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Preface


Multiagent system (MAS) is perhaps one of the most exciting and fastest growing 
domains in the intelligent resource management and agent oriented technology which 
deals with modeling of autonomous decision making entities. The field of multiagent 
dynamic systems is an inter-disciplinary research field that has become very popular 
in recent years, in parallel with the significant interest in the practical applications of 
such systems in various areas, including robotics. 

Recent developments have produced very encouraging results in its novel 
approach to handle multi-player interactive systems. In particular, the multiagent 
system approach is adapted to model, control, manage or test the operations and 
management of several system applications, including multi-vehicles, microgrids 
and multi-robots, where agents represent individual entities in the network. Each 
participant is modeled as an autonomous participant with independent strategies 
and responses to outcomes. They are able to operate autonomously and interact 
proactively with their environment. 

In recent publication, the problem of information consensus is addressed, where 
a team of vehicles must communicate with each other in order to agree on key pieces of 
information that enable them to work together in a coordinated fashion. The problem 
is particularly challenging because communication channels have limited range and 
experience fading and dropout. Along a parallel avenue, various topics regarding 
synchronization and consensus in multiagent systems were examined. The results 
demonstrated that the joint presentation of synchronization and consensus allows the 
reader to learn about the similarities and differences of both concepts. Cooperative 
control of multiagent dynamical systems interconnected by a communication 
network topology was also studied. Using the terminology of cooperative control, 
each system is endowed with its own state variable and dynamics. A fundamental 
problem in multiagent dynamical systems on networks is the design of distributed 
protocols that guarantee consensus or synchronization, in the sense that the states of 
all the systems reach the same value. 
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In view of the available results, it turns out that research avenues in multiagent 
systems offer great opportunities for further developments from theoretical, simulation 
and implementations standpoints. This volume provides ‘‘system dynamics and 
control perspective” of multiagent systems, with focus on mathematical modeling 
of multiagent systems and paying particular attention to the agent dynamics models 
available in the literature. We provide a number of problems on coordination and 
control of multiagent systems which have gained significant attention recently as 
well as various approaches to these problems. Looked at in this light, it has the 
following objectives: 
1. It gathers together the theoretical preliminaries and fundamental issues related 

to multiagent systems. 
2. It provides coherent results on adopting multiagent framework for critically 

examining problems in smart microgrid systems. 
3. It presents advanced analysis of multiagent systems under cyber-physical attacks 

and develops resilient control strategies in order to guarantee safe operation. 

October 2019 Magdi S Mahmoud 
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Chapter 1


Introduction


1.1 Overview 
The field of coordinated multiagent dynamic systems, including swarms and 
swarm robotics, is a relatively new field that has become popular in recent years. 
Since the pioneering work [1] on simulation of a flock of birds in flight using 
a behavioral model based on a few simple rules and only local interactions, the 
field has witnessed many developments. Currently, there is significant interest in 
the applications of the field in various areas involving teams of manned or un­
manned aerial, ground, space or underwater vehicles, robots and mobile sensors, 
to name a few [2]–[9]. 

Because of the interdisciplinary nature of the field, the literature on coordi­
nated multiagent dynamic systems have a moderately wide spectrum of perspec­
tives. This chapter focuses on the system dynamics and control perspective with 
the aim of presenting a short review on mathematical modeling, coordination and 
control of multiagent dynamical systems. 

Integrator and double integrator models are the simplest abstraction, upon 
which a large part of results on consensus of multiagent systems have been 
based, see [34], [35], [36], [41], [42], [43]. To deal with more complex mod­
els, a number of recent papers are devoted to consensus of multiple LTI systems 
[37], [38], [39], [40], [44], [45], [46], [47], [48], [49], [50], [51]. These results 
keep most of the concepts provided by earlier developments, and provide new 
design and analysis techniques, such as LQR approach, low gain approach, H∞
approach, parametrization and geometric approach, output regulation approach, 
and homotopy-based approach. However, most of these results [37], [38], [39], 
[40], [44], [46], [50], [51] mainly focus on fixed interaction topology, rather 
than time-varying topology. How do the switches of the interaction topology and 
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agent dynamics jointly affect the collective behavior of the multiagent system? 
Attempts to understand this issue have been hampered by the lack of suitable 
analysis tools. The results of Scardovi et al. [45] and Ni et al. [40] are men­
tioned here, because of their contributions to dealing with switching topology 
in the setup of high-order agent model. However, when dealing with switching 
topology, [45] and [40] assumed that the system of each agent is neutrally sta­
ble; thus, it has no positive real parts eigenvalues. This assumption was widely 
assumed in the literature when the interaction topology is fixed or switching. 
Unfortunately, when the agent is stabilizable and detectable rather than neutrally 
stable, and when the interaction topology is switching, there is no result reported 
in the literature to investigate the consensus of these agents. 

1.2 Elements of Graph Theory 
In this section, some preliminary knowledge of graph theory [10] is introduced 
so as to facilitate the subsequent analysis. For a system of n connected agents, its 
network topology can be modeled as a directed graph. 

A)) Let G = (V,E , A) be a weighted directed graph of order n, where 
V = 1, ...,n is the set of nodes; E ⊆V×V is the set of edges and A = [ai j] ∈ Rn×n 

is the non-negative adjacency matrix. An edge of G is denoted by a pair of dis­
tinct nodes (i, j) ∈ E , where node i and node j are called the child node and the 
parent node, respectively. A path in a directed graph is a sequence i0, i1, ..., i f if it 
consists of different nodes such that (i j−1, i j) is an edge for j = 1, 2, ..., f , f ∈ Z+ . 
Denote Ni = j | (i, j) ∈ E) as the set of neighbors of node i. The adjacency ma­
trix A = [ai j] ∈ Rn×n is defined such that ai j is the non-negative weight of edge 
(i, j). 

B)) We assume ai j = 0 if (i, j) / 0 for all i ∈ 1, ...,n. The Laplacian ∈E and aii�= 
matrix L = [li j] ∈ Rn×n is defined as lii = n

j=1, j=� i ai j and li j = −ai j(i =� j). A 
directed tree is a directed graph, in which there is exactly one parent for every 
node, except for a node called the root. A directed spanning tree is a directed 
tree, which consists of all of the nodes in G. A directed graph contains a directed 
spanning tree if there exists a directed spanning tree as a subgraph of the graph. 
Let G = (V, E,A) be a directed graph of order n, where V = {s1, . . . ,sn} is the 
set of nodes, E ⊆ V ×V is the set of edges, and A = [ai j] ∈ �n×n is a weighted 
adjacency matrix. The node indexes belong to a finite index set I = {1, 2, . . . ,n}. 
An edge of G is denoted by ei j =(si, s j), where the first element si of the ei j is said 
to be the tail of the edge and the other s j to be the head. The adjacency elements 
associated with the edges are positive, that is, ei j ∈ E ⇔ ai j > 0. If a directed 
graph has the property that ai j = a ji for any i, j ∈ I, the directed graph is called 
undirected. The Laplacian with the directed graph is defined as L = Δ − A ∈ 
�n×n, where Δ = [Δi j] is a diagonal matrix with Δii = 

�n
j=1 ai j. An important 

fact of L is that all the row sums of L are zero and, thus, 1 is an eigenvector of 
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L associated with the zero eigenvalue. The set of neighbors of node si is denoted 
by Ni = {s j ∈ V : (si,s j) ∈ E}. A directed path is a sequence of ordered edges 
of the form (si1, si2), (si2, si3), . . . , where si j ∈ V in a directed graph. A directed 
graph is said to be strongly connected, if there is a directed path from every node 
to every other node. Moreover, a directed graph is said to have spanning trees, if 
there exists a node such that there is a directed path from every other node to this 
node. 

Let Re(z),Im(z) and �z� be the real part, the imaginary part and the modulus 
of a complex number z, respectively. Let In(0n) be the identity (zero) matrix of 
dimension n and 1n be the n × 1 column vector of all ones. Here, represents 
the Kronecker product. 

1.2.1 Basic results 

Lemma 1.1 [32] 
If the graph G has a spanning tree, then its Laplacian L has the following properties: 

1. Zero is a simple eigenvalue of L, and 1n is the corresponding eigenvector, that 
is L1n = 0. 

2. The remaining n − 1 eigenvalues all have positive real parts. In particular, if 
the graph G is undirected, then all these eigenvalues are positive and real. 

Lemma 1.2 [16] 
Consider a directed graph G. Let D ∈�n×|E| be the 01-matrix with rows and columns 
indexed by the nodes and edges of G, and E ∈�|E|×n be the 01-matrix with rows and 
columns indexed by the edges and nodes of G, such that 

Du f = 
1 
0 

i f the node u is the tail o f the edge f 
otherwise (1.1) � 

E f u = 
1 
0 

i f the nodeu is the head o f the edge f 
otherwise (1.2) 

where |E| is the number of the edges. Let Q = diag{q1,q2, . . . ,q|E|}, where qp(p = 
1, . . . , |E|) is the weight of the pth edge of G (i.e., the value of the adjacency matrix 
on the pth edge). Then the Laplacian of G can be transformed into L = DQ(DT − E). 

1.2.2 Laplacian spectrum of graphs 
This section is a concise review of the relationship between the eigenvalues of a 
Laplacian matrix and the topology of the associated graph. We refer the reader to 
[11] for a comprehensive treatment of the topic. We list a collection of properties 
associated with undirected graph Laplacians and adjacency matrices, which will 
be used in subsequent sections of the paper. 
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A graph G is defined as 
G = (V, A) (1.3) 

where V is the set of nodes (or vertices) V = {1, . . . ,N} and A ⊆ V ×V the set 
of edges (i, j) with i ∈ V , j ∈ V . The degree d j of a graph vertex j is the number 
of edges which start from j. Let dmax(G) denote the maximum vertex degree of 
the graph G. 

1.2.3 Properties of adjacency matrix 
We denote A(G) by the (0, 1) adjacency matrix of the graph G. Let Ai j ∈ R be 
its i, j element, then Ai,i = 0, ∀i = 1, . . . , N, Ai, j = 0 if (i, j) / = 1 if ∈ A and Ai, j 

(i, j) ∈ A, ∀i, j = 1, . . . , N, i =� j. We will focus on undirected graphs, for which 
the adjacency matrix is symmetric. 

Let S(A(G)) = {λ1(A(G)), . . . , λN (A(G))} be the spectrum of the adjacency 
matrix associated with an undirected graph G arranged in non-decreasing semi-
order. 
• Property 1: λN (A(G)) ≤ dmax(G). 
This property together with Proposition 1 implies 
• Property 2: γi ≥ 0, ∀γi ∈ S(dmaxIN − A).

We define the Laplacian matrix of a graph G in the following way:


L(G) = D(G) − A(G)	 (1.4) 

where D(G) is the diagonal matrix of vertex degrees di (also called the valence 
matrix). Eigenvalues of Laplacian matrices have been widely studied by graph 
theorists. Their properties are strongly related to the structural properties of their 
associated graphs. Every Laplacian matrix is a singular matrix. By Gershgorin 
theorem [15], the real part of each nonzero eigenvalue of L(G) is strictly positive. 

For undirected graphs, L(G) is a symmetric, positive, semidefinite matrix, that 
only has real eigenvalues. Let S(L(G)) = {λ1(L(G)), . . . ,λN (L(G))} be the spec­
trum of the Laplacian matrix L associated with an undirected graph G arranged 
in non-decreasing semi-order. Then, 
• Property 3: 

1.	 λ1(L(G)) = 0 with corresponding eigenvector of all ones, and λ2(L(G)) iff 
G is connected. In fact, the multiplicity of 0 as an eigenvalue of L(G) is 
equal to the number of connected components of G. 

2. The modulus of λi(L(G)), i = 1, . . . , N is less then N. 

The second smallest Laplacian eigenvalue λ2(L(G)) of graphs is probably the 
most important information contained in the spectrum of a graph. This eigen­
value, called the algebraic connectivity of the graph, is related to several impor­
tant graph invariants, and it has been extensively investigated. 
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Figure 1.1: Sample graph and Laplacian 

Let L(G) be the Laplacian of a graph G with N vertices and with maximal 
vertex degree dmax(G). Then properties of λ2(L(G)) include 
• Property 4: 

1. λ2(L(G)) ≤ (N/(N − 1)) min{d(v), v ∈ V}; 

2. λ2(L(G)) ≤ v(G) ≤ η(G); 

3. λ2(L(G)) ≥ 2η(G)(1 − cos(π/N)); 

4. λ2(L(G)) ≥ 2(cos N 
π − cos2 N 

π )η(G) − 2cos N 
π (1 − cos N 

π )dmax(G) 

where v(G) is the vertex connectivity of the graph G (the size of a smallest set of 
vertices whose removal renders G disconnected) and η(G) is the edge connectiv­
ity of the graph G (the size of a smallest set of edges whose removal renders G
disconnected) [17]. 

Further relationships between the graph topology and Laplacian eigenvalue 
locations are discussed in [14] for undirected graphs. Spectral characterization 
of Laplacian matrices for directed graphs can be found in [15], see also Fig. 1.1. 

A lemma about Laplacian L associated with a balanced digraph G is given 
hereafter: 

Lemma 1.3 
If G is balanced, then there exists a unitary matrix ⎡ ⎤1√

n 
1√
n 

∗ 
∗ 

. . . 

. . . 

∗ 
∗ 

. . . 
. . . 

. . . 
1√
n ∗ . . . ∗ 

⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎦V = ∈ Cm×n (1.5) 

such that 

V ∗LV = 
0 

= Λ ∈ Cn×n , H ∈ C(n−1)×(n−1) (1.6)H 

Moreover, if G has a globally reachable node, H + H∗ is positive definite. 
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Proof 1.1 Let V = [ζ1, ζ2, . . . , ζn] be a unitary matrix where ζi ∈ Cn(i = 1, . . . ,n) 
are the column vectors of V and 

ζ1 = (1/
√

n)1 = (1/
√

n,1/
√

n, . . . ,1/
√

n)T 

Notice that if G is balanced, it implies that ζ1
∗L = 0. Then we have 

V ∗LV = V ∗L[ζ1,ζ2, . . . ,ζn] 

ζ1
∗

ζ2
∗

⎤⎡ ⎢⎢⎢⎣ 

⎥⎥⎥⎦ [0n,Lζ2, . . . ,Lζn]= . . . 
ζn 
∗

0 0T 
n−2 
H 

= • 

Furthermore, if G has a globally reachable node, then L+LT is positive semi-definite, 
see Theorem 7 in [18]. Hence, V ∗(L + LT )V is also positive semidefinite. Further­
more, we know that “zero” is a simple eigenvalue of L and, therefore, H + H∗ is 
positive definite. 

As closing remarks, the Laplacian matrix satisfies the property L = CCT . It is 
a well-known fact that this property holds regardless of the choice of the orienta­
tion of G. Let xi denote a scalar real value assigned to vi. Then x = [x1, ...., xn]

T 

denotes the state of the graph G. We define the Laplacian Potential of the graph 
as follows 

ΨG (x) = 
1 

xT L x (1.7)
2 

From this definition, the following property of the Laplacian potential of the 
graph follows: 

Lemma 1.4 
[33] The Laplacian potential of a graph is positive definite and satisfies the following 
identity: 

xT L x (x j(t) − xi(t))2 (1.8)= 
j∈INi 

Moreover, given a connected graph, ΨG (x) = 0 if and only if xi = x j, ∀i, j. 

It follows from 1.4, that the Laplacian potential of the graph ΨG (x) is a mea­
sure of the total disagreement among all nodes. If at least two neighboring nodes 
of ΨG disagree, then ΦG > 0. Hence, minimizing ΨG is equivalent to reaching a 
consensus, which signifies a fundamental key in the design of consensus proto­
cols. 
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Remark 1.1 It well know that for a connected graph that is undirected, the fol­
lowing well-known property holds [10]: 

xtLx 
�
min 

||x||2 = λ2(L) (1.9) 
x=01t x=0 

The proof follows from a special case of Courant–Fischer Theorem in [52]. A con­
nection between λ2(L̂) with L̂ = 2

1 (L + Lt ), called the Fiedler eigenvalue of (L̂) [53] 
and the performance (that is, worst case speed of convergence) of protocol (.) on 
digraphs is established in [11]. 

Remark 1.2 Consider a simple digraph G = (V,E,A) with V = {v1,v2, ...,vn} a 
nonempty finite set of nodes or vertices, a set of edges or arcs E ⊆ V × V and an 
adjacency matrix A = [ai j] with weights ai j > 0 if (v j,vi) ∈ E and ai j = 0 otherwise. 
Let (vi,vi) ∈/= E∀i, with no self loops, and no multiple edges in the same direction 
between the same pairs of nodes. Thus, aii = 0. Define the in-degree of node vi as 
the i − th row sum of A, din(vi) = 

�n
j=1 ai j, and the out-degree of node vi as the 

i − th column sum of A, dout (vi) = 
�n

j=1 ai j. The node of a digraph is balanced if 
and only if its in-degree and out-degree are equal, i.e., din(vi) = dout (vi). A graph 
G is called balanced if and only if all of its nodes are balanced. Define the diago­
nal in-degree matrix D = diag{din(vi)} and the graph Laplacian matrix L = D − A. 
The set of neighbours of a node vi is Ni = {v j : (v j,vi) ∈ E}, the set of nodes with 
edges incoming to vi. A directed path is a sequence of nodes v1,v2, ...,vr such that 
(vi,vi+1) ∈ E,i ∈ {1,2, ...,r − 1} A semipath is a sequence of nodes v1,v2, ..., vr such 
that (vi, vi+1) ∈ E, or (vi+1,vi) ∈ E, i ∈ {1,2, ...,r − 1}. Node vi is said to be con­
nected to node v j if there is a directed path from vi to v j. Node vi is called a root 
node if it has a directed path to all other nodes. Graph G is said to be strongly con­
nected if there is a directed path from every node to every other node and weakly 
connected if any two different nodes are connected by a semipath. A subgraph of G 
is a digraph whose vertices and edges belong to V and E, respectively. A spanning 
subgraph of G is a subgraph of G with vertices V . A directed tree is a connected 
digraph where every node has in-degree equal to one, except for one with in-degree 
of zero. A spanning tree of a digraph is a directed tree formed by graph edges that 
connects all the nodes of the graph. A graph is said to have a spanning tree if a sub­
set of the edges forms a directed tree. This is equivalent to saying that all nodes in 
the graph are reachable from a single (root) node. 

1.2.4 Nonlinear stochastic dynamical systems 
In multi-agent systems, the network topology among all vehicles plays a crucial 
role in determining consensus. The objective here is to explicitly identify nec­
essary and/or sufficient conditions on the network topology, such that consensus 
can be achieved under properly designed algorithms. 
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It is often reasonable to consider the case when the network topology is deter­
ministic under ideal communication channels. Accordingly, main research on the 
consensus problem was conducted under a deterministic fixed/switching network 
topology. That is, the adjacency matrix A(t) is deterministic. Some other times, 
when considering random communication failures, random packet drops, and 
communication channel instabilities inherited in physical communication chan­
nels, it is necessary and important to study consensus problem in the stochas­
tic setting, where a network topology evolves according to some random dis­
tributions. That is, the adjacency matrix A(t) is stochastically evolving. In the 
deterministic setting, consensus is said to be achieved if all agents eventually 
reach agreement on a common state. In the stochastic setting, consensus is said 
to be achieved almost surely (respectively, in mean-square or in probability) if all 
agents reach agreement on a common state almost surely (respectively, in mean-
square or in probability). Note that the problem studied in the stochastic setting 
is slightly different from that studied in the deterministic setting due to the differ­
ent assumptions in terms of the network topology. Consensus over a stochastic 
network topology was perhaps first studied in [19], where some sufficient con­
ditions on the network topology were given to guarantee consensus with prob­
ability one for systems with single-integrator kinematics. For consensus under 
a stochastic network topology, some results were reported in [20]–[28], where 
research efforts were conducted for systems with single-integrator kinematics 
[20, 21, 22, 23, 24, 25, 26, 27] or double-integrator dynamics [28]. Consensus 
for single-integrator kinematics under stochastic network topology has been ex­
tensively studied in particular, where some general conditions for almost-surely 
consensus were derived [22], [23], [26]. Loosely speaking, almost-surely con­
sensus for single-integrator kinematics can be achieved, i.e., xi(t) − x j(t) → 0 
almost surely, if and only if the expectation of the network topology, namely, 
the network topology associated with expectation E [A(t)], has a directed span­
ning tree. It is worth noting that the conditions are analogous to that in [24], 
[25], but in the stochastic setting. In view of the special structure of the closed-
loop systems concerning consensus for single-integrator kinematics, basic prop­
erties of the stochastic matrices play a crucial role in the convergence analysis 
of the associated control algorithms. Consensus for double-integrator dynamics 
was studied in [28], where the switching network topology is assumed to be 
driven by a Bernoulli process, and it was shown that consensus can be achieved 
if the union of all the graphs has a directed spanning tree. Apparently, the re­
quirement on the network topology for double-integrator dynamics is a special 
case of that for single integrator kinematics due to the different nature of the final 
states (constant final states for single-integrator kinematics and possible dynamic 
final states for double-integrator dynamics) caused by the substantial dynamical 
difference. Whether some general conditions (corresponding to some specific al­
gorithms) can be found for consensus with double-integrator dynamics is still an 
open question. 
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In addition to analyzing the conditions on the network topology, such that 
consensus can be achieved, a special type of consensus algorithm, the so-called 
gossip algorithm [29], [30], has been used to achieve consensus in the stochastic 
setting. The gossip algorithm can always guarantee consensus almost surely if the 
available pairwise communication channels satisfy certain conditions (such as a 
connected graph or a graph with a directed spanning tree). The way of network 
topology switching does not play any role in the consideration of consensus. 

In what follows, we proceed to establish notation and definitions, then re­
view some basic results for nonlinear stochastic dynamical systems ([356]; 
[364];[370]). Specifically, R denotes the set of real numbers, Rn denotes the set 
of n×1 real column vectors, and Rn×m denotes the set of n×m real matrices. We 
write || · || for the Euclidean vector norm, || · ||F for the Frobenius matrix norm, 
|| · ||1 for the absolute sum norm, AT for the transpose of the matrix A, and In or I 
for the n×n identity matrix. We define a complete probability space as (Ω,F , P), 
where Ω denotes the sample space, F denotes a σ -algebra, and P defines a prob­
ability measure on the σ -algebra F ; that is, P is a nonnegative countably additive 
set function on F such that P(Ω) = 1 ([356]). Furthermore, we assume that w( )·
is a standard d-dimensional Wiener process defined by (w( ), Ω,F ,Pw0 ), where ·
Pw0 is the classical Wiener measure ([370], p. 10), with a continuous-time fil­
tration Ft t≥0 generated by the Wiener process w(t) up to time t. We denote a 
stochastic dynamical system by G generating a filtration Ft t≥0 adapted to the 
stochastic process x : R̄+ × Ω → D on (Ω, F ,Px0 ) satisfying Fτ ⊂ Ft ,0τ < t, 
such that ω ∈: x(t,ω) ∈ B ∈ Ft , t ≥ 0, for all Borel sets B ⊂ Rn contained in the 
Borel σ -algebra Bn. Here, we use the notation x(t) to represent the stochastic 
process x(t, ω), omitting its dependence on ω . 

Finally, we write tr( ) for the trace operator, ⊗ for the Kronecker ·
product, ( )−1 for the inverse operator, V 

� 
(x) � ∂V 

∂ 
(
x
x) for the Frchet·

derivative of V at x,V 
�� 
(x) � ∂ 2

∂ 
V
x
(
2 
x) for the Hessian of V at x, and 

Hn (resp., H[n × m]) for the Hilbert space of random vectors x ∈ Rn 

(resp., random matrices X ∈ R[n × m]) with finite average power, that is, 
Hnx : Rn : E[xT x] < ∞ (resp., Hn×mX : Rn×m : E[||X ||F ] < ∞). Further­→ → 
more, we write λmin(A)(resp., λmax(A)) for the minimum (resp., maximum) 
eigenvalue of the Hermitian matrix A and x (resp., x̄) for the lower bound (resp., 
upper bound) of a bounded signal x, that is, for x(t) ∈Hn, t ≥ 0,x ≤ ||x(t)||, t ≥ 0 
(resp., ||x(t)||a.s. ≤ x̄, t ≥ 0). For y ∈ Rn or y(t) ∈ Hn, t ≥ 0, [y]i denotes the ith 
component of y or y(t), and for an open set D ⊆ Rn , HD

n � x ∈Hn : x : Ω →D 
denotes the set of all the random vectors in Hn induced by D. Similarly, for ev­
ery x0 ∈ Rn , Hnx0 � x ∈Hn : x = x0. Finally, C2 denotes the space of real-valued 
functions V : D→ R that are two-times continuously differentiable with respect 

.to x ∈ D ⊆ Rn 

Consider now the nonlinear stochastic dynamical system G given by 

dx(t) = f (x(t))dt + D(x(t))dw(t),x(t0)a.s. = x0, t ≥ t0, (1.10) 
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where, for every t ≥ 0, x(t) ∈HD is a Ft-measurable random state vector, x(t0) ∈n 
Hnx0, D ⊆ Rn is an open set with 0 ∈ D, w(t) is a d-dimensional independent 
standard Wiener process (i.e., Brownian motion) defined on a complete filtered 
probability space (Ω,Ft t≥t0 

,P), x(t0) is independent of (w(t)−w(t0)), t ≥ t0, and 
f : D→ Rn and D : D→ Rn×d are continuous functions and satisfy f (xe) = 0 and 
D(xe) = 0 for some xe ∈D . Here, we assume that f : D→ RnandD : D→ Rn×d 

satisfy the uniform Lipschitz continuity condition: 

|| f (x) − f (y)|| + ||D(x) − D(y)||F ≤ L||x − y||, x, y ∈ D (1.11) 

and the growth restriction condition 

|| f (x)||2 + ||D(x)||F 
2 ≤ L2(1 + ||x||2), x ∈ D, (1.12) 

for some Lipschitz constant L > 0. 
Hence, since x(t0) ∈ HD and x(t0) is independent of (w(t) − w(t0)), t ≥ t0, it n 

follows that there exists a unique solution x ∈L2(Ω,F ,P), where L2(Ω,F, P) de­
notes the set of equivalence class of measurable and square integrable Rn valued 
random processes on (Ω, F , P) over the semi-infinite parameter space [0,∞), to 
(1.10) in the following sense. For every x ∈Hn

D\{0} there exists Tx > 0 such that 
if x1 : [t0,τ1] × Ω →D and x2 : [t0,τ2] × Ω →D are two solutions of (1.10); that 
is, if x1, x2 ∈ L2(Ω, F , P) with continuous sample paths almost surely solve (1), 
then Tx ≤ minτ1,τ2 and P x1(t) = x2(t), t0 ≤ t ≤ Tx = 1. The following defini­
tion introduces the notions of boundedness and uniform ultimate boundednesss 
for stochastic dynamical systems. 

Definition 1.1 ([376]; [383]): The pathwise trajectory x(t) ∈ HD, t ≥ 0, of (1.10) n 
in (Ω, {Ft }t≥t0 ,P

x0 ) is bounded in probability if limc→∞ supt≥0 P||x(t)|| > c = 0. 
Furthermore, x(t) ∈HD, t ≥ 0, is uniformly ultimately bounded in the pth moment if, n 
for every compact subset Dc ⊂ Rn and all x(0)a.s. = x0 ∈ Dc, there exist ε > 0 and 
a finite-time T = T (ε,x0) such that Ex0 [||x(t)||p] < ε for all t > 0 +T . If, in addition, 
p = 2, then we say that x(t), t ≥ 0, is uniformly ultimately bounded in a mean square 
sense. 

The following lemma is needed for the main result of this section. First, how­
ever, recall that the infinitesimal generator L of x(t), t ≥ 0, with x(0)a.s. = x0, is 
defined by 

Ex0 [V (x(t))] −V (x0)LV (x0) � 
t
lim

0+ t 
,x0 ∈ D (1.13) 

→

where Ex0 denotes the expectation with respect to the transition probability mea­
sure Px0 (x(t) ∈ B) � P(t0, x0, t, B) ([370], Def. 7.7). If V ∈ C2 and has a compact 
support, and x(t), t ≥ 0, satisfies (1.10), then the limit in (1.13) exists for all 
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x ∈ D and the infinitesimal generator L of x(t), t ≥ 0, can be characterised by 
the system drift and diffusion functions, f (x) and D(x), defining the stochastic 
dynamical system (1.10) and is given in [370], 

LV (x) � 
∂V 

∂ 
(

x
x) 

f (x)+ 
1
2

trDT (x) 
∂ 2

∂ 
V
x
(
2 

x) 
D(x),x ∈ D. (1.14) 

Lemma 1.5 
([362]): Consider the nonlinear stochastic dynamical system G given by (1.10). If 
there exist a two-times continuously differentiable function V : Rn R+, positive 
constants β1 > 0 and β2 > 0, and class K∞ functions α1: [0,∞)

→ 
[0, ∞) and 

α2 : [0,∞) → [0, ∞) such that 
→ 

α1(||x||) ≤ V (x) ≤ α2(||x||),x ∈ Rn , (1.15) 
LV (x) ≤−β1V (x)+ β2, x ∈ Rn , (1.16) 

then 

Ex0 [V (x(t))] ≤ V (x(0))e−β1t + 
β

β

1

2 
, t ≥ 0. (1.17) 

Finally, we recall some basic notation from graph theory [10]. Specifically, 
G = (V, E ,A) denotes a weighted directed graph (or digraph) denoting the static 
network (or static graph) with the set of nodes (or vertices) V = 1, . . . ,N in­
volving a finite nonempty set denoting the agents, the set of edges E ⊆ V ×V
involving a set of ordered pairs denoting the direction of information flow be­
tween agents, and a weighted adjacency matrix A ∈ RN×N such that A(i, j) = 
ai j > 0, i, j = 1, . . . , N, i f ( j, i) ∈ E , and ai j = 0, otherwise. The edge ( j, i) ∈ E 
denotes that agent i can obtain information from agent j, but not necessarily vice 
versa. Moreover, we assume that aii = 0 for all i ∈ V . 

Note that if the weights ai j, i, j = 1, . . . , N, are not relevant, then ai j is set to 1 
for all ( j, i) ∈ E . In this case, A is called a normalized adjacency matrix. 

Every edge l ∈ E corresponds to an ordered pair of vertices (i, j) ∈ V ×V , 
where i and j are the initial and terminal vertices of the edge l. In this case, l 
is incident into j and incident out of i. Finally, we say that G is strongly (resp., 
weakly) connected if for every ordered pair of vertices (i, j), i =� j, there exists a 
directed (resp., undirected) path, that is, a directed (resp., undirected) sequence 
of arcs leading from i to j. 

The in-neighbours and out-neighbours of node i are, respectively, defined 
as Nin(i) � { j ∈ V : ( j, i) ∈ E} and Vout (i) � { j ∈ V : (i, j) ∈ E}. The in-
degree degin(i) of node i is the number of edges incident into i and the out-
degree degout (i) of node i is the number of edges incident out of i, that is, 
degin(i) � 

�N
j=1 a ji and degout (i) � 

�N
j=1 a ji. We say that the node i of a di­

graph G is balanced if deg in(i) = degin(i), and a graph G is called balanced 
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if all of its nodes are balanced, that is, 
�N

j=1 a ji = 
�N

j=1 ai j, i = 1, . . . , N. Fur­
thermore, we define the graph Laplacian of G by L � D −A, where D � 
diag[degin(1), . . . ,degin(N)]. 

A graph or undirected graph G associated with the adjacency matrix A ∈ 
RN×N is a directed graph for which the arc set is symmetric, that is, A = AT . In 
this case, Nin(i) = Nout (i)N (i) and degin(i) = degout (i) � deg(i), i = 1, . . . ,N. 
Furthermore, in this case, we say that G is connected if for every ordered pair of 
vertices (i, j), i =� j, there exists a path, that is, a sequence of arcs, leading from 
i to j. Finally, the leader adjacency matrix Q =diag[q1, . . . ,qN ] ∈ RN×N is such 
that qi > 0 when agent i has direct access to the leader and qi = 0 otherwise. 
Furthermore, the set of nodes that do not have access to the leader information is 
denoted by NI , whereas the set of nodes with access to the leader information is 
denoted by NII . It is clear that NI ∩NII = ØandNI ∪NII = 1, . . . ,N . 

1.2.5 Complex dynamical systems 
As a direct extension of the study of the consensus problem for systems with 
simple dynamics, for example, with single-integrator kinematics or double-
integrator dynamics, consensus with general linear dynamics was also studied 
recently, where research was mainly devoted to finding feedback control laws, 
such that consensus (in terms of the output states) can be achieved for general 
linear systems 

ẋ = Axi + Bui, yi = Cxi,	 (1.18) 

where A, B, and C are constant matrices with compatible sizes. Apparently, 
the well-studied single-integrator kinematics and double-integrator dynamics are 
special cases of (1.18) for properly choosing A, B and C. Consensus for complex 
systems has also been extensively studied. Here, the term consensus for complex 
systems is used for the study of consensus problem when the system dynamics 
are nonlinear or with nonlinear consensus algorithms. Examples of the nonlinear 
system dynamics studied in the consensus problem include: 

�	 Nonlinear oscillators. The dynamics are often assumed to be governed 
by the Kuramoto equation 

N

θ̇ = ωi + 
K � 

sin(θ j − θi), i = 1, 2, ...,N (1.19)
N 

j=1 

where θi and ωi are, respectively, the phase and natural frequency of the 
ith oscillator, N is the number of oscillators, and K is the control gain. 
Generally, the control gain K plays a crucial role in determining the syn­
chronizability of the network. 
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� Complex networks. The dynamics are typically represented as 

N

ẋ(t) = f (xi(t))+ c ai j(t)Γ(x j(t) − xi(t)), i = 1, 2, ...,N (1.20) 
j=1, j=� i 

where xi = (xi1, xi2, ...,xin)
T ∈ Rn is the state vector of the ith node, 

f : Rn Rn is a nonlinear vector function, c is the overall coupling 
strength,

→
A(t) = [ai j(t)] is the outer coupling matrix with ai j(t) = 1 if 

node i and node j are connected at time t, otherwise ai j(t) = 0, with 
aii(t) = ki (degree of node i), and Γ is a general inner coupling matrix 
describing the inner interactions between different state components of 
agents. It is easy to see that model 

ẋi(t) = ui(t), i = 1, ...,n,	 (1.21) 

with control input 

n

ui(t) = ai j(t) [x j − xi] (1.22) 
j=1 

is a special case of (1.18) with f = 0. 

�	 Nonholonomic mobile robots. The dynamics are described by 

ẋ = uicosθi, ẏ = uisinθi, θ̇i = ωi, i = 1, 2, ..., N, (1.23) 

where [xi,yi] denotes the location of the ith agent, and ui and ωi denote, 
respectively, its translational and rotational velocity. Note that there are 
three states and two control inputs. Therefore, the dynamics for nonholo­
nomic mobile robots are underactuated. This poses substantial difficulties 
in designing proper consensus algorithms with corresponding stability 
analysis. 

�	 Rigid bodies and the like. One typical (but not unique) description of the 
dynamics is 

Mi(qi)q̈i +Ci(qi, q̇i)q̇i + gi(qi) = τi, i = 1,2, ..., N, (1.24) 

where qi ∈ Rpis the vector of generalized coordinates, Mi(qi) ∈ Rp×p is 
the symmetric positive-definite inertia matrix, Ci(qi, q̇i)q̇i ∈ Rp is the vec­
tor of Coriolis and centrifugal torques, gi(qi) is the vector of gravitational 
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torques, and τi ∈ Rp is the vector of torques produced by the actuators 
associated with the ith agent. In practice, the dynamics of many mechan­
ical systems are similar to (1.24). A notable property regarding the dy­
namics of rigid bodies is that Ṁi(qi) − 2Ci(qi, q̇i) is skew-symmetric (i.e., 
zT Ṁi(qi) − 2Ci(qi, q̇i) z = 0 for all z ∈ Rp), which plays a crucial role 
in finding Lyapunov functions and the subsequent stability analysis. 

One particular interesting topic is synchronization in complex networks, 
which has been widely investigated in the past decade. Mathematically, the def­
initions for synchronization in complex networks and consensus in multiagent 
systems are very similar, so in order to differentiate these two definitions and 
promote research exchanges in these two topics, their differences are briefly sum­
marized below. 

1.	 Different Asymptotic States (Nonlinear Dynamics versus Linear Dynam­
ics). In the studies of synchronization in complex networks, researchers 
focus on synchronization with self-nonlinear dynamics, where each single 
system is unstable and, thus, the final asymptotic synchronization state is 
typically time-varying. However, in the investigations of multiagent sys­
tems, the individual self-dynamics on each system are usually linear or 
zero and, therefore, the asymptotic consensus state is usually a constant. 

2.	 Different Focuses (Known Connectivity versus Time-Varying Distributed 
Protocol). In synchronization of complex networks, the aim is to reveal 
how the network structure, which is known a priori, affects the nonlinear 
collective dynamics, while the aim of consensus in multiagent systems 
is to figure out how the designed distributed local protocol concerning 
mobile time-varying network structure affects the consensus behavior. 

3.	 Different Approaches (Lyapunov Method versus Stochastic Matrix The­
ory). Since both complex networks and multiagent systems are networked 
systems, algebraic graph theory is a common approach to use. Because 
of the nonlinear terms in synchronization of complex networks, Lyapunov 
function method is usually used together with matrix theory. In order to 
show consensus in multiagent systems with time-varying network struc­
tures, stochastic matrix theory and convex analysis are often applied. 

4.	 Different Inner Matrices (Γ) (General Inner Matrix versus Particular Inner 
Matrix). In the typical simple consensus model, the inner matrices Γ are 
usually an identity matrix and a rank-one matrix 

0 1 
0 0 

for multiagent systems with single-integrator kinematics and double-

integrator dynamics, respectively. In consensus models with higher–order
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dynamics, the inner matrix is similar. However, the inner matrix in system 
(1.20) is a general one. 

Briefly stated, synchronization in complex networks focuses on nonlinear 
dynamics, while consensus in multiagent systems focuses on distributed 
cooperative control, thus, different approaches are utilized. The current 
research on consensus with complex systems focuses on fully-actuated 
systems although consensus for nonholonomic mobile robots, which are 
typical underactuated systems. Note that many mechanical devices are de­
scribed by systems with underactuation. Therefore, it is important to de­
velop appropriate consensus algorithms for underactuated systems. 

1.2.6 Delay effects 
Time delay appears in almost all practical systems for several reasons: 

(1) limited communication speed when information transmission exists; 

(2) extra time required by the sensor to get the measurement information; 

(3) computation time required for generating the control inputs; and 

(4) execution time required for the inputs being acted. 

In general, time delay reflects an important property inherited in practical sys­
tems due to actuation, control, communication and computation. 

Knowing that time delay might degrade the system performance or even de­
stroy the system stability, studies have been conducted to investigate its effect on 
system performance and stability. A well-studied consensus algorithm for (1.21) 
is given in (1.22), where it is now assumed that time delay exists. Two types of 
time delays, communication delay and input delay, have been considered in the 
literature. Communication delay accounts for the time required in order to trans­
mit information from origin to destination. More precisely, if it takes time Ti j 

for agent i to receive information from agent j, the closed-loop system of (1.21) 
using (1.22) under a fixed network topology becomes 

n

ẋi(t) = ai j(t) [x j(t − Ti j) − xi(t)] (1.25) 
j=1 

An interpretation of (1.25) is that at time t, agent i receives information from 
agent j and uses data x j(t − Ti j) instead of x j(t) due to the time delay. Note that 
agent i can get its own information instantly, therefore, input delay can be consid­
ered as the summation of computation time and execution time. More precisely, 
if the input delay for agent i is given by Ti

p , then the closed-loop system of (1.21) 
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using (1.22) becomes 
n

ẋi(t) = ai j(t) [x j(t − T p) − xi(t − T p)] (1.26)i i 
j=1 

Clearly, (1.25) refers to the case when only communication delay is con­
sidered. While (1.26) refers to the case when only input delay is considered. It 
should be emphasized that both communication delay and input delay might be 
time-varying and they might co-exist at the same time. 

In addition to time delay, it is also important to consider packet drops in 
exchanging state information. Fortunately, consensus with packet drops can be 
considered as a special case of consensus with time delay, because re-sending 
packets after they were dropped can be easily done but with a time delay in the 
data transmission channels. 

Thus, the main problem involved in consensus with time delay is to study the 
effects of time delay on the convergence and performance of consensus, referred 
to as consensusability [31]. 

1.2.7 Sampled-data framework 
The foregoing subsections describe the main research work in the study of 
the consensus problem. The following introduces a few other aspects, namely, 
sampled-data framework, quantization, asynchronous effect, convergence speed, 
and finite-time convergence, that have been considered in the consensus prob­
lem as well. Among these topics, sampled-data framework, quantization, and 
asynchronous effects are considered due to some physical limitations in practi­
cal systems, while convergence speed and finite-time convergence are concerned 
with the performance for some proposed consensus algorithms. 

Due to the limitations in the measurement and control units, it is often im­
possible to acquire information measurements at an arbitrarily fast speed and 
to execute the control inputs instantaneously. Accordingly, the closed-loop sys­
tems are modeled in a hybrid fashion. That is, the system plant is described in a 
continuous-time setting while the measurements and control inputs are described 
in a piecewise constant fashion. For instance, in a sampled-data setting, (1.22) 
becomes 

n

ui(t) = ui(kT ) = ai j(kT ) [x j(kT ) − xi(kT )] (1.27) 
j=1 

for kT ≤ t < (k + 1)T , where T is the sampling period and k is the discrete-time 
index. Essentially, (1.27) is a zero order- hold version of ui(t), in the sense that 
the control inputs remain unchanged during each sampling period. Under this cir­
cumstance, consensus is studied in a sampled-data framework, called sampled-
data consensus, which reflects the limitations inherited in physical measurement 
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and control units. Meanwhile, it is also important to point out that the sampled-
data consensus algorithms require much less information exchange and com­
putational power than the continuous-time consensus algorithms. Accordingly, 
consensus under the sampled-data framework deserves certain consideration. 

It is natural to consider the sampled-data effect for consensus with general 
linear or nonlinear dynamics. In addition, it is meaningful to consider the case 
when all vehicles do not necessarily share the same sampling period or the sam­
pling period is not necessarily constant. Accordingly, it is expected that a careful 
design of the sampling periods (associated with the proposed algorithms) might 
lead to the optimization of the closed-loop systems under the proposed algo­
rithms, subject to certain cost functions, such as maximum convergence rate and 
minimum total information exchange. In other words, it is intriguing to move 
from analysis to design when investigating the consensus problem in a sampled-
data framework. 

1.3 Multiagent System Approach 
By and large, a multiagent dynamic system can be defined as a network of a 
number of loosely coupled dynamic units that are called agents. Each agent can 
be a robot, a vehicle, or a dynamic sensor, to name a few. The main purpose 
of using multiagent systems is to collectively reach goals that are difficult to 
achieve by an individual agent or a monolithic system. When the main dynamic 
action of interest is motion, the terms swarm or sometimes formation are used 
in place of multiagent dynamic system. The term swarm is used for a collection 
of (physical) agents moving in real 2- or 3- dimensional space to fulfill certain 
mission requirements. 

One should bear in mind that the distinction between the terms formation and 
swarm is not clearly formulated or stated in the systems and control literature, 
although in some places swarm is preferred to indicate that the corresponding 
collection of agents is less structured, the number of agents is larger, or the mo­
tion of each agent has higher uncertainty as opposed to formation, indicating a 
well-structured collection of a relatively small number of agents with more de­
terministic dynamics. Using this convention, a swarm can be thought of as a 
multiagent dynamic system that can form various types of formations. Through­
out this book, we use both of these two terms interchangeably with the term 
multiagent dynamic systems without making any distinction. Typical examples 
are displayed below. 

1.3.1 Practical examples 
Typical examples of MAS are displayed in Fig. (1.4) for robot swarms and (1.4) 
for power systems. 
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The main elements of a swarm (or a formation) are the agents and the infor­
mation (such ad sensing, control, and communication) links among these agents, 
assuming that the individual dynamics of the agents are uncoupled or loosely 
coupled. For formations where the individual agent dynamics are coupled, the 
dynamic interactions among the agents need to be considered as well. 

1.3.2 Some relevant definitions 
In what follows, we adopt the definition of an agent as merely a software 
(or hardware) entity that is situated in some environment and is able to au­
tonomously react to changes in that environment. In this regard, the environment 
is simply everything external to the agent. In order to be situated in an environ­
ment, at least part of the environment must be observable to, or alterable by, the 
agent. The environment 

�	 may be physical (such as, the power system), therefore, observable 
through sensors, or 

�	 it may be the computing environment (such as, data sources, computing 
resources, and other agents), observable through system calls, program 
invocation, and messaging. 

An agent may alter the environment by taking some action: Either physically 
(such as closing a normally-open point to reconfigure a network), or otherwise 
(such as storing diagnostic information in a database for others to access). 

The separation of agent from environment means that agents are inherently 
distributable. An agent can operate usefully in any environment which supports 
the tasks that the agent intends to perform. 

By extending the definition of autonomy to flexible autonomy, an agent which 
displays flexible autonomy is termed hereafter an intelligent agent. It has the 
following three characteristics. 

�	 Reactivity: An intelligent agent is able to react to changes in its environ­
ment in a timely fashion, and takes some action based on those changes 
and the function it is designed to achieve. 

�	 Pro-activeness: Intelligent agents exhibit goal-directed behavior. Goal-
directed behavior connotes that an agent will dynamically change its be­
havior in order to achieve its goals. For example, if an agent loses com­
munication with another agent whose services it requires in order to fulfill 
its goals, it will search for another agent that provides the same services. 

�	 Social ability: Intelligent agents are able to interact with other intelli­
gent agents. Social ability connotes more than the simple passing of data 
between different software and hardware entities, something many tra­
ditional systems do. It connotes the ability to negotiate and interact in 
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Figure 1.2: Ant swarm 

Figure 1.3: Bird swarms 

a cooperative manner. That ability is normally underpinned by an agent 
communication language (ACL), which allows agents to converse rather 
than simply pass data. 

It is worth emphasizing that multiagent systems are more than a systems in­
tegration method, they also provide a modeling approach. By offering a way of 
viewing the world, an agent system can intuitively represent a real-world situa­
tion of interacting entities, and give a way of testing how complex behaviors may 
emerge. 
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Figure 1.4: Robot swarms 

Figure 1.5: Power system networks 

1.4 Mathematical Models for Agent Dynamics 
In this section, we focus on a particular element among those, the agents and 
modeling of their dynamics. We briefly summarize some of the mathematical 
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models for agent/vehicle dynamics considered in the systems and control liter­
ature on multiagent dynamic systems (or swarms). We consider a swarm con­
sisting of N individuals/agents moving in an n-dimensional Euclidean space, 
and unless otherwise stated, denote with xi ∈ �n the state vector and with 
mi ∈ �m , m ≤ n the control input of agent i. Depending on the context, the state 
vector xi may denote (a collection of) the position, orientation, synchronization 
frequency, information to be agreed upon, etc. The dimensions of the state and 
control spaces (the values of n and m) change depending on the context as well. 

1.4.1 Single integrator model 
The simplest mathematical model considered in the literature for studying MAS 
or swarm behavior is the so-called higher-level or kinematic or single integrator 
model, in which the agent motions are given by 

ẋi(t) = ui(t), i = 1, ...., N (1.28) 

where xi is the state of agent i, ui is its control input, and the dot represents the 
derivative (the change) with respect to time. As mentioned above, depending on 
the context, the state xi can represent the position pi, the orientation angle or 
synchronization frequency θi, or other variables (or collection of those). 

We refer to this model as a higher-level or kinematic model, since it ignores 
the lower-level vehicle dynamics of the individual agents (e.g., robots). How­
ever, it is a relevant and useful model, because it can be used to study higher 
level algorithms independent of the agent/vehicle dynamics and to obtain “proof 
of concept” type results for swarm behavior. Moreover, in certain control tasks 
involving path planning, the trajectories generated using the higher-level agent 
models can be used as reference trajectories for the actual agents to track. Fur­
thermore, (1.28) is a realistic simplified kinematic model for a class of omni­
directional mobile robots with so-called universal (or Swedish) wheels. 

1.4.2 Double integrator model 
Another dynamic model which is commonly used in the multi-agent coordination 
and control literature is the point mass or double integrator model, given by 

ṗi(t) = vi(t), 
1 

v̇i(t) = ui(t), N (1.29)
mi 

where pi is the position, vi is the velocity, mi is the mass of the agent, and ui is 
the force (control) input (and the state of the systems can be defined as 

xT
i = [pT

i , vT
i ]

T 
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The higher-level model in (1.28) can be viewed also as a special case of the point 
mass model (1.29), under the assumption that the motion environment is very 
viscous, that mi ≈ 0 (as is the case for some bacteria), and the control input is 
taken as 

ui(t) = − kv vi + ūi 

with the velocity damping coefficient kv = 1, and the control term ūi correspond­
ing to ui of (1.28). However, in general, this assumption is not satisfied for many 
biological and engineering systems and the point mass model in (1.29) becomes 
more relevant. 

1.4.3 Uncertain fully actuated model 
A more realistic model for agent/vehicle dynamics (compared to the higher-level 
and the point mass models) is the fully actuated model: 

Mi(pi)p̈i + fi(pi, ṗi) = ui(t), 1 ≤ i ≤ N (1.30) 

where pi represents the position or configuration (and note that xi
T = [pi

T , vi
T ]T ), 

Mi(pi) ∈ Rn×n is the mass or inertia matrix, fi(pi, ṗi) ∈ Rn represents the cen­
tripetal, Coriolis, gravitational effects and additive disturbances. It is a realis­
tic model for fully actuated omni-directional mobile robots or for some fully 
actuated manipulators. What makes the model even more realistic, is that it is 
assumed that (1.30) contains uncertainties and disturbances. In particular, it is 
assumed that 

fi(pi, ṗi) = fi
k(pi, ṗi) + fi

u(pi, ṗi), 1 ≤ i ≤ N (1.31) 

where fi
k(pi, ṗi) represents the known part and fi

u(pi, ṗi) represents the un­
known part. The latter is assumed to be bounded with a known bound, that is, 

|| fi
u(pi, ṗi)|| ≤ f̄  i(pi, ṗi), 1 ≤ i ≤ N (1.32) 

where f̄  i(pi, ṗi), ∀ i are known. Moreover, besides the additive disturbances and 
uncertainties, it is assumed that for all i the mass/inertia matrix is unknown but 
is nonsingular and lower and upper bounded by known bounds. This means that, 
the matrices Mi(pi) satisfy 

Mi(pi) ||y||2 ≤ yT Mi(pi) y ≤ Mi(pi) ||y||2 , 1 ≤ i ≤ N (1.33) 

where y ∈ Rn is arbitrary and Mi(pi), Mi(pi) are known and satisfy 0 < 
Mi(pi) < Mi(pi) < ∞. These uncertainties provide an opportunity for develop­
ing algorithms that are robust with respect to above type of realistic uncertainties 
and disturbances. 
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1.4.4 Non-holonomic unicycle model 

ṗix(t) = vi(t) cos(θi), 

ṗiy(t) = vi(t) sin(θi), 

θ̇i(t) = ωi(t), 
1 

v̇i(t) = Fi, mi 

1
ω̇i(t) = 

Ji 
τi(t), 1 ≤ i ≤ N (1.34) 

where pix and piy are the Cartesian (x and y, respectively) coordinates (on the 
2- dimensional-motion space), θi is the steering angle (or orientation), vi is the 
translational (linear) speed, and ωix is the rotational (angular) speed of each agent 
i. The quantities mi and Ji are positive constants and represent the mass and the 
moment of inertia of each agent, respectively. The control inputs to the system 
are the force input Fi and the torque input τi. Many mobile robots used for exper­
imentation in the laboratories (e.g., robots with one castor and two differentially 
driven wheels) obey the model in (1.34). 

It must be emphasized that the main mathematical tools used to represent 
swarms, beside differential or difference equations describing agent dynamics, 
are directed and undirected graphs and their geometric representations in the 
particular motion space [10], see Section 1.2 for a concise introduction on these 
tools. 

1.5 Coordination and Control Problems 
From a control viewpoint, a multiagent system (MAS) is a group of independent 
systems working together through a communication network to perform joint 
tasks that cannot be executed by a single system. 

In multiagent systems, the network topology among all vehicles plays a cru­
cial role in determining consensus. The objective here is to explicitly identify 
necessary and/or sufficient conditions on the network topology such that con­
sensus can be achieved under properly designed algorithms. It is often reason­
able to consider the case when the network topology is deterministic under ideal 
communication channels. Accordingly, main research activities on the consensus 
problem were conducted under a deterministic fixed/switching network topology. 
That is, the adjacency matrix A(t) is deterministic. 

Some other times, when considering random communication failures, ran­
dom packet drops, and communication channel instabilities inherited in physi­
cal communication channels, it is necessary and important to study consensus 
problem in the stochastic setting where a network topology evolves according to 
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, 

Figure 1.6: Elements of multiagent systems in nature 

some random distributions. That is, the adjacency matrix A(t) is stochastically 
evolving. 

There are a number of different MAS coordination and control tasks that 
have been investigated in the systems and control literature. With references to 
(1.6), we briefly present some of the main ones among these tasks, namely ag­
gregation and foraging, flocking, rendezvous, formation stabilization, formation 
acquisition, formation reconfiguration, formation maintenance, agreement, co­
hesive motion and cooperation. 

1.5.1 Aggregation and social foraging 
Aggregation (or gathering together) is a basic behavior that many swarms in 
nature exhibit. Moreover, many of the collective behaviors seen in biological 
swarms and some behaviors to be possibly implemented in engineering mul­
tiagent dynamic systems emerge in aggregated swarms. Therefore, developing 
mathematical models for swarm aggregations and studying the dynamics and 
properties of these models are important. 

Initial studies on mathematical modeling and simulation of aggregation in 
biological swarms were performed by biologists. Inspired by the work of biolo­
gists, recent studies provided a rigorous analysis of an artificial potential function 
based model of swarm aggregations and some corresponding convergence re­
sults, assuming discrete time swarm models with synchronous motion dynamics. 
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The asynchronous counterpart of the analysis and the results are also provided 
in [13]. 

Aggregation in biological swarms usually occurs during social foraging. So­
cial foraging has many advantages, such as increasing probability of success 
for the individuals. Therefore, social foraging is an important problem since 
swarm studies in engineering may benefit from similar advantages. In social for­
aging, the environment affects the motion or behavior of the agents. The envi­
ronment may have favorable regions (representing food or nutrients in biological 
swarms or targets or goals in engineering applications) to which the agents may 
want/need to move and unfavorable regions (representing toxic or hazardous sub­
stances in biological swarms or threads or obstacles in engineering applications) 
which the agents may want/need to avoid. 

1.5.2 Flocking and rendezvous 
Flocking, in general, can be defined as the collective motion behavior of a large 
number of interacting agents with a common group objective. The work by 
Reynolds [1] is the first extensive study in the literature on flocking. This work 
has proposed three simple rules to implement a flocking behavior, namely 

(i) separation, 

(ii) alignment, and 

(iii) cohesion. 

These rules have been used to develop realistic computer simulations of the flock­
ing behavior of animal swarms. Subsequent studies showed that coordination 
(which is in the form of motion in a common direction) emerges from the local 
interactions of the agents in the swarm. 

A mathematical analysis of achieving common orientation during the flock­
ing behavior based on “nearest neighbor rules” is provided and some correspond­
ing convergence results are established. Using potential functions for aggregation 
and alignment, several algorithms are proposed and analyzed with and without 
group objective and it is shown that, under certain conditions, flocking will be 
achieved and the flock will have a lattice-type structure [12]. In the subsequent 
chapters, all these concepts are discussed in detail. 

1.5.3 Synchronization of coupled nonlinear oscillators 
A good example of distributed synchronization (a type of distributed agreement) 
in nature is the synchronization of the flashing of fireflies. More generally, this 
phenomenon can be viewed as distributed synchronization of coupled oscillators, 
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which is usually represented mathematically by:


ẋi(t) = ωi(t) + ui j(x j(t) − xi(t)) (1.35) 
j 

where xi is the oscillation phase of the ith individual and ωi is the oscillation 
frequency. Moreover, researchers usually take 

1 
ui j(x j(t) − xi(t)) = 

N 
sin(x j(t) − xi(t)) 

Note that this model is a special case of the kinematic model (1.28) with the 
control input taken as 

ui(t) = ωi(t) + ui j(x j(t) − xi(t)) (1.36) 

The control strategies or update rules that lead to agreement are usually called 
consensus protocols in the literature. Both continuous-time and discrete-time up­
date rules or consensus protocols have been considered in the literature. The 
equation in (1.36) is an example of a continuous-time consensus protocol. Other 
examples are described below. 

Continuous-Time Consensus Protocol. The model of the continuous-time 
consensus protocol considered in the literature can be summarized as 

ẋi(t) = − αi j(xi(t) − x j(t)) (1.37) 
j∈Ni(t) 

where Ni(t) represents the set of neighbors of agent i at time t or, basically, the 
set of agents whose information is available to agent i at time t and αi > 0 denote 
positive time-varying weighting factors. This means that the information state of 
each agent is driven toward the states of its (possibly time-varying) neighbors at 
each time. Note that some agents may not have any information exchange with 
other agents during some time intervals. 

Discrete-Time Consensus Protocol. The discrete-time consensus protocol 
considered can be summarized as 

xi(t + 1) = 
� 

βi jx j(t) (1.38) 
j∈Ni(t)∪i 

where � 

j∈Ni(t)∪i 

βi j = 1, βi j > 0,∀ j ∈ Ni(t) ∪ i 

This means that, the next state of each agent is updated as the weighted average 
of its current state and the current states of its (possibly time-varying) neighbors. 
Note that an agent simply maintains its current state if it has no information 
exchange with other agents at a certain time step. 
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1.6 Scope and Book Layout 
From this perspective, this book has the following objectives: 

1. It gathers together the theoretical preliminaries and fundamental issues 
related to multiagent systems; 

2. It provides coherent results on adopting multiagent framework for criti­
cally examining problems in smart microgrid systems; 

3. It presents advanced analysis of multiagent systems under cyber-physical 
attacks and develops resilient control strategies to guarantee safe opera­
tion. 

�	 Chapter 1: (Introduction) 

This chapter provides a guided tour into the the key ingredients of cloud 
control systems and their prevailing features under normal operating en­
vironments and when subjected to cyber-physical attacks. 

�	 Chapter 2: (Theoretical Background) 

The focus of this chapter is on the fundamental issues underlying the 
analysis, design and estimation methods of cloud control systems (CCS) 
with particular emphasis on workflow, security objectives under different 
attacks. 

�	 Chapter 3: (Distributed Intelligence in Power Systems) 

This chapter critically examines the impact of distributed denial of ser­
vice attacks in cyber-physical control systems (CPCS). 

� Chapter 4: (Consensus for Heterogeneous Systems with Delays) 

This chapter further introduces the paradigm of cyber physical control 
systems and discusses several approaches. 

�	 Chapter 5: (Secure Stabilization of Distributed Systems) 

This chapter examines the construction of stabilization methods that 
guaranteeing secure (sufficiently safe) operation of cyber-physical con­
trol systems (CPCS) 

�	 Chapter 6: (Secure Control of Distributed Multiagent Systems)


This chapter introduces some typical practical case studies.


�	 Chapter 7: (Cooperative Control of Networked Microgrid Systems) 

This chapter examines networked control systems in the presence attacks 
that prevent transmissions over the network. We characterize frequency 
and duration of the DoS attacks under which input-to-state stability (ISS) 
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of the closed-loop system can be preserved. Then, a secure observer-
based controller for discrete-time CPS, subject to both cyber and physical 
attacks, will be presented 

�	 Chapter 8: (Dynamic Differential Games) 

In this chapter, couple-group consensus of multiagent systems under 
denial-of-service (DoS) attacks is studied. Specifically, we study a 
couple-group consensus problem involving DoS attack within subgroups. 

The book includes an appendix of basic lemmas and theories needed 
throughout. 



Chapter 2


Theoretical Background 

2.1 Preliminaries of Distributed Systems 
Recently, some great advances have been achieved in the cooperative control of 
multiagent systems. The research focus is mainly on communication environ­
ments which consequently require distributed control design. To this day, some 
control techniques have been proposed according to different communication 
conditions, such as time-varying networks [59], [69], subject to measurement 
noise [63], [66], time delays [62], [10], or disturbances [68], [72]. 

A future control design may equip agents with embedded micro-processors 
to collect information from neighboring agents so as to update the controller 
according to some pre-designed rules. Motivated by this observation, some pro­
tocols were proposed to deal with distributed algorithms of communication and 
controller actuation scheduling [57], [71], [73]. Since micro-processors are gen­
erally resource- and energy-limited, an event-triggered control was designed 
based on measurement errors for execution in [71]. A timing issue was inves­
tigated through the use of a distributed event-triggered feedback scheme in net­
worked control systems in [73]. Very recently, some distributed event-triggered 
control strategies were proposed for multi-agent systems [56], [57], [67]. All 
these control design methods possess a common characteristic in that the con­
troller is updated only when the measurement error magnitude exceeds a certain 
threshold. 

In [57] and [56], centralized and decentralized event-triggered multiagent 
control protocols were developed for a first-order agreement problem, which 
were proven to be input-to-state stable (ISS) [65]. The centralized cooperative 
controller was actuated according to a global event-trigger rule while the decen­
tralized one was updated at a sequence of separate event-times encoded by a local 
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trigger function for each agent. Furthermore, a centralized event-triggered co­
operative control was constructed for higher-dimensional multi-agent consensus 
with a weighted topology in [67], an event-triggered cooperative control was pro­
posed for first-order discrete-time multi-agent systems in [58], and a neighbor-
based tracking control together with a distributed estimation was proposed for 
leader-follower multi-agent systems in [61]. 

In what follows, we follow [54] and consider a distributed event-triggered 
tracking control problem for leader-follower multi-agent systems in a fixed di­
rected network topology with partial measurements and communication delays. 
In collective coordination of a group of autonomous agents, the leader-follower 
problem has been considered for tracking a single or multiple leaders in [55], 
[61], [63], [64], [70]. 

In reality, some state information of the leader cannot be measured, there­
fore, a decentralized observer design plays a key role in the cooperative control 
of leader-follower multiagent systems. Within this context, an observer-based 
dynamic tracking control was proposed in order to estimate the unmeasurable 
state (i.e., velocity) of an active leader in [61] by collecting real-time measure­
ments from neighbors. In this paper, inspired by the event-triggered schedul­
ing strategy in multi-agent systems, we consider a dynamic tracking problem 
with event-triggered strategy involved in the control update. During the event-
triggered tracking control process, we assume that every follower agent broad­
casts its state information only if needed, which requires the follower agent to 
update its state only if some measure of its state error is above a specified thresh­
old. 

It is noted in the literature about event-triggered control of multi-agent sys­
tems that, event-triggered cooperative controllers often keep constant between 
two consecutive broadcasts. However, in this section, we concern ourselves 
with the scenario of an independent active leader that does not need the event-
triggered control updates. Thus, a more sophisticated event-triggered strategy 
needs to be developed in order to continuously update every agent’s partial con­
trol input, subject to its local computational resources availability. We adopt a 
decentralized event-triggered strategy in order to update the local controllers, 
and finally take into account the communication delays in the tracking control 
design. 

2.1.1 Problem description 
The multi-agent system under study is a group of n follower-agents (called fol­
lowers for simplicity and labeled 1, ..., n) and one active leader-agent (called 
leader and labeled 0). The followers are moving based on the information ex­
change in their individual neighborhood while the leader is self-active, hence, 
moving independently. Thus, the information flow in the leader-follower multi­



� � � 

� � � 

Theoretical Background � 31 

agent system can be conveniently described by a directed graph Ḡ. We recall the 
information about graph theory from [10] or Section 1.2. 

The dynamics of the ith follower are assumed to be a first-order linear system: 

ẋi(t) = ui(t), i = 1, ...., n (2.1) 

where xi(t) ∈ �l and ui(t) ∈ �l are, respectively, the state and the control input. 
The active leader is described by a second-order linear system with a partially 
unknown acceleration: 

ẋ0(t) = v0(t), 
v̇0(t) = u0(t) + δ (t) 
y0(t) = x0(t) (2.2) 

where x0(t) ∈ �l , v0(t) ∈ �l and u0(t) ∈ �l are, respectively, the position, veloc­
ity and acceleration, the disturbance δ (t) ∈ �l is bounded with an upper bound 
δ̄ , and y0(t) is the only measured output. 

Since only the position of the leader can be measured, each follower has to 
collect information from its neighbors and estimate the leader’s velocity during 
the motion process. In [61], a distributed observer-based dynamic tracking con­
trol was proposed for each follower i: 

ν̇i(t) = u0(t) − γ k ai j(xi − x j) + ai0(xi − x0) 
j∈INi 

ui(t) = νi(t) − k ai j(xi − x j) + ai0(xi − x0) (2.3) 
j∈INi 

where νi(t) is the “estimate” of the leader’s velocity v0(t) and ai0 is the leader’s 
adjacency coefficient. The dynamic tracking control (2.3) assumes that the rela­
tive position measurements (xi − x0) are transmitted in continuous time. 

In practice, however, communication (especially wireless communication) 
takes place over digital networks, therefore, information is transmitted at discrete 
time instants. When the follower finds that a local “error” signal exceeds a given 
threshold, it broadcasts its state information to all neighboring agents. In this 
scenario, the event-triggered dynamic tracking control is more preferable than 
that proposed in (2.3). 

In the leader-follower problem under investigation, the active leader is inde­
pendent and need not broadcast its information in any event-triggered fashion. 
However, follower i�s control, ui(t), has to be designed based on the latest states 
received from its neighboring followers and also the sate x0(t) if it is linked to the 
leader. Therefore, a new control protocol needs to be designed in order to solve 
the leader-following problem with an event-triggered scheduling strategy. The 
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event-triggered tracking problem is said to be solved if one can find a distributed 
event-triggered control strategy such that 

||(xi − x j)|| ≤ ξ , i = 1, ....,n (2.4) 

for some constant ξ = ξ (δ̄ ) as t →∞. 

2.1.2 Control design scheme 
In consensus control, it turns out that the typical information available for a fol­
lower is its relative positions with the neighbors. It is usually assumed that the 
relative-position measurement 

yi j(t) = xi(t) −−x j(t) (2.5) 

is performed in continuous time, which implicitly implies that the multi-agent 
communication network bandwidth is unlimited or every agent has abundant en­
ergy. 

However, when followers transmit their state information in discrete time, 
distributed tracking control needs to be redefined in order to take into account 
event-triggered strategies. In order to model the event-triggers for followers, as­
sume that there are n monotone increasing sequences of event times 

τi(s)(s = 0, 1, · · · · · · , i = 1, · · · , n) 

Let x̂i(t) = xi(τi(s)), t ∈ [τi(s), τi(s + 1)), be the measured state of follower 
i. The measured relative-position measurements yi j(t) depend on the measured 
states x̂i(t) and x̂ j(t), j ∈ INi, that is, 

ŷi j(t) = x̂i(t) −− x̂ j(t), i, j = 1, ...,n (2.6) 

It should be noted that the event times τi(s) are mutually independent among 
followers and may take different values, as illustrated by Fig. 2.1. Furthermore, if 
the communication between agent i and agent j (or the leader) has a time-varying 
delay r(t), then the measured relative-position measurement is described by 

ŷi j(t − r(t)) = x̂i(t − r(t))?x̂ j(t(t) − r) (2.7) 

where r(t) is a continuously differentiable function satisfying 0 < r(t) < r̄ < ∞. 
Due to unavailable measurement of the leader’s velocity v0(t), each follower 

can have an estimate vi(t) by fusing the information obtained from its neighbors. 
When communication delay is not considered, the velocity estimate vi(t) is given 
with the measurements ŷi j(t) and yi0(t), as follows: 

ν̇i(t) = u0(t) − γ k ai jŷi j(t) + ai0yi0(t) (2.8) 
j∈INi 
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Figure 2.1: The event times for follower i and follower j 

where ai j denotes the adjacency coefficient between follower i and follower j, 
constant 0 < γ < 1, and the gain k is to be designed. Moreover, an event-triggered 
tracking control is designed as follows: 

ui(t) = νi(t) − k ai jŷi j(t) + ai0yi0(t) (2.9) 
j∈INi 

where the gain k is the same as above. It is noted that both the velocity esti­
mate vi(t) and the control input ui(t) use the broadcasted measurements ŷi j(t) 
from neighboring followers and the continuous-time measurement yi0(t) from 
the leader. 

When communication delay is involved in the multi-agent coordination, a 
distributed event-triggered tracking control with time delays can be similarly for­
mulated, as follows: 

ui(t) = νi(t) − k ai jŷi j(t − r) + ai0yi0(t − r) 
j∈INi 

ν̇i(t) = u0(t) − γ k ai jŷi j(t − r) + ai0yi0(t − r) (2.10) 
j∈INi 

Next, we analyze the convergence of the tracking errors for all followers un­
der distributed event-triggered control in both cases with and without communi­
cation delays. 

2.1.3 Without communication delays 
For simplicity in exposition, we define the error term 

ei(t) = x̂i(t) − xi(t) = x̂i(τi(s)) − xi(t), t ∈ [τi(s), τi(s + 1)) 

The event-time τi(s) is implicitly defined by an event-trigger, 
fi(ei(t),e j(t)| j ∈ INi) = 0, which will be given below. Hence, x̂i(t) = ei(t) + 
xi(t). 
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With this variable change, the control (2.9) together with the velocity esti­
mation (2.8) is applied to system (2.1), which yields the following closed-loop 
system: 

ẋ = ν − k (L + B)x + kB1x0 − k Le,

ν̇ = u01 − γ k (L + B)x + γkB1x0 − γkLe (2.11)


where ⎤⎡⎤⎡⎤⎡ 
x1	 ν1 e1 

x =

⎢⎢⎢⎣


x2 
.
.
.


⎥⎥⎥⎦

∈ �
n , ν = 

⎢⎢⎢⎣


ν2 
.
.
.


⎥⎥⎥⎦

∈ �
n ,
 e =


⎢⎢⎢⎣


e2 
.
.
.


⎥⎥⎥⎦

∈ �
n 

xn	 νn en 

respectively, denote the position, velocity estimation, measurement error of the 
leader-follower multi-agent system, L = D?A ∈ �n×n , A = [ai j] ∈ �n×n , and 
D ∈ �n×n are, respectively, the Laplacian matrix, adjacency matrix and degree 
matrix of the directed subgraph G. B = diag{a10, ..., an0} is a diagonal matrix 
representing the leader-follower adjacency relationship, and 1 = col[1, ...,1] ∈ 
�n . 

From the algebraic graph theory [10], it is known that L always has a zero 
eigenvalue associated with the right eigenvector 1. Moreover, if the subgraph G 
is balanced, L has a zero eigenvalue associated with the left eigenvector 1. This 
leads to 

−(L + B)x + B1x0 = −(L + B)(x − x01) := −H(x − x01) 

It follows from Section II that 

�	 vertex 0 is a globally reachable vertex of the directed graph G ¯ and if its 
subgraph G is balanced, then 

λ	 = min{λ : eigenvalues o f (H + Ht )} > 0 (2.12)∗ 

�	 H is a stable matrix whose eigenvalues have negative real-parts; 

�	 G is balanced and (H + Ht ) is a symmetric positive-definite matrix. 

Proceeding to examine the stability of system (2.11), we introduce the change 
of variables: 

x̄ = x − x01, ν̄ = ν − ν01	 (2.13) 

so that system (2.11) is expressed by 

x̄̇ = ν̄ − k H x̄ − k Le,

ν̄̇ = − γ k H x̄ − γk Le − 1 ⊗ δ (2.14)
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or in compact form: 

t
ξ̇ = Ξξ + Γe + d, ξ = [x̄ , ν̄ ]t , 

−k H I −k L 0
Ξ = −γ k H 0 , Γ = −γ k L , d = 1 ⊗ δ 

(2.15) 

Define a candidate ISS Lyapunov function 

V (ξ ) = ξ tPξ , P = 
I −γ I 

, 0 < γ < 1I• 

The main result is established by the following theorem: 

Theorem 2.1 
Assume that vertex 0 is a globally reachable vertex of the directed graph Ḡ, if its 
subgraph G is balanced and the gain k satisfies 

1
k > 

2 γ (1 − γ2)λ
(2.16) 

∗ 

Then, control (2.9) and estimation (2.8) solve the event-triggered tracking problem. 
Moreover, if the disturbance bound δ̄ = 0, then limt→ ∞||ξ (t)|| = 0. 

Proof: Computing the derivative V̇ (ξ ) along the solutions of (2.15) yields 

V̇ (ξ ) = ξ t [PΞ + ΞtP]ξ + 2ξ tPΓe + 2ξ tPd 
= −ξ

tQξ + 2ξ tPΓe + 2ξ tPd (2.17) 

where � � 

Q = 
k(1 − γ2)(H + Ht ) −I 

2γI• 

With the help of Schur complements, it is easy to see that Q > 0 if k satisfies 
(2.16). Further computations show that the minimum eigenvalue of Q is given by 

σ∗ = 
2
1 

(1 − γ2)k λ∗ + 2γ − 
� 
[(1 − γ2)kλ∗ − 2γ]+ 4 (2.18) 

When k satisfies (2.16), then σ∗ > 0. Since the eigenvalues of P are 1 + γ, 1 − γ, 
it follows that 

(1 − γ)||ξ ||2 ≤ V (ξ ) ≤ (1 + γ)||ξ ||2 (2.19) 



� � 
� � 

36 � Multiagent Systems: Introduction and Coordination Control 

Taking advantage of (2.18) and (2.19), we get along the solutions of (2.15) that: 

V̇ (ξ ) ≤ −σ∗||ξ ||2 + 2ξ tPΓe + 2ξ
tPd �� 

≤ −σ∗||x̄||2 − σ∗||ν̄ ||2 − 2(1 − γ2)k x̄(ei − e j)+ 2(1 + γ)||ξ ||δ̄
i j∈INi 

≤ −σ∗||ν̄ ||2 − σ∗ 

i 

||x̄i||2 − 
2(1 −

σ

γ

∗ 

2)k||x̄|| 

j∈INi 

(||ei||− ||e j||) 

+ 2(1 + γ)||ξ ||δ̄ (2.20) 

Enforcing the condition � σ
(||ei|| + ||e j||) ≤ ε 

2(1 
∗

−
||x̄

γ

i||
2)k 

, 0 < ε < 1 (2.21) 
j∈INi 

we have 

V̇ (ξ ) ≤ −(1 − ε)σ∗||ξ ||2 + 2(1 + γ)||ξ ||δ̄

≤ − 
2
1 
(1 − ε)σ∗||x̄||2 + 2 

(

(

1
1 
+ 
− 

γ

ε

)

)

2 

σ

δ̄ 2 
(2.22) 

∗ 

Thus, for follower i, an event-trigger can be defined by 

fi(ei(t), {e j(t)| j ∈ INi}) = 
� σ∗||x̄|| (2.23)(||ei|| + ||e j||) − ε 

(1 − γ2)k 
j∈INi 

When the event-trigger fi(ei(t), {e j(t)| j ∈ INi}) = 0, condition (2.21) is en­
forced. Given the event-trigger (2.23), then from (2.19) and (2.22) we have 

V̇ (ξ ) ≤ − 
(

2
1 
(

−
1 + 

ε)

γ

σ

) 
∗ V (ξ )+ 

2
(

(

1
1 
− 
+ 

ε

γ

)

)

σ

2δ̄ 2 
(2.24) 

∗ 

With to = 0, we obtain 

2(1+γ)V (ξ ) ≤ e− (1−ε)σ∗ tV (ξ (0))+ 
4
(

(

1
1 
− 
+ 

ε

γ

)

)
2

3 

σ

δ̄

2

2 
(2.25) 

∗ 

which implies 

lim ψ
2 = 

t→∞ 
||ξ || ≤ ψ, 

4
(

(

1
1 
− 
+ 

ε

γ

)

)
2

3 

σ

δ̄

2

2 

∗ 

Additionally, if δ̄ = 0, then limt→∞ ||ξ || = 0, which completes the proof. 

Remark 2.1 For simplicity in the exposition, the event-trigger condition (2.21) 
can be replaced by a centralized one 

||e|| ≤ ε 
2(1 

σ

− 
∗||

γ

ξ 
2
||
)||L|| 

(2.26) 
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Evidently, the trigger condition (2.26) is conservative, however it helps in simulation 
experimentation. Suppose that this condition (2.26) is satisfied and δ̄ = 0, then there 
exists at least one agent for which the next inter-event interval is bounded from below 
by a time τD, determined by 

1 1 + φ
τD = ln 

||Ξ||− ||Γ|| 1 + ||
||

Ξ

Γ||
|| φ 

εσ
φ(τD, 0) = ∗ 

2(1 − γ2)||L|| 

||
||
ξ 
e||
|| 
≤ φ(t,φo), φo = φ(0,φo) (2.27) 

and φ (t,φo) is the solution of 

φ̇ == ||Ξ||(1 + φ) 1 + 
||
||

Ξ

Γ||
|| 

φ (2.28) 

2.1.4 With communication delays 
In this case, we take into consideration model (2.10) along with x̂i(t) = ei(t)+ 
xi(t) and manipulate to obtain: 

ẋ(t) = ν(t) − k (L + B)x(t − r) + kB1xo(t − r) − kLe(t − r) 
ν̇i(t) = u01 − γk (L + B)x(t − r) + γk B1xo(t − r) − kLe(t − r)(2.29) 

Using the change of variables (2.13), algebraic manipulations yield a further 
simplified closed-loop system in the form of time-delayed differential equations: 

ẋ̄ = ν̄ − k H x̄(t − r) − k Le(t − r),

ν̄̇ = − γ k H x̄(t − r) − γk Le(t − r) − 1 ⊗ δ (2.30)


or in compact form: 

ξ̇ = Ξ1ξ (t)+ Ξ2ξ (t − r)+ Γe(t − r)+ d 

t 
ν ]t 

0 I −k H 0
ξ = [x̄ , ¯ , Ξ1 = 0 0 , Ξ2 = −γ k H 0 , 

Γ = 
−k L 

, d = 
0 

(2.31)−γ k H 1 ⊗ δ 

Before proceeding further, the standard theorem of stability from the Appendix 
must be recalled. The main results can then be readily derived and left for the 
time being. 
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2.2 Networked Multiagent Systems 
Consensus problems have a long history in computer science and form the foun­
dation of the field of distributed computing [140]. Formal study of consensus 
problems in groups of experts originated in management science and statistics 
in 1960s [141] (and references therein). The ideas of statistical consensus the­
ory reappeared two decades later in aggregation of information with uncertainty 
obtained from multiple sensors1 [142] and medical experts [143]. 

Distributed computation over networks has a tradition in systems and con­
trol theory, starting with the pioneering work of Borkar and Varaiya [144] and 
Tsitsiklis [145] and Tsitsiklis, Bertsekas, and Athans [146] on asynchronous 
asymptotic agreement problem for distributed decisionmaking systems and par­
allel computing [147]. 

