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    preface

  


  By 2019 I’d been working with Docker and containers for five years—speaking at conferences, running workshops, training people, and consulting—and in that time I never had a go-to book that I felt I could recommend to every audience. There are some very good Docker books out there, but they assume a certain background or a certain technology stack, and I felt there was a real gap for a book that took a more inclusive approach: welcoming both developers and ops people, and both Linux and Windows users. Learn Docker in a Month of Lunches is the result of me trying to write that book.


  Docker is a great technology to learn. It starts with one simple concept: packaging an application together with all its dependencies, so you can run that app in the same way anywhere. That concept makes your applications portable between laptops, datacenters, and clouds, and it breaks down barriers between development and operations teams. It’s the enabler for the major types of IT project organizations are investing in, as you’ll learn in chapter 1, but it’s also a straightforward technology you can learn in your own time.


  Manning’s Month of Lunches series is the perfect vehicle to help you, as you’ll get much more from the experience of running exercises and trying labs than you will from reading the theory of how operating systems isolate container processes. This is very much a “real-world” book, and you’ll find that each chapter has a clear focus on one useful topic, and that the topics build on each other to give you a thorough understanding of how you’ll use Docker in practice.
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  about this book


  My goal for this book is quite clear: I want you to be confident about running your own applications in Docker when you’ve finished; you should be able to run a proof-of-concept project to move your apps to containers, and you should know what you need to do after that to take them to production. Every chapter is focused on real-world tasks and incrementally builds up your experience with Docker, distributed applications, orchestration, and the container ecosystem.


  This book is aimed at new and improving Docker users. Docker is a core technology that touches lots of areas of IT, and I’ve tried hard to assume a minimum amount of background knowledge. Docker crosses the boundaries of architecture, development, and operations, and I’ve tried to do the same. This book should work for you, whatever your background in IT.


  There are a lot of exercises and labs in the book, and to get the most out of your learning, you should plan to work through the samples as you’re reading the chapter. Docker supports lots of different types of computers, and you can follow along with this book using any of the main systems—Windows, Mac, or Linux, or even a Raspberry Pi is fine.


  GitHub is the source of truth for all the samples I use in the book. You’ll download the materials when you set up your lab in chapter 1, and you should be sure to star the repository and watch for notifications.


  How to use this book


  This book follows the Month-of-Lunches principles: you should be able to work through each chapter in an hour, and work through the whole book in a month. “Work” is the key word here, because the daily 60 minutes should be enough time to read the chapter, work through the try-it-now exercises, and have a go at the hands-on lab. It’s working with containers that will really cement the knowledge you gain in each chapter.


  Your learning journey


  Docker is a great technology to teach because you can easily build a clear learning path that starts simple and gradually adds more and more until you get to production. This book follows a proven path I’ve used in dozens of workshops, webinars, and training sessions.


  Chapter 1 will tell you how this book works, and go over the importance of containers, before walking you through installing Docker and downloading the resource files for the exercises in the book.


  Chapters 2 through 6 cover the basics. Here you’ll learn how to run containers, how to package applications for Docker and share them on Docker Hub and other servers. You’ll also learn about storage in containers and how you can work with stateful applications (like databases) in Docker.


  Chapters 7 through 11 move on to running distributed applications, where each component runs in a container connected to a virtual Docker network. It’s where you’ll learn about Docker Compose and patterns for making your containerized application production-ready—including healthchecks and monitoring. This section also covers moving apps between environments and building a CI process with Docker.


  Chapters 12 through 16 are about running distributed applications using a container orchestrator, which is a cluster of machines all running Docker. You’ll learn about joining servers together and extend your knowledge of Docker Compose to deploy applications on the cluster. You’ll also learn how to build Docker containers which are cross-platform so they run on Windows, Linux, Intel, and Arm. That portability


  Chapters 17 through 21 cover more advanced topics. There’s production readiness in there, with hints for optimizing your Docker containers, and patterns for integrating your application’s logging and configuration with the Docker platform. This part of the book also covers approaches for breaking down monolithic applications into multiple containers using powerful communication patterns: reverse proxies and message queues.


  The final chapter (chapter 22) offers guidance on moving on with Docker—how to run a proof-of-concept to move your own applications to Docker, how to get stakeholders on board in your organization, and planning your path to production. By the end of the book you should be confident in bringing Docker into your daily work.


  Try-it-nows


  Every chapter of the book has guided exercises for you to complete. The source code for the book is all on GitHub at https://github.com/sixeyed/diamol —you’ll clone that when you set up your lab environment, and you’ll use it for all the sample commands, which will have you building and running apps in containers.


  Many chapters build on work from earlier in the book, but you do not need to follow all the chapters in order. In the exercises you’ll package applications to run in Docker, but I’ve already packaged them all and made them publicly available on Docker Hub. That means you can follow the samples at any stage using my packaged apps.


  If you can find time to work through the samples, though, you’ll get more out of this book than if you just skim the chapters and run the final sample application.


  Hands-on labs


  Each chapter also ends with a hands-on lab that invites you to go further than the try-it-now exercises. These aren’t guided—you’ll get some instructions and some hints, and then it will be down to you to complete the lab. There are sample answers for all the labs in the sixeyed/diamol GitHub repo, so you can check what you’ve done—or see how I’ve done it if you don’t have time for one of the labs.


  Additional resources


  The main resource for looking further into the topics I’ll cover in this book is Docker’s own documentation at https://docs.docker.com , which covers everything from setting up the Docker engine, through syntax for Dockerfiles and Docker Compose, to Docker Swarm and Docker’s Enterprise product range.


  Docker is a popular topic on social media too. Docker posts daily on Twitter and Facebook, and you’ll find a lot of my content out there too. You can follow me on Twitter at @EltonStoneman , my blog is https://blog.sixeyed.com , and I post YouTube videos at https://youtube.com/eltonstoneman .


  About the code


  This book contains many examples of Dockerfiles and application manifests, both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text.


  The code for the examples in this book is available for download from the Manning website at https://www.manning.com/books/learn-docker-in-a-month-of-lunches and from GitHub at https://github.com/sixeyed/diamol .


  




liveBook discussion forum


  Purchase of Learn Docker in a Month of Lunches includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the author and from other users. To access the forum, go to https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion . You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/#!/discussion .


  Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.
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    Part 1. Understanding Docker containers and images

  


   Welcome to Learn Docker in a Month of Lunches. This first part will get you up to speed quickly on the core Docker concepts: containers, images, and registries. You’ll learn how to run applications in containers, package your own applications in containers, and share those applications for other people to use. You’ll also learn about storing data in Docker volumes and how you can run stateful apps in containers. By the end of these first chapters, you’ll be comfortable with all the fundamentals of Docker, and you’ll be learning with best practices baked in from the start.


  
    1 Before you begin

  


  Docker is a platform for running applications in lightweight units called containers. Containers have taken hold in software everywhere, from serverless functions in the cloud to strategic planning in the enterprise. Docker is becoming a core competency for operators and developers across the industry--in the 2019 Stack Overflow survey, Docker polled as people’s number one “most wanted” technology ( http://mng.bz/04lW ).


  And Docker is a simple technology to learn. You can pick up this book as a complete beginner, and you’ll be running containers in chapter 2 and packaging applications to run in Docker in chapter 3. Each chapter focuses on practical tasks, with examples and labs that work on any machine that runs Docker--Windows, Mac, and Linux users are all welcome here.


  The journey you’ll follow in this book has been honed over the many years I’ve been teaching Docker. Every chapter is hands-on--except this one. Before you start learning Docker, it’s important to understand just how containers are being used in the real world and the type of problems they solve--that’s what I’ll cover here. This chapter also describes how I’ll be teaching Docker, so you can figure out if this is the right book for you.


  Now let’s look at what people are doing with containers--I’ll cover the five main scenarios where organizations are seeing huge success with Docker. You’ll see the wide range of problems you can solve with containers, some of which will certainly map to scenarios in your own work. By the end of this chapter you’ll understand why Docker is a technology you need to know, and you’ll see how this book will get you there.


  1.1 Why containers will take over the world


  My own Docker journey started in 2014 when I was working on a project delivering APIs for Android devices. We started using Docker for development tools--source code and build servers. Then we gained confidence and started running the APIs in containers for test environments. By the end of the project, every environment was powered by Docker, including production, where we had strict requirements for availability and scale.


  When I moved off the project, the handover to the new team was a single README file in a GitHub repo. The only requirement for building, deploying, and managing the app--in any environment--was Docker. New developers just grabbed the source code and ran a single command to build and run everything locally. Administrators used the exact same tools to deploy and manage containers in the production cluster.


  Normally on a project of that size, handovers take two weeks. New developers need to install specific versions of half a dozen tools, and administrators need to install half a dozen completely different tools. Docker centralizes the toolchain and makes everything so much easier for everybody that I thought one day every project would have to use containers.


  I joined Docker in 2016, and I’ve spent the last few years watching that vision becoming reality. Docker is approaching ubiquity, partly because it makes delivery so much easier, and partly because it’s so flexible--you can bring it into all your projects, old and new, Windows and Linux. Let’s look at where containers fit in those projects.


  1.1.1 Migrating apps to the cloud


  Moving apps to the cloud is top of mind for many organizations. It’s an attractive option--let Microsoft or Amazon or Google worry about servers, disks, networks, and power. Host your apps across global datacenters with practically limitless potential to scale. Deploy to new environments within minutes, and get billed only for the resources you’re using. But how do you get your apps to the cloud?


  There used to be two options for migrating an app to the cloud: infrastructure as a service (IaaS) and platform as a service (PaaS). Neither option was great. Your choice was basically a compromise--choose PaaS and run a project to migrate all the pieces of your application to the relevant managed service from the cloud. That’s a difficult project and it locks you in to a single cloud, but it does get you lower running costs. The alternative is IaaS, where you spin up a virtual machine for each component of your application. You get portability across clouds but much higher running costs. Figure 1.1 shows how a typical distributed application looks with a cloud migration using IaaS and PaaS.


  [image: ]


  Figure 1.1 The original options for migrating to the cloud--use IaaS and run lots of inefficient VMs with high monthly costs, or use PaaS and get lower running costs but spend more time on the migration.


  Docker offers a third option without the compromises. You migrate each part of your application to a container, and then you can run the whole application in containers using Azure Kubernetes Service or Amazon’s Elastic Container Service, or on your own Docker cluster in the datacenter. You’ll learn in chapter 7 how to package and run a distributed application like this in containers, and in chapters 13 and 14 you’ll see how to run at scale in production. Figure 1.2 shows the Docker option, which gets you a portable application you can run at low cost in any cloud--or in the datacenter, or on your laptop.
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  Figure 1.2 The same app migrated to Docker before moving to the cloud. This application has the cost benefits of PaaS with the portability benefits of IaaS and the ease of use you only get with Docker.


  It does take some investment to migrate to containers: you’ll need to build your existing installation steps into scripts called Dockerfiles and your deployment documents into descriptive application manifests using the Docker Compose or Kubernetes format. You don’t need to change code, and the end result runs in the same way using the same technology stack on every environment, from your laptop to the cloud.


  1.1.2 Modernizing legacy apps


  You can run pretty much any app in the cloud in a container, but you won’t get the full value of Docker or the cloud platform if it uses an older, monolithic design. Monoliths work just fine in containers, but they limit your agility. You can do an automated staged rollout of a new feature to production in 30 seconds with containers. But if the feature is part of a monolith built from two million lines of code, you’ve probably had to sit through a two-week regression test cycle before you get to the release.


  Moving your app to Docker is a great first step to modernizing the architecture, adopting new patterns without needing a full rewrite of the app. The approach is simple--you start by moving your app to a single container with the Dockerfile and Docker Compose syntax you’ll learn in this book. Now you have a monolith in a container.


  Containers run in their own virtual network, so they can communicate with each other without being exposed to the outside world. That means you can start breaking your application up, moving features into their own containers, so gradually your monolith can evolve into a distributed application with the whole feature set being provided by multiple containers. Figure 1.3 shows how that looks with a sample application architecture.
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  Figure 1.3 Decomposing a monolith into a distributed application without rewriting the whole project. All the components run in Docker containers, and a routing component decides whether requests are fulfilled by the monolith or a new microservice.


  This gives you a lot of the benefits of a microservice architecture. Your key features are in small, isolated units that you can manage independently. That means you can test changes quickly, because you’re not changing the monolith, only the containers that run your feature. You can scale features up and down, and you can use different technologies to suit requirements.


  Modernizing older application architectures is easy with Docker--you’ll do it yourself with practical examples in chapters 20 and 21. You can deliver a more agile, scalable, and resilient app, and you get to do it in stages, rather than stopping for an 18-month rewrite.


  1.1.3 Building new cloud-native apps


  Docker helps you get your existing apps to the cloud, whether they’re distributed apps or monoliths. If you have monoliths, Docker helps you break them up into modern architectures, whether you’re running in the cloud or in the datacenter. And brand-new projects built on cloud-native principles are greatly accelerated with Docker.


  The Cloud Native Computing Foundation (CNCF) characterizes these new architectures as using “an open source software stack to deploy applications as microservices, packaging each part into its own container, and dynamically orchestrating those containers to optimize resource utilization.”


  Figure 1.4 shows a typical architecture for a new microservices application--this is a demo application from the community, which you can find on GitHub at https:// github.com/microservices-demo .
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  Figure 1.4 Cloud-native applications are built with microservice architectures where every component runs in a container.


  It’s a great sample application if you want to see how microservices are actually implemented. Each component owns its own data and exposes it through an API. The frontend is a web application that consumes all the API services. The demo application uses various programming languages and different database technologies, but every component has a Dockerfile to package it, and the whole application is defined in a Docker Compose file.


  You’ll learn in chapter 4 how you can use Docker to compile code, as part of packaging your app. That means you don’t need any development tools installed to build and run apps like this. Developers can just install Docker, clone the source code, and build and run the whole application with a single command.


  Docker also makes it easy to bring third-party software into your application, adding features without writing your own code. Docker Hub is a public service where teams share software that runs in containers. The CNCF publishes a map of open source projects you can use for everything from monitoring to message queues, and they’re all available for free from Docker Hub.


  1.1.4 Technical innovation: Serverless and more


  One of the key drivers for modern IT is consistency: teams want to use the same tools, processes, and runtime for all their projects. You can do that with Docker, using containers for everything from old .NET monoliths running on Windows to new Go applications running on Linux. You can build a Docker cluster to run all those apps, so you build, deploy, and manage your entire application landscape in the same way.


  Technical innovation shouldn’t be separate from business-as-usual apps. Docker is at the heart of some of the biggest innovations, so you can continue to use the same tools and techniques as you explore new areas. One of the most exciting innovations (after containers, of course) is serverless functions. Figure 1.5 shows how you can run all your applications--legacy monoliths, new cloud-native apps, and serverless functions--on a single Docker cluster, which could be running in the cloud or the datacenter.


  Serverless is all about containers. The goal of serverless is for developers to write function code, push it to a service, and that service builds and packages the code. When consumers use the function, the service starts an instance of the function to process the request. There are no build servers, pipelines, or production servers to manage; it’s all taken care of by the platform.


  Under the hood, all the cloud serverless options use Docker to package the code and containers to run functions. But functions in the cloud aren’t portable--you can’t take your AWS Lambda function and run it in Azure, because there isn’t an open standard for serverless. If you want serverless without cloud lock-in, or if you’re running in the datacenter, you can host your own platform in Docker using Nuclio, OpenFaaS, or Fn Project, which are all popular open source serverless frameworks.


  Other major innovations like machine learning, blockchain, and IoT benefit from the consistent packaging and deployment model of Docker. You’ll find the main projects all deploy to Docker Hub--TensorFlow and Hyperledger are good examples. And IoT is particularly interesting, as Docker has partnered with Arm to make containers the default runtime for Edge and IoT devices.
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  Figure 1.5 A single cluster of servers running Docker can run every type of application, and you build, deploy, and manage them all in the same way no matter what architecture or technology stack they use.


  1.1.5 Digital transformation with DevOps


  All these scenarios involve technology, but the biggest problem facing many organizations is operational--particularly so for larger and older enterprises. Teams have been siloed into “developers” and “operators,” responsible for different parts of the project life cycle. Problems at release time become a blame cycle, and quality gates are put in to prevent future failures. Eventually you have so many quality gates you can only manage two or three releases a year, and they are risky and labor-intensive.


  DevOps aims to bring agility to software deployment and maintenance by having a single team own the whole application life cycle, combining “dev” and “ops” into one deliverable. DevOps is mainly about cultural change, and it can take organizations from huge quarterly releases to small daily deployments. But it’s hard to do that without changing the technologies the team uses.


  Operators may have a background in tools like Bash, Nagios, PowerShell, and System Center. Developers work in Make, Maven, NuGet, and MSBuild. It’s difficult to bring a team together when they don’t use common technologies, which is where Docker really helps. You can underpin your DevOps transformation with the move to containers, and suddenly the whole team is working with Dockerfiles and Docker Compose files, speaking the same languages and working with the same tools.


  It goes further too. There’s a powerful framework for implementing DevOps called CALMS--Culture, Automation, Lean, Metrics, and Sharing. Docker works on all those initiatives: automation is central to running containers, distributed apps are built on lean principles, metrics from production apps and from the deployment process can be easily published, and Docker Hub is all about sharing and not duplicating effort.


  




1.2 Is this book for you?


  The five scenarios I outlined in the previous section cover pretty much all the activity that’s happening in the IT industry right now, and I hope it’s clear that Docker is the key to it all. This is the book for you if you want to put Docker to work on this kind of real-world problem. It takes you from zero knowledge through to running apps in containers on a production-grade cluster.


  The goal of this book is to teach you how to use Docker, so I don’t go into much detail on how Docker itself works under the hood. I won’t talk in detail about containerd or lower-level details like Linux cgroups and namespaces or the Windows Host Compute Service. If you want the internals, Manning’s Docker in Action, second edition, by Jeff Nickoloff and Stephen Kuenzli is a great choice.


  The samples in this book are all cross-platform, so you can work along using Windows, Mac, or Linux--including Arm processors, so you can use a Raspberry Pi too. I use several programming languages, but only those that are cross-platform, so among others I use .NET Core instead of .NET Framework (which only runs on Windows). If you want to learn Windows containers in depth, my blog is a good source for that ( https://blog.sixeyed.com ).


  Lastly, this book is specifically on Docker, so when it comes to production deployment I’ll be using Docker Swarm, the clustering technology built into Docker. In chapter 12 I’ll talk about Kubernetes and how to choose between Swarm and Kubernetes, but I won’t go into detail on Kubernetes. Kubernetes needs a month of lunches itself, but Kubernetes is just a different way of running Docker containers, so everything you learn in this book applies.


  1.3 Creating your lab environment


  Now let’s get started. All you need to follow along with this book is Docker and the source code for the samples.


  1.3.1 Installing Docker


  The free Docker Community Edition is fine for development and even production use. If you’re running a recent version of Windows 10 or macOS, the best option is Docker Desktop; older versions can use Docker Toolbox. Docker also supplies installation packages for all the major Linux distributions. Start by installing Docker using the most appropriate option for you--you’ll need to create a Docker Hub account for the downloads, which is free and lets you share applications you’ve built for Docker.


  Installing Docker Desktop on Windows 10


  You’ll need Windows 10 Professional or Enterprise to use Docker Desktop, and you’ll want to make sure that you have all the Windows updates installed--you should be on release 1809 as a minimum (run winver from the command line to check your version). Browse to www.docker.com/products/docker-desktop and choose to install the stable version. Download the installer and run it, accepting all the defaults. When Docker Desktop is running you’ll see Docker’s whale icon in the taskbar near the Windows clock.


  Installing Docker Desktop on macOS


  You’ll need macOS Sierra 10.12 or above to use Docker Desktop for Mac--click the Apple icon in the top left of the menu bar and select About this Mac to see your version. Browse to www.docker.com/products/docker-desktop and choose to install the stable version. Download the installer and run it, accepting all the defaults. When Docker Desktop is running, you’ll see Docker’s whale icon in the Mac menu bar near the clock.


  Installing Docker Toolbox


  If you’re using an older version of Windows or OS X, you can use Docker Toolbox. The end experience with Docker is the same, but there are a few more pieces behind the scenes. Browse to https://docs.docker.com/toolbox and follow the instructions--you’ll need to set up virtual machine software first, like VirtualBox (Docker Desktop is a better option if you can use it, because you don’t need a separate VM manager).


  Installing Docker Community Edition and Docker Compose


  If you’re running Linux, your distribution probably comes with a version of Docker you can install, but you don’t want to use that. It will likely be a very old version of Docker, because the Docker team now provides their own installation packages. You can use a script that Docker updates with each new release to install Docker in a non-production environment--browse to https://get.docker.com and follow the instructions to run the script, and then to https://docs.docker.com/compose/install to install Docker Compose.


  Installing Docker on Windows Server or Linux Server distributions


  Production deployments of Docker can use the Community Edition, but if you want a supported container runtime, you can use the commercial version provided by Docker, called Docker Enterprise. Docker Enterprise is built on top of the Community Edition, so everything you learn in this book works just as well with Docker Enterprise. There are versions for all the major Linux distributions and for Windows Server 2016 and 2019. You can find all the Docker Enterprise editions together with installation instructions on Docker Hub at  http://mng.bz/K29E .


  1.3.2 Verifying your Docker setup


  There are several components that make up the Docker platform, but for this book you just need to verify that Docker is running and that Docker Compose is installed.


  First check Docker itself with the docker version command:


  PS> docker version Client: Docker Engine - Community   Version:                   19.03.5   API version:               1.40   Go version:                go1.12.12   Git commit:                633a0ea   Built:                     Wed Nov 13 07:22:37 2019   OS/Arch:                   windows/amd64   Experimental:              false   Server: Docker Engine - Community   Engine:     Version:                 19.03.5     API version:             1.40 (minimum version 1.24)     Go version:              go1.12.12     Git commit:              633a0ea     Built:                   Wed Nov 13 07:36:50 2019     OS/Arch:                 windows/amd64      Experimental: false


  Your output will be different from mine, because the versions will have changed and you might be using a different operating system, but as long as you can see a version number for the Client and the Server, Docker is working fine. Don’t worry about what the client and server are just yet--you’ll learn about the architecture of Docker in the next chapter.


  Next you need to test Docker Compose, which is a separate command line that also interacts with Docker. Run docker-compose version to check:


  PS> docker-compose version docker-compose version 1.25.4, build 8d51620a docker-py version: 4.1.0 CPython version: 3.7.4  OpenSSL version: OpenSSL 1.1.1c 28 May 2019


  Again, your exact output will be different from mine, but as long as you get a list of versions with no errors, you are good to go.


  1.3.3 Downloading the source code for the book


  The source code for this book is in a public Git repository on GitHub. If you have a Git client installed, just run this command:


  git clone https://github.com/sixeyed/diamol.git


  If you don’t have a Git client, browse to https://github.com/sixeyed/diamol and click the Clone or Download button to download a zip file of the source code to your local machine, and expand the archive.


  1.3.4 Remembering the cleanup commands


  Docker doesn’t automatically clean up containers or application packages for you. When you quit Docker Desktop (or stop the Docker service), all your containers stop and they don’t use any CPU or memory, but if you want to, you can clean up at the end of every chapter by running this command:


  docker container rm -f $(docker container ls -aq)


  And if you want to reclaim disk space after following the exercises, you can run this command:


  docker image rm -f $(docker image ls -f reference='diamol/*' -q)


  Docker is smart about downloading what it needs, so you can safely run these commands at any time. The next time you run containers, if Docker doesn’t find what it needs on your machine, it will download it for you.


  1.4 Being immediately effective


  “Immediately effective” is another principle of the Month of Lunches series. In all the chapters that follow, the focus is on learning skills and putting them into practice.


  Every chapter starts with a short introduction to the topic, followed by try-it-now exercises where you put the ideas into practice using Docker. Then there’s a recap with some more detail that fills in some of the questions you may have from diving in. Lastly there’s a hands-on lab for you to go the next stage.


  All the topics center around tasks that are genuinely useful in the real world. You’ll learn how to be immediately effective with the topic during the chapter, and you’ll finish by understanding how to apply the new skill. Let’s start running some containers!


  
    2 Understanding Docker and running Hello World

  


  It’s time to get hands-on with Docker. In this chapter you’ll get lots of experience with the core feature of Docker: running applications in containers. I’ll also cover some background that will help you understand exactly what a container is, and why containers are such a lightweight way to run apps. Mostly you’ll be following try-it-now exercises, running simple commands to get a feel for this new way of working with applications.


  2.1 Running Hello World in a container


  Let’s get started with Docker the same way we would with any new computing concept: running Hello World. You have Docker up and running from chapter 1, so open your favorite terminal--that could be Terminal on the Mac or a Bash shell on Linux, and I recommend PowerShell in Windows.


  You’re going to send a command to Docker, telling it to run a container that prints out some simple “Hello, World” text.


   Try it now Enter this command, which will run the Hello World container:


  docker container run diamol/ch02-hello-diamol


  When we’re done with this chapter, you’ll understand exactly what’s happening here. For now, just take a look at the output. It will be something like figure 2.1.
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  Figure 2.1 The output from running the Hello World container. You can see Docker downloading the application package (called an “image”), running the app in a container, and showing the output.


  There’s a lot in that output. I’ll trim future code listings to keep them short, but this is the very first one, and I wanted to show it in full so we can dissect it.


  First of all, what’s actually happened? The docker container run command tells Docker to run an application in a container. This application has already been packaged to run in Docker and has been published on a public site that anyone can access. The container package (which Docker calls an “image”) is named diamol/ ch02-hello-diamol (I use the acronym diamol throughout this book--it stands for Docker In A Month Of Lunches). The command you’ve just entered tells Docker to run a container from that image.


  Docker needs to have a copy of the image locally before it can run a container using the image. The very first time you run this command, you won’t have a copy of the image, and you can see that in the first output line: unable to find image locally . Then Docker downloads the image (which Docker calls “pulling”), and you can see that the image has been downloaded.


  Now Docker starts a container using that image. The image contains all the content for the application, along with instructions telling Docker how to start the application. The application in this image is just a simple script, and you see the output which starts Hello from Chapter 2! It writes out some details about the computer it’s running on:


  
    	The machine name, in this example e5943557213b


    	The operating system, in this example Linux 4.9.125-linuxkit x86_64


    	The network address, in this example 172.17.0.2

  


  I said your output will be “something like this”--it won’t be exactly the same, because some of the information the container fetches depends on your computer. I ran this on a machine with a Linux operating system and a 64-bit Intel processor. If you run it using Windows containers, the I'm running on line will show this instead:


   ---------------------  I'm running on:  Microsoft Windows [Version 10.0.17763.557]  ---------------------


  If you’re running on a Raspberry Pi, the output will show that it’s using a different processor ( armv7l is the codename for ARM’s 32-bit processing chip, and x86_64 is the code for Intel’s 64-bit chip):


   ---------------------  I'm running on:  Linux 4.19.42-v7+ armv7l  ---------------------


  This is a very simple example application, but it shows the core Docker workflow. Someone packages their application to run in a container (I did it for this app, but you will do it yourself in the next chapter), and then publishes it so it’s available to other users. Then anyone with access can run the app in a container. Docker calls this build, share, run.


  It’s a hugely powerful concept, because the workflow is the same no matter how complicated the application is. In this case it was a simple script, but it could be a Java application with several components, configuration files, and libraries. The workflow would be exactly the same. And Docker images can be packaged to run on any computer that supports Docker, which makes the app completely portable--portability is one of Docker’s key benefits.


  What happens if you run another container using the same command?


   Try it now Repeat the exact same Docker command:


  docker container run diamol/ch02-hello-diamol


  You’ll see similar output to the first run, but there will be differences. Docker already has a copy of the image locally so it doesn’t need to download the image first; it gets straight to running the container. The container output shows the same operating system details, because you’re using the same computer, but the computer name and the IP address of the container will be different:


  --------------------- Hello from Chapter 2! --------------------- My name is: 858a26ee2741 --------------------- Im running on: Linux 4.9.125-linuxkit x86_64 --------------------- My address is: inet addr:172.17.0.5 Bcast:172.17.255.255 Mask:255.255.0.0 ---------------------


  Now my app is running on a machine with the name 858a26ee2741 and the IP address 172.17.0.5 . The machine name will change every time, and the IP address will often change, but every container is running on the same computer, so where do these different machine names and network addresses come from? We’ll dig into a little theory next to explain that, and then it’s back to the exercises.


  2.2 So what is a container?


  A Docker container is the same idea as a physical container--think of it like a box with an application in it. Inside the box, the application seems to have a computer all to itself: it has its own machine name and IP address, and it also has its own disk drive (Windows containers have their own Windows Registry too). Figure 2.2 shows how the app is boxed by the container.
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  Figure 2.2 An app inside the container environment


  Those things are all virtual resources--the hostname, IP address, and filesystem are created by Docker. They’re logical objects that are managed by Docker, and they’re all joined together to create an environment where an application can run. That’s the “box” of the container.


  The application inside the box can’t see anything outside the box, but the box is running on a computer, and that computer can also be running lots of other boxes. The applications in those boxes have their own separate environments (managed by Docker), but they all share the CPU and memory of the computer, and they all share the computer’s operating system. You can see in figure 2.3 how containers on the same computer are isolated.
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  Figure 2.3 Multiple containers on one computer share the same OS, CPU, and memory.


  Why is this so important? It fixes two conflicting problems in computing: isolation and density. Density means running as many applications on your computers as possible, to utilize all the processor and memory that you have. But apps may not work nicely with other apps--they might use different versions of Java or .NET, they may use incompatible versions of tools or libraries, or one might have a heavy workload and starve the others of processing power. Applications really need to be isolated from each other, and that stops you running lots of them on a single computer, so you don’t get density.


  The original attempt to fix that problem was to use virtual machines (VMs). Virtual machines are similar in concept to containers, in that they give you a box to run your application in, but the box for a VM needs to contain its own operating system--it doesn’t share the OS of the computer where the VM is running. Compare figure 2.3, which shows multiple containers, with figure 2.4, which shows multiple VMs on one computer.
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  Figure 2.4 Multiple VMs on one computer each have their own OS.


  That may look like a small difference in the diagrams, but it has huge implications. Every VM needs its own operating system, and that OS can use gigabytes of memory and lots of CPU time--soaking up compute power that should be available for your applications. There are other concerns too, like licensing costs for the OS and the maintenance burden of installing OS updates. VMs provide isolation at the cost of density.


  Containers give you both. Each container shares the operating system of the computer running the container, and that makes them extremely lightweight. Containers start quickly and run lean, so you can run many more containers than VMs on the same hardware--typically five to ten times as many. You get density, but each app is in its own container, so you get isolation too. That’s another key feature of Docker: efficiency.


  Now you know how Docker does its magic. In the next exercise we’ll work more closely with containers.


  2.3 Connecting to a container like a remote computer


  The first container we ran just did one thing--the application printed out some text and then it ended. There are plenty of situations where one thing is all you want to do. Maybe you have a whole set of scripts that automate some process. Those scripts need a specific set of tools to run, so you can’t just share the scripts with a colleague; you also need to share a document that describes setting up all the tools, and your colleague needs to spend hours installing them. Instead, you could package the tools and the scripts in a Docker image, share the image, and then your colleague can run your scripts in a container with no extra setup work.


  You can work with containers in other ways too. Next you’ll see how you can run a container and connect to a terminal inside the container, just as if you were connecting to a remote machine. You use the same docker container run command, but you pass some additional flags to run an interactive container with a connected terminal session.


   Try it now Run the following command in your terminal session:


  docker container run --interactive --tty diamol/base


  The --interactive flag tells Docker you want to set up a connection to the container, and the --tty flag means you want to connect to a terminal session inside the container. The output will show Docker pulling the image, and then you’ll be left with a command prompt. That command prompt is for a terminal session inside the container, as you can see in figure 2.5.
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  Figure 2.5 Running an interactive container and connecting to the container’s terminal.


  The exact same Docker command works in the same way on Windows, but you’ll drop into a Windows command-line session instead:


   Microsoft Windows [Version 10.0.17763.557] (c) 2018 Microsoft Corporation. All rights reserved.    C:\>


  Either way, you’re now inside the container and you can run any commands that you can normally run in the command line for the operating system.


   Try it now Run the commands hostname and date and you’ll see details of the container’s environment:


  / # hostname f1695de1f2ec / # date Thu Jun 20 12:18:26 UTC 2019


  You’ll need some familiarity with your command line if you want to explore further, but what you have here is a local terminal session connected to a remote machine--the machine just happens to be a container that is running on your computer. For instance, if you use Secure Shell (SSH) to connect to a remote Linux machine, or Remote Desktop Protocol (RDP) to connect to a remote Windows Server Core machine, you’ll get exactly the same experience as you have here with Docker.


  Remember that the container is sharing your computer’s operating system, which is why you see a Linux shell if you’re running Linux and a Windows command line if you’re using Windows. Some commands are the same for both (try ping google.com ), but others have different syntax (you use ls to list directory contents in Linux, and dir in Windows).


  Docker itself has the same behavior regardless of which operating system or processor you’re using. It’s the application inside the container that sees it’s running on an Intel-based Windows machine or an Arm-based Linux one. You manage containers with Docker in the same way, whatever is running inside them.


   Try it now Open up a new terminal session, and you can get details of all the running containers with this command:


  docker container ls


  The output shows you information about each container, including the image it’s using, the container ID, and the command Docker ran inside the container when it started--this is some abbreviated output:


   CONTAINER ID IMAGE        COMMAND  CREATED        STATUS  f1695de1f2ec diamol/base "/bin/sh" 16 minutes ago Up 16 minutes


  If you have a keen eye, you’ll notice that the container ID is the same as the hostname inside the container. Docker assigns a random ID to each container it creates, and part of that ID is used for the hostname. There are lots of docker container commands that you can use to interact with a specific container, which you can identify using the first few characters of the container ID you want.


   Try it now docker container top lists the processes running in the container. I’m using f1 as a short form of the container ID f1695de1f2ec :


   > docker container top f1  PID     USER     TIME     COMMAND  69622   root     0:00     /bin/sh


  If you have multiple processes running in the container, Docker will show them all. That will be the case for Windows containers, which always have several background processes running in addition to the container application.


   Try it now docker container logs displays any log entries the container has collected:


   > docker container logs f1  / # hostname  f1695de1f2ec


  Docker collects log entries using the output from the application in the container. In the case of this terminal session, I see the commands I ran and their results, but for a real application you would see your code’s log entries. For example, a web application may write a log entry for every HTTP request processed, and these will show in the container logs.


   Try it now docker container inspect shows you all the details of a container:


  > docker container inspect f1 [     {          "Id": "f1695de1f2ecd493d17849a709ffb78f5647a0bcd9d10f0d97ada0fcb7b05e98",          "Created": "2019-06-20T12:13:52.8360567Z"


  The full output shows lots of low-level information, including the paths of the container’s virtual filesystem, the command running inside the container, and the virtual Docker network the container is connected to--this can all be useful if you’re tracking down a problem with your application. It comes as a large chunk of JSON, which is great for automating with scripts, but not so good for a code listing in a book, so I’ve just shown the first few lines.


  These are the commands you’ll use all the time when you’re working with containers, when you need to troubleshoot application problems, when you want to check if processes are using lots of CPU, or if you want to see the networking Docker has set up for the container.


  There’s another point to these exercises, which is to help you realize that as far as Docker is concerned, containers all look the same. Docker adds a consistent management layer on top of every application. You could have a 10-year-old Java app running in a Linux container, a 15-year-old .NET app running in a Windows container, and a brand-new Go application running on a Raspberry Pi. You’ll use the exact same commands to manage them-- run to start the app, logs to read out the logs, top to see the processes, and inspect to get the details.


  You’ve now seen a bit more of what you can do with Docker; we’ll finish with some exercises for a more useful application. You can close the second terminal window you opened (where you ran docker container logs), go back to the first terminal, which is still connected to the container, and run exit to close the terminal session.


  2.4 Hosting a website in a container


  So far we’ve run a few containers. The first couple ran a task that printed some text and then exited. The next used interactive flags and connected us to a terminal session in the container, which stayed running until we exited the session. docker container ls will show that you have no containers, because the command only shows running containers.


   Try it now Run docker container ls --all , which shows all containers in any status:


  > docker container ls --all CONTAINER ID IMAGE                    COMMAND                     CREATED              STATUS f1695de1f2ec diamol/base              "/bin/sh"                   About an hour ago    Exited (0) 858a26ee2741 diamol/ch02-hello-diamol "/bin/sh -c ./cmd.sh"       3 hours ago          Exited (0) 2cff9e95ce83 diamol/ch02-hello-diamol "/bin/sh -c ./cmd.sh"       4 hours ago          Exited (0)


  The containers have the status Exited. There are a couple of key things to understand here.


  First, containers are running only while the application inside the container is running. As soon as the application process ends, the container goes into the exited state. Exited containers don’t use any CPU time or memory. The “Hello World” container exited automatically as soon as the script completed. The interactive container we were connected to exited as soon as we exited the terminal application.


  Second, containers don’t disappear when they exit. Containers in the exited state still exist, which means you can start them again, check the logs, and copy files to and from the container’s filesystem. You only see running containers with docker container ls, but Docker doesn’t remove exited containers unless you explicitly tell it to do so. Exited containers still take up space on disk because their filesystem is kept on the computer’s disk.


  So what about starting containers that stay in the background and just keep running? That’s actually the main use case for Docker: running server applications like websites, batch processes, and databases.


   Try it now Here’s a simple example, running a website in a container:


  docker container run --detach --publish 8088:80 diamol/ch02-hello- diamol-web


  This time the only output you’ll see is a long container ID, and you get returned to your command line. The container is still running in the background.


   Try it now Run docker container ls and you’ll see that the new container has the status Up :


  > docker container ls CONTAINER ID IMAGE                        COMMAND                   CREATED        STATUS                 PORTS                NAMES e53085ff0cc4 diamol/ch02-hello-diamol-web "bin\\httpd.exe -DFOR..." 52 seconds ago Up 50 seconds 443/tcp, 0.0.0.0:8088->80/tcp reverent_dubinsky


  The image you’ve just used is diamol/ch02-hello-diamol-web . That image includes the Apache web server and a simple HTML page. When you run this container, you have a full web server running, hosting a custom website. Containers that sit in the background and listen for network traffic (HTTP requests in this case) need a couple of extra flags in the container run command:


  
    	 --detach--Starts the container in the background and shows the container ID


    	 --publish--Publishes a port from the container to the computer

  


  Running a detached container just puts the container in the background so it starts up and stays hidden, like a Linux daemon or a Windows service. Publishing ports needs a little more explanation. When you install Docker, it injects itself into your computer’s networking layer. Traffic coming into your computer can be intercepted by Docker, and then Docker can send that traffic into a container.


  Containers aren’t exposed to the outside world by default. Each has its own IP address, but that’s an IP address that Docker creates for a network that Docker manages--the container is not attached to the physical network of the computer. Publishing a container port means Docker listens for network traffic on the computer port, and then sends it into the container. In the preceding example, traffic sent to the computer on port 8088 will get sent into the container on port 80--you can see the traffic flow in figure 2.6.
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  Figure 2.6 The physical and virtual networks for computers and containers


  In this example my computer is the machine running Docker, and it has the IP address 192.168.2.150 . That’s the IP address for my physical network, and it was assigned by the router when my computer connected. Docker is running a single container on that computer, and the container has the IP address 172.0.5.1 . That address is assigned by Docker for a virtual network managed by Docker. No other computers in my network can connect to the container’s IP address, because it only exists in Docker, but they can send traffic into the container, because the port has been published.


   Try it now Browse to http://localhost:8088 on a browser. That’s an HTTP request to the local computer, but the response (see figure 2.7) comes from the container. (One thing you definitely won’t learn from this book is effective website design.)
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  Figure 2.7 The web application served from a container on the local machine


  This is a very simple website, but even so, this app still benefits from the portability and efficiency that Docker brings. The web content is packaged with the web server, so the Docker image has everything it needs. A web developer can run a single container on their laptop, and the whole application--from the HTML to the web server stack--will be exactly the same as if an operator ran the app on 100 containers across a server cluster in production.


  The application in this container keeps running indefinitely, so the container will keep running too. You can use the docker container commands we’ve already used to manage it.


   Try it now docker container stats is another useful one: it shows a live view of how much CPU, memory, network, and disk the container is using. The output is slightly different for Linux and Windows containers:


  > docker container stats e53 CONTAINER ID NAME CPU % PRIV WORKING SET NET I/O BLOCK I/O e53085ff0cc4 reverent_dubinsky 0.36% 16.88MiB 250kB / 53.2kB 19.4MB / 6.21MB


  When you’re done working with a container, you can remove it with docker container rm and the container ID, using the --force flag to force removal if the container is still running.


  We’ll end this exercise with one last command that you’ll get used to running regularly.


   Try it now Run this command to remove all your containers:


  docker container rm --force $(docker container ls --all --quiet)


  The $() syntax sends the output from one command into another command--it works just as well on Linux and Mac terminals, and on Windows PowerShell. Combining these commands gets a list of all the container IDs on your computer, and removes them all. This is a good way to tidy up your containers, but use it with caution, because it won’t ask for confirmation.


  2.5 Understanding how Docker runs containers


  We’ve done a lot of try-it-now exercises in this chapter, and you should be happy now with the basics of working with containers.


  In the first try-it-now for this chapter, I talked about the build, share, run workflow that is at the core of Docker. That workflow makes it very easy to distribute software--I’ve built all the sample container images and shared them, knowing you can run them in Docker and they will work the same for you as they do for me. A huge number of projects now use Docker as the preferred way to release software. You can try a new piece of software--say, Elasticsearch, or the latest version of SQL Server, or the Ghost blogging engine--with the same type of docker container run commands you’ve been using here.


  We’re going to end with a little more background, so you have a solid understanding of what’s actually happening when you run applications with Docker. Installing Docker and running containers is deceptively simple--there are actually a few different components involved, which you can see in figure 2.8.


  
    	The Docker Engine is the management component of Docker. It looks after the local image cache, downloading images when you need them, and reusing them if they’re already downloaded. It also works with the operating system to create containers, virtual networks, and all the other Docker resources. The Engine is a background process that is always running (like a Linux daemon or a Windows service).


    	The Docker Engine makes all the features available through the Docker API, which is just a standard HTTP-based REST API. You can configure the Engine to make the API accessible only from the local computer (which is the default), or make it available to other computers on your network.


    	The Docker command-line interface (CLI) is a client of the Docker API. When you run Docker commands, the CLI actually sends them to the Docker API, and the Docker Engine does the work.

  


  It’s good to understand the architecture of Docker. The only way to interact with the Docker Engine is through the API, and there are different options for giving access to the API and securing it. The CLI works by sending requests to the API.


  So far we’ve used the CLI to manage containers on the same computer where Docker is running, but you can point your CLI to the API on a remote computer running Docker and control containers on that machine--that’s what you’ll do to manage containers in different environments, like your build servers, test, and production. The Docker API is the same on every operating system, so you can use the CLI on your Windows laptop to manage containers on your Raspberry Pi, or on a Linux server in the cloud.
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  Figure 2.8 The components of Docker


  The Docker API has a published specification, and the Docker CLI is not the only client. There are several graphical user interfaces that connect to the Docker API and give you a visual way to interact with your containers. The API exposes all the details about containers, images, and the other resources Docker manages so it can power rich dashboards like the one in figure 2.9.
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  Figure 2.9 Docker Universal Control Plane, a graphical user interface for containers


  This is Universal Control Plane (UCP), a commercial product from the company behind Docker ( https://docs.docker.com/ee/ucp/ ). Portainer is another option, which is an open source project. Both UCP and Portainer run as containers themselves, so they’re easy to deploy and manage.


  We won’t be diving any deeper into the Docker architecture than this. The Docker Engine uses a component called containerd to actually manage containers, and containerd in turn makes use of operating system features to create the virtual environment that is the container.


  You don’t need to understand the low-level details of containers, but it is good to know this: containerd is an open source component overseen by the Cloud Native Computing Foundation, and the specification for running containers is open and public; it’s called the Open Container Initiative (OCI).


  Docker is by far the most popular and easy to use container platform, but it’s not the only one. You can confidently invest in containers without being concerned that you’re getting locked in to one vendor’s platform.


  2.6 Lab: Exploring the container filesystem


  This is the first lab in the book, so here’s what it’s all about. The lab sets you a task to achieve by yourself, which will really help you cement what you’ve learned in the chapter. There will be some guidance and a few hints, but mostly this is about you going further than the prescriptive try-it-now exercises and finding your own way to solve the problem.


  Every lab has a sample solution on the book’s GitHub repository. It’s worth spending some time trying it out yourself, but if you want to check my solution you can find it here: https://github.com/sixeyed/diamol/tree/master/ch02/lab .


  Here we go: your task is to run the website container from this chapter, but replace the index.html file so when you browse to the container you see a different homepage (you can use any content you like). Remember that the container has its own filesystem, and in this application, the website is serving files that are on the container’s filesystem.


  Here are some hints to get you going:


  
    	You can run docker container to get a list of all the actions you can perform on a container.


    	Add --help to any docker command, and you’ll see more detailed help text.


    	In the diamol/ch02-hello-diamol-web Docker image, the content from the website is served from the directory /usr/local/apache2/htdocs (that’s C:\usr\local\apache2\htdocs on Windows).

  


  Good luck :)


  
    3 Building your own Docker images

  


  You ran some containers in the last chapter and used Docker to manage them. Containers provide a consistent experience across applications, no matter what technology stack the app uses. Up till now you’ve used Docker images that I’ve built and shared; in this chapter you’ll see how to build your own images. This is where you’ll learn about the Dockerfile syntax, and some of the key patterns you will always use when you containerize your own apps.


  3.1 Using a container image from Docker Hub


  We’ll start with the finished version of the image you’ll build in this chapter, so you can see how it’s been designed to work well with Docker. The try-it-now exercises all use a simple application called web-ping, which checks if a website is up. The app will run in a container and make HTTP requests to the URL for my blog every three seconds until the container is stopped.


  You know from chapter 2 that docker container run will download the container image locally if it isn’t already on your machine. That’s because software distribution is built into the Docker platform. You can leave Docker to manage this for you, so it pulls images when they’re needed, or you can explicitly pull images using the Docker CLI.


   Try it now Pull the container image for the web-ping application:


  docker image pull diamol/ch03-web-ping


  You’ll see output similar to mine in figure 3.1.
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  Figure 3.1 Pulling an image from Docker Hub


  The image name is diamol/ch03-web-ping , and it’s stored on Docker Hub, which is the default location where Docker looks for images. Image servers are called registries, and Docker Hub is a public registry you can use for free. Docker Hub also has a web interface, and you’ll find details about this image at https://hub.docker.com/r/ diamol/ch03-web-ping .


  There’s some interesting output from the docker image pull command, which shows you how images are stored. A Docker image is logically one thing--you can think of it as a big zip file that contains the whole application stack. This image has the Node.js runtime together with my application code.


  During the pull you don’t see one single file downloaded; you see lots of downloads in progress. Those are called image layers. A Docker image is physically stored as lots of small files, and Docker assembles them together to create the container’s filesystem. When all the layers have been pulled, the full image is available to use.


   Try it now Let’s run a container from the image and see what the app does:


  docker container run -d --name web-ping diamol/ch03-web-ping


  The -d flag is a short form of --detach, so this container will run in the background. The application runs like a batch job with no user interface. Unlike the website container we ran detached in chapter 2, this one doesn’t accept incoming traffic, so you don’t need to publish any ports.


  There’s one new flag in this command, which is --name. You know that you can work with containers using the ID that Docker generates, but you can also give them a friendly name. This container is called web-ping, and you can use that name to refer to the container instead of using the random ID.


  My blog is getting pinged by the app running in your container now. The app runs in an endless loop, and you can see what it’s doing using the same docker container commands you’re familiar with from chapter 2.


   Try it now Have a look at the logs from the application, which are being collected by Docker:


  docker container logs web-ping


  You’ll see output like that in figure 3.2, showing the app making HTTP requests to blog.sixeyed.com .
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  Figure 3.2 The web-ping container in action, sending constant traffic to my blog


  An app that makes web requests and logs how long the response took is fairly useful--you could use it as the basis for monitoring the uptime of a website. But this application looks like it’s hardcoded to use my blog, so it’s pretty useless to anyone but me.


  Except that it isn’t. The application can actually be configured to use a different URL, a different interval between requests, and even a different type of HTTP call. This app reads the configuration values it should use from the system’s environment variables.


  Environment variables are just key/value pairs that the operating system provides. They work in the same way on Windows and Linux, and they’re a very simple way to store small pieces of data. Docker containers also have environment variables, but instead of coming from the computer’s operating system, they’re set up by Docker in the same way that Docker creates a hostname and IP address for the container.


  The web-ping image has some default values set for environment variables. When you run a container, those environment variables are populated by Docker, and that’s what the app uses to configure the website’s URL. You can specify different values for environment variables when you create the container, and that will change the behavior of the app.


   Try it now Remove the existing container, and run a new one with a value specified for the TARGET environment variable:


   docker rm -f web-ping  docker container run --env TARGET=google.com diamol/ch03-web-ping


  Your output this time will look like mine in figure 3.3.
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  Figure 3.3 A container from the same image, sending traffic to Google


  This container is doing something different. First, it’s running interactively because you didn’t use the --detach flag, so the output from the app is shown on your console. The container will keep running until you end the app by pressing Ctrl-C. Second, it’s pinging google.com now instead of blog.sixeyed.com.


  This is going to be one of your major takeaways from this chapter--Docker images may be packaged with a default set of configuration values for the application, but you should be able to provide different configuration settings when you run a container.


  Environment variables are a very simple way to achieve that. The web-ping application code looks for an environment variable with the key TARGET . That key is set with a value of blog.sixeyed.com in the image, but you can provide a different value with the docker container run command by using the --env flag. Figure 3.4 shows how containers have their own settings, different from each other and from the image.


  The host computer has its own set of environment variables too, but they’re separate from the containers. Each container only has the environment variables that Docker populates. The important thing in figure 3.4 is that the web-ping applications are the same in each container--they use the same image, so the app is running the exact same set of binaries, but the behavior is different because of the configuration.
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  Figure 3.4 Environment variables in Docker images and containers


  It’s down to the author of the Docker image to provide that flexibility, and you’re going to see how to do that now, as you build your first Docker image from a Dockerfile.


  3.2 Writing your first Dockerfile


  The Dockerfile is a simple script you write to package up an application--it’s a set of instructions, and a Docker image is the output. Dockerfile syntax is simple to learn, and you can package up any kind of app using a Dockerfile. As scripting languages go, it is very flexible. Common tasks have their own commands, and for anything custom you need to do, you can use standard shell commands (Bash on Linux or PowerShell on Windows). Listing 3.1 shows the full Dockerfile to package up the web-ping application.


  Listing 3.1 The web-ping Dockerfile


   FROM diamol/node  ENV TARGET="blog.sixeyed.com"  ENV METHOD="HEAD"  ENV INTERVAL="3000"  WORKDIR /web-ping  COPY app.js .  CMD ["node", "/web-ping/app.js"]


  Even if this is the first Dockerfile you’ve ever seen, you can probably take a good guess about what’s happening here. The Dockerfile instructions are FROM , ENV , WORKDIR , COPY , and CMD ; they’re in capitals, but that’s a convention, not a requirement. Here’s the breakdown for each instruction:


  
    	 FROM --Every image has to start from another image. In this case, the web-ping image will use the diamol/node image as its starting point. That image has Node.js installed, which is everything the web-ping application needs to run.


    	 ENV --Sets values for environment variables. The syntax is [key]="[value]" , and there are three ENV instructions here, setting up three different environment variables.


    	 WORKDIR --Creates a directory in the container image filesystem, and sets that to be the current working directory. The forward-slash syntax works for Linux and Windows containers, so this will create /web-ping on Linux and C:\web-ping on Windows.


    	 COPY --Copies files or directories from the local filesystem into the container image. The syntax is [source path] [target path] --in this case, I’m copying app.js from my local machine into the working directory in the image.


    	 CMD --Specifies the command to run when Docker starts a container from the image. This runs Node.js, starting the application code in app.js.

  


  That’s it. Those instructions are pretty much all you need to package your own applications in Docker, and in those five lines there are already some good practices.


   Try it now You don’t need to copy and paste this Dockerfile; it’s all there in the book’s source code, which you cloned or downloaded in chapter 1. Navigate to where you downloaded it, and check that you have all the files to build this image:


   cd ch03/exercises/web-ping  ls


  You should see that you have three files:


  
    	Dockerfile (no file extension), which has the same content as listing 3.1


    	app.js, which has the Node.js code for the web-ping application


    	README.md, which is just documentation for using the image

  


  You can see these in figure 3.5.


  You don’t need any understanding of Node.js or JavaScript to package this app and run it in Docker. If you do look at the code in app.js, you’ll see that it’s pretty basic, and it uses standard Node.js libraries to make the HTTP calls and to get configuration values from environment variables.


  In this directory you have everything you need to build your own image for the web-ping application.
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  Figure 3.5 The content you need to build the Docker image


  3.3 Building your own container image


  Docker needs to know a few things before it can build an image from a Dockerfile. It needs a name for the image, and it needs to know the location for all the files that it’s going to package into the image. You already have a terminal open in the right directory, so you’re ready to go.


   Try it now Turn this Dockerfile into a Docker image by running docker image build :


  docker image build --tag web-ping .


  The --tag argument is the name for the image, and the final argument is the directory where the Dockerfile and related files are. Docker calls this directory the “context,” and the period means “use the current directory.” You’ll see output from the build command, executing all the instructions in the Dockerfile. My build is shown in figure 3.6.


  If you get any errors from the build command, you’ll first need to check that the Docker Engine is started. You need the Docker Desktop app to be running on Windows or Mac (check for the whale icon in your taskbar). Then check that you’re in the right directory. You should be in the ch03-web-ping directory where the Dockerfile and the app.js files are. Lastly, check that you’ve entered the build command correctly--the period at the end of the command is required to tell Docker that the build context is the current directory.
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  Figure 3.6 Output from building the web-ping Docker image


  If you get a warning during the build about file permissions, that’s because you’re using the Docker command line on Windows to build Linux containers, thanks to Docker Desktop’s Linux container mode. Windows doesn’t record file permissions in the same way that Linux does, so the warning is telling you that all the files copied from your Windows machine are set with full read and write permissions in the Linux Docker image.


  When you see the “successfully built” and “successfully tagged” messages in the output, your image is built. It’s stored locally in your image cache, and you can see it with the Docker command to list images.


   TRY IT NOW List all the images where the tag name starts with “w”:


  docker image ls 'w*'


  You’ll see your web-ping image listed:


   > docker image ls w*  REPOSITORY TAG    IMAGE ID     CREATED        SIZE  web-ping   latest f2a5c430ab2a 14 minutes ago 75.3MB


  You can use this image in exactly the same way as the one you downloaded from Docker Hub. The contents of the app are the same, and the configuration settings can be applied with environment variables.


   Try it now Run a container from your own image to ping Docker’s website every five seconds:


  docker container run -e TARGET=docker.com -e INTERVAL=5000 web-ping


  Your output will be like mine in figure 3.7, with the first log line confirming that the target web URL is docker.com and the ping interval is 5000 milliseconds.
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  Figure 3.7 Running the web-ping container from your own image


  That container is running in the foreground, so you’ll need to stop it with Ctrl-C. That ends the application, and the container will go into the exited state.


  You’ve packaged a simple application to run in Docker, and the process is exactly the same for more complicated apps. You write the Dockerfile with all the steps to package your app, collect the resources that need to go into the Docker image, and decide how you want users of your image to configure the behavior of the app.


  3.4 Understanding Docker images and image layers


  You’ll be building plenty more images as you work through this book. For this chapter we’ll stick with this simple one and use it to get a better understanding of how images work, and the relationship between images and containers.


  The Docker image contains all the files you packaged, which become the container’s filesystem, and it also contains a lot of metadata about the image itself. That includes a brief history of how the image was built. You can use that to see each layer of the image and the command that built the layer.


   TRY IT NOW Check the history for your web-ping image:


  docker image history web-ping


  You’ll see an output line for each image layer; these are the first few (abbreviated) lines from my image:


   > docker image history web-ping  IMAGE        CREATED      CREATED BY  47eeeb7cd600 30 hours ago /bin/sh -c #(nop) CMD ["node" "/web-ping/ap...  <missing>    30 hours ago /bin/sh -c #(nop) COPY file:a7cae366c9996502...  <missing>    30 hours ago /bin/sh -c #(nop) WORKDIR /web-ping


  The CREATED BY commands are the Dockerfile instructions--there’s a one-to-one relationship, so each line in the Dockerfile creates an image layer. We’re going to dip into a little more theory here, because understanding image layers is your key to making the most efficient use of Docker.


  A Docker image is a logical collection of image layers. Layers are the files that are physically stored in the Docker Engine’s cache. Here’s why that’s important: image layers can be shared between different images and different containers. If you have lots of containers all running Node.js apps, they will all share the same set of image layers that contain the Node.js runtime. Figure 3.8 shows how that works.
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  Figure 3.8 How image layers are logically built into Docker images


  The diamol/node image has a slim operating system layer, and then the Node.js runtime. The Linux image takes up about 75 MB of disk (the base OS layer for Windows containers is larger, so the Windows version of the image uses closer to 300 MB). Your web-ping image is based on diamol/node , so it starts with all the layers from that image--that’s what the FROM instruction in the Dockerfile gives you. The app.js file you package on top of the base image is only a few kilobytes in size, so how big is the web-ping image in total?


   Try it now You can list images with docker image ls , which also shows the size of the image. If you don’t include a filter in the command, you’ll see all images:


  docker image ls


  Your output will be like mine in figure 3.9.
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  Figure 3.9 Listing images to see their sizes


  It looks like all the Node.js images take up the same amount of space--75 MB each on Linux. There are three of those: diamol/node , the original sample app you pulled from Docker Hub in diamol/ch03-web-ping , and the version you built yourself in web-ping . They should be sharing the base image layers, but the output from docker image ls suggests they’re each 75 MB in size, so that’s 75 * 3 = 225 MB in total.


  But not exactly. The size column you see is the logical size of the image--that’s how much disk space the image would use if you didn’t have any other images on your system. If you do have other images that share layers, the disk space Docker uses is much smaller. You can’t see that from the image list, but there are Docker system commands that tell you more.


   Try it now My image list shows a total of 363.96 MB of images, but that’s the total logical size. The system df command shows exactly how much disk space Docker is using:


  docker system df


  You can see in figure 3.10 that my image cache is actually using 202.2 MB, meaning 163 MB of image layers are being shared between images, a 45% saving on disk space. The amount of disk space you save through reuse is typically much larger when you have a large number of application images all sharing the same base layers for the runtime. Those base layers might have Java, .NET Core, PHP--whatever technology stack you use, Docker’s behavior is the same.
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  Figure 3.10 Checking Docker’s disk space usage


  One last piece of theory. If image layers are shared around, they can’t be edited--otherwise a change in one image would cascade to all the other images that share the changed layer. Docker enforces that by making image layers read-only. Once you create a layer by building an image, that layer can be shared by other images, but it can’t be changed. You can take advantage of that to make your Docker images smaller and your builds faster by optimizing your Dockerfiles.


  3.5 Optimizing Dockerfiles to use the image layer cache


  There’s a layer of your web-ping image that contains the application’s JavaScript file. If you make a change to that file and rebuild your image, you’ll get a new image layer. Docker assumes the layers in a Docker image follow a defined sequence, so if you change a layer in the middle of that sequence, Docker doesn’t assume it can reuse the later layers in the sequence.


   Try it now Make a change to the app.js file in the ch03-web-ping directory. It doesn’t have to be a code change; just adding a new empty line at the end of the file will do. Then build a new version of your Docker image:


  docker image build -t web-ping:v2 .


  You’ll see the same output as mine in figure 3.11. Steps 2 through 5 of the build use layers from the cache, and steps 6 and 7 generate new layers.
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  Figure 3.11 Building an image where layers can be used from the cache


  Every Dockerfile instruction results in an image layer, but if the instruction doesn’t change between builds, and the content going into the instruction is the same, Docker knows it can use the previous layer in the cache. That saves executing the Dockerfile instruction again and generating a duplicate layer. The input is the same, so the output will be the same, so Docker can use what’s already there in the cache.


  Docker calculates whether the input has a match in the cache by generating a hash, which is like a digital fingerprint representing the input. The hash is made from the Dockerfile instruction and the contents of any files being copied. If there’s no match for the hash in the existing image layers, Docker executes the instruction, and that breaks the cache. As soon as the cache is broken, Docker executes all the instructions that follow, even if they haven’t changed.


  That has an impact even in this small example image. The app.js file has changed since the last build, so the COPY instruction in step 6 needs to run. The CMD instruction in step 7 is the same as the last build, but because the cache was broken at step 6, that instruction runs as well.


  Any Dockerfile you write should be optimized so that the instructions are ordered by how frequently they change--with instructions that are unlikely to change at the start of the Dockerfile, and instructions most likely to change at the end. The goal is for most builds to only need to execute the last instruction, using the cache for everything else. That saves time, disk space, and network bandwidth when you start sharing your images.


  There are only seven instructions in the web-ping Dockerfile, but it can still be optimized. The CMD instruction doesn’t need to be at the end of the Dockerfile; it can be anywhere after the FROM instruction and still have the same result. It’s unlikely to change, so you can move it nearer the top. And one ENV instruction can be used to set multiple environment variables, so the three separate ENV instructions can be combined. The optimized Dockerfile is shown in listing 3.2.


  Listing 3.2 The optimized web-ping Dockerfile


   FROM diamol/node  CMD ["node", "/web-ping/app.js"]  ENV TARGET="blog.sixeyed.com" \        METHOD="HEAD" \        INTERVAL="3000"  WORKDIR /web-ping  COPY app.js .


   Try it now The optimized Dockerfile is in the source code for this chapter too. Switch to the web-ping-optimized folder and build the image from the new Dockerfile:


   cd ../web-ping-optimized  docker image build -t web-ping:v3 .


  You won’t notice too much difference from the previous build. There are now five steps instead of seven, but the end result is the same--you can run a container from this image, and it behaves just like the other versions. But now if you change the application code in app.js and rebuild, all the steps come from the cache except the final one, which is exactly what you want, because that’s all you’ve changed.


  That’s all for building images in this chapter. You’ve seen the Dockerfile syntax and the key instructions you need to know, and you’ve learned how to build and work with images from the Docker CLI.


  There are two more important things to take from this chapter, which will be of good service to you in every image you build: optimize your Dockerfiles, and make sure your image is portable so you use the same image when you deploy to different environments. That really just means you should take care how you structure your Dockerfile instructions, and make sure the application can read configuration values from the container. It means you can build images quickly, and when you deploy to production you’re using the exact same image that was quality-approved in your test environments.


  3.6 Lab


  Okay, it’s lab time. The goal here is to answer this question: how do you produce a Docker image without a Dockerfile? The Dockerfile is there to automate the deployment of your app, but you can’t always automate everything. Sometimes you need to run the application and finish off some steps manually, and those steps can’t be scripted.


  This lab is a much simpler version of that. You’re going to start with an image on Docker Hub: diamol/ch03-lab . That image has a file at the path /diamol/ch03.txt . You need to update that text file and add your name at the end. Then produce your own image with your changed file. You’re not allowed to use a Dockerfile.


  There’s a sample solution on the book’s GitHub repository if you need it. You’ll find it here: https://github.com/sixeyed/diamol/tree/master/ch03/lab .


  Here are some hints to get you going:


  
    	Remember that the -it flags let you run to a container interactively.


    	The filesystem for a container still exists when it is exited.


    	There are lots of commands you haven’t used yet. docker container --help will show you two that could help you solve the lab.

  


  
    4 Packaging applications from source code into Docker Images

  


  Building Docker images is easy. In chapter 3 you learned that you just need a few instructions in a Dockerfile to package an application to run in a container. There’s one other thing you need to know to package your own applications: you can also run commands inside Dockerfiles.


  Commands execute during the build, and any filesystem changes from the command are saved in the image layer. That makes Dockerfiles about the most flexible packaging format there is; you can expand zip files, run Windows installers, and do pretty much anything else. In this chapter you’ll use that flexibility to package applications from source code.


  4.1 Who needs a build server when you have a Dockerfile?


  Building software on your laptop is something you do for local development, but when you’re working in a team there’s a more rigorous delivery process. There’s a shared source control system like GitHub where everyone pushes their code changes, and there’s typically a separate server (or online service) that builds the software when changes get pushed.


  That process exists to catch problems early. If a developer forgets to add a file when they push code, the build will fail on the build server and the team will be alerted. It keeps the project healthy, but the cost is having to maintain a build server. Most programming languages need a lot of tools to build projects--figure 4.1 shows some examples.
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  Figure 4.1 Everyone needs the same set of tools to build a software project.


  There’s a big maintenance overhead here. A new starter on the team will spend the whole of their first day installing the tools. If a developer updates their local tools so the build server is running a different version, the build can fail. You have the same issues even if you’re using a managed build service, and there you may have a limited set of tools you can install.


  It would be much cleaner to package the build toolset once and share it, which is exactly what you can do with Docker. You can write a Dockerfile that scripts the deployment of all your tools, and build that into an image. Then you can use that image in your application Dockerfiles to compile the source code, and the final output is your packaged application.


  Let’s start with a very simple example, because there are a couple of new things to understand in this process. Listing 4.1 shows a Dockerfile with the basic workflow.


  Listing 4.1 A multi-stage Dockerfile


   FROM diamol/base AS build-stage  RUN echo 'Building...' > /build.txt  FROM diamol/base AS test-stage   COPY --from=build-stage /build.txt /build.txt  RUN echo 'Testing...' >> /build.txt   FROM diamol/base  COPY --from=test-stage /build.txt /build.txt  CMD cat /build.txt


  This is called a multi-stage Dockerfile, because there are several stages to the build. Each stage starts with a FROM instruction, and you can optionally give stages a name with the AS parameter. Listing 4.1 has three stages: build-stage , test-stage , and the final unnamed stage. Although there are multiple stages, the output will be a single Docker image with the contents of the final stage.


  Each stage runs independently, but you can copy files and directories from previous stages. I’m using the COPY instruction with the --from argument, which tells Docker to copy files from an earlier stage in the Dockerfile, rather than from the filesystem of the host computer. In this example I generate a file in the build stage, copy it into the test stage, and then copy the file from the test stage into the final stage.


  There’s one new instruction here, RUN , which I’m using to write files. The RUN instruction executes a command inside a container during the build, and any output from that command is saved in the image layer. You can execute anything in a RUN instruction, but the commands you want to run need to exist in the Docker image you’re using in the FROM instruction. In this example I used diamol/base as the base image, and it contains the echo command, so I knew my RUN instruction would work.


  Figure 4.2 shows what’s going to happen when we build this Dockerfile--Docker will run the stages sequentially.
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  Figure 4.2 Executing a multi-stage Dockerfile


  It’s important to understand that the individual stages are isolated. You can use different base images with different sets of tools installed and run whatever commands you like. The output in the final stage will only contain what you explicitly copy from earlier stages. If a command fails in any stage, the whole build fails.


   Try it now Open a terminal session to the folder where you stored the book’s source code, and build this multi-stage Dockerfile:


   cd ch04/exercises/multi-stage  docker image build -t multi-stage .


  You’ll see that the build executes the steps in the order of the Dockerfile, which gives the sequential build through the stages you can see in figure 4.3.


  [image: ]


  Figure 4.3 Building a multi-stage Dockerfile


  This is a simple example, but the pattern is the same for building apps of any complexity with a single Dockerfile. Figure 4.4 shows what the workflow looks like for a Java application.
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  Figure 4.4 A multi-stage build for a Java application


  In the build stage you use a base image that has your application’s build tools installed. You copy in the source code from your host machine and run the build command. You can add a test stage to run unit tests, which uses a base image with the test framework installed, copies the compiled binaries from the build stage, and runs the tests. The final stage starts from a base image with just the application runtime installed, and it copies the binaries from the build stage that have been successfully tested in the test stage.


  This approach makes your application truly portable. You can run the app in a container anywhere, but you can also build the app anywhere--Docker is the only prerequisite. Your build server just needs Docker installed; new team members get set up in minutes, and the build tools are all centralized in Docker images, so there’s no chance of getting out of sync.


  All the major application frameworks already have public images on Docker Hub with the build tools installed, and there are separate images with the application runtime. You can use these images directly or wrap them in your own images. You’ll get the benefit of using all the latest updates with images that are maintained by the project teams.


  4.2 App walkthrough: Java source code


  We’ll move on to a real example now, with a simple Java Spring Boot application that we’ll build and run using Docker. You don’t need to be a Java developer or have any Java tools installed on your machine to use this app; everything you need will come in Docker images. If you don’t work with Java, you should still read through this section--it describes a pattern that works for other compiled languages like .NET Core and Erlang.


  The source code is in the repository for the book, at the folder path ch04/ exercises/image-of-the-day . The application uses a fairly standard set of tools for Java: Maven, which is used to define the build process and fetch dependencies, and OpenJDK, which is a freely distributable Java runtime and developer kit. Maven uses an XML format to describe the build, and the Maven command line is called mvn . That should be enough information to make sense of the application Dockerfile in listing 4.2.


  Listing 4.2 Dockerfile for building a Java app with Maven


   FROM diamol/maven AS builder   WORKDIR /usr/src/iotd  COPY pom.xml .  RUN mvn -B dependency:go-offline   COPY . .  RUN mvn package   # app  FROM diamol/openjdk   WORKDIR /app  COPY --from=builder /usr/src/iotd/target/iotd-service-0.1.0.jar .   EXPOSE 80  ENTRYPOINT ["java", "-jar", "/app/iotd-service-0.1.0.jar"]


  Almost all the Dockerfile instructions here are ones you’ve seen before, and the patterns are familiar from examples that you’ve built. It’s a multi-stage Dockerfile, which you can tell because there’s more than one FROM instruction, and the steps are laid out to get maximum benefit from Docker’s image layer cache.


  The first stage is called builder . Here’s what happens in the builder stage:


  
    	It uses the diamol/maven image as the base. That image has the OpenJDK Java development kit installed, as well as the Maven build tool.


    	The builder stage starts by creating a working directory in the image and then copying in the pom.xml file, which is the Maven definition of the Java build.


    	The first RUN statement executes a Maven command, fetching all the application dependencies. This is an expensive operation, so it has its own step to make use of Docker layer caching. If there are new dependencies, the XML file will change and the step will run. If the dependencies haven’t changed, the layer cache is used.


    	Next the rest of the source code is copied in-- COPY . . means “copy all files and directories from the location where the Docker build is running, into the working directory in the image.”


    	The last step of the builder is to run mvn package , which compiles and packages the application. The input is a set of Java source code files, and the output is a Java application package called a JAR file.

  


  When this stage completes, the compiled application will exist in the builder stage filesystem. If there are any problems with the Maven build--if the network is offline and fetching dependencies fails, or if there is a coding error in the source--the RUN instruction will fail, and the whole build fails.


  If the builder stage completes successfully, Docker goes on to execute the final stage, which produces the application image:


  
    	It starts from diamol/openjdk , which is packaged with the Java 11 runtime, but none of the Maven build tools.


    	This stage creates a working directory and copies in the compiled JAR file from the builder stage. Maven packages the application and all its Java dependencies in this single JAR file, so this is all that’s needed from the builder.


    	The application is a web server that listens on port 80, so that port is explicitly listed in the EXPOSE instruction, which tells Docker that this port can be published.


    	The ENTRYPOINT instruction is an alternative to the CMD instruction--it tells Docker what to do when a container is started from the image, in this case running Java with the path to the application JAR.

  


   Try it now Browse to the Java application source code and build the image:


   cd ch04/exercises/image-of-the-day  docker image build -t image-of-the-day .


  There’s a lot of output from this build because you’ll see all the logs from Maven, fetching dependencies, and running through the Java build. Figure 4.5 shows an abbreviated section of my build.
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  Figure 4.5 Output from running a Maven build in Docker


  So what have you just built? It’s a simple REST API that wraps access to NASA’s Astronomy Picture of the Day service ( https://apod.nasa.gov ). The Java app fetches the details of today’s picture from NASA and caches it, so you can make repeated calls to this application without repeatedly hitting NASA’s service.


  The Java API is just one part of the full application you’ll be running in this chapter--it will actually use multiple containers, and they need to communicate with each other. Containers access each other across a virtual network, using the virtual IP address that Docker allocates when it creates the container. You can create and manage virtual Docker networks through the command line.


   Try it now Create a Docker network for containers to communicate with each other:


   docker network create nat


  If you see an error from that command, it’s because your setup already has a Docker network called nat , and you can ignore the message. Now when you run containers you can explicitly connect them to that Docker network using the --network flag, and any containers on that network can reach each other using the container names.


   Try it now Run a container from the image, publishing port 80 to the host computer, and connecting to the nat network:


   docker container run --name iotd -d -p 800:80 --network nat image-of-the-day


  Now you can browse to http:/ /localhost:800/image and you’ll see some JSON details about NASA’s image of the day. On the day I ran the container, the image was from a solar eclipse--figure 4.6 shows the details from my API.
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  Figure 4.6 The cached details from NASA in my application container


  The actual application in this container isn’t important (but don’t remove it yet--we’ll be using it later in the chapter). What’s important is that you can build this on any machine with Docker installed, just by having a copy of the source code with the Dockerfile. You don’t need any build tools installed, you don’t need a specific version of Java--you just clone the code repo, and you’re a couple of Docker commands away from running the app.


  One other thing to be really clear on here: the build tools are not part of the final application image. You can run an interactive container from your new image-of-the-day Docker image, and you’ll find there’s no mvn command in there. Only the contents of the final stage in the Dockerfile get made into the application image; anything you want from previous stages needs to be explicitly copied in that final stage.


  4.3 App walkthrough: Node.js source code


  We’re going to go through another multi-stage Dockerfile, this time for a Node.js application. Organizations are increasingly using diverse technology stacks, so it’s good to have an understanding of how different builds look in Docker. Node.js is a great option because of its popularity, and also because it’s an example of a different type of build--this pattern also works with other scripted languages like Python, PHP, and Ruby. The source code for this app is at the folder path ch04/exercises/ access-log .


  Java applications are compiled, so the source code gets copied into the build stage, and that generates a JAR file. The JAR file is the compiled app, and it gets copied into the final application image, but the source code is not. It’s the same with .NET Core, where the compiled artifacts are DLLs (Dynamic Link Libraries). Node.js is different--it uses JavaScript, which is an interpreted language, so there’s no compilation step. Dockerized Node.js apps need the Node.js runtime and the source code in the application image.


  There’s still a need for a multi-stage Dockerfile though: it optimizes dependency loading. Node.js uses a tool called npm (the Node package manager) to manage dependencies. Listing 4.3 shows the full Dockerfile for this chapter’s Node.js application.


  Listing 4.3 Dockerfile for building a Node.js app with npm


   FROM diamol/node AS builder   WORKDIR /src  COPY src/package.json .   RUN npm install   # app  FROM diamol/node   EXPOSE 80  CMD ["node", "server.js"]   WORKDIR /app  COPY --from=builder /src/node_modules/ /app/node_modules/  COPY src/ .


  The goal here is the same as for the Java application--to package and run the app with only Docker installed, without having to install any other tools. The base image for both stages is diamol/node , which has the Node.js runtime and npm installed. The builder stage in the Dockerfile copies in the package.json files, which describe all the application’s dependencies. Then it runs npm install to download the dependencies. There’s no compilation, so that’s all it needs to do.


  This application is another REST API. In the final application stage, the steps expose the HTTP port and specify the node command line as the startup command. The last thing is to create a working directory and copy in the application artifacts. The downloaded dependencies are copied from the builder stage, and the source code is copied from the host computer. The src folder contains the JavaScript files, including server.js , which is the entry point started by the Node.js process.


  We have a different technology stack here, with a different pattern for packaging the application. The base images, tools, and commands for a Node.js app are all different from a Java app, but those differences are captured in the Dockerfile. The process for building and running the app is exactly the same.


   Try it now Browse to the Node.js application source code and build the image:


   cd ch04/exercises/access-log  docker image build -t access-log .


  You’ll see a whole lot of output from npm (which may show some error and warning messages too, but you can ignore those). Figure 4.7 shows part of the output from my build. The packages that are downloaded get saved in the Docker image layer cache, so if you work on the app and just make code changes, the next build you run will be super fast.
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  Figure 4.7 Building a multi-stage Dockerfile for a Node.js application


  The Node.js app you’ve just built is not at all interesting, but you should still run it to check that it’s packaged correctly. It’s a REST API that other services can call to write logs. There’s an HTTP POST endpoint for recording a new log, and a GET endpoint that shows how many logs have been recorded.


   Try it now Run a container from the log API image, publishing port 80 to host and connecting it to the same nat network:


   docker container run --name accesslog -d -p 801:80 --network nat access-log


  Now browse to http:/ /localhost:801/stats and you’ll see how many logs the service has recorded. Figure 4.8 shows I have zero logs so far--Firefox nicely formats the API response, but you may see the raw JSON in other browsers.
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  Figure 4.8 Running the Node.js API in a container


  The log API is running in Node.js version 10.16, but just like with the Java example, you don’t need any versions of Node.js or any other tools installed to build and run this app. The workflow in this Dockerfile downloads dependencies and then copies the script files into the final image. You can use the exact same approach with Python, using Pip for dependencies, or Ruby using Gems.


  4.4 App walkthrough: Go source code


  We’ve got one last example of a multi-stage Dockerfile--for a web application written in Go. Go is a modern, cross-platform language that compiles to native binaries. That means you can compile your apps to run on any platform (Windows, Linux, Intel, or Arm), and the compiled output is the complete application. You don’t need a separate runtime installed like you do with Java, .NET Core, Node.js, or Python, and that makes for extremely small Docker images.


  There are a few other languages that also compile to native binaries--Rust and Swift are popular--but Go has the widest platform support, and it’s also a very popular language for cloud-native apps (Docker itself is written in Go). Building Go apps in Docker means using a multi-stage Dockerfile approach similar to the one you used for the Java app, but there are some important differences. Listing 4.4 shows the full Dockerfile.


  Listing 4.4 Dockerfile for building a Go application from source


   FROM diamol/golang AS builder  COPY main.go .   RUN go build -o /server   # app  FROM diamol/base   ENV IMAGE_API_URL="http://iotd/image" \        ACCESS_API_URL="http://accesslog/access-log"  CMD ["/web/server"]   WORKDIR web  COPY index.html .  COPY --from=builder /server .  RUN chmod +x server


  Go compiles to native binaries, so each stage in the Dockerfile uses a different base image. The builder stage uses diamol/golang , which has all the Go tools installed. Go applications don’t usually fetch dependencies, so this stage goes straight to building the application (which is just one code file, main.go ). The final application stage uses a minimal image, which just has the smallest layer of operating system tools, called diamol/base .


  The Dockerfile captures some configuration settings as environment variables and specifies the startup command as the compiled binary. The application stage ends by copying in the HTML file the application serves from the host and the web server binary from the builder stage. Binaries need to be explicitly marked as executable in Linux, which is what the final chmod command does (this has no effect on Windows).


   Try it now Browse to the Go application source code and build the image:


   cd ch04/exercises/image-gallery  docker image build -t image-gallery .


  This time there won’t be a lot of compiler output, because Go is quiet and only writes logs when there are failures. You can see my abbreviated output in figure 4.9.
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  Figure 4.9 Building a Go application in a multi-stage Dockerfile


  This Go application does do something useful, but before you run it, it’s worth taking a look at the size of the images that go in and come out.


   Try it now Compare the Go application image size with the Go toolset image:


   docker image ls -f reference=diamol/golang -f reference=image-gallery


  Many Docker commands let you filter the output. This command lists all images and filters the output to only include images with a reference of diamol/golang or image-gallery --the reference is really just the image name. When you run this, you’ll see how important it is to choose the right base images for your Dockerfile stages:


   REPOSITORY TAG IMAGE ID CREATED SIZE  image-gallery latest b41869f5d153 20 minutes ago 25.3MB  diamol/golang latest ad57f5c226fc 2 hours ago 774MB


  On Linux, the image with all the Go tools installed comes in at over 770 MB; the actual Go application image is only 25 MB. Remember, that’s the virtual image size, so a lot of those layers can be shared between different images. The important saving isn’t so much the disk space, but all the software that isn’t in the final image. The application doesn’t need any of the Go tools at runtime. By using a minimal base image for the application, we’re saving nearly 750 MB of software, which is a huge reduction in the surface area for potential attacks.


  Now you can run the app. This ties together your work in this chapter, because the Go application actually uses the APIs from the other applications you’ve built. You should make sure you have those containers running, with the correct names from the earlier try-it-now exercises. If you run docker container ls , you should see two containers from this chapter--the Node.js container called accesslog and the Java container called iotd . When you run the Go container, it will use the APIs from the other containers.


   Try it now Run the Go application image, publishing the host port and connecting to the nat network:


  docker container run -d -p 802:80 --network nat image-gallery


  You can browse to http: / / localhost:802 and you’ll see NASA’s Astronomy Picture of the Day. Figure 4.10 shows the image when I ran my containers.
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  Figure 4.10 The Go web application, showing data fetched from the Java API


  Right now you’re running a distributed application across three containers. The Go web application calls the Java API to get details of the image to show, and then it calls the Node.js API to log that the site has been accessed. You didn’t need to install any tools for any of those languages to build and run all the apps; you just needed the source code and Docker.


  Multi-stage Dockerfiles make your project entirely portable. You might use Jenkins to build your apps right now, but you could try AppVeyor’s managed CI service or Azure DevOps without having to write any new pipeline code--they all support Docker, so your pipeline is just  docker image build .


  4.5 Understanding multi-stage Dockerfiles


  We’ve covered a lot of ground in this chapter, and I’m going to end with some key points so you’re really clear on how multi-stage Dockerfiles work, and why it’s incredibly useful to build your apps inside containers.


  The first point is about standardization. I know when you run the exercises for this chapter that your builds will succeed and your apps will work because you’re using the exact same set of tools that I’m using. It doesn’t matter what operating system you have or what’s installed on your machine--all the builds run in Docker containers, and the container images have all the correct versions of the tools. In your real projects you’ll find that this hugely simplifies on-boarding for new developers, eliminates the maintenance burden for build servers, and removes the potential for breakages where users have different versions of tools.


  The second point is performance. Each stage in a multi-stage build has its own cache. Docker looks for a match in the image layer cache for each instruction; if it doesn’t find one, the cache is broken and all the rest of the instructions are executed--but only for that stage. The next stage starts again from the cache. You’ll be spending time structuring your Dockerfiles carefully, and when you get the optimization done, you’ll find 90% of your build steps use the cache.


  The final point is that multi-stage Dockerfiles let you fine-tune your build so the final application image is as lean as possible. This is not just for compilers--any tooling you need can be isolated in earlier stages, so the tool itself isn’t present in the final image. A good example is curl--a popular command-line tool you can use for downloading content from the internet. You might need that to download files your app needs, but you can do that in an early stage in your Dockerfile so curl itself isn’t installed in your application image. This keeps image size down, which means faster startup times, but it also means you have less software available in your application image, which means fewer potential exploits for attackers.


  4.6 Lab


  Lab time! You’re going to put into practice what you’ve learned about multi-stage builds and optimizing Dockerfiles. In the source code for the book, you’ll find a folder at ch04/lab which is your starting point. It’s a simple Go web server application, which already has a Dockerfile, so you can build and run it in Docker. But the Dockerfile is in dire need of optimizing, and that is your job.


  There are specific goals for this lab:


  
    	Start by building an image using the existing Dockerfile, and then optimize the Dockerfile to produce a new image.


    	The current image is 800 MB on Linux and 5.2 GB on Windows. Your optimized image should be around 15 MB on Linux or 260 MB on Windows.


    	If you change the HTML content with the current Dockerfile, the build executes seven steps.


    	Your optimized Dockerfile should only execute a single step when you change the HTML.

  


  As always, there’s a sample solution on the book’s GitHub repository. But this is one lab you should really try and find time to do, because optimizing Dockerfiles is a valuable skill you’ll use in every project. If you need it, though, my solution is here: https://github.com/sixeyed/diamol/blob/master/ch04/lab/Dockerfile.optimized .


  No hints this time, although I would say this sample app looks very similar to one you’ve already built in this chapter.


  
    5 Sharing images with Docker Hub and other registries

  


  You’ve spent the last few chapters getting a good understanding of the build and run parts of the Docker workflow--now it’s time for share. Sharing is all about taking the images you’ve built on your local machine and making them available for other people to use. I really think this is the most important part of the Docker equation. Packaging your software along with all its dependencies means anyone can use it easily, on any machine--there are no gaps between environments, so there are no more days wasted setting up software or tracking down bugs that are actually deployment problems.


  5.1 Working with registries, repositories, and image tags


  Software distribution is built into the Docker platform. You’ve already seen that you can run a container from an image, and if you don’t have that image locally, Docker will download it. The server that stores images centrally is called a Docker registry. Docker Hub is the most popular image registry, hosting hundreds of thousands of images, which are downloaded billions of times every month. It’s also the default registry for the Docker Engine, which means it’s the first place Docker looks for images that aren’t available locally.


  Docker images need a name, and that name contains enough information for Docker to find the exact image you’re looking for. So far we’ve used very simple names with one or two parts, like image-gallery or diamol/golang . There are actually four parts to a full image name (which is properly called the image reference). Figure 5.1 shows all those parts in the full reference for diamol/golang :
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  Figure 5.1 Anatomy of a Docker image reference


  You’ll be making use of all the parts of an image reference when you start managing your own application images. On your local machine you can name images anything you like, but when you want to share them on a registry, you’ll need to add some more details, because the image reference is a unique identifier for one specific image on a registry.


  Docker uses a couple of defaults if you don’t provide values for parts of the image reference. The default registry is Docker Hub, and the default tag is latest . Docker Hub’s domain is docker.io so my image, diamol/golang , is a short version of docker.io/diamol/golang:latest . You can use either of those references. The diamol account is an organization on Docker Hub, and golang is a repository within that organization. It’s a public repository, so anyone can pull the image, but you need to be a member of the diamol organization to push images.


  Large companies usually have their own Docker registry in their own cloud environment or their local network. You target your own registry by including the domain name in the first part of the reference, so Docker knows not to use Docker Hub. If I hosted my own registry at r.sixeyed.com , my image could be stored at r.sixeyed .com/diamol/golang . That’s all pretty simple, but the most important part of the image reference is the tag.


  You haven’t used image tags so far because it’s simpler to get started without them, but when you start building your own application images, you should always tag them. Tags are used to identify different versions of the same application. The official Docker OpenJDK image has hundreds of tags-- openjdk:13 is the latest release, openjdk:8u212-jdk is a specific release of Java 8, and there are more for different Linux distributions and Windows versions. If you don’t specify a tag when you create an image, Docker uses the default tag latest . That's a misleading name, because the image tagged “latest” might not actually be the most recent image version. When you push your own images, you should always tag them with explicit versions.


  5.2 Pushing your own images to Docker Hub


  We’ll get started by pushing one of the images you built in chapter 4 up to Docker Hub. You’ll need a Docker Hub account for that--if you don’t have one, browse to https://hub.docker.com and follow the link to sign up for an account (it’s free and it won’t get you a ton of spam in your inbox).


  You need to do two things to push an image to a registry. First you need to log in to the registry with the Docker command line, so Docker can check that your user account is authorized to push images. Then you need to give your image a reference that includes the name of an account where you have permission to push.


  Every reader will have their own Docker Hub username, so to make it easier to follow along with the exercises, let’s start by capturing your own Docker ID in a variable in your terminal session. After this, you’ll be able to copy and paste the rest of this chapter’s commands.


   Try it now Open a terminal session and save your Docker Hub ID in a variable. Your Docker ID is your username, not your email address. This is one command that is different on Windows and Linux, so you’ll need to choose the right option:


   # using PowerShell on Windows  $dockerId="<your-docker-id-goes-here>"   # using Bash on Linux or Mac  export dockerId="<your-docker-id-goes-here>"


  I’m running Windows at the moment, and my Docker Hub username is sixeyed , so the command I run is $dockerId="sixeyed" ; on Linux I would run dockerId="sixeyed" . On any system, you can run echo $dockerId and you should see your username displayed. From now on, you can copy the commands in the exercises and they’ll use your Docker ID.


  Start by logging in to Docker Hub. It’s actually the Docker Engine that pushes and pulls images, but you authenticate using the Docker command line--when you run the login command, it will ask for your password, which is your Docker Hub password.


   Try it now Log in to Docker Hub. Hub is the default registry, so you don’t need to specify a domain name:


   docker login --username $dockerId


  You’ll see output like mine in figure 5.2--sensibly, Docker doesn’t show the password when you type it in.


  Now that you’re logged in, you can push images to your own account or to any organizations you have access to. I don’t know you, but if I wanted your help looking after the images for this book, I could add your account to the diamol organization, and you would be able to push images that start with diamol/ . If you’re not a member of any organizations, you can only push images to repositories in your own account.
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  Figure 5.2 Logging in to Docker Hub


  You built a Docker image called image-gallery in chapter 4. That image reference doesn’t have an account name, so you can’t push it to any registries. You don’t need to rebuild the image to give it a new reference though--images can have several references.


   Try it now Create a new reference for your existing image, tagging it as version 1:


   docker image tag image-gallery $dockerId/image-gallery:v1


  Now you have two references; one has an account and version number, but both references point to the same image. Images also have a unique ID, and you can see when you list them if a single image ID has multiple references.


