[image: cover]
Kubernetes Best Practices

 
Blueprints for Building Successful Applications on Kubernetes


Brendan Burns, Eddie Villalba, Dave Strebel, and Lachlan Evenson



Kubernetes Best Practices


by Brendan  Burns, Eddie  Villalba, Dave  Strebel, and Lachlan  Evenson


Copyright © 2020 Brendan Burns, Eddie Villalba, Dave Strebel, and Lachlan Evenson. All rights reserved.


Printed in the United States of America.


Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.


O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.



		Acquisitions Editor: John Devins

		Development Editor: Virginia Wilson

		Production Editor: Elizabeth Kelly

		Copyeditor: Charles Roumeliotis

		Proofreader: Sonia Saruba

		Indexer: WordCo Indexing Services, Inc.

		Interior Designer: David Futato

		Cover Designer: Karen Montgomery

		Illustrator: Rebecca Demarest





		November 2019: First Edition






Revision History for the First Release



		2019-11-12: First Release






See https://www.oreilly.com/catalog/errata.csp?isbn=0636920273219 for release details.



The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Kubernetes Best Practices, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.


The views expressed in this work are those of the authors, and do not represent the publisher’s views. While the publisher and the authors have used good faith efforts to ensure that the information and instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility for errors or omissions, including without limitation responsibility for damages resulting from the use of or reliance on this work. Use of the information and instructions contained in this work is at your own risk. If any code samples or other technology this work contains or describes is subject to open source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use thereof complies with such licenses and/or rights.  





978-1-492-05647-8


[LSI]





Preface









Who Should Read This Book


Kubernetes is the de facto standard for cloud native development. It is a
powerful tool that can make your next application easier to develop,
faster to deploy, and more reliable to operate. However, unlocking the
power of Kubernetes requires using it correctly. This book is
intended for anyone who is deploying real-world applications to Kubernetes
and is interested in learning patterns and practices they can apply
to the applications that they build on top of Kubernetes.


Importantly, this book is not an introduction to Kubernetes. We assume
that you have a basic familiarity with the Kubernetes API and tools,
and that you know how to create and interact with a Kubernetes cluster.
If you are looking to learn Kubernetes, there are numerous great resources
out there, such as Kubernetes: Up and Running (O’Reilly) that can give you an
introduction.


Instead, this book is a resource for anyone who wants to dive deep on
how to deploy specific applications and workloads on Kubernetes. It
should be useful to you whether you are about to deploy your first
application onto Kubernetes or you’ve been using Kubernetes for
years.

















Why We Wrote This Book


Between the four of us, we have significant experience helping a wide
variety of users deploy their applications onto Kubernetes. Through this
experience, we have seen where people struggle, and we have helped them
find their way to success. When sitting down to write this book, we
attempted to capture these experiences so that many more people could
learn by reading the lessons that we learned from these real-world
experiences. It’s our hope that by committing our experiences to writing,
we can scale our knowledge and allow you to be successful deploying
and managing your application on Kubernetes on your own.

















Navigating This Book


Although you might read this book from cover to cover in a single
sitting, that is not really how we intended you to use it. Instead,
we designed this book to be a collection of standalone chapters.
Each chapter gives a complete overview of a particular task that you
might need to accomplish with Kubernetes. We expect people to dive
into the book to learn about a specific topic or interest, and then leave the book alone, only to return when a new topic comes up.


Despite this standalone approach, there are some themes that span the book. There are several chapters on developing applications on Kubernetes. Chapter 2 covers developer workflows. Chapter 5 discusses Continuous Integration and testing. Chapter 15 covers building higher-level platforms on top of Kubernetes, and Chapter 16 discusses managing state and stateful applications. In addition to developing applications, there are several chapters on operating services in Kubernetes. Chapter 1 covers the setup of a basic service, and Chapter 3 covers monitoring
and metrics. Chapter 4 covers configuration management, while Chapter 6 covers versioning and releases. Chapter 7 covers deploying your application around the world.


There are also several chapters on cluster management, including
Chapter 8 on resource management, Chapter 9 on networking, Chapter 10 on pod security, Chapter 11 on policy and governance, Chapter 12 on managing multiple clusters, and Chapter 17 on admission control and authorization. Finally there are several chapters that are truly independent; these cover machine learning (Chapter 14) and integrating with external services (Chapter 13).


Though it can be useful to read all of the chapters before you actually attempt the topic in the real world, our primary hope is that you will treat this book as a reference. It is intended as a guide as you put these topics to practice in the real world.

















Conventions Used in This Book


The following typographical conventions are used in this book:


	Italic

	
Indicates new terms, URLs, email addresses, filenames, and file extensions.



	Constant width

	
Used for program listings, as well as within paragraphs to refer to program elements such as variable or function names, databases, data types, environment variables, statements, and keywords.



	Constant width bold

	
Shows commands or other text that should be typed literally by the user.



	Constant width italic

	
Shows text that should be replaced with user-supplied values or by values determined by context.





Tip

This element signifies a tip or suggestion.



Note

This element signifies a general note.



Warning

This element indicates a warning or caution.



















Using Code Examples


Supplemental material (code examples, exercises, etc.) is available for download at https://oreil.ly/KBPsample.


If you have a technical question or a problem using the code examples, please send email to bookquestions@oreilly.com.


This book is here to help you get your job done. In general, if example code is offered with this book, you may use it in your programs and documentation. You do not need to contact us for permission unless you’re reproducing a significant portion of the code. For example, writing a program that uses several chunks of code from this book does not require permission. Selling or distributing examples from O’Reilly books does require permission. Answering a question by citing this book and quoting example code does not require permission. Incorporating a significant amount of example code from this book into your product’s documentation does require permission.


We appreciate, but generally do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN. For example: “Kubernetes Best Practices by Brendan Burns, Eddie Villalba, Dave Strebel, and Lachlan Evenson (O’Reilly). Copyright 2020 Brendan Burns, Eddie Villalba, Dave Strebel, and Lachlan Evenson, 978-1-492-05647-8.”


If you feel your use of code examples falls outside fair use or the permission given above, feel free to contact us at permissions@oreilly.com.

















O’Reilly Online Learning

Note

For more than 40 years, O’Reilly Media has provided technology and business training, knowledge, and insight to help companies succeed.




Our unique network of experts and innovators share their knowledge and expertise through books, articles, conferences, and our online learning platform. O’Reilly’s online learning platform gives you on-demand access to live training courses, in-depth learning paths, interactive coding environments, and a vast collection of text and video from O’Reilly and 200+ other publishers. For more information, please visit http://oreilly.com.

















How to Contact Us


Please address comments and questions concerning this book to the publisher:


  	O’Reilly Media, Inc.

  	1005 Gravenstein Highway North

  	Sebastopol, CA 95472

  	800-998-9938 (in the United States or Canada)

  	707-829-0515 (international or local)

  	707-829-0104 (fax)




We have a web page for this book, where we list errata, examples, and any additional information. You can access this page at https://oreil.ly/KubBP.



Email bookquestions@oreilly.com to comment or ask technical questions about this book.


For more information about our books, courses, conferences, and news, see our website at http://www.oreilly.com.


Find us on Facebook: http://facebook.com/oreilly


Follow us on Twitter: http://twitter.com/oreillymedia


Watch us on YouTube: http://www.youtube.com/oreillymedia

















Acknowledgments


Brendan would like to thank his wonderful family, Robin, Julia, and Ethan, for the love and support of everything he does; the Kubernetes community, without whom none of this would be possible; and his fabulous coauthors, without whom this book
would not exist.


Dave would like to thank his beautiful wife, Jen, and their three children, Max, Maddie, and Mason, for all of their support. He would also like to thank the Kubernetes community for all the advice and help they have provided over the years. Finally, he would like to thank his coauthors in making this adventure a reality.


Lachlan would like to thank his wife and three children for their love and support. He would also like to thank everyone in the Kubernetes community, including the wonderful individuals who have taken the time to teach him over the years. He also would like to send a special thanks to Joseph Sandoval for his mentorship. And, finally, he would like to thank his fantastic coauthors for making this book possible.


Eddie would like to thank his wife, Sandra, for her moral support and for letting him disappear for hours on end to write while she was in the final trimester of their first pregnancy. He would also like to thank his new daughter, Giavanna, for giving him the drive to push forward. Finally, he would like to thank the Kubernetes community and his coauthors who have always been guideposts in his journey to be cloud native.


We would all like to thank Virginia Wilson for her work in developing the manuscript and helping us bring all of our ideas together, and Bridget Kromhout, Bilgin Ibryam, Roland Huß, and Justin Domingus for their attention to the finishing touches.












Chapter 1. Setting Up a Basic Service



This chapter describes the practices for setting up a simple multitier application in Kubernetes. The application consists of a simple web application and a database.
Though this might not be the most complicated application, it is a good place to start to orient to managing an application in Kubernetes.








Application Overview


The application that we will use for our sample isn’t particularly complex. It’s a simple
journal service that stores its data in a Redis backend. It has a separate static file server using NGINX. It presents two web paths on a single
URL. The paths are one for the journal’s RESTful application programming interface (API), https://my-host.io/api, and a file server on the main URL, https://my-host.io. It uses the Let’s Encrypt service for managing Secure Sockets Layer (SSL) certificates. Figure 1-1 presents a diagram of the application. Throughout this chapter, we build up this application, first using YAML configuration files and then Helm charts.



[image: Application Diagram]
Figure 1-1. An application diagram



















Managing Configuration Files


Before we get into the details of how to construct this application in Kubernetes, it is worth discussing how we manage the configurations themselves. With Kubernetes, everything is represented declaratively. This means that you write down the desired state of the application in the cluster (generally in YAML or JSON files), and these declared desired states define all of the pieces of your application. This
declarative approach is far preferable to an imperative approach in which the state of your cluster is the sum of a series of changes to the cluster. If a cluster is configured imperatively, it is very difficult to understand and replicate how the cluster came to be in that state. This makes it very challenging to understand or recover from problems with your application.


