considering the index k of the element, the crossover operation is done.
If the trial vector created by crossover has lower cost than the corresponding target vec-
tor, the trial vector replaces the target vector; otherwise the target vector is copied into
the next-generation population. These processes of mutation, crossover, and selection are

91Differential Evolution﻿﻿

repeated in every iteration (generation) until the maximum number of iterations is reached
or a termination criterion is met or the optimum solution is attained.

The difference vectors can be both positive as well as negative, and hence the mean
of their distribution is zero. Scaling the difference vectors (multiplying by the weighting
factor) ensures that the trial vectors are not repeated (no duplication of vectors) and also
the search does not get trapped in local minima. As the number of iterations increases,
the population vectors cluster towards the global minimum and the difference vectors
have a length and direction suitable for local search. Since DE codes all parameters as
real numbers with floating point notation, it is easy to use, has efficient memory usage,
lower computational complexity, and converges faster. The number of bits to represent the
fractional part of the number is the precision, and this must be high in order to represent
very small differences. The number of bits allotted for the exponent determines the mag-
nitude of the numbers (very large or very small) that it is possible to represent. Therefore,
floating point representation is very much useful in DE since it involves computation of
differences which could be very small values. These small changes could have a profound
effect on the performance of DE, and hence they should be captured. This is facilitated by
the floating-point notation employed.

The initial population has to be chosen that is uniformly distributed within the search
space. The initial population not only requires distribution over the entire search space
but some probability distribution must be followed in choosing the initial vector elements.
Mostly, uniform distribution is followed in choosing the initial population elements, but
Gaussian distribution makes convergence faster, sometimes prematurely. Some random-
ness should be included in the choice of initial parameter values. Clustering the initial
population has a detrimental effect on the performance of the algorithm, so distribution
of the initial population throughout the bounded search space is necessary. In standard
test functions, the limits on the parameters could be specified by the user to determine the
boundary of the search space. In real-world applications, the objective function and the
parameters are dependent on the problem to be solved. The minimum and maximum val-
ues of the parameters also will be problem-dependent, and care must be exercised in fixing
such extreme values since they have a great impact on the search for the optimum solution.

In the DE algorithm, the base vectors for calculating weighted differences, the popula-
tion vector on which mutation is performed, and the target vector on which crossover
is done are all chosen randomly. There is a possibility that some of the vectors might
be chosen repeatedly while others might not get a chance to contribute to the evolution
process. This will have a profound effect on the performance of the DE algorithm. In
addition to random selection of base vectors as in the original DE algorithm, the choice
could be based on fitness values of the vectors, as proposed in other versions of the
DE algorithm. The algorithm finds the optimum solution when it stops at the appro-
priate condition, called the termination criterion. When the objective(s) and constraints
are met, the algorithm stops execution. The optimum value of the objective function
or at least the neighborhood of the optimum must be previously known, and when the
constraints on the problem have been satisfied the algorithm can terminate. In single-
objective optimization, it is easy to identify the optimum point, but in multi-objective
optimization, it might not be easy to identify the termination point since it could involve
multiple conflicting objectives that might be difficult to satisfy. In most of the problems,
the objective function value might not be known so the algorithm stops with a preset
maximum number of generations or iterations. The algorithm could also be made to
terminate when there is no sizeable improvement in the fitness function value with con-
secutive, succeeding iterations.

92 ﻿﻿Nature-Inspired Optimization Algorithms

7.2.1 � Algorithm

Let the population size be N and let d be the dimension of the population vectors. Let the
population vector be represented by

	 X x x x i Ni
iter

i
iter

i
iter

id
iter= éë ùû =1 2 1 2... , , , , 	 (7.1)

where iter is the variable for indexing the iterations and the maximum number of itera-
tions is MaxIter, which is the maximum number of iterations for the algorithm to run. The
initial population of vectors is chosen randomly, and distributed uniformly over the entire
search space within the boundaries.

The population evolves in DE by perturbing the existing population vectors. The pertur-
bation is obtained as a difference of two of the existing population vectors (base vectors)
multiplied with a weighting factor. The perturbation is added to a third member of the
population vectors (different from the base vectors) to create the mutant vector. This opera-
tion is called mutation in DE, and there is one mutant vector Mi for every target vector Xi.
The mutation operation can be mathematically described as:

	 M X w X X i j k r Ni
iter

r
iter

i j
iter

k
iter= + -() Î. , , , , { , , }1 2 	 (7.2)

where N is the total population size, M represents mutation vector, i, j, k, and r are indices
for vectors chosen randomly from the population, and wi is the weighting factor that has
a positive value (>0). This implies a minimum population size of four. For every vector Xi
of the population there is a mutant vector Mi generated. Therefore, Equation 7.2 is applied
for every Xi, i = 1, 2, …., N. The process of generating mutant vector Mi from the population
vectors is diagrammatically illustrated in Figure 7.1 for a two-dimensional search space.

The elements of the mutant vector are mixed with the elements of a target vector chosen
from the population, and this operation is called crossover. This crossover operation creates
the trial vector. The crossover operator is introduced in DE to increase the diversity of the
population. Let the target vector and the corresponding mutant vector in iteration iter be
given by Equation 7.3.

(Xj - Xk)

Xr

Xj

Xk

Mi

wi(Xj - Xk)

x2

x1

FIGURE 7.1
Mutant vector generation.

93Differential Evolution﻿﻿

	 Target vector : { , ,, }X x x xi
iter

i
iter

i
iter

id
iter= 1 2 	

	 Mutant vector: M m m mi
iter

i
iter

i
iter

id
iter= { }1 2, ,, 	 (7.3)

Let the trial vector generated by the crossover operation be given by:

	 Trial vector: Y y y yi
iter

i
iter

i
iter

id
iter= { , ,, }1 2 	 (7.4)

where the elements of the new crossover vector yi
iter are generated as follows.

	
y m if rand k c or k r i k d

x if

ik
iter

ik
iter

r

ik
iter

= £ = =

=

() () , , ,1 2

rrand k c and k r ir() ()> ¹
	 (7.5)

cr is defined as crossover constant that takes on values in the interval [0, 1], rand(k) is a random
number generator for the element with index k that assumes values in the range [0, 1], and r(i)
is a randomly chosen index from the set {1, 2, … d}. Crossover is illustrated in Figure 7.2.

The objective function is evaluated for the target vector Xi
iter chosen and the trial vector

Yi
itergenerated. This gives the values of f Xi

iter() and f Yi
iter(). If f Xi

iter() is less than f Yi
iter()

then, X Xi
iter

i
iter+ =1 , else X Yi

iter
i
iter+ =1 . This is a selection operation for the next-generation pop-

ulation vectors. The vectors of the next generation are created by evaluating the objective
function on the chosen target and trial vectors and the vector with the lower cost function
value is included in the next generation. This process is repeated for all the target vectors
of the current generation (i = 1, 2 … d) to evolve the population for the next generation. One

iter
iX

xi(1)

xi(2)

xi(3)

xi(4)

xi(5)

xi(6)

xi(7)

xi(8)

iter
iY

yi(1)

yi(2)

yi(3)

yi(4)

yi(5)

yi(6)

yi(7)

yi(8)

mi(1)

mi(2)

mi(3)

mi(4)

mi(5)

mi(6)

mi(7)

mi(8)

iter
iM

yi(1) = mi(1)
cr = 0.5, r(i) = 4
rand(1) = 0.2

yi(7) = xi(7)
cr = 0.5, r(i) = 4
rand(7) = 0.8

FIGURE 7.2
Illustration of crossover.

94 ﻿﻿Nature-Inspired Optimization Algorithms

method of updating the population is performing mutation, crossover, and selection for all the
(target) vectors of the population and storing the new vectors separately. Once these opera-
tions are completed for the entire population, the old population is replaced with the new
vectors. As a variant of this, as each trial vector is generated and either the target or trial
vector is selected (based on the fitness value), the population can be updated adaptively as
the iterations proceed. This could possibly lead to faster convergence.

As a rule of thumb, the population size for DE should be five to ten times the dimension
d of the population vectors, with a minimum population size of four. The weighting fac-
tor w can be chosen as 0.5, and depending on the rate of convergence of the algorithm,
the weighting factor can be increased or decreased. In general, the weighting factor can
be positive with a maximum value of 2. The crossover constant cr can be chosen approxi-
mately close to 1 such as 0.9 or 0.8, but again it can be reduced depending on the rate of
convergence. Most of the parameters that are stochastic follow a uniform distribution. DE
has been applied and tested on a set of benchmark functions and found to outperform
several variants of the annealing and genetic algorithm. The computational complexity is
less for DE compared to other evolutionary algorithms. DE has been mainly proposed for
minimization functions although it can be applied for function maximization too.

7.2.2 � Pseudocode

Initialize the population size N and the dimension of the vectors d
Randomly generate the initial population of vectors in the search space {Xi}, i = 1, 2,

…, N
Define the fitness or objective function f X()
Choose the maximum number of iterations MaxIter

Define stopping criteria for the algorithm, if any
iter = 1
while (iter ≤ MaxIter) do

for i = 1 to N

Randomly choose three population vectors Xr
iter , Xj

iter , Xk
iter , and

weighting factor wi

Generate the mutant vector Mi
iteras per Equation (7.2)

Perform crossover operation on Mi
iterand the target vector Xi

iter

to generate trial vector Yi
iter

Objective function is evaluated for the target vector f Xi
iter()

and trial vector f Yi
iter()

if f Yi
iter()< f Xi

iter() then X Yi
iter

i
iter+ =1 else X Xi

iter
i
iter+ =1

end for

iter = iter + 1
if stopping criteria met then exit else continue

end while

Population vector with lowest fitness value is global optimum (minimization
problem)

95Differential Evolution﻿﻿

Flowchart

i = i + 1

iter = iter + 1

begin

end

Initialization
· Population of vectors N
· Dimension of vectors d
· Objective function f(X)
· Max. No. of iterations MaxIter
· Termination criteria
· iter = 1

Mutation

· Randomly choose three vectors
 from the population
· Weighted difference between two
 vectors is added to the third vector
· Resultant vector is mutant vector

Crossover
· Trial vector generated from
 target vector and mutant vector

Fitness function evaluated on
target and trial vectors
Next generation population vector
chosen based on evaluated fitness

Termination
condition reached /

iter = MaxIter?

All target vectors
processed? /

i = N?

i = 1

Population vector with lowest cost
is optimum solution

Yes

Yes

No

No

96 ﻿﻿Nature-Inspired Optimization Algorithms

7.3 � Variants of the Algorithm

The general notation for representing variants [5] of the standard DE is DE/x/y/z where x
is the vector chosen from the population for mutation (x is the vector to which the weighted
difference is to be added), y is number of difference vectors taken (either 1 or 2), z is the
crossover mechanism (binomial or exponential). The variations in different DE algorithms
occur in the mutation and crossover operations. The basic DE algorithm described in the
above sections can be represented by DE/rand/1/bin since the mutant vector is randomly
chosen from the population, the number of difference vectors used is one and the binomial
method is used in crossover. One variation of DE is to use two difference vectors com-
puted from two pairs of vectors from the population. The two differences are added, and
they are multiplied by a weighting factor (or multiplied by two different weighting factors
separately) before being added to one of the population vectors to generate the mutant vec-
tor. This modification of using two differences tends to increase the population diversity.
This is represented by DE/rand/2/bin where the mutant vector is generated as below and
the crossover scheme is binomial.

	 M X w X X X X i j k p q ri
iter

r
iter

i j
iter

k
iter

p
iter

q
iter= + - + -(). , , , , , , ÎÎ { , , }1 2 N 	 (7.6)

In yet another variant of DE, the best vector of the population (vector with the lowest cost
function) is chosen for mutation as given by DE/best/1/bin and DE/best/2/bin respectively
as below:

	 M X w X X i j k best Ni
iter

best
iter

i j
iter

k
iter= + -() Î. , , , , { , , }1 2 	 (7.7)

	 M X w X X X X i j k pi
iter

best
iter

i j
iter

k
iter

p
iter

q
iter= + - + -(). , , , , , qq best N, { , , }Î 1 2 	 (7.8)

Finally, using the best vector to compute the difference with a randomly chosen vector of
the population for mutation leads to DE/rand-to-best/1/bin:

	 M X w X X X X i pi
iter

r
iter

i best
iter

r
iter

p
iter

q
iter= + -() + -()(). , , , qq r best N, , { , , }Î 1 2 	 (7.9)

This can lead to improved convergence since the search is in the region of the best vector
(feasible region) of the population in terms of cost function and has enhanced local exploi-
tation. The different variants of DE provide various capabilities of exploration and exploi-
tation. Of all the variants listed above, DE/rand/2/bin has been found to be more successful
than others. But its local exploitation and convergence properties are not satisfactory. In
yet another successful variant of DE, using a probability rule, one of the two mutation
strategies, namely DE/rand/2/bin or DE/rand-to-best/1/bin, can be chosen. The probability
of choosing one of the strategies can be varied as the generations increase, that is, it can
be made to depend on the iteration number. DE/rand/2/bin has good global exploration
properties whereas DE/rand-to-best/1/bin has good exploitation properties. So choosing
the first one during the earlier iterations and then switching over to the second one at
later stages leads to a good balance of exploration and exploitation. In addition, during the
middle phase of iterations, either one of the strategies can be used. Different probability

97Differential Evolution﻿﻿

rules can be applied in the selection of the two strategies. Mutation is responsible for intro-
ducing diversity and hence global search capability of the algorithm.

Similarly, two crossover methods, exponential and binomial, are used in DE. The cross-
over strategy described above is the binomial method since the trial vector gets its compo-
nents from the mutant vector following a binomial distribution. In exponential crossover,
two integers are randomly chosen; one is the index for the starting point for crossover,
and the other is the number of components of the trial vector that it gets from the mutant
vector. The crossover constant determines the components of the trial vector, that is, how
many components of the trial vector are inherited from the mutant vector. Smaller values
of the crossover constant lead to lesser diversity and slower convergence whereas larger
values of the crossover constant increase the diversity as well as the convergence rate. In
the earlier iterations, the crossover constant has to be a small value, typically less than 0.2,
in order to have good exploratory capabilities, and as the iterations advance, the cross-
over constant can be increased above 0.8. This adaptive strategy balances exploration and
exploitation. During the iterations, the population vectors could move out of the boundar-
ies of the search space but it is in-built in the DE algorithm not to exceed the boundaries.
This could cause the population vectors to lie on the boundaries of the search space, thus
reducing the diversity. This could be overcome by using a strategy to move the population
away from the boundaries of the search space when the vectors move to the boundary
during the iterations. The appropriate choice of the two parameters, weighting factor and
the crossover constant, are very important in the performance of the DE algorithm. These
parameters could be made self-adaptive so that the algorithm converges faster and does
not get trapped in local optima.

In another variant of the DE algorithm, both uniform and Gaussian distributions are
used in selecting the scale factor and crossover constant for unconstrained optimization
problems [6]. This improves the diversity of the population. Hybrid DE algorithms have
been proposed by combining DE with other optimization strategies to improve the per-
formance. An archive with high-quality solutions can be included during the process
to improve the quality of the population. In the literature, DE has been combined with
k-means clustering to improve the performance for unconstrained optimization problems.
For problems requiring extensive computations, the DE has been combined with a k near-
est neighbor (kNN) approach to improve the performance. This hybrid variant uses a pre-
dictor that predicts a good approximation to the actual space and is efficient. In modified
DE (MDE) there are four variants to the original DE algorithm. MDE uses an external
archive to store good candidate populations that are used during the run of the algorithm.
Two mutation strategies DE/rand/1/bin and DE/best/1/bin are applied and either of them
chosen using a probability [7]. The scale factor and crossover constant are modified adap-
tively with the iterations. Gaussian distribution is used for modifying the scale factor, and
uniform distribution is used for modifying the crossover constant. Out of the N mem-
bers of the population, all of them are updated according to the update equations of the
algorithm except one member whose position is the average of all other members (N – 1).
This is the central solution that is an alternative to the optimum solution. In novel MDE
(NMDE) the scale factor and crossover rate are adaptively modified and each solution has
its own parameters as scale factor and crossover rate instead of their being same for the
entire population [8]. In the original DE algorithm, the parameters are fixed throughout
the run of the algorithm once they are chosen. In NMDE the parameters are adaptive
so that the algorithm can come out of any local optimum. This NMDE in combination
with a penalty function method is suitable for solving constrained optimization prob-
lems. DE has also been modified to solve multi-objective and combinatorial optimization

98 ﻿﻿Nature-Inspired Optimization Algorithms

problems where the search space is not continuous. Some of the hybrids with promising
performance are biogeography-based optimization (DE-BBO), estimation of distribution
algorithm (DE-EDA), fittest individual refinement (DE-FIR), DE-barebones particle swarm
optimization (PSO), and neighborhood search DE, to name a few variants. These hybrid
variants of DE balance exploration and exploitation and converge faster, leading to better
solutions than either of the algorithms run separately. The main contributions of the DE
variants are in the mutation strategy and choice of crossover parameters.

7.4 � Summary

DE is a global optimization technique that is easy to use, reliable, fast, and simple to imple-
ment. DE has proven to be a promising approach to solve problems that are non-linear
and non-differentiable. DE can efficiently handle unimodal as well as multimodal objec-
tive functions that are computationally intensive. It has few control variables, is robust,
converges consistently and faster, and has been found to be more computationally efficient
than other classical optimization methods. It has an implicit parallelism that increases its
rate of convergence. DE is a direct search method that is easy to implement and gives good
results compared to other evolutionary algorithms. DE has been proved to be efficient
in solving engineering design problems and real-life applications in diverse fields. DE
operates on continuous spaces and uses distance and direction information in the form of
difference vectors in conducting the search for the optimum solution. DE has a self-orga-
nizing capability that makes it remarkably different from other optimization techniques.

References

	 1. 	Kenneth Price, Rainer Storn, Differential evolution – A simple and efficient adaptive scheme
for global optimization over continuous spaces, Technical Report TR – 95 – 012, International
Computer Science Institute, Berkeley, CA, United States, 1995.

	 2. 	Kenneth V. Price, Genetic annealing algorithm, Dr. Dobb’s Journal, pp. 127 – 132, October 1994.
	 3. 	Rainer Storn, Kenneth Price, Differential evolution – A simple and efficient heuristic for global

optimization over continuous spaces, Journal of Global Optimization, Vol. 11, pp. 341–359, Kluwer
Academic Publishers, 1997.

	 4. 	Kenneth V. Price, Rainer M. Storn, Jouni A Lampinen, Differential Evolution – A Practical
Approach to Global Optimization, Springer Natural Computing Series, Springer-Verlag, Berlin,
Heidelberg, 2005.

	 5. 	Swagatam Das, Sunkha Subhra Mullick, P. N. Suganthan, Recent advances in differential evo-
lution – An updated survey, Swarm and Evolutionary Computation, Vol. 27, pp. 1–30, 2016.

	 6. 	Dexuan Xou, Jianhua Wu, Liqun Gao, Steven Li, A modified differential evolution algorithm
for unconstrained optimization problems, Neurocomputing, Vol. 120, pp. 469–481, 2013.

	 7. 	Xiangtao Li, Minghao Yin, Modified differential evolution with self-adaptive parameters
method, Journal of Combinatorial Optimization, Vol. 31, pp. 546–576, 2016.

	 8. 	Dexuan Xou, Haikuan Liu, Liqun Gao, Steven Li, A novel modified differential evolution algo-
rithm for constrained optimization problems, Computers and Mathematics with Applications, Vol.
61, pp. 1608–1623, 2011.

99

8
Ant Colony Optimization

8.1 � Introduction

Swarm intelligence has been the inspiration behind the development of a class of nature-
inspired optimization algorithms that are different from the traditional methods. These
optimization techniques are unconventional and have been found to be successful in solving
a diverse range of real-life problems. The traditional optimization algorithms are suitable for
continuous functions that require the computation of derivatives. The nature-inspired opti-
mization algorithms can be applied for continuous and discrete as well as mixed-variable
problems, and they do not require the computation of derivatives. They are mostly search
algorithms that use a population of agents to search in parallel for the optimum, thus saving
time. Metaheuristics is an important component of such algorithms since approximations
greatly simplify the process in arriving at the optimum solution for the problem.

Ant colony optimization (ACO) is one such swarm intelligence-based metaheuristic
algorithm and was proposed by Marco Dorigo and Gianni Di Caro in 1999 [1]. ACO was
developed with the inspiration of the foraging behavior of ant colonies [2]. The collective
intelligence of a swarm of ants has been used to solve intractable problems that are NP-hard
for conventional algorithms. Inspiration from the study of the swarm behavior of ant colo-
nies has led to the development of the ACO algorithm. Ants always tend to follow the short-
est path from their nest to a food source, and this technique has been inculcated into the
ACO algorithm to find the shortest path in graph-based search. This class of problems where
the optimum solution is the shortest route in an interconnected graph or a network has been
successfully solved by the ACO algorithm. Since the first ant-based algorithm was proposed
by Marco Dorigo in 1992, several variants of the algorithm have been proposed by research-
ers working in the field, and they have been successfully applied to problems that involve a
tedious searching process with a lot of parameters. Ants provide inspiration, and knowledge
derived from their behavior can provide solutions to discrete combinatorial optimization
problems. ACO can be easily extended to all problems under the discrete combinatorial opti-
mization category with minor variations. The algorithm is population-based; hence it is suit-
able for parallel search, thus reducing the time complexity. The characteristics of ant colonies
and the ACO algorithm with its variants have been discussed in the following sections.

8.2 � Ant Colony Characteristics

The ants are well-organized in colonies, and they exhibit collective intelligence. There are
thousands of species of ants throughout the world such as fire ants, army ants, black ants,

Nature-Inspired Optimization Algorithms

100 ﻿﻿Nature-Inspired Optimization Algorithms

Ant Colony Optimization

red ants, carpenter ants, pharaoh ants, field ants, and so on. Some of the species of ants
build nests indoors whereas others live in fields or outdoor grounds. In an ant nest there is
a hierarchy of queen and workers. There could be one queen ant or more than one queen
ant in a nest. The worker ants (both young and old ants share the duties) take care of the
regular duties of the nest such as cleanliness, defense of the colony, looking after larvae,
foraging, etc. At times, the duties are re-allotted or shared according to the prevailing
environmental conditions, making the ant colony flexible and versatile. Figure 8.1 shows
Eastern carpenter ants (Camponotus pennsylvanicus) in Ontario, Canada. A typical ant hill
and ant tracks at the Oxley Wild Rivers National Park, New South Wales, are shown in
Figure 8.2.

Ants exhibit collective intelligence and accomplish tasks together as a swarm rather than
individually. Together the ants forage for food in different directions, and they coordinate
with each other for the benefit of the entire swarm. When there are multiple paths between
the ant nest and the food source they tend to find the shortest path between the nest and
food source and this is followed by all the ants. Ants generally find food and store it in
their nests for rainy days. The decisions on how many ants are allotted for foraging, the
quantity of food to store, and food distribution are taken by the swarm collectively. The
ants execute such duties efficiently, and this behavior has been modeled into the ACO
algorithm. Some of the ants have wings, enabling them to fly looking for mates, while oth-
ers that do not have wings move over surfaces while performing their duties, and they are
mostly worker ants. Figure 8.3 shows a swarm of harvester ants transporting food (seeds)
into their nest.

Ants deposit a chemical called pheromone on the path they travel which can be sensed
and followed by other ants. Ants trace a path between their nest and source of food by
depositing pheromone [3]. When an ant moves on the path it secretes pheromone, and
higher pheromone deposits increase the probability of more ants following the path.
Figure 8.4 shows a group of ants following pheromone trails. Ants use the scent of the

FIGURE 8.1
Eastern black carpenter ants. (Author: Ryan Hodnett – own work, CC BY-SA 4.0. https​://cr​eativ​ecomm​ons.o​rg/
li​cense​s/by-​sa/4.​0/dee​d.en.​)

https://creativecommons.org
https://creativecommons.org

101Ant Colony Optimization﻿﻿

FIGURE 8.2
Ant hill and ant tracks. (By Cgoodwin – own work, CC BY-SA 3.0. https​://cr​eativ​ecomm​ons.o​rg/li​cense​s/by-​
sa/3.​0/dee​d.en.​)

FIGURE 8.3
Harvester ants carrying seeds. (Author: Donkey Shot – own work, CC BY-SA 3.0. https​://cr​eativ​ecomm​ons.o​rg/
li​cense​s/by-​sa/3.​0/dee​d.en.​)

https://creativecommons.org
https://creativecommons.org
https://creativecommons.org
https://creativecommons.org

102 ﻿﻿Nature-Inspired Optimization Algorithms

FIGURE 8.4
Foraging ants. (Photographer: Kris Mikael Krister (imported from 500 px), CC BY-SA 3.0. https​://cr​eativ​ecomm​
ons.o​rg/li​cense​s/by/​3.0/d​eed.e​n.)

chemical pheromone and the sun to find their way back to the nest. Ants also use scents to
identify members of their own nest, and if an ant does not comply with this, it is rejected
from the nest.

Stigmergy is the technique of indirect communication between agents or insects by
means of changes in local environment. It is a non-symbolic form of local communica-
tion where the agents make a change in the environment by leaving a trace that can be
accessed by other agents to perform some action. This reinforces the activity by multi-
ple agents, leading to good systematic outcomes. The communication is only within the
neighborhood of the agent that is leaving a trace by releasing some chemical. This leads
to self-organized behavior and collective intelligence among the group of agents that can
accomplish complex tasks with simple collaboration and without much elaborate planning
and control.

Ants communicate by indirect means through the secretion of a chemical called phero-
mone. The pheromone evaporates after some time and it is limited to the local environ-
ment of the ant. This is stigmergy exhibited by ants. Ants leave their nest looking for food.
When they move on a trail, they deposit the chemical pheromone. When the ant returns
to the nest with food, it deposits more pheromone, thus reinforcing the trail. This chemi-
cal is detected by other ants, and they follow the trail to find the food source. This in turn
increases the number of ants on the trail and hence the pheromone deposit. If the ant
returns to the nest without food (ant is not able to locate a food source), it will not deposit
pheromone on the way back to the nest. Pheromones gradually evaporate with time. If
there is no pheromone on a path, the ants diverge and forage for food in other directions
or areas. The pheromone concentration will be higher on the paths that link an ant nest to
a food source whereas it will be lower on other paths taken by ants during foraging. This is
indirect communication and sharing of information by ant colonies. This communication
is limited to neighborhoods of the ant nests. The various ant colonies also have differences

https://creativecommons.org
https://creativecommons.org

103Ant Colony Optimization﻿﻿

in their pheromones. This ensures that however long a distance an ant travels, it gets back
to its nest safely.

When there are multiple paths between ant nest and food source, ants tend to take the
shortest path between their nest and food [4]. When the pheromone levels are higher on
one path the ants tend to follow that path rather than the ones that have lower pheromone
levels. This makes the ants efficient in transporting food to their nests that have been dis-
covered by other ants belonging to their own nest. This behavior of ants can be studied
and easily understood by the illustration in Figure 8.5a and b. Initially the ants randomly
follow any one of the paths to the food, depositing pheromone on the way. The ants from
the nest go through both paths with random fluctuations in ant population and phero-
mone concentration between the two paths. Finally, after some time, most of the ants fol-
low only one out of the two paths to the food source. Once pheromone concentration starts
to increase on one path, it is further reinforced by more and more ants following that path
and hence increasing the pheromone concentration further.

Figure 8.5 shows an ant nest and a source of food connected by two paths. In Figure
8.5a the two paths (path 1 and path 2) connecting the ant nest and food source are of
equal length. The ants leave their nest looking for food by following one of the two paths
available, depositing pheromone on the way. Initially, the ants randomly chose one of the
two paths, leading to random fluctuations in the quantity of the pheromone on the paths.
After some time, the ants settle down in either path 1 or path 2 and collect food from the
source and bring it to the nest. Most of the ants have settled on path 1 except for one or
two, as shown in Figure 8.5a. In Figure 8.5b the two paths connecting the ant nest to the
food source are of unequal length (path 1 is shorter than path 2). Since path 1 is shorter
than path 2, the ants following path 1 will reach the food source earlier than the ants fol-
lowing path 2. This again leads to increased concentration of pheromones on path 1, and
it is further reinforced by more and more ants following them. Finally, all the ants follow
the shorter path 1 from the nest to the food source. The difference between Figure 8.5a and
b is that in the second case, the random fluctuations in the number of ants following the
two routes and hence the pheromone concentration are reduced compared to the first one.

The ants choose one of the two paths with a probability that depends on the pheromone
concentration. The higher the pheromone concentration, the higher the probability of an
ant choosing that path. Initially an ant that leaves the nest chooses one of the two paths
randomly and deposits pheromone on the trail it follows. When it reaches the food source,
it takes food and, on the way back, lays more pheromone on the trail. When the ant is tak-
ing the shorter path it will deposit pheromones faster than on the longer path. When the
path length is shorter, the pheromone concentration is higher whereas if the path length is
longer, the pheromone concentration is lower.

This behavior of ants can be incorporated into the ACO algorithm to make it adaptive.

Path 2

Path 1

Ant
Nest

Food
Source

Path 2

Path 1

Ant
Nest

(a) (b)

Food
Source

FIGURE 8.5
(a) Two paths of equal length. (b) Two paths of unequal length.

104 ﻿﻿Nature-Inspired Optimization Algorithms

Ants behave in such a manner that their interaction is for the benefit of the entire colony
rather than their own individual benefit. The scent of pheromones is sensed by the ants,
and they tend to follow the stronger smell of pheromone if they have a choice of more than
one path. When an ant finds a food source the quality and quantity of the food located
determines the quantity of pheromone deposited by the ant on the way back to the nest
after collecting some food. This foraging behavior and interactions between ants have
inspired researchers to develop algorithms that mimic their behavior to solve NP-hard
problems such as the traveling salesman problem.

8.3 � Ant Colony Optimization

Ant colony optimization is a metaheuristic algorithm that was first proposed by Marco
Dorigo in the 1990s based on the foraging behavior of ant colonies. In general, the opti-
mization algorithms are either complete or approximate. Complete algorithms find the
global optimum solution to the problem either within fixed time limits or might exceed the
time bound, whereas approximate algorithms find a good approximation to the optimum
solution within the fixed time limits. ACO belongs to the second category of approximate
algorithms that find a good (could be the optimum) solution to the problem in a finite
reasonable time within bounds. The ACO algorithm was mainly proposed for solving
discrete combinatorial optimization problems [5], but it could be modified and extended
to continuous and mixed-variable problems. ACO is an iterative algorithm where popula-
tions of ants build solutions in every iteration until the stopping criterion is attained.

The ACO algorithm is modeled on the famous traveling salesman problem (TSP) which
is a classical discrete combinatorial optimization problem. A typical classical discrete
combinatorial optimization problem encompasses the following set of entities:

•	 Search space S consisting of a finite set of decision variables represented by the
d-dimensional vector X x x xi i i id= [, , , , , , , ,]1 2 , i = 1, 2, …, N. The members of the pop-
ulation are the decision variables, each being a vector of length d.

•	 The objective or fitness function of the decision variables f Xi() that is to be either
maximized or minimized and represents the quality of the solution obtained.

•	 Set of equality or inequality constraints defined over the set of decision variables.
•	 Any solution is called a feasible solution if f Xi() satisfies all the constraints

imposed by the problem. The global optimum solution is the one for which
f X f Xg i() ()< for minimization problems or f X f Xg i() ()> in case of maximization
problems where i = 1, 2, …, N, and i ≠ g.

The ACO algorithm is developed on the typical discrete combinatorial optimization model
where the decision variable Xi is one feasible solution to the problem. Since there are N
number of decision variables in the search space, there are N possible solutions to the
problem. The vector Xi consists of d number of components where each element xij (i = 1, 2,
…, N, j = 1, 2, …, d) is one component in the solution. Assembling all the component solu-
tions makes up the complete solution to the problem, and if this solution satisfies all the
constraints and meets the terminating condition of the algorithm, it is the global optimum
solution. The ACO algorithm can be developed and easily understood with the classical

105Ant Colony Optimization﻿﻿

traveling salesman problem (TSP) which is considered to be NP-hard and intractable and
is described below.

8.3.1 � Traveling Salesman Problem

Problem Statement: Given a set of cities and paths between the cities (all cities are intercon-
nected), a salesman is to visit each of these cities once and only once by traversing the
paths (without retracing) and returning to the starting place so that the total length of the
paths traveled and hence the cost are minimum. This is called the Hamiltonian tour.

This problem can be described appropriately as a graph G consisting of a set of nodes or
vertices representing cities and a set of edges representing paths connecting the cities G =
{V, E} as shown in Figure 8.6. Let V = [v1, v2, v3, v4] and E = [e12, e13, e14, e23, e24, e34]. There is a
cost (proportional to length) associated with every edge represented by C = [c12, c13, c14, c23,
c24, c34]. Initially, the tour starts from any randomly chosen node of the graph. Let the start-
ing node be v2. From v2 there are three unvisited cities v1, v3, v4. The edges and their costs
from v2 to each of these three cities is examined and the edge with the least cost is chosen.
Let the edge be v3 and the path is e23 with associated cost c23. From the city v3 two more cit-
ies are to be visited v1, v4. The edges e13 and e34 are examined and let e13 be chosen. Then the
third city to be visited by the salesman is v1 and the total cost so far is Ct = c23 + c13. From
the city v1 the only city not visited is v4 and the edge connecting them is e14 and the cost is
c14. From v4 the salesman has to go back to city v2 to complete the Hamiltonian cycle and the
only path to take is e24. Thus the total cost associated with the tour is Ct = c23 + c13 + c14 + c24.
This is a greedy algorithm which chooses the shortest path or the path with the least cost
at every node in each iteration. This case study of the TSP which is a discrete combinatorial
optimization problem has been used for developing the ACO algorithm.

The ACO algorithm uses a population of ants to solve the discrete combinatorial optimi-
zation problem [6]. The ants build solutions iteratively and deposit pheromones on paths
already visited to communicate the quality of the solution found to the other ants indi-
rectly. The population of ants builds a set of feasible solutions to the problem, and the one
with the least cost or the best fitness value that satisfies the constraints of the problem is
the global optimum solution. The ACO algorithm is modeled as obtaining the complete
optimum solution by assembling various solution components. The set of solution com-
ponents has to be finite, and a pheromone value is associated with each component. The
ACO algorithm applied to the TSP [7] is discussed as follows. The graph G = {V, E} consists
of a set of vertices representing cities and a set of edges connecting the cities. In general,
V v v vN= [, ,,]1 2 and E e e e e e e eN N N N= -[, , ... , , , ... ,]()12 13 1 23 24 2 1 where N is the total num-
ber of cities. Every edge has a cost or weight associated with it that is proportional to the
length of the edge. The problem is to find the Hamiltonian tour (global optimum solution)

e23
e13

e34

e12

e24

e14

v1

v3v4

v2

FIGURE 8.6
Graph G = {V, E}.

106 ﻿﻿Nature-Inspired Optimization Algorithms

by visiting all the cities once and only once (no retracing), and the constraint is that the
tour should involve the shortest distance or the least cost.

The search space S consists of all possible tours (solutions) in the graph, randomly start-
ing from any node. Let the set of all possible solutions be {Xi}, i = 1, 2, …, n. The objective
function associated with the solution Xi that is assembled from a set of component solu-
tions is f Xi(). The solution f Xi()is the sum of the costs (or weight or length) associated
with each of the edges that is part of the Hamiltonian cycle. These individual costs associ-
ated with the edges are the solution components. One of the ways of representing Xi is as
a vector consisting of edges that are part of the solution as evaluated by the function f Xi().
Another way of representing Xi is as a binary vector with length equal to the number of
edges in the graph, with a 1 representing inclusion of the edge and a 0 representing an
edge not included as part of the solution.

Let eij represent the edge between nodes (vertices) vi and vj and τij be the pheromone
value associated with the edge eij. The ant randomly chooses one node (say node vr) as the
starting node. The ant builds the tour by visiting each node once, and it memorizes the
nodes already visited. The memory of the ant is denoted as M. Finally it returns to
the starting node. The probability of an ant choosing edge eij is given by

	 p e v Mij
ij

ik

k

d k() = Ï

=
å

t

t
1

	 (8.1)

where d is the total number of components in the solution vector, and vk represents all the
nodes not yet visited by the ant and hence is not stored in memory M. Once the solution is
constructed, pheromone evaporation is modeled as follows:

	 t tij p ijr i j M= - Î() ,1 	 (8.2)

where rp is the rate of pheromone evaporation that can take on values in the interval [0, 1].
Here it is assumed that the ants return on the path traced. When the ants return they
deposit more pheromone based on the quality of the solution found. The equation model-
ing this additional pheromone deposit is:

	 t tij ij
i

q
f X

= +
()

	 (8.3)

where q is a constant (typical value is 1) and f Xi() is the cost function (objective function)
associated with the solution Xi found by the ant. The number of ants (number of solutions)
in each iteration is given by NA. The iterations are repeated until the termination criteria
is attained which is the optimum solution to the problem that satisfies all the constraints.

8.3.2 � Algorithm

Generally, for any combinatorial optimization problem, the objective function and the
constraints have to be clearly stated. The set S s s sC C= [, ,]1 2 of solution components has
to be identified for choosing elements from the set and assembling into a complete solu-
tion. The pheromone values associated with each solution component have to be chosen.
This involves determining the probability distribution of the pheromone updates, both
for pheromone deposit and for pheromone evaporation. This is the pheromone model

107Ant Colony Optimization﻿﻿

of the algorithm. Its importance is due to the fact that solution components with higher
pheromone values are in the region of the search space where high-quality solutions can
be found.

Initially the vector Xi representing the ith solution is empty. It is built up iteratively by
appending the different component solutions such as X x x xi i i id= [, ,]1 2 where the number
of components in the complete solution is d (dimension of the solution vector). Each com-
ponent xij is taken from the set SC, which means xij = sk, where k = 1, 2, …, C. At the end of
building, this solution vector Xi is of length d. In the TSP, the solution components are the
edges that are included in the tour. The choice of the component sk is made by a probabi-
listic transition model. The pheromone update is done by the ant. Pheromone evaporation
prevents convergence towards local optima. Pheromone increase makes the search move
in the direction of good quality solutions in the search space. The update also depends
on the quality of the solution obtained so far as evaluated by the fitness function. This is
included as part of the pheromone update equation.

Ants search for solutions with the least cost in terms of length traveled. Ants memorize
their findings (nodes visited), the path taken, and this helps in retracing the path back
to the nest, as well as indirectly communicating to the other ants in the colony about the
food find. This indirect communication called stigmergy is done by laying pheromone
trails. Any ant can trace a path in its neighborhood based on some criteria or in a random
manner. The ants from the colony start moving randomly in the neighborhood, and in
our model, they move from node to node following edges selected with some transition
probability. Every ant changes state in this manner, thus building complete solutions from
solution components (each edge selected is a solution component) incrementally. If the ter-
mination condition is met even for one ant at the least, the algorithm (search) stops.

The probabilistic transition rule is based on the past history of the moves made by the
ant, the fitness value of the solution built so far, the pheromone values existing on the trails,
constraints of the problem, and finally some random component (heuristics). Pheromone
deposit is done by the ants both during the movement from nest to food as well as during
the retrace back to the nest. In the TSP, the ant lays pheromone when it is in transition from
one node to another looking for the optimum solution as well as when the ant is retrac-
ing its steps to the start node. Good solutions, that is, solutions which are either the global
optimum or a close approximation to the global optimum, are attained mainly because
of the stigmergy among the ants – their collective behavior and indirect communication.
This makes them adaptive to the problem and the environment. Pheromone evaporation
favors forgetting and leads to exploration of new regions of search space. If the pheromone
evaporation is not modeled into the algorithm it may lead to faster convergence to local
optimum.

There is a third, optional component in the ACO algorithm referred to as Daemon actions.
These actions are for the collective behavior of the entire ant colony and not for single ant.
It could be the collection of information about the entire colony of ants or a collective deci-
sion about depositing or evaporation of pheromones. The decision to deposit additional
pheromones (offline pheromone update) on the shortest paths found so far could be taken
for the entire colony of ants. Every ant retraces its path through the graph back to the start-
ing node and deposits additional pheromone on paths with good fitness values. The ant
dies after constructing a feasible solution.

The TSP has been chosen as the case study for the ACO algorithms because TSP is one
of the classical NP-hard problems which the traditional optimization algorithms cannot
solve in finite time. The TSP involves constructing a graph and building solutions incre-
mentally which can be effectively done by ACO. The ACO algorithm easily fits into the

108 ﻿﻿Nature-Inspired Optimization Algorithms

TSP problem and other similar problems like network routing, job scheduling, etc. TSP
is one of the earliest discrete combinatorial optimization problems that is easy to under-
stand and comprehend and much researched in the literature. An ant-routing table can
be maintained in memory that stores the nodes visited, the edges connected to it, their
cost associated, the pheromone concentrations, and the nodes yet to be visited, etc. In each
iteration NA number of ants are employed for the search until the stopping criterion is met.
The global pheromone update step is optional. Based on the quality of the solutions, the
pheromone concentration may be increased from a global perspective.

An ant evaluates the quality of its tour and if it is good then more pheromones are
deposited on those edges to guide the other ants in their search. The pheromone informa-
tion is exchanged during the tour as a direct indication of the experience of the ant. The
memory of an ant (routing table of the algorithm) stores the cities already visited by the
ant, cities yet to be visited, edges on which the ant has traveled, the length of the edges,
pheromone deposited on the edges by the ant, pheromone evaporation on the edges, the
fitness value of the solution obtained so far, etc. In each iteration the number of ants is
kept constant. In each iteration the population of ants builds possible solutions by choos-
ing the next vertex or node in the graph based on the pheromone level of the edges. The
constraint is that each node should be visited only once. The nodes are selected by the ants
with a probability that is associated with the pheromone level of the edge connecting the
current node to the next possible nodes (not yet visited). Ants move through the search
space looking for solutions collectively. This leads to an exhaustive search and finally the
optimum solution is found. Communication between ants is by means of the chemical
pheromone in the nearby environment. The algorithm is population-based and iterative,
and solutions are improved with every succeeding iteration. The quality of the solutions
is evaluated based on the fitness function values for every plausible solution. The quantity
of pheromone on a path depends on its length and the number of ants following the trail.
The pheromone gets evaporated with time, and shorter paths have more concentration of
pheromone compared to longer paths. Pheromone evaporation reduces the convergence of
the algorithm to local optimum.

8.3.3 � Pseudocode

begin
Initialization

Solution components SC, Number of Ants NA

Fitness function f Xi()
Pheromone update model (transition probability, deposit, evaporation)
Termination criteria

while (termination criteria not met) do

Construct Ant Solutions

Every Ant builds up a solution vector Xi from the component set SC until the
vector length is d (fixed for the problem)
Component solutions are chosen based on the transition probability

Pheromone Update

Pheromone update: evaporation and increase in concentrations done based
on the mathematical model

109Ant Colony Optimization﻿﻿

Daemon Actions <optional>
end while

end

Ant with best solution is the global optimum

Flowchart

No

Yes

Initialization
·
·
·
·
·
·
·

Construct Ant Solutions
· Ants build complete solutions

]...[21 idiii xxxX =
· Component solutions chosen based on

transition probability

end

Pheromone Update
· Evaporation of pheromones on
 the trail
· Increase in pheromones during
 retrace

Daemon Actions <optional>

Termination criteria/
Max. no. of iterations

iter = iter + 1

Ant with best solution is global
optimum

Solution component set SC

Number of ants NA

Fitness function f(Xi) of dimension d
Pheromone update model
Termination criteria
Maximum no. of iterations MaxIter
iter = 1

begin

110 ﻿﻿Nature-Inspired Optimization Algorithms

8.4 � Variants of the Algorithm

The behavior of ant swarms is primarily to find a path in a search space and deposit phero-
mones which can be traced by other ants. The path is one which connects the nest of an ant
to a source of food. Therefore, the ACO algorithm and its variants are modeled on a set of
nodes and edges connecting the nodes in the search space. The ant finds the shortest path
through the network of nodes and edges, and that is the optimum solution. The variants
of the ACO algorithm differ in the transition probabilities, pheromone evaporation, phero-
mone deposit, daemon actions, etc.

