
    
      [image: First Edition]
    

  Making Android Accessories with IOIO

Simon Monk


Editor
Andy Oram

Editor
Mike Hendrickson

Copyright © 2012 Simon Monk

O’Reilly books may be purchased for educational, business, or sales
    promotional use. Online editions are also available for most titles
    (http://my.safaribooksonline.com).
    For more information, contact our corporate/institutional sales
    department: (800) 998-9938 or corporate@oreilly.com.


Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo
    are registered trademarks of O’Reilly Media, Inc. Making Android
    Accessories with IOIO and related trade dress are trademarks of
    O’Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to
    distinguish their products are claimed as trademarks. Where those
    designations appear in this book, and O’Reilly Media, Inc. was aware of a
    trademark claim, the designations have been printed in caps or initial
    caps.


While every precaution has been taken in the preparation of this
    book, the publisher and author assume no responsibility for errors or
    omissions, or for damages resulting from the use of the information
    contained herein.





[image: ]


O'Reilly Media



Preface



Android phones are a great platform for developing apps, but sometimes
  it is nice if those apps go beyond the built-in hardware of the phone and
  connect to some homemade electronics.
The IOIO board allows you to do just that, and this book will show you
  how to use the IOIO board and interface it to various different electronic
  modules and components.
These techniques involved in using IOIO are illustrated in example
  projects. These projects are:
	An intruder alarm that uses your phone to send an SMS text message
      when movement is detected by its PIR sensor.

	A Bluetooth temperature logger that records temperatures onto the
      SD card of your phone.

	An 8x8 LED Matrix display that will display animations and is
      controlled by your phone.

	A Bluetooth rover that you can control from your Android
      phone.



What You Will Need



For all the projects, you will need an Android phone running Android
    2.1 or later, and of course, an IOIO board.
Each project also requires some additional parts, and these are
    listed along with order codes for US and international component
    suppliers.
The projects are of various levels of difficulty and all require a
    little soldering, so you will also need a soldering iron.


How to Use this Book



You need to read Chapter 1 to get started, but then you can pick and
    choose from the remaining project chapters. All the code for the projects
    is available at http://www.ioiobook.com.

Conventions Used in This Book



The following typographical conventions are used in this
    book:
	Italic
	Indicates new terms, URLs, email addresses, filenames, and
          file extensions.

	Constant width
	Used for program listings, as well as within paragraphs to
          refer to program elements such as variable or function names,
          databases, data types, environment variables, statements, and
          keywords.

	Constant width
        bold
	Shows commands or other text that should be typed literally by
          the user.

	Constant width italic
	Shows text that should be replaced with user-supplied values
          or by values determined by context.



Caution
This icon indicates a warning or caution.


Using Code Examples



This book is here to help you get your job done. In general, you may
    use the code in this book in your programs and documentation. You do not
    need to contact us for permission unless you’re reproducing a significant
    portion of the code. For example, writing a program that uses several
    chunks of code from this book does not require permission. Selling or
    distributing a CD-ROM of examples from O’Reilly books does require
    permission. Answering a question by citing this book and quoting example
    code does not require permission.
    Incorporating a significant amount of example code from this book into
    your product’s documentation does require permission.
We appreciate, but do not require, attribution. An attribution
    usually includes the title, author, publisher, and ISBN. For example:
    “Making Android Accessories with IOIO by Simon Monk
    (O’Reilly). Copyright 2012 Simon Monk, 978-1-449-32328-8.”
If you feel your use of code examples falls outside fair use or the
    permission given above, feel free to contact us at
    permissions@oreilly.com.

Safari® Books Online



Note
Safari Books Online is an on-demand digital library that lets you
      easily search over 7,500 technology and creative reference books and
      videos to find the answers you need quickly.

With a subscription, you can read any page and watch any video from
    our library online. Read books on your cell phone and mobile devices.
    Access new titles before they are available for print, and get exclusive
    access to manuscripts in development and post feedback for the authors.
    Copy and paste code samples, organize your favorites, download chapters,
    bookmark key sections, create notes, print out pages, and benefit from
    tons of other time-saving features.
O’Reilly Media has uploaded this book to the Safari Books Online
    service. To have full digital access to this book and others on similar
    topics from O’Reilly and other publishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us



Please address comments and questions concerning this book to the
    publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
    and any additional information. You can access this page at:
	http://shop.oreilly.com/product/0636920024668.do

To comment or ask technical questions about this book, send email
    to:
	bookquestions@oreilly.com

For more information about our books, courses, conferences, and
    news, see our website at http://www.oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments



I thank Linda for giving me the time, space, and support to write
    this book, and for putting up with the various messes my projects create
    around the house.
Thanks to Ytai Ben-Tsvi, the originator of IOIO, for doing such a
    good job on the platform and his most useful comments on the book during
    its writing.
Nathan and Aaron at Sparkfun kept me supplied in IOIOs, and I thank
    them for their help and encouragement.
Finally, I would like to thank Andy Oram, Mike Hendrickson, and
    everyone at O’Reilly who has had a hand in producing this book.

Chapter 1. Getting Started with IOIO



IOIO (pronounced YoYo) is an input/output board
  for Android phones and tablets. It allows you to attach electronic devices
  to your Android phone using the USB connection. If you have a IOIO with the
  latest firmware, you can also communicate over Bluetooth if you attach a
  Bluetooth adapter to the IOIO.
In this chapter we will look at how to set up your computer and
  Android phone to use the IOIO and use the sample application that comes with
  the IOIO software to turn the “status” LED on and off for your phone.
What is IOIO?



IOIO (Figure 1-1) is a product produced and sold by
    SparkFun (among others). It contains a PIC microcontroller and USB
    interface and a few other glue components to regulate the supply voltage
    etc. The whole project, both hardware and software is open source.
[image: An IOIO board]

Figure 1-1. An IOIO board


To make use of an IOIO, you will need:
	An Android phone with USB lead

	A Windows, Mac, or Linux computer

	A power supply 5-15V DC offering at least 500mA



Since the IOIO comes without any sockets soldered to its connectors,
    we will attach some to it and make a power lead for it. To do this, you
    will also need the parts listed in Table 1-1.
Table 1-1. Parts bin
	Quantity	Description	SparkFun SKU	Farnell code	Newark code
	1
	IOIO board
	DEV-10748
	
	

	2
	SIL Header socket strip
	PRT-00115
	1126603
	52K3454

	1
	2.1mm Power socket
	PRT-00119
	1217038
	97K6459

	2
	single header pins
	PRT-00116
	1097954
	93K5128

	
	short lengths of red and black multicore
            wire
	
	
	

	1
	9V power supply
	TOL-00298
	1354815
	97F7919






Android Phone



IOIO will work with a wide range of Android phones. Most Android
    phones with Android 1.5 or later will work with this board. Any new phone
    that you buy will have at least Android 2.1 on it.
The type of USB connection that you need is USB client. This is what
    the vast majority of regular Android phones will have. This takes the form
    of a little USB-micro B connector. However, some newer Android devices
    have USB host connection that usually looks like a regular USB socket such
    as you would find on a desktop computer. This type of connection is not
    compatible with IOIO.
When you use IOIO, you write the program on your computer and then
    transfer it to your phone using the USB connection. You can then unplug
    the USB lead from your computer and plug it into the IOIO so that your
    phone is now connected to the IOIO board. There is no actual programming
    of the IOIO board itself. The program runs on the phone, which
    communicates with the IOIO over USB or Bluetooth.

Computer



IOIO uses the same Integrated Development Environment that Google
    recommends for Android development—Eclipse. Eclipse isn’t required for
    either Android or IOIO, but it is the most common software used to create
    apps for them. Eclipse and the other software that you need are all
    available for Windows, Mac, and Linux.
Eclipse is fairly resource-hungry, so you will need a reasonably
    modern computer, or it will be slow and annoying to use. I use a 2.5GHz
    dual core Mac with 4GB and it works absolutely fine.