When declaring the state of your application, people typically prefer YAML to JSON, though Kubernetes supports them both. This is because YAML is somewhat less verbose and more human editable than JSON. However, it’s worth noting that YAML is indentation sensitive; often errors in Kubernetes configurations can be traced to incorrect indentation in YAML. If things aren’t behaving as expected, indentation is a good thing to check.


Because the declarative state contained in these YAML files serves as the source of truth for your application, correct management of this state is critical to the success of your application. When modifying your application’s desired state, you will want to be able to manage changes, validate that they are correct, audit who made changes, and possibly roll things back if they fail. Fortunately, in the context of software engineering, we have already developed the tools necessary to manage both changes to the declarative state as well as audit and rollback. Namely, the best practices around both version control and code review directly apply to the task of managing the declarative state of your application.


These days most people store their Kubernetes configurations in Git. Though the specific details of the version control system are unimportant, many tools in the Kubernetes ecosystem expect files in
a Git repository. For code review there is much more heterogeneity, though clearly GitHub is quite popular, others use on-premises code review tools or services. Regardless of how you implement code review for
your application configuration, you should treat it with the same diligence and focus that you apply to source control.


When it comes to laying out the filesystem for your application, it’s generally worthwhile to use the folder organization that comes with the filesystem to organize your components. Typically, a single directory is used to encompass an Application Service for whatever definition of Application Service is useful for your
team. Within that directory, subdirectories are used for subcomponents of the application.


For our application, we lay out the files as follows:


journal/
  frontend/
  redis/
  fileserver/


Within each directory are the concrete YAML files needed to define the service. As you’ll see later on, as we begin to deploy our application to multiple different regions or clusters, this file layout will become more complicated.

















Creating a Replicated Service Using Deployments


To describe our application, we’ll begin at the frontend and work downward. The frontend application for the journal is a Node.js application implemented in TypeScript. The complete application is slightly too large to include in the book. The application exposes an HTTP service on port 8080 that serves requests to the /api/* path and uses the Redis backend to add, delete, or return the current journal entries. This application can be built into a container image using the included Dockerfile and pushed to your own image repository. Then, substitute this image name in the YAML examples that follow.










Best Practices for Image Management


Though in general, building and maintaining container images is beyond the scope of this book, it’s worthwhile to identify some general best practices for building and naming images. In general, the image build process can be vulnerable to “supply-chain attacks.” In such attacks, a malicious user injects code or binaries into some dependency from a trusted source that is then built into your application. Because of the risk of such attacks, it is critical that when you build your images you base them on only well-known and trusted image providers. Alternately, you can build all your images from scratch. Building from scratch is easy for some languages (e.g., Go) that can build static binaries, but it is significantly more complicated for interpreted languages like Python, JavaScript, or Ruby.


The other best practices for images relate to naming. Though the version of a container image in an image registry is theoretically mutable, you should treat the version tag as immutable. In particular, some combination of the semantic version and the SHA hash of the commit where the image was built is a good practice for naming images (e.g., v1.0.1-bfeda01f). If you don’t specify an image version, latest is used by default. Although this can be convenient in development, it is a bad idea for production usage because latest is clearly being mutated every time a new image is built.

















Creating a Replicated Application


Our frontend application is stateless; it relies entirely on the Redis backend for its state. As a result, we can replicate it arbitrarily without affecting traffic. Though our application is unlikely to sustain large-scale usage, it’s still a good idea to run with at least two replicas so that you can handle an unexpected crash or roll out a new version of the application without downtime.


Though in Kubernetes, a ReplicaSet is the resource that manages replicating a containerized
application, so it is not a best practice to use it directly. Instead, you use the Deployment
resource. A Deployment combines the replication capabilities of ReplicaSet with versioning
and the ability to perform a staged rollout. By using a Deployment you can use Kubernetes’
built-in tooling to move from one version of the application to the next.


The Kubernetes Deployment resource for our application looks as follows:


apiVersion: extensions/v1beta1
kind: Deployment
metadata:
  labels:
    app: frontend
  name: frontend
  namespace: default
spec:
  replicas: 2
  selector:
    matchLabels:
      app: frontend
  template:
    metadata:
      labels:
        app: frontend
    spec:
      containers:
      - image: my-repo/journal-server:v1-abcde
        imagePullPolicy: IfNotPresent
        name: frontend
        resources:
          request:
            cpu: "1.0"
            memory: "1G"
          limits:
            cpu: "1.0"
            memory: "1G"


There are several things to note in this Deployment. First is that we are using Labels
to identify the Deployment as well as the ReplicaSets and the pods that the Deployment
creates. We’ve added the layer: frontend label to all of these resources so that we can
examine all resources for a particular layer in a single request. You’ll see that as we
add other resources, we’ll follow the same practice.


Additionally, we’ve added comments in a number of places in the YAML. Although these comments
don’t make it into the Kubernetes resource stored on the server, just like comments in code,
they serve to help guide people who are looking at this configuration for the first time.


You should also note that for the containers in the Deployment we have specified both
Request and Limit resource requests, and we’ve set Request equal to Limit. When running an
application, the Request is the reservation that is guaranteed on the host machine where
it runs. The Limit is the maximum resource usage that the container will be allowed.
When you are starting out, setting Request equal to Limit will lead to the most predictable
behavior of your application. This predictability comes at the expense of resource utilization. Because setting Request equal to Limit prevents your applications from overscheduling or consuming excess idle resources, you will not be able to drive maximal utilization unless you tune Request and Limit very, very carefully. As you become more advanced in your understanding of the Kubernetes resource model, you might consider modifying Request and Limit for your application independently, but in general most users find that the stability from predictability is worth the reduced utilization.


Now that we have the Deployment resource defined, we’ll check it into version control, and
deploy it to Kubernetes:


git add frontend/deployment.yaml
git commit -m "Added deployment" frontend/deployment.yaml
kubectl apply -f frontend/deployment.yaml


It is also a best practice to ensure that the contents of your cluster exactly match the
contents of your source control. The best pattern to ensure this is to adopt a GitOps
approach and deploy to production only from a specific branch of your source control, using
Continuous Integration (CI)/Continuous Delivery (CD) automation. In this way you’re guaranteed that source control and production match. Though a full CI/CD pipeline might seem excessive for a simple application, the automation by itself, independent of the reliability it provides, is usually worth the time taken to set it up. And CI/CD is extremely difficult to retrofit into an existing, imperatively deployed application.


There are also some pieces of this application description YAML (e.g., the ConfigMap and secret volumes) as well as pod Quality of Service that we examine in later sections.
























Setting Up an External Ingress for HTTP Traffic


The containers for our application are now deployed, but it’s not currently possible for
anyone to access the application. By default, cluster resources are
available only within the cluster itself. To expose our application to the world, we
need to create a Service and load balancer to provide an external IP address and to
bring traffic to our containers. For the external exposure we are actually going to use
two Kubernetes resources. The first is a Service that load-balances Transmission Control Protocol (TCP) or User Datagram Protocol (UDP) traffic.
In our case, we’re using the TCP protocol. And the second is an Ingress resource,
which provides HTTP(S) load balancing with intelligent routing of requests based on
HTTP paths and hosts. With a simple application like this, you might wonder why we choose
to use the more complex Ingress, but as you’ll see in later sections, even this simple
application will be serving HTTP requests from two different services. Furthermore,
having an Ingress at the edge enables flexibility for future expansion of our service.


Before the Ingress resource can be defined, there needs to be a Kubernetes Service
for the Ingress to point to. We’ll use Labels to direct the Service to the pods that
we created in the previous section. The Service is significantly simpler to define
than the Deployment and looks as follows:


apiVersion: v1
kind: Service
metadata:
  labels:
    app: frontend
  name: frontend
  namespace: default
spec:
  ports:
  - port: 8080
    protocol: TCP
    targetPort: 8080
  selector:
    app: frontend
  type: ClusterIP


After you’ve defined the Service, you can define an Ingress resource. Unlike Service
resources, Ingress requires an Ingress controller container to be running in
the cluster. There are a number of different implementations you can choose from,
either provided by your cloud provider, or implemented using open source servers.
If you choose to install an open source ingress provider, it’s a good idea to
use the Helm package manager to install and maintain it. The nginx or haproxy Ingress providers are popular choices:


apiVersion: extensions/v1beta1
kind: Ingress
metadata:
  name: frontend-ingress
spec:
  rules:
  - http:
      paths:
      - path: /api
        backend:
          serviceName: frontend
          servicePort: 8080

















Configuring an Application with ConfigMaps


Every application needs a degree of configuration. This could be the number of
journal entries to display per page, the color of a particular background,
a special holiday display, or many other types of configuration. Typically,
separating such configuration information from the application itself is a
best practice to follow.


There are a couple of different reasons for this separation. The first is
that you might want to configure the same application binary with different
configurations depending on the setting. In Europe you might want to light
up an Easter special, whereas in China you might want to display a special
for Chinese New Year. In addition to this environmental specialization,
there are agility reasons for the separation. Usually a binary release
contains multiple different new features; if you turn on these features
via code, the only way to modify the active features is to build
and release a new binary, which can be an expensive and slow process.


The use of configuration to activate a set of features means that you
can quickly (and even dynamically) activate and deactivate features
in response to user needs or application code failures. Features
can be rolled out and rolled back on a per-feature basis. This flexibility
ensures that you are continually making forward progress with most features
even if some need to be rolled back to address performance or correctness
problems.


In Kubernetes this sort of configuration is represented by a resource
called a ConfigMap. A ConfigMap contains multiple key/value pairs
representing configuration information or a file. This configuration
information can be presented to a container in a pod via either
files or environment variables. Imagine that you want to configure your
online journal application to display a configurable number of journal
entries per page. To achieve this, you can define a ConfigMap as follows:


kubectl create configmap frontend-config --from-literal=journalEntries=10


To configure your application, you expose the configuration information as
an environment variable in the application itself. To do that, you can
add the following to the container resource in the Deployment that you defined earlier:


...
# The containers array in the PodTemplate inside the Deployment
containers:
  - name: frontend
    ...
    env:
    - name: JOURNAL_ENTRIES
      valueFrom:
        configMapKeyRef:
          name: frontend-config
          key: journalEntries
...