In networks of agents (or dynamic systems), Bconsensus means to reach an 
agreement regarding a certain quantity of interest that depends on the state of all 
agents. A Bconsensus algorithm (or protocol) is an interaction rule that speci­
fies the information exchange between an agent and all of its neighbors on the 
network. 

The theoretical framework for posing and solving consensus problems for 
networked dynamic systems was introduced by Olfati-Saber and Murray in [148] 
and [149], building on the earlier work of Fax and Murray [150], [151]. The study 
of the alignment problem involving reaching an agreement without computing 
any objective functions V appeared in the work of Jadbabaie et al. [152]. Further 
theoretical extensions of this work were presented in [153] and [154], with a look 
toward treatment of directed information flow in networks, as shown in Fig. 1(a). 

Note in Fig. 2.2 that each agent i in the network of integrator agents re­
ceives the state x j of its neighbor, agent j, if there is a link (i, j) connecting 
the two nodes and (b) a network of interconnected dynamic systems in block 
diagram form, all with identical transfer functions P(s) = 1/s. The collective 
networked system has a diagonal transfer function corresponding to a multiple-
input multiple-output (MIMO) linear system. 

The common motivation behind the work in [144], [145], and [149] is the rich 
history of consensus protocols in computer science [140], whereas Jadbabaie et 
al. [152] attempted to provide a formal analysis of emergence of alignment in the 
simplified model of flocking by Vicsek et al. [155]. The setup in [149] was orig­
inally created with the vision of designing agent-based amorphous computers, 
[156], [157], for collaborative information processing in networks. Later, [149] 
was used in the development of flocking algorithms with guaranteed convergence 
and the capability to deal with obstacles and adversarial agents [158]. 

Graph Laplacians and their spectral properties [10, 159, 160, 161] are impor­
tant graph-related matrices that play a crucial role in the convergence analysis 
of consensus and alignment algorithms. Graph Laplacians are an important point 
of focus of this paper. It is worth mentioning that the second smallest eigen­
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Figure 2.2: Two equivalent forms of consensus algorithms: (a) a network of integrator agents 
and (b) the block diagram for a network of interconnected dynamic systems 

value of graph Laplacians, called algebraic connectivity, quantifies the speed of 
convergence of consensus algorithms. The notion of algebraic connectivity of 
graphs has appeared in a variety of other areas, including low-density parity-
check codes (LDPC) in information theory and communications [162], Ramanu­
jan graphs [163] in number theory and quantum chaos, and combinatorial opti­
mization problems, such as the max-cut problem [160]. 

More recently, there has been a tremendous surge of interest among re­
searchers from various disciplines of engineering and science in problems related 
to multiagent networked systems with close ties to consensus problems. This 
includes subjects such as consensus [164]–[170], collective behavior of flocks 
and swarms [158], [171]–[175], sensor fusion [176, 177, 178], random networks 
[179], [180], synchronization of coupled oscillators [180]–[184], algebraic con­
nectivity3 of complex networks [185, 186, 187], asynchronous distributed al­
gorithms [168], [188], formation control for multirobot systems [189]–[197], 
optimization-based cooperative control [198]– [201], dynamic graphs [202]– 
[204], complexity of coordinated tasks [205]–[208], and consensus-based belief 
propagation in Bayesian networks [209], [210]. A detailed discussion of selected 
applications will be presented shortly. 
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In what follows, we focus on the work described in five key works, [152], 
[149], [151], [153] and [154], that have been instrumental in paving the way 
for more recent advances in the study of self-organizing networked systems, 
or swarms. These networked systems are comprised of locally interacting mo­
bile/static agents equipped with dedicated sensing, computing, and communica­
tion devices. As a result, we now have a better understanding of complex phe­
nomena, such as flocking [158], or design of novel information fusion algorithms 
for sensor networks that are robust to node and link failures [176], [209]–[213]. 

Gossip-based algorithms, such as the push-sum protocol [214], are impor­
tant alternatives in computer science to Laplacian-based consensus algorithms 
in this paper. Markov processes establish an interesting connection between the 
information propagation speed in these two categories of algorithms proposed by 
computer scientists and control theorists [215]. 

2.2.1 Consensus in networks 
The interaction topology of a network of agents is represented using a directed 
graph G = (V, E) with the set of nodes V = 1,2, . . . ,n and edges E ⊆ V × V . 
The neighbors of agent i are denoted by Ni = j ∈ V : (i, j) ∈ E. According to 
[149], a simple consensus algorithm to reach an agreement regarding the state of 
n integrator agents with dynamics ẋi = ui can be expressed as an nth-order linear 
system on a graph 

ẋi(t) = (x j(t) − xi(t))+ bi(t),xi(0) = zi ∈ R,bi(t) = 0 : (2.32) 
j∈Ni 

The collective dynamics of the group of agents following protocol (1) can be 
written as 

ẋ = −Lx (2.33) 

where L = [li j] is the graph Laplacian of the network and its elements are defined 
as follows: 

li j = − 1, j ∈ Ni (2.34) 

|Ni|, j = i . 

Here, |Ni| denotes the number of neighbors of node i (or out-degree of node i). 
Figure 2.2 shows two equivalent forms of the consensus algorithm in (2.32) and 
(2.34) for agents with a scalar state. The role of the input bias b in Fig. 2.2(b) is 
defined later. 

According to the definition of graph Laplacian in (1.10), all row-sums of L 
are zero because of j li j = 0. Therefore, L always has a zero eigenvalue λ1 = 0. 
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This zero eigenvalues corresponds to the eigenvector 1 = (1, . . . ,1)T because 1 
belongs to the null-space of L(L1 = 0). In other words, an equilibrium of sys­
tem (1.11) is a state in the form x∗ = (α, . . . ,α)T = α1 where all nodes agree. 
Based on analytical tools from algebraic graph theory [10], we later show that 
x∗is a unique equilibrium of (1.11) (up to a constant multiplicative factor) for 
connected graphs. One can show that, for a connected network, the equilibrium 
x∗ = (α, . . . ,α)T is globally exponentially stable. Moreover, the consensus value 
is α = 1 = nπzi, which is equal to the average of the initial values. This implies 
that, irrespective of the initial value of the state of each agent, all agents reach 
an asymptotic consensus regarding the value of the function f (z) = 1/n i zi. 
While the calculation of f (z) is simple for small networks, its implications for 
very large networks are more interesting. For example, if a network has n = 106 

nodes and each node can only talk to log10(n) = 6 neighbors, finding the aver­
age value of the initial conditions of the nodes is more complicated. The role of 
protocol (1.10) is to provide a systematic consensus mechanism in such a large 
network in order to compute the average. There are a variety of functions that can 
be computed in a similar fashion using synchronous or asynchronous distributed 
algorithms (see [149], [166], [168], [210] and [213]). 

2.2.2 The f-consensus problem 
To understand the role of cooperation in performing coordinated tasks, we need 
to distinguish between unconstrained and constrained consensus problems. An 
unconstrained consensus problem is simply the alignment problem in which it 
suffices that the state of all agents asymptotically be the same. In contrast, in dis­
tributed computation of a function f (z), the state of all agents has to asymptoti­
cally become equal to f (z), meaning that the consensus problem is constrained. 
We refer to this constrained consensus problem as the f-consensus problem. Solv­
ing the f-consensus problem is a cooperative task and requires willing participa­
tion of all the agents. To demonstrate this fact, suppose a single agent decides not 
to cooperate with the rest of the agents and keep its state unchanged. Then, the 
overall task cannot be performed despite the fact that the rest of the agents reach 
an agreement. Furthermore, there could be scenarios in which multiple agents 
that form a coalition do not cooperate with the rest and removal of this coalition 
of agents and their links might render the network disconnected. In a discon­
nected network, it is impossible for all nodes to reach an agreement (unless all 
nodes initially agree which is a trivial case). From the above discussion, coop­
eration can be informally interpreted as “giving consent to providing one’s state 
and following a common protocol that serves the group objective.” 

One might think that solving the alignment problem is not a cooperative task. 
The justification is that, if a single agent (called a leader) leaves its value un­
changed, all others will asymptotically agree with the leader according to the 
consensus protocol and an alignment is reached. However, if there are multi­
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ple leaders where two of whom are in disagreement, then no consensus can be 
asymptotically reached. Therefore, alignment is, in general, a cooperative task as 
well. Formal analysis of the behavior of systems that involve more than one type 
of agent is more complicated, particularly, in the presence of adversarial agents 
in noncooperative games [216], [217]. The focus of this paper is on cooperative 
multi-agent systems. 

2.2.3 Iterative consensus and Markov chains 
It is shown previously how an iterative consensus algorithm that corresponds to 
the discrete-time version of system (2.32) is a Markov chain 

π(k + 1) = π(k)P (2.35) 

with P = I − εL and a small ε > 0. Here, the ith element of the row vector π(k) 
denotes the probability of being in state i at iteration k. It turns out that, for 
any arbitrary graph G�with Laplacian L and a sufficiently small ε , the matrix P 
satisfies the property j pi j = 1 with pi j ≥ 0,∀i, j. Hence, P is a valid transition 
probability matrix for the Markov chain in (2.35). The reason matrix theory [218] 
is so widely used in analysis of consensus algorithms [149], [151, 152, 153, 154], 
[202] is primarily due to the structure of P in (2.35) and its connection to graphs. 
There are interesting connections between this Markov chain and the speed of 
information diffusion in gossip-based averaging algorithms [214], [215]. One 
of the early applications of consensus problems was dynamic load balancing 
[219] for parallel processors with the same structure as system (2.35). To date, 
load balancing in networks proves to be an active area of research in computer 
science. 

2.3 Applications 
Many seemingly different problems that involve interconnection of dynamic sys­
tems in various areas of science and engineering happen to be closely related to 
consensus problems for multi-agent systems. In this section, we provide an ac­
count of the existing connections. 

2.3.1 Synchronization of coupled oscillators 
The problem of synchronization of coupled oscillators has attracted numer­
ous scientists from diverse fields, including physics, biology, neuroscience, and 
mathematics [220, 221, 222, 223]. This is partly due to the emergence of syn­
chronous oscillations in coupled neural oscillators. Let us consider the general­
ized Kuramoto model of coupled oscillators on a graph with dynamics 
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θi = κ sin(θ j − θi)+ ωi (2.36) 
j∈Ni 

where θi and ωi are the phase and frequency of the ith oscillator. This model 
is the natural nonlinear extension of the consensus algorithm in (2.32) and its 
linearization around the aligned state θ1 = = θn is identical to system (1.11) · · · � 
plus a nonzero input bias bi = (ωi − ω̄)/κ with ω̄ = 1/n i ωi after a change of 
variables xi = (θi − ω̄t)/κ . 

In [181], Sepulchre et al. show that if the number of oscillators n is suf­
ficiently large then for a network with all-to-all links, synchronization to the 
aligned state is globally achieved for all initial states. Recently, synchronization 
of networked oscillators under variable time-delays was studied in [183]. We be­
lieve that the use of convergence analysis methods that utilize the spectral prop­
erties of graph Laplacians will shed light on the performance and convergence 
analysis of self-synchrony in oscillator networks [180]. 

2.3.2 Flocking theory 
Flocks of mobile agents equipped with sensing and communication devices can 
serve as mobile sensor networks for massive distributed sensing in an environ­
ment [224]. A theoretical framework for design and analysis of flocking algo­
rithms for mobile agents with obstacle-avoidance capabilities was developed by 
Olfati-Saber [158]. The role of consensus algorithms in particle-based flocking is 
for an agent to achieve velocity matching with respect to its neighbors. In [158], 
it is demonstrated that flocks are networks of dynamic systems with a dynamic 
topology. This topology is a proximity graph that depends on the state of all 
agents and is determined locally for each agent, i.e., the topology of flocks is a 
state-dependent graph. The notion of state-dependent graphs was introduced by 
Mesbahi [202] in a context that is independent of flocking. 

2.3.3 Fast consensus in small-worlds 
In recent years, network design problems for achieving faster consensus algo­
rithms has attracted considerable attention from a number of researchers. In Xiao 
and Boyd [225], the design of the weights of a network is considered and solved 
using semi-definite convex programming. This leads to a slight increase in al­
gebraic connectivity of a network that is a measure of speed of convergence of 
consensus algorithms. An alternative approach is to keep the weights fixed and 
design the topology of the network in such a way as to achieve a relatively high 
algebraic connectivity. A randomized algorithm for network design is proposed 
by Olfati-Saber [185], based on the random rewiring idea of Watts and Stro­
gatz [226] that led to the creation of their celebrated small-world model. The 
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random rewiring of existing links of a network gives rise to considerably faster 
consensus algorithms. This is due to a multiple orders of magnitude increase 
in algebraic connectivity of the network in comparison to a lattice-type nearest-
neighbor graph. 

2.3.4 Rendezvous in space 
Another common form of consensus problems is rendezvous in space [227], 
[228]. This is equivalent to reaching a consensus in position by a number of 
agents with an interaction topology that is position induced (i.e., a proximity 
graph). We refer the reader to [229] and references therein for a detailed dis­
cussion. This type of rendezvous is an unconstrained consensus problem that 
becomes challenging under variations in the network topology. Flocking is some­
what more challenging than rendezvous in space because it requires both inter­
agent and agent-to-obstacle collision avoidance. 

2.3.5 Distributed sensor fusion in sensor networks 
The most recent application of consensus problems is distributed sensor fusion in 
sensor networks. This is done by posing the various distributed averaging prob­
lems required to implement a Kalman filter [176], [177], approximate Kalman 
filter [211], or linear least-squares estimator [212] as average-consensus prob­
lems. Novel low-pass and highpass consensus filters that dynamically calculate 
the average of their inputs in sensor networks are also developed [177], [230]. 

2.3.6 Distributed formation control 
Multi-vehicle systems are an important category of networked systems due to 
their commercial and military applications. There are two broad approaches to 
distributed formation control: i) representation of formations as rigid structures 
[191], [231] and the use of gradient-based controls obtained from their structural 
potentials [190] and ii) representation of formations using the vectors of rela­
tive positions of neighboring vehicles and the use of consensus-based controllers 
with input bias. We discuss the latter approach here. A theoretical framework 
for design and analysis of distributed controllers for multi-vehicle formations 
of type ii) was developed by Fax and Murray [151]. Moving in formation is a 
cooperative task and requires the consent and collaboration of every agent in 
the formation. In [151], graph Laplacians and matrix theory were extensively 
used, which makes one wonder whether relative-position-based formation con­
trol is a consensus problem. The answer is yes. To see this, consider a network 
of self-interested agents whose individual desire is to minimize their local cost 
Ui(x) = ∈Ni 

||x j − xi − ri j||2 via a distributed algorithm. (xi) is the position of 
vehicle i with dynamics ẋi = ui and ri j is a desired inter-vehicle relative-position 
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vector). Instead, if the agents use gradient-descent algorithm on the collective �ncost i=1 Ui(x) using the following protocol: 

ẋi = (x j − xi − ri j) = (x jxi)+ bi (2.37) 
j∈Ni j∈Ni 

with input bias bi = j∈Ni 
r ji [see Fig. 2.2(b)], the objective of every agent will 

be achieved. This is the same as the consensus algorithm in (2.32) up to the 
nonzero bias terms bi. This nonzero bias plays no role in the stability analysis 
of system (1.15). Thus, distributed formation control for integrator agents is a 
consensus problem. The main contribution of the work by Fax and Murray is to 
extend this scenario to the case where all agents are multiinput multioutput linear 
systems xi = Axi + Bui. 

2.4 Information Consensus 
Consider a network of decision-making agents with dynamics ẋi = ui interested 
in reaching a consensus via local communication with their neighbors on a graph 
G = (V, E). By reaching a consensus, we mean asymptotically converging to a 
one-dimensional agreement space characterized by the following equation: 

x1 = x2 = = xn.· · · 

This agreement space can be expressed as x = α1, where 1 = (1, . . . ,1)T 

and α ∈ R is the collective decision of the group of agents. Let A = |ai j| be the 
adjacency matrix of graph G. The set of neighbors of agent i is Ni and defined by 

Ni = j2V : ai j �= 0;V = 1, . . . ,n. 

Agent i communicates with agent j if j is a neighbor of i (or ai j =� 0). The 
set of all nodes and their neighbors defines the edge set of the graph as E = 
(i, j) ∈ V ×V : ai j =� 0. A dynamic graph G(t) = (V,E(t)) is a graph in which the 
set of edges E(t) and the adjacency matrix A(t) are time-varying. Clearly, the 
set of neighbors Ni(t) of every agent in a dynamic graph is a time-varying set as 
well. Dynamic graphs are useful for describing the network topology of mobile 
sensor networks and flocks [158]. It is shown in [149] that the linear system 

ẋi(t) = X ai j(x j(t) − xi(t)) (2.38) 
Ni 

is a distributed consensus algorithm, i.e., guarantees convergence to a collective 
decision via local interagent interactions. Assuming that the graph is undirected 
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= a ji for all i, j), it follows that the sum of the state of all nodes is an invariant 
quantity, or i ẋi = 0. In particular, applying this condition twice at times t = 0 
and t = ∞ gives the following result 

(ai j � 

1 � 
α = xi(0). n 

i 

In other words, if a consensus is asymptotically reached, then it follows that 
the collective decision is equal to the average of the initial state of all nodes. A 
consensus algorithm with this specific invariance property is called an average-
consensus algorithm [148] and has broad applications in distributed computing 
on networks (e.g., sensor fusion in sensor networks). The dynamics of system 
(1.16) can be expressed in a compact form as 

ẋ = −Lx (2.39) 

where L is known as the graph Laplacian of G. The graph Laplacian is defined as 

L = D − A (2.40) 

where D = diag(d1, . . . , dn) is the degree matrix of G with elements di = j=� i ai j 

and zero off-diagonal elements. By definition, L has a right eigenvector of 1 
associated with the zero eigenvalue because of the identity L[1...1] = 0. For the 
case of undirected graphs, graph Laplacian satisfies the following sum-of-squares 
(SOS) property: 

xT Lx = 
1 � 

ai j(x j − xi)
2 . (2.41)

2 
(i, j)∈E 

By defining a quadratic disagreement function as 

ρ = 
1 

xT Lx (2.42)
2 

It becomes apparent that algorithm (2.32) is the same as 

ẋ = �ρ(x) 

or the gradient-descent algorithm. This algorithm globally asymptotically con­
verges to the agreement space, provided that two conditions hold: 1) L is a posi­
tive semidefinite matrix, 2) the only equilibrium of (7) is α1 for some α . Both of 
these conditions hold for a connected graph and follow from the SOS property 
of graph Laplacian in (2.41). Therefore, an average-consensus is asymptotically 
reached for all initial states. This fact is summarized in the following lemma. 

Lemma 2.1 
Let G be a connected undirected graph. Then, the algorithm in (2.32) asymptotically 
solves an average consensus problem for all initial states. 
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2.4.1 Algebraic connectivity and spectral properties 
Spectral properties of Laplacian matrix are instrumental in analysis of conver­
gence of the class of linear consensus algorithms in (2.32). According to Ger­
shgorin theorem [218], all eigenvalues of L in the complex plane are located in 
a closed disk centered at Δ + 0 j with a radius of Δ = maxidi, i.e., the maximum 
degree of a graph. For undirected graphs, L is a symmetric matrix with real eigen­
values and, therefore, the set of eigenvalues of L can be ordered sequentially in 
an ascending order as 

0 = λ1 ≤ λ2 ≤ · · · ≤ λn ≤ 2Δ. (2.43) 

The zero eigenvalue is known as the trivial eigenvalue of L. For a connected 
graph G, λ2 > 0 (i.e., the zero eigenvalue is isolated). The second smallest eigen­
value of Laplacian λ2 is called algebraic connectivity of a graph [159]. Algebraic 
connectivity of the network topology is a measure of performance/speed of con­
sensus algorithms [149]. 

Simulation example 1 Fig. 2.3 shows two examples of networks of integra­
tor agents with different topologies. Both graphs are undirected and have 0-1 
weights. Every node of the graph in Fig. 2.3(a) is connected to its 4 nearest 
neighbors on a ring. The other graph is a proximity graph of points that are dis­
tributed uniformly at random in a square. Every node is connected to all of its 
spatial neighbors within a closed ball of radius r > 0. Here are the important 
degree information and Laplacian eigenvalues of these graphs 

a)λ1 = 0,λ2 = 0.48, λn = 6.24, Δ = 4 (2.44) 
b)λ1 = 0, λ2 = 0.25, λn = 9.37,Δ = 8. 

In both cases, λi < 2Δ for all i. 

2.4.2 Convergence analysis for directed networks 
The convergence analysis of the consensus algorithm in (1.16) is equivalent to 
proving that the agreement space characterized by x = α1,α ∈ R is an asymp­
totically stable equilibrium of system (1.16). The stability properties of system 
(1.16) are completely determined by the location of the Laplacian eigenvalues of 
the network. The eigenvalues of the adjacency matrix are irrelevant to the stabil­
ity analysis of system (1.16), unless the network is k-regular (all of its nodes have 
the same degree k). The following lemma combines a well-known rank property 
of graph Laplacians with Gershgorin theorem to provide spectral characteriza­
tion of Laplacian of a fixed directed network G. Before stating the lemma, we 
need to define the notion of strong connectivity of graphs. A graph is strongly 
connected (SC) if there is a directed path connecting any two arbitrary nodes s, t 
of the graph. 
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Figure 2.3: Examples of networks with n = 20 nodes: (a) a regular network with 80 links and 
(b) a random network with 45 links 

Lemma 2.2 
(spectral localization) Let G be a strongly connected digraph on n nodes. Then 
rank(L) = n−1 and all nontrivial eigenvalues of L have positive real parts. Further­
more, suppose G has c ≥ 1 strongly connected components, then rank(L) = n − c. 

Proof : The proof of the rank property for digraphs is given in [149]. The 
proof for undirected graphs is available in the algebraic graph theory literature 
[10]. The positivity of the real parts of the eigenvalues follow from the fact that 
all eigenvalues are located in a Gershgorin disk in the closed right-hand plane 
that touches the imaginary axis at zero. The second part follows from the first 
part after relabeling the nodes of the digraph so that its Laplacian becomes a 
block diagonal matrix. 

Remark 2.2 Lemma 2.2 holds under a weaker condition of existence of a directed 
spanning tree for G. G has a directed spanning tree if there exists a node r (a root) such 
that all other nodes can be linked to r via a directed path. This type of condition on 
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existence of directed spanning trees has appeared in [152, 153, 154]. The root node is 
commonly known as a leader [152]. The essential results regarding convergence and 
decision value of Laplacian-based consensus algorithms for directed networks with a 
fixed topology are summarized in the following theorem. Before stating this theorem, 
we need to define an important class of digraphs that appear frequently throughout 
this section. 

Definition 2.1 (balanced digraphs [149]) A digraph G is called balanced if 

j=i ai j = j=i a ji for all i ∈ V . In a balanced digraph, the total weight of edges 
entering a node and leaving the same node are equal for all nodes. The most impor­
tant property of balanced digraphs is that w = 1 is also a left eigenvector of their 
Laplacian (or 1T L = 0). 

Theorem 2.2 
Consider a network of n agents with topology G applying the following consensus 
algorithm 

ẋi(t) = ai j(x j(t) − xi(t)),x(0) = z :	 (2.45) 
j∈Ni 

Suppose G is a strongly connected digraph. Let L be the Laplacian of strongly con­
nected digraph G. Let L be the satisfying γT L = 0. Then 

1.	 a consensus is asymptotically reached for all initial states, 

2. the algorithm	 solves the f-consensus problem with the linear function 
f (z)(γT z/γT 1), i.e., the group decision is α = 

� 
i wizi with 

� 
i wi = 1, 

3. if the digraph is balanced, an average-consensus is asymptotically reached 
and α = ( i xi(0))/n. 

Proof : The convergence of the consensus algorithm follows from Lemma 2. 
To show part ii), note that the collective dynamics of the network is ẋ = −Lx. 
This means that y = γT x is an invariant quantity due to ẏ = −γT Lx = 0,∀x. Thus, 
limt→∞ y(t) = y(0), or γT (α1) = γT x(0) that implies the group decision is α = 
(γT z) = i γi. Setting wi = γi/ i, we get α = wT z. Part iii) follows as a special 
case of the statement in part ii) because for a balanced digraph γ = 1 and wi = 
1 = /,∀i. 

Remark 2.3 In [149], it is shown that a necessary and sufficient condition for L to 
have a left eigenvector of γ = 1 is that G must be a balanced digraph. 

A challenging problem is to analyze the convergence of a consensus algo­
rithm for a dynamic network with a switching topology G(t) that is time-varying. 
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Various aspects of this problem have been addressed by several groups during re­
cent years [149], [152, 153, 154] and will be discussed in detail. 

2.4.3 Consensus in discrete-time 
An iterative form of the consensus algorithm can be stated as follows in discrete-
time: 

xi(k + 1) = xi(k)+ ε ai j(x j(k) − xi(k)) (2.46) 
j∈Ni 

The discrete-time collective dynamics of the network under this algorithm can 
be written as 

x(k + 1) = Px(k) (2.47) 

with P = I − εL (I is the identity matrix) and ε > 0 is the step-size. In general, 
P = exp(−εL) and the algorithm in (2.46) is a special case that only uses com­
munication with first-order neighbors. We refer to P as the Perron matrix of a 
graph G with parameter ε . 

Three important types of nonnegative matrices are irreducible, stochastic, and 
primitive (or ergodic) matrices [218]. A matrix A is irreducible if its associated 
graph is strongly connected. A nonnegative matrix is called row (or column) 
stochastic if all of its row-sums (or column-sums) are 1. An irreducible stochastic 
matrix P is primitive if it has only one eigenvalue with maximum modulus. 

Lemma 2.3 
Let G be a digraph with n nodes and maximum degree Δ = maxi( j=i ai j). Then, 
the Perron matrix P with parameter ε ∈ (0;1/Δ] satisfies the following properties. 

1. P is a row stochastic nonnegative matrix with a trivial eigenvalue of 1; 

2. All eigenvalues of P are in a unit circle; 

3. If G is a balanced graph, then P is a doubly stochastic matrix; 

4. If G is strongly connected and 0 < ε < 1/Δ, then P is a primitive matrix. 

Proof: Since P = IεL, we get P1 = 1εL1 = 1, which means the row sums of 
P is 1. Moreover, 1 is a trivial eigenvalue of P for all graphs. To show that P is 
nonnegative, notice that P = IεD + εA due to definition of Laplacian L = D − A. 
εA is a nonnegative matrix. The diagonal elements of IεD are 1 − εdi ≥ 1 −
di/Δ ≥ 0, which implies IεD is nonnegative. Since the sum of two nonnegative 
matrices is a nonnegative matrix, P is a nonnegative row stochastic matrix. To 
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prove part ii), one notices that all eigenvectors of P and L are the same. Let λ j be 
the jth eigenvalue of L. Then, the jth eigenvalue of P is 

µ j = 1 − ελ j (2.48) 

Based on Gershgorin theorem, all eigenvalues of L are in the disk |s − Δ| ≤ Δ. 
Defining z = 1 − s/Δ, we have |z| ≤ 1 which proves part ii). If G is a balanced 
digraph, then 1 is the left eigenvector of L, or 1T L = 0. This means that 1T P = 
1T − ε1T L = 1T , which implies the column sums of P are 1. This combined with 
the result in part i) gives part iii). To prove part iv), note that, if G is strongly 
connected, then P is an irreducible matrix [218]. To prove that P is primitive, we 
need to establish that it has a single eigenvalue with maximum modulus of 1. For 
all 0 < ε < 1/Δ, the transformation µ = 1εs maps the circle |s − Δ| = Δ into a 
circle that is located strictly inside a unit disk passing through the point µ = 1. 
This means that only a single eigenvalue at µ1 = 1 can have a modulus of 1. 

Remark 2.4 The condition ε < 1/Δ in part iv) is necessary. If an incorrect step-
size of ε = 1/Δ is used. Then, P would no longer be a primitive matrix because 
it could have multiple eigenvalues of modulus 1. The counterexample is a directed 
cycle of length n with a Laplacian that has n roots on the boundary of the Gershgorin 
disk |s − Δ| ≤ Δ. With the choice of ε = 1/Δ = 1, one gets a Perron matrix that is 
irreducible but has n eigenvalues on the boundary of the unit circle. This is a common 
mistake that is repeated by some of the researchers in the past. The convergence 
analysis of the discrete-time consensus algorithm relies on the following well-known 
lemma in matrix theory. 

Lemma 2.4 
(Perron-Frobenius, [218]) Let P be a primitive nonnegative matrix with left and right 
eigenvectors w and v, respectively, satisfying Pv = v,wT P = wT and vT w = 1. Then 
limk→∞ Pk = vwT . The convergence and group decision properties of iterative con­
sensus algorithms x Px with row stochastic Perron matrices are stated in the follow­
ing result. It turns out that this discrete-time convergence result is almost identical 
to its continuous-time counterpart. 

Theorem 2.3 
Consider a network of agents xi(k + 1) = xi(k)+ ui(k) with topology G applying the 
distributed consensus algorithm 

xi(k + 1) = xi(k)ε ai j(x j(k) − xi(k)) (2.49) 
j∈Ni 
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Table 2.1: Continuous-time versus discrete-time consensus 

CT DT 
Dynamics ẋ = −Lx x(k + 1) = Px(k) 

Key Matrix L(Laplacian) P = I − εL (Perron) 
Connected G converges � 

converges � 
Decision (general) i wixi(0)� i wixi(0)� 

Decision (balanced) i xi(0)/n i xi(0)/n 

where 0 < ε < 1/Δ and Δ is the maximum degree of the network. Let G be a strongly 
connected digraph. Then, 

1. A consensus is asymptotically reached for all initial states; 

2. The group decision value is α = i wixi(0) with i wi = 1; 

3. If the digraph is balanced (or P is doubly stochastic), an average-consensus 
is asymptotically reached and α = ( i xi(0))/n. 

Proof: Considering that x(k) = Pkx(0), a consensus is reached in discrete-
time, if the limit limk→∞ Pk exists. According to Lemma 2.4, this limit exists 
for primitive matrices. Based on part iv) of Lemma 2.3, P is a primitive ma­
trix. Thus, limk→∞ x(k) = v(wT x(0)) with v = 1, or xi → α = wT x(0) for all i 
as k 1. Hence, the group decision value is α = i wixi(0) with i wi = 1→ 

T(due to v w = 1). If the graph is balanced, based on part iii) of Lemma 2.3, P 
is a column stochastic matrix with a left eigenvector of w = (1/n)1. The group 
decision becomes equal to α = (1/n)1T xi(0) and average-consensus is asymp­
totically reached. 

So far, we have presented a unified framework for analysis of convergence of 
consensus algorithms for directed networks with fixed topology in both discrete-
time and continuous-time. A comparison between the two cases of continuous-
time and discrete-time consensus are listed in Table 2.1. 

2.4.4 Performance of consensus algorithms 
The speed of reaching a consensus is the key in design of the network topology as 
well as analysis of performance of a consensus algorithm for a given network. Let 
us first focus on balanced directed networks that include undirected networks as 
a special case. This is primarily due to the fact that the collective dynamics of the 
network of agents applying a continuous- or discrete-time consensus algorithm in 
this case has an invariant quantity α = ( i xi)/n. To demonstrate this in discrete-
time, note that 1T P = 1T and 

α(k + 1) = 
1

1T x(k + 1) = 
1 
(1T P)x(k) = α(k)

n n 
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which implies α is invariant in at iteration k. Let us define the disagreement 
vector [149] 

δ = x − α1 (2.50) 

and note that i δi = 0, or 1T δ = 0. The consensus algorithms result in the 
following disagreement dynamics: 

CT : δ̇ (t) = −Lδ (t) (2.51) 
DT : δ (k + 1) = Pδ (k). 

Based on the following lemma, one can readily show that Φ(δ ) = δ T δ is a valid 
Lyapunov function for the CT system that quantifies the collective disagreement 
in the network. 

Theorem 2.4 
(algebraic connectivity of digraphs) Let G be a balanced digraph (or undirected 
graph) with Laplacian L with a symmetric part Ls = (L + LT )/2 and Perron matrix 
P with Ps = (P + PT )/2. Then, 

1. λ2 = min1T δ =0(δ T Lδ /δ T δ ) with λ2 = λ2(Ls), i.e 

δ T Lδ ≥ λ2kδ ||δ ||2 

for all disagreement vectors δ ; 

2. µ2 = max1T δ = 0(δ T Pδ /δ T δ ) with µ2 = 1 − ελ2, i.e., 

δ T Pδ ≤ µ2||δ ||2 

for all disagreement vectors δ . 

Proof: Since G is a balanced digraph, 1T L = 0 and L1 = 0. This implies that 
Ls is a valid Laplacian matrix because of Ls1 = (L1 + LT 1)/2 = 0. Similarly, Ps 

is a valid Perron matrix which is a nonnegative doubly stochastic matrix. Part 
i) follows from a special case of Courant Fisher theorem [218] for a symmetric 
matrix Ls due to 

min1T δ =0 
δ

δ 

T

T

L
δ

δ 
= min1T δ =0 

δ

δ 

T

T

L
δ 
sδ

λ2(Ls). 

To show part ii), note that for a disagreement vector δ satisfying 1T δ = 0, we 
have 

maxδ 
δ T Pδ 
δ T δ 

= maxδ 
δ T Pδ 
δ T δ 

= maxδ 
δ T Pδ − εδ T Lδ 

δ T δ 
(2.52) 

= 1 − εminδ 
δ T Lδ 
δ T δ 

= 1 − ελ2(Ls) 

= µ2(Ps) 
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Corollary 2.1 
A continuous-time consensus is globally exponentially reached with a speed that is 
faster or equal to λ2 = λ2(Ls)with Ls = (L + LT )/2 for a strongly connected and 
balanced directed network. 

Proof: For CT consensus, we have 

Φ = −2δ T Lδ ≤−2λ2δ T 
δ = −2λ2Φ 

Therefore, Φ(δ ) = ||δ ||2 exponentially vanishes with a speed that is at least 2λ2. 
Since ||δ || = Φ1/2, the norm of the disagreement vector exponentially vanishes 
with a speed of at least λ2. 

Recently in [185], it was shown that quasi-random small-world networks 
have extremely large λ2 values compared to regular networks with nearest neigh­
bor communication, such as the one in Fig. 2(a). For example, for a network with 
n = 1000 nodes and uniform degree di = 10;8i, the algebraic connectivity of a 
small-world network can become more than 1500 times of the λ2 of a regular 
network [185]. 

According to Theorem 2.4, 2.3 is the second largest eigenvalue of Ps—the 
symmetric part of the Perron matrix P. The speed of convergence of the iterative 
consensus algorithm is provided in the following result. 

Corollary 2.2 
A discrete-time consensus is globally exponentially reached with a speed that is faster 
or equal to µ2 = 1 − ελ2(L) for a connected undirected network 

Proof: Let Φ(k) = δ (k)T δ (k) be a candidate Lyapunov function for the 
discrete-time disagreement dynamics of δ (k + 1) = Pδ (k). For an undirected 
graph P = PT and all eigenvalues of P are real. Calculating Φ(k + 1), one gets 

Φ(k + 1) = δ (k + 1)T 
δ (k + 1) (2.53) 

= ||P
2 

δ (k)||2 ≤ µ2
2||δ (k)||2 

= µ2 Φk 

with /0 < µ2 < 1, due to the fact that P is primitive. Clearly, ||δ (k)|| exponentially 
vanishes with a speed faster or equal to µ2. 

Remark 2.5 The proof of Corollary 2.2 for balanced digraphs is rather detailed 
and beyond the scope of this paper. 

2.4.5 Alternative forms of consensus algorithms 
In the context of formation control for a network of multiple vehicles, Fax and 
Murray [151] introduced the following version of a Laplacian-based system on a 
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graph G with 0 − 1 weights: 

1 � 
ẋi = (x j − xi) (2.54)

|Ni| j∈Ni 

This is a special case of a consensus algorithm on a graph G∗ with adjacency 
elements ai j � = 1/|Ni| = 1/di for j ∈ Ni and zero for j 62 Ni. According to this 
form, di = j=i ai j = 1 for all i, which means the degree matrix of G∗ is D∗ = I 
and its adjacency matrix is A∗ = D−1A, provided that all nodes have nonzero 
degrees (e.g., for connected graphs/digraphs). In graph theory literature, A∗ is 
called normalized adjacency matrix. Let Q be the key matrix in the dynamics of 
(2.54), i.e., ẋ = −Qx. Then, an alternative for of graph Laplacian is 

Q = I − D−1A (2.55) 

This is identical to the standard Laplacian of the weighted graph G∗ due to 
L∗ = D∗ −A∗ = I −D−1A. The convergence analysis of this algorithm is identical 
to the consensus algorithm presented earlier. The Perron matrix associated with 
Q is in the form P = IεL∗ with 0 < ε < 1. In explicit form, this gives the following 
iterative consensus algorithm: 

x(k + 1) = [(1 − ε)I + εD−1Ax]x(k). 

The aforementioned algorithm for ε = 1 takes a rather simple form x(k + 1) = 
D−1Ax(k) that does not converge for digraphs such as cycles of length n. There­
fore, this discretization with ε = 1 is invalid. Interestingly, the Markov process 

π(k + 1) = π(k)P (2.56) 

with transition probability matrix P = D−1A is known as the process of ran­
dom walks on a graph [232] in graph theory and computer science literature 
with close connections to gossip-based consensus algorithms [215]. Keep in 
mind that, based on algorithm (2.54), if graph G is undirected (or balanced), the 
quantity 

α = dixi / di 
i i 

is invariant in time and a weighted-average consensus is asymptotically reached. 
The weighting wi = di/( i di) is specified by node degree di = |Ni|. Only for 
regular networks (i.e., d1 = d2 = = dn), (2.54) solves an average consensus · · · 
problem. This is a rather restrictive condition because most networks are not 
regular. Another popular algorithm proposed in [152] (also used in [153], [154]) 
is the following discrete-time consensus algorithm for undirected networks: 

1 � 
xi(k + 1) = xi(k)+ (2.57)

1 + |Ni| j∈Ni

x j(k) 
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which can be expressed as 

x(k + 1) = (I + D)−1(I + A)x(k). 

Note that the stochastic Perron matrix P = (I + D)−1(I+A) is obtained from the 
following normalized Laplacian matrix with ε = 1: 

Ql = I − (I + D)−1(I+A). (2.58) 

This Laplacian is a modification of (2.55) and has the drawback that it does 
not solve average-consensus problem for general undirected networks. Now, we 
demonstrate that algorithm (2.57) is equivalent to (2.55) (and, thus, a special 
case of (1.16)). Let G be a graph with adjacency matrix A and no self-loops, i.e., 
aii = 0,∀i. Then, the new adjacency matrix Al = I + A corresponds to a graph Gl 

that is obtained from G by adding n self-loops with unit weights (aii = 1,∀i). As 
a result, the corresponding degree matrix of Gl is Dl = I + D. Thus, the normal­
ized Laplacian of Gl in (2.58) is Ql = I − D−1Al . In other words, the algorithm l 
proposed by Jadbabaie et al. [152] is identical to the algorithm of Fax and Mur­
ray [151] for a graph with n self-loops. In both cases ε = 1 is used to obtain the 
stochastic nonnegative matrix P. 

Remark 2.6 

Remark 5: A undirected cycle is not a counterexample for discretization of 
ẋ= −Qlx with ε = 1. Since the Perron matrix Pl = (I +D)−1(I +A) is symmetric 
and primitive. 

Simulation example 2 In this example, we clarify that why P = D−1A can 
be an unstable matrix for a connected graph G, whereas Pl = (I + D)−1(I + A) 
remains stable for the same exact graph. for doing so, let us consider a bipartite 
graph G with n = 2m nodes and adjacency matrix 

0m Jm 

Jm 0m 
(2.59) 

where 0m and Jm denote the m × m matrices of zeros and ones, respectively. Note 
that D = mIn and P = D−1A = (1/m)A. On the other hand, the Perron matrix of 
G with n self-loops is 

1
Pl = (In + D)−1(In + A) = 

m + 1 J
Im

m 

J
Im

m . 

Let v = 12m be the vector of ones with 2m elements and w = col(1m,−1m). 
Both v and w are eigenvectors of P associated with eigenvalues 1 and −1, re­
spectively, due to Pv = v and Pw = −w. This proves that P is not a primitive 
matrix and the limit limk→∞Pk does not exist (since P has two eigenvalues with 
modulus 1). 
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Table 2.2: Forms of Laplacians 

Source Laplacian L Perron P ε 
[149] D − A I − εL (0, Δ−1) 
[151] I − D−1A D−1A 1 
[152] I − (I + D)−1(I + A) (I + D)−1(I + A) 1 

In contrast, Pl does not suffer from this problem because of the n nonzero 
diagonal elements. Again, v is an eigenvector of Pl associated with the eigenvalue 
1, but Plw = −(m − 1)/(m + 1)w and due to (m − 11)/(m + 1) < 1 for all m ≥
1,−1 is no longer an eigenvalue of Pl . 

Table 2.2 summarizes three types of graph Laplacians used in systems and 
control theory. The alternative forms of Laplacians in the second and third rows 
of Table 2 are both special cases of L = D−A that are widely used as the standard 
definition of Laplacian in algebraic graph theory [10]. The algorithms in all three 
cases are in two forms 

ẋ = −Lx (2.60) 
x(k + 1) = Px(k) (2.61) 

Based on Simulation example 2, the choice of the discrete-time consensus 
algorithm is not arbitrary. Only the first and the third row of Table 2.2 guarantee 
stability of a discrete-time linear system for all possible connected networks. The 
second type requires a further analysis in order to verify whether P is stable, or 
not. 

2.4.6 Weighted-average consensus 
The choice of the Laplacian for the continuous-time consensus depends on the 
specific application of interest. In cases where reaching an average-consensus is 
desired, only L = D−A can be used. In case of weighted-average consensus with 
a desired weighting vector γ = (γi, · · · , γn), the following algorithms can be used: 

Kẋ = −Lx (2.62) 

with K = diag(γ1, · · · , γn) and L = D − A. This is equivalent to a node with a 
variable rate of integration based on the protocol 

γiẋi = ai j(x j − xi) 
j∈Ni 

In the special case the weighting is proportional to the node degrees, or K = D, 
one obtains the second type of Laplacian in Table 2.2, or ẋ = −D−1Lx = −(I −
D−1)x. 
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2.4.7 Consensus under communication time-delays 
Suppose that agent i receives a message sent by its neighbor j after a time-delay 
of τ . This is equivalent to a network with a uniform one-hop communication 
time-delay. The following consensus algorithm: 

ẋi(t) = ai j(x j(t − τ) − xi(t − τ)) (2.63) 
j∈Ni 

was proposed in [149] in order to reach an average-consensus for undirected 
graphs G. 

Remark 2.7 Keep in mind that the algorithm 

ẋi(t) = ai j(x j(t − τ) − xi(t)) (2.64) 
j∈Ni 

does not preserve the average x̄ = (1/n) i xi(t) in time for a general graph. The 
same is true when the graph in (2.63) is a general digraph. It turns out that for bal­
anced digraphs with 0 − 1 weights, x̄(t) is an invariant quantity along the solutions 
of (2.63). 

The collective dynamics of the network can be expressed as 

ẋ(t) = −Lx(t − τ) 

Rewriting this equation after taking Laplace transform of both sides, we get 

H(s)
x(s) = x(0) (2.65)

s 

with a proper MIMO transfer function H(s) = (In + (1/s)exp(−sτ)L)−1. One 
can use Nyquist criterion to verify the stability of H(s). A similar criterion for 
stability of formations was introduced by Fax and Murray [151]. The following 
theorem provides an upper bound on the time delay such that the stability of the 
network dynamics is maintained in the presence of time-delays. 

Theorem 2.5 
(Olfati-Saber and Murray, 2004) The algorithm in (2.63) asymptotically solves the 
average consensus problem with a uniform one-hop time-delay for all initial states if 
and only if 0 ≤ τ < π/2λn. 

Proof: See the proof of Theorem 10 in [149]. Since λn < 2Δ, a sufficient 
condition for convergence of the average-consensus algorithm in (2.63) is that 
τ < π/4Δ. In other words, there is a trade-off between having a large maximum 
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degree and robustness to time delays. Networks with hubs (having very large 
degrees) that are commonly known as scale-free networks [233] are fragile to 
time-delays. In contrast, random graphs [234] and small-world networks [185], 
[226] are fairly robust to timedelays since they do not have hubs. In conclusion, 
construction of engineering networks with nodes that have high degrees is not a 
good idea for reaching a consensus. 

2.5 Consensus in Switching Networks 
In many scenarios, networked systems can possess a dynamic topology that is 
time-varying due to node and link failures/creations, packet-loss [178], [235], 
asynchronous consensus [179], state-dependence [202], formation reconfigura­
tion [191], evolution [233], and flocking [158], [236]. Networked systems with a 
dynamic topology are commonly known as switching networks. A switching net­
work can be modeled using a dynamic graph Gs(t) parametrized with a switching 
signal s(t) : R J that takes its values in an index set J = 1, · · · ,m. The consen­→
sus mechanism on a network with a variable topology becomes a linear switching 
system 

ẋ = −L(Gk)x; (2.66) 

with the topology index k = s(t) ∈ J and a Laplacian of the type D − A. The set 
of topologies of the network is Γ = G1,G2, · · · , Gm. First, we assume at any time 
instance, the network topology is a balanced digraph (or undirected graph) that 
is strongly connected. Let us denote λ2((L + LT )/2) by λ2(Gk) for a topology 
dependent Laplacian L = L(Gk). The following result provides the analysis of 
average-consensus for dynamic networks with a performance guarantee. 

Theorem 2.6 
(Olfati-Saber and Murray, 2004) Consider a network of agents applying the consen­
sus algorithm in (2.66) with topologies Gk ∈ Γ. Suppose every graph in Γ is a bal­
anced digraph that is strongly connected and let λ2 

∗ = mink∈J λ2(Gk). Then, for any 
arbitrary switching signal, the agents asymptotically reach an average-consensus 
for all initial states with a speed faster or equal to λ2

∗. Moreover, Φ(δ ) = δ T δ is a 
common Lyapunov function for the collective dynamics of the network. 

Proof: See the proof of Theorem 9 in [149]. 
Note that Γ is a finite set with at most n(n − 1) elements and this allows the 

definition of λ2 
∗. Moreover, the use of normal Laplacians does not render the 

average x̄ = (1/n) i xi invariant in time, unless all graphs in Γ are d-regular (all 
of their nodes have degree d). This is hardly the case for various applications 
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The following result on consensus for switching networks does not require 
the necessity for connectivity in all time instances and is due to Jadbabaie et al. 
[152]. This weaker form of network connectivity is crucial in analysis of asyn­
chronous consensus with performance guarantees (which is currently an open 
problem). We need to rephrase the next result for the purpose of compatibility 
with the notation used in this paper. 

Consider the following discrete-time consensus algorithm: 

xk+1 = Pskxk; t = 0, 1, 2, . . . (2.67) 

with sk ∈ J. LetP = P1, . . . , Pm denote the set of Perron matrices associated with 
a finite set of undirected graphs Γ with n self-loops. We say a switching network 
with the set of topologies Γ is periodically connected with a period N > 1 if the 
unions of all graphs over a sequence of intervals [ j, jN) for j = 0, 1,2, . . . are 
connected graphs, i.e., G j = ∪N

k=
−

j 
1 is connected for j = 0, 1, 2, . . . . 

Theorem 2.7 
(Jadbabaie, Lin and Morse, 2003) Consider the system in (2.67) with Psk ∈ P 
for j = 0,1,2, . . . . Assume the switching network is periodically connected. Then, 
limk→∞ xk = α1, or an alignment is asymptotically reached. 

Proof: See the proof of Theorem 2.3 in [152]. 
The solution of (2.67) can be explicitly expressed as � t � 

xt = Psk x0 = Λtx0 
k=0 

with Λt = Pst . . . Ps2 Ps1 . the convergence of the consensus algorithm in (2.67) 
depends on whether the infinite product of nonnegative stochastic matrices 
Pst . . . Ps2 Ps1 has a limit. The problem of convergence of infinite product of 
stochastic matrices has a long history and has been studied by several mathe­
maticians, including Wolfowitz [237]. The proof in [152] relies on Wolfowitzs 
lemma: 

Lemma 2.5 
(Wolfowitz, 1963) Let P = P1,P2, . . . ,Pm be a finite set of primitive stochastic ma­
trices such that for any sequence of matrices Ps1,Ps2, . . . ,Psk ∈ P with k ≥ 1, the 
product Psk . . .Ps2 Ps1 is a primitive matrix. Then, there exists a row vector w such 
that 

lim Psk . . .Ps2 Ps1 = 1w. (2.68)
k→∞ 
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According to Wolfowitz’s lemma, we get limk→∞ xk = 1(wx0)= α1 with α = 
wx0. The vector w depends on the switching sequence and cannot be determined 
a priori. 

Thus, an alignment is asymptotically reached and the group decision is an 
undetermined quantity in the convex hull of all initial states. 

Remark 2.8 Since normal Perron matrices in the form (I + D)−1(I + A) are em­
ployed in [152], the agents (in general) do not reach an average-consensus. The use 
of Perron matrices in the form I − εL with 0 < ε < 1/(1 + maxk∈J Δ(Gk)) resolves 
this problem. 

Recently, an extension of Theorem 6 with connectivity of the union of graphs 
over an infinite interval has been introduced by Moreau [153] (also, an extension 
is presented in [154] for weighted graphs). Here, we rephrase a theorem due to 
Moreau and present it based on notation. First, let us define a less restrictive 
notion of connectivity of switching networks compared to periodic connectivity. 
Let Γ be a finite set of undirected graphs with n self-loops. We say a switching 
networks with topologies in Γ is ultimately connected if there exists an initial 
time k0 such that over the infinite interval [1/2–0]; 1+ the graph G = ∪∞k=k0 

Gsk 

with sk ∈ J is connected. 

Theorem 2.8 
(Moreau, 2005) Consider an ultimately connected switching network with undirected 
topologies in Γ and dynamics (2.67). Assume Psk ∈ P , where P is the set of nor­
mal Perron matrices associated with Γ. Then, a consensus is globally asymptotically 
reached. 

Proof: See the proof of Proposition 2 in [153]. Similarly, the algorithm ana­
lyzed in Proposition 2 of [153] does not solve the f-consensus problem. This can 
be resolved by using the first form of Perron matrices in Table 2.2. The proof in 
[153] uses a nonquadratic Lyapunov function and no performance measures for 
reaching a consensus are presented. 

2.6 Cooperation in Networked Control Systems 
This section provides a system-theoretic framework for addressing the problem 
of cooperative control of networked multivehicle systems using distributed con­
trollers. On one hand, a multivehicle system represents a collection of decision-
making agents that each have limited knowledge of both the environment and 
the state of the other agents. On the other hand, the vehicles can influence their 
own state and interact with their environment according to their dynamics, which 
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Figure 2.4: The block diagram of cooperative and distributed formation control of networked 
multivehicle systems. The Kronecker product ⊗ is defined in (2.69) 

determines their behavior. The design goal is to execute tasks cooperatively, ex­
ercising both the decision-making and control capabilities of the vehicles. In 
real-life networked multivehicle systems, there are a number of limitations, in­
cluding limited sensing capabilities of the vehicles, network bandwidth limita­
tions, as well as interruptions in communications due to packet-loss [178], [235] 
and physical disruptions to the communication devices of the vehicle. The sys­
tem framework we analyze is presented in a schematic form in Fig. 2.4. The 
Kronecker product ⊗ between two matrices P = [pi j] and Q = [qi j] is defined as 

P ⊗ Q = [pi jQ] (2.69) 

This is a block matrix with the i jth block of pi jQ. The dynamics of each vehicle, 
represented by P(s), are decoupled from the dynamics of other vehicles in the 
network, thus, the system transfer function In ⊗ P(s). The output of P(s) repre­
sents observable elements of the state of each vehicle. Similarly, the controller 
of each vehicle, represented by K(s), is decoupled from the controller of oth­
ers, thus, the controller transfer function In ⊗ K(s). The coupling occurs through 
cooperation via the consensus feedback. Since all vehicles apply the same con­
troller, they form a cooperative team of vehicles with consensus feedback gain 
matrix L ⊗ Im. This cooperation requires sharing of information among vehicles, 
either through inter-agent sensing, or explicit communication of information. 

2.6.1 Collective dynamics of multivehicle formation 
Let us consider a group of n vehicles, whose (identical) linear dynamics are de­
noted by 

ẋi = Axi + Bui (2.70) 
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where xi ∈ Rm ,ui ∈ Rp are the vehicle states and controls, and i ∈ V = 1, . . . , n 
is the index for the vehicles in the group. Each vehicle receives the following 
measurements: 

yi = C1xi (2.71) 
zi j = C2(xi − x j), j ∈ Ni (2.72) 

Thus, yi ∈ Rk represents internal state measurements, and zi j ∈ Rl represents 
external state measurements relative to other vehicles. We assume that Ni =� �, 
meaning that each vehicle can sense at least one other vehicle. Note that a single 
vehicle cannot drive all the zi j terms to zero simultaneously; the errors must be 
fused into a single signal error measurement 

1 � 
zi = zi j (2.73)
|Ni| j∈Ni 

where |Ni| is the cardinality of the set Ni. We also define a distributed con­
troller K which maps yi,zi to ui and has internal states vi ∈ Rs, represented in 
state-space form by 

v̇i = Fvi + G1yi + G2zi (2.74) 
ui = Hvi + D1yi + D2zi. 

Now, we consider the collective system of all n vehicles. For dimensional com­
patibility, we use the Kronecker product to assemble the matrices governing the 
formation behavior. The collective dynamics of n vehicles can be represented as 
follows: 

ẋ M11 M12 x 
v̇ = M21 M22 v . (2.75) 

where the Mi j’s are block matrices defined as a function of the normalized graph 
Laplacian L (i.e., the second type in Table 2) and other matrices as follows: 

M11 = In ⊗ (A + BD1C1)+(In ⊗ BD2C2)(L ⊗ Im) (2.76)

M12 = In ⊗ BH

M21 = In ⊗ G1C1 +(In ⊗ G2C2)(L ⊗ Im),


M22 = In ⊗ F.


2.6.2 Stability of relative dynamics 
The main stability result on relative-position-based formations of networked ve­
hicles is due to Fax and Murray [151] and can be stated as follows: 
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Theorem 2.9 
(Fax and Murray, 2004) A local controller K stabilizes the formation dynamics in 
(2.75) if and only if it stabilizes all the n systems 

ẋi = Axi + Bui (2.77) 
yi = C1xi 

zi = λiC2xi 

where λii
n 
=1 is the set of eigenvalues of the normalized graph Laplacian L. Theo­

rem 2.9 reveals that a formation of identical vehicles can be analyzed for stability 
by analyzing the stability of a single vehicle with the same dynamics, modified 
by only a scalar, representing the interconnection, that takes values according to 
the eigenvalues of the interconnection matrix. 

The zero eigenvalue of L can be interpreted as the un-observability of abso­
lute motion of the formation in the measurements zi. A prudent design strategy 
is to close an inner loop around yi such that the internal vehicle dynamics are 
stable, and then to close an outer loop around zi which achieves desired forma­
tion performance. For the remainder of this section, we concern ourselves solely 
with the outer loop. Hence, we assume from now on that C1 is empty and that 
A has no eigenvalues in the open right half plane. We do not wish to exclude 
eigenvalues along the jω axis because they are characteristic of vehicle systems, 
representing the directions in which motion is possible. The controller K is also 
presumed to be stable. If K stabilizes the system in (2.77) for all λi other than the 
zero eigenvalue, we say that it stabilizes the relative dynamics of a formation. 

Let us refer to the system from ui to yi as P, its transfer function as P(s), 
and that of the controller from yi to ui as K(s). For single-input single-output 
(SISO) systems, we can state a second version of Theorem 2.9 which is useful 
for stability and robustness analysis. 

Theorem 2.10 
(Fax and Murray, 2004) Suppose P is a SISO system. Then, K stabilizes the relative 
dynamics of a formation if and only if the net encirclement of−1/λi by the Nyquist 
plot of −K(s)P(s) is zero for all nonzero λi. 

2.7 Simulation Studies 
In this section, we present the simulation results for three applications of consen­
sus problems in networked systems. 

2.7.1 Consensus in complex networks 
In this experiment, we demonstrate the speed of convergence of consensus algo­
rithm (2.9) for three different networks with n = 100 nodes in Fig. 2.5. The initial 
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Figure 2.5: (a) A small-world with 300 links, (b) a regular lattice with interconnections to 
k = 3 nearest neighbors and 300 links, (c) a regular lattice with interconnections to k = 10 
nearest neighbors and 1000 links; (d), (e), (f) the state evolution corresponding to networks in 
(a), (b), and (c), respectively. [Note: Only the links of a single node are depicted in parts (b) 
and (c)] 

state is set to xi(0) = i f ori = 1, . . . , 100. In Fig. 2.5(a) and (c), the network has 
300 links and on average each node communicates with 

d̄  = 6 (2.78) 
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neighbors. Apparently, the group with a small-world network topology reaches 
an average-consensus more than λ2(Ga)/λ2(Gc) ≈ 22 times faster. To create a 
regular lattice with comparable algebraic connectivity, every node has to com­
municate with 20 other nodes on average in order to gain an algebraic connec­
tivity λ2(Ge)/λ2(Ga) ≈ 1.2 that is close to that of the small world network. Of 
course, the regular network in Fig. 2.5(e) has 3.33 times as many links as the 
small-world network. For further information on small-world networks, we refer 
the reader to [185], [226], and [239]. 

2.7.2 Multivehicle formation control 
Consider a system of the form P(s) = e−sT /s2, modeling a second-order system 
with time-delay and suppose this system has been stabilized with a proportional 
derivative (PD) controller. Figure 2.6 shows a formation graph and the Nyquist 
plot of K(s)P(s) with the location of Laplacian eigenvalues. The “o” locations 
correspond to the eigenvalues of the graph defined by the solid arcs in Fig. 2.6, 
and the �×� locations are for eigenvalues of the graph when the dashed arc is 
included as well. This example clearly shows the effect the formation has on 
stability margins. The standard Nyquist plot reveals a system with reasonable 
stability margins V about 8dB and 45. When one accounts for the effects of the 
formation, however, one sees that for the “o” formation, the stability margins are 
substantially degraded, and for the “×” formation, the system is in fact unstable. 
Interestingly, the formation is rendered unstable when additional information (its 
position relative to vehicle 6) is used by vehicle 1. This is primarily due to the fact 
that changing the topology of a network directly effects the location of eigenval­
ues of the Laplacian matrix. This example clarifies that the stability analysis of 
formations of networked vehicles with directed switching topology in presence 
of time-delays is by no means trivial. 

Figure 2.6: (a) Interconnection graph of a multi-vehicle formation and (b) the Nyquist plot 
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2.8 Notes 
A theoretical framework was provided for analysis of consensus algorithms for 
networked multi-agent systems with fixed or dynamic topology and directed in­
formation flow. The connections between consensus problems and several ap­
plications were discussed, this including synchronization of coupled oscillators, 
flocking, formation control, fast consensus in small-world networks, Markov 
processes and gossip-based algorithms, load balancing in networks, rendezvous 
in space, distributed sensor fusion in sensor networks, and belief propagation. 
The role of B cooperation in distributed coordination of networked autonomous 
systems was clarified and the effects of lack of cooperation was demonstrated 
with an example. It was demonstrated that notions such as graph Laplacians, 
nonnegative stochastic matrices, and algebraic connectivity of graphs and di­
graphs play an instrumental role in analysis of consensus algorithms. We proved 
that algorithms introduced in [151], [152] are identical for graphs with n self-
loops and are both special cases of the consensus algorithm of [11]. The no­
tion of Perron matrices was introduced as the discrete-time counterpart of graph 
Laplacians in consensus protocols. A number of fundamental spectral properties 
of Perron matrices were proved. This led to a unified framework for expression 
and analysis of consensus algorithms in both continuous-time and discrete-time. 
Simulation results for reaching a consensus in small-worlds versus lattice-type 
nearest-neighbor graphs and cooperative control of multivehicle formations were 
presented. 
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Chapter 3


Distributed Intelligence in 
Power Systems 

3.1 Introduction to MAS Technology 
Multiagent system (MAS) is perhaps one of the most exciting and the fastest 
growing domains in agent-oriented technology which deals with the modeling 
of autonomous decision-making entities. This paper presents an application of 
MAS for distributed energy resource (DER) management in a microgrid. Mi­
crogrids can be defined as low voltage distributed power networks comprising 
various distributed generators (DG), storage and controllable loads, which can 
be operated interconnectedly or as islands from the main power grid. By repre­
senting each element in the microgrid as an autonomous intelligent agent, multi 
agent modeling of a microgrid is designed and implemented. JADE framework 
is proposed for the modeling, and the reliability of the microgrid is confirmed 
with Power World Simulator. Further, the FIPA contract net coordination be­
tween the agents is demonstrated through software simulation. As a result, this 
paper provides a microgrid modeling which has the communication and coor­
dination structure necessary in order to create a scalable system. The optimized 
Microgrid management and operations can be developed on it in future. 

The power system grid is highly nonlinear with fast varying dynamics [75]. 
The traditional electrical grid is a multi-manifold network with several compo­
nents, like generation units, transmission lines, transformers and active loads. 
The frequent blackouts occur due to various economical and physical constraints, 
including unbalanced demand-generation conditions, large power drops in dis­
tributed networks, and extreme swings in power flow dispatch. In turn, power 
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systems networks are pushed to the maximum operation levels, threatening the 
grid reliability. Distributed energy resources (DERs) or Microgrids (MG) repre­
sent a reliable solution to many issues in the power system networks, while at the 
same time introducing other operational and technical challenges [79]. 

Microgrids are constructed to supply the local loads in remote areas, which 
decreases the power drop during the power transmission. Moreover, microgrids 
reduce the need to have new distribution lines and new power generation units, 
and keep the carbon emissions at minimum levels [75]–[76]. Though, the micro-
grid has to optimize its operation, to improve the quality of the output voltage 
and frequency delivery, in addition to the overall efficiency [77]. A microgrid 
can work in both tied mode and standalone modes. Transitions between these 
two modes create severe frequency and voltage control degradation [81]. These 
challenges were tackled by researchers throughout the last decade. Controlling 
a large number of distributed generations is even more challenging due to the 
conflict among the operation objectives and the communication issues [78]. 

Electrical switches are used to alternate between the different modes of op­
eration of the micrgrids [80]. During the islanded mode, the microgrid delivers 
power and regulates the output voltage. The microgrid’s controller should be 
able to regulate the changes due to the disturbances in the active load demand 
[82]. A control structure for an autonomous microgrid with a local load is de­
veloped in [87]. A servomechanism regulator for an autonomous microgrid is 
introduced in [88]. This approach used optimal control-based design to guaran­
tee the robustness of the proposed control system. Multi-level control structure 
(primary, secondary, and tertiary control levels) is proposed for microgrids in 
[83]. A pseudo-decentralized control architecture is used to optimize the wire­
less communication network with the help of a global supervisory controller and 
local regulators in [84]. A networked control scheme based on system of systems 
is developed for microgrids, where a distributed generated system is treated as 
system of systems and an output feedback control scheme is considered in [85]. 
A two-level control scheme has been used for islanded MG in [86]. 

Herein, adaptive critics-based controller is proposed to control an au­
tonomous microgrid. Approximate Dynamic Programming (ADP) will be used 
to solve the optimal control problem of the microgrid. Approximate Dynamic 
Programming (ADP) is used to solve the Dynamic Programming (DP) prob­
lems and it is classified into four types; Heuristic DP (HDP), Dual Heuristic DP 
(DHP), Action-Dependent HDP (ADHDP), and Action-Dependent Dual HDP 
(ADDHP) [94]. A Reinforcement Learning (RL) allows the development of on­
line algorithms to solve the optimal control problems for dynamic systems [94], 
[92]. A large number of problems in Artificial Intelligence can be mapped to de­
cision processes. RL involves two approaches, Value Iteration (VI) and Policy 
Iteration (PI) [92], [93]. 

In the sequel, a novel approach is proposed to control an autonomous micro-
grid using Reinforcement Learning techniques. The controller is implemented 
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using partial knowledge about the microgrid’s dynamics. Adaptive critics are 
used to implement the Value Iteration solution. Actor-Critic Neural Networks 
(NN) are used to approximate the optimal policies and the value functions re­
spectively. 

3.1.1 Autonomous microgrid system 
The autonomous or islanded mode of MG can be driven by the network’s 
faults/failures in the utility grid, scheduled maintenance, and the economical 
or management constraints [93]. In this paper, the dynamic model of an au­
tonomous microgrid in [87, 88] is considered in order to carry out the analysis. 
The schematic single-line diagram of a coupled MG model is shown in Fig. 3.1. 
A point of common coupling (PCC) is used to isolate the MG from main grid and 
vice versa [80]. The system consists of inverter-based DG units, feeding an active 
load (RLC mesh structure), through series filter and transformer. The DC voltage 
source works as the generating unit and Rt and Lt are the series filter/ transformer 
equivalent components. The model parameters are given in Table 1. During the 
islanded operation, the main duty of the microgrid is to deliver quality power by 
regulating any disturbances caused by the continuous change in the active load 
demand. The microgrid and its control structure should be able to maintain the 
load voltage level at the desired set point. 

3.1.2 A state-space model 
Let the system in Fig. 3.1 be balanced, then the governing dynamical equations 
of the MG are given by 

dVabc 1
It,abc = C 

dt 
+ 

R
Vabc + IL,abc 

= 
dIt,abc , (3.1)Vt,abc Vabc + Lt dt 

+ RtIt,abc 

dIL,abcVabc = L 
dt 

+ RlIL,abc 

where these dynamical equations are in the abc-frame, and Vt,abc, It,abc, IL,abc, and 
Vabc are three phase vectors. 

The system is under balanced situations, each of the three-phase quantities 
xabc can be transformed to a fixed αβ -reference frame using the subsequent trans­
formation 

xαβ = xae j0 + xbe j 23 
π 
+ xce j 43 

π 
, (3.2) 

where xαβ = xα + jxβ . 
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Figure 3.1: Single-line diagram of a coupled microgrid electrical model 

Table 3.1: System parameters 

Quantity Value 
Rt 1.5 m Ω 
Lt 300 µ H 
Vdc 1500 V 
PWM Carrier Frequency 1980 Hz 
Load Parameters 
R 76 Ω 
L 111.9 mH 
C 62.855 µ F 
Rl 0.3515 Ω 
Grid Parameters 
Rs 1 Ω 
Ls 10 µ H 
Nominal Frequency fo 60 Hz 
Nominal Voltage (rms) 13.8 kV 
Interface Transformer Parameters 
Type Wye/Delta 
Rating 2.5 MVA 
Voltage Ratio (n) 0.6/13.8 kV 

Using the αβ -frame, the dynamical model can be given by


dIt,αβ Rt Vαβ Vt,αβ 

dt 
= − 

Lt 
It,αβ − 

Lt 
+ 

Lt
dVαβ 1 1 1 

dt 
= 

C
It,αβ − 

RC
Vαβ − 

C
IL,αβ , (3.3) 

dIL,αβ 1 Rl 
= 

dt L
Vαβ − 

L 
IL,αβ 
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This can be transformed into the dq-reference frame using the subsequent trans­
formation 

xαβ = xdqe jθ = (xd + jxqe jθ ), (3.4) 

re f 
βwhere θ = arctan( 

x 
) is the phase-angle of an arbitrary reference vector. re f xα 

Vαβ is taken as a reference vector such that Vq = 0. In the isolated mode, the 
system frequency is regulated in an open-loop structure such that, the Voltage 
Source Converter (VSC) generates three-phase voltages at frequency ω0, by em­
ploying internal oscillator of constant frequency of ω0 = 2π f0. Moreover, the 
steady state voltage and current signals are evaluated at frequency ω0 if the load 
is passive. Therefore, the dq state variables are given by 

dItd Rt 1 1 
dt 

= − 
Lt 

Itd + ω0Itq − 
Lt

Vd + 
Lt

Vtd 

dI
dt 

tq 
= ω0Itd − 

R
L

l Itq − 2ω0ILd +( 
RlC

L 
ω0 − 

ω

R 
0 
)Vd 

dILd Rl 1 , 
= ω0Itq − ILd +( 

L 
− ω0

2C)Vddt L

dVd 1 1 1

dt 

= 
C

Itd − 
C

ILd − 
RC

Vd 

where 

Vtq = Lt [2ω0Itd +( 
R
Lt

t − 
R
L

l 
)Itq − 2ω0ILd +( 

Rl ω

L 
0C − 

ω

R 
0 
)Vd (3.5) 

Thus, the foregoing autonomous MG system can be mathematically modeled by 
a standard state-space representation such that 

ẋ(t) = Ac x(t)+ Bc u(t), y(t) = Cc x(t), u(t) = vtd . (3.6) 

IT IT IT V T 
td tq Ld dwhere xT is the state vector,
=
⎡
 ⎡
⎤
 ⎤⎡⎤Rt 0 1 1ω0 0
−

ω0 
RlCω

−
0 

Lt Lt Lt
ω0 
R 

Rl⎢⎢⎣

⎥⎥⎦


⎢⎢⎣

⎥⎥⎦


⎢⎢⎣

⎥⎥⎦


−2ω0 
Rl 

0
0
−
ω0 

−
Ac =
 L L , Bc , Cc =
 =
 .
1 
L L − ω0

2C 

C 
1 − 1 0 1 

0
0
0
 −

1 
C 0
 −
 RC 

In the following setup, the system (3.6) will be discretized. 

3.1.3 Heuristic dynamic programming 
In the sequel, value iteration algorithm based on Heuristic Dynamic Program­
ming (HDP) is proposed, the simplest but powerful form to minimize a perfor­
mance index. The microgrid applies a control policy to its environment and this 
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policy is assessed and, hence, rewarded or punished based on the associated util­
ity or the cost function. Consequently, the microgrid will decide a better pol­
icy based on the assessed cost function. This is known as action-based learning 
[90, 91], [95]. 

Heuristic Dynamic Programming (HDP) uses value function approximation 
to solve the Dynamic Programming problems. This involves solving the respec­
tive temporal difference structures. Thus, in order to propose the Value Iteration 
algorithm, Bellman equation is introduced for the autonomous microgrid. 

3.1.4 Discrete-time Bellman equation 
Herein, the analysis of the optimal control problem is based on Bellman equation. 

The discrete-time system model of (3.6) is given by 

xk+1 = Axk + Buk. (3.7) 

where k is the time-step, xk ∈ Rn are the states, and uk ∈ Rm . 
Assume that the model (3.7), is stabilizable into some set Ω ∈ Rn . 

Definition 3.1 Stabilizable System: A system is said to be stabilizable on a set Ω ∈
Rn , if there exists a policy u ∈ Rm such that, the closed loop system is asymptotically 
stable on Ω. 

Let h( ) : Rn Rm be a mapping function that relates the control policy to · →
the states xk such that uk = h(xk). The goal is to select the control policy u(xk) 
which minimizes the following performance index 

V (xk) = 
∞ 1 

(xT
k Qxk + uT

k Ruk), (3.8)
2 

i=k 

where Q = QT > 0 ∈ Rn×n and R = RT > 0 ∈ Rm×m . 

Definition 3.2 Admissible Control Policy: A control law uk = h(xk) is considered 
to be admissible if it stabilizes the system (3.7) and has finite value V (xk) [99]. 

The summation form (3.8), can be written using the following difference form 
1 T TV (xk) = (xk Qxk + uk Ruk)+V (xk+1), (3.9)
2 

Therefore, using the current control policy uk, the cost function V can be eval­
uated by solving the above difference equation 3.9. This equation is known as 
Bellman equation. Applying Bellman optimality principles [100], yields the op­
timal value function and the optimal policy such that 

1 T TV ∗(xk) = min[ (xk Qxk + uk Ruk)+V ∗(xk+1)], (3.10) 
uk 2 
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u∗ 
k = −R−1BT �V ∗(xk+1).	 (3.11) 

This leads to Bellman optimality equation such that 

V ∗(xk) = 
2
1 
(xk

T Qxk + u∗k
T Ru∗ 

k )+V ∗(xk+1). (3.12) 

Remark 3.1 Solving Bellman optimality equation (3.12), would result in a solution 
for the underlying optimal control problem. Moreover, in order to solve for V (xk), the 
policy uk+1 is first evaluated, which is a dynamic programming scheme. 

In the sequel, value iteration algorithm is proposed in order to solve for the 
optimal policy u∗ 

k and the value function V (xk). This technique does not require 
initial stabilizing policy. 

3.1.5 Value iteration algorithm 
A value iteration algorithm is developed to control the autonomous microgrid 
system (3.7). This algorithm solves Bellman optimality equation (3.12) and finds 
the optimal policy (3.11). 

Algorithm 1 (Value Iteration Algorithm for The Autonomous Microgrid) 

1.	 Initialization: Initial uo
k and V o(xk) 

2.	 Value Update: Solve for V �+1(xk) 

V �+1(xk) = 
2
1 
(xk

T Qxk + u�k
T Ru� 

k)+V �(xk+1) (3.13) 

where � is the iteration index. 

3.	 Policy Update: Calculate the policy ul
k 
+1 

u�+1 = −R−1BT �V (xk+1)
�+1	 (3.14)k 

∂V (xk+1)where �V (xk+1) = 
∂ xk+1

. 

4.	 Convergence: The above steps are repeated until �V (xk)
�+1 − V (xk)

�� 
converges. 

Remark 3.2 The value iteration algorithm depends on the solution of the recursive 
equation (3.12), which is easy to compute and it is named partial backup in RL. Value 
Iteration successfully mixes one sweep of value evaluation and one sweep of policy 
improvement. 
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3.1.6 Adaptive critics implementation 
Adaptive Critics are used to implement the Value Iteration Algorithm 1. This is 
done using two feed forward and feedback approximation structures. Figure 3.2 
shows the adaptive critics structure [96]. The actor and critic neural networks 
are used to approximate the control action and the value function, respectively. 
The actor applies a control value (action) to the surrounding environment and the 
quality of the taken action is assessed by the critic structure [94]. 

The actor’s mathematical expression can be viewed as a mapping, which has 
the state xk+1 and the improved value function V l (xk+1) as inputs. The dynamics 
of the system is a part of the assessed environment. During the learning process, 
the actor does not need the desired control signals to be known and available. RL 
techniques are successful with complex systems with partially unknown dynam­
ics. The actor-critic networks are tuned consecutively, using the data observed 
along the trajectory of system. The process is repeated until both actor and critic 
networks weights converge [97]. 

The actor network provides the control policy to minimize the value func­
tion. For each iteration, the output of actor network is a series of control sig­
nals in feedforward mode and in feedback mode it adjusts the internal network 
weights. Critic network establishes a relationship between the control signals 
and value function. After learning the relationship, the critic network provides 
a proper feedback to the actor, in order to generate the desired control policy. 
The operation of critic is two-fold, in the feedforward mode, it predicts the value 
function for an initial set of control signals and in the feedback mode, it assists 
the actor network to generate a control policy which minimizes the cost function. 
The value iteration algorithm starts with assuming random initial control signals 
(not necessarily admissible). The training process is divided into critic network 
training and actor network training [98]. The performance function (3.8) is ap­
proximated by a critic NN and the control law (3.13) is approximated by an actor 

SYSTEM

xk+1 = Axk + Buk

ACTOR
(Control Policy)

CRITIC
(Value Function)

xk

uk

Control Action

System Output

Policy UpdateReward

Figure 3.2: Actor-critic dynamic environment 
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NN such that 

V̂k(Wc) = 
1 

xk
TWc

T xk, (3.15)
2 

where Wc ∈ Rn×n denote the critic weights. 

ûk(Wa) = Wa
T xk, (3.16) 

where Wa ∈ Rn×m denote the actor weights. 
The approximation error of the policy is given by 

ζu
V

k 

(xk ) = ûk(Wa) − uk, (3.17) 

Thus, the control policy in (3.10) is given by 

uk = −R−1BT �V̂ (xk+1). (3.18) 

The desired policy in terms of the critic approximation is given by 

uk = −R−1BTW T xk. (3.19)c 

The squared approximation error is given by 1
2 (ζu

V
k 
(xk ))T ζu

V
k 
(xk ), the variations in 

the actor weights are given by the gradient descent such that 

Wa 
(l+1)T = Wa

lT − λa[(Wa
lT xk − ul

k)(xk)
T ], (3.20) 

where 0 < λa < 1 is the actor learning rate. 
Let ψx

V
k 
(xk) be the target value of critic network and the value function is up­

dated using (3.13). Therefore, 

ψx
V

k 

(xk ) = 
1 
[(xT

k Qxk + ulT 
k Ruk

l )]+ V̂k+1(Wc). (3.21)
2 

The network approximation error of the critic is given by ζx
V
k 
(xk ) = ψx

V
k 
(xk ) 

V̂k(Wc). Similarly, the squared approximation error is given by 2
1 (ζx

V
k 
(xk ))T ζx

V
k 
(xk

−
) . 

The variations in the critic weights are given by gradient descent method such 
that 

Wc 
(l+1)T = Wc

lT − λc[ψx
V

k 

(xk ) − xk
TWc

lT xk]xkxk
T , (3.22) 

where 0 < λc < 1 denotes the critic learning rate. 

3.1.7 Actor-critic implementation 
The following Algorithm 2 is used to implement the adaptive critic-based con­
troller. It is noted that, the knowledge of all the autonomous microgrid dynamics 
is not required. In this algorithm, random initial states, value function approxi­
mation weights, and actor approximation weights are used to guarantee sufficient 
exploration during the tuning process. 
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Algorithm 2 (Actor-Critic Implementation of Algorithm 1) 

1. Randomly Initialize Wa and Wc. 

2. Loop-1 (for q iterations) Start with random initial states x(0). Loop-2 (for 
� iterations) 

(a) Evaluate û� 
k(Wa) = Wa 

�T xk. 

(b) Evaluate xk
� 
+1. 

(c) Evaluate V̂k
� 
+1(Wc). 

(d) Update the critic weights using

Wc 

(l+1)T 
= Wc

lT − λc[ψx
V

k 
(xk ) − xk

TWc
lT xk]xkxT

k


(e) Update the actor weights using

Wa 

(l+1)T 
= Wa

lT − λa[(Wa
lT xk − ul

k)(xk)
T ]


(f) On convergence of the actor-critic weights end loop-2 

3. Calculating the difference V̂ (xk)
�+1 −V̂ (xk)

� 

4. On convergence of �V̂ (xk)
�+1 −V̂ (xk)

�� end loop-2. 

5. Transfer the actor-critic weights to the next iteration. On convergence end 
loop-1 

3.1.8 Simulations results 
In this section, the adaptive critics-based controller is tested using the au­
tonomous microgrid shown in Fig. (3.1). The microgrid system is simulated 
using the SimPowerSystems library in the MATLAB/Simulink, as shown in 
Fig. (3.3). An IGBT inverter is used as the converter and the Simulink model is 
built using Table 1. A parallel RLC load is supplied by both the utility grid and the 
microgrid unit. The performance criteria of the proposed controller is the output 
voltage regulation. The learning rates are selected such that µa = 0.01, µc = 0.01 
and the weighting matrices are given by Q = 10I4×4,R = I. 