   Try it now List the image-gallery image references:


   docker image ls --filter reference=image-gallery --filter reference='*/image-gallery'


  You’ll see similar output to mine in figure 5.3, except your tagged image will show your Docker Hub username instead of sixeyed .
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  Figure 5.3 One image with two references


  You now have an image reference with your Docker ID in the account name, and you’re logged in to Docker Hub, so you’re ready to share your image! The docker image push command is the counterpart of the pull command; it uploads your local image layers to the registry.


   Try it now List the image-gallery image references:


   docker image push $dockerId/image-gallery:v1


  Docker registries work at the level of image layers in the same way as the local Docker Engine. You push an image, but Docker actually uploads the image layers. In the output you’ll see a list of layer IDs and their upload progress. In my (abbreviated) output, you can see the layers being pushed:


   The push refers to repository [docker.io/sixeyed/image-gallery]  c8c60e5dbe37: Pushed  2caab880bb11: Pushed  3fcd399f2c98: Pushed  ...  v1: digest: sha256:127d0ed6f7a8d1... size: 2296


  The fact that registries work with image layers is another reason why you need to spend time optimizing your Dockerfiles. Layers are only physically uploaded to the registry if there isn’t an existing match for that layer’s hash. It’s like your local Docker Engine cache, but applied across all images on the registry. If you optimize to the point where 90% of layers come from the cache when you build, 90% of those layers will already be in the registry when you push. Optimized Dockerfiles reduce build time, disk space, and network bandwidth.


  You can browse to Docker Hub now and check your image. The Docker Hub UI uses the same repository name format as image references, so you can work out the URL of your image from your account name.


   Try it now This little script writes the URL to your image’s page on Docker Hub:


   echo "https://hub.docker.com/r/$dockerId/image-gallery/tags"


  When you browse to that URL, you’ll see something like figure 5.4, showing the tags for your image and the last update time.
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  Figure 5.4 Image listings on Docker Hub


  That’s all there is to pushing images. Docker Hub creates a new repository for an image if it doesn’t already exist, and by default that repository has public read rights. Now anyone can find, pull, and use your image-gallery application. They’d need to work out themselves how to use it, but you can put documentation on Docker Hub too.


  Docker Hub is the easiest registry to get started with, and it gives you a huge amount of functionality for zero cost--although you can pay a monthly subscription for extra features, like private repositories. There are lots of alternative registries too. The registry is an open API spec, and the core registry server is an open source product from Docker. All the clouds have their own registry services, and you can manage your own registry in the datacenter with commercial products like Docker Trusted Registry or you can run a simple registry in a container.


  5.3 Running and using your own Docker registry


  It’s useful to run your own registry on your local network. It cuts down on bandwidth use and transfer times, and it lets you own the data in your environment. Even if you’re not concerned about that, it’s still good to know that you can spin up a local registry quickly, which you can use as a backup option if your main registry goes offline.


  Docker maintains the core registry server on GitHub in the source code repository docker/distribution . It gives you the basic functionality to push and pull images, and it uses the same layer cache system as Docker Hub, but it doesn’t give you the web UI you get with Hub. It’s a super-lightweight server that I’ve packaged into a diamol image, so you can run it in a container.


   Try it now Run the Docker registry in a container, using my image:


   # run the registry with a restart flag so the container gets  # restarted whenever you restart Docker:  docker container run -d -p 5000:5000 --restart always diamol/registry


  You now have a registry server on your local machine. The default port for the server is 5000 , which this command publishes. You can tag images with the domain localhost:5000 and push them to this registry, but that’s not really useful--you can only use the registry on your local machine. Instead, it’s better to give your machine an alias so you can use a proper domain name for your registry.


  This next command creates that alias. It will give your computer the name registry.local , in addition to any other network names it has. It does this by writing to the computer’s hosts file, which is a simple text file that links network names to IP addresses.


   Try it now Windows, Linux, and Mac machines all use the same hosts file format, but the file paths are different. The command is also different on Windows, so you’ll need to choose the right one:


   # using PowerShell on Windows  Add-Content -Value "127.0.0.1 registry.local" -Path /windows/system32/drivers/etc/hosts   # using Bash on Linux or Mac  echo $'\n127.0.0.1 registry.local' | sudo tee -a /etc/hosts


  If you get a permissions error from that command, you’ll need to be logged in with administrator privileges in an elevated PowerShell session on Windows, or use sudo on Linux or Mac. When you’ve run the command successfully, you should be able to run ping registry.local and see a response from your computer’s home IP address, 127.0.0.1, as in figure 5.5.
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  Figure 5.5 Adding a new network alias for your computer


  Now you can use the domain name registry.local:5000 in your image references to use your registry. Adding the domain name to an image involves the same process of tagging that you’ve already done for Docker Hub. This time you just include the registry domain in the new image reference.


   Try it now Tag your image-gallery image with your registry domain:


   docker image tag image-gallery registry.local:5000/gallery/ui:v1


  Your local registry doesn’t have any authentication or authorization set up. That’s obviously not production quality, but it might work for a small team, and it does let you use your own image-naming schemes. Three containers make up the NASA image-of-the-day app in chapter 4--you could tag all the images to group them together using gallery as the project name:


  
    	 registry.local:5000/gallery/ui:v1 --The Go web UI


    	 registry.local:5000/gallery/api:v1 --The Java API


    	 registry.local:5000/gallery/logs:v1 --The Node.js API

  


  There’s one more thing you need to do before you can push this image to your local registry. The registry container is using plain-text HTTP rather than encrypted HTTPS to push and pull images. Docker won’t communicate with an unencrypted registry by default, because it’s not secure. You need to explicitly add your registry domain to a list of permitted insecure registries before Docker will let you use it.


  This brings us to configuring Docker. The Docker Engine uses a JSON configuration file for all sorts of settings, including where Docker stores the image layers on disk, where the Docker API listens for connections, and which insecure registries are permitted. The file is called daemon.json and it usually lives in the folder C:\ProgramData\docker\config on Windows Server, and /etc/docker on Linux. You can edit that file directly, but if you’re using Docker Desktop on Mac or Windows, you’ll need use the UI, where you can change the main configuration settings.


   Try it now Right-click the Docker whale icon in your taskbar, and select Settings (or Preferences on the Mac). Then open the Daemon tab and enter registry.local:5000 in the insecure registries list--you can see my settings in figure 5.6.
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  Figure 5.6 Allowing an insecure registry to be used in Docker Desktop


  The Docker Engine needs to be restarted to load any new configuration settings, and Docker Desktop does that for you when you apply changes.


  If you’re not running Docker Desktop, you’ll need to do this manually. Start by opening the daemon.json file in a text editor--or create it if it doesn’t exist--and add the insecure registry details in JSON format. The configuration settings will look like this--but if you’re editing an existing file, be sure to leave the original settings in there too:


   {        "insecure-registries": [                "registry.local:5000"        ]  }


  Then restart Docker using Restart-Service docker on Windows Server, or service docker restart on Linux. You can check which insecure registries your Docker Engine allows, along with a stack of other information, using the info command.


   Try it now List the information about your Docker Engine and check your registry is in the insecure registries list:


   docker info


  At the end of the output, you’ll see the registry configuration, which should include your insecure registry--you can see mine in figure 5.7.
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  Figure 5.7 Insecure registries allowed for Docker to use


  You should be careful about adding insecure registries to your Docker configuration. Your connection could be compromised, and attackers could read layers when you push images. Or worse, they could inject their own data when you pull images. All the commercial registry servers run on HTTPS, and you can also configure Docker’s open source registry to use HTTPS. For demonstrating with a local server, however, it’s an acceptable risk.


  You can now push your tagged image to your own registry. The registry domain is part of the image reference, so Docker knows to use something other than Docker Hub, and your HTTP registry running in a container is cleared in the list of insecure registries.


   Try it now Push your tagged image:


   docker image push registry.local:5000/gallery/ui:v1


  Your registry is completely empty when you run the first push, so you’ll see all the layers being uploaded. If you then repeat the push command, you’ll see that all the layers already exist and nothing gets uploaded. That’s all you need to do to run your own Docker registry in a container. You could share it on your network using your machine’s IP address or the real domain name.


  5.4 Using image tags effectively


  You can put any string into a Docker image tag, and as you’ve already seen, you can have multiple tags for the same image. You’ll use that to version the software in your images and let users make informed choices about what they want to use--and to make your own informed choices when you use other people’s images.


  Many software projects use a numeric versioning scheme with decimal points to indicate how big a change there is between versions, and you can do that with your image tags. The basic idea is something like [major].[minor].[patch] , which has some implicit guarantees. A release that only increments the patch number might have bug fixes, but it should have the same features as the last version; a release that increments the minor version might add features but shouldn’t remove any; and a major release could have completely different features.


  If you use the same approach with your image tags, you can let users choose whether to stick to a major version or a minor version, or just always have the latest release.


   Try it now Create a few new tags for the Go application you have packaged in the image to indicate the major, minor, and patch release versions:


   docker image tag image-gallery registry.local:5000/gallery/ui:latest  docker image tag image-gallery registry.local:5000/gallery/ui:2  docker image tag image-gallery registry.local:5000/gallery/ui:2.1  docker image tag image-gallery registry.local:5000/gallery/ui:2.1.106


  Now imagine that an application has monthly releases, which increment the version numbers. Figure 5.8 shows how the image tags might evolve over releases from July to October.


  You can see that some of these image tags are a moving target. gallery/ui:2.1 is an alias for the 2.1.106 release in July, but in August the same 2.1 tag is an alias for the 2.1.114 release. gallery/ui:2 is also an alias for 2.1.106 in July, but by September the 2 tag is an alias for the 2.2.11 release. The latest tag has the most movement--in July gallery/ui is an alias for 2.1.106, but in October it’s an alias for 3.0.42.


  This is a typical versioning scheme you’ll see for Docker images. It’s one you should adopt yourself, because it lets users of your image choose how current they want to be. They can pin to a specific patch version in their image pull commands, or in the FROM instruction in their Dockerfiles, and be sure that the image they use will always be the same. The 2.1.106 tag in this example is the same image from July through October. If they want to get patch updates, they can use the 2.1 tag, and if they want to get minor releases they can use the 2 tag.
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  Figure 5.8 The evolution of image tags during software releases


  Any of those choices is fine; it’s just a case of balancing risk--using a specific patch version means the application will be the same whenever you use it, but you won’t get security fixes. Using a major version means you’ll get all the latest fixes, but there might be unexpected feature changes down the line.


  It’s especially important to use specific image tags for the base images in your own Dockerfiles. It’s great to use the product team’s build tools image to build your apps and their runtime image to package your apps, but if you don’t specify versions in the tags, you’re setting yourself up for trouble in the future. A new release of the build image could break your Docker build. Or worse, a new release of the runtime could break your application.


  5.5 Turning official images into golden images


  There’s one last thing to understand when you’re looking at Docker Hub and other registries: can you trust the images you find there? Anyone can push an image to Docker Hub and make it publicly available. For hackers, that’s a nice way to distribute malware; you just need to give your image an innocent name and a fake description, and wait for people to start using it. Docker Hub solves that problem with verified publishers and official images.


  Verified publishers are companies like Microsoft, Oracle, and IBM, who publish images on Docker Hub. Their images go through an approval process that includes security scanning for vulnerabilities; they may also be certified, which means they have the backing of Docker and the publisher. If you want to run off-the-shelf software in containers, certified images from verified publishers are the best bet.


  Official images are something different--they’re usually open source projects, maintained jointly by the project team and Docker. They’re security scanned and regularly updated, and they conform to Dockerfile best practices. All the content for the official images is open source, so you can see the Dockerfiles on GitHub. Most people start using official images as the base for their own images but at some point find they need more control. Then they introduce their own preferred base images, called golden images--figure 5.9 shows you how it works.
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  Figure 5.9 Using a golden image to encapsulate an official image


  Golden images use an official image as the base and then add in whatever custom setup they need, such as installing security certificates or configuring default environment settings. The golden image lives in the company’s repositories on Docker Hub or in their own registry, and all application images are based on the golden image. This approach offers the benefits of the official image--with the best-practice setup by the project team--but with the extra config you need.


   Try it now There are two Dockerfiles in the source code for this chapter that can be built as golden images for .NET Core apps. Browse to each folder and build the image:


   cd ch05/exercises/dotnet-sdk  docker image build -t golden/dotnetcore-sdk:3.0 .   cd ../aspnet-runtime  docker image build -t golden/aspnet-core:3.0 .


  There’s nothing special about golden images. They start with a Dockerfile, and that builds an image with your own reference and naming scheme. If you look at the Dockerfiles you’ve built, you’ll see that they add some metadata to the image using the LABEL instruction, and they set up some common configuration. Now you can use those images in a multi-stage Dockerfile for a .NET Core application, which would look something like listing 5.1.


  Listing 5.1 A multi-stage Dockerfile using .NET Core golden images


   FROM golden/dotnetcore-sdk:3.0 AS builder  COPY . .  RUN dotnet publish -o /out/app app.csproj   FROM golden/aspnet-core:3.0  COPY --from=builder /out /app  CMD ["dotnet", "/app/app.dll"]


  The application Dockerfile has the same format as any multi-stage build, but now you own the base images. The official images may have a new release every month, but you can choose to restrict your golden images to quarterly updates. And golden images open up one other possibility--you can enforce their use with tools in your continuous integration (CI) pipeline: Dockerfiles can be scanned, and if someone tries to build an app without using golden images, that build fails. It’s a good way of locking down the source images teams can use.


  5.6 Lab


  This lab is going to take some detective work, but it will be worth it in the end. You’re going to need to dig around the Docker Registry API v2 specification ( https://docs .docker.com/registry/spec/api/ ), because the REST API is the only way you can interact with your local Docker registry--you can’t search or delete images using the Docker CLI (yet).


  The goal for this lab is to push all the tags for your gallery/ui image to your local registry, check that they’re all there, and then delete them all and check that they’re gone. We won’t include the gallery/api or gallery/logs images because this lab focuses on images with multiple tags, and we have those for gallery/ui . Here are a few hints:


  
    	You can use a single image push command to push all these tags.


    	The URL for your local registry API is http://registry.local:5000/v2 .


    	Start by listing the image tags for the repository.


    	Then you’ll need to get the image manifest.


    	You can delete images through the API, but you need to use the manifest.


    	Read the docs--there’s a specific request header you need to use in your HEAD request.

  


  The solution is on the book’s GitHub repository, and this is a rare case where it’s OK to cheat a little. The first couple of steps should be straightforward for you to work out, but then it gets a little awkward, so don’t feel too bad if you end up heading here: https://github.com/sixeyed/diamol/tree/master/ch05/lab .


  Good luck. And remember to read the docs.


  
    6 Using Docker volumes for persistent storage

  


  Containers are a perfect runtime for stateless applications. You can meet increased demand by running multiple containers on your cluster, knowing that every container will handle requests in the same way. You can release updates with an automated rolling upgrade, which keeps your app online the whole time.


  But not all parts of your app will be stateless. There will be components that use disks to improve performance or for permanent data storage. And you can run those components in Docker containers too.


  Storage does add complications, so you need to understand how to Dockerize stateful apps. This chapter takes you through Docker volumes and mounts, and shows you how the container filesystem works.


  6.1 Why data in containers is not permanent


  A Docker container has a filesystem with a single disk drive, and the contents of that drive are populated with the files from the image. You’ve seen that already: when you use the COPY instruction in a Dockerfile, the files and directories you copy into the image are there when you run a container from the image. And you know Docker images are stored as multiple layers, so the container’s disk is actually a virtual filesystem that Docker builds up by merging all the image layers together.


  Each container has its own filesystem, independent of other containers. You can run multiple containers from the same Docker image, and they will all start with the same disk contents. The application can alter files in one container, and that won’t affect the files in other containers--or in the image. That’s straightforward to see by running a couple of containers that write data, and then looking at their output.


   Try it now Open a terminal session and run two containers from the same image. The application in the image writes a random number to a file in the container:


   docker container run --name rn1 diamol/ch06-random-number  docker container run --name rn2 diamol/ch06-random-number


  That container runs a script when it starts, and the script writes some random data to a text file and then ends, so those containers are in the exited state. The two containers started from the same image, but they will have different file contents. You learned in chapter 2 that Docker doesn’t delete the container’s filesystem when it exits--it’s retained so you can still access files and folders.


  The Docker CLI has the docker container cp command to copy files between containers and the local machine. You specify the name of the container and the file path, and you can use that to copy the generated random number files from these containers onto your host computer, so you can read the contents.


   Try it now Use docker container cp to copy the random number file from each of the containers, and then check the contents:


   docker container cp rn1:/random/number.txt number1.txt   docker container cp rn2:/random/number.txt number2.txt   cat number1.txt   cat number2.txt


  Your output will be similar to mine in figure 6.1. Each container has written a file at the same path, /random/number.txt , but when the files are copied onto the local machine, you can see that the contents are different. This is a simple way of showing that every container has an independent filesystem. In this case it’s a single file that’s different, but these could be database containers that start with the same SQL engine running, but store completely different data.
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  Figure 6.1 Running containers that write data, and checking the data


  The filesystem inside a container appears to be a single disk: /dev/sda1 on Linux containers and C:\ on Windows containers. But that disk is a virtual filesystem that Docker builds from several sources and presents to the container as a single unit. The basic sources for that filesystem are the image layers, which can be shared between containers, and the container’s writeable layer, which is unique to each container.


  Figure 6.2 shows how that looks for the random number image and the two containers. You should take away two important things from figure 6.2: image layers are shared so they have to be read-only, and there is one writeable layer per container, which has the same life cycle as the container. Image layers have their own life cycle--any images you pull will stay in your local cache until you remove them. But the container writeable layer is created by Docker when the container is started, and it’s deleted by Docker when the container is removed. (Stopping a container doesn’t automatically remove it, so a stopped container’s filesystem does still exist.)


  [image: ]


  Figure 6.2 The container filesystem is built from image layers and a writeable layer.


  Of course, the writeable layer isn’t just for creating new files. A container can edit existing files from the image layers. But image layers are read-only, so Docker does some special magic to make that happen. It uses a copy-on-write process to allow edits to files that come from read-only layers. When the container tries to edit a file in an image layer, Docker actually makes a copy of that file into the writable layer, and the edits happen there. It’s all seamless for the container and the application, but it’s the cornerstone of Docker’s super-efficient use of storage.


  Let’s work through that with one more simple example, before we move on to running some more useful stateful containers. In this exercise you’ll run a container that prints out the contents of a file from an image layer. Then you’ll update the file contents and run the container again to see what’s changed.


   Try it now Run these commands to start a container that prints out its file contents, then change the file, and start the container again to print out the new file contents:


   docker container run --name f1 diamol/ch06-file-display   echo "http://eltonstoneman.com" > url.txt   docker container cp url.txt f1:/input.txt   docker container start --attach f1


  This time you’re using Docker to copy a file from your host computer into the container, and the target path is the file that the container displays. When you start the container again, the same script runs, but now it prints out different contents--you can see my output in figure 6.3.
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  Figure 6.3 Modifying a container’s state and running it again


  Modifying the file in the container affects how that container runs, but it doesn’t affect the image or any other containers from that image. The changed file only lives in the writeable layer for that one container--a new container will use the original contents from the image, and when container f1 is removed, the updated file is gone.


   Try it now Start a new container to check that the file in the image is unchanged. Then remove the original container and confirm that the data is gone:


   docker container run --name f2 diamol/ch06-file-display  docker container rm -f f1  docker container cp f1:/input.txt .


  You’ll see the same output as mine in figure 6.4. The new container uses the original file from the image, and when you remove the original container, its filesystem is removed and the changed file is gone forever.
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  Figure 6.4 Modifying files in a container does not affect the image, and the container’s data is transient.


  The container filesystem has the same life cycle as the container, so when the container is removed, the writeable layer is removed, and any changed data in the container is lost. Removing containers is something you will do a lot. In production, you upgrade your app by building a new image, removing the old containers, and replacing them with new ones from the updated image. Any data that was written in your original app containers is lost, and the replacement containers start with the static data from the image.


  There are some scenarios where that’s fine, because your application only writes transient data--maybe to keep a local cache of data that is expensive to calculate or retrieve--and it’s fine for replacement containers to start with an empty cache. In other cases, it would be a disaster. You can run a database in a container, but you wouldn’t expect to lose all your data when you roll out an updated database version.


  Docker has you covered for those scenarios too. The virtual filesystem for the container is always built from image layers and the writeable layer, but there can be additional sources as well. Those are Docker volumes and mounts. They have a separate life cycle from containers, so they can be used to store data that persists between container replacements.


  6.2 Running containers with Docker volumes


  A Docker volume is a unit of storage--you can think of it as a USB stick for containers. Volumes exist independently of containers and have their own life cycles, but they can be attached to containers. Volumes are how you manage storage for stateful applications when the data needs to be persistent. You create a volume and attach it to your application container; it appears as a directory in the container’s filesystem. The container writes data to the directory, which is actually stored in the volume. When you update your app with a new version, you attach the same volume to the new container, and all the original data is available.


  There are two ways to use volumes with containers: you can manually create volumes and attach them to a container, or you can use a VOLUME instruction in the Dockerfile. That builds an image that will create a volume when you start a container. The syntax is simply VOLUME <target-directory> . Listing 6.1 shows part of the multi-stage Dockerfile for the image diamol/ch06-todo-list , which is a stateful app that uses a volume.


  Listing 6.1 Part of a multi-stage Dockerfile using a volume


   FROM diamol/dotnet-aspnet  WORKDIR /app   ENTRYPOINT ["dotnet", "ToDoList.dll"]  VOLUME /data  COPY --from=builder /out/ .


  When you run a container from this image, Docker will automatically create a volume and attach it to the container. The container will have a directory at /data (or C:\data on Windows containers), which it can read from and write to as normal. But the data is actually being stored in a volume, which will live on after the container is removed. You can see that if you run a container from the image and then check the volumes.


   Try it now Run a container for the to-do list app, and have a look at the volume Docker created:


   docker container run --name todo1 -d -p 8010:80 diamol/ch06-todo-list  docker container inspect --format '{{.Mounts}}' todo1  docker volume ls


  You’ll see output like mine in figure 6.5. Docker creates a volume for this container and attaches it when the container runs. I’ve filtered the volume list to show just the volume for my container.
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  Figure 6.5 Running a container with a volume declared in the Dockerfile


  Docker volumes are completely transparent to the app running in the container. Browse to http: / / localhost:8010 and you’ll see the to-do app. The app stores data in a file at the /data directory, so when you add items through the web page, they are being stored in the Docker volume. Figure 6.6 shows the app in action--it’s a special to-do list that works very well for people with workloads like mine; you can add items but you can’t ever remove them.
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  Figure 6.6 The never-ending to-do list, running in a container using a Docker volume


  Volumes declared in Docker images are created as a separate volume for each container, but you can also share volumes between containers. If you start a new container running the to-do app, it will have its own volume, and the to-do list will start off being empty. But you can run a container with the volumes-from flag, which attaches another container’s volumes. In this example you could have two to-do app containers sharing the same data.


   Try it now Run a second to-do list container and check the contents of the data directory. Then compare that to another new container that shares the volumes from the first container (the exec commands are slightly different for Windows and Linux):


   # this new container will have its own volume  docker container run --name todo2 -d diamol/ch06-todo-list   # on Linux:  docker container exec todo2 ls /data   # on Windows:  docker container exec todo2 cmd /C "dir C:\data"   # this container will share the volume from todo1  docker container run -d --name t3 --volumes-from todo1 diamol/ch06-todo-list   # on Linux:  docker container exec t3 ls /data   # on Windows:  docker container exec t3 cmd /C "dir C:\data"


  The output will look like figure 6.7 (I’m running on Linux for this example). The second container starts with a new volume, so the /data directory is empty. The third container uses the volumes from the first, so it can see the data from the original application container.
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  Figure 6.7 Running containers with dedicated and shared volumes


  Sharing volumes between containers is straightforward, but it’s probably not what you want to do. Apps that write data typically expect exclusive access to the files, and they may not work correctly (or at all) if another container is reading and writing to the same file at the same time. Volumes are better used to preserve state between application upgrades, and then it’s better to explicitly manage the volumes. You can create a named volume and attach that to the different versions of your application container.


   Try it now Create a volume and use it in a container for version 1 of the to-do app. Then add some data in the UI and upgrade the app to version 2. The filesystem paths for the container need to match the operating system, so I’m using variables to make copy and pasting easier:


   # save the target file path in a variable:  target='/data' # for Linux containers  $target='c:\data' # for Windows containers   # create a volume to store the data:  docker volume create todo-list   # run the v1 app, using the volume for app storage:  docker container run -d -p 8011:80 -v todo-list:$target --name todo-v1 diamol/ch06-todo-list   # add some data through the web app at http://localhost:8011   # remove the v1 app container:  docker container rm -f todo-v1   # and run a v2 container using the same volume for storage:  docker container run -d -p 8011:80 -v todo-list:$target --name todo-v2 diamol/ch06-todo-list:v2


  The output in figure 6.8 shows that the volume has its own life cycle. It exists before any containers are created, and it remains when containers that use it are removed. The application preserves data between upgrades because the new container uses the same volume as the old container.
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  Figure 6.8 Creating a named volume and using it to persist data between container updates


  Now when you browse to http: / / localhost:8011 you’ll see version 2 of the to-do application, which has had a UI makeover from an expensive creative agency. Figure 6.9 shows this is ready for production now.
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  Figure 6.9 The all-new to-do app UI


  There’s one thing to make clear about Docker volumes before we move on. The VOLUME instruction in the Dockerfile and the volume (or v ) flag for running containers are separate features. Images built with a VOLUME instruction will always create a volume for a container if there is no volume specified in the run command. The volume will have a random ID, so you can use it after the container is gone, but only if you can work out which volume has your data.


  The volume flag mounts a volume into a container whether the image has a volume specified or not. If the image does have a volume, the volume flag can override it for the container by using an existing volume for the same target path--so a new volume won’t be created. That’s what happened with the to-do list containers.


  You can use the exact same syntax and get the same results for containers where no volume is specified in the image. As an image author, you should use the VOLUME instruction as a fail-safe option for stateful applications. That way containers will always write data to a persistent volume even if the user doesn’t specify the volume flag. But as an image user, it’s better not to rely on the defaults and to work with named volumes.


  6.3 Running containers with filesystem mounts


  Volumes are great for separating out the life cycle of storage and still have Docker manage all the resources for you. Volumes live on the host, so they are decoupled from containers. Docker also provides a more direct way of sharing storage between containers and hosts using bind mounts. A bind mount makes a directory on the host available as a path on a container. The bind mount is transparent to the container--it’s just a directory that is part of the container’s filesystem. But it means you can access host files from a container and vice versa, which unlocks some interesting patterns.


  Bind mounts let you explicitly use the filesystems on your host machine for container data. That could be a fast solid-state disk, a highly available array of disks, or even a distributed storage system that’s accessible across your network. If you can access that filesystem on your host, you can use it for containers. I could have a server with a RAID array and use that as reliable storage for my to-do list application database.


   Try it now I really do have a server with a RAID array, but you may not, so we’ll just create a local directory on your host computer and bind mount it into a container. Again, the filesystem paths need to match the host operating system, so I’ve declared variables for the source path on your machine and the target path for the container. Note the different lines for Windows and Linux:


   $source="$(pwd)\databases".ToLower(); $target="c:\data" # Windows  source="$(pwd)/databases" && target='/data'             # Linux   mkdir ./databases   docker container run --mount type=bind,source=$source,target=$target -d -p 8012:80 diamol/ch06-todo-list   curl http://localhost:8012  ls ./databases


  This exercise uses the curl command (which is on Linux, Mac, and Windows systems) to make an HTTP request to the to-do app. That causes the app to start up, which creates the database file. The final command lists the contents of the local databases directory on your host, and that will show that the application’s database file is actually there on your host computer, as you see in figure 6.10.


  The bind mount is bidirectional. You can create files in the container and edit them on the host, or create files on the host and edit them in the container. There’s a security aspect here, because containers should usually run as a least-privilege account, to minimize the risk of an attacker exploiting your system. But a container needs elevated permissions to read and write files on the host, so this image is built with the USER instruction in the Dockerfile to give containers administrative rights--it uses the built-in root user in Linux and the ContainerAdministrator user in Windows.


  If you don’t need to write files, you can bind mount the host directory as read-only inside the container. This is one option for surfacing configuration settings from the host into the application container. The to-do application image is packaged with a default configuration file that sets the logging level for the app to a minimum amount. You can run a container from the same image but mount a local configuration directory into the container, and override the app’s configuration without changing the image.


   Try it now The to-do application will load an extra configuration file from the /app/config path if it exists. Run a container that bind-mounts a local directory to that location, and the app will use the host’s configuration file. Start by navigating to your local copy of the DIAMOL source code, and then run these commands:


   cd ./ch06/exercises/todo-list   # save the source path as a variable:  $source="$(pwd)\config".ToLower(); $target="c:\app\config" # Windows  source="$(pwd)/config" && target='/app/config'             # Linux   # run the container using the mount:  docker container run --name todo-configured -d -p 8013:80 --mount type=bind,source=$source,target=$target,readonly diamol/ch06-todo-list   # check the application:  curl http://localhost:8013   # and the container logs:  docker container logs todo-configured
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  Figure 6.10 Sharing a directory on the host with a container using a bind mount


  The config file in the directory on the host is set to use much more detailed logging. When the container starts, it maps that directory, and the application sees the config file and loads the logging configuration. In the final output shown in figure 6.11, there are lots of debug log lines, which the app wouldn’t write with the standard configuration.
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  Figure 6.11 Using bind mounts to load read-only configuration files into containers


  You can bind-mount any source that your host computer has access to. You could use a shared network drive mounted to /mnt/nfs on a Linux host, or mapped to the X: drive on a Windows host. Either of those could be the source for a bind mount and be surfaced into a container in the same way. It’s a very useful way to get reliable and even distributed storage for stateful apps running in containers, but there are some limitations you need to understand.


  6.4 Limitations of filesystem mounts


  To use bind mounts and volumes effectively, you need to understand some key scenarios and limitations, some of which are subtle and will only appear in unusual combinations of containers and filesystems.


  The first scenario is straightforward: what happens when you run a container with a mount, and the mount target directory already exists and has files from the image layers? You might think that Docker would merge the source into the target. Inside the container you’d expect to see that the directory has all the existing files from the image, and all the new files from the mount. But that isn’t the case. When you mount a target that already has data, the source directory replaces the target directory--so the original files from the image are not available.


  You can see this with a simple exercise, using an image that lists directory contents when it runs. The behavior is the same for Linux and Windows containers, but the filesystem paths in the commands need to match the operating system.


   Try it now Run the container without a mount, and it will list the directory contents from the image. Run it again with a mount, and it will list the contents of the source directory (there are variables again here to support Windows and Linux):


   cd ./ch06/exercises/bind-mount   $source="$(pwd)\new".ToLower(); $target="c:\init" # Windows  source="$(pwd)/new" && target='/init'             # Linux   docker container run diamol/ch06-bind-mount   docker container run --mount type=bind,source=$source,target=$target diamol/ch06-bind-mount


  You’ll see that in the first run the container lists two files: abc.txt and def.txt . These are loaded into the container from the image layers. The second container replaces the target directory with the source from the mount, so those files are not listed. Only the files 123.txt and 456.txt are shown, and these are from the source directory on the host. Figure 6.12 shows my output.
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  Figure 6.12 Bind mount directories shadow the target directory if it exists.


  The second scenario is a variation on that: what happens if you mount a single file from the host to a target directory that exists in the container filesystem? This time the directory contents are merged, so you’ll see the original files from the image and the new file from the host--unless you’re running Windows containers, where this feature isn’t supported at all.


  The container filesystem is one of the few areas where Windows containers are not the same as Linux containers. Some things do work in the same way. You can use standard Linux-style paths inside Dockerfiles, so /data works for Windows containers and becomes an alias of C:\data . But that doesn’t work for volume mounts and bind mounts, which is why the exercises in this chapter use variables to give Linux users /data and Windows C:\data .


  The limitation on single-file mounts is more explicit. You can try this yourself if you have Windows and Linux machines available, or if you’re running Docker Desktop on Windows, which supports both Linux and Windows containers.


   Try it now The behavior of single-file mounts is different on Linux and Windows. If you have Linux and Windows containers available, you can see that in action:


   cd ./ch06/exercises/bind-mount   # on Linux:  docker container run --mount type=bind,source="$(pwd)/new/123.txt",target=/init/123.txt diamol/ch06-bind-mount   # on Windows:   docker container run --mount type=bind,source="$(pwd)/new/123.txt",target=C:\init\123.txt diamol/ch06-bind-mount   docker container run diamol/ch06-bind-mount   docker container run --mount type=bind,source="$(pwd)/new/123.txt",target=/init/123.txt diamol/ch06-bind-mount


  The Docker image is the same, and the commands are the same--apart from the OS-specific filesystem path for the target. But you’ll see when you run this that the Linux example works as expected but you get an error from Docker on Windows, as in figure 6.13.
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  Figure 6.13 Bind mounts with a single file as the source work on Linux but not on Windows.


  The third scenario is less common. It’s very difficult to reproduce without setting up a lot of moving pieces, so there won’t be an exercise to cover this--you’ll have to take my word for it. The scenario is, what happens if you bind-mount a distributed filesystem into a container? Will the app in the container still work correctly? See, even the question is complicated.


  Distributed filesystems let you access data from any machine on the network, and they usually use different storage mechanisms from your operating system’s local filesystem. It could be a technology like SMB file shares on your local network, Azure Files, or AWS S3 in the cloud. You can mount locations from distributed storage systems like these into a container. The mount will look like a normal part of the filesystem, but if it doesn’t support the same operations, your app could fail.


  There’s a concrete example in figure 6.14 of trying to run the Postgres database system in a container on the cloud, using Azure Files for container storage. Azure Files supports normal filesystem operations like read and write, but it doesn’t support some of the more unusual operations that apps might use. In this case the Postgres container tries to create a file link, but Azure Files doesn’t support that feature, so the app crashes.
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  Figure 6.14 Distributed storage systems may not provide all the usual filesystem features.


  This scenario is an outlier, but you need to be aware of it because if it happens there’s really no way around it. The source for your bind mount may not support all the filesystem features that the app in your container expects. This is something you can’t plan for--you won’t know until you try your app with your storage system. If you want to use distributed storage for containers, you should be aware of this risk, and you also need to understand that distributed storage will have very different performance characteristics from local storage. An application that uses a lot of disk may grind to a halt if you run it in a container with distributed storage, where every file write goes over the network.


  6.5 Understanding how the container filesystem is built


  We’ve covered a lot in this chapter. Storage is an important topic because the options for containers are very different from storage on physical computers or virtual machines. I’m going to finish up with a consolidated look at everything we’ve covered, with some best-practice guidelines for using the container filesystem.


  Every container has a single disk, which is a virtual disk that Docker pieces together from several sources. Docker calls this the union filesystem. I’m not going to look at how Docker implements the union filesystem, because there are different technologies for different operating systems. When you install Docker, it makes the right choice for your OS, so you don’t need to worry about the details.


  The union filesystem lets the container see a single disk drive and work with files and directories in the same way, wherever they may be on the disk. But the locations on the disk can be physically stored in different storage units, as figure 6.15 shows.
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  Figure 6.15 The container filesystem is created from the union of multiple sources.


  Applications inside a container see a single disk, but as the image author or container user, you choose the sources for that disk. There can be multiple image layers, multiple volume mounts, and multiple bind mounts in a container, but they will always have a single writeable layer. Here are some general guidelines for how you should use the storage options:


  
    	Writeable layer --Perfect for short-term storage, like caching data to disk to save on network calls or computations. These are unique to each container but are gone forever when the container is removed.


    	Local bind mounts --Used to share data between the host and the container. Developers can use bind mounts to load the source code on their computer into the container, so when they make local edits to HTML or JavaScript files, the changes are immediately in the container without having to build a new image.


    	Distributed bind mounts --Used to share data between network storage and containers. These are useful, but you need to be aware that network storage will not have the same performance as local disk and may not offer full filesystem features. They can be used as read-only sources for configuration data or a shared cache, or as read-write to store data that can be used by any container on any machine on the same network.


    	Volume mounts --Used to share data between the container and a storage object that is managed by Docker. These are useful for persistent storage, where the application writes data to the volume. When you upgrade your app with a new container, it will retain the data written to the volume by the previous version.


    	Image layers --These present the initial filesystem for the container. Layers are stacked, with the latest layer overriding earlier layers, so a file written in a layer at the beginning of the Dockerfile can be overridden by a subsequent layer that writes to the same path. Layers are read-only, and they can be shared between containers.

  


  6.6 Lab 


  We’ll put those pieces together in this lab. It’s back to the good old to-do list app, but this time with a twist. The app will run in a container and start with a set of tasks already created. Your job is to run the app using the same image but with different storage options, so that the to-do list starts off empty, and when you save items they get stored to a Docker volume. The exercises from this chapter should get you there, but here are some hints:


  
    	Remember it’s docker rm -f $(docker ps -aq) to remove all your existing containers.


    	Start by running the app from diamol/ch06-lab to check out the tasks.


    	Then you’ll need to run a container from the same image with some mounts.


    	The app uses a configuration file--there’s more in there than settings for the log.

  


  My sample solution is on the book’s GitHub repository if you need it, but you should try to work through this one because container storage can trip you up if you haven’t had much experience. There are a few ways to solve this. 


  My solution is here: https:// github.com/sixeyed/diamol/blob/master/ch06/lab/README.md .


  
    Part 2. Running distributed applications in containers

  


   Very few applications do everything in a single component--they’re usually distributed across multiple pieces. In this part of the book you’ll learn how to use Docker and Docker Compose to define, run, and manage applications that run across multiple containers. You’ll learn how to power a continuous integration build pipeline with Docker, configure your apps so you can run multiple environments on a single machine, and isolate workloads with Docker networks. This part will also help get your containers ready for production with health checks and observability.


  
    7 Running multi-container apps with Docker Compose

  


  Most applications don’t run in one single component. Even large old apps are typically built as frontend and backend components, which are separate logical layers running in physically distributed components. Docker is ideally suited to running distributed applications--from n-tier monoliths to modern microservices. Each component runs in its own lightweight container, and Docker plugs them together using standard network protocols. You define and manage multi-container apps like this using Docker Compose.


  Compose is a file format for describing distributed Docker apps, and it’s a tool for managing them. In this chapter we’ll revisit some apps from earlier in the book and see how Docker Compose makes it easier to use them.


  7.1 The anatomy of a Docker Compose file


  You’ve worked with lots of Dockerfiles, and you know that the Dockerfile is a script for packaging an application. But for distributed apps, the Dockerfile is really just for packaging one part of the application. For an app with a frontend website, a backend API, and a database, you could have three Dockerfiles--one for each component. How would you run that app in containers?


  You could use the Docker CLI to start each container in turn, specifying all the options for the app to run correctly. That’s a manual process that is likely to become a point of failure, because if you get any of the options wrong, the applications might not work correctly, or the containers might not be able to communicate. Instead you can describe the application’s structure with a Docker Compose file.


  The Docker Compose file describes the desired state of your app--what it should look like when everything’s running. It’s a simple file format where you place all the options you would put in your docker container run commands into the Compose file. Then you use the Docker Compose tool to run the app. It works out what Docker resources it needs, which could be containers, networks, or volumes--and it sends requests to the Docker API to create them.


  Listing 7.1 shows a full Docker Compose file--you’ll find this in the exercises folder for this chapter in the book’s source code.


  Listing 7.1 A Docker Compose file to run the to-do app from chapter 6


   version: '3.7'  services:        todo-web:        image: diamol/ch06-todo-list        ports:            - "8020:80"        networks:            - app-net   networks:    app-net:        external:              name: nat


  This file describes a simple application with one Docker container plugging into one Docker network. Docker Compose uses YAML, which is a human-readable text format that’s widely used because it translates easily to JSON (which is the standard language for APIs). Spaces are important in YAML--indentation is used to identify objects and the child properties of objects.


  In this example there are three top-level statements:


  
    	 version is the version of the Docker Compose format used in this file. The feature set has evolved over many releases, so the version here identifies which releases this definition works with.


    	 services lists all the components that make up the application. Docker Compose uses the idea of services instead of actual containers, because a service could be run at scale with several containers from the same image.


    	 networks lists all the Docker networks that the service containers can plug into.

  


  You could run this app with Compose, and it would start a single container to get to the desired state. Figure 7.1 shows the architecture diagram of the app’s resources.


  There are a couple of things to look at more closely before we actually run this app. The service called todo-web will run a single container from the diamol/ch06-todo-list image. It will publish port 8020 on the host to port 80 on the container, and it will connect the container to a Docker network referred to as app-net inside the Compose file. The end result will be the same as running docker container run -p 8020:80 --name todo-web --network nat diamol/ch06-todo-list .
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  Figure 7.1 The architecture of a simple Compose file with one service and one network


  Under the service name are the properties, which are a fairly close map to the options in the docker container run command: image is the image to run, ports are the ports to publish, and networks are the networks to connect to. The service name becomes the container name and the DNS name of the container, which other containers can use to connect on the Docker network. The network name in the service is app-net , but under the networks section that network is specified as mapping to an external network called nat . The external option means Compose expects the nat network to already exist, and it won’t try to create it.


  You manage apps with Docker Compose using the docker-compose command line, which is separate from the Docker CLI. The docker-compose command uses different terminology, so you start an app with the up command, which tells Docker Compose to inspect the Compose file and create anything that’s needed to bring the app up to the desired state.


   Try it now Open a terminal and create the Docker network. Then browse to the folder with the Compose file from listing 7.1, and then run the app using the docker-compose command line:


   docker network create nat   cd ./ch07/exercises/todo-list   docker-compose up


  You don’t always need to create a Docker network for Compose apps, and you may already have that nat network from running the exercises in chapter 4, in which case you’ll get an error that you can ignore. If you use Linux containers, Compose can manage networks for you, but if you use Windows containers, you’ll need to use the default network called nat that Docker creates when you install it on Windows. I’m using the nat network, so the same Compose file will work for you whether you’re running Linux or Windows containers.


  The Compose command line expects to find a file called docker-compose.yml in the current directory, so in this case it loads the to-do list application definition. You won’t have any containers matching the desired state for the todo-web service, so Compose will start one container. When Compose runs containers, it collects all the application logs and shows them grouped by containers, which is very useful for development and testing.


  My output from running the previous command is in figure 7.2--when you run it yourself you’ll also see the images being pulled from Docker Hub, but I’d already pulled them before running the command.
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  Figure 7.2 Starting an app using Docker Compose, which creates Docker resources


  Now you can browse to http: / / localhost:8020 and see the to-do list application. It works in exactly the same way as in chapter 6, but Docker Compose gives you a much more robust way to start the app. The Docker Compose file will live in source control alongside the code for the app and the Dockerfiles, and it becomes the single place to describe all the runtime properties of the app. You don’t need to document the image name or the published port in a README file, because it’s all in the Compose file.


  The Docker Compose format records all the properties you need to configure your app, and it can also record other top-level Docker resources like volumes and secrets. This app just has a single service, and even in this case it’s good to have a Compose file that you can use to run the app and to document its setup. But Compose really makes sense when you’re running multi-container apps.


  7.2 Running a multi-container application with Compose


  Back in chapter 4 we built a distributed app that shows an image from NASA’s astronomy picture of the day API. There was a Java frontend website, a REST API written in Go, and a log collector written in Node.js. We ran the app by starting each container in turn, and we had to plug the containers into the same network and use the correct container names so the components could find each other. That’s exactly the sort of brittle approach that Docker Compose fixes for us.


  In listing 7.2 you can see the services section for a Compose file that describes the image gallery application. I’ve removed the network configuration to focus on the service properties, but the services plug into the nat network just like in the to-do app example.


  Listing 7.2 The Compose services for the multi-container image gallery app


   accesslog:    image: diamol/ch04-access-log  iotd:    image: diamol/ch04-image-of-the-day    ports:        - "80"   image-gallery:    image: diamol/ch04-image-gallery    ports:        - "8010:80"     depends_on:        - accesslog          - iotd


  This is a good example of how to configure different types of services. The accesslog service doesn’t publish any ports or use any other properties you would capture from the docker container run command, so the only value recorded is the image name. The iotd service is the REST API--the Compose file records the image name and also publishes port 80 on the container to a random port on the host. The image-gallery service has the image name and a specific published port: 8010 on the host maps to port 80 in the container. It also has a depends_on section saying this service has a dependency on the other two services, so Compose should make sure those are running before it starts this one.
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  Figure 7.3 A more complex Compose file that specifies three services connected to the same network


  Figure 7.3 shows the architecture of this app. I’ve generated the diagrams in this chapter from a tool that reads the Compose file and generates a PNG image of the architecture. That’s a great way to keep your documentation up to date--you can generate the diagram from the Compose file every time there’s a change. The diagram tool runs in a Docker container of course--you can find it on GitHub at https:// github.com/pmsipilot/docker-compose-viz .


  We’ll use Docker Compose to run the app, but this time we’ll run in detached mode. Compose will still collect the logs for us, but the containers will be running in the background so we’ll have our terminal session back, and we can use some more features of Compose.


   Try it now Open a terminal session to the root of your DIAMOL source code, and then navigate to the image gallery folder and run the app:


   cd ./ch07/exercises/image-of-the-day  docker-compose up --detach


  Your output will be like mine in figure 7.4. You can see that the accesslog and iotd services are started before the image-gallery service, because of the dependencies recorded in the Compose file.
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  Figure 7.4 Starting a multi-container app with dependencies specified using Docker Compose


  When the app is running, you can browse to http: / / localhost:8010. It works just like it did in chapter 4, but now you have a clear definition in the Docker Compose file of how the containers need to be configured for them to work together. You can also manage the application as a whole using the Compose file. The API service is effectively stateless, so you can scale it up to run on multiple containers. When the web container requests data from the API, Docker will share those requests across the running API containers.


   Try it now In the same terminal session, use Docker Compose to increase the scale of the iotd service, and then refresh the web page a few times and check the logs of the iotd containers:


   docker-compose up -d --scale iotd=3   # browse to http://localhost:8010 and refresh   docker-compose logs --tail=1 iotd


  You’ll see in the output that Compose creates two new containers to run the image API service, so it now has a scale of three. When you refresh the web page showing the photograph, the web app requests data from the API, and that request could be handled by any of the API containers. The API writes a log entry when it handles requests, which you can see in the container logs. Docker Compose can show you all log entries for all containers, or you can use it to filter the output--the --tail=1 parameter just fetches the last log entry from each of the iotd service containers.


  My output is in figure 7.5--you can see that containers 1 and 3 have been used by the web app, but container 2 hasn’t handled any requests so far.
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  Figure 7.5 Scaling up an application component and checking its logs with Docker Compose


  Docker Compose is now managing five containers for me. I can control the whole app using Compose; I can stop all the containers to save compute resources, and start them all again when I need the app running. But these are normal Docker containers that I can also work with using the Docker CLI. Compose is a separate command-line tool for managing containers, but it uses the Docker API in the same way that the Docker CLI does. You can use Compose to manage your app, but still use the standard Docker CLI to work with containers that Compose created.


   Try it now In the same terminal session, stop and start the app with Docker Compose commands, and then list all running containers with the Docker CLI:


   docker-compose stop   docker-compose start   docker container ls


  Your output will be like mine in figure 7.6. You’ll see that Compose lists individual containers when it stops the app, but it only lists the services when it starts the app again, and the services are started in the correct dependency order. In the container list you’ll see that Compose has restarted the existing containers, rather than creating new ones. All my containers show they were created over 30 minutes ago, but they’ve only been up for a few seconds.
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  Figure 7.6 Stopping and starting multi-container apps with Docker Compose


  There are many more features to Compose--run docker-compose without any options to see the full list of commands--but there’s one really important consideration you need to take in before you go much further. Docker Compose is a client-side tool. It’s a command line that sends instructions to the Docker API based on the contents of the Compose file. Docker itself just runs containers; it isn’t aware that many containers represent a single application. Only Compose knows that, and Compose only knows the structure of your application by looking at the Docker Compose YAML file, so you need to have that file available to manage your app.


  It’s possible to get your application out of sync with the Compose file, such as when the Compose file changes or you update the running app. That can cause unexpected behavior when you return to manage the app with Compose. We’ve already done this ourselves--we scaled up the iotd service to three containers, but that configuration isn’t captured in the Compose file. When you bring the application down and then recreate it, Compose will return it to the original scale.


   Try it now In the same terminal session--because Compose needs to use the same YAML file--use Docker Compose to bring the application down and back up again. Then check the scale by listing running containers:


  docker-compose down  docker-compose up -d  docker container ls


  The down command removes the application, so Compose stops and removes containers--it would also remove networks and volumes if they were recorded in the Compose file and not flagged as external . Then up starts the application, and because there are no running containers, Compose creates all the services--but it uses the app definition in the Compose file, which doesn’t record scale, so the API service starts with one container instead of the three we previously had running.


  You can see that in my output in figure 7.7. The goal here was to restart the app, but we’ve accidentally scaled the API service down as well.


  Docker Compose is simple to use and powerful, but you need to be mindful that it’s a client-side tool, so it’s dependent on good management of the app definition YAML files. When you deploy an app with Compose, it creates Docker resources, but the Docker Engine doesn’t know those resources are related--they’re only an application as long as you have the Compose file to manage them.


  7.3 How Docker plugs containers together


  All the components in a distributed application run in Docker containers with Compose, but how do they communicate with each other? You know that a container is a virtualized environment with its own network space. Each container has a virtual IP address assigned by Docker, and containers plugged into the same Docker network can reach each other using their IP addresses. But containers get replaced during the application life cycle, and new containers will have new IP addresses, so Docker also supports service discovery with DNS.


  DNS is the Domain Name System, which links names to IP addresses. It works on the public internet and on private networks. When you point your browser to blog.sixeyed.com, you’re using a domain name, which gets resolved to an IP address for one of the Docker servers I have hosting my blog. Your machine actually fetches content using the IP address, but you, as the user, work with the domain name, which is much friendlier.


  Docker has its own DNS service built in. Apps running in containers make domain lookups when they try to access other components. The DNS service in Docker performs that lookup--if the domain name is actually a container name, Docker returns the container’s IP address, and the consumer can work directly across the Docker network. If the domain name isn’t a container, Docker passes the request on to the server where Docker is running, so it will make a standard DNS lookup to find an IP address on your organization’s network or the public internet.


  You can see that in action with the image-gallery app. The response from Docker’s DNS service will contain a single IP address for services running in a single container, or multiple IP addresses if the service is running at scale across multiple containers.
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  Figure 7.7 Removing and recreating an app resets it to the state in the Docker Compose file.


   Try it now In the same terminal session, use Docker Compose to bring the application up with the API running at a scale of three. Then connect to a session in the web container--choose the Linux or Windows command to run--and perform a DNS lookup:


   docker-compose up -d --scale iotd=3   # for Linux containers:  docker container exec -it image-of-the-day_image-gallery_1 sh   # for Windows containers:  docker container exec -it image-of-the-day_image-gallery_1 cmd   nslookup accesslog   exit


   nslookup is a small utility that is part of the base image for the web application--it performs a DNS lookup for the name you provide, and it prints out the IP address. My output is in figure 7.8--you can see there’s an error message from nslookup , which you can ignore (that’s to do with the DNS server itself), and then the IP address for the container. My accesslog container has the IP address 172.24.0.2 .
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  Figure 7.8 Scaling a service with Docker Compose and performing DNS lookups


  Containers plugged into the same Docker network will get IP addresses in the same network range, and they connect over that network. Using DNS means that when your containers get replaced and the IP address changes, your app still works because the DNS service in Docker will always return the current container’s IP address from the domain lookup.


  You can verify that by manually removing the accesslog container using the Docker CLI, and then bringing the application back up again using Docker Compose. Compose will see there’s no accesslog container running, so it will start a new one. That container may have a new IP address from the Docker network--depending on other containers being created--so when you run a domain lookup, you may see a different response.


   Try it now Still in the same terminal session, use the Docker CLI to remove the accesslog container, and then use Docker Compose to bring the app back to the desired state. Then connect to the web container again, using sh in Linux or cmd in Windows, and run some more DNS lookups:


   docker container rm -f image-of-the-day_accesslog_1  docker-compose up -d --scale iotd=3   # for Linux containers:  docker container exec -it image-of-the-day_image-gallery_1 sh   # for Windows containers:  docker container exec -it image-of-the-day_image-gallery_1 cmd   nslookup accesslog   nslookup iotd   exit


  You can see my output in figure 7.9. In my case there were no other processes creating or removing containers, so the same IP address 172.24.0.2 got used for the new accesslog container. In the DNS lookup for the iotd API, you can see that three IP addresses are returned, one for each of the three containers in the service.


  DNS servers can return multiple IP address for a domain name. Docker Compose uses this mechanism for simple load-balancing, returning all the container IP addresses for a service. It’s up to the application that makes the DNS lookup how it processes multiple responses; some apps take a simplistic approach of using the first address in the list. To try to provide load-balancing across all the containers, the Docker DNS returns the list in a different order each time. You’ll see that if you repeat the nslookup call for the iotd service--it’s a basic way of trying to spread traffic around all the containers.


  Docker Compose records all the startup options for your containers, and it takes care of communication between containers at runtime. You can also use it to set up the configuration for your environments.
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  Figure 7.9 Services scale with multiple containers--every container’s IP address is returned in a lookup.


  7.4 Application configuration in Docker Compose


  The to-do app from chapter 6 can be used in different ways. You can run it as a single container, in which case it stores data in a SQLite database--which is just a file inside the container. You saw in chapter 6 how to use volumes to manage that database file. SQLite is fine for small projects, but larger apps will use a separate database, and the to-do app can be configured to use a remote Postgres SQL database instead of local SQLite.


  Postgres is a powerful and popular open source relational database. It works nicely in Docker, so you can run a distributed application where the app is running in one container and the database is in another container. The Docker image for the to-do app has been built in line with the guidance in this book, so it packages a default set of configuration for the dev environment, but config settings can be applied so they work with other environments. We can apply those config settings using Docker Compose.


  Take a look at the services for the Compose file in listing 7.3--these specify a Postgres database service and the to-do application service.


  Listing 7.3 The Compose services for the to-do app with a Postgres database


   services:         todo-db:        image: diamol/postgres:11.5        ports:            - "5433:5432"        networks:            - app-net     todo-web:        image: diamol/ch06-todo-list        ports:            - "8020:80"        environment:            - Database:Provider=Postgres        depends_on:            - todo-db        networks:            - app-net        secrets:            - source: postgres-connection                  target: /app/config/secrets.json


  The specification for the database is straightforward--it uses the diamol/postgres:11.5 image, publishes the standard Postgres port 5342 in the container to port 5433 on the host, and uses the service name todo-db , which will be the DNS name for the service. The web application has some new sections to set up configuration:


  
    	 environment sets up environment variables that are created inside the container. When this app runs, there will be an environment variable called Database:Provider set inside the container, with the value Postgres .


    	 secrets can be read from the runtime environment and populated as files inside the container. This app will have a file at /app/config/secrets.json with the contents of the secret called postgres-connection .

  


  Secrets are usually provided by the container platform in a clustered environment--that could be Docker Swarm or Kubernetes. They are stored in the cluster database and can be encrypted, so they’re useful for sensitive configuration data like database connection strings, certificates, or API keys. On a single machine running Docker, there is no cluster database for secrets, so with Docker Compose you can load secrets from files. There’s a secrets section at the end of this Compose file, shown in listing 7.4.


  Listing 7.4 Loading secrets from local files in Docker Compose


   secrets:    postgres-connection:          file: ./config/secrets.json


  This tells Docker Compose to load the secret called postgres-connection from the file on the host called secrets.json . This scenario is like the bind mounts we covered in chapter 6--in reality the file on the host gets surfaced into the container. But defining it as a secret gives you the option of migrating to a real, encrypted secret in a clustered environment.


  Plugging app configuration into the Compose file lets you use the same Docker images in different ways and be explicit about the settings for each environment. You can have separate Compose files for your development and test environments, publishing different ports and triggering different features of the app. This Compose file sets up environment variables and secrets to run the to-do app in Postgres mode and provide it with the details to connect to the Postgres database.


  When you run the app, you’ll see it behaves in the same way, but now the data is stored in a Postgres database container that you can manage separately from the app.


   Try it now Open a terminal session at the root of the code for the book, and switch to the directory for this exercise. In that directory you’ll see the Docker Compose file and also the JSON file that contains the secret to load into the application container. Start the app using docker-compose up in the usual way:


   cd ./ch07/exercises/todo-list-postgres   # for Linux containers:  docker-compose up -d   # OR for Windows containers (which use different file paths):   docker-compose -f docker-compose-windows.yml up -d   docker-compose ps


  Figure 7.10 shows my output. There’s nothing new in there except the docker-compose ps command, which lists all running containers that are part of this Compose application.
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  Figure 7.10 Running a new application with Docker Compose and listing its containers


  You can browse to this version of the to-do app at http: / / localhost:8030. The functionality is the same, but now the data is being saved in the Postgres database container. You can check that with a database client--I use Sqlectron, which is a fast, open source, cross-platform UI for connecting to Postgres, MySQL, and SQL Server databases. The address of the server is localhost:5433 , which is the port published by the container; the database is called todo , the username is postgres , and there is no password. You can see in figure 7.11 that I’ve added some data to the web app, and I can query it in Postgres.


  Separating the application package from the runtime configuration is a key benefit of Docker. Your application image will be produced by your build pipeline, and that same image will progress through the test environments until it is ready for production. Each environment will apply its own config settings, using environment variables or bind mounts or secrets--that are easy to capture in Docker Compose files. In every environment, you’re working with the same Docker images, so you can be confident you’re releasing the exact same binaries and dependencies into production that have passed the tests in all other environments.
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  Figure 7.11 Running the to-do app in containers with a Postgres database and querying the data


  7.5 Understanding the problem Docker Compose solves


  Docker Compose is a very neat way of describing the setup for complex distributed apps in a small, clear file format. The Compose YAML file is effectively a deployment guide for your application, but it’s miles ahead of a guide written as a Word document. In the old days those Word docs described every step of the application release, and they ran to dozens of pages filled with inaccurate descriptions and out-of-date information. The Compose file is simple and it’s actionable--you use it to run your app, so there’s no risk of it going out of date.


  Compose is a useful part of your toolkit when you start making more use of Docker containers. But it’s important to understand exactly what Docker Compose is for, and what its limitations are. Compose lets you define your application and apply the definition to a single machine running Docker. It compares the live Docker resources on that machine with the resources described in the Compose file, and it will send requests to the Docker API to replace resources that have been updated and create new resources where they are needed.


  You get the desired state of your application when you run docker-compose up , but that’s where Docker Compose ends. It is not a full container platform like Docker Swarm or Kubernetes--it does not continually run to make sure your application keeps its desired state. If containers fail or if you remove them manually, Docker Compose will not restart or replace them until you explicitly run docker-compose up again. Figure 7.12 gives you a good idea of where Compose fits into the application life cycle.
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  Figure 7.12 Where you use Docker Compose in the application life cycle from development to production


  That’s not to say Docker Compose isn’t suitable for production. If you’re just starting with Docker and you’re migrating workloads from individual VMs to containers, it might be fine as a starting point. You won’t get high availability, load balancing, or failover on that Docker machine, but you didn’t get that on your individual app VMs either. You will get a consistent set of artifacts for all your applications--everything has Dockerfiles and Docker Compose files--and you’ll get consistent tools to deploy and manage your apps. That might be enough to get you started before you look into running a container cluster.


  7.6 Lab


  There are some useful features in Docker Compose that add reliability to running your app. In this lab I’d like you to create a Compose definition to run the to-do web app more reliably in a test environment:


  
    	The application containers will restart if the machine reboots, or if the Docker engine restarts.


    	The database container will use a bind mount to store files, so you can bring the app down and up again but retain your data.


    	The web application should listen on standard port 80 for test.

  


  Just one hint for this one:


  
    	You can find the Docker Compose file specification in Docker’s reference documentation at https://docs.docker.com/compose/compose-file . That defines all the settings you can capture in Compose.

  


  My sample solution is on the book’s GitHub repository as always. Hopefully this one isn’t too complex, so you won’t need it: https://github.com/sixeyed/diamol/blob/ master/ch07/lab/README.md .


  
    8 Supporting reliability with health checks and dependency checks

  


  We’re on a journey toward making software production-ready in containers. You’ve already seen how straightforward it is to package apps in Docker images, run them in containers, and define multi-container apps with Docker Compose. In production you’ll run your apps in a container platform like Docker Swarm or Kubernetes, and those platforms have features that help you deploy self-healing apps. You can package your containers with information the platform uses to check if the application inside the container is healthy. If the app stops working correctly, the platform can remove a malfunctioning container and replace it with a new one.


  In this chapter you’ll learn how to package those checks into your container images to help the platform keep your app online.


  8.1 Building health checks into Docker images


  Docker monitors the health of your app at a basic level every time you run a container. Containers run a specific process when they start, which could be the Java or .NET Core runtime, a shell script, or an application binary. Docker checks that the process is still running, and if it stops, the container goes into the exited state.


  That gives you a basic health check that works across all environments. Developers can see that their app is unhealthy if the process fails and the container exits. In a clustered environment, the container platform can restart an exited container or create a replacement container. But it’s a very basic check--it ensures the process is running, but not that the app is actually healthy. A web app in a container could hit maximum capacity and start returning HTTP 503 “Service Unavailable” responses to every request, but as long as the process in the container is still running, Docker thinks the container is healthy, even though the app is stalled.


  Docker gives you a neat way to build a real application health check right into the Docker image, just by adding logic to the Dockerfile. We’ll do that with a simple API container, but first we’ll run it without any health checks to be sure we understand the problem.


   Try it now Run a container that hosts a simple REST API that returns a random number. The app has a bug, so after three calls to the API, it becomes unhealthy and every subsequent call fails. Open a terminal, run the container, and use the API--this is a new image, so you’ll see Docker pull it when you run the container:


   # start the API container  docker container run -d -p 8080:80 diamol/ch08-numbers-api   # repeat this three times - it returns a random number  curl http://localhost:8080/rng  curl http://localhost:8080/rng  curl http://localhost:8080/rng   # from the fourth call onwards, the API always fails  curl http://localhost:8080/rng   # check the container status  docker container ls


  You can see my output in figure 8.1. The API behaves correctly for the first three calls, and then it returns an HTTP 500 “Internal Server Error” response. The bug in the code means it will always return a 500 from now on. (Actually it’s not a bug; the app is written deliberately like that. The source code is in the repo for chapter 8 if you want to see how it works.) In the container list, the API container has the status Up . The process inside the container is still running, so it looks good as far as Docker is concerned. The container runtime has no way of knowing what’s happening inside that process and whether the app is still behaving correctly.
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  Figure 8.1 Docker checks the app process, so the container is up even if the app is in a failed state.


  Enter the HEALTHCHECK instruction, which you can add to a Dockerfile to tell the runtime exactly how to check whether the app in the container is still healthy. The HEALTHCHECK instruction specifies a command for Docker to run inside the container, which will return a status code--the command can be anything you need to check if your app is healthy. Docker will run that command in the container at a timed interval. If the status code says everything is good, then the container is healthy. If the status code is a failure several times in a row, then the container is marked as unhealthy.


  Listing 8.1 shows the HEALTHCHECK command in a new Dockerfile for the random number API, which I’ll build as version 2 (the full file is in the source for the book at ch08/exercises/numbers/numbers-api/Dockerfile.v2 ). This health check uses a curl command like I did on my host, but this time it runs inside the container. The /health URL is another endpoint in the application that checks if the bug has been triggered; it will return a 200 “OK” status code if the app is working and a 500 “Internal Server Error” when it’s broken.


  Listing 8.1 The HEALTHCHECK instruction in a Dockerfile


   FROM diamol/dotnet-aspnet   ENTRYPOINT ["dotnet", "/app/Numbers.Api.dll"]  HEALTHCHECK CMD curl --fail http://localhost/health   WORKDIR /app  COPY --from=builder /out/ .


  The rest of the Dockerfile is pretty straightforward. This is a .NET Core application, so the ENTRYPOINT runs the dotnet command, and it’s that dotnet process that Docker monitors to check if the application is still running. The health check makes an HTTP call to the /health endpoint, which the API provides to test if the app is healthy. Using the --fail parameter means the curl command will pass the status code on to Docker--if the request succeeds, it returns the number 0, which Docker reads as a successful check. If it fails, it returns a number other than 0, which means the health check failed.


  We’ll build a new version of that image so you can see how the build command works with a different file structure. Usually you have a Dockerfile in your application source folder, and Docker finds that and runs the build. In this case, the Dockerfile has a different name and is in a separate folder from the source code, so you need to explicitly specify the path in the build command.


   Try it now Run a terminal and browse to the folder where you have the source code for the book. Then build the new image with a v2 tag, using the v2 Dockerfile:


   # browse to the root path, which has folders for source code and Dockerfiles:  cd ./ch08/exercises/numbers   # build the image using the -f flag to specify the path to the Dockerfile:  docker image build -t diamol/ch08-numbers-api:v2 -f ./numbers-api/Dockerfile.v2 .


  Once the image is built, you’re ready to run the app with a health check. You can configure how often the health check runs and how many failed checks mean the app is unhealthy. The default is to run every 30 seconds, and for three failures in a row to trigger the unhealthy status. Version v2 of the API image has the health check built in, so when you repeat the test, you’ll find the health of the container gets reported.


   Try it now Run the same test but using the v2 image tag, and leave some time between the commands to let Docker fire the health checks inside the container.


   # start the API container, v2  docker container run -d -p 8081:80 diamol/ch08-numbers-api:v2   # wait 30 seconds or so and list the containers  docker container ls   # repeat this four times - it returns three random numbers and then fails  curl http://localhost:8081/rng  curl http://localhost:8081/rng  curl http://localhost:8081/rng  curl http://localhost:8081/rng   # now the app is in a failed state - wait 90 seconds and check  docker container ls


  My output is in figure 8.2. You can see that the new version of the API container initially shows a healthy status--if images have a health check built in, Docker shows the status of the health check for running containers. Some time after I’ve triggered the bug, the container shows as unhealthy.
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  Figure 8.2 A broken app shows as an unhealthy container, but the container is still up.


  That unhealthy status is published as an event from Docker’s API, so the platform running the container is notified and can take action to fix the application. Docker also records the result of the most recent health checks, which you can see when you inspect the container. You’ve already seen the output of docker container inspect , which shows everything Docker knows about the container. If there’s a health check running, that gets shown too.


   Try it now We have two API containers running and we didn’t give a name when we created them, but we can find the ID of the most recently created container using container ls with the --last flag. You can feed that into container inspect to see the status of the latest container:


  docker container inspect $(docker container ls --last 1 --format '{{.ID}}')


  Pages of JSON data are returned here, and if you scroll to the State field, you’ll see there’s a Health section. That contains the current status of the health check, the “failing streak,” which is the number of successive failures, and a log of the recent health check calls. In figure 8.3 you can see an extract of my container’s state. The health check is in a failing streak of six, which triggers the container to be in an unhealthy state, and you can see the logs from the health check commands, which fail when they get an HTTP status result of 500.
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  Figure 8.3 Containers with a health check show the health status of the app and the health check logs.


  The health check is doing what it should: testing the application inside the container and flagging up to Docker that the app is no longer healthy. But you can also see in figure 8.3 that my unhealthy container has a “running” status, so it’s still up even though Docker knows it is not working correctly. Why hasn’t Docker restarted or replaced that container?


  The simple answer is that Docker can’t safely do that, because the Docker Engine is running on a single server. Docker could stop and restart that container, but that would mean downtime for your app while it was being recycled. Or Docker could remove that container and start a new one from the same setup, but maybe your app writes data inside the container, so that would mean downtime and a loss of data. Docker can’t be sure that taking action to fix the unhealthy container won’t make the situation worse, so it broadcasts that the container is unhealthy but leaves it running. The health check continues too, so if the failure is temporary and the next check passes, the container status flips to healthy again.


  Health checks become really useful in a cluster with multiple servers running Docker being managed by Docker Swarm or Kubernetes. Then the container platform is notified if the container is unhealthy and it can take action. Because there is additional capacity in a cluster, a replacement container can be started while the unhealthy one is still running, so there shouldn’t be any application downtime.


  8.2 Starting containers with dependency checks


  The health check is an ongoing test that helps the container platform keep your application running. A cluster with multiple servers can deal with temporary failures by starting new containers, so there’s no loss of service even if some of your containers stop responding. But running across a cluster brings new challenges for distributed apps, because you can no longer control the startup order for containers that may have dependencies on each other.


  Our random number generator API has a website to go with it. The web app runs in its own container and uses the API container to generate random numbers. On a single Docker server you can ensure that the API container is created before the web container, so when the web app starts it has all its dependencies available. You can even capture that explicitly with Docker Compose. In a clustered container platform, however, you can’t dictate the startup order of the containers, so the web app might start before the API is available.


  What happens then depends on your application. The random number app doesn’t handle it very well.


   Try it now Remove all running containers, so now you have no API container. Then run the web app container and browse to it. The container is up and the app is available, but you’ll find it doesn’t actually work.


   docker container rm -f $(docker container ls -aq)   docker container run -d -p 8082:80 diamol/ch08-numbers-web  docker container ls


  Now browse to http: / / localhost:8082. You’ll see a simple web app that looks OK, but if you click the random number button, you’ll see the error shown in figure 8.4.
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  Figure 8.4 Apps that don’t verify that their dependencies are available may look OK but be in a failed state.


  This is exactly what you don’t want to happen. The container looks fine, but the app is unusable because its key dependency is unavailable. Some apps may have logic built into them to verify that the dependencies they need are there when they start, but most apps don’t, and the random number web app is one of those. It assumes the API will be available when it’s needed, so it doesn’t do any dependency checking.


  You can add that dependency check inside the Docker image. A dependency check is different from a health check--it runs before the application starts and makes sure everything the app needs is available. If everything is there, the dependency check finishes successfully and the app starts. If the dependencies aren’t there, the check fails and the container exits. Docker doesn’t have a built-in feature like the HEALTHCHECK instruction for dependency checks, but you can put that logic in the startup command.


  Listing 8.2 shows the final application stage of a new Dockerfile for the web application (the full file is at ch08/exercises/numbers/numbers-web/Dockerfile.v2 )--the CMD instruction verifies that the API is available before it starts the app.


  Listing 8.2 A Dockerfile with a dependency check in the startup command


   FROM diamol/dotnet-aspnet   ENV RngApi:Url=http://numbers-api/rng   CMD curl --fail http://numbers-api/rng && \        dotnet Numbers.Web.dll   WORKDIR /app   COPY --from=builder /out/ .


  This check uses the curl tool again, which is part of the base image. The CMD instruction runs when a container starts, and it makes an HTTP call to the API, which is a simple check to make sure it’s available. The double-ampersand, && , works the same way in Linux and Windows command shells--it will run the command on the right if the command on the left succeeds.


  If my API is available, the curl command will succeed and the application gets launched. It’s a .NET Core web application, so Docker will monitor the dotnet process to verify that the app is still alive (there’s no health check in this Dockerfile). If the API is unavailable, the curl command will fail, the dotnet command won’t get run, and nothing happens in the container so it exits.


   Try it now Run a container from the v2 tag of the random number web image. There’s still no API container, so when this container starts it will fail and exit:


   docker container run -d -p 8084:80 diamol/ch08-numbers-web:v2  docker container ls --all


  You can see my output in figure 8.5. The v2 container exited just a few seconds after it started because the curl command failed to find the API. The original web app container is still running, and it’s still unusable.
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  Figure 8.5 A container with dependency checks at startup exits if the checks fail.


  It’s counterintuitive, but in this scenario it’s better to have an exited container than a running container. This is fail-fast behavior, and it’s what you want when you’re running at scale. When a container exits, the platform can schedule a new container to come up and replace it. Maybe the API container takes a long time to start up, so it’s not available when the web container runs; in that case the web container exits, a replacement is scheduled, and by the time it starts the API is up and running.


  With health and dependency checks, we can package an app to be a good citizen in a container platform. The checks we’ve used so far have been very basic HTTP tests using curl. That proves out what we want to do, but it’s a simplistic approach, and it’s better not to rely on an external tool for your checks.


  8.3 Writing custom utilities for application check logic


  Curl is a very useful tool for testing web apps and APIs. It’s cross-platform so it works on Linux and Windows, and it is part of the .NET Core runtime images that I’ve used as the base for my golden images, so I know it will be there to run my checks. I don’t actually need curl in the image for my app to run though, and a security review might ask for it to be removed.


  We covered that in chapter 4--your Docker image should have the bare minimum in it for your application to run. Any extra tools increase the image size, and they also increase the frequency of updates and the security attack surface. So although curl is a great tool for getting started with container checks, it’s better to write a custom utility for your checks using the same language that your application uses--Java for Java apps, Node.js for Node.js apps, and so on.


  There are a whole lot of advantages to this:


  
    	You reduce the software requirements in your image--you don’t need to install any extra tools, because everything the check utility needs to run is already there for the application.


    	You can use more complex conditional logic in your checks with retries or branches, which are harder to express in shell scripts, especially if you’re publishing cross-platform Docker images for Linux and Windows.


    	Your utility can use the same application configuration that your app uses, so you don’t end up specifying settings like URLs in several places, with the risk of them getting out of sync.


    	You can execute any tests you need, checking database connections or file paths for the existence of certificates that you’re expecting the platform to load into the container--all using the same libraries your app uses.

  


  Utilities can also be made generic to work in multiple situations. I’ve written a simple HTTP check utility in .NET Core that I can use for the health check in the API image and the dependency check in the web image. There are multi-stage Dockerfiles for each app where one stage compiles the application, another stage compiles the check utility, and the final stage copies in the app and the utility. Figure 8.6 shows how that looks.
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  Figure 8.6 Using multi-stage builds to compile and package utilities alongside the application


  The final stage of Dockerfile.v3 for the API is shown in listing 8.3. The command for the health check now uses the check utility, which is a .NET Core app so the check no longer needs curl to be installed in the image.


  Listing 8.3 Using a custom utility for a health check to remove the need for curl


   FROM diamol/dotnet-aspnet  ENTRYPOINT ["dotnet", "Numbers.Api.dll"]  HEALTHCHECK CMD ["dotnet", "Utilities.HttpCheck.dll", "-u", "http://localhost/health"]  WORKDIR /app  COPY --from=http-check-builder /out/ .  COPY --from=builder /out/ .


  The behavior of the new health check is pretty much the same; the only difference from the curl version is that you won’t see as much verbose logging in the output when you inspect the container. There’s just a single line for each check saying whether it was a success or a failure. The app should still report as healthy initially; it will get flagged as unhealthy after you’ve made a few calls to the API.


   Try it now Remove all your existing containers and run version 3 of the random number API. This time we’ll specify an interval for the health check so it triggers more quickly. Check that the container is listed as healthy, and then use the API and check that the container flips to unhealthy:


   # clear down existing containers  docker container rm -f $(docker container ls -aq)   # start the API container, v3  docker container run -d -p 8080:80 --health-interval 5s diamol/ch08-numbers-api:v3   # wait five seconds or so and list the containers  docker container ls   # repeat this four times - it returns three random numbers and then fails  curl http://localhost:8080/rng  curl http://localhost:8080/rng  curl http://localhost:8080/rng  curl http://localhost:8080/rng   # now the app is in a failed state - wait 15 seconds and check again  docker container ls


  Figure 8.7 shows my output. The behavior is the same as version 2, with the health check failing once the bug in the API is triggered, so the HTTP check utility is working correctly.
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  Figure 8.7 A container health check that uses a utility tool packaged into the Docker image


  The HTTP check utility has lots of options that make it flexible for different scenarios. In Dockerfile.v3 for the web app, I use the same utility for the dependency check at startup, to see if the API is available.


  Listing 8.4 shows the final stage of the Dockerfile. In this case I use the -t flag to set how long the utility should wait for a response, and the -c flag tells the utility to load the same config files as the application and to get the URL for the API from the app config.


  Listing 8.4 Using a utility for a dependency check at container startup


   FROM diamol/dotnet-aspnet   ENV RngApi:Url=http://numbers-api/rng   CMD dotnet Utilities.HttpCheck.dll -c RngApi:Url -t 900 && \        dotnet Numbers.Web.dll   WORKDIR /app   COPY --from=http-check-builder /out/ .  COPY --from=builder /out/ .


  Again, this removes the requirement for curl in the application image, but the behavior is much the same with the HTTP utility in the startup command.


   Try it now Run version 3 of the web app, and you’ll see that the container exits almost immediately because the HTTP check utility fails when it makes the API check:


   docker container run -d -p 8081:80 diamol/ch08-numbers-web:v3  docker container ls --all


  Your output will be like mine in figure 8.8. You’ll see that the API container is still running, but it’s still unhealthy. The web container didn’t find it because it’s looking for the DNS name numbers-api , and we didn’t specify that name when we ran the API container. If we had used that name for the API container, the web app would have connected and been able to use it, although it would still show an error because the bug in the API has been triggered, and it isn’t responding.


  One other benefit of writing your own checks in a utility is that it makes your image portable. Different container platforms have different ways of declaring and using health checks and dependency checks, but if you have all the logic you need in a utility in your image, you can have it work in the same way on Docker Compose, Docker Swarm, and Kubernetes.


  8.4 Defining health checks and dependency checks in Docker Compose


  If you’re not convinced that it’s a good idea for containers to fail and exit when their dependencies aren’t available, you’re about to see why it works. Docker Compose can go some of the way toward repairing unreliable applications, but it won’t replace unhealthy containers for the same reasons that Docker Engine won’t: you’re running on a single server, and the fix might cause an outage. But it can set containers to restart if they exit, and it can add a health check if there isn’t one already in the image.
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  Figure 8.8 Using a utility packaged into the Docker image as the dependency check tool


  Listing 8.5 shows the random number API declared as a service in a Docker Compose file (the full file is in ch08/exercises/numbers/docker-compose.yml ). It specifies the v3 container image, which uses the HTTP utility for its health check, and adds settings to configure how the health check should work.


  Listing 8.5 Specifying health check parameters in a Docker Compose file


     numbers-api:        image: diamol/ch08-numbers-api:v3        ports:            - "8087:80"        healthcheck:            interval: 5s            timeout: 1s            retries: 2            start_period: 5s        networks:             - app-net


  You have fine-grained control over the health check. I’m using the actual health check command defined in the Docker image but using custom settings for how it runs:


  
    	 interval is the time between checks--in this case five seconds.


    	 timeout is how long the check should be allowed to run before it’s considered a failure.


    	 retries is the number of consecutive failures allowed before the container is flagged as unhealthy.


    	 start_period is the amount of time to wait before triggering the health check, which lets you give your app some startup time before health checks run.

  


  These settings will probably be different for each app and each environment--there’s a balance between finding out quickly that your app has failed and allowing for temporary faults so you don’t trigger false alarms about unhealthy containers. My setup for the API is quite aggressive; it costs CPU and memory to run health checks, so in a production environment you’d likely run with a longer interval.


  You can also add a health check in your Compose file for containers that don’t have one declared in the image. Listing 8.6 shows the service for the web app in the same Docker Compose file, and here I’m adding a health check for the service. I’m specifying the same set of options I use for the API service, but there’s also the test field, which gives Docker the health check command to run.


  Listing 8.6 Adding a health check in Docker Compose


     numbers-web:        image: diamol/ch08-numbers-web:v3        restart: on-failure        ports:            - "8088:80"        healthcheck:            test: ["CMD", "dotnet", "Utilities.HttpCheck.dll", "-t", "150"]            interval: 5s            timeout: 1s            retries: 2            start_period: 10s        networks:             - app-net


  It’s good to add a health check to all containers, but this example comes together with the dependency check in the image and the restart: on-failure setting, which means that if the container exits unexpectedly, Docker will restart it (there’s one of the answers to the chapter 7 lab, if you haven’t done it yet). There’s no depends_on setting, so Docker Compose could start the containers in any order. If the web container starts before the API container is ready, the dependency check will fail and the web container will exit. Meanwhile, the API container will have started, so when the web app container is restarted, the dependency check will succeed and the app will be fully functioning.


   Try it now Clear your running containers and start the random-number app with Docker Compose. List your containers to see if the web app did start first and then restart:


   # browse to the Compose file  cd ./ch08/exercises/numbers   # clear down existing containers  docker container rm -f $(docker container ls -aq)   # start the app  docker-compose up -d   # wait five seconds or so and list the containers  docker container ls   # and check the web app logs  docker container logs numbers_numbers-web_1


  My output is in figure 8.9, and yours should be very similar. Compose creates both containers at the same time, because no dependencies are specified. While the API container is starting up--and before the app is ready to handle requests--the web container’s dependency check runs. You can see in my logs that the HTTP check returns a success code, but it takes 3176 ms, and the check is set to require a response within 150 ms, so the check fails and the container exits. The web service is configured to restart on failure, so that same container gets started again. This time the API check gets a success status code in 115 ms, so the check passes and the app is in a working state.
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  Figure 8.9 Docker Compose adds resilience--the web container is restarted after its first check fails.


  Browse to http://localhost:8088 and you can finally get a random number through the web app. At least, you can click the button three times and get a number--on the fourth you’ll trigger the API bug, and you’ll just get errors after that. Figure 8.10 shows one of the rare successes.
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  Figure 8.10 The app is finally working correctly, with health and dependency checks in the containers.


  You might ask, why bother building a dependency check into the container startup when Docker Compose can do it for you with the depends_on flag? The answer is that Compose can only manage dependencies on a single machine, and the startup behavior of your app on a production cluster is far less predictable.


  8.5 Understanding how checks power self-healing apps


  Building your app as a distributed system with lots of small components increases your flexibility and agility, but it does make management more complicated. There will be lots of dependencies between components, and it’s tempting to want to declare the order in which components get started so you can model the dependencies. But it’s really not a great idea to do that.


  On a single machine I can tell Docker Compose that my web container depends on my API container, and it will start them in the correct order. In production I could be running Kubernetes on a dozen servers, and I might need 20 API containers and 50 web containers. If I model the startup order, will the container platform start all 20 API containers first, before starting any web containers? What if 19 containers start just fine, but the twentieth container has a problem and takes 5 minutes to start? I have no web containers, so my app isn’t running, but all 50 web containers could be running and it would work fine with 1 API container unavailable.


  This is where dependency checks and health checks come in. You don’t require the platform to guarantee the startup order--you let it spin up as many containers on as many servers as quickly as it can. If some of those containers can’t reach their dependencies, they fail quickly and get restarted or replaced with other containers. It might take a few minutes of shuffling before a large app is running at 100% service, but during those minutes the app will have been online and serving users. Figure 8.11 shows an example of the life cycle of a container in a production cluster.
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  Figure 8.11 Self-healing applications in a production cluster--containers can be restarted or replaced.


  The idea of self-healing apps is that any transient failures can be dealt with by the platform. If your app has a nasty bug that causes it to run out of memory, the platform will shut down the container and replace it with a new one that has a fresh allocation of memory. It doesn’t fix the bug, but it keeps the app working correctly.


  You do need to be careful with your checks though. Health checks run periodically, so they shouldn’t do too much work. You need to find the balance so checks are testing that key parts of your app are working without taking too long to run or using too much compute resource. Dependency checks only run at startup, so you don’t need to be too concerned about the resources they use, but you need to be careful what you check. Some dependencies are out of your control, and if the platform can’t fix things, it won’t be helpful if your containers fail.


  Working out the logic that goes in your checks is the hard part. Docker makes it easy to capture those checks and execute them for you, and if you get them right, your container platform will keep your app running for you.


  8.6 Lab


  Some applications use resources consistently, so that the initial dependency check and the ongoing health check are testing the same thing. That’s the case with this lab. It’s an app that simulates a memory hog--it just keeps allocating and holding on to more memory as long as its running. It’s a Node.js app and it needs some checks:


  
    	At startup it should check that there’s enough memory for it to work; if not, it should exit.


    	During runtime it should check every 5 seconds to see if it has allocated more memory than it is allowed; if it has, it needs to flag that it’s unhealthy.


    	The test logic is already written in the memory-check.js script. It just needs to be wired into the Dockerfile.


    	The scripts and the initial Dockerfile are in the source folder ch08/lab .

  


   Note The app doesn’t really allocate any memory. Memory management in containers is complicated by different environments--Docker Desktop on Windows behaves differently from Docker Community Edition on Linux. For this lab, the app just pretends to use memory.


  This lab is pretty straightforward. I’ll just point out that Node.js apps are not compiled, so you don’t need multiple stages. My sample is in the same directory, called Dockerfile.solution , and you’ll find the write-up in the book’s GitHub repository: https://github.com/sixeyed/diamol/blob/master/ch08/lab/README.md .


  
    9 Adding observability with containerized monitoring

  


  Autonomous applications scale themselves up and down to meet incoming traffic, and they heal themselves when there are intermittent faults. It sounds too good to be true--and it probably is. The container platform can do a lot of the operations work for you if you build your Docker images with health checks, but you still need ongoing monitoring and alerting so humans can get involved when things go badly wrong. If you don’t have any insight into your containerized application, that’s going to be the number one thing that stops you going to production.


  Observability is a critical piece of the software landscape when you’re running applications in containers--it tells you what your applications are doing and how well they’re performing, and it can help you pinpoint the source of problems. In this chapter you’ll learn how to use a well-established approach to monitoring with Docker: exposing metrics from your application containers and using Prometheus to collect them and Grafana to visualize them in user-friendly dashboards. These tools are open source and cross-platform, and they run in containers alongside your application. That means you get the same insight into your application performance in every environment, from development to production.


  9.1 The monitoring stack for containerized applications


  Monitoring is different when apps are running in containers. In a traditional environment, you might have a monitoring dashboard showing a list of servers and their current utilization--disk space, memory, CPU--and alerts to tell you if any become overworked and are likely to stop responding. Containerized apps are more dynamic--they may run across dozens or hundreds of containers that are short-lived and are created or removed by the container platform.


  You need a monitoring approach that is container-aware, with tools that can plug into the container platform for discovery and find all the running applications without a static list of container IP addresses. Prometheus is an open source project that does just that. It’s a mature product that is overseen by the Cloud Native Computing Foundation (the same foundation behind Kubernetes and the containerd container runtime). Prometheus runs in a Docker container, so you can easily add a monitoring stack to your applications. Figure 9.1 shows what that stack looks like.
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  Figure 9.1 Running Prometheus in a container to monitor other containers and Docker itself


  Prometheus brings one very important aspect to monitoring: consistency. You can export the same type of metrics for all your applications, so you have a standard way to monitor them whether they’re .NET apps in Windows containers or Node.js apps in Linux containers. You only have one query language to learn, and you can apply it for your whole application stack.


  Another good reason for using Prometheus is that the Docker Engine can also export metrics in that format, which gives you insight into what’s happening in the container platform too. You need to explicitly enable Prometheus metrics in your Docker Engine configuration--you saw how to update the config in chapter 5. You can edit the daemon.json file directly in C:\ProgramData\docker\config on Windows, or /etc/docker on Linux. Alternatively, on Docker Desktop you can right-click the whale icon, choose Settings, and edit the configuration in the Daemon section.


   Try it now Open your configuration settings and add two new values:


       "metrics-addr" : "0.0.0.0:9323",      "experimental": true


  These settings enable monitoring and publish metrics on port 9323.


  You can see my full configuration file in figure 9.2.
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  Figure 9.2 Configuring the Docker Engine to export metrics in Prometheus format


  Docker Engine metrics are currently an experimental feature, which means the details it provides could change. But it’s been an experimental feature for a long time, and it’s been stable. It’s worth including in your dashboards because it adds another layer of detail to the overall health of your system. Now that you have metrics enabled, you can browse to http:/ /localhost:9323/metrics and see all the information Docker provides. Figure 9.3 shows my metrics, which include information about the machine Docker is running on as well as the containers Docker is managing.
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  Figure 9.3 Sample metrics captured by Docker and exposed through the HTTP API


  This output is in Prometheus format. It’s a simple text-based representation where each metric is shown with its name and value, and the metric is preceded by some help text stating what the metric is and the type of data. These basic lines of text are the core of your container-monitoring solution. Each component will expose an endpoint like this providing current metrics; when Prometheus collects them, it adds a timestamp to the data and stores them with all the previous collections, so you can query data with aggregations or track changes over time.


   Try it now You can run Prometheus in a container to read the metrics from your Docker machine, but first you need to get the machine’s IP address. Containers don’t know the IP address of the server they’re running on, so you need to find it first and pass it as an environment variable to the container:


       # load your machine's IP address into a variable - on Windows:      $hostIP = $(Get-NetIPConfiguration | Where-Object {$_.IPv4DefaultGateway -ne $null }).IPv4Address.IPAddress             # on Linux:      hostIP=$(ip route get 1 | awk '{print $NF;exit}')             # and on Mac:      hostIP=$(ifconfig en0 | grep -e 'inet\s' | awk '{print $2}')             # pass your IP address as an environment variable for the container:      docker container run -e DOCKER_HOST=$hostIP -d -p 9090:9090 diamol/prometheus:2.13.1


  The configuration in the diamol/prometheus Prometheus image uses the DOCKER_ HOST IP address to talk to your host machine and collect the metrics you’ve configured in the Docker Engine. It’s rare that you’ll need to access a service on the host from inside the container, and if you do, you would usually use your server name and Docker would find the IP address. In a development environment that might not work, but the IP address approach should be fine.