Although this demonstrates how you can use a ConfigMap to configure your application, in
the real world of Deployments, you’ll want to roll out regular changes to this
configuration with weekly rollouts or even more frequently. It might be tempting
to roll this out by simply changing the ConfigMap itself, but this isn’t really
a best practice. There are several reasons for this: the first is that changing the
configuration doesn’t actually trigger an update to existing pods. Only when the pod is
restarted is the configuration applied. Because of this, the rollout isn’t
health based and can be ad hoc or random.


A better approach is to put a version number in the name of the ConfigMap itself.
Instead of calling it frontend-config, call it frontend-config-v1. When you want
to make a change, instead of updating the ConfigMap in place, you create a new v2
ConfigMap, and then update the Deployment resource to use that configuration.
When you do this, a Deployment rollout is automatically triggered, using the appropriate
health checking and pauses between changes. Furthermore, if you ever need to rollback,
the v1 configuration is sitting in the cluster and rollback is as simple as updating
the Deployment again.

















Managing Authentication with Secrets


So far, we haven’t really discussed the Redis service to which our frontend is connecting. But in any real application we need to secure connections between our services.
In part this is to ensure the security of users and their data, and in addition, it
is essential to prevent mistakes like connecting a development frontend with
a production database.


The Redis database is authenticated using a simple password. It might be
convenient to think that you would store this password in the source code of
your application, or in a file in your image, but these are both bad ideas for a
variety of reasons. The first is that you have leaked your secret (the password)
into an environment where you aren’t necessarily thinking about access control.
If you put a password into your source control, you are aligning access to your
source with access to all secrets. This is probably not correct. You probably
will have a broader set of users who can access your source code than should
really have access to your Redis instance. Likewise, someone who has access to
your container image shouldn’t necessarily have access to your production database.


In addition to concerns about access control, another reason to avoid binding
secrets to source control and/or images is parameterization. You want to be able
to use the same source code and images in a variety of environments (e.g., development,
canary, and production). If the secrets are tightly bound in source code or image, you need a different image (or different code) for each environment.


Having seen ConfigMaps in the previous section, you might immediately think that
the password could be stored as a configuration and then populated into the
application as an application-specific configuration. You’re absolutely correct to believe
that the separation of configuration from application is the same as the separation
of secrets from application. But the truth is that a secret is an important
concept by itself. You likely want to handle access control, handling, and updates
of secrets in a different way than a configuration. More important, you
want your developers thinking differently when they are accessing secrets than
when they are accessing configuration. For these reasons, Kubernetes has a built-in Secret resource for managing secret data.


You can create a secret password for your Redis database as follows:


kubectl create secret generic redis-passwd --from-literal=passwd=${RANDOM}


Obviously, you might want to use something other than a random number for
your password. Additionally, you likely want to use a secret/key management
service, either via your cloud provider, like Microsoft Azure Key Vault, or an open
source project, like HashiCorp’s Vault. When you are using a key management
service, they generally have tighter integration with Kubernetes secrets.

Note

Secrets in Kubernetes are stored unecrypted by default. If you want to store
secrets encrypted, you can integrate with a key provider to give you a key
that Kubernetes will use to encrypt all of the secrets in the cluster.
Note that although this secures the keys against direct attacks to the etcd
database, you still need to ensure that access via the Kubernetes API server
is properly secured.




After you have stored the Redis password as a secret in Kubernetes, you then need
to bind that secret to the running application when deployed to Kubernetes.
To do this, you can use a Kubernetes Volume. A Volume is effectively a file
or directory that can be mounted into a running container at a user-specified
location. In the case of secrets, the Volume is created as a tmpfs RAM-backed
filesystem and then mounted into the container. This ensures that even if
the machine is physically compromised (quite unlikely in the cloud, but
possible in the datacenter), the secrets are much more difficult to obtain by the attacker.


To add a secret volume to a Deployment, you need to specify two new entries
in the YAML for the Deployment. The first is a volume entry for the pod
that adds the volume to the pod:


...
  volumes:
  - name: passwd-volume
    secret:
    secretName: redis-passwd


With the volume in the pod, you need to mount it into a specific container.
You do this via the volumeMounts field in the container description:


...
  volumeMounts:
  - name: passwd-volume
    readOnly: true
    mountPath: "/etc/redis-passwd"
...


This mounts the secret volume into the redis-passwd directory for access from the client code. Putting this all together, you have the complete Deployment as follows:


apiVersion: extensions/v1beta1
kind: Deployment
metadata:
  labels:
    app: frontend
  name: frontend
  namespace: default
spec:
  replicas: 2
  selector:
    matchLabels:
      app: frontend
  template:
    metadata:
      labels:
        app: frontend
    spec:
      containers:
      - image: my-repo/journal-server:v1-abcde
        imagePullPolicy: IfNotPresent
        name: frontend
        volumeMounts:
        - name: passwd-volume
          readOnly: true
          mountPath: "/etc/redis-passwd"
        resources:
          request:
            cpu: "1.0"
            memory: "1G"
          limits:
            cpu: "1.0"
            memory: "1G"
      volumes:
        - name: passwd-volume
          secret:
            secretName: redis-passwd


At this point we have configured the client application to have a secret
available to authenticate to the Redis service. Configuring Redis to use
this password is similar; we mount it into the Redis pod and load
the password from the file.

















Deploying a Simple Stateful Database


Although conceptually deploying a stateful application is similar to
deploying a client like our frontend, state brings with it more complications.
The first is that in Kubernetes a pod can be rescheduled for a number
of reasons, such as node health, an upgrade, or rebalancing. When this
happens, the pod might move to a different machine. If the data associated
with the Redis instance is located on any particular machine or within
the container itself, that data will be lost when the container
migrates or restarts. To prevent this, when running stateful workloads
in Kubernetes its important to use remote PersistentVolumes to manage
the state associated with the application.


There is a wide variety of different implementations of PersistentVolumes in Kubernetes, but they all share common characteristics.
Like secret volumes described earlier, they are associated with a
pod and mounted into a container at a particular location.
Unlike secrets, PersistentVolumes are generally remote storage
mounted through some sort of network protocol, either file based,
such as Network File System (NFS) or Server Message Block (SMB), or block based (iSCSI, cloud-based disks, etc.).
Generally, for applications such as databases, block-based disks are
preferable because they generally offer better performance, but if
performance is less of a consideration, file-based disks can sometimes
offer greater flexibility.

Note

Managing state in general is complicated, and Kubernetes is no exception. If you are running in an environment that supports
stateful services (e.g., MySQL as a service, Redis as a service), it
is generally a good idea to use those stateful services. Initially, the
cost premium of a stateful Software as a Service (SaaS) might seem expensive, but when you factor
in all the operational requirements of state (backup, data locality,
redundancy, etc.), and the fact that the presence of state in a
Kubernetes cluster makes it difficult to move applications between
clusters, it becomes clear that, in most cases, storage SaaS is
worth the price premium. In on-premises environments where storage
SaaS isn’t available, having a dedicated team provide storage as a service
to the entire organization is definitely a better practice than allowing
each team to roll its own.




To deploy our Redis service, we use a StatefulSet resource.
Added after the initial Kubernetes release as a complement to
ReplicaSet resources, a StatefulSet gives slightly stronger guarantees
such as consistent names (no random hashes!) and a defined order for
scale-up and scale-down. When you are deploying a singleton, this is
somewhat less important, but when you want to deploy replicated state,
these attributes are very convenient.


To obtain a PersistentVolume for our Redis, we use a PersistentVolumeClaim.
You can think of a claim as a “request for resources.” Our Redis declares
abstractly that it wants 50 GB of storage, and the Kubernetes cluster determines
how to provision an appropriate PersistentVolume. There are two reasons for
this. The first is so that we can write a StatefulSet that is portable between
different clouds and on-premises, where the details of disks might be different. The
other reason is that although many PersistentVolume types can be mounted
to only a single pod, we can use volume claims to write a template that can be
replicated and yet have each pod assigned its own specific PersistentVolume.


The following example shows a Redis StatefulSet with PersistentVolumes:


apiVersion: apps/v1
kind: StatefulSet
metadata:
  name: redis
spec:
  serviceName: "redis"
  replicas: 1
  selector:
    matchLabels:
      app: redis
  template:
    metadata:
      labels:
        app: redis
    spec:
      containers:
      - name: redis
        image: redis:5-alpine
        ports:
        - containerPort: 6379
          name: redis
        volumeMounts:
        - name: data
          mountPath: /data
  volumeClaimTemplates:
  - metadata:
      name: data
    spec:
      accessModes: [ "ReadWriteOnce" ]
      resources:
        requests:
          storage: 10Gi


This deploys a single instance of your Redis service, but suppose you want to
replicate the Redis cluster for scale-out of reads and resiliency to failures. To do this
you need to obviously increase the number of replicas to three, but you also need to ensure
that the two new replicas connect to the write master for Redis.


When you create the headless Service for the Redis StatefulSet, it creates a DNS entry
redis-0.redis; this is the IP address of the first replica. You can use this to  create
a simple script that can launch in all of the containters:


#!/bin/bash

PASSWORD=$(cat /etc/redis-passwd/passwd)

if [[ "${HOSTNAME}" == "redis-0" ]]; then
  redis-server --requirepass ${PASSWORD}
else
  redis-server --slaveof redis-0.redis 6379 --masterauth ${PASSWORD} --requirepass ${PASSWORD}
fi


You can create this script as a ConfigMap:


kubectl create configmap redis-config --from-file=launch.sh=launch.sh


You then add this ConfigMap to your StatefulSet and use it as the command for the container.
Let’s also add in the password for authentication that we created earlier in the chapter.


