

ISBN-13:​
 978-1-7353299-0-1

First Edition, July 2020

Copyright © 2020, Prosper Consulting Inc., The Tech Academy

DEDICATION

​
 Jack Stanley here. Before I wrote this book, I looked through several existing “Kids Coding books.” I found two common problems with them:

1)
 They were too difficult. Many of the explanations contained words that many kids (and adults) don’t know. And,

2)
 They were boring.

​
 Then it hit me – what if I wrote a coding book for kids as a story?!
 Meaning, it would contain characters and dialogue (spoken conversations). This would allow me to be quite imaginative. I then wrote this book and my genius business partner (Erik Gross) reviewed, edited and added his charm to it. It is Erik’s and my dream that this book will end up in schools all over the world.

​
 Even though I am technically a grown up, I never really grew up. I am the father of two wonderful children, and I have nieces and nephews. They are the primary source of my
 motivation.

​
 This book is dedicated to them. [image:]

​
 Jack C. Stanley,​
 ​
 July 2020

[image:]
 ®

LEARN CODING BASICS

FOR KIDS, YOUNG ADULTS AND

PEOPLE WHO ARE YOUNG AT HEART

WITH

[image:]

Written by: Jack C. Stanley and Erik D. Gross

Illustrations by: Afra Amin Orony, based on sketches by Jack C. Stanley

[image:]

[image:]

CHAPTER ONE

WELCOME

​
 “Erik!” Jack yelled in excitement. “Someone is reading our book!”

​
 “Well, that was our reason for writing it,” Erik responded. “Let’s introduce ourselves. I am Erik and-”

​
 “And I am Jack!” Jack interrupted. “It’s nice to meet you! Erik and I have a school called The Tech Academy.”

[image:]

“Tech
 is short for technology,” Jack continued, “and Academy
 is just another word for school. Technology
 means to use the things you know to solve problems and to make life easier.”

“So, you’re saying toilet paper is technology?” Erik asked.

“Well, not exactly. I mean, kind of, it-”

“Because it certainly makes my life easier!”

“Very funny, Erik. What I was trying to tell our wonderful reader is that the things that we use to do work for us are technology.”

“Like toilet paper!”

[image:]

“Enough with the toilet paper,” Jack demanded. “What I mean is that technology is machines and the things we tell machines to do.”

​
 “Ah, and machines are things made by people to get work done,” Erik explained. “Machines do actions for people to save them time and to get things done faster. They’re usually made out of wood, plastic or metal. Normally they have some parts that move and some parts that don’t – sometimes they have no moving parts at all! Machines receive some kind of energy (like electricity or gas) that they use to do their work. One of the things that makes people different from animals is their ability to create powerful machines.”

​
 “So, cars, ovens and televisions are machines?” Jack wondered.

[image:]

​
 “Yep!” Erik replied. “The most popular machine in the world right now is computers.”

​
 “Okay, Erik, don’t be a nerd,” Jack teased.

​
 “I am proud to be a nerd!”

​
 “Okay, okay. I take it back. Now why are you saying computers are more popular than any other machines? Don’t more people have cars or refrigerators?”

​
 “Well, actually, nowadays almost every machine has a computer inside it – most phones, televisions, airplanes, cars and refrigerators included! Oh, I just realized, we haven’t really said what a computer is exactly.”

​
 “That’s easy. A computer is a machine that computes. Just like a baker is someone who bakes, a gamer is someone who plays games-”

​
 “Jack! What does compute
 mean?”

​
 “It’s very, very, very difficult to understand. So, get ready… Compute means figuring out the answer to a problem.”

​
 “Wait, that’s it?”

​
 “Well, technically it’s solving problems with numbers.”

​
 “So, math is computing?”

​
 “Yep!”

[image:]

​
 “So,” Erik began, “computers are machines that compute. They do things with numbers.”

​
 “Yes,” Jack agreed, “they are machines that work with data. Data is just another word for information – facts and knowledge about things. Erik, why don’t you tell our amazing reader how computers work?”

​
 “I thought you’d never ask!” Erik responded excitedly. “It could take a whole book to describe that exactly. In fact, that’s why we wrote a different book called You Are Not Stupid – Computers and Technology Simplified
 – available now for purchase on Amazon!”

[image:]

​
 “Erik!” Jack butted in. “Stop trying to sell other books!”

​
 “Sorry, it’s an old habit,” Erik apologized. “Did you know I used to sell sunglasses all around the world?”

​
 Jack tapped his foot impatiently.

​
 “So, as I was saying,” Erik chuckled nervously, “computers are machines that use electricity to operate (do things). They deal with data (information). Computers have several parts that electricity passes through. Computers are not alive – they are just a tool, like a lawnmower or a hammer. We use them to do things for us. Computers simply follow instructions – which are commands that tell them what to do.”

[image:]

​
 “Erik!” Jack shouted. “Take those sunglasses off! We are inside!” With a sly smile, Erik removed his sunglasses and put his glasses back on. “Now,” Jack continued, “there are a couple other things about computers that I would like to add:

“1.
 Automatic
 means that a machine can do something by itself. Automate
 means to make something automatic. Machines that automate things do those things on their own. Computers automate various actions.
 Meaning, they can do things without you being involved. For example, your computer automatically says what time it is and automatically turns the screen off when it hasn’t been used for a while. Keep in mind that these automatic actions were originally designed (created) by a person.

“2. Computers process data.
 Process
 means to handle something according to certain rules. When a computer displays the word ‘processing,’ it is saying, ‘Hold on while I perform some actions according to certain rules and steps built into me.’ Processing
 refers to ‘doing things with data.’ Loading up and showing a video on your computer is an example of ‘processing data.’ When data is being processed by a computer, you sometimes see this ‘progress bar’ (a picture that shows how far along something is):”

[image:]

​
 “Took you long enough to explain that,” Erik yawned. “Want to hear a fun fact?”

​
 “I’m pretty sure you’re going to tell it to me no matter what,” Jack replied.

​
 “Okay! Have you ever seen this?”

[image:]

​
 “Yeah,” Jack answered. “It’s like a spinning circle that shows up when data is being processed.”

​
 “Yep!” Erik acknowledged. “When information is being handled by a computer the spinny circle is shown but do you know what it’s called?”

​
 “Ummmm… a spinny thingy?”

​
 “Good guess, but no. It’s called a throbber
 because when they first came out, they would go between getting bigger and smaller. They throbbed!”

​
 “Erik, you're making my head throb. Let’s move on…”

​
 “Alright, do you know what it’s called when we put
 data in
 to a computer?”

​
 “Is this a guessing game or a book? It’s called input – when you input data, you’re putting data inside the computer.”

​
 “Exactly! What about when you take information out of the computer?”

​
 “Ummmm… Takeout? Just kidding, it’s called output
 . But why does all this matter, Erik?”

​
 “I’m getting there. Input has two meanings:

“1.
 As a thing, it is the data put into a computer,

“2. As an action, it means to put data into a computer.

Output means the opposite.”

“Yeah, yeah, we get it. So, what’s the point?”

“The point is that computers work this way:

“1)
 They take data in. Meaning, information or instructions is input into the computer – usually by a person.

“2)
 They process that data. This means they perform actions with the data that was input.

“3)
 Then they send data out. Such as by displaying (showing) the data on your computer screen or printing the data with a printer. Meaning, the output is what you see on the screen or paper.”

[image:]

INPUT​
 ​
 PROCESS​
 ​
 OUTPUT

​
 “That’s pretty cool,” Jack admitted. “When you put it that simply, I guess computers are pretty basic. So, remember how I was talking about technology earlier – things you use to complete work faster and make life easier? Well, computers are technology. In fact, the subjects are so similar that the two words (‘computers’ and ‘tech’) sometimes mean the same thing! For example, because of the fact that many machines contain computers, most ‘tech news’ is really ‘computer news.’ Now, Erik, I have a serious question. What do spiders do on computers?”

​
 “I don’t know,” Erik answered, “what?”

​
 “Make websites!”

[image:]

Erik laughed so loud that Jack had to plug his ears. “Jack,” Erik began, “I think this chapter is getting a little long.”

“I agree,” Jack responded. “Let’s end this chapter and then talk about what coding is!”

CHAPTER TWO

WHAT IS CODING?

​
 Jack and Erik stood inside the The Tech Academy, wishing they were as cool as the person reading this book.

​
 “Okay, Jack,” Erik started, “what is coding?”

​
 “I am glad you asked,” Jack responded, “coding
 just means to put instructions (commands) into a computer.”

​
 “So, when I tell my computer to play a video, I’m coding?”

​
 “Well, no. I guess to explain this, I will need to say what a program is.”

​
 “Allow me!” Erik cut in. “Programs are instructions, typed into a computer by people, that make the computer do certain things. Behind every action a computer can take, there’s a program.”

​
 “Totally,” Jack agreed, “here are some examples of programs:

●
 “Microsoft Word – which is a program that allows you to type things.

●
 “Google Chrome – a program that helps you search the internet.

●
 “Minecraft – a program that you’ve probably played!

​
 “That’s right, computer games are programs! And when you install a program on your computer, that just means you’re putting the program on the computer so it can be used. Just like if you say, ‘I installed a door,’ you mean that you put a door on your house.”

​
 “I have another fun fact!” Erik blurted out.

​
 Jack rolled his eyes.

​
 “Programs are also called applications (apps for short) and software,” Erik explained. “Guess what the opposite of software (programs) is?”

​
 “Toughware?” Jack guessed.

​
 Erik giggled. “Nope! Hardware! Get it? Soft
 ware and hard
 ware are opposites.”

“I get it! Hardware is the physical parts of a computer – the parts that you can touch. Hard
 literally means solid
 or able to be touched
 . Ware
 is something created that can be sold or used
 . For example, teaware
 refers to everything you can use for drinking tea – like tea cups, teapots and bags of tea. The computer screen, mouse, printer and keyboard are all examples of hardware.”

[image:]

​
 “So, again,” Erik stated as he stood in front of Jack, “software is computer programs – instructions that tell a computer what to do. Software is made by people to make the computer do certain things and to give certain output (information put out). The software is the instructions, while hardware follows the instructions.”

[image:]

​
 “Back to what this has to do with coding,” Jack said, pushing Erik out of the way, “coding
 means to create computer programs. People that create programs (software and apps) are called coders. They’re also called software developers or computer programmers. A developer is someone who makes something.”

[image:]

​
 “I’m confused…” Erik whined. “So many of these words mean the same thing. An app is a program and is software. A computer programmer, is a coder, is a software developer, is a-”

​
 “Oh my dear silly Erik, it’s not confusing,” Jack explained. “Having lots of names for the same thing is very common in English. For example, huge
 , giant
 and gigantic
 all mean the same thing.”

​
 “Hey! Stop talking about my belly!” Erik covered his stomach with both hands. “Moving on… Code
 can be an action – making computer programs by writing special instructions into a computer. It can also be a thing. Code
 is the actual instructions. For example, this code:

Show Picture (Cat)

​
 “And it could make your computer show a picture of a cat.”

[image:]

​
 “Now that is a cute cat,” Jack stated.

“You would write this code inside a special program called an-” Erik started.

​
 “Hold on,” Jack cut in, “you’re about to say three really big words.”

​
 “I know, I know. But I didn’t choose the name for this thing! The reader needs to know what it’s called.”

​
 Jack thought about it and then nodded in agreement.

“The program that coders use to write their code in is called an Integrated Development Environment
 .”

​
 Jack yawned.

​
 “Integrate
 means to combine things together,” Erik went on. “For example, if you integrate red and blue, you get purple. The program you use to write your code in is integrated
 because there are many different things it can do that are brought together in one place.”

“Okay, I guess that makes sense,” Jack admitted. “And the development part refers to making programs – like software development.”

“That’s right. An environment
 refers to a combination of hardware and software that work together. And so, when we put it all together, an Integrated Development Environment is simply the program that you write your code in. It is software that helps you make software.”

“I don’t like saying Integrated Development Environment – it’s too complicated. Can I just call it an IDE?”

“Sure thing. In fact, that's what most professionals call it.”

[image:]

This is an IDE

“So, the IDE is the program where we type the instructions that make programs,” Jack repeated. “These programs are written using programming languages.”

​
 “Wait,” Erik interrupted, “computers speak languages? Like Spanish or Chinese?”

​
 “First off, Chinese people mostly speak Mandarin, not ‘Chinese.’ Second of all, to answer your question, yes, just like people speak lots of languages, computers have their own languages that they can ‘understand.’ These programming languages are the words we use to write our programs. There are many different programming languages. Just like hammers and ladders have different uses, each programming language has a different use. For example, some programming languages were designed mainly to improve websites, while others were made for creating computer games. The instructions used in programming languages are code. For example, to have a computer show the word ‘Hello!’ using Python (the very
 popular programming language you will learn in this book), the code is written as:”

print("Hello!")

[image:]

​
 “When someone says ‘program a computer’ or ‘do some coding,’” Jack continued, “they’re saying, ‘Write a set of instructions into a computer, using a programming language, that will result in specific actions being performed when that set of instructions is done.’ Again, a computer programmer is a person that does computer programming (writes code that makes programs).”

[image:]

​
 “So,” Erik started, “do you know what it’s called when you make your code go?”

​
 “Go where?” Jack asked.

​
 “I mean, you type some code and then you make it do what you wanted it to do. When computers perform actions, like when they do things, we call this ‘executing’ or ‘running.’”

​
 “Executing your code! Why would we kill it?”

“No, again, execute
 means to make the computer do things. Like you could execute
 an instruction by pressing Enter on your keyboard.”

“Okay, but what is our code running away from?”

“Huh?”

“You said that code can run?”

“Oh, it doesn’t mean that. Run
 means the same thing as execute
 . For example, you can run
 a search on the internet by clicking the search button. ”

“Ah, now I remember. Inside our IDE (the program we will use to write our code) there is a button we can press to run (execute) our code – this makes the code go – it makes the code take action!”

[image:]

“Erik,” Jack began, “I hate it when chapters go on and on. Can we talk about the snake now?”

​
 “What snake?” Erik asked in confusion.

​
 “Python. See, I’m holding one right now. You said this book was about pythons.”

[image:]

​
 “Jack!” squealed Erik. “Weren’t you paying attention earlier when I said that Python was a popular computer programming language? Get rid of that snake!”

​
 “Oops!” Jack said, embarrassed. “Okay, let’s talk about what Python is in the next chapter but we need to hurry because I’m pretty sure the reader wants to write some code soon! But first, I need to make a quick return at the pet store…”

CHAPTER THREE

WHAT DO SNAKES HAVE TO DO WITH THIS?

​
 “Erik, who is this guy?” Jack said while holding a picture.