  Prometheus is running now. It does several things: it runs a scheduled job to pull the metrics from your Docker host, it stores those metric values alongside a timestamp in its own database, and it has a basic web UI you can use to navigate the metrics. The Prometheus UI shows all the information from Docker’s /metrics endpoint, and you can filter the metrics and display them in tables or graphs.


   Try it now Browse to http:/ /localhost:9090 and you’ll see the Prometheus web interface. You can check that Prometheus can access the metrics by browsing to the Status > Targets menu option. Your DOCKER_HOST state should be green, which means Prometheus has found it.


  Then switch to the Graph menu and you’ll see a dropdown list showing all the available metrics that Prometheus has collected from Docker. One of those is engine_daemon_container_actions_seconds_sum , which is a record of how long different container actions have taken. Select that metric and click Execute, and your output will be similar to mine in figure 9.4, showing the time taken to create, delete, and start containers.


  The Prometheus UI is a simple way to see what’s being collected and run some queries. Look around the metrics and you’ll see that Docker records a lot of information points. Some are high-level readouts, like the number of containers in each state and the number of health checks that have failed; others give low-level details, like the amount of memory the Docker Engine has allocated; and some are static pieces of information, like the number of CPUs Docker has available. These are infrastructure-level metrics, which could all be useful things to include in your status dashboard.
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  Figure 9.4 Prometheus has a simple web UI that you can use to find metrics and run queries.


  Your applications will expose their own metrics, which will also record details at different levels. The goal is to have a metrics endpoint in each of your containers and have Prometheus collect metrics from them all on a regular schedule. Prometheus will store enough information for you to build a dashboard that shows the overall health of the whole system.


  9.2 Exposing metrics from your application


  We’ve looked at the metrics the Docker Engine exposes, because that’s an easy way to get started with Prometheus. Exposing a useful set of metrics from each of your application containers takes more effort, because you need code to capture the metrics and provide the HTTP endpoint for Prometheus to call. It’s not as much work as it sounds, because there are Prometheus client libraries for all the main programming languages to do that for you.


  In the code for this chapter, I’ve revisited the NASA image gallery app and added Prometheus metrics to each of my components. I’m using the official Prometheus clients for Java and Go, and the community client library for Node.js. Figure 9.5 shows how each application container is now packaged with a Prometheus client that collects and exposes metrics.
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  Figure 9.5 Prometheus client libraries in your apps make the metrics endpoints available in the container.


  The information points collected from a Prometheus client library are runtime-level metrics. They provide key information regarding what your container is doing and how hard it is working, in terms that are relevant to the application runtime. The metrics for a Go application include the number of active Goroutines; the metrics for a Java application include the memory used in the JVM. Each runtime has its own important metrics, and the client libraries do a great job of collecting and exporting those.


   Try it now There’s a Docker Compose file in the exercises for this chapter that spins up a new version of the image gallery app, with metrics in each container. Use the app and then browse to one of the metrics endpoints:


       cd ./ch09/exercises             # clear down existing containers:      docker container rm -f $(docker container ls -aq)             # create the nat network - if you've already created it      # you'll get a warning which you can ignore:      docker network create nat             # start the project      docker-compose up -d             # browse to http://localhost:8010 to use the app             # then browse to http://localhost:8010/metrics


  My output is in figure 9.6. These are the metrics from the Go frontend web application--there’s no custom code required to produce this data. You can get all this data for free just by adding the Go client library into your application and setting it up.
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  Figure 9.6 Prometheus metrics about the Go runtime from the image gallery web container


  You’ll see similar metrics for the Java REST API if you browse to http:/ /localhost:8011/ actuator/prometheus. The metrics endpoints are a sea of text, but all the key data points are in there to build a dashboard that will show if the containers are running “hot”--if they’re using a lot of compute resources like CPU time, memory, or processor threads.


  Those runtime metrics are the next level of detail you want after the infrastructure metrics from Docker, but those two levels don’t tell you the whole story. The final data points are application metrics that you explicitly capture to record key information about your application. Those metrics could be operations-focused, showing the number of events a component has processed or the average time to process a response. Or they could be business-focused, showing the current number of active users or the number of people signing up to a new service.


  Prometheus client libraries let you record these kind of metrics too, but you need to explicitly write the code to capture the information in your app. It’s not difficult to do. Listing 9.1 shows an example using the Node.js library, which is in the code for the access-log component in the image gallery app. I don’t want to throw a whole bunch of code at you, but as you progress further with containers, you’re certain to spend more time with Prometheus, and this snippet from the server.js file illustrates a couple of key things.


  Listing 9.1 Declaring and using custom Prometheus metric values in Node.js


       //declare custom metrics:      const accessCounter = new prom.Counter({          name: "access_log_total",          help: "Access Log - total log requests"      });             const clientIpGauge = new prom.Gauge({          name: "access_client_ip_current",          help: "Access Log - current unique IP addresses"      });             //and later, update the metrics values:      accessCounter.inc();      clientIpGauge.set(countOfIpAddresses);


  In the source code for the chapter, you’ll see how I’ve added metrics in the image-gallery web application written in Go, and in the image-of-the-day REST API written in Java. Each Prometheus client library works in a different way. In the main.go source file I initialize counters and gauges in a similar way to the Node.js app but then use instrumented handlers from the client library rather than setting metrics explicitly. The Java application is different again--in ImageController.java I use the @Timed attribute and increment a registry.counter object in the source. Each client library works in the most logical way for the language.


  There are different types of metrics in Prometheus--I’ve used the simplest ones in these applications: counters and gauges. They’re both numeric values. Counters hold a value that increases or stays the same, and gauges hold values that can increase or decrease. It’s down to you or your application developers to choose the metric type and to set its value at the correct time; the rest is taken care of by Prometheus and the client library.


   Try it now You have the image gallery app running from the last exercise, so these metrics are already being collected. Run some load into the app, and then browse to the Node.js app’s metrics endpoint:


       # loop to make 5 HTTP GET request - on Windows:      for ($i=1; $i -le 5; $i++) { iwr -useb http://localhost:8010 | Out-Null }             # or on Linux:      for i in {1..5}; do curl http://localhost:8010 > /dev/null; done             # now browse to http://localhost:8012/metrics


  You can see my output in figure 9.7--I ran a few more loops to send in traffic. The first two records show my custom metrics, recording the number of access requests received and the total number of IP addresses using the service. These are simple data points (and the IP count is actually fake), but they serve the purpose of collecting and showing metrics. Prometheus lets you record more complex types of metrics, but even with simple counters and gauges you can capture detailed instrumentation in your apps.


  [image: ]


  Figure 9.7 A metrics endpoint that includes custom data as well as Node.js runtime data


  What you capture depends on your application, but the following list provides some useful guidelines--you can return to these at the end of the month when you’re ready to add detailed monitoring to your own apps.


  
    	When you talk to external systems, record how long the call took and whether the response was successful--you’ll quickly be able to see if another system is slowing yours down or breaking it.


    	Anything worth logging is potentially worth recording in a metric--it’s probably cheaper on memory, disk, and CPU to increment a counter than to write a log entry, and it’s easier to visualize how often things are happening.


    	Any details about application or user behaviors that business teams want to report on should be recorded as metrics--that way you can build real-time dashboards instead of sending historical reports.

  


  9.3 Running a Prometheus container to collect metrics


  Prometheus uses a pull model to collect metrics. Rather than have other systems send it data, it fetches data from those systems. It calls this scraping, and when you deploy Prometheus you configure the endpoints you want it to scrape. In a production container platform, you can configure Prometheus so it automatically finds all the containers across the cluster. In Docker Compose on a single server, you use a simple list of service names, and Prometheus finds the containers through Docker’s DNS.


  Listing 9.2 shows the configuration I’ve used for Prometheus to scrape two of the components in my image gallery application. There’s a global setting that uses a default 10-second interval between scrapes, and then there’s a job for each component. The job has a name, and the configuration specifies the URL path to the metrics endpoint and a list of targets that Prometheus will query. I use two types here. First, static_configs specifies a target hostname, which is fine for a single container. I also use dns_sd_configs , which means Prometheus will use DNS service discovery--that will find multiple containers for a service, and it supports running at scale.


  Listing 9.2 Prometheus configuration for scraping application metrics


       global:          scrape_interval: 10s             scrape_configs:          - job_name: "image-gallery"              metrics_path: /metrics              static_configs:                  - targets: ["image-gallery"]                 - job_name: "iotd-api"              metrics_path: /actuator/prometheus              static_configs:                  - targets: ["iotd"]                 - job_name: "access-log"              metrics_path: /metrics              dns_sd_configs:                  - names:                          - accesslog                      type: A                    port: 80


  This configuration sets Prometheus to poll all the containers every 10 seconds. It will use DNS to get the container IP addresses, but for the image-gallery it only expects to find a single container, so you’ll get unexpected behavior if you scale that component. Prometheus always uses the first IP address in the list if the DNS response contains several, so you’ll get metrics from different containers when Docker load balances the request to the metrics endpoint. The accesslog component is configured to support multiple IP addresses, so Prometheus will build a list of all the container IP addresses and poll them all on the same schedule. Figure 9.8 shows how the scraping process runs.
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  Figure 9.8 Prometheus running in a container, configured to scrape metrics from app containers


  I’ve built a custom Prometheus Docker image for the image gallery application. It’s based on the official image that the Prometheus team publish on Docker Hub, and it copies in my own configuration file (you can find the Dockerfile in the source code for this chapter). This approach gives me a preconfigured Prometheus image that I can run without any extra configuration, but I can always override the config file in other environments if I need to.


  Metrics are more interesting when lots of containers are running. We can scale up the Node.js component of the image gallery app to run on multiple containers, and Prometheus will scrape and collect metrics from all the containers.


   Try it now There’s another Docker Compose file in the chapter’s exercises folder that publishes a random port for the access-log service, so that service can be run at scale. Run it with three instances and send some more load into the website:


       docker-compose -f docker-compose-scale.yml up -d --scale accesslog=3             # loop to make 10 HTTP GET request - on Windows:      for ($i=1; $i -le 10; $i++) { iwr -useb http://localhost:8010 | Out-Null }             # or on Linux:      for i in {1..10}; do curl http://localhost:8010 > /dev/null; done


  The website makes a call to the access-log service every time it processes a request--there are three containers running that service, so the calls should be load-balanced across them all. How can we check that the load balancing is working effectively? The metrics from that component include a label that captures the hostname of the machine sending the metrics--in this case that’s the Docker container ID. Open the Prometheus UI and check the access-log metrics. You should see three sets of data.


   Try it now Browse to http:/ /localhost:9090/graph. In the metrics dropdown, select access_log_total and click Execute.


  You’ll see something similar to my output in figure 9.9--there’s one metric value for each of the containers, and the labels contain the hostname. The actual values for each container will show you how evenly spread the load balancing is. In an ideal scenario, the figures would be equal, but there are a lot of network factors in play (like DNS caching and HTTP keep-alive connections), which means you probably won’t see that if you’re running on a single machine.
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  Figure 9.9 Processing metrics can be used to verify that requests are being load-balanced.


  Recording extra information with labels is one of the most powerful features of Prometheus. It lets you work with a single metric at different levels of granularity. Right now you’re seeing the raw data for the metrics, with one line in the table for each container showing the most recent metric value. You can aggregate across all the containers using a sum() query, ignoring the individual labels and showing a combined total, and you can display that in a graph to see the increasing usage over time.


   Try it now In the Prometheus UI, click the Add Graph button to add a new query. In the expression text box, paste this query:


  sum(access_log_total) without(hostname, instance)


  Click Execute and you’ll see a line graph with a time series, which is how Prometheus represents data--a set of metrics, each recorded with a timestamp.


  I sent in some more HTTP requests to my local app before I added the new graph--you can see my output in figure 9.10.
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  Figure 9.10 Aggregating a metric to sum values from all containers and showing a graph of results


  The sum() query is written in Prometheus’s own query language called PromQL. It’s a powerful language with statistical functions that let you query changes over time and rate of change, and you can add subqueries to correlate different metrics. But you don’t need to go into any of that complexity to build useful dashboards. The Prometheus format is so well structured that you can visualize key metrics with simple queries. You can use labels to filter values, and sum the results to aggregate, and just those features will give you a useful dashboard.
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  Figure 9.11 A simple Prometheus query. You don’t need to learn much more PromQL than this.


  Figure 9.11 shows a typical query that will feed into a dashboard. This aggregates the value for all the image_gallery_request metrics, filtering where the response code is 200 , and summing without the instance label, so we will get metrics from all the containers. The result will be the total number of 200 “OK” responses sent by all the containers running the image gallery web application.


  The Prometheus UI is fine for checking on your configuration, validating that all the scrape targets are reachable, and working out queries. But it is not meant to be a dashboard--that’s where Grafana comes in.


  9.4 Running a Grafana container to visualize metrics


  We’re covering a lot of ground in this chapter because monitoring is a core topic for containers, but we’re going quickly because the finer details are all very application-dependent. What metrics you need to capture will depend on your business and operational needs, and how you capture them will depend on the application runtime you’re using and the mechanics of the Prometheus client library for that runtime.


  Once you have your data in Prometheus, things get simpler--it becomes a pretty standard approach for all apps. You’ll use the Prometheus UI to navigate the metrics you’re recording and work on queries to get the data that you want to see. Then you’ll run Grafana and plug those queries into a dashboard. Each data point shows up as a user-friendly visualization, and the dashboard as a whole shows you what’s happening with your app.


  We’ve been working toward the Grafana dashboard for the image gallery app all through this chapter, and figure 9.12 shows the final outcome. It’s a very neat way to show core information from all the application components and the Docker runtime. These queries are also built to support scale, so the same dashboard can be used in a production cluster.
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  Figure 9.12 The Grafana dashboard for the application. Looks fancy, but it’s actually pretty simple to build.


  The Grafana dashboard conveys key information across many different levels of the application. It looks complicated, but each visualization is powered by a single PromQL query, and none of the queries do anything more complex than filtering and aggregating. The shrunken view in figure 9.12 doesn’t give you the full picture, but I’ve packaged the dashboard into a custom Grafana image so you can run it yourself in a container and explore.


   Try it now You’ll need to capture your computer’s IP address again, this time as an environment variable that the Compose file looks for and injects into the Prometheus container. Then run the app with Docker Compose and generate some load:


       # load your machine's IP address into an environment variable - on Windows:      $env:HOST_IP = $(Get-NetIPConfiguration | Where-Object {$_.IPv4DefaultGateway -ne $null }).IPv4Address.IPAddress             # on Linux:      export HOST_IP=$(ip route get 1 | awk '{print $NF;exit}')             # run the app with a Compose file which includes Grafana:      docker-compose -f ./docker-compose-with-grafana.yml up -d --scale accesslog=3             # now send in some load to prime the metrics - on Windows:      for ($i=1; $i -le 20; $i++) { iwr -useb http://localhost:8010 | Out-Null }             # or on Linux:      for i in {1..20}; do curl http://localhost:8010 > /dev/null; done             # and browse to http://localhost:3000


  Grafana uses port 3000 for the web UI. When you first browse, you’ll need to sign in--the credentials are username admin , password admin . You’ll be asked to change the admin password on the first login, but I won’t judge you if you click Skip instead. When the UI loads, you’ll be in your “home” dashboard--click on the Home link at the top left, and you’ll see the dashboard list in figure 9.13. Click Image Gallery to load the application dashboard.
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  Figure 9.13 Navigating dashboards in Grafana--recently used folders are shown here


  My application dashboard is a reasonable setup for a production system. There are some key data points you need, to make sure you’re monitoring the right things--Google discusses this in the Site Reliability Engineering book ( http://mng.bz/EdZj ). Their focus is on latency, traffic, errors, and saturation, which they call the “golden signals.”


  I’ll go through the first set of my visualizations in detail so you can see that a smart dashboard can be built from basic queries and the right choice of visualization. Figure 9.14 shows the row of metrics for the Image Gallery web UI--I’ve chopped the row up to make it easier to see, but these appear on the same line in the dashboard.


  There are four metrics here that show how heavily the system is being used, and how hard the system is working to support that level of use:


  
    	HTTP 200 Responses --This is a simple count of how many HTTP “OK” responses the website has sent over time. The PromQL query is a sum over the counter metric from the application: sum(image_gallery_requests_total{code="200"}) without(instance) . I could add a similar graph with a query filtering on code="500" to show the number of errors.


    	In-Flight Requests --This shows the number of active requests at any given point. It’s a Prometheus gauge, so it can go up or down. There’s no filter for this, and the graph will show the total across all containers, so the query is another sum: sum(image_gallery_in_flight_requests) without(instance) .


    	Memory In Use --This shows how much system memory the image gallery containers are using. It’s a bar chart, which is easier on the eye for this type of data; it will show a bar for each container when I scale up the web component. The PromQL query filters on the job name: go_memstats_stack_inuse_bytes{job="image-gallery"} . I need the filter because this is a standard Go metric, and the Docker Engine job returns a metric with the same name.


    	Active Goroutines --This is a rough indicator of how hard the component is working--a Goroutine is a unit of work in Go, and many can run concurrently. This graph will show if the web component suddenly has a spike of processing activity. It’s another standard Go metric, so the PromQL query filters stats from the web job and sums them: sum(go_goroutines{job=\"image-gallery\"}) without(instance) .

  


  The visualizations in the other rows of the dashboards all use similar queries. There’s no need for complex PromQL--choosing the right metrics to show and the right visualization to display them is all you really need.


  In these visualizations the actual values are less useful than the trends. It doesn’t really matter if my web app uses 200 MB of memory on average or 800 MB--what matters is when there’s a sudden spike that deviates from the norm. The set of metrics for a component should help you quickly see anomalies and find correlations. If the graph of error responses is on an upward trend and the number of active Goroutines is doubling every few seconds, it’s clear there’s something going wrong--the component could be saturated, so you may need to scale up with more containers to handle the load.
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  Figure 9.14 A closer look at the application dashboard and how visualizations relate to the golden signals


  Grafana is an extremely powerful tool, but it’s straightforward to use. It’s the most popular dashboard system for modern applications, so it’s worth learning--it can query lots of different data sources, and it can send alerts out to different systems too. Building dashboards is the same as editing existing dashboards--you can add or edit visualizations (called panels), resize and move them around, and then save your dashboard to a file.


   Try it now The Google SRE approach says that an HTTP error count is a core metric, and that’s missing from the dashboard, so we’ll add it to the image gallery row now. Run the whole image gallery app again if you don’t have it running, browse to Grafana at http:/ /locahost:3000, and log in with username admin and password admin .


  Open the Image Gallery dashboard and click the Add Panel icon at the top right of the screen--it’s the bar chart with a plus sign shown in figure 9.15.
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  Figure 9.15 The Grafana toolbar for adding panels, choosing the time period, and saving the dashboard


  Now click Add Query in the new panel window, and you’ll see a screen where you can capture all the details of the visualization. Select Prometheus as the data source for the query, and in the metrics field paste this PromQL expression:


  sum(image_gallery_requests_total{code="500"}) without(instance)


  Your panel should look like mine in figure 9.16. The image gallery application returns an error response around 10% of the time, so if you make enough requests you’ll see some errors in your graph.


  Press the Escape key to go back to the main dashboard.


  You can resize panels by dragging the bottom-right corner, and move them by dragging the title. When you have the dashboard looking how you want, you can click the Share Dashboard icon from the tool panel (see figure 9.15 again), where you have the option to export the dashboard as a JSON file.


  [image: ]


  Figure 9.16 Adding a new panel to the Grafana dashboard to show HTTP errors


  The final step with Grafana is packaging your own Docker image, which is already configured with Prometheus as a data source and with the application dashboard. I’ve done that for the diamol/ch09-grafana image. Listing 9.3 shows the full Dockerfile.


  Listing 9.3 The Dockerfile to package a custom Grafana image


       FROM diamol/grafana:6.4.3             COPY datasource-prometheus.yaml ${GF_PATHS_PROVISIONING}/datasources/      COPY dashboard-provider.yaml ${GF_PATHS_PROVISIONING}/dashboards/      COPY dashboard.json /var/lib/grafana/dashboards/


  The image starts from a specific version of Grafana and then just copies in a set of YAML and JSON files. Grafana follows the configuration pattern I’ve promoted already in this book--there’s some default configuration built in, but you can apply your own. When the container starts, Grafana looks for files in specific folders, and it applies any configuration files it finds. The YAML files set up the Prometheus connection and load any dashboards that are in the /var/lib/Grafana/dashboards folder. The final line copies my dashboard JSON into that folder, so it gets loaded when the container starts.


  You can do much more with Grafana provisioning, and you can also use the API to create users and set their preferences. It’s not much more work to build a Grafana image with multiple dashboards and a read-only user with access to all those dashboards, which can be put together in a Grafana playlist. Then you can browse to Grafana on a big screen in your office and have it automatically cycle through all your dashboards.


  9.5 Understanding the levels of observability


  Observability is a key requirement when you move from simple proof-of-concept containers to getting ready for production. But there’s another very good reason I introduced Prometheus and Grafana in this chapter: learning Docker is not just about the mechanics of Dockerfiles and Docker Compose files. Part of the magic of Docker is the huge ecosystem that’s grown around containers, and the patterns that have emerged around that ecosystem.


  Monitoring was a real headache when containers were first getting popular. My production releases back then were as easy to build and deploy as they are today, but I had no insight into the apps when they were running. I had to rely on external services like Pingdom to check that my APIs were still up, and on user reporting to make sure the app was working correctly. Today the approach to monitoring containers is a tried-and-trusted path. We’ve followed that path in this chapter, and figure 9.17 summarizes the approach.
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  Figure 9.17 The architecture of monitoring in a containerized application--Prometheus is at the center.


  I’ve walked through a single dashboard for the image gallery application, which is an overall view of the app. In a production environment, you’d have additional dashboards that dig into extra levels of detail. There would be an infrastructure dashboard showing free disk space, available CPU, and memory and network saturation for all the servers. Each component might have its own dashboard showing additional information, like a breakdown of response times for serving each page of a web app or each API endpoint.


  The summary dashboard is the critical one. You should be able to pull together all the most important data points from your application metrics into a single screen, so you can tell at a glance if something is wrong and take evasive action before it gets worse.


  9.6 Lab


  This chapter added monitoring to the image gallery app, and this lab asks you to do the same to the to-do list app. You don’t need to dive into source code--I’ve already built a new version of the application image that contains Prometheus metrics. Run a container from diamol/ch09-todo-list , browse to the app, and add some items, and you’ll see the metrics available at the /metrics URL. For the lab, you want to get that app to the same position we have for the image gallery:


  
    	Write a Docker Compose file that you can use to run the app, which also starts a Prometheus container and a Grafana container.


    	The Prometheus container should already be configured to scrape metrics from the to-do list app.


    	The Grafana container should be configured with a dashboard to show three key metrics from the app: number of tasks created, total number of HTTP requests processed, and number of HTTP requests currently being processed.

  


  This sounds like a ton of work, but really it’s not--the exercises in this chapter cover all the details. It’s a good lab to work through, because it will give you experience working with metrics for a new application.


  As always, you’ll find my solution on GitHub, together with a graphic of my final dashboard: https://github.com/sixeyed/diamol/blob/master/ch09/lab/README.md.


  
    10 Running multiple environments with Docker Compose

  


  We looked at Docker Compose in chapter 7, and you gained a good understanding of how to use YAML to describe a multi-container application and manage it with the Compose command line. Since then we’ve enhanced our Docker applications to get them ready for production with health checks and monitoring. Now it’s time to return to Compose, because we don’t need all those production features in every environment. Portability is one of Docker’s major benefits. When you package your application to run in containers, it works the same way wherever you deploy it, and that’s important because it eliminates drift between environments.


  Drift is what always happens when manual processes are used to deploy software. Some updates get missed or some new dependencies are forgotten, so the production environment is different from the user test environment, which is different again from the system test environment. When deployments fail, it’s often because of drift, and it takes a huge amount of time and effort to track down the missing pieces and put them right. Moving to Docker fixes that problem because every application is already packaged with its dependencies, but you still need the flexibility to support different behavior for different environments. Docker Compose provides that with the more advanced features we’ll cover in this chapter.


  10.1 Deploying many applications with Docker Compose


  Docker Compose is a tool for running multi-container applications on a single Docker Engine. It’s great for developers, and it’s also heavily used for non-production environments. Organizations often run multiple versions of an app in different environments--maybe version 1.5 is running in production, version 1.5.1 is being tested in a hotfix environment, version 1.6 is finishing up user testing, and version 1.7 is in system test. Those non-production environments don’t need the scale and performance of production, so it’s a great use case for Docker Compose to run those environments and get maximum utilization from your hardware.


  For that to work, there need to be some differences between environments. You can’t have several containers trying to listen for traffic on port 80, or writing data to the same files on the server. You can design your Docker Compose files to support that, but first you need to understand how Compose identifies which Docker resources are part of the same application. It does that with naming conventions and labels, and if you want to run several copies of the same application, you need to work around the defaults.


   Try it now Open a terminal and browse to the exercises for this chapter. Run two of the apps we’ve already worked with, and then try running another instance of the to-do list application:


   cd ./ch10/exercises   # run the random number app from chapter 8:  docker-compose -f ./numbers/docker-compose.yml up -d   # run the to-do list app from chapter 6:  docker-compose -f ./todo-list/docker-compose.yml up -d   # and try another copy of the to-do list:  docker-compose -f ./todo-list/docker-compose.yml up -d


  Your output will be the same as mine in figure 10.1. You can start multiple applications from Compose files in different folders, but you can’t start a second instance of an application by running up from the same folder. Docker Compose thinks you’re asking it to run an application that is already running, so it doesn’t start any new containers.
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  Figure 10.1 Repeating a Docker Compose command to start an app doesn’t run a second copy of the app.


  Docker Compose uses the concept of a project to identify that various resources are part of the same application, and it uses the name of the directory that contains the Compose file as the default project name. Compose prefixes the project name when it creates resources, and for containers it also adds a numeric counter as a suffix. So if your Compose file is in a folder called app1 , and it defines one service called web and one volume called disk , Compose will deploy it by creating a volume called app1_disk and a container called app1_web_1 . The counter at the end of the container name supports scale, so if you scale that up to two instances of the web service, the new container will be called app1_web_2 . Figure 10.2 shows how the container name is built for the to-do list application.
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  Figure 10.2 Docker Compose builds names for the resources it manages by including the project name.


  You can override the default project name Compose uses, and that’s how you can run many copies of the same application in different sets of containers on a single Docker Engine.


   try it now You already have one instance of the to-do app running; you can start another by specifying a different project name. The website uses random ports, so you’ll need to find the assigned port if you want to actually try the apps:


   docker-compose -f ./todo-list/docker-compose.yml -p todo-test up -d   docker container ls   docker container port todo-test_todo-web_1 80


  My output is in figure 10.3. Specifying a project name means this is a different application as far as Compose is concerned, and there are no resources that match this project name, so Compose creates a new container. The naming pattern is predictable, so I know the new container will be called todo-test_todo-web_1 . The Docker CLI has the container port command to find the published port for a container, and I can use that with the generated container name to find the application port.
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  Figure 10.3 Specifying a project name lets you run multiple copies of the same app with one Compose file.


  This approach lets you run many copies of many different applications. I could deploy another instance of my random number application too, using the same Compose file but specifying a different project name. That’s useful, but for most situations you’ll want a bit more control--having to find out which random port to use for each release isn’t a great workflow for operations or test teams. To support different setups in different environments, you could create duplicate Compose files and edit the properties that need to change, but Compose has a better way of managing that with overrides.


  10.2 Using Docker Compose override files


  Teams hit the problem of trying to run different app configurations with Docker Compose and often end up with many Compose files--one for each environment. That works, but it’s not maintainable, because those Compose files are often 90% duplicated content, which means they’ll get out of sync and you’re back to a drift situation. Override files are a much neater approach. Docker Compose lets you merge multiple files together, with properties from later files overriding those from earlier in the merge.


  Figure 10.4 shows how you can use overrides to structure an easily maintainable set of Compose files. You start with a core docker-compose.yml file that contains the basic structure of the app, with the services defined and configured with properties that are common for all environments. Then each environment has its own override file that adds specific settings, but it doesn’t duplicate any of the configuration from the core file.
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  Figure 10.4 Removing duplication with override files that add environment-specific settings


  This approach is maintainable. If you need to make a change that applies to all environments--like changing an image tag to use the latest version--you do that once in the core file, and it filters through to every environment. If you just need to change one environment, you only change that single file. The override files you have for each environment also serve as clear documentation of the differences between environments.


  Listing 10.1 shows a very simple example where the core Compose file specifies most of the application properties, and the override changes the image tag so this deployment will use v2 of the to-do app.


  Listing 10.1 A Docker Compose override file that updates a single property


   # from docker-compose.yml - the core app specification:  services:    todo-web:        image: diamol/ch06-todo-list        ports:            - 80        environment:            - Database:Provider=Sqlite        networks:            - app-net   # and from docker-compose-v2.yml - the version override file:  services:    todo-web:          image: diamol/ch06-todo-list:v2


  In the override file you just specify the properties you care about, but you need to preserve the structure of the main Compose file so that Docker Compose can link the definitions together. The override file in this example only changes the value of the image property, but that needs to be specified in the todo-web block under the services block, so Compose can match that to the full service definition in the core file.


  Docker Compose merges files together when you specify multiple file paths in docker-compose commands. The config command is very useful here--it validates the contents of the input files, and if the input is valid, it writes out the final output. You can use that to see what will happen when you apply an override file.


   try it now In the exercises folder for this chapter, use Docker Compose to merge together the files from listing 10.1 and print the output:


   docker-compose -f ./todo-list/docker-compose.yml -f ./todo-list/docker-compose-v2.yml config


  The config command doesn’t actually deploy the app; it just validates the configuration. You’ll see in the output that the two files have been merged. All the properties come from the core Docker Compose file, except the image tag where the value has been overridden from the second file--you can see that in figure 10.5.
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  Figure 10.5 Merging a Compose file with an override file and displaying the output


  Docker Compose applies overrides in the order that the files are listed in the command, with files to the right overriding files to the left. That’s important, because if you get the order wrong, you’ll get unexpected results--the config command is useful here because it shows you a dry run of the complete Compose file. The output sorts everything by alphabetical order, so you’ll see networks, then services, then the Compose version number, which is unsettling at first, but useful. You could automate that command as part of your deployment process and commit the merged files to source control--then the alphabetical order makes it easy to compare releases.


  Using overrides for an image tag is just a quick example. There’s a more realistic set of compose files for the random number application in the numbers folder:


  
    	 docker-compose.yml --The core application definition. It specifies the web and API services without any ports or network definitions.


    	 docker-compose-dev.yml --For running the app in development. It specifies a Docker network and for the services it adds the ports to publish and disables the health and dependency checks. This is so developers can be up and running quickly.


    	 docker-compose-test.yml --For running in a test environment. This specifies a network, adds health check parameters, and publishes a port for the web app, but it keeps the API service internal by not publishing any ports.


    	 docker-compose-uat.yml --For the User Acceptance Test environment. This specifies a network, publishes standard port 80 for the website, sets the services to always restart, and specifies more stringent health check parameters.

  


  Listing 10.2 shows the contents of the dev override file--it’s very clear that it isn’t a full app specification because no images are specified. The values in here will be merged into the core Compose file, adding new properties or overriding existing properties if there are matching keys in the core file.


  Listing 10.2 An override file only specifies changes from the main Compose file


   services:    numbers-api:        ports:            - "8087:80"        healthcheck:            disable: true     numbers-web:        entrypoint:            - dotnet            - Numbers.Web.dll        ports:            - "8088:80"   networks:    app-net:          name: numbers-dev


  The other override files follow the same pattern. Each environment uses different ports for the web application and the API so you can run them all on a single machine.


   try it now Start by removing all your existing containers, and then run the random number app in multiple environments. Each environment needs a project name and the correct set of Compose files:


   # remove any existing containers  docker container rm -f $(docker container ls -aq)   # run the app in dev configuration:  docker-compose -f ./numbers/docker-compose.yml -f ./numbers/docker-compose-dev.yml -p numbers-dev up -d   # and the test setup:  docker-compose -f ./numbers/docker-compose.yml -f ./numbers/docker-compose-test.yml -p numbers-test up -d   # and UAT:  docker-compose -f ./numbers/docker-compose.yml -f ./numbers/docker-compose-uat.yml -p numbers-uat up -d


  Now you have three copies of the application running, which are all isolated from each other because each deployment is using its own Docker network. In an organization, these would be running on one server, and teams would use the environment they want by browsing to the correct port. For example, you could use port 80 for UAT, port 8080 for system test, and port 8088 for the development team’s integration environment. Figure 10.6 shows my output with networks and containers being created.


  [image: ]


  Figure 10.6 Running multiple isolated application environments in containers on a single machine


  Now you have three deployments that function as separate environments: http: / / localhost is UAT, http: / / localhost:8080 is system test, and http://localhost:8088 is the dev environment. Browse to any of those, and you’ll see the same application, but each web container can only see the API container in its own network. This keeps the apps separate, so if you keep fetching random numbers in the dev environment, the API will break, but the system test and UAT environments are still working. The containers in each environment use DNS names to communicate, but Docker restricts traffic within the container network. Figure 10.7 shows how network isolation keeps all your environments separate.
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  Figure 10.7 Running multiple environments on one Docker Engine, using networks for isolation


  It’s time to remind you that Docker Compose is a client-side tool, and you need access to all your Compose files to manage your apps. You also need to remember the project names you used. If you want to clear down the test environment, removing containers and the network, you would normally just run docker-compose down , but that won’t work for these environments because Compose needs all the same file and project information you used in the up command to match the resources.


   try it now Let’s remove that test environment. You can try different variations on the down command, but the only one that will work is the one that has the same file list and project name as the original up command:


   # this would work if we'd used the default docker-compose.yml file:  docker-compose down   # this would work if we'd used override files without a project name:  docker-compose -f ./numbers/docker-compose.yml -f ./numbers/docker-compose-test.yml down   # but we specified a project name, so we need to include that too:  docker-compose -f ./numbers/docker-compose.yml -f ./numbers/docker-compose-test.yml -p numbers-test down


  You can see my output in figure 10.8. You might have guessed that Compose can’t identify the running resources for the application unless you provide the matching file and project name, so in the first command it doesn’t remove anything. In the second command, Compose does try to delete the container network, even though there are application containers connected to that network.
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  Figure 10.8 You need to use the same files and project name to manage an application with Compose.


  Those errors happened because the networks were explicitly named in the Compose override files. I didn’t specify a project name in the second down command, so it used the default, which is the folder name numbers . Compose looked for containers called numbers_numbers-web_1 and numbers_numbers-api_1 , but didn’t find them because they were actually created with the project prefix numbers-test . Compose thought those containers were already gone and it only needed to clean up the network, which it did find because the explicit network name in the Compose file is used without a project prefix. Compose tried to remove that network, but fortunately Docker won’t let you remove networks that still have containers attached.


  This is a long way of showing you that you need to take care with Docker Compose. It’s an excellent tool for non-production environments, where it gets you maximum value from your compute resources by deploying tens or hundreds of applications on single machines. Override files let you reuse application definitions and identify the differences between environments, but you need to be aware of the management overhead. You should look at scripting and automation for your deployments and teardowns.


  10.3 Injecting configuration with environment variables and secrets


  You can isolate applications using Docker networks and capture the differences between environments with Compose overrides, but you’ll also need to change the application configuration between environments. Most applications can read configuration settings from environment variables or files, and Compose has good support for both those approaches.


  I’ll cover all the options in this section, so we’ll dig a bit deeper into Compose than we have so far. This will help you understand the choices you have for applying configuration settings, and you’ll be able to select what works for you.


  It’s back to the to-do app for these exercises. The Docker image for the app is built to read environment variables and files for configuration settings. There are three items that need to vary between environments:


  
    	Logging --How detailed the logging level should be. This will start off being very verbose in the dev environment and become less so in test and production.


    	Database provider --Whether to use a simple data file inside the application container, or a separate database (which may or may not be running in a container).


    	Database connection string --The details for connecting to the database, if the app isn’t using a local data file.

  


  I’m using override files to inject configuration for different environments, and I’m using different approaches for each item, so I can show you the options Docker Compose has. Listing 10.3 shows the core Compose file; this just has the basic information for the web application with a configuration file set up as a secret.


  Listing 10.3 The Compose file specifies the web service with a secret


   services:    todo-web:        image: diamol/ch06-todo-list        secrets:            - source: todo-db-connection                  target: /app/config/secrets.json


  Secrets are a useful way of injecting configuration--they have support in Docker Compose, Docker Swarm, and Kubernetes. In the Compose file you specify the source and target for the secret. The source is the place where the secret is loaded from the container runtime, and the target is the file path where the secret is surfaced inside the container.


  This secret is specified as coming from the source todo-db-connection , which means there needs to be a secret with that name defined in the Compose file. The contents of the secret will be loaded into the container at the target path /app/config/ secrets.json , which is one of the locations the application searches for configuration settings.


  The preceding Compose file on its own isn’t valid because there is no secrets section, and the todo-db-connection secret is required because it’s used in the service definition. Listing 10.4 shows the override file for development, which sets up some more configuration for the service and specifies the secret.


  Listing 10.4 The development override adds config settings and the secret setup


   services:    todo-web:        ports:            - 8089:80        environment:            - Database:Provider=Sqlite        env_file:            - ./config/logging.debug.env   secrets:    todo-db-connection:          file: ./config/empty.json


  There are three properties in this override file that inject application configuration and change the behavior of the app in the container. You can use any combination of them, but each approach has benefits:


  
    	 environment adds an environment variable inside the container. This setting configures the app to use the SQLite database, which is a simple data file. This is the easiest way to set configuration values, and it’s clear from the Compose file what’s being configured.


    	 env_file contains the path to a text file, and the contents of the text file will be loaded into the container as environment variables. Each line in the text file is read as an environment variable, with the name and value separated by an equals sign. The contents of this file set the logging configuration. Using an environment variable file is a simple way to share settings between multiple components, because each component references the file rather than duplicates a list of environment variables.


    	 secrets is a top-level resource in the Compose YAML file, like services and networks . It contains the actual source of todo-db-connection , which is a file on the local filesystem. In this case, there’s no separate database for the app to connect to, so it uses an empty JSON file for the secret. The app will read the file, but there are no configuration settings to apply.

  


   try it now You can run the app in development configuration using the Compose file and the override in the todo-list-configured directory. Send a request into the web app with curl and check that the container is logging lots of detail:


   # remove existing containers:  docker container rm -f $(docker container ls -aq)   # bring up the app with config overrides - for Linux containers:  docker-compose -f ./todo-list-configured/docker-compose.yml -f ./todo-list-configured/docker-compose-dev.yml -p todo-dev up -d   # OR for Windows container, which use different file paths for secrets:  docker-compose -f ./todo-list-configured/docker-compose.yml -f ./todo-list-configured/docker-compose-dev.yml -f ./todo-list-configured/docker-compose-dev-windows.yml -p todo-dev up -d   # send some traffic into the app:  curl http://localhost:8089/list   # check the logs:  docker container logs --tail 4 todo-dev_todo-web_1


  You can see my output in figure 10.9. Docker Compose always uses a network for each application, so it creates a default network and connects containers to it even if there’s no network specified in the Compose files. In my case, the latest log lines show the SQL database command the app uses. Yours might show something different, but if you check through the whole logs, you should see the SQL statements in there. That shows the enhanced logging configuration is in place.


  The developer deployment uses environment variables and secrets for app configuration--the values specified in the Compose files and the config files get loaded into the container.


  There’s also a test deployment that uses another approach supported by Compose: using environment variables on the host machine to provide values for the container. This makes the deployment more portable, because you can alter environments without changing the Compose files themselves. That’s useful if you want to spin up a second test environment on a different server with a different configuration. Listing 10.5 shows that in the specification for the todo-web service.


  Listing 10.5 Using environment variables as values in Compose files


     todo-web:        ports:            - "${TODO_WEB_PORT}:80"        environment:            - Database:Provider=Postgres        env_file:            - ./config/logging.information.env        networks:              - app-net


  The dollar-and-curly-brace setting for the port gets replaced from the environment variable with that name. So if I have a variable set on the machine where I’m running Docker Compose with the name TODO_WEB_PORT and the value 8877 , then Compose injects that value, and the port specification actually becomes "8877:80" . This service specification is in the file docker-compose-test.yml , which also includes a service for the database and a secret to use for the connection to the database container.
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  Figure 10.9 Changing application behavior by applying configuration settings in Docker Compose


  You can run the test environment by specifying the Compose files and project name in the same way as for the development environment, but there’s one final configuration feature of Compose that makes things easier. If Compose finds a file called .env in the current folder, it will treat that as an environment file and read the contents as a set of environment variables, populating them before it runs the command.


   Try it now Navigate to the directory for the configured to-do list application, and run it without specifying any parameters to Docker Compose:


   cd ./todo-list-configured   # OR for Windows containers - using different file paths:  cd ./todo-list-configured-windows   docker-compose up -d


  Figure 10.10 shows that Compose has created web and database containers, although the core Compose file doesn’t specify a database service. It also used the project name todo_ch10 , although I didn’t specify a name. The .env file sets up the Compose configuration to run the test environment by default, without you needing to specify the test override file.
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  Figure 10.10 Using an environment file to specify the default for Docker Compose files and project names


  You can use a simple command here without specifying a filename, because the .env file contains a set of environment variables that can be used to configure Docker Compose. The first use is for container configuration settings, like the port for the web application; the second is for the Compose command itself, listing the files to use and the project name. Listing 10.6 shows the .env file in full.


  Listing 10.6 Configuring containers and Compose using an environment file


   # container configuration - ports to publish:  TODO_WEB_PORT=8877  TODO_DB_PORT=5432   # compose configuration - files and project name:  COMPOSE_PATH_SEPARATOR=;  COMPOSE_FILE=docker-compose.yml;docker-compose-test.yml  COMPOSE_PROJECT_NAME=todo_ch10


  The environment file captures the default Compose settings for the app in the test configuration--you could easily modify it so the development configuration was the default. Keeping an environment file alongside your Compose files helps to document which sets of files represent which environment, but be aware that Docker Compose only looks for a file called .env . You can’t specify a filename, so you can’t easily switch between environments with multiple environment files.


  Touring the configuration options in Docker Compose has taken us a little while. You’ll be working with a lot of Compose files in your time with Docker, so you need to be familiar with all the options. I’ll summarize them all here, but some are more useful than others:


  
    	Using the environment property to specify environment variables is the simplest option, and it makes your application configuration easy to read from the Compose file. Those settings are in plain text, though, so you shouldn’t use them for sensitive data like connection strings or API keys.


    	Loading configuration files with secret properties is the most flexible option, because it’s supported by all the container runtimes and it can be used for sensitive data. The source of the secret could be a local file when you’re using Compose, or it could be an encrypted secret stored in a Docker Swarm or Kubernetes cluster. Whatever the source, the contents of the secret get loaded into a file in the container for the application to read.


    	Storing settings in a file and loading them into containers with the environment _file property is useful when you have lots of shared settings between services. Compose reads the file locally and sets the individual values as environment properties, so you can use local environment files when you’re connected to a remote Docker Engine.


    	The Compose environment file, .env , is useful for capturing the setup for whichever environment you want to be the default deployment target.

  


  10.4 Reducing duplication with extension fields


  At this point, you may well be thinking that Docker Compose has enough configuration options to satisfy any situation. But it’s actually quite a simple specification, and there are limitations you’ll come across as you work with it more. One of the most common problems is how to reduce the bloat of Compose files when you have services that share a lot of the same settings. In this section I’ll cover one final feature of Docker Compose that fixes this problem--using extension fields to define blocks of YAML in a single place, which you can reuse throughout the Compose file. Extension fields are a powerful but underused feature of Compose. They remove a lot of duplication and potential for errors, and they’re straightforward to use once you get accustomed to the YAML merge syntax.


  In the image-gallery folder for this chapter’s exercises, there’s a docker-compose-prod.yml file that makes use of extension fields. Listing 10.7 shows how you define extension fields, declaring them outside of any top-level blocks (services, networks, etc.) and giving them a name with the ampersand notation.


  Listing 10.7 Defining extension fields at the top of a Docker Compose file


   x-labels: &logging    logging:        options:            max-size: '100m'            max-file: '10'   x-labels: &labels      app-name: image-gallery


  Extension fields are custom definitions; in this file there are two called logging and labels . By convention you prefix the block name with an “x”, so the x-labels block defines an extension called labels . The logging extension specifies settings for container logs, and it can be used inside a service definition. The labels extension specifies a key/value pair for a label that can be used inside an existing labels field in a service definition.


  You should note the difference between these definitions--the logging field includes the logging property, which means it can be used directly in the service. The labels field does not include the labels property, so it needs to be used inside an existing set of labels. Listing 10.8 makes that clear, with a service definition that uses both extensions.


  Listing 10.8 Using extensions inside a service definition with YAML merge


   services:    iotd:        ports:            - 8080:80        <<: *logging        labels:            <<: *labels              public: api


  Extension fields are used with the YAML merge syntax <<: followed by the field name, which is prefixed with an asterisk. So <<: *logging will merge in the value of the logging extension field at that point in the YAML file. When Compose processes this file, it will add the logging section to the service from the logging extension, and it will add an extra label to the existing labels section, merging in the value from the labels extension field.


   Try it now We don’t need to run this app to see how Compose processes the file. Just running the config command will do. That validates all the inputs and prints out the final Compose file, with the extension fields merged into the service definitions:


   # browse to the image-gallery folder under ch10/exercises:  cd ../image-gallery   # check config for the production override:  docker-compose -f ./docker-compose.yml -f ./docker-compose-prod.yml config


  My output is in figure 10.11--I haven’t shown the full output, just enough of the service definitions to show the extension fields being merged in.
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  Figure 10.11 Using the config command to process files with extension fields and check the result


  Extension fields are a useful way of ensuring best practices in your Compose files--using the same logging settings and container labels is a good example of setting standards for all services. It’s not something you’ll use for every app, but it’s good to have in your toolbox for those times when you’re about to copy and paste big chunks of YAML. Now you have a better approach. There is one big limitation, though: extension fields don’t apply across multiple Compose files, so you can’t define an extension in a core Compose file and then use it in an override. That’s a restriction of YAML rather than Compose, but it’s something to be aware of.


  10.5 Understanding the configuration workflow with Docker


  It’s incredibly valuable to have the entire deployment configuration for a system captured in a set of artifacts that live in source control. It allows you to deploy any version of your application just by fetching the source at that version and running the deployment scripts. It also allows developers to quickly work on fixes by running the production stack locally and reproducing a bug in their own environment.


  There are always variations between environments, and Docker Compose lets you capture the differences between environments while still giving you that set of deployment artifacts that live in source control. In this chapter we’ve looked at defining different environments with Docker Compose and focused on three key areas:


  
    	Application composition --Not every environment will run the whole stack. Features like the monitoring dashboard may not be used by developers, or applications may use containerized databases in the test environment but plug into a cloud database in production. Override files let you do this neatly, sharing common services and adding specific ones in each environment.


    	Container configuration --Properties need to change to match the requirements and capabilities of the environment. Published ports need to be unique so they don’t collide with other containers, and volume paths may use local drives in the test environment but shared storage in production. Overrides enable this, along with isolated Docker networks for each application, allowing you to run multiple environments on a single server.


    	Application configuration --The behavior of applications inside containers will change between environments. This could change the amount of logging the app does, or the size of the cache it uses to store local data, or whole features could be turned on or off. You can do this using Compose with any combination of override files, environment files, and secrets.

  


  Figure 10.12 shows that with the to-do list app we ran in section 10.3. The development and test environments are completely different: in dev the app is configured to use a local database file, and in test Compose also runs a database container and the app is configured to use that. But each environment uses isolated networks and unique ports, so they can be run on the same machine, which is perfect if developers need to spin up a local test environment and see how it compares to their development version.
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  Figure 10.12 Defining very different environments for the same app using Docker Compose


  The most important takeaway from this is that the configuration workflow uses the same Docker image in every environment. The build process will produce a tagged version of your container images, which have passed all the automated tests. That’s a release candidate that you deploy to the smoke-test environment using the configuration in your Compose files. When it passes the smoke test, it moves on to the next environment, which uses the same set of images and applies new configuration from Compose. Ultimately you’ll release that version if the tests all pass, when you’ll deploy those same container images to production using your Docker Swarm or Kubernetes deployment manifests. The software that gets released is exactly the same software that has passed all the tests, but now it has production behavior supplied from the container platform.


  10.6 Lab


  In this lab I’d like you to build your own set of environment definitions for the to-do app. You’re going to put together a development environment and a test environment, and make sure they can both run on the same machine.


  The development environment should be the default, which you can run with docker-compose up . The setup should


  
    	Use a local database file


    	Publish to port 8089


    	Run v2 of the to-do application

  


  The test environment will need to be run with specific Docker Compose files and a project name. Its setup should


  
    	Use a separate database container


    	Use a volume for the database storage


    	Publish to port 8080


    	Use the latest to-do application image

  


  There are similarities here to the Compose files in the todo-list-configured exercises for the chapter. The main difference is the volume--the database container uses an environment variable called PGDATA to set where the data files should be written. You can use that along with a volume specification in your Compose files.


  As you’ve seen in this chapter, there are lots of ways you can solve this. My solution is on GitHub here:  https://github.com/sixeyed/diamol/blob/master/ch10/lab/ README.md .


  
    11 Building and testing applications with Docker and Docker Compose

  


  Automation is at the heart of Docker. You describe the steps to package your component in a Dockerfile and use the Docker command line to execute them; you describe the architecture of your app in a Docker Compose file and use the Compose command line to start and stop the app. Command-line tools fit very neatly with automated processes, like jobs that run on a daily schedule or whenever developers push code changes. It doesn’t matter which tool you’re using to run those jobs; they all let you run scripted commands so you can easily integrate the Docker workflow with your automation server.


  In this chapter you’re going to learn how to do continuous integration (CI) with Docker. CI is an automated process that runs regularly to build applications and execute a suite of tests. When the CI job is healthy, it means the latest code for the app is good and has been packaged and is ready to deploy as a release candidate. Setting up and managing CI servers and jobs used to be time consuming and intensive--“build manager” was a full-time role for a human in a large project. Docker simplifies every part of the CI process and frees people up for more interesting work.


  11.1 How the CI process works with Docker


  The CI process is a pipeline that starts with code, executes a set of steps, and finishes with a tested deployable artifact. One of the challenges with CI is that pipelines become unique for each project--different technology stacks do different things in the steps and produce different types of artifacts. The CI server needs to work for all those unique pipelines, so every combination of programming language and build framework can get installed on the server, and it can easily become unmanageable.


  Docker brings consistency to the CI process because every project follows the same steps and produces the same type of artifact. Figure 11.1 shows a typical pipeline with Docker--it is triggered by a code change or a timed schedule, and it produces a set of Docker images. Those images contain the latest version of the code--compiled, tested, packaged, and pushed to a registry for distribution.
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  Figure 11.1 The basic steps of a CI pipeline to build, test, and publish apps--all executed with Docker.


  Each step in the CI pipeline runs with Docker or Docker Compose, and all the work happens inside containers. You use containers to compile applications, so the CI server doesn’t need to have any programming languages or build SDKs installed. Automated unit tests run as part of the image build, so if the code is broken, the build fails and the CI job stops. You can also run more sophisticated end-to-end tests by starting the whole application with Docker Compose alongside a separate container that runs tests to simulate user workflows.


  In a Dockerized CI process, all the hard work happens in containers, but you still need some infrastructure components to hold everything together: a centralized source code system, a Docker registry to store images, and an automation server to run the CI jobs. There’s a huge choice of managed services you can choose from that all support Docker--you can mix and match GitHub with Azure DevOps and Docker Hub, or you could use GitLab, which provides an all-in-one solution. Or you can run your own CI infrastructure in Docker containers.


  11.2 Spinning up build infrastructure with Docker


  No one wants to run their own infrastructure components when you can get reliable managed services for free, but running the build system in Docker is a very useful alternative to know. It’s ideal if you want to keep your source code and packaged images entirely within your own network--for data sovereignty or transfer speed--but even if you use services for everything, it’s great to have a simple backup option for the rare occasions when GitHub or Docker Hub have an outage, or your internet connection goes offline.


  The three components you need can easily be run in containers using enterprise-grade open source software. With a single command you can run your own setup using Gogs for source control, the open source Docker registry for distribution, and Jenkins as the automation server.


   Try it now In the exercises folder for this chapter, there’s a Docker Compose file that defines the build infrastructure. One part of the setup is different for Linux and Windows containers, so you’ll need to select the right files. You’ll also need to add an entry to your hosts file for the DNS name registry.local if you didn’t do that in section 5.3.


   cd ch11/exercises/infrastructure   # start the app with Linux containers:  docker-compose -f docker-compose.yml -f docker-compose-linux.yml up -d   # OR start with Windows containers:  docker-compose -f docker-compose.yml -f docker-compose-windows.yml up -d   # add registry domain to local hosts file on Mac or Linux:  echo $'\n127.0.0.1 registry.local' | sudo tee -a /etc/hosts   # OR on Windows:  Add-Content -Value "127.0.0.1 registry.local" -Path /windows/system32/drivers/etc/hosts   # check containers:  docker container ls


  You can see my output in figure 11.2. The commands are different on Linux and Windows, but the outcome is the same--you’ll have the Gogs Git server published to port 3000, Jenkins published to port 8080, and the registry published to port 5000.
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  Figure 11.2 Running your whole build infrastructure in containers with one command


  Those three tools are interesting to work with because they support different levels of automation. The registry server runs in a container without any extra setup, so now you can push and pull images using registry.local:5000 as the domain in your image tags. Jenkins uses a plugin system to add functionality, and you can set that up manually, or you can bundle a set of scripts in the Dockerfile to automate the setup for you. Gogs doesn’t really have a good automation story, so although it’s running, it needs some manual configuration.


   Try it now Browse to http: / / localhost:3000 and you’ll see the web UI for Gogs. The first page is the initial installation, shown in figure 11.3. This is shown only on the first use of a new container. All the values are correctly configured; you just need to scroll down and click Install Gogs.
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  Figure 11.3 Running Gogs in a container. It’s an open source Git server that needs some manual setup.


  The installation completes very quickly, and you’ll come to the sign-on page. There isn’t a default account, so you’ll need to click Register to create one. Create a user with the username diamol , as in figure 11.4--you can use any email address or password, but the Jenkins CI job expects the Gogs user to be called diamol .
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  Figure 11.4 Creating a new user in Gogs that you can use to push source code to the server


  Click Create New Account, and then sign in with the diamol username and your password. The final step is to create a repository--that’s where we’ll push the code that will trigger the CI job. Browse to http:/ /localhost:3000/repo/create and create a repository called diamol --the other details can be left empty, as in figure 11.5.
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  Figure 11.5 Creating a Git repository in Gogs where you can upload the source code for your apps


  It’s pretty frustrating to have to manually configure software when you’re running it in Docker, and it’s much more frustrating having to copy and paste screenshots into a book, but not every app lets you fully automate the installation. I could have built a custom image with those setup steps already done, but it’s important for you to see that you can’t always package things nicely into the docker container run workflow.


  Jenkins is a better experience. Jenkins is a Java application, and you can package it as a Docker image with a set of scripts that run when the container starts. Those scripts can do pretty much anything--install plugins, register users, and create pipeline jobs. This Jenkins container does all that, so you can log straight in and start using it.
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  Figure 11.6 Running Jenkins in a container--it is fully configured with a user and CI job already set up.


   Try it now Browse to http: / / localhost:8080. You’ll see the screen in figure 11.6--there’s already a job configured called diamol that is in the failed state. Click the Log In link at the top right and log in with username diamol and password diamol .


  The Jenkins job failed because it’s configured to fetch code from the Gogs Git server, and there’s no code in there yet. The source code for this book is already a Git repository that you originally cloned from GitHub. You can add your local Gogs container as another Git server for the repo, and push the book’s code to your own infrastructure.


   Try it now You can add an extra Git server using git remote add and then push to the remote. This uploads the code from your local machine to the Gogs server, which just happens to be a container on your machine too:


   git remote add local http://localhost:3000/diamol/diamol.git   git push local   # Gogs will ask you to login -  # use the diamol username and password you registered in Gogs


  Now you have the source code for the whole book in your local Git server. The Jenkins job is configured to look for changes to the code every minute, and if there are changes, it will trigger the CI pipeline. The first job run failed because the code repository didn’t exist, so Jenkins has put the schedule on hold. You’ll need to manually run the job now to start the schedule working again.
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  Figure 11.7 The Jenkins job page shows the current status of the job and lets you manually start a build.


   Try it now Browse to http:/ /localhost:8080/job/diamol. You’ll see the screen in figure 11.7, and you can click Build Now in the left-hand menu to run the job. If you don’t see the Build Now option, make sure you’ve logged into Jenkins with the diamol credentials.


  After a minute or so, the build will complete successfully, the web page will refresh, and you’ll see the output in figure 11.8.
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  Figure 11.8 The job page in Jenkins shows the status of the most recent builds, and the pipeline steps.


  Every part of this pipeline ran using Docker containers, taking advantage of a neat trick: containers running in Docker can connect to the Docker API and start new containers on the same Docker Engine they’re running on. The Jenkins image has the Docker CLI installed, and the configuration in the Compose file sets up Jenkins so when it runs Docker commands they get sent to the Docker Engine on your machine. It sounds odd, but it’s really just taking advantage of the fact that the Docker CLI calls into the Docker API, so CLIs from different places can connect to the same Docker Engine. Figure 11.9 shows how that works.
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  Figure 11.9 Running containers with a volume to bind the private channel for the Docker API


  The Docker CLI connects to the local Docker API by default, using a communication channel that is private to your machine--a socket on Linux or a named pipe on Windows. That communication channel can be used as a bind mount for containers, so when the CLI in the container runs, it’s actually connecting to the socket or named pipe on your machine. That unlocks some useful scenarios where apps inside containers can query Docker to find other containers, or start and stop new containers. There is also a security concern here, because the app in the container has full access to all the Docker features on the host, so you need to use this carefully with Docker images that you trust--you can trust my diamol images, of course.


  Listing 11.1 shows part of the Docker Compose files you ran to start the infrastructure containers, focusing on the Jenkins specification. You can see the volumes are binding to the Docker socket in the Linux version and the named pipe in the Windows version--this is the address of the Docker API.


  Listing 11.1 Binding the Docker CLI in Jenkins to the Docker Engine


   # docker-compose.yml  services:    jenkins:        image: diamol/jenkins        ports:            - "8080:8080"        networks:            - infrastructure   # docker-compose-linux.yml  jenkins:    volumes:        - type: bind            source: /var/run/docker.sock            target: /var/run/docker.sock   # docker-compose-windows.yml  jenkins:    volumes:        - type: npipe            source: \\.\pipe\docker_engine              target: \\.\pipe\docker_engine


  That’s all the infrastructure you need. Jenkins connects to the Docker Engine to run Docker and Docker Compose commands, and it can connect to the Git server and the Docker registry by DNS because they’re all containers in the same Docker network. The CI process runs a single command to build the application, and all the complexity of the build is captured in Dockerfiles and Docker Compose files.


  11.3 Capturing build settings with Docker Compose


  The job that Jenkins ran has built a new version of the random number application from chapter 8. You’ve seen in chapter 10 how you can break up an application definition across multiple Compose files, and this app uses that approach to capture the details of the build settings. Listing 11.2 is from the base docker-compose.yml file in the ch11/exercises folder--it contains the web and API service definitions with environment variables in the image name.


  Listing 11.2 A core Docker Compose file using variables in the image tags


   services:    numbers-api:        image: ${REGISTRY:-docker.io}/diamol/ch11-numbers-api:v3-build-${BUILD_NUMBER:-local}        networks:            - app-net     numbers-web:        image: ${REGISTRY:-docker.io}/diamol/ch11-numbers-web:v3-build-${BUILD_NUMBER:-local}        environment:            - RngApi__Url=http://numbers-api/rng        networks:              - app-net


  The environment variable syntax here includes a default value set with :- , so ${REGISTRY:-docker.io} tells Compose to replace that token at runtime with the value of the environment variable called REGISTRY . If that environment variable doesn’t exist or is empty, it will use the default value docker.io , which is the domain for Docker Hub. I use the same approach with the image tag, so if the environment variable BUILD_NUMBER is set, that value goes into the tag; otherwise local gets used.


  This is a very useful pattern for supporting a CI process and a local developer build using the same set of artifacts. When a developer builds the API image, they won’t have any environment variables set, so the image will be called docker.io/diamol/ ch11-numbers-api:v3-build-local . But docker.io is Docker Hub, which is the default domain, so the image will just be shown as diamol/ch11-numbers-api:v3-build-local . When the same build runs in Jenkins, the variables will be set to use the local Docker registry and the actual build number for the job, which Jenkins sets as an incrementing number, so the image name will be registry.local:5000/ diamol/ ch11-numbers-api:v3-build-2 .


  Setting a flexible image name is an important part of the CI setup, but the key information is specified in the override file docker-compose-build.yml , which tells Compose where to find the Dockerfiles.


   try it now You can build the app locally using the same steps as the CI build pipeline. Start from a terminal session, browse to the directory for the chapter, and build the app with Docker Compose:


   cd ch11/exercises   # build both images:  docker-compose -f docker-compose.yml -f docker-compose-build.yml build   # check the labels for the web image:  docker image inspect -f '{{.Config.Labels}}' diamol/ch11-numbers-api:v3-build-local


  You can see my output in figure 11.10.


  [image: ]


  Figure 11.10 Building images with Docker Compose and checking the image labels


  Building the application through Docker Compose effectively runs a docker image build command for every service that has build settings specified. That could be a dozen images or a single one--even for one image, it’s a good practice to build with Compose because then your Compose file specifies the tag you want when you build the image. There are a few more things in this build that are part of a successful CI pipeline--you can see that in the final inspect command that lists the labels for the image.


  Docker lets you apply labels to most resources--containers, images, networks, and volumes. They’re simple key/value pairs where you can store additional data about the resource. Labels are very useful on images because they get baked into the image and move with it--when you push or pull the image, the labels go along too. When you build your app with a CI pipeline, it’s important to have an audit trail that lets you track back from the running container to the build job that created it, and image labels help you do that.


  Listing 11.3 shows part of the Dockerfile for the random number API (you’ll find the full file in the exercises for this chapter at numbers/numbers-api/Dockerfile.v4 ). There are two new Dockerfile instructions here-- ARG and LABEL.


  Listing 11.3 Specifying image labels and build arguments in the Dockerfile


   # app image  FROM diamol/dotnet-aspnet   ARG BUILD_NUMBER=0  ARG BUILD_TAG=local   LABEL version="3.0"  LABEL build_number=${BUILD_NUMBER}  LABEL build_tag=${BUILD_TAG}   ENTRYPOINT ["dotnet", "Numbers.Api.dll"]


  The LABEL instruction just applies the key/value pair from the Dockerfile to the image when it gets built. You can see version=3.0 specified in the Dockerfile, and that matches the label output in figure 11.10. The other two LABEL instructions use environment variables to set the label value, and those environment variables are provided by the ARG instructions.


   ARG is very similar to the ENV instruction, except that it works at build time on the image, rather than at run time in the container. They both set the value of an environment variable, but for ARG instructions that setting only exists for the duration of the build, so any containers you run from the image don’t see that variable. It’s a great way to pass data into the build process that isn’t relevant for running containers. I’m using it here to provide values that go into the image labels--in the CI process, these record the number of the build and the full build name. The ARG instruction also sets default values, so when you build the image locally without passing any variables, you see build_number:0 and build_tag:local in the image labels.


  You can see how the environment settings in the CI pipeline get passed down into the Docker build command in the Compose override file. Listing 11.4 shows the contents of the docker-compose-build.yml file with all the build settings.


  Listing 11.4 Specifying build settings and reusable arguments in Docker Compose


   x-args: &args    args:        BUILD_NUMBER: ${BUILD_NUMBER:-0}        BUILD_TAG: ${BUILD_TAG:-local}  services:    numbers-api:        build:            context: numbers            dockerfile: numbers-api/Dockerfile.v4            <<: *args     numbers-web:        build:            context: numbers            dockerfile: numbers-web/Dockerfile.v4              <<: *args


  This Compose file shouldn’t be too complicated unless you skipped chapter 10, in which case you should go back and read it. It won’t take you more than a lunchtime.


  There are three parts to the build block in the Compose specification:


  
    	 context --This is the path Docker will use as the working directory for the build. This is usually the current directory, which you pass with a period in the docker image build command, but here it’s the numbers directory--the path is relative to the location of the Compose file.


    	 dockerfile --The path to the Dockerfile, relative to the context.


    	 args --Any build arguments to pass, which need to match the keys specified as ARG instructions in the Dockerfile. Both the Dockerfiles for this app use the same BUILD_NUMBER and BUILD_TAG arguments, so I’m using a Compose extension field to define those values once, and YAML merge to apply it to both services.

  


  You’ll see default values specified in lots of different places, and this is to make sure that support for the CI process doesn’t break other workflows. You should always aim for a single Dockerfile that gets built in the same way however the build is run. Default arguments in the Compose file mean the build succeeds when you run it outside of the CI environment, and defaults in the Dockerfile mean the image builds correctly even if you don’t use Compose.


   Try it now You can build the random number API image with the normal image build command, bypassing the setup in the Compose files. You can call the image whatever you like--the build succeeds and the labels get applied because of the defaults in the Dockerfile:


   # change to the numbers directory   # (this is done with the context setting in Compose):  cd ch11/exercises/numbers   # build the image, specifying the Dockerfile path and a build argument:  docker image build -f numbers-api/Dockerfile.v4 --build-arg BUILD_TAG=ch11 -t numbers-api .   # check the labels:  docker image inspect -f '{{.Config.Labels}}' numbers-api


  My output is in figure 11.11--you can see in the labels that the value build_tag:ch11 was set from my build command, but the value build_number:0 was set from the default for the ARG in the Dockerfile.
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  Figure 11.11 Including default values for build arguments supports the developer build workflow.


  There are quite a few levels of detail here just to get labels into an image, but it’s an important thing to get right. You should be able to run docker image inspect and find exactly where that image came from, tracking it back to the CI job that produced it, which in turn tracks back to the exact version of code that triggered the build. It’s an audit trail from the running container in any environment back to the source code.


  11.4 Writing CI jobs with no dependencies except Docker


  You’ve been happily building images for the random number app in this chapter using Docker and Docker Compose, without needing any other tools installed on your machine. There are two components to the app, and both are written in .NET Core 3.0, but you don’t need the .NET Core SDK on your machine to build them. They use the multi-stage Dockerfile approach from chapter 4 to compile and package the app, so Docker and Compose are all you need.


  This is a major benefit of containerized CI, and it’s supported by all the managed build services like Docker Hub, GitHub Actions, and Azure DevOps. It means you no longer need a build server with lots of tools installed and for the tools to be kept up to date with all the developers. It also means that your build scripts become very simple--developers can use the exact same build scripts locally and get the same output as the CI pipeline, so it becomes easy to move between different build services.


  We’re using Jenkins for our CI process, and Jenkins jobs can be configured with a simple text file that lives in source control along with the application code, Dockerfiles, and Compose files. Listing 11.5 shows part of the pipeline (from the file ch11/exercises/Jenkinsfile ) along with the batch script that the pipeline step executes.


  Listing 11.5 The build step from the Jenkinsfile that describes the CI job


   # the build stage in the Jenkinsfile- it switches directory, then runs two  # shell commands - the first sets up a script file so it can be executed  # and the second calls the script:  stage('Build') {    steps {        dir('ch11/exercises') {            sh 'chmod +x ./ci/01-build.bat'            sh './ci/01-build.bat'            }    }  }   # and this is what's in 01-build.bat script:  docker-compose    -f docker-compose.yml    -f docker-compose-build.yml      build --pull


  Well look at that--it’s just the same docker-compose build command you ran locally. Except it adds the pull flag, which means Docker will pull the latest version of any images it needs during the build. That’s a good habit to get into when you do your builds anyway, because it means you’ll always build your image from the latest base image with all the recent security fixes. It’s especially important in the CI process because there could be a change in an image your Dockerfile uses, which could break your app, and you want to find that out as soon as possible.


  The build step runs a simple script file--the filename ends with .bat so it runs nicely under Jenkins in a Windows container, but it also works just fine in a Linux container. This step runs the build, and because it’s a simple command-line call, all the output from Docker Compose--which is also the output from Docker--gets captured and stored in the build logs.


   Try it now You can view the logs in the Jenkins UI. Browse to http:/ /localhost :8080/job/diamol to see the jobs, and in the pipeline view click on the Build step for job #2. Then click Logs. You can expand the steps of the build and you’ll see the usual Docker build output; mine is in figure 11.12.
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  Figure 11.12 Viewing the output from the pipeline build in Jenkins shows the usual Docker logs.


  Each step in the build pipeline follows the same pattern; it just calls a batch script that does the actual work by running Docker Compose commands. This approach makes it easy to switch between different build services; instead of writing the logic in a proprietary pipeline syntax, you write it in scripts and use the pipeline to call the scripts. I could add pipeline files to run the build in GitLab or GitHub Actions, and they would call the same batch scripts.


  The stages of the Jenkins build are all powered by containers:


  
    	Verify calls the script 00-verify.bat , which just prints out version information for Docker and Docker Compose. This is a useful way to start the pipeline, because it verifies that the Docker dependencies are available and it records the versions of the tools that built the image.


    	Build calls 01-build.bat , which you’ve already seen; it uses Docker Compose to build the images. The REGISTRY environment variable is specified in the Jenkinsfile so images will be tagged for the local registry.


    	Test calls 02-test.bat , which uses Docker Compose to start the whole application, then lists out the containers and brings the application down again. This is just a simple illustration, but it does prove that the containers run without failing. In a real project you would bring up the app and then run end-to-end tests in another container.


    	Push calls 03-push.bat , which uses Docker Compose to push all the built images. The image tags have the local registry domain, so if the build and test stages are successful, the images get pushed to the registry.

  


  Stages in the CI pipeline are sequential, so if there’s a failure at any point, the job ends. That means the registry only stores images for potential release candidates--any image that has been pushed to the registry must have successfully passed the build and test stages.


   Try it now You have one successful build from Jenkins--build number 1 failed because there was no source code, and then build number 2 succeeded. You can query your local registry container using the REST API, and you should see just a version 2 tag for each of the random number images:


   # the catalog endpoint shows all the image repositories:  curl http://registry.local:5000/v2/_catalog   # the tags endpoint shows the individual tags for one repository:  curl http://registry.local:5000/v2/diamol/ch11-numbers-api/tags/list  curl http://registry.local:5000/v2/diamol/ch11-numbers-web/tags/list


  You can see my output in figure 11.13--there are repositories for the web and API images, but each only has a build-2 tag, because the first build failed and didn’t push any images.
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  Figure 11.13 Sending web requests to the registry API to query the images stored in the container


  This is a fairly simple CI pipeline, but it shows you all the key stages of the build and some important best practices. The key thing is to let Docker do the hard work and to build the stages of your pipeline in scripts. Then you can use any CI tool and just plug your scripts into the tool’s pipeline definition.


  11.5 Understanding containers in the CI process


  Compiling and running applications in containers is just the start of what you can do with Docker in your CI pipeline. Docker adds a layer of consistency on top of all your application builds, and you can use that consistency to add many useful features to your pipeline. Figure 11.14 shows a more extensive CI process that includes security-scanning container images for known vulnerabilities and digitally signing images to assert their provenance.
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  Figure 11.14 A production-grade CI pipeline that adds stages with security gates


  Docker calls this approach the secure software supply chain, and it’s important for all sizes of organizations because it gives you confidence that the software you’re about to deploy is safe. You can run tooling in your pipeline to check for known security vulnerabilities and fail the build if there are issues. You can configure your production environment to only run containers from images that have been digitally signed--a process that happens at the end of a successful build. When your containers are deployed to production, you can be certain that they’re running from images that came through your build process, and that they contain software that has passed all your tests and is free from security issues.


  The checks and balances you add in your pipeline work on containers and images, so they apply in the same way across all your application platforms. If you work with multiple technologies across your projects, you’ll be using different base images and different build steps in the Dockerfiles, but the CI pipelines will all be the same.


  11.6 Lab


  Lab time! You’re going to build your own CI pipeline--but don’t run scared. We’ll use the ideas and exercises from this chapter, but the pipeline stages will be much simpler.


  In the lab folder for this chapter you’ll find a copy of the source code for the to-do app from chapter 6. The build for that app is almost ready to go--the Jenkinsfile is there, the CI scripts are there, and the core Docker Compose file is there. There are just a couple of things for you to do:


  
    	Write an override file called docker-compose-build.yml with the build settings.


    	Create a Jenkins job to run the pipeline.


    	Push your changes to Gogs in the diamol repository.

  


  Just three tasks, but don’t be disheartened if your first few builds fail and you need to check the logs and tweak some things. No one in history has ever written a Jenkins job that passed on the first run, so here are a few hints:


  
    	Your Compose override will be similar to the one in the exercises--specifying the context and a build argument for the build number label.


    	In the Jenkins UI, you click New Item to create a job, and you can copy from the existing diamol job.


    	The new job setup will be the same except for the path to the Jenkinsfile--you’ll need to specify the lab folder instead of the exercises folder.

  


  If you’re not getting far with this, you’ll find more information in the read-me file in the lab folder, complete with screenshots for the Jenkins steps and sample build configuration for the Docker Compose file: https://github.com/sixeyed/diamol/blob/ master/ch11/lab/README.md .


  
    Part 3. Running at scale with a container orchestrator

  


   Orchestration is about running containerized apps across multiple servers--a cluster of servers. You use the same Docker images, and you can use the same Docker Compose file format, but instead of managing containers yourself, you tell the cluster what you want the end result to be, and it manages containers for you. In this part of the book you’ll learn how to use Docker Swarm, which is a simple and powerful orchestrator built into Docker. You’ll learn about the application update and rollback process, and how to connect your build pipeline to the cluster to add continuous deployment to your CI pipeline.


  
    12 Understanding orchestration: Docker Swarm and Kubernetes

  


  We’re halfway through our container journey together, and by now you should be pretty comfortable packaging and running applications with Docker and Docker Compose. The next step is understanding how those applications run in a production environment, where you have many machines running Docker to give you high availability and the power to handle lots of incoming traffic.


  In that environment your apps still run in containers using the same Docker images you run locally, but there’s a management layer that takes care of coordinating all the machines and running the containers for you. That’s called orchestration and the two main container orchestrators are Docker Swarm and Kubernetes. They share a lot of the same features and capabilities, but Kubernetes is a complex system with its own learning journey--Learn Kubernetes in a Month of Lunches will be your guide there. In this chapter you’re going to learn about orchestration using Docker Swarm, which is a powerful production-grade container orchestrator built right into Docker. Even if your ultimate goal is to learn Kubernetes, it’s good to start with Swarm--the Kubernetes learning curve is steep, but it’s much easier when you already know Swarm.


  12.1 What is a container orchestrator?


  Docker Compose is great for running containers on a single machine, but that doesn’t work in a production environment--if that machine goes offline, you lose all your applications. Production systems need high availability, which is where orchestration comes in. An orchestrator is basically a lot of machines all grouped together to form a cluster; the orchestrator manages containers, distributing work among all the machines, load-balancing network traffic, and replacing any containers that become unhealthy.


  You create a cluster by installing Docker on each of your machines, and then you join them together with the orchestration platform--Swarm or Kubernetes. From then on you manage the cluster remotely using command-line tools or web UIs. Figure 12.1 shows how that looks from the infrastructure view.
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  Figure 12.1 An orchestrator turns many servers into a single cluster, and it manages containers for you.


  The orchestrator offers a set of extra capabilities that take your containers to the next level. There’s a distributed database in the cluster that stores all the information about the applications you deploy. Then there’s a scheduler that works out where to run containers, and a system to send heartbeats between all the servers in the cluster. Those are the basic building blocks for reliability. You deploy applications by sending your YAML file to the cluster; it stores that information and then schedules containers to run the app--distributing the work to servers with available capacity. When the app is running, the cluster makes sure it keeps running. If a server goes offline and you lose a bunch of containers, the cluster will start replacement containers on other servers.


  Orchestrators do all the hard work of managing containers; you just define the desired state in your YAML files, and you don’t have to know or care how many servers are in the cluster or where your containers are running. The orchestrator also provides features for networking, configuring applications, and storing data. Figure 12.2 shows how network traffic is routed into and within the cluster and how containers can read configuration objects and secrets, and write to shared storage.
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  Figure 12.2 Orchestrators provide extra features for containers--networking, configuration, and storage.


  There’s an important thing missing from the diagram in figure 12.2--the servers. The orchestrator hides away the details of the individual machines, networks, and storage devices. You work with the cluster as a single unit, sending commands and running queries through the API, which the command line connects to. The cluster could be 1,000 machines or a single machine--you work with it in the same way and send the same commands and YAML files to manage your apps. Users of your application could connect to any server in the cluster, and the orchestration layer takes care of routing traffic to containers.


  12.2 Setting up a Docker Swarm cluster


  Let’s get started now. It’s super easy to deploy a container orchestrator with Docker Swarm, because the features are built into the Docker Engine. All you need to do is switch to Swarm mode by initializing the cluster.


   Try it now The Docker CLI has a set of commands to manage cluster operations. The swarm init command switches to Swarm mode. You can usually run it without any arguments, but if your machine is connected to more than one network, you’ll get an error and Docker will ask you which IP address to use for the Swarm communication:


   docker swarm init


  You can see my output in figure 12.3, which tells me that the Swarm is initialized and my machine is a manager. Machines in a cluster can have different roles: they can either be a manager or a worker. The output from running swarm init shows the command you need to run on other machines for them to join the Swarm as workers.
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  Figure 12.3 Switching to Swarm mode creates a cluster with a single node, which is the manager.


  The difference between managers and workers is that the managers run the show--the cluster database is stored on the managers, you send your commands and YAML files to the API hosted on the managers, and the scheduling and monitoring is all done by the managers. Workers typically just run containers when the managers schedule them, and they report back on their status, although you can have managers running workloads too (insert your own joke here, comparing that to human managers).


  Initializing the Swarm is something you do once, and then you can join any number of machines--Docker calls machines in the Swarm nodes. To join a node to the Swarm, it needs to be on the same network, and you need the join token from the manager, which acts like a password to secure the Swarm from rogue nodes. If you have access to the manager, you can print out the tokens for nodes to join as workers or additional managers, and you can list the nodes in the swarm.


   Try it now Once you’re in Swarm mode, there are a lot more commands available from the Docker CLI. Run these to find the join tokens for worker or manager nodes, and to list all the nodes in the Swarm:


   # print the command to join a new worker node  docker swarm join-token worker   # print the command to join a new manager node  docker swarm join-token manager   # list all the nodes in the swarm  docker node ls


  You can see my output in figure 12.4. There’s only one node in my Swarm, but I can add any other machines on my network to the Swarm using the manager’s IP address in the join command.
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  Figure 12.4 In Swarm mode you have extra commands to manage the nodes in the cluster.


  A single-node Swarm works in exactly the same way as a multi-node Swarm, except that you don’t get high availability from having spare machines, or the option to scale out containers to use the capacity of many machines. Figure 12.5 compares the architecture of a single-node Swarm, which you can use for development and test environments, and a multi-node cluster, which you would use in production.
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  Figure 12.5 Test and production Swarms have different numbers of nodes, but the same feature set.


  One of the big advantages of Docker Swarm over Kubernetes is the simplicity of setting up and managing the cluster. You can build a Swarm with dozens of nodes just by installing Docker on every server, running docker swarm init once, and docker swarm join for all the other nodes. There’s no hidden complexity--the process is the same for production and test environments.


  Now that you have your single-node Swarm, you can explore how applications work when you have an orchestrator managing containers for you.


  12.3 Running applications as Docker Swarm services


  You don’t run containers in Docker Swarm--you deploy services, and the Swarm runs containers for you. A service is just an abstraction over the idea of individual containers. Swarm uses the same terminology here as Docker Compose for the same reason: a service could be deployed as multiple containers.


  Services are defined with a lot of the same information you use to run containers. You specify the image to use, environment variables to set, ports to publish, and a name for the service that becomes its DNS name on the network. The difference is that a service can have many replicas--individual containers that all use the same specification from the service and can be run on any node in the Swarm.


   Try it now Create a service that runs one container using a simple application image from Docker Hub, and then list the services to check that it’s running correctly:


   docker service create --name timecheck --replicas 1 diamol/ch12-timecheck:1.0  docker service ls


  Services are first-class objects in Docker Swarm, but you need to be running in Swarm mode--or be connected to a Swarm manager--to work with them. My output is in figure 12.6, where you can see that the service gets created and the basic details are shown from the service list command, which shows there is one replica running.
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  Figure 12.6 Creating a service is how you ask the Swarm to run containers for you.


  The containers that make up a service are called replicas, but they’re just ordinary Docker containers. You can connect to the node that’s running a replica and work with it using the usual Docker container commands. On a single-node Swarm, every replica will run on that machine, so you can work with the service container you just created. It’s not something you would normally do, though, because the containers are being managed by the Swarm. If you try to manage them yourself, what happens may not be what you expect.


   Try it now The service replica is running on your machine, but it’s being managed by the Swarm. You can delete the container, but the Swarm will see that the service is running below the desired replica count, and it will create a replacement.


   # list the replicas for the service:  docker service ps timecheck   # check the containers on the machine:  docker container ls   # remove the most recent container (which is the service replica):  docker container rm -f $( docker container ls --last 1 -q)   # check the replicas again:  docker service ps timecheck


  You can see my output in figure 12.7. I had one container running the replica for my service, and I manually removed it. But the service still exists in the Swarm, and it should have a replica level of one. When I removed the container, the Swarm saw there weren’t enough replicas running, and it started a replacement. You see in the final replica list that the original container is shown as failed, because the Swarm doesn’t know why the container stopped. The running replica is a new container that has only been up for 10 seconds.
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  Figure 12.7 Service replicas are normal containers, but they’re managed by the Swarm--not by you.


  When you’re running in Swarm mode, you manage your applications as services, and you let the Swarm manage individual containers. That has to be the case because it would be unmanageable to manage containers yourself--you’d have to connect to each of the nodes in the Swarm, find out if it’s running any replicas for your service, and work with the containers directly if you wanted to check the status or print out logs. Docker supports you by providing commands that operate on the Swarm resources. You can use docker service commands to print out log entries from all the replicas and to inspect the service to read its specification.


   Try it now The docker service commands are how you should work with applications in Swarm mode. You can get information from the replicas, like all the log entries, and information about the service as a whole:


   # print the service logs for the last 10 seconds:  docker service logs --since 10s timecheck   # get the service details, showing just the image:  docker service inspect timecheck -f '{{.Spec.TaskTemplate.ContainerSpec.Image}}'


  My output is in figure 12.8. It shows the most recent log entries from the service replicas and part of the service specification.
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  Figure 12.8 You work with the service as a single unit to print out replica logs or check the specification.


  The whole specification is saved in the cluster, and you can see it by running that same service inspect command but without the format parameter. There’s a lot of information there, securely stored in the cluster’s database, which is replicated across all the manager nodes. This is one of the big differences between Docker Swarm and Docker Compose, which doesn’t have a data store for application definitions. You can only manage applications with Docker Compose if you have the Compose file(s) available, because that’s the source of the app definition. In Swarm mode the app definition is stored in the cluster, so you can manage apps without a local YAML file.


  You can try that by updating your running service. You can specify a new image version, but you don’t need to repeat any of the other information from the service spec. This is how you deploy application updates in the cluster. When you update the service definition, Swarm rolls out the change, replacing the replicas by removing the old containers and starting new ones.


   Try it now Update the timecheck service to use a new image version. It’s the same simple app that writes a timestamp every few seconds, but the update prints a new application version in the logs:


   # update the service to use a new application image:  docker service update --image diamol/ch12-timecheck:2.0 timecheck   # list the service replicas:  docker service ps timecheck   # and check the logs:  docker service logs --since 20s timecheck


  You’ll see when you list the replicas with service ps that there are two instances--the old replica running from the image tag 1.0, and the replacement running from the image tag 2.0. Service logs include an ID so you can see which replica produces the log entries. These are just the application logs being written out to the container, collected by the Swarm and shown with the replica ID. You can see mine in figure 12.9.
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  Figure 12.9 Updating a service starts a gradual rollout of a new application version.


  All container orchestrators use the approach of staged rollouts for application updates, which keeps your app online during the upgrade. Swarm implements this by replacing replicas one at a time, so if you have multiple replicas hosting your application, there are always containers running to service incoming requests. The actual behavior of the rolling upgrade can be configured for your individual service. You might have 10 replicas providing your web application, and when you roll out an upgrade you could have Docker replace two replicas at a time, checking that the new containers are healthy before moving on to replace the next two replicas, until all 10 are replaced.


  Figure 12.10 shows how that rolling upgrade looks when it’s partway through the deployment--some replicas are running the old version of the application image and some are running the new one. During the rollout, both versions of your app are live and users could hit either one--you need to manage the user experience side of the update yourself.
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  Figure 12.10 Service updates are incremental in Docker Swarm and Kubernetes.


  Automated rolling updates are a huge improvement on manual application releases, and they’re another feature for supporting self-healing applications. The update process checks that new containers are healthy as it is rolling them out; if there’s a problem with the new version, and the containers are failing, the update can be automatically paused to prevent breaking the whole application. Swarm also stores the previous specification of a service in its database, so if you need to manually roll back to the previous version, you can do that with a single command.


   Try it now You normally manage app deployments with YAML files, but if you have a deployment go wrong, it’s very useful just to roll back to the previous state. Docker Swarm can do this because it stores the current and previous state of the service in its database:


   # rollback the previous update:  docker service update --rollback timecheck   # list all the service replicas:  docker service ps timecheck   # print the logs from all replicas for the last 25 seconds:  docker service logs --since 25s timecheck


  The rollback process works in the same way as the update process, with a staged rollout, but it uses the service specification from before the most recent update, so you don’t need to provide the image tag. That’s very useful if an update breaks the application in a way that Docker doesn’t notice, which could happen if you don’t have health checks or if your checks aren’t detailed enough. In that case, when you discover the app is broken, you just run the rollback command and you don’t need to frantically try and find the details of the previous service spec. My output is in figure 12.11, where you can see the replicas from all the deployments, and the service logs from the most recent replicas--the update to 2.0 and the rollback to 1.0.
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  Figure 12.11 You can roll back a service update to return to the previous specification with one command.


  Services are the resources you manage when you’re in Swarm mode, rather than containers. There are some new types of resources you can manage too, but some of the key Docker resources work in the same way. When containers need to communicate in Swarm mode, they do it over Docker networks, and you publish ports to let external traffic into your application.


  12.4 Managing network traffic in the cluster


  Networking in Swarm mode is standard TCP/IP, as far as the applications inside containers are concerned. Components look for each other by DNS name, the DNS server in Docker returns an IP address, and the container sends network traffic to that IP address. Ultimately the traffic is received by a container and it responds. In Swarm mode, the container sending the request and the container sending the response could be running on different nodes, but that’s all transparent to the containers and the applications inside.


  There’s all sorts of clever networking logic happening behind the scenes to make cross-cluster communication seamless, but you don’t need to dig into any of that because it All Just Works. Swarm mode provides a new type of Docker network called the overlay network. It’s a virtual network that spans all the nodes in the cluster, and when services are attached to an overlay network, they can communicate with each other using the service name as the DNS name.


  Figure 12.12 shows how that works with two overlay networks supporting different applications, where each application runs across multiple services on many nodes. The overlay network allows services to communicate when they form part of the same application, but the networks are isolated so services on different networks can’t access each other.
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  Figure 12.12 Networks in the Swarm span the whole cluster and still provide isolation between apps.


  There’s one other difference with services on overlay networks, compared to containers on ordinary Docker networks. You’ve seen in chapter 7 that you can use Docker Compose to scale up and run many instances of a container for a single Compose service. A DNS query to Docker for that Compose service will return the IP addresses for all the containers, and it will rely on the consumer to pick one to send the traffic to. That doesn’t scale well when you have hundreds of replicas in a Swarm service, so overlay networks use a different approach and return a single virtual IP address for the service.


   Try it now Let’s remove the simple app from the previous exercises and create a network and the API services for the NASA image of the day application we’ve used in previous chapters.


   # remove the original app:  docker service rm timecheck  # create an overlay network for the new app:  docker network create --driver overlay iotd-net  # create the API service, attaching it to the network:  docker service create --detach --replicas 3 --network iotd-net --name iotd diamol/ch09-image-of-the-day  # and the log API, attached to the same network:  docker service create --detach --replicas 2 --network iotd-net --name accesslog diamol/ch09-access-log  # check the services:  docker service ls


  Now you have services running the NASA image of the day APIs, and the services are attached to an overlay network. There are three replicas running the image API service and two running the access log service, as you can see from my output in figure 12.13. This is still running on my single-node Swarm using Docker Desktop, but I could run the same set of commands on a Swarm with 500 nodes and the output would be the same--except that the replicas would be running on different nodes.
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  Figure 12.13 Running services in Swarm mode and connecting them to an overlay network


  The easiest way to see the virtual IP address (this is called VIP networking) is to connect to a terminal session in any of the container replicas. You can run some network commands to perform DNS queries on the service names and check what IP addresses are returned.