The ant system was the first original optimization algorithm proposed by Dorigo based on
the behavior of ant swarms [8]. The pheromone update equation for this algorithm is given by:

	 t t tij p ij ij
k

k

N

r
A

= - +
=

å()1
1

D 	 (8.4)

where NA is the number of ants in the population (population size), rp is the pheromone
evaporation rate, k is the variable with which the ants are indexed, eij represents the edge
connecting nodes i and j, and ∆τij is the pheromone concentration on the edge eij.

	
Dt ij

k k

q
l=

if ant k has edge (e) as a component of its solution

0 other

ij

wwise

ì

í
ï

î
ï 	 (8.5)

where q is a constant and lk is the length of the tour constructed by ant k. If the length of the
tour is shorter, more pheromone is deposited, and if the length of the tour is longer then a
lower amount of pheromone is deposited. The probability of an ant traveling from city vi
to city vj (probability of choosing edge eij) is given by:

	 p e

if v M

otherwise

k
ij

ij
a

ij
b

ir
a

ir
b

r

d r

() =

Ï
ì

í

ï
ï

î

ï
ï

=
å

t l

t l
1

0

	 (8.6)

	 lij
dist i j

= 1
(,)

	

dist(i, j) is the distance between cities (vi, vj), a and b are the parameters that control the rela-
tive importance of pheromone and distance (heuristics), and vr is the city not yet visited by
ant k and hence it is not stored in memory M.

The max-min ant system (MMAS) was proposed as an improvement over the original
ant system [9]. In this algorithm, the pheromone update ∆τ is done by the best ant instead
of all the ants. There are also minimum and maximum limits imposed on the pheromone
values (bounded).

The pheromone update equation is given by:

	 t t tij p ij ij
best

L
Ur= - +[()]1 D 	 (8.7)

111Ant Colony Optimization﻿﻿

The lower (L) and upper bounds (U) on the pheromone values as given in the above equa-
tion depend on the problem. The operator y

L

U
éë ùû is defined as

	 y

U if y U

L if y L

y otherwise

L

U
éë ùû =

>

<

ì

í
ïï

î
ï
ï

	 (8.8)

	
Dt ij

best

best
ij

l
if e belongs to the best tour

otherwise

=

=

1

0

()
	 (8.9)

lbest is the length of the tour of the best ant. This lbest could be either the best tour in the cur-
rent iteration, or the best tour in all the iterations completed so far, or a combination of the
best in the current iteration and the best attained till now from the start of the iterations.

The ant colony system is yet another variation of the ACO algorithm [10] wherein there
is a local pheromone update performed by all the ants in addition to the pheromone update
at the end of the construction. The local pheromone update is done by all the ants to the last
edge traversed at every construction step. The modified pheromone update equation is:

	 t t tij p ij pr r= - +()1 0	 (8.10)

where τ0 is the initial value of the pheromone, rp Є [0,1] is the decay coefficient. The phero-
mone concentration is reduced on the already traversed paths so that subsequent ants do
not follow that path and the search gets diversified. This will make ants traverse edges not
previously traveled by other ants and produce different solutions.

The pheromone update at the end of the construction process is done by only one ant,
either the best in the current iteration or the best in all the iterations so far. The equation
for this pheromone update is:

	 t
t t

t
ij

p ij p ij ij

ij

r r if e belongs to the best tour

otherwis
=

- +() ()1 D

ee

ì
í
ï

îï
	 (8.11)

where Dt i
best

bestl
, = 1

 and lbest is either the best in the current iteration or best in all the itera-

tions so far. In this ACS algorithm, the decision rule used by the ants is the pseudorandom
proportional rule. The rule states that the probability with which an ant moves from node
vi to node vj depends on a random variable q that is uniformly distributed in the interval
[0, 1] and another parameter q0. If q ≤ q0 then j v Mir ir

b
r= Ïarg max{ }t l , otherwise

	 p e

v M
k

ij

ij
a

ij
b

ir
a

ir
b

r

d r

() =

Ï
ì

í

ï
ï

î

ï
ï

=
å

t l

t l
1

0

if

otherwise

	 (8.12)

112 ﻿﻿Nature-Inspired Optimization Algorithms

The ACS algorithm differs from the ant system by the following: The probability of select-
ing the shortest edge with the largest pheromone deposit favors exploitation of the search,
pheromone concentrations are updated by the ants while constructing solutions using a
local updating rule, and at the end of every iteration the global best ant updates the phero-
mone concentration on the trails using the updating rule.

In the elitist ant system the global best ant deposits pheromone on the trail at the
end of every iteration in addition to the pheromone deposited by the other ants. In
the rank-based ant system, a fixed number of best ants are allowed to update the
pheromones. The solutions are ranked according to their length. Solutions with shorter
lengths (path) deposit more pheromones and solutions with longer lengths deposit less
pheromones.

For multi-objective optimization problems, the ACO can be applied by taking a weighted
combination of the multiple objectives. If this is not possible, then a set of non-dominated
solutions that lie on the Pareto Front can be found by the ACO algorithm. For continuous
optimization problems, the search space can be divided into discrete bins and the ACO
algorithm applied, or the algorithm can be modified to find the optimum solution for con-
tinuous or a combination of continuous-discrete search spaces. Ant colony behavior has
been applied in distributed control systems for multiple robots that cooperatively perform
a task. ACO has proved itself to be one of the promising algorithms to solve NP-hard com-
binatorial optimization problems with quality solutions in practical finite time. ACO has
been successfully applied to TSP, routing in computer networks, job scheduling, resource
management, and recently to machine learning. ACO can be applied to problems where
the search space changes dynamically or the variables involved in the problem are sto-
chastic and parallelization is involved. For example, in the TSP the length of edges or the
number of nodes could change during the running of the algorithm, and the algorithm
should be adaptive to the changes that take place dynamically.

8.5 � Summary

ACO has the ability to rapidly converge on the optimum solution for discrete combinato-
rial problems. ACO is suitable for problems that have an objective function that is to be
either maximized or minimized, a set of constraints, and a set of variables or parameters
whose values decide the optimum solution. When the set of decision variables is large, an
exhaustive search (searching for the optimum solution with all possible combinations of
variables) could be intractable or quite impractical. In such cases the ACO algorithm will
be suitable for finding the optimum solution in finite time. ACO is more suited to problems
that involve finding the shortest path in a graph like network routing since the ants trace a
trail through the entire network as a swarm till they find the shortest path.

ACO is suitable for problems that involve finding the shortest path in a network, of
which the classical example is the TSP. Other NP-hard problems for which the dimension
of the problem (graph size) increases exponentially or larger networks can be solved effi-
ciently with ACO rather than other greedy algorithms. The problems could have a graph
or network representation where the characteristics of the graph might change with time.
These could be characteristics such as graph connections (edges in TSP), cost associated
with each edge, etc. The architecture of the problem (graph) is spatially distributed for
which the ACO is suitable.

113Ant Colony Optimization﻿﻿

References

	 1. 	Marco Dorigo, Gianni Di Caro, Ant colony optimization: A new meta-heuristic, Proceedings of
the Congress on Evolutionary Computation CEC 1999, Vol. 2, pp. 1470–1477. IEEE, 1999.

	 2. 	Christian Blum, Ant colony optimization: Introduction and recent trends, Physics of Life
Reviews, Vol. 2, pp. 353–373, 2005.

	 3. 	Marco Dorigo, Thomas Stutzle, The ant colony optimization metaheuristic: Algorithms,
applications and advances, Chapter 9, In Handbook of Metaheuristics, pp. 251–285, April 2006.

	 4. 	Marco Dorigo, Mauro Birattari, Thomas Stutzle, Ant colony optimization, IEEE Computational
Intelligence Magazine, Vol. 1, No. 4, pp. 28–39, November 2006.

	 5. 	Marco Dorigo, Christian Blum, Ant colony optimization theory: A survey, Theoretical Computer
Science (Elsevier), Vol. 344, pp. 243–278, 2005.

	 6. 	Marco Dorigo, Thomas Stutzle, Ant Colony Optimization, MIT Press, Cambridge, MA, 2004.
	 7. 	M. Dorigo, L. M. Gambardella, Ant colonies for the traveling salesman problem, BioSystems,

Vol. 43, No. 2, pp. 73–81, 1997.
	 8. 	M. Dorigo, V. Maniezzo, A. Colorni, Ant system: Optimization by a colony of cooperating

agents, IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics, Vol. 26, No. 1,
pp. 29–41, 1996.

	 9. 	T. Stützle, H. H. Hoos, MAX–MIN ant system, Future Generation Computer Systems, Vol. 16, No.
8, pp. 889–914, 2000.

	 10. 	L. M. Gambardella, M. Dorigo, Solving symmetric and asymmetric TSPs by ant colonies,
Proceedings of the 1996 IEEE International Conference on Evolutionary Computation (ICEC’96), T.
Baeck et al. (eds). Piscataway, NJ: IEEE Press, pp. 622–627, 1996.

http://taylorandfrancis.com

115

9
Bee Colony Optimization

9.1 � Introduction

The study of bird and insect behavior has led to the development of swarm intelligence tech-
niques for solving optimization problems. The collective intelligence of a swarm of agents
(animals, birds, or insects) has proved to be very powerful in solving design problems that
have been found to be intractable by classical algorithms. The collective, self-organized
group behavior arises from the disciplined behavior of individual members of the swarm
in following simple rules, and their study has motivated the development of swarm intel-
ligence algorithms. There is usually a complex social interaction between the members of
the swarm that takes care of foraging, sharing, communication, defense against predators,
and mating. The members perform activities like foraging for food, building nests, mating,
producing, and taking caring of their offspring. Such activities are natural and have been
going on for millions of years ever since the population evolved. One interesting char-
acteristic of these swarms is that they are adaptive and flexible and hence survive in the
dynamically changing hostile environment. They are robust and together guard against
or fight predators, enabling them to survive. The insects follow simple rules as individu-
als that lead to organized behavior of the entire swarm, and this interaction is important
in solving complex problems. They also communicate either by direct or indirect means,
and this social structure among the colonies of swarms can accomplish much more than
what any single member can achieve. The members not only interact with each other but
also with the environment. The swarms usually have a minimum number of individuals
in their colonies to take care of all the activities of the entire swarm and exist as a group.
Based on these activities there is positive as well as negative feedback that is applied in
improvising themselves. There is also a random component in the movement of the swarm
members that enables them to explore new areas during their search. Incorporating all
this in optimization has led to the development of powerful metaheuristic algorithms that
has been proved to solve NP-hard problems with reduced time complexity.

Bees are insects that exhibit collective intelligence and behavior in gathering nectar and pro-
ducing honey. Study of their intelligent behavior, characteristics, and activities has motivated
researchers to develop a set of optimization algorithms to solve complex problems found to
be intractable. The original algorithm proposed based on bee intelligence was the bee system
in 1997. Since then several variations of the algorithm have been developed and applied to
different problems in engineering and computer science. The TSP is one of the famous prob-
lems for which a feasible solution has been produced by the swarm intelligence algorithms
based on the foraging and mating behavior of honey bees. The bee colony optimization (BCO)
algorithm [1, 2] described here is a variant of the bee system with some improvements. The
BCO algorithm has been developed based on the foraging behavior of honey bees, and it has

Nature-Inspired Optimization Algorithms

116 ﻿﻿Nature-Inspired Optimization Algorithms

FIGURE 9.1
Pollination of dandelion flower by bee. (Author: Guerin Nicolas – own work, CC BY-SA 3.0. https​://co​mmons​
.wiki​media​.org/​wiki/​Commo​ns:GN​U_Fre​e_Doc​ument​ation​_Lice​nse,_​versi​on_1.​2. https​://cr​eativ​ecomm​ons.o​
rg/li​cense​s/by-​sa/3.​0/dee​d.en.​)

Bee Colony Optimization

both exploitative and explorative abilities to find the global optimum solution to problems [3,
4]. The insects are able to overcome challenging situations and environmental conditions and
survive accordingly. This leads to successive generations of swarms carrying out such activi-
ties that have been labeled as intelligent. One of the main advantages of such swarm-based
algorithms is that the search for the global optimum solution takes place in parallel by mul-
tiple members of the swarm, thus reducing search time, and moreover they are able to find
good-quality solutions. In the following sections, the foraging behavior of honey bees and the
BCO algorithm which is based on these characteristics have been described, followed by vari-
ants of the algorithm that depend on other characteristics of honey bees [5].

9.2 � Honey Bee Characteristics

Honey bees are insects that can fly, are native to Eurasia, and have also spread to a few other
continents. There are 7 to 8 species of honey bees with around 44 subspecies. They form a
small fraction of the tens of thousands of bee species (~20,000), and they belong to the genus
Apis. Honey bees are famous for collection and storage of honey in hives that have been the
targets of birds, animals, and human foragers. They build nests (hives) from wax, produce
and store surplus honey, and live in large colonies. They are largely exploited for their honey
and wax. They are good pollinators of flowering species of plants since they sit on flowers
and collect nectar. Figure 9.1 shows a honey bee that is completely covered in pollen from
sitting on a dandelion flower, and in the process the bee carries pollen on its body.

Figure 9.2 shows a cryptic bumblebee (Bombus cryptarum) sitting on the European gold-
enrod flower in Northwestern Estonia and in the process carrying out pollination. Figure

https://commons.wikimedia.org
https://commons.wikimedia.org
https://creativecommons.org
https://creativecommons.org

117Bee Colony Optimization﻿﻿

9.3 shows an Italian bee contributing to the pollination of the white sweet clover flower
that contains yellow pollen in Northwestern Estonia.

One colony of bees consists of a queen bee, several male drone bees, and a large number
of female worker bees. The colony size could vary from hundreds to thousands of honey
bees. Reproduction is by laying of eggs in the cells of the wax honeycomb. Figure 9.4 shows
the honeycomb of the honey bees made of wax containing eggs and larvae of drone bees
that are around three to four days old. Figure 9.5 shows a nest of honey bees consisting of
hundreds of honey bees on the branch of a tree.

The queen and worker bees are developed from fertilized eggs whereas the male drone
bees are developed from unfertilized eggs. Larvae are fed with honey and pollen, and
the one fed with royal jelly develops into the queen bee. The queen bee is the biggest bee
in the colony, and its lifespan is a few years, normally less than ten. The other bees live
for several months, typically less than one year. The drone bees die after mating with the
queen. Worker bees are responsible for cleaning the hive, producing wax cells, feeding the
larvae, guarding the hive, and receiving pollen and nectar from the foragers. The forager
worker bees perform a waggle dance to communicate to other members of the hive about
having found food, its location, and quantity. Figure 9.6a shows some of the bees perform-
ing a waggle dance on the dance floor of the hive. A waggle run oriented 45° to the right
of ‘up’ on the vertical comb indicates a food source 45° to the right of the direction of the
sun outside the hive. Figure 9.6b illustrates the orientation of the food source with respect
to the position of the sun and the direction of the bee dance.

In the process of collecting nectar from flowers, bees also aid in pollination. The wax used
in building the bee hive is also targeted by humans for making several crafts. The hives are
normally built in trees or plant shrubs and sometimes in buildings. A hive usually consists
of one female bee called the queen bee and several hundreds of drone bees and worker bees.

FIGURE 9.2
Bumblebee on the European goldenrod. (Author: Ivar Leidus – own work, CC BY-SA 4.0. https​://cr​eativ​ecomm​
ons.o​rg/li​cense​s/by-​sa/4.​0/dee​d.en.​)

https://creativecommons.org
https://creativecommons.org

118 ﻿﻿Nature-Inspired Optimization Algorithms

FIGURE 9.3
Italian bee pollinating white sweet clover. (Author: Ivar Leidus – own work, CC BY-SA 4.0. https​://cr​eativ​ecomm​
ons.o​rg/li​cense​s/by-​sa/4.​0/dee​d.en.​)

FIGURE 9.4
Honeycomb of honey bees. [Author: Waugsberg (talk – contribs), CC BY-SA 3.0. https​://co​mmons​.wiki​media​
.org/​wiki/​Commo​ns:GN​U_Fre​e_Doc​ument​ation​_Lice​nse,_​versi​on_1.​2 https​://cr​eativ​ecomm​ons.o​rg/li​cense​
s/by-​sa/3.​0/dee​d.en.​]

https://creativecommons.org
https://creativecommons.org
https://commons.wikimedia.org
https://commons.wikimedia.org
https://creativecommons.org
https://creativecommons.org

119Bee Colony Optimization﻿﻿

The worker bees become scouts or foragers when they leave the hive to look for food sources.
The worker bees scout for food, and once it is found, they fill their stomach with nectar and
return to the hive to deposit the nectar in the wax honeycomb along with an enzyme secreted
to produce honey. The discovery of a food source is communicated to other bees by means of
a waggle dance. The waggle dance is a special form of dance performed by the bees on the
dance floor of the hive. The duration and direction of the dance indicates the quality, direction,
and distance of the food source from the hive. Bees also perform round and tremble dances
as different forms of communication. Honey bees perform tremble dance to communicate to
the worker bees to collect nectar from forager bees. Bees have good navigation capabilities

FIGURE 9.5
Nuclei of honey bees’ nest on a branch. [Author: Stolz Gary M, U.S. Fish and Wildlife Service (Public Domain).]

FIGURE 9.6
(a) Figure-of-eight-shaped waggle dance of the honeybee. [Author: (Figure design: J. Tautz and M. Kleinhenz, Beegroup
Würzburg). Source: Chittka L: Dances as Windows into Insect Perception. PLoS Biol 2/7/2004: e216. https​://dx​.doi.​org/1​
0.137​1/jou​rnal.​pbio.​00202​16. https​://cr​eativ​ecomm​ons.o​rg/li​cense​s/by/​2.5/d​eed.e​n.]. (b) Bee dance. (Source: file:
bee dance.png. File: sun01.svg. File: abeille-bee.svg by Emmanuel Boutet. File: RosendeutschschweizerBlatt.svg by
Kilom691. https​://cr​eativ​ecomm​ons.o​rg/li​cense​s/by-​sa/2.​5/dee​d.en.​)

https://dx.doi.org
https://dx.doi.org
https://creativecommons.org
https://creativecommons.org

120 ﻿﻿Nature-Inspired Optimization Algorithms

and memory so that they can fly out from the hive several kilometers while looking for flower
patches (food sources) and then come back to the hive remembering the location of the food
source as well as the direction and distance. This requires some mapping of the environment
in space within the memory of the bees.

Queen bees fly out from the hive and mate with drones outside their colony. Before estab-
lishing a colony, the bees scout for a good location and then the queen and the workers
establish their hive after collectively deciding on the location. They build their honeycomb
from wax and brood worker bees. Bees mostly survive on pollen and nectar they collect from
flowers. Honey bees are the only species among bees to have small barbs on the sting. When
there are intruders in the colony, bees sting them and communicate to other bees (raise the
alarm) by secreting a chemical. Their communication is by means of secreting chemicals and
performing dances. The orientation of the bee while dancing indicates the direction of the
food source with respect to the sun position. Honey bees cannot withstand cold tempera-
tures, especially less than 10°C. At those temperatures, they crowd in their hive. In some
places, beekeepers transport bee hives (along with bees) to take care of pollination require-
ments of agricultural fields. The bees collect nectar (ingest), process it, and put it in honey-
combs to become honey. Worker bees secrete wax from their abdomen glands that forms the
walls and caps of the comb. The scout bees are employed for foraging, and they can fly a few
kilometers to forage for food, looking for nectar in flower patches. Even after discovering a
food source, they scout for better quality flower patches. They go back to the hive and com-
municate the information of the find to the other bees by performing a waggle dance.

As shown in Figure 9.6a, the waggle dance of bees has an approximate shape of the digit
8. There is usually a dance floor in the bee hives. The scout bee moves in a straight line in
a direction that is relative to the sun’s azimuth to indicate the direction of the food source
with respect to the location of the bee hive, as shown in Figure 9.6b. Then it moves in an
alternating left and right return path in an almost circular trace. The speed and duration
of the dance indicate the distance to the food source, and the frequency of the waggles is
an indication of the quality of the food source. There is a large variation in behavior of dif-
ferent species but all of them exhibit collective intelligence and accomplish complex tasks
with their self-organization and nature of following simple rules that benefit the entire
swarm. The forager bees follow the bees that have already discovered a flower patch that
is a source of food in the form of nectar. The bees procure nectar from the discovered flower
patches and get it back to their hive for the storage and production of honey. If the food
source is depleted it will be abandoned, and the foragers look for new sources. If there is
more food to be collected at the already discovered site, the bees could dance and recruit
fellow bees to follow them to the source for further collection of nectar. The bee that discov-
ered the flower patch can continue its foraging and collection of nectar at the patch without
recruiting other fellow bees also. The dance also indicates the quality of the food source,
and this is one of the criteria for recruitment of fellow bees. This demonstrates individual
as well as collective social behavior of honey bees that is for the betterment of the entire
colony in the bee hive. They take decisions individually as well as in collaboration with
other bees by interacting with the bees in the hive in a very adaptive and flexible manner.

Self-organization of colonies is based on four principles: Positive feedback, negative feed-
back, stochasticity, and population size. Positive feedback enhances an activity that has been
found to be productive earlier such as finding a rich food source. The recruitment of fellow
foragers to such a site is an example of positive feedback. This is done by laying pheromones
in ant colonies and by dancing and recruiting fellow foragers in bee colonies. Negative feed-
back is necessary for maintaining balance in the colony and in the environment. If a food
source is not plentiful or of good quality for consumption, the ants do not lay pheromone

121Bee Colony Optimization﻿﻿

on the way back. Similarly, the bees do not dance and do not recruit fellow bees to the site
or the site is abandoned by the scout bees. Randomness in the areas of search or uncertainty
is essential for the exploration of new and uncharted spaces leading to better food finds or
solutions. If the fellow insects search in the same area that has been covered earlier, it might
not be productive since the food source might have depleted because of consumption. There
will be a limited number of food sources within a neighborhood or in a small local area, and
repeated search in this region might not be fruitful. Expanding the search to new unexplored
territories could be beneficial both in terms of quality as well as quantity of food sources
that are not only plentiful but also rich. This involves some uncertainty in the search since
diversifying the search in these uncharted areas could also turn out to be unproductive. For
all these searches, a population of insects or agents is required that conduct the search in par-
allel. Unless this inherent parallelism by a population of members is included in the search,
it will take a long time to cover the entire region in the search for food. The population sur-
vives attacks by predators and changing environmental conditions that could also be hostile
because of this group dynamism and self-organization. There is usually a hierarchy within
the population that is responsible for decentralization and control. All the members follow
the rules, benefiting the entire swarm. The swarm-based optimization algorithms are popu-
lation-based, and most of them undergo multiple iterations. Every member of the population
ends up with a solution to the problem in each iteration. At the end of all the iterations, there
are N number of solutions to the problem, where N is the population size. The best of these
solutions is the global optimum or an approximation of it. This is attained by the value of the
objective or quality function that is mathematically modeled based on the application.

9.3 � Bee Colony Optimization

The bee colony optimization (BCO) algorithm has been developed from the social interac-
tions and natural foraging behavior of honey bees. The algorithm makes use of both the
exploration and exploitation properties of honey bees. The collective intelligence of the bee
swarm is capable of solving complex combinatorial optimization problems. The bees are
very methodical in collecting and storing nectar and processing it to produce honey. The
scout bees go in search of flower patches (food sources). If they discover a food source they
make an assessment of the quality and quantity of the food source at the flower patch dis-
covered. They take a load of nectar from the flowers and go back to the hive. Once they reach
the hive, the collected load of nectar is stored and then the honey bee performs a waggle
dance on the dance floor. The direction of and duration of the bee dance is the dissemination
of information to the other bees about the discovery. The scout bee passes on information
about the distance of the food source from the bee hive, and its quantity and quality. This
could make fellow bees follow the scout bee to the food source (recruitment) or the scout bee
could go back alone to the discovered food source if it is found to be abundant and rich. If
the source is not plentiful, the scout bee could decide to abandon it and forage elsewhere.

9.3.1 � Algorithm

The BCO algorithm starts with an initial group of scout bees (foragers) of population size
N. The bee population is assumed to be present in the hive initially. The feasible solutions
are constructed by the bees, incrementally adding solution components, in a manner that is
similar to the ACO algorithm. The bees start with partial solutions and build up a complete

122 ﻿﻿Nature-Inspired Optimization Algorithms

solution to the problem in an incremental manner. The BCO algorithm is iterative, and the
maximum number of iterations can be chosen depending on the application. When one or
more bees have a complete feasible solution, one iteration ends. Also, at the end of every itera-
tion there are not only one or more complete feasible solutions but also partial solutions con-
structed by other bees. Moreover, at the end of every iteration, the best among the complete
solutions built by the bees is saved in memory. In a succeeding iteration, if any solution is
found to be better than the current best, it replaces the current best solution in memory. At the
end of the maximum number of iterations, the best solution among all the solutions attained
so far is the global optimum. If there is a stopping criterion defined for the problem, when
the algorithm satisfies the stopping criterion the current best solution is the global optimum.

There are two passes for every bee in each iteration, the forward and the backward pass. The
bees leaving the hive to either known (already discovered) or unknown food sources is the for-
ward pass. The bees returning to the hive either with nectar or without nectar is the backward
pass. This is equivalent to the bees assembling solution components to create partial or complete
solutions during the forward pass. During the forward pass the bees use their individual intel-
ligence, the past history of already discovered food sources, and the quality and quantity of the
food source already discovered in order to construct one or more partial solutions. During the
backward pass, the collective intelligence and communication (information exchange) of the
bees lead to decision-making in the hive. When bees are starting to forage or during any itera-
tion when they abandon a food source, they might use local exploration to discover new food
sources. Following a forward pass there is a backward pass for every bee. During the back-
ward pass the bees go back to the hive and exchange information about the quality of the food
sources discovered. This is the time when the bees perform the waggle dance to communicate
to the other bees about the quality and quantity of the food source discovered. The bees in the
hive participate in a decision-making process based on the information exchanged. They decide
whether to recruit bees to continue foraging or abandon the already discovered site, or forage
there individually without recruiting other bees. This is equivalent to exchange of information
about the partial solutions created by all the bees. The decision whether to continue with the
already assembled partial solution or ignore it and start creating a new partial solution or follow
the partial solution created by another bee is taken at the end of the backward pass by all the
bees in the hive. This decision is taken based on the quality of the partial solutions created. This
is followed by another forward pass where the already created partial solution is expanded and
then a backward pass where the bees return to the hive to repeat the evaluation of the partial
solutions and engage in decision making. This alternate forward and backward pass mecha-
nism of the bees continues until one or more complete feasible solutions are created. When
there is at least one complete feasible solution to the problem, one iteration ends. Thus every
iteration consists of multiple forward and backward passes undertaken by the bees.

Figure 9.7 illustrates the forward pass undertaken by the artificial bees. There is a bee
hive and six bees are shown, and they are either inside or coming out of the hive to search
for good quality food sources which is equivalent to assembling good feasible solutions to
the problem incrementally. These incremental solutions are built by the bees in multiple
stages during multiple forward passes. Every stage has multiple partial solutions built
by the various bees. The total number of stages is assumed as K. There are several nodes
in each stage. It is assumed that there are n number of nodes in each stage. During each
forward pass the various scout bees go to the succeeding stages to incrementally build the
partial solution, i.e. they advance stage by stage in each forward pass of one iteration.

Figure 9.8 illustrates the backward pass of the artificial bees going back to the hive. The
backward pass follows the forward pass of every iteration. Thus there are multiple pairs of for-
ward and backward passes during every iteration until the maximum number of iterations is

123Bee Colony Optimization﻿﻿

Stage 1 Stage 2 Stage K

Bee
Hive

FIGURE 9.7
Forward pass of the artificial bees.

reached. During the backward pass the bees go back to the hive from whichever stage they are
in. Here it is assumed that the number of forward/backward passes is equal to the number of
stages K. The incremental solutions are built in every stage by foraging (searching) at the nodes
of that stage. Consecutively, the bees could continue foraging on their individual paths chosen
or they could join another bee in its path if the quality of the food source is good enough. Such
decisions are taken by the bees when they return to the hive during the backward passes.
Some of the bees could recruit fellow foragers before they continue to build their partial solu-
tions whereas others will continue alone. Some of them might abandon their partial solutions
already built and start building new solutions in the next forward pass of the current iteration.

9.3.2 � Pseudocode

Initialization

Population size of bees N
Define objective function for the problem f(X)
Number of stages M
f(X) consists of solution components [X1, X2, …, XM]
Current best solution CBest is initialized to any feasible solution
Maximum number of iterations MaxIter

np = 1 (np is variable for indexing the stages)
iter = 1

while (iter ≤ MaxIter)

for np = 1 to M

Bees fly from the hive and create partial solutions during forward pass
The partial solutions are chosen from the set available at stage s(np) Bees go back

to the hive during the backward pass and information is exchanged
end for

Stage 1 Stage 2 Stage K

Bee
Hive

FIGURE 9.8
Backward pass of the artificial bees.

124 ﻿﻿Nature-Inspired Optimization Algorithms

if (S(iter) better than CBest) then CBest = S(iter)
iter = iter + 1

end while

Current best solution CBest is the global optimum solution to the problem.

Flowchart

No

Yes

begin

Initialization

·
·
·
·

·

·
·

·
·

end

Backward Pass
· Bees fly back to hive
· Information exchange
· Decision making

CBest = S(iter)

No. of passes = M?

Is S(iter) better
than CBest?

iter = iter+1
np = 1

Is iter = MaxIter?

np = np+1

Yes

No

CBest is global optimum

No

Yes

Number of Bees N
Fitness Function f(X)
No. of Stages M
Solution components are initialized

[X1, X2, …, XM]
Current Best solution Cbest is

initialized
Maximum No. of Iterations MaxIter
np = 1, iter = 1

Forward Pass
Bees fly from hive to stage np

Bees create partial solutions s(np)

125Bee Colony Optimization﻿﻿

9.4 � Variants of the Algorithm

The variants of the BCO algorithm are developed based on the characteristics, social inter-
action, and complex behavior of honey bees. The foraging behavior of honey bees has
led to the development of the bee system (BS), bee colony optimization (BCO), artificial
bee colony optimization (ABC), and the bees algorithm (BA). The mating and breeding
behavior of honey bees has motivated the development of marriage in honey bees optimi-
zation (MBO), fast marriage in honey bees optimization (FMHBO), and honey bees mat-
ing optimization (HBMO). The bee hive algorithm has been developed from the study of
the behavior and communication of the bees within the bee hive. Some variants of these
algorithms are proposed from the way in which the decision-making process of the bees is
carried out. The decisions include visiting the nodes, following the same path or not in the
next forward pass, recruiting fellow bees to follow them, abandoning a site already visited,
and so on. One of the notable variants of the algorithm is the fuzzy bee system (FBS) and
the fuzzy bee colony (FBCO) algorithm that incorporates fuzzy logic and approximation
in reasoning when there is uncertainty in the problem.

The bee system (BS) was proposed by Sato and Bagiwara (1997) and is an improved
and extended version of the genetic algorithm (GA). The bee system is based on the forag-
ing behavior of honey bees [6]. When a bee finds good-quality food, it recruits other bees
by performing a dance and returns to the discovered food site and searches around the
neighborhood looking for even better food sources. The bee system uses a combination of
local as well as global search and applies what is known as a concentrated crossover opera-
tor that is an extension of the crossover operator in GA. Concentrated crossover intensifies
the search around the areas where the global optimum could possibly exist. The simplex
algorithm has been modified to be termed as pseudo-simplex, and has been applied here
to enhance the local search abilities of the algorithm. The two main advantages of GA
in having a derivative-free global search with less possibility of getting trapped in local
optima have been utilized in developing the bee system.

GA uses a population of agents to search for the optimum solution whereas the bee
system uses multiple sets of populations for global and local search. Initially the global
search is undertaken by the global search population and the chromosomes with high
fitness values are chosen. This high fitness value chromosome is equivalent to a bee that
has discovered a good-quality food source during foraging. The number of such high fit-
ness value chromosomes is Cmax. The local search is done intensively around these chro-
mosomes that were selected during the global search. For this local search multiple local
populations are employed where the number of such populations is equal to Cmax. In con-
centrated crossover, all the chromosomes of the local search population assigned to chro-
mosome Cr undergo crossover with the selected chromosome Cr. Therefore higher fitness
values are propagated by means of concentrated crossover to all the members of the local
search population. Another operation introduced in this bee system is migration wherein
one member of every local population is transferred to a neighboring population. This
is followed by the pseudo-simplex operation which uses only three points in the search
space irrespective of the dimension of the space. This is a simplified version of the sim-
plex method. The local search ends after completing the fixed number of generations. If
the stopping criterion or the global optimum is attained, the algorithm stops. Otherwise
the next iteration starts and continues until the maximum number of iterations is com-
pleted. Compared to the conventional GA, the bee system has been found to give better
performance.

126 ﻿﻿Nature-Inspired Optimization Algorithms

The artificial bee colony (ABC) algorithm has been developed from the intelligent
behavior of honey bees [7]. The natural bees are the inspiration behind the artificial bees
used in the algorithm. A population of artificial bees is generated and they are classified
into three categories: employed, onlookers, scouts. An employed bee visits a food source dis-
covered by itself during an earlier search. An onlooker bee is one that is waiting by the side
of the dance floor to make a decision on whether to visit a food source or not. A scout bee
is one who does a random search looking for unexplored new food sources. The artificial
bees are classified into employed and onlookers initially. Every discovered food source is
associated with one employed bee. When the food source is depleted the employed bee turns
into a scout bee. The algorithm is iterative, with the number of employed and onlooker bees
being almost equal (approximately half the bee population) and one scout bee per itera-
tion. The quality of the food source is evaluated by its richness of nectar, and this is the
fitness or objective function of the problem. The probability of an onlooker bee selecting
a food source is directly proportional to its richness. The locations of food sources are the
possible candidate solutions to the problem that are initially selected randomly. Therefore
the number of employed bees is equal to the number of food sources chosen and this is
again equal to the number of onlooker bees. During each iteration, the employed bees con-
vey the information about the discovered food source to the onlooker bees by performing a
waggle dance, and the employed bees return to the original food site and look for new food
sources in the neighborhood based on visual inputs. If the new neighboring food source
is richer than the previous one, the old one is replaced by the new one. The depleted and
abandoned food sources are replaced by new ones by the scout bees. Thus the scout bees
take care of exploration of the search space whereas the employed and onlooker bees exploit
the local neighborhood of the existing solutions. The speed of discovery of new and better
solutions leads to a faster rate of convergence of the algorithm.

The bees algorithm has been proposed based on the study of the foraging behavior of
honey bees [8, 9, 10]. The algorithm combines exploitation of the local neighborhood as well
as exploration of the search space to find the global optimum. The algorithm starts with
an initial population of N bees. It is assumed that there are flower patches (food sources)
in the search space, and the total number of such flower patches is assumed as FP. An
objective (fitness) function f(Xi), i = 1, 2, …, FP is defined whose value is proportional to
the quality of the flower patch on which it is evaluated. The fitness function is evaluated
on every flower patch that has been initially selected in the search space. The evaluated
fitness function values are ranked in descending order. From these ranked fitness val-
ues, M number of patches with the highest fitness values among the FP are selected. The
selected M flower patches are divided into elite and non-elite sites. Let ME be the number
of elite flower patches and MNE be the number of non-elite flower patches. The algorithm
applies a local search in the neighborhood of the flower patches chosen based on their
ranked fitness values. For this neighborhood search, forager bees are recruited both for
the elite as well as non-elite sites. Let the neighborhood size be SN, the number of forager
bees recruited for elite sites be NE, and the number of forager bees recruited for non-elite
sites be NNE. The number of patches which are lower in the ranking, that is, that are not in
the top M ranks chosen, is ML (FP = M + ML = ME + MNE + ML). The local search is in the
neighborhood of the elite and non-elite sites chosen whereas the global search includes
the ML sites that were not selected because they were lower in the ranking. The number of
forager bees recruited for the ML sites that were lower in fitness ranking is (N – NE – NNE).
As a last step, overall sorting of the fitness values is done and the iterations are repeated
until the global optimum is attained. A threshold function could also be defined that could

127Bee Colony Optimization﻿﻿

serve as the stopping criterion for the algorithm instead of running the maximum number
of iterations.

The marriage in honey bees optimization (MBO) algorithm is based on the mating
and breeding behavior of honey bees [11]. Initially there is a single queen bee and later
on there is a colony of queen and other bees (drones, workers) that models the marriage
behavior in honey bees. There is usually only one queen bee in a hive, but some species
might have more than one queen in their hive. The queen bee is responsible for laying
eggs, either fertilized or unfertilized, and brooding. The drones are the male bees that
mate with the queen to produce eggs. The mating takes place during flight, away from the
hive. One queen can mate with up to 20 drones at a time. The queen bee performs a dance
to indicate the start of mating flight. The worker bees take care of the hive and the brood
and sometimes they lay eggs. The unfertilized eggs become the drones, and the fertilized
eggs develop into queens and workers. During mating the sperms are put in a genetic pool
called spermatheca, and each time the queen lays an egg it is fertilized from the sperms
in this genetic pool. Successful mating (adding of a sperm to the spermatheca) depends
probabilistically on the fitness of the queen and drone and the speed of flight of the queen
bee. The mathematical equation modeling this probability is given by Equation 9.1.

	 p Q D er

F
QueenSpeed n(,) ()=

-
D

	 (9.1)

where ∆f =| f(Dr) – f(Q)|, and f(Dr) and f(Q) are the fitness of the rth drone bee and the queen
bee respectively. Initially when the queen bee starts on her flight her energy and speed are
high and the successful mating probability is high. This is gradually reduced during the
flight modeled by the following equations:

	 QueenSpeed(n+1) rand . QueenSpeed(n)= 	 (9.2)

where rand is a random number that can assume values in the interval [0, 1].

	 QueenEnergy(n+1) QueenEnergy(n) EnergyStep= - 	 (9.3)

where EnergyStep is the step size with which the energy of the queen is reduced with each
transition. It is assumed that the queen bee takes flight and changes state in what is called
a transition and the energy is reduced by the quantity EnergyStep with every change of
state. This mating continues until the energy of the queen reduces to a minimum level
or the spermatheca is full. The speed, energy, and position of the queen are initialized
in space with random values. The steps described above for mating take place for all the
queens if there is more than one queen in the bee hive.

When the queen bee returns to the hive it starts breeding by crossover operation of its
genome with any one of the randomly chosen sperms from its spermatheca. The cross-
over operations generate a brood. The mutation operator is applied on these broods to
introduce diversity into the population. Mutation also prevents generation of the same
brood in case the same sperm is chosen twice from the spermatheca for crossover. The
worker bees improve the fitness of the brood thus produced. The fitness of the worker bee
is increased in proportion to the improvement in the fitness of the brood. Thus, after mat-
ing, the queen bee generates a set of partial solutions. The worker bees are allotted to take
care of the brood generated by crossover and mutation. The queen with the least fitness
function value is replaced by the brood with the highest fitness value and this is repeated

128 ﻿﻿Nature-Inspired Optimization Algorithms

until there is no queen which is less fit than any of the broods. The remaining broods are
eliminated, and the next mating flight takes place.

The workers and queens are initially chosen randomly with the number of queens being
much smaller than the number of workers. The energy, speed, and position of the queens
are initialized. The number of mating flights (iterations) is initialized. The queens make
state transitions and choose the drones to mate with and fill their spermatheca according
to Equation 9.1. The energy and speed of the queen are modified according to Equations
9.2 and 9.3. When one mating flight is over, broods are generated by applying crossover of
sperms with genomes, followed by mutation. The workers are applied to improve the fit-
ness values of the broods. The queens with the least fitness values are replaced by broods
which have a better fitness value. The remaining members of broods are deleted. The next
mating flight takes place with the new queens in the new iteration, and this continues until
the maximum number of iterations is completed. The number of queens can go from 1 to
5, the number of matings per flight of 1 queen can range from 5 to 20 (spermatheca size),
and the number of broods generated by 1 queen can range from 20 to 100, the number
being inversely proportional to the number of mating flights. These are some of the typical
values used in experiments.

The fast marriage in honey bees optimization (FMHBO) algorithm is an improvement
over the MBO algorithm in being faster in convergence for global optimization [12]. In
MBO, there are three mathematical equations for the computation of mating probabil-
ity, speed, and energy of the queen bee, and this takes up time during each iteration. In
FMHBO, these computations are avoided by randomly choosing a drone to mate with the
queens instead of calculating the probability during each iteration. Moreover, the energy
and speed calculations of the queen are not done in order to save computation time, mak-
ing the algorithm faster than the previous version of MBO. There are three operators in
FMHBO: crossover, mutation, and heuristics. Crossover and mutation are already used in
MBO, whereas the heuristic operator is applied here to conduct a local search on the broods
and improve their fitness.

The honey bees mating optimization (HBMO) algorithm was inspired by the mating
behavior of honey bees [13]. The queen bee mates with the drone bees during the mating
flight. The drone bees are large in number (hundreds), and the mating takes place tens
of times. The drones are haploids, i.e. they contain only the mother’s gamete and this is
propagated without any alteration. Chromosomes in egg or sperm cells are called gametes.
The queen lays eggs and the sperms are retrieved from the spermatheca to fertilize the
eggs. The queen starts the mating flight with a dance which is a communication to the
drones to follow her for mating. The mating of the queen bee with the drones takes place in
mid-air, and every drone dies after mating. This type of mating is a unique characteristic
of honey bees. The probability of adding the sperm of the drone Dr (r = 1, 2, …, P) to the
spermatheca is given by Equation 9.1, where P is the population size of the drones that are
going to mate with the queen Q. The probability of productively mating (adding sperm to
spermatheca) is high initially during the mating flight since the fitness of the drone (pro-
portional to energy) almost matches that of the queen and the speed of the queen is also
high. After each mating with a drone the energy and speed of the queen reduce as given
by Equations 9.2 and 9.3.

The HBMO algorithm is similar to the marriage in honey bees optimization algorithm
(MBO) in that both the algorithms are developed from the mating behavior of honey bees.
The mating flight of the queen bee starts with the typical dance indicative of the start of
mating flight. The probability of successful mating with a drone is given by Equation 9.1.
After each successful mating of the queen with a drone from the set of drones (population

129Bee Colony Optimization﻿﻿

size P) the sperm is added to the spermatheca of the queen whose capacity is limited
(maximum number of sperms it can hold is fixed initially). The spermatheca size is usually
chosen as the number of matings per flight of the queen. Broods are created by a crossover
operation between the eggs laid by the queen and the sperms introduced by the drones
(selected randomly from the sperms stored in the spermatheca). These are the partial solu-
tions to the problem. The worker bees conduct a local search among the broods and could
be made to improve upon the fitness of these broods by applying heuristics. The fitness
function is evaluated on these broods and the queen, and if a brood is found to be fitter
than the queen, then the queen is replaced by the corresponding brood whose fitness is
higher than that of the queen. This process is repeated for the queens and one iteration
ends. The remaining broods (ones that do not replace the queens) are eliminated. In the
next iteration, again the above process of mating is repeated until the maximum number
of iterations is reached or a stopping criterion is met. In [14] the honey bees mating algo-
rithm is applied to solve the non-linear Diophantine equation benchmark problem and its
performance is compared with GA. In addition, the algorithm has been applied to guide a
mobile robot through space with different obstacles.

The fuzzy bee colony optimization (FBCO) algorithm is a variant of the BCO algorithm
that incorporates fuzzy logic in the foraging behavior of honey bees [15]. The parameters of
the BCO algorithm are tuned by applying fuzzy logic to improve the performance. In the
fuzzy bee system (FBS) the bees use fuzzy reasoning and approximate rules in commu-
nication and other decision-making activities. The fuzzy membership functions are used
in quantifying the uncertainties associated with the problem. The advantage of combining
fuzzy logic with honey bee behavior-based optimization algorithms is that it is capable of
solving both deterministic problems (where all the parameters and constraints of the prob-
lem are known) as well as problems with which there is some uncertainty associated. In
[16] novelty is introduced in clustering by incorporating fuzzy rules in the honey bee for-
aging optimization algorithm. Clustering is one of the important techniques in data min-
ing, pattern recognition, and image classification. Several hundreds of published works
are available for the BCO and its variants with applications related to continuous and dis-
crete optimization problems. This chapter has covered only a fraction of those applications
for which the BCO has been applied.