Power Supply



The IOIO does not take power from USB. So if you connect it to your
    phone with the USB lead, the power light on the IOIO will not
    illuminate.
The phone expects to receive charging power from the IOIO as if it
    were plugged into your computer, so you need to connect a power supply to
    the IOIO board. This may be a plug-in power supply or could be as simple
    as a small 9V battery. Although if you are connecting through USB rather
    than Bluetooth, a small 9V battery will not last long, as the charging
    current to the phone will soon empty it.
The projects in the following chapters use a mixture of power
    adapters and batteries.
None of the projects in this book, are very power-hungry and a 500mA
    (5W) supply is enough. However, the IOIO possesses a high-power voltage
    regulator, which means for more demanding projects, it can provide up to
    1.5A at 5V. So, if you plan to use your IOIO to control high-power devices
    like motors and high-power LEDs, you may wish to buy say a 20W power
    supply. The rover project in Chapter 5 uses low-power motors, and is in
    any case battery-powered.
If you are looking for a power connector on the board, I’m sorry to
    say there isn’t one. We will need to do some soldering to the board to
    make the power connections. Alternatively, there is an area on the back of
    the board, behind the USB connector where a surface mount JST connector
    can be soldered. SparkFun supplies such a connector (PRT-08612) as well as
    a power socket adaptor (TOL-08734), but they are not necessary for the
    projects in this book.
We are going to solder sockets to the board so that we can do most
    of our later project work with little or no soldering.

Preparing Your IOIO Board



In this section, we will prepare the IOIO board to be used by the
    various projects in this book. To do this, you will need to buy the items
    in Table 1-1.
When you get your IOIO board, it will be completely naked with no
    connectors or visible means of connecting electronics or even a power
    supply. In the various projects in this book, we will need to make both
    power and electronic input and output connections. To do this, we must
    find a way of attaching wires to the connector pads.
A convenient way to do this is to solder header strips to the two
    long sides of the IOIO. The projects in this book use only the first 20
    connectors on each side and none of the connectors on the end. Figure 1-2 shows the board with the header sockets in
    place.
[image: An IOIO board with header sockets]

Figure 1-2. An IOIO board with header sockets


To solder the connectors, put them in place, then turn the board
    upside down so that its weight holds the sockets in position. Making sure
    that the sockets are straight, solder each connector in turn. When done,
    carefully check that there are no solder bridges between
    connectors.
For the power connection, we are going to make a short lead that has
    two header pins on one end and a standard 2.1mm low voltage power supply
    socket on the other end. This will allow us to drive the IOIO from a
    low-cost wall-wart type power supply (Figure 1-3).
[image: A power lead for the IOIO]

Figure 1-3. A power lead for the IOIO

The IOIO board has the Vin pin and GND pins on opposite sides of the
    board, across which power should be provided. This means that our lead
    will need to separate at the board end. Twisting the wires together helps
    neaten the lead.
It is a good idea to use red wire for the positive connection to the
    center connection of the 2.1mm socket and a black lead from the outside
    connector of the socket to the GND pin. Notice that on the IOIO board, we
    have a choice of three GND sockets. Any one will do when connecting up the
    power.
Having got this far, we can at least check that our board will power
    up, by connecting the external power supply. You should find that the
    “Power” LED will light, and if you connect a phone to the USB cable, you
    should see that its charging LED will light, indicating that the IOIO is
    actually supplying power to the phone.
If the phone does not start charging, then you can use a small
    screwdriver to adjust the trim-pot just behind the USB socket. This
    controls how much current is supplied to the phone. If it is set too low,
    then the phone may not detect that the IOIO is attached.
Warning
Most power supplies make the center pin of their 2.1mm plug the
      positive connection, but some adaptors, especially in the music world,
      are the other way around. So check the polarity before connecting
      up.


Installation



If you do not want to set your computer up to build your own IOIO
    apps, the IOIO apps used in the projects in this book are all available,
    ready built for download from the book’s website [http://www.ioiobook.com].
But if you want to write your own apps for IOIO or want to get a
    better understanding of how the apps work, you will need to follow the
    instructions below. You effectively need to install everything that you
    need for Android software development, and then some extra code specific
    to making apps that use IOIO.
Overall, the steps involved are:
	Install Java.

	Install Eclipse.

	Install the Android SDK.

	Install the Eclipse Android ADT Plugin.

	Import the IOIO library and sample apps.



To install a suitable Java environment and Eclipse, see the
    instructions at [http://wiki.eclipse.org/Eclipse/Installation].
Once Eclipse is installed, install the Android SDK by following the
    instructions at [http://developer.android.com/sdk].
Instructions for installing the ADT Plugin for Eclipse can be found
    at [http://developer.android.com/sdk/eclipse-adt.html].
Once the ADT Plugin has been installed, you will need to tell
    Eclipse about the location of the Android SDK. To do this, open the
    Preferences panel in Eclipse and select Android on the lefthand side. In
    the SDK field location, browse to the root directory of the ADT that you
    just installed (Figure 1-4).
When we installed the ADT earlier, we installed only the basic
    framework. We now need to install packages for the Android platform
    versions that we want to use. You should at least install the platform
    that matches your phone version. Normally, any applications that you build
    with an earlier version of Android will still work on a phone with a more
    recent version. Select the version of Android that matches that of your
    phone.
Platforms are added using a tool called the Android SDK and AVD
    Manager. This is launched from the Window menu in Eclipse, or by typing
    “android” from the Linux or Mac command lines. As you can see from Figure 1-5, the author has quite a few platforms installed. You
    can install as many as you like, because they will not conflict with each
    other.
If you want to use IOIO with the new Android Open Accessory
    framework, you will also need to install SDK Platform Android 2.2.2, API
    10. Click on Available Packages to find packages to install. However, this
    is not necessary for the projects in this book.
[image: Setting the ADT location in Eclipse]

Figure 1-4. Setting the ADT location in Eclipse


[image: Installing Android platforms in Eclipse]

Figure 1-5. Installing Android platforms in Eclipse


Once your basic Android development setup is complete, you need to
    import all the IOIO sample projects and library from within
    Eclipse.
The first step is to download the zip file containing IOIOLib and
    the examples. You can find this at [https://github.com/ytai/ioio/wiki/Downloads].
Download the latest version. Version 3.10 and later have support for
    Bluetooth. The zip file will be called something like
    App-IOIO0310.zip.
Next, from Eclipse, right-click in the Project Explorer area and
    select Import, then General and Existing Projects into Workspace (Figure 1-6). Click the radio button for Select Archive File.
    Then browse to the zip file you downloaded.
[image: Installing the IOIO library and samples in Eclipse]

Figure 1-6. Installing the IOIO library and samples in Eclipse


Include all the example projects, as although you only actually need
    HelloIOIO, IOIOLib and IOIOLibBT,→
    it is useful to have the other projects as examples. The projects that you
    find here may vary as the IOIO software is updated.
You will then have the entries shown in Figure 1-7
    in your Project Explorer. If there is a red error cross next to any of the
    projects, go to the Project menu and select Clean to clean all the
    projects. This will normally remove any crosses. If it isn’t, try pasting
    the error message that you get into your search engine.
[image: Sample IOIO apps in the Project Explorer]

Figure 1-7. Sample IOIO apps in the Project Explorer



Hello IOIO



Open the first project in the list (HelloIOIO) and connect your
    phone to your computer with the USB lead. For the app to be installed onto
    your phone, you will need to make sure that USB debugging is turned on.
    You can find this option on your phone if you open Settings and then go to
    Applications and then Development (Figure 1-8).
Select HelloIOIO in the Eclipse Project Explorer and then click on
    the green Play button on the toolbar. The first time you do this, you may
    get the dialog shown in Figure 1-9. Just select the
    option Android Application.
If your phone is connected correctly, the App will be installed and
    launched on it, so that you can now disconnect the computer end of the USB
    lead and plug it into the IOIO board, which should also be connected to
    your power supply (Figure 1-10).
Clicking on the button will turn the LED on the IOIO board on and
    off.
It is beyond the scope of this book to teach you Android and Java
    programming from scratch. However, the IOIO library is very nicely
    designed, and you should find that even if you have very little
    programming experience, you will be able to take the programs in this book
    and modify them for your own use.
[image: Turning on USB debugging]

Figure 1-8. Turning on USB debugging


[image: Application Type dialog]

Figure 1-9. Application Type dialog


[image: Hello IOIO]