   Try it now Execute an interactive terminal session in the most recent container, and run DNS lookups for the API services. The first commands are different for Linux and Windows containers, but once you’re connected to the terminal in the container, they’re the same:


   # run a terminal session - Windows containers:  docker container exec -it $(docker container ls --last 1 -q) cmd   # OR on Linux containers:  docker container exec -it $(docker container ls --last 1 -q) sh   # run DNS lookups:  nslookup iotd  nslookup accesslog


  You can see from my output in figure 12.14 that there is a single IP address for each of the services, even though there are multiple containers running those services. The service IP address is a virtual IP address that is shared across all the replicas.
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  Figure 12.14 Services use VIP networking, so there’s a single IP address for any number of replicas.


  This is VIP networking, which is supported in Linux and Windows and is a much more efficient way to load-balance network traffic. There is a single IP address from the DNS lookup, which stays constant even when the service is scaled up or down. Clients send traffic to that IP address, and the networking layer in the operating system discovers there are actually multiple destinations for the address, and it decides which one to use.


  Docker Swarm uses VIP networking between services to provide reliable and load-balanced access to services. You only need to know that because it’s useful if you’re trying to debug communication issues--otherwise you might run a DNS lookup for a service with many replicas and be surprised to see a single IP address returned. Applications running as Swarm services just use DNS names in the usual way, so the complexity of the overlay network is completely hidden.


  Swarm mode takes that same approach of simplifying complex network patterns to handle traffic coming into the cluster. This is a much more complicated problem, if you think about the scale of the cluster and the scale of your application. You might have a web app running with 10 replicas. If there are 20 nodes in your cluster, some nodes aren’t running any of your web containers, and the Swarm needs to direct requests to nodes that are running containers. If there are only five nodes in your cluster, each node will be running multiple replicas, and the Swarm needs to load-balance between containers on the node. Swarm uses ingress networking to deal with this--the diagram in figure 12.15 shows how the ingress works, with every node listening on the same port externally and Docker directing traffic internally within the cluster.
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  Figure 12.15 Docker Swarm uses ingress networking to route traffic to containers on nodes.


  Ingress networking is the default in Swarm mode when you publish ports for a service, so it’s the same as overlay networking--complex technology that is incredibly easy to use. You can publish ports when you create a service, and that’s all you need to do to make use of the ingress network.


   Try it now The final component of the image gallery app is the website itself. When you run it as a Swarm service and publish the port, it uses the ingress network:


   # create the web front end for the app:  docker service create --detach --name image-gallery --network iotd-net --publish 8010:80 --replicas 2 diamol/ch09-image-gallery  # list all services:  docker service ls


  Now you have a service with multiple replicas, listening on a single port. You’re not able to do this with Docker Compose because you can’t have several containers all listening on the same port, but you can in Docker Swarm because it’s the service that listens on the port using the ingress network. When a request comes in to the cluster, the ingress network sends it to one of the service replicas, which could be running on the node that received the request or a different node in the cluster. Figure 12.16 shows the service running with two replicas and the published port.
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  Figure 12.16 Enlisting a service in the ingress network is as simple as publishing a port.


  You can browse to the port and you’ll see the NASA image app from chapter 4--unless you’re running Windows containers. I’ve managed to avoid any big differences for Windows and Linux readers up till now, other than the odd difference in commands, but there’s no getting around this one. If you’re running Linux containers--on a Linux machine or a Mac or with Linux container mode on Windows 10--you can go right ahead and browse to http:/ /localhost:8010 to see the app. If you’re running Windows containers--either on Windows Server or Windows container mode on Windows 10--you can’t do that because Swarm services aren’t accessible using localhost.


  This is one of the few situations where Windows containers don’t work in the same way as Linux containers, and it’s down to limitations in the Windows networking stack. In practice, it’s not usually an issue because your Swarm clusters will be remote servers in test or production environments, and ingress networking does work when you access a remote machine. But on your local single-node Windows Swarm, you can only access services by browsing to them from a different machine. I know it’s not good, but at least we got 12 chapters in before we hit the “this sucks on Windows” moment, and I don’t think there are any more coming.


  I’ve switched to Linux containers for this chapter, and in figure 12.17 you can see the image of the day app. My network request is being routed to one of the two replicas for the web service, which is in turn fetching data from one of the three replicas for the API service.
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  Figure 12.17 Published ports in services use the ingress network, and Swarm routes requests to replicas.


  I’ve said it before in this chapter, but it’s coming once more to make it clear--the size of the cluster doesn’t matter as far as deploying and managing applications goes. I could run the exact same commands on a cluster running with 50 nodes in the cloud, and the result would be the same--two replicas of the web service that I can access from any node, working with three replicas of the API service that the web containers can access on any node.


  12.5 Understanding the choice between Docker Swarm and Kubernetes


  Docker Swarm was designed to be a simple container orchestrator. It took the concepts of networks and services from Docker Compose, which was already hugely popular, and built them into an orchestrator that became part of the Docker Engine. Other orchestrators have been released as commercial or open source projects, but most of those efforts have been shelved, and now the choice comes down to Docker Swarm and Kubernetes.


  Kubernetes is the more popular option because it’s offered as a managed service by all the major public clouds. You can spin up a multi-node Kubernetes cluster in Microsoft Azure, Amazon Web Services, or Google Cloud with just a single command from their CLI or a few clicks on their web portal. They take care of initializing the cluster--which is nothing like as simple as with Docker Swarm--and managing the virtual machines that are the nodes. Kubernetes is easily extensible, so the cloud providers can integrate it with their other products, like load balancers and storage, which make it easy to deploy full-featured applications.


  Docker Swarm doesn’t exist as a managed service from the cloud providers, partly because it has fewer moving parts, so its harder to integrate with other services. If you want to run a Docker Swarm cluster in the cloud, you’ll need to provision the VMs and initialize the Swarm yourself. It can all be automated, but it’s not as simple as using a managed service. Figure 12.18 shows the main cloud resources you’d need to provision and manage yourself if you wanted to run a Docker Swarm cluster in Azure.
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  Figure 12.18 Just some of the cloud resources you have to manage for a production-grade Swarm


  You’ll deploy clusters less often than you’ll deploy applications, though, and for ongoing operations, Docker Swarm is far simpler. It doesn’t have all the features of Kubernetes, but it has everything most organizations need with a fraction of the complexity of Kubernetes. The YAML you send to a Swarm cluster is an extension of the Docker Compose syntax, which is concise and logical. The Kubernetes YAML specification is far more complex and verbose, partly because of the additional resources Kubernetes supports. Both orchestrators ultimately have the job of running Docker containers, and they use the same Docker images, but the Kubernetes version of the app definition can easily involve 5 to 10 times as much YAML.


  My advice for teams who are new to orchestration is to start with Docker Swarm and move on to Kubernetes if they need a feature that Swarm doesn’t have. You have to make some investment in your apps to move them to Docker, and that investment isn’t wasted if you move to Kubernetes--you’ll be running containers from the same images. It’s not always a straightforward decision, though, and there are a few factors you’ll need to add in:


  
    	Infrastructure --If you’re deploying to the cloud, Kubernetes is a simpler option, but if you’re in the datacenter, Swarm is far easier to manage. Also, if your team’s background is 100% Windows, you can use Swarm without taking on Linux.


    	Learning curve --Moving to Swarm is straightforward because it’s an extension of the Docker and Compose experience that you’ll already have. Kubernetes is a whole new set of things to learn, and not everyone on the team will make that investment.


    	Feature set --The complexity of Kubernetes is partly the result of it being hugely configurable. You can do things with Kubernetes that you can’t easily do in Swarm, like blue/green deployments, automatic service scaling, and role-based access control.


    	Future investment --Kubernetes has one of the largest open source communities, and it’s extremely active. Changes and new features are coming all the time, whereas Swarm has been a stable product without large new features for a while now.

  


  Ultimately your roadmap will probably take you to Kubernetes, via Learn Kubernetes in a Month of Lunches, but there’s no rush to get there. Swarm is a great product that will introduce you to container orchestration in production and make it easy to run your workloads, however large they may be. Visa has talked at Docker’s conferences about using their Swarm cluster to power all the payments through their system, including huge spikes on Black Friday.


  12.6 Lab


  It’s a pretty simple lab this time, just to increase your experience working with applications running as Docker Swarm services. I’d like you to run the random number app from chapter 8 in your Swarm cluster. You’ll need two services and a network to connect them, and the services will need to be using these Docker images (which are on Docker Hub, so you don’t need to build them yourself):


  
    	 diamol/ch08-numbers-api:v3


    	 diamol/ch08-numbers-web:v3

  


  My solution is on GitHub in the usual place, but it’s only a few commands, so you shouldn’t really need to look: https://github.com/sixeyed/diamol/blob/master/ch12/ lab/README.md .


  
    13 Deploying distributed applications as stacks in Docker Swarm

  


  I have a confession--in the last chapter I had you spend a lot of time learning how to create Docker Swarm services with the command line, but you won’t ever do that in a real project. It’s a useful way to get started with orchestration and to understand the difference between running containers yourself and having an orchestrator manage them for you. But in a real system you won’t connect to the manager and send it commands to run services. Instead, you’ll describe your application in a YAML file that you’ll send to the manager; it will then decide what actions to take to get your app running. It’s the same desired state approach that you’ve seen with Docker Compose--the YAML file specifies what you want the end state to be, and the orchestrator looks at what’s currently running and figures out what it needs to do to get to that state.


  Docker Swarm and Kubernetes both use the same desired-state approach, but with different YAML syntax. Swarm uses the Docker Compose syntax to define all the components of your app, and when you send your YAML to the manager, it creates networks and services and anything else you declare. The Compose format is very well suited to describing distributed apps for cluster deployment, but there are some concepts that only make sense in Swarm mode and some that only make sense on a single server. The specification is flexible enough to support both, and in this chapter we’ll build on your knowledge of Docker Compose and Docker Swarm to run distributed apps in the cluster.


  13.1 Using Docker Compose for production deployments


  The real power of Docker Swarm comes from Compose--your production deployments use the same file format that you use in dev and test environments, so there’s consistency across your artifacts and tooling for every environment and every project. The very simplest deployment for a Swarm is identical to a simple Compose file--listing 13.1 shows a basic deployment for the to-do app from chapter 6, which just specifies the image name and the port to publish.


  Listing 13.1 A Compose file that can be deployed to a Swarm


   version: "3.7"  services:    todo-web:        image: diamol/ch06-todo-list        ports:              - 8080:80


  You can deploy that on a single server using Docker Compose, and you’ll get one container running with a published port to access the app. You can deploy the exact same file on a Swarm, and you’ll get a service with a single replica running, using the ingress network for the published port. You deploy applications in Swarm mode by creating a stack, which is just a resource that groups together lots of other resources, like services, networks, and volumes.


   Try it now Deploy that simple Compose file as a stack. You’ll need to have initialized your Swarm and then switch to the folder for this chapter’s exercises. Deploy the stack and then check what’s running:


   cd ch13/exercises   # deploy the stack from the Compose file:  docker stack deploy -c ./todo-list/v1.yml todo   # list all the stacks and see the new one:  docker stack ls   # list all services and see the service created by the deployment:  docker service ls


  You can see from my output in figure 13.1 that the behavior is very much like Docker Compose, although you use the standard Docker CLI to deploy to a Swarm. I sent the Compose file to my cluster, and the manager created a default network to plug services into and then created a service for my app. Stacks are a first-class resource in Swarm mode; you can use the CLI to create, list, and remove them. Deploying the stack in this exercise creates a single service.


  [image: ]


  Figure 13.1 Deploying a stack in Swarm mode using a standard Docker Compose file


  If you’re running Linux containers, you can browse to http: / / localhost:8080 and see the app, but if you’re using Windows containers, you still have the problem that you can’t browse to the ingress network locally, so you’ll need to browse from another machine. It’s the same old to-do app working in the same way, so we’ll skip the screenshot. The thing to take away from this exercise is that you’ve used a standard Docker Compose file with no extra config to deploy to the Swarm. If you had multiple nodes in your Swarm, you’d have high availability--the node running the service replica could go offline, and the Swarm would start a replacement on another node to keep your app available.


  Swarm mode has an extra set of features, of course, and you can use them in your app by adding a deploy section to the service in your Compose file. These properties only make sense when you’re running in a cluster, so they get applied when you deploy a stack, but you can use the same file with Docker Compose on a single server, and the deploy settings will be ignored. Listing 13.2 shows an updated service definition for the to-do app that includes deployment properties to run multiple replicas and to limit the compute resources each replica can use.


  Listing 13.2 Adding Swarm deployment configuration in your Docker Compose file


   services:    todo-web:        image: diamol/ch06-todo-list        ports:            - 8080:80        deploy:            replicas: 2            resources:                limits:                    cpus: "0.50"                      memory: 100M


  These are the basic properties you’d want to include for a production deployment. Running multiple replicas means your app can manage more load, and it also means one replica will be available to serve traffic if the other goes offline because of a server failure or a service update. You should also specify compute limits for all your services when they go live, to protect your cluster from a rogue replica consuming all the processing power and memory. Working out the limits takes some effort, because you need to know the amount of CPU and memory your app needs when it’s working hardest--metrics like those we saw in chapter 9 help with this. The resource limits in this application specification restrict each replica to a maximum of 50% of one CPU core and 100 MB of memory.


  Deploying updates to a Swarm stack is the same as deploying a new app--you send the updated YAML file to the manager, and it makes the changes for you. When you deploy the v2 Compose file, the Swarm will create one new replica and replace the existing one.


   Try it now Run a stack deploy command using a new Compose file but the original stack name--this works like an update to the existing stack. List the service tasks and you’ll see how the update happened:


   # deploy an updated Compose file for the stack  docker stack deploy -c ./todo-list/v2.yml todo   # check all the replicas for the web service:  docker service ps todo_todo-web


  My output is in figure 13.2. You can see that the stack updates the service, and the service has two new replicas. The original replica was replaced because adding resource limits in the Compose file changes the container definition, and that needs to be actioned with a new container.
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  Figure 13.2 Updating a stack with a new Compose file will update the service if the definition has changed.


  Docker containers can access all the host machine’s CPU and memory if you don’t specify a limit. That’s the default, and it’s fine for non-production environments where you want to cram as many apps on your servers as possible and let them use the resources they need. In production, however, you want limits to safeguard against bad code or malicious users trying to max out your system, but those limits are established when the container starts, so if you update them you get a new container, which is a replica update in Swarm mode.


  Swarm stacks are a neat way of grouping applications, which you need because a cluster will typically run many apps. You can manage applications as a whole using the stack commands in the Docker CLI, listing the individual services and the service replicas or removing the app altogether.


   Try it now Stacks are the management unit for applications. They give you a simple way to work with an app that could be running multiple services, each with multiple replicas. Check what’s running in the to-do app stack and then remove it:


   # list all the services in the stack:  docker stack services todo   # list all replicas for all services in the stack:  docker stack ps todo   # remove the stack:  docker stack rm todo


  This app is a very simple example with a Docker network, one service, and two replicas. Larger distributed apps could run dozens of services across hundreds of replicas in the Swarm, and you still deploy them in the same way with the Compose file and manage them with docker stack commands. Figure 13.3 shows my output, finally removing the whole stack.
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  Figure 13.3 Working with the stack using the Docker CLI--you can list resources and remove them.


  You can manage all the resources in a stack without needing the Compose file, because all the specifications are stored inside the cluster database. That shared database is replicated between the Swarm managers, so it’s a safe place to store other resources too. It’s how you’ll store application configuration files in the Swarm, which you can make available to services in your Compose file.


  13.2 Managing app configuration with config objects


  Apps running in containers need to be able to load their configuration settings from the platform that is running the container. I’ve covered that with local development and test environments using Docker Compose with environment variables. Now we can round that out with production, which uses Docker config objects stored in the cluster. Figure 13.4 shows how that works, and the important thing here is that it’s the exact same Docker image in every environment. It’s just the application behavior that changes.
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  Figure 13.4 Applying configuration from the platform; Swarm mode uses config objects and secrets.


  Configuration is such a critical part of deployment that all the orchestrators have a first-class resource to hold application configuration. In Swarm these are Docker config objects. They’re powerful because they let the container load its config from the cluster, but they also decouple the role of application deployment from configuration management.


  Organizations often have a config management team that has access to all the secrets--API keys, database server passwords, SSL certificates--and those secrets are all stored in a secure system. That system is often completely separate from the environment where the apps are running, so the team needs a way of applying the config from the central system to the application platform. Docker Swarm supports that workflow with a specific type of resource--config objects--that you load into the cluster from an existing configuration file.


   Try it now The to-do app uses JSON for configuration. The default config in the image uses a local database file for storage, but that doesn’t work if you run many replicas--each container will have its own database, and users will see different lists depending on which replica services their request. The first step to fixing that is deploying a new config file in the cluster:


   # create the config object from a local JSON file:  docker config create todo-list-config ./todo-list/configs/config.json   # check the configs in the cluster:  docker config ls


  Config objects are created with a name and the path to the config file contents. This app uses JSON, but config objects can store any type of data--XML, key/value pairs, or even binary files. The Swarm delivers the config object as a file in the container’s filesystem, so the application sees the exact same data you uploaded. Figure 13.5 shows my output--the config object is created with a long random ID in addition to the name.
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  Figure 13.5 Loading a local file into the Swarm cluster as a config object


  You work with config objects like other Docker resources--there are commands to remove and inspect them as well as to create them. Inspection is useful because it shows you the contents of the config file. That’s an important point about config objects: they’re not meant for sensitive data. The file content is not encrypted in the Swarm database, nor is it encrypted in transit as it moves from the managers to the nodes that are running the replicas.


   Try it now You can inspect a config object to read out the complete contents. This shows you what the replica will see in the container filesystem when it uses the config object:


   # inspect the config using the pretty flag to show the contents:  docker config inspect --pretty todo-list-config


  Figure 13.6 shows my output, which contains all the metadata about the config object and the file contents exactly as they were stored, including whitespace.
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  Figure 13.6 Config objects are not secure--anyone with access to the cluster can see the contents.


  Managing config objects is a separate workflow from managing the applications that use those config objects. In a DevOps workflow, that could all be done by the same team or by one automated pipeline, but in larger enterprises you can keep the functions separate if that matches your existing processes.


  Services consume config objects by specifying them in the Compose file. Listing 13.3 shows part of the updated definition for the to-do list application (the full file is called v3.yml ) that loads configuration from the config object.


  Listing 13.3 Config objects in services get surfaced to the container filesystem


   services:    todo-web:        image: diamol/ch06-todo-list        ports:            - 8080:80        configs:            - source: todo-list-config                target: /app/config/config.json   #...  configs:    todo-list-config:          external: true


  When a container runs as a replica for this service, it will have the contents of the config object loaded from the Swarm into the file at /app/config/config.json , which is one of the paths the app uses as a configuration source. There’s a shorter syntax you can use where you just specify the name of the config object and Docker uses a default target path, but the actual path is different for different operating systems, so it’s better to explicitly state where you want the file to be surfaced. (The forward-slash directory paths work in both Windows and Linux containers.)


  The second part of the Compose file in listing 13.3 shows the config object itself, with its name and the external flag. External is how you specify that this resource should already exist on the cluster. The deployment workflow is to deploy the config objects first and then the apps that use them. You can do that by deploying the v3 Compose file, which also includes a service for the SQL database, so multiple web containers can share the same database.


   Try it now Update the application by deploying the YAML file--the stack command is the same. The Swarm will create a new replica for the database service and new replicas for the web application:


   # deploy the updated app definition:  docker stack deploy -c ./todo-list/v3.yml todo  # list the services in the stack:  docker stack services todo


  You removed the old stack in a previous exercise, so this is a new deployment. You’ll see a network and two services being created. I’ve scaled the web component down to a single replica so we can follow the updates more easily; each of the services is now running a single replica. My output is in figure 13.7.
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  Now the app is configured to use Postgres as the database, which is the setting the config object loads into the replicas. If you browse to http: / / localhost:8080 (or to your machine from another machine if you’re on Windows), you’ll see the app isn’t working. You can check the logs of the web service to see why, and it will show a lot of errors about connecting to the database. This deployment configures the web app to use Postgres, but the config object doesn’t provide the connection details for the database, so the connection fails--we’ll fix that in the next exercise.


  Sensitive data shouldn’t be kept in config objects, because they’re not encrypted and they can be read by anyone who has access to the cluster. That includes database connection strings that might have usernames and passwords, and also URLs for production services and API keys. You should aim for defense in depth in your production environment, so even if the chances of someone gaining access to your cluster are slim, you should still encrypt sensitive data inside the cluster. Docker Swarm provides secrets for storing this class of config.


  13.3 Managing confidential settings with secrets


  Secrets are a resource in the Swarm that the cluster manages, and they work almost exactly like config objects. You create secrets from a local file, and that gets stored in the cluster database. Then you reference the secret in a service specification, and the contents of the secret get loaded into the container filesystem at runtime. The key difference with secrets is that you can only read them in plain text at one point in the workflow: inside the container when they are loaded from the Swarm.


  Secrets are encrypted throughout their lifetime in the cluster. The data is stored encrypted in the database shared by the managers, and secrets are only delivered to nodes that are scheduled to run replicas that need the secret. Secrets are encrypted in transit from the manager node to the worker, and they are only unencrypted inside the container, where they appear with the original file contents. We’ll use a secret to store the database connection string for the to-do list app.


   Try it now Create the secret from the local file, and then inspect it to see what information Docker gives you about the secret:


   # create the secret from a local JSON file:  docker secret create todo-list-secret ./todo-list/secrets/secrets.json   # inspect the secret with the pretty flag to see the data:  docker secret inspect --pretty todo-list-secret


  The user experience for working with secrets is the same as with config objects. The only difference is you can’t read the contents of the secret once it’s been stored. You can see my output in figure 13.8--inspecting the secret only shows the metadata about the resource, not the actual data, which you would see if this was a config object.
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  Figure 13.8 Once secrets are stored in the Swarm, you can’t read the original unencrypted contents.


  Now that the secret is stored in the Swarm, we can deploy a new version of the app with a service specification that uses the secret. The Compose syntax for secrets is very similar to config objects; you specify the source and the target path of the secret in the service definition, and then the secret itself gets its own definition. Listing 13.4 shows the key sections of the new deployment, which is in the v4.yml file.


  Listing 13.4 Specifying secrets and configs for app configuration


   services:    todo-web:        image: diamol/ch06-todo-list        ports:            - 8080:80        configs:            - source: todo-list-config                target: /app/config/config.json        secrets:            - source: todo-list-secret                target: /app/config/secrets.json   #...  secrets:    todo-list-secret:


  The content of that secret is more JSON, loaded into another path where the app looks for configuration sources. This sets the app with the connection details to use the Postgres container for its data store, so when you deploy the app, users will get the same list of items whichever web replica serves them.


   Try it now Deploy the latest version of the app, which supplies the missing database connection string and fixes the web application. This updates the service.


   # deploy the new version of the app:  docker stack deploy -c ./todo-list/v4.yml todo   # check the replicas for the stack:  docker stack ps todo


  Only the web service definition has changed in the Compose file, but when you run this you’ll see Docker state that it’s updating both services. It doesn’t actually make any updates to the database service, so this is a slightly misleading output from the CLI--it will list all the services in the Compose file as “updating” even though they won’t all change. You can see that in my output in figure 13.9.
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  Figure 13.9 Deploying the latest app version will correct the config and fix the app.


  Now the app is working correctly, which you’ll see if you browse to port 8080 from a remote machine (if you’re using Windows containers) or localhost (if you’re using Linux containers). Figure 13.10 shows the infrastructure setup, with the containers connecting on the Docker network and the secret loaded from the Swarm.


  The important thing that’s missing from figure 13.10 is the hardware view, and that’s because this application has the same deployment architecture on Swarms of any size. Secrets and config objects are stored in the managers’ distributed database and are available to every node. The stack creates an overlay network so containers can connect to each other whichever nodes they’re running on, and the service uses the ingress network so consumers can send traffic to any node and have it actioned by one of the web replicas.
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  Figure 13.10 The to-do app running as a stack uses the key features of Docker Swarm.


  One thing you do need to understand about config objects and secrets: they can’t be updated. When you create them in the cluster, the contents will always be the same, and if you need to update the config for an application, you need to replace it. This will involve three steps:


  
    	Create a new config object or secret with the updated contents and a different name from the previous object.


    	Update the name of the config object or secret that your app uses in the Compose file, specifying the new name.


    	Deploy the stack from the updated Compose file.

  


  This process means you need to update your service every time you change configuration, which means that running containers get replaced with new ones. This is one area where orchestrators take different approaches--Kubernetes lets you update existing configuration and secret objects in the cluster. That brings its own problems though, because some application platforms watch their config files for changes and others don’t, so changes may be ignored and you need to replace containers anyway. Swarm is consistent--you’ll always need to update your services when you roll out configuration changes.


  Updating services shouldn’t scare you, though. You’ll be rolling out container updates every time you have new features to deploy in your app, or when there are security updates in the dependencies you use or the operating system your images are based on. At a minimum, you should expect to release updates every month, which is how often most operating-system-based images are updated on Docker Hub.


  That brings us to stateful applications in Swarm mode. You’re going to be replacing containers regularly, so you’ll need to use Docker volumes for persistent storage, and volumes work slightly differently in the Swarm.


  13.4 Storing data with volumes in the Swarm


  We covered Docker volumes way back in chapter 6--they’re units of storage that have a separate life cycle from containers. Any stateful apps you want to containerize can use volumes for storage. Volumes appear as part of the container’s filesystem but they’re actually stored outside of the container. Application upgrades replace the container and attach the volume to the new container, so the new container starts with all the data the previous container had.


  Volumes are conceptually the same in orchestrators too; you add a volume mount specification for the service in the Compose file, and replicas see that volume as a local directory. There’s a big difference in how the data gets stored, though, and that’s something you need to understand to make sure your app works as expected. In a cluster you’ll have multiple nodes that can run containers, and each node has its own disk where it stores local volumes. The simplest way to maintain state between updates is to use a local volume.


  There’s a problem with that approach though--a replacement replica may be scheduled to run on a different node from the original, so it won’t have access to the original node’s data. You can pin services to specific nodes, which means updates will always run on the node that has the data. That works for scenarios where you want application data to be stored outside of the container so it survives updates, but where you don’t need to run multiple replicas and you don’t need to allow for server failure. You apply a label to your node, and in your Compose file you restrict replicas to running on that node.


   Try it now You’ve got a single node Swarm, so every replica will run on this node anyway, but the labeling process works in the same way for multi-node Swarms. Labels can be any key/value pair; we’ll use this one to assign a fictitious storage class:


   # find the ID for your node and update it, adding a label:  docker node update --label-add storage=raid $(docker node ls -q)


  The output of that command is just the node ID, so we’ll skip the screenshot. More interesting is that you now have a way to identify nodes in the cluster, and that can be used to constrain where service replicas get scheduled. Listing 13.5 shows the constraint field in the service definition for the to-do database, which also now has a volume specified--this is in the v5.yml deployment file.


  Listing 13.5 Configuring constraints and volumes for services in the Swarm


   services:    todo-db:        image: diamol/postgres:11.5        volumes:          - todo-db-data:/var/lib/postgresql/data        deploy:            placement:                constraints:                    - node.labels.storage == raid   #...  volumes:      todo-db-data:


  I haven’t trimmed down the volume specification at the end of the Compose file in that listing--the volume name is all there is. This will get created using the default volume driver in the Swarm, which uses the local disk. When you deploy this to your cluster, it will ensure the database replica runs on the node that matches the storage label, and that node will create a local volume called todo-db-data , which is where the data files get stored.


   Try it now The constraint in the Compose file matches the label you added to your Swarm node, so the database container will run there and use the local volume on that node. These commands will explore the volumes on your node before and after the deployment:


   # list all the volumes on your node, showing just IDs:  docker volume ls -q   # update the stack to v5 - for Linux containers:  docker stack deploy -c ./todo-list/v5.yml todo   # OR with Windows containers, using Windows-style paths for the volume:  docker stack deploy -c ./todo-list/v5-windows.yml todo   # check the volumes again:  docker volume ls -q


  You’ll see there are lots of volumes (you’ll probably have far more than me; I cleared mine down with the docker volume prune command before these exercises). Images can specify volumes in the Dockerfile, and if services use images with volumes, the stack creates a default volume for the service. That volume has the same lifetime as the stack, so if you remove the stack, the volumes get removed, and if you update services, they’ll get a new default volume. If you want your data to persist between updates, you need to use a named volume in your Compose file. You can see my output in figure 13.11; deploying the stack created a new named volume rather than a default one.
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  Figure 13.11 Deploying stacks creates volumes too, which can be anonymous or named.


  This deployment provides guarantees for data availability, if the labeled node itself is available. If the container fails its health checks and gets replaced, the new replica will run on the same node as the previous replica and attach to the same named volume. When you update the database service specification, you get the same guarantees. That means the database files are persisted between containers, and your data is safe. You can add items to your to-do list through the web UI, upgrade the database service, and find that the old data is still there in the UI from the new database container.


   Try it now There’s been a new release of the Postgres server since I wrote chapter 6, and it’s a good idea to stay current, so we’ll update the database service. The Compose spec in v6.yml is identical to v5.yml except it uses the updated version of Postgres:


   # deploy the updated database - for Linux containers:  docker stack deploy -c ./todo-list/v6.yml todo   # OR for Windows containers:  docker stack deploy -c ./todo-list/v6-windows.yml todo   # check the tasks in the stack:  docker stack ps todo   # and check volumes:  docker volume ls -q


  You can see my output in figure 13.12. The new database replica is running from an updated Docker image, but it attaches to the volume from the previous replica, so all my data is preserved.
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  Figure 13.12 Updating a service that uses a named volume preserves the data for the new container.


  This is a simple example, and things get more complex when you have different storage requirements for your applications because the data in local volumes is not replicated across all the nodes. Applications that use disk as a data cache will be fine with local volumes, as the data can be different for each replica, but that won’t work for apps that need to access shared state across the cluster. Docker has a plugin system for volume drivers, so Swarms can be configured to provide distributed storage using a cloud storage system or a storage device in the datacenter. Configuring those volumes depends on the infrastructure you’re using, but you consume them in the same way, attaching volumes to services.


  13.5 Understanding how the cluster manages stacks


  Stacks in Docker Swarm are just groups of resources that the cluster manages for you. A production stack will contain many resources, and they all behave slightly differently in terms of how the orchestrator manages them. Figure 13.13 shows how Swarm manages the typical types of resources.
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  Figure 13.13 How Docker Swarm resources are managed by stack deployments


  There are a few takeaways from this. You’ve already worked through some of these scenarios in the exercises, but we’ll finish up the chapter making them clear:


  
    	Volumes can be created and removed by the Swarm. Stacks will create a default volume if the service image specifies one, and that volume will be removed when the stack is removed. If you specify a named volume for the stack, it will be created when you deploy, but it won’t be removed when you delete the stack.


    	Secrets and configs are created when an external file gets uploaded to the cluster. They’re stored in the cluster database and delivered to containers where the service definition requires them. They are effectively write-once read-many objects and can’t be updated. The admin process for storing app configuration in the Swarm is separate from the app deployment process.


    	Networks can be managed independently of applications, with admins explicitly creating networks for applications to use, or they can be managed by the Swarm, which will create and remove them when necessary. Every stack will be deployed with a network to attach services to, even if one is not specified in the Compose file.


    	Services are created or removed when stacks are deployed, and while they’re running, the Swarm monitors them constantly to ensure the desired service level is being met. Replicas that fail health checks get replaced, as do replicas that get lost when nodes go offline.

  


  The stack is a logical group of components that make up an application, but it doesn’t map out a dependency graph between services. When you deploy a stack to the cluster, the managers spin up as many service replicas as quickly as they can across the cluster. You can’t constrain the cluster to start one service completely before starting another, and if you could, that would probably ruin deployment performance. Instead you need to assume that your components will start in a random order, and capture health and dependency checks in your images so containers fail fast if the application can’t run. That way the cluster can repair the damage by restarting or replacing containers, and that gets you a self-healing app.


  13.6 Lab


  Lab! This one will get you some more experience writing Compose files to define apps and deploying them as stacks on the Swarm. I’d like you to write a production deployment for the image gallery app from chapter 9, which should be in a single Compose file that matches these requirements:


  
    	The access log API uses the image diamol/ch09-access-log . It’s an internal component only accessed by the web app, and it should run on three replicas.


    	The NASA API uses the image diamol/ch09-image-of-the-day . That should be publicly accessible on port 8088 and run on five replicas to support the expected incoming load.


    	The web app uses the image diamol/ch09-image-gallery . It should be available at the standard HTTP port 80 and run on two replicas.


    	All the components should have sensible CPU and memory limits (this may need a few rounds of deployments to work out safe maximums).


    	When you deploy the stack, the app should work.

  


  There are no volumes, configs, or secrets to worry about with this app, so it should be a pretty simple Compose file. As always, you can find my solution on GitHub for reference: https://github.com/sixeyed/diamol/blob/master/ch13/lab/README.md .


  
    14 Automating releases with upgrades and rollbacks

  


  Updating containerized applications should be a zero-downtime process that is managed by the container orchestrator. You typically have spare compute power in your cluster that managers can use to schedule new containers during updates, and your container images have health checks so the cluster knows if the new components fail. Those are the enablers for zero-downtime updates, and you’ve already worked through the process with Docker Swarm stack deployments in chapter 13. The update process is highly configurable, and we’ll spend time exploring the configuration options in this chapter.


  Tuning update configuration might sound like a topic you can safely skip, but I can tell you from my own experience that it will cause you pain if you don’t understand how rollouts work and how you can modify the default behavior. This chapter is focused on Docker Swarm, but all orchestrators have a staged rollout process that works in a similar way. Knowing how updates and rollbacks work lets you experiment to find the settings that fit for your app so you can deploy to production as often as you like, confident that the update will either work successfully or automatically roll back to the previous version.


  14.1 The application upgrade process with Docker


  Docker images are a deceptively simple packaging format. You build your image and run your app in a container, and it feels like you can let that run until you have a new version of your app to deploy, but there are at least four deployment cadences you need to consider. First there’s your own application and its dependencies, then the SDK that compiles your app, then the application platform it runs on, and finally the operating system itself. Figure 14.1 shows an example for a .NET Core app built for Linux that actually has six update cadences.
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  Figure 14.1 Your Docker image has a lot of dependencies when you include the other images you use.


  You can see that you should really plan to deploy updates on a monthly schedule to cover OS updates, and you should be comfortable kicking off an ad hoc deployment at any time, to cover security fixes from the libraries your app uses. That’s why your build pipeline is the heart of your project. Your pipeline should run every time a change to the source code is pushed--that will take care of new application features and manual updates to your app’s dependencies. It should also build every night, which makes sure you always have a potentially releasable image built on the latest SDK, application platform, and operating system updates.


  Releasing every month whether your application has changed or not sounds scary, especially in organizations where the release ceremony is so expensive in terms of time and resources that you only do it three times a year. But this approach gets your whole organization into a much healthier mindset: releasing an update is something boring that happens all the time, usually without any humans getting involved. When you have regular automated releases, each update builds confidence in the process, and before you know it you’re releasing new features as soon as they’re completed, rather than waiting for the next deployment window.


  You only get that confidence when releases are successful, and that’s where application health checks become critical. Without them, you don’t have a self-healing app, and that means you can’t have safe updates and rollbacks. We’ll follow that through in this chapter using the random number app from chapter 8, making use of the Docker Compose overrides you learned about in chapter 10. That will let us keep a single clean Compose file with the core app definition, a separate Compose file with the production specification, and additional files for the updates. Docker doesn’t support stack deployment from multiple Compose files though, so first you need to use Docker Compose to join the override files together.


   Try it now Let’s start by deploying the first build of the random number app. We’ll run a single web container and six replicas of the API container, which will help us see how updates get rolled out. You’ll need to be running in Swarm mode; then join together some Compose files and deploy the stack:


   cd ch14/exercises   # join the core Compose file with the production override:  docker-compose -f ./numbers/docker-compose.yml -f ./numbers/prod.yml config > stack.yml   # deploy the joined Compose file:  docker stack deploy -c stack.yml numbers   # show the services in the stack:  docker stack services numbers


  You can see my output in figure 14.2--the Docker Compose command joined the core Compose file with the production override. It’s useful to use Docker Compose to join the override files together because it also validates the contents, and that could be part of a continuous deployment pipeline. The stack deployment created an overlay network and two services.
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  Figure 14.2 Deploying a stack from multiple Compose files by joining them together first


  One thing is new about the stack you see in figure 14.2--the API service is running in the normal replicated mode, but the web service is running in global mode. Global services run with a single replica on each node of the Swarm, and you can use that configuration to bypass the ingress network. There are scenarios like reverse proxies where that’s a good deployment option, but I’m using it here so you can see how it’s different from replicated services for rollouts. The settings for the web service are in listing 14.1 (which is an excerpt from the prod.yml override file).


  Listing 14.1 A global service that uses host networking rather than ingress


     numbers-web:        ports:            - target: 80                published: 80                mode: host        deploy:              mode: global


  In this new configuration there are two fields which configure the global service:


  
    	 mode: global --This setting in the deploy section configures the deployment to run one container on every node in the Swarm. The number of replicas will equal the number of nodes, and if any nodes join, they will also run a container for the service.


    	 mode: host --This setting in the ports section configures the service to bind directly to port 80 on the host, and not use the ingress network. This can be a useful pattern if your web apps are lightweight enough that you only need one replica per node, but network performance is critical so you don’t want the overhead of routing in the ingress network.

  


  This deployment uses the original application images, which don’t have any health checks, and this is the app where the API has a bug that means it stops working after a few calls. You can browse to http: / / localhost (or from an external machine with Windows containers), and you can request lots of random numbers because the calls are load-balanced between six API service replicas. Eventually they’ll all break, and then the app will stop working and won’t ever repair itself--the cluster doesn’t replace containers because it doesn’t know they’re unhealthy. That’s not a safe position to be in, because if you roll out an updated version without any health checks, the cluster won’t know if the update has been successful either.


  So we’ll go on to deploy version 2 of the application images, which have health checks built in. The v2 Compose override file uses the v2 image tag, and there’s also an override that adds configuration for health checks to set how often they fire and how many failures trigger corrective action. That’s in the normal healthcheck block, which works in the same way in Docker Compose, except Compose doesn’t take corrective action for you. When this version of the app is deployed to Docker Swarm, the cluster will repair the API. When you break the API containers, they’ll fail their health checks and get replaced, and then the app will start working again.


   Try it now You need to join the new v2 Compose override with the health check and production override files to get your stack deployment YAML. Then you just need to deploy the stack again:


   # join the healthcheck and v2 overrides to the previous files:  docker-compose -f ./numbers/docker-compose.yml -f ./numbers/prod.yml -f ./numbers/prod-healthcheck.yml -f ./numbers/v2.yml --log-level ERROR config > stack.yml   # update the stack:  docker stack deploy -c stack.yml numbers   # check the stack's replicas:  docker stack ps numbers


  This deployment updates both the web and API services to version 2 of their images. Service updates are always done as a staged rollout, and the default is to stop existing containers before starting new ones. This makes sense for global services that are using host-mode ports, because the new container can’t start until the old one exits and frees up the port. It might make sense for replicated services too, if your application expects a maximum level of scale, but you need to be aware that during the update the services will be under capacity while old containers are shut down and replacements are starting up. You can see that behavior in figure 14.3.
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  Figure 14.3 Deploying a service update with default configuration--one replica is updated at a time.


  Docker Swarm uses cautious defaults for the rollout of service updates. It updates one replica at a time and ensures the container starts correctly before moving on to the next replica. Services roll out by stopping existing containers before starting replacements, and if the update fails because new containers don’t start correctly, the rollout is paused. That all seems reasonable when it’s presented with an authoritative tone in a book, but actually it’s pretty strange. Why default to removing old containers before starting new ones, when you don’t know if the new ones will work? Why pause a failed rollout, which could leave you with a half-broken system, instead of rolling back automatically? Fortunately the rollout can be configured with more sensible options.


  14.2 Configuring production rollouts with Compose


  Version 2 of the random number app is self-repairing because of the health checks. If you request lots of random numbers through the web UI, the API replicas will all break, but wait 20 seconds or so and the Swarm will replace them all and the app will start working again. This is an extreme example, but in a real application with occasional failures, you can see how the cluster monitors containers and keeps the app online based on the health checks.


  The rollout of version 2 used the default update configuration, but I want rollouts for the API to be faster and safer. That behavior is set in the deploy section for the service in the Compose file. Listing 14.2 shows the update_config section I want to apply for the API service (this is an excerpt from the prod-update-config.yml file).


  Listing 14.2 Specifying custom configuration for application rollouts


     numbers-api:        deploy:            update_config:                parallelism: 3                monitor: 60s                failure_action: rollback                  order: start-first


  The four properties of the update configuration section change how the rollout works:


  
    	 parallelism is the number of replicas that are replaced in parallel. The default is 1, so updates roll out by one container at a time. The setting shown here will update three containers at a time. That gives you a faster rollout and a greater chance of finding failures, because there are more of the new replicas running.


    	 monitor is the time period the Swarm should wait to monitor new replicas before continuing with the rollout. The default is 0, and you definitely want to change that if your images have health checks, because the Swarm will monitor health checks for this amount of time. This increases confidence in the rollout.


    	 failure_action is the action to take if the rollout fails because containers don’t start or fail health checks within the monitor period. The default is to pause the rollout; I’ve set it here to automatically roll back to the previous version.


    	 order is the order of replacing replicas. stop-first is the default, and it ensures there are never more replicas running than the required number, but if your app can work with extra replicas, start-first is better because new replicas are created and checked before the old ones are removed.

  


  This setup is generally a good practice for most apps, but you’ll need to tweak it for your own use case. Parallelism can be set to around 30% of the full replica count so your update happens fairly quickly, but you should have a monitor period long enough to run multiple health checks, so the next set of tasks only get updated if the previous update worked.


  There’s one important thing to understand: when you deploy changes to a stack, the update configuration gets applied first. Then, if your deployment also includes service updates, the rollout will happen using the new update configuration.


   Try it now The next deployment sets the update config and updates the services to image tag v3. The replica rollout will use the new update configuration:


   docker-compose -f ./numbers/docker-compose.yml -f ./numbers/prod.yml -f ./numbers/prod-healthcheck.yml -f ./numbers/prod-update-config.yml -f ./numbers/v3.yml --log-level ERROR config > stack.yml   docker stack deploy -c stack.yml numbers   docker stack ps numbers


  You’ll see that the replica list from stack ps gets unmanageably large when you’ve done a few updates. It shows all the replicas from every deployment, so the original containers and the v2 containers that have been updated are shown as well as the new v3 replicas. I’ve trimmed my output in figure 14.4, but if you scroll down in yours you’ll see three replicas of the API service have been updated and are being monitored before the next set is updated.
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  Figure 14.4 Updating a stack with a new update config--the rollout settings take immediate effect.


  There’s a neater way to report on a Swarm service that identifies the service specification, the update configuration, and the latest update status. That’s using the inspect command with the pretty flag. Services created by a stack use the naming convention {stack-name}_{service-name} , so you can work with stack services directly.


   Try it now Inspect the random number API service to view the update status:


   docker service inspect --pretty numbers_numbers-api


  You can see my output in figure 14.5. I’ve trimmed it down again to show just the main pieces of information, but if you scroll in your output you’ll also see the health check configuration, resource limits, and update config.
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  Figure 14.5 Inspecting a service shows the current configuration and the most recent update status.


  One important thing you need to be aware of when you change the default update configuration settings is that you need to include those settings in every subsequent deployment. My v3 deployment added the custom settings, but if I don’t include the same update override file in the next deployment, Docker will revert the service back to the default update settings. Swarm makes changes to the update configuration first, so it would set the update config back to the defaults and then roll out the next version one replica at a time.


  The update config settings for Swarm rollouts have an identical set that applies for rollbacks, so you can also configure how many replicas at a time and how long to wait between sets for an automated rollback. These may seem like minor tweaks, but it’s really important to specify the update and rollback process for a production deployment and test it with your app at scale. You need to be confident that you can roll out an update at any time, and that it will be applied quickly but with enough checks in the process for it to roll back automatically if there’s a problem. You get that confidence by working through failure scenarios with these config settings.


  14.3 Configuring service rollbacks


  There is no docker stack rollback command; only individual services can be rolled back to their previous state. You shouldn’t need to manually start a service rollback unless something’s gone badly wrong. Rollbacks should happen automatically when the cluster is performing a rollout and it identifies that new replicas are failing within the monitor period. If that happens and you’ve got your configuration right, you won’t realize a rollback has happened until you wonder why your new features aren’t showing up.


  Application deployments are the main cause of downtime, because even when everything is automated, there are still humans writing the automation scripts and the application YAML files, and sometimes things get forgotten. We can experience that with the random number app--a new version is ready to deploy, but it has a configuration option that must be set. If it isn’t set, the API fails immediately.


   Try it now Run v5 of the random number app (v4 was the version we used to demonstrate continuous integration in chapter 11, but it used the same code as v3). This deployment will fail because the configuration setting that v5 needs isn’t provided in the Compose files:


   # join lots of Compose files together  docker-compose -f ./numbers/docker-compose.yml -f ./numbers/prod.yml -f ./numbers/prod-healthcheck.yml -f ./numbers/prod-update-config.yml -f ./numbers/v5-bad.yml config > stack.yml   # deploy the update:  docker stack deploy -c stack.yml numbers   # wait for a minute and check the service status:  docker service inspect --pretty numbers_numbers-api


  This is a typical failed deployment. The new API replicas were created and started successfully but they failed their health checks--the health-check configuration is set to run every two seconds with two retries before flagging the container as unhealthy. If any new replicas report as unhealthy during the monitor period of the rollout, that triggers the rollback action, which I’ve set for this service to automatically roll back. If you wait 30 seconds or so after the deployment before you inspect the service, you’ll see output similar to mine in figure 14.6 saying the update has been rolled back and the service is running six replicas of the v3 image.
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  Figure 14.6 When you get your configuration right, a failed update is identified and rolled back.


  It’s no fun when deployments go wrong, but a failed update like this that automatically rolls back does at least keep your app running. Using the start-first rollout strategy helps with that. If I used the default stop-first , there would be a period of reduced capacity when three v3 replicas get stopped, then three v5 replicas get started and fail. In the time it takes the new replicas to flag themselves as unhealthy and for the rollback to complete, there would only be three active replicas of the API. Users wouldn’t see any errors because Docker Swarm doesn’t send any traffic to replicas that aren’t healthy, but the API would be running at 50% capacity.


  This deployment uses the default configuration for rollbacks, which is the same as the default configuration for updates: one task at a time with a stop-first strategy, zero monitoring time, and the rollback pauses if the replacement replicas fail. I find that too cautious, because in the situation where your app was working fine and a deployment broke it, you usually want to roll back to the previous state as quickly as possible. Listing 14.3 shows my preferred rollback configuration for this service (from prod-rollback-config.yml ):


  Listing 14.3 Rollback configuration that reverts failed updates quickly


     numbers-api:        deploy:            rollback_config:                parallelism: 6                monitor: 0s                failure_action: continue                  order: start-first


  The goal here is to revert back as quickly as possible--the parallelism is 6 so all the failed replicas will be replaced in one go, using start-first strategy so replicas of the old version will be started before the rollback worries about shutting down replicas of the new version. There’s no monitoring period, and if the rollback fails (because replicas don’t start) it’s set to continue anyway. This is an aggressive rollback policy that assumes the previous version was good and will become good again when the replicas start.


   Try it now We’ll try the v5 update again, specifying the custom rollback configuration. This rollout will still fail, but the rollback will happen more quickly, returning the app to full capacity on the v3 API:


   # join together even more Compose files:  docker-compose -f ./numbers/docker-compose.yml -f ./numbers/prod.yml -f ./numbers/prod-healthcheck.yml -f ./numbers/prod-update-config.yml -f ./numbers/prod-rollback-config.yml -f ./numbers/v5-bad.yml config > stack.yml   # deploy the update again with the new rollback config:  docker stack deploy -c stack.yml numbers   # wait and you'll see it reverts back again:  docker service inspect --pretty numbers_numbers-api


  This time you’ll see the rollback happens more quickly, but only marginally because there are only a small number of replicas in the API service, all running on my single node. You can see how important this would be in a larger deployment that might have 100 replicas running across 20 nodes--rolling back each replica individually would prolong the amount of time your app might be running below capacity or in an unstable state. You can see my output in figure 14.7--I was quick enough this time to catch the rollback just as it had triggered, so the state shows the rollback is starting.
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  Figure 14.7 Specifying custom rollback settings means a failed rollout gets fixed faster.


  When you run this yourself, take a look at the full service configuration when the rollback has completed--you’ll see that the rollback configuration has been reset to the default values. That’s guaranteed confusion right there, because you’ll be thinking the rollback config wasn’t applied. But actually it’s because the whole service configuration got rolled back, and that includes the rollback setup--the replicas were rolled back in line with the new policy, and then the rollback policy was rolled back. Next time you deploy, you’ll need to make sure you keep adding the update and rollback configs, or they’ll be updated back to the default settings.


  This is where having multiple override files gets dangerous, because they’re all necessary and they all need to be specified in the correct order. Normally you wouldn’t split out settings for one environment across multiple files; I’ve just done that to make our journey through updates and rollbacks easier to follow. Typically you’d have the core Compose file, an environment override file, and possibly a version override file. We’ll take that approach for the final deployment, fixing the v5 issue and getting the app working again.


   Try it now The v5 update failed and rolled back, so we got the team together and realized we’d missed a crucial config setting. The v5.yml override file adds that in, and the prod-full.yml override file has all the production settings in one place. Now we can deploy v5 successfully:


   # this is more like it - all the custom config is in the prod-full file:  docker-compose -f ./numbers/docker-compose.yml -f ./numbers/prod-full.yml -f ./numbers/v5.yml --log-level ERROR config > stack.yml   # deploy the working version of v5:  docker stack deploy -c stack.yml numbers   # wait a while and check the rollout succeeded:  docker service inspect --pretty numbers_numbers-api


  My output is in figure 14.8. I waited a couple of minutes between the deployment and the service list to be sure that the update had worked and there was no rollback.
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  Figure 14.8 A successful deployment after fixing the app configuration


  Now you have v5 running in all its glory--it’s actually the same simple demo app as before, but we can use it to illustrate one final point about rollbacks. The app is working fine now, and the health checks are in place, so if you keep using the API and break the replicas, they’ll get replaced and the app will start working again. Failing health checks don’t cause a rollback of the last update; they just trigger replacement replicas unless the failure happens during the monitor period of the update. If you deploy v5 and during the 60-second monitor period you break the API containers, that will trigger a rollback. Figure 14.9 shows what the update and rollback process would look like for the v3 to v5 update.
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  Figure 14.9 This looks suspiciously like a flowchart, but it’s just a useful way to model the update process.


  That’s it for update and rollback configuration. It’s really just a case of setting a few values in the deployment section of your Compose file and testing variations to be sure your updates are fast and safe and that they roll back quickly if there’s a problem. That helps you maximize the uptime for your application. All that’s left is to understand how that uptime is impacted when there’s downtime of nodes in the cluster.


  14.4 Managing downtime for your cluster


  Container orchestrators turn a bunch of machines into a powerful cluster, but ultimately it’s the machines that run the containers, and they’re prone to downtime. Disk, network, and power are all going to fail at some point--the larger your cluster, the more frequently you’ll have an outage. The cluster will be able to keep your apps running through most outages, but some unplanned failures need active intervention, and if you have planned outages you can make it easier for the Swarm to work around them.


  If you want to follow along with this section, you’ll need a multi-node Swarm. You can set up your own if you’re happy building virtual machines and installing Docker on them, or you can use an online playground. Play with Docker is a great choice for that--you can create a multi-node Swarm and practice deployments and node management without needing any extra machines of your own. Browse to https://labs .play-with-docker.com , sign in with your Docker Hub ID, and click Add New Instance to add a virtual Docker server to your online session. I’ve added five instances to my session, and I’ll use them as my Swarm.


   Try it now Start your Play with Docker session and create five instances--you’ll see them listed in the left navigation, and you can click to select them. In the main window you’ll see a terminal session that is connected to the node you have selected.


   # select node1 and initialize the Swarm using the node's IP address:  ip=$(hostname -i)  docker swarm init --advertise-addr $ip   # show the commands to join managers and workers to the Swarm:  docker swarm join-token manager  docker swarm join-token worker   # select node2 and paste the manager join command, then the same on node3   # select node4 and paste the worker join command, then the same on node5   # back on node1 make sure all the nodes are ready:  docker node ls


  This gives you a completely disposable Swarm. You can do as much damage as you like and then just close your session, and all those nodes will disappear (they’re actually containers running Docker-in-Docker with a lot of smarts to manage the sessions and the networking). You can see my output in figure 14.10 with the Swarm all ready to go.
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  Figure 14.10 Initializing a multi-node Swarm using disposable instances from Play with Docker


  Let’s take the simplest scenario first--you need to take a node down for an operating system update on the server or some other infrastructure task. That node might be running containers, and you want them to be gracefully shut down, replaced on other nodes, and for your machine to go into maintenance mode so Docker doesn’t try and schedule any new containers during any reboot cycles you need to do. Maintenance mode for nodes in the Swarm is called drain mode, and you can put managers or workers into drain.


   Try it now Switch to the terminal session for your node1 manager, and set two of the other nodes into drain mode:


   # set a worker and a manager into drain mode:  docker node update --availability drain node5  docker node update --availability drain node3   # check nodes:  docker node ls


  Drain mode means slightly different things for workers and managers. In both cases all the replicas running on the node are shut down and no more replicas will be scheduled for the node. Manager nodes are still part of the management group though, so they still synchronize the cluster database, provide access to the management API, and can be the leader. Figure 14.11 shows my cluster with two drained nodes.
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  Figure 14.11 Entering drain mode removes all containers and lets you run maintenance on the node.


  What’s this about a leader manager? You need multiple managers for high availability, but it’s an active-passive model. Only one manager is actually controlling the cluster, and that’s the leader. The others keep a replica of the cluster database, they can action API requests, and they can take over if the leader fails. That happens with an election process between the remaining managers, which requires a majority vote, and for that you always need an odd number of managers--typically three for smaller clusters and five for large clusters. If you permanently lose a manager node and find yourself with an even number of managers, you can promote a worker node to become a manager instead.


   Try it now It’s not easy to simulate node failure in Play with Docker, but you can connect to the leader and manually remove it from the Swarm. Then one of the remaining managers becomes the leader, and you can promote a worker to keep an odd number of managers:


   # on node1 - forcibly leave the Swarm:  docker swarm leave --force   # on node 2 - make the worker node available again:  docker node update --availability active node5   # promote the worker to a manager:  docker node promote node5   # check the nodes:  docker node ls


  There are two ways a node can leave the Swarm--a manager can initiate it with the node rm command or the node itself can do it with swarm leave . If the node leaves by itself, that’s a similar situation to the node going offline--the Swarm managers think it should still be there, but it’s not reachable. You can see that in my output in figure 14.12. The original node1 is still listed as a manager, but the status is Down and the manager status is Unreachable .
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  Figure 14.12 Node management keeps your Swarm fully available even when nodes are offline.


  Now the swarm has three managers again, which gives it high availability. If node1 had gone offline unexpectedly, when it came back online I could return one of the other managers to the worker pool by running node demote . Those are pretty much the only commands you need to manage a Docker Swarm cluster.


  We’ll finish up with a couple of less common scenarios, so you know how the Swarm will behave if you encounter them:


  
    	All managers go offline --If all your managers go offline but the worker nodes are still running, then your apps are still running. The ingress network and all the service replicas on the worker nodes work in the same way if there are no managers, but now there’s nothing to monitor your services, so if a container fails it won’t be replaced. You need to fix this and bring managers online to make the cluster healthy again.


    	Leader and all but one manager go offline --It’s possible to lose control of your cluster if all but one manager node goes offline and the remaining manager is not the leader. Managers have to vote for a new leader, and if there are no other managers, a leader can’t be elected. You can fix this by running swarm init on the remaining manager with the force-new-cluster argument. That makes this node the leader but preserves all the cluster data and all the running tasks. Then you can add more managers to restore high availability.


    	Rebalancing replicas for even distribution --Service replicas don’t automatically get redistributed when you add new nodes. If you increase the capacity of your cluster with new nodes but don’t update any services, the new nodes won’t run any replicas. You can rebalance replicas so they’re evenly distributed around the cluster by running service update --force without changing any other properties.

  


  14.5 Understanding high availability in Swarm clusters


  There are multiple layers in your app deployment where you need to consider high availability. We’ve covered a lot of them in this chapter: health checks tell the cluster if your app is working, and it will replace failed containers to keep the app online; multiple worker nodes provide extra capacity for containers to be rescheduled if a node goes offline; multiple managers provide redundancy for scheduling containers and monitoring workers. There’s one final area to consider--the datacenter where the cluster is running.


  I’m just going to cover this very briefly to finish up the chapter, because people often try to get high availability between regions by building a single cluster that spans several datacenters. In theory you can do this--you could create managers in datacenter A with workers in datacenters A, B, and C. That certainly simplifies your cluster management, but the problem is network latency. Nodes in a Swarm are very chatty, and if there’s a sudden network lag between A and B, the managers might think all the B nodes have gone offline and reschedule all their containers on C nodes. And those scenarios just get worse, with the potential to have split-brain: multiple managers in different regions thinking they’re the leader.


  If you really need your apps to keep running when there’s a regional outage, the only safe way is with multiple clusters. It adds to your management overhead, and there’s the risk of drift between the clusters and the apps they’re running, but those are manageable issues, unlike network latency. Figure 14.13 shows what that configuration looks like.
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  Figure 14.13 To achieve datacenter redundancy, you need multiple clusters in different regions.


  14.6 Lab


  It’s back to the image gallery app for this lab, and it’s your turn to build a stack deployment that has a sensible rollout and rollback configuration for the API service. There’s a twist though--the API component doesn’t have a health check built into the Docker image, so you’ll need to think about how you can add a health check in the service specification. Here are the requirements:


  
    	Write a stack file to deploy the image gallery app using these container images: diamol/ch04-access-log , diamol/ch04-image-of-the-day , and diamol/ch04-image-gallery .


    	The API component is diamol/ch04-image-of-the-day , and it should run with four replicas, it should have a health check specified, and it should use an update config that is fast but safe and a rollback config that is just fast.


    	When you’ve deployed the app, prepare another stack file that updates the services to these images: diamol/ch09-access-log , diamol/ch09-image-of-the-day , and diamol/ch09-image-gallery .


    	Deploy your stack update, and be sure the API component rolls out using your expected policy and doesn’t roll back due to an incorrect health check.

  


  This one should be fun, if you find this sort of thing fun. Either way, my solution is up on GitHub for you to check in the usual place: https://github.com/sixeyed/diamol/ blob/master/ch14/lab/README.md . Happy updating!


  
    15 Configuring Docker for secure remote access and CI/CD

  


  The Docker command line presents a seamless way of working with containers, and it’s easy to forget that the command line doesn’t really do anything itself--it just sends instructions to the API running on the Docker Engine. Separating the command line from the Engine has two major benefits--other tools can consume the Docker API, so the command line isn’t the only way to manage containers, and you can configure your local command line to work with a remote machine running Docker. It’s amazingly powerful that you can switch from running containers on your laptop to managing a cluster with dozens of nodes, using all the same Docker commands you’re used to, without leaving your desk.


  Remote access is how you administer test environments or debug issues in production, and it’s also how you enable the continuous deployment part of your CI/CD pipeline. After the continuous integration stages of the pipeline have completed successfully, you’ll have a potentially releasable version of your app stored in a Docker registry. Continuous deployment is the next stage of the pipeline--connecting to a remote Docker Engine and deploying the new version of the app. That stage could be a test environment that goes on to run a suite of integration tests, and then the final stage could connect to the production cluster and deploy the app to the live environment. In this chapter you’ll learn how to expose the Docker API and keep it protected, and how to connect to remote Docker Engines from your machine and from a CI/CD pipeline.


  15.1 Endpoint options for the Docker API


  When you install Docker you don’t need to configure the command line to talk to the API--the default setup is for the Engine to listen on a local channel, and for the command line to use that same channel. The local channel uses either Linux sockets or Windows named pipes, and those are both network technologies that restrict traffic to the local machine. If you want to enable remote access to your Docker Engine, you need to explicitly set it in the configuration. There are a few different options for setting up the channel for remote access, but the simplest is to allow plain, unsecured HTTP access.


  Enabling unencrypted HTTP access is a horribly bad idea. It sets your Docker API to listen on a normal HTTP endpoint, and anyone with access to your network can connect to your Docker Engine and manage containers--without any authentication. You might think that isn’t too bad on your dev laptop, but it opens up a nice, easy attack vector. A malicious website could craft a request to http:/ /localhost:2375, where your Docker API is listening, and start up a bitcoin mining container on your machine--you wouldn’t know until you wondered where all your CPU had gone.


  I’ll walk you through enabling plain HTTP access, but only if you promise not to do it again after this exercise. At the end of this section you’ll have a good understanding of how remote access works, so you can disable the HTTP option and move on to more secure choices.


   Try it now Remote access is an Engine configuration option. You can set it easily in Docker Desktop on Windows 10 or Mac by opening Settings from the whale menu and selecting Expose Daemon on tcp:/ /localhost:2375 Without TLS. Figure 15.1 shows that option--once you save the setting, Docker will restart.
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  Figure 15.1 Enabling plain HTTP access to the Docker API--you should try and forget you saw this.


  If you’re using Docker Engine on Linux or Windows Server, you’ll need to edit the config file instead. You’ll find it at /etc/docker/daemon.json on Linux, or on Windows at C:\ProgramData\docker\config\daemon.json . The field you need to add is hosts , which takes a list of endpoints to listen on. Listing 15.1 shows the settings you need for unsecured HTTP access, using Docker’s conventional port, 2375.


  Listing 15.1 Configuring plain HTTP access to the Docker Engine via daemon.json


  {       "hosts": [       # enable remote access on port 2375:       "tcp://0.0.0.0:2375",       # and keep listening on the local channel - Windows pipe:       "npipe://"       # OR Linux socket:       "fd://"       ],       "insecure-registries": [                 "registry.local:5000"       ]  }


  You can check that the Engine is configured for remote access by sending HTTP requests to the API, and by providing a TCP host address in the Docker CLI.


   Try it now The Docker command line can connect to a remote machine using the host argument. The remote machine could be the localhost, but via TCP rather than the local channel:


  # connect to the local Engine over TCP: docker --host tcp://localhost:2375 container ls   # and using the REST API over HTTP:  curl http://localhost:2375/containers/json


  The Docker and Docker Compose command lines both support a host parameter, which specifies the address of the Docker Engine where you want to send commands. If the Engine is configured to listen on the local address without security, the host parameter is all you need; there’s no authentication for users and no encryption of network traffic. You can see my output in figure 15.2--I can list containers using the Docker CLI or the API.
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  Figure 15.2 When the Docker Engine is available over HTTP, anyone with the machine address can use it.


  Now imagine the horror of the ops team if you told them you wanted to manage a Docker server, so you needed them to enable remote access--and, by the way, that would let anyone do anything with Docker on that machine, with no security and no audit trail. Don’t underestimate how dangerous this is. Linux containers use the same user accounts as the host server, so if you run a container as the Linux admin account, root , you’ve pretty much got admin access to the server. Windows containers work slightly differently, so you don’t get unlimited server access from within a container, but you can still do unpleasant things.


  When you’re working with a remote Docker Engine, any commands you send work in the context of that machine. So if you run a container and mount a volume from the local disk, it’s the remote machine’s disk that the container sees. That can trip you up if you want to run a container on the test server that mounts the source code on your local machine. Either the command will fail because the directory you’re mounting doesn’t exist on the server (which will confuse you because you know it does exist on your machine), or worse, that path does exist on the server and you won’t understand why the files inside the container are different from your disk. It also provides a useful shortcut for someone to browse a remote server’s filesystem if they don’t have access to the server but they do have access to the Docker Engine.


   Try it now Let’s see why unsecured access to the Docker Engine is so bad. Run a container that mounts the Docker machine’s disk, and you can browse around the host’s filesystem:


  # using Linux containers: docker --host tcp://localhost:2375 container run -it -v /:/host-drive diamol/base  # OR Windows containers: docker --host tcp://localhost:2375 container run -it -v C:\:C:\host-drive diamol/base  # inside the container, browse the filesystem: ls ls host-drive


  You can see my output in figure 15.3--the user who runs the container has complete access to read and write files on the host.
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  Figure 15.3 Having access to the Docker Engine means you can get access to the host’s filesystem.


  In this exercise you’re just connecting to your own machine, so you’re not really bypassing security. But if you find out the name or IP address of the server that runs your containerized payroll system, and that server has unsecured remote access to the Docker Engine--well, you might be able to make a few changes and roll up to work in that new Tesla sooner than you expected. This is why you should never enable unsecured access to the Docker Engine, except as a learning exercise.


  Before we go on, let’s get out of the dangerous situation we’ve created and go back to the private local channel for the Docker Engine. Either uncheck the localhost box in the settings for Docker Desktop, or revert the config change you made for the Docker daemon, and then we’ll go on to look at the more secure options for remote access.


  15.2 Configuring Docker for secure remote access


  Docker supports two other channels for the API to listen on, and both are secure. The first uses Transport Layer Security (TLS)--the same encryption technique based on digital certificates used by HTTPS websites. The Docker API uses mutual TLS, so the server has a certificate to identify itself and encrypt traffic, and the client also has a certificate to identify itself. The second option uses the Secure Shell (SSH) protocol, which is the standard way to connect to Linux servers, but it is also supported in Windows. SSH users can authenticate with username and password or with private keys.


  The secure options give you different ways to control who has access to your cluster. Mutual TLS is the most widely used, but it comes with management overhead in generating and rotating the certificates. SSH requires you to have an SSH client on the machine you’re connecting from, but most modern operating systems do, and it gives you an easier way to manage who has access to your machines. Figure 15.4 shows the different channels the Docker API supports.
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  Figure 15.4 There are secure ways of exposing the Docker API, providing encryption and authentication.


  One important thing here--if you want to configure secure remote access to the Docker Engine, you need to have access to the machine running Docker. And you don’t get that with Docker Desktop, because Desktop actually runs Docker in a VM on your machine, and you can’t configure how that VM listens (except with the unsecured HTTP checkbox we’ve just used). Don’t try to follow the next exercises using Docker Desktop --you’ll either get an error telling you that certain settings can’t be adjusted, or, worse, it will let you adjust them and then everything will break and you’ll need to reinstall. For the rest of this section, the exercises use the Play with Docker (PWD) online playground, but if you have a remote machine running Docker (here’s where your Raspberry Pi earns its keep), there are details in the readme file for this chapter’s source code on how to do the same without PWD.


  We’ll start by making a remote Docker Engine accessible securely using mutual TLS. For that you need to generate certificate and key file pairs (the key file acts like a password for the certificate)--one for the Docker API and one for the client. Larger organizations will have an internal certificate authority (CA) and a team that owns the certs and can generate them for you. I’ve already done that, generating certs that work with PWD, so you can use those.


   Try it now Sign in to Play with Docker at https://labs.play-with-docker.com and create a new node. In that session, run a container that will deploy the certs, and configure the Docker Engine on PWD to use the certs. Then restart Docker:


  # create a directory for the certs: mkdir -p /diamol-certs   # run a container that sets up the certs & config: docker container run -v /diamol-certs:/certs -v /etc/docker:/docker diamol/pwd-tls:server   # kill docker & restart with new config pkill dockerd dockerd &>/docker.log &


  The container you ran mounted two volumes from the PWD node, and it copied the certs and a new daemon.json file from the container image onto the node. If you change the Docker Engine configuration, you need to restart it, which is what the dockerd commands are doing. You can see my output in figure 15.5--at this point the engine is listening on port 2376 (which is the convention for secure TCP access) using TLS.
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  Figure 15.5 Configuring a Play with Docker session so the engine listens using mutual TLS


  There’s one last step before we can actually send traffic from the local machine into the PWD node. Click on the Open Port button and open port 2376. A new tab will open showing an error message. Ignore the message, and copy the URL of that new tab to the clipboard. This is the unique PWD domain for your session. It will be something like ip172-18-0-62-bo9pj8nad2eg008a76e0-2376.direct.labs.play-with-docker.com , and you’ll use it to connect from your local machine to the Docker Engine in PWD. Figure 15.6 shows how you open the port.
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  Figure 15.6 Opening ports in PWD lets you send external traffic into containers and the Docker Engine.


  Your PWD instance is now available to be remotely managed. The certificates you’re using are ones I generated using the OpenSSH tool (running in a container--the Dockerfile is in the images/cert-generator folder if you’re interested in seeing how it works). I’m not going to go into detail on TLS certificates and OpenSSH because that’s a long detour neither of us would enjoy. But it is important to understand the relationship between the CA, the server cert, and the client cert. Figure 15.7 shows that.
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  Figure 15.7 A quick guide to mutual TLS--server certs and client certs identify the holder and share a CA.


  If you’re going to use TLS to secure your Docker Engines, you’ll be generating one CA, one server cert for each Engine you want to secure, and one client cert for each user you want to allow access. Certs are created with a lifespan, so you can make short-lived client certs to give temporary access to a remote Engine. All of that can be automated, but there’s still overhead in managing certificates.


  When you configure the Docker Engine to use TLS, you need to specify the paths to the CA cert, and the server cert and key pair. Listing 15.2 shows the TLS setup that has been deployed on your PWD node.


  Listing 15.2 The Docker daemon configuration to enable TLS access


  {     "hosts": ["unix:///var/run/docker.sock", "tcp://0.0.0.0:2376"],     "tls": true,     "tlscacert": "/diamol-certs/ca.pem",     "tlskey": "/diamol-certs/server-key.pem",     "tlscert": "/diamol-certs/server-cert.pem" }


  Now that your remote Docker Engine is secured, you can’t use the REST API with curl or send commands using the Docker CLI unless you provide the CA certificate, client certificate, and client key. The API won’t accept any old client cert either--it needs to have been generated using the same CA as the server. Attempts to use the API without client TLS are rejected by the Engine. You can use a variation of the image you ran on PWD to download the client certs on your local machine, and use those to connect.


   Try it now Make sure you have the URL for port 2376 access to PWD--that’s how you’ll connect from your local machine to the PWD session. Use the domain for your session that you copied earlier when you opened port 2376. Try connecting to the PWD engine:


  # grab your PWD domain from the address bar - something like # ip172-18-0-62-bo9pj8nad2eg008a76e0-6379.direct.labs.play-with- # docker.com   # store your PWD domain in a variable - on Windows: $pwdDomain="<your-pwd-domain-from-the-address-bar>" # OR Linux: pwdDomain="<your-pwd-domain-goes-here>"   # try accessing the Docker API directly: curl "http://$pwdDomain/containers/json"   # now try with the command line: docker --host "tcp://$pwdDomain" container ls   # extract the PWD client certs onto your machine: mkdir -p /tmp/pwd-certs cd ./ch15/exercises tar -xvf pwd-client-certs -C /tmp/pwd-certs   # connect with the client certs: docker --host "tcp://$pwdDomain" --tlsverify --tlscacert /tmp/pwd-certs/ca.pem --tlscert /tmp/pwd-certs/client-cert.pem --tlskey /tmp/pwd-certs/client-key.pem container ls   # you can use any Docker CLI commands:  docker --host "tcp://$pwdDomain" --tlsverify --tlscacert /tmp/pwd-certs/ca.pem --tlscert /tmp/pwd-certs/client-cert.pem --tlskey /tmp/pwd-certs/client-key.pem container run -d -P diamol/apache


  It’s a little cumbersome to pass the TLS parameters to every Docker command, but you can also capture them in environment variables. If you don’t provide the right client cert, you’ll get an error, and when you do provide the certs, you have complete control over your Docker Engine running in PWD from your local machine. You can see that in figure 15.8.
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  Figure 15.8 You can only work with a TLS-secured Docker Engine if you have the client certs.


  The other option for secure remote access is SSH; the advantage here is that the Docker CLI uses the standard SSH client, and there’s no need to make any config changes to the Docker Engine. There are no certificates to create or manage, as authentication is handled by the SSH server. On your Docker machine you need to create a system user for everyone you want to permit remote access; they use those credentials when they run any Docker commands against the remote machine.


   Try it now Back in your PWD session, make a note of the IP address for node1, and then click to create another node. Run these commands to manage the Docker Engine that’s on node1 from the command line on node2 using SSH:


  # save the IP address of node1 in a variable: node1ip="<node1-ip-address-goes-here>"   # open an SSH session to verify the connection: ssh root@$node1ip exit   # list the local containers on node2: docker container ls   # and list the remote containers on node1:  docker -H ssh://root@$node1ip container ls


  Play with Docker makes this very simple, because it provisions nodes with all they need to connect to each other. In a real environment you’d need to create users, and if you want to avoid typing passwords you’d also need to generate keys and distribute the public key to the server and the private key to the user. You can see from my output in figure 15.9 that this is all done in the Play with Docker session, and it works with no special setup.
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  Figure 15.9 Play with Docker configures the SSH client between nodes so you can use it with Docker.


  Ops people will have mixed feelings about using Docker over SSH. On the one hand, it’s much easier than managing certificates, and if your organization has a lot of Linux admin experience, it’s nothing new. On the other hand, it means giving server access to anyone who needs Docker access, which might be more privilege than they need. If your organization is primarily Windows, you can install the OpenSSH server on Windows and use the same approach, but it’s very different from how admins typically manage Windows server access. TLS might be a better option in spite of the certificate overhead because it’s all handled within Docker and it doesn’t need an SSH server or client.


  Securing access to your Docker Engine with TLS or SSH gives you encryption (the traffic between the CLI and the API can’t be read on the network) and authentication (users have to prove their identity in order to connect). The security doesn’t provide authorization or auditing, so you can’t restrict what a user can do, and you don’t have any record of what they did do. That’s something you’ll need to be aware of when you consider who needs access to which environments. Users also need to be careful which environments they use--the Docker CLI makes it super-easy to switch to a remote engine, and it’s a simple mistake to delete volumes containing important test data because you thought you were connected to your laptop.


  15.3 Using Docker Contexts to work with remote engines


  You can point your local Docker CLI to a remote machine using the host parameter, along with all the TLS cert paths if you’re using a secured channel, but it’s awkward to do that for every command you run. Docker makes it easier to switch between Docker Engines using Contexts. You create a Docker Context using the CLI, specifying all the connection details for the Engine. You can create multiple contexts, and all the connection details for each context are stored on your local machine.


   Try it now Create a context to use your remote TLS-enabled Docker Engine running in PWD:


  # create a context using your PWD domain and certs: docker context create pwd-tls --docker "host=tcp://$pwdDomain,ca=/tmp/pwd-certs/ca.pem,cert=/tmp/pwd-certs/client-cert.pem,key=/tmp/pwd-certs/client-key.pem"   # for SSH it would be: # docker context create local-tls --docker "host=ssh://user@server"   # list contexts:  docker context ls


  You’ll see in your output that there’s a default context that points to your local Engine using the private channel. My output in figure 15.10 is from a Windows machine, so the default channel uses named pipes. You’ll also see that there’s a Kubernetes endpoint option--you can use Docker contexts to store the connection details for Kubernetes clusters too.
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  Figure 15.10 Adding a new context by specifying the remote host name and the TLS certificate paths


  Contexts contain all the information you need to switch between local and remote Docker Engines. This exercise used a TLS-secured engine, but you can run the same command with an SSH-secured engine by replacing the host parameter and cert paths with your SSH connection string.


  Contexts can connect your local CLI to other machines on your local network or on the public internet. There are two ways to switch contexts--you can do it temporarily for the duration of one terminal session, or you can do it permanently so it works across all terminal sessions until you switch again.


   Try it now When you switch contexts, your Docker commands are sent to the selected engine--you don’t need to specify host parameters. You can switch temporarily with an environment variable or permanently with the context use command:


  # switch to a named context with an environment variable - this is the # preferred way to switch contexts, because it only lasts for this # session   # on Windows: $env:DOCKER_CONTEXT='pwd-tls'   # OR Linux: export DOCKER_CONTEXT='pwd-tls'   # show the selected context: docker context ls   # list containers on the active context: docker container ls   # switch back to the default context - switching contexts this way is # not recommended because it's permanent across sessions: docker context use default   # list containers again: docker container ls


  The output is probably not what you expect, and you need to be careful with contexts because of these different ways of setting them. Figure 15.11 shows my output, with the context still set to the PWD connection, even though I’ve switched back to the default.
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  Figure 15.11 There are two ways to switch contexts, and if you mix them you’ll get confused.


  The context you set with docker context use becomes the system-wide default. Any new terminal windows you open, or any batch process you have running Docker commands, will use that context. You can override that using the DOCKER_CONTEXT environment variable, which takes precedence over the selected context and only applies to the current terminal session. If you regularly switch between contexts, I find that it’s a good practice to always use the environment variable option and leave the default context as your local Docker Engine. Otherwise it’s easy to start the day by clearing out all your running containers, forgetting that yesterday you set your context to use the production server.


  Of course, you shouldn’t need to regularly access the production Docker servers. As you get further along your container journey, you’ll take more advantage of the easy automation Docker brings and get to a place where the only users with access to Docker are the uber-admins and the system account for the CI/CD pipeline.


  15.4 Adding continuous deployment to your CI pipeline


  Now that we have a remote Docker machine with secure access configured, we can write a complete CI/CD pipeline, building on the work we did with Jenkins in chapter 11. That pipeline covered the continuous integration (CI) stages--building and testing the app in containers and pushing the built image to a Docker registry. The continuous Deployment (CD) stages add to that, deploying to a testing environment for final signoff and then to production.


  The difference between the CI stages and the CD stages is that the CI builds all happen locally using the Docker Engine on the build machine, but the deployment needs to happen with the remote Docker Engines. The pipeline can use the same approach we’ve taken in the exercises, using Docker and Docker Compose commands with a host argument pointing to the remote machine, and providing security credentials. Those credentials need to live somewhere, and it absolutely must not be in source control--the people who need to work with source code are not the same people who need to work with production servers, so the credentials for production shouldn’t be widely available. Most automation servers let you store secrets inside the build server and use them in pipeline jobs, and that separates credential management from source control.


   Try it now We’ll spin up a local build infrastructure similar to chapter 11, with a local Git server, Docker registry, and Jenkins server all running in containers. There are scripts that run when this Jenkins container starts to create credentials from the PWD certificate files on your local machine, so the CD stages will deploy to PWD:


  # switch to the folder with the Compose files: cd ch15/exercises/infrastructure   # start the containers - using Windows containers: docker-compose -f ./docker-compose.yml -f ./docker-compose-windows.yml up -d   # OR with Linux containers: docker-compose -f ./docker-compose.yml -f ./docker-compose-linux.yml up -d


  When the containers are running, browse to Jenkins at http:/ /localhost:8080/credentials and log in with username diamol and password diamol . You’ll see that the certificates for the Docker CA and the client connection are already stored in Jenkins--they were loaded from the PWD certs on your machine, and they’re available to use in jobs. Figure 15.12 shows the certificates loaded as Jenkins credentials.
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  Figure 15.12 Using Jenkins credentials to provide TLS certs for pipelines to connect to Docker on PWD


  This is a fresh build infrastructure running in all-new containers. Jenkins is all configured and ready to go thanks to the automation scripts it uses, but the Git server needs some manual setup. You’ll need to browse to http:/ /localhost:3000 and complete the installation, create a user called diamol , and then create a repository called diamol . If you need a refresher on that, you can flip back to chapter 11--figures 11.3, 11.4, and 11.5 show you what to do.


  The pipeline we’ll be running in this section builds a new version of the timecheck app from chapter 12, which just prints the local time every 10 seconds. The scripts are all ready to go in the source code for this chapter, but you need to make a change to the pipeline to add your own PWD domain name. Then when the build runs, it will run the CI stages and deploy from your local container to your PWD session. We’ll pretend PWD is both the user-acceptance test environment and production.


   try it now Open up the pipeline definition file in the folder ch15/exercises --use Jenkinsfile if you’re running Linux containers and Jenkinsfile.windows if you’re using Windows containers. In the environment section there are variables for the Docker registry domain and the User Acceptance Testing (UAT) and production Docker Engines. Replace pwd-domain with your actual PWD domain, and be sure to include the port, :80 , after the domain--PWD listens on port 80 externally, and it maps that to port 2376 in the session:


  environment {       REGISTRY = "registry.local:5000"       UAT_ENGINE = "ip172-18-0-59-bngh3ebjagq000ddjbv0-2376.direct.labs.play-with-docker.com:80"       PROD_ENGINE = "ip172-18-0-59-bngh3ebjagq000ddjbv0-2376.direct.labs.play-with-docker.com:80" }   


  Now you can push your changes to your local Git server:


  git remote add ch15 http://localhost:3000/diamol/diamol.git  git commit -a -m 'Added PWD domains'  git push ch15  # Gogs will ask you to login - # use the diamol username and password you registered in Gogs


  Now browse to Jenkins at http:/ /localhost:8080/job/diamol/ and click Build Now.


  This pipeline starts in the same way as the chapter 11 pipeline: fetching the code from Git, building the app with a multi-stage Dockerfile, running the app to test that it starts, and then pushing the image to the local registry. Then come the new deployment stages: first there’s a deployment to the remote UAT engine and then the pipeline stops, waiting for human approval to continue. This is a nice way to get started with CD, because every step is automated, but there’s still a manual quality gate, and that can be reassuring for organizations that aren’t comfortable with automatic deployments to production. You can see in figure 15.13 that the build has passed up to the UAT stage, and now it’s stopped at Await Approval.
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  Figure 15.13 The CI/CD pipeline in Jenkins has deployed to UAT and is awaiting approval to continue.


  Your manual approval stage could involve a whole day of testing with a dedicated team, or it could be a quick sanity check that the new deployment looks good in a production-like environment. When you’re happy with the deployment, you go back to Jenkins and signal your approval. Then it goes on to the final stage--deploying to the production environment.


   Try it now Back in your PWD session, check that the timecheck container is running and that it’s writing out the correct logs:


  docker container ls docker container logs timecheck-uat_timecheck_1


  I’m sure everything will be fine, so back to Jenkins and click the blue box in the Await Approval stage. A window pops up asking for confirmation to deploy--click Do It! The pipeline will continue.


  It’s getting exciting now--we’re nearly there with our production deployment. You can see my output in figure 15.14, with the UAT test in the background and the approval stage in the foreground.
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  Figure 15.14 The UAT deployment has worked correctly and the app is running in PWD. On to production!


  The CD stages of the pipeline don’t do anything more complex than the CI stages. There’s a script file for each stage that does the work using a single Docker Compose command, joining together the relevant override files (this could easily be a docker stack deploy command if the remote environment is a Swarm cluster). The deployment scripts expect the TLS certificate paths and Docker host domain to be provided in environment variables, and those variables are set up in the pipeline job.


  It’s important to keep that separation between the actual work that’s done with the Docker and Docker Compose CLIs, and the organization of the work done in the pipeline. That reduces your dependency on a particular automation server and makes it easy to switch between them. Listing 15.3 shows part of the Jenkinsfile and the batch script that deploy to UAT.


  Listing 15.3 Passing Docker TLS certs to the script file using Jenkins credentials


  # the deployment stage of the Jenkinsfile:   stage('UAT') {     steps {         withCredentials(             [file(credentialsId: 'docker-ca.pem', variable: 'ca'),               file(credentialsId: 'docker-cert.pem', variable: 'cert'),               file(credentialsId: 'docker-key.pem', variable: 'key')]) {                   dir('ch15/exercises') {                       sh 'chmod +x ./ci/04-uat.bat'                       sh './ci/04-uat.bat'                       echo "Deployed to UAT"             }         }     } }   # and the actual script just uses Docker Compose:   docker-compose \     --host tcp://$UAT_ENGINE --tlsverify \     --tlscacert $ca --tlscert $cert --tlskey $key \     -p timecheck-uat -f docker-compose.yml -f docker-compose-uat.yml \  up -d


  Jenkins provides the TLS certs for the shell script from its own credentials. You could move this build to GitHub Actions and you’d just need to mimic the workflow using secrets stored in the GitHub repo--the build scripts themselves wouldn’t need to change. The production deployment stage is almost identical to UAT; it just uses a different set of Compose files to specify the environment settings. We’re using the same PWD environment for UAT and production, so when the job completes you’ll be able to see both deployments running.


   Try it now Back to the PWD session for one last time, and you can check that your local Jenkins build has correctly deployed to the UAT and production environments:


  docker container ls   docker container logs timecheck-prod_timecheck_1


  My output is in figure 15.15. We have a successful CI/CD pipeline running from Jenkins in a local container and deploying to two remote Docker environments (which just happen to be the same one in this case).
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  Figure 15.15 The deployment on PWD. To use a real cluster, I’d just change the domain name and certs.


  This is amazingly powerful. It doesn’t take any more than a Docker server to run containers for different environments and a machine running Docker for the CI/CD infrastructure. You can prove this with a pipeline for your own app in a day (assuming you’ve already Dockerized the components), and the path to production just requires spinning up clusters and changing the deployment targets.


  Before you plan out your production pipeline, however, there is one other thing to be aware of when you make your Docker Engine available remotely--even if it is secured. That’s the access model for Docker resources.


  15.5 Understanding the access model for Docker


  This doesn’t really need a whole section because the access model for Docker resources is very simple, but it gets its own section to help it stand out. Securing your Engine is about two things: encrypting the traffic between the CLI and API, and authenticating to ensure the user is allowed access to the API. There’s no authorization--the access model is all or nothing. If you can’t connect to the API, you can’t do anything, and if you can connect to the API, you can do everything.


  Whether that frightens you or not depends on your background, your infrastructure, and the maturity of your security model. You might be running internal clusters with no public access, using a separate network for your managers, with restricted IP access to that network, and you rotate the Docker CA every day. That gives you defense in depth, but there’s still an attack vector from your own employees to consider (yes, I know Stanley and Minerva are great team players, but are you really sure they aren’t crooks? Especially Stanley).


  There are alternatives, but they get complicated quickly. Kubernetes has a role-based access control model, as does Docker Enterprise, so you can restrict which users can access resources, and what they can do with those resources. Or there’s a GitOps approach that turns the CI/CD pipeline inside out, using a pull-based model so the cluster is aware when a new build has been approved, and the cluster deploys the update itself. Figure 15.16 shows that--there are no shared credentials here because nothing needs to connect to the cluster.
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  Figure 15.16 The brave new world of GitOps--everything is stored in Git, and clusters start deployments.


  GitOps is a very interesting approach, because it makes everything repeatable and versioned--not just your application source code and the deployment YAML files, but the infrastructure setup scripts too. It gives you the single source of truth for your whole stack in Git, which you can easily audit and roll back. If the idea appeals to you but you’re starting from scratch--well, it will take you a chunk of time to get there, but you can start with the very simple CI/CD pipelines we’ve covered in this chapter and gradually evolve your processes and tools as you gain confidence.


  15.6 Lab


  If you followed along with the CD exercise in section 15.4, you may have wondered how the deployment worked, because the CI stage pushed the image to your local registry and PWD can’t access that registry. How did it pull the image to run the container? Well, it didn’t. I cheated. The deployment override files use a different image tag, one from Docker Hub that I built and pushed myself (sorry if you feel let down, but all the images from this book are built with Jenkins pipelines, so it’s the same thing really). In this lab you’re going to put that right.


  The missing part of the build is in stage 3, which just pushes the image to the local registry. In a typical pipeline there would be a test stage on a local server that could access that image before pushing to the production registry, but we’ll skip that and just add another push to Docker Hub. This is the goal:


  
    	Tag your CI image so it uses your account on Docker Hub and a simple “3.0” tag.


    	Push the image to Docker Hub, keeping your Hub credentials secure.


    	Use your own Docker Hub image to deploy to the UAT and production environments.

  


  There are a few moving pieces here, but go through the existing pipeline carefully and you’ll see what you need to do. Two hints: First, you can create a username/ password credential in Jenkins and make it available in your Jenkinsfile using the withCredentials block. Second, the open port to a PWD session sometimes stops listening, so you may need to start new sessions that will need new PWD domains in the Jenkinsfile.


  My solution on GitHub started as a copy of the exercises folder, so if you want to see what I changed, you can compare the files as well as check the approach: https:// github.com/sixeyed/diamol/blob/master/ch15/lab/README.md.


  
    16 Building Docker images that run anywhere: Linux, Windows, Intel, and Arm

  


  There are dozens of try-it-now exercises in this book, and if you’ve used different machines to follow along, you’ll have seen that the exercises work in the same way on Mac, Windows, Linux, and Raspberry Pi. That’s not an accident--I’ve built every Docker image in this book as a multi-architecture image. Multi-arch images are built and pushed to registries with multiple variants, each targeting a different operating system or CPU architecture, but all using the same image name. When you use one of these images to run a container or to build another image, Docker pulls the matching variant for the CPU and OS on your machine. If you use the same image name on a different architecture, you’ll get a different image variant, but it will be the same app and it will work in the same way. It’s a super-easy workflow for the user, but it takes some effort for the image publisher.


  In this chapter you’ll learn the different ways to produce multi-arch builds, but if you’re thinking of skipping this one because you don’t use Windows or Arm, you should at least read the first section to learn why this is a game-changing option.


  16.1 Why multi-architecture images are important


  Amazon Web Services provides different classes of compute for VMs that use Intel, AMD, or Arm processors. The Arm options (called A1 instances) are very nearly half the price of the Intel/AMD options. AWS has been the first major cloud to support Arm, but you can be sure that if the others start to lose workloads to AWS because of the savings from Arm CPUs, they’ll add support too. If you can take your application and run it at nearly half the price, why wouldn’t you? Well, because it’s hard to get apps built for Intel to run on Arm.