[image:]

​
 “That’s Guido van Rossum,” Erik answered, “the guy that created the programming language Python.”

​
 “Oh man, he must be a really smart guy if he created an entire programming language!” Jack announced. “So, why did he call it Python? Does he love snakes?”

​
 “Actually, it’s named after an old television show from the 1960s and 1970s. The show was called ‘Monty Python’ and it was really funny. Guido was a big fan!”

[image:]

(Monty Python actors)

​
 “Erik, you’re so old…” Jack said. “So, why are we using Python in this book?”

​
 “Simple,” Erik started, “because many of the words used in Python are English words! For example, to add numbers in Python we write this code:

1 + 2

​
 “Python will return (give back to us):

3

​
 “Just like how we would write it in English!”

​
 “That’s right,” Jack remembered. “Python is a great way to learn coding because it is so similar to what we’re used to! So, to use Python we have to download it. Do you know what downloading
 means?”

“Yes, but why don’t you say it?” Erik looked a little nervous and uncertain.

“Download
 just means you’re taking something online (from the internet) and putting it on your computer. The internet is just a way to share information between computers. For example, if you download a video, you are having your computer pull the video’s data from the internet (from other computers) and save that data on your computer so you can watch it later. So, Erik, what’s the opposite of download
 ?”

“Highload?”

“Close, but no. The opposite of down
 load is up
 load. When you upload something, you are moving it from your computer to the internet. Like you could upload a video that you recorded to YouTube and then you could be famous! In the picture below, the large computers at the top are the ‘internet’ – powerful computers used to share information.”

[image:]

​
 “Hold on,” Erik said in excitement, “I can upload my videos and become famous?”

​
 “Well, I mean, it’s possible but not likely-”

[image:]

​
 “Focus, Erik, focus,” Jack instructed, “you can upload your singing and dancing videos later. We have been talking for three chapters and the reader hasn’t been able to write any code yet. I say we get started!”

​
 “Yes!” Erik agreed. “So, what’s the first step?”

​
 “Well,” Jack began, “the first step is to download (take from the internet) and install (put on our computer) Python.”

​
 “That sounds hard.”

​
 “Don’t worry Erik, we can get through it, together!”

​
 “You’re right,” Erik agreed happily. “But can we do it in the next chapter? There’s a certain video of me singing Taylor Swift that I just have to upload. The world needs
 to see my new dance move! I call it ‘The Gross’!”

​
 “Just so the reader knows, Gross is Erik’s last name. But now that I’ve seen him dance, I think the name of his dance might have two meanings…”

[image:]

CHAPTER FOUR

DOWNLOADING AND INSTALLING PYTHON

​
 “Okay, Erik,” Jack started, “I watched your video and just finished washing my eyes. Let’s get to work.”

​
 “Haters are going to hate,” Erik said, “and I’m just going to shake it off!”

​
 “The first step to adding Python to your computer is to go here on the internet:

python.org

[image:]

​
 “Then click Downloads and select the newest version (type) of Python (the one with the highest number).”

[image:]

​
 “After you click on the newest version of Python, you should see a little rectangle in the bottom of your screen that looks something like this:”

[image:]

​
 “If you don’t see it there, check in your computer’s Downloads folder.”

[image:]

​
 “Click on the rectangle that says ‘python...’ on the bottom of your screen or the file named ‘python...’ inside your Downloads folder. When it opens, click ‘Install Now.’”

[image:]

“When it asks you, ‘Are you sure?’ click Yes. Then when you see ‘Setup was successful,’ you can click ‘Close.’ Now don’t worry if the pictures you see and the names and numbers on your screen are slightly different than our pictures – technology changes all the time. All that’s important here is that you successfully download and install Python, which I am sure you did!”

“We made it!” Erik cheered.

“Yes, we did!” Jack agreed. “So, how do we write code?”

“Well, remember that long name ‘Integrated Development Environment’ – the program you use to write programs in?”

“Ah, yes. The I-D-E.”

“Yep! We need to open Python’s IDE. The Python IDE is named ‘IDLE.’ This stands for ‘Integrated Development and Learning Environment.’ Remember how I told you that the creator of Python, Guido van Rossum, named Python after the TV show Monty Python? Well, I think the name IDLE was probably chosen partly to honor Eric Idle, one of the actors from the Monty Python TV show.”

“Erik, you certainly love your random facts! So, IDLE is what we will use to write our Python code. There are two parts to IDLE:

“1) Shell.
 This is a program that lets you control your computer by writing commands. It is called a shell because it is the part in between the coder and their computer – like a crab shell is the part between the crab and the outside world. The Python shell looks something like this:

[image:]

“2)
 Text editor.
 Text is characters (letters, numbers and symbols).

	
A B C

(letters)

	
1 2 3

(numbers)

	
! # ?

(symbols)

Edit
 means to change something written. A text editor is a program that you use to write and edit text. It can also be used to write code! Python’s text editor looks like this:”

[image:]

​
 “Now, Erik, can we please, please, please write some code?” Jack begged.

​
 “Certainly!” Erik acknowledged. “Let’s open up IDLE and type-”

​
 “Hold on, my friend,” Jack interrupted. “How do we open IDLE?”

​
 “Sorry, I am just so excited that we are finally going to write code. There are lots of ways we can open IDLE but my favorite way is to go to the search bar at the bottom of my screen.”

[image:]

​
 “Then I type IDLE and click on it!”

[image:]

​
 “Now you should see the shell!:”

[image:]

​
 “Cowabunga!” Jack yelled, “So, this is where we write our code?”

​
 “Yes!” Erik answered.

“What do all those random words and numbers at the top mean?”

“Oh, you don’t need to worry about all that – just ignore them. What does matter are the >>>. The >>> show us where to type our code. So, let’s make the computer return (say something back) a piece of data. The first thing that people usually make computers say when learning to code is ‘Hello, World.’”

​
 “Hello, world? I don’t get it.”

​
 “I think they’re having the computer ‘introduce’ itself to the world or something.”

​
 “Oh, I see. I’d like to make it more exciting than that… Let’s make the computer say, ‘Hey there big, wonderful, happy, amazing, awesome planet Earth!!!!!!’ Type this inside IDLE:”

>>>
 print
 ("Hey there big, wonderful, happy, amazing, awesome planet Earth!!!!!!"
)

​
 “Keep all the text on one line,” Jack directed. “In fact, you should always keep each single command on one line from here forward unless we tell you otherwise. Now press enter. Yay! You made the computer print something on the screen! If you had an error, make sure that you included all of the characters (letters and symbols). For example, if you leave off a quotation mark, parentheses or even if you write print with a capital p (Print) – your code won’t run! You have to write code exactly like we have it in the book
 .”

“What?” Erik asked. “You’re saying one wrong thing, like a typo, makes it so that your code won’t work?”

“Yeah,” Jack replied. “It can be a little annoying but those are the rules.”

“So, to print something, I type print, followed by parentheses, then a quotation mark, then the text I want to print, then another quotation mark, and finally another parenthesis?”

“Yep! Let me show you why it’s important to follow the rules of programming language
 exactly. Type this inside of IDLE:”

>>>
 print
 (Hey there big, wonderful, happy,

amazing, awesome planet Earth!!!!!!)

“In our code,” Jack began, “we took out the quotation marks. Press enter. Now there is an error! Actually, it says ‘SyntaxError.’ What the heck is syntax
 , Erik?”

“I know that word sounds complicated, but all that syntax is is the rules for a programming language,” Erik explained. “For example, including parentheses and quotation marks is part of the syntax for printing things in Python. A syntax error means that we broke the rules and didn’t type our code correctly.”

“Interesting. Now, just so you know, you can also print things by surrounding your text with apostrophes. Type this inside IDLE:”

>>>
 print
 ('Jack and Erik are the best'
)

“Press enter,” Jack directed. “And thank you for saying we are the best!”

​
 “Now that’s some good code,” Erik stated. “So, Jack, do you know what the text that the computer displays is called?”

​
 “You mean, ‘Jack and Erik are the best!’?”

​
 “Yes, that.”

​
 “It’s called the truth!”

​
 “Well, yes. But technically, that text is called a string
 .”

​
 “What does sewing have to do with this?” Jack asked.

[image:]

​
 “Nothing,” Erik answered. “Jack, put that string away! You can sew a new pair of underwear later! In coding, a string
 is the word we use to say that we have one or more characters. Remember, characters are letters, numbers and symbols. It’s called a string because the characters are strung together (connected). The two strings that you printed in this chapter were:

“1)
 Hey there big, wonderful, happy, amazing, awesome planet Earth!!!!!!

And

“2)
 Jack and Erik are the best!

“Now, let’s give our intelligent reader a challenge,” Erik stated. “Reader, we challenge
 you to do this in IDLE:”

●
 Print a string of your own.

After the reader successfully printed their own string, Erik and Jack shouted, ”Good job!”

“Hey, Jack,” Erik said, “let’s do some math now.”

“But I want to keep writing code in Python…” Jack complained.

“That’s what I mean! We can do math with Python. I’ll show you in the next chapter.”

CHAPTER FIVE

MATH

​
 Erik stood in front of an empty classroom talking to no one but the reader and Jack. He was wearing suspenders and his favorite pair of dark pink glasses.

[image:]

​
 “Welcome class!” Erik began a little too excitedly. “Today we are going to talk about math. Math
 is short for mathematics
 . The word mathematics
 basically means ‘to do things with numbers and shapes.’ It includes the study of numbers and what we can do with them. In math-”

​
 “Ooh, ooh!” Jack cried out raising his hand.

​
 “Yes, student.”

​
 “Did you know that the word mathematics
 comes from the very old words mathematike
 , which meant ‘art,’ and manthanein
 , which meant ‘learn’?”

​
 “Jack! I’m the one wearing suspenders which means I’m the one teaching this class. Now, as I was saying, in math, an operator
 is a symbol used when doing a math problem. These are all operators:

●
 ➕ (add),

●
 ➖ (subtract),

●
 ➗ (divide), and

●
 ✖
 (multiply)

“We use these operators to do math,” Erik stated.

​
 “Yes, now I remember,” Jack said. “Alright, our incredible reader, open up IDLE and type this code:”

>>>
 1 + 1

​
 “Press enter,” Jack instructed.

“The answer is 3!” Erik announced.

​
 “Uh, Erik…” Jack started.

​
 “Just kidding,” Erik said blushing. “You should see 2.”

​
 “You can also subtract,” Jack stated. “Write this code in IDLE:”

>>>
 9 - 4

​
 “Press enter,” Jack directed. “Good job! Now, to multiply, we don’t write X, we use this symbol *,” Jack explained. “This little star is called an asterisk.”

​
 “An asteroid?” Erik asked.

​
 “No, asterisk.”

​
 “An amphibian?”

​
 “Nevermind,” Jack sighed. “So, to do multiplication, write this code in IDLE:”

>>>
 5 * 3

​
 “Press enter,” Jack said. “You got 15!”

​
 “That’s cool,” Erik said. “To divide, we use a forward slash /. It’s called a forward slash because it is a mark that looks like it’s leaning forward. Write this code in IDLE:”

>>>
 20 / 2

​
 “We just wrote twenty divided by two,” Erik explained. “Press enter. We got 10!”

​
 “That’s awesome!” Jack announced. “Erik, did you know that you can also use the plus sign to connect strings (text)? This is called concatenating strings
 . Concatenate
 is just a fancy word for connecting things together.”

“Connecticut?” Erik asked.

“No, concatenate.”

“Co-”

“Erik, I’m not doing this again… If you concatenate your cell phone to the cell phone charger, it means you connect the cell phone to the charger and your cell phone is now charging. In coding, if you concatenate the string ‘like’ with the string ‘able,’ you would get the string ‘likeable.’ To see this, write this code in IDLE:”

>>>
 print
 ('Jack '
 + 'and Erik '
 + 'are having

fun!'
)

“Press enter,” Jack instructed. “We concatenated three strings! Which, again, is a fancy way of saying that we joined together these three groups of words:

“1.
 Jack

“2. and Erik

“3. are having fun!”

“And now, dear reader,” Erik said as he looked right at you with intensity, “it’s time for a challenge. Do this in IDLE:”

●
 Add two numbers,

●
 Subtract two numbers,

●
 Divide two numbers,

●
 Multiply two numbers, and

●
 Concatenate two strings.

Once you completed the challenge, Erik and Jack both did backflips at the same time and shouted, “You did it!” Erik landed on his feet and Jack landed on his head.

“I feel like my brain is bigger!” Erik yelled. “So, Jack, what’s next?”

“Well, let’s turn the page and find out!” Jack answered while he rubbed the top of his head.

CHAPTER SIX

DATA IN PROGRAMS

​
 Erik and Jack sat on a bench, staring at the sunset and dreaming about what it would be like to be as smart as you.

​
 “Well, Erik,” Jack said, “I just don’t think we could ever be that intelligent.”

​
 “You’re right,” Erik agreed, “the reader is just too smart. Let’s go back to the school and write some code.” They happily skipped down the street and walked back into the best school in the world: The Tech Academy.

​
 “Okay, now it’s time to learn a new word,” Erik said. “The word is vary
 .”

​
 “Like, Jack is vary
 handsome?” Jack joked.

​
 “No, not very
 , vary
 . They sound the same but they’re not the same word. Vary
 means to change
 . When something varies, it becomes different. Like the weather – it varies depending on the season – sometimes it’s hot, sometimes it’s cold.”

​
 “I try not to vary very much.”

​
 “Vary funny… Now when you add the word ‘able’ to the end of something, it means that that thing is able to do something – it can be done. For example, if something is eatable, you can eat it – or if something is breakable, it can be broken.”

​
 “So what?”

​
 “When you combine (put together) the words vary
 and able
 , you get the word variable
 . When something is variable, it means it can change – it is able to change. And so, variables are just things that can change.”

​
 “So, like a person’s hair or the length of your fingernails? These are both variables?”

​
 “Sure, they can change. When we talk about variables in coding, we are talking about data we use in a program that can be changed. For example, a person’s name or a color could be variables. There are two parts of variables:

“1.
 The name. Also called an identifier – something used to identify (say what something is). The variable’s name is used to identify an exact piece of data.

“2. The value. Value
 means amount
 or type
 . The value part of a variable shows the data we need to keep track of.”

​
 “Erik, you’re confusing me.”

​
 “Okay, allow me to explain this more. We use an equal sign to assign (give) a value to the name of a variable, like this:”

Cat = Brown

​
 “We are telling the computer that the cat (name) is brown (value). This is a variable. Now that I’ve explained that, let’s create a variable. Open up IDLE and write this code:”

>>>
 Jack = 'Funny'

​
 “Press enter,” Erik directed.