The complete three-replica Redis looks as follows:


apiVersion: apps/v1
kind: StatefulSet
metadata:
  name: redis
spec:
  serviceName: "redis"
  replicas: 3
  selector:
    matchLabels:
      app: redis
  template:
    metadata:
      labels:
        app: redis
    spec:
      containers:
      - name: redis
        image: redis:5-alpine
        ports:
        - containerPort: 6379
          name: redis
        volumeMounts:
        - name: data
          mountPath: /data
        - name: script
          mountPath: /script/launch.sh
          subPath: launch.sh
        - name: passwd-volume
          mountPath: /etc/redis-passwd
        command:
        - sh
        - -c
        - /script/launch.sh
      volumes:
      - name: script
        configMap:
          name: redis-config
          defaultMode: 0777
      - name: passwd-volume
        secret:
          secretName: redis-passwd
  volumeClaimTemplates:
  - metadata:
      name: data
    spec:
      accessModes: [ "ReadWriteOnce" ]
      resources:
        requests:
          storage: 10Gi

















Creating a TCP Load Balancer by Using Services


Now that we’ve deployed the stateful Redis service, we need to make it available
to our frontend. To do this, we create two different Kubernetes
Services. The first is the Service for reading data from Redis. Because Redis
is replicating the data to all three members of the StatefulSet, we don’t care
which read our request goes to. Consequently, we use a basic Service for
the reads:


apiVersion: v1
kind: Service
metadata:
  labels:
    app: redis
  name: redis
  namespace: default
spec:
  ports:
  - port: 6379
    protocol: TCP
    targetPort: 6379
  selector:
    app: redis
  sessionAffinity: None
  type: ClusterIP


To enable writes, you need to target the Redis master (replica #0). To do this, create a headless Service. A headless Service doesn’t have a cluster IP address; instead, it programs a DNS entry for every pod in the StatefulSet. This means that we can access our master via the redis-0.redis DNS name:


apiVersion: v1
kind: Service
metadata:
  labels:
    app: redis-write
  name: redis-write
spec:
  clusterIP: None
  ports:
  - port: 6379
  selector:
    app: redis


Thus, when we want to connect to Redis for writes or transactional read/write pairs, we can build a separate write client connected to the redis-0.redis server.

















Using Ingress to Route Traffic to a Static File Server


The final component in our application is a static file server.
The static file server is responsible for serving HTML, CSS,
JavaScript, and image files. It’s both more efficient and more
focused for us to separate static file serving from our API
serving frontend described earlier. We can easily use a
high-performance static off-the-shelf file server like NGINX
to serve files while we allow our development teams to focus
on the code needed to implement our API.


Fortunately, the Ingress resource makes this source of mini-microservice architecture very easy. Just like the frontend,
we can use a Deployment resource to describe a replicated
NGINX server. Let’s build the static images into the NGINX
container and deploy them to each replica. The Deployment
resource looks as follows:


apiVersion: extensions/v1beta1
kind: Deployment
metadata:
  labels:
    app: fileserver
  name: fileserver
  namespace: default
spec:
  replicas: 2
  selector:
    matchLabels:
      app: fileserver
  template:
    metadata:
      labels:
        app: fileserver
    spec:
      containers:
      - image: my-repo/static-files:v1-abcde
        imagePullPolicy: Always
        name: fileserver
        terminationMessagePath: /dev/termination-log
        terminationMessagePolicy: File
        resources:
          request:
            cpu: "1.0"
            memory: "1G"
          limits:
            cpu: "1.0"
            memory: "1G"
      dnsPolicy: ClusterFirst
      restartPolicy: Always


Now that there is a replicated static web server up and
running, you will likewise create a Service resource
to act as a load balancer:


apiVersion: v1
kind: Service
metadata:
  labels:
    app: frontend
  name: frontend
  namespace: default
spec:
  ports:
  - port: 80
    protocol: TCP
    targetPort: 80
  selector:
    app: frontend
  sessionAffinity: None
  type: ClusterIP


Now that you have a Service for your static file server, extend
the Ingress resource to contain the new path. It’s important to note
that you must place the / path after the /api path, or else it would
subsume /api and direct API requests to the static file server. The
new Ingress looks like this:


apiVersion: extensions/v1beta1
kind: Ingress
metadata:
  name: frontend-ingress
spec:
  rules:
  - http:
      paths:
      - path: /api
        backend:
          serviceName: frontend
          servicePort: 8080
      # NOTE: this should come after /api or else it will hijack requests
      - path: /
        backend:
          serviceName: nginx
          servicePort: 80

















Parameterizing Your Application by Using Helm


Everything that we have discussed so far focuses on deploying a single
instance of our service to a single cluster.
However, in reality, nearly every service and every service team
is going to need to deploy to multiple different environments (even
if they share a cluster). Even if you are a single developer working
on a single application, you likely want to have at least a development
version and a production version of your application
so that you can iterate and develop without breaking production users.
After you factor in integration testing and CI/CD, it’s likely that even
with a single service and a handful of developers, you’ll want to deploy
to at least three different environments, and possibly more if you
consider handling datacenter-level failures.


An initial failure mode for many teams is to simply copy the files
from one cluster to another. Instead of having a single frontend/
directory, have a frontend-production/ and frontend-development/
pair of directories. The reason this is so dangerous is because
you are now in charge of ensuring that these files remain synchronized
with one another. If they were intended to be entirely identical,
this might be easy, but some skew between development and production
is expected because you will be developing new features; it’s
critical that the skew is both intentional, and easily managed.


Another option to achieve this would be to use branches and version
control, with the production and development branches leading
off from a central repository, and the differences between the
branches clearly visible. This can be a viable option for some
teams, but the mechanics of moving between branches are
challenging when you want to simultaneously deploy software to
different environments (e.g., a CI/CD system that deploys to a
number of different cloud regions).


Consequently, most people end up with a templating system.
A templating system combines templates, which form the centralized
backbone of the application configuration, with parameters that
specialize the template to a specific environment configuration.
In this way, you can have a generally shared configuration, with
intentional (and easily understood) customization as needed.
There are a variety of different template systems for Kubernetes,
but the most popular by far is a system called Helm.


In Helm, an application is packaged in a collection of files
called a chart (nautical jokes abound in the world of
containers and Kubernetes).


A chart begins with a chart.yaml file, which defines the
metadata for the chart itself:


apiVersion: v1
appVersion: "1.0"
description: A Helm chart for our frontend journal server.
name: frontend
version: 0.1.0


This file is placed in the root of the chart directory (e.g., frontend/).
Within this directory, there is a templates directory, which is where
the templates are placed. A template is basically a YAML file from the
previous examples, with some of the values in the file replaced with
parameter references. For example, imagine that you want to parameterize
the number of replicas in your frontend. Previously, here’s what the Deployment had:


...
spec:
  replicas: 2
...


In the template file (frontend-deployment.tmpl), it instead looks like the following:


...
spec:
  replicas: {{ .replicaCount }}
...


This means that when you deploy the chart, you’ll substitute the value for
replicas with the appropriate parameter. The parameters themselves are
defined in a values.yaml file. There will be one values file per environment
where the application should be deployed. The values file for this
simple chart would look like this:


replicaCount: 2


Putting this all together, you can deploy this chart using the helm tool,
as follows:


helm install path/to/chart --values path/to/environment/values.yaml


This parameterizes your application and deploys it to Kubernetes. Over
time these parameterizations will grow to encompass the variety of different
environments for your application.

















Deploying Services Best Practices


Kubernetes is a powerful system that can seem complex. But setting up a basic application for success can be straightforward if you use the following best practices:



	
Most services should be deployed as Deployment resources. Deployments create identical replicas for redundancy and scale.



	
Deployments can be exposed using a Service, which is effectively a load
balancer. A Service can be exposed either within a cluster (the
default) or externally. If you want to expose an HTTP application, you can
use an Ingress controller to add things like request routing and SSL.



	
Eventually you will want to parameterize your application to make its
configuration more reusable in different environments. Packaging tools
like Helm are the best choice for this kind of
parameterization.





















Summary


The application built in this chapter is a simple one, but it contains nearly all of the concepts you’ll need to build larger, more complicated applications. Understanding how the pieces fit together and how to use foundational Kubernetes components is key to successfully working with Kubernetes.


Laying the correct foundation via version control, code review, and continuous delivery of your
service ensures that no matter what you build, it is built in a solid manner. As we go through
the more advanced topics in subsequent chapters, keep this foundational information in mind.












Chapter 2. Developer Workflows



Kubernetes was built for reliably operating software. It simplifies
deploying and managing applications with an application-oriented API,
self-healing properties, and useful tools like Deployments for zero
downtime rollout of software. Although all of these tools are useful, they
don’t do much to make it easier to develop applications for Kubernetes.
Furthermore, even though many clusters are designed to run production
applications and thus are rarely accessed by developer workflows, it is
also critical to enable development workflows to target Kubernetes,
and this typically means having a cluster or at least part of a cluster
that is intended for development. Setting up such a cluster to
facilitate easy development of applications for Kubernetes is a
critical part of ensuring success with Kubernetes. Clearly if there
is no code being built for your cluster, the cluster itself
isn’t accomplishing much.








Goals


Before we describe the best practices for building out development clusters, it is worth stating our goals for such clusters. Obviously, the ultimate goal is to enable developers to rapidly and easily build applications on Kubernetes, but what does that really mean in practice and how is that reflected in practical features of the development cluster?


It is useful to identify phases of developer interaction with the cluster.


The first phase is onboarding. This is when a new developer joins the team. This phase includes giving the user a login to the cluster as well as getting them oriented to their first deployment. The goal for this phase is to get a developer’s feet wet in a minimal amount of time. You should set a key performance indicator (KPI) goal for this process. A reasonable goal would be that a user could go from nothing to the current application at HEAD running in less than half an hour. Every time someone is new to the team, test how you are doing against this goal.


The second phase is developing. This is the day-to-day activities of the developer. The goal for this phase is to ensure rapid iteration and debugging. Developers need to quickly and repeatedly push code to the cluster. They also need to be able to easily test their code and debug it when it isn’t operating properly. The KPI for this phase is more challenging to measure, but you can estimate it by measuring the time to get a pull request (PR) or change up and running in the cluster, or with surveys of the user’s perceived productivity, or both. You will also be able to measure this in the overall productivity of your teams.