3.1.9 Actor-critic tuning results 
The controller is designed using Algorithms 1 & 2. Starting with random ini­
tial values for system’s states and the actor-critic weights, Algorithm 2 tunes the 
actor-critic weights to search for the optimal value and control function. This 
control signal is fed to the gating signal generator of the VSC for generation of 
firing pulses. Figures (3.4)–(3.6) show the actor-critic tuning simulation results 
of Algorithm 2. Figures (3.4) and (3.5) represent the tuning of actor weights and 
critic weights, respectively. Figure (3.6) shows the dynamics of the microgrid 
system. It is shown that, after 100 iteration steps, the weights of actor and critic 
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Figure 3.3: Simulink implementation for the autonomous microgrid model and the controller 
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Figure 3.4: Update of the actor’s weights 

networks converge. Using these weights, the dynamics of the autonomous micro-
grid is shown to be asymptotically stable. To test the robustness of the proposed 
controller, a pulse disturbance is injected into the system states at t=0.2 s. By 
observing the response in Fig. (3.7), it can be concluded that Algorithms 1 & 2 
yield asymptotic stability. 
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Figure 3.5: Update of the critic’s weights 
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Figure 3.6: The microgrid’s dynamics 

3.1.10 Robustness of the proposed controller 
Two simulation cases are considered in order to show the robustness of the pro­
posed controller. First, the microgrid is isolated from the main grid and operated 
in the islanded mode. Second, the microgrid starts to operate in islanded mode, 
and a load disturbance is incorporated into its environment. 

At t = 0.2 seconds, the circuit breaker (CB) is opened, and, at the same time, 
the control strategy is changed from conventional id /iq controller used in [87] 
to the proposed RL-based controller. The control policy uk generated by the 
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Figure 3.7: Response to pulse disturbances 

Algorithm-2 is fed into the gating signal generator. Figure (3.8) shows the in­
stantaneous three-phase voltage at Point of Common Coupling (PCC) and the 
respective control effort. At t = 0.2 seconds, transients can be seen, this dis­
tortion in the waveform is due to disconnecting the microgrid from the main 
grid. The voltage at PCC is brought back to desired reference value of 1 p.u. 
The system is now completely isolated from the grid. The microgrid is supply­
ing the load, using its own control structure (autonomous mode). To verify the 
robustness of proposed controller, another experiment is carried out on the sys­
tem. The microgrid’s system is tested against active local load disturbance. The 
disturbance is RLC disturbance, and it is applied to the local active load sup­
plied by the microgrid. At t = 0.4 seconds, an additional parallel RLC load of 
R = 42.8Ω,L = 0.2119H,C = 10µF is added to the local active load of the mi­
crogrid. Due to application of this load disturbance, transients can be seen in PCC 
voltage, as shown in Fig. (3.9). These transients can degrade the output voltage 
from its rated value, and causes degradation of the power supplied. This figure 
shows also the applied control effort by the proposed control scheme to regulate 
the output voltage to its desired value. From this figure, within few cycles, the 
proposed controller acts and brings back the load voltage to the desired reference 
value of 1 p.u. 

3.2 Operation in Islanded Mode 
The concept of Microgrid (MG) was originally introduced in [101]; it can be op­
erated in Autonomous mode or can be connected to the utility grid. MG concept 
has evolved to a great extent in terms of both modeling and control. An overview 
of the different methods of modeling and control is reported in [81]. The defini­
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Figure 3.8: Islanded mode: dynamic response of the microgrid 
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Figure 3.9: Dynamic response of the microgrid under load disturbances 

tion of microgrid is evolving into the smart microgrid within the context of smart 
grids. The definition of “smart grid” is quite flexible and its framework varies 
with individual vision [102]. 

A networked microgrid is termed as “smart microgrid” [103]; Fig. (3.10) 
shows its simple architecture. It will have high penetration of Distributed Gen­
eration (DG) units which, when integrated alone, raises a number of issues 
[104]. It also makes use of renewable energy resources, making it cost effec­
tive and environmentally friendly. The most vital aspect of smart MG is Dis­
tributed/Decentralized control using communication network. In other words, it 
will employ Networked Control System (NCS) so that we can have a network 
of DG units exchanging information. Control is the key point here which will 
be implemented in a distributed fashion, contrary to the centralized control in 
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Figure 3.10: Architecture of smart autonomous microgrid 

several conventional techniques which can be seen in the literature [105], [106]. 
This will ensure stability of the system, power balancing, proper load sharing 
and voltage and frequency regulation. 

One of the most widely-used and crucial control techniques is the “Multi­
level Control” [107]–[83]. There are three main control levels, each taking care 
of particular responsibilities. Primary Control level ensures the proper load shar­
ing between the converters. Secondary Control removes any steady state error 
introduced by primary control. Tertiary Control deals with global responsibili­
ties, like energy transfer to and from the grid. Tertiary control comes into the 
picture only when the MG is connected to the utility grid. Tertiary control is a 
decentralized control level responsible for global optimization of the MG. Since 
autonomous operation of an MG does not involve the tertiary control level, we 
will be focusing only on the primary and secondary control levels of an MG. 

The primary control, which is the first level, makes use of the Droop-based 
control techniques for its operation. However, due to various reasons discussed 
in next sections, the primary level alone is not sufficient for the overall stable 
operation of an MG. For global controllability, a secondary control level is often 
used. This concept has already been used for a long time in large electrical power 
systems [108] and has recently been adopted in the MG concept. 
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Secondary control strategies using NCS have been proposed in literature. A 
pseudo-decentralized control architecture which can be used for the optimiza­
tion of Wireless Communication Network (WCN) with the help of a Global 
Supervisory Control (GSC) and local controllers is proposed in [84]. In [109], 
NCS strategy was applied to a parallel inverter system in order to achieve supe­
rior load sharing and good robustness. Investigation of the centralized secondary 
controller in a MG with primary voltage droops is carried out in [110]. This 
controller regulates the voltage at pilot points in the MG. In [111], a networked 
controlled parallel multi-inverter system is proposed in order to achieve precise 
load sharing among each module, a centralized controller is used here along with 
the local controllers. 

Most of the works in the literature are based on the Centralized secondary 
control, where all the DG’s in the MG are supervised by a common central­
ized secondary control. This controller is often termed as a MicroGrid Central 
Controller (MGCC), wherein all DG units measure signals and send them to a 
centralized single controller which, in turn, produces suitable control signals and 
sends them to the primary control of DG units. It makes use of the communica­
tion channel for both sensing the measurements and to send the control signal. 
[112, 113, 114, 115]. 

MGCC is relatively slow in functioning. Any fault in the MGCC can result in 
failure of secondary control action for all the DG units [116]. This single point 
failure is somewhat unreliable and can be a result of bad functioning of the whole 
system. Depending on only one central control unit for the proper operation is a 
big drawback in itself. 

A distributed secondary controller based on averaging algorithms is proposed 
in [117]. The controller, which is also termed as Distributed Averaging Pro­
portional Integral (DAPI controller), regulates the system frequency under time 
varying loads. Recently, a new method of implementing secondary control in a 
distributed fashion using the Networked Control Systems (NCS) approach was 
proposed in [118]. This concept has proved to be better, as both the primary and 
secondary control are implemented in a distributed way, resulting in individual 
secondary control for each DG unit. 

However, the proposed controller in [118] is based on fixed PI gains which 
may perform well under some operating conditions, but not all. The gains of the 
secondary controller were randomly tuned and lacked a proper defined proce­
dure. Consequently, improper tuning of the controller results in poor adaptation 
to varying operating conditions. Moreover, proportional-plus-integral (PI) con­
trollers are not robust enough to accommodate the variations in the load. It is 
preferable to have an intelligent PI-type controller, which can self-tune its con­
troller gain when the load changes [119, 120]. 

In this section, a neural-network-based distributed secondary controller 
which can operate over a wide range of operating points is proposed. Using Dif­
ferential Evolution (DE), the optimized gains of the secondary controller are ob­
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tained and serve as a training pattern for the artificial neural network. The salient 
features of the proposed controller are listed below: 

�	 Each DG has its own local secondary controller and, hence, obviates the 
requirement for a central controller. 

�	 Neural network learns by example and, hence, avoids traditional pro­
gramming algorithms and procedures. 

�	 Better performance as the training set and controller parameters are opti­
mized values. 

�	 Use of trained neural network enhances the adaptability of the controller. 

�	 The proposed controller can react faster to load changes and can operate 
over a wide range of operating points. 

�	 Increased robustness and reliability. 

Although the concept of using NN approach to replace traditional PI con­
troller exists in the literature, it has not been used in the field of microgrid sys­
tems. The voltage and frequency regulation, load sharing performance of the 
controller are demonstrated using Matlab/Simulink simulations. A performance 
comparison between the proposed controller and fixed-gain controller is also per­
formed. The simulation results show that the proposed secondary control ensures 
stable operation of the system under varying loads. 

3.2.1 Autonomous microgrid 
Autonomous mode operation of MG is also know as Islanded MG, which can 
be caused by two reasons. One is due to any network fault or some failure in 
the utility grid and the other is due to performance of maintenance at planned 
intervals. An electrical switch will disconnect the MG from main utility grid 
and result in the autonomous operation of the MG [80]. As explained in [121], 
without loss of generality, the prime mover can be replaced with a DC source 
because they both essentially serve the same purpose. This simplification allows 
us to study the behavior of inverter-based generators without actually using a 
prime mover. 

In this section, an MG involving only inverter-interfaced DG units is consid­
ered. Figure 3.11 shows the block diagram of an inverter- based DG unit. It con­
sists of an inverter that is connected to a primary DC source (e.g., wind system, 
PV array etc), control loops containing power, voltage and current controllers. 
Due to their ride through capability and improved power quality [116, 122] , 
voltage source inverters (VSI) are used. Load is connected through an LC filter 
and coupling inductance. The power, voltage and current controllers constitute 
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Figure 3.11: Block diagram of inverter-based DG unit 

the primary control level of any individual DG unit. Small signal modeling of 
each of the part of MG can be carried out by following the procedure outlined in 
[123] and [124]. 

As mentioned in [123], d-q reference frame was used to formulate the non­
linear dynamics of DG units. The reference frame of one DG is considered as 
the common reference frame with frequency ωcom. The angle δ between an in­
dividual reference frame and common reference frame satisfies the following 
equation. 

δ̇ = ω − ωcom 

3.2.2 Primary control 
The control technique used at this level is known as Droop-based control [125, 
126]. This type of control makes use of local measurements and does not need 
any communication medium for its operation. Droop control is a decentralized 
strategy which ensures proper load sharing. Its main purpose is to share active 
and reactive powers among DG units, while at the same time maintaining the 
output levels of voltage and frequency within limits. In droop technique, there is 
a desired relationship between the active power P and angular frequency ω and 
between reactive power Q and voltage V, as given below: 

ω = ωn − mpP, V = Vn − nqQ 

where Vn and ωn are the nominal values of output voltage and angular frequency, 
respectively. P and Q are the real and reactive powers, respectively. mp and nq 
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Figure 3.12: Droop characteristics 

Figure 3.13: Block diagram of power controller 

are the real and reactive power droop gains, respectively. The frequency ω is set 
according to the droop gain mp and output voltage V is set as per droop gain nq. 

Therefore, the output frequency/voltage is decreased when there is an in­
crease in the load real/reactive power and vice versa. The Pω and QV droop 
characteristics are shown in Fig. 3.12. 

The primary control level can be divided into three different parts, 
namely power, voltage and current controller. The power controller, shown in 
Fig. 3.13, sets the inverter output voltage magnitude and frequency with the help 
of “Droop” characteristics. Basically, it mimics the operation of a synchronous 
generator which will change the frequency of the output voltage if any change in 
load is sensed. First, the instantaneous powers are calculated using output volt­
ages and currents, by filtering these instantaneous values with a low pass filter 
(LPF) we get the average real and reactive powers. These average values are 
passed through their respective droop gains in order to obtain the angular fre­
quency and voltage [127]. The control strategy is chosen such that the output 
voltage magnitude reference is aligned to the d-axis of the inverter reference 
frame and q-axis reference is set to zero. 
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Figure 3.14: Block diagram of voltage controller 

The block diagram of voltage controller is shown in Fig. 3.14, a PI controller 
is used to achieve the output voltage control. The corresponding state equations 
are given by 

φ̇d = v∗ 
φ̇ q = v∗ 

od − vod , oq − voq 

where φd and φq are the d-q axis state variables of the voltage controller (integra­
tor states), respectively. 

i∗ = Fiod − ωnCf voq + Kpv(vod 
∗ − vod )+ Kivφdld 

i∗ = Fioq + ωnCf vod + Kpv(voq 
∗ − voq)+ Kivφqlq 

The block diagram of Current controller is shown in Fig. 3.15, a PI con­
troller is used to achieve the output filter inductor current. The corresponding 
state equations are given by 

γ̇d = i∗ 
γ̇q lq − ilq ld − ild , = i∗ 

where γd and γq are the d-q axis state variables of the current controller (integrator 
states), respectively. 

v∗ = −ωnL f ilq + Kpc(ild 
∗ − ild )+ Kicγdid 

v∗ 
ωnL f ild + Kpc(i∗= lq − ilq)+ Kicγqiq 

The main purpose of voltage and current controllers is to reject the high fre­
quency disturbances and damp the output filter in order to avoid any resonance 
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Figure 3.15: Block diagram of current controller 

with the external network. The PI controller provides zero steady state error and 
stabilizes the system. As can be seen in figures, additional feedforward gain and 
decoupling terms are also used. These PI controllers make use of the local mea­
surements to perform the control action. Detailed analysis on modeling and be­
havior of this system can be found in [123]. 

Due to virtual impedance and virtual inertias within the primary control, de­
viations are produced inside the MG which can be observed during its transient 
behavior. These deviations can make the output voltage and frequency levels go 
out of the specified range and, hence, can cause the destabilization of the sys­
tem. The main advantage of primary control is that it is fast, does not need any 
communication medium and makes use of local measurements. 

Primary control is a tradeoff between voltage regulation and power sharing. 
Good sharing of power is achieved at the expense of errors in output voltage and 
vice versa. Poor transient performance, lack of robustness and steady state error 
are its main drawback. Therefore, a secondary control level which brings back 
the output voltage frequency within the allowable limits is deployed. 

3.2.3 Fixed gain distributed secondary control 
The block diagram of a distributed secondary controller is shown in Fig. 3.16. 
This controller ensures zero steady state error and regulates the deviations pro­
duced in output frequency and voltage due to load change towards zero. The 
control law at the secondary level is given as follows 

δω = Kpω (ωn − ωavg)+ Kiω (ωn − ωavg)dt (3.23) 

δV = Kpv(Vn −Vavg)+ Kiv (Vn −Vavg)dt (3.24) 
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Figure 3.16: Distributed secondary controller 

where Kpω , Kiω are the PI controller parameters for frequency control, Kpv, Kiv 

are the PI controller parameters for voltage control, ωn and Vn are the frequency 
and voltage set points, ωavg and Vavg are the average values of frequency and 
voltage, respectively, and δω and δV are the control signals produced by the 
secondary controller. 

At each sample time, each DG unit measures their respective output voltage 
and frequency and sends this information to other DG units by means of a com­
munication network. DG units average the frequency/voltage measurements and 
compare them with the reference values in order to produce an error signal. The 
secondary control then processes this error signal in order to produce control 
signals. Because the deviations are produced by the Droop Control, these con­
trol signals are sent to the primary control level so as to remove the steady state 
error. The output voltage and frequency are restored to their nominal values, as 
follows: 

ω = ωn − mpP + δω, V = Vn − nqQ + δV 

δω and δV are the control signals received by the primary control from the 
secondary control to restore the output frequency and voltage, respectively, to 
their nominal values. 
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3.2.4 Neural network distributed secondary control 
The controller discussed above is based on the fixed-gain PI scheme. Under cer­
tain operating points or conditions, this fixed-gain scheme may work fine, but its 
performance degrades at other operating conditions. Also, suitable PI gains are 
obtained using time-consuming trial-and-error methods. Poor tuning of gains de­
teriorates the system performance. To increase the robustness and adaptability of 
the fixed-gain secondary controller, in this section we propose a neural-network­
based secondary controller, which solves the robustness and adaptability problem 
of the PI controller, maintaining its simplicity, reliability and feasibility. 

Over the past few years, artificial neural networks have been widely used in 
the field of control systems for various purposes, like non linear modeling, tuning 
controller parameters, system identification, etc., [128]. A trained neural network 
has the remarkable ability of being able to analyze and derive meaning from the 
given data; it is self-organizing and adaptive in nature. 

Figure 3.17 illustrates the block diagram of a neural-network-based sec­
ondary controller. This controller can self-tune the PI gains as per various op­
erating conditions. A trained artificial neural network provides optimal gains to 
the secondary controller whenever the load changes, i.e., input to the NN is the 
load value and its output is the corresponding PI gains. The secondary controller 
then produces a control signal as per the control law given by expression in (1) 
and (2). The control signals produced are sent to the primary control level of the 
respective DG unit in order to compensate for the errors. This way, the proposed 
secondary controller dynamically regulates the output voltage and frequency for 
time varying load. 

The following are the stages required to design the proposed neural-network­
based distributed secondary controller. Each stage has its own importance and all 
are discussed in the following sections. 

3.2.5 Stage 1: Selection of training data 
Before using the NN for self tuning, it has to be trained offline with a learning 
(or training) process. Training is effective only if the network output matches the 
desired output for each training pattern. For this purpose, a training set, which 
is a set of input and desired output data, is required. It is very important to have 
a proper training set, otherwise the accuracy of the NN can be affected [129]. 
Therefore, Evolutionary computational technique, known as Differential Evolu­
tion (DE), is used to obtain a proper training set. For each load value (operating 
point), DE is employed in order to perform the optimization process and to pro­
vide the optimized values of PI gains which will give the proper regulation of 
output voltage and frequency. 

Most of the problems related to engineering science cannot be solved using 
analytical methods, in particular, global optimization problems are solved using 
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Figure 3.17: Neural-network-based distributed secondary control 

Evolutionary Algorithms [130]. These algorithms are used to find the near op­
timal solution for a wide range of problems. Differential Evolution (DE) is one 
such novel evolutionary algorithm and uses a simple population-based stochastic 
search for optimizing functions with real value parameters [131]. 

DE produces a new vector by adding perturbation of two vectors to a third 
vector. This process is the main differential and is termed as Mutation. The new 
vector produced is combined with pre-defined parameters in accordance with a 
set of rules. This process is called Crossover. This operation is performed to 
enhance the searching process. Thereafter, an operator that compares the fitness 
function of two competing vectors to determine who can survive for the next 
generation is applied. This process is known as Selection process [132, 133]. 

The objective function (or performance index) used is the Integral of Time 
Multiply Squared Error (ITSE), defined as follows 

JIT SE = te2(t)dt 

where e is the error which is equal to (ωn − ωavg) for frequency control and 
(Vn −Vavg) for voltage control. The optimization problem is defined as 

min[max(JIT SE )] 
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DE algorithm is coded in MATLAB/Simulink and implemented on-line in 
order to minimize the integral error and to obtain the optimal PI gains of the 
secondary controller. DE specifications and the final optimized gains are shown 
in Fig. 3.19. With the help of a flowchart, the DE process is explained in detail 
in Fig. 3.18. 
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The fitness vs. number of iterations graph for frequency control correspond­
ing to above optimization details is shown in Fig. 3.20, where the fitness corre­
sponds to ITSE. It can be seen that the fitness gradually reduces, which in turn 
reduces the steady state error. 

To obtain the optimal PI gains for one operating condition, approximately 
1 hour was required. To reduce the collection time of training set, only 37 op­
erating points were considered. From 100 Watts to 7500 Watts, the above op­
timization process was repeated for 37 different load values with an interval of 
approximately 200 Watts. For each load value, optimal PI gains were obtained 
for both frequency and voltage control. The load values and their corresponding 
optimized controller gains form the Training Set for the neural network. 

3.2.6 Stage 2: Selection of artificial neural network 
The next stage is the selection of the NN structure and its properties. Neural Net­
work (NN) consists of Neurons which are simple computational units. A neuron 
is a building block of an NN and it resembles the information processing model 
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of the human brain. The structure of a neuron is shown in Fig. (3.21). Any k-th 
neuron can be defined mathematically as [134] 

p

vk = wk jx j + wko, yk = f (vk) 
j=1 

where x1, x2...xp denotes inputs signals, wk1, wk2...wkp denotes the synaptic 
weights of k-th neuron, wk0 is the bias, vk denotes the linear combiner output, 
f (.) is the activation function and yk denotes the output of the neuron. 

In this study, the neural network used is of feedforward type, as shown in 
Fig. (3.22). It consists of input, hidden and output layers. As can be seen, the 
flow of signal is unidirectional, i.e., the output of each neuron is connected to the 
input of a neuron in the next layer. Depending on the activity level at the input of 
a neuron, the activation function defines its output [135]. 

To design and train an artificial neural network, the Neural Network Toolbox 
[136], available in Matlab/Simulink, is used. The command “nntool” opens the 
Network/Data Manager window, which allows the user to import, create, use, and 
export neural networks. Figure 3.23 illustrates the Matlab/Simulink architecture 
of the NN. It consists of 1 input node and 4 output nodes and 10 nodes in the 
hidden layer. 

3.2.7 Stage 3: Neural network training 
The next stage is training of the Neural Network. NNs resemble adaptive control, 
since they learn from a set of example data rather than having to be programmed 
in a conventional way [137], therefore, a set of data called Training Set is re­
quired in order to train the NN and adjust its synaptic weights and thresholds. 
The training data was obtained from the DE optimization algorithm explained in 
the previous section. 

To train the neural network, the Levenberg-Marquardt backpropagation [138] 
algorithm was used. It is a type of back propagation algorithm [139] mostly used 
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Figure 3.22: Structure of feedforward neural network 

Figure 3.23: Architecture of neural network 

for approximation of function, mode identification and classification, data com­
pression, and so on. The other details of neural network training are tabulated in 
Table I. The neural network inputs are the load values RL and the outputs gen­
erated by the neural network are the corresponding optimal secondary control 
parameters. 

3.2.8 Simulation results I 
The simulations were performed in MATLAB/Simulink environment. A non­
linear model of the multiple DG units is designed using SimPowerSystems 
Library. Figure (3.24) shows an autonomous MG system developed in the 
Simulink. There are a total number of 3 DG units connected to the a three 
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Table 3.2: Neural network training details 

S.NO. NETWORK PROPERTY 

1 Adaption Learning Function : 
Gradient descent with momentum weight and bias learning function 

2 Performance Function: 
Mean squared normalized error 

3 Transfer Function in hidden layer: 
Hyperbolic tangent sigmoid transfer function 

4 Transfer Function in output layer: 
Linear transfer function 

Table 3.3: System parameters 

SYMBOL QUANTITY VALUE 

L f Filter Inductance 1.35 mH 
r f Filter Resistance 0.1 Ω 
Cf Filter Capacitance 50 µ F 
Lc Coupling Inductance 0.35 mH 
rc Coupling Resistance 0.03 Ω 
Vn Nominal Voltage 381v 
ωn Nominal Frequency 314 rad/sec 
ωc Cutoff Frequency of Low Pass Filter 31.4 rad/sec 
fs Switching Frequency 8 Khz 

mp Real Power Droop Gain 9.4 × 10−5 

nq Reactive Power Droop Gain 1.3 × 10−3 

Kpv Proportional gain of Voltage Controller 0.05 
Kiv Integral gain of Voltage Controller 390 
Kpc Proportional gain of Current Controller 10.5 
Kic Integral gain of Current Controller 16000 
F Feedforward gain of Voltage Controller 0.75 

phase load by means line impedance, given by Rl1 = 0.23Ω, Ll1 = 31.8µH, 
Rl2 = 0.35Ω, Ll2 = 184.7µH and Rl3 = 0.18Ω, Ll3 = 0.0022. The other parame­
ters of the system and their values are given in Table II. 

Initially, the MG system is operated without secondary control level under 
no load conditions with only primary control enabled. After 5 seconds, a load of 
4.5 KW is applied to the system. The response of output frequency and voltage 
from no load condition to sudden application of load is illustrated in Figs. 3.25 
and 3.26, respectively. As a result of sudden application of load, transients can be 
seen at t = 5 seconds in both output voltage and frequency. These transients result 
in the steady state error which deviates the output values from their nominal 
values. This steady state error is also a result of the poor quality of power. 

By observing the above figures, it can also be concluded that a major part of 
the transient is taken up by the DG-3 unit, whereas DG-1 and DG2 responded 
more slowly. This is because the load is closely located to DG-3, which implies 
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Figure 3.24: Simulink model of three DG system 

that during large load changes, DGs located nearer to load can be overloaded and 
may trip out. 

To regulate the output voltage and frequency to their nominal values and to 
eliminate the steady state error, secondary control is enabled. To demonstrate 
the effectiveness of the proposed controller, a comparative analysis between the 
fixed-gain secondary control and neural-network based secondary control is per­
formed. Figures 3.27–3.29 summarize the performance comparison between the 
fixed-gain distributed secondary control and neural-network-based distributed 
secondary control. These figures illustrate comparative analysis for output volt­
age regulation, output frequency regulation and load sharing capability, respec­
tively, of the two controllers. 

By observing the comparison results, it can be seen that proposed controller is 
superior than the conventional one in responding to the load changes. Its response 
is much quicker and, therefore, has better performance. The proposed controller 
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Figure 3.25: Frequency response under sudden application of load 

Figure 3.26: Voltage response under sudden application of load 

eliminates the error faster, which indicates the controller parameters are well 
optimized and work more effectively than the conventional one. 

To demonstrate the robustness and adaptability of the proposed controller un­
der varying loads, the system is subjected to different load changes with respect 
to time. One load change indicates one operating point of the system. 
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Figure 3.27: Performance comparison for voltage regulation 

Figure 3.28: Performance comparison for frequency regulation 

As can be seen in Fig. 3.30, the system is subjected to change in load after 
each 20 seconds, indicating 5 different operating points. Transients can be ob­
served at the instant when the load is applied on the system. As can be seen, DG­
1 and DG-2 reacted slowly to the load change compared to DG-3, which shared 
the major part after every change in load. The controller is able to share the load 
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Figure 3.29: Performance comparison for load sharing 

Figure 3.30: Output Frequency under varying load 
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equally among the DG units within a considerable amount of time. Therefore, 
proper load balancing is also achieved. 

The corresponding response of output frequency and voltage under the same 
load change pattern is illustrated in Figs. (3.31) and (3.32). Because the load 
change at each interval is the same, the transients in these figures are in coher­
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Figure 3.31: Output Voltage under varying load 

Figure 3.32: Load sharing among the DG units 

ence. It can be seen that the deviations in output frequency and voltage after every 
load change are regulated towards zero by the controller so that output voltage 
and frequency are restored to their nominal values. Proper regulation of output 
voltage and frequency is achieved and, hence, the proposed controller is more 
adaptive and has a faster response. 
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3.3	 Multiagent Coordination for Distributed Energy 
Resources 

Multiagent technology is one of the most exciting fields in the intelligent resource 
management sector. Recent developments [240], [241] have produced very en­
couraging results in its novel approach to handling multi-player interactive sys­
tems. In particular, the multi-agent system approach is adapted to model, control, 
manage or test the operations and management of microgrid. Agents represent 
individual entities in the network. Each participant is modeled as an autonomous 
participant with independent strategies and responses to outcomes. They are able 
to operate autonomously and interact pro-actively with their environment. Such 
characteristics of agents are best employed in situations like microgrid modeling. 

The deregulated energy environment [242], [243] has favored a gradual tran­
sition from centralized power generation to distributed generation (DG), where 
sources are connected at the distribution network. These DG sources comprise 
several technologies, like diesel engines, micro turbines, fuel cells, wind turbines 
and photovoltaic. The capacity of the DG sources varies from a few kWs to a few 
MWs. Distributed systems can also bring electricity to remote communities not 
connected to a main grid. Such communities can create a microgrid of power 
generation and distribution. 

3.3.1 Introduction 
The common communication structure and distributed control of DG sources, 
together with controllable loads and storage devices, such as flywheels, energy 
capacitors and batteries, is central to the concept of microgrids [240]. A micro-
grid can operate as interconnected to the main distribution grid, or as islanded 
if disconnected from the main distributed grid. From the grid’s point of view, a 
microgrid can be regarded as a controlled entity within the power system that 
can be operated as a single aggregated load and as a small source of power or 
ancillary service supporting the network. From the customers’ point of view, mi­
crogrids similar to traditional LV distribution networks service thermal and elec­
tricity needs. In addition, microgrids enhance local reliability, reduce emissions, 
improve power quality by supporting voltage and potentially lower the cost of 
energy supply. 

The literature shows a variety of applications of MAS in power systems, es­
pecially in microgrids. The optimization of interconnected microgrid operation 
[244] was done by optimizing production of the local DGs and power exchanges 
with the main distribution grid. In the application of microgrid control, research 
work of [245] shows how the local intelligence and the social ability of the agents 
may provide solutions in the optimal and effective control. Authors in [246] in­
vented the new concept for a distributed power system with agent technology 
as (Intelligent Distributed Autonomous Power Systems) IDAPS, which is a spe­
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cialized microgrid for coordinating customer-owned DERs. In addition, MAS 
has also been successfully applied in the other power system operations. For in­
stance, switching and restoration [247] in power system. 

This paper provides multi agent modeling of a microgrid, which can be ex­
tended easily to perform microgrid management and control operations. A simple 
PoolCo market simulation [248]–[251] illustrates the implementation of coordi­
nation between agents in the microgrid modeling. 

3.3.2 Advantages of MAS approach 
Multiagent (MAS) technology has recently been successfully applied to power 
systems management and operations. Each power source and load in the system 
is represented as an autonomous agent that provides a common communication 
interface for all the other agents representing the other components in the net­
work. 

The basic element of MAS is the agent, which can be described as a piece 
of software with some characteristics. Some of the important characteristics of 
agents in the microgrid are; 

1. Agents are capable of acting in the environment, which means the agent is 
capable of changing its environment by its actions. For instance, an agent 
that controls a storage unit and intends to store energy, rather than to inject 
it, alters the decision and the behavior of other agents. 

2. Agents communicate with each other. This is a part of their ability to act 
in the environment. For instance, agents controlling micro sources com­
municate with the market operator (MO) and the other agents in order to 
negotiate for the internal microgrid market. 

3. Agents have a certain level of autonomy. This means that they can make 
decisions driven by a set of tendencies without a central controller or com­
mander. The autonomy of each agent is related to its resources. For exam­
ple, the available fuel, in the case of a production unit. 

4. Agents represent the environment partially or fully. Each agent not only 
knows the status of the unit but also informs via conversation with the 
other agents about the status of the neighboring agents or sub systems. 

5. Agents have certain behaviors and tend to satisfy certain objectives using 
their resources, skills and services. For instance, one skill could be the 
ability to produce or store energy and a service could be to sell power in 
a market. The way that the agent uses its resources, skills and services 
defines its behaviors. As a consequence, the behaviors of each agent are 
formed by its goals. An agent that controls a battery system aiming to 
provide uninterruptible supply to a load has a different behavior than a 



Distributed Intelligence in Power Systems � 105 

similar battery system. On the whole, the behaviors of MAS are formed 
by the system goal, which is to maximize benefits of system managerial 
operations. 

It turns out that the MAS approach has several advantages over the traditional 
approaches for management and control of microgrid. Some of the important 
advantages of the MAS approach are; 

1. Unit autonomy: Depending on the goals of the unit owners, the various 
units in a microgrid can behave mostly autonomously in a cooperative or 
competitive environment. This is a basic characteristic of an agent. 

2. Reduced need for large data manipulation: The agent-based approach sug­
gests that the information should be processed locally and the agents 
should exchange knowledge. In this way, the amount of information ex­
changed is limited and so is the demand for an expensive communication 
network. This feature is common to the traditional distributed computing. 
Moreover, the multi agent system is characterized by the fact that agents 
have partial or no representation of the environment. In our application, 
the agent of a unit only knows the active power level of its own bus and, 
based on this, it can estimate what is happening at other buses, but it has 
no information about the whole microgrid. 

3. Increased reliability and robustness of the control system: In case one of 
the controllers fails, other agents may adapt and continue the system func­
tion. 

4. Openness of the system: Multi agent system allows any manufacturer of 
DER units or loads to embed a programmable agent in the controller of 
his equipment according to some rules. In this way, the required plug and 
play capability for installing future DER units and loads can be provided. 

Distributed coordination for DER, a potential method to realize these bene­
fits, can be implemented by using multi agent technology. 

3.3.3 Agent platform 
Agent platform is a software environment where software agents run. JADE 
(Java Agent DEvelopment) framework [252] is an agent platform proposed for 
this project. JADE develops multi-agent systems and applications conforming to 
FIPA standards for intelligent agents. 

JADE is a middleware, which is a software platform that provides another 
layer of separation between the software and operating system. In this imple­
mentation, the underlying operating system is the Java Virtual Machine, the mid­
dleware is JADE and the application is the code for the agents written in Java. 
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JADE is also the runtime environment in which agents execute, and therefore 
hides from the agents the underlying complexity of the operating system or net­
work. Agents can span multiple computers or be on one computer, yet for the 
implementation, the code for sending and receiving messages is the same. The 
JADE runtime manages the agent’s life cycle, queuing and sending of messages, 
and interaction with the directory services. The JADE runtime, in turn, executes 
within a Java Virtual Machine. 

Every agent is in a container and a collection of containers make up a plat­
form. There can be multiple containers on a computer, but containers cannot span 
computers. A platform encompasses all the containers within an agent system 
and, therefore, can span multiple computers. 

The simulation takes advantage of the administration services provided by 
the JADE runtime, primarily the directory service. The directory services and 
other administration services are hosted on the Main Container, which is the first 
container launched in the platform, but are duplicated on the other containers for 
robustness. 

JADE platform provides a set of functions and classes to implement agent 
functionality, such as agent management service, directory facilitator and mes­
saging passing services, which all are specified by FIPA [253] standards. Agent 
management service (AMS) is responsible for managing the agent platform 
which maintains a directory of AIDs (Agent Identifiers) and agent states. AMS 
provides White page and life cycle services. Directory facilitator (DF) provides 
the default yellow page services in the platform, which allows the agents to dis­
cover the other agents in the network based on the services they wish to offer or to 
obtain. Finally, the message transport service (MTS) is responsible for delivering 
messages between agents. 

3.3.4 Software system analysis 
The ultimate goal of the project is to develop an agent-based solution for manag­
ing and controlling distributed energy sources in the microgrid. The scalability 
and robustness are the main key attractive features of this software development. 

The system allows for scalability in terms of adding any number of agents to 
the system at any time. Through a common directory service, each agent registers 
their abilities. As the system grows, there could potentially be network conges­
tion. Because of the fast processors available today and the large bandwidth over 
networks, it seems that system size scaling should not be a problem. There are no 
limits within JADE to how many agents can be registered on the same platform. 

The system robustness is another property to analyze. Each agent can be run 
on a separate computer, so the failure of one computer will only remove one 
agent and the system can continue to function, with a performance loss of the 
physical capability of that failed device. By using the backup features of JADE, 
the directory service can be duplicated on every computer. Only one container 
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with administrative services is active at a time; with the failure of that container, 
JADE is able to migrate essential administrative services to other computers in 
order to create a fully distributed system that is inherently robust. With the design 
based on contact net, at every contract net cycle new agents are included in the 
process and missing agents are no longer considered. However, if an agent is 
removed while currently fulfilling a contract, then that contract is left unfilled 
and there will be shortfall somewhere. Because the contracts are short in length, 
this does not affect the system dramatically. 

The created simulation is fully distributed. The agents in an energy node con­
figuration can be run on any number of machines without changing the function­
ality of the system. The same configuration can be used with all agents on a 
single machine and with agents running on separate machines. Because of the 
Java-based tools used, the system is platform independent and has been run with 
a mix of Windows-based and Linux-based agents. 

3.3.5 Distributed control system 
It is very important to emphasize that the integration of the micro sources into the 
LV grids, and their relationship with the MV network upstream will contribute 
to optimizing the general operation of the system [245], [258]. 

Distributed control of microgrid has three levels, distribution network opera­
tor (DNO) and market operator (MO) at the level of the medium voltage, micro-
grid central controller (MGCC) and local controllers (LC), which could be either 
micro source controllers or load controllers. 

The DNO is responsible for the technical operation in a medium and low 
voltage area, where the microgrid exists. The MO is responsible for the market 
operation of the area. 

The main interface between the DNS/MO and the microgrid is the microgrid 
Central Controller (MGCC). The MGCC is primarily responsible for the op­
timization of the microgrid operation, or alternatively, it simply coordinates the 
local controllers, which assume the main responsibility for this optimization. The 
lower level of control consists of the LC. The LCs control the Distributed Energy 
Resources, production and storage units, and some of the local loads. Depend­
ing on the mode of operation, they have certain level of intelligence, in order to 
take decisions locally. For example, for voltage control, the LCs do not need the 
coordination of the MGCC, and all necessary calculations are performed locally. 

There are several levels of decentralization that can be applied, ranging from 
centralized control to a fully decentralized approach. According to the fully de­
centralized approach, the main responsibility is given to the DER controllers, 
which compete to maximize their production in order to satisfy the demand and 
probably provide the maximum possible export to the grid, taking into account 
current market prices. Furthermore, LCs should take all the appropriate decisions 
to ensure safe and smooth operation of the DER that they are controlling. 
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Figure 3.33: Microgrid control architecture 

3.3.6 Simulation studies I 
In order to demonstrate the multiagent coordination for DER in a microgrid 
based on contract net approach [253], a simulation system with specific agents to 
visualize each element interacting with others in a common environment must be 
created. A specific implementation has been coded to demonstrate an instance of 
microgrid management operations: PoolCo market operation. The main task of 
this market algorithm is to centrally dispatch and schedule DER in the microgrid. 
The operating mechanism of the PoolCo model is described below. 

In the PoolCo market operation, generators and loads submit their bids to 
pool, in order to sell power to the pool or buy power from the pool. All the 
generators have the right to sell power to the pool, but never specify customers. 
If generator agents’ bids are too high, they have low possibility to sell power. On 
the other hand, loads compete for buying power. If load agents’ bids are too low, 
they may not be getting any power at all. In such a model, low cost generators 
and high demanded loads would essentially be rewarded. 

During PoolCo operation, each player will submit their bids to the pool which 
is handled by MGCC. The MGCC sums up these bids and matches the demand 
and supply. The MGCC will implement the economic dispatch and produce a sin­
gle spot price for electricity, giving participants a very clear signal of the market 
forces. This is called the market clearing price (MCP). The MCP is the high­
est price in the selected bids in PoolCo. Winning generators are paid the MCP 
for their successful bids while successful bids of loads are obliged to purchase 
electricity at MCP. 

The simulation will run through five sequences of stages, starting from agent 
world creation and initialization. Then, clearing of the market, scheduling the 
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Figure 3.34: PoolCo model 

Figure 3.35: PoolCo market clearing 

DER and checking congestion and reliability will follow. Finally, the system will 
finalize and seal the contracts. The general flow of the programming is shown in 
Fig. 4. 

The multiagent system can be started up via the agent launch pad. The system 
consists of its administrative agents, and agents representing generators, loads, 
storage, local controllers and other power system elements. All the agents are 
created and launched as static agents in a local machine. Then, they execute their 
own thread of initialization. The initialization of generators and loads consists 
of their generation capacities, load requirements and bidding price by obtaining 
from a database in the simulation environment. When all the parameters of the 
agent are properly initialized, each agent will autonomously register themselves 
with the DF as their first task. 

As soon as the agents register themselves with the DF, the agents will query 
the DF for a complete listing of agents and their services on the network using a 
certain search constraint. These search constraints are usually queries to the DF 
for agents with a certain type of service or agents with certain types of names. 
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Figure 3.36: General flow of simulation 

Generators will send a query to the DF on all other Loads agents and MGCC. 
Loads will send a query to the DF on all other Generators agents and MGCC. 
The DF will reply to these requests with a listing of all agents that match their 
search constraints and all the physical addresses of these agents. 

3.3.7 Coordination between agents 
The coordination between agents is an important issue in the MAS modeling. 
In this paper, the agents coordinate among themselves in order to satisfy the 
energy demand of the system and accomplish the distributed control of the sys­
tem. The coordination strategy defines the common communication framework 
for all interactions between agents. Simple contract net coordination [253] was 
chosen because it is one of the simplest coordination strategies. All discussions 
between agents are started simply by a requesting agent asking the other agents 
for a proposed contract to supply some commodity, and then awarding contracts 
from the returned proposals in a fashion that minimizes cost or fulfills some other 
goal. The disadvantage of simple contract net coordination is that it only enables 
simple negotiation without allowing for counter proposals. Effectively, the ini­
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Figure 3.37: Communication between agents: Contract-Net protocol 

tiating agent has to pick from the presented contracts and cannot negotiate the 
price. The advantage of contract net is that it distributes computing, allowing the 
specific agent that started a contract net process to be responsible for evaluat­
ing bids and deciding, based on its own rules, which contracts to accept. It also 
separates internal agent information from one another, since agents only com­
municate through the defined contract net protocol and all calculations are done 
internally to each agent. Since the agents can change at every contract net cycle, 
there is no dependence on a specific agent. A system with more complex nego­
tiation might lead to lower costs for the system; however, simple contract net is 
sufficient to demonstrate a distributed coordination framework. 

Another factor in having a fully distributed system is the use of a directory 
service. A directory service allows agents to register themselves and publish their 
capabilities. By using a directory service, agents do not have to be aware of the 
other agents. For example, a load agent will look up sources in the directory every 
time it wants to secure a new supply contract. This allows for agents to be added 
or removed from the system at any time, since agents are included in contract net 
negotiations once they register themselves with the directory service. 

The coordination layer that the approach defines is the strategic layer above 
the real time layer. Because of the time required for a contract net interaction 
to complete, and since contracts are assigned in discrete time intervals, this co­
ordination layer cannot address real time issues. The coordination layer allows 
for the distributed agents to plan how resources should be applied in order to 
satisfy demand. The actual operation of the system components self regulates 
through negative feedback since the system cannot produce more energy than is 
consumed. Figure 5 shows the proposed contract-net message flowing. 
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3.3.8 Checking reliability
Once the market is simulated, and before the scheduling is proposed, the relia-
bility of the microgrid is checked with PowerWorld Simulator [254] in order to
ensure that the scheduling does not undermine the reliability of the microgrid.

PowerWorld simulator is a commercial power system simulation package
based on a comprehensive, robust power flow solution engine capable of effi-
ciently solving a system of up to 100000 buses, implementing the full Newton-
Raphson method, the fast decoupled power flow and a DC power flow. It also
allows the user to visualize the system through the use of animated diagrams,
proving good graphical information about the technical and economic aspects
of the transmission network. It has several optional add-ons. OPF and SimAuto
add-ons are used for this project.

The OPF provides the ability to optimally dispatch the generation in an area
or group of areas, while simultaneously enforcing the transmission line and in-
terface limits. Simulator OPF can then calculate the marginal price (LMP) to
supply electricity to a bus, while taking into account transmission system con-
gestion. The advantages of the Simulator OPF over other commercially available
Optimal Power Flow packages are the ability to display the OPF results on sys-
tem one-line diagrams and contour the results for ease of interpretation and the
fact that users can export the OPF results to a spreadsheet, a text file, or a Pow-
erWorld AUX file for added functionality.

Figure 3.38: PowerWorld simulator snapshot
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SimAuto [254] is an automated server (COM interface), enabling the user 
to access the functionalities from a program written externally by COM server. 
Even though Java does not have COM compatibility, Java platform integrates 
Java Native Interface (JNI), which is a standard programming interface for writ­
ing Java native methods and embedding the Java virtual machine into a native 
application. The IBM Development Tool for Java-COM Bridge [255] is chosen 
to build a communication layer between Java and the Power World automation 
server. 

Suppose the scheduling is congested, the MGCC would employ the use of the 
PowerWorld Simulator OPF to mitigate congestion. The purpose of the OPF is to 
minimize the cost function by changing system controls and taking into account 
both equality and inequality constraints, which are used to model the power bal­
ance constraints and various operating limits. It functionally combines the power 
flow with economic dispatch. In PowerWorld, the optimal solution is being de­
termined using the primal approach of linear programming. Once congestion has 
been mitigated, the new network schedule and relevant network information will 
be extracted. 

3.3.9 Simulation results II 
An agent-based approach for coordinating DER, using contract net as the coordi­
nation technique, has been developed and demonstrated by software simulation. 
Some portions of the output of the programming are given here in order to show 
that the contract net protocol is successfully implemented. 

Furthermore, the different scenarios of double-sided bidding PoolCo market 
are simulated and results are given in the Table 3.5. Scenario 1 has excess demand 
and scenario 2 has excess supply at the MCP and supply and demand are matched 
at the MCP for scenario 3. The excess demand and excess supply at MCP for 
corresponding scenarios are indicated with bolded numbers. 

3.4 Notes 
An adaptive learning controller is proposed to regulate the voltage of an au­
tonomous microgrid. The optimal control strategy is selected based on a value 
iteration adaptive learning technique and it was implemented using means of 
adaptive critics. Actor-Critic neural networks implementation provides an opti­
mal solution for the microgrid’s Bellman optimality equation, hence, finds the 
optimal control policies. The proposed controller doesn’t require knowledge of 
all the system’s dynamics, only the input control matrix is required. The de­
veloped control structure showed to be robust against the power system distur­
bances, in the dynamics and the active load demands. 
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Table 3.4: Algorithm 

StartAgent NUS-ELESHC:1099/JADE: is launched. 
Power1 is created. 
Load1 is created. 
Power1 started and registered with DF as Power Generator 
Load1 started and registered with DF as Load 
Power1: The list of Load in the network: Load1 Load2 Load3 Load4 Load5 
MGCC is created. 
Load1: The list of pGen in the network: Power1 Power2 Power3 
MGCC started and registered with DF as MGCC Agent 
Load1: The list of MGCC agents in the network: MGCC 
Load1: Sent to MGCC: SUBSCRIBE 
Power1: The list of MGCC agents in the network: MGCC 
Power1: Sent to MGCC: SUBSCRIBE 
MGCC: The list of pGen in the network: Power1 Power2 Power3 
MGCC: The list of Load in the network: Load1 Load2 Load3 Load4 Load5 
MGCC: Message received: Load1: SUBSCRIBE 
MGCC: Message received: Power1: SUBSCRIBE 
Load1: Message received: MGCC: AGREE 
Power1: Message received: MGCC: AGREE 
Load1: Message received: MGCC: CFP 
Power1: Message received: MGCC: CFP 
MGCC: Message received: Load1: PROPOSE 
MGCC: Message received: Load1: Bid Owner: Load1 

Quantity: 10.0MW 
Price: 11.0cts 

MGCC: Message received: Power1: PROPOSE 
MGCC: Message received: Power1: Bid Owner: Power1 

Quantity: 70.0MW 
Price: 10.5cts 

MGCC: Sent RESULTS: Power1 
Load1: Message received: REJECT-PROPOSAL 
Load1: Message received: Unsuccessful at bidding! 
Power1: Message received: ACCEPT-PROPOSAL 
Power1: Successful bid at: Bid Owner: Power1 

Quantity: 70.0MW 

Table 3.5: Inputs and outputs of simulations 

SCENARIO 1 SCENARIO 2 SCENARIO 3 
AGENTS INPUT OUTPUT INPUT OUTPUT INPUT OUTPUT 

P Q P Q P Q P Q P Q P Q 

PGen1 11 70 11 70 11 70 11 65 11 70 12 70 
PGen2 12 20 NA NA 12 20 NA NA 12 20 NA NA 
PGen3 10 25 11 25 10 35 11 35 10 20 12 20 
Load1 11 10 11 5 11 10 11 10 11 10 NA NA 
load2 12 20 11 20 12 20 11 20 12 20 12 20 
Load3 10 10 NA NA 10 10 NA NA 10 10 NA NA 
load4 14 30 11 30 14 30 11 30 14 30 12 30 
load5 13 40 11 40 13 40 11 40 13 40 12 40 
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A neural-network-based distributed secondary control scheme for an au­
tonomous smart microgrid system has been designed. In this scheme, the con­
troller is constructed to act dynamically to load changes and the associated opti­
mized gains have been evaluated using differential evolution optimization proce­
dure. Performance comparison between the proposed controller with traditional 
fixed-gain controller is also shown. The controller performance when subjected 
to time varying load is also summarized. The ensuing results have emphasized 
that the proposed controller has been able to restore the output voltage and fre­
quency to their nominal values, by eliminating the transients, whenever there 
is a change in load. Proper load sharing among the generating units has also 
been achieved. The simulation results show that the proposed controller is much 
faster, with greater adaptability and robustness when operating point changes 
and, therefore, ensures superior performance in comparison to a traditional one. 

In the next section, Distributed energy resource can be made scalable and 
robust with a coordination strategy that allows for easily adding or removing 
energy resources. An energy node can expand as demand increases and can 
change configuration easily. Distributed coordination, a potential method to re­
alize these benefits, can be implemented by using multi-agent technology. The 
software simulation demonstrates that it is possible to apply a distributed co­
ordination approach to coordinating distributed energy systems at the strategic 
level. The distributed system is also self-organizing, allowing agents to be added 
or removed at any time, without any dependency on a specific agent. By using 
the appropriate software architecture, distributed coordination seems like a likely 
strategy to realize the benefits of distributed energy systems. Ultimately, the con­
cept of multiagent-based distributed coordination will need to be connected with 
an actual hardware implementation to demonstrate a complete agent-based so­
lution for distributed energy resources management. In order to achieve it, the 
future research will be focused on intelligent microgrid operations, such as load 
forecasting, forecasting of RES power production, economic resource schedul­
ing and demand side management (DSM), which can be added on this microgrid 
modeling in the future. 

The main focus of the next section is to present a distributed algorithm that 
will allow the agents to learn and adapt to the environment based on reinforce­
ment learning. The main characteristic is that the agents are capable to learn and 
to solve a problem that requires planning for the future in a stochastic and com­
plicated environment without the existence of a central controller. Another im­
portant feature is that the agents learn to cooperate. The final solution, although 
not guaranteed to be optimal, provides a good solution. One key parameter of 
this approach is the proper formulation of the reward function. However, the 
main goal of the intelligent system is to provide an answer to the question “What 
do we want to do? rather than “How to do it?, like in the traditional control algo­
rithm. In this sense, we should consider the reward function as a means to explain 
to the agents what we really want them to do. 
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Chapter 4


Consensus for 
Heterogeneous Systems 
with Delays 

4.1 Introduction 
Recent technological advances in communications and computation have spurred 
a broad interest in control law architectures involving the monitoring, coordina­
tion, integration, and operation of sensing, computing, communication and ac­
tuation components that tightly interact with the physical processes that they 
control. These systems are known as cyber-physical systems (see [354] and the 
references therein) and even though they are transforming the way in which we 
interact with the physical world, they introduce several grand research chal­
lenges. In particular, due to the use of open computation and communication 
platform architectures, controlled cyber-physical systems are vulnerable to ad­
versarial attacks. The pervasive security and safety challenges underlying cyber­
physical systems place additional burdens on standard adaptive control methods. 
Cyberphysical security involving information security and detection in adversar­
ial environments has been considered in the literature ([357], [359], [361], [363], 
[365], [369], [371], [373], [374]). 

Multiagent systems comprise an important subclass of cyberphysical sys­
tems that involve communication and collaboration between interacting agents 
that locally exchange information. In particular, leader-follower consensus has 
a wide application in areas such as surveillance, formation control, and search 
and rescue. In such systems, the system-state information of different agents is 
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exchanged through communication channels represented by a given graph com­
munication topology, and local actuators of each agent utilize the information 
received from its neighbours for the control design protocol. For the leader-
follower consensus problem, most of the results in the literature assume that at 
least a subset of the followers have access to the exact leader state information 
([358], [372], [375], [377], [378], [381], [382]). However, in realistic situations, 
the leader state information measured or received by the follower agents may be 
corrupted due to an attack on the communication channel. Consequently, each 
follower, which has a communication link with the leader, may measure or re­
ceive erroneous leader state information. In other words, every follower agent 
may have inexact state information for the leader. 

In this section, we build on the solid foundation of adaptive control theory 
and multiagent systems theory in order to develop a new distributed adaptive 
control architecture that can foil malicious sensor and actuator attacks in the face 
of exogenous stochastic disturbances. Specifically, for a class of linear multia­
gent systems with an undirected communication graph topology, we develop a 
new structure of the neighborhood synchronization error for the distributed adap­
tive control protocol design of each follower in order to account for time-varying 
multiplicative sensor attacks on the leader state. In addition, the proposed frame­
work accounts for time-varying multiplicative actuator attacks on the followers 
that do not have a communication link with the leader. Moreover, our framework 
addresses time-varying additive actuator attacks on all the follower agents in the 
network. The proposed controller guarantees uniform ultimate boundedness in 
probability of the state tracking error for each follower agent in a mean-square 
sense. Finally, to show the efficacy of our adaptive control architecture, we pro­
vide a numerical illustrative example, involving the lateral directional dynamics 
of an aircraft group of agents subject to state-dependent atmospheric drag distur­
bances as well as sensor and actuator attacks. 

4.2 Multiagent Leader-Follower Consensus Problem 
Consider a leader-follower networked multiagent system consisting of N-
follower agents with the dynamics of agent i ∈ 1, . . . ,N given by 

dxi(t) = [Axi(t)+ Bui(t)]dt (4.1) 
+ xi(t)gT dw(t), xi(0)a.s. = xi0, t ≥ 0 

where, for t ≥ 0 and i ∈ 1, . . . ,N,xi(t) ∈ Hn is the state of the ith follower 
agent, ui(t) ∈ Hm is the uncorrupted control input to the ith follower agent, 
A ∈ Rn×n and B ∈ Rn×m are system matrices,w( ) is a d-dimensional indepen­·
dent standard Wiener process (i.e., Brownian motion) defined on a complete fil­
tered probability space (Ω,F, Ft t≥0, P), and g ∈ Rd . Furthermore, we assume that 
ui(t) ∈Hm satisfies sufficient regularity conditions such that (4.58) has a unique 
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solution forward in time. Specifically, we assume that the control process ui( )·
in (4.5) is restricted to the class of admissible controls consisting of measurable 
functions ui( ) adapted to the filtration Ft t≥0 such that ui(t) ∈ Hm and, for all ·
t ≥ s,w(t) − w(s) is independent of ui(τ), w(τ), τs, andx0(0), and hence, ui( )·
is non-anticipative. In addition, we assume that ui( ) takes values in a compact ·
metrisable set, and hence, it follows from Theorem 2.2.4 of [355] that there exists 
a unique path-wise solution to (14) in (Ω, {Ft }t≥0, Pxi0 ) for every i ∈ 1, . . . ,N. 

Furthermore, we assume that the control input of the ith follower agent with 
i ∈NI is compromised and is given by 

ũi(t) = �i(t)ui(t)+ di(t), i ∈NI , (4.2) 

where, for t ≥ 0andi ∈ NI , ũi(t) ∈ Hm denotes the compromised control 
command signal,�i(t) = diag[δi1(t), . . . , δim(t)] ∈ Rm×m , whereδik(t) ∈ R,k ∈
1, . . . , m, represents a multiplicative actuator attack, such that 0 < δik,min ≤
δik(t)δik,max with δik,min and δik,max denoting upper and lower bounds, respectively, 
and di(t) ∈ Rm denotes an additive actuator attack. Moreover, the control input 
of the ith follower agent with i ∈NII is compromised and is given by 

ũi(t) = ui(t)+ di(t), i ∈NII , (4.3) 

where, for t ≥ 0 and i ∈ NII , di(t) ∈ Rm represents an additive actuator attack. 
Note that (4.2) and (4.3) can be combined as 

ũi(t) = �i(t)ui(t)+ di(t), i = 1, . . . ,N, (4.4) 

where, for i ∈NII , we take �i(t) ≡ Im. Now, the compromised controlled system 
is given by 

dxi(t) = [Axi(t)+ Bũi(t)]dt (4.5) 
+ xi(t)gT dw(t),xi(0)a.s. = xi0, i = 1, . . . ,N, t ≥ 0. 

Next, the leader dynamics are given by 

dx0(t) = [Ax0(t)+ Br0(t)]dt (4.6) 
+ x0(t)gT dw(t), x0(0)a.s. = x00, t ≥ 0, 

where, for t ≥ 0,x0(t) ∈ Hn is the leader state and r0(t) ∈ Rm is a bounded con­
tinuous reference input. Here, we assume that r0( ) satisfies sufficient regularity ·
conditions such that (4.6) has a unique solution forward in time. In the literature, 
the leader-follower consensus problem formulation typically assumes a relative 
state information between neighboring agents in order to derive the ith agent 
controller. Specifically, for i ∈ 1, . . . ,N, the neighborhood synchronization error 
([358], [372], [375], [377], [378], [381], [382]) is given by 

ēi(t) = A(i, j)[xi(t) − x j(t)]+ qi[xi(t) − x0(t)] (4.7) 
j∈Nin (i) 
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Note that the structure of the neighborhood synchronization error given by (4.7) 
assumes exact measurement of the leader information x0(t), t ≥ 0, by the ith fol­
lower agent for every i ∈NII . However, this may not always be the case in prac­
tice. Specifically, in the case where we have communication channel attacks or 
when the sensors measuring the leader state are under attack, the leader state in­
formation x0(t), t ≥ 0, may not be accurately available to the agents. A more real­
istic scenario is, thus, the case where x0i, m(t)a.s. =� x0(t), where x0i, m(t), t ≥ 0, 
is the leader state information measured or received by the ith follower agent for 
i ∈NII . In this case, for i ∈NII , the compromised leader measurement by the ith 

agent is given by 

x0i,m(t) = Θi(t)x0(t) (4.8) 

where Θi(t) = diag[θi1(t), . . . , θin(t)] ∈ Rn×nwithθik(t) = 0, k ∈ 1, . . . ,n, and all 
t ≥ 0. Note that, for generality, we assume x0i, m(t)a.s. = x0 j,m(t), i, j ∈NII , i = j. 
For agent i ∈ NI , qi = 0, which implies that agent i does not have access to the 
leader information, and hence, Θi(t), t ≥ 0, is set to Θi(t) ≡ In. The following 
assumptions are necessary for the main results of this section. 

Assumption 1 The undirected communication graph topology G is connected 
and at least one follower agent is connected to the leader. 

Remark 4.1 Assumption 1 implies that L + Q is symmetric and positive definite 
([367], [377], [378]). 

Assumption 2 For and i ∈ 1, . . . , N, there exist unknown scalars 
r̄0, x̄0, d̄  i, ¯ ¯̇ ¯ such thatΘ j,−1, j ∈ N

t 
II 

≥ 
, Θ

0 
j,−1, j ∈ NII ,� j, j ∈ NI , and� ¯̄

j, j ∈ NI , 
Θ

−1 
j j||r0(t)|| ≤ r̄0, ||x0(t)|| ≤ x̄0, ||di(t)|| ≤ d̄  i, ||Θ−1(t)||F ≤ Θ j,−1, j ∈NII , || ̇ ||F ≤

¯ ¯ ¯
Θ̇ j,−1, j ∈NII , ||� j(t)||F ≤ �̄ j, j ∈NI , and ||�̇ j(t)||F ≤ �̇ j, j ∈NI . 

4.3 Distributed Adaptive Control Design 
In this section, we develop a distributed adaptive control architecture for the 
stochastic multiagent system given by (4.58) and (4.6). The control action for 
the ith follower agent is given by 

ui(t) = �̂−1(t)ui0(t), (4.9)i 

ui0(t) = −cKei(t), (4.10) 

where c > 0 is a design constant, K ∈ Rm×n is a control gain to be deter­
mined, �̂i(t) ≡ Im, i ∈ NII , and �̂i(t) ∈ Hm×m , i ∈ NI , t ≥ 0, are the estimates 
of �i(t), i ∈ NI , t ≥ 0. In light of the fact that we do not assume an exact mea­
surement for the leader information by the follower agents that are in direct com­
munication with the leader, we formulate a new neighborhood synchronization 
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error ei(t), i ∈ 1, . . . ,N, t ≥ 0, given by 

ei(t) = A(i, j)[xi(t) − x j(t)]+ qi[xi(t) − ϒ̂i(t)x0i, m(t)], (4.11) 
j∈Nin(i) 

where ϒ̂i(t) ≡ In, i ∈ NI , and ϒ̂i(t) ∈ Hn×n, i ∈ NII , t ≥ 0, is the estimate of 
Θ

−
i 

1(t), i ∈NII , t ≥ 0. 
The update laws ϒ̂i(t) ∈Hn×n, i ∈NII , t ≥ 0,and�̂i(t) ∈Hm×m, i ∈NI , t ≥ 0, 

are given by 

dϒ̂i(t) = −[nϒi K
T Kei(t)xT 

0i, m(t) 
+ nϒi qiKT Kϒ̂i(t)x0i,m(t)x0

T
i,m(t)+ σϒi ϒ̂i(t)]dt, 

ϒ̂i(0)a.s. = ϒ̂i0, i ∈NII , t ≥ 0, (4.12) 

δ̂ik = δik,min, andφik(t) < 0; 
=dδ̂ik(t) 

φ

0, 

ik(t)dt,otherwise, 

δ̂ik(0)a.s. = δ̂ik0 > δik,min, i ∈NI , k = 1, . . . ,m, t ≥ 0, (4.13) 

Twhere φik(t) � n [ei (t)K
T ]k[ui(t)]k − σ δ̂ik(t), [ ]k denotes the kth component �i �i ·

of a vector [·], nϒi > 0, i ∈NII ,ni > 0, i ∈NI , σϒi > 2, i ∈NII ,andσ�i > 1, i ∈NI , 
are design gains. Note that 

ei(t) = A(i, j)[xi(t) − x j(t)]+ qi[xi(t) − ϒ̂i(t)x0i,m(t)] 
j∈Nin(i) 

= A(i, j)[xi(t) − x j(t)]+ qi[xi(t) − x0(t)] 
j∈Nin(i) 

+ qi[Θ
−1(t) − ϒ̂i(t)]x0i,m(t)i 

= A(i, j)[xi(t) − x j(t)]+ qi[xi(t) − x0(t)] 
j∈Nin(i) 

− qiϒ̃i(t)x0i,m(t)

:= ēi(t) − qiϒ̃i(t)x0i,m(t), (4.14)


where ϒ̃i(t)ϒ̂i(t) − Θ−1(t), i ∈ NII . By definition ϒ̃i(t) ≡ 0 when qi = 0, i ∈ NI ,i � 
and hence, in this case ei(t) = ēi(t) = j∈Nin(i) A(i, j)[xi(t) − x j(t)]. 

Next, it follows from (4.9) that 

�i(t)ui(t) = �̂i(t)�̂−1(t)ui0(t)i 

− �̂i(t)�̂−1(t)ui0(t)+ �i(t)ui(t)i 

= ui0(t) −�̃i(t)ui(t), i = 1, . . . ,N, (4.15) 
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where �̃i(t) � �̂i(t)−�i(t). Furthermore, by definition �̃i(t) ≡ 0, i ∈NII . Now, 
defining the tracking error εi(t) � xi(t) − x0(t) and using (4.9) and (4.10), the 
dynamics for the tracking error of the ith agent is given by 

dεi(t) = [Aεi(t) − cBKei(t) − B�̃i(t)ui(t) 
+ B(di(t) − r0(t))]dt + εi(t)gT dw(t), εi(0)a.s. = εi0, t ≥ 0.(4.16) 

For the statement of the next result, sgn denotes the sign operator, that is, 
sgn(α) |

α

α| ,α =� 0, and sgn(0) � 0. Furthermore, by Assumption 2, there ex­
ist constants di1, i ∈ 1, . . . ,N, such that ||di(t) − r0(t)|| ≤ di1, i ∈ 1, . . . , N, t ≥ 0, 
and, for every finite K ∈ Rm×n, there exist constants di2 > 0, i ∈ NII , such 
that |tr[KT KΘ

−
i 

1(t)x0i,m(t)x0
T
i,m(t)]| ≤ di2, i ∈ NII , t ≥ 0. Finally, by definition, 

Θi,−1 = 1, i ∈NI , Θ̇̄i,−1 = 0, i ∈NI , �̄ i = 1, i ∈NII , and �̄̇i = 0, i ∈NII . 

Theorem 4.1 
Consider the stochastic multiagent system given by (4.58) and (4.6) with actuator 
and sensor attacks given by (4.4) and (4.8), respectively. Assume Assumptions 1 and 
2 hold, and, for a given positive-definite matrix R ∈ Rn×n, assume there exists a 
positive-definite matrixP ∈ Rn×n such that 

ÃT P + PÃ− 2(c − γ1)λmin(L + Q)PBBT P + R = 0, (4.17) 

where Ã � A+ 2
1 ||g||2In. Then, with the controller given by (4.9) and (4.10), adaptive 

laws given by (4.12) and (4.13), and control gain K = BT P, the closed-loop system 
given by (4.12), (4.13), and (4.16) satisfies 

limt→∞ supEεi0 [||xi(t) − x0(t)||2] 
≤ c1λmin((

c
L
0 
+Q)⊗P) , i = 1, . . . ,N, (4.18) 

where � (1 − sgn(qi))σ � 
ic0 � 

N
�i ¯ 

i 
2 + 

N 1 − sgn(qi) ˙̄ 2 
n

�
n

�
i=1 �i i=1 �i 

+ 
N qi

n
c

ϒ

σ

i 

ϒi 
Θ

2 
i,−1 + 

N

n
q

ϒ

ic

i 

Θ
2 
i,−1 + 

N 1 
γ 

di
2
1 

i=1 i=1 i=1 
N

+ qi 
3cnϒidi

2
2 

i=1 

and 

c1 � min σϒ1 − 2, . . . , σϒN − 2,σ�1 − 1, 

λmin(L + Q)λmin(R) 
. . . ,σ�N − 1, 

λmax((L + Q) ⊗ P) 
. 
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Furthermore, the adaptive estimates ϒ̂i(t), i ∈NII , t ≥ 0, and �̂i(t), i ∈NI , t ≥ 0, are 
ultimately uniformly bounded in a mean-square sense. 

Proof: To show ultimate boundedness of the closed-loop system, consider 
the Lyapunov-like function given by 

N

V (ε,�̃ϒ̃) = ε
T [(L + Q) ⊗ P]ε + 

� 1 − 
n
sgn(qi) Tr(�̃i 

2) 
i=1 �i 

N

+	
� qicTr(ϒ̃T

i ϒ̃i), (4.19)
nϒii=1 

where Tr(.) is the trace operator, ε = [ε1 
T , . . . ,εN

T ]T ∈ RnN , ˜ = block-diag 
[�̃1, . . . , ϒ̃N ] ∈ RnN×nN , ϒ̃ = block − diag[ϒ̃1, . . . , ϒ̃N ] ∈ RnN×nN

�
, and P satisfies 

(4.17). Note that if i ∈NI , then qi = 0, and hence, 1−sgn(qi) Tr(�̃i 
2) = 1 Tr(�̃i 

2). n n�i �i 

In addition, qic Tr(ϒ̃T ϒ̃i) = 0. Alternatively, if i ∈ NII , then qi > 0, and hence, nϒi
i 

1−
n
sgn(qi) Tr( ˜ 2 

i ) = 0. In this case, qic tr(ϒ̃T
i 

˜ = 0. 
�i 

� nϒi 
ϒi) �

Now, the infinitesimal generator LV (ε,�̃ϒ̃) of the closed loop system (4.12), 
(4.13), and (4.16) is given by 

LV	 ε, �̃, ϒ̃

=	 2ε
T [(L + Q) ⊗ PA − c(L + Q)2 ⊗ PBBT P]ε 

N	 N

e−T ˜ e−T+	 2c PBBT Pqiϒix0i,m + 2 i PB(di − r0)i 
i=1 i=1 
N

e−T	 T )−	 2 i PB�̃iui + Tr(gε
T ((L + Q) ⊗ P)εg

i=1

N


+	
� 2(1 − sgn(qi)) Tr(�̃i(n�i uieT

i PB − σ�i �̂i −�̇i)) 
i=1 

n�i 

+	
N 2qicTr(ϒ̃i

T (−nϒi PBBT Peix0
T
i,m − nϒi qiPBBT Pϒ̂ix0i,mx0

T
i,mnϒii=1 

ˆ	 Θ
−1)), (ε, ˜ ϒ̃) ∈ RNn × RNm×Nm × RNn×Nn . (4.20)−	 σϒi ϒik − ˙ i �, 



� 

� 

� 

� 

� 

124 � Multiagent Systems: Introduction and Coordination Control 

For γ1 > 0, we observe that 

N

2 e−i T PB(di − r0)

i=1
�N N


≤ γ1ē−T PBBT Pēi + 
� 

γ

1

1 
(di − r0)

T (di − r0)
i

i=1 i=1

N N
� � 1
≤ γ1ē−i 

T PBBT Pēi + 
γ1 

di
2
1


i=1 i=1 
N� 1 

= γ1ε
T [(L + Q) ⊗ In](IN ⊗ PBBT P)[(L + Q) ⊗ In]ε + 

γ1 
di

2
1 

i=1 
N

= γ1ε
T [(L + Q)2 ⊗ PBBT P]ε + 

� 1 
di

2
1.	 (4.21)

γ1i=1 

On using the first part of (4.13) we have, 

δ̃ik ≤ 0, n [eT
i PB]k[ui]k < σ δ̂ik, i ∈NI , k = 1, . . . ,m�i �i 

and hence, 

−2[ei
T PB]k[ui]kδ̃ik < − 

2σ�i (1 − sgn(qi)) 
δ̃ikδ̂ik. (4.22)

n�i 

Alternatively, using the second part of (4.13) we have 

N � � 

−2sumN
i=1e−i 

T PB�̃iui = − 
� 2(1 − sgn(qi)) Tr �̃in�i uieT

i PB . (4.23) 
i=1 

n�i 

Furthermore, we note that 

N

2c e−i 
T PBBT Pqiϒ̃ix0i,m 

i=1 
N

= 2c (ei + qiϒ̃ix0i,m)
T PBBT Pqiϒ̃ix0i,m 

i=1 
N

= 2c ei
T PBBT Pqiϒ̃ix0i,m 

i=1 
N

+	 2c (qiϒ̃ix0i,m)
T PBBT Pqiϒ̃ix0i,m. (4.24) 

i=1 
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Invoking the trace properties, it turns out that Tr(QT vyT ) = Tr(QT vyT )T = 
vT Qy for every Q ∈ Rm×n , v ∈ Rm, and y ∈ RN . Therefore, it can be shown that 

N N � � 

2c 
� 

eT
i PBBT Pqiϒ̃ix0i, m = 

� 2qictr ϒ̃
T
i nϒi PBBT PeixT 

0i,m (4.25)
nϒii=1	 i=1 

and 

N

2c (qiϒ̃ix0i,m)
T PBBT Pqiϒ̃ix0i,m 

i=1 
N � � 

=	
2qicTr ϒ̃

T
i nϒi qiPBBT Pϒ̂ix0i,mxT 

0i,mnϒii=1 
N � � 

2qicTr	 ϒ̃
T qiPBBT PΘ

−1 T− 
nϒi 

i nϒi i x0i,mx0i,m 
i=1 
N � �� 2qic ≤ 

nϒi 

Tr ϒ̃i
T nϒi qiPBBT Pϒ̂ix0i,mxT 

0i,m 
i=1 
N � � N

+	
� qicTr ϒ̃i

T 
ϒ̃i + 

� 
qi 

3cnϒi di
2
2. (4.26)

nϒii=1	 i=1 

Proceeding further, we have 

N

− 
2q

n
iσ

ϒi 

ϒi cTr(ϒ̃T
i ϒ̂i)


i=1


= − 
�N 2q

n
iσ

ϒi 

ϒi cTr[ϒ̃T
i (ϒ̃i + Θ−1)] i 

i=1 
N N

≤ − 
� 2q

n
iσ

ϒi 

ϒi cTr(ϒ̃T 
ϒ̃i)+ 

� qi

n
σ

ϒ

ϒ

i

i c tr(ϒ̃T 
ϒ̃i)i i 

i=1 i=1 
N

+	
� qiσϒi cTr(Θ−

i 
2)


nϒi
i=1 
N N

= − 
� qi

n
σ

ϒ

ϒ

i

i cTr(ϒ̃i
T 

ϒ̃i)+ 
� qi

n
σ

ϒ

ϒ

i

i cTr(Θi
−2) (4.27) 

i=1 i=1 



� 

� 

�	 � 

126 � Multiagent Systems: Introduction and Coordination Control 

and 

N 2qicTr(ϒ̃T
i Θ̇i

−1 
)− 

nϒii=1 �N Nqic � qic ≤ 
nϒi 

Tr(ϒ̃T 
ϒ̃i)+ 

nϒi 

tr(Θ̇−2), (4.28)i i 
i=1 i=1 

Now, it follows that 

N �	 � 
2qic	

ϒ̃
T ˆ Θ

−1− 
nϒi

Tr i (σϒi ϒik + ˙ i )

i=1


N N
qic(σϒi − 1)
tr(ϒ̃T

i ϒ̃i)+ 
qicσϒi Tr(Θ−

i 
2)≤ − 

nϒi	 nϒii=1 i=1 
N

+	
� qicTr(Θ̇−

i 
2). (4.29)

nϒii=1 

Using (4.29) and a similar construction as above for bounding the term 

N

− 
� 2(1 − 

n
sgn(qi)) Tr[�̃i(σ �i + �̇i)] ˆ�i 

i=1 �i 

as well as recalling the fact that 

Tr(gε
T ((L + Q) ⊗ P)εgT ) = ||g||2ε

T [(L + Q) ⊗ P]ε 

with some algebraic manipulation, it can be shown that (4.20) yields 

LV (ε, �̃, ϒ̃) 

≥ ≤ 2ε
T [(L + Q) ⊗ PA − (c − γ1)(L + Q)2 ⊗ PBBT P 

N

+ g2(L + Q) ⊗ P]ε − 
� qic(σϒi − 2) 

Tr(ϒ̃T 
ϒ̃i)inϒii=1 

N� (1 − sgn(qi))(σ�i − 1) 
Tr( ˜ i )+ c0, 

2− 
n

�
i=1 �i


(ε, �̃, ϒ̃) ∈ RNn × RNm×Nm × RNn×Nn , (4.30)
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where 

N N

c0 = 
� (1 − sgn(qi))σ�i ¯ 

i + 
� 1 − sgn(qi) �̇i 

2 ¯
n

�
n

i=1 �i i=1 �i � c � qic¯ ¯+ 
N qi

n
σ

ϒ

ϒ

i

i 
Θ

2 
i + 

N

nϒi 

Θ
2 
i,−1 

i=1 i=1 

+ 
�N

γ

1

1 
di 

2 + 
N

qi 
3cnϒi di

2
2. (4.31) 

i=1 i=1 

Now, since L + Q is positive definite, there exists an orthogonal matrix T ∈
RN×N such that T T (L + Q)T = diag[λ1, . . . , λN ], where λi, i ∈ {1, . . . , N}, are the 
eigenvalues of L + Q. Defining ξ � (T T ⊗ In)ε , it follows from (4.30) that 

LV (ε, �̃, ϒ̃) 
N

≤ λiξi
T [PÃ+ ÃT P − 2(c − γ1)λmin(L + Q)PBBT P]ξi 

i=1

N


− 
qic(σ

n
ϒ

ϒ

i

i 

− 2) 
Tr(ϒ̃T 

ϒ̃i)i

i=1

N


− 
� (1 − sgn(qi

n
))(σ�i − 1) 

Tr(�̃i 
2)+ c0, 

i=1 �i 

≤ −λmin(L + Q)λmin(R)εT 
ε


N


− 
� (1 − sgn(q

n
i))(σ�i − 1) 

Tr(�̃i 
2) 

i=1 �i 

N

− qic(σϒi − 2)nϒi Tr(ϒ̃T 
ϒ̃i)+ c0,i


i=1


(ε, �̃, ϒ̃) ∈ RNn × RNm×Nm × RNn×Nn . (4.32) 

Next, defining 

c1 � min{σϒ1 − 2, . . . ,σϒN − 2,σ�1 − 1, . . . , σ
λmin(L + Q)λmin(R) 

�N − 1, 
λmax((L + Q) ⊗ P) 

} 

it follows from (4.32) that 

LV ε, �̃, ϒ̃ ≤−c1V ε,�̃, ϒ̃ + c0, 

(ε,�̃, ϒ̃) ∈ RNn × RNm×Nm × RNn×Nn . (4.33) 
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Recalling standard stability results, it follows from (4.33) that 

0	 ≤ Eε0 [V 
� 
ε(t), �̃(t), ϒ̃(t) 

� 
] 

≤	 V 
� 
ε(0),�̃(0), ϒ̃(0) 

� 
e−c1t + 

c
c

1

0 
, t ≥ 0, (4.34) 

and hence, all the signals of the closed-loop system are uniformly ultimately 
bounded in probability in a mean-square sense. Finally, noting that 

lim supEε0 [εT (t)((L + Q) ⊗ P)ε(t)] 
t→∞ � � 

≤	 lim supEε0 [V ε(t),�̃(t), ϒ̃(t) ] ≤ 
c0 
, (4.35)

t→∞ c1 

it follows that, for every i ∈ {1, . . . ,N}, 

lim	 2] ≤ 
c0 

, (4.36)Eεi0 [||xi(t) − x0(t)|| c1λmin((L + Q) ⊗ P)t→∞ 

which implies that the path-wise trajectory of the state tracking error for each 
agent of the closed-loop system associated with the plant dynamics is uniformly 
ultimately bounded in a mean–square sense. 