​
 “Why, thank you, Erik,” Jack said. “But nothing happened.”

​
 “Oh, something happened. The computer stored (saved) that variable, you just can’t see it. The variable name is Jack
 , and its value is the string (connected characters) Funny
 . To see it, type this code in IDLE:”

>>>
 print
 (Jack)

​
 “Press enter,” Erik instructed.

​
 “Whoa!” Jack exclaimed. “How does that work?”

​
 “Well,” Erik began, “The computer associates (connects) the name Jack
 with the value Funny
 – it kind of thinks these are the same thing in a way. But now let me show you why it’s called a variable (something that can change). Type this code in IDLE and press enter after each line:”

>>>
 Jack = 'Silly'

>>>
 print
 (Jack)

​
 “Hey!” Jack argued.

“We changed the variable!” Erik explained. “It now prints Silly
 instead of Funny
 .”

​
 “Oh, so that’s why it’s a variable – it can vary (change),” Jack said.

“Exactamundo!” Erik proclaimed. “Now, I want you to try something. Type this code in IDLE:”

>>>
 print
 (jack)

​
 “Here we wrote Jack with a lowercase j,” Erik explained. “Now press enter. It didn’t work! This goes back to that earlier word we used, syntax
 (the rules of a programming language). One of the rules in Python is to use consistent (always the same) capitalization.”

​
 “Makes sense!” Jack exclaimed. “We can also do math with variables. Write this code in IDLE and press enter after each line:”

>>>
 Jack = 10

>>>
 Erik = 20

>>>
 Jack + Erik

​
 “Whoa!” Erik yelled. “You turned our names into numbers!”

​
 “Yep!” Jack agreed. “Technically, what we did here is assigned (created) two variables:

“1.
 Jack (the variable name), 10 (the variable value), and

“2. Erik (name), 20 (value).

​
 “Then we added these variables together!” Jack explained.

“Awesome!” Erik shouted. “Okay, our dearest friend, the reader of this book, the champion of the centuries, the mermaid in the sky, the-”

​
 “I think they get it, Erik.”

​
 “Okay, okay, here is your challenge. Open IDLE and do the following:”

●
 Create your own variable,

●
 Print your variable,

●
 Create two variables and add them together, and

●
 Create two variables and subtract one from the other.

​
 Jack and Erik stared in awe as the reader did a better job at this challenge than either of them could’ve ever hoped for. Once you finished, they hugged each other, crying.

[image:]

Jack wiped the tears off of his eyes and said, “It’s just so amazing...”

​
 Erik blinked away his tears and said, “In the next chapter, we will go over how to
 compare things in Python.”

CHAPTER SEVEN

COMPARING NUMBERS

​
 Jack threw his phone down in frustration. “What is it, old friend?” Erik asked.

“I just Googled how to become as good looking as the person reading this book,” Jack replied, “and it’s just not possible!”

​
 “Well, if you can’t do it, I certainly have no hope.”

​
 “Thanks, grandpa Erik.”

​
 “I’m not your grandpa!”

​
 “I know, but you are a grandpa – you have grandchildren.”

​
 “Ahem,” Erik cleared his throat nervously and then chuckled. “My age has nothing to do with this book. And if I am
 a grandpa (not saying I am) I am the coolest grandpa in the world. Now then, let’s look at how to compare numbers in Python. This is done by using these symbols:

> which mean more than

< which means less than”

[image:]

​
 “Those look like little mouths turned to the side,” Jack stated. “Like tiny pacmen, wanting to eat something.”

[image:]

​
 “I mean, I guess you could look at it that way,” Erik answered. “The ‘mouth’ always points toward the bigger number. Like this:

10 > 4 (this means ten is bigger than four) or 5 < 12 (this means five is smaller than twelve).”

​
 “Cool!” Jack announced.

​
 “In Python,” Erik continued, “when we compare numbers, the computer either tells us True or False. For example, this is True:

12 < 35 (twelve is
 less than thirtyfive)

​
 “But this is False:

16 > 32 (sixteen is not
 more than thirtytwo)

​
 “This is easier to understand by writing code. Write this code in IDLE:”

>>>
 195 > 57

​
 “Press enter,” Erik instructed. “That’s True! Because 195 is a bigger number than 57. Now write this code in IDLE:”

>>>
 35 > 87

​
 “Press enter,” Erik said. “That’s False! Okay, now let’s try the lesser than sign (<). Write this code in IDLE:”

>>>
 45 < 70

​
 “Press enter,” Erik commanded. “That’s True!

>>>
 311 < 182

​
 “Press enter,” Erik directed. “That’s False!”

​
 “Okay,” Jack said, “Now let’s get fancier. Write this code in IDLE and press enter after each line:”

>>>
 Erik = 100

>>>
 Jack = 50

>>>
 Erik > Jack

​
 “Hey!” Erik yelled, “You just said ‘Erik is bigger than Jack!’ I’m on a diet!”

​
 “But you’re eating a doughnut right now!” Jack replied.

​
 “Yeah, I’m on the doughnut diet!”

[image:]

​
 “I don’t think that’s a thing…” Jack disagreed. “Anyways, did you know that < and > are actually operators (symbols or words used to perform actions on numbers or compare things)? Alright, for our genius reader, we have another challenge. Do the following in IDLE:”

●
 Get the computer to return True by using the > operator,

●
 Return False using the > operator,

●
 Get the computer to return True by using the < operator,

●
 Return False using the < operator, and

●
 Assign (create) two variables as numbers, and then compare them using either the < or > operator.

​
 As the reader worked on the challenge, Erik searched for Jack. He couldn’t find him anywhere. Erik looked through the whole school and, finally, decided to check the roof. When he climbed on the roof, he found Jack staring at a beautiful rainbow.

​
 “What’s wrong, Jack?” Erik asked.

​
 “Nothing, Erik the grandpa,” Jack answered. “Absolutely nothing. I was just looking at this rainbow – the most beautiful rainbow I have ever seen and I realized something. The way the reader of this book completed our challenge was more beautiful than the beautifulist rainbow. I am just… amazed…”

​
 Erik stood next to Jack and gazed at the rainbow in total agreement.

​
 “In the next chapter,” Jack said, “we should go over other ways we can make comparisons with Python.”

​
 “Sounds good, Jack. Let’s head back down into the school.”

[image:]

CHAPTER EIGHT

DATA COMPARISONS

“Hey, Jack,” Erik said. “Why did the computer wear glasses?”

“Erik,” Jack responded, “computers don’t wear glasses.”

“To fix its websight.”

Jack shook his head. “Are you trying to get our reader to close the book?”

“They love it! Okay, did you know that two equal signs (==) means something special in Python?”

​
 “That’s right!” Jack answered. “Using two equal signs compares two pieces of data to see if they’re equal (the same).”

[image:]

“This is easiest to show by putting it to use,” Jack explained. “Write this code in IDLE:”

>>>
 4 == 4

“Press enter,” Jack instructed. “We get True because four is
 equal to four. To get False, write this code in IDLE:”

>>>
 4 == 5

​
 “Press enter,” Jack directed. “Four is not
 the same as 5.”

​
 “That’s cool, Jack!” Erik announced. “Did you know we can compare variables in the same way? Write this in IDLE and press enter after each line:”

>>>
 Jack = 15

>>>
 Erik = 15

>>>
 Jack == Erik

​
 “We get True!” Erik proclaimed. “Now write this in IDLE, pressing enter after each line:”

>>>
 Erik = 100

>>>
 100 == Erik

​
 “We get True again!” Erik yelled.

​
 “So, Erik, did you know you can also make comparisons using words?” Jack asked.

​
 “How does that work, Jack?”

​
 “Well, I’ll show you. The word AND can be used to see if two pieces of information are both
 True. Let’s see this in action. Write this code in IDLE and press enter after each line:”

>>>
 Jack = 33

>>>
 Erik = 51

>>>
 Jack is
 33 and
 Erik is
 51

“We get True!” Jack announced. “In addition to using and
 , we actually used is
 . In Python, is
 means the same thing as the double equal sign (==) we used earlier. Meaning, is

 and == both check to see if the data on both sides is the same. Let’s do another one. Write this code in IDLE:”

>>>
 5 > 3 and
 9 < 10

​
 “It’s True!” Jack proclaimed. “Five is larger than three and nine is smaller than 10! To get False, write this code in IDLE, pressing enter after each line:”

>>>
 Erik = 5

>>>
 Erik is
 5 and
 4 > 10

​
 “Even though the variable name Erik was assigned the value 5 (meaning, it is True that Erik is
 5), 4 is not
 bigger than 10,” Jack explained, “that’s why we get False. When we use and
 , both
 pieces of data must be True to return True.”

​
 “That’s awesome, Jack!” Erik announced. “And we can use the word OR in Python. OR checks to see if one or
 both pieces of data are True. Let’s see how this works by redoing the code we just wrote, using or
 instead of and
 . Write this code in IDLE, pressing enter after each line:”

>>>
 Erik = 5

>>>
 Erik is
 5 or
 4 > 10

​
 “Now we get True!” Erik announced. “That’s because at least one of the pieces of data is True. Remember, OR checks for one or
 both, but with AND both
 must be True. Let’s show this by seeing what happens when both pieces of data are True. Write this code in IDLE:”

>>>
 5 == 5 or
 10 is
 10

​
 “Press enter,” Erik instructed. “This is True because five is five and ten is ten. Now write this code in IDLE and press enter after each line:”

>>>
 Jack = "happy"

>>>
 Erik = "silly"

>>>
 Erik is
 "Silly"
 or
 Jack is
 "Happy"

​
 “We got False!” Erik shouted. “Why? Because we capitalized Silly and Happy, which
 was incorrect because when we assigned the values to the variable, we wrote them in lowercase. The computer sees Silly
 and silly
 , as different things. Because both sides of or
 were False (not the same) we got False.”

​
 “I think I get it,” Jack stated. “Another one we can use is not
 . It’s easiest to explain by using it.”

“Yeah,” Erik agreed, “So go ahead and write this code in IDLE:”

>>>
 5 is not
 10 and
 Jack is not "Hilarious"

“And press enter,” Erik instructed, “We get True! That’s because 5 is not the same as 10, and Jack is not funny.”

“Wow, Erik,” Jack responded. “Okay, my turn. But first, did you know that you can use an ! (exclamation point) to mean not
 ? Write this code in IDLE and press enter after each line:”

>>>
 Erik = 'dork'

>>>
 Erik != 'cool'

​
 “The != says, ‘Erik is not equal to cool,’” Jack explained.

​
 “Moving on…” Erik said. “We can also combine the < and > operators with =. For example, >= means ‘greater than or
 equal to’ and <= means ‘lesser than or
 equal to.’ Write this code in IDLE and press enter after each line:”

>>>
 Jack = 20

>>>
 20 >= Jack

​
 “We get True!” Erik announced. “Because 20 is equal to Jack.

“Now, write this code in IDLE and press enter after each line:”

>>>
 Jack = 25

>>>
 Erik = 50

>>>
 50 >= Jack

​
 “We also get True!” Erik stated. “Because 50 is more than 25 (the value assigned to
 Jack).”

​
 “Well, Erik,” Jack said, “this has been one of our longest chapters, so I think we should end it with a challenge. To our friend, the reader, use the following operators in IDLE:”

●
 ==,

●
 is not,

●
 and,

●
 or,

●
 !=, and

●
 <=.

​
 As soon as you finished the challenge, Jack looked at Erik and said, “I can’t believe the reader finished our challenge that fast!”

​
 “Me either,” Erik agreed, “I guess we will have to make the later ones harder!”

​
 “In the next chapter, I think we can start doing some cooler things with our programs.”

​
 “I’m excited! Let’s do this!”

CHAPTER NINE

IF

​
 Jack and Erik were skydiving. As they flew through the air, Jack yelled over to Erik, “What do you call someone who has no body and no nose?”

​
 “Ummm… A ghost with no sense of smell?” Erik guessed as the ground below them got closer and closer.

​
 “Nobody knows,” Jack answered.

Erik laughed so hard that he almost forgot to open his parachute! Jack didn’t think the joke was that funny but he knew Erik would like it.

[image:]

Thankfully, despite the dorky joke, they both landed safely on the ground right outside
 The Tech Academy.

​
 “Well, Jack, my heart is racing!” Erik panted. “Let’s get on with the book.”

​
 “Thank goodness this is all fictional because I would never skydive in real life,” Jack admitted. “I’m too afraid of heights!”

​
 Erik sat in front of a laptop and said, “An if statement
 is when you have the computer do something if
 another thing is True. For example, if
 I am hungry, then
 feed me waffles. Let’s see how this works in Python. Write this code in IDLE and press enter three times:”

>>>
 if
 5 > 3:

print("Five is larger than three"
)

​
 “Good job!” Erik acknowledged. “We just told the computer, ‘If it is True that the number 5 is larger than the number 3, show the string (words) ‘Five is larger than three’). Let’s see what happens when we type something false. Write this code in IDLE and press enter three times:”

>>>
 if
 10 > 20:

print("Ten is larger than twenty"
)

​
 “Nothing happens because it isn’t True!” Erik announced.

​
 “I see how that works, Erik,” Jack said. “Write this code in IDLE and press enter after each line:”

>>>
 Jack = 34

>>>
 Erik = 51

>>>
 if
 Erik > Jack:

print("Erik is older than Jack"
)

​
 “That’s pretty cool, Jack,” Erik said. “You used variables within an if statement! What do we do if we want more than one choice?”

​
 “We can use the elif statement
 ,” Jack replied, “which literally just gives another thing to check for.”

​
 “There’s an elf in Python?!” Erik cried out.

​
 “No, Erik. Elif
 . It’s short for else/if. Something like, ‘if
 happy then laugh, elif
 sad then cry,’ would say that you should laugh if you’re happy or cry if you’re sad.”

​
 “Ummm… How about we change cry
 to dance
 ?! That always cheers me up!” Erik started dancing. “Everybody do The Gross!” Jack had to look away.

​
 “Let’s try this out,” Jack said, as he tried to focus on something other than Erik’s dance moves. “Write this code in IDLE, pressing enter after each line:”

>>>
 Happy = 50

>>>
 Sad = 100

>>>
 if
 Happy > Sad:

​
 print("Laugh"
)

​
 elif
 Sad > Happy:

“Oh, no!” Jack cried. “We got an error!”

“That’s because we didn’t indent the code correctly,” Erik explained.

“Indent?”