The third phase is testing. This phase is interleaved with developing and
is used to validate the code before submission and merging. The goals for this
phase are two-fold. First, the developer should be able to run all tests for their environment before a PR is submitted. Second, all tests should automatically run before code is merged into the repository. In addition to these goals
you should also set a KPI for the length of time the tests take to run. As your
project becomes more complex, it’s natural for more and more tests to take a longer
time. As this happens, it might become valuable to identify a smaller set of smoke
tests that a developer can use for initial validation before submitting a PR. You
should also have a very strict KPI around test flakiness. A flaky test is one that
occasionally (or not so occasionally) fails. In any reasonably active project, a
flakiness rate of more than one failure per one thousand runs will lead to
developer friction. You need to ensure that your cluster environment does not
lead to flaky tests. Whereas sometimes flaky tests occur due to problems in
the code, they can also occur because of interference in the development
environment (e.g., running out of resources and noisy neighbors). You should
ensure that your development environment is free of such issues by measuring
test flakiness and acting quickly to fix it.

















Building a Development Cluster


When people begin to think about developing on Kubernetes, one of the first
choices that occurs is whether to build a single large development cluster
or to have one cluster per developer. Note that this choice only makes sense
in an environment in which dynamic cluster creation is easy, such as the public
cloud. In physical environments, its possible that one large cluster is the
only choice.


If you do have a choice you should consider the pros and cons of each option.
If you choose to have a development cluster per user, the significant downside
of this approach is that it will be more expensive and less efficient, and you will have a large number
of different development clusters to manage. The extra costs come from the
fact that each cluster is likely to be heavily underutilized. Also, with
developers creating different clusters, it becomes more difficult to track and
garbage-collect resources that are no longer in use. The advantage of the
cluster-per-user approach is simplicity: each developer can self-service
manage their own cluster, and from isolation, it’s much more difficult for different
developers to step on one another’s toes.


On the other hand, a single development cluster will be significantly more
efficient; you can likely sustain the same number of developers on a shared
cluster for one-third the price (or less). Plus, it’s much easier
for you to install shared cluster services, for example, monitoring and
logging, which makes it significantly easier to produce a developer-friendly cluster. The downside of a shared development cluster is the
process of user management and potential interference between developers.
Because the process of adding new users and namespaces to the Kubernetes
cluster isn’t currently streamlined, you will need to activate a process
to onboard new developers. Although Kubernetes resource management
and Role-Based Access Control (RBAC) can reduce the probability that two developers conflict, it is
always possible that a user will brick the development cluster by
consuming too many resources so that other applications and developers
won’t schedule. Additionally, you will still need to ensure that developers
don’t leak and forget about resources they’ve created. This is somewhat
easier, though, than the approach in which developers each create their own clusters.


Even though both approaches are feasible, generally, our recommendation is to
have a single large cluster for all developers. Although there are challenges
in interference between developers, they can be managed and ultimately the
cost efficiency and ability to easily add organization-wide capabilities to the
cluster outweigh the risks of interference. But you will need to invest in a
process for onboarding developers, resource management, and garbage collection.
Our recommendation would be to try a single large cluster as a first option.
As your organization grows (or if it is already large), you might consider having
a cluster per team or group (10 to 20 people) rather than a giant cluster for
hundreds of users. This can make both billing and management easier.

















Setting Up a Shared Cluster for Multiple Developers


When setting up a large cluster, the primary goal is to ensure that multiple
users can simultaneously use the cluster without stepping on one another’s toes.
The obvious way to separate your different developers is with Kubernetes
namespaces. Namespaces can serve as scopes for the deployment of services
so that one user’s frontend service doesn’t interfere with another user’s
frontend service. Namespaces are also scopes for RBAC, ensuring that one developer cannot accidentally delete another
developer’s work. Thus, in a shared cluster it makes sense to use a namespace
as a developer’s workspace. The processes for onboarding users and
creating and securing a namespace are described in the following sections.










Onboarding Users


Before you can assign a user to a namespace, you have to onboard that user
to the Kubernetes cluster itself. To achieve this, there are two options.
You can use certificate-based authentication to create a new certificate
for the user and give them a kubeconfig file that they can use to log in,
or you can configure your cluster to use an external identity system (for
example, Microsoft Azure Active Directory or AWS  Identity and Access Management [IAM]) for cluster access.


In general, using an external identity system is a best practice because
it doesn’t require that you maintain two different sources of identity,
but in some cases this isn’t possible and you need to use certificates.
Fortunately, you can use the Kubernetes certificate API for creating
and managing such certificates. Here’s the process for adding a new
user to an existing cluster.


First, you need to generate a certificate signing request to generate
a new certificate. Here is a simple Go program to do this:


package main

import (
	"crypto/rand"
	"crypto/rsa"
	"crypto/x509"
	"crypto/x509/pkix"
	"encoding/asn1"
	"encoding/pem"
	"os"
)

func main() {
	name := os.Args[1]
	user := os.Args[2]

	key, err := rsa.GenerateKey(rand.Reader, 1024)
	if err != nil {
		panic(err)
	}
	keyDer := x509.MarshalPKCS1PrivateKey(key)
	keyBlock := pem.Block{
		Type:  "RSA PRIVATE KEY",
		Bytes: keyDer,
	}
	keyFile, err := os.Create(name + "-key.pem")
	if err != nil {
		panic(err)
	}
	pem.Encode(keyFile, &keyBlock)
	keyFile.Close()

	commonName := user
	// You may want to update these too
	emailAddress := "someone@myco.com"

	org := "My Co, Inc."
	orgUnit := "Widget Farmers"
	city := "Seattle"
	state := "WA"
	country := "US"

	subject := pkix.Name{
		CommonName:         commonName,
		Country:            []string{country},
		Locality:           []string{city},
		Organization:       []string{org},
		OrganizationalUnit: []string{orgUnit},
		Province:           []string{state},
	}

	asn1, err := asn1.Marshal(subject.ToRDNSequence())
	if err != nil {
		panic(err)
	}
	csr := x509.CertificateRequest{
		RawSubject:         asn1,
		EmailAddresses:     []string{emailAddress},
		SignatureAlgorithm: x509.SHA256WithRSA,
	}

	bytes, err := x509.CreateCertificateRequest(rand.Reader, &csr, key)
	if err != nil {
		panic(err)
	}
	csrFile, err := os.Create(name + ".csr")
	if err != nil {
		panic(err)
	}

	pem.Encode(csrFile, &pem.Block{Type: "CERTIFICATE REQUEST", Bytes: bytes})
	csrFile.Close()
}


You can run this as follows:


go run csr-gen.go client &lt;user-name&gt;


This creates files called client-key.pem and client.csr.
You then can run the following script to create and download a new certificate:


#!/bin/bash

csr_name="my-client-csr"
name="${1:-my-user}"

csr="${2}"


cat <<EOF | kubectl create -f -
apiVersion: certificates.k8s.io/v1beta1
kind: CertificateSigningRequest
metadata:
  name: ${csr_name}
spec:
  groups:
  - system:authenticated
  request: $(cat ${csr} | base64 | tr -d '\n')
  usages:
  - digital signature
  - key encipherment
  - client auth
EOF

echo
echo "Approving signing request."
kubectl certificate approve ${csr_name}

echo
echo "Downloading certificate."
kubectl get csr ${csr_name} -o jsonpath='{.status.certificate}' \
	| base64 --decode > $(basename ${csr} .csr).crt

echo
echo "Cleaning up"
kubectl delete csr ${csr_name}

echo
echo "Add the following to the 'users' list in your kubeconfig file:"
echo "- name: ${name}"
echo "  user:"
echo "    client-certificate: ${PWD}/$(basename ${csr} .csr).crt"
echo "    client-key: ${PWD}/$(basename ${csr} .csr)-key.pem"
echo
echo "Next you may want to add a role-binding for this user."


This script prints out the final information that you can add to a kubeconfig file
to enable that user. Of course, the user has no access privileges, so you will
need to apply Kubernetes RBAC for the user in order to grant them privileges to a namespace.

















Creating and Securing a Namespace


The first step in provisioning a namespace is actually
just creating it. You can do this using kubectl create namespace my-namespace.


But the truth is that when you create a namespace, you want to attach a bunch of
metadata to that namespace, for example, the contact information for the team that
builds the component deployed into the namespace. Generally, this is in the form of annotations; you can either generate the YAML file using some templating, such as Jinja
or others, or you can create and then annotate the namespace. A simple script to do
this looks like:


ns='my-namespace'
kubectl create namespace ${ns}
kubectl annotate namespace ${ns} annotation_key=annotation_value


When the namespace is created, you want to secure it by ensuring that you can grant
access to the namespace to a specific user. To do this, you can bind a role
to a user in the context of that namespace. You do this by creating a RoleBinding
object within the namespace itself. The RoleBinding might look like this:


apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
  name: example
  namespace: my-namespace
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: edit
subjects:
- apiGroup: rbac.authorization.k8s.io
  kind: User
  name: myuser


To create it, you simply run kubectl create -f role-binding.yaml. Note that you
can reuse this binding as much as you want so long as you update the namespace in
the binding to point to the correct namespace. If you ensure that the user
doesn’t have any other role bindings, you can be assured that this namespace is
the only part of the cluster to which the user has access. A reasonable practice
is to also grant reader access to the entire cluster; in this way developers can see
what others are doing in case it is interfering with their work. Be careful in granting
such read access, however, because it will include access to secret resources in
the cluster. Generally, in a development cluster this is OK because everyone is in the
same organization and the secrets are used only for development; however, if this
is a concern, then you can create a more fine-grained role that eliminates the ability
to read secrets.


If you want to limit the amount of resources consumed by a particular namespace,
you can use the ResourceQuota resource to set a limit to the total number
of resources that any particular namespace consumes. For example, the following quota
limits the namespace to 10 cores and 100 GB of memory for both Request
and Limit for the pods in the namespace:


apiVersion: v1
kind: ResourceQuota
metadata:
  name: limit-compute
  namespace: my-namespace
spec:
  hard:
    requests.cpu: "10"
    requests.memory: 100Gi
    limits.cpu: "10"
    limits.memory: 100Gi

















Managing Namespaces


Now that you have seen how to onboard a new user and how to
create a namespace to use as a workspace, the
question remains how to assign a developer to the namespace.
As with many things, there is no single perfect answer;
rather, there are two approaches. The first is to give each user their
own namespace as part of the onboarding process. This is
useful because after a user is onboarded, they always have a dedicated
workspace in which they can develop and manage their applications.
However, making the developer’s namespace too persistent encourages
the developer to leave things lying around in the namespace after
they are done with them, and garbage-collecting and accounting
individual resources is more complicated. An alternate approach
is to temporarily create and assign a namespace with a bounded
time to live (TTL). This ensures that the developer thinks of
the resources in the cluster as transient and that it is
easy to build automation around the deletion of entire namespaces
when their TTL has expired.