Figure 1-10. Hello IOIO


In the HelloIOIO app, there are really just two files that do most
    of the work: MainActivity.java and
    main.xml.
MainActivity.java can be found under
    src/ioio/example/hello. This file contains the code
    that controls the one and only Activity in this project. In Android, an
    Activity is akin to a screen in other frameworks.
If you look at the top of this file, you will find:
public class MainActivity extends AbstractIOIOActivity {
This tells us that we are creating a subclass of
    AbstractIOIOActivity, which will implement the IOIO framework behind the
    scenes for us, so we can just get on with the part of our project that is
    specific to this app.
This Java file has no information about how the user interface for
    this Activity is arranged. This is held in the template file
    main.xml, which is kept in
    res/layout:
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
    android:orientation="vertical"
    android:layout_width="fill_parent"
    android:layout_height="fill_parent"
    ><TextView
    android:layout_width="fill_parent"
    android:layout_height="wrap_content"
    android:text="@string/hello"
    android:id="@+id/title"/>
<ToggleButton android:text="ToggleButton" android:layout_width="wrap_content"
  android:layout_height="wrap_content" 
  android:id="@+id/button">
</ToggleButton>
</LinearLayout>
This XML file contains a LinearLayout tag, which
    in turn contains TextView and
    ToggleButton tags.
Note that both the user interface controls have an android:id attribute that will be used in
    MainActivity to obtain a handle on
    them.
Turning back to MainActivity.java, the first
    method we come across is called onCreate.
public void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.main);
        button_ = (ToggleButton) findViewById(R.id.button);
}
This will be called when the Activity is created. After invoking
    onCreate on the superclass, it
    associates our layout with the Activity and then creates a link to a
    member variable that holds a reference to the toggle button.
Android is very fussy about what happens on its UI thread. In fact,
    you cannot do anything here that might block the UI thread, even for a
    second or two. If you do, Android will decide that the app is not
    responding and throw a fatal exception. For this reason, we put all the
    IOIO processing activity into a separate class that subclasses
    AbstractIOIOActivity.IOIOThread:
class IOIOThread extends AbstractIOIOActivity.IOIOThread {
        private DigitalOutput led_;

        @Override
        protected void setup() throws ConnectionLostException {
                led_ = ioio_.openDigitalOutput(0, true);
        }

        @Override
        protected void loop() throws ConnectionLostException {
                led_.write(!button_.isChecked());
                try {
                        sleep(100);
                } catch (InterruptedException e) {
                }
        }
}
This class requires two methods to be implemented: setup will be called whenever the IOIO detects
    that the phone has been connected, whereas loop is called repeatedly and
    indefinitely.
We have a member variable called led_ that is an instance of DigitalOutput. The class DigitalOutput is responsible for implementing
    functionality concerned with using a GPIO pin as a digital output. This
    amounts to setting the output to high or low using the write method.
The setup method simply sets up
    the instance of DigitalOutput held in
    the variable led_. The first argument
    to openDigitalOutput is the pin to
    use—in this case, pin 0. Looking closely at the IOIO board, you will see
    that there is no pin 0. Pin 0 is actually reserved for the onboard LED.
    Later we will change this example to use an external LED and change the
    pin number to 46.
The second argument to openDigitalOutput is the initial state of the
    pin, which in this case is true,
    meaning high or 3.3V.
Looking at the loop method, we
    can see that all that happens is that we use button_isChecked() to determine the state of the
    toggle button, and set the output of the LED pin to be the inverse of
    that.
We then have a try/catch construction around a call to sleep. Your loop should include a sleep to allow
    this thread to yield and allow other threads to have a chance to do
    something. Any exception from sleep
    will just be ignored.
Back in the MainActivity class
    itself, we have the following glue code, which will be present in any
    project and creates the IOIO thread:
@Override
protected AbstractIOIOActivity.IOIOThread createIOIOThread() {
        return new IOIOThread();
}

Connecting Things to IOIO



So now, we can turn on an LED on the IOIO from our phone, but in the
    projects that follow, we are going to be connecting external components to
    the board. That is, after all, the purpose of an interface board. We
    certainly have plenty of sockets into which we can plug things, but before
    we do that, we need to know a little more about those connections.
Looking back at Figure 1-1, you can make out the
    labels printed next to each connection. At the end of the board nearest
    the USB connector, we have these power connections:
	VIN
	The supply voltage between 5V and 15V DC. This is best thought
          of as the input voltage to the board.

	3.3V
	A 3.3V regulated supply from a voltage regulator IC on the
          IOIO.

	5V
	A 5V regulated supply from a voltage regulator IC on the
          IOIO

	GND
	Ground or 0V



The IOIO board is primarily a 3.3V board. That is, all the inputs
    and outputs are designed to work at 3.3V. However, many electronic modules
    and devices are designed to work at 5V. This is why the IOIO also provides
    a 5V supply and some of its pins are capable of being pulled-up to 5V—but
    not all.
Warning
Incorrect application of 5V to a 3.3V connection could damage your
      IOIO.

The pins not associated with the power supply are just numbered
    sequentially. These pins can all be used as a GPIO or General Purpose
    Input Output pin. That is, when used as outputs, they can be set to 3.3V
    or 0V (GND), and when used as digital inputs they can tell whether the
    voltage is above or below a threshold voltage of about 1.5V. Many of these
    pins can also be used as analog inputs, PWM outputs (a kind of analog
    output), and some as outputs that can tolerate 5V.
Some of the pins can be used for TWI (Two Wire Interface)
    communications with certain peripherals. Other pins can be used for serial
    communication to computers, Bluetooth modules, etc., using one of the four
    UARTs (Universal Asynchronous Receiver Transmitters).
Table 1-2 summarizes the features
    available.
Table 1-2. IOIO pins
	Usage	Pins
	Analog in
	31-34, 37-46

	TWI (data, clock)
	(4, 5), (26, 25), (47, 48)

	UART
	3-7, 9-14, 27-32, 34-40, 45-48

	5V-friendly
	3-7, 10-14, 18-26, 47-48




Just to prove that we can attach some external electronics to our
    IOIO, we will attach an LED to one of the pins and then modify the Hello
    IOIO example to use this LED rather than the LED built onto the IOIO board
    itself.
To do this, you will need an LED and a resistor. Just about any LED
    between 100Ω and 270Ω will do fine. The parts are listed in Table 1-3.
Table 1-3. Parts bin
	Quantity	Description	SparkFun SKU	Farnell code
	1
	Red 5mm LED
	COM-09590
	1712786

	1
	100Ω 0.5W metal film resistor
	
	9340300




The longer lead of the LED is the positive lead. This is be inserted
    into the socket for pin 46 on the IOIO. Bend out the other lead of the LED
    and twist it together with one lead of the resistor. Push the unconnected
    lead of the resistor into one of the GND sockets, as shown in Figure 1-11.
[image: Attaching an LED to IOIO]

Figure 1-11. Attaching an LED to IOIO


All that remains is to reconnect our phone to our computer so that
    we can change the LED pin to 46.
Open the file MainActivity.java in Eclipse and
    change the line:
led_ = ioio_.openDigitalOutput(0, true);
to read:
led_ = ioio_.openDigitalOutput(46, true);
Redeploy the application to your phone and then plug your phone into
    the powered up IOIO. You should now be able to turn the external LED on
    and off.

Conclusion



In the projects that follow, we will use the IOIO in various
    different ways. We will make use of digital and analog inputs and outputs
    to build a series of projects.
Take some time to select a project that you would like to build,
    order the parts and then have some fun making it. Photographs, videos,
    source code, and pre-built apps for the project can all be found at the
    website for the book.

Chapter 2. Intruder Alarm



In this chapter we’ll develop a motion sensor intruder alarm with a
  difference: it sends you a text message when it detects movement. The
  project has very few components apart from the IOIO. It uses just a PIR
  movement detector and a resistor.
Figure 2-1 shows the interface to the IOIO Alarm.
  There are two fields, one for the phone number to send the text to and one
  for the message to be sent when movement is detected.
[image: IOIO intruder alarm]

Figure 2-1. IOIO intruder alarm

Under those fields appear two toggle buttons. The first toggles test
  mode on and off. When in test mode, no actual text messages are sent. A
  message appears on the screen momentarily instead. The second toggle button
  is labeled RUN; pressing this will start the monitoring after a period of 10
  seconds, which gives you enough time to leave the room.
Warning
This project sends SMS text messages, which may cost you money. So
    do not get carried away when you are testing it.