  On the other end of the scale, IoT devices typically run Arm processors because they’re highly efficient on power consumption (hence the price reduction in the cloud), and it would be great to ship software to devices as container images too. But Arm CPU instructions are not compatible with the standard x64 instructions that Intel and AMD use. So to support Arm CPUs in the cloud or the edge (or in a datacenter full of Raspberry Pis) you need to use an application platform that can run on Arm, and you need to build your app using an Arm machine. That’s the hard part that Docker solves, both for production build farms and for the developer workflow. Docker Desktop supports emulation to build Docker images and run containers with the Arm architecture, even on Intel machines.


   Try it now This one’s not for Docker Engine or PWD users I’m afraid, because the engine alone doesn’t have Arm emulation--that only comes with Docker Desktop. You can do this on Mac or Windows (in Linux container mode).


  First you need to enable experimental mode from the whale icon settings--see figure 16.1.
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  Figure 16.1 Enabling experimental mode unlocks features that are still under development.


  Now open a terminal and build an image using Arm emulation:


   # switch to the exercises folder:  cd ch16/exercises  # build for 64-bit Arm:  docker build -t diamol/ch16-whoami:linux-arm64 --platform linux/arm64 ./whoami  # check the architecture of the image:  docker image inspect diamol/ch16-whoami:linux-arm64 -f '{{.Os}}/{{.Architecture}}'  # and the native architecture of your engine:  docker info -f '{{.OSType}}/{{.Architecture}}'


  You’ll see that the image you built is targeted for the 64-bit Arm platform, even though your own machine is running on a 64-bit Intel or AMD machine. This image uses a multi-stage Dockerfile to compile and package a .NET Core application. The .NET Core platform runs on Arm, and the base images in the Dockerfile (for the SDK and the runtime) have Arm variants available. That’s all you need to support cross-platform builds.


  You could push this image to a registry and run a container from it on a genuine Arm machine (like the Raspberry Pi or an A1 instance in AWS) and it will work just fine. You can see my output in figure 16.2, where I’ve built an Arm image from an Intel machine.
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  Figure 16.2 Cross-platform support, building Arm images from Intel machines using emulation


  Docker knows many things about your machine, including the operating system and the CPU architecture, and it will use those as a match when you try to pull images. Pulling an image is more than just downloading the layers--there’s also optimization to expand the compressed layers and get the image ready to run. That optimization only works if the image you want to use is a match for the architecture you’re running on, so if there’s no match, you’ll get an error--you can’t pull the image to even try and run a container.


   try it now You can use any Docker Engine running Linux containers to verify this--try downloading a Microsoft Windows image:


   # pull the Windows Nano Server image:  docker image pull mcr.microsoft.com/windows/nanoserver:1809


  You can see my output in figure 16.3--Docker gets the OS and CPU of the current engine, and checks to see if there’s a matching variant in the registry. There is no match, so the image isn’t pulled and I get an error.
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  Figure 16.3 You can’t pull an image from a registry if there’s no variant to match your OS and CPU.


  The manifest list is the set of variants for the image. The Windows Nano Server image isn’t truly multi-architecture, it will only run on Windows containers--there are no Linux variants in the manifest list. The basic principle is that the architecture for the image has to match the architecture of the Engine, but there are a few nuances--Linux images can be pulled for non-matching CPU architectures, but containers will fail with an obscure “user process caused ‘exec format error’” message. Some Windows engines have an experimental feature called Linux Containers on Windows (LCOW), so they can run Linux containers (but complex apps will fail with even more obscure logs). It’s best to stick to the matching architecture for the engine, and multi-arch images let you tailor the image to each OS and CPU if you need to.


  16.2 Building multi-arch images from one or more Dockerfiles


  There are two approaches to building multi-arch images. In the first you follow the example of the whoami app in this chapter’s exercises: write a multi-stage Dockerfile that compiles the app from source and packages it to run in a container. If the images you use for the SDK and runtime support all the architectures you want to support, you’re good to go.


  The huge benefit of this approach is that you have a single Dockerfile and you build it on different machines to get the architectures you want to support. I use this approach to build my own golden images for the .NET Core stack; figure 16.4 shows the approach for the SDK.
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  Figure 16.4 Use a multi-stage Dockerfile based on multi-arch images to build your own multi-arch image


  You can’t follow this approach if your source image isn’t a multi-arch image, or it doesn’t support all the images you want to support. Most of the official images on Docker Hub are multi-arch, but they don’t all support every variation that you might want. In that case you’ll need different Dockerfiles, maybe one for Linux and one for Windows, or maybe additional ones for Arm 32-bit and 64-bit. This approach takes more management, because you have multiple Dockerfiles to maintain, but it gives you a lot more freedom to adapt behavior for each target architecture. I use this approach for my golden image for Maven (a tool to build Java apps)--figure 16.5 shows the stack.


  In the exercises for this chapter, there’s a folder-list app that is very simple--it just prints some basic information about the runtime and then lists the contents of a folder. There are four Dockerfiles, one for each of the architectures supported in this book: Windows on Intel, Linux on Intel, Linux on 32-bit Arm, and Linux on 64-bit Arm. You can use Docker Desktop’s CPU emulation with Linux containers to build and test three of those.
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  Figure 16.5 You can also build multi-arch images using Dockerfiles tailored for each architecture.


   Try it now Build images for different platforms using the Dockerfile for each platform. Each Dockerfile is slightly different, so we can compare the results when we run containers:


   cd ./folder-list   # build for the native architecture - Intel/AMD:  docker image build -t diamol/ch16-folder-list:linux-amd64 -f ./Dockerfile.linux-amd64 .   # build for Arm 64-bit:  docker image build -t diamol/ch16-folder-list:linux-arm64 -f ./Dockerfile.linux-arm64 --platform linux/arm64 .   # and for Arm 32-bit  docker image build -t diamol/ch16-folder-list:linux-arm -f ./Dockerfile.linux-arm --platform linux/arm .   # run all the containers and verify the output:  docker container run diamol/ch16-folder-list:linux-amd64  docker container run diamol/ch16-folder-list:linux-arm64  docker container run diamol/ch16-folder-list:linux-arm


  The containers print some simple text when they run--a hardcoded string stating the OS and architecture they should be using, followed by the actual OS and CPU reported by the operating system, and then a folder list containing a single file. You can see my output in figure 16.6. Docker uses emulation where necessary, so it uses an Arm emulator when running the Arm-32 and Arm-64 Linux variants in this case.
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  Figure 16.6 Images are built for a specific architecture but Docker Desktop supports emulation too.


  The Dockerfiles for the Linux variants are all very similar, except for the hardcoded string for the expected architecture. The Windows variant has the same behavior, but Windows has different commands to print the output. This is where multiple Dockerfiles for each architecture become useful; I can have completely different Dockerfile instructions but still get the same desired output. Listing 16.1 compares the Dockerfile for the 64-bit Arm Linux version and the 64-bit Intel Windows version.


  Listing 16.1 Dockerfiles for Linux and Windows image variants


   # linux  FROM diamol/base:linux-arm64   WORKDIR /app  COPY file.txt .   CMD echo "Built as: linux/arm64" && \        uname -a && \        ls /app  # windows  # escape=`  FROM diamol/base:windows-amd64   WORKDIR /app  COPY file.txt .   CMD echo Built as: windows/amd64 && `        echo %PROCESSOR_ARCHITECTURE% %PROCESSOR_IDENTIFIER% && `          dir /B C:\app


  Each version starts with a different FROM image, which is specific to the target architecture rather than a multi-arch image. The Windows Dockerfile uses the escape keyword to change the line-break character, changing it to a backtick instead of the default backslash, so I can use backslashes in directory paths. There’s no Windows equivalent of the Linux uname command, so to print the CPU architecture I echo out some environment variables that Windows sets. The functionality is broadly the same, but I can take a different path to get there because this is a Windows-specific Dockerfile.


  You typically need multiple Dockerfiles if you want to build a multi-arch version of a third-party app. The Prometheus and Grafana golden images for this book are good examples. The project team publishes multi-arch images for all the Linux variants I want to use, but not for Windows. So I have a Linux Dockerfile that is based on the project image and a Windows Dockerfile that installs the app from a web download. For your own apps it should be easy to have a single Dockerfile and avoid the extra maintenance, but you need to be careful that you only use a subset of OS commands that you know work in all the target architectures. It’s easy to accidentally include a command (like uname ) that doesn’t work on one architecture and end up with a broken variant.


   Try it now There’s one other Dockerfile for the folder-list app, which is an attempt at a multi-arch Dockerfile. It uses a multi-arch image as the base, but it mixes Linux and Windows commands, so the image it builds will fail on every architecture.


   # build the multi-arch app:  docker image build -t diamol/ch16-folder-list .   # and try to run it:  docker container run diamol/ch16-folder-list


  You’ll find that the build completes successfully, so it looks like you have a good image, but the container will fail every time you run it. You can see my output in figure 16.7--I ran both Linux and Windows versions of the image, and both containers fail because the CMD instruction contains invalid commands.
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  Figure 16.7 It’s easy to build a multi-arch image that fails at runtime on some platforms.


  It’s important to bear this in mind, especially if you use complex startup scripts. RUN instructions will fail at build time if you use an unknown OS command, but CMD instructions aren’t verified, so you won’t know the image is broken until you try to run a container.


  One last thing here before we go on to push multi-arch images, and that’s to understand which architectures Docker supports, and the various strange codenames you’ll encounter when you start using them. Table 16.1 shows the major OS and architecture combinations and aliases for the CPU.


  Table 16.1 Architectures supported by Docker, with their code names


  
    
      	
        OS

      

      	
        CPU

      

      	
        Word Length

      

      	
        CPU Name

      

      	
        CPU Aliases

      
    


    
      	
        Windows

      

      	
        Intel/AMD

      

      	
        64-bit

      

      	
        amd64

      

      	
        x86_64

      
    


    
      	
        Linux

      

      	
        Intel/AMD

      

      	
        64-bit

      

      	
        amd64

      

      	
        x86_64

      
    


    
      	
        Linux

      

      	
        Arm

      

      	
        64-bit

      

      	
        arm64

      

      	
        aarch64, armv8

      
    


    
      	
        Linux

      

      	
        Arm

      

      	
        32-bit

      

      	
        arm

      

      	
        arm32v7, armv7, armhf

      
    

  


  Docker supports many more architectures, but these are the main ones you’ll find. The amd64 CPU type is the same instruction set in Intel and AMD machines that powers practically every desktop, server, and laptop computer (Docker also supports 32-bit Intel x86 processors). 32-bit and 64-bit Arm CPUs are found in phones, IoT devices, and single-board computers; the most famous is the Raspberry Pi, which was 32-bit up until the release of the Pi4, which is 64-bit. Mainframe users aren’t left out either--Docker supports IBM CPU architectures for Linux, so if you have an IBM Z, POWER, or PowerPC machine in your basement, you can migrate your mainframe apps to Docker containers too.


  16.3 Pushing multi-arch images to registries with manifests


  You can build Linux images for different CPU architectures using Docker Desktop, but they don’t become multi-arch images until you push them to a registry along with a manifest. The manifest is a piece of metadata that links multiple image variants to the same image tag. Manifests are generated using the Docker command line and pushed to a registry. The manifest contains a list of all the image variants, and they need to exist on the registry first, so the workflow is to create and push all the images, and then create and push the manifest.


   Try it now Push the image variants of the folder-list app you’ve built. First you’ll need to tag them with your Docker Hub ID so you can push them to your account--you don’t have permission to push to the diamol organization:


   # store your Docker ID in a variable - on Windows:  $dockerId = '<your-docker-hub-id>'   # or on Linux:  dockerId='<your-docker-hub-id>'   # tag the images with your own account name:  docker image tag diamol/ch16-folder-list:linux-amd64 "$dockerId/ch16-folder-list:linux-amd64"  docker image tag diamol/ch16-folder-list:linux-arm64 "$dockerId/ch16-folder-list:linux-arm64"  docker image tag diamol/ch16-folder-list:linux-arm "$dockerId/ch16-folder-list:linux-arm"   # and push to Docker Hub (this pushes all the tags for the image):  docker image push "$dockerId/ch16-folder-list"


  You’ll see all your images get pushed to Docker Hub. Docker registries are architecture-agnostic--the image specification is the same for all architectures, and the registry stores them all in the same way. Registries do know which architecture an image was built for, and they provide that to the Docker Engine as a check before it pulls them. My output is in figure 16.8--the architecture for each image is stored in the image metadata. I’ve included it in the tags too, but that’s not a requirement.
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  Figure 16.8 Pushing all the image variants is the first stage in making a multi-arch image available.


  Managing Docker manifests is a feature of the command line, but it’s a new addition, so you need to enable experimental features. The CLI and the Docker Engine both support experimental features, but you have to explicitly opt-in to use them. Your engine may already be using them, but you need to enable them for the client too. You can do that in the settings on Docker Desktop, or on the command line for the Docker Engine.


   Try it now If you’re using Docker Desktop, open Settings from the whale menu and navigate to the Command Line section. Toggle the Enable Experimental Features flag, as in figure 16.9.
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  Figure 16.9 Enabling experimental features for the CLI unlocks the Docker manifest commands.


  If you’re using Docker Community Engine (or Enterprise Engine), edit or create the CLI config file from your home directory: ~/.docker/config.json . You just need one setting:


   { "experimental":"enabled" }


  Now that your CLI is in experimental mode, you’ve unlocked docker manifest commands that you can use to create manifests locally, push them to a registry, and also inspect existing manifests on a registry. Inspecting manifests is a great way to see what architectures an image supports without having to navigate the Docker Hub UI. You don’t need to have pulled any of the images locally--the command reads all the metadata from the registry.


   try it now Verify that your CLI is working for manifest commands by checking the published manifest of the base image for this book:


   docker manifest inspect diamol/base


  The manifest inspect command doesn’t have a filter argument--you can’t limit the output. It will show you all the image manifests for the image tag, so it works with single images as well as multi-arch images. In the output you see each image’s unique digest, along with the CPU architecture and operating system. My output is in figure 16.10. I used the jq command to filter the output, but that’s just to make it easier to read; you don’t need to do that yourself.
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  Figure 16.10 Multi-arch images have several manifests; each contains the architecture of the image.


  Now you can create the manifest, and just like images, it will exist on your local machine first and then you’ll push it up to the registry. Technically what you’re creating is a manifest list, which groups together a set of images under a single image tag. Every image already has its own manifest that you can inspect from the registry, but if multiple manifests are returned, you’ll have a multi-architecture image. Figure 16.11 shows the relationship between images, manifests, and manifest lists.
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  Figure 16.11 Manifests and manifest lists exist on a Docker registry and contain metadata about images.


  You can think of a manifest list as a list of image tags, and the name of the manifest list as the name of the multi-arch image. The images you’ve built so far all have tags to identify the OS and CPU; you can create a manifest using the same image name without a tag, and that will be available as a multi-arch image using the default latest tag. You could also push your images with a tag that includes a version number in addition to the OS and CPU, and then the multi-arch tag would just be the version number.


   try it now Create a manifest to link all the Linux variants, and then push it to Docker Hub. The name of the manifest becomes the image tag of the multi-arch image.


   # create a manifest with a name, followed by all the tags it lists:  docker manifest create "$dockerId/ch16-folder-list" "$dockerId/ch16-folder-list:linux-amd64" "$dockerId/ch16-folder-list:linux-arm64" "$dockerId/ch16-folder-list:linux-arm"   # push the manifest to Docker Hub:  docker manifest push "$dockerId/ch16-folder-list"   # now browse to your page on Docker Hub and check the image


  You’ll find when you browse to the image on Docker Hub that there’s a latest tag with multiple variants--the UI shows the OS and CPU architecture, and the digest that uniquely identifies each image. Anyone with a Linux Docker Engine can run a container from that image, and it will run the amd64 variant on an Intel or AMD machine, the arm64 variant on an AWS A1 machine or the latest Raspberry Pi, and the arm variant on older Pis. You can see my repo on Docker Hub in figure 16.12.


  [image: ]


  Figure 16.12 A multi-arch image has a single name but many variants. Docker Hub shows all the variants.


  These Arm images were built with emulation in Docker Desktop, and that’s only really viable for occasional builds. Emulation is slow, and not every instruction works in the same way under emulation as it does in a real CPU. If you want to support multi-arch images and you want builds to be fast and 100% accurate for the target CPU, you need a build farm. That’s what I have to build the images in this book--a handful of single-board computers with different CPU architectures, set up with all the operating systems I want to support. My Jenkins jobs connect to the Docker Engine on each machine to build an image variant for each architecture and push it to Docker Hub, and then the job creates and pushes the manifest.


  16.4 Building multi-arch images with Docker Buildx


  There’s another way to run a Docker build farm that is more efficient and far easier to use, and that’s with a new feature of Docker called Buildx. Buildx is an extended version of the Docker build commands, and it uses a new build engine that is heavily optimized to improve build performance. It still uses Dockerfiles as the input and produces images as the output, so you can use it as a straight replacement for docker image build . Buildx really shines for cross-platform builds, though, because it integrates with Docker contexts, and it can distribute builds across multiple servers with a single command.


  Buildx doesn’t work with Windows containers right now, and it only supports building from a single Dockerfile, so it won’t cover every scenario (I can’t use it for building the images for this book). But if you only need to support CPU variants for Linux, it works very nicely. You use Buildx to create and manage the build farm, as well as for building images.


  We’ll walk through a full end-to-end example using Play with Docker so you can try out a real distributed build farm. The first step is to create a Docker context for each node in the build farm.


   Try it now Start by setting up your PWD session. Browse to https://play-with-docker.com and add two instances to your session. We’ll use node1 for all commands. First store the IP address of node2 and verify the SSH connection; then create contexts for node1 and node2:


   # store the IP address of node2:  node2ip=<your-node-2-ip>   # verify the ssh connection:  ssh $node2ip   #then exit so you're back in node1  exit   # create a context for node1 using the local socket:  docker context create node1 --docker "host=unix:///var/run/docker.sock"   # and a context for node2 using SSH:  docker context create node2 --docker "host=ssh://root@$node2ip"   # check the contexts are there:  docker context ls


  Those contexts are there to make the Buildx setup easier. You can see my output in figure 16.13--node1 is the client where I’ll run Buildx, so it uses the local channel, and it’s configured to connect to node2 over SSH.
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  Figure 16.13 Buildx can use Docker contexts to set up a build farm, so creating contexts is the first step.


  Setting up your contexts is the first step in creating a build farm. In a real environment your automation server would be the Buildx client, so you’d create your Docker contexts in Jenkins (or whichever system you use). You’d have one or more machines for every architecture you want to support, and you’d create a Docker context for each of them. The machines don’t need to be clustered with Swarm or Kubernetes; they can be standalone machines just used for building images.


  Next you need to install and configure Buildx. Buildx is a Docker CLI plugin--the client is already installed in Docker Desktop and the latest Docker CE releases (you can check by running docker buildx ). PWD doesn’t have Buildx, so we’ll need to manually install it and then set up a builder that uses both our nodes.


   Try it now Buildx is a Docker CLI plugin--to use it you need to download the binary and add it to your CLI plugins folder:


   # download the latest Buildx binary:  wget -O ~/.docker/cli-plugins/docker-buildx https://github.com/docker/buildx/releases/download/v0.3.1/buildx-v0.3.1.linux-amd64   # set the file to be executable:  chmod a+x ~/.docker/cli-plugins/docker-buildx   # now the plugin is there, use it to create a builder using node1:  docker buildx create --use --name ch16 --platform linux/amd64 node1   # and add node2 to the builder:  docker buildx create --append --name ch16 --platform linux/386 node2   # check the builder setup:  docker buildx ls


  Buildx is very flexible. It discovers potential build nodes using Docker context, and it connects to see which platforms they support. You create a builder and add nodes to it, and you can either let Buildx work out which platforms each node can build, or you can be specific and limit nodes to particular platforms. That’s what I’ve done here, so node1 will only build x64 images and node2 will only build 386 images. You can see that in figure 16.14.
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  Figure 16.14 Setting up a build farm is easy with Buildx; it uses Docker contexts to connect to engines.


  Now the build farm is ready. It can build multi-arch images that can run as 32-bit or 64-bit Intel Linux containers, as long as the Dockerfile it’s building uses images that support those two architectures. Buildx spins up builds concurrently across the builder nodes, sending them the Dockerfile and the folder with the Docker build context (which would normally contain your source code). You can clone the Git repository for this book in your PWD session and then build and push a multi-arch image for this exercise using a single Buildx command.


   Try it now Clone the source code and switch to a folder that contains a multi-arch Dockerfile for the folder-list app. Build and push multiple variants using Buildx:


   git clone https://github.com/sixeyed/diamol.git  cd diamol/ch16/exercises/folder-list-2/   # store your Docker Hub ID and log in so Buildx can push images:  dockerId=<your-docker-id>  docker login -u $dockerId   # use Buildx to build and push both variants using node1 and node2:  docker buildx build -t "$dockerId/ch16-folder-list-2" --platform linux/amd64,linux/386 --push .


  The output from a Buildx build is impressive--it’s a great thing to have running when other people can see your screen. The client shows log lines from each builder node, and you get lots of fast output so it looks like you’re doing something immensely technical. Actually Buildx does all the work, and you’ll see from the output that it even pushes the images, creates the manifest, and pushes the manifest for you. Figure 16.15 shows the end of my build and the image tags on Docker Hub.
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  Figure 16.15 Buildx distributes the Dockerfile and build context, collects logs, and pushes images.


  Buildx makes these multi-arch builds very simple. You supply the nodes for each architecture you want to support, and Buildx can use them all, so your build commands don’t change whether you’re building for two architectures or 10. There’s an interesting difference with Buildx images on Docker Hub--there are no individual image tags for the variants, there’s just the single multi-arch tag. Compare that to the previous section where we manually pushed the variants and then added the manifest--all the variants had their own tags on Docker Hub, and as you build and deploy more image versions, that can get hard for users to navigate. If you don’t need to support Windows containers, Buildx is the best way to build multi-arch images right now.


  16.5 Understanding where multi-arch images fit in your roadmap


  Maybe you don’t need multi-arch images right now. That’s fine--thanks for reading through this chapter anyway. It’s definitely worth knowing how multi-arch images work, and how you can build your own, even if you don’t plan to do that yet, because they may well come onto your roadmap. You may take on a project that needs to support IoT devices, or you may need to cut cloud running costs, or maybe your customers are clamoring for Windows support. Figure 16.16 shows how projects can evolve with the need to support multi-arch images, adding more variants over years when the need arises.
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  Figure 16.16 Projects launch with Linux Intel support and add variants as they become popular.


  You can future-proof yourself and make the switch to multi-arch images easy if you stick to two simple rules for all your Dockerfiles: always use multi-arch images in your FROM instructions, and don’t include any OS-specific commands in RUN or CMD instructions. If you need some complex deployment or startup logic, you could build that into a simple utility app using the same language as your application, and compile that in another stage of the build.


  All the official images on Docker Hub are multi-arch, so it’s a good idea to use those as your base images (or create your own golden base images using the official images). All the golden images for this book are multi-arch too, and if you’re looking for inspiration you can check the images folder in source for a large suite of examples. As a rough guide, all the modern application platforms support multi-arch (Go, Node.js, .NET Core, Java) and if you’re looking for a database, Postgres is the best multi-arch option I’ve found.


  There aren’t any managed build services out there that support the full range of architectures--some support Linux and Windows, but if you also want Arm you’ll need to set that up yourself. You could run a fairly cheap build farm on AWS using Linux, Windows, and Arm VMs with Docker installed. If you need Linux and Windows but not Arm, you could use a managed service like Azure DevOps or GitHub Actions. The important thing is not to assume you’ll never need to support other architectures: follow best practices in your Dockerfiles to make multi-arch support easy, and know what steps you need to take to evolve your build pipeline if you do need to add multi-arch support.


  16.6 Lab


  This chapter’s lab asks you to fix up a Dockerfile so it can be used to produce multi-arch images. It’s the sort of thing you may come across if you have a Dockerfile that didn’t follow my best-practice suggestions--this Dockerfile is based on an image for a specific architecture, and it uses OS commands that are not portable. I’d like you to fix the Dockerfile in the lab folder for this chapter so it can build an image targeted for Linux on Intel or Arm, and Windows on Intel. There are lots of ways to solve this; these are just a couple of hints for you:


  
    	Some Dockerfile instructions are cross-platform, while equivalent OS commands in a RUN instruction may not be.


    	Some Windows commands are the same as Linux, and in the golden base image for the book there are some aliases to make other Linux commands work in Windows.

  


  You’ll find my approach in the Dockerfile.solution file on GitHub for the chapter: https://github.com/sixeyed/diamol/blob/master/ch16/lab/README.md .


  
    Part 4. Getting your containers ready for production

  


   You almost know it all, but there are a few more things you should master. This final part of the book focuses on some important practices you’ll use before you take your containerized apps to production. You’ll learn about optimizing Docker images and integrating your apps with the Docker platform--to read configuration in and write log entries out. You’ll also learn some very useful architectural approaches: using a reverse proxy and a message queue. They may sound scary, but they’re powerful and straightforward with Docker.


  
    17 Optimizing your Docker images for size, speed, and security

  


  Once you have your apps containerized and working well in a cluster, you may think that you’re good to go to production, but there are some best practices you still need to invest time in. Optimizing your Docker images is one of the most important, because you need your builds and deployments to be fast, your application content to be secure, and your evenings free to call your own--you do not want to be paged at 2 a.m. when your servers have run out of disk space. The Dockerfile syntax is small and intuitive, but it hides some complexity that you need to understand to make the most of your image builds.


  This chapter will take you through the finer details of the image format so you know how and why to optimize it. We’ll be building on chapter 3, where you learned that Docker images are actually merged from multiple image layers.


  17.1 How you optimize Docker images


  The Docker image format is heavily optimized. Layers are shared between images wherever possible, which reduces build times, network traffic, and disk usage. But Docker has a conservative approach towards data, and it doesn’t automatically remove images that you’ve pulled--that’s something you need to do explicitly. So when you replace containers to update your application, Docker will download the new image layers, but it won’t remove any of the old image layers. It’s easy for your disk to get swallowed up with lots of old image layers, especially on development or test machines that are regularly updating.


   try it now You can see how much disk space your images are physically using with the system df command, which also shows container, volume, and build cache disk usage:


   docker system df


  If you’ve never cleared out old images from your Docker Engine, you’ll probably be surprised at the results. My output is in figure 17.1--you can see there are 185 images totaling 7.5 GB of storage, even though I’m not running any containers.
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  Figure 17.1 It’s easy to see your disk swallowed up by Docker images you’re not even using.


  This example is a mild one--I’ve seen unloved servers that have been running Docker for years wasting hundreds of gigabytes on unused images. It’s a good habit to run docker system prune regularly--it clears out image layers and the build cache without removing full images. You can run it with a scheduled job to remove unused layers, but if your images are optimized it will be less of an issue. Optimizing parts of your technology stack is often a cyclical process with many small improvements, but with Docker it’s very easy to make big improvements by following some simple best practices.


  The first is not to include files in your image unless you need them. It sounds obvious, but you’ll often write a Dockerfile that copies in a whole folder structure without realizing that the folder includes documentation or images or other binaries that aren’t needed at runtime. Being explicit about the files you copy can be the first big saving you make. Compare the Dockerfiles in listing 17.1--the first example copies in a whole folder, whereas the second example realizes the copy added some extra files and includes a new step to delete them.


  Listing 17.1 Trying to optimize a Dockerfile by removing files


   # Dockerfile v1 - copies in the whole directory structure:  FROM diamol/base  CMD echo app- && ls app && echo docs- && ls docs  COPY . .   # Dockerfile v2 - adds a new step to delete unused files  FROM diamol/base  CMD echo app- && ls app && echo docs- && ls docs  COPY . .  RUN rm -rf docs


  In the v2 Dockerfile, you’d think the image size would be smaller because it deletes the extra docs folder, but that’s not how image layers work. The image is a merge of all the layers, so the files still exist from the COPY layer; they just get hidden in the delete layer, so the total image size doesn’t shrink.


   try it now Build both examples and compare the sizes


   cd ch17/exercises/build-context   docker image build -t diamol/ch17-build-context:v1 .   docker image build -t diamol/ch17-build-context:v2 -f ./Dockerfile.v2 .   docker image ls -f reference= diamol/ch17*


  You’ll find that the v2 image is exactly the same size as the v1 image, as if the rm command to delete the folder hadn’t been run at all. You can see my output in figure 17.2--I’m using Linux containers, so the sizes are tiny, but almost half of the size is from unnecessary files in the docs folder.
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  Figure 17.2 Surprise! Deleting files doesn’t reduce the image size if the delete is in its own layer.


  Each instruction in a Dockerfile produces an image layer, and layers are merged together to form the whole image. If you write files in a layer, those files are permanently there; if you delete them in a subsequent layer, all Docker does is hide them in the filesystem. This is a fundamental thing to understand when you come to image optimization--it’s no good trying to remove bloat in later layers--you need to optimize every layer. You can easily see that the delete layer just hides the files by running an image from the previous layer, before the delete happened.


   try it now You can run a container from any image layer if you have those layers in your cache. Compare the final image with the previous image layer:


   # run a container from the finished image:  docker container run diamol/ch17-build-context:v2   # check the image history to find the previous layer ID:  docker history diamol/ch17-build-context:v2   # run a container from that previous layer:  docker container run <previous-layer-id>


  There’s nothing special about the final layer in an image. You can run a container from a layer partway through the image stack, and you’ll see the filesystem merged up to the point of that layer. My output is in figure 17.3--you can see that the deleted files are all available when I run a container from the previous image layer.
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  Figure 17.3 The merged filesystem hides deleted files, but you can get to them from a previous layer.


  This is the first point about optimizing--don’t copy anything into the image that you don’t need to run the app. Even if you try to delete it in later instructions, it will still be there somewhere in the image stack taking up disk space. It’s much better to be precise in your COPY instructions to only bring the files you want into the image. That makes for smaller image sizes and also a more clearly documented installation in your Dockerfile. Listing 17.2 shows the optimized v3 Dockerfile for this simple app--the only change from v1 is that it copies the app subfolder rather than the whole of the directory.


  Listing 17.2 An optimized Dockerfile that only copies necessary files


   FROM diamol/base  CMD echo app- && ls app && echo docs- && ls docs  COPY ./app ./app


  When you build this, you’ll see that the image size is smaller, but there’s another optimization you can make here too. Docker compresses the build context (the folder where you run the build) and sends it to the engine along with the Dockerfile when you run a build. That’s how you can build images on a remote engine from files on your local machine. The build context often has files you don’t need, so you can exclude them from the build context by listing file paths or wildcards in a file called .dockerignore .


   try it now Build the optimized Docker image, and then build it again with a .dockerignore file to reduce the size of the context:


   # build the optimized image; this adds unused files to the context:  docker image build -t diamol/ch17-build-context:v3 -f ./Dockerfile.v3 .   # now rename the already prepared ignore file and check the contents:  mv rename.dockerignore .dockerignore  cat .dockerignore   # run the same build command again:  docker image build -t diamol/ch17-build-context:v3 -f ./Dockerfile.v3 .


  You’ll see that in the first build command, Docker sends 2 MB of build context to the Engine. That’s not compressed, so it’s the full size of the files in that folder--most of which is a 2 MB picture of a whale. In the second build there’s a .dockerignore file in the current directory that tells Docker to exclude the docs folder and the Dockerfiles, so the build context then is only 4 KB. You can see my output in figure 17.4.
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  Figure 17.4 Using a .dockerignore file reduces the size of the build context and the time to send it.


  A .dockerignore file can save you a lot of time when you count the cost of sending unused data in the build context, and it can save space, even when you’re using explicit paths in your Dockerfile. It could be you’re building the code locally and also using a multi-stage build to compile in Docker--you can specify the build binaries in your .dockerignore file and be sure they won’t get copied into the image. The file format is the same as Git’s .gitignore file, and you can use the template for your app platform from GitHub as a good starting point (you should include the Git history folder .git if your Dockerfile is at the root of the repo too).


  Now that you’ve seen the importance of managing which files make it into your Docker image, we’re going to take a step back and look at the image you’re using as a base.


  17.2 Choosing the right base images


  Base image size choice is as much about security as it is about disk space and network transfer time. If your base OS image is large, it probably has all sorts of tools that might be useful on a real machine but can be a security hole in a container. If your OS base image has curl installed, an attacker could use that to download malware or upload your data to their servers, if they manage to break out of your app into the container.


  That’s also true of application platform base images. If you’re running Java apps, the OpenJDK official image is a good base, but there are many tags with different configurations of the Java runtime (the JRE) and the developer SDK (the JDK). Table 17.1 shows the size differences between the multi-arch images for the SDK versus the runtime and the most minimal versions:


  Table 17.1 Size differences between compatible Java 11 images on Docker Hub


  
    
      	
         

      

      	
        :11-jdk

      

      	
        :11-jre

      

      	
        :11-jre-slim

      

      	
        :11-jre-nanoserver-1809

      
    


    
      	
        Linux

      

      	
        296 MB

      

      	
        103 MB

      

      	
        69 MB

      

      	
         

      
    


    
      	
        Windows

      

      	
        2.4 GB

      

      	
        2.2 GB

      

      	
         

      

      	
        277 MB

      
    

  


  Linux users can use a 69 MB base image instead of 296 MB, and Windows users can use 277 MB instead of 2.4 GB, just by checking the variants on Docker Hub and picking the ones with the smallest OS image and the smallest Java installation. The OpenJDK team are cautious with their multi-arch images. They select images with the widest compatibility, but it’s simple to try your app with a smaller variant. As a good rule, use Alpine or Debian Slim images as the base OS for Linux containers, and Nano Server for Windows containers (the alternative is Windows Server Core, which is pretty much the full Windows Server OS--that’s where the gigabytes of disk go). Not every app will work with the smaller variants, but it’s easy to switch images in your FROM lines and test it out.


  Size isn’t just about disk space--it’s also about what’s using the space. The largest OpenJDK images include the whole Java SDK, so there’s a nice attack vector there if someone manages to compromise your container. They could write some Java source code files into the container’s disk, compile them with the SDK, and run an app that does anything they want in the security context of your application container.


   try it now Among the exercises for this chapter is a Java app that uses the default JDK image. It runs a very simple REST API that always returns the value true :


   cd ch17/exercises/truth-app   # build the image - the base image uses the :11-jdk tag:  docker image build -t diamol/ch17-truth-app .   # run the app and try it out:  docker container run -d -p 8010:80 --name truth diamol/ch17-truth-app  curl http://localhost:8010/truth


  The container you’re running has the Java REST API, which is compiled in the image, but it also has all the tools to compile other Java apps. If an attacker manages to break out of the app and run arbitrary commands on the container, they could run their own code to do whatever they liked. In this image I’ve “accidentally” included a test code file, and a malicious user could find and run that to change the app’s behavior.


   try it now Simulate a container breakout by connecting to a shell in your API container. Then use the JDK to compile and run the test code and check the app again afterwards:


   # connect to the API container - for Linux containers:  docker container exec -it truth sh   # OR for Windows containers:  docker container exec -it truth cmd   # inside the container compile and run the test Java file:  javac FileUpdateTest.java  java FileUpdateTest  exit   # back on your machine, try the API again:  curl http://localhost:8010/truth


  You’ll see that the behavior of the app has changed--the test fixture sets the response to be false instead of true . My output in figure 17.5 shows the original response and the changed response after the “hack.”
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  Figure 17.5 Having the SDK in your app image leaves you open to arbitrary code execution attacks.


  This is a slightly contrived example with the handy test file lying around in the image to make things easy, but container breakouts are possible, and this illustrates an interesting attack option. The container could be locked down by the platform to prevent network access, and this attack would still work. The lesson is that your base image should have all you need to run your app, but no extra tooling for building apps (interpreted languages like Node.js and Python are an exception because the build tools are necessary for the app to run).


  Golden images are one way around this problem. You have a team that chooses the right base images and builds their own versions for your organization. I use that approach for this book--my Java apps are built from diamol/openjdk , which is a multi-arch image that uses the smallest variant for each OS. I can control how often my golden image gets updated, and I can trigger application image builds after the golden image builds. Another advantage of building your own golden image is that you can integrate additional security checks on the base layer in the build process, using a third-party tool like Anchore.


   Try It Now Anchore is an open source project for analyzing Docker images. The analyzer components run in Docker containers, but unfortunately they don’t have multi-arch support. If you’re running Linux containers on Intel (with Docker Desktop or Community Engine) you’re supported; otherwise you can spin up a PWD session and clone the book’s GitHub repo for this exercise.


   cd ch17/exercises/anchore   # start all the Anchore components:  docker-compose up -d   # wait for Anchore to download its database - this can take 15 minutes,   # so you might want to open a new terminal window for this command:  docker exec anchore_engine-api_1 anchore-cli system wait   # now copy the Dockerfile for my Java golden image into the container:  docker container cp "$(pwd)/../../../images/openjdk/Dockerfile" anchore_engine-api_1:/Dockerfile   # and add the image and the Dockerfile for Anchore to analyze:  docker container exec anchore_engine-api_1 anchore-cli image add diamol/openjdk --dockerfile /Dockerfile   # wait for the analysis to complete:  docker container exec anchore_engine-api_1 anchore-cli image wait diamol/openjdk


  It takes a while for Anchore to fully start up because it downloads a database of known security issues on the first run. Typically you’d integrate Anchore into your CI/CD process, so this hit would only happen when you first deploy it. The wait commands will keep your session blocked until Anchore is ready--you can see in figure 17.6 that I’ve added my OpenJDK image for scanning, but it hasn’t been analyzed yet.
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  Figure 17.6 Using Anchore to analyze Docker images for known issues


  When Anchore completes its analysis, it knows an awful lot about your image, including the open source licenses used by all the components in the image, through to the operating system and application platform details, to security issues for any binaries in the image. Those findings could all be part of the quality gate for accepting an updated base image. If the new version uses an OSS license your organization prohibits, or if it includes critical security vulnerabilities, you might skip that update. Anchore has plugins for CI/CD tools like Jenkins, so you can apply those policies automatically in your pipeline, and you can also query the results directly using the Anchore API container.


   Try It Now When the wait command from the previous exercise finishes, the image has been analyzed. Check what Anchore has discovered about the application platform and the image’s security issues:


   # check what Java components Anchore has found in the image:  docker container exec anchore_engine-api_1 anchore-cli image content diamol/openjdk java   # and check for known security issues:  docker container exec anchore_engine-api_1 anchore-cli image vuln diamol/openjdk all


  These are just samples of the output that Anchore can give you--in this case it has the details of the Java runtime in the image and a large list of security vulnerabilities. At the time of writing, those vulnerabilities all had negligible severity--meaning they don’t pose a significant threat, and you can probably accept them in your image. The output includes a link to the details of the vulnerability so you can read more and decide for yourself. Figure 17.7 shows the partial output from my scan results.
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  Figure 17.7 Anchore checks all the binaries in the image against its database of security vulnerabilities.


  These results are acceptable because I’ve selected the minimal OpenJDK base image for my golden image. If you add the official openjdk:11-jdk image to Anchore and check the results, you’ll see it has many more vulnerabilities, a lot with “unknown” severity and one “low” severity for the core SSL security library. That might not be acceptable, so you’ll want to stop users basing their apps on that image, even though it’s an official one maintained by the OpenJDK team.


  Anchore is just one technology in this space--you can get similar features from open source projects you run yourself (like Clair), or commercial projects that can be integrated with your Docker registry (like Aqua). Tools like this really help you understand the security of your images and give you confidence in the set of golden images you build. You can run these tools on your app images too, and one of the policies you should check is that every app is building from one of your own golden images. That enforces the use of your curated, approved images.


  17.3 Minimizing image layer count and layer size


  A minimal and secure base image is the prerequisite for getting your app images optimized. The next step is really about setting up your image with everything your app needs and nothing else--which is a much deeper sentence than it sounds. Many processes for installing software leave residues behind because they cache package lists or deploy extra recommended packages. You can keep those under control--the details are different for different operating systems, but the general approach is the same.


   Try it now Debian Linux uses APT (Advanced Package Tool) to install software. This exercise uses a simple example to show how removing unnecessary packages and clearing out the package list provides big savings (this exercise won’t work with Windows containers--Play with Docker is an option instead):


   cd ch17/exercises/socat  # the v1 image installs packages using standard apt-get commands:  docker image build -t diamol/ch17-socat:v1 .   # v2 installs the same packages but using optimization tweaks:  docker image build -t diamol/ch17-socat:v2 -f Dockerfile.v2 .   # check the image sizes:  docker image ls -f reference=diamol/ch17-socat


  Both versions of the Dockerfile install the same two tools--curl and socat--on top of the same Debian Slim image, and they’re both functionally exactly the same. But you’ll see that the v2 image is almost 20 MB smaller, as my output in figure 17.8 shows.


  I used just a couple of tweaks to the install commands to get that saving. The first makes use of an APT feature to install only the listed packages and not any recommendations. The second is to combine the install steps into a single RUN instruction, which ends with a command to delete the package list cache and free up that disk space. Listing 17.3 shows the difference between the Dockerfiles.


  Listing 17.3 Installing software packages--the wrong way and the optimized way


   # Dockerfile - the naive install with APT:  FROM debian:stretch-slim  RUN apt-get update  RUN apt-get install -y curl=7.52.1-5+deb9u9  RUN apt-get install -y socat=1.7.3.1-2+deb9u1   # Dockerfile.v2 - optimizing the install steps:  FROM debian:stretch-slim  RUN apt-get update \  && apt-get install -y --no-install-recommends \        curl=7.52.1-5+deb9u9 \        socat=1.7.3.1-2+deb9u1 \    && rm -rf /var/lib/apt/lists/*


  Another advantage of combining multiple steps in a single RUN instruction is that it produces a single image layer. Reducing the number of image layers isn’t really an optimization. There is a maximum layer count, but it should be plenty big enough--typically 127 depending on the OS. But having fewer layers does make it much easier to keep track of your filesystem. It would be easy to put the final rm command to delete the package lists into its own RUN instruction, and arguably that makes the Dockerfile easier to read. But you know from this chapter that deleting files from a previous layer simply hides them from the filesystem, so if you did that there would be no saving on disk space.


  Let’s look at one more example of this pattern, which applies across all platforms. Often you need to download a package from the internet that is compressed, and then expand it. It’s tempting to put the download step in a separate instruction while you’re working on the Dockerfile, so you can work with the cached download layer and speed up your development time. That’s fine, but once your Dockerfile is working, you need to go through and tidy up afterwards, to combine the download-expand-delete steps into a single instruction.
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  Figure 17.8 Optimizing software installs reduces the image size in this exercise by over 20%.


   Try it now Machine-learning datasets are a good example here, because they are large downloads that expand to even larger folder structures. In the exercises for this chapter there’s an example that downloads a dataset from the University of California at Irvine (UCI) archives and extracts just one file from the dataset.


   cd ch17/exercises/ml-dataset   # v1 downloads and expands the archive, then deletes unnecessary files:  docker image build -t diamol/ch17-ml-dataset:v1 .   # v2 downloads the archive but only expands the necessary file:  docker image build -t diamol/ch17-ml-dataset:v2 -f Dockerfile.v2 .   # compare the sizes:  docker image ls -f reference=diamol/ch17-ml-dataset


  You’ll see a massive size difference, which is purely because of the same optimization technique--making sure the layers don’t have any more files than they need. My results are in figure 17.9--both images have the same single file from the data download, but one is nearly 2.5 GB and the other is only 24 MB.
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  Figure 17.9 Paying close attention to how you work with files can save huge amounts of disk space.


  This is not such a contrived example. It’s pretty common when you’re iterating on a Dockerfile to keep instructions separate because that makes it easier to debug--you can run a container from a layer partway through the build and investigate the filesystem, and you can work on later instructions but keep the cached download. You can’t do that when you’ve compressed multiple commands into one RUN instruction, but it’s important to make that optimization once you’re happy with your build. Listing 17.4 shows the optimized Dockerfile, which produces a single layer for the data file (the download URL is abbreviated here, but you’ll see it in the source code for the chapter).


  Listing 17.4 An optimized method for downloading and extracting files


   FROM diamol/base   ARG DATASET_URL=https://archive.ics.uci.edu/.../url_svmlight.tar.gz   WORKDIR /dataset   RUN wget -O dataset.tar.gz ${DATASET_URL} && \        tar -xf dataset.tar.gz url_svmlight/Day1.svm && \          rm -f dataset.tar.gz


  The biggest saving here is not actually from deleting the archive; it’s from extracting just the single file. The v1 approach expands the whole archive (which is where the 2 GB of disk space goes) and then deletes all the files except the desired one. Knowing how your tools behave and which features minimize disk usage helps you keep your layer size under control, as you’ve seen with tar in this example and APT in the previous one.


  There is an alternative approach to this scenario that gives you the best developer workflow and an optimized final image, and that’s using multi-stage Dockerfiles with separate stages for all the disk-hungry steps.


  17.4 Taking your multi-stage builds to the next level


  You first saw multi-stage builds in chapter 4 where we used one stage to compile an app from source code, and a later stage to package the compiled binaries for runtime. Multi-stage Dockerfiles should be a best practice for all but the simplest images, because they make it far easier to optimize the final image.


  We can revisit the dataset downloader and use separate stages for each of the steps. Listing 17.5 shows we get a much more readable Dockerfile that way (the download URL is abbreviated again).


  Listing 17.5 Multi-stage Dockerfiles aid readability and simplify optimization


   FROM diamol/base AS download  ARG DATASET_URL=https://archive.ics.uci.edu/.../url_svmlight.tar.gz  RUN wget -O dataset.tar.gz ${DATASET_URL}   FROM diamol/base AS expand  COPY --from=download dataset.tar.gz .  RUN tar xvzf dataset.tar.gz   FROM diamol/base  WORKDIR /dataset/url_svmlight  COPY --from=expand url_svmlight/Day1.svm .


  It’s clear in each stage what you’re doing, and you don’t need to dive into unusual command optimizations to save disk space, because the final image will only have the files explicitly copied in from earlier stages. When you build v3, you’ll find it’s the same size as the optimized v2 version, but it has the advantage of being easy to debug. Multi-stage Dockerfiles can be built up to a specific stage, so if you need to check the filesystem partway through the build, you can easily do so without trawling image histories to find layer IDs.


   Try it Now The target parameters let you stop a multi-stage build at a specific stage. Try building that v3 image with different targets:


   cd ch17/exercises/ml-dataset   # build the full v3 image:  docker image build -t diamol/ch17-ml-dataset:v3 -f Dockerfile.v3 .   # build to the 'download' target - same Dockerfile, different tag:  docker image build -t diamol/ch17-ml-dataset:v3-download -f Dockerfile.v3 --target download .   # and build to the 'expand' target:  docker image build -t diamol/ch17-ml-dataset:v3-expand -f Dockerfile.v3 --target expand .   # check the image sizes:  docker image ls -f reference=diamol/ch17-ml-dataset:v3*


  Now you’ll have three variations of the v3 image. The full build is the same 24 MB as the optimized build, so we haven’t lost any optimization moving to a multi-stage Dockerfile. The other variants stop the build at specific stages, and you can run a container from one of those images to navigate the filesystem if you need to debug. The stage builds also show where the disk space is going--you can see in figure 17.10 that the download is around 200 MB, and it expands to over 2 GB.
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  Figure 17.10 Building multi-stage Dockerfiles to specific stages lets you debug contents and check sizes.


  This really is the best approach--you get an optimized image, but you can keep your Dockerfile instructions simple because you don’t need to clean up disk in intermediate stages.


  One final advantage of multi-stage builds really brings it home: every stage has its own build cache. If you need to tweak the expand stage, when you run the build, the download stage will still come from the cache. Maximizing the build cache is the final part of optimization, and this is all about the speed of building the image.


  The basic way to make the most of the build cache is to order the instructions in your Dockerfile so the things that change least frequently are at the start, and the things that change most frequently are toward the end. This can take a few iterations to get right, because you need to understand how often the steps change, but you can typically put static setup like exposed ports, environment variables, and the application entry point at the beginning of the file. Things that change most are your application binaries and config files, and they can go toward the end. Get this right, and you can drastically reduce build times.


   Try it Now This exercise builds a minimal Jenkins install. It’s incomplete, so don’t try to run it--we’re just using it for builds. The Dockerfile downloads the Jenkins Java file and sets up the initial config. The v2 Dockerfile makes good use of the cache, which you’ll see when you make a content change:


   cd ch17/exercises/jenkins   # build the v1 image and the optimized v2 image:  docker image build -t diamol/ch17-jenkins:v1 .  docker image build -t diamol/ch17-jenkins:v2 -f Dockerfile.v2 .   # now change the config file both Dockerfiles use:  echo 2.0 > jenkins.install.UpgradeWizard.state   # repeat the builds and see how long they run:  docker image build -t diamol/ch17-jenkins:v1 .  docker image build -t diamol/ch17-jenkins:v2 -f Dockerfile.v2 .


  The second round of builds is where the cache comes in. The v1 Dockerfile copies the config file into the image before downloading the Jenkins file (which is a 75 MB download), so when the config file changes, that busts the cache and the download happens all over again. The v2 Dockerfile uses a multi-stage build and orders the instructions to put the config file copy last. I ran my exercise using the Measure-Command function in PowerShell to check the duration of each build (there’s an equivalent called time in Linux). You can see in figure 17.11 that correctly ordering instructions and using a multi-stage Dockerfile cuts the build time from 10+ seconds to under a second.
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  Figure 17.11 Ordering your Dockerfile instructions correctly can mean huge savings in build time.


  Making good use of the cache lets you build and push Docker images from every change to source control without soaking up time in the CI/CD pipeline. You do need to make sure you don’t over-cache things, though, because if you install or download software using RUN instructions, they will be cached until the instruction changes in the Dockerfile (assuming the cache isn’t busted before that instruction). You should always use explicit versions when you add packages to your image, so you know exactly what you’re running, and you can choose when to update. The socat example in listing 17.3 used explicit version numbers in the APT commands, and the Jenkins example used an ARG instruction for the version to download--both approaches let you use the cache until you change the versions to install.


  17.5 Understanding why optimization counts


  You’ve seen in this chapter that you can follow some simple best practices and make your Dockerfiles a joy to work with. Those practices boil down to


  
    	Choose the right base image--ideally curate your own set of golden images.


    	Use multi-stage Dockerfiles for all but the simplest apps.


    	Don’t add any unnecessary packages or files--focus on layer size.


    	Sort your Dockerfile instructions by change frequency--maximize the cache.

  


  Building, pushing, and pulling images becomes a core part of your organization’s workflow as you move more apps to containers. Optimizing those images can remove a lot of pain points, speed up workflows, and prevent more serious issues. Figure 17.12 shows the typical life cycle of an image, and the areas where optimization counts.
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  Figure 17.12 Optimizing your Docker images has beneficial impacts across the life cycle of your projects.


  17.6 Lab


  Now it’s time to put your optimization skills to the test. Your goal is to optimize an image that installs the Docker command line. There are Linux and Windows examples in the lab folder for this chapter; the Dockerfiles work right now, but they produce unnecessarily large images. Your goals are to


  
    	Optimize the filesystem so the image is under 80 MB for Linux containers, or under 330 MB for Windows containers.


    	Make use of the image layer cache, so repeat builds of your image take less than a second.


    	Produce an image that writes the Docker CLI version correctly from docker container run <image> docker version (the command will give you an error for the server because it’s not connected to a Docker Engine, but the CLI version should print correctly).

  


  You shouldn’t need any hints, but you’ll need to think creatively when you look at the original Dockerfiles. You might not get there optimizing the existing instructions; it might be better to work backwards from the goals for the image.


  My optimized files are in the same lab folder--you can also check them on GitHub: https://github.com/sixeyed/diamol/blob/master/ch17/lab/README.md .


  You have the knowledge, now go optimize!


  
    18 Application configuration management in containers

  


  Applications need to load their configuration from the environment they’re running in, which is usually a combination of environment variables and files read from disk. Docker creates that environment for apps running in containers, and it can set environment variables and construct a filesystem from many different sources. The pieces are all there to help you build a flexible configuration approach for your apps, so when you deploy to production you’re using the same image that passed all the test phases. You just need to do some work to bring the pieces together, setting up your app to merge configuration values from multiple places.


  This chapter will take you through the recommended approach (and some alternatives) using examples in .NET Core, Java, Go, and Node.js. Some of the work here lives in the developer space, bringing in libraries to provide config management, and the rest lives in that gray area between dev and ops that relies on communication so both sides know how the configuration model works.


  18.1 A multi-tiered approach to app configuration


  Your configuration model should reflect the structure of the data you’re storing, which is typically one of three types:


  
    	Release-level settings, which are the same for every environment for a given release


    	Environment-level settings, which are different for every environment


    	Feature-level settings, which can be used to change behavior between releases

  


  Some of those are fairly static, some are dynamic with a known set of variables, and others are dynamic with an unknown set of variables. Figure 18.1 shows some sample config settings and where they can be read from the environment.
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  Figure 18.1 A config hierarchy with settings from the image, filesystem, and environment variables


  The first example we’ll use is Node.js with a popular config management library called node-config. The library lets you read config from multiple file locations in a hierarchy and override them all with environment variables. The access-log sample app in the exercises for this chapter uses the node-config library and sets up two directories to read configuration files from


  
    	 config --This will be packaged with default settings in the Docker image.


    	 config-override --This doesn’t exist in the image but can be provisioned in the container filesystem from a volume, config object, or secret.

  


   try it now Run the sample app with the default configuration from the image, and then the same image with an override file for the development environment:


   cd ch18/exercises/access-log   # run a container with the default config in the image:  docker container run -d -p 8080:80 diamol/ch18-access-log   # run a container loading a local config file override:  docker container run -d -p 8081:80 -v "$(pwd)/config/dev:/app/config-override" diamol/ch18-access-log   # check the config APIs in each container:  curl http://localhost:8080/config  curl http://localhost:8081/config


  The first container only uses the default config file that is packaged in the image--that specifies the name of the release cycle (19.12) and sets the Prometheus metrics to be enabled. There’s an UNKNOWN setting for the environment name--if you ever see that, you know the environment-level config settings haven’t been correctly applied. The second container loads a local config directory as a volume in the expected location for the app to find overrides--it sets the environment name and flips the metrics feature to off. You’ll see when you call the config API that containers from the same image have applied different settings--mine is in figure 18.2.
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  Figure 18.2 It’s straightforward to merge config files using volumes, config objects, or secrets.


  Loading config overrides from a known path in your app code lets you provide them from any source into the container. I’m using a local bind mount, but the source could be a config object or a secret stored in a container cluster (as we saw in chapters 10 and 13), and the behavior would be the same. There’s one nuance to this pattern--your config target can either be a specific file path or a directory. A directory target is more flexible (Windows containers don’t support loading volumes from a single file), but the source file names need to match the config file names the app expects. In this example the bind source is the directory config/dev , which has a single file--the container sees /app/config-override/local.json , which is where it looks for overrides.


  The node-config package can also load settings from environment variables, and they override any settings loaded from the file hierarchy. This is the configuration approach recommended in “The Twelve-Factor App” ( https://12factor.net )--a modern style of application architecture, where environment variables always take precedence over other config sources. It’s a useful approach that helps you get into the mindset that containers are ephemeral because changing environment variables to set application config means replacing containers. Node-config has a slightly unusual implementation: rather than specifying individual settings as environment variables, you need to provide the settings as a JSON-formatted string in the environment variable.


   try it now Run a third version of the access log container in development mode but with metrics enabled. Use the volume mount to load the dev config and an environment variable to override the metrics setting:


   cd ch18/exercises/access-log   # run a container with an override file and an environment variable:  docker container run -d -p 8082:80 -v "$(pwd)/config/dev:/app/config-override" -e NODE_CONFIG='{\"metrics\": {\"enabled\":\"true\"}}' diamol/ch18-access-log   # check the config:  curl http://localhost:8082/config


  The third container merges config from the default file in the image, the local config override file in the volume, and the specific environment variable setting. This is a good example of building config to keep the developer workflow running smoothly. Devs can run the default settings without metrics enabled (which will save CPU cycles and memory), but when they need to turn metrics on for some debugging, they can do it with the same image and an environment variable switch. Figure 18.3 shows my output.
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  Figure 18.3 Merging config from environment variables makes it easy to change specific features.


  This is the core pattern for configuration that you should look to apply in all your apps. From this example you can see that the pattern is quite clear, but the details are significant, and that’s the gray area where knowledge can break down between delivery and deployment. The access-log app lets you override the default config file with a new one, but that target file has to be in a specific location. You can also override all file settings with environment variables, but the environment variable needs to be in JSON format. Ultimately that will be documented in the YAML files you use for deployment, but you need to be aware that the pattern has the potential for mistakes. An alternative approach removes that risk, at the cost of making config management less flexible.


  18.2 Packaging config for every environment


  Many application frameworks support a config management system where you bundle all the config files for every environment in your deployment, and at runtime you set a single value to specify the name of the environment you’re running in. The app platform loads the config file with the matching environment name, and your app is fully configured. .NET Core does this with its default configuration provider setup, where config settings are merged from these sources:


  
    	 appsettings.json --The default values for all environments


    	 appsettings.{Environment}.json --The overrides for the named environment


    	Environment variables --Used to specify the environment name, and for setting overrides

  


  There’s a new version of the to-do list app for this chapter that uses this approach of packaging all the config files in the Docker image. You use a specific environment variable to provide the current environment name, and that gets loaded in before the rest of the configuration files.


   try it now Run the to-do list app with the default configuration, which is set with the environment name Development, and then with the test environment settings:


   # run the to-do list app with default config:  docker container run -d -p 8083:80 diamol/ch18-todo-list   # run the app with the config for the test environment:  docker container run -d -p 8084:80 -e DOTNET_ENVIRONMENT=Test diamol/ch18-todo-list


  The two containers are running from the same image but loading different configuration files. Inside the image there are environment files for development, test, and production environments. The first container merges the core appsettings.json with appsettings.Development.json --it runs in development mode because Development is set as the default environment in the Dockerfile. The second merges appsettings.json with appsettings.Test.json . Both the environment config files are already present in the Docker image, so there’s no need to mount an external source for the new config. Browse to http:/ /localhost:8083/diagnostics to see the dev config and http:/ /localhost:8084/diagnostics to see the test version. My output is in figure 18.4.
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  Figure 18.4 Packaging every environment’s config file in the image makes it easy to switch environments.


  This approach can work nicely if you have separate systems to manage your configuration files and your source code. The CI/CD pipeline can bring the config files into the Docker image as part of the build, so you keep config management separate from development. The downside is that you still can’t package every setting, because you need to keep confidential information out of the Docker image. You need to have a security-in-depth approach and assume that your registry could be compromised--in that case you don’t want someone to find all your passwords and API keys in nice plain-text files in your images.


  If you like this approach, you still need to allow for override files, and final overrides with environment variables. The to-do list app does that, loading files from a folder called config-overrides if it exists, and using the standard .NET Core approach of loading environment variables last. That lets you do useful things like run the production environment locally if you’re trying to replicate an issue, but override the environment settings to use a database file instead of a remote database server.


   try it now The to-do list app still supports config overrides, even though all the environment config is bundled in the app. If you run in production mode, the app fails because it’s expecting to find a database server, but you can run in production with an override file to use a database file instead:


   cd ch18/exercises/todo-list  docker container run -d -p 8085:80 -e DOTNET_ENVIRONMENT=Production -v "$(pwd)/config/prod-local:/app/config-override" diamol/ch18-todo-list


  You can browse to http:/ /localhost:8085/diagnostics and see that the app is running in production mode, but the config file override changes the database setting, so the app still works without running a Postgres container. My output is in figure 18.5.
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  Figure 18.5 Selecting an environment to run in should still support config overrides from additional files.


  This container merges the default appsettings.json file with the environment file appsettings.Production.json and the override file local.json in the prod-local folder. The setup is similar to the Node.js example, so there’s some consistency around folder and file names, but .NET Core takes a different approach to setting overrides with environment variables. In node-config you pass a JSON string as an environment variable to override settings, but in .NET Core you specify individual settings as environment variables.


   Try it Now Run the same local version of production but with a custom release name by overriding that setting with an environment variable:


   # run the container with a bind mount and a custom environment variable:  docker container run -d -p 8086:80 -e DOTNET_ENVIRONMENT=Production -e release=CUSTOM -v "$(pwd)/config/prod-local:/app/config-override" diamol/ch18-todo-list


  Browse to http:/ /localhost:8086/diagnostics and you’ll see the custom release name from the environment variable. My output is in figure 18.6.
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  Figure 18.6 The config hierarchy overrides values from any of the config files with environment variables.


  I have to say I don’t like this way of packaging multiple config files, although it’s a common approach across lots of app platforms. There’s a danger that you’ll include some config setting in your image that you don’t think is sensitive, but your security team might disagree. Server names, URLs, file paths, logging levels, and even cache sizes could all be useful information to anyone trying to hack your system. By the time you move all the confidential settings to override files that you apply from the runtime, there’s probably very little left in those packaged environment files anyway. I also don’t like the split, where some settings are managed in source control and others are in a config management system.


  The beauty of containers is that you can follow whichever pattern you like, so don’t let me decide for you. Some approaches work better, depending on your organization and technology stack. Things get more complicated too if you have multiple stacks to deal with--you’ll see that in the next example using a Go application.


  18.3 Loading configuration from the runtime


  Go has a popular configuration module called Viper, which offers much of the same functionality as the .NET Core libraries or node-config. You add the module to your package list, and in your application code you specify the paths to the config directories and whether you want environment variables brought in to override the config files. I’ve added it to the image gallery app for this chapter, using a similar hierarchy to the other examples:


  
    	Files are loaded from the config directory first which is populated in the Docker image.


    	Environment-specific files are loaded from the config-override directory, which is empty in the image and can be the target for a container filesystem mount.


    	Environment variables override the file settings.

  


  Viper supports a wider set of languages for configuration files than the other examples. You can use JSON or YAML, but the popular format in the Go world is TOML (named after its creator, Tom Preston-Werner). TOML is great for configuration files because it maps easily to dictionaries in code, and it’s easier to read than JSON or YAML. Listing 18.1 shows the TOML configuration for the image gallery app.


  Listing 18.1 The TOML format makes for easily managed config files


   release = "19.12"  environment = "UNKNOWN"   [metrics]  enabled = true   [apis]    [apis.image]   url = "http://iotd/image"    [apis.access]   url = "http://accesslog/access-log"


  You see TOML being used in lots of cloud-native projects because it’s so much easier than the alternatives. If you have a choice of formats, TOML is worth considering because “easy to read” also means easy to debug, and easy to see the differences between versions in a merge tool. Other than the file format, this example works in the same way as the Node.js app, with a default config.toml file packaged into the Docker image.


   Try it Now Run the app without any additional config setup to check the defaults:


   # run the container:  docker container run -d -p 8086:80 diamol/ch18-image-gallery   # check the config API:  curl http://localhost:8086/config


  When you run this exercise, you’ll see the current app configuration, which all comes from the default TOML file. My output is in figure 18.7, and it shows the release cycle and the default URLs for the APIs that this app consumes.
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  Figure 18.7 You can package your app with default settings that work but aren’t a complete environment.


  The output is from a config API that returns JSON for the current configuration settings. A config API is a very useful feature in your app when you have multiple layers of config sources; it makes debugging configuration issues much easier, but you need to secure that data. There’s no point using secrets for confidential settings if they can be publicly read by anyone who tries browsing to /config , so if you’re going to add a config API, you need to do three things:


  
    	Don’t just publish the whole config; be selective and never include secrets.


    	Secure the endpoint so only authorized users can access it.


    	Make the config API a feature that can be enabled through config.

  


  The image gallery app takes a slightly different approach from the hierarchical config model--default settings are saved in the image, but not for any specific environment. The expectation is that every environment will specify its own additional config file, which extends or overrides settings in the default file to set up the full environment.


   Try it Now Run the same app again with an override file to build a complete environment:


   cd ch18/exercises/image-gallery   # run the container with a bind mount to the local config directory:  docker container run -d -p 8087:80 -v "$(pwd)/config/dev:/app/config-override" diamol/ch18-image-gallery   # check config again:  curl http://localhost:8087/config


  My output in figure 18.8 shows the app is now fully configured for the dev environment, merging the release-level config file in the image with the environment override file.
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  Figure 18.8 The Go Viper module merges config files in the same way as the node-config package.


  Showing you all these slight variations on the config theme isn’t just a cheap way to fill out the chapter. When organizations adopt Docker, they tend to find that usage accelerates quickly, and they soon have a lot of apps running in containers that each have their own opinions on configuration. Lots of small variations like this are bound to happen because the app platforms differ in the features they provide and the conventions they expect. You can apply standards at a high level--images must come packaged with default config and must support file and environment variable overrides--but the details of the config file and environment variable formats will be hard to standardize.


  We’ll see that in a last example with the Go application. The Viper module supports environment variables to override settings in config files, but with a convention that is different again from node-config and from .NET Core.


   Try it now Run the container with an environment variable override. The config model in this app only uses environment variables prefixed with IG :


   cd ch18/exercises/image-gallery   # run the container with config override and an environment variable:  docker container run -d -p 8088:80 -v "$(pwd)/config/dev:/app/config-override" -e IG_METRICS.ENABLED=TRUE diamol/ch18-image-gallery   # check the config:  curl http://localhost:8088/config


  Viper has the convention that you should prefix environment variable names so they don’t clash with other environment variables. In this app, the prefix is IG , followed by an underscore, followed by the config setting name in dot notation (so IG_METRICS .ENABLED matches the enabled value in the metrics group in the TOML file). You can see from my output in figure 18.9 that this setup adds the development environment on top of the default settings but then overrides the metrics settings to enable Prometheus metrics.


  [image: ]


  Figure 18.9 All the example apps support environment variables for config, but with small variations.


  We’ve walked through config modeling with three different apps, and we have three slightly different approaches. The differences are manageable and easy to document in the application manifest files, and they don’t actually impact how you build the image or run the container. We’ll look at one last example in this chapter that takes the same configuration model and applies it to an application that doesn’t have a nice new configuration library, so it needs some extra work to make it behave like a modern app.


  18.4 Configuring legacy apps in the same way as new apps


  Legacy apps have their own ideas about configuration, which don’t usually involve environment variables or file merges. .NET Framework apps on Windows are a good example--they expect XML configuration files in specific locations. They don’t like looking for files outside the application root folder, and they don’t look at environment variables at all. You can still take the same configuration approach with those apps, but you need to do some extra work in your Dockerfile.


  The approach here is to package a utility app or set of scripts that transform the configuration settings in the container environment into the configuration model the application expects. The exact implementation will depend on your app framework and how it uses config files, but the logic will be something like this:


  
    	Read in the config override settings from a specified source file in the container.


    	Read in the overrides from environment variables.


    	Merge the two sets of overrides, so environment variables take precedence.


    	Write the merged overrides to the specified target file in the container.

  


  In the exercises for this chapter, there’s an updated version of the image of the day Java API that uses this approach. It’s not actually a legacy app, but I’ve built the image with the legacy pattern, as though the app can’t use the normal container configuration options. There’s a utility app that runs at startup and sets up the configuration, so although the internal configuration mechanism is different, users can configure containers in the same way as the other examples.


   Try it Now Run the “legacy” app with default config settings and with a file override:


   cd ch18/exercises/image-of-the-day   # run a container with default configuration:  docker container run -d -p 8089:80 diamol/ch18-image-of-the-day   # run with a config override file in a bind mount:  docker container run -d -p 8090:80 -v "$(pwd)/config/dev:/config-override" -e CONFIG_SOURCE_PATH="/config-override/application.properties" diamol/ch18-image-of-the-day   # check the config settings:  curl http://localhost:8089/config  curl http://localhost:8090/config


  The user experience is very similar to the other apps--mounting a volume with the environment override file (and the source could be a config object or secret)--but you have to additionally specify the override file location in an environment variable so the startup utility knows where to look. You’ll see in the output that the default config in the image specifies the release cycle but not the environment--that gets merged in with the override file in the second container. My output is in figure 18.10.
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  Figure 18.10 This app has a utility to bootstrap the config model, but the user experience is the same.


  The magic happens here in a simple Java utility app, which gets compiled and packaged in the same multi-stage build as the rest of the app. Listing 18.2 shows the key parts of the Dockerfile that build the utility and set it to run at startup.


  Listing 18.2 Building and using a config load utility in the Dockerfile


   FROM diamol/maven AS builder  # ...  RUN mvn package   # config util  FROM diamol/maven as utility-builder  WORKDIR /usr/src/utilities  COPY ./src/utilities/ConfigLoader.java .  RUN javac ConfigLoader.java   # app  FROM diamol/openjdk  ENV CONFIG_SOURCE_PATH="" \        CONFIG_TARGET_PATH="/app/config/application.properties"   CMD java ConfigLoader && \        java -jar /app/iotd-service-0.1.0.jar   WORKDIR /app  COPY --from=utility-builder /usr/src/utilities/ConfigLoader.class .  COPY --from=builder /usr/src/iotd/target/iotd-service-0.1.0.jar .


  The important takeaway here is that you can extend your Docker image to make old apps behave in the same way as new apps. You control the startup logic, so you can run any steps you need before starting the actual application. When you do this, you’re increasing the amount of time between the container starting and the app being ready, and you’re also increasing the risk the container might fail (if the startup logic has an error). You should always have health checks in your image or your application manifests to mitigate that.


  My config loader utility app supports the 12-factor approach that has environment variables override other settings. It merges environment variables with the override config file and writes the output as a config file in a location the app expects. The utility takes the same approach as Viper, looking for environment variables with a specific prefix that helps keep app settings separate from other settings in the container.


   Try it now The legacy app doesn’t use environment variables, but the config utility sets them up so the user experience is the same as a modern app.


   # run a container with an override file and an environment variable:  docker run -d -p 8091:80 -v "$(pwd)/config/dev:/config-override" -e CONFIG_SOURCE_PATH="/config-override/application.properties" -e IOTD_ENVIRONMENT="custom" diamol/ch18-image-of-the-day   # check the config settings:  curl http://localhost:8091/config


  The utility lets me work with my old app in the same way as my other apps. It’s mostly transparent to the user--they just set environment variables and load override files into volumes. It’s transparent to the app, which just reads the config files it expects to see--there are no changes to the original app code here. Figure 18.11 shows that this “legacy” app uses the modern multi-tiered configuration approach.
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  Figure 18.11 Environment variables make the config model for this old app behave like new apps.


  Now every component in the image gallery app uses the same configuration pattern. There’s a level of standardization across all components, but there are also small implementation differences. Every component can be configured with a file override to run in development mode, and every component can be configured with an environment variable to enable Prometheus metrics. How you actually do that differs for each app, which is that gray area I mentioned right at the beginning--it’s difficult to enforce a standard to say every component will run a Prometheus endpoint if the environment variable ENABLE_METRICS=true , because app platforms work in different ways.


  Documentation is how you remove that confusion, and in the Docker world, deployment documentation is best done in the application manifest files. There’s a Docker Compose file in the exercises for this chapter that does exactly what I’ve laid out in the previous paragraph--setting every component to development mode, but enabling Prometheus metrics. Listing 18.3 shows the configuration parts of the Compose file.


  Listing 18.3 Documenting config settings in Docker Compose


   version: "3.7"  services:    accesslog:        image: diamol/ch18-access-log        environment:            NODE_CONFIG: '{"metrics": {"enabled":"true"}}'        secrets:            - source: access-log-config                target: /app/config-override/local.json     iotd:        image: diamol/ch18-image-of-the-day        environment:            CONFIG_SOURCE_PATH: "/config-override/application.properties"            IOTD_MANAGEMENT_ENDPOINTS_WEB_EXPOSURE_INCLUDE: "health,prometheus"        secrets:            - source: iotd-config                target: /config-override/application.properties    image-gallery:        image: diamol/ch18-image-gallery        environment:            IG_METRICS.ENABLED: "TRUE"        secrets:            - source: image-gallery-config                target: /app/config-override/config.toml   secrets:    access-log-config:        file: access-log/config/dev/local.json    iotd-config:        file: image-of-the-day/config/dev/application.properties    image-gallery-config:          file: image-gallery/config/dev/config.toml


  It’s a bit of a lengthy code listing, but I wanted to keep all that in one place so you can see how the patterns are the same, although the details are different. The Node.js app uses a JSON string in an environment variable to enable metrics, and it loads a JSON file as a config override.


  The Java application uses an environment variable that lists the management endpoints to include; adding Prometheus in there enables metrics collection. Then it loads a config override from a properties file, which is a series of key/value pairs.


  The Go application uses a simple "TRUE" string in an environment variable to enable metrics and loads the config override as a TOML file. I’m using the secret support in Docker Compose for the file sources, but the pattern is the same for volume mounts or config objects in a cluster.


  The user experience here is both good and bad. It’s good because you can easily load different environments by changing the source paths for the config overrides, and you can change individual settings with environment variables. It’s bad because you need to know the quirks of the application. The project team will likely evolve various Docker Compose overrides to cover different configurations, so editing config settings won’t be a common activity. Running the app will be far more common, and that’s as easy as starting any app with Compose.


   Try it Now Let’s run the app as a whole with a fixed set of configuration for all the components. Start by removing all running containers, and then run the app with Docker Compose:


   # clear all containers:  docker container rm -f $(docker container ls -aq)  cd ch18/exercises   # run the app with the config settings:  docker-compose up -d   # check all the config APIs:  curl http://localhost:8030/config  curl http://localhost:8020/config  curl http://localhost:8010/config


  You can browse to http: / / localhost:8010 and use the app in the normal way, and browse to the Prometheus endpoints to see the component metrics (on http:/ /localhost:8010/ metrics, http:/ /localhost:8030/metrics, and http:/ /localhost:8020/actuator/prometheus). But actually, all the confirmation that the app is configured correctly comes from those config APIs.


  You can see my output in figure 18.12. Every component loads the release cycle name from the default config file in the image, the environment name from the config override file, and the metrics setting from the environment variable.
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  Figure 18.12 Docker Compose can document app config settings and start the app with that configuration.


  That’s all we really need to cover regarding the patterns for building your applications to fetch configuration from the container environment. We’ll wrap up this chapter with some thoughts on where that multi-tiered configuration model can take you.


  18.5 Understanding why a flexible configuration model pays off


  I covered the CI/CD pipeline with Docker in chapters 11 and 15, and the core design of that pipeline is that you build one image, and your deployment process is about promoting that image through your environments up to production. Your apps will need to work slightly differently in each environment, and the way to support that while keeping the single-image approach is to use a multi-tiered configuration model.


  In practice you’ll use the release-level settings built into the container image, with the environment-level override file provided by the container platform in almost all cases, but the ability to set feature-level config with environment variables is a useful addition. It means you can react quickly to production issues--tuning down the level of logging if that’s a performance issue, or turning off a feature that has a security hole. It also means you can create a production-like environment on a dev machine to replicate a bug, using the production config override with secrets removed, and using environment variables instead.


  That ability to run the exact same image in any environment is the payback for investing time in your config model. Figure 18.13 shows the life cycle of an image from the CI/CD pipeline onwards.


  [image: ]


  Figure 18.13 The CI/CD pipeline produces one image, and you use the config model to change behavior.


  The work you do in producing this flexible configuration model will go a long way toward future-proofing your app. All container runtimes support loading files into the container from config objects or secrets and setting environment variables. The Docker images for this chapter’s image gallery app will work in the same way with Docker Compose, Docker Swarm, or Kubernetes. And it’s not just container runtimes--standard configuration files and environment variables are the models used in platform-as-a-service (PAAS) products and serverless functions too.


  18.6 Lab


  It can be tricky to dig into the configuration model for a new app and work out how to set override files and configure feature overrides, so you’re going to get some practice in this lab. You’ll be using the same image gallery app--in the lab folder for this chapter there’s a Docker Compose file with the app components specified but with no configuration. Your job is to set up every component to


  
    	Use volumes to load configuration override files.


    	Load the configuration overrides for the test environment.


    	Override the release cycle to be “20.01” instead of “19.12”.

  


  This should be fairly straightforward, but it will be useful to spend some time tweaking app config without making any changes to the apps. When you run the app with docker-compose up , you should be able to browse to http: / / localhost:8010 and the app should work. And you should be able to browse to all three config APIs and see that the release name is 20.01 and the environment is TEST.


  My solution is in the same folder in the docker-compose-solution.yml file, or you can check it on GitHub here: https://github.com/sixeyed/diamol/blob/master/ ch18/lab/README.md .


  
    19 Writing and managing application logs with Docker

  


  Logging is usually the most boring part of learning a new technology, but not so with Docker. The basic principle is simple: you need to make sure your application logs are being written to the standard output stream, because that’s where Docker looks for them. There are a couple of ways to achieve that, which we’ll cover in this chapter, and then the fun begins. Docker has a pluggable logging framework--you need to make sure your application logs are coming out from the container, and then Docker can send them to different places. That lets you build a powerful logging model, where the application logs from all your containers are sent to a central log store with a searchable UI on top of it--all using open source components, all running in containers.


  19.1 Welcome to stderr and stdout!


  A Docker image is the snapshot of a filesystem with all your application binaries and dependencies, and also some metadata telling Docker which process to start when you run a container from the image. That process runs in the foreground, so it’s like starting a shell session and then running a command. As long as the command is active, it has control of the terminal input and output. Commands write log entries to the standard output and standard error streams (called stdout and stderr), so in a terminal session you see the output in your window. In a container, Docker watches stdout and stderr and collects the output from the streams--that’s the source of the container logs.


   try it now You can see this easily if you run the timecheck app from chapter 15 in a container. The application itself runs in the foreground and writes log entries to stdout:


   # run the container in the foreground:  docker container run diamol/ch15-timecheck:3.0   # exit the container with Ctrl-C when you're done


  You’ll see some log lines in your terminal, and you’ll find you can’t enter any more commands--the container is running in the foreground, so it’s just like running the app itself in your terminal. Every few seconds the app writes another timestamp to stdout, so you’ll see another line in your session window. My output is in figure 19.1.
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  Figure 19.1 A container in the foreground takes over the terminal session until it exits.


  This is the standard operating model for containers--Docker starts a process inside the container and collects the output streams from that process as logs. All the apps we’ve used in this book follow this same pattern: the application process runs in the foreground--that could be a Go binary or the Java runtime--and the application itself is configured to write logs to stdout (or stderr; Docker treats both streams in the same way). Those application logs are written to the output stream by the runtime, and Docker collects them. Figure 19.2 shows the interaction between the application, the output streams, and Docker.
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  Figure 19.2 Docker watches the application process in the container and collects its output streams.


  Container logs are stored as JSON files, so the log entries remain available for detached containers which don’t have a terminal session, and for containers that have exited so there is no application process. Docker manages the JSON files for you and they have the same life cycle as the container--when the container is removed, the log files are removed too.


   try it now Run a container from the same image in the background as a detached container, and check the logs and then the path to the log file:


   # run a detached container  docker container run -d --name timecheck diamol/ch15-timecheck:3.0   # check the most recent log entry:  docker container logs --tail 1 timecheck   # stop the container and check the logs again:  docker container stop timecheck  docker container logs --tail 1 timecheck   # check where Docker stores the container log file:  docker container inspect --format='{{.LogPath}}' timecheck


  If you’re using Docker Desktop with Linux containers, remember that the Docker Engine is running inside a VM that Docker manages for you--you can see the path to the log file for the container, but you don’t have access to the VM, so you can’t read the file directly. If you’re running Docker CE on Linux or you’re using Windows containers, the path to the log file will be on your local machine, and you can open the file to see the raw contents. You can see my output (using Windows containers) in figure 19.3.
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  Figure 19.3 Docker stores container logs in a JSON file and manages the lifetime of that file.


  The log file is really just an implementation detail that you don’t usually need to worry about. The format is very simple; it contains a JSON object for each log entry with the string containing the log, the name of the stream where the log came from (stdout or stderr), and a timestamp. Listing 19.1 shows a sample of the logs for my timecheck container.


  Listing 19.1 The raw format for container logs is a simple JSON object


   {"log":"Environment: DEV; version: 3.0; time check: 09:42.56\r\n","stream":"stdout","time":"2019-12-19T09:42:56.814277Z"}  {"log":"Environment: DEV; version: 3.0; time check: 09:43.01\r\n","stream":"stdout","time":"2019-12-19T09:43:01.8162961Z"}


  The only time you will need to think about the JSON is if you have a container that produces lots of logs, and you want to keep all the log entries for a period but have them in a manageable file structure. Docker creates a single JSON log file for each container by default, and will let it grow to any size (until it fills up your disk). You can configure Docker to use rolling files instead, with a maximum size limit, so that when the log file fills up, Docker starts writing to a new file. You also configure how many log files to use, and when they’re all full, Docker starts overwriting the first file. You can set those options at the Docker Engine level so the changes apply to every container, or you can set them for individual containers. Configuring logging options for a specific container is a good way to get small, rotated log files for one application but keep all the logs for other containers.


   try it now Run the same app again, but this time specifying log options to use three rolling log files with a maximum of 5 KB each:


   # run with log options and an app setting to write lots of logs:  docker container run -d --name timecheck2 --log-opt max-size=5k --log-opt max-file=3 -e Timer__IntervalSeconds=1 diamol/ch15-timecheck:3.0   # wait for a few minutes   # check the logs:  docker container inspect --format='{{.LogPath}}' timecheck2


  You’ll see that the log path for the container is still just a single JSON file, but Docker is actually rotating log files using that name as the base but with a suffix for the log file number. If you’re running Windows containers or Docker CE on Linux, you can list the contents of the directory where the logs are kept and you’ll see those file suffixes. Mine are shown in figure 19.4.
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  Figure 19.4 Rolling log files let you keep a known amount of log data per container.


  There’s a collection and processing stage for the application logs coming from stdout, which is where you can configure what Docker does with the logs. In the last exercise we configured the log processing to control the JSON file structure, and there’s much more you can do with container logs. To take full advantage of that, you need to make sure every app is pushing logs out of the container, and in some cases that takes a bit more work.


  19.2 Relaying logs from other sinks to stdout


  Not every app fits nicely with the standard logging model; when you containerize some apps, Docker won’t see any logs in the output streams. Some applications run in the background as Windows Services or Linux daemons, so the container startup process isn’t actually the application process. Other apps might use an existing logging framework that writes to log files or other locations (called sinks in the logging world), like syslog in Linux or the Windows Event Log. Either way, there are no application logs coming from the container start process, so Docker doesn’t see any logs.


   Try it Now There’s a new version of the timecheck app for this chapter that writes logs to a file instead of stdout. When you run this version, there are no container logs, although the app logs are being stored in the container filesystem:


   # run a container from the new image:  docker container run -d --name timecheck3 diamol/ch19-timecheck:4.0   # check - there are no logs coming from stdout:  docker container logs timecheck3   # now connect to the running container, for Linux:  docker container exec -it timecheck3 sh   # OR windows containers:  docker container exec -it timecheck3 cmd   # and read the application log file:  cat /logs/timecheck.log


  You’ll see that there are no container logs, even though the application itself is writing lots of log entries. My output is in figure 19.5--I need to connect to the container and read the log file from the container filesystem to see the log entries.
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  Figure 19.5 If the app doesn’t write anything to the output streams, you won’t see any container logs.


  This happens because the app is using its own log sink--a file in this exercise--and Docker doesn’t know anything about that sink. Docker will only read logs from stdout; there’s no way to configure it to read from a different log sink inside the container.


  The pattern for dealing with apps like this is to run a second process in the container startup command, which reads the log entries from the sink that the application uses and writes them to stdout. That process could be a shell script or a simple utility app, and it is the final process in the start sequence, so Docker reads its output stream and the application logs get relayed as container logs. Figure 19.6 shows how that works.


  [image: ]


  Figure 19.6 You need to package a utility in your container image to relay logs from a file.


  This is not a perfect solution. Your utility process is running in the foreground, so it needs to be robust because if it fails, your container exits, even if the actual application is still working in the background. And the reverse is true: if the application fails but the log relay keeps running, your container stays up even though the app is no longer working. You need health checks in your image to prevent that from happening. And lastly, this is not an efficient use of disk, especially if your app writes a lot of logs--they’ll be filling up a file in the container filesystem and filling up a JSON file on the Docker host machine.


  Even so, it’s a useful pattern to know about. If your app runs in the foreground, and you can tweak your config to write logs to stdout instead, that’s a better approach. But if your app runs in the background, there’s no other option, and it’s better to accept the inefficiency and have your app behave like all other containers.


  There’s an update for the timecheck app in this chapter that adds this pattern, building a small utility app to watch the log file and relay the lines to stdout. Listing 19.2 shows the final stages of the multi-stage Dockerfile--there are different startup commands for Linux and Windows.


  Listing 19.2 Building and packaging a log-relay utility with your app


   # app image  FROM diamol/dotnet-runtime AS base  ...  WORKDIR /app  COPY --from=builder /out/ .  COPY --from=utility /out/ .   # windows  FROM base AS windows  CMD start /B dotnet TimeCheck.dll && dotnet Tail.dll /logs timecheck.log   # linux  FROM base AS linux  CMD dotnet TimeCheck.dll & dotnet Tail.dll /logs timecheck.log


  The two CMD instructions achieve the same thing, using different approaches for the two operating systems. First the .NET application process is started in the background, using the start command in Windows and suffixing the command with a single ampersand & in Linux. Then the .NET tail utility is started, configured to read the log file the application writes to. The tail utility just watches that file and relays each new line as it gets written, so the logs get surfaced to stdout and become container logs.


   Try it now Run a container from the new image, and verify that logs are coming from the container and that they still get written in the filesystem:


   # run a container with the tail utility process:  docker container run -d --name timecheck4 diamol/ch19-timecheck:5.0   # check the logs:  docker container logs timecheck4   # and connect to the container - on Linux:  docker container exec -it timecheck4 sh   # OR with Windows containers:  docker container exec -it timecheck4 cmd   # check the log file:  cat /logs/timecheck.log


  Now the logs are coming from the container. It’s a convoluted approach to get there, with an extra process running to relay the log file contents to stdout, but once the container is running, that’s all transparent. The downside to this approach is the extra processing power used by the log relay and the extra disk space for storing the logs twice. You can see my output in figure 19.7, which shows the log file is still there in the container filesystem.
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  Figure 19.7 A log relay utility gets the application logs out to Docker, but uses twice as much disk space.


  I use a custom utility to relay the log entries in this example, because I want the app to work across platforms. I could use the standard Linux tail command instead, but there’s no Windows equivalent. The custom utility approach is also more flexible, because it could read from any sink and relay to stdout. That should cover any scenario where your application logs are locked away somewhere in the container that Docker doesn’t see.


  When you have all your container images set up to write application logs as container logs, you can start to make use of Docker’s pluggable logging system and consolidate all the logs coming from all your containers.


  19.3 Collecting and forwarding container logs


  Way back in chapter 2 I talked about how Docker adds a consistent management layer over all your apps--it doesn’t matter what’s happening inside the container; you start, stop, and inspect everything in the same way. That’s especially useful with logs when you bring a consolidated logging system into your architecture, and we’ll walk through one of the most popular open source examples of that: Fluentd.


  Fluentd is a unified logging layer. It can ingest logs from lots of different sources, filter or enrich the log entries, and then forward them on to lots of different targets. It’s a project managed by the Cloud Native Computing Foundation (which also manages Kubernetes, Prometheus, and the container runtime from Docker, among other projects), and it’s a mature and hugely flexible system. You can run Fluentd in a container, and it will listen for log entries. Then you can run other containers that use Docker’s Fluentd logging driver instead of the standard JSON file, and those container logs will be sent to Fluentd.


   Try it now Fluentd uses a config file to process logs. Run a container with a simple configuration that will have Fluentd collect logs and echo them to stdout in the container. Then run the timecheck app with that container sending logs to Fluentd:


   cd ch19/exercises/fluentd   # run Fluentd publishing the standard port and using a config file:  docker container run -d -p 24224:24224 --name fluentd -v "$(pwd)/conf:/fluentd/etc" -e FLUENTD_CONF=stdout.conf diamol/fluentd   # now run a timecheck container set to use Docker's Fluentd log driver:  docker container run -d --log-driver=fluentd --name timecheck5 diamol/ch19-timecheck:5.0   # check the timecheck container logs:  docker container logs timecheck5   # and check the Fluentd container logs:  docker container logs --tail 1 fluentd


  You’ll see that you get an error when you try to check logs from the timecheck container--not all logging drivers let you see the log entries directly from the container. In this exercise they’re being collected by Fluentd, and this configuration writes the output to stdout, so you can see the timecheck container’s logs by looking at the logs from Fluentd. My output is in figure 19.8.
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  Figure 19.8 Fluentd collects logs from other containers, and it can store them or write to stdout.


  Fluentd adds its own metadata to each record when it stores logs, including the container ID and name. This is necessary because Fluentd becomes the central log collector for all your containers, and you need to be able to identify which log entries came from which application. Using stdout as a target for Fluentd is just a simple way to see how everything works. Typically you’d forward logs to a central data store. Elasticsearch is a very popular option--it’s a no-SQL document database that works well for logs. You can run Elasticsearch in a container for log storage and the companion app Kibana, which is a search UI, in another container. Figure 19.9 shows what the logging model looks like.
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  Figure 19.9 A centralized logging model sends all container logs to Fluentd for processing and storage.


  It looks like a complicated architecture, but as always with Docker, it’s very easy to specify all the parts of your logging setup in a Docker Compose file and spin up the whole stack with one command. When you have your logging infrastructure running in containers, you just need to use the Fluentd logging driver for any container where you want to opt in to centralized logging.