In this model, when the developer wants to begin a new project,
they use a tool to allocate a new namespace for the project.
When they create the namespace, it has a selection
of metadata associated with the namespace for management and
accounting. Obviously, this metadata includes the TTL
for the namespace, but it also includes the developer to which
it is assigned, the resources that should be allocated to the
namespace (e.g., CPU and memory), and the team and purpose
of the namespace. This metadata ensures that you can both track
resource usage and delete the namespace at the right time.


Developing the tooling to allocate namespaces on demand can
seem like a challenge, but simple tooling is relatively simple
to develop. For example, you can achieve the allocation of a new namespace
with a simple script that creates the
namespace and prompts for the relevant metadata to attach
to the namespace.


If you want to get more integrated with Kubernetes, you can use
custom resource definitions (CRDs) to enable users to dynamically
create and allocate new namespaces using the kubectl tool.
If you have the time and inclination, this is definitely a good
practice because  it makes namespace management declarative and
also enables the use of Kubernetes RBAC.


After you have tooling to enable the allocation of namespaces,
you also need to add tooling to reap namespaces when their TTL
has expired. Again, you can accomplish this with a simple script
that examines the namespaces and deletes those that have
an expired TTL.


You can build this script into a container and use a ScheduledJob
to run it at an interval like once per hour. Combined together,
these tools can ensure that developers can easily allocate
independent resources for their project as needed, but those
resources will also be reaped at the proper interval to ensure
that you don’t have wasted resources and that old resources don’t get in the
way of new development.

















Cluster-Level Services


In addition to tooling to allocate and manage namespaces, there
are also useful cluster-level services, and it’s a good idea
to enable them in your development cluster. The first is log
aggregation to a central Logging as a Service (LaaS) system. One of the easiest
things for a developer to do to understand the operation of their
application is to write something to STDOUT. Although you can
access these logs via kubectl logs, that log is limited in
length and is not particularly searchable. If you instead
automatically ship those logs to a LaaS system
such as a cloud service or an Elasticsearch cluster, developers
can easily search through logs for relevant information as well
as aggregate logging information across multiple containers in
their service.
























Enabling Developer Workflows


Now that we succesfully have a shared cluster setup and we can onboard
new application developers to the cluster itself, we need to
actually get them developing their application. Remember that one
of the key KPIs that we are measuring is the time from onboarding to an
initial application running in the cluster. It’s clear that via the
just-described onboarding scripts we can quickly authenticate a user
to a cluster and allocate a namespace, but what about
getting started with the application? Unfortunately, even though there are
a few techniques that help with this process, it generally requires
more convention than automation to get the initial application up
and running. In the following sections, we describe one approach
to achieving this; it is by no means the only approach or the only
solution. You can optionally apply the approach as is or be inspired
by the ideas to arrive at your own solution.

















Initial Setup


One of the main challenges to deploying an application is the installation
of all of the dependencies. In many cases, especially in modern
microservice architectures, to even get started developing on one
of the microservices requires the deployment of multiple dependencies,
either databases or other microservices. Although the deployment of the
application itself is relatively straightforward, the task of
identifying and deploying all of the dependencies to build the complete
application is often a frustrating case of trial and error married with
incomplete or out-of-date instructions.


To address this issue, it is often valuable to introduce a convention
for describing and installing dependencies. This can be seen as the
equivalent of something like npm install, which installs all of the
required JavaScript dependencies. Eventually, there is likely to be
a tool similar to npm that provides this service for Kubernetes-based
applications, but until then, the best practice is to rely on convention
within your team.


One such option for a convention is the creation of a setup.sh script
within the root directory of all project repositories. The
responsibility of this script is to create all dependencies within
a particular namespace to ensure that all of the application’s dependencies
are correctly created. For example, a setup script might look like the
following:


kubectl create my-service/database-stateful-set-yaml
kubectl create my-service/middle-tier.yaml
kubectl create my-service/configs.yaml


You then could integrate this script with npm by adding the following
to your package.json:


{
    ...
    "scripts": {
        "setup": "./setup.sh",
        ...
    }
}


With this setup, a new developer can simply run npm run setup and
the cluster dependencies will be installed. Obviously, this particular
integration is Node.js/npm specific. In other programming languages,
it will make more sense to integrate with the language-specific tooling.
For example, in Java you might integrate with a Maven pom.xml file
instead.

















Enabling Active Development


Having set up the developer workspace with required dependencies, the next
task is to enable them to iterate on their application quickly. The
first prerequisite for this is the ability to build and push a container
image. Let’s assume that you have this already set up; if not, you can read how to do this in a number of other online resources and books.


After you have built and pushed a container image, the task
is to roll it out to the cluster. Unlike traditional rollouts, in
the case of developer iteration, maintaining availability is really
not a concern. Thus, the easiest way to deploy new code is to simply
delete the Deployment object associated with the previous Deployment
and then create a new Deployment pointing to the newly built image. It
is also possible to update an existing Deployment in place, but this
will trigger the rollout logic in the Deployment resource. Although it
is possible to configure a Deployment to roll out code quickly,
doing so introduces a difference between the development environment
and the production environment that can be dangerous or destabilizing.
Imagine, for example, that you accidentally push the development
configuration of the Deployment into production; you will suddenly
and accidentally deploy new versions to production without appropriate
testing and delays between phases of the rollout. Because of this
risk and because there is an alternative, the best practice is to
delete and re-create the Deployment.


Just like installing dependencies, it is also a good practice to
make a script for performing this deployment. An example deploy.sh
script might look like the following:


kubectl delete -f ./my-service/deployment.yaml
perl -pi -e 's/${old_version}/${new_version}/' ./my-service/deployment.yaml
kubectl create -f ./my-service/deployment.yaml


As before, you can integrate this with existing programming language
tooling so that (for example) a developer can simply run npm run deploy
to deploy their new code into the cluster.

















Enabling Testing and Debugging


After a user has successfully deployed their development version of their
application, they need to test it and, if there are problems, debug any
issues with the application. This can also be a hurdle when developing in
Kubernetes because it is not always clear how to interact with your cluster.
The kubectl command line is a veritable Swiss army knife of tools to
achieve this, from kubectl logs to kubectl exec and kubectl port-forward,
but learning how to use all of the different options and achieving
familiarity with the tool can take a considerable amount of experience.
Furthermore, because the tool runs in the terminal, it often requires the
composition of multiple windows to simultaneously examine both the source
code for the application and the running application itself.


To streamline the testing and debugging experience, Kubernetes tooling
is increasingly being integrated into development environments, for example,
the open source extension for Visual Studio (VS) Code for Kubernetes.
The extension is easily installed for free from the VS Code marketplace.
When installed, it automatically discovers any clusters that you already
have in your kubeconfig file, and it provides a tree-view navigation
pane for you to see the contents of your cluster at a glance.


In addition to being able to see your cluster state at a glance, the
integration allows a developer to use the tools available via kubectl
in an intuitive, discoverable way. From the tree view, if you right-click a Kubernetes pod, you can immediately use port forwarding to bring
a network connection to the pod directly to the local machine. Likewise,
you can access the logs for the pod or even get a terminal within the
running container.


The integration of these commands with prototypical
user interface expectations (e.g., right-click shows a context menu),
as well as the integration of these experiences alongside the code for
the application itself, enable developers with minimal Kubernetes
experience to rapidly become productive in the development cluster.


Of course this VS Code extension isn’t the only integration
between Kubernetes and a devlopment environment; there are several others
that you can install depending on your choice of programming environment
and style (vi, emacs, etc.).

















Setting Up a Development Environment Best Practices


Setting up successful workflows on Kubernetes is key to productivity and happiness. Following these best practices will help to ensure that developers are up and running quickly:



	
Think about developer experience in three phases: onboarding, developing, and testing. Make sure that the development environment you build supports all
three of these phases.



	
When building a development cluster, you can choose between one large cluster
and a cluster per developer. There are pros and cons to each, but generally
a single large cluster is a better approach.



	
When you add users to a cluster, add them with their own identity and access
to their own namespace. Use resource limits to restrict how much of the
cluster they can use.



	
When managing namespaces, think about how you can reap old, unused resources.
Developers will have bad hygiene about deleting unused things. Use automation
to clean it up for them.



	
Think about cluster-level services like logs and monitoring that you can
set up for all users. Sometimes, cluster-level dependencies like databases
are also useful to set up on behalf of all users using templates like Helm
charts.





















Summary


We’ve reached a place where creating a Kubernetes cluster, especially in
the cloud, is a relatively straightforward exercise, but enabling
developers to productively use such a cluster is significantly less
obvious and easy. When thinking about enabling developers to successfully
build applications on Kubernetes, it’s important to think about the
key goals around onboarding, iterating, testing, and debugging applications.
Likewise, it pays to invest in some basic tooling specific to user onboarding,
namespace provisioning, and cluster services like basic log aggregation.
Viewing a development cluster and your code repositories as an opportunity
to standardize and apply best practices will ensure that you have happy
and productive developers, successfully building code to deploy to your
production Kubernetes clusters.












Chapter 3. Monitoring and Logging in Kubernetes



In this chapter, we discuss best practices for monitoring and logging
in Kubernetes. We’ll dive into the details of different monitoring
patterns, important metrics to collect, and building dashboards from
these raw metrics. We then wrap up with examples of implementing
monitoring for your Kubernetes cluster.








Metrics Versus Logs


You first need to understand the difference between log collection
and metrics collection. They are complementary to each other but serve
different purposes.


	Metrics

	
A series of numbers measured over a period of time



	Logs

	
Used for exploratory analysis of a system






An example of where you would need to use both metrics and logging is
when an application is performing poorly. Our first indication of the
issue might be an alert of high latency on the pods hosting the
application, but the metrics might not give a good indication of the
issue. We then can look into our logs to perform an investigation of
errors that are being emitted from the application.

