​
 “You see the TAB key on your keyboard? That pushes the cursor (that small black line that flashes up and down on your screen that shows you where to type) over several spaces to the right. When you move text over like that, especially when pressing the TAB key, that’s called indenting. If you noticed, Python was automatically indenting some of our code. Meaning, it was moving it to the right a little. The problem is that the elif statement shouldn’t be indented. To fix this we need to press backspace (a key that moves text to the left and can delete things) on the line that has the elif statement to get rid of the indent. I’ll show y0u. Write this code in IDLE and press enter after each line:”

>>>
 if
 Happy > Sad:

​
 print("Laugh!"
)

elif
 Sad > Happy:

​
 print("Shake your booty!"
)

​
 “Now it should work!” Erik stated.

​
 “Wow, that seems really silly,” Jack stated.

​
 “Well, it’s all part of the rules on how to write Python,” Erik explained. “Remember, we call these rules syntax. Now, Jack, what if we want three or more choices?”

​
 “Thank you for asking. We can also use the else statement
 . What this does is say, ‘Alright computer, when I wrote my if statement and elif statement, I told you what to do, but for anything else
 that happens, do this other thing. For example, if
 sleepy then go to bed, if
 dirty then take a shower, else
 then read this book. This basically says to sleep if you’re tired, bathe if you’re dirty, and to otherwise spend all your time reading this life-changing book! Write this code in IDLE, pressing enter after each line (and don’t forget to move elif
 and else
 to the left with the backspace key!):”

>>>
 Color = "Blue"

>>>
 if
 Color is "Red"
 :

​
 print("The color is red!"
)

elif
 Color is
 "White"
 :

​
 print("The color is white!"
)

else
 :

​
 print("The color is blue!"
)

​
 “What happened here is that the computer first checked to see if the color was Red (if statement), found it was False so moved to the next step, checked to see if the color was White (elif statement), found it was also False, then it said, ‘If the Color is anything else besides Red or White, print ‘The color is blue!’ (else statement),” Jack explained.

​
 “Whoa,” Erik said, “that seems kind of complicated.”

​
 “I understand,” Jack comforted. “It will get easier the more we play around with it. Let’s try another one.”

“Okay,” Erik said. “Write this code in IDLE, pressing enter after each line:”

>>>
 if
 1 + 1 == 3:

​

 print("one plus one is three!"
)

elif
 2 + 2 == 4:

​
 print("two plus two is four!"
)

else
 :

​
 print("I can't math right now..."
)

​
 “In this code, elif
 was True and so that was the one that printed!” Erik explained. “Now, it’s time for a challenge! Perform the following actions in IDLE:”

●
 Write your own if statement,

●
 Write your own elif statement, and

●
 Write your own else statement.

​
 Erik and Jack waited anxiously as the reader wrote if, elif and else statements that were just way better than the ones in this book. When the reader finished, they both did one-handed cartwheels through hoops of fire!

[image:]

​
 “Thank goodness we are just cartoons!” Erik yelled. “Otherwise that would have been
 very dangerous!”

​
 Jack ended the chapter with a very short poem:

“This chapter has been interesting and fun,

But it is time we started another one.”

CHAPTER TEN

LISTS

​
 Erik walked into the office and found Jack fanning a wildebeest. “Jack?” Erik asked, “what are you doing?”

[image:]

​
 “He was hot!” Jack stated defensively.

​
 “But-”

​
 “I don’t want to talk about it anymore.”

“Okay…” Erik said with a pause. “Anyways, I really want to show the reader how to create a list in Python.”

​
 “What’s a list?” Jack asked as the wildebeest trotted out of the room.

​
 “It’s just the normal meaning of list
 – like: red, blue, orange, etc.”

​
 “But isn’t there a special Python meaning?”

​
 “Not really. It’s the same idea as the word list
 in English. Like a grocery list: Eggs, Cheese, Milk, presents for Jack, etc. That reminds me, I need to go shopping – I am all out of
 worm food!”

​
 “Wait…don’t worms just eat dirt?”

​
 “Only the finest dirt for my worms!”

​
 “And why do you own worms?”

​
 Erik just whistelened and spun around in his office chair.

​
 “Back to the point,” Jack started, “let’s make a list. Write this code in IDLE and press enter after each line:”

>>>
 Family = ['Kelly'
 , 'Mark'
 , 'Maxine'
 , 'Jack'
]

>>>
 print
 (Family)

​
 “Jack!” Erik shrieked. “You just shared the real names of your family!”

​
 “Yep, that’s my mom, dad, sister and me!” Jack announced. “Okay, my turn for a random fact. When you start counting, you start at the number 1, right? Like 1, 2, 3, etc.”

​
 “Yes, I know how to count, Jack. Jeez…”

​
 “Well, here’s the random fact: computers start counting at 0! The first number is zero – not one! They go 0, 1, 2, 3, etc.”

​
 “I’m glad you said that because that connects with what I wanted to talk about. Alright, so first we need to understand the word ‘index.’”

​
 “Like the thing in a book that tells you what page different things are on?”

​
 “Yeah, very similar to that. An index is the number of a value (one of the names) on a list. So, for example, here is the index for each value on the list you made:

	
VALUE:

Mark

INDEX:

0

	
VALUE:

Kelly

INDEX:

1

	
VALUE:

Maxine

INDEX:

2

	
VALUE:

Jack

INDEX:

3”

​
 “Okay, smartie pants,” Jack said, “can we write some more code now?”

​
 “That’s a great suggestion because I was going to explain that we look up (find) and print (show) values (names for the things in our list) using indexes. Let me show you. Write this code in IDLE and press enter after-”

​
 “Hey Erik, I think we can stop telling them to press enter. They get it at this point.”

​
 “You’re right! Write this code in IDLE:”

>>>
 Family = ['Emily'
 , 'Violet'
 , 'Magnus'
 ,

'Jack'
]

>>>
 print
 (Family[2])

​
 “Cool, Erik!” Jack announced. “You displayed the name of my son (Magnus) by writing the index (number) of his name in the list. And you included my wife (Emily) and daughter (Violet) in this list!”

“Yeah!” Erik agreed. “Emily is 0, Violet is 1, Magnus is 2 and Jack is 3! And we can concatenate (connect) strings (sequence of characters) to values on our lists. Write this code in IDLE:”

>>>
 TechAcademy = ['Trisha'
 , 'Brett'
 , 'Briar'
 ,

'Danny'
 , 'Patrick'
]

>>>
 print
 (TechAcademy[3] + " is a wonderful Tech

Academy employee!"
)

​
 “I agree,” Jack said, “Danny is wonderful! Hey, want to make the computer count?”

​
 “Sure,” Erik agreed. “How do we do that?”

​
 “Get ready because the name of the command we use is very weird and has nothing to do with counting… It’s called… the counter!”

​
 “Ha! You almost got me there!”

“Now, remember way earlier in the book when we said there are actually two parts to
 IDLE? The shell (what we’ve been writing our code in this whole time) and the text editor. To write larger programs, it’s much better to use the text editor. To do this, click File and then select New File:

[image:]

​
 “You should see this:

[image:]

​
 “Now click File and then Save As.

[image:]

​
 “Now name your file Python.py and save the file on your Desktop. It is important to include the .py at the end of your file name, because that tells your computer, ‘Hey! This is Python code!’ If you leave it off, your code might not work right.

[image:]

“Now, inside the text editor, write this code:”

counter = 0

print
 (counter)

counter = counter + 1

print
 (counter)

counter = counter + 2

print
 (counter)

counter = counter + 3

print
 (counter)

counter = counter - 6

print
 (counter)

​
 “Now click save your code,” Jack continued. “You can do this by clicking File and then selecting Save, or you can just press the CTRL key
 and the S key
 on your keyboard at the same time.

[image:]

“Always save your code before running it!
 ” Jack warned. Otherwise your program won’t be up-to-date with any new data you added. Now to run the code you wrote, click on Run and then click Run Module. In normal English, a module
 is a part of something. In Python, a module
 is a bunch of code written by others that you can use in your programs. You can also create modules that you and other people can use. It’s just code that makes up a program. So, when we say Run Module, we are saying execute (perform) my program.”

[image:]

​
 “Whew!” Jack said. “You just made a program using the text editor! We can slow this down so the numbers come out one at a time. First, let’s define the word import
 – import
 means to bring something in. Like if you import tea from England, tea is sent from England to America – it is brought into the U.S. It means the same in computers, to bring data in from elsewhere. So, what’s the opposite of import?”

​
 “Ummm… outport?” Erik guessed.

​
 “Good guess, but I regret to inform you that you are absolutely and totally wrong. The
 opposite of import
 is export
 . Export
 means to send data out from one computer.”

[image:]

​
 “Ah, I see where you’re going with this…” Erik said. “You can import modules (groups of code written by others that you can use). For example, Python has a math module that you can use to do advanced math. To use these modules, you import them!”

​
 “Well, Erik, you tied that up like a nice little bow!” Jack announced. “So, back to counting slower – write this code in the text editor:”

import
 time

counter = 0

print
 (counter)

time.sleep(.5)

counter = counter + 1

print
 (counter)

time.sleep(.5)

counter = counter + 2

print
 (counter)

time.sleep(.5)

counter = counter + 3

print
 (counter)

time.sleep(.5)

counter = counter - 6

print
 (counter)

time.sleep(.5)

​
 “Save and execute your code. We counted with each number .5 seconds (half a second) apart!” Jack explained. “time.sleep is one of the functions (code that can be reused) included in the time module (code written by others that we can use), for causing delays in our programs.”

​
 “Interesting,” Erik said. “It’s that time again: challenge time! Okay, magical reader, write, save and run this code in the text editor:”

●
 Create a list and display (print) the whole thing,

●
 Print one value from the list, and

●
 Use the counter to count from 1 to 10 with a one second delay between each number.

​
 While the reader completed the challenge, Erik and Jack rode a rocket into outer space to test something out. Once they were near the moon, they gazed back at Earth.

​
 “Just as we thought,” Erik said. “We can see the reader’s awesomeness from space!”

​
 “Houston, we don’t
 have a problem,” Jack announced.

​
 “I think some people aren’t going to get that…”

​
 “Well, they just need to watch the movie Apollo 13
 .”

​
 “If we are recommending movies, I have a few that-”

​
 “Erik!” Jack interrupted, “the book. The book, Erik.”

​
 “My apologies, Jackalope. Let’s start the next chapter now.”

CHAPTER ELEVEN

LOOPY

​
 After their rocket landed back on Earth, Jack and Erik gave Elon Musk a high five and returned to The Tech Academy.

​
 “I was thinking, Jack,” Erik began, “one of the things that make computers different than people is that a computer can keep doing the same thing over and over forever but a person would go crazy if that happened to them.”

​
 “What do you mean?” Jack asked.

​
 “Well, there’s a thing in computers called a loop
 . A loop
 is a command to repeat something until something else happens. It loops around and around, over and over, like a circle.”

​
 “I’m getting dizzy, Erik.”

​
 “One of the most popular types of loops is the while loop
 . This means, ‘While ____ is True, do ____.’ For example, while fat, try to lose weight. It literally means, as long as this thing that I am telling you is true, go ahead and do this other thing that I told you to do. Here, let me show you. But as a warning first, after you run this next code, you will have to close IDLE to make this code stop. Type this code in IDLE:

>>>
 while
 2 > 1:

print
 ("I am a crazy computer!"
)

​
 “Shut it down!” Jack yelled.

“This is called an infinite loop!” Erik proclaimed. “It never ends! Again, close IDLE to stop it. If a person had to keep saying the same sentence forever, doing nothing else, they’d go crazy!”

“Ah, I see,” Jack said, “computers don’t care because they’re not alive.”

​
 “It’s alive!” Erik shouted as he began walking around like Frankestien’s monster.”

[image:]

​
 “No, it’s not
 alive,” Jack corrected. “Anyways, let’s close (end) this loop. Write this code in IDLE:”

>>>
 while
 2 > 1:

print
 ("I am a crazy computer!"
)

break

​
 “You broke it!” Erik yelled.

​
 “No,” Jack explained, “that was the break statement – it basically told the computer, ‘Hey, let’s take a break from this loop.’”

​
 “My turn! My turn!” Erik squealed. “Write this code in IDLE:”

>>>
 import
 time

>>>
 number = 0

>>>
 while
 number < 10:

number = number + 1

print
 (number)

time.sleep(.25)

​
 Jack’s mind was blown. “Erik, what the heck did we just do?” He asked.

​
 “Well, first we imported time
 ,” Erik began. “Remember, we have to bring that module (group of code written by others) into our program in order to use the time.sleep() function
 (which slows things down). We will talk about functions in more detail later but they’re basically chunks of code that you can use over and over again. Then we assigned the value 0 to our variable number
 – we said, ‘The number is zero.’ We then told the computer to cycle through (repeat) the loop as long as our number was smaller than 10. Then we told the computer to increase the value (amount) of our variable number
 by +1 – literally, ‘Change it from zero to one.’ After that we printed the new number. Then we did a quick .25 second (quarter of a second) pause and repeated the same thing over, increasing number
 by one each time, over and over until number
 reached ten!”

​
 “That kinda makes sense. But I feel kinda confused. Maybe it will help if we do another one. Write this code in IDLE:”

>>>
 amount = 20

>>>
 while
 amount > 0:

amount = amount - 1

print
 (amount)

time.sleep(.5)

​
 “Wow!” Erik shouted in amazement. “That was like a rocketship countdown!”

​
 “Yeah, so basically what we said was that the amount
 is twenty,” Jack explained. “Then we said as long as the amount
 is more than zero, keep repeating this loop over and over. Once it reaches zero, stop. Then we subtracted one from the amount
 over and over,
 printing the new amount
 each time.”

​
 “Yep! And don’t worry. The more code we write, the more sense this all makes!”

​
 “I think it’s time we talk about the other most popular type of loop. It’s called a for loop
 . With the while loop
 , we didn’t specify (clearly say) how many times to repeat the loop. Like we didn’t say, repeat 10 times. With the for loop
 , we do specify how many times to repeat the loop. It means for ____ long, do ____. For example, for ten bites, eat – that would mean that we eat ten bites worth of food and then stop. One of the functions we can use with for loops
 is range()
 . The range()
 function can be used to display (show) a list of numbers within a certain range (limit; amount). So, now let’s write a for loop
 . Write this code in IDLE:”

>>>
 import time

>>>
 for
 counter in
 range
 (1,11):

print
 (counter)

time.sleep(.5)

​
 “Well done!” Jack announced. “We counted to ten!”

​
 “That’s the highest I’ve ever counted!” Erik shouted. “Jack, what did this code do?”

​
 “Well, again,” Jack began, “we imported time so we could have slight delays in between printing numbers using time.sleep(). Then we said, ‘Alright, computer, for each number between 1 and 11, print the number once.’ Remember that counter is used to count up in Python.”