Hardware



In addition to your IOIO, which you should have kitted out with
    sockets and a power lead, you will need to buy the items in Table 2-1.
Table 2-1. Parts bin
	Quantity	Description	SparkFun SKU	Farnell code	Newark code
	1
	PIR Module
	SEN-08630
	
	

	1
	10 kΩ 0.5W metal film resistor
	
	9339787
	38K5141




The schematic diagram for the project is shown in Figure 2-2.
[image: The schematic diagram]

Figure 2-2. The schematic diagram

The PIR (Passive Infra Red) module detects movement. When something
    in front of its field of view moves, it turns a transistor on. The output
    is of a type called “open collector” and requires a pull-up resistor of 10
    kΩ to be connected between its output and +5V. The output will actually
    normally be at 5V, but will fall to 0V when movement is detected. For this
    reason, we must use one of the IOIO’s 5V tolerant pins (in this case, pin
    48).
You might expect the black lead from the PIR module to be GND, but
    it’s actually the output and the brown lead is GND.
Since there are so few connections to make, we are just going to
    push leads into the sockets. This is not the most reliable way of
    connecting leads into the sockets, but if you thicken up the leads with a
    layer of solder and put a little kink in them, a pretty good connection
    can be made.
The first step in the construction is to cut off the connector
    socket of the PIR module and strip and tin the ends of the leads. Then
    solder the red and black leads to either lead of the resistor, as shown in
    Figure 2-3.
[image: Preparing the PIR module (soldering leads to the resistor)]

Figure 2-3. Preparing the PIR module (soldering leads to the
      resistor)


The red-lead side of the resistor will go in the +5V socket, the
    black in the socket for pin 48 and the brown in one of the GND sockets as
    shown in Figure 2-4, where you can also see the power
    lead that we made in Chapter 1.
[image: Preparing the PIR module (attaching resistor leads)]

Figure 2-4. Preparing the PIR module (attaching resistor leads)


That is all there is to the hardware. Now we need to turn our
    attention to the software side.


Software



The source code for the app can also be downloaded from the book’s
    website.
Much of the framework for the app is similar to that of the
    HelloIOIO example of Chapter 1, so we will just look at the parts of the
    code concerned with interfacing to the PIR sensor.
protected void setup() throws ConnectionLostException {
        pir_ = ioio_.openDigitalInput(48, Mode.FLOATING);
        led_ = ioio_.openDigitalOutput(0);
}
The setup method opens a digital
    input on pin 48 for the PIR sensor and a digital output for the built-in
    LED on the IOIO. This LED will flicker on whenever movement has
    occurred.
When opening a digital Input using openDigitalInput, you supply two arguments. The
    first argument is the pin to open, and the second specifies the mode. This mode can be one of Mode.FLOATING, Mode.PULL_UP or Mode.PULL_DOWN. We have used FLOATING, because the built-in resistors that
    can be assigned with PULL_UP and
    PULL_DOWN are too weak for the PIR
    sensor and we need to use an external pull-up resistor:
protected void loop() throws ConnectionLostException {
        boolean wasMovement = false;
        try {
                wasMovement = ! pir_.read();;
        } catch (InterruptedException e1) {
                e1.printStackTrace();
        }
        led_.write(! wasMovement); // LED false = on
        if (wasMovement) {
                movementCount ++;
        }
        long now = System.currentTimeMillis();
        if (now > lastTime + 1000) {
                // every second
                lastTime = now;
                if (movementCount > 50) {
                        if (now > startTime_ + 10000 && runButton_.isChecked()) {
                                handleAlarm();
                        }
                }
                movementCount = 0;
        }
        try {
                sleep(10);
        } catch (InterruptedException e) {
        }
}
The built-in LED is confusingly wired in such a way that when its
    output is set to false, it turns on, and when it is set to true, it turns
    off.
The PIR sensor is quite sensitive and we do not want too many false
    positives. So, rather than trigger an alarm every time the PIR sensor
    detects movement, we will consider it to be an alarm only if there are
    more than 50 such events in the 100 times that we check per second.
To do this, we use two member variables: lastTime and movementCount. The variable lastTime is a long integer and is assigned to
    the last time that the count was checked. We can use a long integer to
    represent time, because the System.currentTimeMillis() call returns us
    a system time in milliseconds. The following line determines whether a
    whole second has passed since the last time we checked:
if (now > lastTime + 1000) {
If it has been at least a second, this is where we test to see if
    both 10 seconds have elapsed since the Run button was pressed (using
    another member variable, startTime_)
    and that the Run button was checked. If all of this is true, we call
    handleAlarm:
private void handleAlarm() {
        if (testButton_.isChecked()) {
                toast("Test Mode, no SMS sent");
        }
        else {
                sendSMS();
        }
        runOnUiThread(new Runnable() {
                @Override
                public void run() {
                        runButton_.setChecked(false);
                }
        });
}
The handleAlarm method decides
    whether to send a real text message or just make a “toast” notification,
    depending on the state of testButton.
    Once an alarm has been triggered, the Run button is unchecked to prevent
    further triggering and text messaging.
The code to uncheck the button has to be run using the runOnUiThread command.
One refinement of the app is that it remembers the phone number and
    message to send, even after the app quits. It does this using the Android
    preferences mechanism. In the onCreate
    method, as well as the usual assignment of user interface controls to
    remember variables, we also set their default values:
public void onCreate(Bundle savedInstanceState) {
    super.onCreate(savedInstanceState);
    setContentView(R.layout.main);
    SharedPreferences settings = getSharedPreferences(PREFS_NAME, 0);
    sms_ = (TextView)findViewById(R.id.sms);
    message_ = (TextView)findViewById(R.id.message);
    testButton_ = (ToggleButton)findViewById(R.id.testButton);
    testButton_.setChecked(true);
    runButton_ = (ToggleButton)findViewById(R.id.runButton);
    sms_.setText(settings.getString("sms", ""));
    message_.setText(settings.getString("message", "Something Moved!"));
    runButton_.setOnCheckedChangeListener(this);
}
The following line retrieves a settings object for the app:
SharedPreferences settings = getSharedPreferences(PREFS_NAME, 0);
Then individual setting values can be retrieved using the following
    syntax, where the first argument is the name of the setting and the second
    is a default value if there is no value found:
message_.setText(settings.getString("message", "Something Moved!"));
The settings are actually saved whenever one of the toggle buttons
    changes state in the onCheckedChanged
    handler:
@Override
public void onCheckedChanged(CompoundButton buttonView, boolean isChecked) {
        if (isChecked) {
                toast("You have 10 seconds before sensing starts");
                startTime_ = System.currentTimeMillis();
        }
        // save the fields in prefs so they are there next time
    SharedPreferences settings = getSharedPreferences(PREFS_NAME, 0);
    SharedPreferences.Editor editor = settings.edit();
    editor.putString("sms", sms_.getText().toString());
    editor.putString("message", message_.getText().toString());
    editor.commit();
}
This method is also responsible for setting a time stamp in the
    member variable startTime_ to delay
    activation of the alarm.

Conclusion



This is a useful little alarm. One slight flaw is that there is no
    way to deactivate the alarm without triggering it, so a text message will
    get sent every time you use it. The app could be modified to provide a
    delay after triggering, during which the alarm could be disabled (perhaps
    using a secret code). Another refinement could be to allow the app to
    capture a photo with the phone’s onboard camera and send this as part of
    the text message.
In the next chapter, we will look at a very simple project that just
    uses a temperature sensor to record temperatures and save them on the
    phone’s micro SD card.