Monitoring Techniques


Black-box monitoring focuses on monitoring from the outside of an
application and is what’s been used traditionally when monitoring
systems for components like CPU, memory, storage, and so on. Black-box
monitoring can still be useful for monitoring at the infrastructure
level, but it lacks insights and context into how the application is
operating. For example, to test whether a cluster is healthy, we might schedule a
pod, and if it’s successful, we know that the scheduler and service
discovery are healthy within our cluster, so we can assume the cluster
components are healthy.


White-box monitoring focuses on the details in the context of the
application state, such as total HTTP requests, number of 500 errors,
latency of requests, and so on. With white-box monitoring, we can begin to
understand the “Why” of our system state. It allows us to ask, “Why did the disk fill up?” and not just, “The disk filled
up.”

















Monitoring Patterns


You might look at monitoring and say, “How difficult can this be? We’ve always
monitored our systems.” Yes, some of your typical monitoring patterns
in place today also fit into how you monitor Kubernetes. The difference
is that platforms like Kubernetes are much more dynamic and transient,
and you’ll need to change your thinking about how to monitor these
environments. For example, when monitoring a virtual machine (VM) you expect that
VM to be up 24/7 and all its state preserved. In
Kubernetes, pods can be very dynamic and short-lived, so you need to have
monitoring in place that can handle this dynamic and transient nature.


There are a couple of different monitoring patterns to focus on when
monitoring distributed systems.


The USE method, popularized by Brendan Gregg, focuses on the
following:



	
U—Utilization



	
S—Saturation



	
E—Errors






This method is focused on infrastructure monitoring because there are
limitations on using it for application-level monitoring. The
USE method is described as, “For every resource, check utilization,
saturation, and error rates.” This method lets you quickly
identify resource constraints and error rates of your systems. For
example, to check the health of the network for your nodes in the
cluster, you will want to monitor the utilization, saturation, and error
rate to be able to easily identify any network bottlenecks or errors in
the network stack. The USE method is a tool in a larger toolbox and is
not the only method you will utilize to monitor your systems.


Another monitoring approach, called the RED method, was popularized
by Tom Willke. The RED method approach is focused on the following:



	
R—Rate



	
E—Errors



	
D—Duration






The philosophy was taken from Google’s Four Golden Signals:



	
Latency (how long it takes to serve a request)



	
Traffic (how much demand is placed on your system)



	
Errors (rate of requests that are failing)



	
Saturation (how utilized your service is)






As an example, you could use this method to monitor a frontend service
running in Kubernetes to calculate the following:



	
How many requests is my frontend service processing?



	
How many 500 errors are users of the service receiving?



	
Is the service overutilized by requests?






As you can see from the previous example, this method is more focused on the
experience of the users and their experience with the service.


The USE and RED methods are complementary to each other given that the USE
method focuses on the infrastructure components and the RED method
focuses on monitoring the end-user experience for the application.

















Kubernetes Metrics Overview


Now that we know the different monitoring techniques and patterns, let’s look at what components you should be monitoring in your Kubernetes
cluster. A Kubernetes cluster consists of control-plane
components and worker-node components. The control-plane
components consist of the API Server, etcd, scheduler, and
controller manager. The worker nodes consist of the kubelet, container
runtime, kube-proxy, kube-dns, and pods. You need to
monitor all these components to ensure a healthy cluster and application.


Kubernetes exposes these metrics in a variety of ways, so let’s take a
look at different components that you can use to collect metrics within your
cluster.










cAdvisor


Container Advisor, or cAdvisor, is an open source project that
collects resources and metrics for containers running on a node.
cAdvisor is built into the Kubernetes kubelet, which runs on every
node in the cluster. It collects memory and CPU metrics through
the Linux control group (cgroup) tree. If you are not familiar with cgroups, it’s a Linux kernel feature that allows isolation of resources for CPU, disk I/O, or network I/O. cAdvisor will also collect disk metrics through statfs, which is built into the Linux kernel. These are implementation details you don’t really need to worry about, but you should understand how these metrics are exposed and the type of information you can collect. You should consider cAdvisor as the source of truth for all container metrics.

















Metrics Server


The Kubernetes metrics server and Metrics Server API are a replacement for the deprecated Heapster. Heapster had some architectural disadvantages with how it implemented the data sink, which caused a lot of vendored solutions in the core Heapster code base. This issue was solved by implementing a resource and Custom Metrics API as an aggregated API in Kubernetes. This allows implementations to be switched out without changing the API.


There are two aspects to understand in the Metrics Server API and metrics server.


First, the canonical implementation of the Resource Metrics API is the metrics server. The metrics server gathers resource metrics such as CPU and memory. It gathers these metrics from the kubelet’s API and then stores them in memory. Kubernetes uses these resource metrics in the scheduler, Horizontal Pod Autoscaler (HPA), and Vertical Pod Autoscaler (VPA).


Second, the Custom Metrics API allows monitoring systems to collect arbitrary metrics. This allows monitoring solutions to build custom adapters that will allow for extending outside the core resource metrics. For example, Prometheus built one of the first custom metrics adapters, which allows you to use the HPA based on a custom metric. This opens up better scaling based on your use case because now you can bring in metrics like queue size and scale based on a metric that might be external to Kubernetes.


Now that there is a standardized Metrics API, this opens up many possibilities to scale outside the plain old CPU and memory metrics.

















kube-state-metrics


kube-state-metrics is a Kubernetes add-on that monitors the object
stored in Kubernetes. Where cAdvisor and metrics server are used to
provide detailed metrics on resource usage, kube-state-metrics is
focused on identifying conditions on Kubernetes objects deployed to your
cluster.


Following are some questions that kube-state-metrics can answer for you:



	
Pods



	
How many pods are deployed to the cluster?



	
How many pods are in a pending state?



	
Are there enough resources to serve a pods request?







	
Deployments



	
How many pods are in a running state versus a desired state?



	
How many replicas are available?



	
What deployments have been updated?







	
Nodes



	
What’s the status of my worker nodes?



	
What are the allottable CPU cores in my cluster?



	
Are there any nodes that are unschedulable?







	
Jobs



	
When did a job start?



	
When did a job complete?



	
How many jobs failed?










As of this writing, there are 22 object types that
kube-state-metrics tracks. These are always expanding, and you can find the documentation in the Github repository.
























What Metrics Do I Monitor?


The easy answer is “Everything,” but if you try to monitor too much,
you can create too much noise that filters out the real signals into which you need to have insight. When we think about monitoring in Kubernetes, we want to take a layered approach that takes into account the following:



	
Physical or virtual nodes



	
Cluster components



	
Cluster add-ons



	
End-user applications






Using this layered approach to monitoring allows you to more easily
identify the correct signals in your monitoring system. It allows you to
approach issues with a more targeted approach. For example, if you have pods going into a pending state, you can start with resource
utilization of the nodes, and if all is OK, you can target cluster-level components.


Following are metrics you would want to target in your system:



	
Nodes



	
CPU utilization



	
Memory utilization



	
Network utilization



	
Disk utilization







	
Cluster components



	
etcd latency







	
Cluster add-ons



	
Cluster Autoscaler



	
Ingress controller







	
Application



	
Container memory utilization and saturation



	
Container CPU utilization



	
Container network utilization and error rate



	
Application framework-specific metrics

























Monitoring Tools


There are many monitoring tools that can integrate with Kubernetes,
and more arriving every day, building on their feature set to have better integration with Kubernetes. Following are a few popular tools that integrate with Kubernetes:


	Prometheus

	
Prometheus is an open source systems monitoring and alerting toolkit originally built at SoundCloud. Since its inception in 2012, many companies and organizations have adopted Prometheus, and the project has a very active developer and user community. It is now a standalone open source project and maintained independent of any company. To emphasize this, and to clarify the project’s governance structure, Prometheus joined the Cloud Native Computing Foundation (CNCF) in 2016 as the second hosted project, after Kubernetes.



	InfluxDB

	
InfluxDB is a time-series database designed to handle high write and query loads. It is an integral component of the TICK (Telegraf, InfluxDB, Chronograf, and Kapacitor) stack. InfluxDB is meant to be used as a backing store for any use case involving large amounts of timestamped data, including DevOps monitoring, application metrics, IoT sensor data, and real-time analytics.



	Datadog

	
Datadog provides a monitoring service for cloud-scale applications, providing monitoring of servers, databases, tools, and services through a SaaS-based data analytics platform.



	Sysdig

	
Sysdig Monitor is a commercial tool that provides Docker monitoring and Kubernetes monitoring for container-native apps. Sysdig also allows you to collect, correlate, and query Prometheus metrics with direct Kubernetes integration.



	Cloud provider tools

	

	GCP Stackdriver

	
Stackdriver Kubernetes Engine Monitoring is designed to monitor Google Kubernetes Engine (GKE) clusters. It manages monitoring and logging services together and features an interface that provides a dashboard customized for GKE clusters. Stackdriver Monitoring provides visibility into the performance, uptime, and overall health of cloud-powered applications. It collects metrics, events, and metadata from Google Cloud Platform (GCP), Amazon Web Services (AWS), hosted uptime probes, and application instrumentation.



	Microsoft Azure Monitor for containers

	
Azure Monitor for containers is a feature designed to monitor the performance of container workloads deployed to either Azure Container Instances or managed Kubernetes clusters hosted on Azure Kubernetes Service. Monitoring your containers is critical, especially when you’re running a production cluster, at scale, with multiple applications. Azure Monitor for containers gives you performance visibility by collecting memory and processor metrics from controllers, nodes, and containers that are available in Kubernetes through the Metrics API. Container logs are also collected. After you enable monitoring from Kubernetes clusters, metrics and logs are automatically collected for you through a containerized version of the Log Analytics agent for Linux.