9.5 � Summary

The BCO algorithm is capable of solving difficult combinatorial optimization problems.
It is a metaheuristic algorithm that has been inspired by the behavior of honey bees in
nature. The performance of the algorithm shows that simple insects like bees can inspire
and motivate us to develop algorithms to solve complex problems. Rather than their indi-
vidual intelligence, the collective intelligence exhibited by the swarm as a whole and the
dynamic and adaptive nature of the bees is responsible for such outstanding performance.
Their individual performance and interactions amongst each other are for the benefit of
the swarm as a whole, and hence they benefit every member. The duties of insect colonies
are usually distributed among the swarm members in a very optimal way, and they func-
tion in a responsible manner. The optimization algorithm based on the behavior of honey
bees has been successfully applied to several real-life problems such as job shop schedul-
ing, clustering, image analysis, optimal design of structures, and complex engineering

130 ﻿﻿Nature-Inspired Optimization Algorithms

problems. The individual and collective complex behaviors of honey bees have been mim-
icked in developing these algorithms to solve NP-hard problems.

References

	 1. 	D. Teodorović, Bee colony optimization (BCO). In: Innovations in Swarm Intelligence. Studies in
Computational Intelligence, Vol. 248, C. P. Lim, L. C. Jain, S. Dehuri (eds). Berlin, Heidelberg:
Springer, pp. 39–60, 2009.

	 2. 	Dusan Teodorovic, Panta Lucic, Goran Markovic, Mauro Dell’ Orco, Bee colony optimiza-
tion: Principles and applications, IEEE 8th Seminar on Neural Network Applications in Electrical
Engineering, NEUREL 2006, University of Belgrade, Serbia, 25–27 September 2006.

	 3. 	Tatjana Davidovic, Dusan Teodorovic, Milica Selmic, Bee colony optimization part I: The algo-
rithm overview, Yugoslav Journal of Operations Research, Vol. 25, No. 1, pp. 33–56, 2015.

	 4. 	Dusan Teodorovic, Milica Selmic, Tatjana Davidovic, Bee colony optimization part II: The
application survey, Yugoslav Journal of Operations Research, Vol. 25, No. 2, pp. 185–219, 2015.

	 5. 	Dervis Karaboga, Bahriye Akay, A survey: Algorithms simulating bee swarm intelligence,
Artificial Intelligence Review, Vol. 31, No. 1–4, pp. 61–85, 2009.

	 6. 	T. Sato, M. Hagiwara, Bee system: Finding solution by a concentrated search, Proceedings of the
1997 IEEE International Conference on Systems, Man and Cybernetics, Orlando, FL, United States,
pp. 3954–3959, 12–15 October 1997.

	 7. 	Dervis Karaboga, Bahriye Basturk, A powerful and efficient algorithm for numerical function
optimization: Artificial bee colony (ABC) algorithm, Journal of Global Optimization, Vol. 39, No.
3, pp. 459–471, November 2007.

	 8. 	Baris Yuce, Michael S. Packianather, Ernesto Mastrocinque, Duc Truong Pham, Alfredo
Lambiase, Honey bees inspired optimization method: The bees algorithm, Insects, Vol. 4, No.
4, pp. 646–662, 2013.

	 9. 	Ebubekir Coc, The bees algorithm: Theory, improvements and applications, Ph.D. thesis.
Manufacturing Engineering Centre, School of Engineering, University of Wales, UK, March
2010.

	 10. 	D. T. Pham, A. Ghanbarzadeh, E. Koc, S. Otri, S. Rahim, M. Zaidi, The Bees Algorithm, Technical
Note, Cardiff, UK: Manufacturing Engineering Center, Cardiff University, 2005.

	 11. 	H. A. Abbass, MBO: Marriage in honey bees optimization – A haplometrosis polygynous
swarming approach, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE), Seoul,
South Korea, 27–30 May 2001.

	 12. 	C. Yang, J. Chen, X. Tu, Algorithm of fast marriage in honey bees optimization and conver-
gence analysis, Proceedings of the IEEE International Conference on Automation and Logistics, ICAL
2007, Jinan, China, pp. 1794–1799, 18–21 August 2007.

	 13. 	A. Afshar, O. Bozorg Haddad, M. A. Marino, B. J. Adams, Honey-bee mating optimization
(HBMO) algorithm for optimal reservoir operation, Journal of the Franklin Institute, Vol. 344, No.
5, pp. 452–462, 2007.

	 14. 	Petar Curkovic, Bojan Jerbic, Honey-bees optimization algorithm applied to path planning
problem, International Journal of Simulation Modeling, Vol. 6, No. 3, pp. 154–164, 2007.

	 15. 	Amador-Angulo L, Castillo O, A fuzzy bee colony optimization algorithm using an interval
type-2 fuzzy logic system for trajectory control of a mobile robot, In: Advances in Artificial
Intelligence and Soft Computing MICAI 2015, G. Sidorov, S. Galicia-Haro (eds), Lecture Notes in
Computer Science, Vol. 9413. Cham: Springer, 2015.

	 16. 	Ali-Asghar Gholami, Ramin Ayanzadeh, Elaheh Raisi, Fuzzy honey bees foraging optimi-
zation: Swarm intelligence approach for clustering, Journal of Artificial Intelligence, Vol. 7, pp.
13–23, 2014.

131

10
Fish School Search Algorithm

10.1 � Introduction

Swarm behavior is collective and coordinated activity by a group of similar entities, normally
exhibited by animals, birds, and insects. When the animals, birds, or insects stay together in
a neighborhood, move together while foraging for food or migrating, and interact with each
other in exchanging information, it is swarm intelligence and behavior. Swarm intelligence is
the collective intelligence exhibited by a group of animals, birds, or insects that has a social
organization and hierarchy. They exhibit individual as well as group dynamics that are for the
benefit of the entire swarm as a whole. The members of the swarm interact with each other and
with the environment in their everyday activities. The population-based search algorithms are
based on these behaviors of swarms. The search for the optimum is undertaken in parallel by
several agents in the multidimensional search space. Metaheuristics is another component that
makes these algorithms efficient because heuristics simplifies the search to some extent.

Inherent parallelism is one of the main advantages of these nature-inspired optimiza-
tion algorithms. If the search for the optimum is made exhaustively, it is not very effective
and the time complexity of the algorithm increases. When the search space has higher
dimensions, the search becomes complex and time-consuming.

Biological systems have been evolving over millions of years, and each species has its
own methods of dealing with the complexities of nature. The members of a species follow
simple rules individually and also as a group, with social interactions happening among
the members of the group. Most of the swarms incorporate delegation of duties, communi-
cation among members, and memory to store past successes. The fish school search (FSS)
algorithm has been developed from the schooling behavior of fish, an aquatic animal. Fish
swarms have hundreds to thousands of fish, and they are suitable for solving problems
with unstructured high-dimensional search spaces. They exhibit group dynamism and
intelligence while foraging and migrating. These simple creatures have devised their own
methods of dealing with the complexities of nature as well as the hostile aquatic envi-
ronment. They are adaptable, flexible, and they communicate within themselves for the
greater good of the swarm. The characteristics and behavior of fish have been adopted into
the FSS algorithm that has been described in the following sections.

10.2 � Fish School Behavior

Fish are vertebrate aquatic animals that can be found in almost all waterbodies, from flow-
ing streams to lakes and deep oceans. More than 30,000 diversified species of fish have

Nature-Inspired Optimization Algorithms

132 ﻿﻿Nature-Inspired Optimization Algorithms

Fish School Search Algorithm

been identified, and they are available in plenty in all types of waterbodies. They use
underwater acoustics to communicate with members of their own species. Fish are one of
the main sources of food for the human race while some varieties are used for ornamental
purposes. Fish are supposed to be ‘cold-blooded’ because their body temperature changes
with the ambient temperature of water. Fish have a streamlined body for swimming that
is covered with scales, with multiple pairs of fins and gills for breathing. The size of fish
varies from the tiny fish less than 10 mm in length to the big sharks that are 16 to 20 m in
length. Fish have jaws for eating, and they feed on plants and other organisms, and the
bigger fish sometimes feed on the smaller fish. Fish reproduce by laying eggs that are
either hatched outside or nourished inside.

By definition, a group of fish that stay and swim together is shoaling, and if they all swim
together in the same direction in a coordinated manner it is schooling. Figure 10.1 shows
shoaling of blue-and-gold snappers in the Coiba National Park, Panama; they are swimming
together connected as a social group but also independently. Figure 10.2 shows schooling
of the big eye scad fish in Hawaii; they congregate in large schools in shallow water during
daytime for protection from predators. The school normally has hundreds to thousands
of fish [1].

In typical swarming behavior exhibited by fish every individual follows simple rules
and also the social norms of the entire group. This ensures an organization or discipline
when moving together, enabling the exchange of information related to location of food or
prey, guarding themselves against predators, mating, and migration. The fish swarm has
many eyes scanning for food and predators. Fish swim in large schools for protection from
predators, and one such is shown in Figure 10.3.

FIGURE 10.1
Shoal of blue-and-gold snappers at Panama. (Author: LASZLO ILYES from Cleveland, Ohio, USA. Source: Snappers
Galore. https​://cr​eativ​ecomm​ons.o​rg/li​cense​s/by/​2.0/d​eed.e​n.)

https://creativecommons.org

133Fish School Search Algorithm﻿﻿

FIGURE 10.2
School of big eye scad at Hawaii. (Author: Steve D. Source: Flickr, CC BY 2.0. https​://cr​eativ​ecomm​ons.o​rg/li​
cense​s/by/​2.0/d​eed.e​n.)

FIGURE 10.3
Fish school. (Author: Matthew Hoelscher. Source: Flickr, CC BY-SA 2.0. https​://cr​eativ​ecomm​ons.o​rg/li​cense​s/
by-​sa/2.​0/dee​d.en.​)

https://creativecommons.org
https://creativecommons.org
https://creativecommons.org
https://creativecommons.org

134 ﻿﻿Nature-Inspired Optimization Algorithms

Basic swarm behavior is modeled on three simple rules:

•	 Move in the same direction as neighbors
•	 Avoid collisions with neighbors
•	 Remain in the vicinity (close to) of neighbors

Every entity of a swarm has multiple zones around itself. The sensory capabilities of the
entity determine the zone size (neighborhood size) and shape of the zone. To avoid colli-
sion with neighbors, the entity maintains a minimum distance zone around itself. To align
with the movement of its neighbors, it has a zone to sense the direction of movement and
move along with them. Outside the periphery of these two zones the entity has a wider
area to focus on other things based on its capabilities.

A shoal is a group of fish that normally belongs to the same species but could also contain
a mixture of different species. A school describes a group of fish that often belong to the
same species and swim together in a synchronized and polarized manner. This schooling
behavior helps the fish in foraging for food and guarding themselves against predators
and also in attracting mates. Fish prefer to form shoals with members that closely resemble
each other in appearance since this increases their chance of protection against predators.
Any fish that stands out among the group is a likely target for attacks. The members have
an innate capacity to know in which direction to swim while foraging for food. Some of
the species of fish migrate during certain periods of the year to different locations in huge
numbers.

Fish select shoals that have a general appearance in size and shape similar to themselves.
The larger the size of the shoal the better defense they have against predators, and the
higher their chances of finding suitable mates and good-quality food. If any fish is out of
place in the shoal, that is, it has an appearance or behavior that stands out from the rest of
the shoal, it is more likely to be attacked by predators. Fish swim and forage independently,
but they are aware of their neighbors and their place in the shoal, and they tend to keep
in the vicinity of their neighbors while swimming and foraging. If the fish in the shoal all
swim in the same direction and speed they turn into a school. When fishes are school-
ing they can even do complex maneuvers. They tend to be calm when they are within
their shoals. They share information regarding the presence and location of food among
members of the shoal. Ocean upswellings provide rich feeding grounds for fish. Smaller
fish become feed for larger fish like sharks and whales. Fish schools are disciplined, and
this schooling behavior is instinctively developed by the fish when they are young. Fish
require good vision for exhibiting schooling behavior, and they also have other senses
such as a lateral line running along their sides which helps in sensing neighbors.

The important parameters characterizing a shoal are size (number of fish), density (num-
ber of fish per volume), polarity (extent to which the fish are pointing in the same direc-
tion – average difference between the orientation of the group and the individual), nearest
neighbor distance (distance between the centroid of one fish to another – related to density
of the fish school), and nearest neighbor position (angle and distance between one fish to
another). A school of fish with low polarity is shown in Figure 10.1. Schooling fish that are
in high density are shown in Figures 10.2 and 10.3, whereas schooling fish that are in low
density are shown in Figure 10.4. Fish prefer to keep together in shoals even though they
might have to share the food find and fall in line with the group discipline.

The complex behavioral patterns of fish within groups depend on the species, age, geo-
graphic location, environment, habitat, light levels, and other factors. The fish schools

135Fish School Search Algorithm﻿﻿

are highly coordinated and tightly knit. Some of the schools extend several kilometers in
length and several meters in width and depth. The shoal structure alters based on the cur-
rent activity of the fish such as migration, foraging, and feeding. The size of the shoal also
varies to a great extent, from hundreds of fish to millions of fish. They have an advantage
of exploring more food patches compared to individual fish. Fish also migrate hundreds
to thousands of kilometers, maintaining high speed. Isolated fish have higher stress lead-
ing to lower mobility, less adaptation to environment, and lesser exploratory capabilities.
Living in groups curtails their movement and freedom to some extent and also food has to
be shared, but the advantages of security against attacks and collective foraging outweigh
the disadvantages. These characteristics and behavior of fish swarm have been incorpo-
rated into the fish school search optimization algorithm.

10.3 � Fish School Search Optimization

Fish schools also follow the three simple rules of the swarm:

	 1.	Move in the same direction as your neighbors.
	 2.	Remain close to your neighbors.
	 3.	Avoid collisions with neighbors.

FIGURE 10.4
Schooling banner fish. (Author: Jon Hanson from London, UK. Source: Schooling Bannerfish School. CC BY SA
2.0, https​://cr​eativ​ecomm​ons.o​rg/li​cense​s/by-​sa/2.​0/dee​d.en.​)

https://creativecommons.org

136 ﻿﻿Nature-Inspired Optimization Algorithms

The fish school search algorithm has been proposed for searching for optimum solutions
in search spaces that have higher dimensions [2]. The FSS algorithm is mainly based on the
three functions of fishes – feeding, swimming, and breeding. The three main operations of the
algorithm are modeled on these three activities of the fish school. A detailed description
of the three activities of fish on which this algorithm is based follows.

Feeding

Fish can eat food and grow strong or swim and lose weight. The search for food is equivalent
to the search for candidate solutions in the search space. Better quality food is equivalent
to better quality solutions (higher fitness values of the objective function) to the problem.

Swimming

It is an activity undertaken by all the fish in the swarm. It is a coordinated collective move-
ment of the swarm of fish. When the fish are schooling they swim together in a coordinated
manner oriented in the same direction, whereas if they are shoaling they swim together but
with less coordination. Swimming is driven by feeding and guides the search for solutions.

Breeding

It is a part of the natural biological evolution process that takes place for producing the
next-generation population. More fit individuals get selected for mating and breeding, and
they produce offspring for the succeeding generations. The weaker individuals gradually
get dropped from the population. These evolutionary mechanisms apply to the breeding
process of fish. This is equivalent to producing solutions with higher fitness values in suc-
ceeding iterations.

In the FSS algorithm the agents that search for the solutions in the search space are
the fish. FSS is suitable for unstructured search spaces with higher dimensions. Each fish
could be a potential candidate solution for the problem to be solved. The weights of the fish
represent their success in the search for optimal solutions; this is equivalent to memory in
fish. Evolution is through a combination of operations such as swimming and breeding.
The FSS algorithm is built upon the following principles:

•	 Computations are simple and within a small local area.
•	 Memorizing the result of past computations.
•	 Less communication between the fish.
•	 Distributed control (or less centralized control).
•	 Population diversity.

Incorporating these principles into the FSS algorithm simplifies the computations, thus
reducing the computational complexity and also the time complexity, allows for informa-
tion to be shared, and adapts learning into the search process, thus speeding up the con-
vergence of the algorithm. In the FSS algorithm aquarium is the boundaries of the search
space where the optimum solution could be found. The quantity of food is equivalent to
the quality of solution at any point in the search space (for maximization problems). Food
locations in the aquarium are promising locations where good candidate solutions are
likely to be found. Swimming guides the search process of all the agents towards more

137Fish School Search Algorithm﻿﻿

promising regions of the search space within the aquarium. Breeding refines the search
and switches between exploration and exploitation.

10.3.1 � Algorithm

Let Xi
iter represent the position of the ith fish in iteration iter (i = 1, 2, …, N) where N is

the population size of the swarm. Let f X f x x xi i i id() (, ,,)= 1 2 represent the d-dimensional
objective function evaluated at the position of the ith fish, and Wi

iter be the weight of the ith
fish. The weight update of the fish in every iteration is given by Equation 10.1.

	 W W
f X f X

f X f X
i
iter

i
iter i

iter
i
iter

i
iter

i

+
+

+= +
-

-
1

1

1

() ()
max{| () (iiter)|}

	 (10.1)

Fish swim in the water within the boundaries of the aquarium where food is available at
various locations in differing quantities. Depending on the quantity of food at the current
and next positions of the ith fish, the weights of the fish are updated. It is assumed that fish
can vary in weight between a minimum of 1 and a maximum of Wmax and on an average
the initial weight of the fish is Wmax/2.

Fish swim due to individual, collective-instinctive, and collective-volitive movements.
Individually each fish moves (swims) in a particular direction if it assesses that the food in
the new position (or direction) is better than at the current position. The fish moves in steps
of si

iter which could be constant or could be adaptively changed with the increasing itera-
tions. When exploration turns to exploitation, the step size could be decreased. To include
some heuristics into this movement, the step size si

iter is multiplied by a random number
ri that takes on values in the interval [0, 1] with a uniform distribution. The fish moves in
the chosen direction with the given step size provided that the new position is within the
aquarium boundaries. This movement increases the exploitation ability of the algorithm.

When the fish of the school move individually, some are more successful than others in
the quantity of food found in the new position. The average of the individual movement of
all the fish in the school is computed. This gives the direction where the fish school has to
orient itself for more successful foraging. Each fish takes up a new position based on this
average direction in which the entire fish school has to move. The equation governing this
collective-instinctive movement is given by Equation 10.2.

	 X X

X f X f X

f X
i
iter

i
iter

i
iter

i
iter

i
iter

i

N

i
it

+

+

== +

-å
1

1

1

D { () ()}

{ (eer
i
iter

i

N

f X+

=

-å 1

1

) ()}

	 (10.2)

where DXi
iter is the displacement of the ith fish in iteration iter, that is, the difference between

the current and new position of the ith fish reached by taking a step size. The barycenter of
the fish school is given by Equation 10.3.

	 B

X W

X

iter

i
iter

i
iter

i

N

i
iter

i

N= =

=

å

å

.
1

1

	 (10.3)

138 ﻿﻿Nature-Inspired Optimization Algorithms

The position of the fish is adjusted after individual and collective-instinctive movements
according to the location of the barycenter of the fish school. Depending on whether the
weight of the fish school has increased or decreased, the collective-volitive movement of
the fish school will be either inward or outward respectively. This movement enhances the
exploration capability of the FSS algorithm. For inward movement Equation 10.4 is applied
whereas for outward movement Equation 10.5 is applied.

	 X X s r X Bi
iter

i
iter

v v i
iter

i
iter+ = - -1 . .()	 (10.4)

	 X X s r X Bi
iter

i
iter

v v i
iter

i
iter+ = + -()1

	 (10.5)

It is assumed that food is scattered all over the aquarium at different locations. The fish
swim looking for food. They either grow in weight or diminish in weight depending on
the food at the previous and current locations. The change in weight of the fish depends on
the normalized difference in the food concentration at the previous and the current loca-
tion. The food concentration represents the evaluation of fitness function at these locations.

Every fish has individual movement in each iteration. They swim in random directions
looking for better sources of food within the boundaries of the aquarium. If the fish finds
that the food lies outside the aquarium boundaries it does not exhibit movement. The
weighted average of individual movements is computed. The fish that are successful have
more influence on further movement. This computation of the weighted average deter-
mines the direction of movement in the next iteration. DXi

iter is the displacement of fish i
during the iteration iter. Each fish moves in a direction that is influenced by the weighted
average computed. This is a collective evaluation of movement of all fish based on indi-
vidual and collective-instinctive movements. If the fish is gaining weight that means it has
found a better food source and the search region should contract; otherwise, the search
region should dilate. With respect to the barycenter of the fish school, the fish take steps.
The collective movement will be inwards or outwards depending on whether weight has
been gained or has decreased.

Fish are selected for breeding based on a threshold. The fish that has maximum ratio
of weight over distance with respect to the breeding fish is selected for the breeding
operation. Let the parent fish be represented by Xp and Xq and the child fish by Xc. The
equations governing the weight and position of the child fish are given by Equations
10.6 and 10.7.

	 W
W W

c
iter p

iter
q
iter

+ =
+1

2
	 (10.6)

	 X
X X

c
iter p

iter
q
iter

+ =
+1

2
	 (10.7)

When the new fish is created, the weakest (smallest fitness value) fish is removed
from the population. The algorithm starts with an initial population of N fish
with random positions (location) and weight in the search space (aquarium). The

139Fish School Search Algorithm﻿﻿

algorithm is iterative and converges when the global optimum is attained or a stop-
ping criterion is met or a maximum number of iterations is reached. The operations
defined above are repeated with every iteration until termination of the algorithm.
The stopping criterion could be maximum time limit, maximum school weight,
maximum school radius, maximum fish number, maximum breeding number, or
any other defined criterion.

10.3.2 � Pseudocode

Initialization

Population size of fish swarm N
Random position of the fish in the aquarium X x x x i Ni i i id= =[...], , , ...1 2 1 2
Initial weights of fish W i Ni = 1 2, , ...
Objective function f(X)
Define termination criteria, if any
Maximum number of iterations MaxIter

iter = 1
while (iter ≤ MaxIter) do

for i = 1 to N do

Evaluate fitness of fish
Apply individual movement operator
Apply feeding operator
Evaluate fitness of fish
Calculate weight of fish in new position

end for

for j = 1 to N do

Apply collective-instinctive movement operator
end for
Compute barycenter of the fish school
for k = 1 to N do

Apply collective-volitive movement operator
end for

for m = 1 to N do

Apply breeding operator
Eliminate the weakest fish

end for

end while

Fish with highest fitness value is the global optimum solution

140 ﻿﻿Nature-Inspired Optimization Algorithms

Flowchart

141Fish School Search Algorithm﻿﻿

10.4 � Variants and Applications

An improvement over the fish school search algorithm has been proposed by including
particle swarm optimization and integrating communication within the algorithm [3]. FSA
has higher global search capability and the fewest occurrences of getting trapped in local
minima. The parameter setting complexity has been reduced, and its performance over
evolutions has been studied. In [4] the artificial fish swarm algorithm has been applied to
image registration and found to have good accuracy and speed, and also the convergence
properties of the algorithm have been extensively studied. In engineering design, it is
important to optimize the resources and produce the best output. Nature-inspired optimi-
zation algorithms play a central role in attaining the solutions to such complex problems.
The FSS algorithm has been applied to standard engineering design problems and the
results presented [5]. The weight-based FSS that was invented for multimodal problems
has been modified as wrFSS and applied to solve multimodal constrained optimization
problems [6]. Several sub-swarms have been employed to exploit the search space. Another
improved version of the FSS namely fish school search – combined strategy (FSS–CS) has
been proposed [7]. In this algorithm, feeding is enhanced, the exploration strategy is not
greedy, and the steps in the movement operators have elliptic decay. The fitness values are
used in the feeding operation rather than fitness variation as in the original algorithm.

In [8] the multi-objective FSS (MOFSS) has been proposed by modifying the FSS to solve
problems with conflicting multiple objectives. The operators have been modified, and an
external archive has been included to store non-dominated solutions. The MOFSS is meant
to find the non-dominated solutions that lie on the Pareto Optimal Front. Several variants
of the FSS have been proposed with enhancements that produce better results than the
original FSS. One such version has been presented in [9] where there is one fitness evalu-
ation for every fish in each iteration, and it has good exploitation properties and is simple
to implement. In the enhanced algorithm, the operators are combined and information
from earlier iterations is used in the current iteration. This enhanced FSS algorithm has
been found to outperform the original FSS and PSO. There are also variants of the FSS for
solving multi-objective and binary optimization problems. In addition the parameters of
the FSS can be tuned and its impact on the algorithm performance can be studied. The
algorithm can be extended to tackle problems with constraints and also modified for com-
binatorial optimization problems. Some of the constraints such as aquarium boundaries,
maximum limits for weight of fish, fish school radius, and time complexity can be incor-
porated into the algorithm to refine the results.

10.5 � Summary

A novel metaheuristic search algorithm based on the swarming behavior of fish has been
discussed in this chapter. Fish schools are highly oriented for swimming, foraging, migra-
tion, and defense against predators. The complex interactions among the members within
the fish swarm and the operations of feeding, swimming, and breeding have been incul-
cated in the development of the fish school search algorithm. FSS is a metaheuristic algo-
rithm that is able to solve complex problems with simple mathematical models. The fish
schools contain high volume and density in some species and could go up to thousands of

142 ﻿﻿Nature-Inspired Optimization Algorithms

fish. This makes them suitable for search in unstructured high-dimensional spaces for the
optimum solution. The FSS algorithm also has its own specific characteristics and proper-
ties that make it suitable for high-dimensional, unstructured, multimodal search spaces.

FSS has a good balance between exploration and exploitation abilities. FSS produces
excellent results for unimodal as well as multimodal NP-hard problems. On average, a
population size of 20 to 50 with a maximum of 100 iterations is sufficient for solving most
problems. Every nature-inspired algorithm has its own specialized features that are suited
to a specific set of problems. FSS has been experimentally found to outperform PSO for
standard benchmark data sets.

References

	 1. 	D. S. Pavlov, O. S. Kasumyan, Patterns and mechanisms of schooling behavior in fish: A review,
Journal of Ichthyology, Vol. 40, Suppl. 2, pp. S163–S231, 2000.

	 2. 	Carmelo J. A. Bastos Filho, Fernando B. de Lima Neto, Anthony J. C. C. Lins, Antônio I. S.
Nascimento, Marília P. Lima, A novel search algorithm based on fish school, behavior, 2008
IEEE International Conference on Systems, Man and Cybernetics (SMC 2008), pp. 2646–2651.

	 3. 	Hsing-Chih Tsai, Yong-Huang Lin, Modification of the fish swarm algorithm with particle
swarm optimization formulation and communication behavior, Applied Soft Computing, Vol.
11, No. 8, pp. 5367–5374, 2011.

	 4. 	Yang Wang, Wei Zhang, Hongxing Li, Application of artificial fish swarm algorithm in image
registration, Computer Modeling and New Technologies, Vol. 18, No. 12B, pp. 510–516, 2014.

	 5. 	Fran Sergio Lobato, Valder Steffen Jr., Fish swarm optimization algorithm applied to engineer-
ing system design, Latin American Journal of Solids and Structures, Vol. 11, No. 1, pp. 143–156,
January 2014.

	 6. 	J. B. Monteiro-Filho, I. M. C. Albuquerque, F. B. Lima Neto, Fish school search algorithm for
constrained optimization, Neural and Evolutionary Computing, pp. 1–12, November 2018.

	 7. 	Carmelo J. A. Bastos-Filho, Rodrigo P. Monteiro, Luiz F. V. Vercosa, Improving the perfor-
mance of the fish school search algorithm, International Journal of Swarm Intelligence Research,
Vol. 9, No. 4, pp. 21–46, October 2018.

	 8. 	Carmelo J. A. Bastos-Filho, Augusto C. S. Guimarães, Multiobjective fish school search,
International Journal of Swarm Intelligence Research, Vol. 6, No. 1, pp. 23–40, 2015.

	 9. 	C. J. A. Bastos-Filho, D. O. Nascimento, An enhanced fish school search algorithm, Proceedings of
the 2013 BRICS Congress on Computational Intelligence and 11th Brazilian Congress on Computational
Intelligence, Washington, DC, United Sattes, pp. 152–157, 8–11 Septembr 2013.

143

11
Cuckoo Search Algorithm

11.1 � Introduction

Metaheuristic algorithms are very powerful in solving complex real-life problems since
they are inspired by natural phenomena. Biological organisms in nature have their own
evolutionary processes and mechanisms of survival in hostile environments. The main
characteristics of metaheuristic algorithms of intensification and diversification are respon-
sible for the effective performance in solving complex engineering problems and NP-hard
problems in computer science. Intensification and diversification lead to good exploitation
and exploration properties of the algorithm which are necessary for intense local search
and diversified global search. Inculcation of Levy flight behavior into the metaheuristic
optimization algorithm improves the performance for exploitation as well as exploration.
Some birds and insects, especially fruit flies, exhibit Levy flight behavior. Levy flight is
movement of a bird or insect in straight-line paths punctuated by sharp 90° turns.

The cuckoo search (CS) optimization algorithm has been developed based on the brood
parasitic behavior of cuckoo birds. It is a metaheuristic algorithm proposed by Xin-She
Yang and Suash Deb in 2009 [1, 2]. Cuckoo birds are famous for the beautiful and musical
sounds they produce which are pleasant to hear. Some species of cuckoo birds build their
own nests and raise their young while many other species are brood parasites. The brood
parasitism and Levy flight behavior are the two main traits of cuckoo birds that form the
framework of the cuckoo search optimization algorithm. Every species in nature, includ-
ing the cuckoo bird, instinctively follows Darwin’s theory of survival of the fittest. They
adapt themselves to the changing environmental conditions and exhibit swarm intelli-
gence and properties as the manifestation of this adaptation. The cuckoo search algorithm
has been built upon the swarm behavior and intelligence of cuckoo birds that have been
described in the following sections.

11.2 � Cuckoo Bird Behavior

The cuckoo belongs to the family of birds called Cuculidae. Cuckoo birds are of medium size,
slender, and live in trees or on the ground. They have wide-ranging habitats. Some cuckoo
species are found in tropical regions, especially in rain forests, whereas others are migratory.
The migratory birds move during winter. Most of them live solitarily and feed on insects and
fruits. Figure 11.1 shows a fan-tailed cuckoo found in Australia. Figure 11.2 shows a male
Asian cuckoo called koel which is famous for its distinctive musical sounds, coo-coo.

Nature-Inspired Optimization Algorithms

144 ﻿﻿Nature-Inspired Optimization Algorithms

Cuckoo Search Algorithm

Cuckoos are brood parasites [3] and have soft feathers. Cuculinae is the subfamily of
cuckoos that are brood parasitic. Cuckoos normally do not build their own nest, but some
species do have their own nests and raise their young. The parasitic cuckoos are very poor
parents. They use more than 100 species of other birds as their hosts. The parasitic cuckoos
lay their eggs in the nest of other birds. The different species of cuckoos lay eggs that are
white, grey, or colored such as green, red, and yellow, and they could be plain or spotted.
These varieties of eggs can match the eggs of any host bird. Usually the cuckoo bird waits
near the nest of a host bird watching for an opportunity to enter and lay its eggs. They try
to mimic the eggs of the host bird so that their eggs will be preserved and hatched by the
host bird. The cuckoos ensure that their eggs are hatched before those of the host bird.
Cuckoo bird flies into the nest of a host bird, pushes out one of the eggs of the host bird
and replaces it with its own egg. The female cuckoos visit different host nests and lay their
eggs. The eggs almost match the host eggs in color and size, called egg mimicry. Figure
11.3 shows five eggs in a reed warbler nest including one cuckoo egg among the collection
of four reed warbler (host) eggs, that matches in color and pattern but is slightly bigger.

The cuckoo chicks resemble those of the host bird so that their young ones get fed by the
host. For example, in some species of cuckoos the host bird might be a crow and hence the
cuckoo chick is black and resembles a young crow. Some of them inhabit reed beds where
reed warblers have their nests and they become the host for the cuckoos. The cuckoo bird
lays its eggs in the nest of the reed warbler, and once it is hatched, the cuckoo chick tries
to push out the egg of the host bird. This is done to ensure that the cuckoo chick gets fed

FIGURE 11.1
Fan-tailed cuckoo. (By J.J. Harrison – own work, CC BY-SA 3.0. https​://cr​eativ​ecomm​ons.o​rg/li​cense​s/by-​sa/3.​
0/dee​d.en.​)

https://creativecommons.org
https://creativecommons.org

145Cuckoo Search Algorithm﻿﻿

by the host reed warbler bird. A reed warbler feeding a common cuckoo chick in a nest is
shown in Figure 11.4.

Nests that are nearer to the vantage point of the cuckoos and that had more visibility
were more vulnerable to being hosts for the parasitic cuckoos. Cuckoo chicks persuade the
host birds to feed them by making begging calls. When the cuckoo chicks have outgrown
the nest, they fly out. Some species of cuckoos are obligate brood parasites, that is, they
reproduce only by using host nests. Some other species are non-obligate brood parasites,
that is, they lay their eggs in the nests of their own species of cuckoos and raise their young.

When the host bird discovers that the cuckoo bird has laid eggs in its nest, either the
eggs are evicted or the host abandons the nest and builds a new one. Some of the species
of cuckoos expertly time the laying of their eggs with the host bird and also mimic the
color and pattern (also size) of their eggs with the host, so that their own eggs will not be
discovered by the host. The cuckoo bird lays its own eggs in the host nest after eviction
of one egg of the host bird, and the cuckoo egg also hatches earlier. When it hatches, the
cuckoo chick tries to evict the eggs of the host bird so that it gets a good share of the feed
from the host bird. Different strategies are adopted by the cuckoos in carrying out brood
parasitism. As an example, the male cuckoo lures away the host bird from its nest so that
the female cuckoo can lays its egg in the host nest. Cuckoos are secretive birds, but they
have distinctive musical calls. Since cuckoos are mostly not raised by their own parents,
their behavior of evicting host eggs and calls are considered innate qualities.

FIGURE 11.2
Male Asian koel, Chalakudy, Kerala. (Author: Challiyan – own work, CC BY-SA 4.0/3.0/2.5/2.0/1.0. https​://co​
mmons​.wiki​media​.org/​wiki/​Commo​ns:GN​U_Fre​e_Doc​ument​ation​_Lice​nse,_​versi​on_1.​2. https​://cr​eativ​
ecomm​ons.o​rg/li​cense​s/by-​sa/4.​0/.)

https://creativecommons.org
https://creativecommons.org
https://commons.wikimedia.org/
https://commons.wikimedia.org/

146 ﻿﻿Nature-Inspired Optimization Algorithms

11.3 � Levy Flights

Levy flights are named after the French mathematician Paul Levy. Some birds and insects,
especially fruit flies, exhibit Levy flight behavior. They move in straight-line paths punc-
tuated by sharp 90° turns. Stochastic processes are governed by random trajectories that
are commonly known as random walk [4]. Levy flight is a particular class of random walk
where the step length has a heavy-tailed probability distribution. Figure 11.5 shows an
example of Levy flight movement with 1000 steps in a two-dimensional space.

Such Levy flight behavior of animals, birds, and insects has been found to be suitable
for emulation in optimization algorithms. The probability density function of the Levy
distribution is for continuous random variables that can take only positive values. It is
given by Equation 11.1:

	

f x c
c e

x

c
x

(, ,)
()

()

m
p

m

m

=
-

-
-

2

2

3
2 	 (11.1)

where µ is a location parameter that shifts the curve and c is a scale parameter. As x ® ¥
the pdf is approximately given by:

	 f x c
c

x(, ,)m
p

»
-

2

3
2 	 (11.2)

The wing of the pdf is heavy and fat-tailed as given by Equation 11.2. Figure 11.6 shows the
Levy distribution for µ = 0 with different values of scale parameter. The Levy distribution
has infinite mean and variance.

FIGURE 11.3
Great reed warbler nest containing one cuckoo egg and four warbler eggs (Apaj, Hungary). (Author: Attila
Marton 1 – own work, CC BY-SA 4.0. https​://cr​eativ​ecomm​ons.o​rg/li​cense​s/by-​sa/4.​0/dee​d.en.​)

https://creativecommons.org

147Cuckoo Search Algorithm﻿﻿

For large values of a random variable x (x could be the sum of several random variables)
that follow Levy distribution, the probability density function (pdf) is approximately given by,

	 f x x() ,()» < <- +1 0 2m m 	 (11.3)

Random variables with infinite variance exhibit power law distribution with heavy and fat
tails. Levy flights along with Brownian motion describe the pattern of movement of sev-
eral animals and birds while foraging for food. Usually, animals and birds forage for food
following a random walk. Since random walks can be modeled statistically, the location
and transition probability determine the step size and direction of the movement. Levy
flights have wide-ranging applications that include light behavior, animal foraging behav-
ior, human walk, earthquake description, etc. It is shown that it is possible to develop opti-
cal materials that exhibit Levy flight behavior for light. This is a pioneering work that has
made it possible to study Levy flight behavior under controlled conditions.

11.4 � Cuckoo Search Optimization

Cuckoo search (CS) is a metaheuristic optimization algorithm based on the obligate para-
sitic breeding behavior of some species of cuckoo birds. It also inculcates the Levy flight

FIGURE 11.4
Eurasian reed warbler feeding a common cuckoo chick. (Author: Per Harald Olsen – own work, CC BY-SA 3.0.
https​://co​mmons​.wiki​media​.org/​wiki/​Commo​ns:GN​U_Fre​e_Doc​ument​ation​_Lice​nse,_​versi​on_1.​2. https​://cr​
eativ​ecomm​ons.o​rg/li​cense​s/by-​sa/3.​0/dee​d.en.​)

https://creativecommons.org
https://creativecommons.org
https://commons.wikimedia.org/

148 ﻿﻿Nature-Inspired Optimization Algorithms

FIGURE 11.6
Levy distribution pdf for µ = 0. (Author: Krishnavedala – own work, CC0 1.0. https​://en​.wiki​pedia​.org/​wiki/​
en:Cr​eativ​e_Com​mons.​)

FIGURE 11.5
Two-dimensional Levy flight with 1000 steps. [By user: PAR – own work (Public Domain).]

https://en.wikipedia.org
https://en.wikipedia.org

149Cuckoo Search Algorithm﻿﻿

movement exhibited by some animals, birds, and insects, including cuckoos. The cuckoo
search optimization algorithm has been developed based on three assumptions:

•	 The number of host nests in which a cuckoo can lay its egg is fixed, represented by
the population size N. Let ph ∈ [0, 1] be the probability that the host bird discovers the
cuckoo egg laid in its nest. Once discovered, the host bird either evicts the egg
or abandons the nest and builds a new one. Therefore, ph is the fraction of the N
nests that are either abandoned or replaced with new ones by the host bird. This
characteristic is equivalent to abandoning solutions that have lesser fitness values
and replacing them with new and better solutions. Each host nest represents one
possible candidate solution to the problem.

•	 A cuckoo bird lays only one egg in a randomly chosen host nest at any instant of time.
•	 The nests with high-quality eggs have higher fitness values and hence survive to

the next generation.

If the cuckoo egg is discovered by the host bird, the bird has two possible courses of action;
either it can abandon the nest and build a new nest elsewhere, or it can throw out the egg
of the cuckoo bird. Let ph be the fraction of nests that are abandoned by the host, out of the
total population of N nests and new nests are built in the next generation (replacing the
abandoned ones). Each egg in a host nest (assuming only one egg is present) represents
a solution to the problem, and the parasitic cuckoo egg represents a new solution which
might replace the existing solution if it is found to be better.

An objective function is formulated as a mathematical expression based on the problem to
be solved. The evaluation of the objective function with a set of input variables gives a pos-
sible solution to the problem. The algorithm randomly places the N host nests in the search
space. For simplicity, it is assumed that there is only one host egg in the nest and the parasitic
cuckoo lays one egg in the host nest. This is repeated for all the nests in the search space. The
eggs represent possible solutions to the problem, and that means they are the evaluated fitness
function values. If the fitness of the cuckoo egg is found to be better than the fitness of the host
egg, the cuckoo egg replaces the host egg in the nest. Otherwise the cuckoo egg is thrown out
of the nest. This is repeated for all the nests in the search space. In each iteration, the nests are
updated based on their fitness values. At the end of the maximum number of iterations fixed
for the algorithm, the nests with the worst fitness values are replaced with new ones.

11.4.1 � Algorithm

Let Xk
iter represent the position of the kth nest of the host birds that are randomly located in

the search space.

	 X x x x k Nk
iter

k
iter

k
iter

kd
iter= =[...] , , ,1 2 1 2  	 (11.4)

The search space is assumed to be d-dimensional, indexed by the variable j with j = 1, 2, …, d.
Therefore the objective or fitness function defined for the problem is d-dimensional given by

	 f X f x x xd() (...)= 1 2 	 (11.5)

The iterations are indexed by the variable iter, with the maximum number of iterations
being represented by MaxIter. If required, a stopping criterion could also be defined for
the problem.

150 ﻿﻿Nature-Inspired Optimization Algorithms

Let Xc
iter be the position of the cth cuckoo in iteration iter and Xc

iter+1be its new position in
the next iteration. The position of the cth cuckoo in the succeeding iteration is governed by
its current position and Levy flight movement as given below:

	 X X s Levy uc
iter

c
iter+ = + Å1 ()	 (11.6)

where s is the step size that is always positive and the value depends on the problem; usually
it can be chosen as 1. Levy(u) is the Levy distribution that models the transition probability,
thus making the next position depend on the present position and the transition probability.

	 Levy u t uu() ,» £ £- 1 3	 (11.7)

This random walk using Levy flight is efficient in searching for the optimum since the step
size can be made longer or shorter. The new solutions are generated by random walk with
a large step size for better exploration of the search space, and short step size for better
exploitation of local regions in the search space. When the step size is large the algorithm
can jump out of local optimum and reduces the possibility of being trapped in locally
optimum solutions. A sequence of such random walks modeled using Levy flight behavior
becomes a Markov chain. Levy flights are for global search, maintaining the diversity of
the population, and for random walks to intensify the search. Levy flights have long trajec-
tories for global search interspersed with short Brownian motion for intense local search.
The probability parameter ph balances the search between local and global. When ph = 0.25,
the search is 75% global and 25% local. The dynamic step sizes possible in Levy flights
make the search efficient since it can adapt between diversification and intensification.

The cth cuckoo and the kth host nest are chosen randomly and their fitness evaluated. On
comparing their fitness values, if the fitness of the cuckoo is greater than that of the host,
the cuckoo egg replaces the egg of the host bird in the chosen nest. Otherwise, the host egg
is not disturbed. The fraction ph of the nests with the worst fitness values is abandoned.
The nests are ranked according to their fitness values, and at the end of the maximum
number of iterations, the nest with the highest fitness is the global optimum solution.