   Try it now Remove any running containers and start the Fluentd-Elasticsearch-Kibana logging containers. Then run a timecheck container using the Fluentd logging driver:


  docker container rm -f $(docker container ls -aq) cd ch19/exercises  # start the logging stack: docker-compose -f fluentd/docker-compose.yml up -d  docker container run -d --log-driver=fluentd diamol/ch19-timecheck:5.0


  Give Elasticsearch a couple of minutes to be ready, and then browse to Kibana at http:/ /localhost:5601. Click the Discover tab, and Kibana will ask for the name of the document collection to search against. Enter fluentd* as in figure 19.10.
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  Figure 19.10 Elasticsearch stores documents in collections called indexes--Fluentd uses its own index.


  In the next screen you need to set the field that contains the time filter--select @timestamp as in figure 19.11.
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  Figure 19.11 Fluentd has already saved data in Elasticsearch, so Kibana can see the field names.


  You can automate the Kibana setup, but I haven’t because if you’re new to the Elasticsearch stack, it’s worth stepping through it to see how the pieces fit together. Every log entry Fluentd collects is saved as a document in Elasticsearch, in a document collection that’s named fluentd-{date} . Kibana gives you a view over all those documents--in the default Discover tab you’ll see a bar chart showing how many documents are being created over time, and you can drill into the details for individual documents. In this exercise, each document is a log entry from the timecheck app. You can see the data in Kibana in figure 19.12.
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  Figure 19.12 The EFK stack in all its glory--container logs collected and stored for simple searching


  Kibana lets you search across all documents for a specific piece of text, or filter documents by date or another data attribute. It also has dashboard functionality similar to Grafana, which you saw in chapter 9, so you can build charts showing counts of logs per app, or counts of error logs. Elasticsearch is hugely scalable, so it’s suitable for large quantities of data in production, and when you start sending it all your container logs via Fluentd, you’ll soon find it’s a much more manageable approach than scrolling through log lines in the console.


   Try it now Run the image gallery app with each component configured to use the Fluentd logging driver:


   # from the cd ch19/exercises folder  docker-compose -f image-gallery/docker-compose.yml up -d


  Browse to http:/ /localhost:8010 to generate some traffic, and the containers will start writing logs. The Fluentd setup for the image gallery app adds a tag to each log, identifying the component that generated it, so log lines can easily be identified--more easily than using the container name or container ID. You can see my output in figure 19.13. I’m running the full image gallery application, but I’m filtering the logs in Kibana to only show the access-log component--the API that records when the app is accessed.
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  Figure 19.13 Logs are being collected in Elasticsearch for the image gallery and the timecheck container.


  It’s very easy to add a tag for Fluentd that shows up as the log_name field for filtering; it’s an option for the logging driver. You can use a fixed name or inject some useful identifiers--in this exercise I use gallery as the application prefix and then add the component name and image name for the container generating the logs. That’s a nice way to identify the application, component, and exact version running for each log line. Listing 19.3 shows the logging options in the Docker Compose file for the image gallery app.


  Listing 19.3 Using a tag to identify the source of log entries for Fluentd


   services:    accesslog:        image: diamol/ch18-access-log                  logging:            driver: "fluentd"            options:                tag: " gallery.access-log.{{.ImageName}}"     iotd:        image: diamol/ch18-image-of-the-day        logging:            driver: "fluentd"            options:                tag: "gallery.iotd.{{.ImageName}}"     image-gallery:        image: diamol/ch18-image-gallery        logging:            driver: "fluentd"            options:                tag: "gallery.image-gallery.{{.ImageName}}"  ...


  The model for centralized logging with a searchable data store and a user-friendly UI is one you should definitely consider when you’re getting containers ready for production. You’re not limited to using Fluentd--there are many other logging drivers for Docker, so you could use other popular tools like Graylog, or commercial tools like Splunk. Remember, you can set the default logging driver and options at the Engine level in the Docker config, but I think there’s value in doing it in the application manifests instead--it makes it clear which logging system you’re using in each environment.


  Fluentd is a good option if you don’t already have an established logging system. It’s easy to use and it scales from a single dev machine to a full production cluster, and you use it in the same way in every environment. You can also configure Fluentd to enrich the log data to make it easier to work with, and to filter logs and send them to different targets.


  19.4 Managing your log output and collection


  Logging is a delicate balance between capturing enough information to be useful in diagnosing problems and not storing huge quantities of data. Docker’s logging model gives you some additional flexibility to help with the balance, because you can produce container logs at a more verbose level than you expect to use, but filter them out before you store them. Then if you need to see more verbose logs, you can alter the filter configuration rather than your app configuration so the Fluentd containers get replaced rather than your app containers.


  You can configure this level of filtering in the Fluentd config file. The configuration from the last exercise sends all logs to Elasticsearch, but the updated configuration in listing 19.4 filters out logs from the more verbose access-log component. Those logs go to stdout, and the rest of the app logs go to Elasticsearch.


  Listing 19.4 Sending log entries to different targets based on the tag of the record


   <match gallery.access-log.**>    @type copy    <store>        @type stdout    </store>  </match>  <match gallery.**>    @type copy    <store>        @type elasticsearch  ...


  The match blocks tell Fluentd what to do with log records, and the filter parameter uses the tag that is set in the logging driver options. When you run this updated configuration, the access-log entries will match the first match block, because the tag prefix is gallery.access-log . Those records will stop surfacing in Elasticsearch and will only be available by reading the logs of the Fluentd container. The updated config file also enriches all log entries, splitting the tag into separate fields for app name, service name, and image name, which makes filtering in Kibana much easier.


   Try it now Update the Fluentd configuration by deploying a Docker Compose override file that specifies a new config file, and update the image gallery application to generate more verbose logs:


   # update the Fluentd config:  docker-compose -f fluentd/docker-compose.yml -f fluentd/override-gallery-filtered.yml up -d   # update the application logging config:  docker-compose -f image-gallery/docker-compose.yml -f image-gallery/override-logging.yml up -d


  You can check the contents of those override files, and you’ll see they just specify config settings for the applications; all the images are the same. Now when you use the app at http:/ /localhost:8010, the access-log entries are still generated, but they get filtered out by Fluentd so you won’t see any new logs in Kibana. You will see the logs from the other components, and these are enriched with the new metadata fields. You can see that in my output in figure 19.14.
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  Figure 19.14 Fluentd uses the tag in the log to filter out records and to generate new fields.


  The access-log entries are still available because they’re writing to stdout inside the Fluentd container. You can see them as container logs--but from the Fluentd container, not the access-log container.


   Try it now Check the Fluentd container logs to be sure the records are still available:


   docker container logs --tail 1 fluentd_fluentd_1


  You can see my output in figure 19.15. The access-log entry has been sent to a different target, but it has still been through the same processing to enrich the record with the app, service, and image name:
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  Figure 19.15 These logs are filtered so they’re not stored in Elasticsearch but are echoed to stdout.


  This is a nice way of separating core application logs from nice-to-have logs. You wouldn’t use stdout in production, but you might have different outputs for different classes of logs--performance critical components could send log entries to Kafka, user-facing logs could go to Elasticsearch, and the rest could be filed in Amazon S3 cloud storage. Those are all supported log stores in Fluentd.


  There’s one final exercise for this chapter to reset the logging and put access-log entries back into Elasticsearch. This approximates a situation in production where you find a system problem and you want to increase the logs to see what’s happening. With the logging setup we have, the logs are already being written by the app. We can surface them just by changing the Fluentd configuration file.


   Try it now Deploy a new Fluentd configuration that sends access-log records to Elasticsearch:


   docker-compose -f fluentd/docker-compose.yml -f fluentd/override-gallery.yml up -d


  This deployment uses a configuration file that removes the match block for access-log records, so all the gallery component logs get stored in Elasticsearch. When you refresh the image gallery page in your browser, the logs will get collected and stored. You can see my output in figure 19.16, where the most recent logs are shown from both the API and the access-log components.
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  Figure 19.16 A change to the Fluentd config adds logs back into Elasticsearch without any app changes.


  You do need to be aware that there’s the potential for lost log entries with this approach. During the deployment, containers could be sending logs when there’s no Fluentd container running to collect them. Docker continues gracefully in that situation, and your app containers keep running, but the log entries don’t get buffered so they’ll be lost. It’s unlikely to be a problem in a clustered production environment, but even if it did happen, it’s preferable to restarting an app container with increased logging configuration--not least because the new container may not have the same issue as the old container, so your new logs won’t tell you anything interesting.


  19.5 Understanding the container logging model


  The logging approach in Docker is super-flexible, but only when you make your application logs visible as container logs. You can do that directly by having your app write logs to stdout, or indirectly by using a relay utility in your container that copies log entries to stdout. You need to spend some time making sure all your application components write container logs, because once you’ve got that working, you can process the logs however you like.


  We used the EFK stack in this chapter--Elasticsearch, Fluentd, and Kibana--and you’ve seen how easy it is to pull all your container logs into a centralized database with a user-friendly search UI. All those technologies are swappable, but Fluentd is one of the most used because it’s so simple and so powerful. That stack runs nicely in single-machine environments, and it scales for production environments too. Figure 19.17 shows how a clustered environment runs a Fluentd container on each node, where the Fluentd container collects logs from the other containers on that node and sends them to an Elasticsearch cluster--also running in containers.
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  Figure 19.17 The EFK stack works in production with clustered storage and multiple Fluentd instances.


  I’ll finish with a note of caution before we move on to the lab. Some teams don’t like all the processing layers in the container logging model; they prefer to write application logs directly to the final store, so instead of writing to stdout and having Fluentd send data to Elasticsearch, the application writes directly to Elasticsearch. I really don’t like that approach. You save some processing time and network traffic in exchange for a complete lack of flexibility. You’ve hardcoded the logging stack into all your applications, and if you want to switch to Graylog or Splunk, you need to go and rework your apps. I always prefer to keep it simple and flexible--write your application logs to stdout and make use of the platform to collect, enrich, filter, and store the data.


  19.6 Lab


  I didn’t focus too much on configuring Fluentd in this chapter, but it’s worth getting some experience setting that up, so I’m going to ask you to do it in the lab. In the lab folder for this chapter there’s a Docker Compose file for the random number app and a Docker Compose file for the EFK stack. The app containers aren’t configured to use Fluentd, and the Fluentd setup doesn’t do any enrichment, so you have three tasks:


  
    	Extend the Compose file for the numbers app so all the components use the Fluentd logging driver, and set a tag with the app name, service name, and image.


    	Extend the Fluentd configuration file, elasticsearch.conf , to split the tag into app name, service name, and image name fields for all records from the numbers app.


    	Add a failsafe match block to the Fluentd configuration so any records that aren’t from the numbers app get forwarded to stdout.

  


  No hints for this one, because this is a case of working through the config setup for the image gallery app and seeing which pieces you need to add for the numbers app. As always, my solution is up on GitHub for you to check: https://github.com/sixeyed/ diamol/blob/master/ch19/lab/README.md .


  
    20 Controlling HTTP traffic to containers with a reverse proxy

  


  Docker takes care of routing external traffic into your containers, but you can only have one container listening on a network port. It’s fine to use any old ports in your non-production environments--in some chapters of this book we’ve used ten different ports to keep applications separate--but you can’t do that when you go live. You’ll want lots of applications running on a single cluster, but you need them all to be accessible on the standard HTTP and HTTPS ports, 80 and 443.


  That’s where a reverse proxy comes in. It’s a critical piece in the architecture of a containerized environment, and in this chapter you’ll learn all about the features it provides and the patterns it enables. We’ll use two of the most popular technologies in this space--Nginx (pronounced “engine x”) and Traefik--running in containers, of course.


  20.1 What is a reverse proxy?


  A proxy is a network component that handles network traffic on behalf of some other component. You might have a proxy in your corporate network that intercepts your browser requests and decides whether you’re allowed to access certain sites, logs all your activity, and caches the responses so other users of the same site get a faster experience. A reverse proxy does something similar, but the other way around. You run a reverse proxy as the gateway to several web applications; all traffic goes to the reverse proxy, and it decides which app to get the content from. It can cache responses and mutate them before sending them back to the client. Figure 20.1 shows what a reverse proxy looks like in containers.
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  Figure 20.1 A reverse proxy is the gateway to your apps; application containers are not publicly available.


  A reverse proxy is the only container with published ports--it receives all incoming requests and fetches the responses from other containers. That means all your application containers become internal components, which can make it easier to scale, update, and secure them. Reverse proxies are not a new technology, but they’ve shifted left with the container revolution. They used to sit in production and be managed by the ops team, without developers even knowing there was a proxy; now they run in lightweight containers, and you can have the same proxy configuration in every environment.


   Try it Now Nginx has been a popular reverse proxy choice for years--it powers over 30% of the internet. It’s a very lightweight, fast, and powerful HTTP server that can serve its own content as well as proxying other servers:


   # create a network for this chapter's apps - for Linux containers:  docker network create ch20   # OR for Windows containers:  docker network create --driver=nat ch20  cd ch20/exercises   # run Nginx with a bind mount to a local configuration folder - on  # Linux:  docker-compose -f nginx/docker-compose.yml -f nginx/override-linux.yml up -d   # OR on Windows containers:  docker-compose -f nginx/docker-compose.yml -f nginx/override-windows.yml up -d   # browse to http://localhost


  Nginx uses a configuration file for each of the websites it serves. This container has a bind mount to the local folder called sites-enabled , but there are no config files in there yet. Nginx has a default site that is a simple HTML page--you can see my output in figure 20.2.
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  Figure 20.2 Nginx is an HTTP server--it can serve static content and run as a reverse proxy


  We’re not using Nginx as a reverse proxy yet, but we can set that up by adding a configuration file for another website. When you host multiple apps on the same port, you need a way to differentiate them, and that’s usually with the domain name of the website. When you browse to a website like https://blog.sixeyed.com , the browser includes an HTTP header in the client request: Host=blog.sixeyed.com . Nginx uses that host header to find the configuration file for the site to serve. On your local machine you can add domains to your hosts file, which is a simple DNS lookup, to serve different apps from your Nginx container.


   Try it Now We’ll run the simple who-am-I web app in a container without publishing any ports and make it available through Nginx on the host domain whoami.local:


   # add the who-am-I domain to local hosts file on Mac or Linux:  echo $'\n127.0.0.1 whoami.local' | sudo tee -a /etc/hosts   # OR on Windows:  Add-Content -Value "127.0.0.1 whoami.local" -Path /windows/system32/drivers/etc/hosts   # start the who-am-I container:  docker-compose -f whoami/docker-compose.yml up -d   # copy the app config to the Nginx configuration folder:  cp ./nginx/sites-available/whoami.local ./nginx/sites-enabled/   # and restart Nginx to load the config:  docker-compose -f nginx/docker-compose.yml restart nginx   # browse to http://whoami.local


  When you browse to http:/ /whoami.local, the entry in your hosts file directs you to your local machine, and the Nginx container receives the request. It uses the HTTP header Host=whoami.local to find the right website configuration, and then it loads the content from the who-am-I container and sends it back. You’ll see in figure 20.3 that the response is the same as if the response had come directly from the who-am-I application container.
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  Figure 20.3 The reverse proxy in action, loading content from an application container behind the scenes


  Nginx is a very powerful server with a huge feature set, but the basic configuration file to proxy a web application is very simple. You need to specify the server’s domain name and the location of the content, which can be an internal DNS name. The Nginx container will fetch content from the app container over the Docker network using the container name for DNS. Listing 20.1 shows the full configuration file for the who-am-I site.


  Listing 20.1 Nginx proxy configuration for the who-am-I website


   server {        server_name whoami.local; # the domain host name        location / {                proxy_pass http://whoami; # source address for content                proxy_set_header Host $host; # set the host for the source                add_header X-Host $hostname; # add proxy name in response        }  }


  Reverse proxies are not just for websites--they’re suitable for any HTTP content, so REST APIs are good targets, and there may be support for other types of traffic too (plain TCP/IP or gRPC). This simple configuration makes Nginx work like a passthrough, so for every request it receives, it will call the source container (called the “upstream”) and send the response back to the client (called the “downstream”). If the upstream app fails, Nginx sends the failure response back to the downstream client.


   Try it now Add another domain to your hosts file, and run the API for the random-number app, proxying it with Nginx. This is the API that fails after a few calls, and you’ll see a 500 response from Nginx after you refresh:


   # add the API domain to local hosts file on Mac or Linux:  echo $'\n127.0.0.1 api.numbers.local' | sudo tee -a /etc/hosts  # OR on Windows:  Add-Content -Value "127.0.0.1 api.numbers.local" -Path /windows/system32/drivers/etc/hosts  # run the API:  docker-compose -f numbers/docker-compose.yml up -d  # copy the site config file and restart Nginx:  cp ./nginx/sites-available/api.numbers.local ./nginx/sites-enabled/  docker-compose -f nginx/docker-compose.yml restart nginx  # browse to http://api.numbers.local/rng & refresh until it breaks


  You’ll see from this exercise that the user experience for an app is identical whether they’re accessing it directly or through Nginx. You have two apps hosted from Nginx, so it is managing the routing to upstream containers, but it doesn’t manipulate the traffic, so the response bodies are exactly as they’re sent by the app container. Figure 20.4 shows a failure response from the API coming back through the reverse proxy.
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  Figure 20.4 In a simple proxy configuration, Nginx sends the response from the app--even if it’s a failure.


  Reverse proxies can do much more than this. All your application traffic comes into the proxy, so it can be a central place for configuration, and you can keep a lot of infrastructure-level concerns out of your application containers.


  20.2 Handling routing and SSL in the reverse proxy


  The process we’ve been following to add new apps to Nginx is to start the app container, copy in the config file, and restart Nginx. That order is important because when Nginx starts, it reads all the server configuration and checks that it can access all the upstreams. If any are unavailable, it exits; if they are all available, it builds an internal routing list, linking host names to IP addresses. That’s the first infrastructure concern that the proxy can take care of--it will load-balance requests if there are multiple upstream containers.


   Try it Now We’ll run the image gallery app now, proxying the main web app through Nginx. We can scale up the web component, and Nginx will load-balance requests between the containers:


   # add the domain to the local hosts file on Mac or Linux:  echo $'\n127.0.0.1 image-gallery.local' | sudo tee -a /etc/hosts   # OR on Windows:  Add-Content -Value "127.0.0.1 image-gallery.local" -Path /windows/system32/drivers/etc/hosts   # run the app with 3 web containers:  docker-compose -f ./image-gallery/docker-compose.yml up -d --scale image-gallery=3   # add the config file and restart Nginx:  cp ./nginx/sites-available/image-gallery.local ./nginx/sites-enabled/  docker-compose -f ./nginx/docker-compose.yml restart nginx   # call the site a few times:  curl -i --head http://image-gallery.local


  The Nginx configuration for the image gallery website is the same proxy setup as listing 20.1, using a different host name and upstream DNS name. It also adds an extra response header, X-Upstream , which shows the IP address of the container that Nginx fetched the response from. You see in figure 20.5 that the upstream IP address is in the 172.20 range for me, which is the application container’s IP address on the Docker network. If you repeat the curl call a few times, you’ll see different IP addresses as Nginx load-balances between the web containers.


  Now you can run your app with load-balancing on a single Docker machine--you don’t need to switch to Swarm mode or spin up a Kubernetes cluster to test your app in a production-like configuration. There are no code changes or config changes to the app either; it’s all handled by the proxy.
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  Figure 20.5 Nginx takes care of load-balancing so you can run app containers at scale.


  So far we’ve used Nginx to route between containers using different host names, which is how you run multiple apps in one environment. You can also configure fine-grained paths for Nginx routing, so if you want to selectively expose parts of your application, you can do that within the same domain name.


   Try it now The image gallery app uses a REST API, and you can configure Nginx to proxy the API using an HTTP request path. The API appears to be part of the same application as the web UI, although it’s actually coming from a separate container:


   # remove the original image-gallery configuration:  rm ./nginx/sites-enabled/image-gallery.local   # copy in the new one, which adds the API, and restart Nginx:  cp ./nginx/sites-available/image-gallery-2.local ./nginx/sites-enabled/image-gallery.local  docker-compose -f ./nginx/docker-compose.yml restart nginx  curl -i http://image-gallery.local/api/image


  This is a very nice pattern for selectively exposing parts of your application stack, assembling one app from many components under the same domain name. Figure 20.6 shows my output--the response is coming from the API container, but the client is making a request on the same image-gallery.local domain that it uses for the web UI.
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  Figure 20.6 Nginx can route requests to different containers, based on the domain name or request path


  Load-balancing and routing let you get close to the production environment on a single developer or test machine, and one more infrastructure component that the reverse proxy takes care of is SSL termination. If your apps are published as HTTPS sites (which they should be), the configuration and certificates need to live somewhere, and it’s far better to put that in your central proxy rather than in every application component. Nginx can be configured with real certificates that you get from a domain provider or a service like Let’s Encrypt, but for non-production environments you can create your own self-signed certs and use them.


   Try it now Generate an SSL certificate for the image gallery app, and proxy it through Nginx, using the certificates to serve it as an HTTPS site:


   # generate a self-signed certificate for the app - on Linux:  docker container run -v "$(pwd)/nginx/certs:/certs" -e HOST_NAME=image-gallery.local diamol/cert-generator   # OR Windows containers:  docker container run -v "$(pwd)/nginx/certs:C:\certs" -e HOST_NAME=image-gallery.local diamol/cert-generator   # remove the existing image-gallery configuration:  rm ./nginx/sites-enabled/image-gallery.local   # copy in the new site configuration with SSL:  cp ./nginx/sites-available/image-gallery-3.local ./nginx/sites-enabled/image-gallery.local   # and restart Nginx:  docker-compose -f nginx/docker-compose.yml restart nginx  #browse http://image-gallery.local


  There’s quite a bit going on in this exercise. The first container you run uses the OpenSSL tool to generate self-signed certificates, and it copies them to your local certs directory, which is also bind-mounted into the Nginx container. Then you replace the image gallery configuration file with one that uses those certs and restart Nginx. When you browse to the site using HTTP, you get redirected to HTTPS, and you’ll get a browser warning because the self-signed certificate isn’t trusted. In figure 20.7 you can see the warning from Firefox--I could click the Advanced button to ignore the warning and go on to view the site.


  [image: ]


  Figure 20.7 Nginx redirects HTTP requests to HTTPS and serves them with an SSL certificate.


  Nginx lets you configure all sorts of details for your SSL setup, down to the protocols and ciphers you support (you can check your site and get a list of best practices to apply from www.ssllabs.com ). I won’t go into all that detail, but the core part of the HTTPS setup is in listing 20.2--you can see the HTTP site listens on port 80 and returns an HTTP 301 response, which redirects the client to the HTTPS site listening on port 443.


  Listing 20.2 Serving a site on HTTPS with an HTTP redirect


   server {        server_name image-gallery.local;        listen 80;        return 301 https://$server_name$request_uri;  }   server {        server_name image-gallery.local;        listen 443 ssl;        ssl_certificate /etc/nginx/certs/server-cert.pem;        ssl_certificate_key /etc/nginx/certs/server-key.pem;        ssl_protocols TLSv1 TLSv1.1 TLSv1.2;  ...


  The configuration loads the certificate and key files from the container’s filesystem. Each certificate and key pair is only good for one domain name, so you’ll have one set of files for each application you use (although you can generate a certificate that covers multiple subdomains). These are confidential files, so in production you would use secrets in your cluster to store them. Keeping HTTPS out of your app containers means less configuration and certificate management--it’s an infrastructure concern that now lives in the proxy--and developers can spin up simple HTTP versions for testing.


  There’s one last feature of Nginx we’ll cover here, which can be a huge performance boost: caching responses from upstream components, which are your own web applications.


  20.3 Improving performance and reliability with the proxy


  Nginx is a very high performance HTTP server. You can use it to serve static HTML for simple sites or single-page applications, and one container can comfortably handle thousands of requests per second. You can use that performance to improve your own applications too--Nginx can work as a caching proxy, so when it fetches content from your application (called the “upstream”), it stores a copy in its local disk or memory store. Subsequent requests for the same content get served directly from the proxy, and the upstream is not used. Figure 20.8 shows how the cache works.
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  Figure 20.8 Using Nginx as a caching proxy reduces the workload for application containers.


  There are two benefits to this. First, you reduce the time taken to serve the request, because whatever the application platform does to generate the response is bound to take longer than Nginx takes to read the cached response from memory. Second, you reduce the total amount of traffic to your application, so you should be able to handle more users from the same infrastructure. You can only cache content that is not user-specific, but that could be as simple as bypassing the cache if an authentication cookie is present. Generic sites like the image gallery app can be completely served by the cache.


   Try it Now Use Nginx as a caching proxy for the image gallery app. This configuration sets both the web app and the API to use the Nginx cache:


   # remove the current site config:  rm ./nginx/sites-enabled/image-gallery.local   # copy in the caching config and restart Nginx:  cp ./nginx/sites-available/image-gallery-4.local ./nginx/sites-enabled/image-gallery.local  docker-compose -f ./nginx/docker-compose.yml restart nginx   # make some requests to the site:  curl -i --head --insecure https://image-gallery.local  curl -i --head --insecure https://image-gallery.local


  The new proxy configuration sets a custom response header, X-Cache , that Nginx populates with the result of the cache lookup. If there’s no match in the cache--which will be the case for the first call you make to the site--the response header is X-Cache: MISS , meaning there was no matching response in the cache, and there’s an X-Upstream header with the IP address of the container where Nginx fetched the content. When you repeat the call, the response does come from the cache, so you’ll see X-Cache: HIT and no X-Upstream header, because Nginx didn’t use an upstream. My output is in figure 20.9.
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  Figure 20.9 If the proxy has the response in its cache, it sends it without using the upstream.


  Nginx lets you fine-tune how you use the cache. In the latest configuration I’ve set the API to use a short-lived cache, so responses are stale after one minute and then Nginx fetches the latest content from the API container. That’s a good setup for content that needs to be fresh but where you have a very high load--if your API gets 5,000 requests per second, even a one-minute cache saves 300,000 requests from reaching your API. The web app is set to use a longer cache, so responses stay fresh for six hours. Listing 20.3 shows the cache configuration.


  Listing 20.3 Nginx as a caching reverse proxy for API and web content


         ...        location = /api/image {                proxy_pass http://iotd/image;                proxy_set_header Host $host;                proxy_cache SHORT;                proxy_cache_valid 200 1m;                ...        }         location / {                proxy_pass http://image-gallery;                proxy_set_header Host $host;                proxy_cache LONG;                proxy_cache_valid 200 6h;                proxy_cache_use_stale error timeout invalid_header updating                                                              http_500 http_502 http_503 http_504;                ...          }


  The caches, named LONG and SHORT , are defined in the core Nginx configuration in the diamol/nginx image. The cache specs set how much memory and disk to use for responses, and the eviction time for stale items.


  I don’t want to dig into Nginx configuration too deeply, but there’s one very useful feature you can use to improve app reliability, which is defined for the web app in the proxy_cache_use_stale setting. That tells Nginx that it can use cached responses even when they’re stale if the upstream is not available. Serving content from stale items in the cache means your app stays online (although it may not be fully functional) even if the application containers are down. This is a very useful backup for working around transient failures in your app, or application rollouts that need to be rolled back. You need to think carefully about the paths that can be served successfully from the cache, but in a nice simple demo app you can serve the whole thing.


   Try it now Make a couple of calls to the image gallery app and API so Nginx saves those responses in its cache. Then kill the containers and try requesting the content again:


   # call the site and the API:  curl -s --insecure https://image-gallery.local  curl -s --insecure https://image-gallery.local/api/image   # remove all the web containers:  docker container rm -f $(docker container ls -f name=image-gallery_image-gallery_* -q)   # try the web app again:  curl -i --head --insecure https://image-gallery.local   # remove the API container:  docker container rm -f image-gallery_iotd_1   # try the API again:  curl -i --head --insecure https://image-gallery.local/api/image


  You’ll see the different cache configurations in action here. The web cache is set to expire after six hours, so even when there are no web containers available, the content keeps getting served from Nginx’s cache. The API response cache expires after one minute, and it’s not set to use the stale cache, so you’ll get an HTTP 502 error from Nginx, meaning it was unable to reach the upstream component. My output is in figure 20.10.
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  Figure 20.10 Nginx caching can be fine-tuned to keep content fresh or to add reliability to your app.


  That’s as far as we’ll go with exercises for Nginx. It’s a very capable reverse proxy, and there’s plenty more you can do with it--like enabling GZip compression for HTTP responses and adding client cache headers--which can improve end-user performance and reduce the load on your app containers. It’s a technology that existed before containers, so it doesn’t actually integrate with the container platform; it just works at the network level looking up IP addresses for DNS names, which is where Docker provides the container IP address. It works well, but you need to maintain a configuration file for each app and reload Nginx whenever the configuration changes.


  We’ll finish the chapter by looking at a modern alternative that’s container-aware and integrates nicely with Docker.


  20.4 Using a cloud-native reverse proxy


  Back in chapter 11 we built a CI pipeline using Jenkins, running in a container. That container connected to the Docker Engine it was running on, so it could build and push images. Connecting a container to the Docker Engine also lets applications query the Docker API to learn about other containers, and that’s exactly what powers the cloud-native reverse proxy Traefik (approximately pronounced “traffic”). There’s no static configuration file for each app you want to make available in the proxy; instead, you add labels to your containers, and Traefik uses those labels to build its own configuration and routing maps.


  Dynamic configuration is one of the major benefits of a container-aware proxy like Traefik. You don’t need to start your upstream apps before you run Traefik because it watches for new containers while it’s running. You don’t have to restart Traefik or reload configuration to make a change to your application setup--that’s all part of your application deployment. Traefik has its own API and web UI that shows the rules, so you can run Traefik without any other containers and then deploy an application and see how the config gets built.


   Try it now Start by removing all the existing containers; then run Traefik and check the UI to get a feel for how Traefik manages components:


   docker container rm -f $(docker container ls -aq)   # start Traefik - connecting to a Linux Docker Engine:  docker-compose -f traefik/docker-compose.yml -f traefik/override-linux.yml up -d   # OR using Windows containers:  docker-compose -f traefik/docker-compose.yml -f traefik/override-windows.yml up -d   # browse to http://localhost:8080


  There are different override files for Linux and Windows because they use different private channels for the container to connect to the Docker Engine. Other than that, the behavior of Traefik is exactly the same on all platforms. The dashboard is your view over the applications that Traefik is proxying and how each is configured. You can see the resources Traefik uses to configure proxies in figure 20.11.
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  Figure 20.11 The Traefik dashboard shows you the configuration for all the apps being proxied.


  Traefik is very widely used, and it has a similar operational model to Nginx--there’s a free, open source product that is published as an official image in Docker Hub, and there’s a commercial variant if you want to run with support. If you’re new to reverse proxies, Nginx and Traefik are the two options I’d recommend; it will become a major part of your infrastructure, so you should look to spend some time comparing the two. Let’s dig a little bit into how Traefik works:


  
    	Entrypoints --These are the ports Traefik listens on for external traffic, so these map to the published ports for the container. I’m using 80 and 443 for HTTP and HTTPS, and 8080 for the Traefik dashboard.


    	Routers --These are the rules for matching an incoming request to a target container. HTTP routers have rules like host name and path to identify client requests.


    	Services --These are the upstream components--the application containers that actually serve the content to Traefik so it can pass the response back to the client.


    	Middlewares --These are components that can modify requests from a router before they get sent to the service. You can use middleware components to change the request path or headers, or even to enforce authentication.

  


  The simplest configuration just needs a router set up with rules to match client requests to the service that the router is attached to.


   Try it Now Deploy the who-am-I app with an updated Compose definition that includes labels to enable routing through Traefik:


   # deploy the app with Traefik labels in the override file:  docker-compose -f whoami/docker-compose.yml -f whoami/override-traefik.yml up -d   # browse to the Traefik configuration for the router:   # http://localhost:8080/dashboard/#/http/routers/whoami@docker   # and check the routing:  curl -i http://whoami.local


  This is a very simple configuration--the route just links the entrypoint port to the upstream service, which is the who-am-I container. You can see in figure 20.12 that Traefik has built the configuration for the router, linking the host domain whoami.local to the whoami service.
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  Figure 20.12 Traefik uses the Docker API to find containers and labels, using them to build configuration.


  That’s all done by applying two labels on the container: one to enable Traefik for the app, and the other to specify the host name to match on. Listing 20.4 shows those labels in the override Compose file.


  Listing 20.4 Configuring Traefik by adding labels to application containers


   services:    whoami:        labels:            - "traefik.enable=true"              - "traefik.http.routers.whoami.rule=Host(`whoami.local`)"


  Traefik supports some very sophisticated routing options. You can match by host name and path, or a path prefix, and then use a middleware component to strip prefixes. That sounds complicated, but it’s just what we need for the image gallery API, so we can expose it as a path in the main image gallery domain. We can configure Traefik to listen for incoming requests with the “api” path prefix, and then strip the prefix from the request URL before it calls the service, because the service itself doesn’t use that prefix.


   Try it now The image gallery app just needs an override file with labels specified to enable Traefik support. Deploy the app, and Traefik will add the configuration to its routing rules:


   # start the app with the new Traefik labels:  docker-compose -f image-gallery/docker-compose.yml -f image-gallery/override-traefik.yml up -d   # check the web application:  curl --head http://image-gallery.local   # and the API:  curl -i http://image-gallery.local/api/image


  You’ll see in the output that you get a correct response from the API call--Traefik receives an external request on http:/ /image-gallery.local/api/image and uses the router and middleware configuration to make an internal call to the container at http:/ /iotd/image. The configuration for that is slightly cryptic. You define the router and then the middleware component, and then attach the middleware to the router--it’s in the file image-gallery/override-traefik.yml if you want to check it out.


  That complexity is all transparent to the consumer. You can see in figure 20.13 that the response looks like it’s coming direct from the API.
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  Figure 20.13 Routing rules let you present a multi-container app at a single domain.


  Reverse proxies don’t all support the same feature set. Traefik doesn’t have a cache (as of version 2.1), so if you need a caching proxy, Nginx is the way to go. But when it comes to SSL, Traefik has much better support--it integrates with certificate providers out of the box, so you can have it automatically connect to Let’s Encrypt and update certs for you. Or you can use the default self-signed certificate provider and add SSL to your sites in non-production environments without any cert management.


   Try it now Adding SSL support to the image gallery app and API needs a more complex Traefik setup. It needs to listen on the HTTPS entry point as well as HTTP, but redirect HTTP calls to HTTPS. It’s all still done with labels, so the deployment is just an application update:


   # run the app with Traefik labels for HTTPS:  docker-compose -f image-gallery/docker-compose.yml -f image-gallery/override-traefik-ssl.yml up -d   # check the website using HTTPS:  curl --head --insecure https://image-gallery.local   # and the API:  curl --insecure https://image-gallery.local/api/image


  If you browse to the site or the API, you’ll see the same warning message in the browser that we had using SSL with Nginx--the certificate isn’t trusted by a known certificate authority. But this time we didn’t need to create our own certificate and carefully manage the certificate and key files--Traefik did it all. You can see my output in figure 20.14. Using curl with the insecure flag tells it to carry on even though the cert is untrusted.
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  Figure 20.14 Using Traefik for HTTPS--it can generate certificates or fetch them from third-party providers


  Routing, load-balancing, and SSL termination are the main features of a reverse proxy, and Traefik supports them all with dynamic configuration through container labels. If you’re evaluating it against Nginx, you need to remember that Traefik doesn’t give you a cache--that’s a much-requested feature that may come into Traefik in a later release.


  There’s one last feature we’ll try which is easy in Traefik and much harder in Nginx: sticky sessions. Modern apps are built to have as many stateless components as possible--it’s important when you’re running at scale that client requests can be routed to any container so you benefit from load-balancing and see immediate results when you scale up. Old apps tend not to be built from stateless components, and you may find when you migrate those apps to run in containers that you want the user to be routed to the same container each time. That’s called a sticky session, and you can enable that in Traefik with a setting for the service.


   Try it now The whoami app is an easy example of sticky sessions. You can scale up the current deployment and make repeated calls--they’ll be load-balanced between the containers by Traefik. Deploy a new version with sticky sessions, and all your requests will be handled by the same container:


   # run the who-am-I app with multiple containers:  docker-compose -f whoami/docker-compose.yml -f whoami/override-traefik.yml up -d --scale whoami=3   # check that requests are load-balanced between containers:  curl -c c.txt -b c.txt http://whoami.local  curl -c c.txt -b c.txt http://whoami.local   # now deploy the same app with sticky session support:  docker-compose -f whoami/docker-compose.yml -f whoami/override-traefik-sticky.yml up -d --scale whoami=3   # and check that requests are served by the same container:  curl -c c.txt -b c.txt http://whoami.local  curl -c c.txt -b c.txt http://whoami.local


  With sticky sessions enabled, your requests get served by the same container each time because Traefik sets a cookie identifying which container it should use for that client (you’ll see the same behavior with the browser too). If you’re interested, you can examine the cookies in your browser session or in the c.txt file, and you’ll see Traefik puts the container’s IP address in that cookie. The next time you make a call, it uses the IP address to access the same container. My output is in figure 20.15.
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  Figure 20.15 Enabling sticky sessions in Traefik--it uses cookies to send the client to the same container.


  Sticky sessions are one of the major asks from teams moving old apps to containers, and Traefik makes it pretty easy. It’s not quite the same as a sticky session for a physical server or VM, because containers are replaced more frequently, so clients could be stuck to a container that no longer exists. If the cookie directs Traefik to an unavailable container, it will pick another one, so the user will see a response, but their session will have ended.


  20.5 Understanding the patterns a reverse proxy enables


  A reverse proxy is pretty much essential when you start running many containerized apps in production. We’ve covered some of the more advanced features in this chapter--SSL, caching, and sticky sessions--but even without those you’ll find you need a reverse proxy sooner or later. There are three major patterns that a reverse proxy enables, and we’ll finish up by walking through them.


  The first is hosting several web applications on the standard HTTP and HTTPS ports, using the host name in the client request to fetch the correct content, as in figure 20.16.
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  Figure 20.16 Using a reverse proxy to host many applications with different domain names in one cluster


  The second is for microservice architectures, where a single application runs across multiple containers. You can use a reverse proxy to selectively expose individual microservices, routed by HTTP request path. Externally your app has a single domain, but different paths are served by different containers. Figure 20.17 shows this pattern.
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  Figure 20.17 Microservices exposed by the reverse proxy are part of the same application domain.


  The final pattern is very powerful if you have old monolithic applications that you want to migrate to containers. You can use a reverse proxy to start breaking up the monolithic frontend of your old app, splitting features out into new containers. Those new features are routed by the reverse proxy, and because they’re in separate containers, they can use a different, modern technology stack. Figure 20.18 shows this.
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  Figure 20.18 The reverse proxy hides the monolithic architecture so it can be broken into smaller services.


  These patterns are not mutually exclusive--in a single cluster you could have a reverse proxy powering all three patterns, hosting multiple domains with a mixture of microservices and monolithic applications running in containers.


  20.6 Lab


  We’ve got a whole new app for this lab--one that will clearly show the power of a caching reverse proxy. It’s a simple website that calculates pi to a specified number of decimal places. In the lab folder for this chapter, you can run the app with Docker Compose and browse to http:/ /localhost:8031/?dp=50000 to see what pi looks like to 50,000 decimal places. Refresh the browser and you’ll see it takes just as long to compute the same response. Your job is to run the app behind a reverse proxy:


  
    	The app should be available at the domain pi.local on the standard HTTP port.


    	The proxy should cache responses so when users repeat the same request, the response is served from the cache and is much faster than from the app.


    	The proxy should add resilience, so if you kill the app container, any cached responses are still available from the proxy.

  


  My solution is up on GitHub, and you’ll find there are huge time savings from caching proxies with compute-intensive work like this: https://github.com/sixeyed/diamol/ blob/master/ch20/lab/README.md .


  
    21 Asynchronous communication with a message queue

  


  This is the final full chapter of the book, and it introduces a new way for the components of a system to communicate: sending and receiving messages using a queue. Message queues have been around for a very long time--they’re a way of decoupling components so instead of making a direct connection to communicate with each other, they send messages to the queue. The queue can deliver messages to one or many recipients, and that adds a lot of flexibility to your architecture.


  In this chapter we’ll focus on two scenarios that are enabled when you add a message queue to your application: improving system performance and scalability, and adding new features with zero downtime. We’ll use two modern message queues that run very nicely in Docker: Redis and NATS.


  21.1 What is asynchronous messaging?


  Software components usually communicate synchronously--the client makes a connection to the server, sends a request, waits for the server to send a response, and then closes the connection. That’s true for REST APIs, SOAP web services, and gRPC, which all use HTTP connections.


  Synchronous communication is like making a telephone call: it needs both parties to be available at the same time, so it needs careful management. Servers might be offline or running at full capacity, so they can’t accept connections. Services may take a long time to process, and client connections might time out waiting for the response. Connections can fail at the network level, and the client needs to know if they can safely repeat the request. You need a lot of logic in your application code or libraries to deal with all the failure modes.


  Asynchronous communication adds a layer between the client and the server. If the client needs a server to do something, it sends a message to the queue. The server is listening on the queue, picks up the message, and processes it. The server can send a response message to the queue, and if the client wants a response, it will be listening on the queue and will pick it up. Asynchronous messaging is like communicating by email--parties can join in when they have free time. If the server is offline or out of capacity, the message sits in the queue until a server is available to pick it up. If the message takes a long time to process, that doesn’t affect the client or the queue. If there’s a failure when the client sends a message, the message isn’t in the queue and the client can safely send it again. Figure 21.1 shows communication with asynchronous messaging.
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  Figure 21.1 Message queues decouple components so they don’t communicate with each other directly.


  Messaging has always been a favorite option for integration architects, but it used to raise some difficult issues--the queue technology needs to be super-reliable, but enterprise queues are too expensive to run in test environments, so can we use different queues in different environments, or skip the queues altogether in dev? Docker fixes that, making it easy to add enterprise-grade open source queues to your application. Running queues in lightweight containers means you can run a dedicated queue for each application, and free open source software means you can use the same technology in every environment. Redis is a popular message queue option (which you can also use as a data store), and you can easily try it out to get a feel for asynchronous messaging.


   try it now Run the Redis server in a container, connected to a network where you can run other containers to send and receive messages:


   # create the network - on Linux containers:  docker network create ch21   # OR Windows containers:  docker network create -d nat ch21   # run the Redis server:  docker container run -d --name redis --network ch21 diamol/redis   # check that the server is listening:  docker container logs redis --tail 1


  Message queues are server components that just run until you stop them. Redis listens for connections on port 6379, and that same address is used by clients to send messages and by servers to listen for messages. You’ll see from your container logs that Redis is up and running just a few seconds after you start the container--my output is in figure 21.2.
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  Figure 21.2 A message queue is just like any other background container, waiting for connections.


  Clients need to open a connection to the queue to send their message--and if you’re wondering how that’s better than just calling a REST API directly, it’s all down to speed. Queues usually have their own custom communication protocol, which is highly optimized, so when the client sends a message, it just transmits the bytes of the request and waits for an acknowledgement that it has been received. Queues don’t do any complex processing on the message, so they should easily handle thousands of messages per second.


   Try it now We won’t send thousands of requests, but we’ll use the Redis CLI to send a few messages. The command syntax is a bit involved, but this is going to publish the message “ping” on the channel called channel21 , and it will repeat that message 50 times with a 5 second interval in between:


   # run the Redis client in the background to publish messages:  docker run -d --name publisher --network ch21 diamol/redis-cli -r 50 -i 5 PUBLISH channel21 ping   # check the logs to see messages are being sent:  docker logs publisher


  This Redis client container will sit in the background and send a message every five seconds. The log output just shows the response code from each message send, so if everything is working, you’ll see lots of zeros, which is the “OK” response. You can see mine in figure 21.3.


  [image: ]


  Figure 21.3 The Redis CLI is a simple way to send messages to the queue running in the Redis container.


  There’s some new terminology here, because “client” and “server” don’t really make sense in messaging terms. Every component is a client of the message queue; they just use it in different ways. The component sending messages is the publisher, and the component receiving messages is the subscriber. There could be lots of different systems using the queue, so Redis uses channels to keep messages separate. In this case, the publisher is sending messages on the channel called channel21 , so for a component to read those messages, it needs to subscribe to the same channel.


   Try it now Run another container with the Redis CLI, this time subscribing to the channel where the other container is publishing messages:


   # run an interactive subscriber and you'll see messages received every   # five seconds:  docker run -it --network ch21 --name subscriber diamol/redis-cli SUBSCRIBE channel21


  We’re using the Redis CLI, which is a simple client that talks using the Redis messaging protocol--there are Redis SDKs for all the major application platforms, so you can integrate it with your own apps too. The CLI prints output across multiple lines, so you’ll first see the output from subscribing to the queue. The publishing container is still running in the background, and every time it publishes a message, Redis sends a copy to the subscriber container--then you’ll see the message detail in the logs. Mine is in figure 21.4.


  [image: ]


  Figure 21.4 A subscriber to the queue receives a copy of every message published on the channel.


  You can exit from the container with Ctrl-C, or kill the container with docker container rm -f subscriber . Until then, it will keep listening for messages. You can see that this is asynchronous communication: the publisher was sending messages before there were any subscribers listening, and the subscriber will keep listening for messages even when there are no publishers. Each component works with the message queue, and it doesn’t know about other components that are sending or receiving messages.


  This simple principle of decoupling senders and receivers with a queue helps you make your apps performant and scalable, and you’ll see that next with a new version of the to-do list app.


  21.2 Using a cloud-native message queue


  The to-do application has a web frontend and a SQL database for storage. In the original implementation, all the communication between components was synchronous--when the web app sends a query or inserts data, it opens a connection to the database and keeps it open until the request is finished. That architecture doesn’t scale well. We could run hundreds of web containers to support high user load, but eventually we’d hit a limit where we’re using all the available database connections and the app would start to fail.


  This is where a message queue helps with performance and scale. The new version of the to-do app uses asynchronous messaging for the save workflow--when users add a new to-do item, the web app publishes a message on a queue. The queue can handle many more connections than the database, and connections have a much shorter lifespan, so the queue won’t get maxed out even under very high user load. We’ll be using a different queue technology for this exercise: NATS, which is a Cloud Native Computing Foundation (CNCF) project that’s mature and widely used. It stores messages in memory, so it’s very fast and perfect for communication between containers.


   Try it now Run NATS in a container. It has a simple admin API you can use to see how many clients are connected to the queue:


   # switch to the exercise folder:  cd ch21/exercises/todo-list   # start the message queue:  docker-compose up -d message-queue   # check the logs:  docker container logs todo-list_message-queue_1   # and check active connections:  curl http://localhost:8222/connz


  The connections API call returns JSON details about the number of active connections. There could be many thousands, so the response is paged, but in this case there’s only one page of data because there are zero connections. You can see my output in figure 21.5.
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  Figure 21.5 NATS is an alternative message queue; it’s very lightweight and has an admin API.


  There’s development work involved when you move to async messaging, and for the to-do app that meant some changes to the web application. Now when users add a to-do item, the web app publishes a message to NATS, rather than inserting data in the database. The changes are actually pretty small. Even if you’re not familiar with .NET Core, you can see in listing 21.1 that there isn’t much work involved in publishing a message.


  Listing 21.1 Publishing a message instead of writing data to the database


   public void AddToDo(ToDo todo)         {              MessageQueue.Publish(new NewItemEvent(todo));              _NewTasksCounter.Inc();         }


  NATS doesn’t use the same channel concept as Redis. Instead, every message has a subject, which is a string used to identify the type of the message. You can choose your own naming scheme for message subjects. The subject for this one is events.todo .newitem , which says it’s a new-item event in the to-do application. Subscribers will be able to listen for messages with that subject if they’re interested in new-item events, but even if there are no subscribers, the app will still publish messages.


   Try it now Run the new version of the to-do web application and the database. You’ll see that the app loads and you can use it without any errors, but it doesn’t quite work correctly:


   # start the web and database containers:  docker-compose up -d todo-web todo-db   # browse to http://localhost:8080 and add some items


  You’ll find that the app gladly lets you add new items, but when you browse to the list, there are none. That’s because the list page fetches data from the database, but the new-item page doesn’t insert data into the database any more. New-item event messages are being published to the NATS message queue, but nothing is listening to them. You can see my empty to-do list (which is not representative of real life at all) in figure 21.6.
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  Figure 21.6 The to-do app with messaging publishing; without any subscribers, there are missing features.


  There are lots of message queue technologies with different approaches for dealing with this situation--where a message is published but there are no subscribers. Some queues move them to dead-letter queues for admins to manage, others store the messages so they can deliver them when a client connects and subscribes. Redis and NATS effectively swallow those messages--they acknowledge receipt to the client, but there’s nowhere to send them, so they get dropped. New subscribers to Redis or NATS queues only receive messages that get published after they start listening.


   Try it Now There’s a simple NATS subscriber tool from the project’s examples on GitHub. You can use it to listen for messages with a particular subject, so we can check that the to-do events are actually being published:


   # run a subscriber listening for "events.todo.newitem" messages  docker container run -d --name todo-sub --network todo-list_app-net diamol/nats-sub events.todo.newitem   # check the subscriber logs:  docker container logs todo-sub   # browse to http://localhost:8080 and add some new items   # check that the new item events are published:  docker container logs todo-sub


  The user experience is exactly the same--the web app still doesn’t work. It publishes messages and doesn’t know what happens to them, but now there is a subscriber that receives a copy of each message. If you enter some to-do items in the website, you’ll see them listed in the logs for the subscriber--mine are shown in figure 21.7.
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  Figure 21.7 A simple subscriber that logs messages is a good to way to check that they’re being published.


  You’ll have realized by now that the to-do app is lacking a component that acts on the messages being published. There are three pieces of work you need to do to move to asynchronous messaging: run a message queue, publish messages when interesting events happen, and subscribe to those messages so you can do some work when the events happen. The to-do app is missing the final part, which we’ll add next.


  21.3 Consuming and handling messages


  The component that subscribes to the queue is called a message handler, and typically you’ll have one handler for each type of message (each channel in Redis or subject in NATS). The to-do app needs a message handler that listens for new-item events and inserts the data in the database. Figure 21.8 shows the completed architecture.
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  Figure 21.8 Asynchronous processing uses a message handler as well as an event publisher.


  This design does scale because the queue acts like a buffer, smoothing out any peaks from the incoming user load. You could have hundreds of web containers but only 10 message-handler containers--the handlers are in a group, so the queue shares the messages around, and each message is handled by a single container. Containers handle messages one at a time, so that would limit the maximum number of SQL connections used for inserting data to 10, no matter how many thousands of users there are, wildly clicking buttons. If there’s more load coming in than those 10 handlers can deal with, the messages get saved in the queue until the handlers are ready to process more. The app keeps working, and the data gets saved eventually.


   Try it now The message handler for the to-do app is already built and published to Docker Hub, so it’s ready to go. Run it now and see how the app works with async messaging:


   # start the message handler:  docker-compose up -d save-handler   # check the connection from the container logs:  docker logs todo-list_save-handler_1   # browse to http://localhost:8080 and add some new items     # check that the events have been handled:  docker logs todo-list_save-handler_1


  The app is working again! Almost. You’ll find that you can add new items, and they appear in the list page, but not immediately. When you save an item, the web app redirects to the list page, which loads while the message is still working its way through the queue and the handler. The new item hasn’t been saved by the time the query runs on the database, so the new data isn’t shown. You can see my output in figure 21.9--at this point my web page showed no items, even though a new one had been saved.
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  Figure 21.9 Message handlers subscribe to the queue, receive a copy of every message, and act on it.


  This is a side effect of async messaging called eventual consistency --the state of your application data will be correct when all messages have been processed, but until then you may get inconsistent results. There are ways to fix this that work toward making the whole UI async, so the to-do web app would listen for an event stating that the list has changed and then refresh itself. That push model can be a lot more efficient than polling queries, but it’s too much for this book. We can just hit refresh for now.


  It’s a fairly big architectural change to move to asynchronous messaging, but it opens a lot of opportunities, so it’s definitely worth knowing how this works. Message handlers are small, focused components that can be updated or scaled independently of the main application or each other. In this exercise we’ve used the queue to solve a scale-out problem, and now we can run multiple instances of the save message handler to work through the incoming load, while effectively rate-limiting the number of SQL connections we use.


   Try it now Message handlers are internal components; they don’t listen on any ports, so you can run them at scale with multiple containers on a single machine. NATS supports load balancing to share messages if there are several instances of the same handler running:


   # scale up the handlers:  docker-compose up -d --scale save-handler=3   # check that one of the new handlers has connected:  docker logs todo-list_save-handler_2   # browse to http://localhost:8080 and add some new items   # see which handlers have processed the messages:  docker-compose logs --tail=1 save-handler


  You’ll see that messages are sent to different containers. NATS uses round-robin load balancing to share the load between connected subscribers, and you’ll find that the more load you put through, the more evenly distributed it will be. My output in figure 21.10 shows that containers 1 and 2 have processed messages, but not container 3.
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  Figure 21.10 Multiple message handlers share the workload so you can scale to meet demand.


  It’s important to realize that I didn’t change anything to get three times as much processing power for my new-item feature--the web site and message handler code is exactly the same. I’m just running more instances of the same message-handler container. If you have another feature that is triggered by the same event, you can run a different message handler that subscribes to the same message subject. That opens up the interesting option of being able to deploy new features to your app without changing existing code.


  21.4 Adding new features with message handlers


  We’ve moved the to-do app towards an event-driven architecture, which is a design where the application publishes events to say that things have happened, rather than processing everything as soon as it happens. It’s a nice way of building a loosely coupled application, because you can change what happens in response to events without changing the logic that publishes the event. We’re just using it for a single type of event in this application, but that still brings the flexibility to add new features without changing the existing app.


  The simplest way to do that is to add a new message handler in a new group that gets a copy of every event but does something different in response. The existing message handler saves the data in a SQL database; a new message handler could save the data in Elasticsearch to make it easy for users to query in Kibana, or it could add the item as a reminder in a Google Calendar. We have a much simpler example for the next exercise--a handler that works like an audit trail, writing log entries for every new to-do item.


   Try it now The new message handler is in a Compose override file. When you deploy it, you’ll see that this is an additive deployment. Compose creates one new container, but none of the other containers change:


   # run the audit message handler, keeping same scale for the save   # handler:  docker-compose -f docker-compose.yml -f docker-compose-audit.yml up -d --scale save-handler=3   # check that the audit handler is listening:  docker logs todo-list_audit-handler_1   # browse to http://localhost:8080 and add some new items   # check the audit trail:  docker logs todo-list_audit-handler_1


  This is a zero-downtime deployment; the original app containers are unchanged, and the new feature gets implemented in a new container. The audit handler subscribes to the same message subject as the save handler, so it gets a copy of every message, while another copy of the message is sent to one of the save handler containers. You can see my output in figure 21.11, where the audit handler writes out the to-do item date and text.
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  Figure 21.11 Publishing events decouples the components of your app and lets you add new features.


  Now two processes are triggered in response to the user creating a to-do item, and they both get actioned in separate components running in separate containers. Those processes could take any length of time and it wouldn’t impact the user experience, because the web UI doesn’t wait for them (or even know about them)--it just publishes the event to the queue, and that behavior has the same latency no matter how many subscribers are listening for it.


  You should get some idea of how powerful this architecture is, even from this simple example. Once your app is publishing key events as messages to the queue, you can build whole new features without touching existing components. The new feature can be independently built and tested, and it can be deployed with no impact to the running application. If there’s an issue with the feature, you can just undeploy it by stopping the message handlers.


  We’ll look at one last exercise for this chapter to help convince you that async messaging is a pattern you should consider for your apps. We can have multiple subscribers for a certain type of event, but we can also have multiple publishers. The new-item event is a fixed structure in code, so any component can publish that event, which gives us new options for creating to-do items. We’ll use that to deploy a REST API for the app without changing any existing parts.


   Try it now The to-do list API is already written and ready to deploy. It listens on port 8081 and publishes a new-item event when users make HTTP POST requests:


   # start the API container, defined in the override file:  docker-compose -f docker-compose.yml -f docker-compose-audit.yml -f docker-compose-api.yml up -d todo-api   # add a new item through the API:  curl http://localhost:8081/todo -d '{"item":"Record promo video"}' -H 'Content-Type: application/json'   # check the audit log:  docker logs todo-list_audit-handler_1


  The new API is a simple HTTP server, and the only real logic in there is to publish an event to the queue using the same message-queue method from listing 21.1. You’ll see that new items entered through the API get processed by the audit handler and the save handler, so there are audit entries, and when you refresh the web app you’ll see the new items are in the database. My output is in figure 21.12.
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  Figure 21.12 Events can have many subscribers and many publishers, which makes for loose coupling.


  This is powerful stuff, and it’s all from a single event being published in the app. Async messaging enables you to build more flexible applications, which are easier to scale and update, and you can add all this goodness to your existing apps too, starting with just a few key events and building from there.


  Before you head off to the whiteboard, we’ll finish the chapter with a closer look at messaging patterns so you’re aware of what you might be heading into.


  21.5 Understanding async messaging patterns


  Asynchronous messaging is an advanced topic, but Docker really lowers the entry bar because it’s so easy to run a queue in a container, and you can quickly prototype how your app might work with event publishing. There are different ways to send and receive messages on a queue, and it’s worth understanding a couple of alternatives.


  The pattern we’ve used in this chapter is called publish-subscribe (or “pub-sub”), and it allows zero or more subscribers to receive published messages, as in figure 21.13.
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  Figure 21.13 Pub-sub messaging lets many processes act on the same message being published.


  This pattern doesn’t fit every scenario, because the message publisher has no knowledge of who consumes the message, what they do with it, or when they’ve finished. An alternative is request-response messaging, where the client sends a message to the queue and waits for a response. The handler processes the request message and then sends a response message that the queue routes back to the client. This can be used to replace standard synchronous service calls, with the advantage that handlers won’t get overloaded and clients can be doing other work while they wait for a response. Figure 21.14 shows this pattern.
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  Figure 21.14 Request-response messaging is client-service communication without a direct connection.


  Pretty much all queue technologies support these patterns, as well as variations like fire-and-forget (where the client sends a command request in a message rather than publishing an event, but doesn’t care about the response) and scatter-gather (where the client publishes a message that several subscribers act on, and then collates all the responses). We’ve looked at Redis and NATS in this chapter, but there’s one more technology you should also consider: RabbitMQ. RabbitMQ is a more advanced queue that supports complex routing and persistent messaging, so messages are saved to disk and the queue contents survive a container restart. All these queue technologies are available as official images on Docker Hub.


  Message queue technology can liberate your application design. You can build in an event-driven architecture from the start, or gradually evolve toward one, or just use messages for key events. When you start deploying new features with no downtime, or scaling down handlers to protect a starved database without crashing your app, you’ll realize the power of the patterns and you’ll be glad you made it to the end of this chapter.


  21.6 Lab


  It’s the final lab of the book, and this one’s a little bit sneaky. The goal is to add another message handler for the to-do app--one that changes the text for items after they’ve been saved. That handler already exists, so this is mostly about wiring the new service into the Compose file, but there are some configuration settings you’ll need to dig around for too.


  Your solution needs to run a new handler using the image diamol/ch21-mutating-handler from Docker Hub, and when you have that working there are a couple of things to investigate:


  
    	The new component listens for events called events.todo.itemsaved , but nothing publishes those events yet. You’ll need to search for a config setting you can apply to one of the existing components to make it publish those events.


    	The new component has a bad set of default configuration, so it’s not using the right address for the message queue. You’ll need to search for the setting and fix that too.

  


  This is not as nasty as it seems; the answers you need are all in the Dockerfiles, and you’re just going to set values in your Compose file--no need to change source code or rebuild images. It’s a useful exercise, because you’ll certainly spend some time trying to figure out config settings when you use Docker for real, and the final message handler adds a useful feature to the to-do app.


  My solution is up on GitHub as always, with a screenshot to prove it works: https://github.com/sixeyed/diamol/blob/master/ch21/lab/README.md.


  
    22 Never the end

  


  Docker is a really exciting technology to learn because it has so many uses--everything from running your own Git server to migrating legacy apps to the cloud to building and running all-new cloud-native apps. I hope the journey we’ve been on in this book has helped you gain confidence with containers, and now you know where you can put them to use in your current or your next project. This final chapter gives you some hints on how you can make that happen successfully, and it ends with an introduction to the Docker community.


  22.1 Run your own proof-of-concept


  The more you use Docker, the more comfortable you’ll become with containers and the more you’ll get out of the technology. Pretty much any app can be containerized, so running a proof of concept (PoC) to migrate one of your own applications to Docker is a great start. It will give you a chance to bring the practical skills from this book into your own work, and the end result will be something you can demonstrate to the rest of your team.


  There’s more to a successful PoC than just docker image build and docker container run . If you really want to show people the power of containers, your PoC should have a bit more in scope:


  
    	Aim to Dockerize more than one component, so you can show the power of Docker Compose to run different configurations of the app (see chapter 10).


    	Start with best practices from the beginning, and show how the move to Docker improves the whole delivery life cycle--use multi-stage Dockerfiles and optimize them, including your own golden images (chapter 17).


    	Include observability with centralized logging (chapter 19) and metrics (chapter 9). A meaningful Grafana dashboard and the ability to search logs with Kibana takes your PoC beyond the basics.


    	Build a CI/CD pipeline, even if it’s a very simple one using Jenkins in a container (chapter 11) to show how everything can be automated with Docker.

  


  The PoC doesn’t need to involve a huge effort. Even with an expanded scope like this, I think you could comfortably limit the exercise to five days if you start with a fairly straightforward app. You don’t need the whole team involved; it can just be a side project at this stage.


  But if you can’t get the go-ahead to use Docker at work, that doesn’t mean you need to stop--plenty of Docker power users started at home. You can run some pretty impressive software in containers on a Raspberry Pi, and that will get you using Docker regularly.


  22.2 Make a case for Docker in your organization


  Docker is a huge change for most organizations because it impacts pretty much every aspect of IT, and not every team is ready to embrace a new way of working. There should be enough in this book to help you show other technology groups the advantage of moving to Docker, but here are the key topics that I find appeal to different stakeholders:


  
    	Developers can run whole application stacks on their machines with the exact same technology used in production. There’s no more wasted time tracking down missing dependencies or juggling multiple versions of software. The dev team use the same tooling as the operations team, so there’s common ownership of components.


    	Operators and admins get to use standard tools and processes for every application, and every containerized component has a standard API for logging, metrics, and configuration. Deployments and rollbacks become fully automated, failures should become rare, and releases can happen more frequently.


    	Database administrators won’t want to run database containers in production, but containers are a great way to give developers and test teams self-service, so they don’t need DBAs to create databases for them. Database schemas can move to source control and be packaged in Docker images, bringing CI/CD to database development too.


    	Security teams will be concerned about container compromise at runtime, but Docker lets you adopt security in depth all through the life cycle. Golden images, security scanning, and image signing all provide a secure software supply chain that gives you greater confidence in the software you deploy. Runtime tools like Aqua and Twistlock can automatically monitor container behavior and shut down attacks.


    	Business stakeholders and product owners understand the language of releases--they know historical problems with releases led to more and more quality gates, which led to fewer and fewer releases. Self-healing applications, health dashboards, and continuous deployment should all encourage users that the move to containers means better quality software with less time to wait for new features.


    	Senior management’s interests will align with the business (hopefully), but they’ll also have a close eye on the IT budget. Moving applications from VMs to containers can save very large sums because you can consolidate hardware when you run more apps run on fewer servers in containers. That also reduces operating system licenses.


    	IT management should be aware that the container trend isn’t going away. Docker has been a successful product since 2014, and all the major clouds offer managed container platforms. Bringing Docker into your roadmap will make your technology stack current and keep the teams happy.

  


  22.3 Plan the path to production


  It’s important to understand where you’re going with Docker if you want your organization to come with you. At the start of this book I walked you through five types of projects that are empowered by Docker--from modernizing legacy apps to running serverless functions. Whether your PoC fits in one of those definitions or you’re doing something more exotic, you’ll want to understand the end goal so you can plan your roadmap and track progress.


  The major decision you’ll need to make is between Docker Swarm and Kubernetes. You’ve used Swarm in this book, and it’s a great way to get started, but if you’re looking to the cloud, Kubernetes is a better option. You can use all your Docker images in Kubernetes, but the application definition format is different from Docker Compose, and there’s a pretty steep learning curve you’ll need to factor in; Learn Kubernetes in a Month of Lunches will help you through it. If you’re planning to run a container platform in the datacenter, my advice is to start with Docker Swarm, which is operationally easy to manage. Kubernetes is a complex system that will need a dedicated admin team, and a commercial offering might be a better option.


  22.4 Meet the Docker community


  I’ll end by making sure you know that you’re not alone. The Docker community is huge, there’s a very active online space, and there are in-person meetups worldwide. You’re sure to find people who are happy to share their knowledge and experience, and the Docker community is just about the friendliest one out there. Here’s where to join:


  
    	The Docker Community Slack group-- https://dockr.ly/slack .


    	Find an in-person or virtual meetup-- https://events.docker.com .


    	Follow the Docker Captains; these are community members recognized by Docker for their expertise and sharing-- www.docker.com/community/captains .


    	DockerCon, the container conference-- https://dockercon.com .

  


  I’m part of that community too--you’ll find me on the Community Slack @elton-stoneman and on Twitter @EltonStoneman; feel free to reach out to me anytime. Other places you’ll find me are GitHub (@sixeyed) and my blog, https://blog.sixeyed .com . Thanks for reading. I hope you found the book useful, and I hope Docker takes you places.
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The reverse proxy runs in a container. It receives all incoming
traffic; no application containers need to publish ports.

reverse-proxy N s

random-numbers

I

image-géllew

.

The reverse proxy fetches content from the relevant
application container and sends it back to the client.
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Version 3 of the web app image uses the HTTP check
utility for the dependency check at startup.
\

)

PS> container run 8081:80 diamol/che8-numbers-web:v3
PS>
PS> container 1s --all
CONTAINER ID IMAGE COMMAND
CREATED STATUS PORTS
NAMES
39f221c30c42 diamol/ch@g-numbers-web:v3 'cmd /S /C dotnet Ut.."
17 seconds ago Exited (1) 13 seconds ago
hardcore_austin
e6b51blea7ee diamol/ch@8-numbers-api:v3 "dotnet Numbers.Api..."
37 minutes ag Up 37 minutes (unhealthy) 0.0.0.0:8080->80/tcp
serene_shockley
PS> \
The dependency check There is an API container running, but it doesn’t
in the web app fails, so have the name numbers-api, which is the DNS

the container exits. name the web app is looking for.
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When this container runs, it lists the contents of the /init directory. Without
a bind mount, it shows the files that already exist from the Docker image.

PS> cd ./chee/exercises/bind-mount (

PS> |

PS> $source="$( )\new".ToLower(); $target="c:\init" l

p

PS> container run diamol/ch@6-bind-mount

abc.txt

def.txt

—

PS> container run --mount type=bind,source=$source,target=$target
diamol/che6-bind-mount

323.txt

456.txt

Run a container with a bind mount targeting /init, and the original
directory contents are hidden. The source directory for the mount
replaces the target, so only the source directory files are shown.
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This version of the app writes log entries to a file instead of stdout.
(

v
PS> container run -d --name timecheck3 diamol/ch19-
timecheck:4.0

Ce8bbT8C303aZ256C471D058T 96029817 1851198001 33916D€abCcbeedd
47a49ca

PS>

PS> container logs timecheck3

PS>

PS> © container exec -it timecheck3 sh
#

# cat /logs/timecheck.log

2019-12-19 10:30:54.481 +00:00 [INF] Environment: DEV; ve
rsion: 4.0; time check: 10:30.54

2019-12-19 10:30:59.476 +00:00 [INF]FEnviPonment: DEV; ve

rsion: 4.0; time check: 10:30.59

There are no container logs. You need to connect to the
container and read the log file to see the application logs.
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Each component has an additional HTTP endpoint that
provides runtime-specific metrics in Prometheus format.

/ /

The web app is written in
Go; adding the promhttp
module provides
Prometheus support.

The Java REST APl The Node.js prom-client
includes the micrometer package adds Prometheus
package, which adds support.

Spring support for

Prometheus.
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Click the Open Port button to configure PWD to listen for incoming traffic.

What port would you like to open?

<]
\

Port 2376 is the port where the Docker Engine running in PWD is listening for TLS
ts. When you click OK, a new tab will launch; you’ll need the URL in that tab later.
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Docker Desktop has different styling on Windows and Mac,
but both allow you to configure the Docker Engine.

/ \
© settings X
& General
Daemon
Q  Proxies Configure the Docker daemon by typing a json docker daemon
configuration file.
@ Daemon +
@ basic L) Daem
O Reset ¥ Experimental features & (O O .
Insecure registrie: General File Sharing Disk Advanced Proxies| Daemon Kubernetes Reset

S Advanced

Experimental features

Registry mirrors: Insecure registries:

|[registry.iocat:5000[ | ]

==

Dok e Dockerwil estrt when aping t A
L o i Registry mirrors:

Adding your local registry domain
here means Docker will use it even S
though it is not secured with HTTPS.

Apply & Restart

® Docker Desktop is running
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Before the update, Rollout begins, and three
six replicas of the 5 replicas are started.
service are running  They won’t receive

v3 containers.

network traffic yet.

The v5 replicas have  The first set of
started and receive  updated replicas are
traffic—this is the healthy, so the next
monitor period. set is updated.

(

:v5-rv5wv5:

~“Start ~~ ‘,/'l;{un\x

e \OK?,/' Continue \‘\OK?/” Continue
Roll back Roll back

t t

)
If any replicas fail to
start, that triggers
the rollback process.

|
!

If replicas become unhealthy
in the monitor period, the
update rolls back.
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The app is compiled in the builder stage. Go doesn’t
write output logs when the build is successful.

[

Step 3/1@ : RUN go build -o /server
---> Running in 4c82369bdd7d
Removing intermediate container 4c82369bdd7d
---> 86dd4abcd457b

Step 4/1@ : FROM diamol/base

---> ©55936d39205

Step 5/1@ : ENV IMAGE_API_URL="http://iotd/image"
---> Running in 71a2577def79

Removing intermediate container 71a2577def79
---> a876b44cbe3l

Step 6/10 : CMD ["/web/server”]

---> Running in cdb6cbd72371

Removing intermediate container cdb6cbd72371
---> 9c32166ff4c9

Step 7/1@ : WORKDIR web

---> Running in cfeff2048a98

Removing intermediate container cfeff2048a98

---> 6936,
Step 8/10 { COPY index.html .

---> aces:
Step 9/1@ :|COPY --from=builder /server .
---> c@3a4156ecab \

The web server binary is HTML assets are copied
copied from the builder stage.  from the host computer
into the final image.
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If you have access to the

Swarm manager, you can This shows how to join
run commands to manage more manager nodes—you
the Swarm. This shows how need multiple managers for
to join more worker nodes. a highly available Swarm,

) typically three.

2

PS{‘ swarm join-token worker
To add a worker to this swarm, run the following command:

docker swarm join --token SWMTKN-1-5fngrv5453sso@udlc9q
9bafhj78elansytxdr8gx3wdk4o43cv-58owolep8mfirpi¢gql2isqdl
192.168.2.119:2377

PS,
PSI> swarm join-token manager|
To add a manager to this swarm, run the following command:

docker swarm join --token SWMTKN-1-5fngrv545ssoeudlcSq
9bafhj78elansytxdragx3wdk4od3cv-c@v153z7n8731kerpirkk7r2j
192.168.2.119:2377

PS:

ps
po) HOSTNAME STATUS
AVAILABILITY MANAGER STATUS ENGINE
VERSION
zse6ejlloz134k41qle2bp2gd *  sc-brix-winle Ready
Active Leader 19.03.
4

Lists all the nodes in the Swarm, showing basic details like
availability, node type, and the version of Docker on the machine
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The job page is where you can configure the pipeline and see the status of the latest builds.

@ diamol/diamol - Gogs . £ diamol [lenkins]

@ localhost:8080/job/d
@ Jenkins @ damol [logout
Jenkins + diamol ExtaLE AUTO ReFRESH
A Back to Dashboard - .
Pipeline diamol
 Status
_ id description
= Changes
) Build Now -—
© Delete Pipel T
eleta Pipeline 2 Recent Changes e
2% Configure == \
Full Stage View N
s Stage View
« Rename

© Pipeline Syntax No data avaiiable. This Pipeline has not yet run.
PolinRepeating the command doesn'’t create a second copy of the app; Compose
sees there's already a container running which matches the app definition

trend = Permalinks

- 1 hr 31 min ago |

i 1 hr 31 min ago
@#  Novis 2019838 AM + Last unsuccessful build (41), 1 hr 31 min ago
« Lest completed build (#1),1 i 31 min ago

@ Build History

x
| ossmanmsoms

v
Jenkins should be checking the Git When you log in as the diamol user,
server for code changes every minute, you can manually start a new build.
but because the repository didn’t exist

on the first run, the job is paused.
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The host computer has a separate computer name, IP address,
and disk. Virtual machines all share the host’s CPU and memory.
\

\

Operating
system 1

Hostname i

IP address i

Disk
! Operating
: system 2
i vm2

e o T

Hostname
IP address
Disk

Hypervisor

Operating system

\
|

Computer [

|

\

v

— Hostname
— IP address
— Disk

— CPU

— Memory

I

Each VM has its own 0S, computer name, IP address, and disk.
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The web container loads
configuration from config
objects and secrets. That
sets the app to use the
database container.

The database container

is on the same Docker
network. It uses a volume
to store data—volumes are
also supported in Swarm.
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You create a context using the connection details you’d use in the
Docker CLI—in this case the host name and path to the certs.

PS> context create pwd-tls --docker "host=tcp://$pwdDo
main,ca=/pwd-certs/ca.pem,cert=/pwd-certs/client-cert.pem,key|
=/pwd-certs/client-key.pem"

pwd-tIs

Successfully created context "pwd-tls"
PS>

PS> I context 1s

NAME DESCRIPTION

DOCKER ENDPOINT

KUBERNETES ENDPOINT  ORCHESTRATOR
default * Current DOCKER_HOST based configuration
npipe:////./pipe/docker_engine

swarm
pwd-tls
tcp://ip172-18-0-58-bngf5uot969000c674eg-2376.direct. labs.pl
ay-with-docker.com

PS> /f

You can use contexts for Docker or Kubernetes endpoints. The
default is the private channel for the local Docker Engine.






OEBPS/Images/17-10.jpg
Builds the same Dockerfile, but stops at different
stages and produces different image tags

PS> chl7/exercises/ml-dataset

PS>

PS> image build -t diamol/ch17-ml-dataset:v3 -f Doc

kerfile.v3 . |

PS>

PS> image build -t diamol/ch17-ml-dataset:v3-downlo|

ad -f Dockerfile.v3 --target download . |

PS>

PS> image build -t diamol/ch17-ml-dataset:v3-expand

-f Dockerfile.v3 --target expand . |

-~

PS> image 1ls -f reference=diamol/ch17-ml-dataset:v3

*

REPOSITORY TAG IMAGE ID
CREATED SIZE

diamol/ch17-ml-dataset v3 942faad7bad3
1@ minutes ago 23.9MB

diamol/ch17-ml-dataset  v3-expand f4e80c7ff022
10 minutes ago 2.46GB

diamol/ch17-ml-dataset v3-download 12142981858
11 minutes ago 251MB

PS> \

This is a useful technique to track down disk space
usage. The download is over 200 MB, and the expanded
archive is over 2.4 GB, but the final image is only 24 MB.
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Running the build with Docker Compose writes the same
output as when you build images with the Docker CLI.
(

v

Step 23/23 : COPY --from=builder /out/ .
---> f422b5498d9c

Successfully built f422b5498d9c
Successfully tagged diamol/chll-numbers-api:v3-build-local
PS>
PS>, image inspect -f '{{.Config.lLabels}}' diamol/chil-numbe
rs-api-v3i-huild-local
map|build_number:@ build_tag:local version:3.0]
PS> T
)

This Dockerfile writes labels on the image, which is a very
useful way to create an audit trail from a running container
back to the Cl job that produced the image.
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This query aggregates the access_log_total metric for all containers,
summing the values without separating them by hostname or instance.

Prometheus
i §

sum(access_log_total) without(hostname, instance)

Load time: 17ms
Resolution: 1s
Total time series: 1

cute - insert metric at cursor -

Graph  Console

- | 5m +* “ » O stacked

Switching to Graph view shows the results of the query over time.
This is a counter metric, so it will only increase or stay the same.
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This is a multi-arch image with Arm and
Intel variants, but only for Windows.

PS> image pulll mcr,micr‘osoft.com/windows/nanoserver:|18
09

1809: pulling from windows/nanoserver
no matching manifest for linux/amdé4 in the manifest listlen
e
PS> /‘
I’m running Linux containers, so there’s
no variant that matches my engine.
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This container prints out the contents of the input . txt file when it
runs. This first run uses the input.txt contents from the image.

L2

PS> container run --name f1 diamol/cheé-file-display
https://www.manning.com/books/learn-docker-in-a-month-of-lunches
B
P> "http://eltonstoneman.com" > url.txt
PS>
P> container cp url.txt f1:/input.txt
p.
PS> container start --attach fi]
http://eltonstoneman.com
PS>

i \

‘ Now this command generates a new file on the local
} computer with different content, and uses that to
\\ overwrite the input . txt file in the container.

The container exited after the first run. Starting it again means it runs

the same command, but now it’s reading the new file contents.
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This is the directory with the input files to build the image.
\

PS>c | che3/exercises/web-ping

PS>
Directory: C:\scm\sixeyed\diamol\che3\exercises\web-ping
Mode LastWriteTime Length Name
26/06/2019 11:04 786| app.Jjs
26/06/2019 11:04 165| Dockerfile
26/06/2019 11:03 2] README.md/A

[
It contains the Dockerfile
and the application content.
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The dev environment uses a local database file and enhanced logging,
specified with environment variables, environment files, and secrets.

- logging: debug - logging: information
- database: local - database: container

todo-test

todo-dev_default

The test environment also runs a database container, specified in the
Compose override file. It uses different ports and networks from dev,
so both environments can be run on the same machine.
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Access to Docker
Engine functionality
is through the API.

\

v
Docker APl @

Docker Engine -
Docker Image
Cache
/ 0s

Computer 1
| |
Docker Engine runs in the Any Docker images
background and manages pulled are stored

containers and images. locally.
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PS> ten df

TYPE TOTAL ACTIVE SIZE
Images 6 o 202.2M8
TOMCaIner T T 2] 23
Local Volumes ] (] B
Build Cache ] e o8B

ps>fi

[

This is the physical disk space used to store all image layers.

RECLATMABLE
202.2MB (100%)
o8

o8

o8
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Elasticsearch, and it first needs to know where to look.
indexes with names that begin with fluentd.

Kibana queries documents i
The Fluentd logs are stored

© @ localhost:5601/app/kibana#/manager

Index Patterns

You must select or create one t

No default index pa

Saved Objects

Advanced Settings

Create index pattern
Kibana uses index patterns to retrieve data from X Include
Elasticsearch indices for things like visualizatjons. system indices

Dashboard

Timelion

Step 1 of 2: Define index pattern
Index pattern

fluentd*|

You can'

+ Success! Your index pattern matches 1 index.
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Starting a new Compose application. This runs a

Postgres SQL database and the to-do web app.
3

PS> ./che7/exercises/todo-1list-postgres L
I

PS> up -d
Creating todo-list-postgres_todo-db_1 ... done
Creating todo-list-postgres_todo-web_1 ... done
PS
PS> L ps
Name Command State
Ports

todo-1ist-postgres_todo-db_1 docker-entrypoint.sh postgres Up
©.0.0.0:5433->5432/tcp

todo-1list-postgres_todo-web_1  dotnet ToDoList.d1ll Up
0.0.0.0:8030->80/tcp

This shows the running containers that are part of this Compose
application. Other containers from other apps are not shown.
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Overlay networks span every node in the Swarm.
Containers can communicate using DNS names
and standard network channels, even if they’re
running on different servers.

o—

Docker networks are still isolated in Swarm
mode, so containers can only connect if their
services are attached to the same network.
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The web container consumes services from several microservices. The
reverse proxy exposes the web container and one of the microservices.

reverse-proxy \ ,’ \ T

% api1
. \
* microservices.com
* microservices.com/api

i api2

The public entrypoints use the same domain name, but requests are
routed to different containers based on the path of the HTTP request.
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build-stage

" FROMbase |

The final stage copies
the text file from

stage 2.

|
Stage 1 is the build  Stage 2 copies the
stage. It generates text file from stage
a text file. 1 and adds to it.
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Runs the new auditing message handler. All the other containers
are up to date so there are no changes to those, just a new
container for the new feature.

l

y

PS>dock -f docker-compose.yml -f docker-compose-aud
it.yml up -d --scale save-handler=3

todo-list_save-handler_1 is up-to-date
todo-list_save-handler_2 is up-to-date
todo-list_save-handler_3 is up-to-date

todo-1list_todo-web_1 is up-to-date

todo-list_message-queue_1 is up-to-date

todo-list_todo-db_1 is up-to-date

Creating todo-list_audit-handler_1 ... done

r
PS>docker logs todo-list_audit-handler_1

Connecting to message queue url: nats://message-queue:4222
Listening on subject: events.todo.newitem, queue: audit-handl
er

PS># add some items through the app

PS>

PS>iocker logs todo-list_audit-handler_1

Connecting to message queue url: nats://message-queue:4222
Listening on subject: events.todo.newitem, queue: audit-handl
er

AUDIT @ 1/3/202@ 4:06:24 PM: Finish DIAMOL Chapter 21

AUDIT @ 1/3/202@ 4:06:29 PM: Start DIAMOL Chapter 22

The new feature just lists the new items—this container gets
a copy of each event message, and the original save handlers
still get a copy between them.
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Runs a container that is a REST API for generating random numbers. The
application has a bug that causes it to fail after three requests.
[

‘ The first three calls to the APl
\ succeed and return random numbers.
2
PS> container run 8080:80 diamol/che8-numbers
el C asc e539aZlc
PS>
PS> http://localhost:8080/rng
80
PS> http://localhost:8080/rng
e
13
PS> http://localhost:8080/rng
4
PS> http://localhost:8@86/rng

{"type":"https://tools.ietf.org/html/rfc7231#section-6.6.1","title": "An|
error occured while processing your request.","status":500,"traceId":"|

TTeTa069d- 475762437 a8d9e6b. "
PS> T

PS> container 1s

CONTAINER ID IMAGE COMMAND

CREATED STATUS PORTS NAMES
351d1055ea10 diamol/che8-numbers-api |"dotnet//app/Numbers.."

24 seconds ago Up 20 seconds 0.0.0|0:8080->80/tcp  relaxed_
Jang

PS> R
The entrypoint process for The bug has kicked in and the
the container is still running, so app is broken. From now it
Docker thinks the app is healthy will always return an HTTP

and the container status is Up. 500 “Internal Server” error.
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You deploy a stack from a

Compose file. The Swarm Stacks are Swarm
looks at the desired state _ resources—the Docker
in the YAML and creates CLI lets you deploy,
the resources it needs. / list, and remove them.

PS>cd chi3/exercises /
PS> l

PS> i stack deploy -c ./todo-list/vl.yml todo
Creating network todo_default

Creating service todo_todo-web
PS
PS{ stack lsk

NAME SERVICES ORCHESTRATOR
todo il Swarm
3
PS> er service 1s
po) NAME MODE
REPLICAS IMAGE PORTY
o4mn31lysorri todo_todo-web replicated
1/1 diamol/cheé-todo-list:latest *:804
0->80/tcp
PS>

The stack creates a service using the definition in the Compose
file. This service will plug into an overlay network and publish
ports using ingress—those are the defaults in Swarm mode.
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Anchore knows about the major app platforms.
It has found the Java runtime and knows the
version details and installation path.

/

PS> Container exec anchore_engine-api_1 anchore-cli

image content diamol/openjdk java

Package Specification-Version Implementatio

n-Version Location

jrt-fs 11 11.0.5
/usr/local/openjdk-11/1ib/jrt-fs.jar

PS>

PS> Container exec anchore_engine-api_1 anchore-cli

image vuln diamol/openjdk all

Vulnerability ID Package

Severity Fix CVE Refs Vulnerabil

ity URL

CVE-2005-2541 tar-1.30+dfsg-6

Negligible None https://se

curity-tracker.debian.org/tracker/CVE-2005-2541

CVE-2007-5686 login-1:4.5-1.1

Negligible None https://se

curity-tracker.debian.org/tracker/CVE-2007-5686

Security issues are one of the main findings.
This is a minimal base image—it has a lot of
vulnerabilities but they are all of neglible severity.
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The container is not detached, so the logs are shown
in the terminal. —

PS>l container run diamol/chl5-timecheck:3.@
Environment: DEV; version: 3.0; time check: ©9:44.57
Environment: DEV; version: 3.0; time check: ©9:45.02
Environment: DEV; version: 3.0; time check: ©9:45.87
nment: DEV; version: 3.0; time check: ©9:45.12

L Running the container is like running the app in the
- foreground—my terminal session is used by the container
and | can’t enter any commands.
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Runs the missing component—a message handler The app logs that

that subscribes to the queue and saves new to-do it has subscribed
items to the database when it receives messages to the queue
|
& |
PS>docke m| = up -d save-handler
Creating todo-list_save-handler_1 ... done
PS>
PS>locier logs todo-list_save-handler_1
Connecting to message queue url: nats://message-queue:4222
Listening on subject: events.todo.newitem, queue: save-handle

PS>

PS> =1 logs todo-list_save-handler_1

Connecting to message queue url: nats://message-queue:4222
Listening on subject: events.todo.newitem, queue: save-handle
r

Received message, subject: events.todo.newitem

Saving item, added: 1/3/2020 2:53:55 PM; event ID: be7ddeeb-b
b6f-4dc6-8e5a-88915f85cc47

Item saved; ID: 1; event ID: be7ddeeb-bbéf-4dc6-8e5a-88915f85
cca7

x

|
When | add an item in the web app, the published message
gets received by the handler. It inserts the data into the SQL
database—the ID comes from Postgres.
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docker node update —-availability active nodeS
odes
(local) root#192.168.0.47
docker node promote nodeS
ode nodeS promoted to a manager in the swarm.

s docker node 1s

D smsmae szamne TEE so_seamns ENGINE VERSION
Ihsqzs6£51y18bcwizdasiznd1 nodel Down Active Unreachable
ly1azbawotuvtytlattcadcyb||*  node2 Ready Active Leader

node3 Ready Drain Reachable
funict 1x5c£1rnt341270776gbu| noded Ready Active
21xaa1g3w8 1 ogpbw3mi pxm27: nodes Ready Active Reachable

(local) root#192
0 0 al manager node achable, b e
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The manifest lists all the image tags | want as variants
for my multi-arch image.

PS> manifest create "$dockerId/ch16-folder-list" "$doc

kerld/ch16-folder-list:1linux-amd64" "$dockerId/chi6-folder-1
ist:linux-arme4" “$dockerId/chi6-folder-list:linux-arm"

Created manifest list docker.io/sixeyed/ch16-folder-list:lat
est

PS>

PS> manifest push "$dockerIid/ch16-folder-list™

sha256: f97680eceb5c88bc2024bed5ded53311e968f5f330fae72558b0f
8azelfad13e

PS>
PS>

sixeyed/ch16-folder-list +r

By sixeyed + Updated a minute ago

(o |

& pulls 3

Overview Togs

Sorety Newest -

latest

dockr pollsaeyedichi6 ederdiares [)
Lastupdared a it ago by siveyes

inuamdss 2638

226m8
256M8

nudarmes

Pushing the manifest creates a multi-arch image
in the registry—Docker Hub shows that there are
Intel and Arm variants of the image.
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The compose file specifies the dev environment for every component,
with a feature override in an environment variable to enable metrics.
(

PS>c chi8/exercises \‘

PS>
psfascier—comose w -a]
Creating network "exercises_iotd-net" with the default dr

iver

Creating exercises_accesslog 1 ... done

Creating exercises_iotd_1 ... done

Creating exercises_image-gallery_1 ... done

PS>

PS> 1 http://localhost:8030/config
{"release":"19.12","environment":"DEV", "metricsEnabled":"

true"}
>
PS> . http://localhost:8020/config

{"release":"19.12","environment": "DEV", "managementEndpoin
{K’ ts":"health, prometheus”, "apodurl™: "https://api.nasa.gov/p

lanetary/apod?api_key="}
P

localhost:8010/config

PS>cl http:
{"Release":"19.12","Environment": "DEV", "Metrics":{"Enable
d":tru "Apis":{"access":{"Url":"http://accesslog/access

-log"},"image":{"Url":"http://iotd/image"}}}

P

Each config APl shows the settings for the component; all

show the same release cycle from default config, the environment
name from the dev override file, and the metrics setting from the
environment variable.
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Creates a secret from a local file—the secret is encrypted in
the Swarm databa(se and in transit from the manager nodes.

y
PS>c secret create todo-list-secret ./todo-list/secrets/sec
rets.json
y2v9wlkbp71w2olkhybrpeeme
PS>
PS> or secret inspect --pretty todo-list-secret
ID: y2v9wlkbp7iw2olkhybrp6eme
Name : todo-list-secret
Driver:
Created at: 2019-11-21 13:40:21.2833795 +0000 utc
Updated at: 2019-11-21 13:40:21.2833795 +0000 utc
PS> T

|
You can inspect secrets all you like, but you won’t see the original
unencrypted contents. The only place you’ll see that is inside a
container that uses the secret.
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A Fluentd container runs on every node in the cluster. Application containers
always send logs to the local Fluentd instance on the node they're running on.