Chapter 3. Bluetooth Temperature Logger



This project (Figure 3-1) is probably the simplest of
  the projects in this book. It is very easy to make and there is no soldering
  to do, other than what you did in Chapter 1 to prepare your IOIO by adding
  sockets to it.
The temperature sensor itself is a small, 3-pin chip that just plugs
  into the sockets on the IOIO.
The controlling software takes a temperature reading every 10 seconds
  and logs it onto the SD card in your phone. It also displays the current
  temperature in degrees Centigrade or Fahrenheit. When you want to retrieve
  the data that has been collected, you can just use the USB storage feature
  of your phone to transfer the file onto your computer. The data is stored in
  a CSV format so that it can be imported into a spreadsheet.
What’s more, we are going to use a USB Bluetooth module attached to
  the USB port of the IOIO to communicate with your phone wirelessly.
If you don’t want to use Bluetooth for this project, you can just plug
  the phone into the IOIO in the same way as the project in Chapter 1.
Hardware



In addition to your IOIO, which you should have kitted out with
    sockets and a power lead in Chapter 1, you will need to buy the items in
    Table 3-1.
Table 3-1. Parts bin
	Quantity	Description	SparkFun SKU	Farnell code	Newark code
	1
	TMP36
	SEN-10988
	1438760
	19M9015

	1
	USB Bluetooth
            adaptor
	
	1848138
	39T4089




[image: IOIO temperature logger]

Figure 3-1. IOIO temperature logger


Almost any USB 2.0 Bluetooth adaptor should work with this project.
    These can be bought for as little as 2 USD. The IOIO Over Bluetooth page
    lists some devices that have been tested and are known to work: [https://github.com/ytai/ioio/wiki/IOIO-Over-Bluetooth]
The schematic diagram for the project is shown in Figure 3-2.
[image: The schematic diagram]

Figure 3-2. The schematic diagram

The TMP36 sensor uses only a tiny amount of current and so, to plug
    it directly into the IOIO, we can use two GPIO sockets to provide the
    +3.3V and GND connections that it needs. Its output will be connected to
    pin 45, which is used as an analog input.
The voltage at this input will be proportional to the temperature,
    and so the analog reading can be converted into a temperature with a bit
    of math.
Putting a slight kink in the leads will ensure a good connection
    with the socket. Figure 3-3 shows the temperature sensor
    fitted into sockets 44 to 46. Make sure you get the device the right way
    around, with the curved side towards the center of the board.
[image: The temperature sensor]

Figure 3-3. The temperature sensor

The USB Bluetooth adaptor is just pushed into the USB socket.


Setup



You can download the app for this project from the book’s website,
    where you will also find a link to the source code. Install the app, and
    connect the power to your IOIO board.
For the Bluetooth link to work, you need to pair the Bluetooth
    adaptor in the IOIO with the phone. To do this, open the Settings on your
    phone, and select “Wireless and Networks” then “Bluetooth Settings”. This
    should start your phone scanning for devices, after which you should see a
    list that includes IOIO (Figure 3-4).
[image: Searching for the IOIO on Bluetooth]

Figure 3-4. Searching for the IOIO on Bluetooth

Select the IOIO device from the list and you will be prompted to
    pair with the device (Figure 3-5). Enter the PIN
    4545.
[image: Pairing with the IOIO on Bluetooth]

Figure 3-5. Pairing with the IOIO on Bluetooth

Now, when you start the app, you should see it displaying the
    current temperature. If you click on the Logging
    button, then every 10 seconds, the temperature will be written to a file on the
    phone’s SD card. The file name will be temp, followed
    by the date. The file is written in CSV format so that you can open it
    directly with most Spreadsheet software.

Software



Much of the software in this project is very similar to the Intruder
    Alarm project, so just a few things are highlighted here.
Firstly, there is the USB functionality. You might go looking in the
    code for it, but it isn’t there! The IOIO libraries are written in such a
    way that there is literally no code to write to make the app work with
    Bluetooth. This means that we could do any of the projects in this book
    with Bluetooth instead of USB, without changing a line of code. Well, this
    is not quite true, as the project in the next chapter relies on being able
    to turn the pins on and off quickly, and Bluetooth is not quite fast
    enough.
Code worth highlighting in this project is that used to write to the
    SD card. The method that does this is called appendToFile:
private void appendToFile(String filename, String line) {
    File root = Environment.getExternalStorageDirectory();
    try {
      FileOutputStream f = new FileOutputStream(new File(root, filename), true);
      f.write(line.getBytes());
      f.close();    } catch (Exception e) {
      toast(e.getMessage());
    }
}
This opens the file in append mode (creating it if it doesn’t exist)
    and then adds a line formatted with the time, the temperature reading, and
    the units (F or C).
For this to work, the following permission has to be added to the
    project manifest file, AndroidManifest.xml:
    <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE">
    </uses-permission>

Conclusion



This is a nice easy project, but one that could be extended into
    something more sophisticated. Other sensors could be added and you could
    use the Android phone to forward on the readings to a web service such as
    Pachube.
In the next project, we get a lot more complex and have to do some
    serious construction work for a light show project.

Chapter 4. LED Matrix Light Show



This chapter uses a multicolor LED matrix to make a fun charger for
  your Android phone (Figure 4-1). In this particular case,
  “fun” takes the form of a marching Space Invader animation—and if that isn’t
  fun, I don’t know what is!
[image: LED matrix light show]

Figure 4-1. LED matrix light show

The project has a variety of different modes: it can just display a
  static image, or it can display an animation, or it can make use of the
  phone’s microphone to provide a spectrum type display. If you start your
  music player on the phone before you start the IOIO Matrix app, it will
  respond to the sounds coming from your phone.
This is the only project in the book that will not work using a
  Bluetooth adaptor rather than a USB cable. This is because Bluetooth simply
  isn’t fast enough to send the commands to the pins to refresh the
  display.
The Design



In this design, the IOIO board uses 24 of its pins to control the
    LED Matrix. It requires 24 pins because the LED Matrix is arranged as a
    grid of LEDs. Each cell in the matrix actually has two LEDs in it, one red
    and one green. This is used to set the color of any individual cell to
    red, green or—if both LEDs are lit at the same time—orange.


Schematic



Figure 4-2 shows the schematic diagram for the
    project.
[image: Schematic diagram for the project]

Figure 4-2. Schematic diagram for the project

The anodes of the LEDs are each driven by a GPIO pin on the IOIO.
    Each has a series resistor to limit the current to the LED.
Because 8 LEDs share each common cathode connection to ground, there
    would be too much current flowing for a GPIO pin to sink, so a MOSFET
    transistor is used to switch each column in turn. The gate of each MOSFET
    is connected directly to a GPIO pin.

Wiring Diagram



The project is built on a piece of stripboard. Stripboard is a kind
    of prototyping board, with parallel tracks of copper running on one side
    of the board. Component leads are pushed through from the top and soldered
    to the copper track below.
On one side of the stripboard is a set of header pins designed to
    accept the IOIO board with its header sockets attached. The IOIO board
    will be fitted upside down onto the headers. The other side contains
    header sockets into which the LED Matrix is fitted.
A screw terminal for Vin and GND is used to simplify the process of
    providing power to the project.
Figure 4-3 shows the stripboard layout for the
    project.
[image: The stripboard layout]

Figure 4-3. The stripboard layout



Construction



You will need the following parts to construct this project.
Table 4-1. Parts bin
	Quantity	Description	SparkFun SKU	Farnell code	Newark code
	1
	8 x 8 Dual-color LED Matrix
	COM-00682
	
	

	8
	2N7000 MOSFETS
	
	9845178
	89K1814

	16
	100Ω 0.5W metal film resistor
	
	9339760
	58K3723

	2
	SIL Header socket strip
	PRT-00115
	1217038
	52K3454

	2
	SIL header pins
	PRT-00116
	1097954
	93K5128

	1
	Screw terminal block
	PRT-08084
	1641932
	19P1412

	1
	Stripboard 29 strips each of 53 holes
	
	1201473
	96K6336




Step 1. Prepare the Stripboard



The first step is to cut the stripboard to the correct size. The
      best way to do this is to use a craft knife to heavily score a line
      through the holes on the line below the last strip or column you need,
      and then break the board over the edge of your work desk. Be careful
      doing this, as it can leave sharp edges.
You then need to break the track in the positions indicated by an
      X in Figure 4-3. I find it useful to mark rows and
      columns 10, 20, 30, etc., on the top of the board to find the right
      position for the break and then push a wire through to find the position
      on the track side of the board. I use a drill bit, twisted between my
      fingers to remove the copper.
Figure 4-4 shows the copper side of the board,
      with all the breaks drilled.
[image: Breaks drilled in the stripboard]

Figure 4-4. Breaks drilled in the stripboard


You may find it easier to work from Figure 4-4
      than Figure 4-3. When you have made all the breaks, go
      back and inspect every one carefully to make sure that there is no trace
      of copper remaining, as this could cause a short and potentially destroy
      your IOIO. If in doubt, you can also use your multimeter on continuity
      mode, to make sure the break is clean.