11.4.2 � Pseudocode

Initialization

Create host nests in the search space randomly with population size N
Define d-dimensional objective function f(X), X = {x1, x2, …, xd}
Define stopping criteria, if any
Maximum number of iterations MaxIter

iter = 1
while (iter ≤ MaxIter) do

Randomly choose a cuckoo Xc and evaluate its fitness value Fc

Randomly choose a host nest k and evaluate its fitness Fk

if (Fc > Fk)
replace the host egg with the cuckoo egg

end if

Fraction ph of host nests with least fitness values are discarded
Nests with higher fitness are retained and new ones built to replace the discarded ones
All the nests (solutions) are ranked according to their fitness values

151Cuckoo Search Algorithm﻿﻿

Nest with highest fitness chosen as the current best optimal solution to the problem
if stopping criteria met exit
else continue

iter = iter + 1
end while

Nest with best fitness value is the global optimum solution

Flowchart

152 ﻿﻿Nature-Inspired Optimization Algorithms

11.5 � Variants of the Algorithm

Since the original cuckoo search algorithm was proposed in 2009, several variants of the
algorithm have been developed by various researchers working in the area of swarm
intelligence [5]. These variants either modify the algorithm to be more efficient or make
it adaptable for diverse applications. Some of the notable variants of the algorithm are
modified CS, parallelized CS, binary CS, discrete CS, neural-based CS, and multi-objec-
tive CS. For some problems which are difficult to solve, especially continuous optimi-
zation problems, the optimal solution can be obtained efficiently by combining the CS
algorithm with some other swarm-based algorithm such as GA or bat algorithm so that
a hybrid optimization algorithm evolves to find a better solution to the problem. Multi-
objective optimization is another variant where the problem consists of conflicting, mul-
tiple objectives. A set of solutions forming a Pareto Optimal Front will be suitable for such
multi-objective problems. The CS algorithm has been adapted to solve specific engineer-
ing design problems such as wind turbine blades, steel truss structures, antenna arrays,
optimal sequence attainment, optimal capacitance placement, and also NP-hard prob-
lems such as TSP, job scheduling, and graph coloring. The three notable variants of the CS
algorithm are discussed below.

11.5.1 � Discrete Cuckoo Search Algorithm

The discrete cuckoo search algorithm is a variant that has been proposed [6] to solve com-
binatorial optimization problems like the traveling salesman problem. It utilizes the fact
that the cuckoos are intelligent enough to assess whether the host nest is suitable for their
eggs and their chicks. If the cuckoo finds that the host nest is unsuitable for its parasitic
breeding, it looks for another host nest. In this discrete cuckoo search algorithm a new
class of cuckoos with such intelligence has been incorporated into the original algorithm
to improve the performance and solve discrete optimization problems.

11.5.2 � Binary Cuckoo Search (BCS) Algorithm

The BCS algorithm [7] is a variant of the original cuckoo search algorithm with the values
assumed by the design vectors being binary, 0 or 1. It has a typical application to feature
selection problem. Feature selection plays a vital role in classifiers since the number of
features influences the complexity of the algorithm. The higher the number of features, the
more computations will be required and also the greater the time complexity. The selec-
tion of appropriate features is essential in the classification accuracy, and this makes it an
optimization problem. A binary vector with 1 or 0 in each position represents whether the
feature will be selected or not. To build up this binary vector, the following modification
in the equation is made in the CS algorithm:

	 X
if P X

otherwise
k
iter k

iter

+ =
>ì

í
ï

îï

ü
ý
ï

þï

1
1

0

() s
	 (11.8)

	 P X
e

k
iter

Xk
iter() =

+ -

1

1
	 (11.9)

153Cuckoo Search Algorithm﻿﻿

11.5.3  Multi-Objective Cuckoo Search Algorithm (MOCS)

Most of the complex engineering design problems involve optimization of more than one
conflicting objective with or without design constraints. When there are no constraints it
is an unconstrained optimization problem. When there are one or more constraints on the
design or solution, it is a constrained optimization problem. Moreover, the constraints can
be linear or non-linear. For single-objective problems there is only one global optimum
although there may be multiple local optima. For multi-objective problems, there are mul-
tiple solutions that involve a tradeoff between conflicting design objectives and constraints.
The various possible optimal solutions form a Pareto Optimal Front, and any point on the
front is a good enough solution to the problem. When one criterion is satisfied, the other
ones might not be satisfied as much. There is no single solution that could become the
global optimum for the entire set of objectives and constraints. It is effectively a tradeoff
between the different objectives and constraints. One possible way of making the existing
single objective optimization algorithms work for multiple objectives is to combine the
multiple objectives as a weighted sum into a single objective. The search space should be
sampled or searched such that there is enough diversity in the solutions obtained.

The CS algorithm is modified to extend it for optimization of multiple objectives in the
problem [8, 9]. This becomes a multi-objective cuckoo search algorithm (MOCS). In the
assumptions made in the original single-objective CS algorithm, each cuckoo was assumed
to lay one egg in the host nest. In MOCS, each cuckoo lays K number of eggs in the host
nest where each egg is a solution to one of the multiple objectives. Another assumption
was the probability of discovery of a cuckoo egg in a nest by a host bird is ph and the host
either throws out the cuckoo egg or abandons its old nest and builds a new nest. In MOCS,
the same assumption is made except that the host builds a new nest with K eggs. The
solutions obtained for the multi-objective optimization problem lie on the Pareto Optimal
Front and are non-dominated optimal solutions.

The pseudocode of the CS algorithm can be modified for MOCS as follows:

Initialization

Create population of N host nests (each with K eggs)
Define multiple objective functions {f(Xk)}, k = 1, 2, …, K, X = {x1, x2, …, xd}
Define stopping criteria
Maximum number of iterations MaxIter

iter = 1
while (iter ≤ MaxIter) do

Randomly choose a cuckoo Xc and evaluate its fitness value Fc

Randomly choose a host nest k and evaluate its fitness Fk for k = 1, 2, …, K
if (Fc > Fk)

replace the host egg with the cuckoo egg
<this step is done for all the eggs in the nest>

end if

Fraction ph of host nests are abandoned based on their fitness values (those with
least fitness are discarded)

Nests with higher fitness values are retained and new ones are built to replace the
discarded host nests

154 ﻿﻿Nature-Inspired Optimization Algorithms

All the solutions (nests) are ranked according to their fitness values and the nests
with fitness values that lie on the Pareto Optimal Front are chosen

if stopping criteria met exit
else continue

iter = iter + 1
end while

Nests with fitness values on the Pareto Optimal Front form the global optimum
solutions

The solutions are Pareto Optimal or non-dominated if no other solution can be found
that is better than the current solution. The set of all non-dominated solutions forms the
Pareto Optimal Front. MOCS is efficient for multi-objective optimization problems. The
algorithm has been validated for multi-objective test functions and engineering design
problems with multiple, conflicting objectives and constraints.

11.6 � Summary

The cuckoo search algorithm is based on the obligate parasitic breeding behavior of cuckoo
birds combined with Levy flights. The Levy flights model the random walk that follows
a Levy distribution with a heavy tail. The stochasticity in the algorithm is created by the
Levy flight movement of cuckoo birds. The population size N and the probability ph are
two parameters of the cuckoo search algorithm that need to be chosen for the problem,
and it has been found that the performance of the algorithm can be tuned by the appropri-
ate choice of these two parameters. Hence N = 15 and ph = 0.25 is sufficient for most of the
problems. The cuckoo search algorithm has local as well as global search capabilities and
can home in on the global optimum for unimodal as well as multimodal functions. As the
algorithm runs, the nests aggregate at the global optimum for unimodal functions, and
when the function is multimodal, the nests distribute themselves at positions of the local
optima as well as global optima. Thus, cuckoo search finds all the local optima simultane-
ously provided the number of nests is much more than the number of local optima. The
convergence rate of the algorithm does not depend on the above parameters. This makes
it suitable for a wide variety of problems including NP-hard, single- and multi-objective
problems.

This algorithm can be applied as it is or it can be hybridized with other metaheuris-
tic algorithms such as GA and PSO. Compared to PSO and GA, the cuckoo search algo-
rithm outperforms them for all benchmark unimodal and multimodal test functions. It
is superior because it is able to have diversity of solutions and is also able to intensify the
search in local regions by means of Levy flights. It also discards the solutions that are not
good in every iteration and replaces them with better solutions. Cuckoo search is robust
and applicable across a wide spectrum of problems. The CS algorithm has wide-ranging
applications from feature selection, face recognition, thresholding, forecasting, and neural
networks to the intractable problems in the computer science domain. The CS algorithm
hybridized with other nature-inspired algorithms and its variants has been found to be
more powerful in solving tough optimization problems.

155Cuckoo Search Algorithm﻿﻿

References

	 1. 	X.-S. Yang, S. Deb, Engineering optimisation by cuckoo search, International Journal of
Mathematical Modelling and Numerical Optimisation, Vol. 1, No. 4, pp. 330–343, 2010.

	 2. 	X.-S. Yang, S. Deb, Cuckoo search via Lévy flights, In: Proceedings of World Congress on Nature
and Biologically Inspired Computing (NaBIC 2009)Figu, Coimbatore, India, pp. 210–214, December
2009, published by IEEE, USA, ISBN: 978-1-4244-5053-4.

	 3. 	Iztok Fister Jr., Dusan Fister, Iztok Fister, A comprehensive review of cuckoo search: Variants
and hybrids, International Journal of Mathematical Modelling and Numerical Optimisation, Vol. 4,
No. 4, pp. 387–409, 2013.

	 4. 	P. Barthelemy, J. Bertolotti, D. S. Wiersma, A Lévy flight for light, Nature, Vol. 453, pp. 495–498,
2008.

	 5. 	I. Fister Jr., X. S. Yang, D. Fister, I. Fister, Cuckoo search: A brief literature review, In: Cuckoo
Search and Firefly Algorithm: Theory and Applications, Studies in Computational Intelligence, Vol.
516, pp. 49–62, 2014.

	 6. 	Aziz Quaarab, Belaid Ahiod, Xin-She Yang, Discrete cuckoo search algorithm for the traveling
salesman problem, Neural Computing and Applications, Vol. 24, No. 7–8, pp. 1659–1669, June 2014.

	 7. 	L. A. M. Pereira, D. Rodrigues, T. N. S. Almeida, C. C. O. Ramos, A. N. Souza, X.-S. Yang, J. P.
Papa, A binary cuckoo search and its application for feature selection, 2013 IEEE International
Symposium on Circuits and Systems (ISCAS2013).

	 8. 	Waleed Yamany, Nashwa El-Bendary, Aboul Ella Hassanien, Eid Emary, Multi-objective
cuckoo search optimization for dimensionality reduction, 20th International Conference on
Knowledge Based and Intelligent Information and Engineering Systems, Procedia Computer Science
(Elsevier), Vol. 96, pp. 207–215, 2016.

	 9. 	X.-S. Yang, S. Deb, Multiobjective cuckoo search for design optimization, Computers and
Operations Research, Vol. 40, pp. 1616–1624, 2013.

http://taylorandfrancis.com

157

12
Firefly Algorithm

12.1 � Introduction

Nature-inspired metaheuristic algorithms are mainly developed from the study of ani-
mals, birds, and insects, while some of them are derived from evolutionary strategies as
well as physical and chemical processes. They are powerful as well as simple enough to
provide solutions to complex problems effectively, with reduced time complexity. These
algorithms are modeled on the characteristics of animals, birds, and insects and mimic
their behavior. The mathematical models for these nature-inspired algorithms are built,
and solving the related equations using appropriate techniques produces optimum solu-
tions for the problems. The bioinspired algorithms incorporate metaheuristics and are
simple to implement. Many of them are suitable for continuous and discrete variables,
unimodal as well as multimodal problems. The objective function is defined based on the
problem and may or may not depend on the landscape of the search space.

One such nature-inspired algorithm is the firefly algorithm (FA) that is modeled on the
characteristics and behavior of fireflies in nature. Fireflies produce flashing light and are
quite an awesome sight in the sky during the night. They normally fly around in groups
and are a sight to behold with their brilliant flashing colors. They attract insects and other
fireflies by their flashing lights for trapping prey as well as for mating. The flashing light of
fireflies is rhythmic with a particular rate and pattern that is used in communicating with
other members of the species. The fireflies vary in size, shape, color and rate of flashing,
and the wavelength of light emitted. They are very sensitive to surrounding lighting con-
ditions and to changes in the environment. They also exhibit Levy flight behavior which
is flying in straight-line paths punctuated by sharp 90° turns. This intermittent scale-free
search movement is exhibited by several species of birds and insects and is one of the main
factors responsible for global search. The FA is population-based, and multiple fireflies
(agents) search in the space in parallel. This inherent parallelism is one of the important
factors in the efficiency of the algorithm in attaining the global optimum solution.

12.2 � Firefly Behavior and Characteristics

Fireflies are insects that belong to the family Lampyridae, are soft-bodied, and are in the
beetle order Coleoptera. They are found in tropical regions, mainly in South-East Asia,
and there are more than 2000 species of fireflies, commonly called lightning bugs. Fireflies
exhibit flashing behavior during twilight and during nighttime. They rhythmically flash

Nature-Inspired Optimization Algorithms

158 ﻿﻿Nature-Inspired Optimization Algorithms

Firefly Algorithm

light called bioluminescence to attract mates and prey, but the light does not have any
ultraviolet or infrared radiation. Bioluminescence is a chemical reaction that takes place in
the lower abdominal portion of the body of the firefly. The lower portion of the body of the
fireflies radiates green, yellow, or a light shade of red, sometimes even blue light, mostly in
the wavelength range of 510 to 670 nm. They are soft-bodied beetles with leathery wings
and are approximately one inch in length. Figure 12.1 shows an adult beetle that is com-
monly known as a firefly or lightning bug. Figure 12.2 shows a glowing firefly that is emit-
ting light from the lower portion of the body.

The flashing behavior, especially the color of the flashing lights, and the group size of
the fireflies vary from species to species. The fireflies also exhibit variation in features
such as size, shape, and color among the members of their family. The male fireflies exhibit
synchronized flashing in large groups in order to attract the females. In some species the
fireflies eat others who are attracted by the flashing lights. The fireflies themselves can be
quite poisonous to other insects or vertebrates. They are also known as lightning bugs
since they flash light to attract mates as well as prey. Figure 12.3 shows a female firefly in
the grass that is emitting light.

The flashing rate and the duration vary from species to species and attract suitable
mates. The rhythmic flashing not only attracts sexual partners but also unsuspecting prey.
In some species, the males flash lights rhythmically to attract the females, whereas in some
other species, the females flash light rhythmically (synchronized flashes), attract males,
and eat them. These fireflies (fireflies are sometimes called glowworms; glowworms do not
fly, but fireflies do fly) produce light from their bodies due to a chemical reaction (chemi-
cals secreted from the abdomen of fireflies) which could be from parts of the body other
than the abdomen such as the tail. The chemical energy is converted to light energy very
efficiently (nearly 100%). Fireflies are distasteful to their predators, but they eat worms and
bugs that live upon or under the ground, and when they grow up and learn to fly, they feed
on other insects, nectar, and pollen in flowers.

Fireflies have organs under the abdomen that produce a chemical called luciferin that
reacts with oxygen in the presence of the enzyme luciferase to produce light, a phenomenon

FIGURE 12.1
Adult beetle in the family Lampyridae, commonly called firefly. (Author: Bruce Marlin – own work, CC BY-SA
2.5. https​://cr​eativ​ecomm​ons.o​rg/li​cense​s/by-​sa/2.​5/dee​d.en.​)

https://creativecommons.org

159Firefly Algorithm﻿﻿

called bioluminescence. Almost the entire energy of the chemical reaction is converted to
light with no energy wastage as heat or in any other form. The fireflies are in larvae form
when they are born and live under the ground till they become adult and grow wings to
fly. The larvae also exhibit bioluminescence, but the flying adults are the ones that per-
form the dance with flashing lights. Fireflies are very sensitive to the light in their sur-
roundings. The population of fireflies has been dwindling in recent years due to the use of

FIGURE 12.2
Glowing Eastern USA firefly (Photinus pyralis). (Source: Art farmer from Evansville, Indian, USA, CC BY-SA 2.0.
https​://cr​eativ​ecomm​ons.o​rg/li​cense​s/by-​sa/2.​0/dee​d.en.​)

FIGURE 12.3
Common glowworm (Lampyris noctiluca), Aston, UK. (Author: Timo Newton-Syms – CC BY SA 2.0, https​://cr​
eativ​ecomm​ons.o​rg/li​cense​s/by-​sa/2.​0/dee​d.en.​)

https://creativecommons.org
https://creativecommons.org
https://creativecommons.org

160 ﻿﻿Nature-Inspired Optimization Algorithms

pesticides and changes in climate, environment, and other detrimental factors. Figure 12.4
shows flashing fireflies in the woods near Nuremberg, Germany.

Based on the characteristics and flashing behavior of fireflies, the firefly optimization
algorithm was developed by Xin-She Yang in 2009. The firefly optimization algorithm, its
variants, and applications have been described in the following sections.

12.3 � Firefly-Inspired Optimization

The firefly optimization algorithm is a metaheuristic algorithm that is inspired by the
flashing behavior and Levy flight movement of fireflies [1]. The firefly optimization algo-
rithm has been developed with the following three simplifying assumptions:

•	 The fireflies are unisexual so that any firefly will be attracted to any other firefly.
•	 The attractiveness of the fireflies is directly proportional to the brightness of light

emitted by them. Because of this attractiveness, one firefly will move towards
another one with a higher brightness. If there is no other firefly with higher bright-
ness than its own, then it will move randomly.

•	 If the objective function is defined for maximization, then its value is proportional
to the brightness of a firefly.

FIGURE 12.4
Flashing fireflies in the forest near Nuremberg, Germany. (Author: Quit007, CC BY-SA 3.0. https​://co​mmons​
.wiki​media​.org/​wiki/​Commo​ns:GN​U_Fre​e_Doc​ument​ation​_Lice​nse,_​versi​on_1.​2; https​://cr​eativ​ecomm​ons.o​
rg/li​cense​s/by-​sa/3.​0/dee​d.en.​)

https://commons.wikimedia.org
https://commons.wikimedia.org
https://creativecommons.org
https://creativecommons.org

161Firefly Algorithm﻿﻿

Let the population of N fireflies be distributed randomly in the d-dimensional search
space. Let Xi represent the position of the ith firefly in the d-dimensional search space with
X x x x i Ni i i id= = ¼[] , , .,1 2 1 2 . The objective function is defined as f(X) where the fit-
ness or objective function value is proportional to the light intensity of the firefly, that is,
I X f XL i i() ()µ . Light intensity decreases in inverse proportion to the square of the distance
from the light source given by Equation 12.1.

	 I m
m

L() µ 1
2 	 (12.1)

where IL(m) is the received light intensity at distance m from the light source. The dimin-
ishing light intensity with distance makes the flashing light of fireflies visible for a few
hundred meters at night. This is sufficient for other fireflies to be attracted by the dancing
rhythmic lights. The attractiveness is directly proportional to the brightness of light emit-
ted and inversely proportional to the distance from the light source, as given in Equation
12.2 (inverse square law).

	 I m
I
m

L
o() = 2 	 (12.2)

where Io is the original light intensity at source and m is the distance separating the source
and point of reception (or point of measurement of light intensity). This decrease in inten-
sity not only depends on distance but also on the absorption of the medium (typically air)
in between. If the medium in which light travels has a fixed light absorption coefficient λ,
then the light intensity variation with distance can be modeled as

	 I m I eL o
m() = -l 	 (12.3)

In Equation 12.2 the intensity becomes undefined at m = 0 (point of singularity). Hence the
light intensity is modeled by including the inverse square law and light absorption; thus
combining Equations 12.2 and 12.3 leads to Equation 12.4.

	 I m I eL o
m() = -l 2

	 (12.4)

If the rate of decay of light intensity is to be decreased monotonically, the following expres-
sion can be used:

	 I m
I

m
L

o() =
+1 2l

	 (12.5)

Using Taylor’s series expansion for exponential functions:

	 e m mm- » - + -l l l
2

1
1
2

2 2 4

!
.....	 (12.6)

	
1

1
12

2 2 4

+
» - + -

l
l l

m
m m	 (12.7)

If the series expansion in Equations 12.6 and 12.7 is truncated to the first two terms, they
can be equated as:

162 ﻿﻿Nature-Inspired Optimization Algorithms

	 e
m

mm- »
+

» -l

l
l

2 1
1

12
2	 (12.8)

Since calculating
1

1 2+ lm
is faster than computing e m-l 2

the attractiveness of the light inten-

sity can be made proportional to
1

1 2+ lm
 as given in Equation 12.5. Let the attractiveness

of the firefly be proportional to the light intensity and be represented by Ai for the ith fire-
fly. Then the variation of attractiveness with distance is given by

	 A m
A

m
o() =

+1 2l
	 (12.9)

In the above equation e m-l 2
 becomes e-1 when m = 1

l
. Therefore the distance m = 1

l
 is

called the characteristic distance mC. Over the characteristic distance the attractiveness
changes from Ao toA eo

-1. In general, the attractiveness can be a monotonically decreasing
function with distance such as A m A eo

mr
() = -l where r ≥ 1. If the absorption coefficient λ is

fixed, the characteristic length or distance is mC

r

= 1
1

l
. As r → ∞, mC → 1. If mC is fixed, the

parameter l = 1
mC

r .

12.3.1 � Algorithm

The Cartesian distance between any two fireflies Xj and Xk is Dj,k = ||Xj – Xk||. This distance

is defined as D x xj k jn kn

n

d

, ()= -
=

å
1

2 where X x x xj j j jd= [...]1 2 and X x x xk k k kd= [...]1 2 .

The movement of the jth firefly towards the kth firefly that has higher brightness is given by

	 X X A e X X c randj
new

j o
m

k j
jk= + - + -

-l 2

1 2() .((/))	 (12.10)

In the Levy-flight firefly algorithm (LFA) the movement of the firefly is modeled [2] using
Equation 12.11.

	 X X A e X X c sign rand Levy uj
new

j o
m

k j
jk= + - + - Å

-l 2

1 2() . ((/)) ()	 (12.11)

The second term is due to the attraction between the jth and the kth fireflies, and the third
term is for introducing randomness into the movement of the fireflies. c is the parameter
introducing stochasticity into the movement of the fireflies, rand is a random number that
assumes values in the interval [0, 1] with a uniform distribution, and Levy(u) is the Levy
flight movement parameter. For most of the applications Ao can take the value of 1, and c
can take any value in the range [0, 1]. Levy(u) is the Levy distribution that models the tran-
sition probability, thus making the next position depend on the present position and the
transition probability.

163Firefly Algorithm﻿﻿

	 Levy u t uu() ,» £ £- 1 3	 (12.12)

Levy distribution has infinite mean and infinite variance with a heavy tail.
When λ → 0, the attractiveness A = Ao is constant, meaning the flashing light of the

firefly could be seen everywhere with the same intensity. This is a special case of PSO.
When λ → ∞, mC → 0 and A(m) → δ(m) where δ(m) is the Dirac delta function. In other
words, the attractiveness is almost zero for other fireflies, and they roam or move around
randomly. This makes it a random search. The firefly algorithm lies between these two
extremes, and the efficiency depends on the chosen parameters. In the different dimen-
sions if the scales vary widely, for example, 105 in one dimension and 0.001 in another
dimension, c can be scaled by the multiplication factor scale(n), thus making it c.scale(n),
where n = 1, 2, …, d.

12.3.2 � Pseudocode

Initialization

Population size of fireflies N
Randomly locate the fireflies in the d-dimensional search space Xi, i = 1, 2, …, N
		 where X x x xi i i id= [...]1 2

Define the objective function f X f x x xi i i id() (, ,)= 1 2

Light intensity of all the fireflies is determined by evaluating f Xi(), i = 1, 2, …, N
Light absorption coefficient λ
Stopping criteria, if any
Maximum number of iterations MaxIter

iter = 1
while (iter ≤ MaxIter) do

for j = 1 to N
for k = 1 to N

if (Ij > Ik)
Move firefly k towards firefly j

end if

Update light intensity of the fireflies at the new positions
end for

end for

Rank the fireflies according to fitness and find the current best

if stopping criteria met exit, else continue
iter = iter + 1

end while

Firefly with the highest fitness value is the global optimum solution

164 ﻿﻿Nature-Inspired Optimization Algorithms

Flowchart

165Firefly Algorithm﻿﻿

12.4 � Variants and Applications

The firefly algorithm is suitable for non-linear, unimodal, and multimodal optimization
problems and is found to be more efficient than GA and PSO. FA is also effective in solving
multi-objective optimization problems. Discrete versions of the firefly algorithm have been
proposed and are available in the literature with proven good performance. Hybrid optimi-
zation algorithms where the FA has been applied in combination with other nature-inspired
algorithms have also been proposed. In [3] the firefly algorithm has been applied for the
optimization of queueing systems that are used for the analysis and solution of complex
problems related to the field of computer science as well as in industries. Vector quantization
is a popular technique for image compression. The Linde–Buzo–Gray (LGB) algorithm is
normally used to construct the codebook for VQ. In [4] the firefly algorithm has been applied
along with the LGB algorithm to construct the optimal codebook. The optimal codebook
design is one which maximizes the fitness function for all input vectors. The firefly-LBG
algorithm has been compared with other state-of-the-art algorithms, and it has been found
to outperform the other optimization algorithms. FA has been found to be suitable for clus-
tering, image classification, feature selection, and for other computer science applications
such as graph coloring, network routing, and the famous traveling salesman problem.

The fireflies have a natural habit of dividing themselves into groups, and, relating this
behavior with our algorithm, it leads to grouping of fireflies around local optima. As the
iterations progress, the groups cluster more and more around the optimum regions in the
landscape and among them the global optimum can be identified. The parameter tuning
gives flexibility in altering the performance of the algorithm as suited for the applications.
The change in performance of the algorithm by varying the parameters has been explored
[5]. The intermittent search strategy is one of the key components applied here where there
is exploration of the landscape using Levy flights and intense exploitation of the search
around regions of optimality [6]. Local search concentrates around regions where the
global optimum is likely to be found. More exploration requires more iterations and hence
convergence occurs later, whereas more exploitation requires fewer iterations which may
lead to the global optimum or it could lead to premature convergence at a local optimum
point. The idealized rules of the firefly algorithm have been combined with Levy flights to
form the Levy-flight firefly algorithm (LFA) in [2]. There is a vast literature available on the
firefly algorithm, its variants, and applications with hundreds of papers being published.
In this chapter, a few variants and applications of FA have been discussed.

12.5 � Summary

The firefly algorithm has been modeled on the flashing behavior of fireflies which is unique
to their species. The fireflies are insects that exhibit Levy flight behavior. The Levy flights
are used in inculcating stochasticity and diversity in the search for the global optimum
solution. The flashing lights create attractiveness amongst the fireflies, and they group
together. This grouping behavior is responsible for intense local search around local as well
as global optima. The flashing light of the fireflies is associated with the objective function
to be optimized. The brightness of a firefly at any location in the search space determines
the objective function value at that location. Therefore the quality of the solution attained

166 ﻿﻿Nature-Inspired Optimization Algorithms

is directly proportional to the brightness of the light emitted by the firefly at the global
optimum point.

Initially, the population of fireflies is distributed uniformly over the entire search space,
and, normally within 50 to 100 iterations, convergence takes place. The typical population
size suitable for most of the applications is 10 to 50. The greater the number of fireflies, the
faster will be the convergence. The fireflies are almost independent within the swarm, thus
their activities take place in parallel, increasing their efficiency. For most of the problems,
experimentally it has been found that the parameters of the algorithm can be chosen as c ∈
[0, 1], Ao = 1, λ = 1, u = 1.5. The change in attractiveness of the firefly with distance is char-
acterized by the parameter λ, and it determines the speed of convergence of the algorithm.
The attractiveness parameter λ typically varies from 0.01 to 100.

The Levy flight behavior of fireflies makes it possible to diversify the search on a global
scale. The firefly algorithm with Levy flights has been found to outperform GA and PSO
[7]. Like PSO, FA is also based on swarm intelligence, and PSO is a special case of the FA for
certain settings of the parameters. FA is effective in solving intractable problems that have
been found to be NP-hard for conventional algorithms. It has reduced time and computa-
tional complexity with few parameters to be tuned. The firefly algorithm has become very
popular because of the promising results it produces for complex engineering problems. It
has demonstrated superiority over other algorithms because of its balance between inten-
sification and diversification. The Levy flight movement enhances the stochastic global
search. The grouping of fireflies due to their attractiveness with each other leads to intense
local search. The random factor in the algorithm follows uniform or Gaussian distribution,
as the case may be. FA is a swarm intelligence optimization algorithm since it is based
on the swarm behavior of fireflies and hence exhibits the characteristics and properties of
other swarm-based algorithms in nature. FA can efficiently solve continuous as well as dis-
crete combinatorial optimization problems. The firefly algorithm is suitable for unimodal
as well as multimodal problems. It is found to be more efficient in dealing with multimodal
optimization problems. Hybrid algorithms can be investigated, in which the firefly algo-
rithm is combined with other optimization algorithms to improve the performance.

References

	 1. 	X.-S. Yang, Engineering Optimization: An Introduction with Metaheuristic Applications, Chichester:
Wiley, 2010.

	 2. 	X.-S. Yang, Firefly algorithm, Lévy flights and global optimization, In: Research and Development
in Intelligent Systems, XXVI, M. Bramer, R. Ellis, M. Petridis (eds). London: Springer, pp. 209–
218, 2010.

	 3. 	J. Kwiecien, B. Filipowicz, Firefly algorithm in optimization of queueing systems, Bulletin of the
Polish Academy of Sciences, Technical Sciences, Vol. 60, No. 2, 2012.

	 4. 	Ming-Huwi Horng, Vector quantization using the firefly algorithm for image compression,
Expert Systems with Applications, Vol. 39, pp. 1078–1091, 2012.

	 5. 	R. B. Francisco, M. F. P. Costa, A. M. A. C. Rocha, Experiments with firefly algorithm, In:
Computational Science and Its Applications, ICCSA 2014, Lecture Notes in Computer Science, Vol.
8580, B. Murgante et al. (eds). Cham: Springer, 2014.

	 6. 	X.-S. Yang, Xingshe He, Firefly algorithm: Recent advances and applications, International
Journal of Swarm Intelligence, Vol. 1, No. 1, pp. 36–50, 2013.

	 7. 	X.-S. Yang, Firefly Algorithms for Multimodal Optimization, LNCS 5792, pp. 169–178, Berlin,
Heidelberg: Springer-Verlag, 2009.

167

13
Bat Algorithm

13.1 � Introduction

The nature-inspired optimization algorithms are powerful techniques for solving NP-hard
problems that are found to be intractable for traditional algorithms. They are based on
the study of natural phenomena such as biological evolution, and physical and chemi-
cal processes. Almost all of these algorithms use metaheuristics so that a solution close
to the optimum can be attained in reasonably finite time. If the algorithm is going to do
an exhaustive search of possible solutions to a problem the time and computational com-
plexity will be high. In order to reduce the time and resources consumed some amount
of heuristics becomes necessary. Nature inspires us with amazing techniques to provide
solutions to complex engineering design problems in the areas of civil and mechanical
engineering, electronics, communication, computer science, economics, management, and
other related areas. The possibilities of adopting natural phenomena in our problem-solv-
ing techniques are enormous, and lots of research has been undertaken in this field ever
since the genetic algorithm was invented and several decades later the particle swarm
optimization algorithm was developed.

There are millions of species of flora and fauna in nature with each one having its own
system of foraging and survival in the hostile environment. Study of these biological sys-
tems is fascinating, and several algorithms have been proposed based on these processes
and characteristics. It is amazing how these simple creatures solve problems and survive
by following simple rules and complex social interactions within their group. Each spe-
cies has its own method of searching for food in the environment and communicating
with their fellow members. They also share the food, mate with each other, and guard
themselves and their group members against predators. Every animal, bird, or insect spe-
cies follows some simple rules either individually or as a group, typically called a swarm.
These biological entities exhibit swarm behavior, and the entire swarm is disciplined and
undertakes activities for the benefit of the members of the whole group.

Bats are fascinating mammals that have wings to fly. They are nocturnal animals, and
they also exhibit social interactions amongst themselves. They have a peculiar echoloca-
tion capability that is unique to their species. The bats use this echolocation principle to
find their food which could be fruits or insects. Since they use the Doppler effect to detect
and locate their prey, they must definitely have a signal-processing capability that is dif-
ferent from other animals and insects. The bats navigate themselves without bumping
into obstacles during any part of the day. This capability of bats has led to the develop-
ment of the bat algorithm (BA) which is one of the superior nature-inspired optimization
techniques. The characteristics and behavior of bats in nature and the bat optimization
algorithm [1] have been discussed in the following sections.

Nature-Inspired Optimization Algorithms

168 ﻿﻿Nature-Inspired Optimization Algorithms

Bat Algorithm

13.2 � Behavior of Bats in Nature

Bats are mammals (order Chiroptera) that are capable of sustained flight. Their forelimbs
are adapted as wings and their spread-out digits are covered with a thin membrane that
helps them fly. There are more than 1200 species found throughout the world that consti-
tute around 20% of mammal population. The largest bats are the flying foxes that weigh
around 1.5 kg with a wingspan of about 2 m whereas the smallest are the bumblebee bats
with a weight of around 1.5 g and the hog-nosed bats with a wingspan of 15 cm. Figure 13.1
shows the Indian flying foxes in Madhya Pradesh and Figure 13.2 shows spectacled flying
foxes – male, female, and their young one – hanging upside down from a tree. Bats are noc-
turnal animals and mostly live in caves. They are traditionally divided into two categories,
fruit-eating megabats and echolocating microbats, but they are also categorized based on
other characteristics. They mainly feed on insects while some of them feed on fruits.

The bats feed on fruits and insects, sometimes even animals, with the vampire bats feed-
ing on blood. They are important pollinators for plants especially in the tropical region.
Pollination and feeding on insects are two important advantages of bats to humans. Bats
largely feed on insects and balance the population as well as consuming the pests. A few
of them feed on fruits like bananas and figs. But the disadvantage is that bats are car-
riers of rabies and other viruses. Bats mostly roost during daytime and forage during
night time. Bats are blind, but they sense their environment through ultrasonic waves.
Microbats and a few megabats use echolocation to sense the environment in the dark.
Microbats use echolocation (sonar) extensively to sense the environment, avoid obstacles,
detect prey, and find their roosting crevices. When bats are not flying, they hang upside

FIGURE 13.1
Indian flying foxes (Pteropus giganteus), Madhya Pradesh, India. (Author: Charles J, Sharp – own work, CC BY-SA
4.0. https​://cr​eativ​ecomm​ons.o​rg/li​cense​s/by-​sa/4.​0/dee​d.en.​)

https://creativecommons.org

169Bat Algorithm﻿﻿

down from trees with their feet – a posture called roosting. Megabats roost with their head
tucked towards the belly whereas microbats roost with their neck curled towards their
back. Figure 13.3 shows an intermediate roundleaf bat (Hipposideros larvatus) roosting flock
in a cave, in Lampung, Southern Sumatra.

Bats transmit a pulse of ultrasonic frequency, and based on the received signal or pulse
they build a map of their surroundings. The typical duration of the pulse ranges from
5 to 20 ms. The bats normally emit 10 to 20 bursts every second, and this can go up to
200 bursts when they are nearing their prey. The velocity of sound is 340 m/s and the
wavelength of the pulses emitted is λ = v/f (meters).Therefore the wavelength range of the
emitted pulses is 3 to 14 mm. This is usually the typical size of the prey of bats. The brain
and auditory system is responsible for comparing the transmitted and echo pulses and
producing detailed images of the environment within the vicinity of their surroundings.
This makes possible the detection and location of prey in darkness. Figure 13.4 shows
ultrasound pulses emitted by a bat and the echo received from nearby objects through the
left and right ear of the bat. Figure 13.5 also demonstrates echolocation in bats where A is
the bat, B is the prey, d is the distance between bat and prey, E is the emitted wave of bat,
and R is the received echo from the prey.

Bats are one of the animals that make the loudest sound, ranging from 60 to 140 dB. The
sound is loudest when searching for prey, and it reduces when the bat is approaching the
prey. The frequency of emission of microbats is in the range of 25 to 100 kHz, and might
go up to 150 kHz, extending beyond the range of human hearing. The range of travel of
the emitted waves is a few meters. Microbats have the capability to detect obstacles that
are as thin as human hair. Figure 13.6 shows the picture of a little brown bat flying during
the day.

Some bat species have fleshy extensions around the nose called nose-leaves that play a role
in sound transmission. In low-duty cycle echolocation, bats make their transmission time
short so that their transmission and echoes can be separated in time. These bats use a constant

FIGURE 13.2
Spectacled flying foxes. (Author: Justin Welbergen, CC BY-SA 3.0. https​://cr​eativ​ecomm​ons.o​rg/li​cense​s/by-​
sa/3.​0/dee​d.en.​)

https://creativecommons.org
https://creativecommons.org

170 ﻿﻿Nature-Inspired Optimization Algorithms

FIGURE 13.4
Ultrasound signals emitted by bat and echo received. [Author: Petteri Aimonen – own work (Public Domain).]

FIGURE 13.3
Bats roosting in a cave. (Author: Wibowo Djatmiko – own work, CC BY-SA 3.0/2.5/2.0/1.0. https​://co​mmons​
.wiki​media​.org/​wiki/​Commo​ns:GN​U_Fre​e_Doc​ument​ation​_Lice​nse,_​versi​on_1.​2. https​://cr​eativ​ecomm​ons.o​
rg/li​cense​s/by-​sa/3.​0/dee​d.en.​)

https://commons.wikimedia.org
https://commons.wikimedia.org
https://creativecommons.org
https://creativecommons.org

171Bat Algorithm﻿﻿

frequency for transmission. Some of them use pulses whose frequencies span one octave.
The bandwidth of the transmitted signal depends on the species. They contract their middle
ear muscles during transmission so that they are not deafened by the sound. The muscles
are relaxed after transmission so that the echoes can be heard when they return. The time
delay between the transmitted and received pulse is used in calculating the range of the
location of prey. In high-duty cycle echolocation, the transmission frequencies are lower and
hence the transmission time is longer. The transmitted and returning echoes are separated
in frequency. The bats are tuned sharply to the returning frequency, whereas they cannot
hear the transmitted frequency and hence avoid deafening themselves. The Doppler shift of
the returning echo allows the bats to estimate the movement, range, and location of the prey.
When the bats are in flight they adapt themselves to change the frequency so that the echoes
can still be detected and heard. Elevation of the target is estimated from the interference pat-
tern of the received pulses. They also have the ability to passively listen to sounds made by
insect movements on the ground or the flying of moths and other insects. Bats use their vision
for traveling. Bats can differentiate between different types of insects in complete darkness
using echolocation. Echolocation is effective only for short distances. Scanning by ultrasound
waves is done repeatedly by the bats to construct a map of the environment. Bats build a 3D
model of their environment using the time difference between emitted and received pulse,
using their own two ears and the loudness of the echo. The Doppler shift caused by moving
prey (such as wing flutter of insects) allows bats to detect the speed of movement, distance,
orientation, type, and size of the prey. Some bats also have a good sense of smell.

Microbats have small eyes with mesopic vision that allow detection at low light levels.
Mesopic vision is a combination of photopic and scotopic vision. Megabats have good eye-
sight with photopic vision that can also detect color in good lighting conditions and is as
good as humans’. Microbats have large ears with a tragus that is important for echoloca-
tion, whereas megabats have comparatively smaller ears with no tragus. Bats are sensitive
to earth’s magnetic field and avoid flying in the sun to prevent overheating. They mostly
roost during the hottest part of the day. Some bats are solitary, but most of them live in
colonies of hundreds of thousands. The bat optimization algorithm has been developed

FIGURE 13.5
Echolocation in bats. (From Chiroptera echolocation: Augusto, Shung, Marek. Available at: https://commons.
wikimedia.org/wiki/File:Chiroptera_echolocation.svg. Creative commons: https://creativecommons.org/
licenses/by-sa/3.0/deed.en)

https://commons.wikimedia.org
https://commons.wikimedia.org
https://creativecommons.org
https://creativecommons.org

172 ﻿﻿Nature-Inspired Optimization Algorithms

based on the study of the echolocation characteristics and behavior of bats in nature that is
described in the following sections.

13.3 � Bat Optimization Algorithm

The bat algorithm (BA) is a metaheuristic algorithm based on the echolocation behavior of
bats. In developing the algorithm the following simplifying assumptions are made:

•	 Bats fly randomly with a fixed velocity and take up different positions. Their pulse
emissions have varying frequencies, wavelengths, and loudness which they use to
search for prey. The rate of pulse emissions and the frequency are adjusted based
on the distance of the bat to the prey.

•	 Bats use echolocation to detect as well as differentiate between prey (food) and
other objects, and they are able to sense distance.

•	 The loudness of the ultrasonic pulses emitted by bats varies from a minimum
value to a maximum value.

Let fmin and fmax be the minimum and maximum frequencies of the pulse emissions of the
bat respectively. Correspondingly λmax and λmin are the maximum and minimum wave-

lengths of the bat emissions respectively. Using the formula, l = v
f

 the wavelength of the

emission can be obtained from the frequency and vice versa, since the velocity v is a con-
stant and is equal to 340 m/s.The bats normally emit in the higher frequency ranges, and
high frequencies travel shorter distances of up to a few meters only. The rate of pulse emis-
sion could be assumed to be in the range [0, 1] where rate 0 represents no pulses emitted
and 1 is the maximum rate of pulse emission.

FIGURE 13.6
Little brown bat in flight. (Author: Andy Reago and Chrissy McClarren, CC BY 2.0. https​://cr​eativ​ecomm​ons.
o​rg/li​cense​s/by/​2.0/d​eed.e​n.)

https://creativecommons.org
https://creativecommons.org

173Bat Algorithm﻿﻿

13.3.1 � Algorithm

Let the population size of the bats be N, the position of the ith bat in the d-dimensional
search space be Xi

iter for the iteration indexed by iter, and the velocity of the bat at the cur-
rent position and iteration is Vi

iter. The position of the bat in the d-dimensional search space
is given by

	 X x x xi
iter

i
iter

i
iter

id
iter= [....]1 2 	 (13.1)

The bats move in the search space searching for the global optimum which is nothing but
the best solution to the problem. The equations governing the movement of the bats for
exploration of the search space are:

	 X X Vi
iter

i
iter

i
iter+ = +1 	 (13.2)

	 V V X X fi
iter

i
iter

i
iter

gb
iter

i
+ = + -1 () 	 (13.3)

where Xgb
iter is the global best position in the current iteration and fi is the frequency of

emission of the ith bat given by

	 f f r i f fi = + -min max min()() 	 (13.4)

where r(i) is a random number drawn from the uniform distribution in the range [0, 1], fmin is
the minimum frequency of emission, and fmax is the maximum frequency of emission, and
the limits on the frequency can be fixed according to the problem. During initialization, the
frequencies are randomly assigned to the bats within the range chosen. Velocity is the prod-
uct of wavelength and frequency, and either of them can be adjusted to update the velocity.

Every bat position is updated for local search in each iteration. The equation governing
this exploitation movement of bats is given by

	 X X c Li
iter

i
iter

av
iter+ = +1 . 	 (13.5)

where Xi
iter+1 is the new position of bat i, Xi

iter is the old position of bat i, c is a random
number that takes values in the interval [–1, 1], and Lav

iter is the average loudness of all the
bats in the population. The loudness and rate at which the pulses are emitted by the bats
determine the intensity of the local search. The BA is similar to PSO in the position and
velocity update equations. The loudness and rate of pulse emission of the bats vary with
the distance of the bat to the prey during the search. As the bat approaches the prey the
loudness of emission reduces and the rate of pulse emission increases. Let the loudness
of bat i be given by Li and the rate of emission of bat i be given by Ei. The minimum and
maximum values for the loudness could be chosen by the user, where the minimum could
even be zero if the prey is trapped, or it could be some other smaller number. The maxi-
mum value for loudness could be chosen to be any convenient number since it is going to
be decreased with the increasing number of iterations. Typically the maximum value for Li
is taken as 100, but it could be less than that.

174 ﻿﻿Nature-Inspired Optimization Algorithms

	 L Li
iter

i
iter+ =1 l. 	 (13.6)

where λ is a random number between 0 and 1. As iter ® ¥ , Li
iter ® 0. The rate of emission

of the bat i is given by,

	 E E ei
iter

i
iter+ -= -1 0 1()()h 	 (13.7)

where η is a positive constant, and E Ei
iter

i® 0 as iter ® ¥ . If the new solution is better than
the previous one, the loudness and emission rate are updated; this implies that the algo-
rithm is approaching the optimal solution or the bat is approaching the prey.