Remark 4.2 In the absence of any sensor attacks on the follower agents that mea­
sure or receive leader state information, we have x0i,m(t) = Θi(t)x0(t), i ∈ NII , with 
Θi(t) ≡ In, t ≥ 0. In this case, the estimation error ϒ̃i(t) = ϒ̂i(t) − Θ−1(t), i ∈ NII ,i 
vanishes, and hence, c0 in Theorem 4.1 reduces to 

N	 N N

c0 � 
� (1 − sgn(qi))σ�i ¯ 

i 
2 + 
� 1 − sgn(qi) ˙

i 
2 + 
� 1 

d2 
iln

�
n

�
γ1i=1 �i i=1 �i i=1 

Remark 4.3 

Note that nϒi , i ∈NII , and n�i , i ∈NI , are design gain parameters used in the 
adaptive laws (4.14) and (4.15), respectively, and thus, selecting large values of 
these parameters can introduce transient oscillations in the update law estimates 
of ϒ̂i(t), t ≥ 0, and �̂i(t), t ≥ 0. This can be remedied by adding a modification 
term in the update laws to filter out the high frequency content in the control 
signal while preserving uniform ultimate boundedness in a mean-square sense. 
This architecture is developed in [379]. 
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4.4 Illustrative Example 
To illustrate the key ideas presented in what follows, consider the multiagent 
system representing the controlled lateral dynamics of four follower aircrafts 
and one leader aircraft, with a communication topology shown in Fig. 4.1. 
Node x0 represents the leader aircraft and nodes 1 through 4 represent the fol­
lower aircrafts. For the leader aircraft, the dynamical system representing the 
lateral directional dynamics of an aircraft ([366]) are given by (4.6), where 
x0(t) � [β (t), p(t),r(t)]T , β (t) is the sideslip angle in deg, p(t) is the roll rate 
in deg/sec, and r(t) is the yaw rate in deg/sec. Here, we take x00 = [1, −2, 1]T and 
g = [1, 1]T . The state-dependent disturbance is used to capture perturbations in 
atmospheric drag ([368]). Furthermore, the system matrices are given by � −0.025 0.104 −0.994 � 

A = 574.7 0 0 , 
16.20 0 0 � 0.122 −0.276 � 

B = −53.61 33.25 (4.37) 
195.5 −529.4 

with reference input 

r0(t) = 
2.4056 0.0765 −0.0613 

x0(t). (4.38)−4.3701 −0.1086 0.1485 

The follower aircraft dynamics are given by (4.58), where, for 
t ≥ 0 and i ∈ 1, 2,3, 4,x1(t) � [β1(t), p1(t), r1(t)]T , x10 = [2, −3, −1]T , 
x2(t) � [β2(t), p2(t), r2(t)]T , x20 = [3,0, 1]T , x3(t) � [β3(t), p3(t),r3(t)]T ,x30 = 
[2,−1, −1]T , and x4(t) � [β4(t), p4(t),r4(t)]T ,x40 = [1,−1, 1.5]T . 

We assume that the leader information received by Agent 1 is given by 

x01,m(t) � 1 + 0.1(1 − e−0.5t ) 0 0 � 

= 0 1 + 0.2(1 − e−0.8t ) 0 x0(t). 
0 0 1 + 0.4(1 − e−0.1t ) 

(4.39) 

x0

123 4

Figure 4.1: Communication topology of G 
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The uncorrupted control inputs for the follower agents 
ui(t) � [δail,i(t), δ rud,i(t)]T , i ∈ {1,2, 3, 4}, involve the aileron command in deg 
and the rudder command in deg, respectively. The actuator attacks are character­
ized as 

0.1(1 − e−10.1t ) 0.2(1 − e−0.1t )
d1(t) = 0.08(1 − e−0.15t ) 

,d2(t) = 0.1(1 − e−0.15t ) 
, (4.40) 

0.15(1 − e−10.1t ) 0.2(1 − e−0.1t )
d3(t) = 0.1(1 − e−0.15t ) 

,d4(t) = 0.12(1 − e−0.15t ) 
, (4.41) 

0.2 + 0.2e−0.2t 0 �2(t) = 0 0.85 + 0.15e−0.11t , (4.42) 

0.8 + 0.2e−0.15t 0 �3(t) = 0 0.85 + 0.15e−0.15t , (4.43) 

0.8 + 0.2e−0.2t 0 �4(t) = 0 0.85 + 0.15e−0.2t , (4.44) 

Note that at t = 0, �i(0) = I2, i ∈ {2, 3,4}, and di(0) = [0, 0]T , i ∈ {1, 2, 3,4}, 
which implies that initially the actuator is uncompromized and is gradually com­
promised over time. To design a distributed adaptive controller, we use Theorem 
4.1 with � 56.7970 0.1292 −0.0348 � 

P = 0.1292 0.0411 0.0033 (4.45) 
−0.0348 0.0033 0.0031 

and control design parameters c = 2,γ1 = 0.1,n�i = 1, i ∈ {2,3, 4}, σ�i = 2, i ∈ 
{2, 3,4},nϒ1 = 1, and σϒ1 = 3. The system performance of the controller given 
by (4.9) and (4.10) with the proposed adaptive scheme is shown in Figs. 4.2-4.5 
for the ith follower agent, where i ∈ {1,2, 3, 4}. Specifically, Figs. 4.2-4.5 show 
a sample trajectory along with the standard deviation of the state tracking error 
εi(t) = xi(t) − x0(t) for agent i ∈ {1, 2,3, 4} versus time for 10 sample paths. The 
mean control profile is also plotted in Figs. 4.7-4.5. It follows from Theorem 4.1, 
that the state tracking error for each agent is guaranteed to be uniformly ultimate 
bounded in a mean-square sense. 

4.5 Tracking and Coordination Using Sensor Networks 
Recently, we have been witnessing dramatic advances in micro-electromechanical 
sensors (MEMS), digital signal processing (DSP) capabilities, computing, and 
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Figure 4.2: (Colour online) Agent1 sample average of the state tracking error profile along 
with the sample standard deviation of the closed-loop nominal system trajectories versus time; 
β1(t)−β (t) in blue , p1(t)− p(t) in red, and r1(t)−r(t) in green. The control profile is plotted 
as the mean of the 10 sample runs 

Figure 4.3: (Colour online) Agent–sample average of the state tracking error profile along 
with the sample standard deviation of the closed-loop nominal system trajectories versus time; 
β2(t)−β (t) in blue, p2(t)− p(t) in red, and r2(t)−r(t) in green. The control profile is plotted 
as the mean of the 10 sample runs 
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Figure 4.4: (Colour online) Agent 3 sample average of the state tracking error profile along 
with the sample standard deviation of the closed-loop nominal system trajectories versus time; 
β3(t)−β (t) in blue, p3(t)− p(t) in red, and r3(t)−r(t) in green. The control profile is plotted 
as the mean of the 10 sample runs 

Figure 4.5: (Colour online) Agent 4 sample average of the state tracking error profile along 
with the sample standard deviation of the closed-loop nominal system trajectories versus time; 
β4(t)−β (t) in blue, p4(t)− p(t) in red, and r4(t)−r(t) in green. The control profile is plotted 
as the mean of the 10 sample runs 
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low-power wireless radios which are revolutionizing our ability to build mas­
sively distributed, easily deployed, self-calibrating, disposable, wireless sensor 
networks [384, 385, 386]. Soon, the fabrication and commercialization of in­
expensive millimeter-scale autonomous electromechanical devices containing a 
wide range of sensors, including acoustic, vibration, acceleration, pressure, tem­
perature, humidity, magnetic, and biochemical sensors, will be readily available 
[387]. These potentially mobile devices [388] can communicate with neighbor­
ing sensor nodes via low-power wireless communication to form a wireless ad-
hoc sensor network with up to 100 000 nodes [389], [390]. Sensor networks can 
offer access to an unprecedented quantity of information about our environment, 
bringing about a revolution in the amount of control an individual has over his 
environment. The ever-decreasing cost of hardware and steady improvements 
in software will make sensor networks ubiquitous in many aspects of our lives 
[391], such as building comfort control [392], environmental monitoring [393], 
traffic control [394], manufacturing and plant automation [395], service robotics 
[396], and surveillance systems [397], [398]. 

In particular, wireless sensor networks are useful in applications that require 
locating and tracking moving targets and real-time dispatching of resources. Typ­
ical examples include search-and-rescue operations, civil surveillance systems, 
inventory systems for moving parts in a warehouse, and search-and-capture mis­
sions in military scenarios. The analysis and design of such applications are often 
reformulated within the framework of pursuit evasion games (PEGs), a mathe­
matical abstraction which addresses the problem of controlling a swarm of au­
tonomous agents in the pursuit of one or more evaders [399], [400]. The loca­
tions of moving targets (evaders) are unknown and their detection is typically 
accomplished by employing a network of cameras or by searching the area us­
ing mobile vehicles (pursuers) with on-board high resolution sensors. However, 
networks of cameras are rather expensive and require complex image processing 
to properly fuse their information. On the other hand, mobile pursuers with their 
on-board cameras or ultrasonic sensors with a relatively small detection range 
can provide only local observability over the area of interest. Therefore, a time-
consuming exploratory phase is required [401], [402]. This constraint makes the 
task of designing a cooperative pursuit algorithm harder, because partial observ­
ability results in suboptimal pursuit policies [see Fig. 4.6(a)]. An inexpensive 
way to improve the overall performance of a PEG is to use wireless ad-hoc sen­
sor networks [403]. With sensor networks, global observability of the field and 
long distance communication are possible [see Fig. 4.6(b)]. Global pursuit poli­
cies can then be used to efficiently find the optimal solution, regardless of the 
level of intelligence of the evaders. Also, with a sensor network, the number of 
pursuers needed is a function exclusively of the number of evaders and not the 
size of the field. 

Now, we consider the problem of pursuit evasion games (PEGs), where the 
objective of a group of pursuers is to chase and capture a group of evaders in the 
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Figure 4.6: (a) Sensor visibility in PEGs without sensor network. (b) Sensor visibility in PEGs 
with sensor network. Dots correspond to sensor nodes, each provided with a vehicle detection 
sensor. Courtesy of [403] 

least amount of time with the aid of a sensor network. The evaders can either 
move randomly to model moving vehicles in search-and-rescue and traffic con­
trol applications, or can adopt evasive maneuvers to model search-and-capture 
missions in military scenarios. 

While sensor networks provide global observability, they cannot provide 
high quality measurements in a timely manner due to packet loss, communi­
cation delay, and false detections. This has been the main challenge in devel­
oping a real-time control system using sensor networks. In this paper, we ad­
dress this challenge by developing a real-time hierarchical control system called 
LochNess (Large-scale on-time collaborative heterogeneous Networked embed­
ded systems). LochNess decouples the estimation of evader states from the con­
trol of pursuers via multiple layers of data fusion. Although a sensor network 
generates noisy, inconsistent, and bursty measurements, the multiple layers of 
data fusion convert raw sensor measurements into fused measurements in a com­
pact and consistent representation and forward the fused measurements to the 
pursuers controllers in a timely manner. 

�	 A multisensor fusion algorithm that combines noisy and inconsistent sen­
sor measurements locally. The algorithm produces coherent evader posi­
tion reports and reduces the communication load on the network. 

�	 A multitarget tracking algorithm that tracks an unknown number of tar­
gets (or evaders). The algorithm is a hierarchical extension of the Markov 
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chain Monte Carlo data association (MCMCDA) [404] algorithm for 
sensor networks to add scalability. MCMCDA is a true approximation 
scheme for the optimal Bayesian filter; i.e., when run with unlimited re­
sources, it converges to the Bayesian solution [405]. MCMCDA is com­
putationally efficient and robust against measurement noise and incon­
sistency (including packet loss and communication delay) [406]. In ad­
dition, MCMCDA operates with no or incomplete classification informa­
tion, making it suitable for sensor networks. In fact, the performance of 
the algorithm can be improved given additional measurements to help 
identify the targets. 

�	 A multiagent coordination algorithm that assigns one pursuer to one 
evader, such that the estimated time to capture the last evader is mini­
mized based on the estimates computed by the multitarget tracking algo­
rithm. 

4.6 Target Tracking in Sensor Networks 
One of the main applications of wireless ad-hoc sensor networks is surveillance. 
However, considering the resource constraints on each sensor node, the well-
known multitarget tracking algorithms, such as joint probabilistic data associa­
tion filter (JPDAF) [410] and multiple hypothesis tracker (MHT) [411], [412], 
are not feasible for sensor networks due to their exponential time and space 
complexities. As a result, many new tracking algorithms have been developed 
recently. 

Most of the algorithms developed for sensor networks are designed for single-
target tracking [397], [398], [407, 408, 409], [413, 414, 415, 416, 417, 418, 419] 
and some of these algorithms are applied to track multiple targets using classifi­
cation [398], [413], [419] or heuristics, such as the nearest-neighbor filter (NNF)1 

[397]. A few algorithms are designed for multitarget tracking [420, 421, 422], 
where the complexity of the data association problem2 inherent to multitarget 
tracking is avoided by classification [420], [422] or heuristics [421]. When track­
ing targets of a similar type or when reliable classification information is not 
available, the classification-based tracking algorithm behaves as the NNF. Con­
sidering the fact that the complexity of the data association problem is NP-hard 

1The NNF [410] processes the new measurements in some predefined order and associates each with 
the target whose predicted position is closest, thereby selecting a single association. Although effective 
under benign conditions, the NNF gives order-dependent results and breaks down under more difficult 
circumstances. 

2In multitarget tracking, the associations between measurements and targets are not completely known. 
The data association problem is to work out which measurements were generated by which targets; more 
precisely, we require a partition of measurements such that each element of a partition is a collection of 
measurements generated by a single targetor clutter [423]. 
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[424], [425], a heuristic approach breaks down under difficult circumstances. 
Furthermore, the measurement inconsistencies common in sensor networks, such 
as false alarms and missing measurements (due to missing detection or packet 
loss), are not fully addressed in many algorithms. On the contrary, the multitar­
get tracking algorithm developed in this paper is based on a rigorous probabilistic 
model and based on a true approximation scheme for the optimal Bayesian filter. 

Tracking algorithms for sensor networks can be categorized according to 
their computational structure: Centralized [398], [407], [416], hierarchical [417], 
[418], or distributed [397], [408], [409], [413, 414, 415], [419, 420, 421]. How­
ever, since each sensor has only local sensing capability and its measurements 
are noisy and inconsistent, measurements from a single sensor and its neighbor­
ing sensors are not sufficient to initiate, maintain, disambiguate, and terminate 
tracks of multiple targets in the presence of clutter; it requires measurements 
from distant sensors. Considering the communication load and delay when ex­
changing measurements between distant sensors, a completely distributed ap­
proach to solve the multitarget tracking problem is not feasible for real-time ap­
plications. On the other hand, a completely centralized approach is neither robust 
not scalable. In order to minimize the communication load and delay while being 
robust and scalable, a hierarchical architecture is considered in this paper. 

4.7 Control System Architecture 
We now consider the problem of pursuing multiple evaders over a region of inter­
est (or the surveillance region). Evaders (or targets) arise at random in space and 
time, persist for a random length of time, and then cease to exist. When evaders 
appear, a group of pursuers is required to detect, chase and capture the group of 
evaders in minimum time with the aid of a sensor network. In order to solve this 
problem, we propose a hierarchical real-time control system, LochNess, which is 
shown in Fig. 2. LochNess is composed of seven layers: The sensor network, the 
multisensor fusion (MSF) module, the multitarget tracking (MTT) modules, the 
multitrack fusion (MTF) module, the multiagent coordination (MAC) module, 
the path planner module, and the path follower modules. 

Sensors are spread over the surveillance region and form an ad-hoc network. 
The sensor network detects moving objects in the surveillance region and the 
MSF module converts the sensor measurements into target position estimates 
(or reports) using spatial correlation. This paper considers a hierarchical sensor 
network. In addition to regular sensor nodes Tier-1 nodes, we assume the avail­
ability of nodes which have long-distance wireless links and more processing 
power. We assume that each Tier-2 node can communicate with its neighboring 
Tier-2 nodes. Examples of a Tier-2 node include high bandwidth sensor nodes, 
such as iMote and BTnode [426], gateway nodes, such as Stargate, Intrinsyc Cer­
fcube, and PC104 [426], and the Tier-2 nodes designed for our experiment [427]. 
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Figure 4.7: LochNess: A hierarchical real-time control system architecture using sensor net­
works for multitarget tracking and multiagent coordination 

Each Tier-1 node is assigned to its nearest Tier-2 node and the Tier-1 nodes are 
grouped by Tier-2 nodes. We call the group of sensor nodes formed around a 
Tier-2 node an enquotetracking group. When a node detects a possible target, it 
listens to its neighbors for their measurements and fuses the measurements to 
forward to its Tier-2 node. Each Tier-2 node receives the fused measurements 
from its tracking group and the MTT module in each Tier-2 node estimates the 
number of evaders, the positions and velocities of the evaders, and the estimation 
error bounds. Each Tier-2 node communicates with its neighboring Tier-2 nodes 
when a target moves away from the region monitored by its tracking group. Fi­
nally, the tracks estimated by the Tier-2 nodes are combined hierarchically by 
the MTF module at the base station. 
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The estimates computed by the MTF module are then used by the MAC mod­
ule to estimate the expected capture times of all pursuer-evader pairs. Based on 
these estimates, the MAC module assigns one pursuer to one evader by solving 
the bottleneck assignment problem [428] such that the estimated time to cap­
ture the last evader is minimized. Once the assignments are determined, the path 
planner module computes a trajectory for each pursuer to capture its assigned 
evader in the least amount of time without colliding into other pursuers. Then, 
the base station transmits each trajectory to the path following controller of the 
corresponding pursuer. The path following controller modifies the pursuers tra­
jectory on the fly in order to avoid any obstacles sensed by the pursuers on-board 
sensors. The path planning and path follower modules can be implemented using 
dynamic programming [429] or model predictive control [430]. In the paper, we 
focus on MSF, MTT, MTF, and MAC modules and they are described in Section 
IV. In the remainder of this section, we describe the sensor network model and 
the problem formulations of multitarget tracking and multiagent coordination. 

4.7.1 Sensor network and models 
In this section, we deal with the models describing the sensing, the signal-
strength and binary sensor as well as the sensor network model to considered 
hereinafter. A signal-strength sensor reports the range to a nearby target, while 
a binary sensor reports only a binary value indicating whether an object is de­
tected near the reporting sensor. The signal-strength sensor model is used for 
the development and analysis of our system, while the binary sensor model is 
used in our experiments. While the signal-strength sensors provide better accu­
racy, our evaluation of the sensors developed for the experiments showed that 
the variability in the signal strength of the sensor reading prohibited extraction 
of ranging information. However, we found that the sensors were still effective 
as binary sensors. We also found that binary sensors were much less sensitive to 
time synchronization errors than signal-strength sensors. 

Let Ns be the number of sensor nodes, including both Tier-1 and Tier-2 nodes, 
deployed over the surveillance region R⊂ R2. Let si ∈ R be the location of the 
ith sensor node and let S = {si : 1 ≤ I ≤ Ns}. Let Nss � Ns be the number of Tier­
2 nodes and let ss

j ∈ S be the position of the jth Tier-2 node, for j = 1; ...,Nss. 
Signal-Strength Sensor Model: Let Rs ∈ R be the sensing range. If there is 

an object at x ∈ R, a sensor can detect the presence of the object. Each sensor 
records the sensors signal strength 

zi =	 1+γ�s
β 
i−x�α + ωs

i , i f �si − x� ≤ Rs (4.46)
ωs

i , i f �si − x� > Rs 

where α , β , and γ are constants specific to the sensor type, and we assume that zi 

are normalized such that ωs
i has the standard Gaussian distribution. This signal-

strength based sensor model is a general model for many sensors available in 
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sensor networks, such as acoustic and magnetic sensors, and has been used fre­
quently [397], [408], [409], [422]. 

Binary Sensor Model: For each sensor i, let Ri be the sensing region of i. Ri 

can have an arbitrary shape but we assume that it is known to the system. Let 
0 1 be the detection made by sensor i, such that sensor i 1reportsz z∈ { } =i i, 

if it detects a moving object in R , and 1 otherwise. Let be the detection z p=i i i 

probability and qi be the false detection probability of sensor i. 
Sensor Network Model: Let G S E be a communication graph such that = ( ), 

E if and only if node i can communicate directly to node j. Let :( )s s g∈i j, ���{1, ...,Ns} → {1, ...,Nss} be the assignment of each sensor to its nearest Tier­
. For a node i, if j j2 node such that g (i) = j if
 = mink=1,...,Nss si − s si − ss s 

g (i) = j, the shortest path from si to ss j in G is denoted by sp (i). In this paper, 
we assume that the length of sp (i), i.e., the number of communication links from 
node i to its Tier-2 node, is smaller when the physical distance between node i 
and its Tier-2 node is shorter. If his is not the case, we can assign a node to the 
Tier-2 node with the fewest communication links between them. 

Local sensor measurements are fused by the MSF module described in Sec­
tion IV-A. Let ẑi be a fused measurement originated from node i. Node i transmits 
the fused measurement ẑi to the Tier-2 node g (i) via the shortest path sp(i). A 
transmission along an edge (si,s j) on the path fails independently with proba­
bility pte and the message never reaches the Tier-2 node. Transmission failures 
along an edge (si,s j) may include failures from retransmissions from node i to 
node j. We can consider transmission failure as another form of a missing obser­
vation. If k is the number of hops required to relay data from a sensor node to its 
Tier-2 node, the probability of successful transmission decays exponentially as 
k increases. To overcome this problem, we use k independent paths to relay data 
if the reporting sensor node is k hops away from its Tier-2 node. The probabil­
ity of successful communication pcs from the reporting node i to its Tier-2 node �kk g (i) can be computed as pcs (pte, k) = 1 − (1 − pte) , where k = |sp (i)| and

|sp (i)| denotes the cardinality of the set sp (i).


We assume each node has the same probability pde of delaying a message. If

di is the number of (additional) delays on a message originating from the sensor 
i, then di is distributed as 

p(di = d) = 
|sp (i)| + d − 1 

(1 − pde)
sp(i)

(pde)
d (4.47)d 

We are modeling the number of (additional) delays by the negative binomial 
distribution. A negative binomial random variable represents the number of fail­
ures before reaching a fixed number of successes from Bernoulli trials. In our 
case, it is the number of delays before |sp (i)| successful delay-free transmis­
sions. 
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If the network is heavily loaded, the independence assumptions on transmis­
sion failure and communication delay may not hold. However, the model is real­
istic under moderate conditions and we have chosen it for its simplicity. 

4.7.2 Multitarget tracking 
The MTT and MTF modules of LochNess estimate the number of targets, posi­
tions and velocities of targets, and estimation error bounds. Since the number of 
targets is unknown and time-varying, we need a general formulation of the multi-
target tracking problem. This section describes the multitarget tracking problem 
and two possible solutions. 

Let Ts ∈ Z+ be the duration of surveillance. Let K be the number of targets 
that appear in the surveillance region R during the surveillance period. Each 
target k moves in R for some duration ti

k , tk
f ⊂ [1, Ts]. Notice that the exact 

values of K and ti
k , tk

f are unknown. Each target arises at a random position in 

R at tk
i , moves independently around R until t f , and disappears. At each time, k 

an existing target persists with probability 1 − pz and disappears with probability 
pz. The number of targets arising at each time over R has a Poisson distribution 
with a parameter λbV , where λb is the birth rate of new targets per unit time, per 
unit volume, and V is the volume of R. The initial position of a new target is 
uniformly distributed over R. 

Let Fk : Rnx Rnx be the discrete-time dynamics of the target k, where nx is→
the dimension of the state variable, and let xk (t) ∈ Rnx be the state of the target k 
at time t for t = 1, ..., Ts. The target k moves according to 

xk (t + 1) = Fk xk (t) + ωk (t) , f ort = ti
k , ..., tk

f − 1 (4.48) 

where ωk (t) ∈ Rnx are white noise processes. When a target is present, a noisy 
observation (or measurement)3 of the state of the target is measured with a detec­
tion probability pd . Notice that, with probability 1 − pd , the target is not detected 
and we call this a missing observation. There are also false alarms and the num­
ber of false alarms has a Poisson distribution with a parameter λ fV , where λ f 

is the false alarm rate per unit time, per unit volume. Let n(t) be the number of 
observations at time t, including both noisy observations and false alarms. Let 
y j (t) ∈ Rny be the jth observation at time t for j = 1, ..., n (t), where ny is the 
dimension of each observation vector. Each target generates a unique observa­
tion at each sampling time if it is detected. Let Hj : Rny Rny be the observation 
model. Then, the observations are generated as follows: 

→ 

y j (t) = 
H j xk (t) + v j (t) , if y j (t) is from xk (t) 

(4.49) 
u f (t) , otherwise 

3Note that the terms observation and measurement are used interchangeably in this paper. 
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where v j (t) ∈ Rnx are white noise processes and u f (t) ∼ Unif(R) is a random 
process for false alarms. We assume that the targets are indistinguishable in this 
paper, but if observations include target type or attribute information, the state 
variable can be extended to include target type information, as done in [431]. 

The main objective of the multitarget tracking problem is to estimate K, 
ti
k , tk

f and xk (t) : ti
k ≤ t ≤ tk

f , for k = 1, ...,K, from noisy observations. 
Let Y (t) = {yt (t) : j = 1, ..., n(t)} be all measurements at time t and Y = 

{Y (t) : 1 ≤ t ≤ Ts} be all measurements from t = 1 to t = Ts. Let Ω be a col­
lection of partitions of Y such that, for ω ∈ Ω, ω = {τ0, τ1, ..., τk}, where τ0 is a 
set of false alarms and τk is a set of measurements from target k for k = 1, ..., K. 
Note that Ω is also known as a joint association event in literature. More formally, 
Ω is defined as follows. 

1. ω = {τ0, τ1, ..., τk} 

2. 
�k

K 
=0 

τk = Y and τi ∩ τ j = Ø for i =� j; 

3. τ0 is a set of false alarms; 

4. |τk ∩Y (t)| ≤ 1 for k = 1, ..., K and t = 1, ...,Ts; 

5. |τk| ≥ 2 for k = 1, ..., K. 

An example of a partition is shown in Fig. 4.8. Here, K is the number of tracks 
for the given partition ω ∈ Ω. We call τk a track when there is no confusion, 
although the actual track is the set of estimated states from the observations τk. 
This is because we assume there is a deterministic function that returns a set of 
estimated states, given a set of observations. A track is assumed to contain at least 
two observations, since we cannot distinguish a track with a single observation 
from a false alarm, assuming λ f > 0. For special cases, in which pd = 1 or λ f = 
0, the definition of Ω can be adjusted accordingly. 

Let ne(t − 1) be the number of targets at time t − 1, ne(t) be the number of 
targets terminated at time t and nc(t) = ne(t − 1) − nz(t) be the number of targets 
from time t − 1 that have not terminated at time t. Let nb(t) be the number of 
new targets at time t, nd (t) be the number of actual target detections at time t 
and nu(t) = nc(t)+ nb(t) − nd (t) be the number of undetected targets. Finally, let 
n f (t) = n(t) − nd (t) be the number of false alarms. Using the Bayes rule, it can 
be shown that the posterior of ω is [405] 

P(ω | Y ) ∝ P(ω) · P(Y | ω) 
Ts

∝ pnz(t)(1 − pz)
nc(t) pnd (t)(1 − pd )

nu(t) 
z d 

t=1 
Ts

× 
t=1 

(λbV )nb(t)(λ fV )n f (t) · P(Y | ω) (4.50) 
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Figure 4.8: (a) An example of observations Y (each circle represents an observation and num­
bers represent observation times). (b) An example of a partition ω of Y 

where P(Y | ω) is the likelihood of observations Y given ω , which can be com­
puted based on the chosen dynamic and measurement models.4 For example, the 
computation of P(Y | ω) for the linear dynamic and measurement models can be 
found in [404]. 

There are two major approaches to solve the multitarget tracking problem 
[405]: 

�	 Maximum a posteriori (MAP) approach, where one seeks to find a par­
tition of observations such that P(ω | Y ) is maximized and estimates the 
states of the targets based on this partition. 

�	 Bayesian approach or minimum mean square error (MMSE) approach, 
where one seeks to find an estimate which minimizes the expected square 
error. For instance, E(xk(t) | Y ) is the MMSE estimate for the state xk(t) 
of target k. However, when the number of targets is not fixed, a unique 
labeling of each target is required in order to find E(xk(t) | Y ) under the 
MMSE approach. 

For convenience in the sequel, we take the MAP approach to the multitarget 
tracking problem. 

4Our formulation of (5) is similar to MHT [432] and the derivation of (5) can be found in [433]. The 
parameters pz, pd , λb and λ f have been widely used in many multitarget tracking applications [410], [432]. 
Our experimental and simulation experiences show that our tracking algorithm is not sensitive to changes 
in these parameters, in most cases. In fact, we used the same set of parameters for all our experiments. 
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4.7.3 Agent dynamics and coordination objective 
In a situation where multiple pursuers and evaders are present, several assign­
ments are possible and some criteria need to be chosen in order to optimize per­
formance. In this work, we focus on minimizing the time to capture all evaders. 
However, other criteria might be possible, such as minimizing the pursuers en­
ergy consumption while guaranteeing capture of all evaders or maximizing the 
number of captured evaders within a certain amount of time. Since the evaders 
motions are not known, an exact time to capture a particular evader is also not 
known. Therefore, we need to define a metric to estimate the time to capture the 
evaders. Let us define the state vector of a vehicle as x = [x1, x2, ẋ1, ẋ2]

T , where 
(x1, x2) and (ẋ1, ẋ2) are the position and the velocity components of the vehi­
cle along the x and y axes, respectively. We denote by xp and xe the state of a 
pursuer and an evader, respectively. We will use the following definition of time-
to-capture: 

Definition 3.1 (Time-to-Capture): Let xe(t0) be the position and velocity vec­
tor of an evader in a plane at time t0, and xp(t) be the position and velocity vector 
of a pursuer at the current time t ≥ t0. We define the (constant speed) time-to­
capture as the minimum time Tc necessary for the pursuer to reach the evader 
with the same velocity, assuming that the evader will keep moving at a constant 
velocity, that is, 

Tc min[T | xP(t + T ) = xe(t = T )] 

where x1
e 
,2(t + T ) = x1

e 
,2(t0)+ (t + T − t0)ẋ1

e 
,2(t0), ẋ1

e 
,2(t + T ) = ẋe 

1,2(t0), and the 
pursuer moves according to its dynamics. 

This definition allows us to quantify the time-to-capture in an unambiguous 
way. Although an evader can change trajectories over time, it is a more accurate 
estimate than, for example, some metric based on the distance between an evader 
and a pursuer, since the time-to-capture incorporates the dynamics of the pursuer. 

Given Definition 3.1 and the constraints on the dynamics of the pursuer, it 
is possible to calculate explicitly the time-to-capture Tc, as well as the optimal 
trajectory xe∗(t) for the pursuers as shown in Section IV-C. 

We assume the following dynamics for both pursuers and evaders: 

x(t + δ ) = Aδ x(t)+ Gδ u(t) (4.51) 
η(t) = x(t)+ v(t) (4.52) 

where δ is the sampling interval, u = [u1, u2]
T is the control input vector, η(t) is 

the estimated vehicle state provided by the MTF module, v(t) is the estimation 
error, and 
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which correspond to the discretization of the dynamics of a decoupled pla­
nar double integrator. Although this model appears simplistic for modeling 
complex motions, it is widely used as a first approximation in path-planning 
[434, 435, 436]. Moreover, there exist methodologies to map such a simple dy­
namic model into a more realistic model via consistent abstraction, as shown 
in [437], [438]. Finally, any possible mismatch between this model and the true 
vehicle dynamics can be compensated for by the path-follower controller imple­
mented on the pursuer [430]. 

The observation vector η = [η1, η2, η̇1, η̇1] is interpreted as a measurement, 
although in reality it is the output from the MTF module shown in Fig. 4.7. 
The estimation error vt = [v0,v2, v̇1, v̇2]

T can be modeled as a Gaussian noise 
with zero mean and covariance Q or as an unknown but bounded error, i.e., 
|v1| < V1, |v2| < V2, |v̇1| < V̇1, |v̇2| < V̇2, where V1,V2,V̇1 and V̇2 are positive scalars 
that are possibly time-varying. Both modeling approaches are useful for differ­
ent reasons. Using a Gaussian noise approximation enables a closed-form op­
timal filter solution, such as the well-known Kalman filter [439]. On the other 
hand, using the unknown but bounded error model allows for the design of a ro­
bust controller, such as the robust minimum time control of pursuers proposed in 
Section IV-C. 

We also assume that the control input to a pursuer is bounded, i.e., 

u
P 
1 ≤ UP, u
P ≤ UP (4.53)2 

where UP > 0. We consider two possible evader dynamics 

ue 
1 ∼N (0,qe), ue 

2 ∼N (0,qe) (random motion) (4.54) 

|ue 
1| ≤ Ue, |ue 

2| ≤ Ue (evasive motion) (4.55) 

where N (0, qe) is a Gaussian distribution with zero mean and variance qe ∈ R+ . 
Equation (9) is a standard model for the unknown motion of vehicles, where 
the variation in a velocity component is a discrete-time white noise acceleration 
[440]. Equation (10) allows for evasive maneuvers but places bounds on the max­
imum thrust. The multiagent coordination scheme proposed in Section IV-C is 
based on dynamics (10), as pursuers choose their control actions to counteract 
the best possible evasive maneuver of the evader being chased. However, in our 
simulations and experiments, we test our control architecture using the dynamics 
(4.54) for evaders, where we set qe = 2Ue. 
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Since the definition of the time-to-capture is related to relative distance and 
velocity between the pursuer and the evader, we consider the state space error 
ξ = xP − xe which evolves according to the following error dynamics: 

ξ (t + δ ) = Aδ ξ (t)+ Gδ up(t) − Gδ ue(t) 

η
ξ (t) = ξ (t)+ vξ (t) 

(4.56) 

where the pursuer thrust up(t) is the only controllable input, while the evader 
thrust ue(t) acts as a random or unknown disturbance, and vξ (t) is the mea­
surement error which takes into account the uncertainties on the states of both 
the pursuer and the evader. According to the definition above, an evader is cap­
tured if and only if ξ (t) = 0, and the time-to-capture Tc corresponds to the time 
necessary to drive ξ (t) to zero, assuming ue(t) = 0 for t ≥ t0 t0. However, this 
assumption is relaxed in Section IV-C. 

According to the aforementioned definition of time-to-capture and the error 
dynamics (4.3), given the positions and velocities of all the pursuers and evaders, 
it is possible to compute the time-to-capture matrix C = [ci j] ∈ RNP×Ne , where Np 

and Ne are the total number of pursuers and evaders, respectively, and the entry 
ci j of the matrix C corresponds to the expected time-to-capture between pursuer i 
and evader j. When coordinating multiple pursuers to chase multiple evaders, it is 
necessary to assign pursuers to evaders. Our objective is to select an assignment 
that minimizes the expected time-to-capture of all evaders, which correspond to 
the global worst case time-to-capture. In this paper, we focus on a scenario with 
the same number of pursuers and evaders, i.e., Np = Ne. When there are more 
pursuers than evaders, then, only a subset of all the pursuers can be dispatched 
and the others are kept on alert in case more evaders appear. Alternatively, more 
pursuers can be assigned to a single evader. When there are more evaders than 
pursuers, one approach is to minimize the time to capture the Np closest evaders. 
Obviously, many different coordination objectives can be formulated as they are 
strongly application-dependent. We have chosen the definition of global worst 
case time-to-capture as it enforces strong global coordination in order to achieve 
high performance. 

4.8 Control System Implementation 
4.8.1 Multisensor fusion module 

1.	 Signal-Strength Sensor Model: Consider the signal-strength sensor model 
described in Section III-A. Recall that zi is the signal strength measured by 
node i. For each node i, if zi ≥ θ , where θ is a threshold set for appropriate 
values of detection and false-positive probabilities, the node transmits zi 

to its neighboring nodes, which are, at most, 2Rs away from si, and listens 
to incoming messages from neighboring nodes within a 2Rs radius. We 
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assume that the communication range of each node is larger than a 2Rs. 
For a node i, if zi is larger than all incoming messages, zi1, ..., zi−k, and 
zik = zi, then the position of an object is estimated by �k 

j=1 Zij Si jẑi = �k (4.57) 
j=1 Zij 

The estimate ẑi corresponds to a center of mass of the node locations 
weighed by their measured signal strengths. Node i transmits ẑi to the 
Tier-2 node g(i). If zi is not the largest compared to the incoming mes­
sages, node i simply continues sensing. Although each sensor cannot give 
an accurate estimate of the objects position, as more sensors collaborate, 
the accuracy of the estimates improves, as shown in Fig. 4.9. 

2.	 Binary Sensor Model: In order to obtain finer position reports from binary 
detections, we use spatial correlation among detections from neighboring 
sensors. The idea behind the fusion algorithm is to compute the likelihood 
of detections, assuming there is a single target. This is only an approxima­
tion, since there can be more than one target. However, any inconsistencies 
caused by this approximation are fixed by the tracking algorithm described 
in Section IV-B using spatio-temporal correlation. 

Consider the binary sensor model described in Section III-A. Let x be the 
position of an object. For the purpose of illustration, suppose that there 
are two sensors, sensor 1 and sensor 2, and R1 ∩ R2 = θ ; [see Fig. 4.5(a)]. 

Figure 4.9: Single target position estimation error as a function of sensing range. See Section 
IV-B3 for the sensor network setup used in simulations (Monte Carlo simulation of 1000 
samples, unity corresponds to the separation between sensors) 
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The overall sensing region R1 ∪R2 can be partitioned into a set of nonover­
lapping cells (or blocks), as shown in Fig. 4.5(b). The likelihoods can be 
computed as follows: 

z1 z2P(z1, z2 | x ∈ S1) = p1 
z1 

(1 − p1)
1−z1 q2 

z2 

(1 − q2)
1−z2 

P(z1, z2 | x ∈ S2) = p1 (1 − p1)
1−z1 q2 (1 − q2)

1−z2 (4.58) 
z1 z2P(z1, z2 | x ∈ S3) = p1 (1 − p1)

1−z1 q2 (1 − q2)
1−z2 

where S1 = R1 \ R2, S2 = R2 \ R1, and S3 = R1 ∩ R2 [see Fig. 4.10(b)]. 
Hence, for any deployment we can first partition the surveillance region 
into a set of nonoverlapping cells. Then, given detection data, we can com­
pute the likelihood of each cell, as shown in the previous example. 

An example of detections of two targets by a 10 × 10 sensor grid is shown 
in Fig. 4.11. In this example, the sensing region is assumed to be a disk 
with radius of 7.62m(10 f t). We have assumed pi = 0.7 and pi = 0.05 
for all i. These parameters are estimated from measurements made with 
the passive infrared (PIR) sensor of an actual sensor node described in 
Section V. From the detections shown in Fig. 4.11, the likelihood can be 
computed using equations similar to (13) for each nonoverlapping cell 
(see Fig. 4.12). Notice that it is a time-consuming task to find all nonover­
lapping cells for arbitrary sensing region shapes and sensor deployments. 
Hence, we quantized the surveillance region and the likelihoods are com­
puted for a finite number of points as shown in Fig. 4.12. 

There are two parts in this likelihood computation: The detection part 
(terms involving pi) and the false detection part (terms involving qi). Here­
after, we call the detection part of the likelihood the detection-likelihood 
and the false detection part of the likelihood the false-detection like­
lihood. Notice that the computation of the false detection- likelihood 

Figure 4.10: (a) Sensing regions of two sensors 1 and 2. Ri is the sensing region of sensor i. 
(b) A partition of the overall sensing region R1 ∪ R2 into nonoverlapping cells S1, S2 and S3, 
where S1 = R1 \ R2, S2 = R2 \ R1, and S3 = R1 ∩ R2 
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Figure 4.11: Detections of two targets by a 10 × 10 sensor grid (targets in ×, detections in 
disks, and sensor positions in small dots) 

requires measurements from all sensors. However, for a large wireless 
sensor network, it is not feasible to exchange detection data with all 
other sensors. Instead, we use a threshold test to avoid computing the 
false-detection-likelihood and distribute the likelihood computation. The 
detection-likelihood of a cell is computed if there are at least θd detec­
tions, where θd is a user-defined threshold. Using θd = 3, the detection 
likelihood of the detections from Fig. 4.11 can be computed as shown in 
Fig. 4.13. The computation of the detection likelihood can be done in a dis­
tributed manner. Assign a set of non-overlapping cells to each sensor such 
that no two sensors share the same cell and each cell is assigned to a sensor 
whose sensing region includes the cell. For each sensor i, let Si1 , ...,Sim(i) 

be a set of nonoverlapping cells, where m(i) is the number of cells as­
signed to sensor i. Then, if sensor i reports a detection, it computes the 
likelihoods of each cell in Si1 , ...,Sim(i) based on its own measurements 
and the measurements from neighboring sensors. A neighboring sensor is 
a sensor whose sensing region intersects the sensing region of sensor i. 
Notice that no measurement from a sensor means no detection. Based on 
the detection-likelihoods, we compute target position reports by cluster­
ing. Let S = {Si, ..., Sm} be a set of cells whose detection-likelihoods are 
computed, i.e., the number of detections for each Si is at least θd . First, 
randomly pick S j from S and remove S j from S. Then, cluster around S j 

the remaining cells in S whose set distance to S j is less than the sensing ra­
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Figure 4.12: Likelihood of detections from Fig. 4.11 

Figure 4.13: Detection-likelihood of detections from Fig. 6 with threshold θd = 3. Estimated 
positions of targets are shown in circles 

dius. The cells clustered with S j are then removed from S. Now repeat the 
procedure until S is empty. Let {Ck :≤ k ≤ Kcl } be the clusters formed by 
this procedure, where Kcl is the total number of clusters. For each cluster 
Ck, its center of mass is computed in order to obtain a fused position re­
port, i.e., an estimated position of a target. An example of position reports 
is shown in Fig. 4.13. 



� � 

150 � Multiagent Systems: Introduction and Coordination Control 

The multisensor fusion algorithm described above runs on two levels: 
Algorithm 4.1 on the Tier-1 nodes and Algorithm 4.3 on the Tier-2 
node. Each Tier-1 node combines detection data from itself and neighbor­
ing nodes using Algorithm 4.1 and computes detection-likelihoods. The 
detection-likelihoods are forwarded to its Tier-2 node and the Tier-2 node 
generates position reports from the detection-likelihoods using Algorithm 
2. The position reports are then used by the MTT module, described in 
Section IV-B, to track multiple targets. 

Algorithm 4.1 
DontPrintSemicolon 
SetAlgoLined 
SetKwInOutInputInput 
SetKwInOutOutputOutput 
Inputdetections from sensor i and its neighbors 
Outputdetection-likelihoods 
BlankLine 

Algorithm 4.2 
FOReach Si j , j = 1, ...,m(i) IFnumber of detections for Si j ≥ θd STATE compute 
detection-likelihood ẑi( j) of Si j ; STATE forward ẑi( j) to Tier-2 node g(i); ENDIF 
ENDFOR 

4.8.2 Multitarget tracking and multitrack fusion modules 
Our tracking algorithms are based on MCMCDA [404]. We first describe 
the MCMCDA algorithm and then describe the MTT and MTF modules of 
LochNess. 

Algorithm 4.3 
DontPrintSemicolon SetAlgoLined SetKwInOutInputInput 
SetKwInOutOutputOutput 
Inputdetection-likelihoods Z = {ẑi( j)} received from its tracking group Outputposi­
tion reports y BlankLine 

Algorithm 4.4 
STATE S = Si j : ẑi( j) ∈ Z ; STATE y = φ ; STATE find clusters {Ck : 1 ≤ k ≤ Kcl }
from S as described in the text; FORCk, k = 1, ...,Kcl STATE compute the center of 
mass yk of Ck; STATE y = y ∪ yk ENDFOR 
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Markov chain Monte Carlo (MCMC) plays a significant role in many fields, 
such as physics, statistics, economics, and engineering [441]. In some cases, 
MCMC is the only known general algorithm that finds a good approximate so­
lution to a complex problem in polynomial time [442]. MCMC techniques have 
been applied to complex probability distribution integration problems, counting 
problems such as #P-complete problems, and combinatorial optimization prob­
lems [441], [442]. 

MCMC is a general method to generate samples from a distribution π on a 
space Ω by constructing a Markov chain M with states ω ∈ Ω and stationary dis­
tribution π(ω). We now describe an MCMC algorithm known as the Metropolis-
Hastings algorithm [443]. If we are at state ω ∈ Ω, we propose ω � ∈ Ω, follow­
ing the proposal distribution q(ω, ω �). The move is accepted with an acceptance 
probability A(ω,ω �), where 

A(ω,ω �) = min 1, 
π

π

(

(

ω

ω

�

)

)

q
q
(

(

ω

ω

, 

�

ω

, ω
�)

) 
(4.59) 

otherwise, the sampler stays at ω , so that the detailed balance is satisfied. If we 
make sure that M is irreducible and aperiodic, then M converges to its stationary 
distribution by the ergodic theorem [444]. 

The MCMC data association (MCMCDA) algorithm is described in Algo­
rithm 4.5. MCMCDA is an MCMC algorithm whose state space is ω , as de­
scribed in Section III-B, and whose stationary distribution is the posterior (5). 
The proposal distribution for MCMCDA consists of five types of moves (a total 
of eight moves). They are: 1) a birth/death move pair; 2) a split/merge move pair; 
3) an extension/ reduction move pair; 4) a track update move; 5) a track switch 
move. The MCMCDA moves are illustrated in Fig. 4.14. We index each move 
by an integer, such that m = 1 for a birth move, m = 2 for a death move and 
so on. The move m is chosen randomly from the distribution qm

K (m), where K is 
the number of tracks of the current partition ω . When there is no track, we can 
only propose a birth move, so we set qm 

0 (m = 1) = 1 and qm 
0 (m = m�) = 0 for 

m� > 1. When there is only a single target, we cannot propose a merge or track 
switch move, so qm 

1 (m = 4) = qm 
1 (m = 8) = 0. For the other values of K and m, 

we assume qm
K > 0. For a detailed description of each move, see [404]. The in­

puts for MCMCDA are the set of all observations Y , the number of samples nmc, 
the initial state ωinit , and a bounded function X : Ω Rn. At each step of the →
algorithm, ω is the current state of the Markov chain. The acceptance probability 
A(ω, ω �) is defined in (4.59), where π(ω) = P(ω | Y ) from (4.49). The output X̂
approximates the MMSE estimate Eπ X and ω̂ approximates the MAP estimate 
argmax P(ω | Y ). The computation of ω̂ can be considered as simulated anneal­
ing at a constant temperature. Notice that MCMCDA can provide both MAP and 
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Figure 4.14: Graphical illustration of MCMCDA moves (associations are indicated by dotted 
lines and hollow circles are false alarms). Each move proposes a new joint association event 
ω
� which is a modification of the current joint association event ω . The birth move proposes 

ω
� by forming a new track from the set of false alarms ((a) (b)). The death move proposes →

ω
� by combining one of the existing tracks into the set of false alarms ((b) (a)). The split →

move decomposes a track from ω � into two tracks ((c) (d)) while the mergemove combines →
two tracks in ω � into a single track ((d) (c)). The extension move extends an existing track →
in ω((e) ( f )) and the reduction move reduces an existing track in ω(( f ) (e)). The track → →
update move chooses a track in ω and assigns different measurements from the set of false 
alarms ((g) (h)). The track switch move chooses two track from ω and switches some →
measurement-to-track associations ((i) ( j)) → 

MMSE solutions to the multitarget tracking problem. In this paper, we use the 
MAP estimate ω̂ to estimate the states of the targets.5 

Algorithm 4.5 
DontPrintSemicolon SetAlgoLined SetKwInOutInputInput 
SetKwInOutOutputOutput 
InputY , nmc, ωinit , X : Ω Rn Outputω̂ ,X̂→ 

Algorithm 4.6 
STATE ω = ωinit ; ω̂ = ωinit ; X̂ = 0; FORn = 1 to nmc STATE propose ω̂ based on 
ω(see text); STATE sample Ufrom Unif[0,1]; STATE ω = ω̂ , if U < A(ω, ω̂); STATE 

5The states of the targets can be easily computed by any filtering algorithm since, given ω̂ , the associ­
ations between the targets and the measurements are completely known. 
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ω̂ = ω , if p(ω | Y )/p(ω̂ | Y ) > 1; STATE X̂ = (n/(n + 1)) X̂ + (1/(n + 1))X(ω) 
ENDFOR 

It has been shown that MCMCDA is an optimal Bayesian filter in the limit 
[405]. In addition, in terms of time and memory, MCMCDA is more computa­
tionally efficient than MHT and outperforms MHT with heuristics (i.e., pruning, 
gating, clustering, N-scan-back logic and k-best hypotheses) under extreme con­
ditions, such as a large number of targets in a dense environment, low detection 
probabilities, and high false alarm rates [404]. 

1.	 Multitarget Tracking Module: At each Tier-2 node, we implement the 
online MCMCDA algorithm with a sliding window of size ws using 
Algorithm 4.5 [404]. This online implementation of MCMCDA is sub­
optimal because it considers only a subset of past measurements. But 
since the contribution of older measurements to the current estimate 
is much less than recent measurements, it is still a good approxima­
tion. At each time step, we use the previous estimate to nitialize MCM­
CDA and run MCMCDA on the observations belonging to the cur­
rent window. Each Tier-2 node maintains a set of observations Y = 

y j(t) : 1 ≤ j ≤ n(t), tcurr − ws + 1 ≤ t ≤ tcurr , where tcurr is the current 
time. Each y j(t) is either a fused measurement ẑi from some signal-
strength sensor i or an element of the fused position reports y from some 
binary sensors. At time tcurr + 1, the observations at time tcurr − ws + 1 are 
removed from Y and a new set of observations is appended to Y . Any de­
layed observations are inserted into the appropriate slots. Then, each Tier­
2 node initializes the Markov chain with the previously estimated tracks 
and executes Algorithm 4.5 on Y . Once a target is found, the next state 
of the target is predicted. If the predicted next state belongs to the surveil­
lance area of another Tier-2 node, the targets track information is passed to 
the corresponding Tier-2 node. These newly received tracks are then incor­
porated into the initial state of MCMCDA for the next time step. Finally, 
each Tier-2 node forwards its track information to the base station. 

2.	 Multitrack Fusion Module: Since each Tier-2 node maintains its own 
set of tracks, there can be multiple tracks from a single target main­
tained by different Tier-2 nodes. To make the algorithm fully hierarchi­
cal and scalable, the MTF module performs the track-level data associ­
ation at the base station to combine tracks from different Tier-2 nodes. 
Let ω j be the set of tracks maintained by Tier-2 node j ∈ {1, ...,Nss}. 
Let Yc = {τi(t) ∈ ω j : 1 ≤ t ≤ tcurr,1 ≤ i ≤ |ω j| , 1 ≤ j ≤ Nss} be the com­
bined observations only from the established tracks. We form a new set of 
tracks ωinit from {τi ∈ ω j : 1 ≤ i ≤ |ω j| , 1 ≤ j ≤ Nss} while making sure 
that the constraints defined in Section III-B are satisfied. Then, we run Al­
gorithm 4.5 on this combined observation set Yc with the initial state ωinit . 
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An example in which the multitrack fusion corrects mistakes made by 
Tier-2 nodes due to missing observations at the tracking group boundaries 
is given in Section IV-B3. 

The algorithm is autonomous and shown to be robust against packet loss, 
communication delay and sensor localization error. In simulation, there is 
no performance loss up to an average localization error of 0.7 times the 
separation between sensors, and the algorithm tolerates up to 50% lost-to­
total packet ratio and 90% delayed-to-total packet ratio [406]. 

3.	 An Example of Surveillance Using Sensor Networks: Here, we give a sim­
ulation example of surveillance using sensor networks. The surveillance 
region R = [0,100]2 was divided into four quadrants and sensors in each 
quadrant formed a tracking group, where a Tier-2 node was placed at 
the center of each quadrant. The scenario is shown in Fig. 4.15(a). We 
assumed a 100 × 100 sensor grid, in which the separation between sen­
sors was normalized to 1. Thus, the unit length in simulation was the 
length of the sensor separation. For MCMCDA, nmc = 1000 and ws = 10. 
The signal-strength sensor model was used with parameters α = 2,γ = 1, 
θ = 2, and β = 3(1 + γRα 

s ). In addition, pte = .3 and pde = .3. The surveil­
lance duration was Ts = 100. 

The state vector of a target is x = [x1, x2, ẋ1, ẋ2]
T as described in Section 

III-C. The simulation used the dynamic model in (4.51) and the evader 
control inputs were modeled by the random motion (4.1), with qe = .152 

and Q set according to Fig. 4.9. Since the full state is not observable, the 
measurement model (4.52) was modified as follows: 

1	 0 0 0 
y(t) = Dx(t)+ v(t), whereD =	 (4.60)0	 1 0 0 

and y is a fused measurement computed by the MSF module in Section IV-A. 

Figure 4.15(b) shows the observations received by the Tier-2 nodes. There 
were a total of 1174 observations, of which 603 were false alarms. A total of 319 
packets out of 1174 packets were lost due to transmission failures and 449 pack­
ets out of 855 received packets were delayed. Figure 4.15(c) shows the tracks 
estimated locally by the MTT modules on the Tier-2 nodes while Fig. 4.15(d) 
shows the tracks estimated by the MTF module using track-level data associ­
ation. Figure 4.15(d) shows that the MTF module corrected mistakes made by 
Tier-2 nodes due to missing observations at the tracking group boundaries. The 
algorithm is written in C++ and MATLAB and run on PC with a 2.6-GHz Intel 
Pentium 4 processor. It takes less than 0.06 seconds per Tier-2 node, per simula­
tion time step. 
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Figure 4.15: (a) Tracking scenario, where the numbers are target appearance and disappear­
ance times, the initial positions are marked by circles, and the stars are the positions of Tier-2 
nodes. (b) Accumulated observations received by Tier-2 nodes with delayed observations cir­
cled.(c) Tracks estimated locally by the MTT modules at Tier-2 nodes, superimposed. (d) 
Tracks estimated by the MTF module 

4.8.3 Multiagent coordination module 
The time-to-capture is estimated using the abstract model of pursuer and evader 
dynamics given in Section III-C. Let us consider the error between the pursuer �T 

ξ̇1, ξ̇1and the evader ξ = ξ1, ξ2, whose dynamics is given in (4.3). The time-

to-capture problem is equivalent to the following optimization problem:
⎧ ⎪⎨


P(t)ξ (t + δ ) = Aδ ξ (t)+ Gδ u
P 
1 (t) 

P 
2 (t)minuP 

1 (t),u
P 
2 (t) 

T subject to ≤ U)P, 
ξ (t + T ) = 0 

≤ U)P
 (4.61)
u
 u
⎪⎩


Recently, Gao et al. [445] solved the previous problem as an application 
of minimum-time control for the discretized double integrator. An extension to 
minimum-time control for the discretized triple integrator is also available [446]. 
Despite its simplicity and apparent efficacy, minimum time control is rarely used 
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in practice, since it is highly sensitive to small measurement errors and exter­
nal disturbances. Although, in principle, minimum-time control gives the best 
performance, it needs to be modified to cope with practical issues such as the 
quantization of inputs, measurement and process noise, and modeling errors. 
We propose an approach that adds robustness while preserving the optimality 
of minimum-time control. 

Since the state error dynamics is decoupled along the x- and y-axes, the so­
lution of the optimization problem (4.61) can be obtained by solving two in­
dependent minimum-time problems along each axis. When δ 0 in (4.3), the→
minimum-time control problem restricted to one axis reduces to the well-known 
minimum-time control problem of a double integrator in continuous time, which 
can be found in many standard textbooks on optimal control such as [447], [448]. 
The solution is given by a bang-bang control law and can be written in state feed­
back form, as follows: 

=


⎧⎪⎪⎪⎨ ⎪⎪⎪⎩


−UP, if 2UPξ̇1 > −ξ1 |ξ1| 
+UP, if 2UPξ̇1 < −ξ1 |ξ1|

ξ̇1 = −ξ1 |ξ1

P (4.62)
u
1 −UPsign(ξ1), if 2UP |

ξ̇1 = ξ10, if
 = 0


The minimum time required to drive ξ1 to zero in the x-axis can be also 
written in terms of the position and velocity error, as follows: 

Tc,1 =


⎧⎨ ⎩


−ξ̇1+
√

U
2ξ 

P 

1
2−4UP ξ1 , if 2UP ξ1

ξ̇1 +
√

2ξ 2 

ξ̇1 ≥−ξ1 | | (4.63)

1 +4UPξ1 , otherwise
UP 

Figure 4.16 shows the switching curve 2UP and the level curvesξ̇1 ≥−ξ1 |ξ1|
of the time-to-capture Tc for different values. 

Similar equations can be written for the control uP 
2 along the y-axis. There­

fore, the minimum time-to-capture is given by 

Tc = max(Tc,1, Tc,2). (4.64) 

According to the previous analysis, given the state error ξ (t) at current time 
t, we can compute the corresponding constant velocity time-to-capture Tc, the 
optimal input sequence up∗(t�) and the optimal trajectory ξ ∗(t�) for t� ∈ [t, t + Tc]. 

However, the optimal input (4.62) is the solution when δ 0 in (4.3) with→ 
no measurement errors and no change in the evaders trajectory. In order to add 
robustness, to take into account the quantization in the digital implementation, 
the measurement errors, and the evasive maneuvers of the evader, we analyze 
how the time-to-capture can be affected by these terms. Let us first rewrite the 
error dynamics given by (4.3) explicitly for the x-axis 
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Figure 4.16: Optimal switching curve for the continuous minimum-time control of the double 
integrator (thick solid line) and curves of constant time-to-capture (thin solid lines) in the 
phase space (ξ1, ξ̇1). The hexagon represents the set of all possible locations of the true error 
state (ξ1(t + δ ), ξ̇1(t + δ )) at the next time step t + δ given measurement (η1, η̇1) and pursuer 
control input u1 

p at time t 

ξ1(t + δ ) = ξ1(t)+ δ ξ̇1(t)+ 12 δ 2u1
e (t)+ 12 δ 2u1 

P(t) 

Pξ̇1(t + δ ) = ξ̇1(t)+ δ u1 (t)+ δ ue 
1(t) 

η1 
ξ 
(t) = ξ1(t)+ v1 

ξ 
(t) 

η̇1 
ξ 
(t) = ξ̇1(t)+ v̇1 

ξ 
(t) 

If we substitute the last two equations into the first two we get 

ξ1(t + δ ) = η1 
ξ 
(t)+ η̇1 

ξ 
(t)+ 

1 
δ 2u1 

P(t) − v1 
ξ 
(t) − δ v̇1 

ξ 
(t)+ 

1 
δ 2u1

e (t) (4.65)
2 2 

ξ̇1(t + δ ) = η̇1 
ξ 
(t)+ δ uP 

1 (t)+ v̇ξ 
1 (t)+ δ ue 

1(t) (4.66) 

where (η1, η̇1) are output estimates from the MTF module, u1 
P is the control­

lable input, and (ue 
1, v1 

ξ 
, v̇1 

ξ 
) play the role of external disturbances. Our goal now 

is to choose uP 
1 , i.e., the thrust of the pursuer, in such a way as to minimize 

the time-to-capture under the worst possible choice of (ue 
1, v1 

ξ 
, v̇1 

ξ 
), which are not 

known in advance but are bounded. Figure 4.16 illustrates this approach graph­
ically: The hexagon in the figure represents the possible position of the true 
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state error (ξ1, ξ̇1) at the next time step (t + δ ), which accounts for all possi­
ble evasive maneuvers of the evader, i.e., |ue 

1| < Ue, and accounts for the esti­
mation errors on the position and velocity of the pursuer and the evader, i.e.,

ξ ξ 
< V̇1, for a given choice of uP< V1, . Since the center of the hexagon
v̇
 11 

P P P(η1 
ξ 
+δ η̇1 

ξ 
+(1/2)δ 2u1 , η̇1 

ξ 
+δ u1 ) depends on the pursuer control u1 , one could 

try to choose u1 
P in such a way that the largest time-to-capture Tc,1 of the hexagon 

is minimized. This approach is common in the literature for non–cooperative 
games [449]. More formally, the feedback control input will be chosen based on 
the following min-max optimization problem: ⎞⎛ 

Tc,1(ξ1(t + δ ), ξ̇1(t + δ )) ⎠ (4.67)
P∗ ⎝
v ξ 

1 ≤V1, 

(t) = arg min
u
 max 
ξ 

1 |uP 
1 |
≤UP ≤V̇1,|ue |≤Uev̇1 1

This is, in general, a nonlinear optimization problem. However, thanks to the 
specific structure of the time-to-capture function Tc,, it is possible to show that 
(4.67) is equivalent to 

u1 
P∗ 

= arg min max Tc,1 ξ1 
+ , ξ̇1 

+ 
,Tc,1 ξ1

−, ξ̇1
− 

ξ1
± 

|uP 
1 |≤UP 

η1 
ξ 
+ δ η̇1 

ξ ±V1 ± δV̇1 ± 
1 

δ 2Ue + 
1 

δ 2uP 
1 (4.68)

2 2 
ξ̇1
± 

η̇1 
ξ ±V̇1 ± δUe + δ u1 

P (4.69) 

i.e., it is necessary to compute only the time-to-capture of the top right and the 
bottom left corner of the hexagon in Fig. 4.16, since all points inside the set al­
ways have smaller values of Tc,1. Once the expected minimum time-to-capture 
control input uP∗(t�), t� ∈ [t, t + Tc] is computed, the corresponding optimal tra­
jectory for the pursuer xP∗(t�), t� ∈ [t, t + Tc] can easily be obtained by substi­
tuting uP∗(t�) into the pursuer dynamics (4.51). The robust minimum-time path 
planning algorithm is summarized in Algorithm 4.7. 

Algorithm 4.7 
DontPrintSemicolon 
SetAlgoLined 
SetKwInOutInputInput 
SetKwInOutOutputOutput 
InputxP(t),xe(t),and boundsV1,V2,V̇1,V̇2,Ue,UP Outputoptimal trajectoryxP∗(t�), t� ∈
[t, t + Tc] BlankLine 
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Algorithm 4.8 
STATE compute uP∗(t�), t� ∈ [t, t + Tc] using (4.68); STATE compute xP∗(t�), t� ∈
[t, t + Tc] given uP∗(t�) using (4.51) 

Figure 4.17 shows the performance of the proposed robust minimum time-
to-capture control feedback for a scenario where the evader moves with random 
motion and the evader’s position and velocity estimates are noisy. It is compared 
with the discrete-time minimum-time controller proposed in [446] and [445]. Our 
controller feedback design outperforms the discrete-time minimum-time con­
troller since the latter one does not take into account process and measurement 
noises. Note how both controllers do not direct pursuers toward the actual po­
sition of evader, but to the estimated future location of the evader in order to 
minimize the time-to-capture. 

As introduced in Section III-C, given the positions and velocities of all pur­
suers and evaders and bounds on the measurement error and evader input, it is 
possible to compute the expected time-to-capture matrix C = [ci j] ∈ RNP×Ne us­
ing the solution to the optimal minimum-time control problem. The entry ci j of 
the matrix C corresponds to the expected time for pursuer i to capture evader j, 
Tc(i, j), that can be computed as described in (4.10) and (4.11). As motivated in 
Section III-C, we assume the same number of pursuers as the number of evaders, 
i.e., Np = Ne = N. 

An assignment can be represented as a matrix Φ = [øi j] ∈ RN×N , where the 
entry øi j of the matrix Φ is equal to 1 if pursuer i is assigned to evader j, and 
equal to 0 otherwise. The assignment problem can, therefore, be written formally 
as follows: ⎡ ⎤

minøi j max�i, 
N
j=1,...,N (ci j · φi j) ⎣ subject to �N
i=1 φi j = 1,∀i ⎦ (4.70) 

j=1 φi j = 1,∀ j 

As formulated in (4.70), the assignment problem is a combinatorial optimiza­
tion problem. 

The optimization problem given in (4.16) can be reformulated as a linear 
bottleneck assignment problem and can be solved by any of the polynomial-
time algorithms based on network flow theory. Here, we give a brief description 
of one algorithm and we direct the interested reader to the survey [428] for a 
detailed review of these algorithms. For our implementation, we use a random­
ized threshold algorithm that alternates between two phases. In the first phase, 
we list the cost elements ci j in increasing order and we choose a cost element 
c , i.e., a threshold. Then we construct the matrices C̄(c∗) = [ c̄i j] ∈ RN×N and∗
CTutte(c∗) = [ c̄i j] ∈ R2N×2N as follows: 

ai j, if ci j > c∗ 0 C̄
c̄i j = 

0, if ci j ≤ c∗ 
, CTutte = − ¯ (4.71)C 0 
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Figure 4.17: Trajectories of pursuers and evaders on the x-y plane. The feedback control is 
based on noisy measurements (thin solid line) of the true evader positions (thick solid line). 
The robust minimum time-to-capture feedback proposed in this paper (dot-solid line) is com­
pared with the discrete-time minimum time-to-capture feedback (dashed line) proposed in 
[446] 

where a�i js are independent random numbers sampled from a uniform distribu­
tion in the interval [0, 1], i.e., ai j ∼ U([0, 1]). Using Tuttes Theorem [428], it is 
possible to show that if detCTutte(c∗) =� 0, then there exists an assignment that 
achieves c∗.6 Therefore, we search for the smallest c∗min in the ordered list of 
costs ci j which guarantees an assignment. Once we find c∗min, we find the pursuer-
evader pair corresponding to that cost. Then, we remove its row and column from 
the cost matrix C and repeat the procedure until all pursuers are assigned. The 
assignment algorithm is summarized in Algorithm 4.9. 

It is important to note that an assignment based on the solution to the global 
optimization problem described above is necessary for good performance. For 
example, let us consider the greedy assignment algorithm. This algorithm looks 
for the smallest time-to-capture entry in the matrix C, assigns the corresponding 
pursuer-evader pair, and removes the corresponding row and column from the 
matrix C. The dimensions of the resulting matrix C become (N −1)×(N −1) and 
the algorithm repeats the same process until each pursuer is assigned to an evader. 
This algorithm is very simple and can be implemented in a fully distributed 
fashion. However, it is a suboptimal algorithm since there are cases where the 

6In reality, since the algorithm is randomized, there is a small probability equal to (1/N)r that there 
exists a feasible assignment if detCTutte = 0 for r random Tuttes matrices CTutte. In the rare cases when 
this event happens, the algorithm simply gives a feasible assignment with a higher cost to capture. 
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greedy assignment finds the worst solution. Consider the time-to-capture matrix 
1 2 

c = . The optimal assignment that minimizes the time-to-capture of all 3 100 
evaders for this matrix is 1 2 and 2 1, which gives Tc,max = 3, where Tc;max → →
is the time-to-capture of all evaders. The greedy assignment would instead assign 
pursuer 1 to evader 1 and pursuer 2 to evader 2, with the time-to-capture of all 
evaders equal to Tc,max = 100. 

Algorithm 4.9 
DontPrintSemicolon SetAlgoLined SetKwInOutInputInput 
SetKwInOutOutputOutput 
InputxP

i ,x
e
j, i, j,= 1, ...,N Outputassignment i → jfori − 1, ..,N 

Algorithm 4.10 
STATE compute matrix C = [ci j] , ci j = Tc(i, j); FORn = 1 to N STATE [i∗, j∗] = 
arg mini j {ci j | det(CTutte(ci j) =� 0)}, using(4.17); STATE assign pursuer i∗ to evader 
j∗, i.e.,i∗ → j∗; STATE C ←{C | remove row i∗ and column j∗}; ENDFOR 

4.9 Experimental Results 
Multitarget tracking and a pursuit evasion game using the control system 
LochNess were demonstrated at the Defense Advanced Research Projects 
Agency (DARPA) Network Embedded Systems Technology (NEST) final ex­
periment on August 30, 2005. The experiment was performed in warm, sunny 
conditions on a large-scale, long-term, outdoor sensor network testbed deployed 
on a short grass field at U.C. Berkeleys Richmond Field Station (see Fig. 4.18). 
A total of 557 sensor nodes were deployed and 144 of these nodes were allotted 
for the tracking and PEG experiments. However, six out of the 144 nodes used in 
the experiment were not functioning on the day of the demo, reflecting the dif­
ficulties of deploying large-scale, outdoor systems. The 144 nodes used for the 
tracking and PEG experiments were deployed at approximately 5 meter spacing 
in a 12 ×12 grid (see Fig. 4.19). Each node was elevated using a camera tripod to 
prevent the PIR sensors from being obstructed by grass and uneven terrain [see 
Fig. 4.18(a)]. The locations of the nodes were measured during deployment us­
ing differential GPS and stored in a table at the base station for reference and for 
generating Fig. 4.19. However, in the experiments, the system assumed the nodes 
were placed exactly on a 5-m spacing grid in order to highlight the robustness of 
the system with respect to localization error. 

The deployment of LochNess contained some modifications to the architec­
ture described in Section III. Due to the time constraint, the Tier-2 nodes were 
not fully functional on the day of the demo. Instead, we used a mote connected to 
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Figure 4.18: Hardware for the sensor nodes. (a) Trio sensor node on a tripod. On top is the 
microphone, buzzer, solar panel, and user and reset buttons. On the sides are the windows for 
the passive infrared sensors. (b) A live picture from the 2 target PEG experiment. The targets 
are circled 

Figure 4.19: Sensor network deployment (not all deployed sensor nodes are shown). The disks 
and circles represent the positions of the sensor nodes. The network of 144 nodes used in the 
multitarget tracking and PEG experiments is highlighted 

a personal computer as the Tier-2 node. Only one such Tier-2 node was necessary 
in order to maintain connectivity to all 144 nodes used for the tracking experi­
ment. In the experiment, simulated pursuers were used since it was difficult to 
navigate a ground robot in the field of tripods. 
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4.9.1 Platform 

A new sensor network hardware platform, called the Trio mote, was designed 
by Dutta et al. [427] for the outdoor testbed. The Trio mote is a combination 
of the designs of the Telos B mote, eXtreme Scaling Mote (XSM) sensor board 
[450], and Prometheus solar charging board [451], with improvements. Figure 
15 shows the Trio node components and Fig. 4.20(a) shows the assembled Trio 
node in a waterproof enclosure sitting on a tripod. 

The Telos B mote [452] is the latest in a line of wireless sensor network 
platforms developed by U.C. Berkeley for the NEST project. It features an 8 
MHz Texas Instruments MSP430 micro-controller with 10 kB of RAM and 48 
kB of program flash and a 250 kbps, 2.4GHz, IEEE 802.15.4 standard compliant, 
Chip-con CC2420 radio. The Telos B mote provides lower power operation than 
previous motes (5.1µA sleep, 19 mA on) and a radio range of up to 125 meters 
(m), making it the ideal platform for large-scale, long-term deployments. 

The Trio sensor board includes a microphone, a piezoelectric buzzer, x-y 
axis magnetometers, and four PIR motion sensors. For the multitarget tracking 
application, we found that the PIR sensors were the most effective at sensing 
human subjects moving through the sensor field. 

The magnetometer sensor had limited range even detecting targets with rare 
earth magnets and the acoustic sensor required complex signal processing to pick 
out the various acoustic signatures of a moving target from background noise. 
The PIR sensors provided an effective range of approximately 8 m, with sensi­
tivity varying depending on weather conditions and time of day. The variability 
in the signal strength of the PIR sensor reading prohibited extraction of ranging 
information from the sensor, so the PIR sensors were used as binary detectors. 

The software running on the sensor nodes are written in NesC [453] and run 
on TinyOS [454], an event-driven operating system developed for wireless em­
bedded sensor platforms. The core sensor node application is the DetectionEvent 
module, a multimode event generator for target detection and testing node avail­
ability. The sensor node application relies on a composition of various TinyOS 
subsystems and services that facilitate management and interaction with the net­
work (see Fig. 4.21). 

The Detection Event module provides four modes of event generation from 
the nodeVevents generated periodically by a timer, events generated by pressing 
a button on the mote, events generated by the raw PIR sensor value crossing a 
threshold, and events generated by a three-stage filtering, adaptive threshold, and 
windowing detection algorithm for the PIR sensor signal developed by the Uni­
versity of Virginia [458]. The timer generated events ere parsed and displayed at 
the base station in order to help visualize which nodes in the network were alive. 
The three-stage PIR detection filter code was used during the development cycle. 
While it had potential to be more robust to different environmental conditions, 
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Figure 4.20: (a) Telos B. (b) Trio sensor board, based off the XSM sensor board and 
Prometheus solar power circuitry. See [427] for details 

Figure 4.21: Software services on the sensor network platform. The core network manage­
ment services are Deluge for network reprogramming [455] and Marionette for fast reconfig­
uration of parameters on the nodes [456]. The Detection Event application relies on the Drip 
and Drain routing layer for insemination of commands and collection of data [457]. For more 
details on the software architecture used in the outdoor testbed, see [427], [456] 

during the day of the demo, we reverted to the simple threshold PIR detector 
because the simple threshold detector was easy to tune and performed well. 
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The algorithms for the MSF, MTT, MTF, and MAC modules are all written 
in MATLAB and C++ and run on the base station in real-time. The same im­
plementation of the tracking algorithm and the robust minimum time controller 
used in the simulations shown in Figs. 4.15 and 4.17 are used in the experiments. 
The data was timestamped at the base station. 

4.9.2 Live demonstration 
The multitarget tracking algorithm was demonstrated on one, two, and three hu­
man targets, with targets entering the field at different times. In all three experi­
ments, the tracking algorithm correctly estimated the number of targets and pro­
duced correct tracks. Furthermore, the algorithm correctly disambiguated cross­
ing targets in the two and three target experiments without classification labels 
on the targets, using the dynamic models and target trajectories before crossing 
to compute the tracks. 

Figure 4.22 shows the multitarget tracking results with three targets walk­
ing through the field. The three targets entered and exited the field around time 

Figure 4.22: Estimated tracks of targets at time 70 from the experiment with three people 
walking in the field. (upper left) Detection panel. Sensors are marked by small dots and de­
tections are shown in large disks. (lower left) Fusion panel shows the fused likelihood. (right) 
Estimated Tracks and Pursuer-to-evader Assignment panel shows the tracks estimated by the 
MTT module, estimated evader positions (stars) and pursuer positions (squares) 
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10 and 80, respectively. During the experiment, the algorithm correctly rejected 
false alarms and compensated for missing detections. There were many false 
alarms during the span of the experiments, as can be seen from the false alarms 
before time 10 and after time 80 in Fig. 4.23. Also, though not shown in the 
figures, the algorithm dynamically corrected previous track hypotheses as it re­
ceived more sensor readings. Figure 4.23 also gives a sense of the irregularity 
of network traffic. The spike in traffic shortly after time 50 was approximately 
when two of the targets crossed. It shows that the multitarget tracking algorithm 
is robust against missing measurements, false measurements, and the irregularity 
of network traffic. 

In the last demonstration, two simulated pursuers were dispatched to chase 
two crossing human targets. The pursuer-to-target assignment and the robust 
minimum time-to-capture control law were computed in real-time, in tandem 
with the real-time tracking of the targets. The simulated pursuers captured the 
human targets, as shown in Fig. 4.24. In particular, note that the MTT module 
is able to correctly disambiguate the presence of two targets [right panel of Fig. 
4.24(a)] using past measurements, despite the fact that the MSF module reports 
the detection of a single target [upper left panel of Fig. 4.24(a)]. A live picture of 
this experiment is shown on the right of Fig. 4.18. 

In order to coordinate multiple pursuers, the MAC module is developed. The 
assignments of pursuers to evaders are chosen such that the time to capture all 
evaders is minimized. The controllers for the pursuers are based on minimum-
time control but were designed to account for the worst-case evader motions and 

Figure 4.23: Raster plot of the binary detection reports from the three target tracking demo. 
Dots represent detections from nodes that were successfully transmitted to the base station 
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Figure 4.24: Estimated tracks of evaders and pursuer positions from the pursuit evasion game 
experiment. (a) Before crossing. (b) After crossing 

to add robustness to the quantization of inputs, measurement and process noises, 
and modeling errors. 

Simulation and experimental results have shown that LochNess is well suited 
to solving real-time control problems using sensor networks and that a sensor 
network is an attractive solution for the surveillance of a large area. 

In this section, we assumed a stationary hierarchy, i.e., the Tier-2 nodes and 
base station are fixed. However, a stationary hierarchy is not robust against ma­
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licious attacks. In our future work, we will address this issue by introducing 
redundancy, distributing the coordination tasks among Tier-2 nodes, and dynam­
ically managing the hierarchy of the system. Our immediate goal is to quantify 
the robustness of the system against false measurements and packet loss and to 
identify the sensor network parameters, such as maximum delay rate, maximum 
packet loss rate, and maximum false detection rate, necessary for seamless oper­
ation of the control system. 

4.10 Notes 
In this paper, we developed a distributed adaptive control framework for the con­
trol design of a class of multiagent systems in the presence of exogenous stochas­
tic disturbances and actuator and sensor attacks. In particular, we address the 
problem of time-varying multiplicative and additive actuator attacks on the fol­
lower agents. The proposed adaptive controller architecture guarantees uniform 
ultimate boundedness in probability of the state tracking errors for each agent in 
a mean-square sense. In future research, we will extend the proposed framework 
to develop reliable hybrid-adaptive control architectures for multiagent as well 
as cyber-physical systems involving system nonlinearities and system modelling 
uncertainty, with integrated verification and validation, for providing robust sys­
tem performance and reconfigurable system operation in the presence of system 
uncertainties, component failures, and adversarial attacks. Optimality considera­
tions along the lines of [380] and [382] in the face of sensor and actuator attacks 
can also be considered. 

Following this is a hierarchical real-time control system for sensor networks. 
LochNess is applied to pursuit evasion games, in which a group of evaders are 
tracked using a sensor network and a group of pursuers are coordinated to cap­
ture the evaders. Although sensor networks provide global observability, they 
cannot provide high quality measurements in a timely manner due to packet loss, 
communication delay, and false detections. These factors have been the main 
challenge to developing a real-time control system using sensor networks. 

The foregoing section proposes a possible solution for closing the loop 
around wireless ad-hoc sensor networks. The hierarchical real-time control sys­
tem LochNess decouples the estimation of evader states from the control of pur­
suers by using multiple layers of data fusion, including the multisensor fusion 
(MSF) module, the multitarget tracking (MTT) module, and the multitrack fu­
sion (MTF) module. While a sensor network generates noisy, inconsistent, and 
bursty measurements, the three layers of data fusion convert raw sensor measure­
ments into fused measurements in a compact and consistent representation and 
forward the fused measurements to the pursuers controllers in a timely manner. 



Chapter 5


Secure Control of 
Distributed Multiagent 
Systems 

5.1 Introduction 
In the last few years, the consensus problem of multi-agent systems has received 
compelling attention in the control and system community due to its broad ap­
plications in many areas, such as unmanned vehicles [459], formation control 
[461] and flocking [468]. The basic objective of consensus is to design proto­
cols, based on local information of agents, which guarantee that the states of all 
agents converge to a common value. The consensus protocol was initially de­
signed for systems of first-order agents [469] and then extended to systems of 
second-order dynamics; see, e.g., [476], [472], [478] and references therein. 

It has been shown that the first-order consensus can always be reached if cer­
tain connectivity conditions are satisfied; however, the second-order consensus 
relies not only on the connectivity of the communication topology but also on the 
parameters (or gains) of consensus protocols [476]. As a result, one critical issue 
in the second-order consensus problem is the characterization of the parameters 
of consensus protocols, i.e., finding all possible parameters which guarantee the 
consensus. [472] gave a sufficient condition on parameters which depends only 
on the real parts of the eigenvalues of the Laplacian matrix. Based on this, [478] 
further derived some necessary and sufficient conditions with the same second-
order consensus protocol. By using the Hurwitz stability criteria, [480] studied 
a more general second-order consensus protocol which includes several existing 
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protocols, such as the protocol of [478], as special examples. In this work, all of 
the gains which guarantee the consensus were obtained and the design method 
for protocols was constructively provided; different consensus modes can be re­
alized by altering gains. However, the Hurwitz stability criteria may result in a 
comparatively complicated calculation in the analysis of the stability of complex 
coefficient polynomials. 