Step 2. Fit the Link Wires



The copper tracks on the bottom will anchor our components and
      make some of the connections. However, there are a lot more connections
      to be made with linking wires. The longer leads should be made using
      insulated solid core wire, and the shorter connections can just be bare
      wire.
Using Figure 4-3 as a reference, solder link
      wires into place. Note that this is not a quick job. You should put
      aside an hour to do this, because there are a lot of links to put in
      place.
Do not be tempted to solder the header pins in place first.
      Although this would make it much easier to work out where the link wires
      need to go, it makes it much harder to solder the links themselves into
      place, as they will just fall out when you turn the board upside-down to
      solder it.
When all the links are in place, you should have a board that
      looks like Figure 4-5.
[image: The stripboard with resistors in place]

Figure 4-5. The stripboard with resistors in place



Step 3. Fit the Resistors



The next step is to fit the next lowest parts, which are the
      resistors. Again, using Figure 4-3 as a reference,
      solder them into place. When all the resistors are in position, your
      board should look like Figure 4-6.
[image: The stripboard with links in place]

Figure 4-6. The stripboard with links in place


Step 4. Fit the Headers



You can make it easier to fit the header plugs into the IOIO and
      the sockets into the LED Matrix by fitting the components into the
      headers before putting them in the right position on the board.
      Double-check that the placement is correct, as it will be hard to
      unsolder them once they are in position.
If the header strips are not the right lengths, you will need to
      cut them to the right number of connections using a craft knife. When
      cutting the sockets, this will usually mean sacrificing one of the
      socket connections, so cut through the socket after the number you need,
      rather than try and cut between sockets.
Once the sockets are in place, your board should look like Figure 4-7.
[image: The stripboard with headers in place]

Figure 4-7. The stripboard with headers in place


Step 5. Fit the MOSFETs



The last components to be added to the board are the MOSFET
      transistors. Be careful to ensure that they are the right way around,
      and solder them into place, raised about 1/4 inch above the surface of
      the board.
Figure 4-8 shows the board with the MOSFETs in
      place.
[image: The stripboard with MOSFETs in place]

Figure 4-8. The stripboard with MOSFETs in place


Step 6. Fit the Power Terminal and IOIO



That’s pretty much all the hardware. It just remains to solder the
      screw terminal for the power into place, and then fit the LED Matrix and
      IOIO (Figure 4-9).
Solder the screw terminal block into place first and mark the
      upper connection with a + to reduce the chance of applying the supply
      voltage reversed.
The LED Matrix has little cutouts and pegs to allow bigger
      displays to be made by joining more than one of them together. The
      correct orientation for the cutouts is at the bottom and left of the
      board.
Figure 4-9 shows the board fully assembled and
      ready to go.
[image: The stripboard fully assembled]

Figure 4-9. The stripboard fully assembled



Software



They key to this project is being able to refresh the screen fast
    enough. This is all wrapped up in the chain of methods in
    MainActivity.java that start with refreshMatrix:
private void refreshMatrix() throws ConnectionLostException {
  for (int col = 0; col < 8; col++) {
    clearPreviousColumn(col);
    displayColumn(col);
    delay(3);
  }
}
This iterates for each column, clearing its previous settings,
    displaying the new column, and then sleeping for 3 milliseconds:
private void clearPreviousColumn(int col) throws ConnectionLostException {
  int columnToClear = col - 1;
  if (columnToClear == -1)
  {
    columnToClear = 7;
  }
  cc[columnToClear].write(false);
  for (int row = 0; row < 8; row++) {
    r[row].write(false);
    g[row].write(false);
  }
}
Clearing the previous column is a matter of finding the column
    before the current one, including wrapping round. We then turn off the
    common cathode on the LED matrix for the column in question and then turn
    off all the red and green anodes for all 8 rows:
private void displayColumn(int col) throws ConnectionLostException {
  cc[col].write(true);
  for (int row = 0; row < 8; row++) {
    r[row].write((display_[col][row] & 1) > 0);
    g[row].write((display_[col][row] & 2) > 0);
  }
}
Displaying the new column involves turning on the appropriate common
    cathode of the LED matrix, and then setting the red and green anodes
    according to the current column of the 2D array of colors held in the
    member variable display_, which looks
    something like this:
private int[][] testPattern1_ = {
    {1,1,1,1,1,1,1,1},
    {1,2,2,2,2,2,2,2},
    {1,2,3,3,3,3,3,3},
    {1,2,3,1,1,1,1,1},
    {1,2,3,1,2,2,2,2},
    {1,2,3,1,2,3,3,3},
    {1,2,3,1,2,3,1,1},
    {1,2,3,1,2,3,1,2}
};
The number 0 means both LEDs are off; 1, red LED; 2, green LED; and
    3, both LEDs on (orange).
Everything else in this app, including the animation, is just a
    matter of assigning display_ to a
    different 2D array every half second.
The frames of the animation are defined in a separate class file,
    which is also responsible for providing a value (frameDelay) for the time between frames in
    milliseconds:
package com.ioiobook.matrix;

public class TestAnimation {

        public final static int frameDelay = 500;

        public final static int[][][] animation = {
                { //1
                        {0,0,1,1,1,1,0,0},
                        {0,1,1,1,1,1,1,0},
                        {1,1,2,1,1,2,1,1},
                        {1,1,1,1,1,1,1,1},
                        {0,0,3,0,0,3,0,0},
                        {0,0,3,0,0,3,0,0},
                        {0,0,3,0,0,3,0,0},
                        {0,0,0,0,0,0,0,0}
                },
                { //2
                        {0,0,0,0,0,0,0,0},
                        {0,0,1,1,1,1,0,0},
                        {0,1,1,1,1,1,1,0},
                        {1,1,2,1,1,2,1,1},
                        {1,1,1,1,1,1,1,1},
                        {0,0,3,0,0,3,0,0},
                        {0,3,0,0,0,0,3,0},
                        {0,0,3,0,0,3,0,0}
                },
The spectrum display makes use of a third-party open source library,
    wrapped up in a class (SpectrumDrawer.java). This is instantiated with
    a display to draw on:
public class SpectrumDrawer {

    private float gain_ = 1000000.0f;
    private int[][] displayArray_;
    private Window win_;
    private FFTTransformer spectrumAnalyser_;
    private int historyIndex_;
    private float[] average_;
    private float[][] histories_;

    // 128 values in average_ we just want 8 - Fn = n * Fs / N 
    // where Fn is freq at data point n, Fs is the sample freq 
    // and N is the buffer size
    private final int[] frequencies_ = { 2, 4, 6, 10, 15, 25, 55, 80 };
    private final int[] colors_ = { 2, 2, 3, 3, 3, 1, 1, 1 };

    public SpectrumDrawer(int[][] display) {
        displayArray_ = display;
        win_ = new Window(MainActivity.AUDIO_BUFFER_SIZE,
                Window.Function.BLACKMAN_HARRIS);
        spectrumAnalyser_ = new 
FFTTransformer(MainActivity.AUDIO_BUFFER_SIZE, win_);        average_ = new float[MainActivity.AUDIO_BUFFER_SIZE / 2];
        histories_ = new float[MainActivity.AUDIO_BUFFER_SIZE / 2][MainActivity.AUDIO_BUFFER_SIZE / 2];
    }

    public void calculateSpectrum(short[] buffer) {
        // apply FFT to the buffer to get the spectrum, 
        // but we only have 8 columns
        // so sum into 8 bands
        spectrumAnalyser_.setInput(buffer, 0, MainActivity.AUDIO_BUFFER_SIZE);
        spectrumAnalyser_.transform();
        historyIndex_ = spectrumAnalyser_.getResults(average_, histories_,
                historyIndex_);

        for (int c = 0; c < 8; c++) {
            int resultIndex = frequencies_[c];
            // Do we need to log this?
            int power = (int) (Math.log(average_[resultIndex] * gain_));
            Log.d("SRM", "" + power);
            if (power > 7)
                power = 7;
            for (int r = 0; r < 8; r++) {
                if (power > r) {
                    displayArray_[7 - r][c] = colors_[r];
                } else {
                    displayArray_[7 - r][c] = 0;
                }
            }
        }
    }
}
When the calculateSpectrum method
    is called, a Fast Fourier Transform (FFT) is applied to a sample of the
    audio from the phone’s microphone.
A FFT is used in this case to take a sample of an audio file and
    find the relative sizes of each of the frequencies that make up the sound.
    This produces an array of the power of a range of frequencies. We can then
    pick off frequencies from this and use them to set the colors of the
    matrix display.
The histories_ array is required
    by the third-party library to provide averaging of the FFT results.
For each column, we light a number of LEDs in the rows equal to the
    power. The actual color of each of the lit LEDs is determined by the
    colors_ array.
To feed the SpectrumDrawer with
    new data, a separate thread is started in the onCreate method of the MainActivity class:
AudioReader.Listener listener = new AudioReader.Listener()
{