Elasticsearch is clustered, but the containers could run on any node. The Fluentd
containers send log records to the cluster, and Kibana reads from the cluster.
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The first container . N
runs in development The second container switches

mode, which is the to test mode using an environment
defauit for the image. variable—the test config file is already
in the image. ——

P4> container run -d -p 8083:Be|dia@h18-todo-li
st

8(53aAZf3dEbBeCd6747bEfo65510b16457CE23f18eS} 1feda7fe146
déage3d [

PS>

PS> container run -d -p 8684:80 -e DOTNET_ENVIRONME
NT=Test diamol/ch18-todo-list
3303c0cbd8148a467a0e13eIb289dT663361a013b35D36d2760D160D
Q226687

PS> | <« [ © @ localhost:5083/diagnosti =
Diagnostics i
NET
Release  Environment | Hostname Version
19.12 DEV 8c53a42f3d6b .NET

Core
3.01

1 DIAMOL To-Do it

€ ¢ @ @ @ iocalhost

Diagnostics

NET
Release  Environment | Hostname Version

19.12 TEST 3303c0cbd814 .NET

Core
I 301
\ ! ’

Each container merges the default config file with the environment
override file that matches the specified environment name.
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Runs the app using a project name. Compose creates containers
with the project name prefix, but the network doesn’t have a
prefix because it is explicitly named in the Compose file.

PS> container\rm -f $( container 1s -aq)
3dcaa8c57boa

PS>

PS> -f .\numbers\docker-compose.yml -f .\

numbers\docker-compose-dev.yml -p numbers-dev up -d
Creating network "numbers-dev" with the default driver

Creating numbers-dev_numbers-api_1 ... done

Creating numbers-dev_numbers-web_1 ... done

PS>

PS> -f .\numbers\docker-compose.yml -f .\

numbers\docker-compose-test.yml -p numbers-test up -d
Creating network "numbers-test" with the default driver

Creating numbers-test_numbers-api_1 ... done

Creating numbers-test_numbers-web_1 ... done

PS>

PS> -f .\numbers\docker-compose.yml /-f .\

-p numbers-uat up/-d

Creating numbers-uat_number: . done

Creating numbers-uat_numbers- web 1 ... done

PS>

\ The test configuration uses a different override file

\ and specifies a different Docker network, so the
| containers are isolated from the dev containers.

The uat environment uses a different network again, so all
three versions of the app can be deployed on one server.
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The Compose file for the image gallery application uses the Fluentd driver.

PS>cocker-compose -f ./image-gallery/docker-compose.yml u
p -d
Creating image-gallery_iotd_1 T pdone

Creating image-gallery_accesslog_1 ... done
Creating image-gallery_image-gallery 1 ... done

PS>

K Discover - Kibana

C ®

Actions»

fluentd*

Selected fields
Available fields

December 19th 20{9, 14:55:12.119 - December 19th 2019, 15:10:12.119 —  Auto v

° |
Time _source
RS ST ————
e
=

TonTaTneTTaT
48fa5471689aed1a246de481b57d36

container_name: /image-gallery_accessloq.1

Browsing to the image gallery Ul sends logs to Fluentd. In Kibana I've
filtered the logs to only show entries from the access-1og component.
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User
|

NodeJS

> Users browse to the web application,
which is a NodeJ$ app running in a
Docker container.

i
H
Java/ NET Go Go Go Java
Core
[ | [ | -
= = =
1 == Mongo ' Mongo MySQL — Mongo

/

The web frontend consumes

APIs from multiple microservices,
which own their own data. Services
and data stores all run in Docker
containers.

i
i
i
H RabbitMQ
i
i
\

Java Jav:
--+{ Shipping |- - =< Queue >- -
Yy
[

There’s an asynchronous workflow too, where services
publish and subscribe to messages on a queue. The services
and the message queue all run in Docker containers.
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All Docker resources have an inspect command,
but services are one of the few that have a pretty
flag to make the readout more usable.

(
v

PS> service inspect --pretty numbers_numbers-api
ID: 1xxad8xcqmrolnz@9cle3wz5u
Name: numbers_numbers-api

Labels:
com.docker.stack.image=diamol/ch@8-numbers-api:v3
com.docker.stack.namespace=numbers

Service Mode: Replicated

Replicas: 6

Updatestatus:

State: completed

Started: About a minute ago

Completed: 14 seconds ago

Message: update completed
+

|
This shows the status of the most recent update—or
the current update if one is in progress.
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Application containers write logs to stdout
either directly or using a log relay utility.

Docker collects
the logs and sends
them to Fluentd.

Application

Fluentd can filter and enrich log records, and then stores them
in Elasticsearch. Kibana is a Ul for querying data in Elasticsearch.
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The last part of the builder stage is Maven
generating the Java application archive (JAR).

[INFO] P Jaraplugin:3 1 1:dar (default.s A iotd 3 --
[INFO]| Building jar: C:\usr\src\iotd\target\iotd-service-0.1.0.jar

[INFO]

[INFO] --- spring-boot-maven-plugin:2.1.3.RELEASE:repackage (repackage) @ iotd-
[INFO] Replacing main artifact with repackaged archive

[INFO]

[INFO]

[INFO]

[INFO]

[INFO] Finished at: 2019-07-09T14:05:57+01:00

[INFO] === mimmmmmmmim o oo e o e e s o i s e e e
Removing intermediate container c29941e403b9
---> eab51d723848
Step 7/11 : FROM diamol/openjdk
---> 84ebada249eb
Step 8/11 : WORKDIR /app
---> Using cache
L78h5CE757E,
Step 9/11 : COPY --from=builder yusr/src/iotd/target/iotd-service-e.1.B.jar %
==—> ZT54708casen’ t\

The final application stage copies the
generated JAR file from the builder.
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There’s no default user in a new Gogs installation, so you need to click
Register and create one. The first user will have admin privileges.
)

@ Sign Up - Gogs
C @ 0]

@ Home  Explore  Help

% e fY &

A& Register B SignIn

Sign Up

Usernam diamol  f¢————————

Email®  chi1@diamol.com

Password *

Re-Type"

|
Create New Account \

Already have an account? Sign in now! |

[
You can use any password, but make sure to call the user
diamol—the Jenkins Cl build is expecting that.
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Runs a Redis container—no ports are published because
the queue will only be used by other containers.

PS>l network |create -d nat ch21
elecla949e04a96d5¢f6179a530a7e2a97fb7ccd7e11a22314ba13bf13d32
674

PS>

PS>docker container run -d --name redis --network ch21 diamol
/redis

1ef79b7d56fed54b03979d9246e00b73b57072b152fcle5fae0c7ff8a020d
eee

PS>

PS>cocker container logs redis --tail 1

[1188] @3 Jan 10:48:27.559 * The server is now ready to accep
t connections on port 6379

Redis writes out logs when it starts, ending
with a confirmation that it's ready for clients.
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Ingress networking means every node in the
Swarm listens for incoming traffic when a service
publishes a port. Any node could receive a request.

If a request reaches a If traffic hits a node that

node that isn’t running is running multiple containers,
any containers, it can’t the requests get load-balanced
handle the request itself between them.

so it transparently forwards

it to a node that can.
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PS> ./che7/exercises/image-of-the-day

PS>

PS>docker m up --detach

Creating image-of-the-day_accesslog_1 ... done

Creating image-of-the-day_iotd_1 ... done

Creating image-of-the-day_image-gallery_1 ... done

PS> ’f

{

Compose creates three containers, respecting the dependencies,
S0 image-gallery is started after the accesslog and iotd services
are running. - -detach runs the containers in the background, so
the logs aren't shown in the terminal session.
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For this build there is no . dockerignore file so the whole
of the current directory is sent to the engine as the build
context—2 MB, including files not referenced in the Dockerfile.

PS> or image build /-t diamol/ch17-build-context:v3 -f .\Docker
file.v3 .
[ sending build context to Docker daemon 2.1@4MB|
Step 1/3 : FROM diamol/base
---> 055936d39205

PS>iv rename.dockerignore .dockerignore

PS
PS> .dockerignore
docs/
Dockerfile*
PS>
PS>dock image build -t diamol/ch17-build-context:v3 -f .\Docker
file.v3 .
| sending[build context to Docker daemon 4.608kB]|
| Step 1/3 : FROM diamol/base
| ---> @55936d39205 \
\ \
Now there is a . dockerignore Excluding files that are not
file that excludes the docs used in the Dockerfile reduces

directory and the Dockerfiles. the build context to 4 KB.
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Buildx manages the builds across all the nodes and collects the output—this
would normally be in your CI job, and you’d see these lines in the log.

192168.08 OEN PoRT |

/ -
-9 n o &

5.94% (237.4MIB / 3.906GIB) / ORI ) & docker.com

4 R

ssh ip172-18-0-40-bnkhn63jagq00094igb0@direct.labf

sixeyed/ch16-folder-list-2

ted a minute ago

By -Up

latest docker pull sixeyedch6-folder st 24ate
Last updated a minute ago by

266 MB
266 M8

Buildx pushes the images and the manifest list to Docker Hub—I
have Linux 32-bit and 64-bit variants available for this image tag.
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Fetching content Remove the web containers
ensures the Nginx and Nginx serves the content
cache is populated. from its cache. —

PS> -s --insecure https://image-gallery.locall|

PS> -s --insecure https://image-gallery.localfapi/ipage
PS>

PS> container rm -f $( container 1s -f namezimage
-gallery_image-gallery_* -q)

8060020060

e47055ae7703

cc85fe4fc7c7

PS

PS> -i --head --insecure https://image-gallery.local

HTTP/1.1 200 OK

Server: nginx/1.17.6

Date: Mon, 23 Dec 2019 13:55:50 GMT
Content-Type: text/html; charset=utf-8
Content-Length: 746

Connection: keep-alive

X-Cache: HIT

X-Proxy: 214871e23088

PS> container rm -f image-gallery_iotd_1
image-gallery_iotd_1

p

PS> -i --head --insecure https://image-gallery.local/apil
/image

HTTP/1.1 502 Bad Gateway

Serve nginx/1.17.6

Date: Mon, 23 Dec 2019 13:58:49 GMT
Content-Type: text/html
Content-Length: 157

Connection: keep-alive

The API cache is short-lived and has expired by r;nw, so when |
remove the container | get an error instead of the cached response.
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+ Image Gallery

HTTP 200 Responses

In-Flight Requests

Memory In Use

Active Goroutines

The count of HTTP OK
responses served—a simple

~ view of how many requests

have been successfully
handled.

The number of concurrent

«_ HTTP requests being

handled, which shows
peaks in traffic.

How much memory the app
is using, which is a good
icator of saturation—
where the app could be
about to max out memory.

How many Goroutines are
running. T a good
measure of activity in a
Go app and can show
CPU saturation.
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Creates a config object in the Swarm using the contents of a local file
)

L2
PS> config create todo-list-config ./todo-list/confi
gs/config.json
1gsx2g4neogw5ul757d5qooai

L)

PS> config 1s

i NAME CREATED
UPDATED

1gsx2g4neogw5ul757d5qooai  todo-list-config 2 seconds

ago Seconds ago T

PS> \

Listing config objects shows you basic metadata:
the ID, name, and age of the object.
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This brings the app back

up to the desired state, but

with a specified scale of

three for the iota service.
\

This runs an interactive

shell in the web app
container, and connects

| the local session to that shell.

I \
PS> up -d --scale iotd=3 ’
image-of-the-day accesslog_ 1 is up-to-date /
Starting image-of-the-day_iotd_1 ... done
Creating image-of-the-day_iotd_2 ... done
Creating image-of-the-day_iotd_3 ... done
image-of-the-day_image-gallery 1 is up-to-date
PS,
PS] ler container exec -it image-of-the-day_image-gallery_1 sh
/et
/web # nslookup accesslog
nslookup: can't resolve '(null)': Name does not resolve
Name: accesslog
Address 1: 172.24.0.2 image-of-the-day_accesslog_1.nat

Sl
{

The container image has the ns1ookup tool, which

performs DNS name lookups. Querying the name of

the accesslog service returns the container’s IP address.





OEBPS/Images/9-2.jpg
Setting the daemon configuration in Docker Desktop
has the same effect as editing the daemon. json file.

|

© Settings X
& General
Daemon
& Shared Drives 3 f B
Configure the Docker daemon by typing a json docker daemon
configuration file.
{2 Advanced
@D Advanced
% Network This can prevent Docker from starting. Use at your own risk!
. {
Q Proxies “insecure-registries”: [
“registry.local:5000"
| Daemon ]
"metrics-addr™: "127.0.0.1:9323",
© Kubemetes “'experimemal : true
@ Reset

@ Docker is running

@ Koversiess rssing Docker will restart when applying these settings.

These are the two settings you need to enable metrics. The Docker
Engine needs to be running in experimental mode, and you need
to specify the port where metrics will be published with netrics-adar.
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Runs the web app and database containers from the app’s Compose file
:

PS> E up -d todo-web todo-db

Creating todo-list_todo-web_1 ... done

Creating todo-list_todo-db 1 done

| DIAMOL To-DoList

(-]

© @ localhost060 % e =

DIAMOL To-Do List Source Code

e TODO List
T There is much st to do
But there's always room to add more.
ttem Date Added

=
[

{
I've added items to the list, but they don’t appear—messages are being
published to the queue, but there are no subscribers to act on them.
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The container prints some static text, which is
different in each Dockerfile, and then runs an
0S command to print out the CPU architecture.

{

PS> container run diamol/ch16-folder-list:linux-amd64
Built as: linux/amdé4

Linux cdd7b64a7d7f 4.19.76-1linuxkit #1 SMP Thu Oct 17 19:31:
58 UTC 2019 x86_64 Linux

File.Txt

PS>

PS> container run diamol/ch16-folder-list:linux-armé4
Built as: linux/arme4

Linux fe7283fa28c7 4.19.76-linuxkit #1 SMP Thu Oct 17 19:31:
58 UTC 2019 aarch64 Linux

file.txt

PS>

PS> container run diamol/ch16-folder-list:linux-arm
Built as: linux/arm32

Linux d86afdg84e2c7 4.19.76-linuxkit #1 SMP Thu Oct 17 19:31:
58 UTC 2019 armv7l Linux

fitertxt
PS> /

You don’t need to use the platform flag—this is an
Arm image, so Docker Desktop uses emulation when
you’re running on an Intel machine.






OEBPS/Images/11-13.jpg
The Docker registry APl is available from
the domain name | added to my hosts file.
The _catalog endpoint lists all image
repositories.

J

PS> http://registry.local:5000/v2/_catalog
{"repositories":["diamol/ch11-numbers-api","diamol/ch11-n|
umbers-web" ]}

PS>
PS> | http://registry.local:5000/v2/diamol/chl1-numbers
-api/tags/list

{"name":"diamol/ch11l-numbers-api”,"tags":["v3-build-2"]}
PS>
PS> http://registry.local:5000/v2/diamol/chll-numbers
-web/tags/list
|(”name" :"diamol/ch1l-numbers-web","tags":["v3-build-2"] }|
PS5

{

There is a single tag for the web application
image—this was built and pushed by the CI
job. You can see the tag name ends with the
Jenkins build number.
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They have the same image ID, which
means it’s one image with two references.
|

PS> image 1s ~

>> --filter reference=image-gallery °

>> --filter reference=*/image-gallery

REPOSITORY TAG IMAGE ID SIZE
sixeyed/image-gallery  v1 dess387996fa 261MB
image-gallery latest de8s387996fa 261MB
There are two image references Both references have a virtual
that match the filters 1 supplied— size of 261 MB, but physically

these could be two different images.  they share the same image layers.
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PS> image 1s

REPOSTIOR: TAG IMAGE ID CREATED SIZE
* web-ping latest b44aeds1764b 10 minutes ago | # 75.3m8
diamol/ch@2-hello-digmol-web latest a7c850f696e4 28 hours ago 127MB
% diamol/che3-web-ping latest 737b256ab732 47 hours ago * 75.3MB
diamol/ch2-hello-digmol latest c4e9b34678b8 8 days ago 5.53MB
% diamol/node latest 9dfa73e10b19 3 weeks ago % 75.3MB
e c2acs latest 055936d39205 6 weeks ago 5.53MB
s> /‘
I
These three images all share It looks as though they each use 75 MB of disk
the same Node.js base layers. space, but this is the logical size of the image,

without accounting for shared layers.
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the custom counter in the Node.js application,
which records how many requests it has processed.

# Prometheus|Time Series Colle B image Gallery

o 4 in @ ®

Prometheus

\
|
O Enable query mstoryl

access_log_total

Load time: 11ms
Resolution: 14
Total time series: 3

Ex

te access_log_total s

Graph  Console

« »
Element Value
access_log_total{hostname="1828e742f382" instance="172.18.0.4:80" job="access-log"} 16
access_log_total{hostname="258ebdb830f5".instance="172.18.0.5:80" job="access-log"} 13

access_log_total(hostname=

59877e1cd84" instance="172.18.0.3:80" job="access-log"} 14

T
/ |
aph \

Prometheus is scraping all three Each container has processed lots
containers and storing the data of requests, which shows the load
received from each. The hostname balancing is working. They aren’t
label shows the container ID and exactly equal, but there’s a

helps distinguish the records. reasonably fair spread.
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The SDK image is based The runtime image is
on Debian. It will be updated  based on Alpine. It will

whenever the tools are be updated when there’s
upgraded or there’s a new an upgrade to the runtime
Debian release. or a new Alpine release.

The app image needs to use the latest SDK to be
sure of security fixes in the toolchain and the latest
runtime image to get the latest platform fixes. It will
also be updated when there are new releases of any
libraries the app uses, and finally when there are
any new features in the app itself.
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The Cl stages of the pipeline build and The deployment runs containers
run the app in containers and then on the remote engine, which is
push the built image to the registry. configured to be PWD.

|
x }ﬂmmmmkmv]
| mno @ =

o Pipeline diamol / of
= cranges / / i descrin
/ /
(D susa o / /
© oelet Ppeine =S [ [
& comure = ‘
- e Stage View l ‘
= Rename L 2
© Pieline Synta Declarative: Awak
| = Checkow  Verty  Bula  Tex  Push|| uar | Production
[Z] &t Poing Log S opprova
woms ot 28 % wems 4 tbms s
@ Build istory — - — 2 2 e
om -
om

om

om

Jenkins pipelines can be held awaiting manual approval—
clicking this box lets the user continue or cancel the job.
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The service ps command lists
the replicas for a service—this
shows a single replica running

Listing containers shows the replica
because it’s running on my machine.
The container name is built from the

on my Dock\er Desktop node. service name, replica number, and
( replica ID. \
L 2
PSF\ k service ps timecheck
10 NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
cdnjgcviiek2 timecheck.1 diamol/ch12-timecheck:1.0 | docker-deskt
op Running Running 8 minutes ago
PS>
PS> © container 1s
CONTAINER ID IMAGE COMMAND CREATED
STATUS NAMES
©@6abgac3aobé diamol/ch12-timecheck:1.0 "dotnet TimeCheck.d1ll" 8 minut
es ago Up 8 mfinutes timecheck.1.cdnjqcviiek2a65
7udlwirméeé
PS>
PS> or container rm -f $( container 1s --last 1 -q)
@6ab9ac3adb6
PS>
PS> service ps timecheck
ip NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR
PORTS
ed5pp5gozgxf timecheck.1 diamol/chl12-timecheck:1.8  docker-deskt
op Running Running 1@ seconds ago
cdnjqcviiek2 \_ timecheck.1 diamol/ch12-timecheck:1.0  docker-deskt
op Shutdown Failed 16 seconds ago "task: non-zero exit (137)"
E
PS>

When | remove the replica container manually, Swarm sees that the service
doesn’t have the required number of replicas, and it starts a replacement.






OEBPS/Images/20-8.jpg
Nginx uses memory and disk to cache responses from
upstream. If there’s no matching response in the cache,
the content is fetched and added to the cache.

reverse-proxy

I I image-gallery

If a matching response exists in the
cache, Nginx doesn’t call the upstream.
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The web app uses the API to generate random  The container is up, so it
numbers. It doesn’t check whether the APl is looks like the application

available when it starts. is working fine.
PS> rm\-f $( container 1s -aq)
304f917b35df
317b85ac7fcs
PSS Yy
PS> container run -d -p 883:80 diamol/ches-number‘s-webl

34
PS>
PS> container ls v/_/)
CONTAINER ID IMAGE COMMAND
CREATED STATUS PORTS NAMES
7b4ad7deesoss diamol/ches-numbersjweb  "dotnet /app/Numbers.."
3 minutes ago Up 3 minutes ©.0.0.0:8083->80/tcp  wizardly
_wright

| Numbers e

€« Cce D locaihost: noe

Source Code

DIAMOL Random Number Generator

[

\

!
The API service isn’t available, so the web app doesn’t work at all,
even though the server process is running and the container is up.
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The web container reads data from the database but doesn’t
insert data—instead, it publishes an event to the queue when
new data has been created.

I
i
h
i
i
.
i
i
i queue
i
.
i
:
i
h
:
i

The message handler listens on the queue for new-item
events, reads the data from the message content, and
inserts it into the database.
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There is one service here
called todo-web, which
Docker Compose will run
as a single container.

|
‘ 8020 iy

The container publishes
| 80 one port. The port on
[ the host is 8020, publishing

kf"itodo-web port 80 on the container.

_net: app-net

2

\

\
The container is connected |
to a Docker network, called
app-net in the Compose
specification.
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Running a new container from the same image prints the original
data, so the file edited in container £1 has not altered the image.

4

PS> container run --name f2 diamol/chee-file-display
https://www.manning.com/books/learn-docker-in-a-month-of-lunches
PS>

PS> container rm -f f1

f1

PS>

PS>c container cp f1:/input.txt .
Error: No such container:path: f1:/input.txt

PS> ?
Removing a container deletes its writeable layer. Any data in that layer is gone
forever, so you should view the container’s filesystem as transient storage.
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A single-node Swarm is fine for development or test
environments. You're limited to the compute capacity
of one machine, and you don’t get high availability, but
it works in the same way as a multi-node Swarm.

J

|
Al
=
N

A production Swarm has three managers, which gives high availability
for the cluster database, scheduler, and monitoring. Three managers
can run a Swarm with hundreds of worker nodes, so you can run a lot
of applications at scale.
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Certificate Authority

The Certificate Authority (CA)
signs other certs—they’re
created with an expiry date
and are invalid after that.

Certs identify the CA that
created them, so there is
a sibling link between
server and client certs.

—,

Server cert Client cert
Server certificates are created for a Client certificates are created
domain. They’re not valid if the with a Common Name, which
server presenting the cert doesn’t could be a username. The name

have the same domain name. can be read from the cert.
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You can bind-mount a single file with Linux containers. When the target
directory already exists, the contents are merged with the bind mount.
[

PS> ./chee/exercises/bind-mount
PS>

PS> container run --mount type=bind,source="$( )/new/123.txt",
target=/init/123.txt diamol/ch@6-bind-mount

123.txt

abc.txt

def.txt

PS> # switch to Windows containers
PS>

PS> container run --mount type=bind,source="$( . )/new/123.txt",

target=C:\init\123.txt diamol/ch@6-bind-mount

C:\Program Files\Docker\Docker\Resources\bin\docker.exe: Error response

from daemon: invalid mount config for type "bind": source path must be

a directory.

SeeT’C:\Pr‘ogr‘am Files\Docker\Docker\Resources\bin\docker.exe run --help
|

{
You can’t bind-mount a single file with Windows containers. The feature
isn’t supported, and you'll get an invalid mount config error, telling
you the source for the mount must be a directory.
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The container image is packaged with a single config file, which
has default values but doesn’t represent an actual environment.

PS> container run -d -p 8086:80 diamol/chl18-image-g|
allery

d2a851fcadec527200e39fe8dc57008ad285bach24ee5f998966a06e4
a277fe7

PS>

PS http://localhost:8086/config

{"Release":"19.12","Environment": "UNKNOWN", "Metrics":{"En
abled":true},"Apis":{"access":{"Url":"http://accesslog/ac
cess-log"},"image":{"Url":"http://iotd/image"}}}

PS>
[

\
These are release-level settings that apply across all
environments, but the “unknown” environment value
tells you this app isn’t fully configured.
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The Docker image for this container is preconfigured
with Grafana and the dashboard for the application.

PRl 7 Home - Grafana

© Recent

& General

7y

[

Grafana can show many dashboards. From the
Home link you can list all available dashboards.

Y Filter by

9 Tags

-
88 Now dashiboard
5 New folder

88 importdashboard

Find dashboards on Grafana.com

 Clear
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The log options configure Docker to use at most three log files,
rolling on to the next one when the current file hits 5 KB in size.

(
|
k2

PS>cocker container run -d --name timecheck2 --log-opt ma
x-size=5k --log-opt max-file=3 -e Timer__IntervalSeconds=
1 diamol/ch15-timecheck:3.0

blfec71587794095c25d969211485b5bbbot762b8875F30c6982f7004
3918168

PS>

PS>docker container inspect --format='{{.LogPath}}' timec
heck2
C:\ProgramData\Docker\containers\blfec71587794895c25d9692
1f485b5bbb9f762b8875F30c6982f70043918168\b1fec71587794095
€25d96921485b5bbbof762b8875f30c6982170043918168-json. log
PS>

PS>! - C:\ProgramData\Docker\containers\blfec71587794095c2
5d96921f485b5bbbof762b8875f30c698270043918168\ | le
Name

Name

k. kooint
P

blfec71587794095c25d96921f485b5bbbof762b8875f30c698217004
3918168-json.log
b1fec71587794095c25d969211485b5bbbof762b8875F30c6982f7004
3918168-json.log.1
b1fec71587794095c25d969211485b5bbbof762b8875F30c6982F7004
3918168-json.log.2

config.v2.json
hostconfig.json

Inspecting the container only shows one file, but actually there
are three. When the third is full, Docker overwrites the first file.
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Runs Nginx in a container. The Compose override file
specifies a bind-mount to a local folder, which Nginx
uses for website configuration files.

PS> network create ch2e
4a4b1693cac29a9f0498f9d1e7bba23e68989d7b10500bc43b566bc81
4d4826¢

PS>

PS>cd ch2e/exercises

PS>

PS> C -f nginx/docker-compose.yml -f nginx/o
erride-linux.yml up -d

Creating nginx_nginx_1 ... done

PS>

pssl I Welcome o nin!

<« [ © @ localhost

Welcome to nginx!

If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.

For online documentation and support please refer to nginx.org.
Commercial support is available at nginx.com.

Thank you for using nginx.

T
l

There are no website config files yet, so Nginx serves its default
web page—the container publishes the standard ports 80 and 443.
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Rollback is a special type of update—it tells the Swarm to revert the service
to the previous specification, which is stored in the Swarm’s database.

d

timecheck
rollback: manually requested rollback

PS> service update --rollback timecheck

overall progress: rolling back update: 1 out of 1 tasks

717 TUnning
verify: Service converged

PS>

PS>

PS> service ps timecheck

jo} NAME IMAGE NOD

E DESIRED STATE CURRENT STATE ERROR
PORTS

vc3dscienctp timecheck.1 diamol/ch12-timecheck:1.@ doc

ker-desktop Running Running 7 seconds ago

dwj272z5tgwl
ker-desktop

\_ timecheck.1
Shutdown

edS5pp5goz|
ker-deskiop

\_ timecheck.1
Shutdown

cdnjqcviiek2 \_ timecheck.1

diamol/ch12-timecheck:2.@ | doc
Shutdown 8 seconds ago

diamol/ch12-timecheck:1.8 | doc
Shutdown 5 hours ago

diamol/ch12-timecheck:1.8 | doc

"tasf: no

ker-desktop Shutdown Failed 6 hours ago

n-zero exit (133~

PS>

PS> service logs --since 25s timechegk
timecheck.1.vc3dscienctp@docker-desktop | App version: 1.0; [time che
ck: 20:36.11

timecheck.1.vc3dscienctp@docker-desktop | App version: 1.@; [time che
ck: 20:36.16

timecheck}1.vc3dscienctp@docker-desktop | App version: 1.0; [time che
ck: 20:36{21

timecheck{1.dwj272z5tgwl@docker-desktop | App version: 2.0; [time che
ck: 20:36(01

The replica list shows four
containers—the running
replica is v1.0, rolled
back from the 2.0 update.

¥
(

Here are three log entries from

v1.0, the new replica from

the rollback—and one from the

previous v2.0 replica.
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registry.local is the new 127.0.0.1 is your

network name for your computer, computer’s “home”
which you added to the hosts file. IP address.
PS> ocal

Pinging registry.local |[12 1]|with 32 bytes of data:
Reply from 127.0.0.1: byte: Ime<ims TTL=128
Reply from 127.0.0.1: bytes=32 time<ims TTL=128
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Port 80 on the Node.js container is published
to port 801 on my host computer.

localhost:800/image

< C @
JSON  RawData  Headers

Save Copy Collapse All Expand All

logs: o

i

b -+

133%

.

Filter JSON

|
No logs so far—this number will increase
when other services use the log API.
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Deploying a stack with a new Compose file and an existing stack
name causes the stack to be updated to the new desired state.

$

PS>doch stack deploy -c ./todo-list/v2.yml todo
Updating service todo_todo-web (id: o4mn3lysorrizsiuox4zlu
rgt)
PS>
PS> © service ps todo_todo-web
p) NAME IMAGE

NODE DESIRED STATE CUR
RENT STATE ERROR PORTS
sryjzxm9ékub todo_todo-web.1 djamol/che6-todo
-list:latest | docker-desktop Running Run
ning 13 seconds ago
wftg6sazc74e \_ todo_todo-web.1  djamol/cheé-todo
-list:latest | docker-desktop Shutdown Shu
tdown 14 seconds ago
t57dupbturab todo_todo-web.2 djamol/cheé6-todo
-list:latest | docker-desktop Running Run
ning 17 secondS ago K
PS>

)
The update created a new replica and replaced the container
for the existing replica. The task list shows all containers—the
replaced container is in the shutdown state.
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Changes to source code trigger the pipeline, which builds and
pushes images and generates deployment YAML files with the
latest versions—they get stored in a separate Git repo.

v
Git repo for Cl pipeline Docker images
source code on registry
¥
'
i
Git repo for |
infrastructure |, _ _ __ ________________ S )
L
Ly
Production cluster
4
This is a simplified version of the canonical diagram from https://www.gitops.tech. /

[

A component in the production cluster monitors the image registry
and the infrastructure repo for any changes. When it sees a change
it grabs the latest YAMLs and images and starts the deployment itself.
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The v2 image optimizes the commands used to install
packages—the out-Null parameter I’'m using just hides
the build output (the same as /dev/null in Linux).

PS> ch17/exercises/socat

PS>

PS> image build -t diamol/chl7-socat:vl . |

PS>

PS> image build -t diamol/chl7-socat:v2 -f Dockerfile.v2 .
|

S

PS> image 1s -f reference=diamol/ch17-socat

REPOSITORY TAG IMAGE ID CREAT
ED IZE

diamol/chl7-socat  v2 6a9c527a6a43 8 min
utes ago 73.1MB

diamol/chl7-socat  vi1 95a357db49b8 13 mi
nutes ago 92.6MB

PS> \

The optimized image is 20 MB smaller,
but it is functionally exactly the same.
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You change a node’s availability from a manager node. Drain means all replicas on the node
are removed, and it won't be scheduled for any more work until the availability is changed.

docker node update --availability drain node$
odes

(local) root§192.168.0.4
docker node update —-availability drain node3
ode3

TTocal) zoot
s docker node 1s
i HOSTNAME STATUS AVAILABILITY ENGINE VERSION
Insqzs6£51y18bcwizdasiznal * | nodel Ready Active 2 19.03
Jy1azbeuotuvtytiatecadcubi node2 Ready Active 19.03.
Jdoobjps3ns1ikai fo3scme020 node3 Ready prain Reachable 19.03
noded Ready Active 19.03.
nodes Read Drain 19.03.

Managers and workers can both be set to drain, but a
drained manager is still an active manager node.
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The reverse proxy is the single external-facing component, publishing
ports 80 and 443 from the container to the server (or all the servers
in a cluster). All app containers are internal components.

to-do-list

reverse-proxy 3 v

i

® random-numbers
« to-do-list.com .9
* random-numbers.co.uk \ ]
« image-gallery.com ‘[

The routing rules in the reverse proxy use the host domain from the
client request to load the content from the application container.
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The official image on Docker Hub.
Built with a specific version of Open)DK.
]

Your own preferred
base image. Built on
a known version of
the official image,
packaged with

— custom steps, and
published with a
custom naming
scheme.

All your Java apps
are based on the
golden image, so
T they get the official
Open)DK setup
plus your custom
configuration.
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Runs the app in development configuration, using settings defined
in Compose override files, environment files, and secrets.

PS> - |container rm -f $( container 1s -aq)
a46a478e74f6
PS>
PS>l l‘x -f .\todo-list-configured\docker-comp
ose.yml -fv.\todo-list-configured\docker-compose-dev.ym
1 -p todo-dev up -d
Creating network "todo-dev_default" with the default dr
iver
Creating todo-dev_todo-web_1 ... done
PS>
| PS> http://localhost:8089/1ist H
Total Received % Xterd Average Speed Time
Time Time Current

Dload Upload Total
Spent Left Speed

o 2] ] 2} 2] 2] ] 0 -
100 2620 0 2620 2] 0 2620 0 -
100 2620 0 2620 2] 0 2620 o -
cofeaficen, selinaton: Btk
PS>
PS> o~ container logs --tail 4 todo-dev_todo-web_1

info: Microsoft.EntityFrameworkCore.Database.Command[20
100]

Executing DbCommand [Parameters=[], CommandType="
Text|, CommandTimeout='3@']

SELECT "t"."ToDoId", "t"."DateAdded", "t"."Item"
FROM "ToDos" AS "t"

LY
\ \
Using the app causes log The development configuration
entries to be written. writes lots of logs, including the
SQL statements sent to the

database—these aren’t produced
in the default configuration.
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With a multi-stage build, the app is compiled inside a container.
The SDK image is multi-arch, so this is compiled for Arm CPUs
using Docker Desktop’s emulation.

/

v
Step 11/11 : COPY --from=builder /out/ .
---> 3dbd124a2da3
Successfully built 3dbd124a2da3
Successfully tagged diamol/ch16-whoami:linux-armé4
S

PS>iocker image inspect diamol/chl6-whoami:linux-armé4 -f *{
{.0s}}/{{.Architecture}}'

linux/arme4

PS>

PS> info -f '{{.0SType}}/{{.Architecture}}'
linux/x86_64

PS> f

f
The image architecture is Linux on Arm 64-bit, even though the
Docker Engine is running on an Intel/AMD 64-bit machine.
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Steps 2 through 5 all come from the
cache because the input is unchanged.

PS> image build -t web-ping:v2 .

Sending build context to Docker daemon /4.096kB
Step 1/7 : FROM diamol/node

===> 9dfaz3010h19

Step 2/7 : ENV TARGET="blog.sixeyed.com"
---> Using cache

---> 184364920df8

Step 3/7 : ENV METHOD="HEAD"

---> Using cache

---> aeac2009c2d8

Step 4/7 : ENV INTERVAL="3000"

---> Using cache

---> f255921aee9b

Step 5/7 : WORKDIR /web-ping

---> Using cache
===>—2f11edovsess

Step 6/7 : COPY app.js .

Step 7/7 : CMD|["node", "/web-ping/app.js"]
/’n 2d431f8776f9
| ~Removing intermediate container 2d431f8776f9
---> f7f7ec332dd1
Successfully built f7f7ec332dd1
Successfully tagged web-ping:v2

Step 7 executes even though Step 6 executes because
the input hasn’t changed, the copied file contents
because the cache was have changed.

broken in step 6.
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Jenkins has powerful automation support, which I’ve set up in the
Docker image. When this container starts, the app is ready to use.
y

{

£3 Dashboard [lenkins]

% diamol/diamol - Gogs

U @|localhost8080

Jenkins

& People Al

= Build History s w Name | Last Success Last Failure Last Duration
R Credentiais (@ & wn  w srmn-#1 ot ses
Bulld Queue - RS toralures ERSS for st sestbulds |

loon: SML
Legend EYRSSforal
Nobuids in the queue |
|
|
|

Build Executor Status

1 idie
2 1de

|

The diamol job is already configured—it fetches code
from the Gogs server and builds the application for

this chapter. But the job ran before Gogs was set up,

so it couldn't connect to the Git repository and it failed.

There’s also an admin -
account set up. Log in here
with username diamol and
password diamol.
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This is running in an interactive container. I’'m using Windows, so | can see
the standard Windows folders from the image and the host-arive mount.

Microsoft Windows [Version 10.0.17763.864]
(c) 2018 Microsoft Corporation. All rights reserved.

C:\>1ls
Volume in drive C has no label.
Volume Serial Number is E@75-7D83

11/27/2019 ©3:30 PM <DIR> host-drive
11/@8/2019 ©9:35 AM 5,510 License.txt
11/27/2019 ©7:57 PM <DIR> Users
11/27/2019 ©7:57 PM <DIR> Windows

T FIIe(s) J,606 DyTE

3 Dir(s) 21,297,627,136 bytes free

C:\>1s host-drive
Volume in drive C has no label.
Volume Serial Number is E@75-7D83

Directory of C:\host-drive
09/15/2018 ©7:33 AM <DIR> PerflLogs
11/27/2019 ©3:10 PM <DIR> Program Files
11/06/2019 ©9:07 PM <DIR> Program Files (x86)
11/27/2019 ©3:30 PM 6 THIS_FILE_IS_ON_THE_HOST_DISK
11/06/2019 ©9:16 PM <DIR> Users
11/06/2019 ©8:57 PM <DIR> Windows
T File(3) T bytes
5 Dir(s) 116,392,804,352 bytes free /

If | browse the host drive, | can see all the files on the machine
running Docker. This is a read-write mount, so | could edit files too...
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I’'ve removed all my containers, so Docker Compose will start new
containers for the API and for the web application, but | have no
dependencies, so they could start at the same time.

‘ The API container is healthy. It has been running for

\ 19 seconds, but it was created 23 seconds ago, so it
\ took 4 seconds for the app to start.

v |

up -d

PS>

Creating numbers_numbers-api_1 ... done
Creating numbers_numbers-web_1 ... done
o
PS>
PS> container 1s
CONTAINER ID IMAGE COMMAND
CREATED STATUS PORTS
MNAME:
206b42e16ba2 diamol/ch@8-numbers-api:v3 | "dotnet Numbers.Api..."

23 seconds ago

Up 19 seconds (healthy)

—Numbers_numbers-api_L

fta231f624157
23 seconds ago

diamol/ch@8-numbers-web:v3
Up 12 seconds (healthy)

0.0.0.0:8087->80/tcp

"cmd /S /C dotnet Ut.."
0.0.0.0:8088->80/tcp

HTTPCheck:

kontainer logs numbers_numbers-web_1
status OK, url http://numbers-api/rng, took 3176éms

HTTPCheck:

status OK, url http://numbers-api/rng, took 115ms

\

The web container is up, so the
dependency check succeeded,
but it took 11seconds to

start, which is much longer
than it should have taken.

x

N
That’s because the container has been
restarted. There are two logs from the
HTTP check. The first check failed because
it took too long to get a response from
the API. The container exited, Docker
restarted it, and this time the HTTP
check passed.
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Adding the Prometheus client library enables metrics in the application container.

# HELP go_gc_duration_seconds A summary of the GC invocation durations.
# TYPE go_gc_duration_seconds summary

go_gc_duration_seconds{quantile="0"} 0
go_gc_duration_seconds{quantile="0.25"} 0
go_gc_duration seconds{quantile="0.5"} 0
go_gc_duration_seconds{quantile="0.75"} 0
go_gc_duration_seconds{quantile="1"} 0

go_gc_duration_seconds_sum 0
Qusati 4 2

Fo—go— = —
# HELP go_goroutines Number of goroutines that currently exist
# TYPE go_goroutines gauge

go_goroutines 42

# TYPE go_info gauge

go_info{version="gol.13.1"} 1

# HELP go_memstats_alloc_bytes Number of bytes allocated/and still in use.
# TYPE go_memstats_alloc_bytes gauge

go_memstats_alloc bytes 2.804704e+06

Metrics are in the same Prometheus text format but the values are specific to the
application runtime—this is a count of active Goroutines in the Go application.
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Browsing to the published port on the host
computer; the content comes from the container.
|

locahosts088/

Hello from Chapter 2!

This is Learn Docker in a Month of Lunches.
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The REST API is a simple component that just publishes
a new-item event, and that triggers all the existing logic
in the message handlers. l

PS>dock I -f docker-compose.yml -f docker-compose-aud
it.yml -f docker-compose-api.yml up -d todo-api

Creating todo-list_todo-api_1 ... done

2

PS> http://localhost:8081/todo -d ‘{"item":"Record promo
video"}' -H 'Content-Type: application/json®

PS>

PS> logs todo-list_audit-handler_1

Connecting to message queue url: nats://message-queue:4222
Listening on subject: events.todo.newitem, queue: audit-handl
er

AUDIT @ 1/3/2020 4:06:24 PM: Finish DIAMOL Chapter 21
AUDIT @ 1/3/2020 29 PM: Start DIAMOL Chapter 22
AUDIT @ 1/3/2020 30 PM: Record promo video

|- DIAMOL To-Do List

cC e

DIAMOL To-Do List Source Code

A Home Finish DIAMOL Chapter
21

Friday, January 3,
2020

+

Start DIAMOL Chapter
22

Friday, January 3,
2020

To-do list

Record promo video

Friday, January 3,
2020

The save handler runs in Add a new item through the J
the same way, so the data AP, and it is shown in the audit
added through the API is handler, with the original items

shown in the web app. added through the web app.
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Merging this many Compose files together is brittle, but the overrides are
just there to demonstrate update features. Normally you’d have fewer.

|

PS> - ose -f ./numbers/docker-compose.yml -f ./numbers/prod.ym|
1-f /numbers/prod healthcheck.yml -f ./numbers/prod-update-config.ym|

1 -f ./numbers/v5-bad.yml config > stack.yml

WARNING: SOme Services (numbers-api, NUmMDers-web) Use tne  aeploy Key

, which will be ignored. Compose does not support 'deploy' configurati

on - use “docker stack deploy’ to deploy to a swarm.

PS>
pS>docker stack deploy -c stack.yml numbers

Updating service numbers_numbers-api (id: 1vr@odj82dexpegpfb9jhjhon)
Updating service numbers_numbers-web (id: f42rvjéilmjt3olpefjcj322ni)

PS>

PS>docker service inspect --pretty numbers_numbers-api
ID: 1vreodjs82dexpegpfbojhjhon

Name: numbers_numbers-api

Labels:

com.docker.stack.image=diamol/ch@8-numbers-api:v3
com.docker.stack.namespace=numbers
Service Mode: Replicated

Replicas: 6
UpdateStattis:

State: rollback_completed
Started: 42 seconds ago
Message: rollback completed

|
P’ve deployed the vs image
tag, but the service is running

six replicas from the v3 tag. That’s because the update to v5 failed,

and it has been automatically rolled
back to the previous version.
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Container 1 sets an environment Container 2 sets its own value, different
variable that overrides the default. from the image and container 1.

TARGET=google.com i TARGET=docker.com

/ Computer

f

The Docker image séts a default environment variable.
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The pipeline produces
the image and uses it
in end-to-end tests
with config overrides
and feature settings.

.

The test environment
uses the image with
bind mounts to load
config overrides—in
reality there will be
multiple test
environments.

The production cluster
has settings stored in
config objects and
secrets, which are
applied to the image
as override files.

Production

The single image is

Developers may use
the production image
to replicate a live issue,
with config overrides
and feature settings
replacing secrets.

generated by an automated
process and promoted
through environments.
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This container loads config from the image, from the override file
in the bind mount directory, and from the environment variable.

(
\
Y

PS> container run -d -p 8082:80 -v "$(pw)/config/d
ev:/app/config-override"” -e NODE_CONFIG='{\"metrics\": {\
"enabled\":\"true\"}}' diamol/ch18-access-log

S6S0Zavasuayl7Iet2ISICeea58 2T IZITUTI6e00255uT 25 16T 2uysa

dfa8264

PS>

PS> http://localhost:8082/config
{"release":"19.12","environment": "DEV", "metricsEnabled":"
true"}

PS *
|

The release cycle comes from the default file, the environment
name from the override file, and the metrics setting from the
environment variable.
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The early part of the pipeline is the same as the simple one
we’ve used in this chapter, except that the registry is a private
staging area, not the final repository for distribution.

|
)
!

k]

Build Test Private publish|
. Run test Images to
Bu;:achsker suite in private
9 containers registry
Public publish Sign images Verify images
Images to o Security
public A:p:]yam?;tgl scanning &
registry 9 policy check
f f i
I ) I
Now the images are Applying digital You can use open source

published to the main
registry—it could be
Docker Hub or a
registry restricted to
your organization.

signatures asserts
that the images have
passed verification
and they are good
to deploy.

or commercial tools to

scan for vulnerabilities

and apply policies, such
as using approved base
images.
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Docker Swarm or Kubernetes
can turn many servers into a
single cluster with an API for
managing applications.

You deploy apps by sending a YAML
file to the cluster API. The orchestrator
schedules containers to run on the servers.

Each server is running Docker. Z

Containers are managed by the ———» The servers in the cluster can be
orchestrator, and the server any system that Docker supports.
reports back with health updates. One cluster can have a mix of Linux

and Windows servers running on
Intel or Arm CPUs.
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(1 roo —
s wget -0 ~f/.docker/cli-plugins/docker-buildx https://github.com/docker/buildx/releases/Ho
[Connecting/to githufj.com (140.82.114.3:443)
[Connecti to githul-production-release-asset-2e65be.s3.amazonaws.com (52.216.146.195:44
I B . -
0.0M 0300:00 ETA

root@192.168.0.8 ~
s chmod|a+x ~/.docker/cli-plugins/docker-buildx

£03192 163 0 9

$|docker buildx create ——use --name chl6 —-platform linux/amdé4 nodell
cirts

$8192 168 0 B o
Sldocker buildx create —-append -—-name chl6é --platform linux/386 node2 |

1 rootf192.168.0.8 ~
$ docker buildx 1s
IAME/NODE_DRIVER/ENDPOINT STATUS _ PLATFORMS

khle * docker-container

ch160 nodel inactive linux/amdé4

chl61l node2 inactive linux/386

nodel nodel running linux/amdé4, linux/386
ode2 docker

node2 node2 running linux/amd64, linux/386

[default docker
default default running linux/amdé4, linux/386
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Using the Docker command line with a remote host—tbhis is the local machine, but I could
use a server on the network or in the cloud by specifying its IP address or domain name.

&

PS> k --host tcp://localhost:2375 container 1s
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS

NAMES
651d1c296e63 diamol/apache “bin\\httpd.exe -DFOR.." About a
minute ago Up About a minute ©.0.0.0:61854->80/tcp, ©.0.0.0:61853->443
/tcp  goofy_williams
PS>
PS>curl http://localhost:2375/containers/json
{3 51d1c296e634e1d8693a7a8af979bf0a048e532e4868Tab216537de3f16348",
"Names": ["/goofy_williams"],"Image": "diamol/apache","ImageID": "sha256:0303

15a5343f1e24f221554c64ad8f03403721827b9f7ac901d3694bd7fd3e24" ommand": "b
in\\httpd.exe -DFOREGROUND","Created":1574867870,"Ports":[{"IP":"8.0.0.0",
"PrivatePort":443,"PublicPort":61853,"Type": "tcp"},{"IP":"0.0.0.0","Privat
ePort":80, "PublicPort":61854,"Type": "tcp"}], "Labels":{}, "State":"running",
"Status":"Up About a minute","HostConfig":{"NetworkMode":"default"},"Netwo
rkSettings™: {"Networks™:{"nat™:{"IPAMConfig":null,"Links™:null,"Aliases":n
ull, "NetworkID": "d@3a7ae545bcbe92flacf61d971e27426de9d315834874€9108096733
4cc5e0c”, "EndpointID": " f961bfac48d66T2e72f028eba57fdb94925eb22bfbd42bbe
bf4eaf33ceed1”, "Gateway":"172.26.208.1","IPAddress": "172.26.208.210", "IPPr
efixLen":16,"IPv6Gateway":"", "GlobalIPv6Address":"","GlobalIPvéPrefixLen":
0, "MacAddress":"00:15:5d:cc:80:79", "DriverOpts":null}}}, "Mounts":[1}]

PS>

The command line is just one client of the Docker API. You can call
it directly with curl to perform all the actions the CLI supports.
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Grafana configured with a dashboard to visualize key metrics. It fetches
the data from Prometheus using PromQL queries for each dashboard panel.

Prometheus configured to scrape
metrics data from all the application
containers and the Docker Engine.
Configuration can support running
at scale with many containers and

*wwm

/metrics Imetrics Imetrics Imetrics
]
Docker Engine configured to export Metrics endpoints built into each application.
metrics. It provides infrastructure- They provide runtime-level detail about
level detail about containers and performance and custom metrics for

the host machine. application behavior.
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The new deployment configures Fluentd to filter out access-log
records so they won’t be stored in Elasticsearch, and it increases
the logging level of the image gallery application.

PS>docke am -f fluentd/docker-compose.yml -f fluent
d/override-gallery-filtered.yml up -d

fluentd_kibana_1 is up-to-date

Recreating fluentd_fluentd 1 ...

Recreating fluentd_fluentd_1 ... done
PS>
PS> e - -f image-gallery/docker-compose.yml -f

image-gallery/override-logging.yml up -d
Recreating image-gallery_iotd 1 ...
Recreating image-gallery_iotd_1 ... done
image-gallery image-gallery 1 is up-to-date

K Discover- Kibena B B image Galer
« c @ © @ localhost:s601/app/kibanat /discoverl_g=0;
t @log_name @ @ M * gallery. iotd.dianol/ch18-inage-of -the-day
© otinestamp @ @ [0 % Decenber 19th 2019, 15:13:48.000
t _id @ @ @ * 18y4Hn8B20TnpNFy4Lly
t @am# fluentd-20191219
* m* -

t @ Q@ * access_log
@ QM * gallery

t container_id @ @ [0 % aed173b98e39dBa2fee3ab31364adb5632F9adf2b9
616c0831127b4bae691c4

t container_name @ @ (I % /image-gallery_iotd_1
t fluentd-container @ @ [ * 5fScebddes8s

image_nane @ @ [ # dianol/ch18-inage-of-the-day|

t log @ @ @ % 2019-12-19 15:13:48.452 DEBUG 23 --- [p-nio
-88-exec-8] iotd.InageController
: Loaded APOD inage from cache

service_nane Q@ Qm* iotd

t source @ Q@ * stdout

f

There are no new access-log entries in Elasticsearch, but the
debug logs from the Java app are now recorded, and they
have the additional metadata set from Fluentd.
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If you have access to a Swarm manager, you
can see all the contents of a config object.

)

L2

PS} config inspect --pretty todo-list-config
ID: 1qsx2g4neogw5ul757d5qooal
Name: todo-list-config
Created at: 2019-11-21 11:35:18.8732004 +0000 utc
Updated at: 2019-11-21 11:35:18.8732004 +0000 utc
Data:
{

"Logging": {

"Default": "Information",
"Microsoft": "Warning",
"Microsoft.Hosting.Lifetime": "Warning"

iy
1
"AllowedHosts": "*",
"Database”

"Provider": "Postgres"
3

¥

PS> (

This is the exact content of the file | uploaded to create the config
object, and it’s the data that gets loaded into the container filesystem.
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The web app uses the iota APl
containers, so sending traffic to
the website will make requests

to the iotd containers.

Scaling up the iotd service creates
two new containers. Along with the
original container, this gives the scale

of three. r/

} PS> m up -d --scale iotd=3

| image-of-the-day_accesslog_1 is up-to-date

/ Starting image-of-the-day_iotd 1 ... done

/ Creating image-of-the-day_iotd_2 ... done
Creating image-of-the-day_iotd_3 ... done
Image-oT -the-day_image-gallery I 1s up-to-date
PS>
PSpi# browse to http://localhost:801@ and refresh
PS>
PS> - logs --tail=1 iotd

iotd_2

iotd_3

rom NASA
iotd_1

rom NASA

n] iotd.Application
.73 seconds (JVM running for 5.366)

1] iotd.ImageController

1] iotd.ImageController

Attaching to image-of-the-day_iotd_2, image-of-the-day_iotd_3, image-o
f-the-day_iotd_1

| 2019-10-08 08:05:38.689 INFO 1 --- [ mai
: Started Application in 4

| 2019-10-08 08:06:06.430 INFO 1 --- [p-nio-8@-exec-
: Fetched new APOD image f

| 2019-10-08 08:07:44.656 INFO 1 --- [p-nio-8@-exec-
: Fetched new APOD image f

T

(

This shows the most recent log entry from each of the iota containers. You can see
that iotd_3 and iotd_1 have received requests from the web app and fetched image
data; iotd 2 hasn’t yet handled any requests.
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The config command is useful for dry-runs—it merges
the input files, validates the final output, and displays
it, if it is valid.
/
v
PS>

= -f .\todo-list\docker-compose.yml
-f .\todo-list\docker-compose-v2.yml config
networks:

app-net:
external: true
name: nat
services:
‘todo-web:
environment:

app-net: {}
ports:
- target: 80

version: '3.7'

|
The image tag is the only value that comes from
the override file; the rest of the settings come
from the base Compose file.
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Run Fluentd in a container. This listens Run an application container

on port 24224 for log entries, and the using the Fluentd logging
configuration file sets it to echo all the driver—Docker will send all
logs it receives to stdout. - container logs to port 24224,

PS>cd ch19/exercises/fluentd [

PS:

PS>docker container run -d -p 24224:24224 --name fluentd

-v "$(pwd)/conf:/fluentd/etc" -e FLUENTD_CONF=stdout.conf \
diamol/fluentd
3bdcebbeb318b0030d777e7603d6bdbe52787660bdagdao5927a2afo0 |
7606563 |
pS )
PS>docker container run -d --log-driver=fluentd --name ti| /
mecheck5 diamol/ch19-timecheck:5.0 il

S055U13T5TT8 /b4 1aT5d80180add/d/90 a5 oYbTd/D8E/CE/ 15U
ffelble
D
PS> ocker container logs timecheckS
Error response from daemon: configured| logging driver doe
(/.s not support reading
P

PS> container logs --tail 1 fluentd
2019-12-19 11:57:36.000000000 +0000 5b950139ff87: {"conta
iner_name":"/timecheck5", "source":"stdout","log":"2019-12
-19 11:57:36.810 +00:00 [INF] Environment: DEV; version:
5.0; time check: 11:57.36","container_id":"5b950139ff8766
414c3a801804207a70d337a5752606Ta7b8e7ce7190ff61b16" }
PS 7\

\
The Fluentd logging driver This Fluentd setup echoes logs to
doesn’t show application stdout, so | can see my timecheck
container logs. logs in the Fluentd container.
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| FROM openi |

The final stage copies
the tested application.

Stage 1 downloads Stage 2 copies the
dependencies and built application
builds the application. folder and runs tests.
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This is the original monolithic application
running in a container. It could be a 10-year-old
app running in Docker with no code changes.

|

New features are broken out into separate containers.
These are small components with their own release cycles
and can use a different technology stack from the monolith.

All external requests are sent to a single component, which routes
them to the monolith or to a new container based on the requested
route. The monolith can be broken down without a full rewrite.





OEBPS/Images/16-7.jpg
This is the Linux image variant—the container
fails because dir is not a Linux command.

/

4

PS> k container run diamol/ch16-folder-list

Built as multi-arch

Linux fea55b79e@c4 4.19.76-linuxkit #1 SMP Thu Oct 17 19:31:
58 UTC 2019 x86_64 Linux

/bin/sh: dir: not found

PS>
PS># switch to Windows containers

PS>

PS>dock container run diamol/ch16-folder-list

Built as multi-arch
'uname' is not recognized as an internal or external command

operable program or batch file.
PS>
I
The Windows variant also fails because
uname is not a Windows command.
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The Redis CLI uses the Redis messaging protocol. This container runs a
command that sends 50 messages with a 5 second wait after each one.

(

v
PS>dock run -d --name publisher --network ch2l diamol/redis
-cli -r 50 -i 5 PUBLISH channel2l ping
40998373d8c@db2b42e1c162114420e7118979a538868d2e84c0d9f81ebad
dif
PS>

PS> logs publisher
]
)

T

|
|

There’s not much to see—the output is the response code
from the CLI for each message send, which is just a zero.
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The host computer has a separate computer name, IP address, and disk.
Containers all share the host’s operating system, CPU, and memory.

--}— Hostname — Hostname
i i
i‘_ 1P address ;_ 1P address
- i Disk ] i Disk
container1 container2
Docker /
/ Operating System
Computer

\

|

\

v
— Hostname
— IP address
{— Disk
— CPU
— Memory

\

Each container has its own computer name, IP address, and disk.
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You need a single Compose file to deploy a stack, which you can generate
with the Docker Compose config command. The warning tells me there are
Swarm-only features in the Compose file.

PS>-© chl4/exercises

P

PS> /e -f ./numbers/docker-compose.yml -f ./numbers/prod.ym|
1 config > stack.yml

WARNING: Some services (numbers-api, numbers-web) use the 'deploy’ key
, which will be ignored. Compose does not support 'deploy' configurati
on - use “docker stack deploy’ to deploy to a swarm.

PS>

PS> stack deploy -c stack.yml numbers

Creating network numbers-prod

Creating service numbers_numbers-web

Creating service numbers_numbers-api

PS>

PS> stack services numbers

i NAME MODE REPLICAS
IMAGE PORT.

wd8lo4@iodrw numbers_numbers-api  replicated 6/6
diamol/qhe@8-numbers-api:latest

zmuxt3muhnjn numbers_numbers-web  global 1/1
diamol/qh@8-numbers-web:latest

PS> ?

)
Deploying the stack creates a global service with one replica running
on each node, as well as a replicated service with six replicas.
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PS> o "https://hub.docker.com/r/$dockerId/image-gallery/tags"

https://hub.docker.com/r/sixeyed/image-gallery/tags

ps>fi
@ sieyedimage.galeryTags - X

c @ @

hub docker.com//sixeyedimage-galiery/tags

Explore Signin Pricing Getstarted |

sixeyed/image-gallery fr & pulls 2

By sixeyed - Updated 5 minutes ago

Overview Tags
Tags (1)
vi A
The repository name is my There is only one tag in
account name sixeyed plus this repository, v1, but it

the name image-gallery. could contain several.
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The container just prints out file lists. In the final
image there are no contents for the docs directory,
because they were deleted in the Dockerfile.

/

PS> container run diamol/ch17-build-context:v2
app-
1s: docs: No such file or directory
init.txt
docs-
PS>
PS> history diamol/ch17-build-context:v2
IMAGE CREATED CREATED BY
SIZE COMMENT
©926479c3103 18 seconds ago /bin/sh -c rm -rf docs
a8
1c881085005 19 seconds ago /bin/sh -c #(nop) COPY dil
r:003bd48aeeddfde3s.. 2.1MB
b2cic2beloje 2 minutes ago bin/sh -c #(nop) CMD [
/bin/sh" "-c" "echo.. @B
055936039205 7 months ago /bin/sh -c #(nop) cMD ["
/bin/sh"] oB
<missing> 7 months ago /bin/sh -c #(nop) ADD fil
e:a86aealf3a7desfea.. 5.53MB

p:

PS> container
A

init.txt

docs-

README . md

whale. jpg

run 1c88108500f5

\

353 f

(

Runnir;g a container from that

penultimate layer shows the

files are there—the fi

nal layer

just hides the directory.

\
|

I
The penultimate layer is
from the copy instruction,
and this layer has all the files.
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The first builds with no cached layers take 10+ seconds. The
difference between v1 and v2 is the variability of the network.
\

\

2

PS> { image build -t diamol/ch17-je
nkins:vi . } | se TotalMilliseconds
TotalMilliseconds

16526.0536
PS> mmand { image build -t diamol/ch17-je
nkins:v2 -f Dockerfile.v2 . } | == TotalMilliseconds
TotalMilliseconds

12149.1303
PS>=cho 2.0 > jenkins.install.UpgradeWizard.state
PS>
PS> { image build -t diamol/ch17-je
nkins:vl . } | TotalMilliseconds
TotalMilliseconds

28675.8448
PS> £ image build -t diamol/ch17-je
nkins:v2 -f Dockerfile.v2 . } | <= © TotalMilliseconds
TotalMilliseconds

391.5283
7y

\

Changing the input file busts the cache in the v1 Dockerfile, and the
download happens all over again. v2 is correctly structured, so the
cache isn’t broken and only the changed layer gets executed.
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Run Traefik using a bind mount to connect to the Docker Engine.

|

PS> m -f traefik/docker-compose.yml -f traefik/ov
erride- 11nux yml up -d

Creating traefik_traefik_1 ... done
PS>

® Taefik x

© © localnost:8080/dashboard/#

:8080  :80
® HrTP
—— — S
o= T e
LR R LR
* v

{
The Traefik dashboard shows all the core components: entrypoints,
routers, services, and middlewares. You combine features to set up
reverse proxying for application containers.





OEBPS/Images/12-16.jpg
Creates a service with published ports in Docker Swarm, and
the ports are published on the ingress network. It’s the same
simple user experience as publishing ports for containers.

)\

i

PS>c service create --detach --name image-gallery --network iotd-n
et --publish 8010:80 --replicas 2 diamol/ch@9-image-gallery

OB ZUWCFaOTyANebpT R/ T

PS>

PS>docker service 1s

h) NAME MODE REPLICAS
IMAGE PORTS

m3vnejqgmmae accesslog replicated 2/2
diamol/ch@9-access-log:latest

7082uwcrdery image-gallery replicated 2/2
diamol/ch@9-image-gallery:latest *:8010->80/tcp

raubelu3445q iotd replicated 3/3
diamol/ch@9-image-of-the-day:latest

PS>

The service has two replicas, but it’s listening on a single port—actually
it’s the ingress that listens on the port and routes traffic to the replicas.
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Version 2 of the web application image includes a dependency
check, which makes sure the API is available before the app runs.
\

v

PS> container run -d -p 8084:80 diamol/che8-numbers-web:v2

- - ° diib SIS - ferk

PS>

PS> container 1s --all

CONTAINER ID IMAGE COMMAND
CREATED STATUS PORTS
NAMES

efc772abade7 diamol/ch@8-numbers-web:v2 cmd /S /C curl --fa."
18 seconds ago Exited (6) 13 seconds ago
blissful_william!

7b4d7dees8968 diamol/che8-numbers-web "dotnet /app/Numbers.."
About an hour ago Up About an hour 0.0.0.0:8083->80/tcp
wizardly_wright

PS>

There’s no API container running, so the dependency check fails
and the app doesn’t start—the container exits straight away.





OEBPS/Images/20-7.jpg
Generating a self-signed certificate and applying the Nginx
site configuration to use HTTPS for the image gallery app
|

image-gal

9 c e o &

gallerylocal.If you vsit this site, attackers could try o steal information like your

Firefox detected a potential security threat and did not confinue to image-
passwords, emails, o credit card details

What can you do about it

The issue is most likely with the web site, and there is nothing you can do to
resolve it

o o R v e e |
5 S o eV o 1 s i st
oot e proem ‘

Leam more. ‘

Aeanced \

ca-key.pem ‘
ca.password

ca.pem \
client-cert.pem

client-key.pem
server-cert.pem

server-key.pem

PS>

PS>r11 ./nginx/sites-enabled/image-gallery.local
PS>

nx/sites-enabled/image-gallery.local

PS>
PS> -f .\nginx\docker-compose.yml restar
nginx

PS>c ./nginx/sites-available/image-gallery-3.local ./r%i
Restarting nginx_nginx_1 ... done /

Browsers don’t like self-signed certificates, because they
could be fake sites trying to look authentic. They’re fine
for testing, and you can ignore the warning and proceed.





OEBPS/Images/15-12.jpg
Jenkins supports different types of credentials. These are secret files that can be presented

to jobs while they’re running. The certs were loaded from my local machine into the container
using Jenkins startup scripts.

€©r>ce e °

1o out

A Credentials /

dockerca.pem

Stores scoped to Jenkins
v Store | Domains
B s w(oata
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This is the startup life cycle. The container starts and then exits because its
dependencies are not available. The platform restarts the container, and now its
dependencies are available, the app starts correctly, and the health check passes.

II II II

Container #1 Container #1 Container #1
Status: Created Status: Exited Status: Up (healthy)
Checking dependencies Dependency check failed Restarted and working

@ o
I

Container #1 Container #2
Status: Up (unhealthy) Status: Up (healthy) \
App has failed Replaced and working \

This is the ongoing app life cycle. At some point the app fails and the health
checks fail repeatedly, so the container is flagged as unhealthy. The platform
creates a replacement container—maybe on another server—and when that is
running, the original unhealthy container is shut down.
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The ingress network is
always available—stacks
manage publishing and
unpublishing ports.

( Ingress T

Services are owned by the
stack—they get created and
updated on deployment and
deleted when the stack is
removed. |

Secrets, configs, and
networks can be managed
externally—created before
the app is deployed and
the stack connects
services to them.

Volumes can be externally
managed or managed by the
stack. Default volumes have
the lifetime of the stack; named
volumes persist when the stack
is removed.
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The node image has a minimal 0§
layer and the Node.js runtime installed.

The web-ping image uses the node image as
its base; it shares the 0S and runtime layers.

This image also uses the node image as its base, so the 0S
and runtime layers are shared between all three images.
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Containers are built with an API that
exposes metrics about the application.

Docker is configured to provide an APl
containing metrics about containers.

O

' Imetrics

|
Imetrics /

/metrics .
Prometheus runs in a container and collects data from the application

containers and the Docker Engines. It stores all data with the timestamp

when it was collected.
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I DIAMOL To-Doit

noe =

Source Code

TODO List

There is much still to do.

But there's always room fo add more.

Item Date Added

&+ Diagnostics

Finish DIAMOL chapter 6 Wednesday, 18 September 2019

Start DIAMOL chapter 7..  Wednesday, 18 September 2019
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The Cl job runs whenever

developers push code, and

usually on a nightly schedule too.
[

|
v

Cl job triggered Build stage Test stage Publish stage
Fetch latest Build Docker Run Push images
code images containers to registry
z 3
\

The CI server fetches the latest code, and the rest
of the work is all done in containers using the
Docker and Docker Compose command lines.
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A container with a config override—the Go application works
in the same way as the Node.js example, with a default config
file and support for overrides.

PS>: | chl8/exercises/image-gallery |

PS> v

PS> container run -d -p 8087:80 -v "$( u)/config/d
ev:/app/config-override" diamol/ch18-image-gallery

a73fob9238es 8 sThefrusIbafsar7s7oettorasStaasoeTetesas
89dd63c
PS>

PS> ht
{"Release"

//localhost:8087/config
9.12","Environment™: "DE

letrics":{"Enable

d":false},"Api "access":{"Url" /accesslog/acces
s-log"},"image":{"Url": "http://iotd/image"}}}
™ 3

This is now a full environment—the core config file has
been merged with the development override file.
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The CI process will use Compose Test environments can be

to run the app for automated minimal, with single servers Swarm or Kubernetes
tests and can even use it to using Compose to run the rather than Compose, but
build the app. app for user testing. you can still use the Compose

\\ \ format to define your app.

\

- <l

Developers will use Compose
to run the app locally, for
end-to-end testing.
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he full Grafana dashboard for the application. Each visualization is populated by a simple
Prometheus query. There is a dashboard row for each component, showing key metrics.

T
VAR LONTE O A

The final row shcws mfnrmatlon about the Docker Engine,
including con r metrics and configuration details.
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Runs the application specified Docker Compose creates containers for

in the Compose file in the the apps, using the directory name as
numbers directory the prefix for each container name.
PS> "//chle/exer‘cises
PS>
Pﬂ> = -f .\numbers\docker-compose.yml up -d
Creating[numbers_numbers-web_1 - done
Creating|numbers_numbers-api_1 [... done
PS>
PS> 0 -f .\todo-list\docker-compose.yml up -d
Creating todo list_todo-web_1 ... done
PS>
PS> -f _.\todo-list\docker-compose.yml up -d

todo-1list_todo-web_1| is up-to-date

S \

Runs the application specified Repeating the command doesn’t create
in the todo-1ist directory— a second copy of the app; Compose sees
Cnmpose creates the there’s already a :ontamev running that

application container. matches the app defini
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There are multiple Compose files in this directory. The .env file specifies
the default configuration for Compose, including the files to use and the
project name. |

PS> ./todo-list-configured \

PS>
PS>

Directory: C:\scm\sixeyed\diamol\ch1e\exercises\todo-1listconfigured

\
\
LastWriteTime Length Name |
05/11/2019 config i
06/11/2019 166 .env
06/11/2019 240|docker-compose-dev.yml
05/11/2019 597|docker-compose-test.yml
06/11/2019 168|docker-compose.yml
PS> up -d
Creating network "todo-test" with the default driver
Creating todo_ch1e_todo-db_1 ... done
Creating todo_ch10_todo-web_1 ... done

Running Compose commands without any argument uses the defaults from
.env, so it merges the core Compose file with the test environment setup,

creating a database container along with the web container.
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Sty pove
192.168.2.150
container1

Port: 8088 Docker listens on the computer’s physical
""""""""""" The host computer’s

T_ network and sends content into the container.
;
Computor physical IP address

The container’s
virtual IP address





OEBPS/Images/13-3.jpg
Listing tasks for the stack
shows all replicas for all
services, current and old.

There’s a single
service in the to-do
application stack.

\

|

PS> stack services todo L
REPLICA! IMAGE PORTS
o4mn3lysorri todo_todo-web replicated

2/2 diamol/cheé-todo-list:latest *:808
0->80/tcp
PS>
PS> stack ps todo
i NAME IMAGE

NODE DESIRED STATE CUR

RENT STATE ERROR PORTS
sryjzxmogkub todo_todo-web.1 djamol/cheé-todo
-list:latest | docker-desktop Running Run
ning 18 minutels ago
wftq6sazc7: \_ todo_todo-web.1  diamol/cheé6-todo
-list:latest 7| docker-desktop Shutdown Shu
tdown 18 minutles ago
t57dupbturab todo_todo-web.2 diamol/che6-todo
-list:latest | docker-desktop Running Run

ning 18 minut:
P

i)

PS>

stack rm todo
Removing service todo_todo-web
Removing network todo_default

PS>

-

Removing the stack removes all resources, including
the default network created by the Swarm, because
the Compose file didn’t specify one.
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Creates a service called timecheck that will run in a single container
somewhere on the Swarm, using the diamol/ch12-timecheck:1.0 image
\

4

P$:| cr service create --name timecheck --replicas 1 diamol/chlz-timecheck:1.9I

8yj2h75zzvv22gk2j7t4obido

overall progress: 1 out of 1 tasks

1/1: running

verify: Service converged

PS>

PS>docker service 1s

ip NAME MODE REPLICAS
IMAGE PORTS

8yj2h75zzvv2 timecheck replicated 4/
diamol/ch12-timecheck:1.0

PS

Listing services shows the basic information, including
the number of running replicas and the Docker image.
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The environment variable sets the

The same app from the same Docker URL the app will use.

image is now pinging google.com.

PS>dock r{ontainer run |--env TARGET=google.com [diamol/ch@3-web-ping

ing ** Pinging: google.com;|method: HEAD; 3@@ems intervals
@King request number: 1; & 803645

Got response status: 3@1 at 1561543803781; duration: 136éms

Making request number: 2; at 1561543806648

Got response status: 301 at 1561543806729; duration: 81ms
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This is Play with Docker—an online playground for working with Linux containers in a

browser. It’s free to use. Sign in with your Docker ID and you get a dedicated session.
(

v

bndt57fa_bndt5gnad2eg00ct5b2g

drectiabs play. )

T

)
P've created five nodes. The list here shows
you the node IP addresses, and you can
select a node to switch the terminal session.

My nodes are configured as a
highly available Swarm, with three
managers and two workers.
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|
| (
There are no messages—subscribers When | add an item in the web
don’t see messages published before app, it gets logged here (the
they started subscribing. weird formatting is just how the
terminal shows the content).

Runs a NATS sample app that subscribes to a message
subject—these are the messages published by the to-do
app when a user adds a new item.

PS> = container run -d --name todo-sub --network todo-lis
t_app-net diamol/nats-sub events.todo.newitem

BT a5 T8300e6a8e54e3eb353ba8baccs /21 547 20868b850e0dCeD399a6T
138
PS>

PS> container logs todo-sub
Listening on [events.todo.newitem]

22

PS> container logs todo-sub
Listening on [events.todo.newitem]
[#1] Received on [events.todo.newitem]: '{ "Sub ject "

g events.todo.newitem","Item?"
M osbio Tad I re I MITEE e p s AR e diis Sh SN DET AT
L Chapter 21", “"DateAdded": "202
- 91-03T00:00:00+0@:80"}, "€Corre
ationId"::"2e2157fa-4eaf-427381:-a
ea-79c4992eb340"}

T
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diamol/base is a multi-arch image | use as the base for most
of the other images in the book. It’s based on Alpine for the
Linux variants and Nano Server for Windows.

Psi k manifest inspect diamol/basell '.manifests[] |
{digest: .digest, arch: .platform.architecture, os: .platfor
m.os}’

"digest": "sha256:bf1684a6e3676389ec861c602e97F27b03f14178
e5bc3f70dce198f9f160cces”,

"arch": "amde4",

"os": "linux"

e

"digest": "sha256:f6d15ec5c7cf@8079309c59f59ff1e092eb9a678
ab891257b1d2b118e7aecc2b",
"arch®s *arw®,

os": "linux"

"digest": "sha256:1032bdbadc5f88facf7eceb259c18deb28a51785
eb35e469285a03eba78dd3fc",

"arch": "arme4",

"os": "linux"
}
{

"digest": "sha256:bc@b35167a7eadfff46fda59034f16e9eb49c45|
6fa87623c0377e6c44a8eda2",

"arch": "amde4",

"os": "windows"

s 7
The digest is a unique Iﬁ for the image, built as a
hash of that variant’s manifest; the manifest also
stores the operating system and CPU.
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Running without sticky sessions, requests are load balanced
by Traefik between the application containers.

PS> -f whoami/docker-composge.yml -f whoami/over
ride-traefik.yml up -d --scale whoami=3

Recreating whoami_whoami_1 ...

Creating whoami_whoami_2
Creating whoami_whoami_3
PS>

done
done
. done

Ps>curl -c c.txt -b c.txt
"I'm bf520136449c running
xkit #1 SMP Thu Oct 17 19
PS>

PS>curl -c c.txt -b c.txt
"I'm cba81f8debfd running

xkit #1 SMP Thu Oct 17 19:

http://whoami.local
on CPU: X64; 0S: Linux 4.19.76-linu

:31:58 UTC 2019"

http://whoami.local
on CPU: X64; 0S: Linux 4.19.76-1linu
31:58 UTC 2019"

PS
PS>

- -f whoami/docker-compose.yml -f whoami/over

ride-traefik-sticky.yml up -d --scale whoami=3

Recreating whoami_whoami_1 ...
Recreating whoami_whoami_2 .
Recreating whoami_whoami_3 ...

done
done
done

PS>

PS>cur
"I'm
xkit
PS>
PS>cu
"I'm
xkit

-c c.txt -b c.txt
4a38665b433f running
#1 SMP Thu Oct 17 19

-c c.txt -b c.txt
4a38665b433f running

#1 SMP Thu Oct 17 19:

http://whoami.local
on CPU: X64; 0S: Linux 4.19.76-1linu

:31:58 UTC 2019"

http://whoami.local
on CPU: X64; 0S: Linux 4.19.76-1linu
31:58 UTC 2019"

=
[
{

Traefik uses cookies to tie the client to one container, so the next
client request is served by the same container. Curl uses text files
to store and present cookies, so this simulates browser behavior.
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Builds the standard Dockerfile and the
v2 version, which optimizes file extraction

PS>cd ch17/exercises/ml-dataset\

PS>

PS> image build -t diamol/ch17-ml-dataset:vi . |

PS>

PS> image build -t diamol/ch17-ml-dataset:v2 -f Doc

kerfile.v2 . |

PS>

PS>coch image 1ls -f reference=diamol/chl7-ml-dataset

REPOSITORY TAG IMAGE ID
CREATED SIZE

diamol/chl7-ml-dataset v1 525298610556
About a minute ago  2.48GB

diamol/ch17-ml-dataset v2 2b3f49aec1as
9 minutes ago 23.9MB

o

The optimized version is a staggering 2.46 GB smaller!
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This service is partway through a

rolling update, which Docker Swarm

is controlling. Incoming traffic gets
load-balanced between all healthy

containers, so users might see

different versions of the app. Ingf &

Replicas running the new Replicas running the original version of the
version of the app—when they app, which will be replaced with the new
come online, they replace version. This service has six replicas; these

replicas running the old version. four will be incrementally replaced.
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This container loads an override

The image has a settings file in a bind mount, and the
file, so this container runs environment variable specifies
with the default config. the location of the override file.

PS>c ch18fexercises/image-of-the-day
PS,
P! container run -d -p 8089:8@ |diamol/ch18-image-o
f-The-day
b2ebf9037e712d8321c098325c5bd498b6c7ceeffaectfO6392e33a37
8eel3be

PS>

PS>docl container run -d -p 8690:88 -v "$(pud)/config/d
ev:/config-override” -e CONFIG_SOURCE_PATH="/config-overr
ide/application.properties” diamol/ch18-image-of-the-day

DAESCEeeasT 24T abCC /4 23Ae540704e3 /59 1a6e912aDag95643aT CC39
€925¢3c
PS>

,"environment UNKNOWN'
ps://ap¥.nasa.gov/planetary/apod’api_key=

"apodUrl":"htt

PS>
PS> : host:8098/config
{"releage":"19.12" "envlronment" "DEV" {"apodUrl”:"https:/

/api.nasa.gov/planetary/apod’api_Keg=

PS>
The default config has The container with the config
a release cycle but no override file has the environment

environment name. name merged in.
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A detached container The logs are saved in a file,

doesn’t show logs in and you can view them
the terminal session. from the Docker CLI.
«’ \‘
v
|PS>M« k container run Ad|—~name timecheck diamol/ch15-t

imecheck:3.0
b3594bccf4767135f5c9b8470117e70faa38eeblbed@760d85c3dec93
efb4141

PS>

PS> container logs --tail 1 timecheck
Environment: DEV; version: 3.0; time check: ©09:46.31

PS> container stop timecheck

timecheck

PS>

PS>dock container logs --tail 1 timecheck
Environment: DEV; version: 3.0; time check: ©9:46.3]]

PS
PS>ciodl container inspect --format='{{.LogPath}}' timec
heck
C:\PrograpData\Docker\containers\b3594bccf4767135f5c9b847
0117e70fap38eeblbede760d85c3dec93efba141\b3594bccfa767135
f5c9b8470)17e70faa38eeblbedd760d85c3dec93efba141-json. log

PS> T
The file still exists when the Inspecting the container
container is stopped, so shows you the physical

you can still read the logs. path to the JSON log file.
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The image layers and the writeable layer
are stored on an Azure disk, which
supports all the usual filesystem features.

postgres

The data directory is a
using Azure Files as the source. This
doesn’t support hard file links, so

Postgres fails when it tries to use them.
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Forcibly removing the accesslog container means the
Compose app is no longer in the desired state. Compose
brings it back up by creating a new accesslog container.

PS> container rm -f image-of-the-day_accesslog 1
image-of-the-day_accesslog_1

PS>

PS>c up -d --scale iotd=3

image-of-the-day_iotd_1 is up-to-date
image-of-the-day_iotd_2 is up-to-date
image-of-the-day_iotd_3 is up-to-date

Creating image-of-the-day_accesslog_1 ... done

Recreating image-of-the-day_image-gallery_1 ... done

PS>

PS> o container exec -it image-of-the-day_image-gallery_1 sh
/web #

/web # nslookup accesslog
nslookup: can't resolve '(null)': Name does not resolve

Name: accesslog
Address 1: 172.24.0.2 image-of-the-day_accesslog_1.nat|

WED
/web # nslookup iotd
nslookup: can't resolve '(null)': Name does not resolve

Name: iotd

Address 1: 172.24.0.3 image-of-the-day_iotd_2.nat
Address 2: 172.24.0.5 image-of-the-day_iotd_3.nat
Address 3: 172.24.0.4 image-of-the-day_iotd_1.nat

TEt——F
{
(

|

The iotd APl service is A DNS lookup for the accesslog
running at scale with service shows the new container
three containers. A DNS has been allocated the IP address
lookup returns all three of the old container—that address
IP addresses. became available as soon as the

container was removed.
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&« [cIR" @ localhost:8088 w noe =

Source Code

DIAMOL Random Number Generator

Here it is: 26

Get a random number
|

26. Was it worth the effort?
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This container uses an environment variable to set the release
name—it overrides the setting from all the config files.

|

PS> container run -d -p 8086:80 -e DOTNET_ENVIRONME
NT=Production -e release=CUSTOM -v "$(pw)/config/prod-lo
cal:/app/config-override" diamol/ch18-todo-list
edacd53TTa5c5addTeab7215alTIecdee8Tas126d469dddos5e (519
c50e8cl

PS> | DIAMOL To-Do List
pss(] o e R © © locahost =
Diagnostics
NET
Release Environment| Hostname Version
CUSTOM PROD edac454ffabc  .NET I

The merged config is an entirely custom setup now, with values
coming from three config files and the environment variable.
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\ \

| | |
The builder stage The check-builder stage The final stage copies the check
compiles the app builds the HTTP check utility utility, which it uses for the health
using the SDK image. using the same SDK image. check, and the app, which it uses

for the entrypoint.
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This is the same configuration that will fail when it starts, but the
new rollback config will revert to the working version more quickly.

PS> omf -f ./numbers/docker-compose.yml -f ./numbers/prod.ym|
1-f /numbers/prod healthcheck.yml -f ./numbers/prod-update-config.ym
1 -f ./numbers/prod-rollback-config.yml -f ./numbers/v5-bad.yml co

nfig > stack.yml

WARNING: Some services (numbers-api, numbers-web) use the "deploy’ key
, which will be ignored. Compose does not support ‘deploy' configurati
on - use “docker stack deploy” to deploy to a swarm.

PS>

PS> = stack deploy -c stack.yml numbers

Updating service numbers_numbers-web (id: f42rvjélmjt3olpe@fjcj322ni)
Updating service numbers_numbers-api (id: 1lvr@odj82dexpegpfb9jhjhon)
PS>

PS> o~ service inspect --pretty numbers_numbers-api
iD: 1vreodjg82dexpegpfb9jhjhon

Name : numbers_numbers-api

Labels:

com.docker.stack.image=diamol/ch@8-numbers-api:v3
com.docker.stack.namespace=numbers

Service Mode: Replicated

Replicas: 6

UpdateStatus:

State: rollback_started

Started: 27 seconds ago

Message: update rolled back due to failure or early termination
of task 725i216t3z45vjk4ftylcvzvg

!
27 seconds into the deployment, one of the new replicas has failed, so the
rollback has started. In a few more seconds the rollback will complete.
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The local channel is the default. It’s only accessible from the machine running Docker.

> docker container

HTTP access is unsecured
and unencrypted. Anyone
can access the Engine.

Mutual-TLS is encrypted.
/ Clients need a matching
certificate to gain access.
SSH is encrypted. Clients
need to exist as users on

the machine running Docker.
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Fluentd is configured to send access-log records to stdout, so
they’re available as logs from the Fluentd container.

(
|

Y
PS container logs --tail 1 fluentd_fluentd_1
2015-12-19 15:21:43.000000000 +0000 gallery.access-log.di

amol/ch18-access-log: {"source":"stdout","lo nfo: Acc
ess log, client IP: 172.21.0.1:37406","container_id":"@cc
3230c33b4b371f@d46f109d6Tbe681840fa5471689aed1a246de481b5

won Erile

7d36", "container name":"/image-gallery accesslog 1"
ntd-container": "blef45c56df5", "app_name":"gallery", "servi

ce_name":"access-log","image_name":"diamol/ch18-access-1lo

BT

PS> [
The records have been updated to split the tag
into app, service, and image name fields.
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Settings

= General
18 Resources
@ Docker Engine

> Command Line

® Docker rmns

Docker Engine
v19.03.5

Configure the Docker daemon by typing a json Docker daemon configuration file.
This can prevent Docker from starting. Use at your own risk!

=3

New features in Docker often come under the “experimental” flag. To use them, you
need to explicitly enable experimental mode. Some versions of Docker Desktop have a
checkbox for this setting; this one lets you add it in the JSON config.
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Runs the who-am-l container,  Copies the site config file into

connected to the same ch20 the Nginx folder—this configures
network that the Nginx whoami . local to load from the
container is using ) who-am-| container.
PS> t[-value "127.0.0.1 whoami.local" -Path fwi
ndows/system32/drivers/etc/hosts
PS>
PS> € = -f whoami/docker-compose.yml up -d
Creating whoami_whoami_1 ... done
PS> ¥
PS> ./nginx/sites-available/whoami.local ./nginx/sites-|
enabled/
PS
PS> | -f nginx/docker-compose.yml restart ngi
nx
Restarting nginx_nginx_1 ... done
PS>

whoamilocal/ x

PS>
€ e e i whoamisocal 200

JSON  RawData  Headers

Save Copy Collapse All Expand All

"I'm e7770fc918a9 running on CPU: X64; OS: Linux
4.19.76-linuxkit #1 SMP Thu Oct 17 19:31:58 UTC
2019"

|
l
Restarting Nginx loads the new config. The whoami .1ocal
domain gets resolved to the local machine, so the Nginx
container serves the request and fetches the response from
the who-am-I container.
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The same metrics endpoint provides my custom values and the standard Node.js data.
|

localhost:8012/met X

e e @ In @

c @

# HELP access_log_count Access Log - count of log requests
# TYPE access_log_count counter
access_log_count 32

# HELP access_client ip gauge Access Log - unique IP addresses
# TYPE access_client_ip_gauge gauge
access_client_ip gauge 15

# HELP process _cpu user seconds_total Total user CPU time spent in seconds.
# TYPE process_cpu_user_seconds_total counter
process_cpu_user_seconds_total 0.31300000000000017 1572378573914

# HELP process_cpu_system_seconds_total Total system CPU time spent in seconds.
# TYPE process_cpu_system seconds_total counter
process_cpu_system_seconds_total 0.047 1572378573914

# HELP process_cpu_seconds_total Total user and system CPU time|spent in seconds.
# TYPE process_cpu_seconds_total counter
process_cpu_seconds_total 0.3600000000000001 1572378573914

Node.js runtime metrics are provided by the client
library—this shows total amount of CPU time used.
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The application components all run in
containers. They are isolated like VMs
but lightweight and efficient like Paa$
services.

Dockerized applications are portable.
They can run in a managed service like
Azure Kubernetes Service, and they can
move to AWS or to the datacenter with
no changes.
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This container run command doesn’t mention volumes, but a volume is
declared in the Dockerfile, so one will be created and attached to the container.

L

PS>| C container run --name todol -d -p 8010:80 diamol/che@6-todo-list
423e667b47e9880e0fb7faec169bb10b21b7a2283efc941545cc41948c8F6d3ff

PS>

PS>dock container inspect --format '{{.Mounts}}' todol

[{volume 2eaf7f63c081f99165c7cceae942904c988bf5a52445a7109ca52cf48d7c90f7
C:\ProgramData\DockerDesktop\vp-data-roots\enterprise-3.0\volumes\2eaf7f
63c081f99165c7cceae942904c988bf5a52445a7109ca52cf48d7c90f7\_data c:\data
local true }]

PS>

PS>cocker volume 1s

DRIVER VOLUME NAME

local 2eaf7f63c081f99165c7cqeae942904c9B8bf5a52445a7109ca52
cf48d7co0f7

* |

Volumes are shown as “mounts” when you inspect a container. The output is
not user-friendly, but it shows the volume ID, the physical source of the
volume on the host, and the target directory inside the container—c: \data.

|
1

Volumes are first-class citizens. You use docker volume commands to create, list,
inspect, and remove them. This is the volume created by Docker for this container.
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This starts the app. Docker Compose Networks defined as external in

compares the resources in the Compose Compose files need to exist before
file with the resources currently running you can run the app. This would
in Docker, and takes actions to get to the create the nat network, except I've
desired state. already created it.

\

\ - 1

) PS> network create nat

Error response from daemon: network with name nat already exists

/Pb
[ PS> ./che7/exercises/todo-1ist

| EBS>
\Jps> T up
Creating todo-list todo-web 1 ... done
Attaching to todo-Iist_todo-web_1
todo-web_1 | : Microsoft.AspNetCore.DataProtection.Repositories.F
ileSystemXmlRepository[6@]
todo-web_1 | Storing keys in a directory '/root/.aspnet/DataPro

[y

1
{
{

Compose creates a single container for this app.
It attaches to the standard out for that container
and shows all the app logs. These are the startup
logs for the ASPNET Core to-do app.
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The web app is the publisher, sending messages to the queue, which
could be events, commands, or queries. The publisher only sees the
message queue; it has no idea of the handlers listening for messages.

web handler1

A
ama
A\ /4

-5 \ message-queue
‘

handler2

The handlers are subscribers, listening for certain types of
messages. When there are multiple subscribers for a message
type, they all get copies of the message. If there are no
subscribers, the message might be dropped or archived.
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The July release—aliases
for version 2.1.106

The September release—
aliases for version 2.2.11
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The August release—aliases
for version 2.1.114

The October release—aliases
for version 3.0.42
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The cluster APl is a Clusters also have a public endpoint

secure endpoint for for users to access applications on
administrators to HTTP or HTTPS. This is called ingress.
manage applications. External traffic can enter the cluster

on any server, and it will be routed

2 to coani\j
API Ingress

@ o

' \ ,
¥‘/ N

' -

'

T
a Secrets

The cluster can store Containers can access Clusters can also support
app configuration and each other anywhere shared storage, so containers
secrets in its own on the cluster using on any server have access to
database and deliver standard networking the same state.

them to containers. protocols and DNS.
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A repository is just like a folder on the Git server for one project or application.
This is where you’ll upload your source code, and the upload will trigger the Cl job.