On the other hand, time delays may arise naturally, which are usually the 
key factors that influence the stability of multiagent systems. The delay effects 
in multi-agent systems with first-order agents by using a frequency domain ap­
proach were studied by [469]. For the second-order consensus problem, the delay 
sensitivity of protocols is an important issue as well. [478] extended the delay 
sensitivity analysis of [469] to systems of double integrators by using a simi­
lar method. Other important works include [476] for the consensus with diverse 
input delays and [467] for the consensus with both input and communication 
delays. Note that, in the literature related to the delay sensitivity analysis in the 
consensus problem, usually protocols with particular forms are analyzed. To the 
best of the authors knowledge, up to now, however, there have been few results 
available for certain eneral protocol with which the delay sensitivity analysis can 
be constructively given. 

This chapter focuses on the general consensus protocol proposed by [480] 
with input delays. The major differences between this work and [480] are listed 
as follows: 

�	 In what follows, we impose a constraint on the state trajectories of agents; 
under the necessary and sufficient condition on protocol parameters ob­
tained in this paper, not only is the consensus guaranteed but also the 
agents states are not exponentially diverging. This constraint is from As­
sumption 1 of [475], under which the oscillatory and the unbounded 
states are allowed while the exponentially unstable ones are not allowed. 

�	 Compared to [480], where the Hurwitz stability criteria was used to indi­
rectly analyze the stability of complex coefficient polynomials, we adopt 
a different method to study the parameter condition, which comparatively 
reduces the analysis complexity. 

�	 [480] studied the general consensus protocol without delays. In this pa­
per, we further analyze the robustness of the protocol to input delays. The 
proof idea is mainly from [478]. However, as the delay sensitivity analy­
sis hereinafter is based on the general protocol, the results include several 
existing ones as special cases. By analyzing the closed-loop poles of the 
system, the maximal allowable upper bound of the delay is obtained. 
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5.2 Problem Formulation 
Let G = (V,E , A) be a weighted directed graph of order n, where V = 1, ..., n 
is the set of nodes; E ⊆ V ×V is the set of edges and A = [ai j] ∈ Rn×n is the 
non-negative adjacency matrix. An edge of G is denoted by a pair of distinct 
nodes (i, j) ∈ E , where node i and node j are called the child node and the par­
ent node, respectively. A path in a directed graph is a sequence i0, i1, ..., i f if 
of different nodes such that (i j−1, i j) is an edge for j = 1,2, ..., f , f ∈ Z+. De­
note Ni = j | (i, j) ∈ E) as the set of neighbors of node i. The adjacency matrix 
A = [ai j] ∈ Rn×n is defined such that ai j is the non-negative weight of edge (i, j). 

We assume ai j = 0 if (i, j) / = 0 for all i ∈ 1, ..., n. The Laplacian ∈ E and aii �nmatrix L = [li j] ∈ Rn×n is defined as lii = j=1, j=� i ai j and li j = −ai j(i =� j). A 
directed tree is a directed graph, in which there is exactly one parent for every 
node except for a node called the root. A directed spanning tree is a directed 
tree, which consists of all of the nodes in G. A directed graph contains a directed 
spanning tree if there exists a directed spanning tree as a subgraph of the graph. 

Let Re(z),Im(z) and �z� be the real part, the imaginary part and the modulus 
of a complex number z, respectively. Let In(0n) be the identity (zero) matrix of 
dimension n and 1n be the n × 1 column vector of all ones. Here, represents 
the Kronecker product. 

Now, consider a network of agents with double-integrator dynamics. The dy­
namics of each agent is 

ẋi(t) = vi(t), v̇i(t) = ui(t), (5.1) 

where i = 1, ...,n, xi(t) ∈ Rm , vi(t) ∈ Rm and ui(t) ∈ Rm are the position-like state, 
the velocity-like state and the control input of agent i, respectively. Without loss 
of generality, in this paper, we let m = 1 for notational simplicity. 

Definition 2.1. [472]. System (5.1) is said to reach consensus if there exists 
a distributed protocol ui(t), i = 1, ..., n, such that for any initial conditions, the 
states of agents satisfy 

limt→∞ �xi(t) − x j(t)� = 0, and limt→∞ �vi(t) − v j(t)� = 0,∀i, j = 1, ..., n. 
The following general consensus protocol was studied in [480]: 

ui(t) = −k0xi(t) − k1vi(t) − ai j[k2(xi(t) − x j(t))+ k3(vi(t) − v j(t))], (5.2) 
j∈Ni 

where k0 ∈ R, k1 ∈ R, k2 ∈ R and k3 ∈ R are the parameters. Using the notation 

x(t) = [x1(t), ...,xn(t)]T , v(t) = [v1(t), ...,vn(t)]T , ξ (t) = [x(t)T , v(t)T ]T 

Under protocol (5.2), system (5.1) can be written as 

ẋi(t) = vi(t), 
v̇i(t) = −k0xi(t) − k1vi(t) 

− ai j[k2(xi(t) − x j(t))+ k3(vi(t) − v j(t))] (5.3) 
j∈Ni 
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which has the following matrix form: 

ξ̇ (t) = L̃ξ (t), (5.4) 

where ˜ 0n In and L is the Laplacian matrix associ-L = −k0In − k2L −k1In − k3L
ated with G. 

We now focus on the following model with input delays: 

ẋi(t) = vi(t), 
v̇i(t) = −k0xi(t − τ) − k1vi(t − τ) 

− ai j[k2(xi(t − τ) − x j(t − τ))+ k3(vi(t − τ) − v j(t − τ))] (5.5) 
j∈Ni 

where τ ≥ 0 represents the constant delay. 
The matrix form of (5.5) is written as 

ξ̇ (t) = L̃1ξ (t)+ L̃2ξ (t − τ), (5.6) 

where ˜ = 
0n In and ˜ = 

0n 0n L1 0n 0n 
L2 −k0In − k2L −k1In − k3L 

Lemma 2.1 [473]. Let L be the Laplacian matrix corresponding to a directed 
graph L. Here L has exactly one zero eigenvalue and all other eigenvalues have 
positive real parts if and only if the directed graph L contains a directed span­
ning tree. 

Henceforth, we assume the network topology of the agents contains a directed 
spanning tree. According to Lemma 2.1, L has exactly one zero eigenvalue and 
all other eigenvalues have positive real parts. Denote the eigenvalues of L by 
µi, i − 1, ...,n. Without loss of generality, we assume µi = 0. 

5.3 Main Results 
In this section, we first derive a parameter condition and then study the delay sen­
sitivity of the protocol based on the condition obtained. To study the parameter 
condition, we consider system (5.1) under protocol (5.2). The Laplacian trans­
form of (5.4) is 

sΞ(s) − ξ (0) = L̃Ξ(s), −→ (sI2n −L̃)Ξ(s) = ξ (0) 
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The closed-loop poles of system (5.4) satisfy


det(sI2n −L̃) = det k0In

sI
+ 

n

k2L sIn + k
−
1I

I
n

n 

+ k3L


= det[(s2In)+ s(k1In + k3L)+(k0In + k2L)] (5.7)

n

= [s2 +(k1 + k3µi)s + k0 + k2µi] = 0. 

As a result, we have 

� 

i 1=

2k k k k 4 k k( )+ ( ) ( )µ µ µ+ + + +− 1 3 i 1 3 i 0 2 is =i1 , � 
2k k k k 4 k k( ) ( ) ( )µ µ µ+ + + +− −1 3 i 1 3 i 0 2 i 

2 

2 
(5.8)


si2 = ,


i = 1, ...,n, 

where si1 and si2 are the roots of s2 +(k1 + k3µi)s + k0 + k2µi = 0. 

Denote ηi(t) = [xi(t),vi(t)]T and ηi(t) = [η1(tT , ...,ηn(t)T ]T . Then the matrix 
form of system (5.1) under protocol (5.2) can be written as 

η̇(t) = (In ⊗ A + L⊗ B)η(t), (5.9) 

0 1 0 0
where A = and B = −k0 −k1 −k2 −k3 

It is obvious that (5.9) is equivalent to (5.4). 
Lemma 3.1 [480]. System (5.1) under protocol (5.2) reaches consensus if and 

only if Re(si j) < 0, i = 2, ...,n, j = 1,2. 
If the consensus is reached, we have that the synchronizing state is given by ⎤
⎡


η1(0) ⎢⎢⎢⎢⎣


⎥⎥⎥⎥⎦

,
 (5.10)


.


.
lim ηi(t) = (pT ⊗ eAt )
t→∞ 

.

ηn(0) 

where p is the left eigenvector of L associated with eigenvalue 0 satisfying 
pT 1n = 0. 

Lemma 3.2. System (5.1) under protocol (5.2) reaches consensus without ex­
ponentially diverging state trajectories if and only if Re(si j) < 0, i = 2, ..., n, j = 
1,2 and Re(s1 j) ≤ 0, j = 1,2. 

Proof: Sufficiency. By Lemma 3.1, it can be seen that system (5.1) under 
protocol (5.2) reaches consensus if Re(si j) < 0, i = 2, ...,n, j = 1,2. From (5.10), 
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it is seen that the consensus mode is decided by A. If Re(si j) < 0, i = 2, ..., n, j = 
1,2, is guaranteed and all of the eigenvalues of A lie in the closed left half-
plane, we can conclude that the consensus is reached and the agent trajectories 
are not exponentially diverging. As det (sI2 − A) = s2 + k1s + k0, it follows that 
if Re(si j) < 0, i = 2, ..., n, j = 1,2, and the roots of s2 + k1s + k0 = 0 lie in the 
closed left half complex plane, system (5.1) under protocol (5.2) reaches consen­
sus without exponentially diverging state trajectories. 

Necessity. We can prove the necessity in a similar manner and the proof is 
omitted here. 

Lemma 3.3 [470]. The complex coefficient polynomial g(s) = s2 + as + b is 
stable if and only if Re(a) > 0 and Re(a)Im(a)Im(b)+ Re2(a)Re(b) − Im2(b) > 
0, where a and b are complex numbers. 

Extending on [480] with a constraint on the state trajectories, we provide the 
parameter condition by the following lemma:. 

Lemma 3.4. System (5.1) under protocol (5.2) reaches consensus without 
exponentially diverging state trajectories if and only if the protocol parameters 
satisfy 

k0 ≥ 0, (5.11) 
k1 ≥ 0, (5.12) 
k1 + k3Re(µi) > 0, (5.13) 

(k1 + k3Re(µi))k2k3Im2(µi) + (k1 + k3Re(µi))
2(k0 + k2Re(µi)) 

> k2
2Im2(µi), i = 2, ...,n (5.14) 

Proof: The roots of s2 + k1s + k0 = 0 lie in the closed left half complex 
plane if and only if k0 ≥ 0 and k1 ≥ 0. From Lemma 3.3, it is followed that 
Re(si j) < 0, i = 2, ...,n, j = 1,2, if and only if both (5.13) and (5.14) hold. Ac­
cording to Lemma 3.2, we can conclude that system (5.1) under protocol (5.2) 
reaches consensus without exponentially diverging state trajectories if and only 
if the parameters satisfy (5.11)(5.14). It is easy to see that (5.13) and (5.14) are 
equivalent to (39) and (40) of [480], respectively. By using the stability theory 
of the complex coefficient polynomial, the analysis complexity is comparatively 
reduced. 

Based on Lemma 3.4, we study the delay sensitivity of system (5.5) and have 
the following theorem. 

Theorem 3.1: Suppose that (5.11)(5.14) are satisfied and k0 and k1 are not 
simultaneously zero. If the parameters are given as k0 > 0 and k1 = 0, system 
(5.5) reaches equi-amplitude periodic consensus if and only if τ = 0. In other 
cases, system (5.5) reaches consensus without exponentially diverging states if 

τ < τ1 = min (5.15)
1≤i≤n 

{θi/φi} 
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where θi ∈ [0, π) satisfies 

sinθi = 
k1φi 

2 + k3Re(µ
φ 
i)

2 
φi 

2 + k2Im(µi) 
, 

i 

cosθi = 
k0 + k2Re(µi)+ k3Im(µi)φi 

, (5.16)
φ 2 

i 

and φi > 0 satisfies 

φ 4 = (k1 + k3Re(µi))
2 + k3

2Im2(µi) φ 2 + 2Im(µi)(k2k1 − k3k0)φii i 

+ (k0 + k2Re(µi))
2 + k2

2Im2(µi) (5.17) 

Proof: The closed-loop poles of system (5.5) satisfy 

det(sI2n −L̃1 − e−sτ L̃2) = det 
� 

e−sτ (k0

sI
In

n 

+k2 L) sIn+e−sτ

−
(k

I
1 

n

In+k3L) 

� 
= det 

� 
s2In + se−sτ (k1In + k3L)+ e−sτ (k0In + k2L) 

� 
(5.18)

n

= s2 +(k1 + k3µi)se−sτ +(k0 + k2 µi)e−sτ = 0. 
i=1 

Let pi(s, e−st ) = s2 + (k1 + k3 µi)se−st + (k0 + k2 µi)e−st , i = 1, ..., n, and 
p(s,e−st ) = 

�
i
n 
=1 pi(s,e−st ). According to Lemma 3.4, system (5) reaches con­

sensus without exponentially diverging states when τ = 0, where all of the roots 
of n

i=2 s2 +(k1 + k3 µi)+(k0 + k2 µi) = 0 are located in the open left half plane 
and the roots of s2 + k1s + k0 = 0 are located in the closed left half plane. Note 
that the roots of p(s, e−st ) = 0 are continuous with respect to τ . 

Next we find the minimum value of τ such that p(s, e−st ) = 0 has some purely 
imaginary roots. 

2In the case where k0 > 0 and k1 = 0, the roots of s + k1s + k0 = 0 are ± j
√

k0. 
As a result, p(s, e−st ) = 0 has some purely imaginary roots when τ = 0. It is easy 
to see that for any τ > 0, the agents states are of exponentially diverging; system 
(5.5) reaches equi-amplitude periodic consensus if and only if τ = 0. 

In other cases, we consider the following equation: 

s2 +(k1 + k3 µi)se−sτ +(k0 + k2µi)e−sτ = 0, i = 1, ..., n. (5.19) 

Let s = jω(ω =� 0) By (5.19), we have 

ω
2 = e− jωτ [ jω(k1 + k3Re(µi)+ jk3Im(µi)) 

+ (k0 + k2Re(µi)+ jk2Im(µi))] 

= e− jωτ [(k0 + k2Re(µi) − k3Im(µi)ω) 

+ j(k1ω + k3Re(µi)ω + k2Im(µi))] 

= (cos ωτ − jsin ωτ)[(k0 + k2Re(µi) − k3Im(µi)ω) 

+ j(k1ω + k3Re(µi)ω + k2Im(µi))] (5.20) 
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It follows from (5.20) that 

ω
4 = (k0 + k2Re(µi) − k3Im(µi)ω)2 

+ (k1ω + k3Re(µi)ω + k2Im(µi))
2 , (5.21) 

ω
2 = (k0 + k2Re(µi) − k3Im(µi)ω)cosωτ 

+ (k1ω + k3Re(µi)ω + k2Im(µi))sin ωτ (5.22) 
0 = (k1ω + k3Re(µi)ω + k2Im(µi))cosωτ 

− (k0 + k2Re(µi) − k3Im(µi)ω)sin ωτ. (5.23) 

By (5.21)–(5.22), we readily obtain 

sin ωτ =
(k1ω + k3Re(µi)ω + k2Im(µi)) 

, (5.24)
ω2 

(k0 + k2Re(µi)+ k3Im(µi))ω 
cos ωτ = 

ω2 , (5.25) 

Further manipulation of (5.21) yields 

ω
4 = (k1 + k3Re(µi))

2
ω

2 + 2Im(µi)(k2k1 + k3k0)ω 

+ (k0 + k2Re(µi))
2 + k2

2Im2(µi) (5.26) 

which calls for further discussions. We first consider the case ω > 0. 
For i = 1, we have ω4 = k1

2ω2 + k0
2. As k0 and k1 are not simultaneously zero 

and ω > 0, there exists a single φ1 > 0 such that φ1
4 = k1

2φ1
2 + k0

2. 
For i = 2, ..., n, by (5.13), we have (k1 + k3Re(µi))

2 + k3
2Im2(µi) > 0. Note 

that (k0 + k2Re(µi))
2 + k2

2Im2(µi) = 0 if and only if k0 = k2 = 0(Im(µi) =�
0) or k0 + k2Re(µi) = 0(Im(µi) = 0). If k0 = k2 = 0, (5.14) is not satis­
fied, which results in a contradiction. Similarly, if k0 + k2Re(µi) = 0 and 
Im(µi) = 0, (5.14) is not satisfied, which results in a contradiction. Thus, we 
have (k0 + k2Re(µi))

2 + k2
2Im2(µi) > 0. As (k1 + k3Re(µi))

2 + k3
2Im2µi) > 0, 

(k0 + k2Re(µi))
2 + k2

2Im2(µi) > 0 and ω > 0, we can conclude that there ex­
ists a single φi > 0 such that (5.17) is satisfied. Let θi ∈ [0, 2π), which satisfies 
(5.16). Then, we have that p(s,e−st ) = 0 has purely imaginary roots if and only 
if 

τ ∈ Ω = {(2lπ + θi)/φi | i = 1, ...,n, l = 0,1, 2, ...}
As θi ∈ [0, 2π), the minimum value of τ such that the first root crosses the 

imaginary axis is at l = 0 and is given by τ1 = min1≤i≤n {θi/φi}. It follows that, 
for any τ ∈ [0,τ1), system (5.5) reaches consensus without exponentially diverg­
ing state trajectories. 

Similar conclusions can be drawn for the case ror ω < 0 and it is left to the 
reader to get it. 
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Remark 3.1. When k0 > 0 and k1 = 0, all of the eigenvalues of A lie on the
imaginary axis and system (5.1) under protocol (5.2) reaches periodic consen-
sus. [480] studied the periodic consensus when k2 = 0. However, from Lemma
3.2 and Lemma 3.4, it can be seen that k2 = 0 is not a necessary condition for the
periodic consensus; system (5.1) under protocol (5.2) reaches periodic consen-
sus if and only if k0 > 0,k1 = 0,k3 > 0 and k2k2

3Re(µi)Im2(µi)+ k2
3Re(µi)

2(k0 +
k2Re(µi))> k2

2Im2(µi), i = 2...,n.
Remark 3.2. When k0 = k1 = 0, it is the case discussed by [478], where the

results are based on the assumption that k2 > 0 and k3 > 0 (where k2 and k3 are
called the coupling strengths). However, Lemma 3.4 shows that the condition
that k2 > 0 and k3 > 0 is necessary for the consensus.

Remark 3.3. The proof idea of Theorem 3.1 is based on that of Theorem 2
of [478]. However, as the case where k0 = k1 = 0 was discussed in [478], only
consider the cases where k0 and k1 are not simultaneously zero.

5.4 Illustrative Examples
In this section, we provide numerical examples to illustrate the effectiveness of
the theoretical results.

Example 4.1. Consider a group of four agents with the communication topol-
ogy shown in Fig. 5.1. The Laplacian matrix L corresponding to the graph is

1 0 −1 0
−1 1 0 0
0 −1 1 0
−1 0 0 1



Figure 5.1: Communication topology of four agents

4 1 2

3
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Figure 5.2: k0 = k1 = k2 = k3 = 1 and τ = 0.2(s)

Figure 5.3: k0 = k1 = k2 = k3 = 1 and τ = 0.4(s)

The eigenvalues of L are µ1 = 0,µ2 = 1,µ3 = 1 : 5− j0.866 and µ4 =
1.5+ j0.866. The initial conditions are given as x1(0) = 3,x2(0) = −2,x3(0) =
−1,x4(0) = 4,v1(0) = 1,v2(0) =−4,v3(0) =−3 and v4(0) = 2.

Let k0 = 1,k1 = 1,k2 = 1 and k3 = 1. It is easy to check that (5.11)(5.14) are
satisfied. By Theorem 3.1, we obtain τ1 = 0 : 3188(s). When delays are given as
τ = 0 : 2(s) and τ = 0 : 4(s), the trajectories of the agents are shown in Figs. 5.2
and 5.3.
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Figure 5.4: k1 = 1,k0 = k2 = k3 = 1 and τ = 0(s)

Figure 5.5: k1 = 1,k0 = k2 = k3 = 1 and τ = 0.2(s)

Let k0 = 1,k1 = 0,k2 = 1 and k3 = 1. It is easy to check that (5.11)(5.14)
are satisfied. By Theorem 3.1, we have that the system reaches equi-amplitude
periodic consensus if and only if τ = 0. When delays are given as τ = 0(s) and
τ = 0.2(s), the trajectories of the agents are shown in 5.4 and 5.5.

Let k0 = 0,k1 = 1,k2 = 1 and k3 = 1. It is easy to check that (5.11)(5.14)
are satisfied. By Theorem 3.1, we get τ1 = 0.3778(s). When delays are given as
τ = 0.3(s) and τ = 0.5(s), the trajectories of the agents are shown in Figs. 5.6
and 5.7.
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Figure 5.6: k1 = 1,k0 = k2 = k3 = 1 and τ = 0.3(s)

Figure 5.7: k1 = 1,k0 = k2 = k3 = 1 and τ = 0.5(s)

5.5 Notes
A general consensus protocol for directed networks of double integrators with
input delays has been analyzed. A necessary and sufficient condition on protocol
parameters, under which not only the consensus is reached but also the agents
states are not exponentially diverging, has been given. Based on this condition,
the robustness of the protocol to input delays has been discussed. The maximal
allowable upper bound of the delay has been obtained. Simulation results have
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been presented to illustrate the effectiveness of the theoretical results. Future 
work includes studying the general second-order consensus protocol with both 
input and communication delays: 

ui = −k0xi(t − τ) − k1vi(t − τ) − ai j[k2(xi(t − τ) − x j(t − τ1 − τ2)) 
j∈Ni 

+ k3(vi(t − τ) − v j(t − τ1 − τ2))] (5.27) 

where τ1 and τ2 are input and communication delays, respectively. [467] studied 
the consensus with both input and communication delays. Extending the results 
of [467] to the general second-order consensus protocol (5.27) is an interesting 
line of future research. 
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Chapter 6


Advanced Consensus 
Algorithms 

6.1 Event-Triggered Control for Multiagent Systems 
Recent years have witnessed the increasing interest in the study of the co­
ordination problem for multiagent systems (MASs). In this area, the consen­
sus of MASs is a basic and important problem that has had many applica­
tions in the fields of biology, computer science and control engineering ([608], 
[615], [605]). During the past decades, the study of the consensus problem 
has attracted much attention for systems of single-integrator kinematics ([605], 
[612]), double-integrator dynamics ([611], [610], [623]), fractional-order dy­
namics ([596], 2010) and high-order dynamics ([616]) based on the continuous-
time models ([595], [611]) or discrete-time models ([596], [602]). At the same 
time, several scenes have also been addressed, such as networks with switch­
ing topologies and time-varying delays ([614]; [622]), asynchronous consen­
sus ([598], [617]), finite-time consensus ([601]) and so on (see, for example, 
[606] and the references therein). More notably consensus with a dynamic leader 
is called a consensus tracking problem ([604]). The tracking control has been 
widely used in many practical applications, such as unmanned aerial vehicle for­
mation, target tracking in sensor networks and so on ([600]). 

6.1.1 Introduction 
Decentralized consensus control for MASs is currently facilitated by recent tech­
nological advances on computing and communication resources. Each agent can 
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be equipped with a small embedded microprocessor that will be responsible for 
collecting the information from neighboring nodes and actuating the controller 
updates according to some ruling ([597]). However, the embedded processors are 
usually resource-limited. So, one of the most important aspects in the implemen­
tation of decentralized consensus algorithms is the communication and control 
actuation schemes. In order to reduce the communication burden, while at the 
same time saving the communication resource for the network, the data-sampled 
control for continuous time MASs has been investigated by [619, 618], in which 
the sampled signals of the agents should be instantly transmitted through the 
network. It has been shown that the data-sampled control has many advantages 
over the continuous time control, such as reducing the required broad bandwidth 
of networks, having advantages in control accuracy, control speed and so on. 
Although the data-sampled control has some advantages, as mentioned above, 
it might be conservative in terms of finding a conservative constant sampling 
period to guarantee the stability of the network in the worst case. However, as 
stated in [621], the worst cases are seldom encountered in practical systems, 
therefore, this kind of sampled control method will lead to the sending of many 
unnecessary signals to the controller or to the network, which may cause a large 
waste of the communication bandwidth. In order to overcome the conservatism 
of data-sampled control, a novel control strategy has been given increased atten­
tion in recent years, where the sampled signals of the agents, whether or not to 
be instantly transmitted to their neighbours or to the controller, are determined 
by certain events that are triggered depending on some rulings. This approach is 
called event-triggered control strategy ([597], [609]) and provides a useful way 
of determining when the sampled signal is sent out. For instance, the distributed 
control design in [597] forced each agent to update its control law whenever a 
certain error measurement threshold was violated, as well as when the control 
law of its neighbours was updated. In [613], the control actuation is updated 
whenever a certain error becomes large enough to overtake the norm of the state. 

In what follows, we focus our attention on the design of a reasonable discrete 
event-triggered communication scheme and its application to the tracking control 
design of discrete-time MASs in order to save the limited resource and reduce 
the communication burden while preserving the desired performance. During the 
event-triggered tracking control process, it is assumed that every agent (or the 
leader) release its state information to its neighbours only when the state error is 
above a specified threshold and each agent’s local controller is updated by using 
the latest information received from neighbouring agents. The main contributions 
of this paper can be summarized as follows: 

(1) Most existing works which have used the event-triggered control strategy 
mainly focus on the continuous-time models for MASs ([597], [609]). To the best 
of the authors’ knowledge, the tracking problem of discrete-time MASs making 
use of the event-triggered control method has not been addressed before. 
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(2) Different from the time-triggered periodic communication scheme 
([596]), the proposed scheme given hereafter is a discrete event-triggered 
scheme, where the sampled state signal of each agent that should be transmitted 
to its neighbors is determined by the error between the current sampled state and 
the latest transmitted one. Although both schemes mentioned above can guar­
antee the desired tracking performance, the number of the transmitted state sig­
nals through the multi-agent network is reduced by using the event-triggered 
scheme proposed in this paper. Thus, the communication resources embedded in 
the agents can be saved and the communication burden can be reduced. 

(3) Compared with [609], some special dynamic thresholds presented by 
some discretetime exponential functions are used in this paper, which can guar­
antee that the tracking errors for all agents can be ultimately bounded by a smaller 
positive bound than when using the discrete-time counterpart of the dynamic 
thresholds proposed in [609]. 

Note in the sequel that, to realize the tracking control, the reference state is 
available to only a subset of the agents followed, and only the communication 
between the agent and its local neighbours is needed, therefore, the designed 
control is essentially distributed. 

6.1.2 System model and problem statement 
Suppose that agent i takes the following dynamics: 

xi[k + 1] = xi[k]+ Tui[k], i = 1, 2, (6.1)· · · ,n, 

where the integer k is the discrete-time index, T is the sampling period which is 
assumed to be given a priori, and xi[k] ∈ R and ui[k] ∈ R, respectively, represent 
the agent’s state and the control input of the ith agent at time t = kT . In what fol­
lows, the consensus tracking problem will be considered, where the time-varying 
reference state is denoted by xr[k]. If the ith agent can access the leader’s state 
information, then a(i,n+1) > 0, otherwise, a(i,n+1) = 0. 

Throughout this section, for simplicity, we use [k] to represent (kT ), for ex­
ample, xi[k] = xi(kT ),xr[k] = xr(kT ), etc. 

Definition 6.1 ([620]) We say the solution of a dynamic system is uniformly ulti­
mately bounded (UUB), if for a compact set U of Rn and for all x(t0) = x0 ∈ U there 
exists an ε > 0 and a number T (ε, x0) such that ||x(t)|| < ε for all t > t0 + T . 

Assumption 3 The communication graph between the agents and the leader is 
fixed and directed. 

Assumption 4 No data loss and transmission delay occur in the network com­
munication. 
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For the system (6.1), the consensus tracking problem was investigated in Cao et 
al. (2009) based on the assumption that the sampled states of the agents should be 
instantly transmitted through the network, which means that the time-triggered 
scheme was used there. The following consensus algorithm was shown to be able 
to guarantee the tracking of states of agents (6.1) with a time-varying reference 
state xr[k] : 

1 n

ui[k] = �n+1 a(i, j)(x j[k] − x j[k − 1] − T γ{xi[k] − x j[k]})
T j=1 a(i, j) j=1 

a(i,n+1)
+ 

T 
�

j=1 a(i, j)
(xr[k] − xr[k − 1] − T γ{xi[k] − xr[k]}), (6.2)n+1 

where γ is a positive gain. 

Remark 6.1 In Cao et al. (2009), The tracking controller (6.2) is assumed to be 
realized based on a time-triggered scheme with a given sampling period T, which 
means that the state sampled at the current time kT for each agent i and the leader 
should be transmitted to its neighbours in order to realize the algorithm (6.2). In 
many real systems, however, the dynamics may change smoothly during a bounded 
time interval. Therefore, the time-triggered scheme may produce many useless mes­
sages if the current sampled signal has not significantly changed in contrast to the 
previous sampled signal, which then leads to a conservative usage of the commu­
nication bandwidth. In order to save the communication energy of the multi-agent 
network, in the following section, the event-triggered scheme is first introduced to 
realize the tracking controller (6.2), where the events are triggered for each agent i 
when the norm of the measurement errors exceeds certain dynamic thresholds pre­
sented by some trigger functions. 

The realizing process for the algorithm with the tracking controller (6.2) 
under an event-triggered scheme can be illustrated as follows: First, all agents 
compute their trigger functions based on the past and current sampled signals; 
if the trigger condition is fulfilled for one agent, the agent will broadcast its 
actual measurement value to its neighbours. The time when the agent sends 
the measurement value of the state out to its neighbours is called the release 
time. Each agent’s controller ui[k] is updated by evaluation using the latest in­
formation from its neighbours. In order to model the event-triggers for agents, 
here we denote the release times for the ith agent and its neighbours by si

m and 
sm

j (m = 0,1, 2, ; j ∈ Ni) and for the leader by sm
r (m = 0, 1, 2, ). The broad­· · · · · · 

casted states for agents and the leader can be described by the following piece­
wise constant functions: 

x̃i[k] = xi[si
m], k ∈ [si

m, s
i
m+1), (6.3) 

xr˜ [k] = xr[sr ],k ∈ [sr
m, s

r
m+1), (6.4)m
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where si
m − si

m+1 is an integer and si
mT − si

m+1T is a multiple of T . 
In the sequel, we define the trigger functions for agent i as fi( ), i = 1,2,· · · · , n, 

and the trigger function for the leader as g( ). For agent i, the states x j[k], j ∈·
Ni, are unknown; only xi[k] and x̃i[k], and the broadcasted values x̃ j[k] of the 
neighbours j ∈ Ni are available. An event for agent i about the state is triggered 
only when the trigger condition 

fi(k, xi[k], x̃i[k]) < 0, i = 1, 2, (6.5)· · · ,n 

is violated while the state of the leader is triggered as soon as 

g(k, xr[k], x̃r[k]) < 0 (6.6) 

is violated. The consensus algorithm with the tracking controller (6.2) under 
an event-triggered scheme, called event-triggered consensus algorithm or event-
triggered tracking control in the following, can be described as 

1 n

ui[k] = �n+1 a(i, j)(x̃ j[k] − x̃ j[k − 1] − T γ{x̃i[k] − x̃ j[k]})
T j=1 a(i, j) j=1 

a(i,n+1)
+ 

T 
�n

j=
+

1
1 a(i, j)

(x̃r[k] − x̃r[k − 1] − T γ{x̃i[k] − x̃r[k]}) (6.7) 

n1 � 
= 

T 
�n

j=
+

1
1 a(i, j) 

a(i, j)(x j[sm
j 

j 
(k)] − x j[sm

j 
j 
(k − 1)] 

j=1 

− T γxi[si ] − x j[s j (k)]) m m j 

a(i,n+1) r r+ 
T 
�n

j=
+

1
1 a(i, j)

(xr[sn(k)] − xr[sn(k−1)] 

+ T γ{xi[sm
i ] − xr[sn

r (k)]}), k ∈ [sm
i ,sm

i 
+1), (6.8) 

where 

mj(k) � arg min j 

p∈N:sp
j ≤k
{k − sp}, 

n(k) � arg min r i
m,s

i 

q∈N:sr
q≤k
{k − sq}, k ∈ [s m+1) 

and N = {1, 2, 3, · · ·}, {sp
j , p ∈ Z+} represents the set of release times for the jth 

agent before time k and {sr
q, q ∈ Z+} represents the set of release times for the 

leader before time k. 

Remark 6.2 In this section, si 
m
i 

m+1 − s in (6.8) may be larger than T. Moreover, in 
the time interval [sm

i ,sm
i 
+1), the events triggered by the neighbors of the ith agent and 

the leader may occur, which means that s m
j 

j(k) 
and sr

n(k) may change for k ∈ [sm
i ,sm

i 
+1). 

Therefore, ui[k] in (6.8) may be time-varying for k ∈ [sm
i ,sm

i 
+1) depending on the 

variations of s j and sr . m j(k) n(k)
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6.1.3 Design tracking results 
In this section, the tracking problem for system (6.1) under the event-triggered 
consensus algorithm (6.8) will be investigated. Before we obtain the main result, 
some arrangement is needed. Define the state error between the current sampled 
time and the last release time of the ith agent and the leader, respectively, as 

ei[k] = xi[sm
i ] − xi[k], k ∈ [sm

i , sm
i 
+1),e j[k] = x j[sm

j ] − x j[k], k ∈ [sm
j , sm

j 
+1) (6.9) 

and 

er[k] = xr[sm
r ] − xr[k],k ∈ [sm

r ,sm
r 
+1), (6.10) 

where m = 0,1, . Then, ui[k] in (6.8) can be rewritten as · · ·
n1	 � 

ui[k] = �n+1 a(i, j)(x j[k]+ e j[k] − x j[k − 1] − e j[k − 1]
T j=1 a(i, j) j=1 

− T γxi[k]+ ei[k] − x j[k] − e j[k]) 

+ 
T 
�a(i

j

,

=

n+

1

1

a
)

(i, j)
(xr[k]+ er[k] − xr[k − 1] − er[k − 1]n+1 

− T γ{xi[k]+ ei[k] − xr[k] − er[k]}). (6.11) 

Furthermore, define the tracking error between the ith agent and the leader as 
δi[k] � xi[k] − xr[k]; then 

xi[k + 1] − xi[k] = δi[k + 1]+ xr[k + 1] − δi[k] − xr[k] (6.12) 

and 
n1	 � 

ui[k] = �n+1 a(i, j)(δ j[k]+ xr[k]+ e j[k] − δ j[k − 1]
T j=1 a(i, j) j=1 

− xr[k − 1] − e j[k − 1] 
− γ{δi[k]+ xr[k]+ ei[k] − δ j[k] − xr[k] − e j[k]}) 

+ 
T 
�a(

n
i,
+

n+
1

1)
(xr[k]+ er[k] − xr[k − 1] − er[k − 1] 

j=1 a(i, j) 

− T γ{δi[k]+ ei[k] − er[k]}). (6.13) 

Substituting (6.12) and (6.13) into (6.1) and making some arrangements, we ob­
tain, for k ∈ [sm

i , sm
i 
+1), 

δi[k + 1] = 2xr[k] − xr[k + 1] − xr[k − 1] 
a(i,n+1)

+ �n+1 {er[k]+ T γer[k] − er[k − 1]} +(1 − T γ)δi[k] − T γei[k] 
j=1 a(i, j)


n
1 � 
+	 �n+1 a(i, j)[(1 + T γ)(δ j[k]+ ei[k])


j=1 a(i, j) j=1


− δ j[k − 1] − e j[k − 1]].	 (6.14) 
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To proceed further, we introduce the following matrix and augmented variable 
definitions as 

B = diag{a(1,n+1), · · · ,a(n,n+1)}, �n+1 n+1

D = diag{ a(1, j), a(n, j)},· · · , 
j=1 j=1 

�[k + 1] = (δ1[k + 1], · · · , δn[k + 1])�, 
e[k] = (e1[k], · · · , en[k])�, 

θ r[k] = 2xr[k] − xr[k + 1] − xr[k − 1], 
β r[k] = er[k]+ T γer[k] − er[k − 1]. 

Therefore, (6.14) can be rewritten as 

�[k + 1] = θ r[k]1n + D−1Bβ r[k]1n +(1 − T γ)In�[k] − T γe[k] 
+ D−1A(1 + T γ)�[k]+ D−1A(1 + T γ)e[k] 
− D−1A�[k − 1] − D−1Ae[k − 1] (6.15) 

and, subsequently, we reach 

�[k + 1]
= Ã

�[k]
+ B̃+C̃�[k] �[k − 1] 

(1 − T γ)In +(1 + T γ)D−1A − D−1A −D−1A
Ã = In 0 

B̃ =
(1 + T γ)D−1A 

0
− T γIn − D−1A −D6

0
−1A 

C̃ = 
In D−1B 

(6.16)0 0 

Defining the following augmented variables as 

�[k] e[k] β r[k]1nY [k] = �[k − 1] ,ω[k] = e[k − 1] , z[k] = 
θ r[k]1n] 

, 

we have that (6.16) becomes 

Y [k + 1] = ˜ Bω[k]+ ˜ (6.17)AY [k]+ ˜ Cz[k], 

where 

Ã =
(1 − T γ)In +(1 + T γ)D−1A −D−1A 

,
In 0


B̃ =
(1 + T γ)D

0 

−1A − T γIn −D
0 

−1A 
,C̃ = 

I
0 
n D−

0

1B 
. (6.18) 
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By using the iterative approach, the solution of (6.17) can be obtained as


k

Y [k] = ÃkY [0]+ Ãk−s{ ˜ Cz[s − 1]}.Bω[s − 1]+ ˜ (6.19) 
s=1 

In the following, the convergence analysis of (6.17) will be carried out based on 
(6.19. For use in the analysis, the following lemma ([596]) is needed. 

Lemma 6.1 
Assume that the leader has a directed path to all agents from 1 to n and let λi be the 
eigenvalue of D−1A. Then τi > 0 holds, where τi � 2|1 − λi|2{2[1 − Re(λi)] −|1 −
λi|2}/(|1 − λi|4 + 4[Im(λi)]

2), and Re(·) and Im(·) denote, respectively, the real and 
imaginary parts of a number. If positive scalars T and γ satisfy 

T γ < min{1, min τi}, (6.20)
i=1,...,n 

then Ã, defined in (6.18), has all eigenvalues within the unit circle. 

In the following, a discrete-time counterpart of the event-triggered scheme 
proposed in [609] for continuous-time MASs is introduced. The bound for 
the tracking error is estimated under the control (6.8) with the event-triggered 
scheme. 

Theorem 6.1 
Assume that the leader has a directed path to all agents from 1 to n and its states 

xr[k] satisfy |(xr[k] − xr[k − 1])/T | ≤ ξ̄ (i.e., the changing rate of xr[k] is bounded), 
and 

|ei[s]| ≤ α1 + c1e−β1sT , i = 1,2, · · · ,n, (6.21) 

|er[s]| ≤ α2 + c2e−β2sT , (6.22) 

where α j ≥ 0,β j ≥ 0,c j ≥ 0, j = 1,2, are some constants, s ∈ Z+. If positive scalars 
γ and T satisfy (6.20), under the control algorithm (6.8), the infinite norm of the 
solution of (6.17) is UUB by 

||Y [k]||∞ ≤ [2α1(1 + 

A)

T 
−
γ

1
)+ 2c1(1 + T γ)e−β1T + b1] 

(6.23)× ||(I2n − ˜ ||∞,(k →∞), 

where b1 = max{2T ξ̄ ,(2 + T γ)(α2 + c2e−β2T )}. 

Proof. From the definition of || · ||∞, it can be seen from the condition (6.22) 
that 

(6.24)||ω[s]||∞ ≤ α1 + c1e−β1 (s − 1)T 
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Furthermore, it is easy to see from the definitions of B̃,C̃ and z[s] that 

||B̃||∞ ≤ 2(1 + T γ), 

and 

Cz[s]||∞ ≤ max{2T ξ̄ ,(2 + T γ)(α2 + c2e−β2 T )} � b1 (6.25)|| ˜

Under the assumptions of this theorem, it follows from Lemma 1 that Ã has all 
eigenvalues within the unit circle. According to [599], there exists a matrix norm 
||| · ||| such that |||Ã||| < 1. Therefore, the following relation can be deduced 

k−1

lim Ãs A)−1 (6.26)
k→∞ 

|| ||∞ ≤ ||(I2n − ˜ ||∞. 
s=0 

Then, combining (6.19), (6.22) and (6.24-6.26) and according to ([596], proof of 
Theorem 3.1), it can be concluded that 

k k

Cz[s − 1]||∞||Y [k]|∞ ≤ || ÃkY [0]||∞ + || Ãk−sB̃ω[s − 1]||∞ + || Ãk−s ˜
s=1 s=1 

k k

≤ || ÃkY [0]||∞ +(α1 + c1e−β1T )||B̃||∞|| Ãk−s||∞ + b1|| Ãk−s||∞ 

s=1 s=1 

k k

≤ || Ãk||∞||Y [0]||∞ + 2(1 + T γ)(α1 + c1e−β1T )|| Ãk−s||∞ + b1|| Ãk−s||∞ 

s=1 s=1 

≤ [2α1(1 + T γ)+ 2c1(1 + T γ)e−β1T + b1]||(I2n − Ã)−1||∞,(k →∞) 

which ends the proof. 

Remark 6.3 From the definition of || · ||∞ and the inequality (6.23), it yields 

|δi[k]| ≤ [2α1(1 + T γ)+ 2c1(1 + T γ)e−β1T + b1]||(I2n − Ã)−1||∞ 

as k →∞, i = 1,2, · · · ,n, which means the tracking error between the ith agent and 
the leader is ultimately bounded. 

Remark 6.4 For all agents and the leader, we define the event-triggered functions, 
respectively, as 

fi(s, |ei[s]|) � |ei[s]|− (α1 + c1e−β1sT ), i = 1, 2, · · · , n, (6.27) 

g(s, |er[s]|)|er[s]|− (α2 + c2e−β2sT ). (6.28) 
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The events are triggered for the ith agent and the leader when fi(s, |ei[s]|) > 0 and 
g(s, |er[s]|) > 0, respectively. Under the above event-triggered schemes, the condi­
tions in (6.21-6.22) can be guaranteed for all s ∈ Z+, which can be concluded from 
the following analysis: For agent i,∀s ∈ Z+, there exists one interval [sl

i ,sl
i 
+1), such 

that s ∈ [si
l ,s

i
l+1), and in the time interval (si

l , s
i
l+1) no event has occurred. 

Case 1: s = si
p, i.e., event is triggered for agent i at time s. According to 

equation (6.9), it can be obtained that ei[s] = 0, so the condition in (6.21) is guar­
anteed. Case 2: s ∈ (si

l , sl
i 
+1). Because no event has occurred in this time interval, 

it can be concluded that the trigger function in (6.27) satisfies fi(s, ei[s]) < 0. 
So the condition in (6.21) can be guaranteed. Also, (6.22) can be guaranteed by 
using a similar analysis method as above. From the structure of event-triggers 
(6.27) and (6.28), it can also be seen that the triggered mechanism used in each 
agent is decentralized and, therefore, realizable. 

Remark 6.5 It is significant to note that the discrete exponentially decreasing 
threshold α + ce−β kT provides a very flexible event-triggered control strategy for 
MASs. The parameter α can be used to adjust the state errors’ convergence region. 
Parameter c can be tuned in such a way that the events are not too dense for small 
times kT . Parameter β can be used to determine the speed of convergence. For small 
times kT , the event times depend dominantly on c, so the density of events does not 
increase with decreasing α . For larger times kT , the density does not increase with 
decreasing c either ([609]). 

In Theorem 6.1, the parameters β1 and β2 in (6.22) and (6.23), respectively, 
are assumed to be constant. In the following, revised versions of (6.22) and (6.23) 
are proposed by settingβ1 and β2 as time-varying functions which can lead to a 
smaller upper bound for ||Y [k]||∞ compared with that in Theorem 6.1. To show 
this fact, we recall the following lemma [594]. 

Lemma 6.2 
If function f (k) = kCk

mak−m where 0 < a < 1, and m is a finite positive integer, then 
limk f (k) = 0. →+∞ 

Theorem 6.2 
Assume that the leader has a directed path to all agents from 1 to n and its state xr[k] 
satisfies |(xr[k] − xr[k − 1])/T | ≤ ξ̄ (i.e., the changing rate of xr[k] is bounded), and 

|ei[s]| ≤ α1 + c1e−β1(s)sT , i = 1,2, · · · ,n, (6.29) 

|er[s]| ≤ α2 + c2e−β2(s)sT , (6.30) 
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where 

β1(s) = − 
lnρ(Ã)s 

,β2(s) = − 
lnρ(Ã)s 

,	 (6.31)
sT sT 

and α j ≥ 0,c j ≥ 0, j = 1,2, are some constants, s ∈ Z+. If positive scalars γ and T 
satisfy (6.20), under the control algorithm (6.8), the infinite norm of the solution of 
(12) is UUB by 

||Y [k]||∞ ≤ [2α1(1 + T γ)+ b2]||(I2n − Ã)−1||∞,(k →∞), (6.32) 

where b2 = max{2T ξ̄ ,α2(2 + T γ)}. 

Proof. It follows from (6.19) that 

k	 k

Ãk−s ˜ Ãk−s ˜||Y [k]||∞ ≤ || ÃkY [0]||∞ + || Bω[s − 1]||∞ + || Cz[s − 1]||∞. 
s=1	 s=1 

Using the conditions in (6.29-6.31), we can easily show that 

||ω[s − 1]||∞ ≤ α1 + c1ρ(Ã)s−1 

and 

Cz[s − 1]||∞ ≤ max{2T ξ̄ , (2 + T γ)(α2 + c2ρ(Ã)s−1)} � b(s). (6.33)|| ˜

Following ([596], proof of Theorem 3.1), it can be concluded that 

k

||Y [k]||∞ ≤ ||Ãk||∞||Y [0]||∞ + α1||B̃||∞|| Ãk−s||∞ 

s=1 

k	 k

+	 c1||B̃||∞ ||Ãk−s||∞ρ(Ã)s−1 + || Ãk−sb(s)||∞. (6.34) 
s=1 s=1 

As shown in [603], there exists an invertible matrix P such that Ã is similar 
to a Jordan canonical matrix J, i.e. P−1AP˜ = J = diag{J1, J2, · · · ,Jl }, where 
Js, s = 1, 2, · · · , l, are upper triangular Jordan blocks, whose principal diagonal 
elements are the eigenvalues of Ã. Then, for the third term in the right-hand side 
of inequality (6.34), we have 



� 

� 

� 

� 

� 

� 

� 

194 � Multiagent Systems: Introduction and Coordination Control 

k

c1||B̃||∞ ||Ãk−s||∞ρ(Ã)s−1 

s=1


k


≤ 2(1 + T γ) ||Ãk−s||∞ρ(Ã)s−1


s=1


k


= 2(1 + T γ) ||(PJP−1)k−s||∞ρ(Ã)s−1


s=1


k


≤ 2(1 + T γ) · c ||J||∞ 
k−s

ρ(Ã)s−1


s=1


k


≤ 2c(1 + T γ) [ρ(Ã)k−s +Ck
1 
−sρ(Ã)

k−s−1 + · · · 
s=1 

+ Ck
m 
−sρ(Ã)

k−s−m+1]ρ(Ã)s−1


≤ 2c(1 + T γ)[kρ(Ã)k−1 + kCk 
1
ρ(Ã)k−2 + · · · + kCk

m
ρ(Ã)k−m],


where c � ||P||∞ · ||P − 1||∞, and m is the maximum order of Js, s = 1,2, · · · , l. 
According to Lemma 6.2 and the above analysis, it can be easily obtained that 

k

c1||B̃||∞ ||Ã∞ 
k−s

ρ(Ã)s−1 → 0,(k →∞). (6.35) 
s=1 

By a similar proof process for (6.35) and using (6.26), the following relation can 
be deduced 

k

|| Ãk−sb(s)||∞ ≤ b2||(I2n − Ã)−1||∞, (k →∞), (6.36) 
s=1 

where b2 = max{2T ξ̄ ,α2(2 + T γ)}. 
Since all the eigenvalues of Ã are within the unit circle as stated in Lemma 

6.1, we can obtain that limk→∞ Ãk = 02n×2n. Combining (6.34-6.36), we can 
obtain that 

||Y [k]||∞ ≤ [2(1 + T γ)α1 + b2]||(I2n − Ã)−1||∞,(k →∞). (6.37) 

This completes the proof. 

Remark 6.6 Define the trigger functions for each agent i and the leader, respec­
tively, as follows: 

fi(s, |ei[s]|) � |ei[s]|− (α1 + c1e−β1(s)sT ), i = 1,2, · · · ,n, (6.38) 
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g(s, |er[s]|) � |er[s]|− (α2 + c2e−β2(s)sT ). (6.39) 

Similarly to the statements in Remark 6.5, it is known that, under the event-triggered 
schemes with trigger functions above, the conditions in (6.29) and (6.30) can be 
guaranteed for all s ∈ Z+ . 

Remark 6.7 Similarly to Remark 6.3 and from the inequality (6.32), it yields 

δi[k] A)−1| | ≤ 2[(1 + T γ)α1 + b2]||(I2n − ˜ ∞ 

as k →∞, i = 1,2, · · · ,n. Obviously, under the new event-triggered scheme, the re­
sulting upper bound for the tracking error δi[k] is smaller than that under the event-
triggered scheme in Remark 6.5. However, since the introduction of the time-varying 
parameters β1 and β2, the relatively heavier computation is needed when using the 
event-triggered scheme in Remark 6.7. 

Remark 6.8 On choosing αi = 0,ci = 0,(i = 1,2) in Theorems 6.1 and 6.2, 
the event-triggered communication scheme proposed heretofore reduces to the time-
triggered scheme which was studied in [596], and the upper bound of tracking errors 
between agents and the leader is 2T ξ̄ ||(I2n − Ã)−1||∞. 

6.1.4 Numerical example 
In this section, a numerical example with four agents and a time-varying refer­
ence satisfying the same communication graph as in [596] is employed in order 
to validate the main results of this section; see Fig. 6.1. If agent j is a neigh­
bor of agent i, we let a(i, j) = 1, otherwise a(i, j) = 0. Then, for this example, the 
corresponding adjacency matrix � 

0 1 0 0 
� 

A = 
1 
1 

0 
0 

1 
0 

0 
0 

0 1 1 0 

Since the agent 3 can have access to the leader, a(3,5) = 1, a(1,5) = 0,a(2,5) = 
0 and a(4,5) = 0. The reference state is chosen as xr[k] = sin(kT )+ kT . This ex­
ample was studied in [596] by using the synchronous communication scheme. In 
the following, we will study this example by using the asynchronous communi­
cation scheme, that is by using the proposed event-triggered scheme. 

The initial states of the four agents are chosen as: [x1[0],x2[0],x3[0],x4[0]] = 
[2,1, −1, −3]. Without loss of generality, suppose that 

[x1[−1],x2[−1],x3[−1],x4[−1]] = [0,0, 0,0] 
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Figure 6.1: Directed graph for four agents with a leader

Let T = 0.1 and γ = 3. By simple computation, it can be seen that the condition
(6.20) holds.

In the following simulation, two cases for the selection of α j,c j and β j( j =
1,2) will be considered, which correspond to different types of triggered thresh-
olds.

Case 1: α1 = 0.01,α2 = 0.04,c1= 0.1,c2= 0.5,β1 = 0.5,β2 = 0.5. Under the
tracking control (6.8) with the event-triggered schemes in Remark 6.5, the dy-
namic responses for the states xi[k] and the tracking errors δi[k] = xi[k]−xr[k], i=
1, · · · ,4, are shown in Figs. 6.2 and 6.3, respectively. By simple computation ac-
cording to Table 6.2, we can obtain that only 80.68% of sampled states of all
agents and the leader are needed to be sent out to their neighbours.

Case 2: α j and c j( j = 1,2) are the same as in Case 1, but the parameters
β1 and β2 are chosen as β1(s) =−lnρ(Ã)s/0.1s,β2(s) =−lnρ(Ã)s/0.1s,s ∈ Z+

and ρ(Ã) = 0.9405. Under the tracking control (6.8) with the event-triggered
schemes in Remark 6.7, the dynamic responses for the states xi[k] and the track-
ing errors δi[k] = xi[k]−xr[k], i = 1, · · · ,4, are shown in Figs. 6.4 and 6.5, respec-
tively. By simple computation according to Table 6.2, we can obtain that only
79.84% of sampled states of all the agents and the leader are needed to be sent
out to their neighbours.

Case 3: α j = 0 and c j = 0( j = 1,2). Under the tracking control (6.2) with
the time-triggered scheme, the dynamic responses for the states xi[k] and the
tracking errors δi[k] = xi[k]− xr[k], i = 1, · · · ,4, are shown in Figs. 6.6 and 6.7,
respectively. As obtained above, only around 80% of sampled states of all agents
and the leader need to be transmitted through the network for Cases 1 and 2 in
order to guarantee the tracking performance. Therefore, around 20% of commu-
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Figure 6.2: State responses of system (6.1) in Case 1 

Figure 6.3: Tracking errors in Case 1 

nication resource is saved. According to the simulation, when the time is larger 
than 30s, it can be computed that the bound of the tracking error for Case 1 is 
0.6497 and for Case 2 is 0.6396. It is clear that 0.6396 < 0.6497, which is con­
sistent with the analysis in Remark 6.8 and validates the developed theoretical 
results. 
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Table 6.1: Sample and release time for Case 1 

Leader Agent 1 Agent 2 Agent 3 Agent 4 
Sample times 500 500 500 500 500

Release times 354 411 416 427 409


Table 6.2: Sample and release time for Case 2 

Leader Agent 1 Agent 2 Agent 3 Agent 4 
Sample times 500 500 500 500 500

Release times 356 412 409 420 399


Figure 6.4: State responses of system (6.1) in Case 2 

6.2	 Pinning Coordination Control of Networked Sys­
tems 

In the past decade, the consensus problem in the cooperative control community 
has been extensively studied. A theoretical explanation for the consensus behav­
ior of the Vicsek model by using graph theory and matrix theory was given in 
[494]. The work of [501] solved the average consensus problem for the directed 
balanced network. In [505], it was shown that under certain assumptions con­
sensus can be reached asymptotically under dynamically changing interaction 
topologies if the union of the collection of interaction graphs across some time 
intervals has a spanning tree frequently enough. Similar results were obtained by 
[496]. The spanning tree requirement is a more relaxed condition and is, there­
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Figure 6.6: State responses of system (6.1) in Case 3 

fore, suitable for practical application. With the development of this issue, many 
new consensus protocols and analysis methods appeared. [499] used a set-valued 
Lyapunov approach to address the consensus problem with unidirectional time-
dependent communication links. In [484], a Lyapunov-based approach was used 
to consider the stability of consensus synchronization of passive systems for bal­
anced and weakly connected communication topology. [498] extended the exist­
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Figure 6.7: Tracking errors in Case 3 

ing results for single consensus variables to include the case of forced consensus 
and multiple consensus variables separated by hard constrains. [481] proposed a 
continuous-time and a discrete-time bilinear trust update scheme for trust con­
sensus. More profound theoretical results have been established for distributed 
consensus of networked dynamic systems ([5], [486], [503]). The extensions of 
the consensus algorithm to second-order dynamics have been studied in [489], 
[490], [491], [495], [497], [504], [510], and [511]. 

Pinning control is an important control scheme for the networked system 
since it can realize the control objective by controlling part of the nodes instead of 
all the nodes in the network. In [488], pinning control of spatio-temporal chaos, 
which has numerous applications to turbulence, instabilities in plasma and multi­
mode lasers, was discussed. The stabilization problem for a scale-free dynamical 
network via pinning control was investigated in [507] and it was found that the 
pinning control based on highest connection degree has better performance than 
totally randomly pinning. 

It is worth noting that the above research on pinning control is mainly con­
cerned with the undirected communication topology or directed topology which 
has a root node. The motivation of this section is to consider a more general 
case that the communication digraph of the networked multi-vehicle systems is 
weakly connected and has two or more zero in-degree and strongly connected 
subgraphs, i.e., there exist two or more leader groups. Based on the previous 
works on consensus and pinning control, we study the second-order controlled 
consensus problem. We present a necessary and sufficient condition to achieve 
the second-order controlled consensus for multi-vehicle systems with two or 
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more zero-in-degree and strongly connected subgraphs in the weakly connected 
communication topology. We also discuss how to design the pinning controller 
and how to choose the pinned vehicles. The proposed method allows us to ex­
tend several existing results for undirected graphs to directed balanced graphs. 
Furthermore, we study the case of variable topology. 

6.2.1 Networked multi-vehicle systems 
We consider a group of n vehicles. The dynamics of vehicle i is described by 

ẋi = vi̇, 

v̇i = ui, i = 1, 2, ...,n, (6.40) 

where xi ∈ R and vi ∈ R denote the position and the velocity of the i − th vehicle, 
respectively, and ui ∈ R is the interaction input. To avoid obscuring the essentials, 
here we take the vehicle states as scalars. If they are vectors, all the following 
development can be easily modified by introducing the Kronecker product terms 
as appropriate. For agent i, a neighbor-based coupling rule can be expressed as 
follows: 

ui = gi j[b(x j − xi)+ ηb(v j − vi)], (6.41) 
j∈Ni 

where b > 0 denotes stiffness gain, η > 0 is the ratio of damping gain to stiff­
ness gain and gi j denotes the weighting factor of communication or sensing link 
from vehicle j to i. Let x = [x1,x 2 , ...,xn]

T and v = [v1, v2, ...,vn]
T . According to 

protocol (6.41), (6.40) can be written in matrix form as 

ẋ x 
= Γ v̇ v 

Γ = 
0n×n In . (6.42)−bL −ηbL 

To avoid distraction from the main issues being introduced, the following 
discussion is mainly based on the case of fixed topologies. The case of time-
varying topologies is discussed in Section 5. 

Focusing on fixed topologies, we note some relations between Γ and L [498] 
and [506]: 

Property 1: Γ has 2m zero eigenvalues if and only if −L has m zero eigen­
values. 

A necessary and sufficient condition to achieve second-order consensus for 
(6.42) is given as follows: 

Lemma 3.1([5]): Consensus protocol (6.41) achieves second-order consen­
sus asymptotically, i.e., |xi − x j| → 0 and |vi − v j| → 0 ∀i =� j, as t →∞, if and 
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only if matrix Γ has exactly two zero eigenvalues and all the other eigenvalues 
have negative real parts. 

Remark 6.9 By appropriately choosing information states on which consensus is 
reached, the protocol (6.41) has applications in many areas, including synchroniza­
tion, flocking and formation control. For example, a variant of protocol (6.41) is to 
guarantee limt→∞ |vi − v j| = 0and limt→∞ |xi − x j| = 0 for i, j ∈ 1,2, ...,n, where 
δi j is the desired offset between agent i and agent j. Letting δi j ∈ R be constant, we 
design the control input 

ui = b gi j[(x j − δ j) − (xi − δi)+(vi − v j)] (6.43) 
j∈Ni 

to guarantee x j − δ j → xi − δi and vi → v j. Therefore, δi can be chosen such that the 
desired offsets between vehicles can be guaranteed. 

The following preliminary results, which are needed in subsequent sections. 
Definition 1 ([503]): Matrix L = [li j] ∈ Rn×n is diagonally dominant if, for 

all i, lii ≥ � |lii|. It is strictly diagonally dominant if these inequalities are j=i 
all strict. L is strongly diagonally dominant if at least one of the inequalities is 
strict. L is irreducibly diagonally dominant if it is irreducible and at least one of 
the inequalities is strict. 

Lemma 3.2 ([509], [503]): Let L be strictly diagonally dominant or irre­
ducibly diagonally dominant. Then L is nonsingular. If in addition, the diagonal 
elements of L are all positive real numbers, then Reλi(L) > 0,1 ≤ i ≤ n. 

Definition 2: We call a subgraph zero-in-degree if there is no information 
flowing into it, i.e., it has no incoming edges. 

Lemma 3.3 ([505]): Graph G has a spanning tree if and only if Rank(L) = 
n − 1. 

The next result generalizes Lemma 3.3 to the case of more than one leader 
group. 

Lemma 3.4: Suppose graph G is weakly connected. Then Rank(L) = n − k 
if and only if G contains k(k ≥ 1) zero-in-degree and strongly connected sub­
graphs. 

Proof: 
Sufficiency: Denote the k zero-in-degree and strongly connected subgraphs 

by G1 = (V1,E1), G2 = (V2, E2), ..., Gk = (Vk, Ek), with Vi ⊆ V, Ei ⊆ E, separately, 
where the node set is indexed in such a way that the first numbers are given to V1, 
the following numbers are given to V2,V3, ..., and Vk in turn. The last numbers are 
given to the left nodes V −{V1,V2, ...,Vk}. Notice that the subgraph Gi(1 ≥ i ≥ k) 
has zero-in-degree. Thus, the Laplacian matrix L of graph G can be written as a 
lower block triangular matrix, i.e., 
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⎤⎡ 

L =


⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣


L11 0 0 0· · · · · · 
.

0 L22
. . 0 0 

. . . . . . . . . . . . . . . . . . . . . 
. . . . . . .0 0
 . . Lkk
 .
 .


⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦


(6.44)
.

.

Fk+1,1 Fk+1,2 Fk+1,k Fk+1,k+1 
. . 0· · · 

. .. . . . 0· · · · · · 
Fk+r,1 Fk+r,k+r−1 Fk+r,k+r· · · · · · 

where r ≥ 1; Lii(1 = i = k) is the Laplacian matrix associated with subgraph Gi; 
since the number of zero-in-degree and strongly connected subgraphs is k, for 
i > k, there exists j < i such that Fi j = 0. Noticing that the graph G is weakly 
connected, for j ≤ k, we know that there exists 

� 
i > k such that Fi j = 0. With these 

in mind, we get that Fk+m,k+m(1 = m = r) is irreducibly diagonally dominant. 
Applying Lemma 3.2, we get that 

� 
Fk+
� 

m,k+m(1 = m = k) is nonsingular. Since 
= m 

� �
Lii(1 = k) is the Laplacian matrix associated with the strongly connected � � 

| |− 1, where |Vi|subgraph Gi, from Lemma 3.3, one can get that Rank(Lii) = Vi

denotes the cardinality of Vi. Thus, there exist n−k, and no more than n − k, rows 
of L are linearly independent. Therefore, Rank(L) = n − k. 

Necessity: Since the case of k = 1 is given in Lemma 3.3, we only consider 
the case k > 1. Noticing that G is weakly connected, if the number of zero-in­
degree and strongly connected subgraphs contained in G is not k, one can get at 
least one j < k such that Fk j = 0 or at least for row k+1, Fk+1,i = 0 (1 ≤ i ≤ k). In 
both cases, Rank(L) = n − k.

� 

The block triangular matrix (6.44) is called k-reducible in [509]. We call the 
first k subgraphs in (6.44) “leader graphs”. If graph G is weakly connected and 
contains two or more leader graphs, according to Property 1 and Lemma 3.1 and 
Lemma 3.4, we know that consensus protocol (6.41) cannot achieve second-
order consensus. Of particular interest is to show the evolution of states in the 
system ẋ = −Lx. To this end, we introduce the following lemmas. 

Lemma 3.5 ([505]): Let L denote the Laplacian matrix of graph G with L1 = 
0,wT

l L = 0 and wT
l 1 = 1. Then, for the system ẋ= −Lx, the consensus is achieved, 

i.e., limt→∞ x(t) = 1wl
T x(0), if and only if G has a spanning tree. 

The following result is in the core of consensus theory ([509], [506]). It is 
proved here for completeness and also because the proof gives some insight into 
the structure of the leader group of a graph. 

Lemma 3.6: Let graph G contain a spanning tree. Then, λ1 = 0 is a simple 
eigenvalue with right eigenvector 1 and a nonnegative left eigenvector wT

l = 
{γ1, γ1, ...,γn}. Moreover, the entry γ1 is positive for any node vi which has a 
directed path to all other nodes, and zero for all other nodes. 
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Proof: The graph Laplacian matrix L can be brought by a permutation matrix 
T to the lower block triangular Frobenius canonical form ([509], [503]) ⎤⎡ 

F = T LT T =

⎢⎢⎢⎣


F11 0 0· · · 
F21 F22 0· · · 

. . . . . . . . . . . . 
Fp1 Fp2 Fpp · · · 

⎥⎥⎥⎦

where Fii is square and irreducible. 

There exists a spanning tree if and only if L has a simple eigenvalue λ1 = 0, 
equivalently, in every row i there exists at least one j < i such that Fi j =� 0. Then, 
there is only one leader group, which has nodes corresponding to F11. Therefore, 
F11 has a simple eigenvalue λ1 = 0 with right eigenvector 1 and left eigenvector 
w1 > 0. 

Since Fii, i ≥ 2, are irreducibly diagonally dominant, according to Lemma 
3.2, we know that Fii, i ≥ 2, are nonsingular. 

Now introduce ⎤⎡ 

(w1 
T w2 

T wT
p ) = · · · 

⎢⎢⎢⎣


F11 0 0· · · 
F21 F22 0· · · 

. . . .
. .
. .
 . .. .


⎥⎥⎥⎦

Fp1 Fp2 Fpp · · · 

where wi are vectors of appropriate dimension. Therefore, we have 

wT
p Fpp = 0 

wT
p−1F(p−1)(p−1) + wT

p−1Fp(p−1) = 

. . . 
wT 

1 F11 + wT 
2 F21 + + wT

p Fp1 = 0· · · 

Since Fii, i ≥ 2, are nonsingular, this implies wi = 0, i ≥ 2 and wT 
1 F11 = 0 with 

wi > 0. 
It should be noted that Lemmas 3.5 and 3.6 show that all nodes converge to 

a weighted average of the initial conditions of all the root nodes. They only hold 
for a graph containing a single leader group. The next Lemma generalizes these 
results to the case of more than one leader group. 

Lemma 3.7: Suppose that graph G is weakly connected and contains k(k ≤
1) zero-in-degree and strongly connected subgraphs. For the system ẋ= − Lx (L 
is given in (6.44)), the nodes in different leader groups converge to independent 
consensus values, i.e., limt→∞ xi(t) � x∗i = 1wi

T 
,1xi(0), 1 ≤ i ≤ k, where wi, 1 sat­

isfies wT
i,1Lii = 0, and wT

i,11, 1 ≤ i ≤ k. Moreover, the nodes which are not in leader 
graphs converge to a weighted average consensus values of the leader graphs, 
i.e., limt→∞ xk+m � x∗ = F−1 ( 

�k+m−1 Fk+m,ix∗i ), 1 ≤ m ≤ r. k+m k+m,k+m i=1 
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Proof: Ordering the nodes as in Lemma 3.4, the overall dynamics are given 
by 

ẋi = −Liixi, 1 ≤ i ≤ k; 
ẋk+m = −(Fk+m,1x1 + Fk+m,2x2 + + Fk+m,k+mxk+m), 1 ≤ m ≤ r (6.45)· · · 

Notice that Lii(1 ≤ i ≤ k) is irreducible. According to Lemma 3.5, we have 
limt→∞ xi(t) � xi

∗ = 1wi
T 
,1xi(0),1 ≤ i ≤ k,. In what follows, we will discuss the 

convergence properties of the states xk+m, 1 ≤ m ≤ r. First, we consider the dy­
namics corresponding to xk+m 

ẋk+1 = −(Fk+m,1x1 + Fk+m,2x2 + + Fk+1,k+1xk+1) (6.46)· · · 

The change of variables 

ė1 = −(Fk+m,1x1 + Fk+m,2x2 + + Fk+1,k+1xk+1)· · · 

yields 

ė1 = −Fk+1,k+1e1 − Fk+1,1L11x1 −·· ·− Fk+1,kLkkxk (6.47) 

Since Fk+1,k+1 is irreducibly diagonally dominant, according to Lemma 3.2, 
we know that the origin of the nominal system ė1 = −Fk+1,k+1e1 is globally ex­
ponential stable. Along similar lines, the other terms on the right side of (6.47) 
exponentially converge to zero since the first k subgraphs reach consensus expo­
nentially. Thus, the origin is exponential stable, which implies that 

k

lim xk+1 � x∗ = −F−1 Fk+1,ix∗ 
it→∞ k+1 k+1,k+1 

i=1 

Now, we consider the dynamics corresponding to xk+2


ẋk+2 = −(Fk+2,1x1 + Fk+2,2x2 + + Fk+2,k+2xk+2)
· · · 

Similarly, the change of variables 

ė2 = −Fk+2,1x1 + Fk+2,2x2 −·· · + Fk+2,k+2xk+2 

yields 

ė2 = −Fk+2,k+2e2 − Fk+2,1L11x1 −·· ·− Fk+2,k+1e1 

Employing a similar analysis method as that for the states xk+1, we arrive at 

k+1

lim xk+2 � xk
∗ 
+2 = −Fk

−
+

1
2,k+2 Fk+2,ix∗ 

it→∞ 
i=1 
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By applying the same procedure, one can get


k+�j−1 

lim xk+ j � x∗ 
k+ j = −Fk

−
+ 

1 
j,k+ j Fk+ j,ix∗ 

i , 2 < j ≤ r 
t→∞ 

i=1 

Lemma 3.7 shows that if the weakly connected graph contains two or more 
zero-in-degree and strong connected subgraphs, the networked nodes cannot 
achieve consensus. Thus, we introduce the pinning control strategy in the next 
section. 

6.2.2 Fixed communication topology 
The key idea behind pinning control is to control a small fraction of the nodes 
instead of all nodes in the network, that is, to control the network by pinning 
part of the nodes. In this section, we will adopt this idea to solve the cooperative 
control problem for multi-vehicle systems with two or more zero-in-degree and 
strongly connected subgraphs in the weakly connected communication topology; 
that is, systems with more than one leader group. Different from general leader-
following consensus control, the pinning controller is constructed by using a 
virtual nodes information. It is not required to change the original topology. 

Suppose that the networked multi-vehicle systems (6.42) are required to track 
a desired trajectory described by 

ẋ0 = v0, (6.48) 

where v0 is the desired constant velocity. To achieve this goal, we apply the pin­
ning control strategy on a small fraction of the vehicles. The pinning controllers 
are designed as follows: 

ui = gi j [b(x j − xi)+ ηb(v j − vi)]+ ūi, 
j∈Ni 

ūi = qis(x0 − xi)+ qiηs(v0 − vi), i = 1,2, ..., n, (6.49) 

where qi is equal to one for pinned nodes and zero otherwise; s is the pinning 
control gain. Position offsets can be introduced as in (6.43). Then, one could se­
lect ūi = qis(x0 − (xi − δi))+ qiηs(v0 − vi). Here we only consider a simple case 
with desired constant velocity. In fact, the corresponding results can be easily ex­
tended to the time-varying velocity case if we assume that the vehicle can get its 
neighbours’ acceleration information. In practical applications, the acceleration 
of the vehicle can be calculated by numerical differentiation of the velocities. 

ξ = 1 ⊗ x0, ζ = v − 1 ⊗ v0, Q = diag {q1,q2, ..., qn}, and ū = ( ū1, ū2, ..., ūn)
T . 

Equation (6.49) can be written in matrix form as � � ξ 
ū = −sQ −ηsQ 

ζ 
(6.50) 
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With (6.42) and (6.50), the closed-loop system can be written as
� � � � � � �� � � �
� ̇
ξ 
ζ̇

= Γ

ξ

ζ

+


0 0n×n In = −(bL + sQ) 
ξ

ζ

� Γ̄
 ξ

ζ

(6.51)
ū
 −η(bL + sQ)


In contrast to the definition of second-order consensus given in Lemma 3.1, 
we present the following concept. 

Definition 3: We say second-order controlled consensus is achieved if 
limt→∞ ξ (t) = 0 and limt→∞ ζ (t) = 0. 

Remark 2: It is obvious that we introduce extra control inputs (6.50) with­
out changing the structure of either the network G or the local protocol (6.41). 
For the second-order consensus protocol (6.41), the consensus value depends on 
the initial conditions of node states and cannot be arbitrarily controlled. How­
ever, the second-order controlled consensus approach can overcome this limi­
tation. The work in [491] considered the coordination problem of a multiagent 
system with jointly connected leader-follower topologies. The graph formed by 
the followers are undirected topologies. The work in [504] mainly considered the 
connected graph with a spanning tree. 

In the sequel, we consider the case that the graph is weakly connected, which 
implies that the involved control strategy would be different from the previous 
work. 

6.2.3 Case of general graphs 
In this section, we show how to use pinning control to achieve consensus in 
graphs that may not have a spanning tree. That is, there may be more than one 
leader group. 

Lemma 4.1: Assume that graph G is weakly connected and contains k(k ≥ 1) 
zero-in-degree and strongly connected subgraphs. The eigenvalues of L̆ = bL + 
sQ are in the open right-half complex plane if and only if there exists at least one 
pinned node for each zero-in-degree and strongly connected subgraph. 

Proof: 
Necessity: It is easily shown by counterexample that the eigenvalues of L̆ are 

not in the open right-half complex plane if there exists an unpinned zero-indegree 
and strongly connected subgraph. 

Sufficiency: Assume that there exists at least one pinned node for each zero-
in-degree and strongly connected subgraph in G. Suppose that the nodes are in­
dexed as in Lemma 3.4. The matrix L̆ can be written as 
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⎤⎡ 

L̆ =


⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣


F11 0 0 0· · · · · · 
.

0 F22 
. . 0 0· · · 

. . . . . . . . . . . . . . . . . . . . . 
. . .

0 0 . . Fkk 
. . . .


.
.
.

.

Kk+1,1 Kk+1,2 Kk+1,k Kk+1,k+1
. . 0· · · 

. .. . . . 0· · · · · · 
Fk+r,1 kk+r,k+r−1 kk+r,k+r· · · · · · 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦


where Fii, 1 ≤ i ≤ k + r, are square and irreducible, and for i > k, there exists 
j < i such that Fi j 

�
= 0. Since the pinning controllers are injected into each zero-

in-degree and strongly connected subgraph, thus Fii, 1 ≤ i ≤ k,, are irreducibly 
diagonally dominant. According to Lemma 3.2, we know that Reλi(Fii) > 0, 
1 ≤ i ≤ k. �Noticing that, for i > k, there exists j < i such that Fi j = 0, we 
get that Fk+m,k+m, 1 ≤ m ≤ r, are also irreducibly diagonally dominant. Thus, 
Reλi(Fk+m,k+m) > 0, 1 ≤ m ≤ r. Therefore, all the eigenvalues of L̆ = bL + sQ
are in the open right-half complex plane. 

It is readily seen that, the nodes in the graph are indexed in a special way. 
Usually, the nodes are indexed in a natural way. In this case, it is required to 
find the zero-in-degree and strongly connected subgraphs in the communication 
topology before injecting the pinning controllers into the network. In what fol­
lows, we give an algorithm to find all the zero-in-degree and strongly connected 
subgraphs in the communication topology. 

For binary matrices, define the Boolean operations multiplication and addi­
tion, respectively, as logical and and logical or, denoted by (•,⊕). E represents 
the edge matrix, which has 1 as entry (i, j) when ai j is positive, and zero else­
where. Let k1 be such that (I ⊕ E)k1 = (I ⊕ E)k1−1, where operations are carried 
out in the Boolean matrix algebra, and define the binary reachability matrix as 
R0 = (I ⊕ E)k1 . This matrix has an entry of 1 in position (i, j) if there is a directed 
path from node j to node i, i.e., node i is reachable from node j. 

Lemma 4.2: Define the matrix M = R0 ∩ RT with ∩ the elementwise logical 0 
and operation. Then, the node set of zero-in-degree and strongly connected sub­
graphs is composed of the nodes corresponding to those rows which are identical 
in M and R0. Furthermore, the node set of zero-in-degree and strongly connected 
subgraphs can be partitioned into a group of sub node sets, each corresponding 
to a zero-in-degree and strongly connected subgraph. 

Proof: The non-zero entries in the i-th column of R0 correspond to those 
nodes reachable from node i. The non-zero entries in the i-th row of R0, that 
is i-th column of RT 

0 , correspond to those nodes that can reach (are antecedent 
to) node i. The i-th row of M = R0 ∩ RT yields the intersection of the reachable 0 
set of node i and the antecedent set of node i. It is known that the node set of 
zero-in-degree and strongly connected subgraphs is the set of nodes having their 
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antecedent set equal to the intersection of their reachable set and antecedent set 
([508]). Notice that the connectivity property for the nodes corresponding to each 
zero-in-degree and strongly connected subgraph is preserved during the Boolean 
operations. Thus, according to connectivity, the node set can be partitioned into 
several disjoint sub node sets, each sub node set corresponding to a zero-in­
degree and strongly connected subgraph. 

6.2.4 Example 6.1 
We apply Lemma 4.2 to find the root nodes of the digraph shown in Fig. 6.8. For 
Fig. 6.8, the edge matrix ⎤⎡ 

E =


⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣


0 0 1 1 0 0 0 1 1 0 
0 0 0 0 0 1 1 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 1 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 1 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 1 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦


Through the iterative operations carried out in the Boolean matrix algebra, 
we get that ⎤⎡ 

R0 = (I ⊕ E)6 = (I ⊕ E)5 = 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣


1 0 1 1 1 0 1 1 1 0 
0 1 1 0 0 1 1 0 1 1 
0 0 1 0 0 0 1 0 1 0 
0 0 1 1 1 0 1 1 1 0 
0 0 0 0 1 0 0 1 0 0 
0 1 1 0 0 1 1 0 1 1 
0 0 1 0 0 0 1 0 1 0 
0 0 0 0 1 0 0 1 0 0 
0 0 1 0 0 0 1 0 1 0 
0 1 1 0 0 1 1 0 1 1 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Furthermore, one can get

M = R0∩RT
0 =



1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 0 1 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0
0 1 0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 0 1 0
0 0 0 0 1 0 0 1 0 0
0 0 1 0 0 0 1 0 1 0
0 1 0 0 0 1 0 0 0 1


We find that the identical rows in M and R0 are 3,5,7,8 and 9. This obviously

reveals two disjoint node sets {3,7,9} and {5,8} corresponding to two zero-in-
degree and strongly connected subgraphs. It can also be observed from a more
descriptive form given in Fig. 6.9.

Before giving our main results, we introduce the following Lemma.
Lemma 4.3 ([511]): Consider the equation

λ
2−ηµλ −µ = 0, (6.52)

where η ∈ R and µ ∈ C. Assume Re(µ) > 0. Then the roots of (6.52) lie in
the open left-half complex plane if and only if η > |Im(µ)|

|µ|
√
−Re(µ)

.