        @Override
        public void onReadComplete(short[] buffer) {
                spectrumDrawer_.calculateSpectrum(buffer);
        }

        @Override
        public void onReadError(int error) {

        }

};
audioReader_ = new AudioReader();
audioReader_.startReader(F, AUDIO_BUFFER_SIZE, listener);
The thread is encapsulated in the AudioReader class. This class is provided in the
    org.hermit library.

Conclusion



This is quite a challenging project, both for the builder and the
    IOIO that has to keep updating the outputs to keep the display
    alive.
The app is intended as a starting point for your own experiments.
    There are many ways that it could be improved, including a file format for
    the animations to that they can be loaded and a optimization of the
    display mechanism to reduce flicker.
In the final chapter in this book, we are going to get more physical
    and make a little Bluetooth-controlled rover.

Chapter 5. Surveillance Rover



The last project of this book is to create a small IOIO-powered rover.
  This is another project that uses a Bluetooth to give wireless control of
  the rover (Figure 5-1 and Figure 5-2).
[image: Surveillance rover]

Figure 5-1. Surveillance rover


[image: Surveillance rover control software]

Figure 5-2. Surveillance rover control software


The rover also optionally provides a platform for a wireless web cam
  or a second Android phone with wireless web cam software on it, as shown in
  Figure 5-1. The author used an app called IP
  Camera from the Android Market, which converts the phone into a
  web cam that acts as a server over WiFi. You can then go to a URL in your
  browser and see the image from the web cam.
The Design



The outputs of an IOIO board are not powerful enough to drive
    electric motors, so a motor control breakout board is used. This little
    board (Figure 5-3) allows bi-directional control of the
    motors. That is, you can control both the speed and direction of two
    separate motors.
[image: SparkFun motor controller]

Figure 5-3. SparkFun motor controller

Figure 5-4 shows the schematic diagram for the
    project. This time, for obvious reasons, we will use batteries rather than
    a power adaptor.
The IOIO pins for the motor control are selected so that we can use
    header pins to plug one side of the motor control board directly into the
    IOIO board, reducing the amount of wiring needed.


Construction



In addition to a IOIO prepared with header sockets as described in
    Chapter 1, you will need the parts listed in Table 5-1 to construct this project.
Table 5-1. Parts bin
	Quantity	Description	SparkFun SKU	Farnell	Pololu	Newark
	1
	Motor Control Board
	ROB-09457
	
	
	

	1
	Second Android
            phone or web cam
	
	
	
	

	2
	Gearmotor
	
	
	1122
	

	1
	USB Bluetooth adaptor
	
	1848138
	
	39T4089

	1
	SPST toggle switch
	
	1661841
	
	22K8977

	1
	Battery Box
	
	1650687
	
	31C0585

	4
	rechargeable AAA cells
	Local electronics store
	
	
	

	1
	SIL Header socket strip
	PRT-00115
	1217038
	
	52K3454

	1
	SIL header pins
	PRT-00116
	1097954
	
	93K5128

	1
	Plastic case, 145 x 80 x 30mm
	Local electronics store
	
	
	

	2
	Wheels to suit gearmotors
	Local model store
	
	
	

	1
	Castor
	Local hardware store
	
	
	




[image: Schematic diagram for the project]

Figure 5-4. Schematic diagram for the project


Step 1. Prepare the Motor Controller



The motor controller has connectors on two sides. The control
      signals are all on one side, and we will attach a pin header to this
      side so that it can plug directly into the IOIO sockets. The other side
      will have a socket header attached to it so that we can wire the motors
      and supply to it. Figure 5-5 shows the motor controller
      with the pin header on one side and the sockets on the other.
[image: Preparing the motor controller]

Figure 5-5. Preparing the motor controller


Note that the two GND pins on the end of the motor connectors are
      not connected to the header socket, and header pins should each have 7
      connections.
When the pins are in place, the motor controller will face inwards
      to the center of the IOIO and be plugged in to pins 39 to 45 (Figure 5-6).
[image: The motor controller attached to the IOIO]

Figure 5-6. The motor controller attached to the IOIO



Step 2. Wire the IOIO to the Motor Controller



We need to make three power connections between the IOIO board and
      the motor controller (Figure 5-7). Break off a length
      of 7 header pins and fit it into the sockets on the motor shield and two
      lengths of two pins. Fit the first of these into the 3.3V and Vin
      sockets on the IOIO, and the other into two of the GND connections on
      the IOIO. We are going to solder the leads between these headers.
[image: Power connections between the IOIO and motor controller]

Figure 5-7. Power connections between the IOIO and motor controller


Solder the first wire between VM (motor voltage) on the motor
      controller and Vin on the IOIO. The second wire is between Vcc on the
      motor controller and 3.3V on the IOIO, and the final connection is
      between the GND pin on the motor controller and one of the GND
      connections.

Step 3. Prepare the Box Top and Motors



While this project is quite easy electronically, there is more
      mechanical construction than the other projects in this book. So when
      selecting a case, gearmotors, and wheels, make sure that everything will
      be able to fit easily in the box, and that the wheels fit the gearmotors
      and will be large enough to lift the whole box off the floor.
The box the author used was 145 x 80 x 30mm, which is quite a
      tight fit. Something slightly larger would be easier.
Figure 5-8 shows how the gearmotor’s battery box
      and switch are laid out within the box.
[image: The main components attached to the box]

Figure 5-8. The main components attached to the box

Solder flying leads to both of the motors, the switch and the
      battery box. These must be long enough to easily reach the IOIO board
      that will be positioned in the center of the case. Use Figure 5-8 as a guide. The positive lead from the battery box
      is soldered to one side of the switch.
Drill holes in the box for the switch (and also for mounting the
      IOIO board), and then glue the gearmotors and battery box into
      place.
Depending on the size of your box, you may also need cut a hole
      for the Bluetooth adaptor, if there is not room for it to fit inside the
      enclosure (see Figure 5-9).

Step 4. Prepare the Box Base and Motors



The axles of the gearmotors are raised above the bottom half of
      the box, and so we need to cut the out a slot and hole for the axle, as
      shown in Figure 5-9.
Do not worry about the other holes in the box. The box was reused
      from another project.
[image: Cutting the base of the box]

Figure 5-9. Cutting the base of the box

The castor was attached to the front of the box using a hot glue
      gun. For a better idea of how the top and bottom of the box fit
      together, refer back to the finished project shown in Figure 5-1.

Step 5. Final Wiring



We can now attach the flying leads to the header pins in the IOIO
      and motor controller, as shown in Figure 5-10.
[image: Final wiring]

Figure 5-10. Final wiring

The connections to be made are listed below:
	From the center connection of the switch to Vin on the IOIO.
          Note this pin will also have a connection going off to VM on the
          motor controller.

	From the negative connection on the battery box to GND on the
          IOIO.

	Both connections from one motor to A01 and A02 on the motor
          controller. Note that if these turn out to be the wrong way around,
          the motor will just turn in the opposite direction from the desired
          direction. If this happens, swap them over.

	As above, but for the other motor to B01
          and B02.