13.3.2 � Pseudocode

Initialization

Choose the size of the bat population N
Dimensions of the search space d

Randomly initialize the position of the bats X x x xi
iter

i
iter

i
iter

id
iter= [, ,,]1 2 , i = 1, 2, …, N

Define Objective function f(X)
Pulse frequency fi, rate of pulse emissions Ei , and loudness of the emissions Li

Maximum number of iterations MaxIter

iter = 1
while (iter ≤ MaxIter) do

Update the positions, velocities, and frequencies of the bats in the search space
if (r(i) > Ei) then

Select one solution among the best as determined by the fitness values
Generate a local solution in the vicinity of the selected solution

end if

Generate a new solution by random movement (flying) of a bat
if [(r(i) < Li) and (f(Xi) < f(Xgb)] then

Accept the new solution
Increase the rate of emission and reduce the loudness of emission

end if

Rank the bats according to their fitness values and find the current global best Xgb

iter = iter + 1
end while

Bat with the highest fitness value is the global optimum solution

175Bat Algorithm﻿﻿

Flowchart

iter = MaxIter?

iter = iter

r i > Ei?

r(i) < Li?

f(Xi) < f(Xgb)?

N

N
d

f(X)
N

fi, Ei

Li

MaxIter
iter = 1

Xgb

176 ﻿﻿Nature-Inspired Optimization Algorithms

13.4 � Variants and Applications

The bat algorithm has been tested against various benchmark functions and its perfor-
mance compared with GA and standard PSO. The BA algorithm has been found to per-
form better in terms of number of function evaluations for a given population size. BA
is superior to GA and PSO in terms of accuracy and efficiency. When the loudness of
emission is zero and the rate of emission is one, the BA becomes the same as PSO. When
loudness and rate are fixed then the BA becomes Harmony Search. The proper adjust-
ment of the appropriate parameters leads to a faster rate of convergence of the BA algo-
rithm. Several variants and improvements of the bat algorithm have been proposed in the
literature to overcome the drawbacks of getting trapped in local optima and enhance the
performance.

In multi-objective optimization, the problem is to find the Pareto Optimal Front. All
the solutions that lie on the Pareto Optimal Front are non-dominated solutions. When
the problem has multiple conflicting objectives and constraints that could be either linear
or non-linear, the optimization algorithm might require modification. The algorithm that
works well for single-objective optimization problems might not find solutions that lie on
the Pareto Optimal Front for multi-objective optimization problems. The solutions that lie
on the Pareto Optimal Front have to be diverse. The presence of one or more constraints
adds to the complexity of arriving at the optimal solution. In the multi-objective BA [2], the
multiple objectives are combined into a single-objective function using a weighted sum.
Let the multiple objective functions be represented by fm(X), m = 1, 2, …, M, where the num-
ber of objective functions is M, and let the weights be represented by wm. The weighted
combination of the multiple objectives is:

	 F X w f X wm m

m

M

m

m

M

() ()= =
= =

å å
1 1

1and 	 (13.8)

The weights can be randomly chosen with a uniform distribution, and they can be adjusted
to obtain a non-dominated Pareto Optimal Front. In addition, if there are linear or non-
linear constraints in the problem, they have to be satisfied. The number of points on the
Pareto Optimal Front can be increased by increasing the number of simulations (which is
more time-effective and efficient) than by increasing the population size.

The improved bat algorithm (IBA) has been proposed [3] by including three modifi-
cations to the original bat algorithm. The exploration capability of BA is improved by
hybridizing with the artificial bee colony optimization algorithm. The pulse frequen-
cies are generated randomly in the original BA, but in the improved BA, the pulse fre-
quencies are different for each dimension of the solution. The inertia weight factor is
also gradually decreased with increasing iterations so that the previous velocity effect
is gradually reduced. The improved BA has good exploration and exploitation capabili-
ties. The Linde–Buzo–Gray algorithm is applied to find the optimal codebook in vector
quantization for image compression. The codebook depends on the training data set and
the initial vectors chosen. The BA has been applied on this codebook produced by the
LBG algorithm to generate an optimized codebook to compress the images, leading to
increased PSNR [4]. Peak signal-to-noise ratio (PSNR) is defined as the ratio of the peak
signal power to the mean squared error (MSE) in the image. MSE is computed between
the original image before compression using the optimized codebook and the decom-
pressed image.

177Bat Algorithm﻿﻿

The discrete version of the BA [5] has been proposed and applied to find the solution
for the symmetric and asymmetric traveling salesman problem. BA can converge faster
by switching between exploration and exploitation even in the early stages. But switching
too quickly can also cause the algorithm to stagnate. Several variants of the BA have been
proposed, and some of them are enumerated below [6]:

•	 The fuzzy logic bat algorithm introduces fuzzy logic into the BA.
•	 Multi-objective BA is an extension of BA for dealing with multi-objective problems.
•	 The k-means bat algorithm is a combination of k-means algorithm and BA for clus-

tering applications.
•	 The chaotic bat algorithm uses Levy flights and chaotic maps to do parameter

estimation.
•	 The binary bat algorithm is a binary version of the BA used for feature selection

and classification.
•	 The differential operator and Levy flights bat algorithm has been proposed to

solve function optimization problems.
•	 The improved bat algorithm is an extension of BA with Levy flights, and varying

the parameters has given good results.

In addition to this, other hybrid versions of the BA have also been proposed for different
applications. BA can deal with linear as well as non-linear continuous optimization prob-
lems efficiently. Combinatorial optimization problems which are generally considered to
be NP-hard can also be solved using BA. It has also been found to be suitable for inverse
problems. The combination of k-means and BA for clustering applications has been found
to be superior to either of them considered separately.

BA has been applied for crop classification based on multispectral satellite images [7]. A
clustering technique has been used in extracting information from the training samples
and forming cluster centers. Crop classification is a challenging task since it involves lot
of factors like geographical variation, weather conditions, crop yield, stage of growth, etc.
BA has outperformed GA, PSO, and k-means clustering in crop classification performance.
Topology optimization is finding the best geometric shape for a particular application or
to meet a certain objective. When buildings are constructed, design of the optimal shape
for structures, so that they can withstand the load with the least usage of construction
materials and minimal cost, is an optimization problem. In microelectronics, the shape
of the devices and their placement on the circuits or electronic boards determine the heat
transfer which is an important issue in electronics. This makes the layout of devices on
the board an optimization problem. BA has been found to be effective in solving the heat
transfer problem by topology optimization [8].

Image segmentation is an important step in image processing applications. Segmenting
the image into different regions is a challenging task since it involves fixing the opti-
mum multilevel threshold for the segmentation. An objective function based on image
entropy is formulated and the BA is applied to find the optimum multilevel thresholds
[9]. Metaheuristic BA finds the optimum threshold with less time complexity compared
to other classical and heuristic algorithms. In [10] a differential operator is introduced to
increase the rate of convergence of BA. The Levy flight trajectory ensures that the algo-
rithm is able to jump out of local optima. In problems with higher dimensions, this new
strategy is more effective than the original BA.

178 ﻿﻿Nature-Inspired Optimization Algorithms

13.5 � Summary

BA is more powerful than GA and PSO because it includes the important characteristics
and advantages of these algorithms as well as of other nature-inspired algorithms such
as Harmony Search and Simulated Annealing. The echolocation characteristic of bats is
very innovative compared to other insects, birds, and animals and proves that the bats
have good signal-processing power. Utilizing this capability of bats in the optimization
algorithm elevates the performance of the algorithm when applied to complex problems.
The associated parameters of frequency of pulses emitted, rate of emission, and loudness
of emission, can be adjusted and fine-tuned to get varying performances. The right combi-
nation of these parameters plays a key role in finding the global optimum solution to the
problem. The bat constructs a three-dimensional map of the surrounding environment
(search space) from the emitted pulses and the echoes received. It utilizes the Doppler
effect in building this map. This map helps the bat in locating prey and obstacles so that
the bat can navigate virtually in the dark. By adjusting the average loudness and rate of
emission the BA effectively reduces to either PSO or Harmony Search. A population size
of 20 to 50 and 100 iterations are sufficient for most of the applications. If necessary the
number of iterations can be increased or a termination criterion can be included.

BA is simple, efficient, easy to implement, flexible, and can be applied to a wide range of
problems. Some of the important applications include feature selection and classification,
image processing, clustering, data mining, and job scheduling.It is efficient in finding the
optimum solutions for NP-hard problems such as the TSP. It is similar to PSO and Harmony
Search and requires fine-tuning of a few parameters only. When a bat is nearing its prey, it
increases the rate of emission and reduces the loudness of emission. This capacity of bats
in zooming-in on the prey is useful for exploitation of the search in the vicinity of the opti-
mum and leads to early convergence. Moreover, in BA the parameters can be fine-tuned or
modified adaptively as the bat is approaching the prey, that is, as the algorithm is nearing
the optimal solution. As the iterations proceed the algorithm automatically changes from
the exploration to exploitation mode. This makes BA more efficient than other algorithms.

References

	 1. 	X.-S. Yang, A new metaheuristic bat-inspired algorithm, In: Nature Inspired Cooperative Strategies
for Optimization (NISCO 2010), J. R. Gonzalez et al. (ed), Studies in Computational Intelligence,
284. Berlin: Springer, pp. 65–74, 2010.

	 2. 	X.-S. Yang, Bat algorithm for multi-objective optimization, International Journal of Bio-Inspired
Computation, Vol. 3, No. 5, pp. 267–274, 2011.

	 3. 	Selim Yilmaz, Ecir U. Kucuksille, Improved bat algorithm on continuous optimization prob-
lems, Lecture Notes on Software Engineering, Vol. 1, No. 3, pp. 279–283, August 2013.

	 4. 	Chiranjeevi Karri, Umaranjan Jena, Fast vector quantization using a bat algorithm for image
compression, Engineering Science and Technology: An International Journal, Vol. 19, pp. 769–781,
2016.

	 5. 	Eneko Osaba, Xin-She Yang, Fernando Diaz, Pedro Lopez-Garcia, Roberto Carballedo, An
improved discrete bat algorithm for symmetric and asymmetric traveling salesman problems,
Engineering Applications of Artificial Intelligence, Vol. 48, pp. 59–71, 2016.

179Bat Algorithm﻿﻿

	 6. 	X.-S. Yang, Bat algorithm: Literature review and applications, International Journal of Bio-
Inspired Computation, Vol. 5, No. 3, pp. 141–149, 2013.

	 7. 	J. Senthilnath, Sushant Kulkarni, J. A. Benediktsson, X.-S. Yang, A novel approach for multi-
spectral satellite image classification based on the bat algorithm, IEEE Geoscience and Remote
Sensing Letters, Vol. 13, No. 4, pp. 599–603, 2016.

	 8. 	X.-S. Yang, Mehmet Karamanoglu, Simon Fong, Bat algorithm for topology optimiza-
tion in microelectronic applications, IEEE First International Conference on Future Generation
Technologies, pp. 150–155, 2012.

	 9. 	Adis Alihodzic, Milan Tuba, Bat algorithm for image thresholding, Recent Researches in
Telecommunications, Informatics, Electronics and Signal Processing, IEEE 12th International
Conference on Signal Processing, pp. 364–369, 2013.

	 10. 	Jian Xie, Yongquan Zhou, Huan Chen, A novel bat algorithm based on differential operator
and Levy flights trajectory, Computational Intelligence and Neuroscience, Vol. 2013, pp. 1–13, 2013.

http://taylorandfrancis.com

181

14
Flower Pollination Algorithm

14.1 � Introduction

Nature-inspired metaheuristic optimization algorithms have been developed by mimick-
ing the evolutionary processes in nature that occur among plants, animals, birds, insects,
and other biological organisms. One such optimization technique is the flower pollination
algorithm (FPA) based on the pollination process of flowering plants [1]. Pollination is a
reproductive strategy in plants that transfers pollen from the male part of the flower to the
female part of the same or a different flower. These pollen gametes reach the ovary where
they are fertilized and develop into seeds. The seeds germinate and grow into new plants.
The pollinating agents are wind, water, insects, birds, and animals, and also could be the
plants themselves. The in-depth study of the pollination process and its types has led to
the development of the flower pollination optimization algorithm which is competitive
in performance with existing metaheuristic algorithms. FPA is a population-based meta-
heuristic algorithm that searches for the optimum solution in the search space in parallel
with multiple agents.

The pollen-carrying agents might travel quite a distance before depositing their pollen
in another flower. The distance traveled by the pollinating agents determines whether
it is local or global pollination. There needs to be a balance between intensification and
diversification in any optimization algorithm, and this balance is achieved by the move-
ment of the agents carrying pollen. The movement of insects and birds can be modeled
using Levy flights following a Levy distribution. The Levy flight is a path with straight
lines punctuated by sharp 90° turns. The pollen can be deposited in the same flower or in
different flowers of the same plant. The pollen can also be deposited in flowers of another
plant belonging to the same species or a different species. The flower where the pollen gets
deposited determines the types of pollination.

These optimization algorithms that are based on the evolutionary process in nature are
able to solve complex non-linear engineering design problems that might be constrained.
The algorithms are efficient and provide solutions that are quite close to the global opti-
mum in finite time. The accuracy of the solution can be increased by increasing the num-
ber of iterations as almost all of these algorithms are iterative. The parameters involved
have to be chosen properly so that the algorithm reaches the global optimum without
getting stuck in local optimum. If the algorithm gets trapped in a local optimum it has to
jump out of it and converge to the global optimum in finite time. The convergence rate of
the algorithm is important in practical applications. The algorithm has to be able to find
a solution for single-objective as well as multi-objective optimization problems. The FPA
discussed in the following sections also follows the Darwinian principle of survival of the
fittest as the plants evolve based on the reproduction process in nature.

Nature-Inspired Optimization Algorithms

182 ﻿﻿Nature-Inspired Optimization Algorithms

FIGURE 14.1
Hibiscus flower (Hibiscus Fragilis) at Kew Gardens, London. (Author: C. T. Johansson – own work, CC BY-SA 3.0.
https​://cr​eativ​ecomm​ons.o​rg/li​cense​s/by-​sa/3.​0/dee​d.en.​)

Flower Pollination Algorithm

14.2 � Flower Pollination

Nature has been evolving over millions of years, and biological systems are becoming
more robust and efficient. One of the important processes that has existed and evolved
over the years is reproduction. The reproduction process takes place among all living
beings, including plants, animals, birds, insects, and humans. Depending on the species,
there is a large variation in the reproduction mechanism. In plants, the process of repro-
duction is through pollination. The pollen from the anther (male portion) of a flower gets
transferred to the stigma (female portion) of either the same or a different flower. This
process is called fertilization. The fertilization process ultimately leads to the production
of fruits and seeds by the plants. These seeds later grow into new plants and thus the spe-
cies reproduces.

Pollination is of two types – self-pollination and cross-pollination. In self-pollination,
the pollen is transferred to flowers of the same plant, whereas in cross-pollination, the
pollen is transferred to flowers of a different plant. The transfer takes place by means of
agents like wind, birds, bees, and other insects and animals. The insects like butterflies or
bees that visit the flower to take nectar or simply sit on the flower get dusted in pollen or,
in other words, the pollen gets stuck to the insect. When the insect visits another flower
either on the same plant (self-pollination) or on another plant (cross-pollination) the pollen
is deposited on the stigma of the flower. Figure 14.1 shows a hibiscus flower with distinct
anther and stigma, and a spring rose flower is shown in Figure 14.2.

https://creativecommons.org

183Flower Pollination Algorithm﻿﻿

When pollen is deposited on the stigma it goes down the style (tube) until it reaches the
ovaries, and fertilization takes place in the ovaries of the flower. This leads to the develop-
ment of seeds and propagation of the species. Sometimes the seeds are embedded within
the fruit of the plant, but they contribute to reproduction. Figure 14.3 shows the male and
female parts of a mature flower. The reproductive parts of the flower such as the style,

FIGURE 14.2
Spring rose (Helleborus Orientalis). (Author: Dominicus Johannes Bergsma – own work, CC BY-SA 3.0. https​://cr​
eativ​ecomm​ons.o​rg/li​cense​s/by-​sa/3.​0/dee​d.en.​)

FIGURE 14.3
Illustration of the parts of a mature flower. [Author: Mariana Ruiz LadyofHats – own work (Public Domain).]

https://creativecommons.org
https://creativecommons.org

184 ﻿﻿Nature-Inspired Optimization Algorithms

FIGURE 14.4
Christmas lillium. 1. Stigma, 2. style, 3. anthers, 4. filament, 5. sepal. (Author: J. J. Harrison – own work, CC
BY-SA 3.0. https​://cr​eativ​ecomm​ons.o​rg/li​cense​s/by-​sa/3.​0/dee​d.en.​)

stigma, anther, pollen, and ovaries are highlighted. Figure 14.4 shows the different repro-
ductive parts of a Christmas lillium.

In self-pollination, the pollen from the anther of a flower gets deposited on the stigma of
the same flower or it gets transferred to the stigma of another flower belonging to the same
plant. Figure 14.5 shows the orchid flower (Ophrys apifera) in which automatic self-pollina-
tion occurs. It shows two of the anthers carrying pollen bending towards the stigma.

In cross-pollination the birds or insects that visit the flowers collect the pollen and when
they visit another flower of a different plant, the pollen gets deposited. The flowers could
belong either to the same species or they might be of different species. Figure 14.6 shows a
carpenter bee with pollen collected from the flower night-blooming cereus (princess of the
night or Honolulu queen).

Pollination mostly occurs within species, but pollination between different species also
takes place leading to hybrid varieties of flowers. Pollination can be classified as biotic
or abiotic. In abiotic methods, pollen is carried by wind and water. In biotic pollination,
pollen is carried by biological agents like insects, birds, and animals. Approximately
10% of pollination is done through abiotic means whereas 90% of pollination takes place
through biotic agents. One good example of a plant in which abiotic pollination takes
place is grass. Biotic pollinators are living organisms that carry pollen from one flower
to another. There are more than two lakh species of organisms that carry out biotic

https://creativecommons.org

185Flower Pollination Algorithm﻿﻿

pollination. They include butterflies, bees, and bats to name a few. The pollinators like
honey bees visit only certain species of flowers and pollinate amongst them. This leads
to reproduction and propagation of the same species of flowers leading to what is called
flower constancy [2]. Such insects visit only certain flower patches, and in the process,
bypass valuable food sources. One possible reason for such behaviour is the memory
of insects and their ability to remember characteristics of certain species of flowers
only. Insects which visit several species of flowers either have good enough memory to
remember all of them or do not have memory to remember any of them. The distance
of pollination depends on the pollinating agent and the distance it can travel, especially
through flying. Figure 14.7 shows a honey bee collecting nectar from a flower and dur-
ing the process, pollen gets stuck to its rear leg that is clearly visible in the picture. Tiny
hairs on the body of the bee have a slight electrostatic charge, causing pollen from the
flower to stick to the bee’s body which could get deposited on another flower when the
bee visits that flower. This is in aid of cross-pollination in which the bee could visit flow-
ers either from the same species or different species. Figure 14.8 shows a hummingbird
that typically feeds on the red flower, leading to flower constancy. The advantage of flower
constancy is maintaining the integrity of the species.

There are millions of plants, and more than 75% of them are flowering plants. Flowers
are associated with the reproduction of the plant species through pollination, and they
later produce seeds along with fruits. The pollination process has evolved with some
plants or flowers being very attractive or producing nectar or scents to attract certain types
of insects. Some of the flowers have specialized color or odor to trap insects or birds. They
also have traps to lure and capture unwary insects. They have been found to be very effec-
tive in luring insects for pollination.

The combination of the above factors leads to optimal reproduction of the flowering
plants that ultimately leads to survival of the fittest.

FIGURE 14.5
Orchid flower (Ophrys apifera). [Author: Bernard DUPONT from France. Source: Bee Orchid (Ophrys apifera), CC
BY-SA 2.0. https​://cr​eativ​ecomm​ons.o​rg/li​cense​s/by-​sa/2.​0/dee​d.en.​]

https://creativecommons.org

186 ﻿﻿Nature-Inspired Optimization Algorithms

FIGURE 14.7
Honey bee on flower with pollen collected on rear leg. (Author: Michael Palmer – own work, CC BY-SA 4.0.
https​://cr​eativ​ecomm​ons.o​rg/li​cense​s/by-​sa/4.​0/dee​d.en.​)

FIGURE 14.6
Carpenter bee with pollen collected from night-blooming cereus. (Author: Brocken Inaglory – own work, CC
BY-SA 3.0, 2.5, 2.0, 1.0. https​://co​mmons​.wiki​media​.org/​wiki/​Commo​ns:GN​U_Fre​e_Doc​ument​ation​_Lice​nse,_​
versi​on_1.​2. https​://cr​eativ​ecomm​ons.o​rg/li​cense​s/by-​sa/3.​0/dee​d.en.​)

https://creativecommons.org
https://commons.wikimedia.org
https://commons.wikimedia.org
https://creativecommons.org

187Flower Pollination Algorithm﻿﻿

Figure 14.9a shows a young flower of the species Geranum incanum with its anthers ready
to open and its pistil (stigma, style, ovary) not yet developed. When the flower opens its
anthers, it changes color to attract pollinators, and when it matures fully it sheds its anthers
and stamen in order to avoid self-pollination. Figure 14.9b shows a group of mature as well
as young flowers of the species Geranum incanum. The flower at the top is mature with its
anthers shed whereas the lower ones still have anthers. The stigma is not yet fully devel-
oped, and there is a change in the color of the flowers that indicates to the pollinators that
it is ready to receive pollen. Figure 14.9c shows the fully mature flower of Geranum incanum
with its anther and stamens shed and stigma deployed to receive foreign pollen. Some of
the flowering plants have a specialized mechanism to attract certain species of birds or
insects that aid in pollination and hence propagation of the same species.

14.3 � Flower Pollination Optimization

An optimization algorithm based on the flower pollination process has been proposed by
Xin-She Yang in 2012 called the flower pollination algorithm (FPA). The process and charac-
teristics of flower pollination are idealized into four basic rules upon which the algorithm
is developed:

•	 In biotic and cross-pollination the pollen-carrying agents are assumed to take
Levy flights and hence this is global pollination.

•	 In abiotic and self-pollination the pollen is carried over a small distance; hence it
is categorized as local pollination.

FIGURE 14.8
Hummingbird feeding on the red flower. (Author: Brocken Inaglory – own work, CC BY-SA 3.0/2.5/2.0/1.0.
https​://co​mmons​.wiki​media​.org/​wiki/​Commo​ns:GN​U_Fre​e_Doc​ument​ation​_Lice​nse,_​versi​on_1.​2. https​://cr​
eativ​ecomm​ons.o​rg/li​cense​s/by-​sa/3.​0/dee​d.en.​)

https://commons.wikimedia.org
https://creativecommons.org
https://creativecommons.org

188 ﻿﻿Nature-Inspired Optimization Algorithms

•	 In flower constancy reproduction is among the same species of flowers. This is
included in the algorithm as reproduction probability which is proportional to the
similarity of the two flowers (source and receiver of pollen).

•	 The proportion of local and global pollination is determined by a parameter ps that
assumes values in the interval [0, 1].

Local pollination takes up a significant proportion of the total pollination activities,
since wind and water are two of the pollen-carrying agents. Moreover, the flowers of
the same plant are in close proximity, and this factor aids in local pollination. Birds,
insects, bees, flies, and other biotic agents can fly for a long distance, and their move-
ment can be modeled by Levy flight behavior with the Levy distribution. Every plant
has numerous flowers, and each flower has hundreds or thousands of pollen gametes.
To simplify the development of the optimization algorithm, it is assumed that every
plant has one flower and every flower has one pollen gamete. This makes the plant,

FIGURE 14.9
(a) Young flower of Geranum incanum species with anthers and no pistil. (b) Geranum incanum flowers – top
flower is mature and lower ones are young. (c) Mature flower of Geranum incanum ready to receive foreign
pollen. (Author: Jon Richfield – own work, CC BY-SA 3.0. https​://cr​eativ​ecomm​ons.o​rg/li​cense​s/by-​sa/3.​0/dee​
d.en.​)

https://creativecommons.org
https://creativecommons.org

189Flower Pollination Algorithm﻿﻿

flower, and pollen gamete equivalent to each other, and they represent one possible
solution to the problem in the case of single-objective optimization. This concept can
be extended to include multiple flowers and multiple pollen gametes, to solve multi-
objective optimization problems.

14.3.1 � Algorithm

Let Xi
iter be a vector representing a pollen gamete or a flower/plant in the d-dimensional

search space during the iteration iter. The population size is N.

	 X x x x i Ni
iter

i
iter

i
iter

id
iter= =[....] , , ,1 2 1 2  	 (14.1)

The algorithm is assumed to be iterative, indexed by the variable iter, and the maximum
number of iterations is MaxIter. The solution vector evolves in the next iteration as given by
Equation 14.2 which represents global pollination.

	 X X L u X Xi
iter

i
iter

i
iter

gb
iter+ = + -1 ()()	 (14.2)

where L(u) is the step size that follows Levy distribution and Xgb is the global best solu-
tion in the current iteration. This Equation 14.2 represents global pollination that is biotic,
since Levy flights are undertaken by birds and insects that can fly long distances. L(u) is
the Levy distribution that models the transition probability, thus making the next position
depend on the present position and the transition probability. The Levy distribution is
approximated and given in Equation 14.3.

	 L u t uu() ,» £ £- 1 3	 (14.3)

The second rule of the algorithm is given by Equation 14.4 that represents local pollination
and flower constancy:

	 X X r i X Xi
iter

i
iter

j
iter

k
iter+ = + -1 ()()	 (14.4)

where Xj
iter and Xk

iter are pollens from different flowers of the same species leading to
flower constancy, and r(i) is a random number that takes on values in the interval [0, 1]
with a uniform distribution. This parameter r(i) models stochasticity in the algorithm
and simulates a local random walk. Usually flower patches contain flowers of the same
species that could be in the immediate vicinity or in the neighborhood of the flower
represented by Xi. Sometimes the flowers belonging to the same species might be far
away from the neighborhood of Xi. Let ps be a probability that is equivalent to a switch
whose value determines whether it is local or global pollination. Smaller values of ps
(<0.5) make it a local search, whereas if ps is increased (ps > 0.5), it becomes global pol-
lination (global search). The value of ps = 0.8 is optimum for most of the optimization
problems.

The two key steps in the algorithm are based on global pollination and local pollination
along with flower constancy and Levy flights. In the first step, pollen is carried by birds
and insects that fly over long distances. This is biotic global pollination, and the global best
solution is represented as Xgb. In the second rule the pollination is local along with flower

190 ﻿﻿Nature-Inspired Optimization Algorithms

constancy that is modeled by a local random walk. FPA has been found to perform better
than GA and PSO comparatively in terms of the number of iterations required for attain-
ing the global optimum solution.

14.3.2 � Pseudocode

Initialization

Population size N of flowers/pollen gametes
Initial random position of the N flowers/pollen gametes in the search space
Define objective function f(X) that is d-dimensional,

where X x x xi i i id= [......]1 2 , i = 1, 2, …, N
Evaluate the objective function for i = 1, 2, …, N and identify the global best Xgb

Define switch probability ps with an initial random value in the interval [0, 1]
Define maximum number of iterations MaxIter

iter = 1
while (iter ≤ MaxIter) do

for i = 1 to N

Generate random number rs in the interval [0, 1]
if (rs < ps) then

Obtain a step size L(u) from the Levy distribution
Perform global pollination using Equation 14.2

else if (rs ≥ ps)
Generate random number r(i) in the interval [0, 1]
Randomly choose Xj and Xk from the population
Perform local pollination using Equation 14.4

end if
Evaluate new solutions and if better, update the population of pollen/flowers

end for

Evaluate the solutions to find the current best Xgb

iter = iter + 1
end while

Current best solution Xgb is the global optimum solution

191Flower Pollination Algorithm﻿﻿

Flowchart

N

f(X) d
N

Xgb

ps

MaxIter
iter

iter = MaxIter? iter = iter

rs < ps?

i Ni = i

Xgb

current best

r i Xk Xj

rs

i

192 ﻿﻿Nature-Inspired Optimization Algorithms

14.4 � Variants of the Algorithm

FPA can be applied for solving optimization problems with multiple objectives [3]. The
multiple objectives can be combined as a weighted sum to produce a single-objective func-
tion. The weights can be chosen either depending on the application or randomly from a
uniform distribution in the range [0, 1]. The Pareto Optimal Front can be obtained with
FPA, and it converges quickly. Real-life engineering optimization problems have conflict-
ing objectives with or without constraints. Combining these conflicting objectives and
finding the Pareto Optimal Front is quite challenging for most of the optimization algo-
rithms. In single-objective optimization, the solution is a point in the search space, whereas
in a two-objective problem, the Pareto Optimal Front is a curve in the search space, and
in problems with higher numbers of objectives, the Pareto Optimal Front is a hyperspace.
The complexity increases with the number of objectives. Other problems in multi-objective
optimization are increases in dimensionality and time complexity. Such problems can be
solved by nature-inspired algorithms with promising results.

In [4] FPA with bee pollinator is proposed in order to improve the global and local search
abilities and prevent FPA from getting trapped in local minima. Three strategies have
been included in FPA for improving the local and global search abilities. The discard solu-
tion (pollen) operator and crossover operator taken from the artificial bee colony algorithm
enhance diversity with global search (improve exploration) whereas the elite-based mutation
operator is included to enhance the local search ability (improves exploitation). Honey
bees are used to perform Levy flights and do a global search. If a solution is not the global
best and it is not improved after a fixed number of iterations it should be discarded (discard
pollen operator) and a new solution generated randomly. This helps in coming out of local
minima. Crossover increases the diversity of the population. The elite-based mutation opera-
tor improves the convergence speed. The application for which the proposed algorithm
has been tested is data clustering, and results for several data sets prove the superior-
ity of the FPA with bee pollinator. Clustering is one of the techniques for data analysis,
data mining, image classification, and related applications. k-means clustering is one of the
most popular techniques commonly used for data clustering and classification. One of the
disadvantages of k-means clustering is that it might lead to locally optimal solutions since
the final solution depends upon the initial values. The results of FPA with bee pollinator
have been compared with DE, ABC, FPA, CS, PSO, and k-means clustering, and it has been
found that the hybrid FPA–bee pollinator surpasses the other algorithms in accuracy, con-
vergence speed, and stability.

In [5] a hybrid optimization algorithm based on FPA and the clonal selection algorithm
(CSA) is proposed. CSA is based on the clone selection theory proposed in [6]. The main
characteristics of the immune system are:

•	 Immune system has memory to remember previous attacks.
•	 Antibodies that most stimulated are selected for cloning.
•	 Antibodies that are poorly stimulated or not at all stimulated are removed.
•	 The activated immune cells have undergone a hyper-mutation process.
•	 Diversity of human antibodies is maintained.

CSA is also a population-based algorithm where a population of antibodies represents
potential solutions in the search space. Antibodies that are activated by a certain foreign

193Flower Pollination Algorithm﻿﻿

body only proliferate. Cloning makes copies of antibodies that have high affinity so that
antibodies with higher affinity have a higher probability of being cloned. The clones are
better matched with antigens through mutation. The mutated antibodies are mixed with
the current population, and they are ranked to choose the best memory cells. Finally, the
lowest-affinity antibodies are replaced with randomly chosen population members in
order to enhance the diversity.

In the FPA the high-affinity solutions are cloned in proportion to their affinity before
applying local pollination. A step size scaling factor is introduced into the local pollination
step. In order to avoid getting stuck in a local minima, the algorithm checks whether the
global best has changed in the last 100 iterations; if not the entire population is replaced
with newly generated random solutions retaining the global best solution. The combina-
tion of the good explorative properties of FPA (global search) and the good exploitative
properties of CSA (local search) through high fitness antibodies has made the hybrid mod-
ified FPA more efficient than either of the two algorithms taken separately. The perfor-
mance of the modified FPA has been compared with five of the famous existing algorithms
– Simulated Annealing, genetic algorithm, FPA, bat algorithm, and firefly algorithm. The
FPS–CSA algorithm has been found to outperform the existing metaheuristic algorithms.

Hybrid FPA with PSO has been proposed [7] to improve the accuracy of the search pro-
cess and convergence speed of the algorithm. This algorithm gives better performance for
constrained optimization problems. Initially, the PSO algorithm is applied in the search
space to find the best solutions. The best solutions found by PSO become the initial points
for FPA. The constraints in the optimization problem are taken into account by formu-
lating an overall function combining the actual objective function with the constraints
using appropriate weights. Now it becomes a weighted combination of multiple functions
including the objective function and the constraints. The superiority of the hybrid PSO–
FPA algorithm has been validated with a set of well-known test problems. In [8] the FPA
algorithm performance has been evaluated for continuous optimization functions and
its properties studied. The performance of FPA has been compared with PSO. In [9] the
mutation operator has been combined with FPA to develop five new variants of the FPA.
Amongst all of them, the adaptive Levy FPA has been found to give good results. The pro-
posed variants of FPA have been tested on 17 benchmark functions and compared with
the artificial bee colony, firefly, gray wolf, differential evolution, and bat algorithms. The
results have been presented for population sizes of 40, 60, and 80 with fixed dimensions. In
[10] FPA has been compared with the bat algorithm and tested on ten of the standard uni-
modal and multimodal benchmark functions. From the experimental results it is seen that
the FPA outperforms the bat algorithm with respect to quality of solutions, consistency,
and convergence characteristics.

In [11] the FPA has been applied to optimize the lifetime of wireless sensor networks by
optimizing the power used by each node. The clustering of the nodes is mathematically
modeled as a continuous function that is unconstrained. Moreover, the cluster nodes are
associated with the appropriate cluster head in an optimal manner. The distance between
the sensor node and the cluster head is defined as the fitness function. This minimizes
the total distance as well as the total energy consumed by the nodes. FPA has been found
to perform better in terms of wireless sensor network lifetime and stability as compared
to the classical low-energy adaptive clustering hierarchy (LEACH) algorithm. In [12] FPA
has been applied to minimize the total power loss in distributed generation systems. The
objective function is to minimize the total power loss of the distribution system. The equal-
ity constraint is that the power loss plus the total power demand should equal the power of
the distribution generation system. The inequality constraint is that the bus voltage should

194 ﻿﻿Nature-Inspired Optimization Algorithms

lie between a minimum and maximum limit. These constraints are applicable for all the
buses. The algorithm has been tested on three different systems, and the performance was
found to be satisfactory.

14.5 � Summary

This chapter has given a lucid description of the flower pollination algorithm that is based
on the interesting characteristics of the pollination of flowering plants. The algorithm
can be employed for unconstrained as well as constrained optimization problems. The
algorithm is simple with few parameters to tune, and it can be applied for any complex
engineering design problem. The number of parameters in FPA is very low, and its perfor-
mance is comparable to or surpasses other metaheuristic algorithms such as GA and PSO.
This simplicity makes it very popular for solving NP-hard optimization problems. This
can be extended to the discrete space to solve combinatorial optimization problems also.
A population size of around 20 to 50 with 100 iterations is suitable for most applications.
The FPA for single-objective optimization can be extended to multi-objective optimization
with the non-dominated solutions lying on the Pareto Optimal Front.

As an extension to the above, two hybrid algorithms have been proposed in the litera-
ture – hybrid FPA–CSA and hybrid PSO–FPA – with promising results. The results of the
hybrid algorithms show that the combination of more than one metaheuristic algorithm
improves the performance with respect to accuracy of the results and speed of conver-
gence when compared to the performance of single metaheuristic algorithms. The ability
of insects and birds to explore the search space by traveling longer distances leads to diver-
sification and global exploration of a vast search space. The concept of flower constancy and
self-pollination ensures intense local search and hence leads to the intensification property
of the algorithm. The right balance and interaction between these two principles makes
the algorithm efficient and effectively solves intractable NP-hard problems. The simple
concept of one pollen gamete and one flower on one plant can be extended to multiple pol-
len gametes and multiple flowers depending on the applications.

References

	 1. 	Xin-She Yang, Flower pollination algorithm for global optimization, In: Unconventional
Computation and Natural Computation 2012, Lecture Notes in Computer Science, Vol. 7445, pp. 240–
249, 2012.

	 2. 	L. Chittka, J. Thomson, Nickolas M. Waser, Flower constancy, insect psychology and plant
evolution, Naturwissenschaften, Vol. 86, Springer-Verlag, pp. 361–377, 1999.

	 3. 	Xin-She Yang, Mehmet Karamanoglu, Xingshi He, Multi-objective flower algorithm for opti-
mization, Procedia Computer Science, Vol. 18, pp. 861–868, 2013.

	 4. 	Rui Wang, Yongquan Zhou, Shilei Qiao, Kang Huang, Flower pollination algorithm with bee
pollinator for cluster analysis, Information Processing Letters, Vol. 116, pp. 1–14, 2016.

	 5. 	A. Emad Nabil, Modified flower pollination algorithm for global optimization, Expert Systems
with Applications, Vol. 57, pp. 192–203, 2016.

195Flower Pollination Algorithm﻿﻿

	 6. 	F. R. Fekety, The clonal selection theory of acquired immunity, Yale Journal of Biology and
Medicine, Vol. 32, p. 480, 1960.

	 7. 	O. Abdel Raouf, M. Abdel-Baset, I. El-henawy, A new hybrid flower pollination algorithm for
solving constrained global optimization problems, International Journal of Applied Operational
Research, Vol. 4, No. 2, pp. 1–13, Spring 2014.

	 8. 	Szymon Lukasik, Piotr A. Kowalski, Study of flower pollination algorithm for continuous
optimization, In: Intelligent Systems, Editors: P. Angelov, K. T. Atanassov, L. Doukovska, M.
Hadijski, V. Jotsov, J. Kacprzyk, N. Kasabov, S. Sotirov, E. Szmidt, S. Zadrozny, Springer, pp.
451–459, 2015.

	 9. 	Rohit Salgotra, Urvinder Singh, Application of mutation operators to flower pollination algo-
rithm, Expert Systems with Applications, Vol. 79, pp. 112–129, 2017.

	 10. 	Nazmus Sakib, Md. Wasi Ul Kabir, Md. Subbir Rahman, Mohammad Shafiul Alam, A com-
parative study of flower pollination algorithm and bat algorithm on continuous optimization
problems, International Journal of Applied Information Systems, Vol. 7, No. 9, September 2014.

	 11. 	Marwa Sharawi, E. Emary, Imane Aly Saroit, Hesham El Mahdy, Flower pollination optimiza-
tion algorithm for wireless sensor network lifetime global optimization, International Journal of
Soft Computing and Engineering, Vol. 5, No. 3, pp. 54–59, July 2014.

	 12. 	P. Dinakara Prasad Reddy, V. C. Veera Reddy, T. Gowri Manohar, Application of flower pol-
lination algorithm for optimal placement and sizing of distributed generation in distribution
systems, Journal of Electrical Systems and Information Technology, Vol. 3, pp. 14–22, 2016.

http://taylorandfrancis.com

197

15
Gray Wolf Optimization

15.1 � Introduction

Gray wolf optimization (GWO) is a metaheuristic optimization algorithm that has been mod-
eled on the behavior of gray wolves in nature. Metaheuristic algorithms are simple and have
an in-built stochasticity to solve complex problems that have been found to be intractable for
traditional algorithms. They are simple to implement and attain the optimum solution with
less time and computational complexity than their classical counterparts. Metaheuristic
algorithms are not specific to a problem, but they produce higher quality solutions for cer-
tain problems compared to others. They can be applied to a diverse set of problems ranging
over areas of engineering, computer science, economics, business, financial modeling, etc.
Metaheuristics combine local search as well as global search over the space of solutions,
and their randomness enables them to jump out of stagnation. This ensures diversity of the
search and hence increases the chances of finding the global optimum. When the nature-
inspired optimization algorithms are hybridized with other evolutionary algorithms they
produce better results. Additionally, extended and improved versions of these swarm intel-
ligence algorithms have also been proposed by several researchers.

Population-based search algorithms such as the gray wolf optimization are more efficient
since they are able to undertake the search for the optimum in parallel through multiple
agents, thus reducing the time taken. Gray wolves have a hierarchy within their pack, and
they are a disciplined bunch of animals. The wolves obey their leaders and undertake the
hunting and attacking of prey for the benefit of the entire pack. GWO emulates the hierarchy
of the wolf pack and their hunting techniques employed. The hunting, chasing, encircling,
and attacking of prey by gray wolves are the fundamental operations employed in the GWO
algorithm. These operations are mathematically modeled into the design of the algorithm.
GWO has been applied on several benchmark data sets and engineering design applications
and found to be comparable in performance to the existing algorithms of particle swarm opti-
mization, gravitational search algorithm, differential evolution, and evolutionary strategies
and programming. GWO has been found to be simple, flexible, derivative-free, and efficient in
attaining the global optimum solution for complex problems. Several variants and improve-
ments over the GWO have been proposed, and they have also been discussed in this chapter.

15.2 � Gray Wolf Characteristics

The gray wolf belongs to the Canidae family, and the species is Canis lupus. It is a canine
mostly found in North America and some regions of Europe-Asia. Wolves have color

Nature-Inspired Optimization Algorithms

198 ﻿﻿Nature-Inspired Optimization Algorithms

Gray Wolf Optimization

ranging from white to gray to black. Figure 15.1 shows a European gray wolf at the Prague
Zoo, Czech Republic.

The habitats of wolves are deserts, forests, mountains, and swamps. Wolves are very ter-
ritorial in nature, and they mark the boundaries of their territories, and claim and defend
them. Wolves defend their territories aggressively and mark it with the scent of their urine.
Wolves have territories ranging from tens to hundreds of square miles. Territory size is
mostly influenced by pack size, neighboring wolf packs, human habitat, etc. Wolves use
dens when they have young pups. Dens are dug in well-drained soil, mostly near water in
natural structures like boulders and tree logs. Wolves eat other animals like rabbit, moose,
deer, salmon, livestock, and their carcass, and sometimes they also feed on vegetation.
When their hunt is successful the wolves have a feast whereas if they are not able to find a
prey, they starve until they are able to get a kill.

Wolves live in groups of seven to eight, called packs, consisting of a father, mother, and
children. They live together, hunt, communicate, protect their territory, and raise their
young. Wolves howl to communicate among their pack as well as to wolves of other packs,
probably to warn of impending danger. They also howl for other types communication
such as claiming of territory, warning intruders, or identifying wolves. The howl is unique
for a pack, and they howl more during the full moon. The howl starts with a single wolf,
and others join in. Wolves communicate not only by howl but also through growling, bark-
ing, whimpering, whining, snarling, and through the scent of their bodies using their good
sense of smell. Wolves can sense smell more than a mile away. Communication amongst
them is very essential for their survival, and most of the communication is through body
language. When a wolf is happy, it prances about with its front lowered, body (hump) and

FIGURE 15.1
European gray wolf, Prague Zoo. (Source: www.f​lickr​.com/​photo​s/kac​hnch/​16364​27303​8, CC BY 2.0. https​://cr​
eativ​ecomm​ons.o​rg/li​cense​s/by/​2.0/d​eed.e​n.)

http://www.flickr.com
https://creativecommons.org
https://creativecommons.org

199Gray Wolf Optimization﻿﻿

tail raised. When a wolf is angry, it has a furrowed forehead, and might show its fangs and
growl. Young wolves stay with their parents (in their pack) for at least two years before
they start a new pack or join another pack. They have good body language to indicate
whether they are dominant or subservient to another. If a wolf has its head and tail held
high with perked up ears and baring teeth, it is confident and dominating. If a wolf has
its tail between its legs, and is slinking towards another one with flattened ears, closed
mouth, and slit-like eyes then it is approaching a dominant wolf. Wolves growl when they
are angry and whine when they are affectionate.