The following result is provided
Theorem 4.4: Suppose that the communication topology for the multi-vehicle

systems is weakly connected and contains k(k ≥ 1) zero-in-degree and strongly

Figure 6.8: A digraph consisting of 10 nodes
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Figure 6.9: Illustration of the digraph

connected subgraphs. The second-order controlled consensus is achieved if and
only if there is at least one pinned node for each zero-in-degree and strongly
connected subgraph in the topology and η > max1≤i≤nη > |Im(µi)|

|µi|
√
−Re(µi)

, where

µi, i = 1,2, ...,n are the eigenvalues of −(bL+ sQ) =−L̆.
Proof: From (6.51), we know that secondorder controlled consensus is

achieved if and only if all the eigenvalues of Γ̄ lie in the open left-half complex
plane. To get the eigenvalues of Γ̄, we first compute the characteristic polynomial
of Γ̄ . Denote the eigenvalues of −L̆ by µ1,µ2, ...,µn. Some simple computations
lead to

det(λ I2n− Γ̄) = det(λ 2In +(1+ηλ )L̆) =
∏n

i=1(λ
2−ηµiλ −µi)

The eigenvalues of Γ̄ can be obtained by solving λ 2 − ηµiλ − µi = 0,
i = 1,2, ...,n. Suppose that there exists an unpinned zero-in-degree and strongly
connected subgraph in the communication topology, in light of Lemma 3.4, we
know that L̆ has one zero eigenvalue. Thus, Γ̄ has two zero eigenvalues. There-
fore, to pin at least one node for each zero-in-degree and strongly connected
subgraph in the topology is a necessary condition to guarantee that all the eigen-
values of Γ̄ lie in the open left-half complex plane. Furthermore, in light of Lem-
mas 4.1 and 4.3, the claim follows.

6.2.5 Strongly connected and balanced graphs
In this section, we assume the graph is strongly connected and balanced. The
strongly connected and balanced graphs allow us to determine the relation-
ship among the pinning control gain, the stiffness gain, the number of pinned
nodes and the Fiedler eigenvalue of the mirror graph. [502] studied pinning-

58
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controllability of undirected and first-order networks. We extend the correspond­
ing results to directed balanced networks with second-order consensus. Before 
proceeding, we need the following Lemmas. 

Lemma 4.5 ([492]): Consider a symmetric matrix 

A C
B = CT F 

where A and F are square. Then B is positive definite if and only if both A 
and F −CT A−1C are positive definite. 

Definition 4 ([493]): Let G = (V, E,A) be a weighted digraph. Let Ẽ be the 
set of reverse edges of G obtained by reversing the order of nodes of all the pairs 
in E. The mirror graph of G denoted by Gm is an undirected graph in the form 
Gm = (V, Em, Am) with the same set of nodes as G, the set of edges Em = E ∪ E, ˜
and the symmetric adjacency matrix Am = [ âi j] with elements âi j = â ji = ai j +

2 
a ji . 

Lemma 4.6 ([493]): Let G be a graph with Laplacian L. Then L̂ = L+
2 
LT 

is a 
valid Laplacian matrix for Gm if and only if G is balanced. 

Lemma 4.7 ([493], [502]): If A ∈ Rm×m is a symmetric matrix and y ∈ Rn, 
the following bound on the smallest eigenvalue of A + yyT holds 

λmin(A + yyT ) ≥ λmin(A)+ 
1 
(γ + �y� 2) − 

1 
(γ + �y� 2)2 − 4γ(vT 

1 (A)y)2 ,
2 2 

where γ = λ2(A) − λmin(A) 
Lemma 4.8 ([492]): Let A,B ∈ Rn be symmetric and let eigenvalues λi(A), 

λi(B), and λi(A + B) be arranged in increasing order. For each k = 1, 2, ..., n, we 
have λk(A)+ λ1(B) ≤ λk(A + B) ≤ λk(A)+ λn(B). 

Theorem 4.9: If m pinning controllers are injected into the balanced and 
strongly connected multi-vehicle systems and the pinning control gain s satisfies 

bmsλ2(L̂) 1

bmsλ2(L̂)+ smn 

> 
4(1 − 

η

1
2 ) 
, (6.53)


where η > 1, L̂ = L+
2 
LT 

, b is the stiffness gain, and L is the Laplacian ma­
trix of the communication graph, then the second-order controlled consensus is 
achieved, i.e., the error dynamic system (6.51) is globally asymptotically stable 
about the origin. 

Proof: Define a Lyapunov candidate as follows 

V = (ξ T 
ζ T )P(ξ T 

ζ T )T 

where P = 
η 
1 
I
I 

η 
1 

I
I 

, which is positive definite due to η > 1. 
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According to (6.51), the derivative of V is given by 

V̇ = (ξ T 
ζ T )( Γ̄T P + PΓ̄)(ξ T 

ζ T )T � −(ξ T 
ζ T )U(ξ T 

ζ T )T 

where 

η 
1 (b(L + LT )+ 2sQ) (b(L + LT )+ 2sQ) − I 

u = 2(b(L + LT )+ 2sQ) − I η(b(L + LT )+ 2sQ) − 
η I 

Setting 

R = η(b(L + LT )+ 2sQ) − 
2 

I
η 

− (η − η(b(L + LT )+ 2sQ)−1)((b(L + LT )+ 2sQ) − I) 

= (2η − 
2 
)I − η(b(L + LT )+ 2sQ)−1 

η 

Then, if 

η2 
λmin(bL̂+ sQ) > 

4(η2 − 1) 
, (6.54) 

one can see that R is positive definite. Thus, by recalling Lemma 4.5, one can 
verify the positive definiteness of U . Assuming that there are m pinned nodes, 
we get 

λmin(bL̂+ sQ) = λmin bL̂+ s i
n 
=1 σiθiθi

T (6.55) 

subject to σi ∈ 0, 1 for i = 1, 2, ..., n and n 
σi = m,θi is the n-dimensionali=1 

vector with all entries equal to zero, but the i-th that is equal to 1. 
Recalling Lemma 4.8, one can get 

m � � 
λmin = 

� 
bL̂+ s 

�n
i=1 σiθiθi

T 
� 
≥ 
� 

λmin 
b
m
L̂ + sθiθi

T (6.56) 
i=1 

LApplying Lemma 4.7 to λmin(
b ̂ + sθiθ T ) and noticing the fact that �θi� = m i 

1,λmin(L̂) = 0 and vi(L̂) = √1
n1n 

, we obtain 

λmin 
bL̂ + sθiθ T ≥ φ(s), (6.57)m i 
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where � � � 
1 L) 4msφ(s) = 2m bλ2(L̂)+ ms − (bλ2(L̂)+ ms)2 − bλ2( ̂ n 

Notice that for positive s, 

φ (s) ≥ 
bsλ2(L̂) 

. (6.58)
bnλ2(L̂)+ smn 

Substituting (6.57) into (6.56) and applying (6.58), one can obtain λmin(bL̂+ 
bmsλ2(L̂) . By imposing condition (6.53), one can get V < 0. Thus, the sQ) ≥ bnλ2 (L̂)+smn 

claim follows. 

6.2.6 Selection of the pinned nodes 
Assume in what follows that the graph G is strongly connected and balanced. 
The Laplacian matrix of the mirror graph Gm (see Definition 4) is L̂ = L+

2 
LT 

. If 
G is balanced, then λ2(L̂) > 0. As in [502], define 

ϕ(s) = λmin(bL̂+ sQ) ≥ 
bmsλ2(L̂) 

bnλ2(L̂)+ smn 

the network relative connectivity 

λ2(L̂)
χ = 

n 

and the fraction of pinned nodes ρ = m
n . Thus, ϕ(s) can be rewritten as 

ϕ(s) = 
ρ

1 
s + b

1 
χ (6.59) 

For the mirror graph Gm of G, one has the lower bound on the Fiedler eigenvalue 
given by [485]: 

1
λ2L̂≥ 

Dm vol Gm 
(6.60) 

where the distance between two nodes is the number of edges in shortest path 
joining the two nodes, the diameter Dm is the maximum distance between any 
two nodes of Gm, and volGm denotes the volume of the graph Gm given by the 
sum of the in-degrees vol Gm = i din(vi). Equations (6.59) and (6.60) show 
that as the diameter and/or volume of the mirror graph decreases, i.e., the Fiedler 
eigenvalue increases, and the fraction of pinned nodes increases, the smaller pin­
ning control gain and stiffness gain may be sufficient for the pinning control. 

It is now desired to find out which nodes are most effectively pinned. Observe 
from (6.54) that it is desirable to have large λmin(bL̂+ sQ) so that the second-
order controlled consensus can be achieved for the small ratio η of damping 
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gain to stiffness gain. It can also be shown that convergence speed is faster if 
λmin(bL̂+ sQ) is larger. In [507] and Li et al. (2004), a simulation-based analysis 
for undirected graphs reveals that λmin(bL̂+sQ) is bigger when the pinned nodes 
have higher degrees. In what follows, we will provide a theoretical explanation 
for this phenomenon for digraphs. First, we present a result on the determinant 
of (bL̂+ sQ). 

Theorem 4.10: Suppose there are n nodes in the strongly connected and bal­
anced graph G, among which, k nodes are pinned, i.e., ql = 0, ∀l ∈ {i1, i2, ..., ik}, 
and ql = 0 otherwise. Define Qk L = b ̂

�
= diagql and ¯ L. Then, the determinant of 

L̃k � L̄+ sQk is given by 

k j

= |L̄| + s j qisl 
L̄· · 

l=1 

L̃k 
is1is2...is j 

is1is2...is j 
, (6.61)


j=1 1≤s1<s2< <s j ≤k···

where L̄ is1is2...is j 
L obtained by striking out the j rows and is1is2...is j denotes the minor of ¯

columns (is1is2...is j). 
Proof: The proof is by induction. First, we consider the case where there is 

only one injection node for graph G, i.e., k = 1. Then one has by a well-known 
determinant identity ([487]) 

L̄11 L̄12 L̄1is1 L̄1n· · · · · · 
L̄21 L̄22 L̄2is1 L̄2n· · · · · · 

. . .. . . . . . · · · 

L̄is11 L̄is12 · · · sqis1 L̄is1is1 

. . . 
. . . 

. . . 
. . . 

L̄n1 L̄n2 · · · L̄nn 

L̃
 ¯
= |L + sQ1| = 

L̄11 L̄12 L̄1is1 L̄1n· · · · · · 
L̄21 L̄22 L̄2is1 L̄2n· · · · · · 

. . .. . . . . . · · · 

L̄is11 L̄is12 · · · L̄is1is1 

. . . 
. . . 

. . . 
. . . 

L̄n1 L̄n2 · · · L̄nn 

=


L̄11 L̄12 0 L̄1n· · · · · · 
L̄21 L̄22 0 L̄2n· · · · · · 

. . .. . .. . . · · · 
+


L̄is11 L̄is12 · · · sqis1 
. . . 

. . . 
. . . 

. . . 
L̄n1 L̄n2 0 L̄nn 
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= |L̄| + sqis1L̄
� 

i
i
s

s
1
1 
� 
. (6.62) 

It is readily seen that (6.61) is true for k = 1. Assume that the result is true 
for k = p. For the case k = p + 1, we have: 

L̃p+1 = L̄+ sQp+1 

= 

= 

+ 

L̄11 · · · L̄1is1 
· · · · · · L̄1isp+1 

L̄1n 

. . . 
. . . 

L̄is1 1 
. . . sqis1 

+ L̄is1 is1 

. . . 
. . . 

. . . 
. . . 

. . . 

L̄isp 1 
. . . sqisp 

+ L̄isp isp 

. . . 
. . . 

. . . 

L̄isp+1 1 
. . . sqisp+1 

+ L̄isp+1 isp+1 

. . . 
. . . 

L̄n1 · · · L̄nis1 
· · · L̄nn 

L̄11 · · · L̄1is1 
· · · · · · L̄1isp+1 

L̄1n 

. . . 
. . . 

L̄is1 1 
. . . sqis1 

+ L̄is1 is1 

. . . 
. . . 

. . . 
. . . 

. . . 

L̄isp 1 
. . . sqisp 

+ L̄isp isp 

. . . 
. . . 

. . . 

L̄isp+1 1 
. . . L̄isp+1 isp+1 

. . . 
. . . 

L̄n1 · · · L̄nis1 
· · · L̄nn 

L̄11 · · · L̄1is1 
· · · · · · 0 L̄1n 

. . . . . . 

L̄is1 1 
. . . sqis1 

+ L̄is1 is1 

. . . 0 
. . . . . . . . . . . 0 . 

. .L̄isp 1
. sqisp 

+ L̄isp isp 

. . . . . . . . . 
. 

L̄isp+1 1 
. . sqisp+1 

. . . . . . 
L̄n1 L̄nis1

0 L̄nn· · · · · · 
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= �� L̃p �� + sqisp+1 
L̃p 

isp+1 
isp+1 

p j� � � � � 
= |L̄| + s j qisl 

L̄
is1is2...is j · · is1is2...is j 

j=1 1≤s1<s2< <s j ≤p l=1···� � p j
isp+1 

� � 
j 
� 

+ sqisp+1 
L̄ isp+1 

+ sqisp+1 
s · qisl 

j=1 1≤s1<s2< <s j ≤p l=1···

L̄
is1is2 ...is j isp+1 
is1is2 ...is j isp+1 

|L̄|· 

p+1 j � �� � � is1 is2...is j + s j qisl 
L̄ is1 is2...is j 

· · 
j=1 1≤s1<s2< <s j ≤p l=1···

which, by the principle of induction, proves the desired result.

The following Lemma shows the relationship between the determinant 

and λmin(L̃k). 
Lemma 4.11: Define L̃k = L̄+ sQk. Then 

L̃k 

(sn+)bn max{dout (vi)} 
L̃k

λmin(L̃k) ≥ n−1 (6.63) 

Proof: Denote λi(L̃k),1 ≤ i ≤ n, as the eigenvalues of L̃k. According to the 
relationship between the determinant and the eigenvalues for matrix L̃k, one has 
([483]) 

L̃k 

n

= λi(L̃k) 
j=1 

Noting that all the eigenvalues of Lk are real and positive, one further gets


L̃k ≤ λmin(L̃k)λ n−1 
min (L̃k) 

Since L̃k is a real and symmetric matrix, its nonnegative eigenvalue is also a 
singular value. Thus 

λmin(L̃k) = σmax(L̃k) 

Using the fact 

σmax(L̃k) ≤ L̃k (6.64)1 

from ([483]), it yields

L̃k ≤ λmin(L̃k) L̃k 

n−1 
1 

Notice that
 L̃k is related to the maximum absolute column sum. The graph 1 
is balanced, so din(vi) = dout (vi). Then, we get 

L̃k 1 ≤ sn + 2bn max {dout (vi)} . 
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Finally, Theorem 4.10 and Lemma 4.11 clearly show the importance of the 
out-degree of the nodes in selecting the pinning control nodes. For example, 
in the case where a single injection node is 1 (6.62), the determinant of L̃1 is 
increased by sqisl

L̄ i
i
s

s

l

l . Striking out a column isl of L̄ with entry −balis1 ef­
fectively increases the diagonal dominance of row l in the remaining matrix by 
balis1 . To obtain the largest value of the minor L̄ i

i
s

s

l

l 
, which means to get the 

largest λ minL̃1, one should strike out the column (and row) corresponding to 
the node isl that influences the greatest number of other nodes, with the largest 
weights balis1 . Then, the corresponding rows l in the remaining matrix have strict 
diagonal dominance, so that the remaining portion of L̄ is the most diagonally 
dominant. This adds to the degree of diagonal dominance of L̄, the out-degree �n(column sum) bdout (vi) = l=1 balis1 of the struck out isl -th column. [482] have 
equated the outdegree with the “social standing” of a node. The nodes with large 
out-degree have more influence in determining consensus values in the networks. 

6.2.7 Pinning control with variable topology 
In this section, we suppose that the communication topology is time-varying. In 
this case, the original multi-vehicle network is described by 

ẋ x 
= Γσ (t)v̇ v 

0n×n In
Γσ (t) = −bLσ (t) −ησ (t)bLσ(t) 

(6.65) 

where 
σ : [0, ∞) Ω = {1,2, ..., N}→ 

is a switching signal that determines the coupling topology and N denotes the 
total number of all possible directed graphs. The following assumption is made 
for the switching instants. 

Assumption 1: There exists a dwell time τ > 0 such that the switching in­
stants {ts = 1,2, ...} satisfy inf (ts+1 − ts) ≥ τ0, ts ∈ R+ .s

Note that the switching sequence may or may not be infinite. In what follows, 
we consider a general case of the following infinite switching sequences. 

Assumption 2: The switching sequences S0, S1, ..., where 

S0 = (t0,ω0), (t1, ω1), ...,(tn0 −1, ωn0−1) 

S1 = (tn0 ,ωn0 ),(tn0+1, ωn0+1), ..., (tn0+n1−1, ωn0+n1−1) 
. . . . . = . 
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satisfies ∀ j ∈ Z+ , 
�n

α 
j −1 

ωn j−1+α = Ω where n−1 = 0. The interval union Tj of 
a strictly increasing sequence of time tn j−1 , tn j−1+1, ..., tn j−1+n j−1 is the set Tj = �n j −2 � � 

.
α=0 tn j−1+α , tn j−1+α+1 

Theorem 5.1: Assume that the switching sequences satisfy Assumptions 
1 and 2. If the pinning controllers are injected into each zero-in-degree and 
strongly connected subgraph of multi-vehicle communication topology ωi(i ∈
Z+) and 

ηi > max 
|Im(µr)| (6.66)

1≤r≤n |ur| −Re(µr) 

where µr, r = 1,2, ...,n are the eigenvalues of −(bLi +siQi), then the second-
order controlled consensus is achieved. 

Proof: If inequality (6.66) is true, we know that all eigenvalues of 

Γi = 
0n×n In 

−(bLi + siQi) −ηi(bLi + siQi) 

have negative real parts following the proof of Theorem 4.4. Thus, there exists 
Lyapunov function Vi = (ξ T ζ T )Pi(ξ T ζ T )T with the positive definite matrix Pi 

such that Vi < 0. 
Define Vmax

j � maxt∈Tj {Vω j(t)}. Suppose V j = Vωpmax (t�j), t
�
j ∈ Tj. We have 

V j+1 
max = Vωl (t

�
j+1) < Vωl (t

��
j ) ≤ Vωp (t

�
j) = Vmax

j ,, where t��j ∈ Tj is a switching in-
V jstant when ωl is active. Therefore, lim j→∞ max → 0. Thus, the claim follows. 

6.2.8 Simulation examples 
In this section, some numerical simulation examples will be presented in order 
to illustrate the effectiveness of the pinning control method discussed in the pre­
vious sections. Consider a multiple unicycle robot network. Each unicycle robot 
has the dynamics model as follows: 

ẋ = vicos(θi), ẏ = visin(θi), θ̇i = ωi, v̇ = 
m
fi

i 
, ω̇i = 

τ

Ji

i (6.67) 

where (xi, yi) is the Cartesian position of the robot centre,θi is the steering angle, 
vi is the transition speed, ωi is the rotation speed, mi represents the mass, Ji 

denotes the moment of inertia, fi is the force input and τi is the torque input. To 
avoid the nonholonomic constraint introduced by the equation, define 

xi1 xi + dicos(θi)= yi1 yi + disin(θi) 

where (xi1, yi1) is a position off the wheel axis of the i-th robot by a distance di. 
The robot model (6.67) can be feedback linearized to

ẋi1 vi1 v̇i1 ui1 
ẏi1 

= vi12 
, v̇i2 

= ui12 
(6.68) 



220 � Multiagent Systems: Introduction and Coordination Control

with[
fi

τi

]
=

[
1
mi

cos(θi) − di
Ji

sin(θi)
1
mi

sin(θi)
di
Ji

cos(θi)

]−1

×
[

ui1 + viωisin(θi) diω
2
i cos(θi)

ui2− viωicos(θi) diω
2
i sin(θi)

]
In what follows, we consider the formation control problem of a network con-
sisting of six unicycle robots. Suppose that the robots are required to keep the
square shape, as depicted in Fig. 6.10, and the square center is required to move
along the trajectory (

ẋ0
ẏ0

)
=

(
0.5
1

)
The first example demonstrates the fixed topology case. Suppose that the inter-
action topology Ga for the robots is given in Fig. 6.11 with 01 weights and the
neighbor-based protocols are described by

ui1 =
∑
j∈Ni

[(x j1−δ j)− (xi1−δi)+η(v j1− vi1)] ,

ui2 =
∑
j∈Ni

[(y j1− ε j)− (yi1− εi)+η(v j2− vi2)] , i = 1,2, ...,6, (6.69)

where δ1 = δ6 = 1, δ2 = δ5 = 0, δ3 = δ4 = −1, ε1 = ε2 = ε3 = 1, ε4 = ε5 =
ε6 =−1. Define xi2 = xi1−δi and yi2 = yi1−εi, i = 1,2, ...,6. Now, (6.69) can be
rewritten as

ui1 =
∑
j∈Ni

[(x j2− xi2)+η(v j1− vi1)] ,

Figure 6.10: The expected square shape consisting of six nodes

3 2       1

4 65
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Figure 6.11: The interaction topology Ga

ui2 =
∑
j∈Ni

[(y j2−i1)+η(v j2− vi2)]

The pinning controllers are injected into the robots 1 and 5 and designed as

ūi1 = s(x0− xi2)+ηs(0.5− vi1),

ūi2 = s(y0−i1)+ηs(1− vi2), i = 1,5

Selecting s = 1 and η = 1.5. All robots’ initial positions (xi1,y i1 ) are ran-
domly chosen from box [−1,1]× [−1,1]. All robots initial velocities are zero.
Figure 6.12 shows that the position errors and the velocity errors asymptotically
converge to zero.

In the second example, the variable topology is considered. Suppose that there
exist the other three possible topologies shown in Fig. 6.13, which are referred to
as Gb, Gc and Gd , respectively. The system starts at Ga and switches every t = 1s
to the next topology as shown in Fig. 6.14, that is, Ga→ Gb→ Gc→ Gd → Ga,
and so on. For Ga, robots 1 and 5 are pinned. For topologies Gb, Gc and Gd , robots
2 and 4 are pinned with s = 1, η = 1. From Fig. 6.15, it is clearly observed that
both position errors and velocity errors asymptotically converge to zero in spite
of the topology changes.

6.3 Distributed Consensus Control
In what follows, we are concerned with the consensus of a network of agents with
general linear or linearized dynamics, whose communication topology contains
a directed spanning tree. An observer-type consensus protocol based on the rela-
tive outputs of the neighboring agents is adopted. The notion of consensus region
is introduced, as a measure for the robustness of the protocol and as a basis for the

1

23
4

5

6
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Figure 6.12: Formation-keeping errors in the fixed topology: (a) Position errors with respect
to the x-axis, (b) position errors with respect to the y-axis, (c) velocity errors with respect to
the x-axis and (d) velocity errors with respect to the y-axis

Figure 6.13: Three examples of weakly connected graphs
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Figure 6.14: Switching topologies

Figure 6.15: Formation-keeping errors in the variable topology: (a) Position errors with re-
spect to the x-axis, (b) position errors with respect to the y-axis, (c) velocity errors with respect
to the x-axis and (d) velocity errors with respect to the y-axis

protocol design. For neutrally stable agents, it is shown that there exists a proto-
col achieving consensus together with a consensus region that is the entire open
right-half plane if and only if each agent is stabilizable and detectable. An algo-
rithm is further presented for constructing such a protocol. For consensus with a
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prescribed convergence speed, a multi-step protocol design procedure is given, 
which yields an unbounded consensus region and at the same time maintains a 
favorable decoupling property. Finally, the consensus algorithms are extended to 
solve the formation control problems. 

The consensus of networks of identical agents with linear or linearized dy­
namics whose communication topology contains a directed spanning tree is of 
particular interest. An observer-type using only the relative outputs of the neigh­
boring agents is adopted here. A decomposition approach is utilized to cast the 
consensus problem of the multiagent system into the stability of a set of matrices 
that have the same dimension as that of a single agent. 

Suppose that there are m nodes in the graph. The adjacency matrix A ∈�m×m 

is defined by aii = 0, and ai j > 0 if ( j, i) ∈ E but 0 otherwise. The Laplacian ma­
trix L ∈ �m×m is defined as Lii = j �=i ai j,Li j = −ai j for i �= j. It follows imme­
diately that 0 is an eigenvalues of L with 1 as the corresponding right eigenvector 
and all the non-zero eigenvalues have positive real parts. For a directed graph, 0 
is a simple eigenvalue of L if and only if the graph has a directed spanning tree. 

6.3.1 Consensus with observer-type protocol 
Consider a network of N identical agents with linear or linearized dynamics, 
where the dynamics of the ith agent are described by 

ẋi = Axi + Bui 

yi = Cxi. (6.70) 

where xi ∈ �n is the state, ui ∈ �p is the control input, yi ∈ �q is the measured 
output and A,B and C are constant matrices with compatible dimensions. 

The communication topology among agents is represented by a directed 
graph G = (V, E), where V = {1, . . . , N} is the set of nodes (i.e., agents), and 
E ⊂ V ×V is the set of edges. An edge (i, j) in graph G means that agent j can 
obtain information from agent i, but not conversely. 

At each time instant, the information available to agent i is the relative mea­
surements of other agents with respect to i itself, given by 

N

ζi = ai j(yi − y j) (6.71) 
j=1 

where (aii)N × N is the adjacency matrix of graph G. The consensus protocol 
takes the following observer-type form: 

N

v̇i = (A + BK)vi + cL ai jC(vi − v j) − ζi 
j=1 

ui = Kvi (6.72) 
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where vi ∈ �n is the protocol state, i = 1,2, . . . , N,c > 0 denotes the coupling 
strength, L ∈�q×n and K ∈�p×n are feedback gain matrices to be determined. In 
(6.72), the term 

�N
j=1 ai jC(vi − v j) denotes the information exchanges between 

the protocol of agent i and those of its neighboring agents. It is observed that the 
protocol in (6.72) maintains the same communication topology of the agents in 
(6.70). 

Let zi = [xT
i , vi

T ]T . Then, systems (6.70) and (6.72) together can be written as 

N

żi = Azi + c Li jHz j, i = 1, 2, . . . , N (6.73) 
j=1 

where L = (Li j)N × N is the Laplacian matrix of graph G, and 

A BK 0 0
A = , H = 0 A + BK −LC LC 

6.3.2 Dynamic consensus 
We start by introducing the concept of dynamic consensus 

Definition 6.2 Given agents (6.70), the protocol (6.72) is said to solve the dynamic 
consensus problem if the states of system (6.73) satisfy 

lim ∀i, j = 1,2, . . . ,N (6.74)
t→∞ 

�zi(t) − z j(t)� = 0, 

Let r ∈ �N be such that rT L = 0 and rT 1 = 1 

Remark 6.10 Introduce a new variable 

δ (t) = z(t) − ((1rT ) ⊗ I2n)z(t) 

= ((IN − 1rT ) − I2n)z(t) (6.75) 

where z = [z1 
T , . . . , zT

N ]
T and δ ∈ �2Nn×2Nn satisfies 

(rT ⊗ I2n)δ = 0 

By similarity to [18], δ is referred to as the disagreement vector. It is easy to see that 
0 is a simple eigenvalue of IN − 1rT with 1 as the right eigenvector, and 1 is another 
eigenvalue with multiplicity N − 1. 
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It follows from (6.75) that δ = 0 if and only if z1 = = zN , that is, the · · · 
dynamic consensus problem can be recast into the asymptotic stability of vector 
δ , which evolves according to the following dynamics 

δ̇ = (IN ⊗ A + cL ⊗ H)δ (6.76) 

In the sequel, we provide a decomposition approach to the dynamic consensus 
problem. 

Theorem 6.3 
For the communication topology G containing a directed spanning tree, protocol 

(6.72) solves the dynamic consensus problem if and only if all the matrices 

A + BK, A + cλiLC, i = 2,3, . . . ,N 

are Hurwitz, where λi, i = 2,3, . . . ,N, are the non-zero eigenvalues of the Laplacian 
matrix L. 

In the sequel, we let Y1 ∈ �N×(N−1), Y2 ∈ �(N−1)×N , T ∈ �N×N , and an 
upper-triangular matrix Δ ∈ �(N−1)×(N−1) be such that 

T = 
� 

1 Y1 
� 
, T −1 = Y

rT 

2 
, 

T −1LT = Λ = 0
0 

Δ 
0 

(6.77) 

where the diagonal entries of Δ are the non-zero eigenvalues of L. Then, (6.76) 
can be rewritten in terms of ξ , where ξ = (T −1 ⊗ I2n)δ with ξ = [ξ1 

T , . . . , ξN
T ]T , 

as follows 
ξ̇ = (IN ⊗ A + cΛ ⊗ H)ξ (6.78) 

As to ξ1, it can be seen from (6.75) that 

ξ1 = (rT ⊗ I2n)δ = 0 (6.79) 

Note that the elements of the state matrix of (6.78) are either block diagonal or 
block upper triangular. Hence, ξi, i = 2, . . . , N, converge asymptotically to zero, 
if and only if the N − 1 subsystems 

ξ̇i = (A + cλiH)ξi, i = 2,3, . . . , N (6.80) 

are asymptotically stable, which leads to the assertion by noting that matrices 

A + λiH are similar to 
A + λiLC 0 

, i = 2, . . . , N. −λiLC A + BK 
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Remark 6.11 The significance of Theorem 6.3 lies in the fact that it converts the 
consensus of the multiagent system under the dynamic protocol (6.72) to the stability 
of a set of matrices with the same low dimensions as a single agent. The effects of 
the communication topology on the consensus are characterized by the eigenvalues 
of the corresponding Laplacian matrix L. Moreover, protocol (6.72) is based only on 
relative output measurements between neighboring systems. 

Lemma 6.3 
Consider network (6.73) whose communication topology G has a directed spanning 
tree. If protocol (6.72) satisfies Theorem 6.3, then ⎤⎡ 

x1(0) 

xi(t) → ϖ(t) � (rT ⊗ eAt )
⎢⎣ . . .


xN (0)


⎥⎦ (6.81) 

vi(t) → 0, i = 1,2, . . . ,N, as t →∞ 

where r ∈ �N is such that rT L = 0 and rT 1 = 1. 

From (6.81), it follows that agents (6.70) are excluded from having poles in 
the open right-half plane; otherwise, the consensus value reached by the states 
of (6.70) will tend to infinity exponentially. On the other hand, if matrix A is 
Hurwitz, then the agents will reach consensus onto 0. Therefore it is critical 
for matrix A in (6.70) to have eigenvalues along the imaginary axis, so that the 
systems can reach consensus on a non-zero value, a special case of which is that 
matrix A is neutrally stable. 

6.3.3 Consensus region 
Given a protocol of the form (6.72), the dynamic consensus problem can be cast 
into analyzing the system 

ς̇ = (A + σH)ς (6.82) 

where ς ∈ �2n , σ ∈ C. The stability of system (6.82) depends on the parameter 
σ , based on which the notion of consensus region is introduced: 

Definition 6.3 The region S of the complex parameter σ , such that (6.82) is asymp­
totically stable, is called the consensus region of network (6.73). 

It follows from Theorem 6.3 that consensus is reached if and only if 

c(αk + iβk) ∈ S, k = 2, 3, . . . ,N 

where i = 
√
−1, αk = Re(λk) and βk = Im(λk). For an undirected communication 

graph, its consensus region S is an interval or a union of several intervals on the 
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real axis. However, for a directed graph, where the eigenvalues of L are generally 
complex numbers, its consensus region S is a region or a union of several regions 
on the complex plane, which can be bounded or unbounded. 

Remark 6.12 It should be noted that the consensus region serves, in a certain 
sense, as a measure for the robustness of the protocol (6.72) to parametric uncer­
tainties of its feedback gain matrix L and the communication topology. Given a con­
sensus protocol, the consensus region should be large enough for the protocol to 
maintain a desirable robustness margin. 

6.3.4	 Consensus with neutrally stable matrix 
In this subsection, for the case when matrix A is neutrally stable, it is shown that 
an unbounded consensus region in the form of the open right-half plane can be 
achieved. A constructive design algorithm for protocol (6.72) is then presented. 

Lemma 6.4 
A complex matrix A ∈ Cn×n is Hurwitz if and only if there exist a positive definite 
matrix Q = QH and a matrix C ∈ Cm×n such that (A,C) is observable and AHQ + 
QA = −CHC. 

Lemma 6.5 
For matrices S ∈ �n×n ,H ∈ �m×n, where S is skew-symmetric and (S,H) is observ­
able, the matrix S − (x + iy)HT H is Hurwitz for any x > 0,y ∈ R. 

Proof: Let S̃ = S − (x + iy)HT H. Then 

S̃ + S̃H	 = S − (x + iy)HT H + ST − (x − iy)HT H 
= −2xHT H ≤ 0, ∀x > 0 (6.83) 

Obviously, (S̃, H) is observable, for (S, H) is observable. By Lemma 6.4, (6.83) 
directly leads to the assertion. 

A constructive algorithm for protocol (6.72) is now presented, which will be 
used later. 

Algorithm 6.1 
Given that A ∈�n×n is neutrally stable and that the pair (A,B,C) is stabilizable and 
detectable, the dynamic protocol (6.72) can be constructed as follows: 

1. Let K be such that A + BK is Hurwitz. 
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2. Choose U ∈ �n×n1 and W ∈ �n×(n−n1) such that � �−1 � � S 0
U W A U W = (6.84)0 X 

where S ∈ �n1×n1 is skew-symmetric and X ∈ R(n−n1)×(n−n1) is Hurwitz. 

3. Let L = −UUTCT . 

4. Select the coupling strength c > 0. 

In the above algorithm, note that matrices U and W can be derived by render­
ing matrix A into the real Jordan canonical form. 

Theorem 6.4 
Given that A ∈�n×n is neutrally stable and that G has a directed spanning tree, there 
exists a distributed protocol in the form of (6.72) that solves the dynamic consensus 
problem and, meanwhile, yields an unbounded consensus region (0,∞)×(−∞,∞), 
if and only if (A,B,C) is stabilizable and detectable 

Proof: = Follows Theorem 6.3.⇒ 
= Let the related variables be defined as in Algorithm 6.1. Construct the ⇐

protocol (6.72) by Algorithm 6.1, and let H = CU . Then, (S, H) is observ­
able for (A,C) is detectable. Let U† ∈ �n1×n (n−n1 )×n be such that � � and W † ∈ �

U† � �−1
= U W , where U†U = I,W †W = I,U†W = 0 and W †U = 0. It 

W † 

can be verified by some algebraic manipulations that � �−1 � � 
U W (A +(x + iy)LC) U W 

S +(x + iy)U†LCU (x + iy)U†LCW 
= 

(x + iy)W †LCU X +(x + iy)W †LCW 

= 
S − (x + iy)HT H −(x + iy)HT SW 

(6.85)0 X 

which implies that matrix A + (x + iy)LC is Hurwitz for all x > 0 and y ∈ R, 
because by Lemma 6.3, matrix S − (x + iy)HT H is Hurwitz for any x > 0 and 
y ∈ R. Hence, by Theorem 6.3, the protocol given by Algorithm 6.1 solves 
the dynamic consensus problem with an unbounded consensus region (0,∞) ×
(−∞,∞). 

Remark 6.13 The consensus region (0,∞) × (−∞,∞) achieved by the proto­
col constructed by Algorithm 6.1 means that such a protocol can reach consen­
sus for any communication topology containing a directed spanning tree and for 
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any positive coupling strength. However, the communication topology and the cou­
pling strength do affect the performances of consensus, for example, the convergence 
speed. A general case of dynamic consensus protocol based on relative measure­
ments of the neighboring agents are investigated here, containing the static protocol 
case. Moreover, the method leading to Theorem 6.4 here is indeed comparatively 
much simpler. 

6.3.5 Consensus with prescribed convergence speed 
For the general case where matrix A has no eigenvalues in the open right-half 
plane, the protocol (6.72) is designed in this subsection to achieve consensus 
with a prescribed convergence speed. Previous works along this line include [15, 
17, 18], where the convergence speed of consensus for networks of integrators 
was analyzed. 

It turns out, from the proof of Theorem 6.3, that the convergence speed of N 
agents in (6.70) reaching consensus under protocol (6.72) is equal to the minimal 
decay rate of the N − 1 systems in (6.80). The decay rate of system ẋ = Ax is de­
fined as the maximum of negative real parts of the eigenvalues of matrix A. Thus, 
the convergence speed of agents (6.70) reaching consensus can be manipulated 
by properly assigning the eigenvalues of matrices 

A + BK, A + cλiLC, i = 2, 3, . . . , N 

We know from matrix theory that the decay rate of system ẋ = Ax is larger than 
α > 0, if and only if there exists a matrix Q > 0 such that 

AT Q + QA + 2αQ < 0 

Hence, we provide the following result 

Proposition 6.1 
Given the agents (6.70), there exists a matrix L such that A +(x + iy)LC is Hurwitz 
with a decay rate larger than a for all x ∈ [1,∞), y ∈ (−∞,∞), if and only if there 
exists a matrix Q = QT > 0 such that 

AT Q + QA − 2CTC + 2αQ < 0 (6.86) 

Proof: = By Lemma 6.5, there exists a matrix L such that A + LC is Hur­⇐
witz with a decay rate larger than a if and only if there exists a matrix Q = QT > 0 
such that 

(A + LC)T Q + Q(A + LC)+ 2αQ < 0 

Let QL = V . Then, the above inequality becomes 

AT Q + QA +VC +CTV T + 2αQ < 0 
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By Finsler’s Lemma, there exists a matrix V satisfying the above inequality if 
and only if there exists a scalar τ > 0 such that 

AT Q + QA − τCTC + 2αQ < 0	 (6.87) 

Without loss of generality, letting τ = 2 in (6.87) leads to (6.86). Take V = −CT , 
that is, L = −Q−1CT . By the above inequalities, one has 

(A	 + (x + iy)LC)HQ + Q(A +(x + iy)LC)+ 2αQ 
= (A +(x − iy)LC)T Q + Q(A +(x + iy)LC)+ 2αQ 
=	 AQ + QAT − 2xCTC + 2αQ < 0 

for all x ≥ 1, that is, A +(x + iy)LC is Hurwitz, with a decay rate larger than a for 
all x ∈ [1,∞), y ∈ (−∞,∞). 

=	 Follows by letting x = 1,y = 0.⇒
Combining Proposition 6.1 and Theorem 6.3 lead to the following result: 

Theorem 6.5 
For network (6.73) with G containing a directed spanning tree, there exists a protocol 
(6.72) that solves the consensus problem with a convergence rate larger than a and 
yields an unbounded consensus region [1,∞) × (−∞,∞), if and only if there exist 
matrices K and L such that both A + BK and A + LC are Hurwitz, with a decay rate 
larger than α . 

Algorithm 6.2 
For graph G containing a directed spanning tree, a protocol (6.72) solving the dy­

namic consensus problem with a convergence speed larger than a can be constructed 
as follows: 

1. Obtain the feedback gain matrix K, for example, by using the Ackermann’s 
formula, such that the poles of matrix A + BK lie in the left-half plane of 
x = −α . 

2. Choose the feedback gain matrix L = −Q−1CT , where Q > 0 is one solution 
to (6.86). 

3. Select the coupling strength c larger than the threshold value cth given by 

1 
cth = (6.88)

mini=2,...,N Re(λi) 

where λi, i = 2, . . . ,N, are the non-zero eigenvalues of matrix L. 
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The following remarks stand out: 

Remark 6.14 Algorithm 6.2 has a favorable decoupling feature. To be specific, 
steps 1 and 2 deal only with the agent dynamics and the feedback gain matrices of the 
consensus protocol, leaving the communication topology of the multiagent network 
to be handled in step 3 by manipulating the coupling strength. The protocol designed 
by Algorithm 6.2 for one communication graph is applicable to any other graph 
with larger minimum real parts of eigenvalues and, thereby, is robust in this sense 
to the communication topology. For the case where the agent number N is large, for 
which the eigenvalues of the corresponding Laplacian matrix are hard to determine 
or even troublesome to estimate, one only needs to choose the coupling strength to 
be large enough. 

Remark 6.15 Compared to the consensus when A is neutrally stable, where the 
coupling strength can be chosen as any positive scalar, for the case where A is crit­
ically unstable or a prescribed convergence speed is desired, the coupling strength 
generally has to be larger than a threshold value, which is related to the specific com­
munication topology. This is consistent with the intuition that unstable behaviors are 
more difficult to synchronize than stable behaviors. 

Remark 6.16 One sufficient condition satisfying Theorem 6.5 is that (A, B,C) is 
controllable and observable. Under such a condition, the protocol achieving consen­
sus with a convergence speed larger than an arbitrary given positive value can be 
constructed by Algorithm 6.2. However, larger a implies higher feedback gains in 
protocol (6.72). Thus, a trade-off has to be made between the convergence speed and 
the cost of the consensus protocol. 

6.3.6 Illustrative example 6.2 
The agent dynamics are given by (6.70), with ⎡ ⎤ ⎡ ⎤ 

A = ⎣ 
0 
1 
−1 
0 

0 
0 ⎦ , B = ⎣ 

1 
0 ⎦ , C = 

� 
0 0 1 

� 
0 1 0 0 

Obviously, matrix A is neutrally stable, and (A, B,C) is controllable and observ­
able. A third-order consensus protocol is in the form of (6.72). 

Simple computation shows that the feedback gain matrix K of (6.72) is given 
as K = % −4.5 −5.5 −3 such that the poles of A + BK are −1,−1.5,−2. 
The matrix U , such that U−1AU = J is of the real Jordan canonical form, is ⎡ ⎤ ⎡ ⎤ 

0 0.5774 0 0 0 0 
U = ⎣ 0 0 −0.5774 ⎦ , J = ⎣ 0 0 1 ⎦ 

1 −0.5774 0 0 −1 0 
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By Algorithm 6.1, the feedback gain L of (6.72) is obtained as L =[
0.3333 0 −1.3333

]T
. By Theorem 6.4, the agents under this protocol can

reach consensus with respect to any communication graph containing a spanning
tree and for any positive coupling strength. One such graph with 6 nodes is shown
in Fig. 6.16, whose non-zero eigenvalues are 3 and 1 with multiplicity 4. Select
the coupling strength c = 1 for simplicity. It can be verified that the convergence
speed in this case equals 0.0303.

Next, protocol (6.72) is redesigned in order to achieve consensus with a spec-
ified convergence speed larger than 1. The feedback gain K is chosen the same as
above. Solving linear matrix Inequality (LMI) (6.86) with a= 1 by using Sedumi
toolbox [36] gives L=

[
% −8.5763 −15.2128 −5.6107

]T
. For the graph in

Fig. 6.16, the threshold value for the coupling strength is cth = 1 by (6.88). Select
c = 1, the same as before. The consensus errors xi−x1, i = 2, . . . ,6, for the graph
in Fig. 6.16 under the protocols generated by Algorithms 6.1 and by Algorithm
6.2 with α = 1, are depicted in Figs. 6.17a and 6.17b, respectively. It can be ob-
served that the consensus process of the former case is indeed much slower than
the latter.

6.3.7 Consensus with static protocols
In this section, a special case where the relative states between neighboring
agents are available is considered. For this case, a distributed static protocol is
proposed as

ui = cF
N∑

j=1

ai j(xi− x j) (6.89)

Figure 6.16: Communication graph

61
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3 4
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Figure 6.17: Consensus errors (a) Algorithm 1 (b) Algorithm 2 with α = 1

where c > 0 and ai j are the same as those defined in (6.72), and F ∈ <p×n is the
feedback gain matrix to be determined. For protocol (6.89), the dynamic consen-
sus problem studied earlier reduces to the following static consensus problem.

Definition 6.4 Protocol (6.89) is said to solve the (static) consensus problem if the
states of agents (6.70) with (6.89) satisfy

lim
t→∞

‖xi(t)− x j(t)‖= 0, ∀i, j = 1,2, . . . ,N (6.90)

The following results are direct consequence of Theorem 6.3 in the static
case.

Corollary 6.1
For graph G containing a directed spanning tree, there exists a protocol (6.89) solv-
ing the consensus problem if and only if all the matrices A+ cλiBF, i = 2,3, . . . ,N,
are Hurwitz, where λi, i = 2,3, . . . ,N, are the same as in Theorem 6.3. For the case
where matrix A is neutrally stable, one has the following.
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Corollary 6.2 
Given that A ∈ �n×n is neutrally stable and that G has a directed spanning tree, 
there exists a protocol (6.89) solving the consensus problem and yielding a consensus 
region (0,∞) × (−∞,∞), if and only if (A,B) is stabilizable. 

A necessary and sufficient condition is obtained here as a consequence of 
Theorem 6.4. The method for constructing the protocol (6.89) is similar to Al­
gorithm 6.1, therefore, it is omitted for brevity. 

The design procedure for the protocol (6.89) solving consensus with a speci­
fication on the convergence speed is now presented. 

Algorithm 6.3 
For a controllable pair (A,B), a protocol (6.89) solving the consensus problem with 
a convergence speed larger than a can be constructed as follows: 

1. Choose the feedback gain matrix F = −BT P−1, where P > 0 is a solution to 

AP + PAT − 2BBT + 2αP < 0 

2. Select the coupling strength c ≥ cth, with cth given by (6.88). 

6.3.8 Formation control 
In this section, the consensus algorithms are modified to solve formation control 
problems of multiagent systems. 

Let H̃ =(h1, h2, . . . ,hN ) ∈�n×N describe a constant formation structure of the 
agent network in a reference coordinate frame, where hi ∈ Rn, is the formation 
variable corresponding to agent i. Then, variable hi − h j can be used to denote 
the relative formation vector between agents i and j, which is independent of the 
reference coordinate. For the agents (6.70), a distributed formation protocol is 
proposed as � 

N� 
v+ 

i = (A + BK)vi + cL 

N� 

j=1 

di jC(vi − −v j) � 

− 
j=1 

di j(yi − y j −C(hi − h j)) (6.91) 

ui = Kvi 

where the variables are the same as those in (6.72). It should be noted that (6.91) 
reduces to the consensus protocol (6.72), when hi − h j = 0, ∀ i, j = 1,2, . . . , N. 
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Definition 6.5 The agents (6.70) under protocol (6.91) achieve a given formation 
H̃ = (h1,h2, . . . ,hN ), if 

lim 
t→∞ 

�(xi(t) − hi) − (x j(t) − h j)�→ 0, 

∀ i, j = 1,2, . . . ,N (6.92) 

Theorem 6.6 
For graph G containing a directed spanning tree, the agents (6.70) reach the forma­
tion H̃ under protocol (6.91) if all the matrices 

A + BK, A + cλiLC, i = 2, . . . , N 

are Hurwitz, and Ahi = 0, ∀ i = 1,2, . . . ,N, where λi, i = 2,3, . . . ,N, are the non-zero 
eigenvalues of matrix L. 

Proof: Let x̃i = xi − hi and z̃i = [ x̃i
T ,vT

i ]
T , i = 1, 2, . . . , N. Then, systems (6.70) 

and (6.91) together can be written as 

N � � 

ż̃i = Az̃i + c 
� 

Li jHz̃ j + 
Ah
0 

i , i = 1,2, , N (6.93) 
j=1 

where matrices A and H are defined in (6.73). Note that the formation H̃ is 
achieved if system (6.93) reaches consensus, which, by (6.75), implies that 
Ahi = 0, i = 1, 2, . . . , N. The rest is similar to the proof of Theorem 6.3. 

Remark 6.17 Note that not all kinds of formation structure can be achieved for the 
agents (6.70) by using protocol (6.91) . The achievable formation structures have to 
satisfy the constraints Ahi = 0, ∀ i = 1,2, . . . , N. One should observe that hi can be 
replaced by hi − h1, i = 2, . . . ,N, in order to be independent of the reference coor­
dinate, by simply choosing h1 corresponding to agent 1 as the origin. The formation 
protocol (6.91) satisfying Theorem 6.6 can be constructed by using Algorithm 6.1 
or 6.2. Interestingly enough Theorem 6.6 generalizes previous results. 

6.3.9 Illustrative example 6.3 
Consider a network of six double integrators, described by 

ẋi = vi 

v̇̃i = ui 

yi = xi, i = 1, 2, ,6 

where xi ∈ �2 , ṽi ∈ �2 , yi ∈ �2 and ui ∈ R2 are the position, velocity, measured 
output and acceleration input of agent i, respectively. 
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The objective is to design a dynamic protocol (6.91) such that the agents will
evolve to form a regular hexagon with edge length 4. Taking into consideration
that the spacecraft’s dynamics in deep space can be modeled as a double integra-
tor, this example may have possible applications in deep-space formation flying
missions.

In this case, choose

h1 =
[

0 0 0 0
]T

, h2 =
[

4 0 0 0
]T

,

h3 =
[

6 2
√

3 0 0
]T

, h4 =
[

4 4
√

3 0 0
]T

h5 =
[

0 4
√

3 0 0
]T

, h6 =
[
−2 2

√
3 0 0

]T

We take
K =

[
−1.5 −2.5

]
⊗ I2

in (6.91), such that matrix

λ (A+BK) := {−1, −1.5}

By solving LMI (6.86) with α = 1, one obtains

L =
[
−3.6606 −4.8221

]T ⊗ I2

By Theorem 6.6 and Algorithm 6.2 , the six agents under protocol (6.91) with
K,L given as above, and c = 1 will form a regular hexagon with a convergence
rate larger than 1 for the communication topology given in Fig. 6.16. The state
trajectories of the six agents are depicted in Fig. 6.18.

Figure 6.18: Six agents form a hexagon

10

0

–10

–20

–30

–40

–50

–60

–70

–25 –20 –15 –10 –5 0 5

X

Y



� 

� � 

238 � Multiagent Systems: Introduction and Coordination Control 

6.4 Consensus Control for Time-Delay Systems 
Time-delays resulting from interconnection links have been paid much atten­
tion regarding multiagent systems because of the practical background. A neces­
sary and sufficient condition for a time-delay consensus problem was presented 
for the agents with first-order dynamics and undirected interconnection graph in 
[18]. Consensus problems for multiple agents with interconnection time delays 
are discussed. Local controller for each agent is neighbor-based, as was done in 
many references related to agent-based control systems. 

6.4.1 Problem formulation 
In this section, a consensus problem will be formulated mathematically for a 
leaderless multiagent system with double-integrator dynamics and time-varying 
interconnection delays. Then, we introduce some basic concepts and notations 
in algebraic graph theory and functional differential equations that will be used 
[10]. 

Consider a group of n identical agents move in an m- dimensional space and 
the agents are indexed by 1, . . . , n. A continuous-time model of the ixth agent is 
described by a second-order differential equation, as follows. 

ẋi = vi, 
v̇i = ui 

(6.94) 

where xi ∈ �m can be the position (or angle) of agent i,vi ∈ �m its velocity (or 
angular velocity) and ui ∈ �m its interconnection control inputs for i = 1, . . . ,n. 

In the sequel, a free consensus problem of system (6.94) is solved if xi = 
x j,vi = v j for all i, j ∈ I = {1, . . . , n}. In order to enable the agents to achieve 
consensus along with interconnection delays, consensus control schemes have 
to be constructed for all mobile agents. The design of neighbor-based feedback 
ui(t) usually depends on x j(t), v j(t) for some j ∈ Ni, which denotes the index set 
of the neighbors of agent i. However, in practice, there may be interconnection 
delays, and each agent cannot instantly obtain the information from others. Thus, 
the feedback ui(t) should be constructed based on the information of x j(t − r(t)) 
and v j(t − r(t)) for some j ∈ Ni and time-varying delay r(t) > 0, a continuously 
differentiable function satisfying 

0 < r(t) < τ (6.95) 

To deal with this consensus problem for system (6.94), we propose the following 
local control scheme 

ui(t) = k2 ai j(x j(t − r) − xi(t − r)) 
j∈Ni(σ ) 
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+k ai j(v j(t − r) − vi(t − r)) , k > 0 (6.96) 
j∈Ni(σ) 

where σ : [0,∞) IΓ = {1, . . . ,N} (N denotes the total number of all possible →
interconnection topologies). If the system (6.94) is free of time delay (i.e., r ≡ 0), 
then the consensus control (6.96) becomes 

ui(t) = k2 ai j(x j(t) − xi(t))+ k ai j(v j(t) − vi(t)) 
j∈Ni (σ ) j∈Ni(σ) 

which is consistent with the consensus rules in [5]. 
If each agent is regarded as a node, then the interconnection topology asso­

ciated with the agents is conveniently described by a simple graph, see [18]. 
Let G = (V,E, A) be a weighted digraph of order n with the set of nodes 
V = {1, 2, . . . ,n}, set of arcs E ⊆ V × V and a weighted adjacency matrix 
A = [ai j] ∈�n×n with non-negative elements. The node indexes belong to a finite 
index set I = {1, 2, . . . , n}. An arc of G is denoted by (i, j), which starts from i 
and ends on j when agent j is a neighbor of agent i. The element ai j associated 
with the arc of the digraph is positive, that is ai j > 0 ⇔ (i, j) ∈ E. Moreover, we 
assume aii = 0 for all i ∈ I. The index set of neighbors of node i is denoted by 
Ni = { j ∈ V : (i, j) ∈ E}. If j∈Ni(σ) ai j = j∈Ni(σ ) a ji for all i = 1, . . . ,n, the 
digraph G is called balanced. A cluster is any subset J,V of the nodes of the di­
graph. The set of neighbors of a cluster J is defined by NJ = ∪i∈JNi = { j ∈ V : i ∈
J,(i, j) ∈ E}. A path in a digraph is a sequence i0, i1, . . . , i f of distinct nodes such 
that (i j−1, i j) is an arc for j = 1, 2, . . . , f , f ∈ Z+. If there exists a path from node 
i to node j, we say that j is reachable from i. A digraph G is strongly connected 
if any two distinct nodes are reachable from each other. A strong component of 
a digraph is an induced subgraph that is maximal, subject to being strongly con­
nected. If a node i is reachable from every other node in G, then we say it is 
globally reachable, which is much weaker than strong connectedness. 

A diagonal matrix D = diag{d1, . . . , dn} ∈ Rn×n is a degree matrix of G, 
whose diagonal elements di = j∈Ni 

ai j for i = 1, . . . ,n. Then the Laplacian of 
the weighted digraph is defined as 

L = D − A 

The next lemma shows an important property of Laplacian L associated with G 
[18]. 

Lemma 6.6 
L has least one zero eigenvalue with 1 ∈ �n as its eigenvector, and all the non-zero 
eigenvalues of L have positive real parts. Laplacian L has a simple zero eigenvalue 
if and only if G has a globally reachable node. 
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Let S1, S2, . . . ,S − p be the strong components of G = (V,ε, A) and NSi be the 
neighbor sets for Si, i = 1, . . . , p, p > 1. 

Lemma 6.7 
A digraph G = (V,E,A) has a globally reachable node if and only if every pair of 
Si,S j satisfies NSi ∪ NS j =� ∅. Moreover, if the graph is strongly connected, then each 
node is globally reachable from every other node. 

In the sequel, the interconnection topologies will be discussed in two cases. 
A fixed topology, described by a digraph, is considered first, and then variable 
topologies described by balanced digraphs are analyzed. To model varying in­
terconnection topology, we introduce a function σ : [0, ∞) IΓ = {1, . . . , N},→
which is a switching signal to show the sequence of the switched interconnection 
topologies over time. The set Γ = {G1, . . . ,GN } is a finite collection of graphs 
with a common node set V . If σ is a constant function, then the corresponding 
interconnection topology is fixed. In addition, Ni(σ) is the index set of neigh­

⎢⎢⎢⎣ 

bors of agent i in the digraph gσ , whereas ai j(i, j = 1, . . . , n) are elements of the 
adjacency matrix of gσ . 

Introducing 

x = 

⎤⎡⎤⎡ 
x1 v1 ⎥⎥⎥⎦


⎢⎢⎢⎣


⎥⎥⎥⎦


x2 v2 mn mnv =
∈ �
 ∈ �
,
 ,
.
 .
.
 .
.
 .

xn vn ⎤
⎡

u1 
u2⎢⎢⎢⎣ 

u = 

Then, with the control scheme (6.96), the closed-loop system (6.94) can be 
rewritten in the following form 

⎥⎥⎥⎦

mn∈ �. . . 

un 

ẋ = v

v̇ = u = −k2(Lσ ⊗ Im)(x(t − r)+ kv(t − r)) (6.97)


where ⊗ denotes the Kronecker product [10]. 
Before the consensus stability of system (6.97) is analyzed, we refer the 

reader to Section 9.1 in the Appendix where the stability notions of time-delay 
systems were treated. 

In the sequel, we will analyze the consensus stability of multiagent systems 
with time delays under controller (6.96). 
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6.4.2 Fixed interconnection topology 
In this section, we will focus on the convergence analysis of the system (6.97) 
when the switching signal is constant (or equivalently, the interconnection topol­
ogy is fixed). Then, the subscript σ is dropped, for simplicity, and the system 
(6.97) can be expressed with the following linear delayed differential equations 

ẋ = v

v̇ = −k2(L ⊗ Im)(x(t − r)+ kv(t − r)) (6.98)


To solve the consensus problem of the system (6.98), we recall the following 
result. 

Lemma 6.8 
For Laplacian L associated with digraph G, then there exists a non-singular matrix ⎞⎛ 

1 . . . ∗ ∗ 
1 . . . ∗ ∗ 
. . . . . . . . . 
1 ∗ . . . ∗ 

⎜⎜⎜⎝ 

⎟⎟⎟⎠ ∈ �n×nU = (6.99) 

such that 

0 αT 
U−1LU = ,= Λ ∈ �n×n 

α ∈ �n−1 ,0n−1 H 

H ∈ �(n−1)×(n−1) (6.100) 

According to Lemma 6.8, with a coordinate transformation 

x̄ = (U−1 ⊗ Im)x, v̄ = (U−1 ⊗ Im)v (6.101) 

the system (6.98) becomes 

ẋ̄ = v̄

v̇̄ = −k3(Λ ⊗ Im) − k2(Λ ⊗ Im)x̄(t − r)


or equivalently


and


ẋ̄1 = v̄1

v̇̄1 = −k3(αT ⊗ Im)v̄2(t − r) − k2(αT ⊗ Im)x̄2(t − r) (6.102)


ẋ̄2 = v̄2 
v̇2 = −k3(H ⊗ Im)v̄2(t − r) − k2(H ⊗ Im)x̄2(t − r) (6.103)¯

where


x̄ = 
x
x
¯
¯
1

2 
, v̄ = 

v
v
¯
¯
1

2 
, x̄1, v̄1 ∈ �m , 
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x̄2, v̄2 ∈ �m(n−1)


for the subsystem (6.103), let ε = (x̄2 
T , v̄T 

2 )
T ∈�2m(n−1). Then, we have a compact


form 
ε̇ = Bε(t) + Eε(t − r) (6.104) 

where � � 

B = � 

O(n−1)×(n−1) 
0(n−1)×(n−1) 

In−1 
0(n−1)×(n−1) 

⊗ Im, � 

E = 
O(n−1)×(n−1) 
−k2H 

0(n−1)×(n−1) 
−k3H ⊗ Im 

Remark 6.18 From Lemmas 6.6 and 6.8, if graph G has a globally reachable 
node, the real parts of all the eigenvalues of H ∈ �(n−1)×(n−1) are positive, or 
equivalently, −H is Hurwitz stable. Therefore, there exist a positive-definite matrix 
P̄ ∈ �(n−1)×(n−1) such that 

P̄H + HT P̄ = In−1 (6.105) 

Let λ̄l (or λ ) denote the minimum ( or maximum) eigenvalue of −P and µ the maxi­
mum eigenvalue of HT PH. Let λmin be the minimum eigenvalue of −(PF + FT P)P̄T ¯
with F = B + E. Then, a result can be obtained for system (6.98). 

Theorem 6.7 
For system (6.98), take 

k > k1 
∗ = max 

2
1 

λ + 1, 
λ

µ 
¯ + 1 (6.106) 

and assume that 

τ ≤ τ∗ = 
λmin (6.107)1 k4 + k6 + �PE2P−1E2T P� + 2q(k + 1)λ 

where q > 1. Then, the free consensus problem of the system (6.98) is solved if and 
only if G has a globally reachable node. 

Proof: = Since G has a globally reachable node, zero is a simple eigenvalue ⇐
of Laplacian L, whereas other eigenvalues have positive real parts, see Lemma 
6.6. By Lemma 6.8, there exists a nonsingular matrix U , given in (6.99), such 
that L can be transformed to (6.100), where H has eigenvalues with positive real 
parts. Then, there is a positive-definite matrix P̄ satisfying (6.105). 

For system (6.104), take a Lyapunov–Razumikhin function 

V (ε) = εT Pε (6.108) 
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where 

kP̄ P̄
P = P̄ kP̄ ⊗ Im 

is positive definite since k > 1. 
Furthermore, by Leibniz–Newton formula �	 0 

ε(t − r) = ε(t) − ε̇(t + s)ds 
−r �	 0 � 0 

= ε(t) − B ε(t + s)ds − E ε(t − r + s)ds 
−r −r 

Therefore, (6.104) can be rewritten as �	 0 � 0 

ε̇ = Fε − EB ε(t + s)ds − E2 
ε(t − r + s)ds (6.109) 

−r	 −r 

for arbitrary initial function on [−2τ,0]. If the zero solution of (6.109) is asymp­
totically stable, then the zero solution of (6.104) is asymptotically stable, since 
(6.104) is a special case of (6.109) with continuous initial function ϕ̃(s) given 
by ϕ̃(s) arbitrary for s ∈ [−2τ, −τ − r(0)], ϕ̃(s) = ϕ(s + r(0)), −τ − r(0) ≤ s ≤ 
−r(0), and ϕ̃(s) = ε(t + s), −r(0) ≤ s ≤ 0 where ε(t) is the solution of (6.104) 
with initial function ϕ on [−τ, 0]. 

Setting η1 = ε(t),η2 = ε(t +s), η3 = E2T
Pε(t −r +s),η4 = ε(t −r +s),M1 = 

PEB = Y1, M2 = I2m(n−1) = Y2,X1 = k4(1+k2)I2m(n−1),X2 = P−1 and Z1 = Z2 = P. 
Invoking a standard bounding inequality, [74] gives (6.106), and leads to � 0 

V̇ = ε
T (FT P + PF)ε − 2 ε

T PEBε(t + s)ds � 0 
−r 

−2 ε
T PE2

ε(t − r + s)ds 
−r 

ε
T (FT P + PF)ε + rk4(1 + k2)εT 

ε≤ � 0 

+	 ε
T (t + s)Pε(t + s)ds + rε

T PE2P−1E2T
Pε �−0 

r 

+ ε
T (t − r + s)Pε(t − r + s)ds 

−r 

Take φ (s) = qs for some constant q > 1. In the case of 

V (ε(t + θ )) ≤ qV (ε(t)), −2τ ≤ θ ≤ 0 (6.110) 

we have, with Remark 6.18, 

V̇ ≤−ε
T Qε + rε

T ((k4 + k6)I2m(n−1) + PE2P−1E2T 
+ 2qP)ε 
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where 

Q = −(FT P + PF) = 
k2In−1 k3In−1 − kP̄

k3In−1 − kP̄ k4In−1 − 2P̄ ⊗ Im 

Q is positive definite if k satisfies (6.106), according to Schur complements [60]. 
Let λmin denote the minimum eigenvalues of Q. If we take the upper bound τ1 

∗ 

in (6.107), then V̇ (ε) ≤−ηεT ε for some η > 0. By the Lyapunov–Razumikhin 
Theorem, we conclude that x̄2 → 0m(n−1), v̄2 → 0m(n−1) as t →∞. 

On the other hand, for the system (6.102), let x̄1(0), v̄1(0) be the initial values 
of x̄1(t), v̄1(t) and take a variable of change x̃1 = x̄1 − (v̄1(0)t + x̄1(0)), ṽ1 = v̄1 − 
v̄1(0). Then, the solution can be given by the following integral equation � � � t � �


x̃1 Im (t − s)Im
= ṽ1 0 0m Im 

0m ds (6.111)× −k3(αT ⊗ Im)v̄2(s − r) − k2(αT ⊗ Im)x̄2(s − r) 

As discussed before, the system (6.103) is uniformly asymptotically stable, 
which implies its exponential stability according to Lemma 5.3 of [60]. Thus, 
solution (6.111) has a exponential decay term with respect to time t and so, it is 
convergent to zero as t →∞. Consequently, we have 

x̄1 v̄1(0)t + x̄1(0) v̄1 
x̄2 

− 0m(n−1) 
→ 0mn, v̄2 

v̄1(0) → 0m(n−1) 
,as t →∞ 

From transformation (6.101), we have 

x (U ⊗ Im) 
v̄1(0)t + x̄1(0)
− 0m(n−1)


= x − 1 ⊗ (v̄1(0)t + x̄1(� 
0)) → 0mn � 

v = (U ⊗ Im)v̄ (U ⊗ Im) 
v̄1(0) v1(0)→ 0m(n−1)

= 1 ⊗ ¯

Therefore, xi − x j → 0mn,vi − v j → 0mn for all i, j ∈ I as t →∞. The conclusion 
follows. 

= It will be proved by contradiction. If G has no globally reachable node, ⇒
then, from Lemma 6.7, there are at least two strong components of G having no 
neighbor sets. Thus, we renumber the nodes of G and L can be transformed to 
the following form ⎛ ⎞ 

L11 0 0 
L = ⎝ 0 L22 0 ⎠ (6.112) 

L31 L32 L33 
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where 0 denotes some zero matrices with appropriate dimensions and L11 ∈ 
�k1×k1 ,L22 ∈ Rk2×k2 (k1 + k2 < n) are the Laplacians associated with two strong 
components, respectively. 

Then, the system (6.98) can be expressed as 

ẋ1 = v1,

v̇1 = −k3(L11 ⊗ Im)v1(t − r) − k2(L11 ⊗ Im)x1(t − r) (6.113)


ẋ2 = v2,

v̇2 = −k3(L22 ⊗ Im)v2(t − r) − k2(L22 ⊗ Im)x2(t − r) (6.114)
⎧ ⎨	 ẋ3 = v3, 

v̇3 = −k3([L31 L32 L33] ⊗ Im)v(t − r) (6.115)⎩ −k2([L31 L32 L33] ⊗ Im)x(t − r) 

where ⎛ ⎞ ⎛ ⎞ 
x1 v1 

x = ⎝ x2 ⎠ , v = ⎝ v2 ⎠ , x1, v1 ∈ �mk1 , 
x3 v3 

x2,v2 ∈ �mk2 x3, v3 ∈ �m(n−k1−K1), 

Similar to the proof of sufficient condition, it is not hard to obtain that x1 −
1k1 ⊗ (ν1t + δ1) → 0mk1 , v1 → 1k1 ⊗ ν1 and x2 − 1k2 ⊗ (ν2t + δ2) → 0mk2 , v2 →
1k2 ⊗ ν2 for some constants ν1, δ1,ν2,δ2 as t →∞. Since ν1, δ1 and ν2, δ2 can 
be set arbitrarily, the system (6.98) cannot reach a consensus, which leads to a 
contradiction. 

Remark 6.19 During the derivations of the bounds on k1 
∗ and τ1 

∗, high-order in­
equalities and the bounds on matrix function need to be solved, many zoom tech­
niques have to be applied and, hence, the results may be very conservative. 

6.4.3 Switched interconnection topology 
We now consider the convergence of time-delay system (6.97) for the switched 
interconnection topology. Since it is hard to do this for switched interconnection 
topologies described by general digraphs, a special class of digraphs, that is, 
balanced digraphs, are considered in the subsequent stability analysis, see the 
Appendix. 

With a coordinate transformation 

x = (V ∗ ⊗ Im)x, v̄ = (V ∗ ⊗ Im)v (6.116) 

the system (6.97) becomes � 
ẋ̄1 = v̄1 
v̇̄1 = 0m	

(6.117) 
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ẋ̄2 = v̄2,

v̇̄2 = −k3(Hσ ⊗ Im)v̄2(t − r) − k2(Hσ ⊗ Im)x̄2(t − r) (6.118)


where x̄1, v̄1 ∈ Cm , x̄2, v̄2 ∈ Cm(n−1). 
Consider (6.118), or equivalently 

ε̇ = Bε(t)+ Eσ ε(t − r)	 (6.119) 

where 

B =	
0(n−1)×(n−1) In−1 ⊗ Im,0(n−1)×(n−1) 0(n−1)×(n−1) 

Eσ = 
0(n−1)×(n−1) 0(n−1)×(n−1) 
−k2Hσ −k3Hσ 

⊗ Im 

Based on Lemma 1.3 and the fact that the set IΓ is finite, if the balanced digraph 
Gσ has a globally reachable node 

λ̃ = min{eigenvalues ofHσ + Hσ

∗} > 0 
µ̃ = max{eigenvalues ofHσ Hσ

∗} > 0 

can be well defined. Let Fσ = B + Eσ and λ̃min denotes the minimum eigenvalue 
of all possible −( ˜ P).PFσ + Fσ ˜

A result of the switched system (6.97) with time-varying delay is given as 
follows: 

Theorem 6.8 
For system (6.97) with balanced interconnection topology Gσ , take 

1
k > k2 

∗ = max + 1,µ̃ + 1	 (6.120)
2λ̃

and assume that 

λ̃min
τ < τ2

∗ = 
k4 + k6 +(k13 + k11)µ̃2 + 2q(k + 1) 

(6.121) 

with q > 1. Then the free consensus problem of the system (6.97) is solved if Gσ has 
a globally reachable node. 

Proof: To obtain the result, we first consider (6.118). Take a Lyapunov– 
Razumikhin function 

V (ε) = ε∗P̃ε (6.122) 

where 

P̃ = 
kI
In

n

−

−

1

1 
kI
In

n

−

−

1

1 
⊗ Im 
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is positive definite for k > 1. 
Similar to the proof of Theorem 6.7, we can obtain � 0 

V̇ |(33) ε
T (Fσ 

T ˜ � 

PF

0 

σ )ε − 2ε
T ˜

−r 
ε(t + s)ds = P + ˜ PEσ B 

−2ε
T ˜ ε(t − r + s)ds PEσ 

2 

−r 

By a standard bounding inequality [74], it follows that 

ε
T (FT P + ˜V̇ |(33) ≤ σ 

˜ PFσ )ε + r(k4 + k6)ε∗
ε � 0 

+ ε
∗(t + s)P̃ε(t + s)ds 

−r 

+rε
T ˜ P̃−1E2T ˜PEσ 

2 
σ Pε � 0 

+ ε
∗(t − r + s)P̃ε(t − r + s)ds 

−r 

Set φ (s) = qs for some constant q > 1. In the case of 

V (ε(t + θ )) < qV (ε(t)), −2τ ≤ θ ≤ 0 (6.123) 

we have 

V̇ ≤ −ε
T Qσ ε + rε

T ((k4 + k6)I2m(n−1) 

+PE˜ σ 
2 p̃−1Eσ 

2 p̃ + 2qp̃)ε 

where 

Qσ = −(Fσ 
T 

Φ + ΦFσ ) 

k2(Hσ
∗+ Hσ ) k3(Hσ

∗+ Hσ ) − kIn−1 = k3(Hσ
∗+ Hσ ) − kIn−1 k4(Hσ

∗+ Hσ ) − 2In 
⊗ Im 

Clearly, Qσ is positive definite and then V̇ (ε) is negative definite if k is taken as 
(6.120) and 

r < τ ≤ τ2 
∗ 

where τ2 
∗ is defined in equation (6.121). Thus, the subsystem (6.118) converges 

to 02m(n−1) according to the Lyapunov–Razumikhin Theorem, see the Appendix. 
On the other hand, for the system (6.117), 

x̄1 = v̄1(0)t + x̄1(0), v̄1 = v̄1(0) 

with 
n n

x̄1(0) = (1/
√

n) 
� 

xi(0), v̄1(0) = (1/
√

n) 
� 

vi(0) 
i=1 i=1 
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Then, with the transformation (6.116), we have


x (V ⊗ Im) 
v̄1(0)t + x̄1(0)− 0m(n−1) 

n1 
= x − 1 ⊗ xi(0) 0mn (6.124)→

n 
i=1 

n

n 
i=1 

(V ⊗ Im) 0
v
m

¯1

(

(

n−

0) 
1)

= 1 ⊗ 
1 

vi(0) (6.125)v
→


which concludes the proof. 

Remark 6.20 In Theorem 6.8, when we consider the stability of second-order 
time-delay system, by saying Gσ has a globally reachable node, we mean that ev­
ery possible graph in the interconnection evolution has a globally reachable node. 
This is stronger than the usual requirement. There is T ≥ 0, such that for all t0 > 0 
there is a node connected to all other nodes across [t0, t0 + T ], that is, the opposite 
graph, which is formed by changing the orientation of each arc of g([t0, t0 + T ]) = 
(V, ∪t∈[t0,t0+T ]E(t)), has a globally reachable node. 

Remark 6.21 In fact, with balanced graphs, the position xi and the velocity vi 

of agent i(i = 1, . . . ,n) in the considered multiagent system converge to the average 
values of initial positions (that is, (1/n) i

n 
=1 xi(0)) and initial velocities (that is, 

n 
i=1 vi(0)), respectively, because of (6.124) and (6.125). (1/n) 

In the following section, some numerical examples are provided to illustrate 
the theoretical results in order. 

6.4.4 Illustrative example 6.4 
Consider different number of agents are moving in a plane (i.e., m = 2) with 
ring-shaped interconnection G1 and G2, respectively (see Figs. 6.19a and b). 

It is not difficult to obtain two Laplacians associated with G1 and G2 as fol­
lows ⎞⎛ 

1 −1 0 0 
1⎜⎜⎝


⎟⎟⎠

1
 0
 −1 0 

1L1 = 0 0
 −1

1


4

−1 0 0
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L2 =
1
4


1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1
−1 0 0 0 1


Then, for the two interconnection topologies G1,G2, we can obtain k∗1 =
1.5000,k∗2 = 2.0170 and the upper bounds τ∗1 = 0.0104,τ∗2 = 0.0011, which
shows that k∗ will increase and τ∗ will decrease as the number of agents become
large.

6.4.5 Illustrative example 6.5
Consider the interconnection topology is switching between G1 and G3 (see
Figs. 6.19 and 6.20) while four agents are moving in a plane. Suppose that
the time varying interconnection delay is given by r(t) = 0.01|cos(t)| and the
switching signal σ(t) = {G1,G3,G1,G3, . . .}. The initial positions and velocities
are given as follows

x(0) = [0;1;0;0;1;0;1;1]T ;
v(0) = [−1;1;2 : 5;−1.5;−2;−1;1;2]T

By using the proposed consensus algorithm (6.96) for four agents with time
delay r(t), the simulation results are shown in Figs. 6.21 and 6.22. It can be seen
that all the agents will reach consensus while the interconnection is dynamically
changing and there exist time-varying delays in the local interactions between
agents from Fig. 6.21. From Fig. 6.22, we also find that the velocity of each agent

Figure 6.19: Interconnection topologies

a G1 for four agents

b G2 for five agents

1 4

32
a b

1

2

3 4

5
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Figure 6.20: Interconnection topology G3 for four agents

Figure 6.21: Position evolutions

will approach the average of the initial values, that is, vi(t)→ 1/4
∑4

j=1 v j(0) =
v∗ = [0.125,0.125]T as t→∞.

6.5 Robust Consensus of Multiagent Systems
We are concerned here with consensus problems for a class of multiagent systems
with second-order dynamics. Some dynamic neighbor-based rules are adopted
for the agents with the consideration of parameter uncertainties and external dis-
turbances. Sufficient conditions are derived to make all agents asymptotically
reach consensus while satisfying desired H∞ performance. Finally, numerical
simulations are provided in order to show the effectiveness of our theoretical
results.
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Figure 6.22: Velocity evolutions

6.5.1 Problem description
Suppose that the multiagent system under consideration consists of n agents that
may be birds, airplanes, robots and so on. Each agent is regarded as a node in a
directed graph G. Each edge (s j,si) ∈ E corresponds to an available information
channel from the agent si to the agent s j . Moreover, each agent updates its current
state based upon the information received from its neighbors.

Suppose the dynamics of the ith agent (i ∈ I) is
ẋi(t) = vi(t)
v̇i(t) = ui(t) (6.126)

where xi(t) ∈ R is the position state, vi(t) ∈ R is the velocity state and ui(t) ∈ R
is the control input (or protocol).

Given the dynamical system in (6.126), we say the protocol ui asymptotically
solves the consensus problem, if the states of agents satisfy

lim
t→+∞

[xi(t)− x j(t)] = 0, lim
t→+∞

[vi(t)− v j(t)] = 0 (6.127)

for all i, j ∈ I.
In practical applications, the multiagent systems often suffer from various

disturbances, such as actuator bias, measurement/ calculation errors and the vari-
ation of the communication topology. The existence of disturbances might lead
to oscillation or divergence of the multiagent systems. It is of significance to
investigate their effects on the behavior of the multiagent systems and find ap-
propriate protocols to make the multiagent systems robust to disturbances. In this
section, we are interested in investigating the robust H∞ performance of system
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(6.126) using the following consensus protocol


ui(t) = k0vi + k1 (ai j + Δai j(t))(x j(t) − xi(t)) 
s j ∈Ni 

+k2 (ai j + Δai j(t))(v j(t) − vi(t))+ wi(t) (6.128) 
s j ∈Ni 

where k1 > 0, k2 > 0 and k0 are protocol parameters 

i = = 0 | | 0 otherwiseΔai j(t) = 
≤ ψi j � jandai j �

denotes the uncertainty of ai j , which might be caused by actuator bias, for spec­
ified positive constants ψi j, and wi(t) ∈ L2[0, ∞) is the external disturbance that 
might be caused by measurement/calculation errors. Here, it should be noted 
that there is no restricted condition imposed on the parameter k0 and it might be 
positive, zero or negative. 

A natural way to combine the relative information is to define output func­
tions zi(t) = [zi1(t), zi2(t)]T ∈ R2 for i ∈ I computed from an average of the rela­
tive displacements and velocities of all agents as follows 

n n

zi1(t) = [xi(t) − x j(t)] = xi(t) − x j(t)n n 
j=1 j=1 

1
 1


n n

zi2(t) = [vi(t) − v j(t)] = vi(t) − v j(t)n n 
j=1 j=1 

It is clear that consensus can be achieved if and only if 

lim zi(t) = 0, i = 1, . . . ,n 
t→+∞ 

Denote 

1
 1


ξ = [x1, v1, x2,v2, . . . , xn, vn]
T ∈ �2n 

0 1 0 1
A = 0 k0 

∈ �2×2 , B = k1 k2 
∈ �2×2 , 

0 2B2 = 1 ∈ �⎡
⎢⎢⎢⎢⎣


n−1 1 1 . . . n − n − n 

⎤
⎥⎥⎥⎥⎦


− 1 n−1 . . . − 1 
n nC
 =
 n ∈ �
n×n 

. . . . . . . . . . . . 
− 1 − 1 n−1 . . . n n n 
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With protocol (6.128), the network dynamics are 

ξ̇ (t) = [In ⊗ A − (L + ΔL) ⊗ B1]ξ (t)+(In ⊗ B2)w(t) 
z(t) = (C ⊗ I2)ξ (t) (6.129) 

where w(t) = [w1(t), . . . ,wn(t)]T ∈ �n , z(t) = [z1(t), . . . ,zn(t)]T ∈ �2n ,L is the 
Laplacian of the graph G and ΔL ∈ �n×n is the uncertainty Laplacian associated 
with the elements Δai j(t). 