​
 “That’s cool!” Erik said. “We’re going to write another for loop
 but it’s time to learn another new word! To iterate
 means to say or do something again; to repeat something. Iteration
 is the act of repeating. In coding, iterate
 means to go through steps and repeat them a certain number of times.”

[image:]

“This picture is a loop. An iteration is one time through the loop.
 To iterate through a loop means to go through it one time and then either repeat the loop or end off. Write this code in IDLE:”

>>>
 Colors = ["Red"
 , "Blue"
 , "Orange"
 , "Yellow"
 ,

"Green"
]

>>>
 for
 EachColor in
 Colors:

​
 print
 (EachColor + ' is a great color!'
)

​
 “Okay…” Jack started. “Somehow that printed out Colors
 , but I have no idea how.”

“Well,” Erik began, “what we said was, for each color in our list, print the color. Since there are five colors in our list, we iterated through the list five times.”

“Okay, so, basically ‘loop’ just means repeating things over and over. A while loop
 says, ‘I don’t quite know how many times I want to iterate (repeat or complete) this loop, but do it as long as ____ is happening (True). And a for loop
 means, ‘repeat through this loop this many times.’”

“Yep! That’s pretty much it!”

“I think this is the perfect time for a challenge. Okay, our breathtaking reader, complete the following in IDLE:

●
 Write your own while loop, and

●
 Write your own for loop.”

Right when the reader completed the challenge, giant fireworks exploded over Jack’s and Erik’s heads. “Those came out of nowhere!” Erik shrieked.

“Yeah!” Jack agreed. “This reader is explosive
 !”

[image:]

​
 “Alright, Erik,” Jack said, “let’s write another chapter.”

​
 “We aren’t ending the book here?” Erik questioned.

​
 “No way! We have a lot more to cover.”

​
 “I’m in!”

CHAPTER TWELVE

DICTIONARIES

​
 Jack walked into an empty office. Where’s Erik?
 He thought. Jack looked around the office and then heard some heavy footsteps outside the window. He looked outside and saw Erik riding an ostrich!

​
 “Yee-haw!” Erik shouted.

​
 “Erik!” Jack yelled. “Put Sally away! We have work to do!”

​
 Erik was so surprised that he jumped off Sally the ostrich and put his head in the sand.

[image:]

The ostrich stared, shook her head and then trotted away. Erik walked into the office brushing sand out of his hair, while Jack swept the floor.

​
 “Hey, Jack,” Erik began, “why is this chapter called dictionaries? Is it because we want people to buy our Technology Basics Dictionary: Tech and Computers Simplified?
 Now available for purchase on Amazon!”

​
 “You’re selling again, Erik…” Jack warned.

​
 “I can’t help it!”

​
 “That’s okay. No, this chapter is not about big books used to define words. In Python, a dictionary
 is a special type of list. There are two things that make up a dictionary:

“1.
 Key:
 the name

“2. Value:
 the amount or type of something

​
 “For example, this is a dictionary:

KEY
 ​
 VALUE

Video game​
 Minecraft

Food​
 ​
 Cheeseburger

TV show​
 ​
 Avatar: The Last Airbender

Movie​
 ​
 Jurassic Park

​
 “Each key in a dictionary can have multiple values. Like this:

KEY
 ​
 VALUES

Pizza​
 ​
 Pepperoni, cheese, sauce

Sub sandwich​
 Turkey, cheddar cheese, mayonnaise, pickles

Salad​
 ​
 Lettuce, olives, tomatoes, cucumbers, ranch dressing
 .”

​
 “Thanks a lot!” Erik snorted. “Now I’m hungry!”

​
 “You’re always hungry!”

​
 “Can’t argue that. For me, this would be an infinite loop: While Erik hungry, eat.”

​
 Jack laughed and said, “Let’s create a dictionary in Python. Write this code in IDLE:”

>>>
 Things_Dictionary = {'Animal'
 : 'cat'
 , 'Toy'
 :

'ninja turtle'
 ,'Book'
 : 'Animorphs'
 }

>>>
 print
 (Things_Dictionary)

“First of all, why did you have a _ in your code?” Erik asked.

“Well, _ is called an underscore,” Jack explained. “A score is a mark – so an underscore is literally a mark that’s under other text. Computer programmers sometimes use underscores instead of spaces to connect text. For example, Jack_Carl_Stanley instead of Jack Carl Stanley. It’s just something we do.”

​
 “Okay. Second of all, what are Animorphs?” Erik inquired.

​
 “Are you kidding me? It’s an amazing book series by the author K.A. Applegate about a group of kids that can change (morph) into animals and they use these powers to fight evil aliens!”

​
 “I wish I could turn into an ostrich…” Erik said as he gazed longingly out the window, thinking about Sally. After a few moments, Erik gathered his composure and said, “I want to add something to the dictionary! Write this code in IDLE:”

>>>
 Things_Dictionary['Best_Bird'
] = 'Ostrich'

>>>
 print
 ("The best bird is an: " +

Things_Dictionary['Best_Bird'
])

​
 “We just added something to the dictionary, pulled it out of the dictionary and displayed it!” Erik explained.

​
 “Okay,” Jack started, “write this code in IDLE:”

>>>
 del
 Things_Dictionary['Best_Bird'
]

>>>
 print
 (Things_Dictionary)

​
 “Hey!” Erik shouted. “You deleted my ostrich!”

​
 “I was just showing the reader how to delete things from the dictionary!” Jack said defensively. “In our code, del is short for delete.”

“Okay, okay. Anyways, my real
 ostrich is in the barn eating worms.”

So that’s what the worms are for
 , Jack thought.

“Let’s do a challenge,” Erik stated. “Okay, reader! See if you can do this in IDLE:”

●
 Create a dictionary and print it,

●
 Add something to your dictionary,

●
 Delete something from your dictionary, and

●
 Display the dictionary again (after you’ve added and deleted something).

​
 As Jack and Erik watched the reader create the best dictionary they’d ever seen, their mouths opened so wide that their jaws smashed onto their toes! “Ow!” they both shouted right when the reader finished.

​
 “You’re so good at this it hurts!” Jack proclaimed. “Mommy!” Erik cried.

​
 Jack rubbed his feet and said, “Let’s learn some more cool things you can do with Python.”

​
 “Onto the next chapter!” Erik announced.

CHAPTER THIRTEEN

FUNCTIONS

​
 “Hey, Jack,” Erik started, “how did the coder get out of prison?”

​
 “Oh, no…” Jack complained.

​
 “He used the escape key!”

​
 Jack left the office and took a three-hour walk. He then came back, walked in and sat down.

​
 “Welcome back, Jack!” Erik yelled as he clapped his hands together. “Hey, that rhymed!”

​
 Jack cleared his throat and said, “Alright… So… Let’s continue with the book. In normal English, a function
 is someone’s job – it is an action they do. For example, it is a function of police to arrest bad guys. In coding, a function
 is a chunk of code that does a particular thing. The cool thing about functions is that you can reuse them. As an example, you could have a function that plays sound every time the user clicked their mouse.”

​
 “What’s a user?” Erik asked.

​
 “Oh, just someone who uses something. It usually means ‘the person using the computer.’”

​
 “Ah, yes, I am a frequent user of the waffle iron.”

​
 “Waffles… Slightly crunchy pancakes with little pockets of buttery-syrup joy.”

​
 “Back to the book! To make a function in Python we use the def
 command. Def
 is short for define
 , which means to say exactly what something is. Write this code in IDLE:”

>>>
 def
 Subtraction(Number1, Number2):

subtract = Number1 - Number2

return
 subtract

>>>
 print
 (Subtraction(20, 10))

>>>
 print
 (Subtraction(10, 5))

>>>
 print
 (Subtraction(500, 350))

​
 “Wow!” Erik shouted. “To explain what our code did here, let’s start with what the word parameters
 means.”

​
 “Paragraph?” Jack asked.

​
 “No, parameters.”

​
 “Pennsylvania?”

​
 “No, J- Oh, I see what you’re doing here. Good one! In normal English, parameters
 refers to the limit of something – literally, how much space something takes up or, figuratively, what is included within a particular subject.”

​
 Jack yawned.

​
 “For example,” Erik continued, “talking about waffles is outside the parameters of this book – meaning, it isn’t included in the subject; it’s off topic. In coding, parameters
 is the data your program needs in order to do things. It’s the information used by your program.”

​
 “Okay… So, what are the parameters in the last program we wrote?” Jack asked.

​
 Erik answered, “Well, first of all, this code is our function:

>>>
 def
 Subtraction(Number1, Number2):

subtract = Number1 - Number2

return
 subtract

​
 “Alright,” Jack acknowledged.

​
 “Number1 and Number2 are the parameters,” Erik explained.

​
 “So, the data in the parentheses in our function is called the parameters
 ?”

​
 “Exactly! We named our function Subtraction
 . See, the name of a function comes
 after def
 .”

​
 “Ah, I see.”

​
 “What this function does is automatically subtract any two numbers that we choose! In our code, we named our variable subtract
 and assigned it the value of Number1 - Number2
 – we told the computer, ‘Hey, so the word subtract is the same as whatever Number1 minus Number2 is.’”

​
 “Yeah, I remember the whole variable thing.”

“Great! Now, do you see the word return
 in our code?”

“Uh-huh.”

“Functions are also called subprograms
 . Sub-
 means under
 or lower
 than. A subprogram
 is a smaller program inside your program. When you run a subprogram, the program passes all control over to the subprogram and when the subprogram is done running, we return
 to the main program.”

“My goodness! This is a lot of words to learn!”

“Take a look at this picture:”

[image:]

​
 “Oh, I get it,” Jack said. “So, our function is a subprogram – a program within our program – and return
 tells the computer to go back to our main program.”

​
 “Perfecto!” Erik announced. “Return
 also does something else, it-”

​
 “Aw man…”

​
 “I understand it can seem like a lot to take in but this is the last thing I’m going to say before we write more code. Return
 also returns (sends data back to us) the result of our function. But just because the data was returned, doesn’t mean it displays – we have to use the print statement to show the data that was returned. So, now the code we wrote should make more sense – here it is again for you to review:”

>>>
 def
 Subtraction(Number1, Number2):

subtract = Number1 - Number2

return
 subtract

>>>
 print
 (Subtraction(20, 10))

>>>
 print
 (Subtraction(10, 5))

>>>
 print
 (Subtraction(500, 350))

​
 “I guess this all kinda makes sense…” Jack said.

​
 “Don’t worry,” Erik said, “you’ll get more used to it as we make more functions. Write this code in IDLE:”

>>>
 def
 Multiplication(FirstNumber,

SecondNumber, ThirdNumber):

multiply = FirstNumber * SecondNumber *

ThirdNumber

return
 multiply

>>>
 print
 (Multiplication(2, 4, 6))

​
 “You should get 48!” Erik proclaimed. “We created a function here named Multiplication and we gave it three parameters: FirstNumber, SecondNumber and ThirdNumber. We told it that our variable multiply
 was the same amount as the FirstNumber multiplied by the SecondNumber and the ThirdNumber. Then we said to multiply those numbers, return the amount, then return to the program and print the results of multiplying 2 by 4 by 6.”

“Alright,” Jack acknowledged, “we will create more functions later in this book. But for now I want to show some other cool things that Python can do. Let’s break up a date into parts using the date.split(/) command. Write this code in IDLE:”

>>>
 date = "3/13/2022"

>>>
 split_the_date = date.split('/'
)

>>>
 print
 (split_the_date)

>>>
 print
 (split_the_date[0])

>>>
 print
 (split_the_date[1])

>>>
 print
 (split_the_date[2])

​
 “That’s pretty cool!” Erik stated. “Hey, did you notice that we used the indexes (0, 1, 2) to display specific parts of the dates?”

​
 “Yeah, that’s right,” Jack answered. “Computers start counting at 0 and each item on a list or in a sequence is assigned a number: 0, 1, 2, etc.”

​
 “Now, let’s make our last program a little more useful. Write this code in IDLE:”

>>>
 date = "12/25/2025"

>>>
 full_date = date.split('/'
)

>>>
 print
 ('The month is: ' +
 full_date[0] +

' The day is: ' +
 full_date[1] + ' The year is: ' +
 full_date[2])

​
 “Cool!” Jack said. “Did you know that we can also change lowercase text to uppercase and vice versa? We do this using the swapcase() function. Swap means to switch two things. Write this code in IDLE:”

>>>
 Name = "Erik"

>>>
 Name.swapcase()

​
 “That’s interesting!” eRIK said. “Okay, I think we should now have our dear reader write a lot of code all at once! This will use a lot of what we’ve learned so far. Create a new file and write this code in the text editor:”

MathFun = "Let's do some math!"

print
 (MathFun)

Number1 = 10

print
 ("Number1 = 10"
)

print
 ("Number1 plus 5 equals: "
)

print
 (Number1 + 5)

Number2 = 5

print
 ("Number2 = 5"
)

print
 ("Number2 minus Number1 equals:"
)

print
 (Number2 - Number1)

print
 ("Number1 times Number2 equals:"
)

print
 (Number1 * Number2)

print
 ("Number1 divided by Number2 equals:"
)

print
 (Number1 / Number2)

print
 ("Is Number1 larger than Number2?:"
)

print
 (Number1 > Number2)

print
 ("Is Number1 less than Number2?:"
)

print
 (Number1 < Number2)

if
 Number1 > Number2:

print
 ("Number1 (being 10) is larger than

Number2 (which is 5)."
)

list_names = ['Billy'
 , 'Sally'
 , 'Johnny'
 ,

'Raphael'
]

print
 ("Here's the list we created:"
)

print
 (list_names)

print
 ("Here's the third name from the list we

wrote in ALL CAPS: "
 + list_names[2].upper())

date = "August/13th/1985"

print
 ("Here's the date we created: "
 + date)

split_date = date.split('/'
)

print
 ("Here's the date we entered split apart:"
)

print
 (split_date)

another_name = 'Emily'

print
 ("We chose the name: "
 + another_name)

print
 ("Here's "
 + another_name + " written with

the cases swapped: "
 + another_name.swapcase())

​
 “Now, save and run your code,” Erik directed.

​
 “Whoa!” Jack yelled. “That’s a lot of code!”

​
 “Yep,” Erik agreed. “But it’s mostly things we’ve done already.”

​
 “Now, IT’S TIME!” Erik yelled dramatically. Erik was suddenly on a stage. In the audience was only one person, his mom. Erik was wearing a fake purple velvet robe and holding a plastic skeleton head. He then said (dramatically), “You can doubt that the stars are fire… You can doubt that the sun moves… You can doubt the truth and think it’s a lie… But never doubt that I love!”