Gray wolves live in packs, and they have a social hierarchy as indicated in Figure 15.2.
There are four categories of wolves, namely alpha, beta, delta, and omega wolves, with
alpha being the highest in the hierarchy followed by beta, delta, and omega respectively
in a top-down manner. The leader of the pack is the alpha female wolf. The pack consists
of one alpha female and one alpha male, and they mate and produce pups. The pups stay
with the pack for two to three years and then move into nearby territory (~65 miles to 1000
miles) to form or join a new pack. Alpha wolves are the decision makers in the pack and
decide when to hunt and move, and they always eat first when a prey is killed. Alphas are
pack leaders that mark territory, locate and establish dens, hunt for prey, and lead the pack.
Only alpha wolves are allowed to mate in the pack but that does not necessarily mean
that they are the strongest wolves among the pack. Their dominance is acknowledged by
the other wolves and the pack is disciplined. The beta wolf is at the next level to alpha. In
case one of the alpha wolves passes away, a beta wolf in the pack will take over its posi-
tion. It acts as the interface between the alpha wolf and other members of the pack. It is
subservient to the alpha and reinforces the orders of the alpha to the other members of the
pack. The feedback from the rest of the pack is collected by the beta wolf and passed on
to the alpha wolf. The third level of wolves in the pack is deltas. They serve the functions
of scouts, sentinels, hunters, and caretakers. Scouts watch the boundary of their territory;
sentinels guard the pack against attacks. Omega wolves are the last in the hierarchy of the
pack, and they have to be subservient to all the other members higher up in the hierarchy.
Omega wolves are the babysitters in the pack, last to eat among all the wolves, and they
contribute to maintaining the structure of the pack.

Wolves travel a lot and spend almost half their time traveling. Wolves help to main-
tain the diversity of the ecosystem, and their kills are also prey for other animals. The
survival of the wolf population in the wild depends on the availability of prey, territorial
disputes with other packs, human intervention, and other influences in the environment.
The wolves normally hunt in packs or groups, and they exhibit social behavior. The char-
acteristics of group hunting are: (i) tracking/chasing/approaching the prey, (ii) pursuing/
encircling/harassing the prey, (iii) attacking the prey. Figure 15.3 shows a pack of wolves

α

δ

β

ω

FIGURE 15.2
Social hierarchy of gray wolves.

200 ﻿﻿Nature-Inspired Optimization Algorithms

FIGURE 15.4
Gray wolves attacking prey. (Author: Rolf Peterson – CC BY 3.0. https​://cr​eativ​ecomm​ons.o​rg/li​cense​s/by/​3.0/
d​eed.e​n.)

hunting bison in Yellowstone National Park. Figure 15.4 shows wolves attacking prey (two
wolves attack a moose at Isle Royale, Michigan, USA).

The gray wolf optimization algorithm is discussed in the following section.

15.3 � Gray Wolf Optimization

The gray wolf optimization algorithm is based on the hierarchy and social interactions
among the wolves belonging to a pack. The hunting techniques and disciplined behavior
of gray wolves are the inspiration behind the gray wolf optimization algorithm. The activi-
ties of hunting, tracking, encircling, and attacking the prey are mathematically modeled
in the optimization algorithm. The best solution is alpha (α), the second and third best

FIGURE 15.3
Wolves hunting bison in Yellowstone National Park. [Author: MacNulty D.R., Tallian A., Stahler D.R., Smith
D.W. Influence of Group Size on the Success of Wolves Hunting Bison. PLoS ONE 9(11): e112884. doi:10.1371/
journal.pone.0112884, CC BY 4.0. https​://cr​eativ​ecomm​ons.o​rg/li​cense​s/by/​4.0/d​eed.e​n.]

https://creativecommons.org
https://creativecommons.org
https://creativecommons.org

201Gray Wolf Optimization﻿﻿

solutions are beta (β) and delta (δ). The remaining solutions are the omega (ω). It is assumed
that hunting is guided by α, β, δ wolves and the ω follows these three categories of wolves.

15.3.1 � Gray Wolf Encircling Prey

Let Xi
iter represent the position vector of the ith gray wolf and Xp

iter represent the position
vector of the prey (both position vectors are d-dimensional), ca and cp are coefficient vec-
tors, and iter is the iteration number. The mathematical equation representing the gray
wolf encircling operation is given by Equation 15.1.

	 X X c Di
iter

p
iter

a i
iter+ = -1 	 (15.1)

where

	 D c X Xi
iter

p p
iter

i
iter= - 	

The coefficient vectors are given by Equation 15.2:

	 c a r aa
iter iter= -2 1 and	 (15.2)

where r1 and r2 are random vectors with values in the range [0, 1], and aiter is a param-
eter (vector) whose component values decreases from 2 to 0 as the number of iterations
increases. The parameter aiter is defined as

	 a iter
MaxIter

iter = -2
2

() 	 (15.3)

Figure 15.5 shows the diagrammatical model of a gray wolf encircling prey. In Figure 15.5
the dark circle represents the gray wolf at coordinates [,]x xi i1 2 (dimension vector), and
the dark triangle represents the prey at coordinates [,]x xp p1 2 (dimension vector). The light
circles (numbered as 1, 2, 3, 4, 5, 6, 7) represent possible positions around the prey that

3

1
2

4

5

6

7

P

W

FIGURE 15.5
Modeling of gray wolf encircling prey.

202 ﻿﻿Nature-Inspired Optimization Algorithms

could be taken up by other wolves of the pack. The various possible positions as given by
Equation 15.1 could be attained by varying the values of ca and cp. The wolves can take
up any position around the prey other than those indicated in Figure 15.5 by randomly
varying the values for r1 and r2 in the interval [0, 1]. This two-dimensional representation
of wolves encircling the prey can be extended to d-dimensions, thus forming a hypercube.

15.3.2 � Hunting Behavior of Gray Wolves

The hunting of gray wolves is led by the alpha of the pack, sometimes along with beta and
delta wolves. Assuming that these alpha, beta, and delta wolves have good knowledge of the
location of the prey, they are taken as the best three solutions obtained so far in the search
space. The optimum solutions are ordered according to the position of alpha, beta, and delta
wolves respectively. The omega wolves take up or update their positions according to the
position of alpha, beta, and delta wolves of their pack. The mathematical modeling of this
behavior is given by the following equations:

	 X X c D X X c D X Xiter iter iter iter iter iter iter
w a a w b b w d1 1 2 2 3= - = - =, , iiter iterc D- 3 d 	 (15.4)

where D c X Xiter iter iter
a a a= - , D c X Xiter iter iter

b b b= - , D c X Xiter iter iter
d d d= -

	 X
X X Xiter

iter iter iter

w
w w w+ = + +1 1 2 3

3
	 (15.5)

The omega wolves of the pack update their positions based on the positions of alpha, beta,
and delta wolves as given in Equation 15.5. The diagram modeling the hunting behavior of
wolves is given in Figure 15.6.

In this figure, P represents the prey and R is the radius of the circle at the center of
which the prey is located. The alpha, beta, and delta wolves estimate and position them-
selves around the prey, and the omega wolves update their positions according to the posi-
tions of the alpha, beta, and delta wolves. The positions will be somewhere within a circle,
which is randomly located. The omega wolf Xiter

w updates its position to Xiter
w

+1 while mov-
ing towards the prey, as given by Equation 15.5.

15.3.3 � Attacking of Prey by Gray Wolves

When the prey, encircled by the gray wolves, stops moving, it is attacked. This is the
exploitation phase in the algorithm. When the parameter ca is decreased, the wolf is
moving towards the prey, and when ca is increased the wolf is moving away from the
prey. The value of ca varies randomly in the range [,]- +2 2a aiter iter . The parameter aiter is
dependent on the number of iterations and decreases from 2 to 0 as the iterations increase.
When ca < 1, the wolf is attacking the prey, and ca > 1 indicates that the wolf is moving
away from the prey. Figure 15.7 shows the gray wolf attacking the prey and moving away
from the prey.

203Gray Wolf Optimization﻿﻿

15.3.4 � Gray Wolves Searching for Prey (Exploration)

The gray wolves search for prey based on directions or indications from the alpha, beta, and
delta wolves of the pack. This exploration is modeled by the parameter ca where ca > 1 indi-
cates exploration of the search space. This is divergence of the gray wolves. Another param-
eter that models exploration is cp whose value ranges in the interval [0, 2]. The values assumed
by cp are random, thus introducing a stochastic nature into the distance between prey and
the wolf. This is also helpful in coming out of local optima. Since the position vector of the
prey, denoted as Xp

iter, gets multiplied by the random component cp, it acts as a weighting
component for the position vector of the prey, making it harder for the wolf to approach the
prey. This is also equivalent to having obstacles in the path between the wolf and the prey.

Move

iterDa

iterDb

iterDd ω

R

P

itera1

cα

α

itera2

cβ

β

δ
itera3

cδ

FIGURE 15.6
Mathematical modeling of hunting behavior of gray wolves.

prey

grey
wolf

prey

grey
wolf

FIGURE 15.7
Modeling of gray wolves attacking prey.

204 ﻿﻿Nature-Inspired Optimization Algorithms

Algorithm

The algorithm commences with the problem statement and constraints, if any. The popu-
lation of gray wolves (population size N) is initialized randomly in the search space. The
d-dimensional objective function f(X) and the maximum number of iterations MaxIter are
defined for the problem. The iterations are indexed using the variable iter and it is initial-
ized to the value of 1. The parameters c c aa p

iter, , are initialized with a random component
introduced by the variables r1 and r2.

The objective or fitness function is evaluated at the positions of the gray wolves, and
the best three solutions are designated as α, β, and δ. The rest of the candidate solutions
are ω. The gray wolves hunt for the prey and, based on the probable position of the prey,
they update their own positions with respect to the prey. The values of c c aa p

iter, , are
updated, and they provide the balance between exploration and exploitation. The value
of the parameter ca ensures that half the number of iterations are for exploration and the
remaining are for exploitation. At the end of the maximum number of iterations the alpha
gray wolf with the highest fitness value is the global optimum solution to the problem. The
algorithm simplicity arises from the fact that only two parameters, cp and aiter, need adjust-
ment for convergence to the optimum solution.

Pseudocode

Initialization

Population of gray wolves Xi i = 1, 2, …, N
Define objective function f(X) with dimension d
Initialize parameters a, ca, and cp

Calculate the fitness value of the population
Three highest fitness values are assigned to X X Xa b d, , respectively
Maximum number of iterations MaxIter

iter = 1
while (iter ≤ MaxIter) do

for i = 1 to Nω

Update position of Xi by Equation 15.5 (Nω is population size of omega wolves)
end for

Update the parameters a, ca, and cp

Calculate the fitness values of the entire wolf population
Update X X Xa b d, ,
iter = iter + 1

end while

Highest fitness value Xa is the global optimum solution

205Gray Wolf Optimization﻿﻿

Flowchart

Xi, i N
a, ca, cp

f(X) d

X , X , X
MaxIter

iter

Xi omega

i

i = N ? i = i

a, ca, cp

X , X , X

iter = iter

iter = MaxIter?

X

206 ﻿﻿Nature-Inspired Optimization Algorithms

15.4 � Variants and Applications

Binary Gray Wolf Optimization

Two approaches are used in developing the binary version of GWO [1]. The steps taken
towards the three fittest solutions are binarized and stochastic crossover is used to find
the updated positions of the gray wolves. In the second approach the sigmoidal function
squashes the values of the continuously updated positions, and these values are thresh-
olded stochastically to find the updated positions of the gray wolves. The performance of
the binary version of GWO has been found to be superior for data classification compared
to existing algorithms. This proposed method has always been found to converge to the
global optimum solution.

The discrete GWO has been modified [2] and applied to the problem of multilevel image
thresholding for segmentation. One of the non-parametric methods of segmentation is
optimization of an objective function. Among the various optimization functions, the
Kapur’s entropy function is widely used because it does not require any prior knowledge
and gives good results. The objective function used in this work is Kapur’s entropy and the
original GWO has been modified to take care of the discrete values of the multiple thresh-
olds. The formula modeling the search for prey in the original GWO has been modified in
this algorithm using weighting coefficients. The proposed algorithm is superior to exist-
ing algorithms by being more stable and accurate, and it also produces better image seg-
mentation. In the multilevel thresholding algorithms, the complexity grows exponentially,
making the classical methods unsuitable. Therefore evolutionary and swarm intelligence-
based methods are preferred in such problems.

Multi-Objective Gray Wolf Optimization

The GWO algorithm has been extended to find the Pareto Optimal Front for multi-objec-
tive problems [3]. The two possible ways to solve multi-objective problems are to combine
all the multiple objectives into a single objective with appropriate weights for the single
objectives, or to find the set of non-dominated solutions for all the multiple objectives for
the problem. The original GWO has been modified to include an archive that contains the
set of all non-dominated solutions obtained by running the algorithm up to that point
of time. The leaders of the hunt, α, β, and δ wolves (hierarchical order), are selected from
the archive. There is an archive controller that controls non-dominated solutions entering
the archive and finds an alternative strategy when the archive is full. The archive has a
maximum limit to the number of elements it can store. In any iteration, if a new solution
is dominated by at least one member of the archive it is not allowed to enter the archive.
If the new solution dominates one or more archive members, the existing members are
thrown out and the new member enters the archive. If there is no dominance between the
existing and new solutions, the new solution is added to the archive. A grid mechanism is
proposed that is run on the archive to segment into crowded and non-crowded segments,
and the new solution is inserted into the least crowded segment. One of the solutions from
the most crowded segment is removed. The segments are normally hypercubes that are
d-dimensional. In a few instances, the solution is outside the hypercube and the segments
are extended to include the new solution.

In GWO, the three best solutions become the alpha, beta, and delta wolves, the so-called
leaders of the pack. In MOGWO, the leaders are selected from the least crowded segments

207Gray Wolf Optimization﻿﻿

of the solution hypercube based on a roulette wheel mechanism. The probability of select-

ing a leader from one of the segments (hypercube) is given by p
c

N
k

k
= where pk is the

probability of selection, Nk is the number of members in the Pareto Optimal Front in the
kth segment, and c is a positive constant with value greater than one. When the value of Nk
is small, the segment is less crowded and the probability of selection is higher. The three
leaders in the hierarchy (alpha, beta, and delta) are chosen from the least crowded hyper-
cube if there are three or more members. If there are less than three members in the least
crowded hypercube, the leaders are chosen from other hypercubes which are in the order
of decreasing crowd.

The algorithm and pseudocode of the MOGWO are the same as those of the GWO algo-
rithm except for the following differences:

•	 An archive is created to store non-dominated solutions and the leaders – alpha,
beta, and delta are chosen from the archive whereas in GWO the leaders are cho-
sen from the available population based on their fitness values.

•	 During each iteration, after updating the positions and objective function values
of the wolf population, the archive is updated with the non-dominated solutions.
If there is no space in the archive, some of the solutions are eliminated in order to
accommodate the new non-dominated solutions. In case any of the new solutions
are outside the archive, the hypercube is extended to include the new solutions.

•	 New leaders are selected from the updated archive using the same process as
before.

•	 Finally, the result of the algorithm is the set of non-dominated solutions available
in the archive whereas in GWO it is the alpha that is the optimum solution.

The parameters controlling the performance of MOGWO are the same as those of GWO.
MOGWO has been found to be robust and stable and competitive with other multi-objec-
tive algorithms with good convergence. Feature selection for classification [4] is one of
the important problems that has a far-reaching effect on the performance of the classifier.
MOGWO applied for feature selection has been found to outperform GA and PSO. The
training and operation phase of a classifier depends to a large extent on the feature set
(attributes of the objects to be classified). Choosing the appropriate features leads to data
reduction and elimination of redundancy to a certain extent. This speeds up the classifier
and reduces the search space.

Another variant of the original GWO algorithm is [5] wherein approximately half the
iterations are for exploration of the search space and the remaining half are for exploita-
tion. This exploration/exploitation is balanced in this version of GWO in order to find the
global optimum with the right balance of exploration/exploitation. This is achieved by
modifying the parameter aiter as follows:

	 a
iter

MaxIter
iter = -2 2

2

2()
	 (15.6)

This makes exploration of the search space 70% and exploitation 30% compared to 50–50
for the original algorithm. The algorithm has proved its superiority by solving the clus-
tering problem in wireless sensor networks. The GWO algorithm has been employed to
solve the node localization problem in wireless sensor networks successfully. GWO is
found to converge faster with maximum accuracy or least localization error. The results

208 ﻿﻿Nature-Inspired Optimization Algorithms

are attributed to the explorative and exploitative abilities of the algorithm that avoids local
optima and finds the global optimum in many cases [6].

The GWO algorithm is improved by introducing reinforcement learning along with
neural networks [7]. Reinforcement learning is mainly used in selecting the right param-
eters for the GWO algorithm. The single parameter that decides whether the algorithm is
exploring the search space or is in exploitation is the same throughout the algorithm in the
original GWO. In this modified algorithm, the parameter is changed for each wolf sepa-
rately using the reinforcement learning technique. The search space of each wolf and its
own experience are used in fixing the parameter value that decides between exploration
and exploitation. The repository of the experience of the wolves is built using neural net-
works that are updated by all the wolves in every iteration. The algorithm has established
its superiority over GWO, PSO, and GA on the feature selection problem and designing
optimal weights for neural networks.

An improvement in the GWO algorithm is proposed [8] with invasion-based migration
operation. In normal GWO there is one pack of wolves that hunts for prey (search opera-
tion), encircles prey, and attacks prey. In this modified GWO there is more than one pack
of wolves with migration of wolves between the different packs. This paves the way for
new solutions based on information exchange. This invasion-based migration helps the
algorithm in coming out of local optima. The algorithm is initialized with more than one
pack of wolves in the search space. When the algorithm is stuck in local optima, the migra-
tion operation is deployed. The best pack of wolves (in terms of fitness) is chosen for the
wolves from other packs to migrate to. The wolves that will migrate are chosen to be
the best ones in their own pack. The best pack will have a higher number of wolves, and
the ones with the lowest fitness values are eliminated. The other packs with lower num-
bers of wolves generate new wolves in a random manner. The performance of the modified
GWO is found to be efficient in solving complex problems.

The chaos theory integrated into GWO [9] increases its speed of convergence. The algo-
rithm is compared with standard metaheuristic algorithms including the original GWO
and its performance is found to be better with the right chaotic map. Chaotic maps are
used in finding the right value for the parameter a. The algorithm shows competitive
performance with respect to other algorithms for constrained engineering optimization
design problems, especially in convergence to the global optimum.

GWO has been applied [10] to tuning the parameters of Takagi–Sugeno proportional-
integral fuzzy controllers (T–S PI-FCs). Here, the GWO algorithm has been applied to find
the global minimum of the objective function formulated as the sum of the control error
(absolute value) and the square of the output sensitivity function. The individual compo-
nents of the function are weighted. The variables involved are the tuning parameters of
the controller. The application is a non-linear servo system. GWO gives better performance
than PSO and GSA.

An integrated GWO with kernel extreme learning machine (IGWO–KELM) is applied
for finding the right feature set in medical data classification [11]. The performance of the
algorithm with respect to accuracy, sensitivity, and specificity, which are used in evaluat-
ing classification problems, is found to be better than GA and GWO. This classification is
important for the medical diagnosis of diseases based on data available.

The drawback of GWO is its inability to come out of local optima. This is overcome [12]
by integrating GWO with the cuckoo search algorithm to find the global optimum. The
GWO algorithm is modified by introducing cuckoo search in updating the alpha, beta, and
delta wolves of the pack with each iteration. This improves the global exploration of the

209Gray Wolf Optimization﻿﻿

search space of the GWO algorithm. The GWO algorithm has been employed to solve the
node localization problem in wireless sensor networks successfully.

15.5 � Summary

The GWO algorithm has been modeled on the social hierarchy and behavior of gray
wolves as a pack. Their leadership hierarchy, the subservience of the wolves to the leaders,
and their activities undertaken for the benefit of the entire pack have been the inspiration
behind the GWO algorithm. The hunting, chasing, encircling, and attacking operations on
prey have been mathematically modeled in the algorithm and implemented successfully.
The group behavior of wolves in obeying orders, foraging, and taking care of their pack is
unique to the gray wolf family.

The performance of the GWO algorithm is competitive with particle swarm optimi-
zation, differential evolution, and the gradient search algorithm and even outperforms
some of them for a few benchmark functions. The results are attributed to the explor-
ative and exploitative abilities of the algorithm which avoids local optima and finds the
global optimum in many cases. The abrupt changes in the trajectory of a search agent
makes it explore the search space whereas reduction in the step size of the search agent
enhances the exploitative abilities of the algorithm. An optimization algorithm should be
balanced between these two characteristics in order to exhibit good convergence proper-
ties. The GWO algorithm is found to have good exploration, exploitation, avoidance of
local optima, and convergence to the global optimum solution, and it is suitable for real-
time applications.

References

	 1. 	E. Emary, Hossam M. Zawbaa, Aboul Ella Hassanien, Binary grey wolf optimization
approaches for feature selection, Neurocomputing, Vol. 172, pp. 371–381, January 2016.

	 2. 	Linguo Li, Lijuan Sun, Jin Qi, Bin Xu, Shujing Li, Modified discrete grey wolf optimizer algo-
rithm for multilevel image thresholding, Computational Intelligence and Neuroscience (Hindawi),
Vol. 2017, pp. 1–17, 2017.

	 3. 	Seyedali Mirjalili, Shahrzad Saremi, Seyed Mohammad Mirjalili, Leandrodos S Coelho, Multi-
objective grey wolf optimizer: A novel algorithm for multi-criterion optimization, Expert
Systems with Applications (Elsevier) Vol. 47, pp. 106–119, April 2016.

	 4. 	E. Emary, Waleed Yamany, Aboul Ella Hassanien, Vaclav Snasel, Multi-objective gray-wolf
optimization for attribute reduction, International Conference on Communication, Management
and Information Technology (ICCMIT 2015), Procedia Computer Science, Vol. 65, pp. 623–632, 2015.

	 5. 	Nitin Mittal, Urvinder Singh, Balwinder Singh Sohi, Modified grey wolf optimizer for global
engineering optimization, Applied Computational Intelligence and Soft Computing (Hindawi), Vol.
2016, pp. 1–17, 2016.

	 6. 	R. Rajakumar, J. Amudhavel, P. Dhavachelvan, T. Vengattaraman, GWO-LPWSN: Grey wolf
optimization algorithm for node localization problem in wireless sensor networks, Journal of
Computer Networks and Communications (Hindawi), Vol. 2017, pp. 1–11, 2017.

210 ﻿﻿Nature-Inspired Optimization Algorithms

	 7. 	E. Emary, Hossam M. Zawbaa, Crina Grosan, Experienced gray wolf optimization through
reinforcement learning and neural networks, IEEE Transactions on Neural Networks and Learning
Systems, Vol. 29, No. 3, pp. 681–694, March 2018.

	 8. 	Duangjai Jitkongchuen, Pongsak Phaidang, Piyalak Pongtawevirat, Grey wolf optimiza-
tion algorithm with invasion-based migration operation, 2016 IEEE /ACIS 15th International
Conference on Computer and Information Science (ICIS), Japan.

	 9. 	Mehak Kohli, Sankalp Arora, Chaotic grey wolf optimization algorithm for constrained opti-
mization problems, Journal of Computational Design and Engineering, Vol. 5, No. 4, pp. 458–472,
October 2018.

	 10. 	Radu-Emil Precup, Radu-Codrut David, Alexandra-lulia Szedlak-Stinan, Emil M. Petriu,
Florin Dragan, An easily understandable grey wolf optimizer and its application to fuzzy
controller tuning, Algorithms, Vol. 10, No. 2:68, pp. 1–15, 2017.

	 11. 	Qiang Li, Huiling Chen, Hui Huang, Xuehua Zhao, ZhenNao Cai, Changfei Tong, Wenbin
Liu, Xin Tian, An enhanced grey wolf optimization based feature selection wrapped kernel
extreme learning machine for medical diagnosis, Computational and Mathematical Models in
Medicine (Hindawi), Vol. 2017, pp. 1–15, 2017.

	 12. 	Hui Xu, Xiang Liu, Jun Su, An improved grey wolf optimizer algorithm integrated with cuckoo
search, 9th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing
Systems: Technology and Applications (IDAACS), Bucharest, Romania, September 2017.

211

16
Elephant Herding Optimization

16.1 � Introduction

The elephant herding optimization (EHO) algorithm is a swarm intelligence algorithm
based on the herding behavior of elephants. The swarm intelligence-based algorithms
are metaheuristic algorithms and provide solutions to complex real-world problems
with reduced time complexity. These algorithms are modeled on the collective intel-
ligence and social interactions among swarms of animals, birds, and insects. The solu-
tions found by these metaheuristic algorithms might not be accurate, but they are close
enough to the exact solution to be optimum. This is the main advantage of evolutionary
as well as swarm-based algorithms. Since the particle swarm optimization (PSO) algo-
rithm was first proposed in 1995, several swarm-based optimization algorithms have
been invented, and the EHO is one such algorithm based on the herding behavior of
elephants that was developed in 2015 [1, 2]. The myriad of problems that occur in real-
life applications has motivated the development of nature-inspired optimization algo-
rithms since the traditional methods do not produce satisfactory results for all kinds of
problems. Evolution in nature has motivated the invention of several optimization algo-
rithms, and these algorithms are either based on evolutionary principles and/or swarm
intelligence.

Nature has its own methods of tackling problems, and this is obvious in the survival
techniques undertaken by animals, birds, and insects. One such behavior is exhibited by
elephants which are one of the largest mammals on earth. The young and old female
elephants live together in clans, and these clans are headed by a female elephant called
the matriarch. The study of the elephant clans with their disciplined behavior within the
clan and the separation of male elephants from the clan has motivated the development of
the EHO algorithm. Elephants are social animals, and their behavior has been modeled as
two operators – clan updating and clan separation. This involves metaheuristics since nature
is not deterministic and does not provide exact answers to problems. But most species
have survived for generations because of their adaptability to nature and the dynamically
changing hostile environment. The elephants in the clan update themselves with respect
to their current position and the position of the matriarch. This characteristic of elephants
is modeled as the clan updating operator. The male elephants form part of the clan till they
reach puberty and then separate from the clan and live in isolation. This behavior is mod-
eled by the clan separating operator. These two operations are mathematically modeled
into the elephant herding optimization algorithm, and it has provided satisfactory results
to the benchmark functions and standard test problems. EHO has shown excellent perfor-
mance in solving intractable problems even though it has poor exploitation properties and
slow convergence.

Nature-Inspired Optimization Algorithms

212 ﻿﻿Nature-Inspired Optimization Algorithms

Elephant Herding Optimization

16.2 � Elephant Herding Behavior

Elephants are one of the largest mammals found in Asia and Africa. The Asian and
African elephants have several sub-species (two to four) amongst their population.
Elephants are intelligent and have good memory and exhibit emotions like grief and joy,
and can play around. Their long memory helps them in remembering the location and
presence of watering holes that are quite a distance away. They have a long trunk that
is used for drinking and eating. Elephants also lift things with their trunk. Elephants
communicate over long distance using a subsonic vibration that travels over ground
through air faster than sound. Male elephants maintain contact with their clan through
low-frequency vibrations. These vibrations are detected through the skin on the feet
and trunks. Figure 16.1 shows a picture of an elephant and its baby at the Chester Zoo,
Cheshire, England.

Elephants form and live in related family groups. The group or clan size might go up to
50 members. The elephant population is organized into clans, and a clan consists of female
elephants and their calves. Every clan is led by the oldest female elephant of the group
called the matriarch. The male elephant usually separates from the clan once it is grown
up and attains puberty, and lives in isolation. Within the group, the elephants express
sympathy, loyalty, and cooperation. Elephants feed on a diet of sugarcane, bananas, bam-
boo, crops, grasses, coconut, etc. Climate changes have made their habitat hotter and drier
leading to dwindling of their population. Poaching and superimposing on elephant habi-
tats by humans have led to dwindling of elephant population and reduced forest area for
elephants to occupy. Consequently, this leads to large-scale conflict with humans. Figure

FIGURE 16.1
Elephants in Chester Zoo. (Author: Nigel Swales. Source: Flickr, CC BY-SA 2.0. https​://cr​eativ​ecomm​ons.o​rg/
li​cense​s/by-​sa/2.​0/dee​d.en.​)

https://creativecommons.org
https://creativecommons.org

213Elephant Herding Optimization﻿﻿

16.2 shows a herd of elephants crossing the Luangwa River in South Luangwa National
Park, Zambia.

16.3 � Elephant Herding Optimization

The EHO algorithm is based on the behavior of elephant herds. Some simplifying assump-
tions have been made in the development of the EHO algorithm. It is assumed that ele-
phants are composed of clans with a fixed number of elephants in each clan. All the
elephants of a clan live under the leadership of a matriarch which is the oldest female
elephant of the entire group. The elephants update their own positions based on the posi-
tion of the matriarch in every iteration. In addition, one male elephant will leave the clan to
live separately. The characteristics of elephants in living together as clans under the lead-
ership of a matriarch and the separation of male elephants from the clan when they reach
puberty have been modeled into the optimization algorithm. This behavior of elephants is
modeled as two operators in the algorithm – clan updating and separating.

16.3.1 � Algorithm

To simplify the development of the algorithm, it is assumed that the number of clans is
NC and the number of elephants in every clan is the same and equal to NCE. It is also
assumed that only the worst elephant will leave the clan with every iteration. The variable
i is used as an index for the clans, and the variable j is used for indexing the elephants
within the clan. Therefore, i = 1, 2, …, NC and j = 1, 2, …, NCE. The search space is assumed
to be of dimension d and is indexed by the variable k, that is, k = 1, 2, …, d. The maximum

FIGURE 16.2
Elephants crossing the Luangwa River in Zambia. (Author: Geoff Gallice. Source: Flickr, CC BY 2.0. https​://cr​
eativ​ecomm​ons.o​rg/li​cense​s/by/​2.0/d​eed.e​n.)

https://creativecommons.org
https://creativecommons.org

214 ﻿﻿Nature-Inspired Optimization Algorithms

number of iterations in the algorithm is given by the variable MaxIter, and the iterations are
indexed by the variable iter. The position of every elephant in the search space in iteration
iter is represented by

	 Xe
iter

e
iter

e
iter

ed
iteri j x x x(,) ...= éë ùû1 2 	 (16.1)

The positions of elephants in each clan are updated based on their current position and
the position of the matriarch of the clan. The influence of the matriarch of the clan is
also included in the updating process of the position of the elephants. The worst elephant
is replaced using the separating operator. The separating operation leads to population
diversity.

The position of every elephant j in the clan i is updated by Equation 16.2 (except the
matriarch):

	 X i j X i j s rand X i best X ie
iter

e
iter

m e
iter

i e
iter+ = + -1(,) (,) . . (,) (,,)jéë ùû 	 (16.2)

where X i je
iter(,) is the current position (in iteration iter) of one elephant in clan i, index j is

the jth elephant within clan i, besti is the best elephant of the clan i which is the matriarch
of the clan, sm is a scale factor in the range [0, 1] that represents the influence of the matri-
arch on the elephant j in the clan, and rand is a random number uniformly distributed
in the interval [0, 1]. Similarly X i je

iter+1(,) is the updated position of the jth elephant in the
ith clan.

The position of the fittest elephant (matriarch) of the clan is updated by the following
equation:

	 X i best r X ie
iter

i c
iter+ =1(,) . ()	 (16.3)

where r takes values in the interval [0, 1] and represents the influence of the center of the
clan i on the fittest matriarch elephant of the clan, and Xc

iter is the center position of the clan
in iteration iter. The dimension of the search space is d, and let the index for the dimension
be k, that is, k = 1, 2, …, d. The center of the clan is computed as follows for the kth dimen-
sion in the d-dimensional space (Equation 16.4):

	 X i k
N

X i j kc
iter

CEi
e
iter

j

NCEi

(,) (, ,)=
=

å1

1

	 (16.4)

Equation 16.4 is repeated d times for the d-dimensions of the search space (k = 1, 2, …, d).
The male elephants leave their clan and live alone solitarily when they reach puberty.

This behavior of male elephants is modeled using a separation operator in the EHO algo-
rithm. The equation to implement this separation operation is given by Equation 16.5:

	 X w i X X X rande
iter

i e e e(,) ().min max min= + - + 1 	 (16.5)

215Elephant Herding Optimization﻿﻿

where wi is the worst elephant in the clan i, Xe
min is the lower bound on the elephant posi-

tion and Xe
maxis the upper bound on the elephant position, and rand is a random number

with a uniform distribution that takes values in the range [0, 1].
The parameters in the clan updating and separating operations that take random values in

the interval [0, 1] have a uniform distribution in the specified range. These random values
and the clan separating operator improve the diversity of the population.

16.3.2 � Pseudocode

Initialization

Initialize number of elephant clans NC

Initialize number of elephants in each clan NCE

Initialize the number of dimensions d in the search space
Define the objective function f(X)
Compute the fitness values of all the elephants in all the clans
Initialize the maximum number of iterations MaxIter

iter = 1
while (iter ≤ MaxIter)

Sort the elephant population according to fitness values
clan updating operator

for i = 1 to NC

for j = 1 to NCE(i)

if (j ≠ best)
Update position of elephant j in clan i (Equation 16.2)

elseif (j = best)
Update position of fittest elephant (matriarch) in clan i (Equation 16.3)

end if

end for

end for

clan separating operator

for i = 1 to NC

Apply the separating operator on the worst elephant of clan i (Equation 16.5)
end for

Evaluate the elephant population in their new updated positions
iter = iter + 1

end while

Elephant with the best fitness among the entire population is the global optimum

216 ﻿﻿Nature-Inspired Optimization Algorithms

Flowchart

f(X)

d
MaxIter

iter = 1

i = 1

i = i+1

i = NC?

i = 1

i = i+1

i = NC?

iter=MaxIter?

iter = iter+1

217Elephant Herding Optimization﻿﻿

16.4 � Variants of the Algorithm

The enhanced elephant herding optimization (EEHO) algorithm was proposed as a
variant of EHO to provide a good balance of exploration and exploitation and prevent
premature convergence towards the origin. The algorithm has a new position updating
operator that controls the convergence towards the center of the clan and the matriarch
and enhances the performance and also maintains diversity of population [3].

The elephants update their positions with each iteration depending on their current
position and the influence of the matriarch on the elephant being updated. But one of
the disadvantages is that the updated position need not always be better than the current
position (fitness value). In [4] three different enhancements to EHO have been proposed
– culture-based, alpha tuning, and biased initialization EHO. Alpha tuning improves the
performance by continuously varying the scale factor with every iteration. The scale factor
sm changes linearly with an increasing number of iterations instead of having a constant
value for sm. sm represents the influence of the matriarch on the elephants of the clan. In
culture-based EHO, the worst elephant is replaced with a saved elephant from the belief
space that has higher fitness. The belief space consists of elephants with higher fitness val-
ues. Another proposed strategy is to initialize the elephant population with good fitness
values. A threshold can be defined for this fitness. This is the biased initialization and the
evolution starts only after the fitness reaches a threshold level.

In [5] the EHO has been tested on 28 CEC2013 benchmark functions and found to be
comparable in performance to PSO.

Elitism: It is a strategy adopted by the EHO algorithm where the worst elephants are
replaced by the saved elephants that have good fitness values. The saving of elephants
takes place after evaluation of the fitness and sorting of the elephants based on these fit-
ness values and before the application of the clan updating operator. The clan updating
operator changes the positions of the elephants and hence their fitness values since the
fitness depends on the position. By this variation in the EHO algorithm the elephants with
high fitness values are preserved; normally one or two elephants are saved. Moreover, the
elitism strategy adopted also improves the rate of convergence of the algorithm.

16.5 � Summary

Nature has taught us that the collective intelligence and social interactions among the
members of a group is able to accomplish much more than individuals can accomplish.
The intelligence and smart behavior exhibited by elephants have been the source of inspi-
ration for development of the EHO algorithm. It has been successful in providing solutions
to complex engineering problems that are quite challenging and time-consuming to solve
by other traditional methods. Typical values for the parameters of the EHO algorithm are
NC = 5, NCE = 10, and this makes the total elephant population size 50. The scale factor for
influence of the matriarch on the clan updating operation is sm = 0.5, and the factor r = 0.1
is the influential parameter for matriarch updating. The parameter values and the in-built
stochasticity in the algorithm lead to differences in results with each run of the algorithm,
but on average, the optimum result is obtained. The dimension of the population space
could be between 10 and 20 and the maximum number of iterations could range from 50

218 ﻿﻿Nature-Inspired Optimization Algorithms

to 100, depending on the problem to be solved. The EHO algorithm has fewer parameters
to control compared to other swarm-based algorithms. If the parameters are varied adap-
tively, especially as the iterations progress, the performance could improve as compared to
having fixed parameter values for all the iterations of the algorithm. The EHO algorithm
is easy to implement since it has a lower number of parameters compared to other opti-
mization algorithms. The disadvantages are its slow convergence and lesser exploitation
abilities. EHO has been tested on various benchmark problems and found to be competi-
tive with the existing optimization algorithms such as the genetic algorithm (GA) and dif-
ferential evolution (DE). EHO can be hybridized with other swarm intelligence algorithms
to further improve the performance.

References

	 1.	 G.-G. Wang, S. Deb, X.-Z. Gao L. dos Santos Coelho, Elephant herding optimization, IEEE 3rd
International Symposium on Computational and Business Intelligence (ISCBI), Bali, Indonesia, 2015.

	 2.	 G.-G. Wang, S. Deb, X.-Z. Gao, L. dos Santos Coelho, A new metaheuristic optimization
algorithm motivated by elephant herding behaviour, International Journal of Bio-Inspired
Computation, Vol. 8, No. 6, pp. 394–409, 2016.

	 3.	 Alaa A. K. Ismaeel, Islam A. Elshaarawy, Essam H. Houssein, Fatma Helmy Ismail, Aboul Ella
Hassanien, Enhanced elephant herding optimization for global optimization, IEEE Access, Vol.
7, pp. 34738–34752, March 2019.

	 4.	 Mostafa A. Elhosseini, Ragab A. El Sahiemy, Yasser I. Rashwan, X. Z. Gao, On the performance
improvement of elephant herding optimization algorithm, Knowledge Based Systems (Elsevier),
Vol. 166, pp. 58–70, February 2019.

	 5.	 Viktor Tuba, Marko Beko, Milan Tuba, Performance of elephant herding optimization algo-
rithm on CEC2013 real parameter single objective optimization, WSEAS Transactions on
Systems, Vol. 16, pp. 100–105, 2017.

219

17
Crow Search Algorithm

17.1 � Introduction

Engineering design problems for real-life applications can be quite complex in nature with
many different feasible solutions. The number of parameters or decision variables involved
could be quite large, and all possible values of these decision variables lead to numerous
solutions. In optimization, the goal is to find the best among all of them which is the global
optimum for the design problem. The multiple feasible solutions could be equivalent to the
local optima of the objective function defined for the problem. Conventional optimization
methods do not perform well in such cases, and many of them require computation of the
derivatives of the objective function that might be a continuous function of variables. In
choosing the best among the feasible solutions in problems involving several constraints,
the time complexity becomes an important factor. When the number of design variables is
large or the function is complex and there are many local optima, conventional methods
fail to find the global optimum in finite time and are not efficient. The traditional methods
work well when the design variables are smaller in number and the objective function is
unimodal. For problems which do not meet these requirements, metaheuristics plays a
vital role in finding the global optimum solution in finite time.

Researchers have turned to nature for inspiration, and many optimization algorithms
have been developed based on the study of the behavior of animals, birds, and insects.
Such nature-inspired algorithms incorporate some randomness within them, and almost
all of them are metaheuristic. Metaheuristic algorithms have been found to be suitable for
solving engineering optimization problems that have non-linear objective functions and
constraints and are also multimodal. Metaheuristic algorithms balance between random-
ness (diversification) and local search (intensification); hence they are effective in solving
multimodal, non-linear, complex optimization problems. One such metaheuristic algo-
rithm based on the intelligent behavior of crows is the crow search algorithm (CSA) discussed
in this chapter [1]. Crows are very intelligent birds that exhibit flocking behavior, and they
have been the source of inspiration behind the crow search optimization algorithm.

17.2 � Crows in Nature

Crows are medium-sized black birds found commonly in several countries. Crows are
aggressive birds, and they live in grasslands and fields with trees in the neighborhood
where they can build nests. There are several species of crows (~40) around the world, and

Nature-Inspired Optimization Algorithms

220 ﻿﻿Nature-Inspired Optimization Algorithms

FIGURE 17.2
Australian raven (Corvus coronoides), Doughboy Head, New South Wales, Australia. (Author: J. J. Harrison –
own work, CC BY-SA 4.0. https​://cr​eativ​ecomm​ons.o​rg/li​cense​s/by-​sa/4.​0/dee​d.en.​)

Crow Search Algorithm

one common species called the house crow, typically found in most parts of Asia, is shown
in Figure 17.1. Some of them have a grey neck while others are completely black.

Crows, ravens, and rooks are all part of the genus Corvus that belongs to the Corvidae
family.

Ravens are bigger than crows with heavier bills and hoarser voices (sounds like a croak).
An Australian raven is shown in Figure 17.2. Rooks are slightly smaller than crows with
wedge-shaped tails and light-colored beaks, and one member of the species is shown in
Figure 17.3. They also have a harsh caw similar to that of the common crow.

Crows never forget a face. They can fiercely attack humans and other birds when their
territory is encroached upon or they feel threatened or to protect their young ones. They are
adaptable birds with a loud ‘caw’ that can be annoying and sound harsh to the ears. They
also have the honor of representing our dead ancestors, and feeding a crow is a custom
to pay respects to our earlier generations and receive blessings. Crows are very intelligent
birds, and they do steal food. They have excellent memory and search the environment for

FIGURE 17.1
Female house crow in Kuala Lumpur. (Author: Gerifalte Del Sabana – own work, CC BY-SA 4.0. https​://cr​eativ​
ecomm​ons.o​rg/li​cense​s/by-​sa/4.​0/dee​d.en.​)

https://creativecommons.org
https://creativecommons.org
https://creativecommons.org

221Crow Search Algorithm﻿﻿

quality food sources in a manner equivalent to searching for the optimum solution in the
search space. They forage either singly or in groups. When they locate a food source, they
also communicate with other crows about their discovery of food by cawing to attract the
attention of other crows. A group of crows is called a murder. When there is a death of a
crow, they all join together and issue loud harsh cawing sounds. They mourn their dead
and even investigate the cause of death. They also mob and chase away predators. Figure
17.4 shows crows in flight mobbing a red-tailed hawk.

Some species of crows live in roosting communities. A few species migrate to warmer
climates, and many of them eat agricultural pests, whereas some of them damage crops
and eat them. Sometimes they feed on dead animals and birds and garbage food. During

FIGURE 17.3
Rook at Slimbridge Wetland Centre, Gloucestershire, England. [Author: Adrian Pingstone – own work (Public
Domain).]

FIGURE 17.4
Crows mobbing a red-tailed hawk. (Author: Dori – own work, GFDL Ver 1.2. https​://co​mmons​.wiki​media​.org/​
wiki/​Commo​ns:GN​U_Fre​e_Doc​ument​ation​_Lice​nse,_​versi​on_1.​2.)

https://commons.wikimedia.org
https://commons.wikimedia.org

222 ﻿﻿Nature-Inspired Optimization Algorithms

the mating period they build nests more than 15 feet above the ground. Female crows lay
4 to 5 eggs, and the chicks are hatched after an incubation period of 18 days. The nest of
a crow built in a tree containing four eggs is shown in Figure 17.5. The chicks are fed for
nearly 60 days. The lifespan of crows is approximately 14 years.

Crows are intelligent birds that have good memories for faces, communicate with other
members belonging to their species, and steal and hide food. It is remarkable that they
remember the hiding places of their food and protect their food from other birds and ani-
mals. They also change the hiding place, if necessary. When a crow finds that it is being
followed by another crow, it tries to fool the one following it in order to protect its food
stored in the hiding place. Crows have been found to have a large brain size compared to
their body size. They are very intelligent and can remember the hiding place of their food
even after several months. This behavior of crows is modeled in the crow search algorithm.

17.3 � Crow Search Optimization

In the crow search algorithm, the environment is the search space, crows are the agents
searching for the solution (foraging for food), each position in the environment is a feasible
solution, the quality of the food in a location is related to the objective function value, and
the best food source found by the crow is the global best solution to the optimization prob-
lem. The four underlying principles of the crow search algorithm are:

•	 Crows exhibit flocking behavior (they live together).
•	 Crows remember the hiding place of their food.
•	 Crows follow other crows to steal food.