By Lemma 1.2, ΔL can be transformed into ΔL = E1Σ(t)E2, where E1 ∈ 
�n×|E|, E2 ∈ �|E|×n are specified constant matrices and Σ(t) ∈ �|E|×|E| is a di­
agonal matrix whose diagonal elements are the uncertainties of the edges, that 
is the non-zero Δai j(t). It is easy to see that DL can be rewritten as E1Σ(t)E2 = 
(E1Σ1)Σ̃(t)(Σ2E2), where Σ1 and Σ2 are adopted to validate Σ̃(t)T Σ̃(t) ≤ I. There­
fore without loss of generality, we assume that ΣT (t)Σ(t) ≤ I, that is ψi j = 1 for 
all i = j. 

Define the following H performance index ∞ 

J = 
∞ 

[zT (t)z(t) − γ2wT (t)w(t)]dt (6.130) 
0 

where γ is a given positive constant. 
In the sequel, we focus on robust H consensus problems for second-order ∞

multiagent systems and find proper values for the parameters k0, k1 and k2 to 
make all agents reach consensus while satisfying the H performance index ∞
J < 0. However, due to the coupling of the two states of each agent, it is much 
harder to analyze the dynamics of the second-order multiagent systems, espe­
cially when the communication graph is directed and the uncertainties are in­
cluded. The approach adopted is to reduce the dimension of the whole system 
by separating out the agreement dynamics. A detailed discussion will be made in 
the following section. 

6.5.2 Analytic results 
Before presenting the main results, we need to first introduce some lemmas [16]. 

Lemma 6.9 
Consider the matrix C. The following statements hold. 

1. The eigenvalues of C are 1 with multiplicity n − 1 and 0 with multiplicity 1. 
The vectors 1T

n and 1n are the left and the right eigenvectors of C associated 
with the zero eigenvalue, respectively. 

2. There exists an orthogonal matrix U ∈ �n×n such that 

UTCU = 
In−1 0 

0 0 



� � 
� � 

� 

� 

�
 �


� � � �
 �


�
 �
 �
 �

�


254 � Multiagent Systems: Introduction and Coordination Control 

and the last column is 1n/
√

n. Let Ξ1 ∈�
graph, then UT Ξ1U = 

n×n be the Laplacian of any directed 
n×(n−1) 

For convenience, denote 

ϑ1 0 ,ϑ1 ∈ �

U = U1 Ū1 

¯where U1 = 1n/
√

n is the last column of U and U1 ∈ �n×(n−1) is the rest part. 

Theorem 6.9 
Consider a directed network of agents with fixed topology. The multiagent system 
(6.129) reach consensus while satisfying the H performance index J < 0 for a given ∞
constant γ > 0, if there exists a symmetric positive-definite matrix P ∈�(2n−2)×(2n−2) 

and a scalar µ > 0 satisfying 6.131, where L̄ = U1 
T LU1 and Ē = (U1 

T E2 
T E2U1) ⊗ I2. 

⎡ ⎢⎢⎢⎢⎣ 

⎤ 
P(In−1 ⊗ A − L̄⊗ B1)+ 
(In−1 ⊗ A − L̄⊗ B1)

T P+ P[(U1 
T E1) ⊗ B1] P(U1 

T ⊗ B2) 
µ ¯

⎥⎥⎥⎥⎦ 
E + I2n−2 

(E1 
TU1) ⊗ BT 

1 
(U1 ⊗ BT 

2 )P 

< 0 (6.131) � 
P −µI 0 

0 −γ2I 

Proof: Let
 � tn

= e
n 

i=1 0 

1
 A(t−s)B2wi(s)ds W (t)


ξ̂ (t) = ξ (t) − 1n ⊗W (t),


δ (t) = (U1 ⊗ I2)
T 

ξ̂ (t), (6.132)


δ̄ (t) = (Ū1 ⊗ I2)
T 

ξ̂ (t)


where W (t) describes the average effect of external disturbances on each agent; 
ξ̂ (t) describes the states of all agents, which takes out the average of external 
disturbances; δ̄ (t) describes the average states of all agents; and δ (t) depicts the 
disagreement states of all agents. 

Premultiplying the left-hand side of system (6.129) with the matrix (U ⊗ I2)
T 

yields 

(U ⊗ I2)
T 

ξ̇ (t) = 
δ

δ

¯
˙

(

(

t
t
)

) 
+(U ⊗ I2)

T (In ⊗Ẇ (t)) ˙

δ̇ (t) √1
n 

� t A(t−s)B2wi(s)ds n 
i=1 (6.133)


e0�n 
i=1 B2wi(t) 

= 
δ̄̇ (t) 

+

+
 1√

n 

δ̇ (t)

= 

δ̄̇ (t) 
0


+ √nAW (t)+
 1√
n 

n 
i=1 B2wi(t) 
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Note that L1n = 0 and ΔL1n = 0. Then, premultiplying the right-hand side of 
system (6.129) with the matrix (U ⊗ I2)

T yields 

(U ⊗ I2)
T 

ξ̇ (t) = (U ⊗ I2)
T (In ⊗ A)(ξ̂ (t)+ 1n ⊗W (t)) 

−(U ⊗ I2)
T [(L + ΔL) ⊗ B1](ξ̂ (t) 

+1n ⊗W (t))+(UT ⊗ B2)w(t) 

= (U ⊗ I2)
T (In ⊗ A)(U ⊗ I2) 

δ

δ 
¯(
(

t
t
)

) 

−(U ⊗ I2)
T [(L + ΔL) ⊗ B1](U ⊗ I2) 

δ

δ̄

(

(

t
t
)

) 

+(U ⊗ I2)
T (In ⊗ A)(1n ⊗W (t)) 

+(UT ⊗ B2)w(t)� �� � 
In−1 ⊗ A 0 δ (t) 

= ¯0 A δ (t) 

(U1 
T LU1 +U1 

T ΔLU1) ⊗ B1 0 δ (t)− 
(Ū1 

T LU1 +Ū1 
T ΔLU1) ⊗ B1 0 δ̄ (t) 

(UT 

+ √nAW (t)+ 
⊗
B2 

B
√
2
1
)

n

w(t
n
i

)

=1 wi(t) 
(6.134) 

Denote ΔL = U1 
T ΔLU1. Then, by (6.133) and (6.134), it is easy to see that 

δ̇ (t) = [In−1 ⊗ A − (L̄+ Δ̄L) ⊗ B1]δ (t)+(U1 
T ⊗ B2)w(t) 

δ̄̇ (t) = [( Ū1 
T LU1 +Ū1 

T 
ΔLU1) ⊗ B1]δ (t)+ Aδ̄ (t) (6.135) 

From (6.135), it is clear that δ (t) is independent of δ̄ (t) and δ̄ (t) is dependent 
on δ (t). Also, by Lemma 6.9 

z(t) = (C ⊗ I2)ξ (t) = (C ⊗ I2)(U ⊗ I2)(U ⊗ I2)
T 

ξ (t) 

= diag{U1 ⊗ I2,0} 
δ (t) 

(6.136)
δ̄ (t) 

It follows that limt→∞ z(t) = 0 when limt→∞ δ (t) = 0. So, whether the multia­
gent system (6.129) can reach consensus is only related to the component δ (t). 
To investigate the H∞ performance of the multiagent system (6.129), we can 
study the following system 

δ̇ (t) = [In−1 ⊗ A − (L̄+ Δ̄L) ⊗ B1]δ (t)+(U1 
T ⊗ B2)w(t) 

z(t) = (U1 ⊗ I2)δ (t) (6.137) 

Define a Lyapunov function for system (6.137) as follows 

V (t) = δ T (t)Pδ (t) 
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where P ∈ �2(n−1)×2(n−1) is a symmetric positive-definite matrix. 
Calculating V̇ (t) along the solution of system (6.137), it follows that 

V̇ (t) = 2δ T (t)Pδ̇ (t) 
= 2δ T (t)P[In−1 ⊗ A − (L̄+ Δ̄L) ⊗ B1]δ (t) 
+	 2δ T (t)P(UT ⊗ B2)w(t)1 

For any x,y ∈ �n and any symmetric positive-definite matrix R ∈ �n×n , 

2xT y ≤ xT R−1x + yT Ry 

And since ΣT (t)Σ(t) ≤ In, it follows that 

−	 2δ T (t)P(Δ̄L ⊗ B1)δ (� 
t) 
1 � 

≤	 δ T (t)P(U1 
T E1 ⊗ B1) 

µ 
I2n (U1 

T E1 ⊗ B1)
T Pδ (t) 

+δ T (t)[(U1 
T E2 

T 
Σ

T ) ⊗ I2](µI2n)[(ΣE2U1) ⊗ I2]δ (t) 

≤	
µ 
1 

δ T (t)P(U1 
T E1 ⊗ B1)(U1 

T E1 ⊗ B1)
T Pδ (t) 

+µδ T (t)Ēδ (t) 

Consequently 

V̇ (t) ≤	 2δ T (t)P(In−1 ⊗ A − L̄⊗ B1)δ (t) 
+2δ T (t)P(U1 

T ⊗ B2)w(t) 

+ 
µ 
1 

δ T (t)P(U1 
T E1 ⊗ B1)(U1 

T E1 ⊗ B1)
T Pδ (t) 

+µδ T (t)Ēδ (t) 

Define the following cost performance index � T 

JT = [zT (t)z(t) − γ2wT (t)w(t)]dt 
0 

where T > 0 and w(t) ∈ L2[0, ∞). It is clear that J = limT →+∞ JT . According to 
the linear superposition theorem, the response of a linear system can be decom­
posed into zero input response and zero state response. The former is caused by 
the non-zero initial condition, while the latter is caused by the external input. So, 
to analyse the effects of the external disturbance w(t) on system (6.137), suppose 
that all agents start from the consensus state, that is δ (0) = 0. Clearly, V (0) = 0. 
Then, it follows that � T


JT = [zT (t)z(t) − γ2wT (t)w(t)]dt

0 
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� T 

= [zT (t)z(t) − γ2wT (t)w(t)+ V̇ (t)]dt − (V (T ) −V (0)) 
0 � T 

≤ 
0 
[ηT (t)Mη(t)]dt −V (T ) 

where η(t) = [δ T (t) wT (t)]T and ⎡
 ⎤

P(In−1 ⊗ A − L̄⊗ B1)+(In−1 ⊗ A − L̄⊗ B1)

T P 
+ 

µ 
1 P[(U1 

T E1E1 
TU1) ⊗ (B1B1 

T )]P P(U1 
T ⊗ B2) 

+µ ¯
⎢⎢⎣


⎥⎥⎦
M =
 < 0

E + I2n−2 

(U1 ⊗ BT 
2 )P −γ2I 

By the Schur complements, M < 0 holds if and only if (6.131) holds. Note 
that V (T ) ≥ 0. Then, JT < 0 when (6.131) holds. Let T 
J < 0, that is 0 

�
T ∞dt t t( ) ( )z < 

→ +∞. It follows that 
T (t)w(t)dt. This completes the proof. ∞

0 γ2z
 w


Remark 6.22 Transformation (6.132) plays a key role in our analysis. Applying 
(6.132), the agreement component is separated out from the dynamics of the multi-
agent system (6.129) and an equivalent system is obtained which describes the dis­
agreement dynamics of (6.129). Moreover, it is shown that the agreement dynamics 
δ̄ (t) is independent of the external disturbance w(t) but completely dependent on the 
disagreement dynamics δ (t). 

Remark 6.23 It should be noted that a necessary condition for condition (6.131) is 
that the graph G has spanning trees. In fact, condition (6.131) implies that P(In−1 ⊗
A − L̄⊗ B1)+ (In−1 ⊗ A − L̄⊗ B1)

T P < 0. Hence, In−1 ⊗ A − L̄⊗ B1 is Hurwitz. If 
the graph has no spanning trees, L̄ must have zero eigenvalues, which implies In−1 ⊗
A − L̄⊗ B1 has zero eigenvalues and yields a contradiction. 

Condition (6.131) is a bilinear matrix inequality which can easily be solved, 
when the number of the agents in the network, n, is not too large. However, 
when n is very large, it becomes almost impossible to solve. In this case, we can 
consider assigning a specified form to the matrix P. In the following, discussion 
will be made about this on undirected graphs. 

By the Schur complements, condition (6.131) is equivalent to 

P(In−1 ⊗ A − L̄⊗ B1)+(In−1 ⊗ A − L̄⊗ B1)
T P 

+ 
µ 
1 

P[(U1 
T E1E1 

TU1) ⊗ (B1B1 
T )]P + µĒ + I2n−2 

+γ
−2P(In−1 ⊗ (B2BT 

2 ))P < 0 (6.138) 
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Note that E1 and E2 are constant matrices. Denote λE1 and λE2 as the largest 
eigenvalues of the matrices U1 

T E1E1 
TU1 and U1 

T E2 
T E2U1, respectively. Then 

(6.138) holds if 

P(In−1 ⊗ A − L̄⊗ B1)+(In−1 ⊗ A − L̄⊗ B1)
T P 

+ 
µ 
1 

P[In−1 ⊗ (λE1 B1BT 
1 )]P +(µλE2 + 1)I2n−2 

+γ
−2P(In−1 ⊗ (B2BT 

2 ))P < 0 (6.139) 

From Remark 6.23, the graph has spanning trees under condition (6.131). 
By Lemma 1.1, the eigenvalues of the Laplacian L can be denoted as 0 = 
λ1 < λ2 ≤ · · · ≤ λn. Moreover, from matrix theory, the matrices L and UT LU 
have the same eigenvalues. Then, the eigenvalues of L̄ are λ2, λ3, . . . , λn by 
Lemma 6.9. There must be an orthogonal matrix H ∈ �(n−1)×(n−1) such that 
HT ¯ ¯LH = diag{λ2, λ3, . . . ,λn}. Take P = In−1 ⊗ P̄, where P ∈ �2×2 is an under­
mined positive-definite matrix. Pre- and post-multiplying the left-hand side of 
(6.139) with HT ⊗ I2 and H ⊗ I2 yields 

In−1 ⊗ ( ¯ PB1)PA) − diag{λ2, λ3, . . . ,λn}⊗ ( ¯

+[In−1 ⊗ ( ¯ PB1)]
TPA) ⊗ diag{λ2, λ3, . . . , λn}⊗ ( ¯

¯ ¯+ 
µ 
1 

In−1 ⊗ (λE1 PB1BT 
1 P)+(µλE2 + 1)I2n−2 

+γ
−2In−1 ⊗ (PB¯ 2BT P̄) < 0 (6.140)2 

It is easy to see that (6.140) holds if and only if 

¯ ¯ ¯PA − λi, [ ¯ PB1]
T + 

µ 
1 

λE1 1PA − ¯ PB1BT P 

+ 1)I2 + γ−2 ¯ ¯+ (µλE2 PB2BT 
2 P < 0 (6.141) 

for 2 ≤ i ≤ n. This means that if the non-zero n−1 eigenvalues of the Laplacian L 
all satisfy condition (6.141), the multiagent system (6.129) can reach consensus 
while satisfying the H performance index (6.130). ∞ 

Remark 6.24 As is well known, for a linear system, the asymptotic stability prop­
erty is equivalent to the exponential stability property. Thus, under condition (6.131), 
system (6.137) is exponentially stable. That is, consensus can be achieved exponen­
tially fast. 

In Theorem 6.9, the case with external disturbances is discussed. For better 
understanding the behavior of the multiagent system (6.129), let us consider the 
case without external disturbances. Set w(t) ≡ 0. System (6.135) becomes � � � �� �

δ̇ (t) In−1 ⊗ A − (L̄+ Δ̄L) ⊗ B1 0 δ̇ (t)

δ̇̄ (t)

=
(Ū1 

T LU1 +Ū1 
T ΔLU1) ⊗ B1 A δ̄ (t) 

(6.142)
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It is clear that the system matrix of (6.142) has one eigenvalue at zero and one at 
k0 and its other eigenvalues all have negative real-parts under condition (6.131). 
And when k0 ≥ 0, the first component of δ̄ (t) tends to infinity as t → +∞. From 
(6.132), it is easy to see that the average position state of the multiagent system 
tends to infinity as t → +∞. In what follows, it will be discussed whether the 
states of all agents stay bounded for k0 < 0. Since the component δ (t) is inde­
pendent of δ̄ (t), then δ (t) can be denoted as 

δ (t) = T (t, 0)δ (0) 

where T (t, ) is a continuous linear operator. Since δ (t) vanishes exponentially ·
fast as t → +∞, there are two positive scalars r and α , for any Σ(t)T Σ(t) ≤ I, 
such that 

�T (t,s)� ≤ re−α(t−s), t ≥ 0 

Denote δ̄ (t) = [ δ̄1(t), δ̄2(t)]T . From (6.142), it is easily obtained that � t


�δ̄2(t)� ≤ 
0 

ek0(t−s)�(Ū1 
T LU1 +Ū1 

T 
ΔLU1)�


⊗[k1 k2]re−αs�δ (0)�ds + �ek0t 
δ̄2(0)�� t 

≤ rπ1 ek0t−(k0+α)�δ (0)�ds + ek0t �δ̄2(0)�
0 

rπ1 k0t ¯= 
k0 + α 

(−e−αt + ek0t )�δ (0)� + e �δ2(0)� � t 

�δ̄1(t)� = �δ̄1(0)+ 
0 

δ̄2(s)ds� ≤ � δ̄1(0)� � t � � 
rπ1 e−αs k0s ¯+ 

k0 + α 
(− ̃ + ek0s)�δ (0)� + e �δ2(0)� ds 

0 

rπ1 � 1 1 k0t 
� 

= �δ̄1(0)+ 
k0 + α α 

(e−αt − 1)+ 
k0 
(e − 1) �δ (0)� 

+ 
k
1

0 
(ek0t − 1)�δ̄2(0)� 

where π1 = maxt �(Ū1 
T LU1 +Ū1 

T ΔLU1)⊗ [k1 k2]�. It is obvious that as t → +∞, 
each component of δ̄ (t) stays bounded. ⎡ ⎤ 

P(In−1 ⊗ A − L̄⊗ B1)+ ⎢ L ⊗ B1)
T P+ P (UT ⎥ ⎢ (In−1 ⊗ A − ¯ 1 E1) ⊗ B1 ⎥ ⎣ µĒ ⎦ 

(E1 
TU1) ⊗ BT 

1 P −µI 
< 0 (6.143) 
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⎤
⎡
 ⎥⎥⎥⎥⎦


P (U1 
T E1σ ) ⊗ B1 

⎤
⎥⎥⎦


P(In−1 ⊗ A − L̄σ ⊗ B1) 
+(In−1 ⊗ A − L̄σ ⊗ B1)

T P 
+µσ Ēσ + I2n−2 

P(In−1 ⊗ A − L̄σ ⊗ B1) 
+(In−1 ⊗ A − L̄σ ⊗ B1)

T P P 
+µσ Ēσ 

�
TU( 1 E1σ ) ⊗ B1 

P −µσ I 

⎢⎢⎢⎢⎣


⎡
⎢⎢⎣


P(U1 
T ⊗ B2) 

P −µσ I 0 
0 −γ2I 

(E1
T 
σ
U1) ⊗ BT 

1 
(U1 ⊗ BT 

2 )P 
< 0 (6.144)


< 0 (6.145)


(E1
T 
σ
U1) ⊗ BT 

1 

By repeating the same argument of the proof of Theorem 6.9, the following 
proposition can be obtained. 

Proposition 6.2 
Consider a directed network of agents with fixed topology in the absence of external 
disturbances. The multiagent system (6.129) can reach consensus if there exists a 
symmetric positive-definite matrix P ∈�(2n−2)⊗(2n−2) and a scalar µ > 0 satisfying, 
(6.143) 

In Theorem 6.9 and Proposition 6.2, we only discuss the case of fixed topol­
ogy. In the following Theorem 6.10 and Proposition 6.3, we will discuss the 
case of switching topology. To this end, we need to define a switching signal 
σ = s(t) : [0,∞) P = {1,2, . . . ,N} (N denotes the total number of the graphs →
of all possible topologies) that determines the topology. Such a function σ has 
a finite number of switching times and each time interval between every two 
consecutive switching times is assumed to be larger than a constant. 

Theorem 6.10 
Consider a directed network of agents with switching topologies. The multiagent 
system (6.129) can reach consensus while satisfying the H∞ performance index J < 
0 for a given constant γ > 0, if there exist a common symmetric positive-definite 
matrix P ∈ �(2n−2)⊗(2n−2) and a scalar µσ > 0 for each possible communication 
graph Gσ satisfying (6.144) where L̄σ = U1 

T LσU1 and Ēσ = (U1 
T E2

T 
σ E2σU1) ⊗ I2. 

Proof: This result can be proved following the lines of the proof of Theorem 
6.9. However, it should be emphasized that all possible In−1 ⊗ A − L̄σ ⊗ B should 
share a common Lyapunov function V (t) = δ T (t)Pδ (t). 
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Remark 6.25 As discussed previously, a necessary condition for the condition
(6.133) is that each possible communication graph Gσ has spanning trees. Moreover,
for undirected graphs, under condition (6.144), if each non-zero eigenvalue of all
possible Lσ satisfies condition (6.141), then consensus can be achieved with desired
H∞ performance.

Similar to Proposition 6.2, Proposition 6.3 can be easily obtained for the
networks with switching topologies in the absence of external disturbances.

Proposition 6.3
Consider a directed network of agents with switching topologies in the absence of
external disturbances. The multiagent system (6.129) can reach consensus if there
exist a common symmetric positive-definite matrix P ∈ R(2n−2)⊗(2n−2) and a scalar
µσ > 0 for each possible communication graph Gσ satisfying, see (6.145)

Remark 6.26 The agent models considered are in the form of second-order. The
proposed approach is promising and all the results might be extended to high order
multiagent systems with parameter uncertainties and external disturbances in the
absence and presence of time delay.

6.5.3 Illustrative example 6.6
Numerical simulations will be given in order to illustrate the theoretical results
obtained in the previous sections. Figure 6.23 shows three different networks,
each with n = 4 agents. All directed graphs in this figure have spanning trees.

Figure 6.23: Three directed graphs
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Suppose that the weight of each edge is 1, the uncertainty of each edge is 

0.01sin[(i + j)t], i = jandai j = 0
Δai j = 

� �
0 otherwise 

and the initial condition of the multiagent system is zero. Moreover, the 
topology of the multiagent system switches every 0.01 s in the sequence of 
< Ga,Gb, Gc, Ga >. 

Choosing the performance index γ = 1, it is solved that (19) is feasible when 
(k0, k1, k2) = (−1, 5, 5),(k0,k1, k2) = (0,5, 5) or (k0,k1,k2) = (0.3, 5,5). Accord­
ing to Theorem 6.10, consensus can be achieved with desired H performance� � 

∞ 
∞ 

zT (t)z(t)dt < 
∞ 

wT (t)w(t)dt 
0 0 

when 

(k0,k1, k2) = (−1,5, 5), (k0, k1, k2) = (0, 5,5), (k0,k1,k2) = (0.3, 5,5) 

In practical situations, external disturbances usually occur in the form of 
pulse. So, take the external disturbance w(t) as w(t) = [1 − 2 0.5 3]T ω̄(t), 
where 

1 0 = t ≤ 1
ω̄(t) = 

�
0 otherwise 

is a pulse signal. Now, simulation results are presented for the consensus prob­
lems in directed networks of second-order multiagent systems with switching 
topology and external disturbance w(t) for three cases: 

1) (k0, k1,k2) = (−1, 5,5) 
2) (k0, k1, k2) = (0, 5,5) 
3) (k0, k1,k2) = (0.3, 5,5) 

Figures 6.24–6.29 show the position and velocity trajectories of all agents. It is 
observed that the pulse disturbance w(t) makes the multiagent system diverge 
from consensus in the first few seconds, but after a period of interaction between 
agents, the multiagent system eventually return to consensus. Specifically, for 
k0 = −1, all agents move to a common value; for k0 = 0, all agents reach con­
sensus and move with a common constant velocity; and for k0 = 0.3, all agents 
reach consensus and move with a common constant acceleration. This suggests 
that the ultimate movement of the multiagent system is heavily dependent on the 
parameter k0. 

Figures 6.30–6.35 describe the position error and the velocity error trajec­
tories of all agents, that is zi1(t) and zi2(t)(i = 1,2, . . . ,n), whereas Figs. 14–16 
show the energy trajectories of the output function z(t) and the disturbance w(t). 
It is clear that the output function z(t) vanishes t → +∞ and the desired H∞
performance, 0

∞ zT (t)z(t)dt < 0
∞ wT (t)w(t)dt, is satisfied. Taken together, all 

simulations demonstrate that consensus can be achieved with desired H∞ per­
formance under the condition given by Theorem 6.10. 
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Figure 6.24: Position trajectories of all agents

Figure 6.25: Velocity trajectories of all agents
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Figure 6.26: Position trajectories of all agents

Figure 6.27: Velocity trajectories of all agents
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Figure 6.28: Position trajectories of all agents

Figure 6.29: Velocity trajectories of all agents
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Figure 6.30: Position error trajectories of all agents

Figure 6.31: Velocity error trajectories of all agents
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Figure 6.32: Position error trajectories of all agents

Figure 6.33: Velocity error trajectories of all agents
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Figure 6.34: Position error trajectories of all agents

Figure 6.35: Velocity error trajectories of all agents
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Figure 6.36: Energy trajectories of z(t) and w(t)

Figure 6.37: Energy trajectories of z(t) and w(t)
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Figure 6.38: Energy trajectories of z(t) and w(t)

6.6 Notes
This Chapter initially examined the dynamic consensus of a linear or linearized
multiagent system whose communication topology has a directed spanning tree.
Based on the relative outputs of the neighboring agents, an observer-type proto-
col was adopted. It was shown, for neutrally stable agents, that there exists a pro-
tocol achieving consensus over a consensus region. This region is the entire open
right-half plane if and only if each agent is stabilizable and detectable. Algo-
rithms were developed to derive protocols to achieve consensus with or without
convergence speed specification. It was established that the design procedures
possess a computationally desirable decoupling property.

Next, the delayed consensus problem of a group of leaderless multiple mo-
bile agents with neighbor-based rule was addressed. The consensus stability was
guaranteed with both fixed and switched interconnection topologies of the con-
sidered multiagent system. The dynamics of each agent were second-order with
time-varying delays. A Lyapunov–Razumikhin function was employed in the
stability analysis. For neutrally stable agents, it was shown that there exists a
protocol achieving consensus and having a consensus region that is the entire
open right-half plane if and only if each agent is stabilizable and detectable.

The consensus problem with a prescribed convergence speed was later inves-
tigated. A necessary and sufficient condition was then derived for the existence of
a protocol that reaches consensus with a convergence speed larger than a given
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positive value and, meanwhile, yields an unbounded consensus region, which 
means good robustness to the communication topology. 

Later on, consensus problems were investigated in directed networks of 
second-order agents with uncertainties. Neighbor-based rules were adopted for 
each agent with the consideration of parameter uncertainties and external dis­
turbances. Some conditions were derived, under which all agents asymptotically 
reach consensus while satisfying desired H∞ performance. 

To reduce the communication burden of multiagent networks, event-triggered 
schemes have been introduced to study the tracking problem for a class of 
discrete-time MAS with a time-varying reference state where the agents commu­
nicate with their local neighbours at discrete-time instants. The control actuation 
updates considered in this paper were event-driven, depending on certain mea­
surement errors with respect to the states of agents and the leader. A numerical 
example was presented to demonstrate the effectiveness of the theoretical results. 

Then, under the condition that the communication/sensing topology of a 
multi-vehicle system is weakly connected and contains two or more zero-in­
degree and strongly connected subgraphs, the second-order controlled consensus 
problems have been studied. We derived the necessary and sufficient condition 
under which second-order controlled consensus can be achieved. The method 
to design the controller and the rule to choose the pinned vehicles were dis­
cussed. We also considered the variable topology case. Multiple Lyapunov func­
tions have been employed in order to analyze the stability of the system. The 
second-order controlled consensus method has been applied to coordinate the 
movements of multiple unicycle robots. 
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Chapter 7


Cooperative Control of 
Networked Power 
Systems 

7.1 Coordinated Model Predictive Power Flows 
Microgrids (MG) are defined as smart power systems including loads, distributed 
generations (DGs), and energy storage systems (ESSs) (batteries, electric vehi­
cles, hydraulic storage, etc.) grouped together within a limited geographic area 
[512], [513]. The main advantage that the MG offers is to enable customers both 
with a bidirectional communication platform and with control devices to control 
their energy needs and excesses. In addition, with an adequate communication 
structure, it is possible to shape the users load demand curves using demand 
response strategies [514]. 

MG can operate either in grid-connected or islanded mode. In grid-connected 
mode, the MG is connected to a highly available power grid which may act as an 
additional power source for the MG. In this scenario, the MG and the distribution 
network operator (DNO) make mutual benefits selling/purchasing powers. On 
the other hand, from a sustainable development viewpoint, purchasing energy 
from the DNO, which is mainly producing power from nonrenewable sources, 
should be regulated within certain limits [515], which, conversely, may affect 
the quality of service. In islanded mode, the MG must keep a sufficient level 
of distributed power generation and energy storage in order to enhance system 
stability and to guarantee the quality of the local load. In an islanded renewable-
based MG, the power flow exchanges will bring new challenges that regard the 
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mitigation of renewable power intermittencies, load mitigation, load mismatches, 
and other key problems [516]. In order to reduce the power purchased from the 
DNO, one interesting solution is to connect neighboring MG in a network. 

7.1.1 Introduction 
In this section, we provide a solution to address the power control in a network 
of MG, to maximize the use of available renewable energy sources (RESs) to 
meet loads, and to enhance the reliability of the whole network. Considering 
the stochastic nature of renewable power generation and loads in each MG, a 
challenging question is how to effectively control the power locally and among 
MG in an open energy market while taking into account the various MG safety 
constraints, the storage dynamics, and the uncertainties coming from RESs and 
loads. 

The control and the optimization of a network of MG are still new research 
fields. One of the first studies in this field is the one presented in [517], where the 
authors proposed a smart network of MG with an optimal topology to enhance 
the RESs exploitation. In [518], the control approach aims at keeping the storage 
level in each MG around a reference value by exchanging power in a network of 
MG. The proposed model is defined according to a linear quadratic formulation, 
which provides an effective computation of the optimal solution, even for net­
works with a great number of MG. In [519] a method is proposed that takes care 
both of the MG load dispatch and of the network reconfiguration. The method 
uses the power-flow technique to minimize the total operating cost of a distribu­
tion network with multiple MG. The work of [520] focused on the load demand 
management of a network of interconnected MG. The problem is formulated as 
a cooperative power dispatching optimization problem, where real-time pricing 
is employed as a motivation for the interactions between the MG. Then, in [521], 
a problem of energy consumption scheduling in a distribution of connected MG 
is presented. 

So far, there are two main approaches that can be identified for the control of 
a network of smart MG: 

1) decentralized and 
2) centralized. 
On one hand, in the decentralized approach, a multiagent system (MAS) ap­

proach is frequently adopted, where each MG is related to an agent controlling 
some operations, such as the power flows from/to the external world [522], [523]. 
The main responsibility of an MG’s agent is to satisfy the local demand, maxi­
mizing the power export under variable market price conditions [524]. The main 
challenge in the decentralized control is to establish a consensus among different 
agents controlling the MG. 
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On the other hand, in the centralized approach, which is the focus of this 
paper, a central controller delivers the optimal control strategy, which is commu­
nicated to each MG. The use of centralized control is very effective to control a 
network of MG with one owner, given that all the relevant information is gath­
ered at a single point [525]. In addition, desired performances can be obtained as 
one global controller has full process knowledge and signal information which 
enable the coordination of decisions. Methods for solving the optimal energy 
management in a network of MG were reported in [526] and [527]. 

This section presents the control architecture and the mathematical models of 
a cooperative global centralized controller of a network of renewable-based MG. 
The model predictive control (MPC) application is highly interesting as MPC 
problems incorporate prediction models and operation and security constraints 
and enable the implementation of the future behavior of the system and its fore­
casts. These are attractive for renewable-based MG and load predictions [528]. 
At each control step, the method uses the most updated information on power 
generation, energy prices, and load forecasts, over a rolling horizon [529]–[534]. 

There is some existing work that considers a detailed comprehensive MPC 
approach for the optimal control of power flows in a cooperative renewable 
energy-based network of MG, coping with RESs intermittent and maximizing 
the profit of the network. This section considers a detailed comprehensive MPC 
approach for the optimal control of power flows in a cooperative renewable 
energy-based network of MG, coping with RESs intermittent and maximizing 
the profit of the network. The expected impact with respect to the actual oper­
ation of MG can be attained in providing more flexibility for the operation of 
each MG through the exchanges of power with neighboring MG, maximizing 
the use of renewable energy produced at the network level, exploiting the fluctu­
ations of stochastic renewable sources and demands, and ensuring the local loads 
internally with a minimum interaction with the DNO. 

7.1.2 System architecture 
The MG is considered as a small internal grid that can be connected to other MG, 
and/or connected/disconnected from the DNO. Each MG integrates several units 
(Fig. 7.1). 

1. DGs which may lead to exploit the local RESs. 

2. An ESS improving the stability, the power quality, and the reliability of 
the supply. 

3. Loads representing households demand. 

4. Point of Common Connection (PCC): It can be a single, double or multi­
dimensional point, depending on the number of incident connections. 
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Figure 7.1: Microgrids architecture 

5. Energy Management Unit (EMU): It is the interface between the global 
central controller (GCC) and the control unit available in the MG. 

In practical cases, a residential, industrial, or commercial building integrat­
ing distributed power sources, storage systems, controllable and non-controllable 
loads, a building energy management system, and an advanced metering infras­
tructure may be considered as a MG. The steps required to model these MG 
components are presented hereafter. 

7.1.3 Wind power generation 
It is assumed that wind turbines are available in each MG. The Weibull probabil­
ity distribution function (PDF) is generally used to represent the frequencies of 
the wind speed. It also represents the most frequent starting point of stochastic 
analysis, simulation, and forecasting of wind speed. Its general formulation is 
represented as follows [526]: � 

k 
�� 

ν �k−1 
� � 

ν �k
� 

f (ν) = 
c c 

exp − 
c 

. (7.1) 

In the literature, several models of the output power of wind turbines are 
available. A simplified linear model is used. It assumes a linear dependence of 
the wind turbine power output on the current wind speed at the hub height. 
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The probabilistic power output of the wind turbine in the i-th MG is as follows 
[535]: ⎧ ⎪⎪⎪⎨


0
 v̄(i, t) < vc 

â− ˆ
Pr bv̄(i, t) vc ≤ v̄(i, t) ≤ vr ūwt (i, t) = (7.2)
⎪⎪⎪⎩ �


Pr vr ≤ v̄(i, t) ≤ v f 

0 v̄(i, t) > v f 

â = vc 

with
 vc−vr (7.3)1b̂ =
 .
vr −vc 

7.1.4 Photovoltaic module generators 
It is assumed that photovoltaic (PV) modules are available in each MG. The 
electrical energy generated by a PV module is mostly affected by some charac­
teristics of the site like solar irradiance, ambient temperature, as well as other 
characteristics of the module itself. The solar irradiation is modeled by the Beta 
PDF identified with historical data, to describe random phenomena. The Beta 
PDF is described by [536] 

β (ψ) = 
Γ

Γ 
(

(

φ

φ 
)Γ 
+

(

θ

θ 
)

) 
× ψφ−1 × (1 − ψ)

θ −1 

with 0 ≤ ψ ≤ 1, θ ≥ 0, φ ≥ 0. (7.4) 

The parameters are computed using the mean ψ̄ and the standard deviation σ 
of the solar irradiance as follows: 

θ = (1 − ψ̄) × ψ̄×(
σ

1
2 
+ψ̄) − 1


φ = ψ

1
¯
−
×

ψ

θ 
¯ . 

(7.5)


The probabilistic power output of the PV modules in the i-th MG is calculated 
as follows: 

ψ(i, t).ūpv(i, t) = SpvξpvPf ξpc (7.6)


7.1.5 Energy storage system dynamics 
Each MG has an energy storage system (ESS). So, any local shortage in sup­
plying loads to consumers should be met either by discharging the ESS or by 
purchasing power from the MG neighbors or from the DNO. The function of the 
ESS is to participate in the balance of the electric loads and RESs power genera­
tion. The ESS capacity must be sized on the number of residences connected to 
the MG. We denote with x(i, t) the energy storage level of the ESS of each MG 
at time period t. The state of charge can be expressed as 

x(i, t + Δt) = x(i, t)+ βChar,i uChar(i, t)Δt − βDis, i uDis(i, t)Δt. (7.7) 
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Supposing Δt = 1 h, (7.7) can be rewritten as 

x(i, t + 1) = x(i, t)+ βChar,i uChar (i, t) − βDis,i uDis(i, t). 

7.1.6 Loads 
In each period (t, t + 1) and for each MG, the load is assumed to be uncontrol­
lable. Load forecasting techniques performed by each EMU can help the GCC 
to make important decisions for the network, such as purchasing/selling power 
from/to a particular MG, charging/discharging ESS and purchasing/selling power 
from/to the DNO. In order to provide accurate predictions for the MPC-based 
power scheduling for MG, appropriate weather data (such as temperature, hu­
midity) and historical data of energy consumption, are required. At each time 
step, through appropriate prediction algorithms, the EMU uses measured data of 
previous periods to predict the loads for a future predefined horizon Np. As the 
MPC process is going on, new measurements are gathered and the EMU updates 
parameters of the prediction model in order to include corrections and reduce the 
errors. 

7.1.7 Energy management unit 
The MG power system supports the power in grid-connected and/or MG-
connected modes. The main EMU function is to optimize the MG operation in 
case of autonomous operation, or alternatively, to play an interface role between 
the MG components and the GCC. In both cases, the EMU goal is to receive and 
to send a control signal, such as the one for the ESS. The EMU can also discon­
nect the MG from other MG or/and from the DNO in case of network failure. It 
uses data gathered from different sensors available on-site to compute the pre­
dicted amount of power generated from RESs and the electric load demands for 
a few seconds, minutes or hours ahead, and send the information to the GCC. 

7.1.8 Power price mechanism 
A MG may be connected to the DNO, and to other MG in the network, and can 
send or receive power from them. Since, the power generation in the network 
of MG is mainly based on RESs, there are uncertainties related to power of­
fers/demands by a given MG. Consequently, at each time period, an MG can be 
seller (positive balance), buyer (negative balance), or not participating (balance 
equals to zero). This means that seller MG may trade among buyer MG and also 
with the DNO in the electricity markets [537] through the GCC. Depending on 
the pricing mechanism, sometimes, it is expected that trading among MG may 
give lower costs to buyers than with the DNO. 
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7.2 Power Scheduling in Networked MG 
7.2.1 Networked topology 
The topology of the network is represented by a directed graph G(M,L) , where 
|M| = M denotes the cardinality of the set of MG, and |L| = L denotes the 
cardinality of the set of power links available among the MG. For a given MG, 
let Mi denotes the set of MG connected to the i-th MG. In a given time interval 
(t, t + 1), each MG i ∈ M can generate a total power and must serve a group of 
households. 

7.2.2 GCC of networked MG 
The GCC is in charge of the coordination and the management of power in the 
network by properly allowing the optimal operation of each MG, while managing 
the relationship between the MG and the DNO as well as with other related MG. 

The GCC aims to deliver a high-level control to generate suitable set points 
for all DGs, ESSs, and power exchanges, so that the total benefits of the network 
of MG are optimized and the predicted loads are met. The GCC reduces the 
effects of power variation of the RESs and loads on the MG distribution system 
by selling excess power to other MG or/and the DNO or, alternatively, storing the 
power in the local ESS. In case of excess, the GCC must decide how to distribute 
the excess among MG connections, DNO, and local ESS. However, in case of 
deficit, the GCC must decide how to fulfill the MG demand, by receiving power 
from other connected MG, DNO, or/and local ESS. 

7.2.3 MPC-based power scheduling 
The basic theory of MPC-based power scheduling strategy is that, at each time 
step (t), a finite horizon (Nc) optimal control sequence is computed for the ESS 
state, MG power exchanges, and power exchanges with the DNO for the whole 
network of MG. However, only the first step of control actions is applied. For 
example, ū∗ (t + k|t) will denote the vector of optimal power exchanged between m
MG at time slot (t + k) predicted at time t. The method operates following a 
rolling horizon scheme, which means that, at the next time step (t + 1), new 
measurements of renewable resources (wind, solar), loads and prices are avail­
able, giving updates information into the future. With these updates, the optimal 
control routine is recalculated for the next Nc periods. 

The MPC-based algorithm is implemented using the following steps. 

Step 1: At t = 1, initialize with the actual current state of the MG, i.e., storage 
systems, loads, renewable energy power generation, energy price predic­
tions. 
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Step 2: Compute an optimal control sequence, for the selected rolling optimiza­
tion horizon (Nc), based on loads, renewable energy, and energy price pre­
dictions for the next prediction periods (Np). 

Step 3: Implement the first control period operation of the scheduling problem 
to all MG. 

Step 4: Update the information available in each MG for the next period, i.e., 
ESS state, loads, renewable energy power generation, and energy price 
predictions. Then, move to the next sampling instant, and repeat the same 
algorithm. 

The high-level control generates optimal set points for all DGs, ESSs, and 
power exchanges so as to maximize the total network profit and to meet the 
loads in each MG. The EMU available in each MG must guarantee that the sys­
tem tracks the power reference values delivered by the GCC. The voltage and 
frequency stabilities are supposed to be controlled at lower level controller in 
each MG. In particular, in this paper, each MG is connected to the DNO, so that 
the frequency of each MG is maintained within some limits by the DNO. 

The EMU is in charge of the forecasts for the energy prices, renewable power 
generation, and loads by appropriate models. It transfers the forecasts to the GCC 
which computes the optimal system operation and applies the first control input 
set points to all MG. The EMUs update the parameters of the prediction model 
with variations to reduce the errors and they send their update to the GCC. 

7.2.4 Optimization problem formulation 
In a network of MG, the primary objective is to maximize the benefits, while sat­
isfying power balance, power generation, ESS, and energy exchange constraints. 
The first two terms in the objective function are related to the cost of the power 
sold to the DNO and the other MG, while the second two terms are related to the 
cost of the power purchased from the DNO and the MG. 

The objective function to be maximized at each time step (t) can be formu­
lated as follows: 

Nc M

J = φ (k) u ( j, t + k) C̃ g,s( j, t + k)· g,s ·
k=1 j=1 

Nc M M

+ φ̃ j(k) um,s( j, i, +k) C̃m,s( j, t + k)· · 
k=1 j=1 i,i=� j 

Nc M

− ψ(k) · ug,p( j, t + k) ·C̃ g,p( j, t + k) 
k=1 j=1 
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Nc M M

− ψ� j(k) · um,p( j, i, +k) ·C̃m,p(i, t + k) 
k=1 j=1 i,i=� j 

(7.8) 

7.2.5 State equations and constraints 
The energy storage state equation for each MG is given by 

x(i, t + k) = x(i, t + k − 1)+ βChar,iuChar(i, t + k) − βDis,iuDis(i, t + k)(7.9) 

The stored energy in each ESS is constrained by upper and lower bounds 

xi,min ≤ x(i, t + k) ≤ xi,max (7.10) 

The power charged/discharged needs to be lower than certain maximum 
charging/discharging power limits 

0 ≤ uChar(i, t + k) ≤ uChar,i,max (7.11)

0 ≤ uDis(i, t + k) ≤ uDis,i,max (7.12)


The expected wind turbine power generation in each MG is constrained be­

tween upper (uwt,i,min) and lower (uwt,i,max) bounds 

uwt,i,min ≤ ũwt (i, t + k) ≤ uwt,i,max (7.13) 

The predicted PV generators power generation in each MG is constrained 
between upper (upv,i,min) and lower(upv,i,max) bounds 

upv,i,min ≤ ũpv(i, t + k) ≤ upv,i,max (7.14) 

The predicted powers sold and purchased to/from the DNO are constrained 
by upper and lower bounds 

ug,s,min < ug,s(i, t + k) < ug,s,max (7.15) 
ug,p,min < ug,p(i, t + k) < ug,p,max. (7.16) 

The predicted power balance Δũbal( j, t + k) in the j-th MG and at instant 
(t + k) is given by: 

Δũbal( j, t + k) = ũwt ( j, t + k)+ ũpv( j, t + k) 
−D̃( j, t + k) 

M

= um,s( j, i, t + k)+ ug,s( j, t + k) 
i=1,i=� j 

+ βChar, juChar( j, t + k) − βDis, juDis( j, t + k) 
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M

− um,p( j, i, t + k) 
i=1,i=� j 

− ug,p( j, t + k) (7.17) 

The expected power consumed in the i-th MG D̃(i, t + k) is constrained by a 
certain levels of acceptance, which are the bounds that the consumer is satisfied 
with 

D̃(i, t + k) − ξ�(i, t + k) < D̃(i, t + k) 

< D̃(i, t + k)+ ξ�(i, t + k) 
(7.18) 

It is assumed that each MG cannot simultaneously purchase and sell power 
from other grids. Consequently, each MG purchases power for negative power 
balance, and sells power for positive power balance 

um,s( j, i, t + k) = 0 if Δũbal( j, t + k) < 0

um,p( j, i, t + k) = 0 if Δũbal( j, t + k) > 0 

(7.19)


ug,s(i, t + k) = 0 if Δũbal(i, t + k) < 0 
(7.20) 

ug,p(i, t + k) = 0 if Δũbal(i, t + k) > 0. 

We should note that, as a terminology, the power purchased by the j-th MG 
is equal to the power sold by the i-th MG 

ump( j, i, t + k) = um,s(i, j, t + k). (7.21) 

7.2.6 Case studies 
The proposed example is adopted to simulate the real practices and to test models 
described in the previous sections. A cooperative network of five MG is consid­
ered, where each one is interconnected with four adjacent MG and with a DNO 
(see Fig. 7.2). It is assumed that all MG are connected to the same DNO and the 
power exchange can take place in both directions. The MG are assumed to be 
equipped with renewable generators (wind turbine and PV modules), ESSs, and 
inelastic loads. 

The length of the prediction horizon Np and control horizon Nc are set equal 
to 24h, and the control interval is 1h. The network of MG is tested under various 
conditions to evaluate its capabilities when operating with full and empty ESSs 
(case study 1), with and without prediction errors (case study 2) and finally the 
operation of a single MG is simulated in order to show the advantage of the 
proposed framework, relative to controlling a single MG (case study 3). 
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Figure 7.2: Adopted network topology 

7.2.7 Simulation setup 
It is supposed that the forecasts of the power generations and the loads are made 
by some appropriate methods. Their algebraic sum results in a predicted power 
balance (Δũbal) characteristic of each MG. The forecasts of Δũbal are reported in 
Table 7.1, they are represented by independent distributed random vectors. 

The expected costs of purchasing energy from the DNO ( C̃g,p) are modeled 
as a time of use pricing (TOU). In this section, Winter Ontario TOU prices (Nov. 
1stApr. 30th) are considered and consist of: 1) off-peak prices equal to 0.072 
$/kWh from 7 P.M. to 7 A.M.; 2) mid-peak prices equal to 0.109/kWh from 11 
A.M. to 5 P.M.; and 3) on-peak prices equal to 0.129 $/kWh from 7 A.M. to 11 
A.M. and from 5 P.M. to 7 P.M. [515]. 

The cost vectors C̃m,p , C̃ m,s , and C̃g,s are modeled as constant values equal 
to 0.08 $/kWh between 1 and 6A.M. and represented by independent distributed 
random vectors ranging between 0.075 and 0.14 $/kWh for the rest of the day. 
Figure 7.3 shows the predicted costs used in the simulation. 

The maximal capacity of the ESS available in each MG is supposed to be 
comprised between 5 and 500 kWh. For all MG, the maximal charge and dis­
charge powers are all equal, and limited to 50% of the ESS capacity, which means 
that the ESS can be totally charged or discharged in 2 h. The energy exchanged 
(sold/purchased) with the DNO is less than 100 kWh. From an operational view­
point, this range implies that the energy exchange for each MG with the DNO is 
accepted only if the constraint is satisfied. 

7.2.8 Case study 1 
The first case study demonstrates the capability of the network of MG under two 
scenarios of the initial conditions of the ESSs. For both scenarios, it is assumed 
that, in each MG and for each time period, the updates in the forecast of power 
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Table 7.1: Predicted values of Δũbal (kW) for the MG 

MG1 MG2 MG3 MG4 MG5 

1 79.18 62.35 -0.50 -144.16 44.79 
2 90.12 -141.04 -265.56 91.05 -159.36 
3 -153.64 113.62 -28.08 52.47 -220.04 
4 114.07 124.06 120.62 2.72 -30.73 
5 12.21 -145.26 123.77 140.99 -173.89 
6 -11.04 -48.40 68.76 131.67 121.79 
7 -12.70 225.00 -24.41 98.10 2.49 
8 139.81 -47.27 -86.78 -120.64 17.65 
9 27.89 -201.11 -197.91 100.53 20.44 

10 -125.26 -24.33 64.81 -96.50 157.42 
11 -126.39 -11.26 -157.93 -70.63 -145.00 
12 94.53 -72.88 -58.70 55.17 -71.88 
13 94.78 11.43 20.85 41.00 100.59 
14 21.19 -134.78 -74.61 114.09 -130.25 
15 142.17 106.45 90.63 190.27 4.20 
16 -39.07 -94.40 1.35 49.39 -203.43 
17 -111.28 -95.46 45.52 102.85 -143.28 
18 -56.59 -97.47 138.50 206.08 32.82 
19 -15.78 -26.69 29.08 70.08 -48.75 
20 -7.65 38.92 -221.57 29.08 11.28 
21 2.49 60.25 -115.01 117.66 120.08 
22 140.77 49.90 -7.45 -114.93 18.45 
23 -82.55 -130.34 -100.32 -78.80 8.53 
24 8.67 -32.37 -102.48 42.38 -51.72 

generations, loads, and prices for the next prediction horizon (Np) are negligible 
compared to the one performed in previous time step. 

The first scenario considers that the initial states of the ESSs available in 
all MG x(i,0), i = 1, . . . , 5 are equal and have a value of 5 kWh. In the second 
scenario, the ESSs are initiated to a full charge states with a full capacity of 500 
kWh. 

The results showing the total ESSs and the energy exchanged (sold/purchased) 
during the whole time period with the DNO, according to the considered scenar­
ios are reported in Tables 7.2 and 7.3. In scenario 1 x(i, 0) = 5 kWh), it may be 
observed that MG1 and MG4 have positive power balances with the DNO over 
the time horizon, while it is negative for all the others, meaning that the energy 
purchased is higher than the one sold to the DNO. This may be due to the low 
energy production and the initial starting states of the ESSs, therefore, the MG 
supply part of their needs from the DNO. The total energy purchased from the 
DNO ranges between 120 and 647 kWh, while the total energy sold to the DNO 
varies between 177 and 565 kWh. Furthermore, the total charging states of the 
ESSs reach its maximum for the second MG with a value of 492 kWh and its 
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Figure 7.3: (a) Predicted costs of selling energy to the DNO, (b) purchasing energy from MG, 
and (c) selling energy by MG 

Table 7.2: Optimal Energy Management (kWh) for the MG x(i,0) = 5 kWh 

Scenario 1 MG1 MG2 MG3 MG4 MG5 

Energy purchased (DNO) 214 499 430 120 647 
Energy sold (DNO) 218 177 231 565 223 
ESS charge 333 492 461 358 359 
ESS discharge 250 369 346 269 269 

minimum in MG1 with a value of 333 kWh. The total discharged energy in all 
MG varies between 250 and 369 kWh. In scenario 1, the optimal value of the 
cost function is equal to 49.35 $. 

In scenario 2 x(i, 0) = 500 kWh), the results show a positive power balance 
with the DNO for all MG. It is evident that MG4 is always operating in an au­
tonomous mode without access to the DNO. 
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Table 7.3: Optimal Energy Management (kWh) for the MG x(i,0) = 500 kWh 

Scenario 2 MG1 MG2 MG3 MG4 MG5 

Energy purchased (DNO) 127 300 406 0 331 
Energy sold (DNO) 623 516 520 934 550 
ESS charge 62 132 178 100 84 
ESS discharge 459 511 546 488 475 

Figure 7.4: State of the ESS available in each MG 

Generally, it is observed that a significant energy is discharged from the ESSs, 
its values range between 459 and 546 kWh, while the ESS charging states have 
a low variation between 62 and 178 kWh. In addition, it can be seen that a con­
siderable energy, ranging from 516 to 934 kWh, is sold to the DNO. The optimal 
value of the cost function under scenario 2 presents a higher value (261 $) than 
the one in scenario 1 (49.35 $). As a conclusion, it is demonstrated that the ESS 
initial states considerably affect the optimal control strategy of the network and 
the performance of the network of MG. 

In the rest of the discussion, the analysis is limited to results of scenario 1. 
The optimal states of different ESSs are shown in Fig. 7.4. It is reported that 
the ESSs show different behaviors. Their operation is strongly affected by the 
capacity of each ESS, the costs of power exchanges, and the optimal control 
strategies of the energy exchanges in the for MG. The ESSs compensate the 
variability of power production in each MG, covering a part of the local loads, 
when possible. 

The optimal control of the power charge/discharge of the ESS available in 
each MG is reported in Fig. 7.5. Different trends can be seen and the highest 
power charged is observed for MG2, with a value of 250 kW. It is worth men­
tioning that the charged and discharged powers are limited to 50% of the capacity 
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Figure 7.5: Power charge/discharge in each ESS 

Figure 7.6: MPC-based control strategy for the DNO 

of the ESS for all MG, this is in order to enhance the autonomy operation of each 
MG. 

As a convention, positive values correspond to the energy sold while negative 
ones represent the energy purchased. Figure 7.6 displays the MPC-based optimal 
control scheduling for the energy exchanged with the DNO. It is reported that 
MG4 sends the maximal amount of energy to the DNO, while MG5 purchases 
the highest amount of energy. The sum of the energy purchased from the DNO 
is 1910 kWh, whereas the MG sell a total energy of 1415 kWh. The energy 
exchanges with the DNO are restricted to values less than 100 kWh, this is to 
endorse and promote the charge/discharge of the ESSs and the power exchanges 
among MG. 

Figure 7.7 reports the optimal energy exchanges of MG1 with other MG. The 
MG1 purchases a total energy of 228 kWh, specifically, 103 kWh from MG4 
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Figure 7.7: MPC-based control strategy for MG1 

Figure 7.8: MPC-based control strategy for MG2 

and 125 kWh from MG5. In addition, MG1 sells a total energy of 440 kWh. 
The optimal energy management of MG2 is shown in Fig. 7.8. The second MG 
purchases more energy than what it sells. It purchases a total of 328 kWh coming 
from MG1 with 110 kWh, MG3 with 27 kWh, MG4 with 183 kWh, and from 
MG5 with only 8 kWh. Furthermore, MG2 sells 172 kWh mainly, 59 kWh to 
MG4 and 113 kWh to MG5. 

Figure 7.9 represents the optimal control strategy for MG3. It can be ob­
served that, generally, and during the whole time horizon, MG3 purchases en­
ergy, mostly from MG1 (184 kWh) and MG4 (279 kWh). This remark can be 
justified by the high observed power deficit for MG3 (see Table 7.1). The sum of 
energy sold reaches a value of 58 kWh, where 27 kWh is sold to MG2 and 31 
kWh to MG5. Figure 10 shows the optimal energy exchanges of MG4. From the 
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Figure 7.9: MPC-based control strategy for MG3 

Figure 7.10: MPC-based control strategy for MG4 

figure, the MG4 has the highest excess of energy, which is sold to other MG in 
the network. It sells a total of 706 kWh, particularly 103 kWh to MG1, 183 kWh 
to MG2, 279 kWh to MG3, and 141 kWh to MG5. While, the sum of the energy 
purchased does not exceed 183 kWh, 74 kWh coming from MG1, 59 kWh from 
MG2 and 50 kWh from MG5. Figure 11 reports the control strategy of energy 
exchanges for MG5. It purchases a total of 357 kWh, distributed as follows: 72 
kWh from MG1, 113 kWh from MG2, 31 kWh from MG3 and 141 kWh from 
MG4. Whereas, MG5 sells 214 kWh as a total, 125 kWh to MG1, 8 kWh to 
MG2, 31 kWh to MG3 and 50 kWh to MG4. 
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Figure 7.11: MPC-based control strategy for MG5 

7.2.9 Case study 2 
In this case study, the optimization problem is solved considering that the ESS 
initial states for i = 1, . . . , 5 are equal to 5 kWh. In addition, the problem is solved 
taking into account an additional noise (low prediction errors) that is applied 
to the predicted (expected) power balance displayed in Table 7.1. This noise is 
represented by a normal PDF vector N(0,1). The objective of this case study 
is to test the robustness of the proposed MPC approach under the presence of 
prediction errors. The MG4 is selected as an example in order to analyze and 
measure the effects of prediction errors on the network operation. 

The ESS optimal state in MG4 is shown in Fig. 7.12. The figure displays the 
variation of the storage system of MG4 under the presence and the absence of 
a noise that is applied to the predicted power balances for the five MG in the 
network. 

As a result, the trends demonstrate similar shapes, with a stored energy drop 
observed at 7 A.M., where energy stored decrease with about 60 kWh. 

The optimal control of the power charge/discharge of the ESS existing in 
MG4 under the presence/absence of the noise is reported in Fig. 7.13. We can see 
that the presence of noise occasionally affects the control schedule for charging 
and discharging the ESS, in addition, this variation follows the original trend 
with some acceptable deviations when low errors occur. 

The MPC-based optimal control scheduling of the total ESSs charged 
/discharged energy and the energy exchanged (sold/purchased) with the DNO 
during the time horizon in the presence of prediction errors are reported in Table 
7.4. Compared to results displayed in Table 7.2 (obtained for negligible predic­
tion errors), Table 7.4 demonstrates similar ranges for the optimal energy ex­
change and charge/discharge values. 
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Figure 7.12: Variation of the state of ESS in MG4 under the presence of a noise 

Figure 7.13: Power charged and discharged from the ESS located at MG4 under the presence 
and the absence of a noise 

Table 7.4: Optimal Energy Management (kWh) for the MG in case of prediction errors 

Scenario 1. with noise MG1 MG2 MG3 MG4 MG5 

Energy purchased (DNO) 215 492 430 115 630 
Energy sold (DNO) 218 177 232 549 223 
ESS charge 354 470 500 291 354 
ESS discharge 265 352 375 218 266 

It can be seen that for low prediction errors, such as the proposed normal PDF, 
the MPC-based strategy will not be strongly affected, but some variations could 
be observed. The optimal value of the cost function under case study 2 is equal to 
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51$, compared to 49.35$ obtained in scenario 1 of case study 1. As a conclusion, 
and in general, uncertainties in predictions should be given more attention in the 
optimal control scheduling using the MPC. The prediction errors depend on the 
prediction horizon, the duration of the prediction slot and the amount of data 
used to realize predictions at the first time slot. 

7.2.10 Case study 3 
In this case study, we analyze the performance of the proposed cooperative 
framework relative to control of a single MG. The aim is to evaluate the effective­
ness of the cooperation among MG and how it can affect the control strategy of 
each MG. The single MG scenario assumes that each MG can exchange power 
with only the DNO. The scenario adopted has been simulated using the same 
data relative to case study 1 (scenario 1). 

The comparison between energy purchased from the DNO in both cases of 
single and cooperative MG is reported in Fig. 7.14. It can be observed that the 
total energy purchased from the DNO is increased significantly, when we con­
sider single MG compared to the case when a network of cooperative MG is 
adopted. This outcome proves that the cooperation among MG gives more flexi­
bility for the operation of each MG by exchanging power with neighboring MG 
and maximizing the use of renewable energy. As an example, the optimal per­
formance gains of MG1 and MG4 under cooperative approach are increased by 
8.5% and 4.4%, respectively, compared to the single operation scenario. It is 
worth mentioning that the performance gain is strongly affected by the variation 
of the energy exchange costs. 

Figure 7.14: Energy purchased from the DNO under single and cooperative MG 
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7.3 Distributed Robust Control in Smart Microgrids 
Smart power grids represent a new concept of power distribution systems, com­
bining information communication technologies, control methodologies, and 
electrical power grids. On one hand, several intelligent methods based on multia­
gent system [538], gossip-based algorithms [539], and game theory [540] may be 
used for distributed controls. In a multiagent distributed configuration, the agents 
can interact with each other in order to reach local and/or global objectives. For 
example, each MG may have an agent, which can communicate information as 
regards its own power demand/offer and/or the allocated local demand response, 
and can agree on the proper power exchange policy with the other MG within a 
given time horizon. The main challenge in the distributed cooperative configura­
tion is to reach a consensus among various MG’ agents. 

On the other hand, the robust control [541] is a technique for structuring un­
certainty in the decision-making process, which may be particularly interesting 
for the control of a network of MG. The objective is to find the optimal solution, 
taking into account the occurrence of the worst scenario. In [[541] and [542], the 
problem of distributed decision making in a quadratic game is presented. Au­
thors demonstrate that if there is a solution to the static minimax team problem, 
then linear decisions are optimal, and the linear optimal solution can be found by 
solving a linear matrix inequality. 

7.3.1 A microgrid model 
In the the sequel, an MG is modeled as an inventory system, where both the 
power internal production and the power internal demand are stochastic pro­
cesses. As regards the former, each MG can integrate several DGs, which may 
lead to the exploitation of the available resources in each location in a more sta­
ble way. The MG local power production is an RES-based system, specifically 
based on intermittent sources, e.g., wind and solar sources. Similarly, the MG 
demand is taken into account as the resultant of the demand of a group of house­
holds connected to the MG. It is supposed that the MG demand has to be always 
fully satisfied. The inventory is represented by a given technology (e.g., a battery 
or an elevated water reservoir) implementing the ESS. The ESS can improve the 
stability, power quality, and reliability of the supply. 

7.3.2 Microgrid group model 
The GCM could be regarded as a model of small dispersed villages, each one 
with its own MG. A power link agent (PLA) is present on each power connection 
link connecting two MG or an MG with the MEG. A similar model was adopted 
in [532]. In this brief, the topology of the TCM is represented as a directed con­
nected graph G = {V, E}, where V = {1 . . .V } is the vertex set representing both 
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the MG and the MEG. As a convention, the V th vertex is associated with the 
MEG. E = {1 . . .E} is the set of undirected power links defining the TCM topol­
ogy. 

The MG has power connections with other MG, and at least for one MG with 
the MEG. The power links also play the role of data links, as it is nowadays 
commonly implemented in smart power networks. Specifically, the MG network 
is modeled by the following power balance: 

s(t + 1) = As(t)+ Bp(t)Δt + e(t)Δt t = 0 . . .N − 1 (7.22) 

where s(t) ∈ RV −1 [kWh] the state vector; its elements represent the energy 
stored at each MG at instant t.p(t) ∈ RE [kW] the control vector, whose mth 
element represents the power flow exchanged by the mth PLA in the TCM in 
time interval [t, t + Δt).e(t) ∈ RV −1, [kW] power balance, whose ith element re­
sults from the algebraic sum of demand and production power components in 
the mth MG, in time interval [t, t + Δt).A ∈ R(V −1)×(V −1) diagonal matrix, whose 
general diagonal element αm, 0 < αm < 1, is the efficiency of the energy storage 
technology in the mth MG. B ∈ R(V −1)×E incidence matrix, where for each ele­
ment bi, j, it holds that: bm, j = −1 if there is a link exiting the mth MG, 1 if there 
is a link entering the mth MG, and 0 otherwise. Δt is the discrete control time 
interval. 

A link between two MG means that the power can be directly exchanged 
between them. The power exchange may take place in both the directions. As a 
convention, the links are directed with a positive power transfer from lower to 
higher grid numbers, negative in the opposite direction. 

It is reasonable to suppose that 

e(t) = wd (t)+ w(t) (7.23) 

where wd (t) ∈ RV −1 is an esteem of the daily energy balance, whose elements 
represent a forecast of e(t).w(t) ∈ RV −1 is the residual error in e(t). It is reason­
able to suppose that Ew(t) = 0. 

Let Δt have unit of measure so that Δt = 1, specifically, Δt = 1 h. Then (7.22) 
can be so rewritten as 

s(t + 1) =As(t)+ Bp(t)+ wd (t)+ w(t) 
t =0 . . . N − 1 (1a) 

Let s̃(t) ∈ RV −1 be a reference state vector, whose elements represent the 
optimal level of energy, which is wished at instant t in each MG, as defined 
either by users’ specifications or by technical requirements. 

Given ẽ(t), it is possible to compute p̃(t) ∈ BBRE , such that 

Bp̃(t) = s̃(t + 1) − As̃(t) − wd (t). (2a) 
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The vector p̃(t) is a reference control vector, whose elements represent the 
power desired to be exchanged on each power link in time interval [t, t + 1) as 
defined by the planning. The problem can be rewritten, taking into account the 
following change of variables: 

x(t) = s(t) − s̃(t) (7.24) 
u(t) = p(t) − p̃(t) (7.25) 

where x(t) ∈ RV −1, [kWh], is the state variable, which represents the en­
ergy stored at each MG at instant t, with respect to an optimal working level 
s̃(t);u(t) ∈ RE , [kW] is the control variable, it represents the power exchanged 
between MG in time interval [t, t + 1), with respect to an optimal working level 
p̃(t). Now, (1a) can be so rewritten as 

x(t + 1) = Ax(t)+ Bu(t)+ w(t) t = 0 . . . N − 1. 

7.3.3 Problem formulation 
The problem to be solved is to define the control law for each PLA in order to 
cooperate for a robust TCM management. The PLA can access the information 
on the energy level stored in the ESS of each adjacent MG. The PLA’s aim is to 
define the power to be exchanged on its supervised power link, according to a 
control law which is robust against the various disturbances present in the TCM. 

We should highlight that this brief focuses on a high level control of the 
TCM through properly coordinating power exchanged between grids. This con­
trol level typically operates in order to minimize the maximum divergence be­
tween powers to be exchanged on all the power connections, as planned by a 
scheduled agreement, and to minimize the maximum divergence of the energy 
level in each ESS, taking into account their optimal level. In order to simplify 
the proposed problem, the communication failures, the frequency dynamics, and 
the stability of the grids are not considered in this brief. The minimax control 
problem can be written as the following PN problem: 

N−1

infsup J̃(x, u,w) = J(x, u, w) − γ �w(t)�2 
µ w=� 0 t=0 

N−1
�� 

x(t) 
�T � 

x(t) 
�� 

= x(N)T QNx(N) u(t) Q u(t)
t=0 

N−1

− γN �w(t)�2 (7.26) 
t=0 
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such that (7.3.2) and 

yi(t) = Cix(t) 
i = 1 . . . E t = 0 . . .N − 1 (7.27) 

ui(t) = µi(yi(t)) 
i = 1 . . . Et = 0 . . . N − 1 (7.28) 

where QN ∈ R(V −1)×(V −1) is the state cost matrix, QN � 0, weighting the devia­
tion cost from the reference state vector at instant N. 

Q =	
Qxx Qxu ∈ R(E+V −1)×(E+V −1), Q � 0Qux Quu 

is the state/control cost matrix, representing the deviation cost from the reference 
state/control vector, respectively, at instants t, Qxx ∈ R(V −1)×(V −1),Qxu = QT

u,x ∈
R(V −1)×E ,Quu ∈ RE×E , and Quu � 0. 

Note that Ci ∈ R2×2(V −1) is the information matrix for the ith PLA at each 
instant t, t = 0 . . . N − 1. It is supposed that, with no delay, at each instant t, each 
PLA can perfectly receive information on their own current state by the two 
adjacent MG. So, the elements of Ci are c1, j = 1 and c2,k = 1, j < k, where j and 
k are the MG adjacent to link i. The other elements of Ci are 0, otherwise. The 
matrix C is defined as ⎤
⎡


C1

C2
C =

⎢⎢⎣


⎥⎥⎦
 (7.29)

. . .

CE 

where yi(t) ∈ R2 is the output measurement, as observed by each PLA, ui(t) ∈
RE is the robust control for the ith PLA, and µi(.) is the robust control law, 
minimizing the problem as a function of yi(t). 

7.3.4 Robust group control 
Following the team robust control theory [541], it can be shown that, in minimax 
team problems with a quadratic cost, linear decisions are optimal and can be 
found by solving a linear matrix inequality. The reader is referred to [542], with 
regard to the formalization of the distributed linear quadratic H∞ control prob­
lem with information constraints, and to [544], where an optimal distributed con­
troller synthesis for chain structures applied to vehicle formations is proposed. 
The solution of the problem is demonstrated in the following theorem: 

Theorem 7.1 
Let PN be the problem defined by (7.3.2) and (7.26)(7.28) on N ≥ 1 time intervals. 
The following statements are true. 
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PN can be reduced to the following static problem P̄ N: �T¯ ¯
inf sup u

x 
¯ Q̄ u

x 
¯ − γN �x̄�

=0 

2 (7.30) 
µ w

yi = C̄i x̄ (7.31) 
ūi = µ̄i( ̄yi) (7.32) 

where ⎤⎡ 
w(N−1) 
w(N−2) 

. . . 
w(0) 
x(0) 

⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎦ 
x ∈ R(V −1)(N+1)¯x̄ (7.33)= 

⎡ ⎤ 
ui(N−1) 
ui(N−2)⎢⎢⎣ 

⎥⎥⎦ u ∈ REN ¯ūi (7.34)= 
. . . 

ui(0)⎡ ⎤ ⎥⎥⎥⎥⎦ 

IV −1 A . . . AN−1 

0 IV −1 . . . AN−2 

. . . . . . . . . . . . 
0 0 0 IV −1 
0 0 0 0 

⎢⎢⎢⎢⎣ 
Ǎ = 

Ǎ ⎡ 
R(N+1)(V −1)xN(V −1) 

IV −1 A . . . AN−1 AN 

0 IV −1 . . . AN−2 AN−1 

(7.35)∈ ⎤ ⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎦ 
Ā = . . . . . . . . . . . . . . . 

0 0 0 IV −1 A 
0 0 0 0 IV −1 

Ā R(V −1)(N+1)x(V −1)(N+1) (7.36)∈
¯ ˇ B̄ ∈ R(N+1)(V −1)×EN B = AdiagN (B) (7.37) 

C̄i = [02Nx(V −1) diagN (Ci)] Ā

C̄i R2Nx(V −1)(N+1) (7.38)∈ 

Q̄xx Q̄xu Q̄ = Q̄ux Q̄uu 

R(V −1)(N+1)+EN×(V −1)(N+1)+EN 

¯ ĀT QN 0(V −1)xN(V −1) ¯Qxx = diagN (Qxx) 
A (7.40) 

Q̄ (7.39)∈ 

0N(V −1)x(V −1) 

Q̄uu = B̄T QN 0(V −1)xN(V −1) B̄0N(V −1)x(V −1) diagN (Qxx) 

+dingN (Quu) (7.41) 
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¯ Q̄T ĀT QN 0(V −1)xN(V −1) ¯Qxu = ux = 0N(V −1)x(V −1) diagN (Qxx) 
B 

+ 
0(V −1)xNE .	 (7.42)

diagN (Quu) 

The control law (7.28), for each PLA i, is linear, that is 

ūi = µ̄i(ȳi) = K̄iC̄ix̄ i = 1 . . .E (7.43) 

with K̄i ∈ R2N. 
The control law (7.28) can be computed by solving the following problem: 

min γN (7.44)
γN ,K ⎡ ⎤

K̄1 0 0 0 
0 K̄2 0 0 
0 0 . . . 0 
0 0 0 K̄E 

⎢⎢⎣ 
⎥⎥⎦K̄ = diag(K1,...,KE ) = (7.45)s.t. 

Q̄xx − γNI + Q̄xu K̄C̄+C̄T K̄T Q̄ux C̄T K̄T 
� 0

K̄C̄	 Q−1− ¯uu 

where 

C̄ = diagN (C) 

(7.46) 

(7.47) 

Proof 7.1 At the generic instant t, the state x(t) can be written as 

1t−� 
x(t) = Atx(0)+ AnBu(t − n − 1) 

n=0 
1t−� 

+	 Anw(t − n − 1), t = 1 . . .N. (7.48) 
n=0 

For the ith PLA, the knowledge of the adjacent components of x(t) is equivalent 
to the knowledge of the elements of w(t − 1) in the adjacent MG, as the ith element 
of u(t − 1) is also known. 

The introduction of x̄ and ūi, as proposed in [531], allows the definition of the 
static problem (7.26)–(7.28), which is equivalent to PN . Thus, the problem has been 
restated in the matrix form specified in [[541] Th. 1], both of whose following state­
ments have been shown to be true. 

7.3.5 Distributed information models 
It is worthwhile to underline the different information context for PN , when N = 
1 and when N > 1. For N = 1, the information available to each PLA is related to 
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the state x(0), limited to the two adjacent MG to the link managed by that PLA, 
say x j(0) and xk(0). The control is on one step, but the procedure can be iterated 
with a new access to the information of the state x j(1) and xk(1) as modified by 
u(0), as computed by the different PLA adjacent to MG j and k. 

When N > 1, as in the previous case, each PLA i can receive information 
at instant t = 0 on the state x j(0) and xk(0), by the observation yi(0). For the 
following instants, x j(t) and xk(t) depend on the previous values of the control 
signal ǔ(t), ť  < t, and on the noise component w(ť). Specifically, the components 
um(ť) that yi(t) depends on are completely determined by the structure of the 
matrix [CiAnB]i,m [542], and as it can be easily verified, [CiAnB]i,m =� 0 so, for 
the generic PLA i, it is possible to perform the control observing wj(t − 1) and 
wk(t − 1) at instant t. 

7.3.6 Simulation study 
In this case study, a network of (V − 1) = 2 MG connected by E = 3 power 
connections is considered, see Fig. 7.15. The MG are assumed to be equipped 
with renewable generators (e.g., wind turbine and PV modules), storage devices, 
and loads. Each MG is interconnected with one or more adjacent MG and/or with 
the main electrical grid, where power can be exchanged in both the directions. 

The matrixes A and B , required in (7.3.2), are given by 

0.99 0
A = (7.49)0 0.95 

Figure 7.15: Topology of the TCM. Two MG (MG1 and MG2) are connected for power ex­
change, managed by a PLA defining robust power flow on link 1. MEG is the main electrical 
grid, with no observed state. Two additional PLAs manage the robust power exchange on link 
2 and link 3 
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B = 
−
1
1 −

0
1 
−
0
1 (7.50) 

The matrices for the cost function (7.26) are given by 

Qxx = 100 ∗ I2 (7.51) 
Qxu = Qux = 03,2⎡ ⎤ 

(7.52) 

1 0 0 
Quu = ⎣0 100 0 ⎦ (7.53) 

0 0 100 � � 

QN = Q = 
Qxx 

Qux 

Qxu 

Quu 
(7.54) 

The matrices Ci described in (7.27), where i = 1 . . .3 is referred to each PLA, 
are given by 

1 0
C1 = (7.55)0 1 

1 0
C2 = (7.56)0 0 

0 0
C3 = (7.57)0 1 

The zero rows are related to the connection with the main grid, where no state 
is available. The state x(t) is expressed in units of 100 kWh, and the control u(t) 
in units of 100 kW. Time is discretized on time intervals of 1 h. A stochastic 
noise w(t) ∈N (0, 1) affects the state at each instant t. 

7.3.7 Solution procedure A 
In this section, the problem has been solved on one step horizon (N = 1). In this 
case, the system to be solved is � �T � � 

inf sup = x(1)T QNx(1)+ 
x(0) 

Q
x(0) 

µ w=0 u(0) u(0) 

−γ1�x(0)�2 − γ1�w(0)�2 (7.58) 
s.t.: x1(1) = 0.99x1(0) − u1(0) − u2(0)+ w1(0) (7.59) 

x2(1) = 0.95x1(0) − u1(0) − u3(0)+ w2(0) (7.60) 
y1(0) = C1x(0) (7.61) 
y2(0) = C2x(0) (7.62) 
y3(0) = C3x(0) (7.63) 
u1(t) = K1y1(t) (7.64) 
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u2(t) = K2y2(t) (7.65) 
u3(t) = K3y3(t) (7.66) 

The value γ1 is γ1 = 167.1529. Table 7.5 shows the Ki values obtained for 
each PLA. The condition for asymptotical stability in the closed loop –that is 
the eigenvalues λi are such that |λi(A + BK)| < 1– is satisfied (λ1 = 0.0013 and 
λ2 = 0.2774). 

7.3.8 Solution procedure B 
The problem has been solved on six steps horizon (N = 6). The control law 
is given here for each instant t = 0 . . .5 by ui(0) = Ki(0)x(0) for the first time 
interval [0,1), and by ui(t) = Ki(t)w(0), for each time interval [t, t + 1)t = 1 . . .4. 
The value γ6 is γ6 = 196.58. Table 7.6 shows the Ki values obtained for each 
PLA. The condition for asymptotic stability in the closed loop is satisfied at each 
time interval. 

7.3.9 Solution procedure C 
Table 7.7 shows the γN values, which are obtained solving PN for 1 ≤ N ≤ 6. 
It can be observed that these values have a trend, which is dependent on the 
time windows that have been used. The larger the time window is, the higher is 
the resulting cost function. This is reasonable, as with larger time window, the 
control strategy has to be defined as a play against a larger number of uncertain 
values. 

7.3.10 Solution procedure D 
Two control approaches have been tested on a time horizon lasting 6 h: The first 
one adopts the control strategy defined by P1 , iterating it six times; and the 
second one adopts the control strategy defined by P6. 

Each of the two approaches has been tested on 105 different instances. 
Let us define γ̃N , the value obtained for J̃(x,u, w) as defined in (7.26), for each 

given random instance applying the control as a solution of PN . Figure 7.16(a) 
shows the distribution of γ̃6 when the control obtained solving P1 is iteratively 

Table 7.5: Ki Values obtained for each PLA in P1 

PLA i ki, j (0) ki,k(0) 
1 k1,1(0) = 0.1552 k1,2(0) = −0.1210 
2 k2,2(0) = 0.6783 k2,3(0) = 0 
3 k3,3(0) = 0.7069 k3,3(0) = 0 
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Table 7.6: Ki Values obtained for each PLA in P6 

t PLA i ki, j (0) ki,k(0) 
0 1 k1,1(0) = 0.0201 k1,2(0) = 1.4e − 06 
0 2 k2,2(0) = 0.9755 k2,3(0) = 0 
0 3 k3,1(0) = 0.9500 k3,3(0) = 0 
1 1 k1,1(0) = 0.0120 k1,2(0) = −0.0107 
1 2 k2,2(0) = 0.9784 k2,3(0) = 0 
1 3 k3,1(0) = 0.9618 k3,3(0) = 0 
2 1 k1,1(0) = 0.0094 k1,2(0) = −0.0122 
2 2 k2,2(0) = 0.9775 k2,3(0) = 0 
2 3 k3,1(0) = 0.9640 k3,3(0) = 0 
3 1 k1,1(0) = 0.0169 k1,2(0) = −0.0083 
3 2 k2,2(0) = 0.09678 k2,3(0) = 0 
3 3 k3,1(0) = 0.09654 k3,3(0) = 0 
4 1 k1,1(0) = 0.0344 k1,2(0) = −0.0237 
4 2 k2,2(0) = 0.9321 k2,3(0) = 0 
4 3 k3,1(0) = 0.9322 k3,3(0) = 0 
5 1 k1,1(0) = 0.1066 k1,2(0) = −0.0977 
5 2 k2,2(0) = 0.7843 k2,3(0) = 0 
5 3 k3,1(0) = 0.7843 k3,3(0) = 0 

Table 7.7: γN Values resulting from different PN solvings 

N 1 2 3 4 5 6 
γN 167.15 187.49 193.83 195.78 196.30 196.58 

adopted. Figure 7.16(b) shows the distribution of γ̃6 when the control obtained 
solving P6 is adopted. The values obtained in Fig. 7.16(a) have an overall average 
value of 146.20, but a maximum of 239.04 has been reached for one instance. 
On the other hand, the values obtained in Fig. 7.16(b), although with a higher 
average, i.e., 175.02, as expected, respect the constraint γ̃N < γN = 196.58 (the 
higher value obtained is 195.86). 