Step 6. Testing



Before we fix the lid into place, we can test out the project with
      the rover on its back so that it doesn’t go anywhere, but we can see
      what the motors are doing.
Insert the batteries and fit the Bluetooth adapter into the USB
      socket on the IOIO.
Load up the control app onto your phone from the book’s
      website.
We are using a Bluetooth module, so this will need to be paired
      with your phone, as described in Chapter 3.
You should find that if you touch the dead center of the cross
      hairs, the motor will be off. Touching the north position should make
      both motors turn in a direction that would carry the rover forward. If
      this is not the case, then swap over the leads of the motor or motors
      that are not running in the right direction.
Warning
Turn off the rover before doing this; an accidental short of the
        motor leads could damage the motor controller.

Once the rover is correct for moving forwards, touch the south
      position and the motors should spin the opposite way. The east and west
      positions should have the motors spinning in opposite directions.
If all is well, you can fix the two parts of the case together.
      But, before that, you may wish to make a mounting bracket for the second
      phone or web cam that is to be mounted onto the rover. If you use a web
      cam, you will have to figure out a power supply for it.
The author used a bit of plastic fixed to the same bolts that were
      used to mount the IOIO (Figure 5-1).


Software



There are quite a lot of pins used to control the motors (in fact,
    three for each motor). The PWMA and
    PWMB pins determine the speed of the motors. These
    use IOIO pins in PWM (Pulse Width Modulation) mode.
These pins are set up using the following method call:
pwma_ = ioio_.openPwmOutput(PWMA_PIN, PWM_FREQ);
The first argument is the pin to use, the second is the frequency of
    the pulses.
When it comes to actually setting the speed, we use the call
    below:
pwma_.setDutyCycle(Math.abs(left_));
The argument to the setDutyCycle
    method is a number between 0 and 1, where 0 is off and 1 is full
    speed.
The other pins used are all digital outputs that are either on or
    off. The pins AIN1 and AIN2
    control the direction of the motor. If AIN1 is high
    and AIN2 is low, the motor will spin one way. If you
    reverse that so that AIN1 is low and
    AIN2 is high, the motor will spin the other
    way.
All of this logic takes place in the loop method in the file
    MainActivity.java:
@Override
protected void loop() throws ConnectionLostException {
    // make a dead off zone in the middle
    if (Math.abs(left_) < 0.2)
        left_ = 0.0f;
    if (Math.abs(right_) < 0.2)
        right_ = 0.0f;

    // make sure duty cycle never > 100%
    if (Math.abs(left_) > 1.0)
        left_ = 1.0f;
    if (Math.abs(right_) > 1.0)
        right_ = 1.0f;

    pwma_.setDutyCycle(Math.abs(left_));
    ain1_.write(left_ >= 0);
    ain2_.write(left_ < 0);

    pwmb_.setDutyCycle(Math.abs(right_));
    bin1_.write(right_ >= 0);
    bin2_.write(right_ < 0);

    try {
        sleep(10);
    } catch (InterruptedException e) {
        e.printStackTrace();
    }
}
The loop method uses two values
    for the left and right motors, held in the member variables left_ and right_. Each of these is a number between -1.0
    and +1.0, where -1.0 is spinning one direction, +1.0 the other, and 0 in
    the middle is stopped.
So, first there is a bit of conditioning of these values so that
    there is a dead zone in the middle of the control, where if the unsigned
    value (Maths.abs) is less than 0.2, then it is forced to be 0 to keep the
    motor stopped.
Similarly, there are also checks to make sure the range is not
    exceeded.
We then set the 3 control pins for each motor to make sure it goes
    in the right direction and at the right speed.
Finally, the call to sleep allows
    a 10 millisecond gap between settings of the motor.
The user interface for all this is encapsulated in the RoverControlView class.
The virtual joystick control handles all the touch events in the
    following method:
@Override
public boolean onTouchEvent(MotionEvent event) {
    x_ = (int)event.getX();
    y_ = (int)event.getY();
        int x1 = x_ - x0_;
        int y1 = y_ - y0_;
        float xf = (float)x1 / diameter_; // +- 0..1
        float yf = -(float)y1 / diameter_;
        float left = (float) (xf * cos135 - yf * sin135);
        float right = (float) (xf * sin135 + yf * cos135);

    if (event.getAction() == MotionEvent.ACTION_DOWN) {
        context_.setMotors(left, right);
    }
    invalidate();
    return true;
}
The math here converts the X and Y coordinates into left and right
    motor powers by rotating the coordinates of the event 45 degrees and then
    passing them to the public setMotors
    method in the MainActivity class, where
    they can be accessed by the loop method
    that we described earlier.

Conclusion



That concludes not just this project but also the book.
I hope you have enjoyed learning more about IOIO and trying out some
    of these projects. You will find other resources and errata at the books
    website [http://www.ioiobook.com].
The author is always interested to hear about improvements to the
    code,or extensions to the projects, and you will find information on how
    to contact the author on the website.

About the Author
Dr. Simon Monk has a degree in Cybernetics and Computer Science and a PhD in Software Engineering. Simon spent several years as an academic before he returned to industry, co-founding the mobile software company Momote Ltd. He has been an active electronics hobbyist since his early teens. Simon is author of a number of hobby electronics books including '30 Arduino Projects for the Evil Genius', '15 Dangerously Mad Projects for the Evil Genius' and 'Arduino + Android Projects for the Evil Genius'.


OEBPS/httpatomoreillycomsourceoreillyimages986024.png


OEBPS/httpatomoreillycomsourceoreillyimages986040.png



OEBPS/httpatomoreillycomsourceoreillyimages986030.png


OEBPS/httpatomoreillycomsourceoreillyimages986028.png




OEBPS/httpatomoreillycomsourceoreillyimages986044.png.jpg


OEBPS/httpatomoreillycomsourceoreillyimages986086.png.jpg




OEBPS/httpatomoreillycomsourceoreillyimages986078.png.jpg


OEBPS/httpatomoreillycomsourceoreillyimages986080.png


OEBPS/httpatomoreillycomsourceoreillyimages986058.png


OEBPS/httpatomoreillycomsourceoreillyimages986056.png.jpg


OEBPS/httpatomoreillycomsourceoreillyimages986066.png.jpg


OEBPS/httpatomoreillycomsourceoreillyimages986048.png


OEBPS/httpatomoreillycomsourceoreillyimages986020.png.jpg


OEBPS/httpatomoreillycomsourceoreillyimages986032.png


OEBPS/httpatomoreillycomsourceoreillyimages986064.png.jpg


OEBPS/httpatomoreillycomsourceoreillyimages986018.png.jpg


OEBPS/httpatomoreillycomsourceoreillyimages986026.png


OEBPS/orm_front_cover.jpg


OEBPS/httpatomoreillycomsourceoreillyimages986038.png.jpg


OEBPS/httpatomoreillycomsourceoreillyimages986050.png.jpg


OEBPS/httpatomoreillycomsourceoreillyimages986060.png.jpg


OEBPS/httpatomoreillycomsourceoreillyimages986052.png.jpg


OEBPS/httpatomoreillycomsourceoreillyimages986062.png.jpg


OEBPS/httpatomoreillycomsourceoreillyimages986054.png.jpg


OEBPS/httpatomoreillycomsourceoreillyimages986092.png.jpg


OEBPS/httpatomoreillycomsourceoreillyimages986022.png


OEBPS/httpatomoreillycomsourceoreillyimages986068.png.jpg


OEBPS/httpatomoreillycomsourceoreillyimages986016.png.jpg


OEBPS/oreilly_large.gif


OEBPS/httpatomoreillycomsourceoreillyimages986070.png.jpg


OEBPS/httpatomoreillycomsourceoreillyimages986088.png.jpg


OEBPS/httpatomoreillycomsourceoreillyimages986084.png.jpg


OEBPS/httpatomoreillycomsourceoreillyimages986074.png.jpg


OEBPS/httpatomoreillycomsourceoreillyimages986034.png.jpg


OEBPS/httpatomoreillycomsourceoreillyimages986036.png.jpg


OEBPS/httpatomoreillycomsourceoreillyimages986072.png.jpg


OEBPS/httpatomoreillycomsourceoreillyimages986076.png


OEBPS/httpatomoreillycomsourceoreillyimages986046.png.jpg


OEBPS/httpatomoreillycomsourceoreillyimages986042.png.jpg


OEBPS/httpatomoreillycomsourceoreillyimages986082.png.jpg


OEBPS/httpatomoreillycomsourceoreillyimages986090.png.jpg