FIGURE 17.5
Crow’s nest in Moscow. (Author: Bugaga – own work, GFDL Ver 1.2. https​://co​mmons​.wiki​media​.org/​wiki/​
Commo​ns:GN​U_Fre​e_Doc​ument​ation​_Lice​nse,_​versi​on_1.​2.)

https://commons.wikimedia.org
https://commons.wikimedia.org

223Crow Search Algorithm﻿﻿

•	 Crows protect their own hiding places from being pilfered.

Assume that the environment is d-dimensional, and let the population size of crows be
N (agents searching for solution in the search space). Let X x x xi i i id= [...]1 2 , i = 1, 2, …, N,
be the vector representing the position of the ith crow in the d-dimensional search space
where the dimension is indexed by the variable j = 1, 2, …, d. The iterations are indexed by
the variable iter, and the maximum number of iterations in the algorithm is MaxIter, where
iter = 1, 2, …, MaxIter. During any iteration represented by iter, the position of the ith crow
in the d-dimensional space is given by the vector X x x xi

iter
i
iter

i
iter

id
iter= éë ùû1 2, , The hiding

place of the ith crow during iteration iter is represented by Hi
iter. Therefore this could be

the best position attained by the ith crow during the search in the environment up to the
current iteration iter. Crows keep looking for better food sources and hiding places in the
environment.

Let Hk
iter be the hiding place of crow k during iteration iter that it decides to visit. Crow

i is following crow k and there are two possibilities: (i) crow k is not aware that crow i is
following it, (ii) crow k is aware that crow i is following it.

(i) Crow i approaches the hiding place of crow k (crow k is unaware that crow i is follow-
ing it) and the new position of crow i is given by:

	 X X r l H Xi
iter

i
iter

i fi
iter

k
iter

i
iter+ = + ´ -()1 	 (17.1)

where ri is a random number uniformly distributed in the range [0, 1], and l fi
iter is the flight

length of crow i during iteration iter which could be lesser than or greater than 1. The
above conditions of flight length less than or greater than 1 are diagrammatically repre-
sented in Figure 17.6 and Figure 17.7 respectively.

When the flight length l fi
iter is less than one, the search is local and in the vicinity of the

current position of crow i. The next position of crow i will be on the dotted line between

Next position of crow i

origin

Crow i
iter
iX

Crow k
iter
kH

FIGURE 17.6

l fi
iter < 1

Next position of crow i

origin

Crow i
iter
iX

Crow k
iter
kH

FIGURE 17.7

l fi
iter > 1

224 ﻿﻿Nature-Inspired Optimization Algorithms

Xi
iter and Hk

iter . When the flight length l fi
iter is greater than one, the search becomes global and

moves away from the current position of crowXi
iter . The next position of crow i is again on

the dotted line between Xi
iter and Hk

iter but it could exceed (go past) Hk
iter .

(ii) Crow k knows that crow i is following it and tries to fool crow i by going to a place
different from where it has hidden the food. This is done so that crow i will not steal the
food of crow k.

The two possibilities discussed above could be mathematically represented together as

	
X X rl H X r pi

iter
i
iter

i fi
iter

k
iter

i
iter

k k
iter+ = + ´ -() ³

=

1 if

randomm position, otherwise
	 (17.2)

where riand rk are random numbers uniformly distributed in the interval [0, 1] and pk
iter

is the awareness probability of crow k in iteration iter. If the awareness probability has
smaller values, the search becomes local and intensified, whereas if the awareness prob-
ability has larger values, the search becomes global and diversified.

17.3.1 � Algorithm

The problem statement and associated constraints are defined. The decision variables and
parameters such as population size N, flight length lf, stopping criteria, maximum number
of iterations MaxIter, and awareness probability p are identified.

	 1.	The position and memory of the crows are randomly initialized in the search
space. For example, the position of the ith crow (in iteration iter) is a d-dimensional
vector defined as, X x x xi

iter
i
iter

i
iter

id
iter= [, ,]1 2 i = 1, 2, …, N.

	 The memory (hiding place) of the crows is also a d-dimensional vector defined as
H h h hi

iter
i
iter

i
tier

id
iter= [, ,]1 2 i = 1, 2, …, N

	 Initially the hiding place of the crows is at their starting position, since it is
assumed that they are yet to start their flights.

	 2.	The objective or fitness function f(Xi) is evaluated at the initial position of each
crow (evaluated for N crows).

	 3.	Randomly choose the kth crow to follow (k ≠ i) as well as the parameters:
r r l pi k fi

iter
k
iter, , , .

	 4.	The new position of the crow is generated according to Equation 17.1. The crows
move to their new positions, if feasible; otherwise they remain in their present
position.

	 5.	The fitness values is evaluated at the new position of the crow.
	 6.	The hiding place (memory) of the crow is updated as follows:

	
H X if f X f H

H otherwise

i
iter

i
iter

i
iter

i
iter

i
iter

+ + += () > ()
=

1 1 1

	 (17.3)

225Crow Search Algorithm﻿﻿

	 7.	Steps 3 to 6 are repeated for all the N crows.
	 8.	The algorithm terminates if either the stopping criterion is attained or the maxi-

mum number of iterations is reached; otherwise it continues.
	 9.	The best (highest) fitness value evaluated among the hiding places of the N crows

(as memorized by the crows) in the search space is the global optimum solution.

17.3.2 � Pseudocode

Initialization

Population size of crows N
Objective (fitness) function f(X) that is d-dimensional
Random initial position of the N crows which is also their initial hiding place

(memory)
Evaluate fitness function at the initial positions of the crows
Define stopping criteria, if any
Maximum number of iterations MaxIter

iter = 1

while (iter ≤ MaxIter) do

for i = 1 : N
Randomly choose the kth crow to follow

Choose awareness probability pk
iterfor the kth crow in the current iteration

Randomly choose a value for rk in the interval [0, 1]

if r pk k
iter>

        X X rl H Xi
iter

i
iter

i fi
iter

k
iter

i
iter+ = + ´ -()1

else

Xi
iter+1 is a random position in the search space

end if

end for

Evaluate the fitness values at the new positions of the crows, if feasible
Update the hiding places (memory) of the crows
if stopping criterion is met, exit

otherwise continue
iter = iter + 1

end while
Highest fitness value among the memorized hiding places of the N crows is the

global optimum

226 ﻿﻿Nature-Inspired Optimization Algorithms

Flowchart

iter = MaxIter?

N
f(X) d

N

MaxIter
iter

i

iter
k

iter
fiki plrrk

i

i
i

i = N?

iter = iter

i = i

N

227Crow Search Algorithm﻿﻿

17.4 � Variants and Applications

A hybrid algorithm based on the CSA and the sine cosine algorithm (SCA) called the sine
cosine crow search algorithm (SCCSA) has been proposed [2]. The SCA uses sine cosine
operators to update the positions of the particles in the search space. The disadvantages of
the CSA, such as that the particles do not update themselves based on the global best and
the particles move to new random positions based on flight length, are overcome in this
hybrid algorithm. The hybrid algorithm has been found to be competitive with the other
standard algorithms. CSA has been applied along with k-means clustering algorithm [3]
to find the optimal number of clusters. The k-means algorithm is one of the most popular
clustering algorithms in the literature, but its disadvantage is that it can get trapped in
local minima. In this application, initially the k-means algorithm is applied to generate the
cluster centers and then the CSA-k-means is applied to cluster the data around the centers
so that optimal clustering is achieved. In [4] the CSA is applied to find the optimum con-
ductor size in a radial distribution network under the constraints of the bus voltage limit
and current carrying capacity of the conductor. The objective is to minimize the conductor
capital cost and energy loss cost. This is helpful in choosing conductor type and size in the
radial distribution network. It is found that the network power loss and annual cost are
reduced compared to the original network. In [5] the CSA has been modified and applied
to induction motors and distribution networks. The parameter identification in induction
motors and capacitor allocation in distribution networks are two complex, non-linear,
multimodal problems in the field of energy. Metaheuristic algorithms are promising for
solving such problems in an optimal manner. Here CSA has been modified in terms of
awareness probability and random perturbation to improve the diversity and convergence
to the optimal solution. The awareness probability is made dynamic, i.e., it changes with
respect to the fitness value of the candidates. Instead of a random number with a uniform
distribution, Levy flights are used in this work which improves the efficiency in diversi-
fication. The problems chosen here are the internal parameters of an induction motor and
the capacitor allocation in a distribution network that minimize the energy losses and
improve the voltage profile.

Classical algorithms are time-consuming for solving fractional optimization problems
(with a higher number of dimensions) since they rely on some transformation, which is
overcome in metaheuristic algorithms. In [6] chaos theory is integrated into CSA to improve
the convergence speed and improve diversification and intensification. Chaos theory tunes
the parameters of the CSA to develop variants of the basic algorithm. The quality and reli-
ability of the proposed algorithm in terms of global optimum solution, convergence speed,
and computational time consumed surpass the other algorithms, especially for fractional
optimization. The problem of job scheduling in industries or any other sector demands an
optimum solution. The task becomes difficult when the number of jobs and/or resources
is high. This problem has been tackled in [7] with the CSA, and the results are found to
be better comparatively in terms of solution attained and time taken. In another research
work [8] the CSA has been applied for local search in the two-stage algorithm of eagle strat-
egy. In the first stage, global exploration with Levy flight takes place and if a promising
solution is found, the search is intensified locally. For the local search another optimiza-
tion algorithm is employed. In this paper the CSA is employed for local search to solve the
unit commitment problem in smart grid systems. The optimization problem is to schedule
the turning on/off of a set of generators to meet the load and operational constraints so
that the total cost is minimized.

228 ﻿﻿Nature-Inspired Optimization Algorithms

17.5 � Summary

The crow search algorithm that is based on the intelligent behavior of crows has been
explained in detail. It is a population-based algorithm that searches for the optimum solu-
tion in the search space. The different parameters associated with the algorithm that need
to be tuned to obtain better solutions have been identified. The performance of the algo-
rithm depends on the two important parameters – flight length and awareness probability.
In addition, some randomness is introduced in the algorithm by the two random param-
eters ri and rk that follow uniform distribution. The awareness probability is an important
parameter associated with CSA that provides the necessary balance between intensifica-
tion and diversification. The CSA and its proposed variants applied for solving various
engineering optimization problems that are available in the literature have also been out-
lined. This simple algorithm has been found to be effective in solving global optimization
problems that are NP-hard in terms of convergence speed and computational complexity.
CSA has been found to give good performance when compared to GA and PSO. CSA is
robust, and optimum results can be obtained in less than 50 iterations on average. There
are only two main parameters to be tuned for the algorithm which is an added advantage.
Typical values for the population size are between 20 and 40, awareness probability is <0.2,
and flight length is <2. CSA is simple and easy to implement and gives good performance
over a wide spectrum of complex optimization problems.

References

	 1.	 Alireza Askarzadeh, A novel metaheuristic method for solving constrained engineering opti-
mization problems: Crow search algorithm, Computers and Structures (Elsevier), Vol. 169, pp.
1–12, 2016.

	 2.	 Seyed Hamid Reza Pasandideh, Soheyl Khalilpurazari, Sine cosine crow search algorithm:
A powerful hybrid meta heuristic for global optimization, Third International Conference on
Artificial Intelligence and Soft Computing, August 2017.

	 3.	 Alireza Balavand, Ali Husseinzadeh Kashan, Abbas Saghaei, Automatic clustering based
on crow search algorithm-Kmeans (CSA-Kmeans) and data envelopment analysis (DEA),
International Journal of Computational Intelligence Systems, Vol. 11, No. 1, pp. 1322–1337, 2018.

	 4.	 Almoataz Y. Abdelaziz, Ahmed Fathy, A novel approach based on crow search algorithm for
optimal selection of conductor size in radial distribution networks, Engineering Science and
Technology, an International Journal (Elsevier), Vol. 20, pp. 391–402, 2017.

	 5.	 Primitivo Diaz, Marco Perez-Cisneros, Erik Cuevas, Omar Avelos, Jorge Galvez, Salvador
Hinojosa, Daniel Zaldivar, An improved crow search algorithm applied to energy problems,
energies, Vol. 11, No. 3, pp. 571, 2018.

	 6.	 Rizk M. Rizk-Allah, Aboul Ella Hassanien, Siddhartha Bhattacharyya, Chaotic crow search
algorithm for fractional optimization problems, Applied Soft Computing (Elsevier), Vol. 71, pp.
1161–1175, 2018.

	 7.	 Antono Adhi, Budi Santosa, Nurhadi Siswanto, A meta-heuristic method for solving sched-
uling problem: Crow search algorithm, International Conference on Industrial and System
Engineering (IConISE), 2017.

	 8.	 Rachid Habachi, Achraf Touil, Abdelkabir Charkaoui, Abdelwahed Echchatbi, Eagle strategy based
crow search algorithm for solving unit commitment problem in smart grid system, Indonesian
Journal of Electrical Engineering and Computer Science, Vol. 12, No. 1, pp. 17–29, October 2018.

229

18
Raven Roosting Optimization Algorithm

18.1 � Introduction

Nature-inspired optimization algorithms have been developed from the behavioral study
of swarms of animals, birds, and insects and the biological evolution process, in general.
Animals, birds, and insects interact with each other and also with the environment. This
interaction is usually complex and leads to productive outcomes for the members of the
swarm in the areas of foraging, mating, and protection against hostile elements. The ani-
mals, birds, and insects forage for food by applying a strategy that is unique to every
species. The backbone of these foraging activities is the exchange of information among
the members of the flock by gathering together. This becomes a social foraging activity,
and each species has its own method of communication with other members of the flock.
In most of the species, the members come home to roost after sunset and gather together.
In the roost the information exchange takes place and members are recruited for forag-
ing the next day at dawn. Roosting might take place either for one night or sometimes
it might continue for days. Group foraging is very important for survival and protection
against predators. The social roosting and foraging behavior of the common raven is the
inspiration behind the development of the raven roosting optimization (RRO) algorithm
discussed in this chapter [1]. Novel search strategies are required to find quality food by
searching in the environment since the exact locations of food sources are not known in
advance. Resources are available in plenty, but efficient and effective search strategies are
required to find the quality food sources. This is essential for survival of the species, and
most of them are adaptable in the dynamically changing, hostile environment. Darwin’s
theory of survival of the fittest has been proven by these species because those with good
foraging strategies usually survive the evolution.

The roosting and foraging behavior of the common ravens has been a great source of
inspiration for researchers of nature-inspired optimization algorithms. Several studies
have been undertaken on the roosting and foraging behavior of the ravens and are avail-
able in the literature. The sharing of information about finding food is one of the important
activities of the group. The method by which this information is communicated to other
members of the group forms an important component of the optimization algorithm. It
is found that ravens prey on dead animals and carcasses and the number of ravens at the
foraging site varies from day to day until the prey is consumed completely. They leave the
roost at dawn, prey on the food source, and return to the roost at sunset. This pattern of
the ravens is repeated every day until the current food source is depleted. Then the group
of ravens looks out for other food sources and once one is found, this is advertised to the
other ravens in the roost. They follow the raven that has discovered the food source and
share the food. This process is repeated except that the leader raven (the one who discovers

Nature-Inspired Optimization Algorithms

230 ﻿﻿Nature-Inspired Optimization Algorithms

FIGURE 18.1
Common raven in Cypress Provincial Park, British Columbia. (Author: User Clayoquot – own work, CC BY-SA
3.0. https​://co​mmons​.wiki​media​.org/​wiki/​Commo​ns:GN​U_Fre​e_Doc​ument​ation​_Lice​nse,_​versi​on_1.​2; https​
://cr​eativ​ecomm​ons.o​rg/li​cense​s/by-​sa/3.​0/dee​d.en.​)

Raven Roosting Optimization Algorithm

the food) is different for each food source and the number of ravens that follow the leader
also varies with each day. The optimization algorithm that is designed based on this raven
roosting behavior has been described in detail in the following sections. These powerful
swarm intelligence optimization algorithms have been applied to a wide range of appli-
cations and have proved to be efficient. They have been applied to a set of the standard
benchmark functions and engineering design problems and have been found to produce
results that are competitive with or better than the traditional algorithms.

18.2 � Raven Roosting Behavior

The common raven (Corvus corax) belonging to the family Corvidae is an all-black bird
and is one of the most intelligent birds found in nature. It is found widely distributed
in the Northern Hemisphere, and there are different subspecies of the raven. The ravens
have a habit of communal roosting [2], and their roosts are usually found in trees, bushes,
abandoned buildings, coastal cliffs, and lakesides [3]. The exact location of the roost varies
within the area depending on the presence of humans, animals, weather, and other simi-
lar factors. The roosts are maintained by ravens for years, and hundreds of ravens roost
together. Ravens fly to the roosts nearing sunset, typically in a string formation similar to
crows. Hundreds to thousands of ravens usually roost together, especially during the non-
breeding months of the year. Figure 18.1 shows a picture of a common raven in Cypress
Provincial Park, British Columbia, and Figure 18.2 shows a little raven in Australian
National Botanic Gardens, Canberra, Australia. Figure 18.3 shows a North American com-
mon raven in majestic flight at Muir Beach in Northern California.

Roosts are nests where the birds come to rest usually at the end of the day, typically
at sunset. Communal roosts function as centers [4] where information is exchanged and
knowledge is gained. Ravens leaving the roosts normally move in a certain direction

https://commons.wikimedia.org
https://creativecommons.org
https://creativecommons.org

231Raven Roosting Optimization Algorithm﻿﻿

together with several members. The direction in which the ravens leave the roost could
vary with each day. The ravens that have acquired knowledge of the food source arrive
at the location of food, accompanied by other birds from the roost. The raven that leads
becomes the leader and the other ravens are followers, but the roles change based on the
knowledge acquired about a new food source. Any bird in the roost is able to go to a

FIGURE 18.2
Australian raven (Corvus coronoides). (Author: J. J. Harrison – own work, CC BY-SA 3.0. https​://cr​eativ​ecomm​
ons.o​rg/li​cense​s/by-​sa/3.​0/dee​d.en.​)

FIGURE 18.3
North American common raven (Corvus corax principalis) in majestic flight. (Author: Copetersen – own work, CC
BY-SA 3.0. https​://cr​eativ​ecomm​ons.o​rg/li​cense​s/by-​sa/3.​0/dee​d.en)​.

https://creativecommons.org
https://creativecommons.org
https://creativecommons.org

232 ﻿﻿Nature-Inspired Optimization Algorithms

location of a food source if it stays one night in the roost, strengthening the belief that
information is exchanged between ravens nocturnally. Leaders and followers benefit at
the food source because new birds may be recruited into the group, and this increases the
foraging and food discovery chances. Moreover, large groups might form a better defense
against predators and create more mating opportunities. A group of four ravens in North
Mongolia communicating with each other is shown in Figure 18.4.

Several species of insects, birds, and animals engage in social roosting, where tens, hun-
dreds, or thousands of them come to roost. The roosting time varies from one night to
longer periods. These roosting places serve as information centers where information on
food sources or about the environment are exchanged. The locations of food sources are
not known with certainty among birds and animals and hence they forage for food. This
has to be done in an effective manner so that they forage successfully and survive in a
competitive environment. Food sources are varying due to changing environmental con-
ditions and depletion (consumption) over time. Therefore foraging has to be adaptive and
feedback of past successes has to be incorporated in the search process. Foraging is done
either individually or in a collective manner. Social foraging is done collectively by a group
of members of the same species. They cooperate with each other to share the food that
has been discovered. The scouting strategy, communication of discovered (location) food
sources among the members of the group, and sharing of the food discovered are some of
the important characteristics of a species. The foraging behavior depends on the location,
quality, and quantity of the food source, competition, and risk of predators. Figure 18.5
shows a group of common ravens feeding together on prey.

The main factors involved in social foraging are:

•	 Searching strategy for food source
•	 Communication of a discovered food source to other members of the group
•	 Sharing of the discovered food
•	 Random component in the movement of the insects/birds/animals

FIGURE 18.4
Group of four common ravens communicating with each other. [Author: Bogomolov PL – own work (Public
Domain).]

233Raven Roosting Optimization Algorithm﻿﻿

FIGURE 18.5
Group of common ravens feeding. (Author: Henk Monster, CC BY 3.0. https​://cr​eativ​ecomm​ons.o​rg/li​cense​s/
by/​3.0/d​eed.e​n.)

Some of the possible ways to communicate discovery of a food source are:

•	 Broadcast the discovery from the location of food source.
•	 Generate a visible or invisible trail between the food source and a common loca-

tion (location of the species, probably at the roost).
•	 Go to a central location and direct fellow animals or birds or insects to find the

food source.
•	 Go to the central location and recruit fellow animals or birds or insects and lead

them back to food source.

The member that discovers the food source and informs others through one of the meth-
ods given above has to bear the cost of sharing the food and risks danger in being attacked
by a predator. The possible benefits could be collective defense against predators at the
food site and attracting of mates. It could also be of benefit if several members are required
to attack the prey which could be large in size and dangerous. Some of the species that
feed on seeds or fruits stay in groups and hence they forage and advertise the discovery.
So the communication of discovery of food sources and sharing of food vary from species
to species.

The study of these foraging behaviors of insects/birds/animals has led to the develop-
ment of various optimization algorithms. The study of foraging behavior in a dynamic
environment is the basis of the development of metaheuristic algorithms to solve com-
plex and NP-hard problems efficiently. The social roosting behavior of ravens where roosts
serve as information centers has been applied in developing a novel optimization algorithm,
called the raven roosting algorithm. This raven roosting algorithm is based on the foraging

https://creativecommons.org
https://creativecommons.org

234 ﻿﻿Nature-Inspired Optimization Algorithms

behavior of ravens where the information about food sources is exchanged or communi-
cated to other members of the species in the roost. The leader forages and when a quality
food resource is found, it leads the other recruited members of the roost to the food source.
Raven roosts consist of common ravens, and they come to roost at sunset and leave the
roost at dawn the next day. Usually they move in groups. Based on a study undertaken,
it is found that when there is large amount of food at a source (huge carcass of an ani-
mal), initially a few ravens feed on it. In the following days (assuming it takes a few days
to completely eat the carcass) more ravens come to feed on the food source. As the food
becomes depleted, the number of ravens at the food source decreases and finally the food
is finished. Ravens which were newly added to the roost also leave the roost at dawn and
go to the food source to eat. This study has confirmed that exchange of information takes
place in the roost after sunset.

18.3 � Raven Roosting Optimization

The roosting and social foraging behavior of ravens has led to the development of the
raven roosting optimization (RRO) algorithm that is discussed in this section. The forag-
ing behavior of ravens and other birds depends on their sensory abilities such as vision,
hearing, and smell, remembering the past foraging location (whether successful or not),
the ability to transmit or receive information about food source, and randomness in the
search for food sources. These characteristics of ravens in foraging have been incorpo-
rated into the development of the raven roosting algorithm. In each iteration, a set of
birds are recruited by a leader which has found the best food source among all the ravens
at the roost and they follow the leader the next day. Some of the ravens travel towards
a food source that was already found by them earlier. If another better food source is
discovered on the way, they might change their path to prey upon the newly discovered
food source.

18.3.1 � Algorithm

A raven roost is located randomly in the search space, and it remains there for the entire
run of the algorithm. Assume that there is a population of N ravens and they are randomly
located in the search space. Each location of a raven is a potential source of food. The objec-
tive (fitness) function defined for the problem is evaluated at each of these locations, and
the best solution (fitness value) corresponds to the raven that has the best quality food
source and it becomes the leader of the population. A group of ravens in the roost among
the total population of N ravens are recruited to follow the leader to the best food source
found by the leader so far (in the previous iteration of the algorithm). This percentage of
followers (% of total population N) is represented by Pf. The radius of the sphere around
the location of the best food source found by the leader is denoted as RL. The follower birds
each forage within this radius at a randomly chosen location, as shown in Figure 18.6.

A group of ravens are newly recruited to the food source discovered by the leader whereas
the remaining ravens of the roost travel towards an already discovered food source, which
may be denoted as their personal best. Ignoring the information of discovered food source
communicated by the leader, they continue to forage at their previously discovered indi-
vidual best food destination, as memorized by each one of them. The ravens have memory,

235Raven Roosting Optimization Algorithm﻿﻿

RL

leader

follower

follower

follower

follower

FIGURE 18.6
Sphere around the food source found by the leader.

and they remember their food site where they foraged earlier in a private manner. These
birds are neither dependent on the leader nor do they follow the leader.

The ravens are represented by the d-dimensional vector
X x x x i Ni

iter
i
iter

i
iter

id
iter= = ¼[....], , , ,1 2 1 2 where Xi

iter is the position of the ith raven in the
d-dimensional search space in iteration represented by the variable iter. The flight of ravens
could be modeled as a series of finite steps, and the mathematical equation representing
the updating of the raven position is given by:

	 X X ii i i
iter iter iterrand step+ = +1 (). 	 (18.1)

where Xi
iter is the current position of the ith raven, Xi

iter+1is the next position of ith raven,
rand i() is a random number with a uniform distribution in the interval [0, 1], and stepi

iter

is the step size taken by the ith raven to reach the new position. The step sizes taken by
the ravens during their flight are not uniform since there is a stochasticity included in the
movement of the ravens.

Figure 18.7 shows a raven which is following the leader.
During the flight, the follower raven forages in a circular region of radius Rf, and if a bet-

ter food source is found, it starts feeding from that location with a probability ps. Since the
food source found is better than that of its personal best, the raven updates its personal best.
The number of perceptions of the raven in the vicinity of the food source is np before the
raven decides to stop at that location. This process is repeated in multiple iterations, and in

Roost

leader

follower

Rf

FIGURE 18.7
Recruited raven following the leader.

236 ﻿﻿Nature-Inspired Optimization Algorithms

each iteration, the raven with the best quality food source called the leader is the best solu-
tion found so far. The objective function evaluated at the position of the leader in the search
space is the current best optimum solution. Finally, the position of the raven at the highest
quality food source becomes the global optimum solution when the algorithm terminates
at the end of the maximum number of iterations.

18.3.2 � Pseudocode

Initialization

Random selection of a roost location
Population size of ravens N
Define objective (fitness) function
Parameters Pf, RL and Rf, ps, np

Stopping criteria, if any
Maximum number of iterations MaxIter

iter = 1
while (iter ≤ MaxIter) do

Population of N ravens are randomly located in the search space
Objective function is evaluated at each raven location
personal best location of each raven is updated
Raven at the location with the highest fitness value is the leader

Percentage Pf of follower ravens are recruited to follow the leader and forage
within a radius RL of the sphere encircling the leader

Unrecruited ravens take flight towards their personal best locations

Initialize step size taken by the raven stepiter

while (stepiter≤ MaxStep) do

Every raven that is on the way, either to the leader’s (best) food source or its own
personal best, searches in the vicinity of its current position within a radius Rf
if better food source is found after np perceptions
then raven stops at that location with a probability ps and updates its personal best
else raven continues its flight using Equation 18.1
end if

Increment stepiter

end while

Ravens that arrive at their destinations, either following the leader or
flying on their own, update their personal best positions
Fitness value of every forager raven is computed
Best fitness is updated (leader)
if stopping criteria attained, exit else continue
iter = iter + 1

237Raven Roosting Optimization Algorithm﻿﻿

end while

Raven at the location with highest fitness value is the global optimum solution

Flowchart

iter = MaxIter?

N
f(X) d

Pf, RL, Rf, ps, np

MaxIter
iter = 1

personalbest N
leader

Pf % followers leader
RL

personalbest
 stepiter

stepiter = MaxStep?Increment stepiter

personalbest

leader

personalbest

personalbest
N

iter = iter + 1

238 ﻿﻿Nature-Inspired Optimization Algorithms

Ravens have an in-built capacity for perceiving the environment and sampling locations
during flight to find a good food source for foraging and updating their personal best. RRO
and particle swarm optimization (PSO) share a similarity with respect to the concept of
memory. The particles or ravens remember their personal best attained so far whereas ants
in ant colony optimization (ACO) do not have such individual memory. Social transmis-
sion of information is present in all the three algorithms. ACO shares information of the
food source via pheromone trails; PSO shares information through the concept of global
best which is made known to other particles. In RRO, the information is shared in the roost
which is proved by the leader–follower principle. The stochastic component is embedded
into each of these three algorithms. In ACO, the movement of the ant is determined by
the quantity of pheromone or information specific to the problem or a heuristic compo-
nent. In PSO, the randomness is included in the position and velocity update equations. In
RRO, there is a random component in the step size taken by the ravens during flight. The
maximum step length taken by the ravens MaxStep can be varied between 10 and 50. The
population size of ravens can be approximately 50 (or lower), and the number of iterations
can be increased in hundreds based on the performance.

18.4 � Variants of the Algorithm

An improved version of the raven roosting algorithm was proposed by Shadi Torabi and
Faramarz Safi-Esfahani in 2018. The premature convergence problem in RRO is overcome
in this improved raven roosting optimization algorithm (IRRO) [5]. In the raven roost-
ing algorithm, the solution obtained is not always the best or optimal one; sometimes a
suboptimal solution is attained by the algorithm due to premature convergence. One of
the reasons for premature convergence is that the ravens might be too weak to fly (global
search). The modification proposed is in the division of the ravens that follow the leader
into weak ravens and greedy ravens. Ravens are classified as weak based on their low fitness
values, and the remaining are classified as greedy. Weak ravens are those that are not able to
find food sources by themselves, and they follow other ravens to find food. Greedy ravens
follow the leader and also find additional food sources. The percentage of weak ravens out
of the total population of follower ravens can be varied between 0.1 and 0.9 and fixed based
on the problem and can be modified based on the results obtained. Increase in the number
of weak ravens improves the exploitation ability of the algorithm. Further, a parameter to
control the food that remains for the ravens is introduced. This parameter is decreased
with every iteration and leads to improved exploration of the search space.

The probability parameter ps (probability of a raven stopping in flight) in the RRO is
replaced with a parameter pfood that decreases with every iteration. The parameter pfood is
the quantity of food remaining given by Equation 18.2 and decreases with every iteration.

	 p MaxFood
MaxIter iter

MaxIter
food
iter+ = -1 	 (18.2)

where p food
iter+1is the food remaining for the raven in the next iteration, MaxFood is the maxi-

mum food available for the raven (typical value is 1), MaxIter is the maximum number of
iterations for the algorithm, and iter is the iteration number. Reducing the quantity of avail-
able food with each iteration increases the exploration capabilities of the raven and hence

239Raven Roosting Optimization Algorithm﻿﻿

the diversification of the algorithm. The IRRO algorithm has been found to be better than
or comparable to RRO, PSO, chicken swarm optimization (CSO), bat algorithm (BA), gray
wolf optimization (GWO), and whale optimization algorithms (WOA).

18.5 � Summary

Metaheuristic optimization algorithms provide solutions to complex problems in finite
time. The optimal solutions are usually selected from a set of possible as well as feasible
solutions to the problem. The importance of metaheuristics is that it arrives at the opti-
mum in practically reasonable time although the optimum solution might not be an exact
solution to the problem. The global optimum solution produced by the algorithm could
be quite close to the best and accurate solution to the problem. Most of the metaheuristic
algorithms have reasonable time and computational complexity. The optimization algo-
rithm should have balance between intensification and diversification. The RRO algorithm
discussed in this chapter is based on the social roosting and foraging behavior of common
ravens. The RRO algorithm converges prematurely since it does not have good diversifi-
cation property. Moreover, sensitivity analysis shall give an insight into the effect on the
various components of the RRO algorithm. It is found that RRO is quite competitive with
other similar algorithms. The premature convergence problem in RRO has been overcome
in the improved RRO algorithm. The IRRO algorithm improves the global exploration
capability of the RRO algorithm, by introducing the food parameter and the concept of
weak ravens that takes care of the exploitation capabilities.

References

	 1.	 Anthony Brabazon, Wei Cui, Michael O’Neill, The raven roosting optimisation algorithm, Soft
Computing (Springer-Verlag), Vol. 20, pp. 525–545, 2016.

	 2.	 J. Wright, R. Stone, N. Brown, Communal roosts as structured information centres in the raven,
Corvus Corax, Journal of Animal Ecology, Vol. 72, No. 6, pp. 1003–1014, 2003.

	 3.	 Richard B. Stiehl, Observations of a large roost of common ravens, The Cooper Ornithological
Society, Condor, Vol. 83, pp. 78, 1981.

	 4.	 John M. Marzluff, Bernd Heinrich, Raven roosts are still information centres, Animal Behaviour,
Vol. 61, pp. F14–F15, 2001.

	 5.	 Shadi Torabi, Faramarz Safi-Esfahani, Improved raven roosting optimization algorithm,
Swarm and Evolutionary Computation (Elsevier), Vol. 40, pp. 144–154, 2018.

http://taylorandfrancis.com

241

19
Applications

19.1 � Introduction

The various optimization algorithms can be compared based on their performance. The
algorithms have to be tested and their performance evaluated against some defined stan-
dard metrics. The performance measures for testing the algorithms are convergence rate,
accuracy of the optimum solution, number of iterations, population size, diversity, and
ability to jump out of local optima. These metrics can be quantified in terms of time com-
plexity, space complexity, and computational complexity. Standard benchmark test func-
tions are used for testing the performance of the algorithms and comparing against each
other. The standard set of functions in the literature have been taken from various CEC
benchmark data sets. The typical engineering design problems such as three bar truss
and welded beam design, and computer science problems such as the traveling salesman
problem and graph coloring have been given that can be used for testing the algorithms.

19.2 � Benchmark Test Functions

The standard test functions applied for testing, validating, and comparing the perfor-
mance of the different optimization algorithms are enumerated in this section. The func-
tions listed here are the standard functions available in the literature on optimization
algorithms, especially for testing the swarm intelligence algorithms. Other than the func-
tions described here, a few other test functions have been used and are available in the
literature. The test functions are a mix of unimodal as well as multimodal functions.

De Jong’s f1 function is a sphere function that is unimodal and convex and is the simplest
in the De Jong’s test set. It is defined as

	 f X xi

i

d

1
2

1

()=
=
å 	

where X x x xd= { ... }1 2 . The function has a global minimum at X* = {0, 0, …, 0} with f(X*) = 0.

De Jong’s f2 function

	 f X x x x2 1
2

2
2

1
2100 1() () ()= - + - 	

Nature-Inspired Optimization Algorithms

242 ﻿﻿Nature-Inspired Optimization Algorithms

Applications

De Jong’s f4 function

	 f X i xi

i

d

4
4

1

()=
=
å 	

Schaffer’s f6 function

	 f X
y

x y
6

2

2 2
20 5

0 5

1 0 0 001
() .

.

. .
= +

+() -

+ +()()
sin x2

	

Ackley function

	 f X
d

x
d

xi

i

d

i

i

d

() exp exp cos= - -
é

ë

ê
ê

ù

û

ú
ú

- ()
é

ë
ê
ê

ù

û= =
å å20

1
5

1 1
22

1 1

p úú
ú

+ +20 e 	

The function is multimodal and has a global minimum at X* = {0, 0, …, 0} with f(X*) = 0.

Easom’s function

	 f X x y x y() cos()cos()exp ()= - - -() + -é
ë

ù
ûp p2 2 	

This function has global minimum f(X*) = –1 at X* = (π, π) within the range - £ £100 100x y, .
This function is multimodal with several local minima.

Griewangk function

	 f X x
x

i
xi

i

i

d

i

d

i() cos= - æ

è
ç

ö

ø
÷ + - £ £

==
Õå1

4000
1 600 6002

11

	

The function has a global minimum at X* = {0, 0, …, 0} with f(X*) = 0. This is a multimodal
function.

Michaelwicz’s function

	 f X x
ix

i
i

i

d m

() sin() sin= -
æ

è
ç

ö

ø
÷

é

ë
ê
ê

ù

û
ú
ú=

å
2

1

2

p
	

where m = 10, 0 1 2£ £ =x for i di p , , ,
The equivalent 2D function is

	 f x y x
x

y
y

(,) sin()sin sin()sin= -
æ

è
ç

ö

ø
÷ -

æ

è
ç

ö

ø
÷

20
2

20
22

p p
	

where (,) [,] [,]x y Î ´0 5 0 5 . This function has a global minimum f X* .() » -1 8013at (x*, y*) =

(2.20319, 1.57049).

243Applications﻿﻿

Rastrigin’s function is a multimodal function defined as

	 f X d x x xi i

i

d

i() cos() . .= + -éë ùû - £ £
=
å10 10 2 5 12 5 122

1

p  	

The function has a global minimum at X* = {0, 0, …, 0} with f(X*) = 0.

Rosenbrock’s function

	 f X x x x
i

d

i i i() = -() + -()é
ëê

ù
ûú

=

-

+å
1

1
2

1
2 2

1 100 	

whose global minimum f(X*) = 0 occurs at X* = (1, 1, …, 1) in the domain - £ £5 5xi where
i = 1, 2, …, d.

The 2D Rosenbrock’s function is given by

	 f x y x y x(,) = -() + -()1 1002 2 2
	

This is referred to as a banana function.

Schwefel’s function

	 f X x x xi i

i

d

i() sin= - () - £ £
=
å

1

500 500 	

whose global minimum at f(X*) » –418.9829d occurs at xi= 420.9687 where i = 1, 2, …, d.

Yang’s function

	 f X x x xi

i

d

i

i

d

i() exp sin=
æ

è
çç

ö

ø
÷÷ - ()

æ

è
çç

ö

ø
÷÷ - £ £

= =
å å

1

2

1

2 2 p p 	

This is a forest function with a global minimum f(X*) = 0 at [0, 0, …, 0].

Shubert’s function

	 f X i i i x i i i y
i

d

i

d

() cos cos= + +()()
é

ë
ê
ê

ù

û
ú
ú

+ +()()
é

ë
ê
ê

ù

û
ú

= =
å å1 1

1 1 úú
	

The function has many global minima with f(X*) = –186.7309 for d = 5 in the domain
- £ £10 10x y, .

19.3 � Applications

The standard engineering design problems and applications in computer science that are
intractable to the classical algorithms are solved easily using nature-inspired swarm-based
algorithms. Some of the important applications in the category are given below.

244 ﻿﻿Nature-Inspired Optimization Algorithms

19.3.1 � Traveling Salesman Problem

Given a set of cities and distance between each pair of cities, the problem is to find the shortest route
in visiting all the cities once without retracing and finally reaching the starting city. This is called
a Hamiltonian Tour.

The cities are represented as nodes, and the connecting routes are the edges between
nodes with a cost associated with every edge. This set of nodes and edges forms a con-
nected graph. The initial starting place is randomly chosen from the set of cities and the
traveling salesman moves from one city to the next with the cost being cumulative. This
is a standard combinatorial optimization problem that has been found to be NP-hard for
the traditional algorithms to solve. TSP is one of the important problems in optimization
and operations research and serves as a benchmark for comparing the performance of the
various algorithms.

19.3.2 � Knapsack Problem

Given a set of items each with a weight and value, the problem is to fill a rucksack or knapsack such
that the total value of the items is maximized with the constraint that the total weight of all the items
in the knapsack should not exceed a maximum of W kg.

The number of items could be an integer or a fractional number such as 2x (two numbers
of the item x) or 0.5x (half of the item x) depending on the application. This standard knap-
sack problem can be applied in real-life situations for solving problems related to decision
making, and the algorithm normally used to solve this problem is the greedy algorithm.
There is no polynomial time algorithm for solving this problem that has been found to be
NP-hard.

19.3.3 � Graph Coloring Problem

Given a graph and a set of n number of colors, the problem is to color the vertices of the graph such
that no two adjacent vertices have the same color. A variation of this graph coloring problem is to
color the edges of the graph instead of the vertices such that no two adjacent edges have the same
color.

The number of colors depends on the nature of the problem. It is popularly known as the
problem soduku, and it is one of the challenging applications in computer science.

19.3.4 � Job Scheduling Problem

Given a set of n jobs to be processed and m number of machines, the problem is to schedule the jobs
on the various machines so that the total processing time is minimized. Every job might have a finite
number of operations to be carried out in time sequence, and each of the machines might have differ-
ent processing power to carry out the operations.

This is one of the standard combinatorial optimization problems in computer science
that has been found to be NP-hard.

19.3.5 � Feature Reduction Problem

Given a set of features or attributes of an object, the problem is to select the minimum number of
features such that the accuracy of the object classification is maximized.

245Applications﻿﻿

This is one of the important dimensionality reduction problems in machine learning and
image classification where the dimension of the search space is reduced, thus reducing the
time and computational complexity. Several transformation techniques are available that
remove the redundancy in the data and reduce the number of components to be processed.
If an exhaustive search of the feature space is to be conducted it will take up lot of time.

19.3.6 � Network Routing Problem

Given a computer or communication network, the problem is to find an optimal route through the
network such that the total cost is minimized under constraints, if any. The constraints could be that
every node of the network is to be visited once or it could be with respect to distance.

This is one of the earliest problems in computer science that has received a lot of atten-
tion in the field of optimization and operations research. The problem of routing packets
in computer networks has been a fertile research area for several years, and it continues to
be so. Given a choice of links in a network which could even be a telecommunication net-
work, the problem is to identify the best route in terms of minimizing total cost incurred.

19.4 � Summary

The different nature-inspired algorithms can be tested and compared with performance
metrics that are defined for the optimization algorithm. Each algorithm is suitable for a
particular class of applications, and the performance might not be equally good for another
set of problems. This is the No Free Lunch theorem that has been discussed earlier. The
MATLAB codes for some of these algorithms can be downloaded from the MathWorks web-
site, www.mathworks.com, to test their performance for various real-time applications.

http://www.mathworks.com

http://taylorandfrancis.com

247

20
Conclusion

An introduction to the general theory of optimization and its mathematical formulation has
been discussed in Chapter 1. An overview of classical and traditional optimization algo-
rithms has been given in Chapter 2. The third chapter deals with the nature-inspired opti-
mization algorithms, their characteristics, and their advantages and disadvantages. The
different nature-inspired, swarm intelligence algorithms have been described in Chapters
4 to 18, and some of the popular applications have been listed in Chapter 19. Moreover, the
standard benchmark data sets that can be used for testing and validating the algorithms
are also given in Chapter 19. The book concludes with a summary in Chapter 20.

The traditional optimization methods have been discussed in Chapter 2, and a few
examples have been given wherever possible. The popular traditional algorithms such as
linear programming, non-linear programming, quadratic programming, geometric pro-
gramming, dynamic programming, integer programming, and stochastic programming
have been outlined. The various algorithms are classified based on the number of objective
functions, number and type of constraints, number of variables involved, characteristics of
the objective function, and so on. The optimization method to be applied depends on the
problem and its mathematical formulation, and most of them are numerical programming
methods. The choice of the algorithm depends to a great extent on the dimension of the
problem to be solved. The classical engineering design problems such as design of steel
and civil structures, optimizing input resources or maximizing output from manufactur-
ing industries, food-processing industries, and chemical industries, and routing in com-
puter and communication networks are some of the diverse applications of the traditional
optimization techniques.

Nature-inspired algorithms are metaheuristic and are found to be able to solve challeng-
ing problems efficiently. Many of the real-world applications are highly non-linear, requir-
ing state-of-the-art optimization techniques for solving them. Nature-inspired algorithms
are flexible, adaptive, self-organized, and population-based with simple interactions
among search agents. Metaheuristic algorithms outperform their traditional counterparts
due to their search in parallel by a population of agents, the lower number of param-
eters to tune, the ease and simplicity of implementation, and the dynamic shift between
exploration and exploitation phases. Randomization by following some stochastic distri-
bution such as uniform or Gaussian helps in achieving diversity of solutions. Increasing
the diversity of solutions reduces the possibility of getting trapped in local optima, and
hence these nature-inspired algorithms can deal with complex problems very efficiently
with least time complexity.