[image:]

​
 Erik’s mom clapped.

​
 “Ummmm…” Jack began. “I don’t quite know what to say. I think this is a good time for a challenge. Okay, our popular reader, do the following in IDLE:”

●
 Prints something,

●
 Assigns a variable,

●
 Performs a math function, and

●
 Uses an if statement.

​
 Erik took off his (fake) velvet robe and stood in his normal clothes. He was still holding the plastic head. As Erik watched the reader perform the challenge, he squeezed the skull in excitement. Suddenly, just as the reader finished the challenge, the skeleton head exploded and pieces of plastic chunks flew all over the room.

​
 Jack ducked and then applauded in amazement at how well the reader did at the challenge.

​
 “Let’s take a look at some other cool things we can do with Python!” Erik announced.

​
 “Sounds good!” Jack agreed. “Onto the next chapter!”

CHAPTER FOURTEEN

PYTHON FUNCTIONS

​
 The bull was charging. Jack held a red cape. The bull came closer with only one thing on it’s mind, destroy the color red
 . The bull’s horns brushed against the cape as Jack performed a triple backflip, successfully escaping the spiky horns. Erik clapped as he chewed on buttery popcorn with Milk Duds mixed in.

​
 “Bravo!” Erik cheered.

​
 Jack put the cape down and gave the bull a high five.

[image:]

​
 “Same time next week?” The bull asked.

​
 “You know that’s right!” Jack confirmed.

​
 The bull trotted off.

​
 “I love that we can make animals talk in our book!” Erik said.

​
 “Why didn’t we make the ostrich talk?” Jack asked.

​
 “She was talking. You just couldn’t hear her because her head was in the sand.”

​
 “Erik, let’s get the story straight, your
 head was in the sand.”

​
 Erik quickly changed the subject. “What’s the difference between the number 5 and 5.5?”

​
 “One has a dot and one doesn’t.”

​
 “That’s right! One is a whole number and one is a decimal number. A decimal number is one that contains a fraction – meaning a part of something. For example, using a decimal number, the amount nine-and-a-half, would be written as 9.5. In coding, a decimal number is called a floating pointing
 number.”

​
 “Wait… So, it's a number with a bunch of dots floating in the air?”

[image:]

​
 “Well, you’re right that the point
 in floating point
 number refers to the decimal point (the dot),” Erik answered. “The float
 part just means that the dot can float around (move) depending on the number. For example, 3.25 versus 34.755 – the decimal point is in different places in these two numbers.”

​
 “So, we call decimal point numbers floating point
 numbers when coding?” Jack asked.

​
 “Yeah, or just float
 for short. So, remember how we just talked about functions? As a reminder, a function
 is a chunk of code that does something and can be reused whenever you want. There are many functions already built into Python. What this means is that Python automatically includes these functions in it. The float()
 function returns a floating point number from an integer (whole number) or string (sequence of characters). Write this code in IDLE:”

>>>
 Number = float
 (699)

>>>
 print
 (Number)

“You have turned an integer (whole number) into a floating point (decimal) number!” Erik explained. “Now let’s do the opposite. Let’s change a float into an integer. To do this we use the integer()
 function. Write this code in IDLE:”

>>>
 Amount = 219.67

>>>
 print
 (Amount)

>>>
 Whole_Number_Amount = int
 (Amount)

>>>
 print
 (Whole_Number_Amount)

“We got rid of the fraction!” Erik announced. “No more float (decimal)! Or we can round a float number to the nearest whole number (integer) by using the round function. Write this code in IDLE:

>>>
 Floating_Point_Number = 29.76521

>>>
 print
 (round
 (Floating_Point_Number))

​
 “Whoa!” Jack yelled. “It rounded up to 30! Another function is the len()
 function. This gets the length (number of characters) of a variable (such as a string or integer). Write this
 code in IDLE:”

>>>
 How_many_characters = len
 ("I am learning a

lot from this Python book!"
)

>>>
 print
 (How_many_characters)

​
 “See how it counted the total characters and spaces?” Jack asked. “Let’s try it with numbers. Write this code in IDLE:”

>>>
 How_many_numbers = len
 ("1234567891011121314 151617181920"
)

>>>
 print
 (How_many_numbers)

“Boom!” Erik yelled.

“We can also delete variables,” Jack explained. “Write this code in IDLE:”

>>>
 Number = 15

>>>
 print
 (Number)

>>>
 del
 Number

>>>
 print
 (Number)

“As you can see,” Jack began, “you get an error message after you delete because Number
 is no longer stored! Can you guess what del
 is short for?”

“Delaware?” Erik guessed.

“Wow... It’s short for delete!
 ”

“Or we can try this:”

>>>
 del
 Erik

​
 “It didn’t work!” Jack complained. “You’re still here!”

​
 “Hahaha,” Erik laughed sarcastically. “Did you know another common thing that programmers do is assign number values to variables that are named as letters?”

​
 Jack fell asleep.

​
 “What I mean is it’s common to see things like X = 5 or A = 10, or whatever. This is because you sometimes see this in math. But it’s more likely that computer programmers do this because sometimes they’re kinda lazy.” Jack woke up.

​
 Erik said, “Write this code in IDLE:”

>>>
 A = 10

>>>
 B = 20

>>>
 X = 30

>>>
 print
 (a + b + x)

​
 “Oops!” Erik shrieked. “Oh yeah, I remember now. It’s case sensitive. Meaning, we have to use the same upper or lowercase that we used when we created the variables in the beginning. So, write this
 code in IDLE:”

>>>
 A = 10

>>>
 B = 20

>>>
 X = 30

>>>
 print
 (A + B + X)

​
 “We get 60!” announced Erik.

​
 “Interesting, so people sometimes name variables as letters – okay, fine,” Jack said.

“Yep! Now let’s put together all we’ve learned so far. Write this code in the text editor:”

import
 time

X = 10

print
 ("X (10) is not equal to 15:"
)

time.sleep(.5)

print
 (X != 15)

print
 ("X is greater than or equal to 15:"
)

time.sleep(.5)

print
 (X >= 15)

if
 X <= 15:

print
 ("X is not equal to or greater than

15."
)

time.sleep(.5)

number = 25

if
 number == 15:

print
 ("25 is not equal to 15."
)

else
 :

print
 ("The number is 25."
)

time.sleep(.25)

counter = 25

print
 (counter)

time.sleep(.25)

counter = counter + 5

print
 (counter)

time.sleep(.25)

counter = counter - 28

print
 (counter)

time.sleep(.25)

counter = counter * 2

print
 (counter)

time.sleep(.25)

counter = counter / 3

print
 (counter)

time.sleep(.25)

for
 counter in range
 (2,6):

print
 (counter)

time.sleep(.25)

for
 counter in range(
 10,4,-1):

print
 (counter)

time.sleep(.25)

while
 counter < 22:

print
 (counter + 2)

counter = counter + 4

time.sleep(.25)

list = ["a"
 , "b"
 , "c"
 , "d"
 , "e"
 , "f"
 , "g"
 , "etc."
]

print
 (list)

time.sleep(.25)

dictionary = {'Apple'
 : 'Fruit'
 , 'Bush'
 : 'Plant'
 , 'Carrot'
 : 'Vegetable'
 }

print
 (dictionary)

time.sleep(.25)

print
 ('Now we will add "dog" to the
 dictionary.'
)

time.sleep(.25)

dictionary['Dog'
] = 'Animal'

print
 (dictionary)

time.sleep(.25)

del
 dictionary['Apple'
]

print
 ('Now, we have deleted "Apple" from the

dictionary:'
)

print
 (dictionary)

​
 “Save and execute your code,” Erik instructed.

​
 “Yee-haw!” Jack yelled. “That was another long one!”

​
 “Yes siree!” Erik agreed.

​
 Suddenly, Jack and Erik both had on cowboy hats and boots.

​
 “Are you thinking what I’m thinking?” Jack asked.

​
 “Why yes, I am,” Erik agreed. “It’s time for a challenge! Okay, Sheriff (that’s you, the reader), why don’t you go on and write a program in IDLE or the text editor that uses all of the following (it’s totally okay to look back earlier in the book for reminders)?:”

●
 Float function,

●
 Integer function,

●
 Round function,

●
 Length function,

●
 Delete,

●
 If statement, elif statement and else statement,

●
 For loop,

●
 While loop, and

●
 Dictionary.

​
 Jack and Erik danced a jig as the reader did the challenge. Then right when the reader finished, they jumped in the air and clicked their heels!

[image:]

​
 “Oh, boy!” Jack announced. “We are learning a lot in this book!”

​
 “Well,” Erik began, “let’s get on with the next chapter because there’s a lot more cool things you can do with Python!”

CHAPTER FIFTEEN

INPUT

​
 “Stampede!” Jack shouted!

​
 “Eeeek!” Erik screamed.

​
 Jack and Erik ran as a herd of giant turtles stomped towards them.

​
 “I thought turtles were supposed to be slow!” Jack yelled.

​
 They kept running but the stampede got closer and closer. Suddenly, Sally the ostrich ran past the herd, and Jack and Erik jumped on her back. Then she flapped her tiny wings and they all slowly floated into the air.

​
 “But, wait… Ostriches can’t fly!” Jack stated.

​
 “Believe, Jack,” Erik begged, “believe!
 ”

​
 The giant turtles passed under them and Sally glided safely to The Tech Academy.

[image:]

​
 “Well, that was an interesting way to start this day,” Erik said.

​
 “Just another day at The Tech Academy,” Jack replied.

​
 “So, you know how in games and websites, you sometimes type in data, like your name and email address? How do you do that in Python?” Erik asked.

​
 “Great question! Remember, that word we mentioned earlier, input?
 It means to put data into the computer. The input()
 function allows the user to enter information. Write this code in the text editor:”

color = input(
 'Please enter your favorite color:'
)
 print
 ("Your favorite color is "
 + color + "!"
)

​
 “Save and execute your code,” Jack instructed.

“Wow!” Erik shouted. “Our programs are getting more useful. Write this code in the text editor and then save and execute your code:

print
 ('We are going to find out whether or not

you like candy.'
)

Candy = input
 ('Do you like candy?:'
)

if
 Candy == 'Yes'
 :

print
 ('You like candy!')

elif
 Candy == 'No'
 :

print
 ('You do not like candy.'
)

else
 :

print
 ('Please enter Yes or No exactly.'
)

​
 “Cool!” Jack said. “But I have to type Yes
 or No
 with perfect capitalization and everything. What if I want to type yes
 (lowercase) or just y?
 ”

​
 “Oh,” Erik began, “we would change our code. Write this code in the text editor and save and execute the code:”

print
 ('We are going to find out whether or not

you like candy.'
)

Candy = input
 ('Do you like candy?:'
)

if
 Candy == 'Yes' or 'Y' or 'yes' or 'y'
 :

print
 ('You like candy!')

elif
 Candy == 'No' or 'N' or 'no' or 'n'
 :

print
 ('You do not like candy.'
)

else
 :

print
 ('Please enter one of the following:

Yes, Y, yes, y, No, N, no, or n.'
)

​
 “Awesome!” Jack said. “Now, create new file in the text editor and write this code:”

print
 ("Let's find out if you love pizza!"
)

Cheese = input
 ("Do you love pizza? "
)

if
 Cheese == "Yes" or "Y" or "yes" or "y"
 :

print
 ("You love pizza!"
)

elif
 Cheese == "No" or "N" or "no" or "n"
 :

print
 ("You do not love pizza!"
)

else
 :

print
 ("Please enter one of the following:

Yes, Y, yes, y, No, N, no, or n."
)

​
 “Now,” Jack continued, “save and run your code.”

“That’s great!” Erik yelled. “Now, let’s make a program that will store information about people and then grab data (like height, weight, birth year, etc.) by typing in their name. The first step will be to create a dictionary so we can easily handle the information. Then we will want to take information from the dictionary to show it to the user. Delete your code in the text editor (or create and save a new, separate file). Then write this code in the text editor:”

people_dictionary
 ={
 'Brett'
 :[
 'Male'
 ,
 'Weight 175'
]
 ,

'Nancy'
 :['Female'
 , 'Weight 125'
],

'Patrick'
 :['Male'
 , 'Weight 195'
],

'Briar'
 :['Female'
 , 'Weight 115'
],

'Adam'
 :['Male'
 , 'Weight 215'
]}

print
 (people_dictionary)

Name = input
 ('Please pick a name from the

dictionary and type it here: '
)

print('You typed in the name ' + Name + ' and

here is their data: '
)

Persons_Data = people_dictionary[Name]

print
 (Persons_Data)

“Save and run your code,” Erik instructed. “If you receive an error, it means you didn’t type a name exactly right. Otherwise, it will run!”

​
 “This is all really cool!” Jack said. “How do we make a program that works even if someone enters the wrong name in?”

​
 “Well,” Erik started, “we can use the built-in Python functions try
 and except
 . These mean basically what they sound like. Try
 tries to find something in the dictionary. If try
 finds the thing in the dictionary, the program does what it’s supposed to. If try
 doesn’t find it, except
 takes over. Except
 gives another action for the program to do when something isn’t found in the dictionary. Let’s ‘try’ this out. Delete your code in the text editor (or create and save a new, separate file). Then write this code in the text editor:”

people_dictionary
 ={'Brett'
 :['Male'
 , 'Weight 175'
],

'Nancy'
 :['Female'
 , 'Weight 125'
],

'Patrick'
 :['Male'
 , 'Weight 195'
],

'Briar'
 :['Female'
 , 'Weight 115'
],

'Adam'
 :['Male'
 , 'Weight 215'
]}

print
 (people_dictionary)

Name = input
 ('Please pick a name from the

dictionary and type it here: '
)

print('You typed in the name '
 + Name + ' and

here is their data: '
)

try:

​
 Persons_Data = people_dictionary[Name]

​
 print
 (Persons_Data)

except:

​
 print
 ("I'm sorry! That name was not found."
)

“Save and run your program,” Erik directed. “As you may have noticed, if you don’t enter a name exactly as it’s written in the dictionary, the program will think the name isn’t there. Run your program again and type brett
 or PATRICK
 (instead of Brett or Patrick). It doesn’t work!”