Table 7.8 shows the main statistical characteristics of the control and of the 
state values obtained in the different random instances. It can be observed that 
there is not such an evident difference in the statistical characteristics of the state 
and control, adopting the two different strategies. 

7.4 Notes 
In this section, an advanced MPC approach for the high-level coordination of 
power exchanges in a network of MG is presented. A MPC-based algorithm is 
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Figure 7.16: γ̃  values obtained in two different control approaches. Histogram of the γ̃  values 
obtained in the different control approaches both applied on a time horizon lasting 6 h. (a) 
Results for the γ̃  values adopting the control strategy P1 solved on one step horizon and iterated 
six times. (b) γ̃  values obtained by solving control strategy P6 solved on six steps horizon 

Table 7.8: Main statistical values of the resulting state and control adopting the solution ob­
tained solving P1 and iterating it six times, versus the solution obtained solving P6 

control avg dt.dev max min 
x P1 -0.0021 1.0179 5.0130 -4.9277 
x P6 6.60e-04 1.0007 4.9875 -4.8812 
u P1 -0.0011 0.5866 3.5361 -3.4832 
u P6 7.27e-04 0.7621 4.7381 -4.3674 

used to determine the future scheduling of power exchanges among dispersed 
MG as well as the charge/discharge in each local ESS for the future time horizon. 
The focus of this paper is on global control of a network of MG, where the 
objective is to maximize the benefits at the network level. Here, each MG is a 
renewable-based MG, modeled as a system consisting of local loads, ESS, and 
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locally producing power from RESs. In conclusion, it has been demonstrated 
that the cooperation among grids has significant advantages and benefits to each 
single grid operation in terms of integrating strategies to face shortage or excess 
of power production due to the uncontrollable RESs behavior. In addition, the 
uncertainties in predictions may have effects on the optimal control scheduling. 

The proposed cooperation among grids may share some drawbacks with the 
centralized approaches, which include, among others, the failure of real-time 
communication with one or more grids. These issues can be taken into account, 
extending the current problem formulation, on a larger scale by adopting a dis­
tributed MPC control strategy. In this case, the decisions will be taken locally 
with a dynamic network topology, using approaches as team theory, distributed, 
and decentralized control. 

Next, a distributed robust control problem for the power flows in a coop­
erative network of MG. The proposed framework attempts to contribute to the 
development of a new challenging and emergent problem focused on a cooper­
ating team decision scheme for the robust control of the power flows in a TCM. 
The problem of a TCM has been defined in order to maximize the satisfaction of 
the quality of service, which is defined here as the minimization of the maximum 
divergence from an agreed power exchange within the TCM and with the MEG, 
as well as from a technical reference value of each ESS. The strength of the pro­
posed framework comes from its capability to enable the direct incorporation of 
uncertainties related to RES and loads in the optimization models as well as the 
adoption of a distributed approach to model the power exchanges among MG. 

Compared with the previous efforts on MG network operation [539], [543] 
that are centralized and suffer from reliability problems, the proposed approach 
adopts a robust distributed control design scheme to model power exchange in 
a TCM. This feature makes the approach more suitable for real implementation 
and guarantees robustness against disturbances. 

Future developments and research will be devoted to the generation of the op­
timal solution of the control strategies using a mix of robust control and optimal 
average control. 



Chapter 8


Dynamic Graphical 
Games 

8.1 Constrained Graphical Games 
The constrained graphical game is a special type of the standard games [545] , 
where the policies of the nodes are constrained and the communications between 
the nodes are done via a communication graph topology [546, 547]. This work 
brings together game theory, computational graph theory, multi-system coordi­
nation, reinforcement learning, adaptive critics, and optimal control. 

The field of cooperative control has many applications in robotics, physi­
cal networks, unmanned vehicles, etc. [548]. The cooperative control problems 
are classified into consensus and synchronization problems. A neighbor-based 
controller is developed for multi-agent systems with a leader and varying com­
munication topology in [549]. The �th-order model-reference problem is studied 
in [550], where the variable and its higher order derivatives reach the common 
goals. The consensus in complex networks is achieved using a distributed ob­
server protocol [551]. The consensus problem is studied for a network of dy­
namic nodes with fixed and varying switching topologies in [552]. Random pin­
ning control schemes have been used to control scale-free dynamical networks 
by pinning to a small number of nodes in [553]. 

The non-cooperative game theoretic framework is used to solve the optimal 
control problems for multi-agent systems [545, 554, 555]. Optimal control the­
ory is used to derive the necessary conditions to optimize the objective functions 
[556]. The solution of the game’s Hamilton-Jacobi (HJ) equation yields a Nash 
equilibrium [545, 557], which is equivalent to solving the game’s Riccati equa­
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tion. Markov network is used to calculate the correlated equilibrium in [558]. 
The games are formulated on graphs, where the agents are allowed to exchange 
information in [546, 547]. A near-optimal control algorithm is proposed for non­
linear systems, formulating a non-zero sum game in [559]. In this algorithm, 
the stability of the closed loop system is shown without using initial stabilizing 
policies. 

8.1.1 Reinforcement learning 
Reinforcement Learning (RL) is one field of Machine Learning [560, 561]. 
It is employed to find the optimal control solutions for dynamical systems in 
[561, 562]. The RL approaches are designed to select the policies that mini­
mize the objective function in dynamic learning environments [560, 561]. The 
RL approaches are implemented using two-step approaches, known as value and 
policy iteration techniques [563, 564, 565, 566]. Value and policy iteration so­
lutions are developed for multi-agent systems formulating graphical games in 
[547], [567]. RL approaches are used in [568] to implement the approximate 
Dual Heuristic Programming (DHP) solutions for graphical games. The reward 
shaping is used to direct the agent’s exploration by adding additional rewards 
to those obtained in the learning environment [569]. It is shown that the poten­
tial based reward shaping does not change the true Pareto front in the single 
and multi-objective RL solutions [569]. Integral Reinforcement Learning (IRL) 
is developed in order to solve the optimal control problem for a single agent 
system in [566]. An IRL-H -based controller is developed for a flux-switching ∞
permanent magnet (FSPM) machine in a hostile environment in [570]. An IRL-
based automatic voltage regulator for power systems is developed in [571]. This 
controller does not need to know the full dynamics of the model. An integral Q-
Learning load frequency controller is developed for the power systems in [572]. 
An off-policy IRL optimal control tracking algorithm is proposed for a Lorenz 
chaotic system in [573]. Another off-policy RL control algorithm is developed 
for a rotational / translational actuator nonlinear benchmark problem in [574]. 
A similar algorithm is developed for a two-link manipulator in [575]. An IRL 
approach is proposed to solve a nonlinear optimal control problem with input-
affine dynamics in [576]. Multi-Agent Reinforcement Learning (MARL) tech­
niques have gained interest in industrial applications like robotic assembly lines, 
resource allocation and management, data mining, and decision support systems 
[577, 578, 579, 580]. MARL approaches have been developed for discrete-time 
systems in [581, 582]. The convergence for each node relies on the convergence 
of all the other nodes simultaneously. An off-policy RL algorithm is proposed 
to solve a cooperative control problem using a game’s theoretic frame-work in 
[583], where a behavioral policy is used for learning purposes. A residual gra­
dient Fuzzy-RL approach is used to solve the pursuit-evasion games in [584], 
where it outperformed the Q-learning solutions [584]. 
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Adaptive critics are employed to implement the value and policy iteration 
solutions for the optimal control problems in [585]. The adaptive critics’ ap­
proaches use actor-critic neural network structures to approximate the RL so­
lutions [561], [585]. The critic weights are updated based on the assessment of 
the actions applied to the dynamic environment. The goal of the assessment is 
to optimize a utility function. On the other hand, the actor weights are updated 
using knowledge about the critic assessment and the dynamic behavior of the 
system [561]. Adaptive critics are used to implement the Approximate Dynamic 
Programming (ADP) solutions for the optimal control problems. A summary on 
the robustness of the ADP control strategies for the nonlinear optimal control 
problems has been introduced in [586]. It highlighted the stabilization condi­
tions of nonlinear systems and the stability of interconnected systems under un­
certainties. In addition, the ADP approaches considered therein, were applied 
to practical examples in order to show their usefulness. The RL solutions for 
the optimal control problem are implemented using actor-critic neural networks 
in [563, 564, 585]. Online and offline policy iteration approaches are used to 
solve the nonzero-sum games for a class of nonlinear systems, where the actor-
critic neural networks’ approximation errors are shown to be bounded [587]. A 
critic neural network is proposed for each agent of a multi-agent system in or­
der to solve the non-zero sum game in [559]. The actor network structure was 
not needed in this ADP solution. Also, adaptive critics were used to implement 
the graphical game’s solution using the concept of behavioral policy in [583]. 
This section contributes to the solution framework of the differential games on 
graphs, where a novel adaptive learning solution based on IRL is proposed in 
order to solve the game with constrained polices. 

8.1.2 Synchronization control problem 
Each node i in the graph Ω has the following uniform dynamics [546, 547] 

π̇i = A πi + Bi ui, (8.1) 

where πi ∈ Rn and ui ∈ Rmi are the states and policy for each node i. A and Bi 

are the physical parameters for each node i. The input control signals ui ∈ Rmi , ∀i 
are of the saturated and nonlinear type. The objective of the synchronization 
problem is to select the policies such that the nodes are able to synchronize to the 
leader node’s dynamics. The leader node is an autonomous command generator 
that generates the desired trajectory, where the follower nodes do not affect the 
leader’s dynamics [590, 591]. 

The dynamics of the leader node π0 ∈ Rn are given by: 

π̇0 = Aπ0. (8.2) 

The competitive behavior for each node i is restricted by the graph topology. Syn­
chronization among nodes is achieved using pinning ideas [553], [592], where 
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the leader communicates with a small number of nodes [593]. This competitive 
behavior is described by the following error protocol 

θi = ci j (πi − π j)+ γi (πi − π0), (8.3) 
j∈Ni 

where θi ∈ Rn and γi > 0 are the local tracking error and the pinning gain for 
node i, respectively. 

In order to analyze the collective behavior of the nodes, the global tracking 
error vector is given by 

θ = ( (L + Γ) ⊗ In ) (π − π0), (8.4) 

where π = 
� 

π1 
T π2 

T .. πN
T 
�T ∈ RnN is global vector of the nodes’ states, 

θ ∈ RnN is the global vector of the tracking error states, ⊗ is the Kronecker 
product symbol, and π0 = Iπ0 ∈ RnN , with I = 1 ⊗ In ∈ RnN×n and 1 ∈ RN is a 
vector of ones. Γ ∈ RN×N is a matrix with diagonal entries of the pinning gains 
γi, ∀i. 

Let the minimum singular value of (L + Γ) be non-zero (i.e., the graph is 
strongly connected) and the leader is pinned to few number of nodes, then, the 
vector (π − π0) is bounded or lim 

t→∞ 
�(πi − π0)� = 0, ∀i. The local error dynamics 

are given by � 
θ̇i = Aθi + (oi + γi) Bi ui − ci j B j u j. (8.5) 

j∈Ni 

The dynamic model (8.5) shows the competitive behavior for each node i. This 
behavior depends on the control efforts of node i and those of its neighbors. The 
optimal control problem would select the policies ui, ∀i to guarantee asymptotic 
stability of the tracking error system (8.5). 

8.1.3 Performance evaluation of the game 
The nodes interacting on graphs with constrained control inputs form constrained 
graphical games. The errors (8.5) represent interactive and coupled dynamic sys­
tems. Therefore, a performance index is developed to reflect the coupling and the 
constrained properties of the graphical game such that 

Ji(θ̄i(to), {ui, u−i}to≥0) = 
� ∞ Ui(θi,ui, u−i) dt to 

= 1
2 to 

∞
(θi

T Qiiθi + 2 0 
ui (Φ−1(νi))

T Riidνi)+ (8.6) 

j∈Ni 
uT

j Ri ju j)dt, 

where Qii ≥ 0, Rii > 0, and Ri j > 0 are symmetric weighting matrices, Ui is the 
utility function, θ̄i is a local vector of the states of node i and those of its neigh­
bors, Φ : Rn Rmi is a bounded, integrable, one-to-one, real-analytic globally → 
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Lipschitz continuous function, u−i = {u j| j ∈ Ni} are the control policies of the 
neighbors of node i, and uī = {u j| j ∈ N, j =� i} are all the policies except that of 
node i. 

Herein, a brief comparison between the standard differential game and the 
constrained graphical game is introduced. The structure of the constrained graph­
ical games is a subtype of the standard differential games [545]. The dynamics 
vector of the standard N-player differential game is given by 

N

χ̇ = F χ + Bi ui, (8.7) 
i=1 

where χ ∈ RÑ is a global vector of the states and ui ∈ Rmi is the policy for each 
node i. 

The standard game is evaluated for each node i using the following global 
performance measure index 

J̃i({χ,ui}t≥0) = 1 
∞ 

(χT Q̂ii χ + 
� 

uT
j R̂i j u j)dτ, (8.8)2 

t=0 j∈N 

where Q̂ii ≥ 0 ∈ RÑ×Ñ and R̂i j > 0 ∈ Rm j ×m j are symmetric time-invariant weight­
ing matrices. 

For the standard differential game, both the performance measure index (8.8) 
and the dynamics (8.7) use global information (all policies and states of the 
nodes). On the other hand, the constrained graphical game takes into account 
the interactions between the nodes within the graph structure to solve the game. 
The measure index (8.6) evaluates the local interactions for each node i. This 
means that it depends on node’s i states, its constrained control input, and the 
constrained control inputs of its neighbors. This is a main technical difference 
between the index (8.6) of the constrained graphical game and the global index 
(8.8) of the standard games. Index (8.6) motivates distributed solution forms for 
the constrained game. Moreover, this local structure relaxes the global reachabil­
ity conditions imposed by the standard form of the differential game [545]. The 
standard game employs a centralized form of the Riccati equation, where global 
reachability conditions are required in order to find the Nash solution [545]. This 
is not the case for the differential graphical game, where distributed solution 
forms exist, provided that the graph is strongly connected (i.e., has a spanning 
tree). 

8.1.4 Optimality conditions 
The mathematical solution framework for the constrained graphical games is 
developed herein. The optimal control theory is employed to find the optimal 
solutions for the synchronization problem on graphs. Novel coupled Bellman 
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equations, Hamiltonian functions, and HJB equations based on the Integral Re­
inforcement Learning (IRL) approaches are introduced in order to solve the con­
strained game. The best response solution of the constrained graphical game is 
given in terms of the solution to a set of coupled IRL-HJB equations. 

8.1.5 Bellman equations 
Given the policies (ηi, η−i), the value structure Ψi(θ̄i(to)) for each node i is de­
fined on the infinite horizon such that 

Ψi(θ̄i(to)) ≡ Ψi(θ̄i(to),ηi, η−i) = 
∞ 

Ui(θi,ηi, η−i)dτ. (8.9) 
to 

Remark 8.1 The proposed solution structure Ψi(θ̄i(to)) uses the local neighbor­
hood information available to each node i in order to solve the constrained graphi­
cal game. The introduced solution framework does not overlook the neighborhood 
states, which is a main concern in the solution given in [546]. This selection makes it 
possible to propose reliable distributed algorithms to solve the constrained graphical 
games. 

Herein, a formulation based on coupled Bellman equations is developed in 
order to solve the graphical games with saturating inputs. This formulation re­
laxes the need to know the full dynamics of the nodes in order to evaluate the 
policies during the online implementation. The value function (8.9) is used to 
define the coupled IRL-Bellman equations such that 

Ψi(θ̄i(t)) − Ψi(θ̄i(t + Δ)) = 1
2 

� 
t
t+Δ

(θi
T Qiiθi+ 

2 
� 

0 
ui (Φ−1(νi))

T Riidνi)+ (8.10) 

j∈Ni 
uT

j Ri ju j)dτ, Ψi(0) = 0. 

The IRL-Bellman equation (8.10) reflects the graph structure and the con­
strained nature of the game. This equation will be used in the sequel to find the 
online solution for the constrained graphical game. 
It is required to solve for the optimal value Ψo

i such that 

Ψ
o
i (θ̄i(t)) = min(Ψi(θ̄i(t), ui,u−i)). (8.11) 

ui 

Using means of Taylor expansion and applying the optimization principles yields 

i (θ̄i(t)) = min(Ui(θi,ui, u−i)+ �Ψ
o
i (θ̄i(t))T 

θ̇i), (8.12)−�t Ψ
o 

ui 

¯

where �t = ∂ (....)/∂ t. 
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Thus, the optimal strategy for each node i is given by 

o ¯u = argmin (�t Ψ
o
i (θ̄i(t))+Ui(θi, ui,u−i)+ �Ψi

o(θ̄i(t))T 
θ̇i). (8.13)i 

ui 

Since the infinite horizon optimal control problem yields �t Ψ
o
i (θ̄i(t)) = 0, 

then 
ou = −Φ(R−1([..(γi + oi).. − c ji..] ⊗ BT

i )�Ψi
o(θ̄i)),i ii 

or 
oui = −Φ(Mi�Ψi

o(θ̄i)), (8.14) 

where Mi = R−1([..(γi + oi).. − c ji..] ⊗ BT
i ), the row vector [..(γi + oi).. − c ji..]ii 

assigns the elements (γi + oi),c ji∀i, j to their respective positions in �Ψo
i , and 

denotes the positions of the weights c ji linked to each node i in the vector 
[..(γi + oi).. − c ji..]. 

Substituting (8.14) into (8.12) yields the coupled IRL-Bellman optimality equa­
tion for each node i 

Ψo
i (θ̄i(t)) = Ψi

o(θ̄i(t + Δ))+ 12 

� 
t
t+Δ

(θi
T Qiiθi+ 

(8.15) 
o 

2 ui (Φ−1(νi))
T Riidνi)+ uoT 

j )dτ.0 j∈Ni j Ri juo 

8.1.6 The Hamiltonian function 
The coupled Hamiltonian function is defined using the dynamics (8.5) and the 
cost function Ui for each node i so that 

Hi(θ̄i, λi, ui,u−i) = λi
T fi(θ̄i, λi, ui,u−i,u−{−i})+Ui(θi, ui,u−i), (8.16) 

where λi is the costate or Lagrange multiplier for each node i, u−{−i} are the 
policies of the neighbors to the neighbors of each node i, Ni, j is the total number 
of node i and its neighbors. 
The equality constraint fi is given by 

fi( ̄ θ̇i = [θ̇ T ..θ̇ T ∈ RnNi, j . (8.17)θi,λi, ui,u−i, u−{−i}) ≡ ¯
i −i]

T 

Thus, the Hamiltonian function (8.16) is given such that 

Hi(θ̄i, λi, ui,u−i) = λi
T θ̇̄i + 12 (θi

T Qiiθi+ 
2 ui (Φ−1(νi))

T Riidνi)+ (8.18)�0 
T 

j∈Ni 
u j Ri ju j). 

The optimality conditions for the constrained graphical game are found by apply­
ing the optimality principles [556]. The costate variable λi adjoins the constraint 
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(8.17) to the index (8.6). An augmented performance index is used to derive the 
necessary optimal conditions of the constrained game. This augmented index is 
given by 

Ji
�(θ̄i(to)) = φi(θ̄i(T ))+ 

� 
to
T 
(Ui(θi, ui, u−i)+ 

˙ (8.19)
λi

T ( fi(θ̄i, λi, ui,u−i,u−{−i}) − θ̄i))dt, 

where the function φi(θ̄i(T )) depends on the state θ̄i(T ) at final time T. 
The augmented performance index (8.19) yields � T 

Ji
�(θ̄i(to)) = φi(θ̄i(T ))+ (Hi(θ̄i, λi, ui,u−i) − λi

T 
θ̄̇i)dt. (8.20) 

to 

Applying Leibniz rule, the variation in dJi
�(.) depends on the variations in θ̄i,λi, 

ui, and u−i such that �� 
T θ̄̇i)dt (φi)

T dθ̄i + �t (φi)
T dt T +(Hi − λ T 

idJi
� = �θ̄i T 

θ̄̇i)dt 
� T Hi)

T ∂ θ̄i +(�ui− (Hi − λi
T Hi)

T ∂ ui (8.21)((�θ̄i
+
 toto 

+(�u Hi)
T ∂ u−i − λi

T ∂ θ̇̄i +(�λi Hi − θ̄̇i)
T ∂λi)dt. −i 

∂ θ̄i 
� T 

to 
λi

T ∂ θ̇̄idt = 
� T 

λ̇ T+λi
T ∂ θ̄i ∂ θ̄idt. (8.21).−λi

TGiven that −
 +
 iT toto 

Then,


(φi) − λi)
T dθ̄i + (�t (φi)+ Hi)

T dt dJi
� = (�θ̄i T T � T 

((� ̄ Hi + λ̇i)
T ∂ ¯θito| + (λi

T dθ̄i) θi− (Hi)dt (8.22)
+
 toto 

+(�ui Hi)
T ∂ ui +(�u Hi)

T ∂ u−i +(�λi Hi − θ̄̇i)
T ∂λi)dt. −i 

According to Lagrange multiplier theory, the constrained minimum of index (8.6) 
is obtained when dJi

� is zero [556]. The constrained minimum has the following 
conditions 

−λ̇i = �θ̄i
Hi(θ̄i,λi,ui, u−i), (8.23) 

�ui Hi(θ̄i,λi, ui,u−i) = 0, (8.24) 

¯�λi Hi(θ̄i,λi, ui, u−i) = θ̇i, (8.25) 

(�u−i Hi)
T 

∂ u−i = 0. (8.26) 

The associated boundary conditions are listed as follows 

(�θ̄i 
(φi) − λi)

T dθ̄i T + (�t (φi)+ Hi)
T dt T = 0, (8.27)
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− (Hi(θ̄i, λi, ui, u−i))dt = 0, (8.28)
to 

(λi
T dθ̄i) to 

= 0. (8.29)


Using (8.23), the costate equation for node i is given by 

∂

∂ 

H
θ̄i

i 
= −λ̇i, ⇒−λ̇i = ĀT

i λi + Q̄iθ̄i, (8.30) 

where Q̄i = diag{0, .., Qii, ..,0} and Āi = (INi, j ⊗ A) ∈ RnNi, j ×nNi, j .

The optimal policy for each node i based on the stationarity condition [556]

∂ Hi/∂ ui = 0 is given by


u∗ 
i = argmin (Hi(θ̄i, λi, ui,u−i)). (8.31) 

ui 

Then, 
u∗ 

i = −Φ(R−
ii 

1([..(γi + oi).. − c ji..] ⊗ Bi
T )λi), 

or equivalently, 
u∗ 

i = −Φ(Miλi). (8.32) 

Herein, the best response solutions are found for the constrained graphical game. 
The variations in the neighbors’ policies ∂ u−i do not take effect during the min­
imization of the augmented index (8.20). Therefore, (8.26) holds. In addition, 
to, θ̄i(to) are fixed (i.e., dto = 0,dθ̄i(to) = 0). Therefore, (8.28) and (8.29) hold 
simultaneously. Moreover, free-final states are considered, so that (8.27) holds 
[556]. 

8.1.7 Coupled IRL-Hamilton-Jacobi theory 
The relation between IRL-Bellman equation (8.10) and the Hamiltonian (8.16) 
is of great importance to the stability and Nash equilibrium results. The follow­
ing theorem finds the coupled IRL-Hamilton-Jacobi equation (IRL-HJ) for the 
constrained game. It relates the value (8.9), the IRL-Bellman equation (8.10), 
and the function (8.16). This is attained using the relation between the gradi­

∂ θ̄i and the difference ΔΨi(θ̄i(t)) = Ψi(θ̄i(t + Δ)) −ent �Ψi(θ̄i) = ∂ Ψi(θ̄i) 
Ψi(θ̄i(t)). 

Theorem 8.1 
(IRL-Hamilton-Jacobi Equation).

Given the value function Ψi(θ̄i(t)) (8.9) and the Hamiltonian function (8.16),Ψi(θ̄i(t))

satisfies the IRL-HJ equation given by


Ψi(θ̄i(t)) − Ψi(θ̄i(t + Δ))+ � 
t
t+Δ

((∂ Ψi(θ̄i(τ))/∂ θ̄i)
T θ̄̇i− (8.33)

Hi(θ̄i,∂ Ψi(θ̄i(τ))/∂ θ̄i,ui,u−i))dτ = 0. 
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Proof: The error dynamics constraint (8.5) yields, 

θ̇̄i = fi(θ̄i, ui,u−i). (8.34) 

Considering the following value function expression 

∞ 
Ψ̇i(θ̄i(t))dt = Ψi(θ̄i(t∞)) − Ψi(θ̄i(to)) = to 

− 
� ∞ Ui(θi, ui,u−i)dt 

(8.35) 
to 

The Hamiltonian function for each node i is given by 

Hi(θ̄i,λi, ui, u−i) = Ui(θi, ui,u−i)+ λ T fi(θ̄i,ui, u−i). (8.36)i 

Equations (8.35) and (8.36) yield, 

∞ 
Ψ̇i(θ̄i(t))dt = Ψi(θ̄i(t∞)) − Ψi(θ̄i(to)) to � 

= − �to 

∞
(Ui(θi,ui, u−i)+ λ T ( fi(θ̄i, ui,u−i) − θ̇̄i))dt (8.37) 

= − to 

∞
(Hi(θ̄i, λ ,ui, u−i) − λi

T θ̄̇i)dt. 

Then, � �∞ 

Ψ̇i(θ̄i(t))dt = − 
∞ 

(Hi(θ̄i, λ ,ui, u−i) − λi
T 

θ̇̄i)dt. (8.38) 
to to 

¯Taking the gradient with respect to θ̇i yields 

−∂ Ψ̇i(θ̄i(t))/∂ θ̄̇i = ∂ Hi(θ̄i,λ , ui,u−i)/∂ θ̇̄i − ∂ (λi
T 

θ̄̇i)/∂ θ̇̄i. 

Then, 
¯ ¯−∂ Ψi(θ̄i(t))/∂ θ̄i = ((∂λi/∂ θ̇i)

T (∂ Hi(θ̄i, λi, ui,u−i)/∂λi − (θ̇i)) − λi). 
Since 

¯(∂ Hi(θ̄i, λi, ui,u−i)/∂λi − (θ̇i)) = 0. 

Then, 

−∂ Ψi(θ̄i(t))/∂ θ̄i = −λi, 

or equivalently 
λi = �Ψi(θ̄i(t)). (8.39) 

Together (8.10), (8.37), and (8.39) yield the IRL-HJ equation (8.33). � 

This theorem shows the relation between the costate variable λi and the gra­
dient of the value function Ψi. 
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8.1.8 Coupled IRL-HJB equations 
The following theorem provides the mathematical setup for a set of novel coupled 
IRL-HJB equations for the constrained differential games on graphs. It shows the 
relation between (8.15) and (8.16) on one hand and the policies given by (8.14) 
and (8.32) on the other hand. 

Theorem 8.2 
(IRL-HJB Equation). 

a. Suppose that 0 < Ψ∗
i (θ̄i) ∈ C2 satisfies the (IRL-HJB) equation 

1Hi(θ̄i,�Ψ∗
i (θ̄i),u∗i ,u−

∗ 
i) = �Ψ∗

i (θ̄i)
T θ̄̇i + 2 (θ

T Qiiθii 

+2 
� 

0 
u∗ 

i (Φ−1(νi))
T Riidνi)+	 (8.40) 

j∈Ni 
u∗j

T Ri ju∗j ) = 0,Ψ∗
i (0) = 0, 

where 
u∗ 

i = −Φ(Mi�Ψ
∗ 
i (θ̄i)). (8.41) 

Then, the value function Ψ∗
i (θ̄i) satisfies (8.15). 

b.	 In reference to (8.1), suppose that (A,Bi) is reachable and that the value func­
tion Ψ∗

i (θ̄i) satisfies (8.15). Then,Ψ∗
i (θ̄i) satisfies (8.40). 

Proof: 

a. If Ψ∗
i (θ̄i) satisfies (8.40) then Hi(θ̄i, �Ψ∗

i (θ̄i),u∗
i , u

∗
−i) = 0. Theorem 8.1 

yields ΔΨ∗
i (θ̄i(t)) = 

� t+Δ
(�Ψ∗

i (θ̄i)
T θ̇̄)dτ . Therefore, Ψ∗

i (θ̄i(t)) satisfiest 
(8.15). 

b. Using the Hamiltonian (8.16) for arbitrary smooth function Ψi(θ̄i) yields 

Hi(θ̄i, �Ψi(θ̄i), ui,u−i) = Hi(θ̄i, �Ψi(θ̄i), u∗
i ,u

∗ �	 −i)+ 
ui (Φ−1(νi))

T Riidνi − (φ −1(u∗
i ))

T Rii(ui − u∗
i )u∗ 

i	 �1+ 2� j∈Ni 
(u j − u∗j )

T Ri j(u j − u∗
j )	 (8.42)

+ u∗j
T Ri j(u j − u∗j )j∈Ni � 

−�iΨ
T
i ( 

i 

θ̄

( 
i

θ

) 
¯i)εi

j
β

∈
i

N
( 

i

ū
ci jB j(

u
u
∗ 

j − u∗
j ) 

−�−iΨ
T 

−i − ¯−i), 

where⎡	 ⎤ ⎡ ⎤ 
(γ j + o j) . c jr	 u j 

εi = ⎣ : . : ⎦ , ū−i = ⎣ : ⎦ , 
cr j� . (γ j� + o j� ) ur 
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βi = diag{Bj, ..,Br}, j, j� ∈ Ni, r ∈ Nj,r� ∈ Nj� ,{r, r} = i, �iΨi(θ̄i) 
= ∂ Ψi(θ̄i)/∂θi, �−iΨi(θ̄i) = ∂ Ψi(θ̄i)/∂ θ̄−i, u∗

i = −Φ

�
(Mi�Ψi(θ̄i)). 

Now, suppose that, the value function Ψi(θ̄i) ∈ C2 satisfies (8.10). Then, 
the Hamiltonian function using the policies ui, u−i is given by 

Hi(θ̄i, �Ψ∗
i (θ̄i), ui,u−i)


¯ 1 ui
= �Ψ∗
i (θ̄i)

T θ̇i + 2 (θi
T Qiiθi + 2 

� 
(Φ−1(νi))

T Riidνi� 0 
+ uT

j Ri ju j) 
= 
� ui (Φ−

j
1
∈
(
N
ν

i

i))
T Riidνi − (φ−1(u∗

i ))
T Rii(ui − u∗

i )u∗ 
i 

+ 2
1 � 

j∈Ni 
(u j − u∗j )

T Ri j(u j − u∗j ) 
(8.43) 

+ � j∈Ni 
u∗j

T Ri j(u j − u∗j ) 

j∈Ni 
ci j�Ψi

∗T (θ̄i)Bj(u j − u∗j )
− 
(θ̄i)εiβi(ū u∗
−�−iΨ

∗
i

T 
−i − ¯−i). 

Bellman optimality equation (8.12) can be formulated so that 

ui 
θ̄i −�Ψ∗

i ( ̄ ¯ ¯min(Ui(θi,ui, u−i)+ �Ψ∗
i (θ̄i)

T ˙ θi)
T θ̇i + �Ψi

o(θ̄i)
T θ̇i) = 0. 

Introducing (8.43) into this equation yields 
min(Hi(θ̄i, �Ψ∗

i (θ̄i),ui, u θi)
T θ̇̄i + �Ψo

i (θ̄i)
T θ̇̄i) = 0. Applying

ui 
−i) −�Ψ∗

i ( ̄

the optimality principles yields 

min( 
� ui (Φ−1(νi))

T Riidνi − (φ −1(u∗
i ))

T Rii(ui − u∗i ) ui �u∗ 
i 

+ 1 (u j − u∗j )
T Ri j(u j − u∗

j )2� j∈Ni 

+� j∈Ni 
u∗j

T Ri j(u j − u∗j ) 
ci j�Ψ∗T B j(u j − u∗j )
− j∈Ni

i (θ̄i)εi

i 
βi(ū−i − ū−

∗ 
i)
−�−iΨ

θ

∗T

i)
T ˙̄ θi)

T ¯̇−�Ψ∗
i ( ̄ θi + �Ψo

i ( ̄ θi) = 0. 

The stationarity condition ∂ (Ψo
i (θ̄i))/∂ ui = 0 yields the optimal policy 

uo
i such that 

∂ (.)/∂ ui = 0 R−
ii 

1([..(�γi + oi).. − c ji..] ⊗ BT
i�)


(�Ψo
i (θ̄i) −�

⇒
Ψ∗

i (θ̄i))+ φ −1(uo
i ) − φ −1(u∗

i ) = 0.

Then, 

o−Mi(�Ψ
o
i (θ̄i) −�Ψ

∗ 
i (θ̄i)) = (φ−1(ui ) − φ −1(u∗ 

i )). (8.44) 

The Hessians of (8.10) and (8.16) with respect to the control policies are 
given by �2 (Hi) = ∂ 2Hi/∂ u2 

i = 1/1 − u2 
i > 0, ui < 1 and �2 (Ψi) = ui ui

2 2 
| | 

uo∂ 2Ψi/∂ ui = 1/1−ui > 0, |ui| < 1. The hessians are positive, thus u∗
i = i . 

Equations (8.30) and (8.44) imply that 

(γi + oi)R−
ii 

1BT
i (A

T )p(�Ψ
o
i (θ̄i) −�Ψ

∗ 
i (θ̄i)) = 0, p = 0,1, .., n − 1 
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or equivalently, 

(γi + oi)R−1Bi
T (AT )p(�iΨ

o
i (θ̄i) −�iΨ

∗
i (θ̄i)) = 0,ii 

c jiR−
ii 

1BT
i (A

T )p(� jΨ
o
i (θ̄i) −� jΨ∗

i (θ̄i)) = 0, (8.45) 
p = 0,1, .., n − 1, ∀ j ∈ Ni. 

The reachability matrix �i for each node i is given by 

�i = BiABiA2Bi...An−1Bi . (8.46) 

Under the condition that, the matrix �i has full rank then, 

Ψ
∗ 
i (θ̄i) = Ψi

o(θ̄i),∀iΨ∗ 
i (0) = 0, Ψi

o (0) = 0. (8.47) 

Remark 8.2 The importance of the relation between the IRL-Bellman equation 
(8.10), Hamiltonian function (8.16), and IRL-HJB equation (8.40) highlighted by 
Theorems 8.1 and 8.2 can be explained in two points. First, the IRL-Bellman opti­
mality equation (8.15) is used to propose value and policy iteration solutions for the 
constrained game. This framework represents an easy alternative compared to the 
one proposed in [546], which used Hamiltonian structures to solve the differential 
games. The solution given in [546] will become more challenging and hard to imple­
ment if the constrained policies were considered. Second, this relation represents a 
very useful tool to understand the stability characteristics and provide the necessary 
Nash equilibrium conditions for the differential graphical game. 

8.1.9 Nash equilibrium solution 
The non-cooperative solution of (8.11) yields the Nash equilibrium for the con­
strained game on graphs. The Nash solution is proven to be equivalent to solv­
ing the underlying IRL-Hamilton-Jacobi-Bellman equations (8.40) or the IRL-
Bellman optimality equations (8.15). The Nash solution is given in terms of the 
standard Nash equilibrium condition [545], in addition to the strong connectivity 
requirement of the graph to sustain the reachability among the nodes. 

Definition 8.1 Nash Solution for Constrained Games [545].

An N-node constrained game with a group of N optimal policies {u∗1 , u

∗
2 , ..., u

∗

N}

has a Nash equilibrium solution if 

Ji 
∗ = 

Δ Ji(u∗ 
i , u

∗
ī ) ≤ Ji(ui, ui 

∗
¯ ), ∀i, (8.48) 

where uī = {u j| j ∈ N, j =� i} are the constrained policies of all the nodes, except that 
of node {i}. 
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The outcome {J1
∗, J2

∗, ..., JN
∗} is called the Nash solution outcome for the con­

strained graphical game. � 

Remark 8.3 The reachability is sustained if the graph has a spanning tree (i.e., 
strongly connected graph). � 

8.1.10 Stability analysis 
The next results reveal the stability and Nash equilibrium properties for the error 
system (8.5), provided that all the nodes in the game use policies (8.14) and the 
weighting matrices of index (8.6) are properly chosen. 

Theorem 8.3 
(Stability and Nash Equilibrium Solution) 

Suppose that the graph is strongly connected, Ψ∗
i (θ̄i) satisfies (8.15) or (8.40), 

and each node uses the optimal policy (8.41). Then: 

a.	 The error system (8.5) is asymptotically stable. 

b.	 Ji
∗(θ̄i(to), u∗i , u

∗
i ) = Ψ∗

i ( θ̄i(to) ) is the optimal performance value for node i. ¯

c.	 The nodes of the constrained games are in Nash equilibrium and the Nash 
outcome is {J1 

∗, J2 
∗, ..., JN

∗}. 

Proof: 

a. Ψ∗
i (δ̄i) satisfies (8.15) so that 

Ψ∗
i ( θ̄i(t + Δ) ) − Ψ∗

i ( θ̄i(t) ) = 
1 � t+Δ

(θ T Qii θi	 (8.49)2 t i �− � 
0 
ui 

j∈Ni 

T
j Ri j u j)dτ.+2 (Φ−1(νi))

T Rii dνi) + u

Theorem 8.1 and (8.49) yield � t+Δ
Ψ̇∗

i ( θ̄i(τ) ) dτ = 
� t+Δ 

(∂ Ψ∗
i (θ̄i(τ))/∂ θ̄i)

T δ̇̄i dτ = 

− 
t 

1
2 

� 
t
t+Δ 
� 

θi
T Qii θi + 2 

� 
0 

t
ui (Φ−1(νi))

T Rii dνi)+ 
� 

j∈Ni 
uT

j Ri j u j 

� 
dτ. 

(8.50) 

Equation (8.50) yields ⎛	 ⎞ 

Ψ̇
∗ 
i (θ̄i(t)) = − 

1 ⎝θi
T Qii θi + 2 

ui 

(Φ−1(νi))
T Riidνi)+ 

� 
uT

j Ri j u j⎠ . (8.51)
2 0 j∈Ni 

Therefore, Ψ∗
i , ∀i are Lyapunov candidates and the error systems (8.5) are 

asymptotically stable. The strong connectivity ensures the reachability for all 
the nodes. These results guarantee synchronization of the nodes to the leader’s 
node. 
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b.	 Equations (8.40) and (8.42) given arbitrary policies yield 

Hi(θ̄i, �Ψ∗
i ( ̄ θi)

T θ̇̄ +Ui(θi, ui, u−i) = �Ψ∗
i ( ̄

( Φ−1(νi) )
T Rii dνi − ( φ −1(u∗

i ) )
T Rii (ui − u∗i )+ 

θi), ui, u −i) 
ui =
 u∗ 
i 

j∈Ni 

1 
2 j )

T Ri j (u j − u∗
j )+ u∗j

T Ri j (u j − u∗
j )− 

j∈Ni 

(u j − u∗

( ̄ j ) −�−iΨ
∗T θi) εi βi (ūci j �Ψ∗

i
T θi) Bj (u j − u∗

−i ( ̄
j∈Ni 

−i − ū−
∗ 

i). 
(8.52) 

The stability results guarantee that θ̄i(∞) → 0. Therefore, Ψ∗
i ( θ̄i(∞) ) = 0 and 

Ji(θi(to), ui, u−i) = Ψ∗
i ( θ̄i(∞) ) 

Ui(θi, ui, u−i) dt. (8.53)
∞
+
 to 

Rearranging this equation yields,


Ji(θi(to), ui, u−i) = Ψ∗
i ( θ̄i(to) ) 

( Ui(θi(to), ui, u
(8.54)
∞ 

−i) ) dt.−i) −Ui
∗(θi(to), u∗

i , u
∗+
 to 

Given arbitrary policies, the Hamiltonian is given by


Hi( ̄θi(t), �Ψ∗
i ( ̄

�Ψ∗
i (θ̄i)

T θ̇̄i 

θi), ui, u−i) =


+Ui(θi(t), ui, u
(8.55)


−i). 
ui,u−i 

In case of optimal policies, the Hamiltonian is given by 

Hi(θ̄i(t), �Ψ∗
i (θ̄i), u∗

i , u
∗ θi)

T θ̄̇i−i) = �Ψ∗
i ( ̄

u∗ 
i ,u

∗ (8.56)−i 

−i) = 0.+Ui
∗(θi(t), u∗

i , u
∗ 

Then 

Ui(θi(t), ui,u−i) −Ui
∗(θi(t), u∗

i ,u−
∗ 

i) = 
θi(t), �Ψ∗

i (θ̄i), ui, u−i)Hi( ̄

θ̇̄i θ̇̄i−�Ψ∗
i (θ̄i)

T + �Ψ∗
i (θ̄i)

T ,

u∗ 

i ,u
∗ 
−iui ,u−i 

where


θ̇̄i θ̇̄i =
−�Ψ∗
i (θ̄i)

T + �Ψ∗
i (θ̄i)

T 

u∗ 
i ,u

∗ 
−iui,u−i 

−�Ψ∗
i (θ̄i)

T ( [..(γi + oi).. − c ji..] ⊗ BT
i ) (ui − u∗

i ) 
ci j �Ψ∗

i
T (θ̄i) Bj (u j − u∗

j ) 
θi) εi βi ( ̄

+

+�−

j

i

∈
Ψ

N
∗
i
T 

−i ( ̄ u−i − ū−
∗ 

i). 
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Then


−i) = 
( Φ−1(νi) )

T Rii dνi − ( φ −1(u∗
i ) )

T Rii (ui − u∗i ) 
U� iu(i θi, ui, u−i) −Ui

∗(θi, u∗
i , u

∗ 

+ 
u∗ 

i
1
2 

� 
(u j − u∗j )

T Ri j (u j − u∗j )+ 
� 

u∗
j
T Ri j (u j − u∗j ) 

−�iVi

j
∗
∈
T
N
( 
i 

θ̄i) 
� 

j∈Ni 
ci j B j (u j − u∗

j ) 
j∈Ni 

−�−iΨ
∗
i

T (θ̄i) εi βi (ū−i − ū−
∗ 

i) 
θi)

T ( [..(γi + oi).. − c ji..] ⊗ BT
i )(ui − u∗i )+ −�

j∈

Ψ

Ni 

∗
i
c
( 
i j 

¯
�Ψ∗

i
T (θ̄i) Bj (u j − u∗j ) 

u−i − ¯−i).+�−iΨ
∗
−

T
i (θ̄i) εi βi ( ̄ u∗ 

Simplifying this equation yields 

−i) = Ui(θi, ui, u−i) −Ui
∗(θi, u∗

i , u
∗ ui (Φ−1(νi))

T Rii dνi+ 
1 � 

(u j − u∗
j )

T Ri j (u j − u∗j )+ 
� u

∗ 
i

u∗
j
T Ri j (u j − u∗j ). 

(8.57) 
2 j∈Ni	 j∈Ni 

Thus, the performance index of node i is given by 

Ji(θi(to), ui, u−i) = Ψ∗
i ( θ̄i(to))+ 

∞
( 

ui ( Φ−1(νi) )
T Rii dνi 

+ 12 

� 
j∈Ni 

(u j − u∗
j )

T Ri j (u j − u∗j )+ 
to� 

j∈

u

N

∗ 
i 

i
u∗j

T Ri j (u j − u∗j ) ) dt. 
(8.58) 

Applying the optimal control policies (equilibrium), then (8.58) yields 

Ji 
∗( θi(to), u∗ 

i , u
∗
−i) = Ψ∗ 

i ( θ̄i(to) ). (8.59) 

c.	 Using the policies (ui, ui 
∗
¯ ), then the integrand of (8.58) is positive such 

that 
∞ 

( Ui (θi(to), ui, u∗ (θi(to), u∗ 
i , u

∗ (8.60)−i) −Ui 
∗

−i) ) dt > 0. 
to 

Inequality (8.60) yields 

Ji 
∗ (θi(to), u∗ 

i , u
∗
ī ) ≤ Ji (θi(to), ui, u∗

ī ). (8.61) 

Therefore, according to Definition 8.1, the tuple {J1 
∗, J2 

∗, ..., JN
∗} forms the Nash 

equilibrium outcome for the constrained game. � 

8.2 Value Iteration Solution and Implementation 
This section introduces the online Value Iteration (VI) solution for the con­
strained graphical games. It does not require the knowledge of the complete 
dynamics of the nodes. This solution is a constrained graph version of the single-
node ADP solution introduced in [563] and [564]. This is followed by the adap­
tive critics’ implementation for the proposed solution algorithm. 
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8.2.1 Value iteration algorithm 
The value iteration solution involves two main steps: First, value evaluation, then 
policy update. Each node i performs the following value iteration algorithm si­
multaneously. 
Algorithm 1. (VI Solution for Constrained Graphical Games). 

1: Initialize the value functions and the polices ψi 
0 , ui 

0 , ∀i. 

2: (Evaluate the Value Function).

Evaluate ψi

l+1 using the IRL-Bellman equation


ψ
l+1 

θi(t)) = 1 � t+Δ � ul 

i ( ¯
 (θi
T (Φ−1(νi))

T Rii dνi) + Qii θi + 2 i 

(8.62)
2 0t
l
j) dτ + ψi

l (θ̄i(t + Δ) ), ψ llT 
j Ri j u i (0) = 0, ∀i,j∈Ni 

u

3: (Update Policies). 

ul+1 = − Φ ( R−1( [..(γi + oi).. − c ji..] ⊗ BT ) � ψ l+1 (θ̄i). (8.63)i ii i i 

4: Repeat the process until
 ψi
l+1 − ψi

l converges. �


Remark 8.4 The IRL-Value Iteration Algorithm 1 does not use the full dynam­
ics in (8.5). It requires only the knowledge of the input control matrix Bi for each 
node i. Meanwhile, it does not use initial stabilizing policies, which is shown to be 
challenging for the case of multi-agent systems [546]. �. 

8.2.2 Graph solution implementation 
Online actor-critic neural network structures are adopted to implement the VI so­
lution provided by Algorithm 1. The approximation for the value function (8.62) 
is introduced for each function ψi and it is referred to as critic structure approx­
imation. The actor structure approximates the optimal policies for each node i 
(8.63). The actor-critic structures are used to implement the solution of Algorithm 
1, as well as solving the Bellman optimality equations (8.15) simultaneously. 
Policies (8.63) are evaluated using only partial knowledge of the dynamics of 
the nodes. Updating the policies and the value functions are done simultaneously 
using the local information available to each node i. 

The value function (8.62) for each node i is approximated by 

Ci(Ii) = 
1 
(IT

i ωic
T Ii), (8.64)

2 

where ωic
T ∈ RnNi, j ×nNi, j ≥ 0 are the critic weights for each node i and Ii is a vector 

of the states of node i and the states of its neighbors. 
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The actor for each node i (8.63) is approximated by 

ûi(Ii) = ωia
T Ii, (8.65) 

where ωia
T ∈ Rmi ×nNi, j ≥ 0 are the actor weights for each node i. 

The policy for each node i is approximated by (8.63) such that 

ūi = − Φ (Rii
−1 ( [..(γi + oi).. − c ji..] ⊗ BT

i ) ωic
T Ii). (8.66) 

The error for the actor’s approximation is given by 

αi
actor = ωia

T Ii − ūi. (8.67) 

Hence, 

ᾱi
error = 

1 
(αi

actor )
T 

αi
actor . (8.68)

2 
The variation in the actor weights is 

ωia 
(l+1)T 

= ωia 
(l)T − σai ωia 

(l)T Ii − ūi IT
i , (8.69) 

where l is the iteration index and σai is the actor learning rate. 
Let the target value of the critic network for each node i be 

βi
critic � = 2

1 � 
t
t+Δ

(θi
T Qii θi + 2 

� 
0 
ûi ( Φ−1(νi) )

T Rii dνi+ 

j∈Ni 
ûT

j Ri j û j) dτ + 12 ( Ii
T (t + Δ) ωic

T Ii (t + Δ) ). 
(8.70) 

The error for the critic’s approximation is given by 

β error Ii (t) ) − β critic = 
1 
( Ii

T (t) ω
T . (8.71)i ic i2 

Hence, 

β̄i
error = 

1 
(βi

error )
T 

βi
error . (8.72)

2 
The variation in the critic weights is governed by 

ω̄
(l+1)T 

= ω̄ (l)T − σci ( 
1 
( IT

i (t) ωic
T Ii(t)) − β critic ) × (Ii(t) IT

i (t)), (8.73)ic ic i2 
where 0 < σci < 1 is the learning rate of the critic. 

Remark 8.5 The introduced IRL-Bellman formulation makes it possible to propose 
rigorous and easily implementable solution frameworks based on value iteration and 
policy iterations. The value iteration solution is implemented online using only one 
layer of linear neural network structures and does not use nonlinear activation func­
tions, providing a much simpler structure compared to the one proposed in [546]. 
The proposed IRL solution framework resulted in simpler tuning approaches for the 
neural networks weights compared to those developed in [546]. Herein, the online 
value iteration solution considers the case of constrained inputs. 
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8.2.3 Online actor-critic neural networks tuning 
The actor-critic neural network weights are updated online using the following 
algorithm, which is performed simultaneously by each node i. 
Algorithm 2. Online Actor-Critic Tuning 

1. Initialize the actor and critic weights ω̄ia 
0 & ω̄ic

0 ,∀i. 

2. Initialize the vectors I0 
i (t0), ∀i. 

3. Loop (l iteration index) { 

3.1 Update the critic weights using 

ω̄
(l+1)T 

= ω̄ic 
(l)T − σci (Ci

l (Ii (t) ) − βi
critic ) × (Ii(t) IT

i (t)),ic 

3.2 Update the actor weights using �� � � 
ωia 

(l+1)T 
= ωia 

(l)T − σai ωia 
(l)T Ii − ūi IT

i , 

3.3 End Loop on convergence of �� ωic 
(l+1) − ωic

l �� 
, ∀i. � 

Remark 8.6 The number of the actor and the critic weights for each node i de­
pends on the graph structure Ω as well as the solving value function Ci (Ii). There­
fore, the number of the actor ωia and critic ωic weights for each node i are Rmi×n Ni, j 

and RnNi, j×n Ni, j , respectively. The simple tuning laws developed herein are easier to 
implement than those used in [546], especially when constrained inputs are consid­
ered. � 

8.2.4 Simulation results I 
Simulation cases are designed to test the validity and robustness of the proposed 
Algorithms 1 and 2. The simulation results are judged against, 1) How the critic 
and actor weights converge during the learning process, and the asymptotic sta­
bility of the tracking error systems. 2) The robustness of the algorithms against 
the uncertainties, which are injected into the dynamics of the nodes. 3) The ro­
bustness of the proposed solution in the presence of uncertainties in the connec­
tion weights, loss of connection links, and varying the weighting matrices. 

Graph Game Example and Simulation Parameters 
A graphical system of four nodes is considered, as shown in Fig. 1(a). The 

nodes have the following information; 

0 1 1.1 1.3
A = , B1 = , B2 = ,−1 0 0.6 0.7 
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Figure 8.1: Graph example 

1.2 1
B3 = , B4 = 0.75 1 

The undirected graph weights are chosen such that; (ci j = c ji ∀i, j, j � == i)c12 
0.9, c13 = 0.6, c14 = 0.8, c23 = 0.75. 
The weighting matrices Q, R are set to unity. The leader is pinned to node 4. The 
learning rates are σai = σci = 0.001. The saturated control input law for each 
node i (8.63) is given by 

ui = − 2 ∗ tan−1( (R−1 ([..(γi + oi).. − c ji..] ⊗ BT
i ) �ψi(θ̄i) / 2 ).ii 

8.2.5 Simulation case 1 
This simulation case tests the performance of the learning process. Figures 2 and 
3 show the update of the self-critic and actor weights, respectively. The figures 
show the smooth convergence of the critic and actor weights. Figure 4 shows the 
asymptotic stability results of the tracking error dynamics, which supports the 
proposition of Theorem 8.3. It shows how the nodes synchronize their dynamics 
to the leader’s dynamics. Figure 5 shows 3D phase-plan plot (the components of 
the node’s states) of the nodes’ dynamics. The nodes start from scattered initial 
states and then they synchronize to the leader’s dynamics. 

8.2.6 Simulation case 2 
The robustness of the proposed adaptive control algorithm is tested with a white 
noise of Gaussian Distribution N (0,0.37) added to the dynamics of each node 
i. Figures 6 and 7 show the tuning of the self-critic and actor weights for all the 
nodes. They demonstrate that the tunings of the actor and critic weights require 
more iterations in order to adapt and stabilize the system against the noise. Figure 
8 shows the tracking error dynamics and the dynamics of the nodes, respectively. 
Figure 9 shows the phase plan plot of the four nodes. The proposed algorithm is 
shown to be robust against the superimposed disturbances. Despite the extra time 
it required to compensate for the added noise, it achieved asymptotic stability and 
convergence. 
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Figure 8.2: Self-critic weights update (simulation case 1)

Figure 8.3: Actor weights update (simulation case 1)

8.2.7 Simulation case 3
In this simulation case, further aggressive situations are considered. The connec-
tion link between node 1 and node 3 is broken as shown in Fig. 1(b) and the
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Figure 8.4: Tracking error dynamics and the nodes dynamics (simulation case 1) 

Figure 8.5: Phase plane plot (simulation case 1) 

connection weights are allowed to vary by as much as 50% around their nominal

values at each iteration, as shown in Fig. 10. In order to speed up the behavior of

the system and test the effect of varying the weighting matrices of the graph, and
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Figure 8.6: Self-critic weights update (simulation case 2) 

Figure 8.7: Actor weights update (simulation case 2) 

to let the dynamics of the nodes synchronize to the leader’s node in the short­
est possible time, the weighting matrices Q are set to 10 this time. Figures 11 
and 12 show that the critic and the actor weights converge smoothly irrespec­
tive of the hostile conditions. Figure 13 (tracking error dynamics and dynamics 
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Figure 8.8: Tracking error dynamics and the nodes dynamics (simulation case 2) 

Figure 8.9: Phase plane plot (simulation case 2) 
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Figure 8.10: The connection weights (simulation case 3) 

Figure 8.11: Self-critic weights update (simulation case 3) 

of the nodes) shows the effect of the continuous change of the graph weights 
and the ability of the IRL-Algorithms to asymptotically stabilize the graph sys­
tems and synchronize the nodes’ dynamics to that of the leader’s. In addition, 
Fig. 14 shows that, with time, the adaptive learning solution was able to reject all 
uncertainty effects and to achieve the objectives of the optimization problem. 
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Figure 8.12: Actor weights update (simulation case 3) 

Figure 8.13: Tracking error dynamics and the nodes dynamics (simulation case 3) 
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Figure 8.14: Phase plane plot (simulation case 3) 

8.3 Multiagent Reinforcement Learning for Microgrids 
Traditional control systems for power grids were designed to handle large pro­
duction units operating under central control. The recent changes in the area of 
power systems, however, have significant effects on the complexity of the distri­
bution and transmission system operation, imposing new requirements. Promi­
nent among these changes are: 

�	 Increase of penetration of Renewable Energy Sources (RES). 

�	 Increase of distributed generation and storage. 

�	 Market driven operation with prospective participation of small genera­
tion and simple consumer. 

�	 Demand for increased Power Quality, with special focus on uninterrupt­
ible power supply and network self healing capabilities. 

This paper investigates how distributed intelligence can be used to control 
modern power systems under the above changes. In this context, the use of dis­
tributed control appears as the natural evolution of the traditional central control, 
although not fully realized thus far. Consider, for example, the operation of sev­
eral small SCADA systems at larger industrial or commercial installations, oper­
ating in parallel with the central SCADA of the main Distribution Management 
System (DMS). The complexity of the power system operation dictates the need 
to assign several control functions locally at lower levels. 
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This type of distributed monitoring and control is expected to increase as the 
complexity of the system increases [284]. 

In what follows, we focus on a future possible power system organization, 
called Microgrid. Microgrids consist of distributed generators (DG), together 
with storage devices and controllable loads (e.g., water heaters, air conditioners) 
that operate in Low Voltage networks. Microgrids can be operated in intercon­
nection with the power grid, or islanded, if disconnected from the grid offering 
considerable control capabilities over the network operation [260]. The introduc­
tion of Microgrids in the power system introduces considerable complexity in the 
operation of the grid, but, at the same time, it can provide distinct benefits to the 
overall system performance, if managed and coordinated efficiently. Significant 
research is currently being carried out regarding the operation and control of Mi­
crogrids [260], [261]. The architecture proposed in this paper is based on Multi 
Agents System (MAS) and makes use of both artificial intelligence algorithms 
and traditional computational methods in order to cope with the extremely com­
plicated and diverse problems faced in Microgrids control. Previous papers by 
the authors [263] and [264] have described the use of MAS to allow market par­
ticipation of the micro-sources. This paper aims to propose a general distributed 
architecture, capable of incorporating all the functionalities of a Microgrid [266]­
[267][268][269][270]. 

8.3.1 Microgrid control requirements 
The general architecture of the Microgrid control system was presented in detail 
in [263], [264], [265], therefore this section provides only a brief overview. Three 
control levels are distinguished, as shown in Fig. 8.15. 

The lower level consists of the Local Controllers (LC), directly controlling 
the Distributed Energy Resources (DER), production and storage units, and some 
loads. 

The Distribution Network Operator (DNO) is responsible for the technical 
operation of the medium and low voltage area, where more than one Microgrid 
may exist. In addition, one or more Market Operators (MO) are responsible 
for the Market Operation in the area. These two entities do not belong to the 
Microgrid, but they are the delegates of the grid. The main interface between 
the DNS/MO and the Microgrid is the Microgrid Central Controller (MGCC). 
The MGCC is responsible for the optimization of the Microgrid operation, or 
alternatively, it simply coordinates the LCs, assuming the main responsibility in 
the architecture presented. 

A general requirement for the Microgrid control system is adaptability and 
low cost, despite its complexity. Unlike centralized systems, involving large fi­
nancial investments and justifying expensive studies and extended modifications 
of the control system to accommodate new developments, Microgrids comprise 
a variety of energy production or storage units (Photovoltaics, Batteries, Fuel 



Dynamic Graphical Games � 333 

Figure 8.15: Control levels of the microgrid environment 

Cells, CHP [Combined Heat Production], Diesel, Flywheels, etc.) with costs 
ranging from tenths to few millions of dollars [264], [265]. The owners of these 
units may have different goals, i.e., maximizing profits from participation in the 
local market to uninterrupted power supply of critical loads. Furthermore, in a 
small area, there might be several Microgrids of different sizes (from 1kW in­
stalled capacity to several hundreds of kWs). The low cost requirements do not 
only dictate cheap hardware, but mainly that the architecture should be open to 
new DG connections without the need for modifications or significant support 
from technicians or engineers. Advanced plug and play capabilities should exist 
in two levels. First, at the field level, the LC should be able to adapt to the require­
ments of the environment. Secondly, at the management level, no matter how it 
is implemented, the LC should be able to optimize its performance according to 
its goals (e.g., market participation or heat management) automatically without 
the presence of an operator. 

8.3.2 Features of MAS technology 
The main element of MAS is the agent, which is a physical entity, or a virtual 
one [268], [269]. In our application, the physical entity is a microsource or a 
controllable load and the virtual one a piece of software that coordinates the 
agents. The basic characteristics of agents are described next: 

An agent is capable of acting in the environment, meaning that the agent is 
able to change its environment by its actions. For example, an agent that con­
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trols a storage unit and decides to store energy, rather than to inject it, alters the 
decision and the behavior of other agents. 

Agents communicate with each other, this is part of their ability to act in the 
environment. For example, agents controlling microsources communicate with 
the Market Operator and the other agents in order to negotiate in the internal 
Microgrid market. 

Agents have a certain level of autonomy. This means that they can take de­
cisions driven by a set of tendencies without a central controller or commander. 
The autonomy of each agent is related to its resources, e.g., the available fuel, in 
case of a production unit. 

Another significant characteristic of agents is that they have partial or zero 
representation of the environment. Each agent only knows the state of the unit or 
the load it controls, it can, however, be informed via conversation with the other 
agents about the status of the neighboring system. 

Finally, an agent has a certain behavior and tends to satisfy certain objectives 
using its resources, skills and services. One skill could be the ability to produce 
or store energy and a service could be to sell power in a market. The way that 
the agent uses its resources, skills and services defines its behavior. As a conse­
quence, the behavior of each agent is formed by its goals. An agent that controls 
a battery system aiming to provide uninterruptible supply to a load has a differ­
ent behavior than a similar battery system whose goal is to maximize profits by 
participating in the energy market. The concept of the behavior is a significant 
part of the agent technology and is further analyzed in the next section. It is al­
ready obvious, however, that the MAS technology can satisfy the requirements 
for Microgrids control, as specified in Section II. More specifically: 

�	 Unit autonomy. Depending on the goals of the unit owners, the various 
units in a Microgrid can behave mostly autonomously in a cooperative 
or competitive environment. On the other hand, an industrial Microgrid 
might be best controlled in a centralized manner, in which case, the ap­
proach presented in this paper is clearly not ideal [273]. 

�	 Reduced need for large data manipulation. The agent-based approach 
suggests that the information should be processed locally and the agents 
should exchange knowledge. In this way, the amount of information ex­
changed is limited and so is the demand for an expensive communica­
tion network. This feature is common to traditional distributed comput­
ing. Moreover, the Multi Agent System is characterized by the fact that 
agents have partial or zero representation of the environment. In our ap­
plication, the agent of a unit only knows the voltage level of its own bus 
and, maybe, it can estimate what is happening in specific buses, but it has 
no information about the whole Microgrid and the design of the control 
system is based on this lack of information. 
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�	 Increased reliability of the control system. In case one of the controllers 
fails, other agents may adapt and continue the system function. 

�	 Openness of the system. Multi Agent Systems allow any manufacturer of 
DER units or loads to embed a programmable agent in the controller of 
his equipment, according to some rules. In this way, the required plug and 
play capability for installing future DER units and loads can be provided. 

8.3.3 A multiagent reinforcement learning method 
The algorithm adopted is based on Multiagent Reinforcement Learning (RL). 
Reinforcement Learning is a family of iterative algorithms that allows the agent 
to learn a behavior through trial and error. The well-known Q-Learning algorithm 
is selected with the main characteristic that each agent runs its own Q-Learning 
for the part of the environment that it perceives, aiming, however, to optimize the 
overall Microgrid performance. 

Q-Learning is a Reinforcement Learning algorithm [281] that does not need a 
model of its environment and can be used on-line. Q-learning algorithms operate 
by estimating the values of state-action pairs. The value Q(s, a) is defined as 
the expected discounted sum of future payoffs obtained by taking action a from 
state s and following an optimal policy thereafter. Once these values have been 
learned, the optimal action from any state is the one with the highest Q-value. 
After being initialized, Q-values are estimated on the basis of experience, as 
follows: 

�	 From the current state s, select an action a. This will bring an immediate 
payoff r, and will lead to a next state s�, 

�	 Update Q(s,a) based upon this experience as follows: 

Q(s, a) = (1 − k)Q(s, a)+ k(r + γ maxQ(s�, a�)) 

where k is the learning rate and 0 < γ < 1 is the discount factor. 

This algorithm is guaranteed to converge to the correct Q-values with proba­
bility one, if the environment is non stochastic and depends on the current state 
and the action taken in it. This exploration strategy does not specify which ac­
tion to select at each step. In practice, a method for action, called the Boltzmann 
distribution strategy, that will ensure sufficient exploration while still favouring 
actions with higher value estimates is usually chosen. 

The main drawback of Q-learning is that it cannot operate in a stochastic 
environment, like the typical Microgrid environment. This means that, when an 
agent selects an action and the environment is stochastic, the next state of the sys­
tem is unknown. For example, if an agent chooses to allow a load to operate, the 
consequence of this action is unknown, since the total demand is unpredictable. 
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Alternative learning algorithms have been investigated by the authors, includ­
ing the Nash-Q learning, which is a general sum MAS reinforcement algorithm 
for stochastic environments. However, execution times were prohibitive, because 
the Nash-Q learning requires that the Q table includes the actions of the other 
agents as a parameter. For systems like Microgrids, the Q table becomes huge, 
requesting a large number of episodes for training. Other approaches, like [271], 
propose to forecast the decisions of other agent, however, this cannot be eas­
ily done in our case. [271] also proposes to describe the relationship connection 
between the system state and the environment, in order to simplify it. 

The authors propose an alternative approach based on Q-learning, that takes 
into account the stochastic environment and the size of the problem. The core of 
the algorithm is based on the idea that every agent runs a separate Q learning al­
gorithm for itself, perceiving just a state environment variable that expresses the 
overall state of the system. Thus, the stochastic and complex environment is con­
sidered by adding a new variable, called state transition. This variable expresses 
the most possible transitions of the system and describes the possible actions of 
the other agents of the system. 

In order to understand this, let’s consider that we want to have the full de­
scription of the system explicitly. 

This means that we should include the selected actions of all agents in the Q 
table. 

Q(s, α1,α2,α3, . . .αn) (8.74) 

α1,α2, α3, . . .αn is the selected action of agent 1, agent 2... agent N. In this 
way, the Q table becomes huge and, moreover, the environment is still stochastic, 
since we still cannot predict the result of switching a load on the system state. 
The approach proposed in the paper replaces all actions with one single variable, 
called transition, that represents the final result to the environment of all actions 
of the agents. 

Q(s, α1,α2,α3, . . .αn) 

Q(s,α1, tr) (8.75) 

As an example, we consider the following system with three states. 
The states describe the power flow between the Microgrid and the upstream 

main grid. In state 1, the grid provides power to the Microgrid, state 2 represents 
the reverse power flow and state 3 represents zero power exchange. This is the 
system variable. Let’s assume that the agent is a diesel generator and the possible 
actions are to produce power or not. In each state the selected action will lead to 
a different or the same state in the next time step, depending on the action of all 
the agents. Three transition variables are introduced in order to describe the most 
possible transitions of the system. The three transitions are: 
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Figure 8.16: The three states of the example system 

1. System goes to State 1 

2. System goes to State 2 

3. System goes to State 3 

The agent learns the value of the three following cases: 

1. “The agent is in State 2, selects action A and the System goes to State 1”. 

2. “The agent is in State 2, selects action A and the System goes to State 2”. 

3. “The agent is in State 2, selects action A and the System goes to State 3”. 

In this way, the agent learns what the value of its action is in all possible 
future states of the system and the system is no longer stochastic. This is because 
we are interested in whether the system sends or receives energy and not what a 
single load does. 

It should be noted that the total number of possible transitions of the system 
are too many, however, we consider only the ones which are most probable. For 
example, if a diesel unit has no fuel, it is not expected that it will have fuel in the 
next state. 

During the learning phase, the algorithm explores the various states and ac­
tions according to the fundamental rules of Q- learning. 

The next question is how the agent uses this final knowledge that is in the Q 
table. Consider that the system is in the time step t and in state X. In this state, all 
the agents together will select which transition is the best by using the following 
formula. 

Selected transition = argmax ( max(Q(s, α, tr))) (8.76) 
tr=1,2,3 α 
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This formula says that, for each transition, each agent selects the action that 
provides the maximum Q value and they all add these values for each transition. 
The selected transition is the one with the higher value. In the following, the RL 
algorithm is applied in a typical case. 

8.3.4 Critical operation in island mode 
This application concerns Microgrid operation in black start or in emergency 
transition from grid connected to island mode. The units, after the black out, 
follow a simple procedure: 

1. Switch off all loads 

2. Launch black start units 

3. Launch the other units 

4. Start the MAS according to the results of the Reinforcement Learning. 

It should be noted that the algorithm considers the steady state of the system 
and does not handle transient phenomena. The problem faced is how the system 
ensures power supply to the critical loads for a predefined period, e.g., 24 hours 
ahead. In this case, the agents have to learn to use the available resources in the 
most efficient way. 

The main difficulty in this example is the lack of grid, which means that 
units significantly affect each other. For example, if a diesel unit stops, another 
unit should increase its production according to the control algorithms. In this 
way, the agents are not independent. To solve this algorithmic problem, a slack 
unit, i.e., a virtual storage unit, is introduced and all actual units try to set the 
production of this unit to zero. The virtual unit participates in the operation of 
the system, but provides energy only when the actual units are out of fuel or 
stores energy when there is a surplus of power. In an actual system, the virtual 
unit may be formed by the sum of the reserve power of one or more units. 

In the approach presented, each agent executes a Q-Learning procedure for 
the part of the environment that it perceives. For the formulation of the problem, 
the variables that will be inserted in the Q table should be defined first. A basic 
goal is to minimize the size of the Q table. 

The first variable is the environment state variable, which is the flow from or 
to the slack with three values: {Receive from the Slack, Zero Power exchange, 
Offer to the Slack}. The environment state variable forms a table with 24 ele­
ments, one for every hour of the schedule. The production units are character­
ized by one more variable, the fuel, with three values: {Low, Medium, High}. 
For battery units, this variable reflects the State of Charge. The transition vari­
able is considered next, with three values: {Up, Neutral, Down}. This variable is 
an indication of the behaviour of the other agents and the state of the system, as 
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explained in Section VI. The purpose of this variable is to identify the most pos­
sible next states of the system. For example, if the transition has value {Down}, 
the system will go to a worse state, no matter what the action of the individual 
agent might be. A worse state is the state where the slack constantly provides 
power to the system, which is an indication that the system has no fuel. 

Finally, for the loads, there is a variable called Remain with values {Low, 
Medium, High} indicating how many hours they need to be served. To explain 
the use of this variable, consider as an example a water heater that is controlled 
by agents. The MAS should allow the device to operate only for a certain number 
of hours (for example 10h per day). This means that if it was just an energy mar­
ket the system should block the device during the peak hours. However, please 
note that, according to the model of operation, when the system allows the water 
heater to operate this does not mean that the water heater is on, it just means that 
the house owner has the ability to use the devised during those hours. 

Accordingly, the size of the Q table for each agent is: 

� Storage Units. 

Q (Horizon {24}, Fuel{3}, Environment {3}, Transition {3}, Action 
{3}) = 1944 elements. 

� Generation Units. 

Q (Horizon {24}, Fuel {3}, Environment {3}, Transition {3},Action 
{2}) = 1296 elements. 

� Loads. 

Q (Horizon {24}, Environment {3}, Remain {3}, Transition {3}, Action 
{2}) = 1296 elements. 

The agent learns the value of its action in the various states of the system. For 
this case study, the agents are able to act as in Table 8.1. 

Table 8.1: Actions of the agents 

Type Actions 

1 Load 
On 
Off 
Produce 

2 Storage Unit Stop 
Store 

3 Production Unit 
Stop 
Produce 
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The intermediate reward for the algorithm is received from: 

Reward=N*(TransitionReward+FinalStateReward+K) 

N is a normalization parameter obtained by dividing the maximum produc­
tion capacity of the unit by the total production capacity of the system. This 
ensures a weighted participation of all units, e.g., a 100kW unit affects the final 
actions more than a 1kW unit would. 

�	 The Transition Reward has value 1/24 if the system goes to a classifica­
tion level near zero power exchange, 0 if it remains at the same level and 
-1/24 if it goes to a power exchange status with the slack. 

�	 The Final State reward is received in the final step and has value 1 if the 
system has sufficient energy for the whole period (24h) and -1 if not. 

�	 The K parameter is different for loads or production/storage units. For 
production/Storage units, it indicates the remaining fuel and for load it 
indicates the time (in percentage that the load should be served). 

This algorithm needs to be executed if there is a significant change in the 
system, like the installation of a new unit. This is clearly presented in Fig. 8.16. 
After the execution, every agent has learned what to do in case of an emergency. 
Consider, for example, that the system is in zero power exchange with the slack. 
The agents have to select among three transitions {Up, Neutral, Down}. In order 
to decide which transition to follow, they announce to each other the Q values 
for each transition in the current state. The selected transition is given by (8.76). 

Selecting, for example, an “Up” transition, means that some agents have sur­
plus power and they offer it to the system, having in mind that the selected path 
will lead them into a good final solution. The good solution is the one that ensures 
energy adequacy for the whole period (24h). 

8.3.5 Simulation results II 
As an example, a Microgrid system comprising the following units is considered: 

�	 2 diesel units of 3kW able to produce 60kWh each. 

�	 2 diesel units of 10kW able to produce 200kWh each 

�	 2 battery banks of 3kW, able to produce 50kWh each. 

�	 2 battery banks of 10kW, able to produce 150kWh each. 

�	 4 loads rated 1kW to 10kW with 200kWh total demand. 
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Figure 8.17: Time schedule of the algorithm 

�	 6 critical loads with total installed power 50kW and total demand of 
600kWh 

�	 Renewable energy sources with installed capacity 5kW and production 
of 50kWh. 

The simulation has two parts. The first part is the training (exploration) part, 
in order to find the Q values. The second part is the exploitation of the algorithm, 
where a simple software that simulates the isolated operation was developed. 
Based on this program, several simulations of the operation of the system took 
place in order to validate whether the agents find the solution that ensures energy 
adequacy. Furthermore, a simple software was developed, allowing each agent to 
decide absolutely independently from each other in order to compare the solution 
with the one of the reinforcement learning algorithms. 

The critical loads and the renewable energy sources participate in the simula­
tion of the exploitation, but there is no need to train the respective agents, since 
they do not control their actions. 

A learning rate k = 0.95 and discount factor γ = 0.1 are assumed. The algo­
rithm converges after 20000 iterations, which means that there are no significant 
changes in the values of the Q table in more iterations. In order to ensure that 
this is the final solution, multiple runs have been made with the same schedule 
but with different initializations of the Q table, as well as multiple runs with the 
same initial Q table. Since there is no interaction between the agents during the 
learning period, every agent needs around 40 seconds in a single PC with 3GHz 
processor to complete the training. 

The system learns to make the slack unit produce power as late as possible. 
If the slack produces power it means that some units should increase their power. 
If the slack unit stores power, it means that a unit should reduce its production. 

In Figs. 8.17 and 8.18, results of the algorithm for some cases are presented. 
In the vertical axis, the Q value is presented and in the horizontal axis, the time 
step. Both the battery and the diesel agents appear to learn how to handle the 
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Figure 8.18: Results for restoration study case (Battery 3kW high SOC) 

Figure 8.19: Results for restoration study case (Diesel 10kW) 

island operation. Both agents behave in a conservative way at the beginning, 
since they do not know what will happen next and the system tries to save fuel 
for the next hours. However, by the time the energy adequacy is guaranteed, the 
agents might try to serve extra loads, like the battery in the hours between 10 
and 15. However, these graphs do not provide a clear picture of what the agents 
learned, since the Q table is very complicated and cannot be easily presented in 
one chart. A clearer picture is presented in the simulation results next. 

A critical parameter in this method is the proper formulation of the reward 
function, since it incorporates the goal of the system. It should be noted that this 
formulation provides increased flexibility in programming several goals. 

In order to indicate the significance of the reward function formulation, sev­
eral simulations considering the loads as random variables were run. This means 
that, if the agent controlling a load selects the “ON action, it does not mean that 
the load will operate in full demand. The actual demand is a random variable, 
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constrained by the total consumption in the predefined period. Similar random 
operation applies for the critical loads and the renewable energy sources. The 
results shown next are grouped according to the State of Charge (SoC), of the 
battery. For each (SoC), 300 simulation episodes have been performed and two 
different rewards were considered. Finally, for each time step, the fine tuning of 
the output of the units was done by a simple algorithm based on a priority list. 
This was done in order to simplify the simulator. An alternative algorithm is the 
one presented in [265] which ensures optimal energy allocation. 

In the first case, the evaluation was performed without the {TransitionReward}
and the K parameter for the intermediate reward. 

Table 8.2: Results of the simulation 

Battery SOC System State Result 

1 High 
Succeed Succeed 100% (99.8%) 
Failed 0% (0.2%) 

2 Medium 
Succeed 77% (73%) 
Failed 23%(26%) 

3 Low 
Succeed 33% (25%) 
Failed 67% (75%) 

As shown in Table 8.2, the system failed in several cases when the batteries 
where in a medium or low SoC. There are two main reasons for this: 

�	 The system has run out of fuel. 

�	 The overall system had enough fuel, however some of the units did not. 
Therefore, the maximum power of the system could not be reached. 

The results in the brackets show the results of the simple algorithm in which 
the agents each select their own decisions independently. This is a simple bench­
mark that indicates that the reinforcement learning algorithm provides extra in­
formation to the system. More specifically, the cooperation between the agents 
provides better results. 

In Table 8.3 the results obtained from a Reward function that includes the 
{TransitionReward} and the K parameter are shown. The operation of the system 
appears clearly improved. It is interesting to note, that in the latter case, when the 
behavior of the load the system in the failed cases was analyzed, it was seen that 
the failure could not be avoided. Nevertheless, the authors do not claim that the 
algorithm proposed finds an optimal solution in all cases. It was also shown in 
the previous examples that the system performance relies on the definition of the 
reward. In our example, formulation of the rewards was done by trial and error. 

1 High Succeed 100% Failed 0%, 2 Middle Succeed 82% Failed 18%, 3 Low 
Succeed 42% Failed 58%. 
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Table 8.3: Results of the simulation 

Battery SOC System State Result 

1 High 
Succeed Succeed 100% 
Failed 0% 

2 Medium 
Succeed 82% 
Failed 18% 

3 Low 
Succeed 42% 
Failed 58% 

8.4 Notes 
This section has introduced a novel solution for constrained differential games 
on graphs. The solution is implemented online using adaptive Integral Rein­
forcement Learning approaches. The graph is required to be strongly connected 
in order to guarantee the asymptotic convergence and synchronization of the 
error dynamics. A set of constrained IRL-Hamilton-Jacobi-Bellman and IRL-
Bellman optimality equations are developed for differential graphical games. 
Solving these coupled equations yields a Nash equilibrium solution. The inte­
gral adaptive learning approach uses value iteration to solve the graphical game 
online, taking advantage of partial knowledge on the nodes’ dynamics. The so­
lution is implemented based on the neighborhood information available to each 
node. The adaptive critics implementation capitalizes on simple layers of neural 
network structures and tuning laws, which makes it more attractive than other 
complicated solution structures used for other differential graphical games. The 
solution is shown to be robust against uncertainties in the dynamic environment 
and the connection weights provided that the graph remains strongly connected. 
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