The biological evolution principles in optimization algorithms have led to the develop-
ment of GA, whose performance has been validated for a myriad of complex problems
over the years since its inception. GA uses an objective function but does not require the
computation of derivatives of the objective function. It uses stochastic rules while search-
ing, by introducing controlled randomness into the algorithm instead of being completely
deterministic as in the classical optimization algorithms. GA tries to mimic the human
evolution process and searches for an optimum solution with a population of individuals.

Nature-Inspired Optimization Algorithms

248 ﻿﻿Nature-Inspired Optimization Algorithms

Conclusion

This implicit parallelism in GA helps in searching and exploiting large regions of the
search space simultaneously. Typical parameters in GA could be population size of 40,
maximum number of generations 20, and mutation rate less than 0.1 with the remaining
(0.9) being crossover. The encoding and length of the chromosome depend on the problem,
and randomness is introduced in the selection, crossover, and mutation operations.

Genetic programming is a variant of GA that incorporates biological evolution and
computer science. GP involves populations of computer programs that evolve which is an
advanced technique compared to other evolutionary algorithms. Typical population size
could be less than 1000 for small problems, but it can increase beyond that for problems of
large size. The maximum number of generations can be initially 20 and could go up to 100
or even beyond that if the problem requires so. The inherent parallelism in GP and its rate
of convergence play an important role in the applications of GP, and it can accommodate
data-intensive applications.

In PSO the population remains constant throughout the run of the algorithm unlike GA
where the population changes with every generation. The typical population size is 10 to
50, chosen depending on the problem. The uniqueness of PSO lies in the fact that particles
fly through the solution space accelerating towards better solutions. As the number of
dimensions increases, the algorithm converges slowly. The parameters c1, c2, wv may be
held constant for all the iterations, or c1, c2 may be held constant with linearly decreasing
inertia weight wv. An initial large inertia weight leads to exploration of the search space,
and as the weight decreases, it increases the exploitation abilities of the swarm. There are
only a few parameters to be controlled, and it is computationally efficient, derivative-free,
simple to implement, and applicable to a wide range of problems.

DE is a global optimization technique that is easy to apply, reliable, fast, and simple to
implement. DE can efficiently handle unimodal as well as multimodal objective functions
that are non-linear and non-differentiable. DE is robust with few parameters, it converges
consistently, and it is faster and computationally more efficient than other classical opti-
mization methods. Differential evolution was proposed to be a stochastic direct-search
method to find the global minimum, with inherent parallelism to take care of computa-
tionally intensive cost functions. DE has a self-organizing capability that makes it remark-
ably different from other optimization techniques, and its implicit parallelism increases
the rate of convergence. DE has been proved to be efficient in solving engineering design
problems and operates on continuous spaces.

Inspiration from the swarm intelligence of ants has led to the development of the ACO
algorithm. The collective intelligence of a swarm of ants has been used to solve problems
like graph-based searches, where finding the shortest path through an interconnected
graph is an NP-hard problem. ACO has the ability to rapidly converge on the optimum
solution for discrete combinatorial problems. When the set of decision variables is large,
the ACO algorithm will be able to find the optimum solution in finite time. ACO is suitable
for problems like TSP and other NP-hard problems for which the dimension of the prob-
lem is increasing exponentially. Typical problems that require finding the shortest path
through a network can be solved efficiently with ACO rather than other greedy algorithms.

The BCO algorithm is capable of solving difficult combinatorial optimization problems.
It is a metaheuristic algorithm that has been inspired by the behavior of honey bees in
nature. Bees exhibit collective intelligence in collecting nectar and producing honey, and
study of their behavior and activities has motivated the development of a set of optimiza-
tion algorithms to solve complex engineering design problems. Since the first algorithm
was proposed in 1997 several variants have been developed and applied to different
problems in engineering and computer science. The performance of the algorithm shows

249Conclusion﻿﻿

that simple insects like bees can inspire and motivate us to develop algorithms to solve
complex problems. The individual and collective complex behaviors of honey bees have
been mimicked in developing these algorithms. The optimization algorithm based on the
behavior of honey bees has been successfully applied to several real-life problems such as
job shop scheduling, clustering, image analysis, optimal design of structures, and complex
engineering problems.

FSS is a novel metaheuristic search algorithm based on the swarming behavior of fish
that is able to solve complex problems with simple mathematical models. The FSS algo-
rithm also has its own specific characteristics and properties that make it suitable for
high-dimensional, unstructured, multimodal search spaces. The fish schools contain high
volume and density in some of the species and could go up to thousands of fish. On aver-
age, a population size of 20 to 50 with a maximum of 100 iterations is sufficient for solving
most problems. FSS has a good balance between exploration and exploitation abilities and
produces excellent results for unimodal as well as multimodal NP-hard problems. FSS has
been experimentally found to outperform PSO for standard benchmark data sets.

The cuckoo search algorithm is based on the parasitic breeding behavior of cuckoo
birds combined with Levy flights. The population size N and the probability ph are two
parameters of the cuckoo search algorithm that need to be chosen for the problem, and
it has been found that N = 15 and ph = 0.25 are sufficient for most of the problems. As the
algorithm runs, the nests aggregate at the global optimum for unimodal functions, and
when the function is multimodal, the nests distribute themselves at positions of the local
optima. The convergence rate of the algorithm does not depend on the above parameters
and makes it suitable for NP-hard, single- and multi-objective problems. Compared to
PSO and GA, the cuckoo search algorithm outperforms them for all benchmark unimodal
and multimodal test functions. It is superior because it allows a diversity of solutions and
is also able to intensify the search in local regions by means of Levy flights. The cuckoo
search algorithm hybridized with other nature-inspired algorithms and its variants have
been found to be more powerful in solving tough optimization problems.

FA is a swarm intelligence optimization algorithm based on the swarming behavior of
fireflies and exhibits the characteristics and properties of other swarm intelligence algo-
rithms. FA can efficiently solve continuous as well as discrete combinatorial optimization
problems. In FA multiple fireflies search the space in parallel, and this inherent parallelism
improves the efficiency of the algorithm. The firefly algorithm is more efficient in deal-
ing with multimodal optimization problems. Initially, the number of fireflies N should
be distributed uniformly over the entire search space, and, within 50 to 100 iterations,
convergence takes place. The typical population size used in most of the applications is N
= 20 to 40. The greater the number of fireflies, the faster will be the convergence. For most
of the problems, experimentally it has been found that the parameters can be chosen as c
in the range of [0, 1], A0 = 1, λ = 1, u = 1.5. The change in attractiveness of the firefly with
distance is characterized by the parameter λ, and it determines the speed of convergence
of the algorithm. The attractiveness parameter λ typically varies from 0.01 to 100. The
firefly algorithm with Levy flights has been found to outperform GA and PSO, and PSO
is a special case of the FA for certain settings of the parameters. It has reduced time and
computational complexity with few parameters to be tuned.

The bat algorithm is one of the superior nature-inspired optimization techniques that
uses the echolocation principle and Doppler effect to detect and locate prey. The associ-
ated parameters of frequency of pulses emitted, rate of emission, and loudness of emission
can be adjusted and fine-tuned to vary the performance. The right combination of these
parameters plays a key role in finding the global optimum solution to the problem. By

250 ﻿﻿Nature-Inspired Optimization Algorithms

adjusting the average loudness and rate of emission the BA algorithm effectively reduces
to either PSO or Harmony Search. A population size of 20 to 50 and 100 iterations is suf-
ficient for most of the applications. BA is simple, efficient, easy to implement, and flexible
and can be applied to wide range of problems. The parameters can be fine-tuned or modi-
fied adaptively as the bat is approaching the prey, that is, as the algorithm is nearing the
optimal solution or as the iterations proceed it automatically changes from the exploration
to exploitation mode. This makes BA more efficient than other algorithms. Bats have a sig-
nal-processing capability that is different from other animals and insects, and BA is more
powerful than GA and PSO because it includes the important characteristics and advan-
tages of these algorithms as well as of other nature-inspired algorithms such as Harmony
Search and Simulated Annealing.

The flower pollination algorithm is based on the pollination process of plants or flow-
ers. FPA is also population-based and searches for the optimum solution in parallel in the
search space. The algorithm can be employed for unconstrained as well as constrained
optimization problems. The algorithm is simple with few parameters to tune, and it can be
applied for any complex engineering design problem. The number of parameters in FPA
is less, and its performance is comparable to or surpasses other metaheuristic algorithms
such as GA and PSO. This simplicity makes it very popular for solving NP-hard optimiza-
tion problems. A population size of around 20 to 50 with 100 iterations is suitable for most
applications. The simple concept of one pollen gamete and one flower on one plant can be
extended to multiple pollen gametes and multiple flowers depending on the applications.

The gray wolf optimization algorithm is a metaheuristic optimization algorithm that
emulates the hierarchy of the wolf pack and their hunting techniques employed. The hunt-
ing, chasing, encircling, and attacking of prey by gray wolves are the fundamental opera-
tions employed in the GWO algorithm. GWO has been applied on several benchmark data
sets and engineering design applications and found to outperform the existing algorithms
for solving complex problems. GWO has been found to be simple, flexible, derivative-free,
and efficient in attaining the global optimum solution. The performance of the GWO algo-
rithm is competitive with particle swarm optimization, differential evolution, and the
gradient search algorithm and even outperforms some of them for a few benchmark func-
tions. The GWO algorithm is found to have good exploration, exploitation, avoidance of
local optima, and convergence to the optimum solution and is suitable for real applications.

The intelligence and smart behavior exhibited by elephants have been the source of inspi-
ration for the development of the EHO algorithm. It has been successful in providing solu-
tions to complex engineering problems that are quite challenging and time-consuming to
solve by other traditional methods. EHO has been tested on various benchmark problems
and found to be competitive with the existing optimization algorithms such as GA and
DE. Typical values for the parameters of the EHO algorithm are NC = 5, NCE = 10, and this
makes the total elephant population size 50. The scale factor for influence of the matriarch
on the clan updating operation is sm = 0.5, and the factor r = 0.1 is the influential parameter
for matriarch updating. The dimension of the population space could be between 10 and
20, and the maximum number of iterations could range from 50 to 100, depending on the
problem to be solved. The EHO algorithm has fewer parameters to control compared to
other swarm-based algorithms. The EHO algorithm is easy to implement since it has a
lower number of parameters compared to other optimization algorithms. EHO gives a
good performance on most of the benchmark test functions compared to GA and DE.

Crows are very intelligent birds that exhibit swarm behavior, and they have been the
source of inspiration behind the crow search optimization algorithm. The performance
of the algorithm depends on two important parameters – flight length and awareness

251Conclusion﻿﻿

probability. In addition, some randomness is introduced in the algorithm by the two ran-
dom parameters ri and rk that follow uniform distribution. The awareness probability is
an important parameter associated with CSA that provides the necessary balance between
intensification and diversification. The CSA and its proposed variants applied to solve
various engineering optimization problems that are available in the literature have also
been outlined. This simple algorithm has been found to be effective in solving optimiza-
tion problems that are NP-hard in terms of convergence speed and computational com-
plexity. CSA has been found to give good performance when compared to GA and PSO.
CSA is robust and optimum results can be mostly obtained in less than 50 iterations on
average. There are only two main parameters to be tuned for the algorithm which is an
added advantage. Typical values for population size are between 20 and 40, awareness
probability is <0.2, and flight length is <2. CSA is simple and easy to implement and gives
good performance over a wide spectrum of complex optimization problems.

The social roosting and foraging behavior of the common raven is the inspiration behind
the development of the raven roosting optimization algorithm. The RRO algorithm con-
verges prematurely since it does not have good diversification properties, and this draw-
back has been overcome in the improved RRO algorithm. It is found that RRO is quite
competitive with other similar algorithms. The IRRO algorithm improves the global explo-
ration capability of the RRO algorithm, by introducing the food parameter and the concept
of weak ravens that takes care of the exploitation capabilities. Every nature-inspired algo-
rithm has its own specialized features that are suited to a specific set of problems.

The standard benchmark functions used for testing and validating the performance of
the various optimization algorithms have been listed in Chapter 19. These are the com-
monly used functions for comparing the performance of the nature-inspired optimization
algorithms. The important functions that are a mix of unimodal and multimodal objective
functions are given. The typical important applications that are NP-hard and found to be
intractable for the classical and traditional algorithms to solve are also described. These are
the applications which the swarm intelligence algorithms are designed to solve with least
time and computational complexity. The superiority of the nature-inspired algorithms has
been established by quantifying their performance on these benchmark test functions and
standard applications. The algorithms can be implemented in MATLAB and for a few of
these, the MATLAB code can be downloaded from www.mathworks.com.

http://www.mathworks.com

http://taylorandfrancis.com

253

Index

ABC algorithm, see Artificial bee colony
algorithm

Abiotic pollination, 184
Acceleration constants/coefficients, 82
Ackley function, 242
ACO, see Ant colony optimization
Adaptability, 81
Adaptive Genetic Algorithm, 59
Alpha wolves, 199, 202
Ant colony characteristics

ant hill and ant tracks, 100, 101
collective intelligence, 99, 100
Eastern black carpenter ants, 100
equal length, two paths of, 103
foraging behavior, 102–104
harvester ants carrying seeds, 100, 101
nesting behavior, 100
pheromone trails, 100, 102–103
stigmergy, 102
unequal length, two paths of, 103

Ant colony optimization (ACO)
algorithm, 106–108, 248
flowchart, 109
graph-based search, 99
NP-hard problem, 99, 107
pseudocode, 108–109
set of entities, 104
traveling salesman problem (TSP), 105–106
variants, 110–112

Ant colony system, 111–112
Ant system, 110
Artificial bee colony (ABC) algorithm, 126
Artificial bees

backward pass, 122, 123
forward pass, 122, 123
population classification, 126

Artificial fish swarm algorithm, 141

BA, see Bat algorithm
Backus–Naur form grammar, 74
Balas method, 25
Banana function, 243
Bat algorithm (BA), 167, 249–250

assumptions, 172
in crop classification, 177
echolocation behavior, 172–174, 178
flowchart, 175
in image segmentation, 177

pseudocode, 174
variants and applications, 176–177

Bat behavior
advantages and disadvantages, 168
echolocating microbats, 168

Doppler shift, 171
echolocation, 169, 171
emission frequency, 169
little brown bat in flight, 169, 172
mesopic vision, 171
nose-leaves, 169
transmission frequency, 171
ultrasound pulses emitted and echo

received, 169, 170
fruit-eating megabats, 168

photopic vision, 171
roosting, 168–170

Indian flying foxes, 168
spectacled flying foxes, 168, 169

BCO, see Bee colony optimization
BCS algorithm, see Binary cuckoo search

algorithm
Bee colony optimization (BCO), 115–116

algorithm, 121–123, 248
flowchart, 124
natural foraging behavior, 121
pseudocode, 123–124
social interactions, 121
variants, 125–129

Bees algorithm, 126–127
Bee system (BS), 125
Benchmark test functions, 241–243
Beta wolf, 199, 202
Binary bat algorithm, 177
Binary cuckoo search (BCS) algorithm, 152
Binary expression tree, 67
Binary gray wolf optimization, 206
Binary tree traversals, 66–67
Binomial method, 97
Bioinspired algorithms, 31–32, 157
Bioluminescence, 158, 159
Biotic pollination, 184
Biotic pollinators, 184
Branch and bound method, 25
BS, see Bee system

Cartesian genetic programming (CGP), 74
Chaotic bat algorithm, 177

Index Index

254 ﻿﻿Index

CI algorithms, see Computational intelligence
algorithms

Clan separation operator, 211, 213–215
Clan updating operator, 211, 213–215
Classical optimization algorithms, 10–11, 247
Classical optimization methods

mathematical model, 18–19
dynamic programming, 24–25
integer programming, 25
Lagrange multiplier method, 26–27
linear programming, 19–22
non-linear programming, 22–24
stochastic programming, 26

numerical programming techniques, 17
probability distributions, 17

Clonal selection algorithm (CSA), 192–193
Clone selection theory, 192
Clustering, 11, 129

data, 192
initial population, 91
k-means, 97, 177, 192, 227
of nodes, 193

Cognitive behavior, 80
Collision avoidance, 79
Computational intelligence (CI) algorithms, 12, 13
Constrained optimization, 4, 6
Constriction factor, 85
Continuous optimization, 5–6
Convex optimization problems, 24
Cost/penalty function, 2
Crossover constant, 90, 94, 97
Crossover operator

differential evolution (DE), 90, 92, 93, 96
fast marriage in honey bees optimization

(FMHBO), 128
flower pollination algorithm (FPA), 192
genetic algorithm (GA), 48–53, 59, 60, 125
genetic programming (GP), 62, 67–69
marriage in honey bees optimization

(MBO), 127
Cross-pollination, 182, 187

biotic and, 187
carpenter bee with pollen, 184, 186
Geranum incanum, young flower of, 187, 188
honey bee with pollen, 185, 186
hummingbird feeding on red flower, 185, 187

Crows behavior
Australian raven, 220
foraging, 221
house crow, 220
lifespan of, 222
murder, 221
nature of, 219

nest, 222
rook, 220, 221
roosting communities, live in, 221
stealing and hiding food, 222

Crow search algorithm (CSA), 219, 251
awareness probability, 224, 227, 228
constraints, 224
decision variables and parameters, 224–225
flight length, 224, 227, 228
flowchart, 226
hiding place, 223
principles, 222–223
problem statement, 224
pseudocode, 225
stealing food, 224
uniform distribution, 228
variants and applications, 227

CSA-k-means, 227
CS optimization, see Cuckoo search

optimization
Cuckoo bird behavior

brood parasitic behavior, 144–145
egg mimicry, 144
fan-tailed cuckoo, 143, 144
Levy flights, 146–148
male Asian koel, 143, 145
reed warbler feeding cuckoo chick, 145, 147
reed warbler nest with cuckoo eggs, 144, 146

Cuckoo search algorithm, 249
Cuckoo search (CS) optimization

algorithm, 149–150
assumptions, 149
flowchart, 151
Levy flight behavior, 143, 146–148
objective function, 149
pseudocode, 150–151
variants, 152–154

Current best optimum solution, 236
Curse of dimensionality, 10
Cutting plane method, 25

Daemon actions, 107
Dampa Tiger Reserve Forest, 30
Darwin’s finches, 11, 12
Data clustering, 192
Data structures, genetic programming, 63

graph structure, 65
linear structure, 64–65
tree structure, 64
variables and constants, 64

d-dimensional hyperspace, 2, 4, 78, 82
d-dimensional population vector, 89
DE, see Differential evolution

255Index﻿﻿

Decomposition principle, 22
De Jong’s f1 function, 241
De Jong’s f2 function, 241
De Jong’s f4 function, 242
Delta wolves, 199, 202
Derivative-based algorithms, 30
Deterministic algorithms, 36
Deterministic optimization algorithms, 6
Differential evolution (DE), 11, 248

algorithm, 92–94
biogeography-based optimization

(DE-BBO), 98
crossover, 90, 92, 93, 96
DE-barebones particle swarm optimization

(PSO), 98
difference vectors, 91
estimation of distribution algorithm

(DE-EDA), 98
fittest individual refinement (DE-FIR), 98
flowchart, 95
initial population, 90, 91
mutant vector, 90, 92, 93
mutation, 90, 92, 96
neighborhood search DE, 98
objective(s) and constraints, 89
perturbations, 89
population vector, 90, 91
pseudocode, 94
selection, 90, 93
stochastic direct search method, 89
target vector, 90, 92, 93
termination criterion, 91
trial vector, 90, 92, 93
variants, 96–98

Dirac delta function, 163
Discard solution (pollen) operator, 192
Discrete cuckoo search algorithm, 152
Discrete optimization, 5–6
Diversification, 13, 14, 31, 39–40, 44, 143
Diversity, 80
Doppler effect, 249
Doppler shift, 171
Duality theorem, 21–22
Dynamic programming, 24–25

Easom’s function, 242
Eastern black carpenter ants, 100
Echolocation, 167–169, 171–174, 178, 249–250
EEHO algorithm, see Enhanced elephant

herding optimization algorithm
EHO, see Elephant herding optimization
Elephant herding behavior

crossing Luangwa River, 213

diet, 212
emotions, 212
group/clan size, 212
matriarch, 212
poaching and superimposing, 212
subsonic vibration, 212

Elephant herding optimization (EHO)
algorithm, 213–215, 250
clan separation operator, 211, 213–215
clan updating operator, 211, 213–215
flowchart, 216
pseudocode, 215
variants, 217

Elite-based mutation operator, 192
Elitism, 50, 217
Elitist ant system, 112
Employed bee, 126
EnergyStep, 127
Enhanced elephant herding optimization

(EEHO) algorithm, 217
EP, see Evolutionary programming
Equality constraints, 4–6, 9, 19, 23, 24
ES, see Evolutionary strategies
Evolutionary algorithms, 11–12, 29
Evolutionary programming (EP), 11, 61
Evolutionary strategies (ES), 11
Exponential crossover, 97
Exponential method, 97

FA, see Firefly algorithm
Fast marriage in honey bees optimization

(FMHBO) algorithm, 128
FBCO algorithm, see Fuzzy bee colony

optimization algorithm
FBS, see Fuzzy bee system
Feasibility problem, 5
Feature reduction, 8
Feature reduction problem, 244–245
Feature selection, 32, 152, 207
FGP, see Fuzzy genetic programming
Finite-state machine (FSM), 61
Firefly algorithm (FA), 157, 165, 249; see also

Firefly-inspired optimization
Firefly behavior and characteristics

adult beetle, 158
female firefly, 158, 159
flashing behavior, 160

bioluminescence, 158, 159
rhythmic flashing, 158
synchronized flashing, 158

glowing firefly, 158, 159
glowworms, 158, 159

Firefly-inspired optimization

256 ﻿﻿Index

algorithm, 162–163
assumptions, 160
attractiveness, 161, 162, 166
characteristic distance, 162
flowchart, 164
light intensity, 161–162
objective function, 161
pseudocode, 163
variants and applications, 165

Fish school behavior, 131–132
banner fish, 134, 135
of big eye scad fish, 132, 133
density, 133, 134
polarity, 132, 134
shoaling

blue-and-gold snappers, 132
size, 134, 135
swimming and foraging, 134

swarm behavior rules, 134, 135
Fish school search – combined strategy

(FSS–CS), 141
Fish school search (FSS) optimization

algorithm, 249
child fish weight and position, 138
collective-instinctive movement, 137–138
collective-volitive movement, 138
individual movement, 137, 138
stopping criterion, 139
weight update, 137

breeding, 136–137
feeding, 136
flowchart, 140
principles, 136
pseudocode, 139
swarm rules, 134, 135
swimming, 136
variants and applications, 141

Fitness function, 2, 71; see also Objective
function

Flock centering, 79
Flocking model, rules of, 79
Flock of birds

particle swarm optimization (PSO), 77, 78
flock of barnacle geese, 80
flock of lesser flamingos, 79

swarm intelligence algorithms, 33
communication, 33–34
flock of Auklets, 34, 35
flock of cranes, 34

Flower constancy, 185, 188–190
Flower pollination

cross-pollination, 182, 187
carpenter bee with pollen, 184, 186

Geranum incanum, young flower of, 187, 188
honey bee with pollen, 185, 186
hummingbird feeding on red flower,

185, 187
flower constancy, 185, 188
hibiscus flower, 182
reproductive parts

of Christmas lillium, 184
of mature flower, 183

self-pollination, 182, 187
orchid flower (Ophrys apifera), 184, 185

spring rose, 182, 183
Flower pollination algorithm (FPA), 181, 250

abiotic and self-pollination, 187
biotic and cross-pollination, 187
flowchart, 191
flower constancy, 188–190
global pollination, 188–190
hybrid optimization algorithm, 192
local pollination, 188, 189
pseudocode, 190
variants, 192–194

FMHBO algorithm, see Fast marriage in honey
bees optimization algorithm

Follower ravens, 235, 238
FPA, see Flower pollination algorithm
FPS–CSA algorithm, 193
FSM, see Finite-state machine
FSS–CS, see Fish school search – combined

strategy
FSS optimization, see Fish school search

optimization
Fuzzy bee colony optimization (FBCO)

algorithm, 129
Fuzzy bee system (FBS), 129
Fuzzy genetic programming (FGP), 74
Fuzzy logic bat algorithm, 177

GA, see Genetic algorithm
GADS, see Genetic algorithm for deriving

software
Gaussian distribution, 91
GE, see Grammatical evolution
Gene expression programming (GEP), 11, 74
General penalty function, 25
Generational genetic algorithm, 60
Generational GP, 71
Genetic algorithm (GA), 6, 11, 29, 47, 247–248

alleles, 48
bee system (BS), 125
chromosome, 48, 52
convergence characteristics, 54
flowchart, 55

257Index﻿﻿

gene, 48
objective function, 53
operators

crossover, 48–51
mutation, 48, 51
selection, 49–50

vs. particle swarm optimization (PSO), 77
Prisoner’s dilemma problem, 58–59
pseudocode, 54–55
schema theory, 56–58
strings, 47–48
variants and hybrids, 59

Genetic algorithm for deriving software
(GADS), 74

Genetic programming (GP), 11, 61, 248
algorithm, 71–72
binary tree traversals, 66–67
data structures, 63

graph structure, 65
linear structure, 64–65
tree structure, 64
variables and constants, 64

flowchart, 73
genetic operators, 62

crossover, 68–69
fitness function, 71
mutation, 69–71
selection, 67–68

language, 66
list processor (LISP), 62, 66
primitive elements, 62–63
programs in, 63
pseudocode, 72
variants, 74

Geometric programming, 23–24
GEP, see Gene expression programming
Geranum incanum, cross-pollination, 187, 188
Global best (G), 78, 81–83
Global maximum, 3, 5
Global minimum, 3, 4
Global pollination, 188–190
GP, see Genetic programming
Gradient descent, 10
Grammatical evolution (GE), 74
Graph coloring problem, 244
Gray wolf characteristics

categories of wolves, 199
communication by howl, 198–199
dens, 198
European gray wolf, 198
group hunting, 199–200
packs, live in, 198–199
social hierarchy, 199

territories, 198
traveling, 199

Gray wolf optimization (GWO), 197
algorithm, 204, 250
flowchart, 205
hunting techniques, 200–201

attacking of prey, 202, 203
encircling prey, 201–202
hunting behavior, 202, 203
searching for prey (exploration), 203

pseudocode, 204
variants and applications

binary gray wolf optimization, 206
multi-objective gray wolf optimization,

206–209
Greedy ravens, 238
Griewangk function, 242
GWO, see Gray wolf optimization

Hamiltonian tour, 14, 15, 105, 244
Harmony Search, 176, 178
Harvester ants’ nest, 36, 37
HBMO algorithm, see Honey bees mating

optimization algorithm
Heuristics operator, 128
Honey bee characteristics

bumblebee, 116, 117
foraging behavior, 120, 125
honeycomb, 117, 118
Italian bee pollinating white sweet clover, 117
nuclei of honey bees’ nest, 117, 119
pollination of dandelion flower, 116
queen bees, 117
self-organization of colonies, 120–121
waggle dance, 117, 119–120
worker bees, 117, 119

Honey bees mating optimization (HBMO)
algorithm, 128–129

Hooke–Jeeves method, 11
Hybrid DE algorithms, 97
Hybrid Genetic Algorithms, 59
Hybrid PSO–FPA algorithm, 193

IBA, see Improved bat algorithm
IGWO–KELM, see Integrated GWO with kernel

extreme learning machine
Improved bat algorithm (IBA), 176, 177
Improved raven roosting optimization (IRRO)

algorithm, 238, 239, 251
Indian flying foxes, 168
Inequality constraints, 4–6, 9, 19, 23, 24, 193
Inertia coefficient, 82
Inherent parallelism, 17, 31, 75, 131, 157, 248

258 ﻿﻿Index

InOrder traversal, 66–67
Integer programming, 25
Integrated GWO with kernel extreme learning

machine (IGWO–KELM), 208
Intensification, 13–14, 31, 39–40, 44, 143
IRRO algorithm, see Improved raven roosting

optimization algorithm

Job scheduling problem, 244

Kamarkar’s method, 20–21
Kapur’s entropy function, 206
k-means bat algorithm, 177
k-means clustering, 192
Knapsack problem, 14, 15, 244
Kruskal’s algorithm, 6
K-stage problem, 24
Kuhn–Tucker conditions, 24

Lagrange function, 26
Lagrange multiplier method, 26–27
Leader ravens, 234–236, 238
Levy distribution, 148, 150, 154, 162, 163, 181, 188
Levy flight behavior, 39, 181, 188–189, 249

cuckoo bird, 143, 146–148, 150
firefly, 162, 165, 166

Levy-flight firefly algorithm (LFA), 162, 165
Levy flights bat algorithm, 177
LFA, see Levy-flight firefly algorithm
LGB algorithm, see Linde–Buzo–Gray algorithm
LGP, see Linear genetic programming
Lightning bugs, see Firefly behavior and

characteristics
Linde–Buzo–Gray (LGB) algorithm, 165, 176
Linear genetic programming (LGP), 74
Linear optimization, 6
Linear programming, 19–22
List processor (LISP), 62, 66
Local maxima, 3
Local minima, 3
Local optima, 219
Local pollination, 188, 189

Marriage in honey bees optimization (MBO)
algorithm, 127–128

MaxIter, 82, 92, 149, 189, 204, 214, 223, 238
Max-min ant system (MMAS), 110–111
MBO algorithm, see Marriage in honey bees

optimization algorithm
MDE, see Modified DE
Mean squared error (MSE), 176
Megabats, fruit-eating, 168

photopic vision, 171
roosting, 168–170

MEP, see Multi-expression programming
Messy genetic algorithm, 59
Metaheuristic algorithms, 9, 32, 36–38, 44, 143,

197, 219, 247
diversification, 31, 39–40
exploitation, 39
exploration, 39
intensification, 31, 39–40
No Free Lunch Theorem, 40

Metaheuristics, 37–38, 99, 131, 197
Michaelwicz’s function, 242
Microbats, echolocating, 168

Doppler shift, 171
echolocation, 169, 171
emission frequency, 169
little brown bat in flight, 169, 172
mesopic vision, 171
nose-leaves, 169
transmission frequency, 171
ultrasound pulses emitted and echo

received, 169, 170
Minimum spanning tree, 5–6
Mixed integer programming problem, 25
MMAS, see Max-min ant system
MOCS, see Multi-objective cuckoo search

algorithm
Modified CS, 152
Modified DE (MDE), 97
MOFSS, see Multi-objective FSS
MOGWO, see Multi-objective gray wolf

optimization
MSE, see Mean squared error
Multi-expression programming (MEP), 74
Multilevel optimization, 9
Multimodal function, 5
Multi-objective BA, 176, 177
Multi-objective CS, 152
Multi-objective cuckoo search algorithm

(MOCS), 153–154
Multi-objective FSS (MOFSS), 141
Multi-objective gray wolf optimization

(MOGWO), 206–209
Multi-objective optimization, 4, 5, 7, 18, 91
Mutant vector, 90, 92, 93
Mutation operator

differential evolution (DE), 90, 92, 96–98
fast marriage in honey bees optimization

(FMHBO), 128
flower pollination algorithm (FPA), 192–193
genetic algorithm (GA), 48, 51–53, 58–60
genetic programming (GP), 62, 63, 67–71, 74
marriage in honey bees optimization (MBO)

algorithm, 127–128
Mutation rate, 51

259Index﻿﻿

Nature-inspired (NI) algorithms,
9, 12, 13

bioinspired algorithms, 31–32
classification, 29
flowchart, 43
metaheuristics (see Metaheuristic

algorithms)
parameter tuning and control, 40–41
pseudocode, 42
swarm intelligence algorithms, 32–37
vs. traditional algorithms, 30–31

Negative feedback, bee colonies, 120–121
Neighborhood search, 36
Neighborhood search DE, 98
Network routing problem, 245
Neural-based CS, 152
NI algorithms, see Nature-inspired

algorithms
NMDE, see Novel MDE
No Free Lunch Theorem, 40
Non-linear optimization, 6–7
Non-linear programming, 22–24
Novel MDE (NMDE), 97
NP-hard problems, 14

Objective function, 15, 18, 89
characteristics, 2
maximization/minimization, 1–2
one-dimensional function, 3
search space, 2–4
two-dimensional search space, 4

Omega wolves, 199, 202
One-point crossover, 50, 51
Onlooker bee, 126
Operations research, 17
Optimization; see also individual entries

applications, 1
constraints of problems, 1

d-dimensional hyperspace, 2, 4
equality/inequality constraints, 4
of problem, characteristics, 2

general optimization problem, 1, 2
goal of, 1, 17
mathematical model, 18–19
methods

direct methods, 9
indirect methods, 9

multi-objective optimization, 4, 5
objective function, 15

characteristics, 2
maximization/minimization, 1–2
one-dimensional function, 3
search space, 2–4
two-dimensional search space, 4

Optimization algorithm
biological evolution principles, 247
classical, 10–11
evolutionary, 11–12
properties, 42
swarm intelligence algorithms, 12–14

Optimization problems
examples, 7–8
formulation, 9–10
types, 5–7

Paper manufacturing, 8
Parallelized CS, 152
Parameter control, 40–41
Parameter tuning, 40–41
Pareto Optimal Front, 7, 153, 154, 176, 192, 206
Particle swarm optimization (PSO), 6, 248

algorithm, 81–83, 193, 211
d-dimensional hyperspace, 78
fitness values, 78, 81
flocking of birds, 77, 78
flowchart, 84
vs. genetic algorithm (GA), 77
objective functions, 86, 87
population-based technique, 77
pseudocode, 83–84
swarm behavior, 79–81
variants, 85–86

Pattern recognition, 8
Peak signal-to-noise ratio (PSNR), 176
Personal best (P), 78, 81–83, 234, 235
Pheromone, ant, 104

concentration, 102, 103
deposit, 100, 102, 103, 106, 107
evaporation, 106–108, 110
update equation, 107, 108, 110–111

Population-based algorithms, 31
Population-based search algorithm, 37, 197
Population size, bee colonies, 120, 121
Positive feedback, bee colonies, 120
PostOrder traversal, 66–67
Prefix, infix, and postfix expressions, 66–67
PreOrder traversal, 66, 67
Primal, 21–22
Prim’s algorithm, 6
Prisoner’s dilemma problem, 58–59
Problem statement, 9, 18, 105
Proximity, swarm behavior, 80
PSNR, see Peak signal-to-noise ratio
PSO, see Particle swarm optimization

Quadratic programming problem, 23
Quality, swarm behavior, 80
Quality function, 2

260 ﻿﻿Index

Randomization, 247
Rank-based ant system, 112
Rastrigin’s function, 243
Raven roosting behavior

Australian raven, 230, 231
common raven, 230, 231
food source discovery

communication, 233–234
of location, 231–232

information centers, 233
social foraging, 232–234
social roosting, 232, 233

Raven roosting optimization (RRO), 251
communication method, 229
flowchart, 237
food source discovery, leader for, 234–236
global best, 238
leader–follower principle, 238
personal best, 234, 235, 238
pseudocode, 236–237
social roosting and foraging behavior, 229
variants, 238–239

Reproduction operator, 62, 63
Revised simplex method, 20
Rosenbrock’s function, 243
Roulette wheel selection, fitness value, 50, 53
RRO, see Raven roosting optimization

SCCSA, see Sine cosine crow search algorithm
Schaffer’s f6 function, 242
Schema theory, 56–58
Schwefel’s function, 243
Scout bee, 126
Search space, 83, 90
Selection operator

differential evolution (DE), 90, 93, 94
genetic algorithm (GA), 49–50, 53, 59, 60
genetic programming (GP), 61–63, 68, 71, 72

Self-Organizing Genetic Algorithm, 59
Self-pollination, 182, 187

abiotic and, 187
orchid flower (Ophrys apifera), 184, 185

Separable problem, 5
Sequential linear integer programming, 25
Shubert’s function, 243
SI, see Swarm intelligence
Simplex method, 20
Sine cosine crow search algorithm (SCCSA), 227
Single-objective optimization, 7, 18, 91
Social behavior, 80
Social coefficient, 82
Spectacled flying foxes, 168, 169
Stability, swarm behavior, 81

Steady-state GP, 71
Stochasticity, bee colonies, 120, 121
Stochastic optimization algorithms, 6
Stochastic programming, 26
Survival of the fittest, 11, 35, 38, 47, 48, 61, 143,

181, 229
Swarm behavior, 34, 134

of ant colonies, 99
characteristics/principles, 80–81
of cuckoo birds, 143
definition, 79
of fireflies, 166
flocking model, rules of, 79
flock of barnacle geese, 80
flock of lesser flamingos, 79
human social behavior, 80

Swarm intelligence (SI), 32, 131
algorithm, 12–14, 29, 32–37, 77, 241, 249

(see also specific algorithms)
ants, 248

Takagi–Sugeno proportional-integral fuzzy
controllers (T–S PI-FCs), 208

Target vector, 90, 92, 93
Termination criterion, 91
TGP, see Traceless genetic programming
Tournament selection, 50, 68
Traceless genetic programming (TGP), 74
Traditional optimization methods, 247
Trajectory-based algorithms, 31
Transportation problem, 22
Traveling salesman problem (TSP), 14–15, 44,

105–108, 244
Trial vector, 90, 92, 93
TSP, see Traveling salesman problem
T–S PI-FCs, see Takagi–Sugeno proportional-

integral fuzzy controllers
Two-point crossover, 51

Unconstrained optimization, 4, 6
Uniform distribution, 91
Unimodal function, 5

Velocity clamping, 83
Velocity matching, 79

Weak ravens, 238
Weight-based FSS, 141
wrFSS, 141

Yang’s function, 243

Zero-one programming problem, 25

	Cover
	Half Title
	Title Page
	Copyright Page
	Table of Contents
	Preface
	Author
	1 Introduction
	1.1 Introduction
	1.2 Fundamentals of Optimization
	1.3 Types of Optimization Problems
	1.4 Examples of Optimization
	1.5 Formulation of Optimization Problem
	1.6 Classification of Optimization Algorithms
	1.7 Traveling Salesman Problem and Knapsack Problem
	1.8 Summary

	2 Classical Optimization Methods
	2.1 Introduction
	2.2 Mathematical Model of Optimization
	2.3 Linear Programming
	2.3.1 Simplex Method
	2.3.2 Revised Simplex Method
	2.3.3 Kamarkar’s Method
	2.3.4 Duality Theorem
	2.3.5 Decomposition Principle
	2.3.6 Transportation Problem

	2.4 Non-Linear Programming
	2.4.1 Quadratic Programming
	2.4.2 Geometric Programming

	2.5 Dynamic Programming
	2.6 Integer Programming
	2.7 Stochastic Programming
	2.8 Lagrange Multiplier Method
	2.9 Summary
	References

	3 Nature-Inspired Algorithms
	3.1 Introduction
	3.2 Traditional versus Nature-Inspired Algorithms
	3.3 Bioinspired Algorithms
	3.4 Swarm Intelligence
	3.5 Metaheuristics
	3.6 Diversification and Intensification
	3.7 No Free Lunch Theorem
	3.8 Parameter Tuning and Control
	3.9 Algorithm
	3.10 Pseudocode
	3.11 Summary
	References

	4 Genetic Algorithm
	4.1 Introduction
	4.2 Basics of Genetic Algorithm
	4.3 Genetic Operators
	4.4 Example of GA
	4.5 Algorithm
	4.6 Pseudocode
	4.7 Schema Theory
	4.8 Prisoner’s Dilemma Problem
	4.9 Variants and Hybrids of GA
	4.10 Summary
	References

	5 Genetic Programming
	5.1 Introduction
	5.2 Basics of Genetic Programming
	5.3 Data Structures for Genetic Programming
	5.4 Binary Tree Traversals
	5.5 Genetic Programming Operators
	5.6 Genetic Programming Algorithm
	5.7 Pseudocode
	5.8 Variants of the Algorithm
	5.9 Summary
	References

	6 Particle Swarm Optimization
	6.1 Introduction
	6.2 Swarm Behavior
	6.3 Particle Swarm Optimization
	6.3.1 Algorithm
	6.3.2 Pseudocode

	6.4 Variants of the Algorithm
	6.5 Summary
	References

	7 Differential Evolution
	7.1 Introduction
	7.2 Differential Evolution
	7.2.1 Algorithm
	7.2.2 Pseudocode

	7.3 Variants of the Algorithm
	7.4 Summary
	References

	8 Ant Colony Optimization
	8.1 Introduction
	8.2 Ant Colony Characteristics
	8.3 Ant Colony Optimization
	8.3.1 Traveling Salesman Problem
	8.3.2 Algorithm
	8.3.3 Pseudocode

	8.4 Variants of the Algorithm
	8.5 Summary
	References

	9 Bee Colony Optimization
	9.1 Introduction
	9.2 Honey Bee Characteristics
	9.3 Bee Colony Optimization
	9.3.1 Algorithm
	9.3.2 Pseudocode

	9.4 Variants of the Algorithm
	9.5 Summary
	References

	10 Fish School Search Algorithm
	10.1 Introduction
	10.2 Fish School Behavior
	10.3 Fish School Search Optimization
	10.3.1 Algorithm
	10.3.2 Pseudocode

	10.4 Variants and Applications
	10.5 Summary
	References

	11 Cuckoo Search Algorithm
	11.1 Introduction
	11.2 Cuckoo Bird Behavior
	11.3 Levy Flights
	11.4 Cuckoo Search Optimization
	11.4.1 Algorithm
	11.4.2 Pseudocode

	11.5 Variants of the Algorithm
	11.5.1 Discrete Cuckoo Search Algorithm
	11.5.2 Binary Cuckoo Search (BCS) Algorithm
	11.5.3 Multi-Objective Cuckoo Search Algorithm (MOCS)

	11.6 Summary
	References

	12 Firefly Algorithm
	12.1 Introduction
	12.2 Firefly Behavior and Characteristics
	12.3 Firefly-Inspired Optimization
	12.3.1 Algorithm
	12.3.2 Pseudocode

	12.4 Variants and Applications
	12.5 Summary
	References

	13 Bat Algorithm
	13.1 Introduction
	13.2 Behavior of Bats in Nature
	13.3 Bat Optimization Algorithm
	13.3.1 Algorithm
	13.3.2 Pseudocode

	13.4 Variants and Applications
	13.5 Summary
	References

	14 Flower Pollination Algorithm
	14.1 Introduction
	14.2 Flower Pollination
	14.3 Flower Pollination Optimization
	14.3.1 Algorithm
	14.3.2 Pseudocode

	14.4 Variants of the Algorithm
	14.5 Summary
	References

	15 Gray Wolf Optimization
	15.1 Introduction
	15.2 Gray Wolf Characteristics
	15.3 Gray Wolf Optimization
	15.3.1 Gray Wolf Encircling Prey
	15.3.2 Hunting Behavior of Gray Wolves
	15.3.3 Attacking of Prey by Gray Wolves
	15.3.4 Gray Wolves Searching for Prey (Exploration)

	15.4 Variants and Applications
	15.5 Summary
	References

	16 Elephant Herding Optimization
	16.1 Introduction
	16.2 Elephant Herding Behavior
	16.3 Elephant Herding Optimization
	16.3.1 Algorithm
	16.3.2 Pseudocode

	16.4 Variants of the Algorithm
	16.5 Summary
	References

	17 Crow Search Algorithm
	17.1 Introduction
	17.2 Crows in Nature
	17.3 Crow Search Optimization
	17.3.1 Algorithm
	17.3.2 Pseudocode

	17.4 Variants and Applications
	17.5 Summary
	References

	18 Raven Roosting Optimization Algorithm
	18.1 Introduction
	18.2 Raven Roosting Behavior
	18.3 Raven Roosting Optimization
	18.3.1 Algorithm
	18.3.2 Pseudocode
	Flowchart

	18.4 Variants of the Algorithm
	18.5 Summary
	References

	19 Applications
	19.1 Introduction
	19.2 Benchmark Test Functions
	19.3 Applications
	19.3.1 Traveling Salesman Problem
	19.3.2 Knapsack Problem
	19.3.3 Graph Coloring Problem
	19.3.4 Job Scheduling Problem
	19.3.5 Feature Reduction Problem
	19.3.6 Network Routing Problem

	19.4 Summary

	20 Conclusion
	Index