“I know what to do!” Jack announced. “To fix this, we can change the text the user
 types by using the lower() method
 . A method is code in Python that does something – it performs an action. The reason we want to force the text to lowercase (using the lower() method
) is so that the text matches the text in our dictionary. Go ahead and take a look at the dictionary in your code – all the names are lowercase! Then, to display the names correctly (with the first letter capitalized) we can use the capitalize() method
 . Let’s see this in action. Delete your code in the text editor (or create and save a new, separate file). Then write this code in the text editor:”

print
 ('Welcome to my program!'
)

people_dictionary
 ={'brett'
 :['Male'
 , 'Weight 175'
],

'nancy'
 :['Female'
 , 'Weight 125'
],

'patrick'
 :['Male'
 , 'Weight 195'
],

'briar'
 :['Female'
 , 'Weight 115'
],

'adam'
 :['Male'
 , 'Weight 215'
]}

Name = input
 ('Please type in a name: '
).lower()

try:

​
 Persons_Data = people_dictionary[Name]

​
 print
 ('Here is their name: '
 + Name.caplitize())

​
 print
 ('Are they male or female?: '
 + Persons_Data[0])

​
 print
 ('They weigh this much: '
 + Persons_Data[1])

except:

​
 print
 ('That name (as written) was not found

in the dictionary'
)

​
 “Save and run your code,” Jack instructed. “Try entering one of the names in ALL CAPS – it works!

“Wow, cool!” Erik said excitedly. “Now, how do we allow people to search for more names or search again when they don’t type the name correctly? First, we need to define a start point to our program (which will allow us to have people go to the beginning of the program again). To do so, add this to the beginning of our code:”

def
 start
 ():

​
 “We are telling the computer, ‘This is the beginning of our program!’” Erik explained. “If each line of your code following def start()
 doesn’t automatically indent (go over the the right a few spaces), you will need to add one indentation per line of code (meaning, you’ll have to press the TAB key for each line of code following def start()
). Now, add this at the end of your code:”

start
 ()

​
 “Putting this at the end of our program makes it so that when our program hits that step, it starts over!” Erik said. “Now let’s add another step to the program that lets the user search for another name. At the near end of your code, right above/before start(), write this code:”

​
 def
 more
 ():

More = input
 ('Would you like to

search for another name?: '
)

if
 More == 'No'
 :

quit()

if
 More == 'Yes'
 :

start()

else
 :

print
 ('Please enter Yes or No')

​
 more()

“As you probably guessed, quit()
 ends the program,” Jack explained. “And more()
 is the name of our function (chunk of code that can be reused). What we are saying here is that after our program runs through once, we are gonna check if the person wants to do it again (do they want to do more
 ?). If not, we shut down the program with quit()
 . If yes, we go back to the start of the program. If they don’t enter ‘Yes’ or ‘No,’ we say, ‘Please enter Yes or No,’ then we go back to the beginning of the more() function.”

“That’s right, Jack,” Erik said, “Now, we need to connect the start()
 section of our code to the more()
 section of our code, and we need to add more()
 to the end of the try()
 function, like this:”

try
 :

​
 Persons_Data = people_dictionary[Name]

​
 print
 ('Here is their name: '
 + Name.caplitize())

​
 print
 ('Are they male or female?: '
 + Persons_Data[0])

​
 print
 ('They weigh this much: '
 + Persons_Data[1])

​
 more()

“And,” Erik continued, “we need to add the more()
 function at the end of the except
 function:”

except
 :

​
 print
 ('That name (as written) was not found in the dictionary'
)

​
 more()

​
 “Stop!” Jack yelled. “It’s too much! I am so confused!”

​
 “Don’t worry,” Erik comforted, “here is what your final code should look like this:”

def
 start
 ()

print
 ('Welcome to my program!'
)

people_dictionary = {'brett'
 :['Male'
 ,'Weight 175'
], 'nancy'
 :['Female'
 , 'Weight 125'
], 'patrick'
 :['Male'
 , 'Weight 195'
], 'briar'
 :['Female'
 , 'Weight 115'
], 'adam'
 :['Male'
 , 'Weight 215'
]}

print
 (people_dictionary)

Name = input
 ('Please
 type
 in a name:
 '
).lower()

try:

​
 Persons_Data = people_dictionary[Name]

​
 print
 ('Here is their name: '
 + Name.caplitize())

​
 print
 ('Are they male or female?: '
 + Persons_Data[0])

​
 print
 ('They weigh this much: '
 + Persons_Data[1])

except:

​
 print
 ('That name (as written) was not found in the dictionary'
)

​
 more()

​
 def
 more
 ():

More = input
 ('Would you like to search for another name?: '
)

if
 More == 'No'
 :

quit()

if
 More == 'Yes'
 :

start()

else
 :

print
 ('Please enter Yes or No')

start()

“Save and run the program,” Erik directed. “Now you have a fully operational program!”

“Awesome!” Jack announced. “Another cool thing we can do with Python is alphabetize lists. We can do this using the sort() method. We are going to leave the text editor and use the IDLE shell again. So, open up IDLE and write this code:”

>>>
 Animals = ['Frog'
 , 'Dog'
 , 'Bat'
 , 'Alligator'
 , 'Cat'
 , 'Elephant'
]

>>>
 print
 (Animals)

>>>
 Animals.sort()

>>>
 print
 (Animals)

​
 “Whoa!” Erik cut in. “What about numbers?”

​
 “Yep!” Jack answered. “It can sort numbers too – lowest to highest. Write this code in IDLE:”

>>>
 Amounts = [8, 2, 5, 3, 9, 1, 19, 4, 7, 6]

>>>
 print
 (Amounts)

>>>
 Amounts.sort()

>>>
 print
 (Amounts)

​
 “Wow!” Erik shouted. “That was awesome! Wow, we really have learned a lot so far.”

​
 “The best part of this is that we will start combining all of these things soon to make some really cool programs!” Jack said.

​
 “Oh, I see,” Erik said. “This whole time we’ve been teaching one thing at a time so that we can bring it all together later!”

​
 “Exactly!” Jack acknowledged.

​
 “Okay, I have an idea,” Erik began. “Let’s make a program that figures out how long you’ve been alive! To do this, we will need to use two new Python functions int()
 and str()
 . int()
 is a function that turns input (what the user types) to a number – int
 is short for integer
 (whole number). str()
 is a function that turns input into a string (text). To make this program, we will want to use the text editor again. Right click on the Python.py file and select Edit with IDLE
 :

[image:]

​
 “Now,” Erik continued, “delete all the code in the file and write the following (as a note, if you want, you can create a New File instead and save it):”

Name = input
 ('Name: '
)

print
 ("Hello "
 + Name + "! We are going to find

out how long you've been alive!"
)

Age = int(input('How old are you? '
))

print
 ("You are "
 + str
 (Age) + " years old."
)

Months = Age * 12

Days = Age * 365

print
 (Name + " has been alive for about: "
 +

str
 (Months) + "
 months
 and
 "
 + str(Days) + "
 days!"
)

​
 “Now before we run this code,” Erik started, “let’s talk about what some of the above code means. The Age * 12
 is saying that we are going to multiply the user’s age by 12 months so we can figure out how many months they’ve been alive. The Age * 365
 says multiplies their age by 365 to figure out how many days the user has been alive. Now, save and run your program!”

​
 “That’s cool!” Jack said. “Let’s take it a step further and figure out about how many minutes and seconds the user has been alive! Change your code to this:”

Name = input
 ('Name: '
)

print
 ("Hello "
 + Name + "! We are going to find

out how long you've been alive!"
)

Age = int(input('How old are you? '
))

print
 ("You are " +
 str
 (Age) + " years old."
)

Months = Age * 12

Days = Age * 365

Minutes = Age * 525948

Seconds = Age * 31556926

print
 (Name + " has been alive for about: "
 +

str
 (Months) + " months, "
 + str(Days) + " days,
 "
 + str(Minutes) + " minutes, and "
 + str(Seconds) + " seconds!"
)

“As a note, there are 525,948 minutes in a year and 31,556,926 seconds in a year!” Jack explained. “Save and run your code.”

“Okay, we’ve covered a lot in this book,” Erik said. “I want to make sure the reader is following along okay.”

“Of course they are! How could you doubt our marvelous reader?!”

“I don’t doubt them at all! But practice makes perfect! Okay, our superhero reader, we have another challenge for you. Do the following in IDLE:”

1. Assign an integer to a variable.

HINT:

>>>
 X = 10

2. Assign a string to a variable.

HINT:

>>>
 StarWars = "May the force be with you."

3. Assign a float to a variable.

HINT:

>>>
 DecimalNumber = 3.14

4. Use the print() function to print out the variable you assigned.

HINT:

>>>
 Name = "Jerick"

>>>
 print
 (Name)

5. Use each of these math operators:

	
+

HINT:

>>>
 10 + 5

	
*

HINT:

>>>
 5 * 10

	
/

HINT:

>>>
 36 / 6

6. Use each of these comparison operators:

	
and

HINT:

>>>
 4 > 3 and
 25 < 20

	
or

HINT:

>>>
 30 > 20 or
 10 < 5

	
not

HINT:

>>>
 X = 25

>>>
 X is not
 12

7. Use each conditional statement:

	
if

HINT:

>>>
 if
 100 > 50:

print
 ('100 is more than 50!'
)

	
elif

HINT:

>>>
 if
 100 > 250:

print
 ('100 is more than 250!'
)

elif
 100 < 250:

print
 ('100 is less than 250!'
)

	
else

HINT:

>>>
 if
 500 > 1000:

print
 ('500 is more than 1000!'
)

elif
 1000 > 2000:

print
 ('1000 is more than 2000!'
)

else
 :

​
 print
 ('None of these things are true!'
)

8. Use a while
 loop.

HINT:

>>>
 Number = 1

>>>
 while
 Number < 5:

​
 print
 (Number)

​
 Number += 1

9. Use a for
 loop.

HINT:

>>>
 Fruits = ['Oranges'
 , 'Bananas'
 , 'Apples'
]

>>>
 for
 Each_One in
 Fruits:

print
 (Each_One)

10.
 Define a function that returns a string variable.

HINT:

>>>
 def
 My_function():

print("This is my function"
)

>>>
 My_function()

11.
 Create a list of numbers and sort it.

HINT:

>>>
 Numbers = [80, 20, 50, 30, 90, 10, 100, 40, 70, 60]

>>>
 Numbers.sort()

>>> print
 (Numbers)

12.
 Create a list of strings and alphabetize it.

HINT:

>>>
 Colors = ['Red'
 , 'Yellow'
 , 'Blue'
 , 'Green'
 , 'Black'
 , 'Gray'
 , 'White'
]

>>>
 Colors.sort()

>>> print
 (Colors)

​
 As the reader nailed the challenge, Erik climbed into a huge cannon. Jack lit the fuse and counted down from 10. But the reader finished the challenge with 3 seconds left and the cannon exploded early! Erik flew across the sky and pulled out a skateboard. He then rode his skateboard down a rainbow and high-fived the reader!

[image:]

​
 “Cowabunga!” Jack yelled. “This reader is a coding master! So, Erik, this is all fine and dandy but what about making games and stuff with Python.”

​
 Erik set his skateboard down. Took off his kneepads and elbow pads, and stored it all in the closet with his helmet. Then he said, “Well, Jack, modern games have thousands and thousands of lines of code – some even have millions.”

​
 “You’re right. And there are hundreds to thousands of people that work on some of these games…”

​
 “But that doesn’t mean we can’t make very basic games in Python.”

​
 “That’s exactly what we are going to do in the next chapter!”

CHAPTER SIXTEEN

ROCK, PAPER, SCISSORS

​
 Jack and Erik played rock paper scissors. Jack played scissors, Eirk played paper. They played again – Erik played paper, Jack played scissors. Then they went another time, Jack played scissors and Erik played paper.

​
 “Erik,” Jack said, “I don’t think you’re understanding this. You always
 pick paper!”

​
 “I’ll get you someday,” Erik promised. “Some day, you’ll pick rock...”

​
 Jack shook his head and marked the score on the chalkboard.

[image:]

​
 “I know!” Jack announced. “Let’s make a rock, paper, scissors game in Python! Step one, create a new file in the text editor and save it as Rock_Paper_Scissors_Game.py on
 your desktop. Within this new file, write the following code:”

def
 start():

print
 ('This
 is my Rock Paper Scissors Game!'
)

Player_One = 'Jack'

Player_Two = 'Erik'

def
 choices(Player_One_Choice,

Player_Two_Choice):

if
 Player_One_Choice == 'rock'
 and
 Player_Two_Choice == 'paper'
 :

return
 ('Paper covers Rock! '
 + Player_Two + ' wins!'
)

elif
 Player_One_Choice == 'paper'
 and

Player_Two_Choice == 'rock'
 :

return
 ('Paper covers Rock! '
 + Player_One + ' wins!'
)

elif
 Player_One_Choice == 'scissors'
 and

Player_Two_Choice == 'paper':

return
 ('Scissors cuts paper! '
 +

Play_One + ' wins!'
)

elif
 Player_One_Choice == 'rock' and

Player_Two_Choice == 'scissors'
 :

return
 ('Rock smashes Scissors! '
 +

Player_One + ' wins!'
)

elif
 Player_One_Choice == 'paper' and

Player_Two_Choice == 'scissors'
 :

return
 ('Scissors cuts paper '
 +

Player_Two + ' wins!'
)

elif
 Player_One_Choice == 'scissors' and
 Player_Two_Choice == 'rock'
 :

return
 ('Rock smashes Scissors! '
 +

Player_Two + ' wins!'
)

elif
 Player_One_Choice == Player_Two_Choice:

return
 ('Jack and Erik tied'
)

else
 :

return
 ('Please type Rock, Paper or Scissors!'
)

Player_One_Choose = input
 ('Does '
 + Player_One + '
 choose
 Rock, Paper or

Scissors? '
).lower()

Player_Two_Choose = input
 ('Does '
 +

Player_Two + ' choose Rock, Paper or

Scissors? '
).lower()

print
 (choices(Player_One_Choose, Player_Two_Choose))

def
 Play_Again
 ():

Again = input
 ('Would you like to play the game again? '
).lower()

if
 Again == 'No'
 .lower():

quit()

if
 Again == 'Yes'
 .lower():

start()

else
 :

print
 ('Please enter Yes or No. Thank

you!!'
)

Play_Again()

Play_Again()

start()

“Save and run your code,” Jack instructed. “Play the game a few times. Well done! Now, read through your code again, line by line and figure out what each line does exactly. Everything in this code was data covered in this book!”

“Well done!” Erik yelled. “You made a working game. Now here is your challenge:

“1.
 Change the Player_1 and Player_2 names from Jack and Erik to names of our choosing.

“2.
 Make the game Elephant, Cat, Mouse instead!”

​
 “Huh? Elephant, cat, mouse?” Jack asked.

​
 “Yeah,” Erik answered. “Elephant
 beats cat
 . Cat
 beats mouse
 . Mouse
 beats elephant
 .”

​
 “So, you want them to change their code so that rock
 is elephant
 , paper
 is mouse
 , and scissors
 is cat
 or something?”

​
 “Exactly.”