C @ © @ localhost:3000/rep

@ Dashboard Issues  Pull Requests  Explore

New Repository

diamol

Repository Name*  diamol

Visibility ~ This repository is Private

Description

gitignore
License /

Readme ®  Default

Initialize this repository with selected files and template ‘

|

Repositories are accessible at specific URLs that contain the user name and repository
name. Jenkins is set up to use the URL for diamol/diamol to check for code changes.
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There’s no Compose file in this directory and no -£ flag to point
to a Compose file, so the command has nothing to work with.

y

PS> down
ERROR:

Can't find a suitable configuration file in thi
s directory or any
parent. Are you in the right directory?

Supported filenames: docker-compose.yml, docker
-compose.yaml

D
PS> -f .\numbers\docker-compose.yml -f .\
numbers\docker-compose-test.yml down

Removing network numbers-test

ERROR: error while removing network: network numbers-te
st id df5591c401bba742263df710dac38a7e6caec411f25c98af9
bdalfd14da4b459 has active endpoints

PS>

PS> n -f .\numbers\docker-compose.yml -f |.\
numbers\docker-compose-test.yml -p numbers-test down
Stopping numbers-test_numbers-api_1 ... done

Stopping numbers-test_numbers-web_1 ... done

Removing numbers-test_numbers-api_1 ... done

Removing numbers-test_numbers-web_1 ... done

Removing network numbers-test

PS> T

\ Because the project name isn’t specified,

Compose doesn’t find the containers. It finds
the network, which had an explicit name in

\‘ the Compose file.

This is the matching combination of files and
project name for the original up command,
so Compose finds and removes the resources.
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The new site configuration also proxies the API container at
the path /api/image. Different paths for the same domain
are proxied from different containers.

12

PS> ./nginx/sites-enabled/image-gallery.local

PS>

PS> ./nginx/sites-available/image-gallery-2.local ./ngil
nx/sites-enabled/image-gallery.local

PS
PS>docke mpose -f .\nginx\docker-compose.yml restart
nginx

Restarting nginx_nginx_1 ... done

PS

PS> -i http://image-gallery.local/api/image

HTTP/1.1 200

Server: nginx/1.17.6

Date: Mon, 23 Dec 2019 11:11:20 GMT
Content-Type: application/json;charset=UTF-8
Transfer-Encoding: chunked

Connection: keep-alive

X-Proxy: 2f4871e23088

X-Upstream: 172.20.0.5:80

{"url https://www.youtube.com/embed/pvKEG141GmU?rel=0" |
"caption":"Places for OSIRIS-REx to Touch Asteroid Bennu"|
,"copyright":null}

PS> (
Nginx makes the API container available on the

image-gallery.local domain, which is also used
for the web container.
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This is a new deployment, so new resources are created. The config object
isn’t shown because it’s an external resource that already exists.

(

v

PS> o stack deploy -c ./todo-list/v3.yml todo
Creating network todo_app-net

Creating service todo_todo-web

Creating service todo_todo-db

PS>

PS> - stack services todo

i NAME MODE REPLICAS
IMAGE PORTS

rjmgbhg8ee1qm todo_todo-db replicated 1/1
diamol)/postgres:11.5

rkmj4newomt3 todo_todo-web replicated 1/1
diamoll/che6-todo-list:latest *:8080->80/tcp

PS>

—

One replica is running the web service, which
should use the single database replica.
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PWD nodes are already set up to use SSH; this step verifies the connection.

©68.0.7
(1 root@192.168.0.8 ~

s ssh Snode2ip
[The authenticity of host '192.168.0.7 (192.168.0.7)' can't be established.
RSA key fingerprint is SHA256:ZoNwaA7uSGeRX00ftDttcTr3vSKx1Pdh00SnktPcOfs.
Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
arning: Permanently added '192.168.0.7' (RSA) to the list of known hosts.
#4334 R R
# WARNING!!!!
# This is a sandbox environment. Using personal credentials
# is HIGHLY! discouraged. Any consequences of doing so are
# completely the user's responsibilites.
i
# The PWD team.
R

root@192.168.0.7 ~

Ccnnectlon to 192.168.0.7 closed.
rootf192.168.0.8 ~
$ docker context create nodel --docker "host=unix:///var/run/docker.sock”
odel
successfully created context "nodel™
root@192.168.0.8 ~
$ docker context create node2 —-docker "host=ssh://root@$node2ip”
Inode2
SuLcesSfully created context "node2"
xoot@192.168.0.8 ~
s docker Context 1s

DESCRIPTION DOCKER ENDPOINT

Current DOCKER HOST based configuration unix:///var/run/docker.sock]
unix:///var/run/docker.sock|
ssh://root@192.168.0.7

These contexts can be used by buildx to start two simultaneous builds.
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Stopping the app with Compose stops
all the containers. Stopped containers
don’t use any CPU or memory, but their
filesystems still exist.

|

Starting the app again restarts
those same containers.

v
PS> - m stop
Stopping image-of-the-day_iotd_2 . done
Stopping image-of-the-day_iotd_3 ... done
Stopping image-of-the-day_image-gallery 1 ... done
Stopping image-of-the-day_iotd_1 ... done
Stopping image-of-the-day accesslog 1 . done
PS>
PS> € m start
Starting accesslog . done
Starting iotd . done
Starting image-gallery ... done
PS
PS>d container 1ls
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
57209868510 diamol/ch@4-image-of-the-day "java -jar /app/iotd." 37 minutef
ago Up 1@ seconds ©0.0.0.0:32774->80/tcp  image-of-the-day_iotd_2
8660dasbdses diamol/che4-image-of-the-day “java -jar /app/iotd." 37 minuteg
ago Up 9 seconds 0.0.0.0:32775->80/tcp  image-of-the-day_iotd_3
55ae17a65d52 diamol/che4-image-gallery "/web/server" 48 minuteg
ago Up 8 seconds 0.0.0.0:8010->80/tcp image-of-the-day_image-gallery_1
efed432bad3a9 diamol/che4-image-of-the-day "java -jar /app/iotd." 49 minuteg
ago Up 9 seconds 0.0.0.0:32776->80/tcp  image-of-the-day_iotd_1
e626db8a3220 diamol/che4-access-log "docker-entrypoint.s.."  About an W
our ago Up 1@ seconds 80/tcp image-of-the-day_accesslog_1

= [

Listing running containers shows that the app containers have only been
up for a few seconds, even though they were created over 30 minutes ago.
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You can add images or whole image repositories to
Anchore from Docker Hub or your own registry—it
scans them for security issues and policy violations.

L

PS> container exec anchore_engine-api_1 anchore-cli
image add diamol/openjdk --dockerfile /Dockerfile
Image Digest: sha256:1623b24fe088e0aefcfe499da1bsd72f108e
16ddoeeffdfff570736bfbbb1473
Parent Digest: sha256:62al3a1844ec5f6852c71d4b96c9f98f145
9as5fd76d79611a6cffifedcbe3ffe
Analysis Status: not_analyzed|
Image Type: docker
Analyzed At: None
Image ID: cacf73bc929e94baf2119d8ae984230dcecdeaso332fdo3
c3ecac7fedef32691
Dockerfile Mode: Actual
Distro: None
Distro Version: None
Size: None
/ Architecture: None
/ Layer Count: None

Full Tag: docker.io/diamol/openjdk:latest
Tag Detected At: 2019-12-11T14:54:45Z

S> container exec anchore_engine-api_1 anchore-cli|
\ image wait diamol/openjdk
Y
| [
The response confirms the image This would normally be part
has been added for analysis, but of your CI/CD pipeline, but
the work happens in the to demonstrate Anchore the
background so it hasn’t wait command will block until

been analyzed yet. the analysis is complete.
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You learned this in chapter 5—jyou can only push images to
Docker Hub if your account ID is in the image tag. This adds
new tags with my account. |

PS>$dockerTd = ‘sixeyed' //

PS> v

PS> image tag diamol/ch16-folder-list:linux-amdé4 "$do|
ckerId/ch16-folder-list:linux-amd64"

PS>

PS> image tag diamol/ch16-folder-list:linux-armé4 "$do|
ckerId/chi6-folder-list:linux-armé4"

PS>

PS> image tag diamol/chi16-folder-list:linux-arm "$dock
erId/ch16-folder-list:linux-arm"

T

PS> image push "$dockerId/chi6-folder-list"

The push refers to repository [docker.io/sixeyed/ch16-folder
-list]

abof7ecéb26c: Pushed

c2alb752afde: Pushed

f1b5933fedb5: Mounted from diamol/base

linux-amdée4: digest: sha256:8c@f5b57bbe9796198a9780c8d3730f4
e3bf7472224b1e1f1412422bco6e58fc size: 942

ba23bfad7cab: Pushed

fc8ed974e69b: Pushed

7d5b9c167alf: Mounted from diamol/base

linux-arm: digest: sha256:988286fedbc8ac99eecda6sedd6dactas2
21d1b9edab63ded335b2d6e@9acocf size: 942

deec2f286967: Pushed

5b124270606a: Pushed

6d626da635fc: Mounted from diamol/base

linux-armé4: digest: sha256:5efa6540e@fb321cb2albbe33cee1ob2
360d20ada2e6dasa3ofboeasecefalfs size: 942

You can push multiple images at once if you don’t specify a
tag—Docker pushes all the tags for that image name.
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Environment variables specify the target
URL and the interval between pings.

PS> container run[-e TARGET=docker.com -e INTERVAL=5060|web-ping
** web-ping **[Pinging: docker.com; method: HEAD; 5e@ems intervals |
Making request number: 1; at 1561632627917

Got response status: 301 at 1561632628394; duration: 477ms

Making request number: 2; at 1561632632921

Gotlresponse status: 301 at 1561632633361; duration: 440ms

PS>|

Container logs show the ai)p is reading
configuration from the environment.
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This is an interactive container running a subscribe command in the
Redis CLI. The initial output confirms the subscription to the channel.

|

Reading messages... (press Ctrl-C to quit)
1) "subscribe"
2) “channel21"
3) (integer)
1) "message’
2) "channel21'}
3) "ping"

{

Every time the publishing container sends a message to Redis, it gets
delivered to this container because it’s subscribing to messages on
the same channel. The output shows a message has been received on
channel 21 with the content “ping”.
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Create a new named volume. This is
just an empty storage unit right now.

Run a container using the -v flag
to specify a volume—this will mount
the new empty volume to the path /data

‘& in the container. “
PS{ =~ volume create todo-list \
todo=I15T
PS> l
PS>

container run -d -p 8011:80 -v todo-list:/data --name todo-vi
diamol/che6-todo-list

bsaScaclcf955c724beee2f8267860ccd20f0538c50fc7af8347fe6desbedbbe
PS>

PS># add some data through the web app at http://localhost:8e11
p:

PS> container rm -f todo-v1
todo-v1

PS>

PS> container run -d -p 8011:80 -v todo-list:/data --name todo-v2
diamol/che6-todo-list:v2
a89de7534fb641ecd538f4b034201d555818b9bch7590e04c9fcfavees8ef3le

| PS> .‘,

\ /

| {
Remove the container. The force Start a new container from an updated version
flag -t removes it even though the of the application image, mounting the same
app is still running. This will delete volume to the same location. The v2 app will
the container’s writeable layer, but start with all the data written by the v1 app.

it will leave the volume intact.





OEBPS/Images/11-2.jpg
Starts the build infrastructure—Git, the Docker registry,
and the Jenkins automation server. I'm using Docker
Desktop for Windows in Linux container mode.

PS> z .\chill\exercises\infrastructure\
PS

PS> N -f docker-compose.yml -f docker-compose-linux.y
ml up -d
Creating infrastructure_gogs_1 ... done
Creating infrastructure_registry.local 1 ... done
Creating infrastructure_jenkins_1 ... done
p
PS> "'n127.0.0.1 registry.local" >> /windows/system32/driver
s/etc/hosts
PS>
PS> contain;r‘ Is
CONTAINER ID IMAGE COMMAND
CREATED STATUS PORTS
NAMES
8879c6ceect9 diamol/jenkins “/bin/sh -¢ 'java -D."
12 seconds ago Up 10 seconds 0.0.0.0:8080->8080/tcp
infrastrutture_jenkins_1
5830028659 diamol/registry "/registry/registry .|'
12 seconds ago Up 10 seconds 0.0.0.0:5000->5000/tdp
infrastrudture_registry.local_1f
52dd6b467136 diamol/gogs " /app/gogs/docker/st.|"
12 seconds ago Up 10 seconds 22/tcp, 0.0.0.0:3000-p300
@/tcp  infrastrudture_gogs_1
BSE | K
Adds a DNS name for the All the containers have ports
registry container to the published, so | can access them
local machine, so | can on the host machine.

push and pull images.
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Updating the service rolls out an Listing the service replicas shows three: the
updated version of the application. original version 1.0 container that | manually

The CLI shows you that one out of removed, the 1.0 replacement that the Swarm
one replica is running when the created, and the current version 2.0 container
rollout is complete. from the update. ‘
\
v
PS> service update --image diamol/ch12-timecheck:2.0|timecheck
timecheck

overall progress: 1 out of 1 tasks
1/1: running
verify: Service converged

PS>

PS>

PS>l service ps timecheck \

pi) NAME IMAGE NOD\

E DESIRED STATE CURRENT STATE ERROR ‘
PORTS |

dwj272z5tgwl timecheck.1 diamol/ch12-timecheck:2.0 | doc }

ker-desktop Running Running 8 seconds ago

ed5pp5gozgxf \_ timecheck.1 diamol/ch12-timecheck:1.0 | d

ker-desktop Shutdown Shutdown 9 seconds ago

cdnjqcviiek2 \_ timecheck.1 diamol/ch12-timecheck:1.0 | doc

ker-desktop Shutdown Failed about an hour ago  "tpsk:

non-zero exit (1B¥=-

PS>

PS> ervice logs --since 20s timecheck

timecheck.1.dwj272z5tgwl@docker-desktop | App version: 2.0;| time che

ck: 16:00.46

timecheck.1.dwj272z5tgwl@docker-desktop | App version: 2.0;| time che

ck: 16:00.51

timecheck.1.dwj272z5tgwl@docker-desktop | App version: 2.0;| time che

ck: 16:00.56

The most recent service logs are from the version 2.0 update of the application,
but if | looked further back in time I’d see the version 1.0 log entries too.
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I’'m using the same PWD session to represent UAT and production, so both
containers are running here. | could use separate nodes in PWD for each
environment, but in reality these would be Docker servers or clusters.

D —— X | ® aml penkin]

°a play-with-docker.com) @

bngh3ebj_bngh3f3jagq000ddjbvg

192.168.0.33 GPENPORY

| 7.24% (289.4MiB / 3.906Gi8) 0.48%

0 NEW INSTA 55 1p172:18.0-59-bngh3ebjaga000dcjbv0@irectfabs.play-wihd [

P B oo

| MAGE comMAND

[
The production environment is running using the latest version 3.0 app, so the pipeline looks good.





OEBPS/Images/8-2.jpg
Version 2 of the APl uses the same code but
includes a health check in the Docker image.

The status column now shows the container is up and
it is healthy—Docker has run the health check inside
| the container, and it has returned a success code.

GE)
PS>
CONTAINER ID
CREATED
NAMES
elal24e564b1
50 seconds ago
funny_khorana
351d1055ea10
21 minutes ago

IMAGE

3qe

‘COMMAND

STATUS

diamol/ch@s-numbers-api:v2
Up 48 seconds (healthy)

PORTS

“dotnet /app/Numbers..
0.0.0.0:8081->80/tcp

diamol/ches-numbers-api
Up 21 minutes

"dotnet /app/Numbers..
0.0.0.0:8080->80/tcp

relaxed_jang

p
PS> http://localhost:8081/rng

51

PS> http://localhost:8081/rng

73

PS> http://localhost:8081/rng

72

PS> http://localhost:8081/rng

{"type": "https://tools.ietf.org/html/rfc7231#section-6.6.1", "title": "An
error occured while processing your request.”,"status”:500,"traceId":’

ATa085TC5b-AbavbIaBaceacTds. "}

PS>

COMMAND

PS> container 1ls
CONTAINER ID IMAGE
CREATED STATUS
NAMES
| e1a124es64b1
5 minutes ago

diamol/ch@8-numbers-api:v2
Up 5 minutes (unhealthy)

PORTS

"dotnet /app/Numbers.."
©.0.0.0:8081->80/tcp

funny_khorana

|
The API is broken from the
fourth call onwards—now the
health check will return a
failure status code.

7

After three successive failures the
container is flagged as unhealthy,
but it is still running. Docker
doesn't stop unhealthy containers.
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Specifying the log level for the Compose command suppresses
the warning messagf about Swarm-only values.

v

PS>docke

ig > stack.yml
PS>

¢ -f ./numbers/docker-compose.yml -f ./numbers/prod.yml -f

./numbers/prod-healthcheck.yml -f ./numbers/v2.yml --log-level ERROR conf

PS>

stack deploy -c stack.yml numbers
Updating service numbers_numbers-web (id: letmolcb2wtewgumm8njxpSmh)
Updating service numbers_numbers-api (id: 1xxad8xcqmrolnz@Scle3wz5u)

PS> stack ps numbers

0 NAME ™M
AGE NODE DESIRED STATE CUR
RENT STATE ERROR PORTS

x9p9cky8xqgde numbers_numbers-web.ay20p76wefcokkld6xtabyssz di
amol/che8-numbers-web:v2 docker-desktop Running Run
ning 2 seconds ago *:80->80/tcp

kovbcwmjx8ms \_ numbers_numbers-web.ay20p76wefcokkl4éxtabyssz  di
amol/ches-numbers-web:latest docker-desktop Shutdown Shu
tdown 4 seconds ago

rsrbevhrepkv numbers_numbers-api.1 di
amol/che8-numbers-api:latest docker-desktop Running Run
ning 54 seconds ago

hesq9jy2seed numbers_numbers-api.4 di
amol/ch@8-numbers-api:v2 docker-desktop Running Sta
rting 3 seconds ago

ogahhrlm8gge \_ numbers_numbers-api.4 di
amol/ch@8-numbers-api:latest  docker-desktop Shutdown Shu
tdown 3 seconds ago

The single replica for the global
service was shut down before the
replacement was started—this update
involved 2 seconds of downtime.

The replicated service is rolling out the
update. I've snipped my output—replica
number 4 has been updated, but the

others are still running the old version.
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Steps 1 and 2 are the build-stage;
this generates a file called build. txt.

PS> image build -t multi-stage

PS>c1 chea/exercises/multi-stage /

Step 1/8 : FROM diamol/base AS build-stage
---> dbfa@a7a2233

Step 2/8 : RUN echo 'Building...' > /build.txt
---> Running in 4442b2a9188

Removing intermediate container f4442b2a9188
- R

step 3/8 : FROM diamol/base AS test-stage
--}> dbfaea7a2233
Step 4/8 : COPY --from=build-stage /build.txt /build.txt
--}> a29780793df3
Step 5/8 : RUN echo 'Testing...' >> /build.txt
--=> Running in b223cee6ac
Removing intermediate container b223cee64c78
---s 22b24sz836c0
Step|6/8 : FROM diamol/base
---} dbfaea7a2233
Step| 7/8 : COPY --from=test-stage|/build.txt /buildl.txt
de6e49c89106
8/8 : CMD cat /build.txt

t g
2
Removing intermediate container 68748718eash

|
\

---> 435901476161
Successfully built 435901476161
Successfully tagged multi-stage:latest
Steps 3 through 5 are the test-stage; this copies
build.txt from build-stage and adds to it.

Steps 6 through 8 produce the final image,
which copies build.txt from test-stage.
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The warning is a helpful reminder that this is a bad idea.

Settings X

Ceneral General

Adjust how Docker Desktop behaves according to your preferences.
1@ Resources

% Dokrergre start Docker Desktop when you log in

5 conmendUne Automatically check for updates

Expose daemon on tcp:/localhost:2375 without TLS

Enable the experimental WSL 2 based engine (requires Win 10 build 19018+)
WSL 2 engin

il experimental. Use for evaluation purpose

® send usage statistics &

Docker Desktop makes it easy to expose your Engine API to the network.
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The first container runs The second container loads a
using the default config config override file from a local
file built into the image. directory as a bind mount.

| |

PS> chlsiexercises/access-log
PS>

PSP‘ container run -d -p 8080:80 |[diamol/ch18-access-
log

0485197e0c968e6188217d3898cd940440ab023699fd5dcab19de5554
d82a4bs

PS>

PS> container run -d -p 8081:80 -v "$(pwd)/config/d
ev:/app/config-override" diamol/chl8-access-log
©699ablod2Tadcetoebcdlabad397at 54d8d486012a0306eacasaz /e
97e0cad

PS>

PS> http://localhost:8080/config
{"release":"19.12","environment": "UNKNOWN", "metricsEnable
d":true}

PS>

PS> http://localhost:8081/config

{"release":"19.12", "environment
alse}
" T

{
The app has a config API. In the second container, the settings for
environment and metrics have come from the override file—the
release name is from the default config file.

metricsEnabled
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The account of the image The image tag, used for
owner. Could be an individual  versioning or variations of an
user or an organization. application. Latest is the default.
\ /
docker.io/diamol/golang:latest
L \7_/
/ ,
The domain of the registry The image repository name, used for

where the image is stored. the application name. One repository
Docker Hub is the default. can store many versions of an image.





OEBPS/Images/4-7.jpg
The builder stage fetches the application’s dependencies.

)

added 131 packages from 229 contributors and audited 188 packages in 4.539s
found @ vulnerabilities

Removing intermediate container e267f6cb4dad
---> e0301f037b09
Step 5/1@ : FROM diamol/node
---> 9dfa73e1eb19
Step 6/10 : EXPOSE 8@
---> Running in 6e2b2333bf93
Removing intermediate container 6e2b2333bf93
---> 6debee71a72c
Step 7/10 : CMD ["node", "server.js"]
---> Running in b2a9d45164d5
Removing intermediate container b2a9d45164ds
---> 6ee225c9bb33
Step 8/10 : WORKDIR /app
---> Running in dbcefdcd8sla
Removing intermediate container dbcefdcdssia
---> 4deccdgbofesh
Step 9/10 :| COPY --from=builder /src/node_modules/ |/app/node_modules/
—=-> hlalgaREIr7Iy
Step 1@/10 5 COPV SRCY S
=
Successfully bu11t 2ac5639736¢7
Successfully tagged access-log:latest

| |
The JavaScript files are copied from The application stage copies downloaded
the src folder on the host computer. dependencies from the builder stage.





OEBPS/Images/4-10.jpg
Port 802 on the host publishes port 80 from the
Go application container, which renders the web page.

focalhost800/image { Sl Image Gallery

R ez ] ot
Image Gallery

The Go app fetches image details from the Java API,
running in a container on the same Docker network.
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This container runs the application in the background with a log relay
utility in the foreground, to echo the application log file to stdout.
(

PS> container run -d --name timecheck4 diamol/ch19-
timecheck:5.@

12di7bdbioelg b32795129d51 318 . 2429569
7499566
3
PS>ocker container logs timecheck4
Init

2019-12-19 10:53:03.448 +00:00 [INF] Environment: DEV; ve
rsion: 5.0; time check: 10:53.03
2019-12-19 10:53:08.444 +00:00 [INF] Environment: DEV; ve
rsion: 5.0; time check: 10:53.08

PS>

PS>l container exec -it timecheck4 sh
#

# cat /logs/timecheck.log

Init

2019-12-19 10:53:03.448 +00:00 [INF] Environment: DEV; ve
rsion: 5.0; time check: 10:53.03
2019-12-19 10:53:08.444 +00:00 [INF][Environment: DEV; ve

rsion: 5.0; time check: 10:53.08

The application logs are available from the container,
as well as in the log file inside the container.
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This runs two containers from the same image. rn1 and rn2 will
start with the exact same filesystem contents from the image.

\

PS> container|run --name rnl diamol/che@6-random-number
PS> container|run --name rn2 diamol/che@é-random-number
PS>

PS> container cp| rn1:/random/number.txt numberl.txt
PS> container cp|rn2:/random/number.txt number2.txt

PS

PS>c=t numberl.txt

17274

PS>cat number2.txt

17281

| This copies files from containers to the host. rn1 and
/ rn2 both created a file at /random/number . txt when
{ they started, but the contents will be different.

Reading the contents of the files copied from each
container. The random numbers are different.
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The core Compose file The dev override The test override

specifies services and file adds service file adds service,
settings that apply and network settings network, and
in every envrionment. for development. volume settings.

,,,,,,,,, S S

.
.
docker-compose- i
|
|
|

dev.yml test.yml

Docker Compose will merge together multiple files, so
you run the test environment by specifying the core
Compose file along with the test override file.
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You can switch contexts for the current terminal session by setting
an environment variable—the value is the name of the context.

|PS> $env:DOCKER_CONTEXT='pwd-tls’
PS>
PS> = context ls
DOCKER ENDPOINT

KUBERNETES ENDPOINT  ORCHESTRATOR
default Current DOCKER_HOST based configuration
npipe:////./pipe/docker_engine
swarm

pwd-tls *
tcp://ip172-18-0-58-bngf5uot969000c674eg-2376.direct.labs.pl
ay-with-docker.com

PS>
PS> container 1s
CONTAINER ID IMAGE COMMAND
CREATED STATUS PORTS
NAMES
eb8f22736fe5 diamol/apache "httpd-foreground"
11 minutes ago Up 11 minutes 0.0.0.0:32768->80/tcp

busy_poincare

PS

PS> ker context use default

default

Current context is now "default"

PS>

PS> container 1s

CONTAINER ID IMAGE COMMAND

CREATED STATUS PORTS
NAMES

eb8f22736fe5 diamol/apache "httpd-foreground"”

11 minutes ago Up 11 minutes 0.0.0.0:32768->80/tcp
busy_poincare

/ |

The environment variable overrides the The active context is shown with
selected context, so | still see the PWD an asterisk. All Docker commands
containers when | use the local context. are now running against the

PWD session.
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The v6 Compose file updates There are no new volumes

the database service image created for this deployment;
but uses the same volume the new database will use the
specification as v5. original named volume.
\
PS stack deploy /todo-1list/v6.yml todo
UpdaTing Service todo_todo-web (1d: Usm3csIIBvolBejhhbmvw23ds)

Updating service todo_todo-db (id:
PS>

60lko321fnturfdkd4vsjbp38)

PS> volume 1ls -q
3370d68cf3bc60145f33497e2eed34a6e93ded136169e818bb21782c5308221
54475cede89a2151e69ef6371ae63f9ac7d8b23b3bc918d86bc5a1504e2c7cf1
todo_todo-db-data

PS>
PS> stack ps todo
p) NAME IMAGE
NODE DESIRED STATE CURRENT STATE
ERROR PORT:
ggomzyeoxrji todo_todo-db.1 diamol/postgres:11.6
docker-desktop Running Running 35 seconds ago
uwir5a24c4nd \_ todo_todo-db.1  diamol/postgres:11.5
docker-desKtop Shutdown Shutdown 37 seconds ago
mrppkrkzugpm \_ todo_todo-db.1 diamol/postgres:11.5
docker-desktop Shutdown Shutdown 11 minutes ago
wwsfqqllsna2 todo_todo-web.1 diamol/che6-todo-1list:latest
docker-deskitop Running Running 13 minutes ago
PS> S
These are the database These are the two services
services from v5 and v6, which deployed with v4, which had

both used the named volume. default volumes created.
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Kibana can filter documents based on time ranges if there’s a time field

in the data. Fluentd adds a timestamp in the field called etimestamp.

K tibona x

o

@ localhost:5601/app/kibana#/management/kibana/inde 0 o

bana  [C

Index Patterns No default index patzer. You m

o Saved Objects
Advanced Settings .

Create index pattern

Kibana uses index patterns to retrieve data from
Elasticsearch indices for things like visualizations.

X Include
system indices

Timelion
Step 2 of 2: Configure settings
DevTools
You've defined fluentd* as your index pattern. Now you can

specify some settings before we create it
Management

Time Fiter field name Refresh

@timestamp v
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Developers will likely
build multiple images
multiple times a day.
Optimization saves
time and disk space.

The pipeline might run
dozens of times daily.
Optimization reduces
time for building,
scanning, and pushing
images.

Updates to test happen
daily. Optimization reduces
pull time, saves disk space,
and may reduce container
start time.

Security optimizations
are more important in
production, but smaller
images reduce the time
for new servers to be
ready.
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The Go application also supports environment variable
overrides, but the name needs to be prefixed with 1c for
the app to include them. —

PS> chl8/exercises/image-gallery ‘\\1
PS>

PS> container run -d -p 8088:80 -v "$(pwc)/config/d
ev:/app/config-override" -e IG_METRICS.ENABLED=TRUE diamo
1/ch18-image-gallery

4104800dTT245ebdT94373da//78e398818845dT/7b231588ce5e15abed

8oceeeb

PS>

PS> http://localhost:8088/config
{"Release":"19.12","Environment": "DEV", "Metrics":{"Enable
d":true},

-log"},"image": {"Url" ttp://iotd/image"}}}

PS> r

Now the cénfig is merged from the default file, the config
override file, and the environment variable.
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The source folder for the bind mount contains a configuration
file set for additional logging. The app in the container will read
that config file from the mount and apply the settings.

PS> cd ./cheé/exercises/todo-list

PS>

PS> $source="$(pwd)\config".ToLower();| $target="c:\app\config"
P

PS> container run --name todo-configured -d -p 8013:80 --mount
type=bind, source=$source, target=$target,readonly diamol/ch@6-todo-list
5ffc30873434c56bda7cd20beebf4637077613849eeda7e1f402750581740982

PS:

PS> I http://localhost:8013 |
PS>
PS> container logs todo-configured

dbug: Microsoft.Extensions.Hosting.Internal.Host[1]

Hosting starting
warn: Microsoft.AspNetCore.DataProtection.Repositories.FileSystemXmlReq]
ository[60]

Storing keys in a directory 'C:\Users\ContainerAdministrator\App(Q

=
(

The application now creates hundreds of log entries that

can be seen with the container logs command. The standard

configuration baked into the image doesn’t show these.
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The v2 image deletes files, but the image size is the same.
The image is a merge of all layers, so the delete layer just
hides files from the previous layer.

|

PS> image 1s -f/reference= diamol/ch17*

REPOSITORY TAG IMAGE ID
CREATED SIZE

diamol/ch17-build-context  v2 €926479c3103
12 minutes ago 7.63MB

diamol/ch17-build-context vi 1c88108500f5
12 minutes ago 7.63MB

PS>





OEBPS/Images/11-9.jpg
The machine running Docker sends CLI commands to the
API over a channel that is private to the machine.

> docker container

Docker API

er container run ...

Containers can use a volume to map the private channel for the API, so the
Docker CLI inside the container talks to the Docker Engine where it is running.
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Saving the PWD port 2376 domain The Engine is configured for

name in a variable—the domain is TLS—it listens for traffic but
different for every port on every rejects requests that don’t
node in every PWD session. have the client cert.

{ J

PS>$pwdDomain="1p172-18-08-62-bo9pj8nad2ego08a76e8+2376.direct|
.labs.play-with-docker.com"

PS '3
PS> "http://$pwdDomain/containers/json”

Client sent an HTTP request to an HTTPS server.

PS>

PS> --host "tcp://$pwdDomain” container 1s

Error response from daemon: Client sent an HTTP request to an|
HTTPS server.

PS>

PS>ulkdir -p /pwd-certs |

PS>cd ./chl5/exercises

PS>t -xvf pwd-client-certs -C /pwd-certs
X ca.pem

x client-cert.pem
x client-key.pem

PS>

PS> --host "tcp://$pwdDomain” --tlsverify --tlscacert /|
pwd-certsfca.pem --tlscert /pwd-certs/client-cert.pem --tlskel
y /pwd-certs7/TIIEMt=REY - pem Comtatmer I

CONTAINER ID IMAGE COMMAND C
REATED STATUS PORTS NA
MES

PS>

PS> --host "tcp://$pwdDomain” --tlsverify --tlscacert /
pwd-certs/ca.pem --tlscert /pwd-certs/client-cert/.pem --tlske
y /pwd-certs/client-key.pem container run -d -P Miamol/apache

Unable to find image 'diamol/apache:latest’ 1
latest: Pulling from diamol/apache
e6bocfoces8s82: Pull complete
aaa68c02807a: Pull complete

Using the correct TLS certs means you can run any Docker
command locally and it executes on the PWD node.





OEBPS/Images/2-2.jpg
— Hostname
.  Disk
I container1 1

* The container has its own virtual
environment, with resources
managed by Docker.
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The Grafana screen to add a new panel. You choose the type of visualization, add the
title and the legend, and provide the query that Grafans runs to populate the panel.

e B % O Last 3 minutes ¥

Panel Title

102400 102430 102500 102530 102630

= {code="500"job="image gallery’,method="get"}
Add Query  Query Inspector

v +» 4 o

| Metrics vI sum(image_gallery_requests_total{code="560"}) without(instance I

/ 7
legend © Minstep © Resolution  1/1 ~

Format  Time series v  Instant ©Prometheus  ©

Min time interval  © Relative time

This query uses Prometheus as the This is the query to run. It fetches the count
data source, so the Grafana container of HTTP errors over the selected time period
will send requests to the Prometheus for the dashboard, and Grafana plots the
container. results in a graph.
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The ingress network is listening on port 8010. Incoming requests get handled by
the Swarm and sent to a node running replicas of the service—the traffic gets
load-balanced if there are multiple replicas on the node.

Image Gallery
Y.

¢ @ 0] localhost:2010 &7%

Image Gallery
Milky Way over Uruguayan Lig|
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Starts the image gallery containers, with Traefik labels applied
to the web container to configure proxy routing rules

(

Y
PS>dock m -f whoami/docker-compose.yml -f whoami/over
ride-traefik.yml up -d
Treating whnoami_whoami_I ... done

PS>
PS># browse to the Traefik configuration for the router:

1e [ O © localhost:8080/dastboard/# . - -
traefik @ v

HTTPRouters 3 HTTP Serv TP Middiewa

© Router Details

Host( whoamilocaf)

whoami@docker

taefik web  web-secure

whoami-whoami
y 3

PS> http://whoami.local

"I'm 7cf243935a4d running on CPU: X64; 0S: Linux 4.19.76-linu
xkit #1 SMP|Thu Oct 17 19:31:58 UTC 2019"

PS>

|
Traefik is running and connected to the Docker Engine, so it sees the
new containers and uses the labels to build up the router configuration.
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This configuration sets up HTTPS with Traefik’s default certificate
provider—it will generate self-signed certificates for the site.

(

x
PS> -f image-gallery/docker-compose.yml -f imag]|
e-gallery/override-traefik-ssl.yml up -d
image-gallery_accesslog_1 is up-to-date

Recreating image-gallery_iotd_1 ... done

Recreating image-gallery_image-gallery_ 1 ... done
PS>

PS> --head --insecure https://image-gallery.local

HTTP/1.1 200 OK

Content-Length: 746

Content-Type: text/html; charset=utf-8
Date: Mon, 23 Dec 2019 16:00:19 GMT

PS> --insecure https://image-gallery.local/api/image
https://www.youtube.com/embed/pvKEG141GmU?rel=0", " cap|
:"Places for OSIRIS-REx to Touch Asteroid Bennu","copyri]
ght":null}

T
[
\

The certificate isn’t trusted, so | need to use curl’s insecure

flag, and then | see the web and API content over HTTPS.
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The web app sends a request message to the queue.
The message contains the address on the queue where
the web app is listening for a response.

web handler1

A\
o
Nz
== =
request z

response

message-queue

The handler receives the request and actions it,
sending the response as a message on the queue,
addressed to the client who sent the request message.
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$ Jen

Jenkins diamol

4 Back to Dashboard
Status

> Changes
{2) Build Now
@ Delete Pipeline
M Configure
\, Full Stage View
"= Rename
© Pipeline Syntax

[Z] Poling Log

@ Bulld History

on

10:55 AM

om AM

T ) RSS for all £ RSS for failures

/

Pipeline diamol

s
" Recent Changes

Stage View

" Novis
1255

Nov 15

10:38

diamol

| log out

ENABLE AUTO REFRESH

Declarative:
Checkout Verify Build Test
scm
576ms 1s 3min 585 3s
576 1 3min 58s

Push

11s

The build history shows the most recent
build status—the second build is the one |
triggered manually, and it ran successfully.

The pipeline view shows the steps that ran, along
with the duration and status of each step. This is
similar to the pipeline described in figure 111.
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Shows how much disk space Docker is using, including the image

cache, container writeable layers, volumes, and build cache

=3 system df
T

P OTAL

RECI ATMARIE

Images 185
7.509GB (160%)

Containers ]
B

Local Volumes 15
2.589GB (100%)

Build Cache ]

PS>

eB

ACTIVE

]

SIZE

7.509GB

eB

2.589GB

eB

I have 7.5 GB of disk space used by images, and I’'m not running a single
container. This is actually a Raspberry Pi with a 16 GB memory card, so

that’s nearly half the available space on the machine.
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The default registry is Docker
Hub—you can’t change this.

Registry: https://index.docker.io/vi/]
Tabels:

Experimental: false
Insecure Registries:
registry.local:5000

3

Registries listed here can be used over
HTTP; otherwise Docker will only use
HTTPS registries.
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This run command starts an interactive container
from an image called diamol/base.
\

\

PSIM container run --interactive --tty diamol/base

Unable to find image 'diamol/base:latest' locally
latest: Pulling from diamol/base

Digest: sha256:e28094dc5c9e5ebae55c1d7fda277cbfeb379033
0813ec83a2ff383dele877a0

Status: Downloaded newer image for diamol/base:latest

)

This command line is connected to a
terminal session inside the container.
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Curly braces filter the results, like a wxERE or HaVING clause in SQL.
This will only include metrics where the label code has the value
200—the HTTP status code for OK. \

pum (image_gallery_requests_total{code="200"}) without (instance)

N 7

sum() aggregates the results without specifies the labels you
of the expression in parantheses. want to ignore in the aggregation,
This adds together all the HTTP similar to crour BY in SQL. This
OK values. ignores the instance value, so all

instances get summed.
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Shared storage integrates
with Docker Swarm volumes,
so containers on any node can
access shared data.

Load balancers route traffic to the
nodes. A separate load balancer for
the managers isolates the admin APl
from the application endpoints. |

[0y

i
'
'
|
'
'
|
'
'
|
'
'
'
i
'
@ Managers
|
'
'
'
'
'
'
'
I
| )
i
'
'

Multiple VMs for managers and

Linux and Windows worker nodes.

VMs are deployed in
sets for high availabil

ailability

Linux workers

VMs are all in the same virtual network.
Internal Swarm traffic is isolated from

the internet and kept private.

Windows workers





OEBPS/Images/16-4.jpg
The rrom image in the Dockerfile is multi-arch, so Docker will
use the matching variant for the engine running the build.

Dockerfile windows/amd64
= R~y

linux/amd64
T P
= -
linux/armé4 =

linux/arm
——[I!ﬁ]—/——w

Building the same Dockerfile on different
architectures produces all the image
variants ready to push to Docker Hub.





OEBPS/Images/8-7.jpg
Version 3 of the API uses the .NET HTTP utility app for the health check. This
command specifies five seconds as the interval between health checks.
|

PS> container rm -f $( :r container 1s -aq)

bo89e51a88b8

PS>

PS>cocker container run -d -p 8080:80 --health-interval 5s diamol/ches-

numbers-api:v3
26h51hlea700467600220624hd0183Fca73074901101 235 £F£60c142022821

PS>
PS>docker container 1ls
CONTAINER ID IMAGE COMMAND
CREATED STATUS PORTS
NAMES
e6b51blea7ee diamol/che8-numbers-api:v3  "dotnet Numbers.Api...
12 seconds ago Up 10 seconds (healthy) ©.0.0.0:80880->80/tcp
serene_shockley
D
PS>curl http://localhost:8088/rng
94
PS>curl http://localhost:8088/rng
8
PS>curl http://localhost:8088/rng
12
PS>curl http://localhost:8088/rng
{"type":"https://tools.ietf.org/html/rfc7231#section-6.6.1"," "title"
error occured while processing your request.”,"status":500,"traceld
1 uy
T —3
PS>
PS> container 1s
} CONTAINER ID IMAGE LOMMAND
CREATED STATUS PORTS
NAMES
| e6bslblea7ee diamol/che8-numbers-api:v3 ‘dotnet Numbers.Api
43 seconds ago Up 41 seconds (unhealthy) | ©.0.0.0:8080->80/tcp
serene_shockley
\ &\
The APl is still broken, so after The HTTP check utility now returns a
four calls it enters the failed state. failure code, and after three failures

in a row the container enters
the unhealthy state.
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This warning tells you that there is a The config command merges and

system environment variable used in processes the input files and
the Compose file that doesn’t have a validates the result. If it’s valid,
value set. This is something to watch the merged file is displayed.

out for if you use variable substitution.

Ps>cd ..\image-gallery\
PS>

~fv.\docker-compose.yml -f .\docker-compose-prod.yml[config]
[WARNING: The HOST_IP variable is not set.| Defaulting to a blank string.
TIETWOTKS T
app-net:
name: image-gallery-prod
services:
accesslog:
image: diamol/ch@9-access-log
labels:
app-name: image-gallery
logging:
options:
max-file: ‘10’
max-size: 1eem
networks:
app-net: {}
grafana:
depends_on:
- prometheus
image: diamol/ch@9-grafana
labels:
app-name: image-gallery
logging:
options:
max-file: '10'
max-size: 1@@m

Both services merge the 1ogging and 1abels extension fields, so the contents
are repeated, but they’re not duplicated in the source Compose files.





OEBPS/Images/15-5.jpg
This container deploys PWD-compatible TLS certs onto the node and
updates the Docker config file, using volume mounts from the host.
I}

ssh ip172-18-0-58-bngfSuot96 direct.labs.play-with-c I—D

DELETE B eorror

root@192.168.0.58
s mkdir -p /diamol-certs

S docker container run -v /diamol-certs:/certs -v /etc/docker:/docker diamol/pwd-tls:server
UREBTE To TInG ImEgE OIaRCI/pWa-TISTSEIver  ToCAIIY
server: Pulling from diamol/pwd-tls
e7c96db7181b 11 complete
48£6dcd6889b: Pull complete
2369403038 11 complete
28£604800d9c: Pull complete
Digest: sha256:££3£fd9b4BF19eaccalc43£640595Fchidd9caasTTfbee793539d0ffadccB2EE6
Status: Downloaded newer image for diamol/pwd-tls:server
oca ot8102.168.0.58
pkill dockerd

root@192.368.0.58 -
dockerd &>/docker.log &

| roote192.168.0.58

Restarts the Docker Engine, loading the new configuration. This way of restarting Docker
is specific to PWD—on a typical deployment you’d restart the Docker service instead.






OEBPS/Images/10-2.jpg
The Compose project name The container index is an

defaults to the folder name incremented value used
where the Compose files when you scale up to
are stored. multiple containers.

—— A
todo-1ist_todo-web_1

\

\
The service name in the Compose file. It is also used
as the DNS name for other containers to communicate.
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The build command specified just one argument, but the other
argument had a default value in the Dockerfile, so the build succeeded.
\
Step (23/23 : COPY --from=builder /out/ .
---% Using cache
79737e41496f
Successfully built 79737e41496f

Successfully tagged numbers-api:latest

PS>

PS> image inspect -f '{{.Config.Labels}}' numbers-a
pi

maq[build_number:e build_tag:chil version:3.e]|

PS> 2

/

\
The value for the build_tag label is the one specified in
the build command; it gets supplied as an environment
variable by Jenkins when the build runs in the Cl pipeline.
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The Prometheus Ul lets you run queries and quickly see the results.
Expressions can just be a metric name or can be complex queries in PromQL.

This dropdown shows the names of all the metrics that have been collected.

# Prometheus Time Series Colle.

T — nos =

Prometheus

O Enable query history

| engine_daemon_container actions_seconds_sum |

Load time: 12ms
Resolution: 145

Total time series: 5

Execute engine_daemon_containi %

Graph  Console

« »

Element Value
engine_daemon_container_actions_seconds_sum{action="changes" instance="DOCKER_HOST:9323" job="docker'} 0

engine_daemon_container_actions_seconds_sum(action="commit",instance="DOCKER_HOST:9323" job="docker"} 0

engine_daemon_container_actions_seconds_sum{action="create" instance="DOCKER_HOST:9323" job="docker"}  2.3447196999999997
engine_daemon_container_actions_seconds_sum{action="delete",instance="DOCKER_HOST:9323" job="docker’}  0.26217329999999994

engine_daemon_container_actions_seconds_sum{action="start"instance="DOCKER_HOST:9323" job="docker"} 8.067746800000002
% v

N

Console view shows the results of the query in a table, with just the most recent
values. You can switch to Graph view and see the changing values over time.
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This deployment will work—the v5 override file includes the missing config
value from the previous deployment, so now the API replicas will all work.

!

PS> m -f ./numbers/docker-compose.yml -f ./numbers/prod-fu
11.yml -f ./numbers/v5.yml --log-level ERROR config > stack.yml

o2
PS> stack deploy -c stack.yml numbers

Updating service numbers_numbers-web (id: f42rvjélmjt3olpefjcj322ni)
Updating service numbers_numbers-api (id: 1vreodj82dexpegpfbojhjhon)
PS>

PS> stack services numbers

in NAME MODE REPLICAS
IMAGE PORTS

1vreodjg82de numbers_numbers-api  replicated 6/6
diamol/ch14-numbers-api:vs

fa2rvjeimjt3 numbers_numbers-web 4 global 1/1
diamol/chl4-numbers-web:v5 I

PS> ‘
!
After a few minutes there hasn’t been a rollback and the new

deployment has worked. All API replicas are using the v5 image.
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Container logs show the app making This runs the web-ping application
HTTP requests to blog.sixeyed.com. in a background container.

\

container run -d --name web-ping diamol/ch@3-web-ping

PS>

PS>

Ps>co o container logs web-ping

** web-ping ** Pinging: blog.sixeyed.com;|method: HEAD; 3@@@ms intervals
Making request number: 1; at 156154174396
Got response status: 200 at 1561541744636} duration: 668ms
"MaKiIng request number: 2; at 1561541746971
Got response status: 200 at 1561541747472; duration: 5@1ms
Making request number: 3; at 1561541749974

Got response status: 20@ at 1561541750460; duration: 486ms
Making request number: 4; at 1561541752977

Got response status: 200 at 1561541753484; duration: 507ms
Making request number: 5; at 1561541755980

Got response status: 200 at 1561541756540; duration: 560ms
Making request number: 6; at 1561541758983

Got response status: 200 at 1561541759489; duration: 5@6ms
Making request number: 7; at 1561541761985
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This is the laa$ model. Every component
runs in its own VM for isolation. It’s an
easier migration, but VMs are likely to be
underutilized and expensive to run.

This is the PaaS model. Every component
gets mapped to a managed service from

to run and easy to manage, but the
migration is a big project.
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This switches to Swarm mode, making the current machine
the Swarm manager. If you have several network cards, your
machine will have multiple IP addresses, and Docker will ask

you which one to use for the Swarm.
)

/

g EEERTE S
Swarm initialized: current node (ot24xzb7jnmcg310z6y7mwgtg

) is now a manager.

To add a worker to this swarm, run the following command:

docker swarm join --token SWMTKN-1-3hyzunhmg4sacx1lfdfj|
nlsyk8wépieoeb8boboz7wsk9qpuqrp-4f62v3dimydkjazmieidzevdv
192.168.65.3:2377

To add a manager to this kwarm, run 'docker swarm join-tok
en manager' and follow the instructions.

The output shows you the command to run on
another machine to join it to the Swarm, using
the IP address of my machine to connect.
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Images contain the filesystem for the Manifests contain just metadata

container along with metadata like the 0§ about the image, including the
and CPU, and an image tag. All images 0S and CPU. Manifests are
have this, whether local or on a registry. stored on a registry.

digest: / digest: digest: -

os: linux ‘ os: linux os: windows

arch: armé4 “ arch: amdé4 arch: amd64

i
diamol/base: linux-arm64 diamol/base: linux-amd64 diamol/base: windows-amd64
& J
R
diamol/base

4

(

Manifest lists exist for multi-arch images. They’re a collection of manifests
that live under a single image tag—manifest lists are stored on a registry.
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The container runs a utility at startup to load the config model.
Environment variables need to be prefixed with roTp to be added
to the model. )

.

PS> run -d -p 8091:80 -v "$(pwd)/config/dev:/config
-override" -e CONFIG_SOURCE_PATH="/config-override/applic
ation.properties” -e IOTD_ENVIRONMENT="custom" diamol/chl
8-image-of-the-day

7f3affce3f617c416e98bel3b50155d008do4a860eat7fd88be0@38c3d
af5e5el

PS>

PS> http://localhost:8091/config

{"release":"19.12","environment": "custom", "apodurl”: "http
s://api.nasa.gov/planetary/apod?api_key="}

PS> T
\

This config is merged from the default file, override file, and
environment variable just like the new Node.js, .NET Core,
and Go apps.
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Runs the random-number API container in the same
Docker network as Nginx, and loads the config file for
the site into the Nginx container ——

PS>/ nt -value "127.0.0.1 |api.numbers.local" -Pat
h /windows/systemsz/drivers/etc/h%sts

PS>

PS> m -f numbers/docker-compose.yml up -d
Creating numbers_numbers-api_1 ... done

PS>

PS>cp ./nginx/sites-available/api.numbers.local ./nginx/
ites-enabled/

PS>

PS> -f nginx/docker-compose.yml restart ngi
nx

Restarting nginx_nginx_1 ... done

PS>

apinumberslocel/mg

c @

JSON  RawData Headers

PS>

P

# apinumbers.ocal 3

Save Copy Collapse All Expand Al

type. https://tools.ietf.org/htnl /rfc7231#sect ion-6.6.1"
title ‘An error occured while processing your request
status 500

traceld |b11e4dS5-4dcfds9F7babanco. "

T

|
This API fails if you call it lots of times, and when that
happens it sends a 500 error response. Proxying the
app with Nginx gets the same response.
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The application process writes logs
to the standard output streams.

stdout

Docker collects the output from
the streams as container logs.
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Deploys a new Fluentd configuration that sends
all the image gallery logs to Elasticsearch
(

v
PS>docke p -f fluentd/docker-compose.yml -f fluent
d/override-gallery.yml up -d
fluentd_kibana_1 is up-to-date
fluentd_elasticsearch_1 is up-to-date
Recreating fluentd_fluentd_1 ... done

PS>
[ © @ localhost5601/app/kibana#/discover?_g=(8 ®
:
| L Il

Time _source

Decenber 19th 2019, 15:24:50.900 | container_id: Bcc3238c33baba71fad46f189d6be6s1848
fa5471689aed12246de481b57436

container_name: /inage-gallery_accesslog_1
source: stdout log: info: Access log, client IP:
172.21.8.1:37482_fluentd-container: 54f8e23de614

December 19th 2019, 15:24¢56.000 | contatner_id: aed173b98e39dBa2feedabd1364adb5632ff
9adf2b961bc0831127b4bac691c4

contatner_name: /image-gallery_iotd_1

source: stdout log: 2019-12-19 15:24:50.373 DEBUG

23 --- [-nio-g6-exec-16] iotd.ImageController :

f
When you use the app, log entries are stored from
the Java API and the access-log component.
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There are three services
in this Compose file. The
dashed lines represent the

Two ports are published by dependencies bet/ween services.

the app: so10 for the website |
and 8000 for the API.

i iotd iaccesslog j

net: app-net

All the service containers
connect to the same network,
called app-net in the Compose file.
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The bundled-config approach should still allow for overrides from
additional files and environment variables. This container runs in
production trim but with an override file. ——

PS>c chl8/exercises/todo-list \7
PS> v
PS> container run -d -p 8085:80 -e DOTNET_ENVIRONME

NT=Production -v "$( )/config/prod-local:/app/config-ov
erride" diamol/ch18-todo-list
807b446b5676edb9d2e0d3930f2b33adaedc7432c8a2db32014629307
13439e5

PS> 1 DIAMOL To-Do List
PS>|

G [ @ @ locahost

Diagnostics

NET
Release  Environment| Hostname Version

19.12 PROD 807b446b5676 NET
< L3 = >

The config is merged from the default file and the production
override file in the image, and then the new override file in the
bind mount. The result is production-like but with dev features.
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Bind mounts surface
a storage location on
the host computer into
the container at a specified
directory path. The source
\ could be local disk or network
storage like NFS.
{

Every container has its own
writeable layer. It has the same
lifecycle as the container—any
edits made here are lost when
the container is removed.

\ Volume mounts surface as a directory path
in the container, but the source is a volume
/ object that is managed by Docker.

The initial state of the container is provided by the image
layers. Any files built into the image from the Dockerfile
are here. The layers are read-only, but the container can
edit files—Docker uses copy-on-write for this.
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1 DIAMOL To-Do it

DIAMOL To-Do List

A Home

+

To-do list

¥ Diagnostics

noe

Source Code

TODO List

But there's always room to add more.

Item Date Added

Finish DIAMOL chapter 6 Wednesday, September 18, 2019

Start DIAMOL chapter 7... Wednesday, September 18, 2019
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The to-do list app works in the same way, but this Compose
app configures it to use a Postgres database for storage.

| DIAMOL To-Do List

c @ ® localhost:8030/list % o @ R mneoe =
DIAMOL To-Do List Source Code
— There is much still to do. \
New item
But there's always room to add more. ‘
To-do list |
" Salectron item J Date Added
File Query Diagnc
Finish DIAMOL Chapter 71 Tuesday, 08 October 2019
Add secrets to Docker and Kubernetes workshop - dak4.net Tuesday, 08 October 2019

SELECT * FROM "public"."ToDos” LIMIT 1600
Wrap Contents

» B postgres

~ Tables ToDold Item DateAdded
i K - 1 Finish DIAMOL Chapter 7! 2019-10-08 00:00:00
% 2 Add secrets to Docker and Kubernetes workshop - dak4.net 2019-10-08 00:00:00

i

T
Sqlectron is a database client app; you can use it to query data in Postgres. This is the
same database container the to-do app is using, and you can see how the data is stored.
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Four containers are running on the same Docker Engine, but they connect
to different Docker networks. Containers on the numbers-test network
cannot see containers on the numbers-uat network.

numbers-test numbers-uat

DNS names are resolved within the network, so web containers always
use the name numbers-api to talk to the API, but they will only see
the container from their network.
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Docker supports different types

of networks—the default is overiay
when you’re in Swarm mode, but it’s :I"a;hs:’;:::z gfm::-;:;iiztf::h
good to be explicit in commands.\‘ all the replicas to start,

Creates a service and attaches it

PS> service rm timecheck

timecheck \

PS> &

pc network create --driver overlay iotd-net]
jao281@qolnmmhxvx9deysulr &

D

PS> service create --detach --replicas 3 --network iotd-net --nam

e iotd diamol/ch@9-image-of-the-day

raubelu3445q8jorogznsIstk

PS>

PS> service create --detach --replicas 2 --network iotd-net --nam
e accesslog diamol/cheg-access-log

m3vnejqqmm8eo68cs2j3s035q

PS>
PS> service 1s
0 NAME MODE REPLICAS
IMAGE PORTS
m3vnejqqmmae accesslog replicated 2/2
diamol/cheg9-access-log:latest
raubelu3445q iotd replicated 3/3
diamol/ches-image-of-the-day:}]atest
PS> ﬁ
(
{

The services are running across many replicas. Swarm will return
a single virtual IP address for the service name in DNS lookups.
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The Docker CLI shows every service updating in a stack
deployment, but unchanged definitions won’t actually change.

PS> stack deploy -c ./todo-list/v4.yml todo
Updating service todo_todo-web (id: rkmj4newomt3clb2uo98klcav)
Updating service todo_todo-db (id: rjmgbh8@61qmfexq7zthg9zs6)

PS>
PS> stack ps todo
po) NAME IMAGE
NODE DESIRED STATE CURRENT STATE ER
ROR RTS
gbsbe6sjyfxq todo_todo-web.1 diamol/ch@6-todo-1ist:latest

docker-desktop

hdouee7gwsud
docker-desktop

7e25h51cqwuu
docker-desktop

PS>

Running

todo_todo-db.1
Running

todo_todo-web.1
Shutdown

Running 1 second ago

diamol/postgres:11.5
Running 4 minutes ago

diamol/che6-todo-list:latest
Shutdown 3 seconds ago

)

The database service is still running on the original replica; the
web service has the old replica, which is shut down, and the
current one, which uses configs and secrets.
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Tools needed to build software—could include Maven and the JDK for
Java projects, NuGet MSBuild, and Visual Studio Build Tools for .NET.

-* The dev team and the build
server all need the same
versions of all the tools.
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You need multiple clusters for true high-availability, and they should be in
different data centers or different regions, so your apps keep running even
if a whole region is unavailable. An external DNS service can direct users to
the nearest cluster if both are online. —

cluster1

Managers

Each cluster has the same configuration, which is scripted, so bringing
up a new cluster is fully automated. Multiple managers ensure HA for
the cluster database and the management activities. Multiple workers
ensure HA for your app containers.
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The Docker command line has its own set of experimental

features, and you need to opt in to these to work with manifests.

@ docker o W

-

Settings

¢ B

General
Resources
Docker Engine
Command Line

Kubernetes

Command line
v19.035

@@ =nable experimental features

More information about the experimental features






OEBPS/Images/21-1.jpg
The web component uses a The API doesn’t communicate with the web
service from the APl but doesn’t  component. If the request needs a response,
communicate with it directly. it gets sent as a message on the queue.

web

P/
(] ]

message-queue

g

Instead, the web The APl is listening on the queue and gets
component sends a sent a copy of the message, which could be
message to the queue. a request for data or to execute a command.





OEBPS/Images/12-14.jpg
Fetches the ID of the most recent container, which could be any
of the service replicas, and connects to a shell session inside

Ll
psi container exec -it $(  container 1s --last 1 -q) sh]

/app #

/app # nslookup iotd
nslookup: can't resolve '(null)': Name does not resolve|

Name: j iotd
1

Addres i 10.0.1.2 ——
/app #
/app # |nslookup accesslog
nslookyp: can't resolve '(null)': Name does not resolve
|

Name: accesslog
Address 1:f 10.0.1.7 ‘
/app # \“

\ w‘ |
Runs a DNS lookup. This “name does These are the service names—each
not resolve” error is an issue with the returns a single IP address, even
tool and doesn't affect the results. though they’re running on many

replicas.
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The output from docker container inspect
includes a detailed state section.

( The health check for my container has failed six times in a
\ row—the default is three times to trigger unhealthy status.

’

"State": {
"Status": "running",
"Running": true,
"Paused": false,
"Restarting": false,
"OOMKilled": false,
Deat—faises
"pid": 1260,
"ExitCode"
"Error”: "7,
"StartedAt": "2019-10-10T20:08:29.3233896Z",
“Eipishedat": "9001-01-01700:00:00Z",
"Health": {

“Status": "unhealthy",

"FailingStreak": 6,

9,

"Start": "2019-10-10T21:13:00.215091+01:00",

"End": "2019-10-10721:13:00.3138258+01:00",
"ExitCode": 22,
"output": " % Total % Received % Xferd Avel
rage Speed  Time Time Time Current\r\n
Dload Upload Total Spent  Left Speed\r\n\r @ °
] ] e ] ] ] = = o\r o
o e ] 2] e e 9 ~ o K o e
@\r\ncurl: (22) The requested URL returned error: 58@ Internal Servel
r Error\r\n"
T /f

Health check logs are shown too, so | can see the status code
of the check and the log showing an HTTP 500 error code.
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This run command starts a container
from an application package called
diamol/ch02-hello-diamol.

\

PSF - container run

diamol/ch@2-hello-diamol

Unable to find image "diamol/ch@2-hello-diamol:Iatest' locally

e7c96db7181b: Already e
1fag86bl6e100: Pull comp
d475cf4ade544: Pull comp

9b37d4bbbde7c
Status: Downloaded newe

latest: Pulling from diamol/ch@2-hello-diamol

xists
lete
lete

Digest: sha256:4c441f5e0fel79ae61d8388fd711a87P6c769559a2666a71c84

r image for diamol/che@2-hello-diamol:latest

My name is:
©5943557213b

Im running on
Linux 4.9.125-linuxkit
My address is:

inet addr:172.17.0.2 B(

x86_64

ast:172.17.255.255\Mask:255.255.0.0

Docker runs a container from

That package doesn’t exist on this
machine, so Docker downloads it first.

the package, and these logs
are the output from the application.
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On PWD the app is running in the UAT configuration. This was deployed from Jenkins
running in Docker on my local machine, using TLS to connect to the PWD session.

noe =

DockerPyground

c e

bnghsebj_bngh3f3jagq000ddjbvg

CLOSE SESSIoN

192168033 OFCH RO
Instances LN ”
7.21% (288.5Mi8 / 3.906GB) 6:60%
+ ADD NEW INSTANCE sshp172:18.0-59-bngh3ebjaga000ddjov0@direct labs.play-with-d )

15216803 oeere [ ESC |

heck-uat._ti

Stage View
Declarative: it
Checkout  Verify  Build Test Push AT TMel Production
scm i
109ms 861ms 2 2 879ms 4s 135ms 333ms

Deploy to prod?

—— a—

Back in Jenkins, this is the manual approval ;tage—eontinuing the pipeline will deploy to
production.
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You log in to a registry using the Docker
CLI. Docker Hub is the default registry,
s0 you don’t need to specify a domain.

PS} login”--username %dor,ker‘l:)l
Password:

Login Succeeded

ps>fi

I
The username is your registry
username—your Docker Hub
account in this case, which
you’ve saved in a variable.
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This is the directory where Docker
The “tag” is the name will find the content—*“.” means use
of the image to build. the current directory.

PS>docker image build|--tag web-ping E]

Sending build context To Docker daemon 4.096kB

Step 1/7 : FROM diamol/node
---> 9dfa73e1eb19

Step 2/7 : ENV TARGET="blog.sixeyed.com"
---> Running in 271fd8fafdca

Removing intermediate container 271fd8fafdca
---> 184364920df8

Step 3/7 : ENV METHOD="HEAD"
---> Running in 519bclbe2aad

Removing intermediate container 519bclbe2aad
---> aeac2009c2ds

Step 4/7 : ENV INTERVAL="3000"
---> Running in of356eae6f42

Removing intermediate container @f356eae6f42
---> f255921aee9b

Step 5/7 : WORKDIR /web-ping
---> Running in 3cle496acl75

Removing intermediate container 3cle496ac175
---> 2f119d903989

Step 6/7 : COPY app.js .
---> 0f7036862799

Step 7/7 : CMD ["node", "/web-ping/app.js"]
---> Running in aaaabba6eecc

Removing intermediate container aaaabba6eecc
---> 76f3436762e9

Successfully built 76f3436762e9

Successfully tagged web-ping:latest





OEBPS/Images/20-5.jpg
Runs the image gallery app with three web containers,
connected to the same Docker network as the Nginx container

PS>Ad -Value "127.0.0.1 | image-gallery.local" -P
ath /windows/system32/drivers/etcyhosts

PS>

PS> -f .\image-gallery\docker-compose.yml uf
p -d --scale image-gallery=3

Creating image-gallery_iotd_1 ... done

Creating image-gallery_accesslog 1 ... done

Creating image-gallery_image-gallery 1 ... done

Creating image-gallery_image-gallery 2 ... done

Creating image-gallery_image-gallery_3 ... done

P
PS> ./nginx/sites-available/image-gallery.local ./nginx
/sites-enabled/

PS>

PS> -f .\nginx\docker-compose.yml restart n
ginx

Restarting nginx_nginx_1 ... done

PS>

PS> -i --head http://image-gallery.local

HTTP/1.1 20@ OK

Server: nginx/1.17.6

Date: Mon, 23 Dec 2019 10:54:36 GMT
Content-Type: text/html; charset=utf-8
Content-Length: 746

Connection: keep-alive

X-Proxy: 2f4871e23088

X-Upstream: 172.20.0.7:80

i

|
Nginx load balances requests across the three web containers.
The response includes a header with the IP address of the

source container—repeat the calls and you'll see it change.
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Monolithic apps can be run in containers, but you don’t
get all the benefits of a cloud-native architecture. Adding
a reverse proxy lets you break up monolithic designs.

reverse-proxy N

¥ monolith
' N

« monolith.com

« monolith.com/new

Pt

:
|
. “ new-feature
|
:

A new feature has been added to the app in a separate container,
routed by the reverse proxy using the request path. Existing features
can be broken out of the monolith in the same way.
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The API always But the image has the Java SDK, so you

returns true. can simulate an attack by compiling
j and running some other Java code.
PS> http://localhost:8010/truth
true
PS>
PS> container exec -it truth sh
#
# javac FileUpdateTest.java
#
# java FileUpdateTest
#
# exit
PS>
PS> http://localhost:8010/truth
false
PS> T

\

The hacked API always returns £a1se. Yikes.
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The update configuration for the web service hasn’t changed, so the
new v3 replica started after the v2 replica had been shut down.
[

PS> my -f ./numbers/docker-compose.yml -f ./numbers/prod.yml -f
./numbers/prod-healthcheck.yml -f ./numbers/prod-update-config.yml  -f

/numbers/v3.yml --log-level ERROR config > stack.yml

PS>

PS> stack deploy -c stack.yml numbers

Updating service numbers_numbeérs-web (id: letmolcb2wtewgumm8njxpSmh)

Updating service numbers_numbers-api (id: lxxad8xcqmrolnz@9cle3wz5u)

PS> stack ps numbers

i NAME pul

AGE NODE DESIRED STATE CUR

RENT STATE ERROR PORTS

k2diohép719k numbers_numbers-web.ay2@p76wefcokkl46xtabyssz di

amol/ch@8-numbers-web:v3 docker-desktop Running Run

ning 4 seconds ago *:80->80/tcp

x9p9cky8xgde \_ numbers_numbers-web.ay20p76wefcokkl4éxtabyssz  di

amol/che8-numbers-web:v2 docker-desktop Shutdown Shu

tdown 8 seconds ago

kovbcwmjx8ms _ numbers_numbers-web.ay2@p76wetcokkl46xtabyssz  di

amol/ch@8-numbers-web:latest  docker-desktop Shutdown Shu

_tdown 14 minutes ago

vzdurplraShh numbers_numbers-api.1 di

amol/ch@8-numbers-api:v3 docker-desktop Running Run

ning 6 seconds ago

Listing all the replicas for a stack takes up a lot of room—if | scrolled
down here I'd see three of the API replicas updated to v3 at the same
time. The rollout will monitor them for one minute, and if they’re
healthy it will update the other three.
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The Docker image is packaged with configuration for
Prometheus to scrape the app containers every 10 seconds.

prometheus

image-gallery iotd

/

There are single instances of the Go
and Java components. Prometheus
is using static_config so it only
expects one IP address for the
domain name.

access-log

\

The Node.js component is running at scale
over three containers. Prometheus is using
dns_sd_config, which means service discovery
through DNS, so it will use all the IP addresses
Docker returns from the DNS lookup.
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Async processing can be scaled just by adding more
containers—the NATS queue distributes the messages
across all connected message handlers.

‘(\'
PS>c L up -d --scale save-handler=3
todo-1list_message-queue_1 is up-to-date
Starting todo-list_save-handler_1 ...
todo-list_todo-db_1 is up-to-datee

Starting todo-list_save-handler_1 ... done
Creating todo-list_save-handler_2 ... done
Creating todo-list_save-handler_3 ... done
PS>

PS> = logs todo-list_save-handler_2

Connecting to message queue url: nats://message-queue:4222
Listening on subject: events.todo.newitem, queue: save-handle
I3

PS>

PS> m logs --tail=1 save-handler

Attaching to todo-list_save-handler_3, todo-list_save-handler
_2, todo-list_save-handler_1

save-handler_1 | Item saved; ID: 6; event ID: 84416d3e-a52c
-443b-b@26-933805e4f4dc

save-handler_ 2 | Item saved; ID: 5; event ID: d89e3b12-925a
-477f-b892-dbcfbdebdsaé

save-handler_3 | Listening on subject: events.todo.newitem,

queue: save-handler

After adding some more items in the web Ul—they all get
published as events to the queue, but different handlers
pick them up and process them.
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This starts a new container that will have a new volume created for it.

\ The new volume is empty; there are no files at /data.
v
PS>| container run --name todo2 -d diamol/che6-todo-list
600b63ee2cef796e9f7c3ebacas8bed42f06b5T167751a817546760Td97deaddb

PS>

PS container exec todo2 ls /data

PS

PS> container run -d --name t3 --volumes-from todol diamol/cheé-tod
o-list

943338975bfc8541391204921e66cad7107bcab6ad9109f@31cde60cc8239d43

PS>

PS> = container exec t3 1s /data

todo-list.db

PS>

| This container uses the volumes from the original application container, todo1.
r That means the same volume will be mounted at the same location, /data.

The new container shares the volume from todo1, so it can
see the data written by the original application container.





OEBPS/Images/11-3.jpg
When you first run Gogs, you’ll see this installation page—it’s an
application that doesn’t let you fully automate the deployment.
\

@ Installation - Gogs

C @

Install Steps For First-time Run

If you're running Gogs inside Docker, please read Guidelines carefully before you change anything in this page!
Database Settings

Gogs requires MySQL, PostgreSQL, SQite3, MSSQL or TiDB.

Database Type*  SQLite3 -

Path®  /data/gogs.db

Application General Settings

Application Name*  Gogs

Repository Root Path* /data/repositories

RunUser®  git

Domain®  localhost

\
All the settings are preconfigured in the container. You don’t need to
change them—ijust scroll down and click the Install Gogs button.
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I’ve created two nodes in this PWD session. PWD is already set up so that | can
The terminal window is currently connected connect to other nodes using SSH
to node2. without entering a password.

+ ADD NEW INSTANCE ssh ip172-18-0-73-bngf5uot969000c674e

@

B eomor

s Snodelip
reseeseiss HlllHHHHHHH”HHHHHHHHHHHHHHH!
WERNING!!!!

l
HIGHLY! discourac I +
pletely the user #
+
+
+

The PWD tear
FHE R R

That’s it—when SSH is configured, you can use it with the Docker
command line without any extra setup on the Docker Engine.
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This chart shows when different projects added multi-arch
support to their official images on Docker Hub.

ll‘l b =& am
b arm
-—: ‘ &8 arm
284 285 286 287 28)18 20019

/

They all launched with Linux support in 2014 or 2015; they all added
Arm support in 2017. Go and NATS (a message queue) added Windows
support in 2016—Postgres is still to support Windows.
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These are the logs from the build stage. That just runs the build with the Docker
Compose CLI, so all the usual image building logs are recorded and shown.

diamol | log out

Stage Logs (Build)
Jenkins  +  diamol| ENABLE AUTO REFRESH

® Shell Script — chmod +x ./ci/01-build bat (self time 291ms)
4 Back to Dashb

© Shel Script — /ci/01-build bat (self time 3min 58s)
@, status ~
i + ./ci/61-build.bat [add description
= Changes
= Building nunbers-api R
£ Build Now Step 1/23 : FROM diamol/dotnet-sdk AS builder

: latest: Pulling from diamol/dotnet-sdk
() Delete Pipelinel| p5gec: shazss:a78173a0dbd3e6b3028¢ Leadaddedd6eBe7b28013cdad0s928e5da1s5c7039
£ congure Status: Downloaded newer image for diamol/dotnet-sd:latest

> 176a7f2ec51a
O, Full Stage View| step 2/23 : workoIr /src

o > RuAning 17 546039333537
> Rename
=t Removing intermediate container 946b3933a5a7 F
ﬂ Pipeline Synta ---> 1a81ceac93b3
. Step 3/23 : COPY src/Numbers.Api/Nunbers.Api .csproj - Test  Push
[ GitPolingLog| ", oseaasssscos
Step 4/23 : RUN dotnet restore |
---> Running in 3969629895d6 | s
© BUHEION ;. tore completed in 75.44 ms for /src/Numbers.Api.csproj.
fd | femoving intermediate container 3969629895d5
= > eadcs
0c99012060 o -
o Step 5/23 : COPY src/Numbers.Api/ . .
Nov 15,2019 1055 AM -
1 @
@#  Novi5 2019838 AM o t

You can click on any of the pipeline stages to see the logs from all the steps. -
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Saving the source and target Run a container with a bind mount.

values for directory paths in Inside the container the app uses
variables helps make the the directory c:\data, but this is
commands easier to work with. a mount from the host directory.
[ |
v \
P4>$source="$( )\databases".ToLower(); $target="c:\data" I l
P
PS> ./databases |
PS>
PS> container run --mount type=bind,source=$source,target=$target -

d -p 8012:80 diamol/che6-todo-list
0c384e8b6be386ee@@2796ad61aad7b61011e7aff29a284123e89c438757a47¢

//};) http://localhost:8012
PS
Psp1: ./databases

‘ Directory: C:\Users\elton\databases

LastWriteTime Length Name

12288 todo-list.db

18/09/2019
The container port so is published to port so12 This is the file created by the container.
on the host. Sending an HTTP request to the container You can work with it directly from the
with cur1 starts the application, which creates the host, and if you add files to the host
database file at c:\data. The out-Null option directory, they can be seen by the

silences the output of the command. container.
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Enabling metrics gives you an HTTP endpoint where you can view data from the Docker Engine.

localhost9323/metrics

c @

CHYLUS_UdSIUN_CULILELISL_aLLiois_5SCUlus_CUUllL{atLiul—

B % 9%

engine_daemon_container_actions_seconds_bucket{actio .005"} 1
engine_daemon_container actions_seconds_bucket{action .017) 1
engine_daemon_container actions_seconds_bucket{actio: .025"} 1
engine_daemon_container_actions_seconds_bucket{action="start",le="0.05"} 1

"start”, Al
25"} 2
.5"} 18
1"} 19
2.5"} 19
58} b9

engine_daemon_container_actions_seconds_bucket{action:
engine daemon container actions seconds bucket{action:
engine daemon_container_actions_seconds_bucket{action:
engine_daemon_container_actions_seconds_bucket{action:
engine_daemon_container_actions_seconds_bucket{actio
engine_daemon_container_ actions_ seconds_bucket{action:
engine_daemon_container_actions_seconds_bucket{actio 10"} 19
engine_daemon_container_actions_seconds_bucket{actio +Inf"} 19

engine_daemon container_actions_seconds_sum{action="start"} 7.053528200000002

engine daemon container actions seconds count{action="start"} 19

# HELP engine_daemon_container_ states_containers The count of containers in various states
# TYPE engine_daemon container_states_containers gauge
engine_daemon_container_states_containers{state="paused"} 0
engine_daemon_container_states_containers{state="running"} 36
engine_daemon_container states_containers{state="stopped"} 4

e T e T T e p TS p TS T e T e T O TSR Tt
# TYPE engine_daemon_engine_cpus_cpus gauge

engine_daemon_engine cpus_cpus 4

# HELP engine_daemon_engine_info The information related to the engine|and the OS it is rumn
# TYPE engine daemon_engine_info gauge
engine_daemon_engine info{architecture="x86_64",commit="c92ab06", daemon\id="NLZA:OPUD:ZVKI:N
:6D33:ABJV: YZDB: 3DWX:CQOD", graphdriver="overlay2", kernel="4.9.125-1inuxkit", os="Docker
Desktop", os_type="linux",version="19.03.2"} 1
S HELD engine decmcnsnglas e e umber of bytes of memory that\the host system
# TYPE engine_daemon engine memory bytes gauge
engine_daemon_engine_memory bytes 6.24662528e+09
* HELT CNUiNe_OoemON_CVENTS_SUDSCIIDETS_Total TNE number of current subscribers)\to events
# TYPE engine_daemon_events_subscribers_total gauge
engine_daemon_events_subscribers_total 1

yStemof—tie—enyim

|
I

Metrics include static information, Metrics also include dynamic information,
like the amount of memory available like the current number of containers in
on the machine running Docker. each state—paused, running, stopped.
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These two volumes were created when | deployed the v4 stack. One is used
by the web container and one by the database container, because both
images have volumes specified.

{

v

PS> volume 1ls -q
3370d68cf3bc60145F33497e2eed34a6e93ded136169e8F8bb2f1782c5308221
54475ced4e89a2151e69ef6371ae63f9ac7d8b23b3bco18d86bc5a1504e2c7cf1
PS>

PS> stack deploy -c ./todo-list/v5.yml todo

Updating service todo_todo-web (id: usm3cs118vo18@jhhbmvw23ds)

Updating service todo_todo-db (id: 6olko321fnturfdkd4vsjbp38)
PS>

PS olume 1s -g
3370d68cf3bc60145f33497e2eed34a6e93ded136169e8f8bb2f1782¢5308221
54475ce4e89a2151e69ef6371ae63f9ac7d8b23b3bco18d86bc5a1504e2¢c7cf1
todo_todo-db-data
PS> ?
!
The v5 Compose file specifies a named volume for the database service,
todo-db-data. The default volumes will be removed when | remove the
stack, but the named volume will remail
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This site configuration uses The cache starts empty, so Nginx
Nginx as a caching proxy fetches content from upstream
for the image gallery app. and adds it to the cache.

PS> ./nginx/sites-enabled/image-gallery.local

p

PS> ./nginx/sites-available/image-gallery-4.local|./ngi
nx/sites-enabled/image-gallery.local
P

PS> T m = -f .\nginx\docker-compose.yml restart
nginx

Restarting nginx_nginx_1 ... done

PS> L2
PS> -i --head --insecure https://image-gallery.local

HTTP/1.1 200 OK

Server: nginx/1.17.6

Date: Mon, 23 Dec 2019 13:27:06 GMT
Content-Type: text/html; charset=utf-8
Content-Length: 746

Connection: keep-alive

X-Cache: MISS

X-Proxy: 2f4871e23088

X-Upstream: 172.20.0.9:80

PS>curl -i --head --insecure https://image-gallery.local
HTTP/1.1 200 OK

Server: nginx/1.17.6

Date: Mon, 23 Dec 2019 13:27:13 GMT

Content-Type: text/html; charset=utf-8

Content-Length: 746

Connection: keep-alive

X-Cache: HIT

X-Proxy: 2f4871e23088

[y

{
On the second call there’s a cache hit for the request. Nginx
serves the response directly without using the upstream at all.
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The writeable layer is unique to each container. This is how
/random/number . txt exists with different contents in rn1 and rn2.

diamol/ch06-
random-number

{
The image has two ‘
read-only layers. ’

Containers from the image use those layers
and add a writeable layer of their own.
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The app is running in dev configuration.
It has a config API that shows the
current settings, merged from the layers
in the config model.

"release": "19.12",
"environment": "DEV",

metrics” : {

Release-level settings like the current

release cycle are stored in default config )
in the image; environment-level settings

like the environment name are in override
config files loaded into the container
filesystem; feature-level settings like enabling
metrics can be set by environment variables.
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Prints out the container logs

from all the service replicas. l?g entries are shown
The since parameter limits with the replica ID, so
the output to logs written in you can track logs back
the last 10 seconds. to the container that

generated them. |

<P9i oc service logs --since 10s timecheck]
timecheck.1.edSpp5gozgxf@docker-desktop |
App version: 1.0; time check: 15:31.45
timecheck.1.ed5pp5gozgxf@docker-desktop | ‘/
App version: 1.9; time check: 15:31.50

PS>

PS> service 1nspect timecheck -f '{{.Sp

pec.Image}}’
dlamol/chlz imecheck 4

sha256:76cd889d179
b7t83a3b73¢C C9ba6c82f424213a3b54b6b

d175cd9
PS>

Inspecting the service shows the

image used for the replicas. Docker

Swarm checks the image registry

and uses the unique hash for that

version, to be sure all nodes use

the same image.
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This is the navigation bar you see in the top right of the Grafana screen.

O Last 6 hours ¥

Adds a new Exports the Selects the time period
panel to the  dashboard to for all the visualizations
dashboard a JSON file on the dashboard
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One image is physically
stored as many image layers.

PS>docker image pull

Using default tag: lates
latest: Pulling from diamol/ch@3-web-ping

€7¢96db7181b:

Already exists

The name of the image to pull
is diamol/ch03-web-ping.

diamol/ch@3-web-ping

bbec46749066:
89e5cf82282d:
5de6895db72f:
3a03d722931d:
2ec194f331a9:
Digest: sha256:0b1745c5087827

Pull complete
Pull complete
Pull complete
Pull complete
Pull complete

[d321094afd2026a43ddd31a7c863319f588

b89SUOBTES2S
Status: Downloaded newer image for diamol/ch@3-web-ping:latest
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Multiple Dockerfiles let you tailor the steps for each architecture.
Windows and Arm 32-bit images have their own Dockerfile here,
but there’s a shared Dockerfile for Linux on Intel and Arm 64-bit.

wmdowslamd64
= — g
Dockerfile
I|nux/amd64
.= — iR
linux/armé4
Dockerfile

linux/arm w
Dockerfile

The approach is the same—build each image variant on the
native architecture—but there’s a maintenance overhead with
multiple Dockerfiles that need to be kept in sync.
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This setup exposes the web container and the API container through
Traefik, using the path prefix “api” for API requests.
(

v
PS> k -f image-gallery/docker-compose.yml -f imag
e- galler’y/over‘nde traefik.yml up -d
Creating image-gallery_accesslog_1 ... done
Creating image-gallery iotd_1 ... done
Creating image-gallery_image-gallery_1 ... done
PS>
PS> --head http://image-gallery.local

HTTP/1.1 200 OK

Content-Length: 746

Content-Type: text/html; charset=utf-8
Date: Mon, 23 Dec 2019 15:43:04 GMT

PS> -1 http://image-gallery.local/api/image
HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8
Date: Mon, 23 Dec 2019 15:43:13 GMT
Content-Length: 132

{"url":"https://www.youtube.com/embed/pvKEG141GmU?rel=0", "cap|

tion":"Places for OSIRIS-REx to Touch Asteroid Bennu","copyri
ght":null}
PS> *

{

The REST API is available from the same domain as the web app,
although the content is fetched from a different container.
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Port 80 on the container is published
to port 800 on my host computer.

localhost:800/image

¢ @

JSON  RawData  Headers

&«

Save Copy Collapse All Expand All Filter JSON
url: “https://apod.nasa.gov/apod/image/1967/BirdsEclipse_Caldas_960. jpg"
caption: "Birds During a Total Solar Eclipse”
copyright: | "Leonardo Caldas”
*

|
These are the picture details—originally from NASA’s
service, but cached in the containerized Java app.
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The application process writes logs
to a file in the container’s filesystem.

A utility app watches
the log file and relays
entries to stdout.

Docker collects the output from
the streams as container logs.
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Run the EFK stack (Elasticsearch, Run the timecheck app using
Fluentd, and Kibana) in containers. the Fluentd logging driver.

PS>cd chil9/exercises &

P

PS>dock my -f fluentd/docker-compose.yml up -d
Creating fluentd_elasticsearch_1 ... done

Creating fluentd_fluentd_1 ... done

Creating fluentd_kibana_1 ... done

2

PS> container run -d --log-driver=fluentd diamol/ch

19-timecheck:5.0
a674ec4ab5dTe895231770ede2367b55T94d77963125b16T63a0b3Teb
fc21dbb

PS>
PS>

K Discover - Kibsna

[

© @ localhost " #/di

Time _source

Decenber 19th 2019, 12:18:41.060 contatner_nane: /dazzling ganguly

source: stdout log: 2019-12-19
12:18:41.898 480:00 [INF] Environment: DEV;
version: 5.9; tine check: 12:18.41

contaner_1d: a674ecdabSdfeB99231 6ede2dsT

7
|

When you’ve configured Kibana, you’ll see all the container
log entries collected by Fluentd and stored in Elasticsearch.
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This stops the app and removes all the
resources managed by Docker Compose.
All the containers are removed.

The network is defined as external in
the Compose file, so it’s not managed
by Compose and isn’t removed.

PS> m = down

Stopping image-of-the-day_iotd_2 . done

Stopping image-of-the-day_iotd_3 ... done

Stopping image-of-the-day_image-gallery_1 ... done

Stopping image-of-the-day_iotd_1 ... done

Stopping image-of-the-day_accesslog_1 . done

Removing image-of-the-day_iotd_2 .. done

Removing image-of-the-day_iotd_3 ... done

Removing image-of-the-day_image-gallery 1 ... done

Removing image-of-the-day iotd 1 ... done

Removing image-of-the-day accesslog 1 ... done

[Network nat is external, skipping |

PS>

PS> up -d

Creating image-of-the-day_accesslog_1 ... done

Creating image-of-the-day_iotd_1 . done

Creating image-of-the-day_image-gallery_1 ... done

PS> container_1

CONTAINER| ID IMAGE COMMAND CREATED
STATUS PORTS NAMES

ba32fa2063al diamol/che4-image-gallery "/web/server" 8 seconds

ago Up 7 secqnds 0.0.0.0:8010->80/tcp image-of-the-day_image-gallery_1|

cb1918beld66 diamol/che4-image-of-the-day "java -jar /app/iotd." 9 seconds

ago Up 8 secdnds 0.0.0.0:32777->80/tcp  image-of-the-day_iotd_1

f4898f4ddecs diamol/che4-access-log "docker-entrypoint.s, 9 seconds

ago Up 8 secdnds 80/tcp image-of-the-day_accesslog 1

This starts the app again,
creating all the resources
needed to get to the desired
state in the Compose file.

T

(
The desired state in the Compose file is for a single
container in the iotd service. We previously scaled
up to three, but that’s not in the Compose file, so
now we’ve returned to a single container.
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Specifying a project name means Compose sees this as a different
app from the existing one that used the folder name for the project.

PS>ocier conpor -F . /todo-ist/docker-conpose.yml [p todo-test]up -d

Creating todo-test_todo-web_1 ... done

PS>

PS> =i container 1s

CONTAINER ID IMAGE COMMAND
CREATED STATUS PORTS

NAMES

79¢3d91b2531 diamol/che6-todo-list "dotnet ToDoList.d1l"
5 seconds ago Up 4 seconds 0.0.0.0:32773->80/tcp

todo-test_todo-web_1

2@5albc5alae diamol/che6-todo-1list "dotnet ToDoList.d1l"
43 minutes ago Up 43 minutes 0.0.0.0:32772->80/tcp

todo-list_todo-web_1

bc7f7ba657ff diamol/ch@8-numbers-api:v3\ "dotnet Numbers.Api..."
43 minutes ago Up 43 minutes (healthy) \80/tcp

numbers_numbers-api_1

PS>

PS>cocker container port todo-test_todo-web_1 80

0.0.0.0:32773

PS>

Now there are two copies of the application running. They use the exact same
Docker Compose file, but the project name makes them separate apps in Compose.
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The Compose file defines the whole  NATS listens on different ports for
to-do list app. This command just clients and for the admin API. The

runs the NATS message queue. Compose file publishes APl port 8222.
|

PS> ch21/exercises/todo-1list

PS

PS> r Mg up -d message-queue

Creating todo-list message-queue 1 ... done

PS>

PS> container logs todo-list_message-queue_1

[1376] 2020/01/03 12:08:32.274131 [INF] Starting nats-server
version 2.1.2

[1376] 2020/01/03 12:08:32.275130 [INF] Git commit [679beda]
[1376] 2020/01/03 12:08:32.277128 [INF] Starting http monitor
on 0.0.0.0:8222

[1376] 2020/01/03 12:08:32.278128 [INF] Listening for client
connections on ©.0.0.0:4222

[1376] 2020/01/03 12:08:32.278128 [INF] Server id is NAFKYQSP
XKLDI3RZVAOUWEEFVYAG67PHA0IQMS6RYX7V3ZYW626FCF3X

[1376] 2020/01/03 12:08:32.278128 [INF] Server is ready
[1376] 2020/01/03 12:08:32.290144 [INF] Listening for route c
onnections on 0.0.8.8:6222

PS

PS> http://localhost:8222/connz

{

"server_id": "NAFKYQSPXKLDI3RZVAOUW6EFVYAG67PH40JQMS6RYX7V3
ZYW626FCF3X",

: "2020-01-03T12:09:10.2655257Z",

"num_connections": o,
"total":
"offset": o,
"limit": 1e24,
"connections": []

7 7
|

The admin APl includes a connection count, showing how many

clients are connected to the queue—right now there are none.
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The Docker image In test, the defaults

is packaged with are overridden with In production, the app config is
default config for environment variables loaded from config objects and
the dev environment.  and local files. secrets stored in the Swarm.
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You can run any type of app in containers on the
cluster—legacy monoliths, new cloud-native apps,
and serverless functions.
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A production container cluster can

be built from Linux or Windows

servers, or a mixture of both. The cluster can be set up to use the
Docker Swarm API or the Kubernetes
API to manage containerized applications.