​
 “I’ve never heard of that game but it sounds like an interesting idea! Go for it!”

As the reader customized their program, an elephant walked into The Tech Academy. Jack and Erik were terrified as the elephant stomped towards them. Then suddenly, just as the reader completed their challenge, a mouse ran out, jumped up and ate a piece of cheese that was stuck to Erik’s beard! The elephant trumpeted in terror and ran out of the room.

A cat chased the mouse away and everything returned to normal. Well, as normal as things can be when Jack and Erik are involved.

[image:]

“Well, Erik,” Jack began. “Our incredible reader has done it again. Another challenge completed successfully.”

“I know!” Erik announced. “It’s so sad that the next chapter is the last coding assignment.”

“There, there, Erik. We will have other books for the reader.”

“You’re right. Now let’s make a hangman game in Python!”

CHAPTER SEVENTEEN

HANGMAN

​
 Erik stood alone on the top of Mount Everest. The sun was setting as he scratched behind the ears of an albino sasquatch. “Oh, Betty Sue,” Erik sighed, “I am going to miss the reader.”

“Arrgghhh! Shhhraaaamuuuuk!” Betty Sue, the great white sasquatch, roared in agreement.

Jack parachuted down and landed several feet away. He had never felt very comfortable around Betty Sue – even though she was a vegan.

[image:]

“Erik,” Jack pleaded. “I know it’s sad but the book can’t go on forever. Besides, we are going to make another cool game in Python!”

“Alright, alright,” Erik answered. “But first, Betty Sue and I need to finish dinner.”

Erik and Betty Sue chewed on random plants – a tree, grass, and a bush that Erik sometimes liked to hide behind when he was feeling scared. Jack ate a pepperoni pizza that he had in his backpack.

Once everyone was full, Betty Sue shouted, “Mooonnngeeeessoooo – kuuurrraaaakkkk!” and stomped off into her cave. Jack and Erik walked into a teleporter that was nearby and teleported back to The Tech Academy.

​
 “Well, dear reader,” Jack began, “we have grown close to you over these many chapters. And we’ve now come to the final program we will write in this book. It’s been a long and interesting journey and we want to thank you for putting up with us.”

Erik said, “Let’s start our program by creating a New File in the text editor, and naming it hangman.py. Save hangman.py on your desktop. Then within the text editor, write the following code:”

Name = input
 ('Please enter the name of the person who created this game: '
)

print
 ('This game was made by the amazing '
 +

Name + '!'
)

print
 ('Welcome to my guessing game!'
)

print
 ('In this program, you will try to guess a

word that I chose.'
)

print
 ('Good luck!'
)

def
 start
 ():

Player_Name = input
 ('What is the name of the

player? '
)

print
 ('Greetings, '
 + Player_Name + '! It is

time to guess!'
)

Secret_Word = 'ostrich'

Guesses = ''

Turns_Left = 11

while
 Turns_Left > 0:

Wrong_Answers = 0

for
 Letter in
 Secret_Word:

if
 Letter in
 Guesses:

print
 (Letter)

else
 :

print
 ('_'
)

Wrong_Answers += 1

if
 Wrong_Answers == 0:

print('YOU WIN!
 You
 guessed my word:
 '
 + Secret_Word + '!!!!!'
)Toggle screen reader support

Show side panel

break

Guess = input
 ('Guess a letter here: '
) .lower()

Guesses += Guess

if
 Guess not in Secret_Word:

Turns_Left -=1

print
 ('Oops! This letter is not in

my word. Please try again.'
)

print
 ('You have '
 + str
 (Turns_Left)

+ ' more guesses left. You can do it!'
)

if
 Turns_Left == 0:

print
 ('GAME OVER'
)

def
 Play_Again
 ():

Again = input
 ('Would you like to play again? '
).lower()

if
 Again == 'No'
 .lower():

quit()

if
 Again == 'Yes'
 .lower():

start()

else
 :

print
 ('Please enter Yes or No. Thank you!'
)

Play_Again()

Play_Again()

start()

“Save and run your code,” Erik instructed. “You should have a friend or family member play the game to try to guess your secret word!”

​
 “Now, it’s time for the final challenge,” Jack said. “Do the following:

“1.
 Change the secret word.

“2.
 Change the number of guesses allowed in your program.”

​
 Jack and Erik simply stared as the reader completed the challenge. “You know, Jack.” Erik said. “I thought I’d be used to it by now, but the reader of this book continues to surprise me.”

​
 “They never cease to amaze,” Jack agreed.

​
 “I’m not good at long goodbyes.”

​
 “Me either. And let’s not say goodbye. Let’s say, ‘Until next time.’”

​
 “Yeah, we will see you again soon!”

​
 “Thank you, reader, for showing us what a true coder is like. You’re a special person!”

​
 Jack tied a saddle to the back of a giant turtle, while Erik sat on Sally the ostrich’s back. They looked at the reader one last time, gave a happy wave, and then rode their animals off into the sunset.

[image:]

THE END

(FOR NOW…)

EPILOGUE

You have completed our book! Well done on your hard work and persistence!

​
 You should now have a basic understanding of Python and coding.

​
 If you’re a kid or young adult, you can check out The Tech Academy’s products and services here: learncodinganywhere.com

​
 If you’re a grown up, as the next step, we recommend enrolling in a Tech Academy coding boot camp. Our coding boot camps were designed like this book: for beginners and assuming no prior knowledge or experience.

​
 Here are some of the reasons thousands of students have chosen to enroll at The Tech
 Academy:

1)
 Our curriculum – it’s modern, robust (strong; holds up over time), and covers in-demand technologies. Our programs are thorough and cover more than just 1-2 languages. Our comprehensive curriculum ensures that students aren’t pigeon-holed (restricted to an exclusive category) within a small skillset. Understanding a large array of technologies not only prepares graduates for the workforce, it assists them greatly in picking up new tech skills in the future.

2)
 We price our boot camps affordably. In fact, our tuition is less than the national average weekly cost of coding boot camps.

3)
 We require no technical background or experience. You don’t have to already know coding to learn to code. As long as students can read, write and perform basic math, they can succeed at The Tech Academy.

4)
 We have a stellar online presence. Our average review rating across the top review sites ranges from 4.5-4.9 stars. We have received the Best Coding Boot Camp award several years in a row from SwitchUp.Org and CourseReport.Com (the top two boot camp review sites) and are included on several other top coding boot camp lists as well. We were also chosen as “The World’s Best Code School” by the television show “World’s Greatest.” All of these awards and reviews are based on feedback from students and graduates of our programs.

5)
 We are extremely flexible. Students choose their own study schedule. They can study from home, at one of our campuses or both. They have online access to their program 24 hours a day. This ensures that students can enroll regardless of their life circumstances. The fact that the programs are self-paced is an aspect of our flexibility – students can blast through content they know well already, and take their time with new concepts. An additional factor in our flexibility is that we offer open enrollment, which means students can start anytime.

6)
 Our admissions staff and enrollment process are transparent and helpful. We answer questions and are polite, giving students a positive experience from the start.

​
 To get started, visit The Tech Academy’s website: learncodinganywhere.com

OTHER READING

Be sure to check out other Tech Academy books, which are all available for purchase on Amazon:

[image:]

 [image:]

[image:]

[image:]

[image:]

[image:]

OEBPS/Image00003.jpg
THE TECH
ACADEMY

e, N
Uy &
Y 0D G AN WWERE

OEBPS/Image00004.jpg
python”

OEBPS/Image00001.jpg
LEARN CODING BASICS

For Kids , Young Aolults and
Prople Who Ase }’aunﬁ af Heast

Written lad:

Jack C. @tanled and Evik D. Givoss,
Co- Foundexs of The Tech Academy

THustrated bd:
Afsa Amin Orora’
based on the sketches bd Jack C. §tan/ed

OEBPS/Image00002.jpg

OEBPS/Image00079.jpg
rrrrrrr

LN GODING BSIGS
INHOuRS
WTH JMASERIPT

—

OEBPS/Image00080.jpg
THETECH
Keioru
p—

PROJECT MANAGEMENT
HANDBOOK

Simpified.

and DevOps for Beginners

OEBPS/Image00007.jpg

OEBPS/Image00008.jpg

OEBPS/Image00005.jpg

OEBPS/Image00006.jpg

OEBPS/Image00078.jpg
(AN GODIG BAScs
INHOURS
WTH PYTHON

OEBPS/Image00000.jpg
LEARN CODING BASICS

For Kids , Young Aolults and
Prople Who Ase }’aunﬁ af Heast

Written lad:

Jack C. @tanled and Evik D. Givoss,
Co- Foundexs of The Tech Academy

THustrated bd:
Afsa Amin Orora’
based on the sketches bd Jack C. §tan/ed

OEBPS/Image00076.jpg

OEBPS/Image00077.jpg
LEAN GODING BSIGS
INHOURS
WITH WAL B

OEBPS/Image00074.jpg

OEBPS/Image00075.jpg
THE TECH
et)

YOU ARE NOT STUPID

Compu

d Technology Smpified

OEBPS/Image00072.jpg

OEBPS/Image00073.jpg

OEBPS/Image00070.jpg

OEBPS/Image00071.jpg

OEBPS/Image00069.jpg
| e

-Luq Oocn
catwan DIz >

@ Ve o e

R —

2 scanwitn Windows etencr

@

Editwith DLE 38 G2-bi)

OEBPS/Image00067.jpg

OEBPS/Image00068.jpg

OEBPS/Image00065.jpg

OEBPS/Image00066.jpg

OEBPS/Image00063.jpg
PROGRAM

Code executes,
Code executes.

pd
—

A

/

SUBPROGRAM

Code exectes.

OEBPS/Image00064.jpg

OEBPS/Image00061.jpg

OEBPS/Image00062.jpg

OEBPS/Image00059.jpg

OEBPS/Image00060.jpg
FALSE

TRUE

OEBPS/Image00058.jpg
ﬁ Export

(Computer) (File)

. Import Qﬁ

(File) (Computer)

OEBPS/Image00056.jpg
R untited
Eile Edit Format Bun Options Window Help

New File cuien

Open.. anso
Open Modie.. AltsM
Recent Files. .
Module Browser AltiC
Path Browser

Lswe as
Savehs. Culsshitss

Save Copy As.. AItsShIftsS
Print Window Ctrt+P.

Close AltsF4
Bit cuisQ

OEBPS/Image00057.jpg
R untited

Eile Edit Farmat Bun| Qptions Window Help

Run..Customized Shift+F5
CheckModule Alt+X
Python Shell

OEBPS/Image00054.jpg
3 untted

|File| Edit Format Run Options Window Help

New File cuien

Open. cls0

OpenModule.. Alt+M

Recent Files »

Module Browser Alt+C

Path Browser

Save. Ciiss

Save Copy As... AltsShift+S

OEBPS/Image00055.jpg
Rsavens
© v D T > Deskop v 0 | 2 seachoesop
Organize = New folder = @
2 Name
* Quickoccess
= esop
Documents
& Downiass
= pcwres

PRy

3 Audio
¥ Pcwres

v < [

e o FEEEY 5|
Save as type: Python s -y pyw)

~ Hide Folders

OEBPS/Image00052.jpg
(& Python 383 Shell - o X
File Edit_Shell_Debug Optons Window Help

‘6fbcs32, vay 13 2020, 22

:20:19) (MSC v.1925 32 bit (In ~

Open..) . R N
o, o credits® or "license()" for more information.
Recent Files D

Module Browser Alt+C

Path Browser

Save ciss

Save As.. Crrlsshiftss.

OEBPS/Image00053.jpg
3 untitied
File it format Run Optons Window Help

OEBPS/Image00050.jpg

OEBPS/Image00051.jpg

OEBPS/Image00049.jpg

OEBPS/Image00047.jpg

OEBPS/Image00048.jpg

OEBPS/Image00045.jpg

OEBPS/Image00046.jpg

OEBPS/Image00043.jpg

OEBPS/Image00044.jpg

OEBPS/Image00041.jpg

OEBPS/Image00042.jpg

OEBPS/Image00039.jpg
Bestmach
IDLE Python 3.8 32-bi
. IDLE i " A
a0
Search theweb IDLE (Python 3.8 32-bit)
P IDLE - See et e >

Documents 1)
T open e ocaton

it sk

B urinsto

OEBPS/Image00040.jpg
[Python 383 Shell - o x
file Edit Snell Debug Optons Window Help

Python 3.6.3 (tags/v3.5.3:6£8c832, May 13 2020, 22:20719) [MSC v.1825 32 bit (Tn -
tel)] on win32

Type "help", "copyright", "credits" or "license()" for more information.

> |

Ln3 Cob4)

OEBPS/Image00036.jpg
R Python 383 shell - o x
e i st Deun Optors Wt e

ython .53 (sage/v.6.3:E0cE3s, Way 13 2630, 235EEEEY
ei01 o winas

e e o

e v.1925 32 Bix (n

“credits® or "license()” for more infornation.

3 Cotd]

OEBPS/Image00037.jpg

OEBPS/Image00034.jpg
0] 5 somhoumonts

OEBPS/Image00035.jpg
» Python 383 (32-bit) Setup -

Install Python 3.8.3 (32-bit)

Select Install Now to install Python with default settings, or choose
Customize to enable or disable features.

® Install Now
CUsers\usen\AppData\Loca Programs: Pytho Python3s- 32

Includes DLE, pp and documentation
Creates shortcuts and file associations.

> Customize installation
Choose location and festures

python
for [Install launcher for all users (recommended)
windows [Add Python 3.8 o PATH ==

OEBPS/Image00032.jpg

OEBPS/Image00033.jpg
=

python-3.83 exe

OEBPS/Image00030.jpg

OEBPS/Image00031.jpg

OEBPS/Image00038.jpg
n P Type here to search

OEBPS/Image00029.jpg

OEBPS/Image00025.jpg

OEBPS/Image00026.jpg

OEBPS/Image00023.jpg

OEBPS/Image00024.jpg

OEBPS/Image00021.jpg
Write your code here

OEBPS/Image00022.jpg

OEBPS/Image00019.jpg

OEBPS/Image00020.jpg

OEBPS/Image00027.jpg

OEBPS/Image00028.jpg
AT
R
\Q%V/////

B

OEBPS/Image00014.jpg
Processing
e
c())Ooc.)

OEBPS/Image00015.jpg

OEBPS/Image00012.jpg

OEBPS/Image00013.jpg
Processing...

VITIIIFII

OEBPS/Image00010.jpg

OEBPS/Image00011.jpg

OEBPS/Image00009.jpg

OEBPS/Image00018.jpg

OEBPS/Image00016.jpg

OEBPS/Image00017.jpg