	AWS Container Insights

	
If you use Amazon Elastic Container Service (ECS), Amazon Elastic Kubernetes Service, or other Kubernetes platforms on Amazon EC2, you can use CloudWatch Container Insights to collect, aggregate, and summarize metrics and logs from your containerized applications and microservices. The metrics include utilization for resources such as CPU, memory, disk, and network. Container Insights also provides diagnostic information, such as container restart failures, to help you isolate issues and resolve them quickly.










One important aspect when looking at implementing a tool to monitor
metrics is to look at how the metrics are stored. Tools that provide a time-series database with key/value pairs
will give you a higher degree of attributes for the metric.

Tip

Always evaluate monitoring tools you already have, because taking on
a new monitoring tool has a learning curve and a cost due to the operational
implementation of the tool. Many of the monitoring tools now have
integration into Kubernetes, so evaluate which ones you have today and
whether they will meet your requirements.



















Monitoring Kubernetes Using Prometheus


In this section we focus on monitoring metrics with Prometheus,
which provides good integrations with Kubernetes labeling, service
discovery, and metadata. The high-level concepts we implement throughout the chapter will also apply to other monitoring systems.


Prometheus is an open source project that is hosted by the CNCF. It was originally developed at SoundCloud,
and a lot of its concepts are based on Google’s internal monitoring
system, BorgMon. It implements a multidimensional data model with
keypairs that work much like how the Kubernetes labeling system works.
Prometheus exposes metrics in a human-readable format, as in the following example:

# HELP node_cpu_seconds_total Seconds the CPU is spent in each mode.
# TYPE node_cpu_seconds_total counter
node_cpu_seconds_total{cpu="0",mode="idle"} 5144.64
node_cpu_seconds_total{cpu="0",mode="iowait"} 117.98


To collect metrics, Prometheus uses a pull model in which it scrapes a
metrics endpoint to collect and ingest the metrics into the Prometheus
server. Systems like Kubernetes already expose their metrics in a
Prometheus format, making it simple to collect metrics. Many other Kubernetes ecosystem projects (NGINX, Traefik, Istio, LinkerD, etc.) also expose their metrics in a Prometheus format. Prometheus also can use exporters, which allow you to take emitted metrics from your service and translate them to Prometheus-formatted metrics.


Prometheus has a very simplified architecure, as depicted in Figure 3-1.



[image: Figure 4.1]
Figure 3-1. Prometheus architecture



Tip

You can install Prometheus within the cluster or outside the
cluster. It’s a good practice to monitor your cluster from a “utility
cluster” to avoid a production issue also affecting your monitoring
system. There are tools like
Thanos that provide high
availability for Prometheus and allow you to export metrics into an external
storage system.




A deep dive into the Prometheus architecture is beyond the scope of
this book, and you should refer to another one of the dedicated books on
this topic. Prometheus: Up & Running (O’Reilly) is a good in-depth book to get you started.


So, let’s dive in and get Prometheus set up on our Kubernetes cluster.
There are many different ways to do this, and the deployment will depend on your specific implementation.
In this chapter we install the Prometheus Operator:


	Prometheus Server

	
Pulls and stores metrics being collected from
systems.



	Prometheus Operator

	
Makes the Prometheus configuration Kubernetes native, and manages and operates Prometheus and Alertmanager clusters. Allows you to create, destroy, and configure Prometheus resources through native Kubernetes resource definitions.



	Node Exporter

	
Exports host metrics from Kubernetes nodes in the
cluster.



	kube-state-metrics

	
Collects Kubernetes-specific metrics.



	Alertmanager

	
Allows you to configure and forward alerts to external
systems.



	Grafana

	
Provides visualization on dashboard capabilities for
Prometheus.






helm install --name prom stable/prometheus-operator


After you’ve installed the Operator, you should see the following pods deployed
to your cluster:


$ kubectl get pods -n monitoring
NAME                                   READY   STATUS    RESTARTS   AGE
alertmanager-main-0                    2/2     Running   0          5h39m
alertmanager-main-1                    2/2     Running   0          5h39m
alertmanager-main-2                    2/2     Running   0          5h38m
grafana-5d8f767-ct2ws                  1/1     Running   0          5h39m
kube-state-metrics-7fb8b47448-k6j6g    4/4     Running   0          5h39m
node-exporter-5zk6k                    2/2     Running   0          5h39m
node-exporter-874ss                    2/2     Running   0          5h39m
node-exporter-9mtgd                    2/2     Running   0          5h39m
node-exporter-w6xwt                    2/2     Running   0          5h39m
prometheus-adapter-66fc7797fd-ddgk5    1/1     Running   0          5h39m
prometheus-k8s-0                       3/3     Running   1          5h39m
prometheus-k8s-1                       3/3     Running   1          5h39m
prometheus-operator-7cb68545c6-gm84j   1/1     Running   0          5h39m


Lets take a look at the Prometheus Server to see how you can run some
queries to retrieve Kubernetes metrics:


kubectl port-forward svc/prom-prometheus-operator-prometheus 9090


This creates a tunnel to our localhost on port 9090. Now, we can open
a web browser and connect to the Prometheus server on
http://127.0.0.1:9090.


Figure 3-2 depicts the screen you’ll see if you successfully deployed
Prometheus to your cluster.


Now that we have Prometheus deployed, let’s explore some Kubernetes metrics
through the Prometheus PromQL query language. There is a PromQL Basics guide available.


We talked earlier in the chapter about employing the USE method, so let’s gather some node metrics on CPU utilization and saturation.



[image: Figure 4.2]
Figure 3-2. The Prometheus dashboard




In the Expression input, enter the following query:


avg(rate(node_cpu_seconds_total[5m]))


This will return the average CPU utilization for the entire cluster.


If we want to get the CPU utilization per node, we can write a query
like the following:


avg(rate(node_cpu_seconds_total[5m])) by (node_name)


This returns average CPU utilization for each node in the cluster.


So, now that you have some experience with running queries within
Prometheus, let’s take a look at how Grafana can help build dashboard
visualization for these common USE method metrics we want to track. The
great thing about the Prometheus Operator you installed is that it comes with
some prebuilt Grafana dashboards that you can use.


You’ll now need to create a port-forward tunnel to the Grafana pod so
that you can access it from your local machine:


kubectl port-forward svc/prom-grafana 3000:3000


Now, point your web browser at http://localhost:3000 and log in using the
following credentials:



	
Username: admin



	
Password: admin






Under the Grafana dashboard you’ll find a dashboard called Kubernetes /
USE Method / Cluster. This dashboard gives you a good overview of
the utilization and saturation of the Kubernetes cluster, which is at
the heart of the USE method. Figure 3-3 presents an example of the dashboard.



[image: Figure 4.3]
Figure 3-3. A Grafana dashboard




Go ahead and take some time to explore the different dashboards and
metrics that you can visualize in Grafana.

Tip

Avoid creating too many dashboards (aka “The Wall of Graphs”)
because this can be difficult for engineers to reason with in troubleshooting situations. You might think having more information in a dashboard means better monitoring, but the majority of the time it causes more confusion for a user looking at the dashboard. Focus your dashboard design on outcomes and time to resolution.



















Logging Overview


Up to this point, we have discussed a lot about metrics and Kubernetes,
but to get the full picture of your environment, you also need to
collect and centralize logs from the Kubernetes cluster and the
applications deployed to your cluster.


With logging, it might be easy to say, “Let’s just log everything,” but
this can cause two issues:



	
There is too much noise to find issues quickly.



	
Logs can consume a lot of resources and come with a high cost.






There is no clear-cut answer to what exactly you should log because debug logs become a necessary evil. Over time you’ll start to understand your environment better and learn what noise you can tune out from the logging system. Also, to address the ever-increasing amount of logs stored, you will need to implement a retention and archival policy. From an end-user experience, having somewhere between 30 and 45 days worth of historical logs is a good fit. This allows for investigation of problems that manifest over a longer period of time, but also reduces the amount of resources needed to store logs. If you require longer-term storage for compliance reasons, you’ll want to archive the logs to more cost-effective resources.


In a Kubernetes cluster, there are multiple components to log. Following is a list of components from which you should be collecting metrics:



	
Node logs



	
Kubernetes control-plane logs



	
API server



	
Controller manager



	
Scheduler







	
Kubernetes audit logs



	
Application container logs






With node logs, you want to collect events that happen to essential node
services. For example, you will want to collect logs from the Docker daemon
running on the worker nodes. A healthy Docker daemon is essential for
running containers on the worker node. Collecting these logs will help
you diagnose any issues that you might run into with the Docker daemon, and it will
give you information into any underlying issues with the daemon. There
are also other essential services that you will want to log from the
underlying node.


The Kubernetes control plane consists of several components from which you’ll need to collect logs to give you more insight into underlying
issues within it. The Kubernetes control plane is core to a
healthy cluster, and you’ll want to aggregate the logs that it stores on
the host in /var/log/kube-APIserver.log, /var/log/kube-scheduler.log, and /var/log/kube-controller-manager.log. The controller manager is responsible for
creating objects defined by the end user. As an example, as a user you
create a Kubernetes service with type LoadBalancer and it just sits in a
pending state; the Kubernetes events might not give all the details to
diagnose the issue. If you collect the logs in a centralized system, it
will give you more detail into the underlying issue and a
quicker way to investigate the issue.


You can think of Kubernetes audit logs as security monitoring because they give you insight into who did what within the system. These logs can be very noisy, so you’ll want to tune them for your environment. In many instances these logs can cause a huge spike in your logging system when first initialized, so make sure that you follow the Kubernetes documentation guidance on audit log monitoring.


Application container logs give you insight into the actual logs
your application is emitting. You can forward these logs to a central
repository in multiple ways. The first and recommended way is to
send all application logs to STDOUT because this gives you a uniform way of
application logging, and a monitoring daemon set can gather the logs directly from the Docker daemon. The other way is to use a sidecar
pattern and run a log forwarding container next to the application
container in a Kubernetes pod. You might need to use this pattern if your
application logs to the filesystem.

Note

There are many options and configurations for managing Kubernetes audit logs. These audit logs can be very noisy and it can be expensive to log all actions. You should consider looking at the audit logging documentation, so that you can fine-tune these logs for your environment.



















Tools for Logging


Like collecting metrics there are numerous tools to collect logs from
Kubernetes and applications running in the cluster. You might already have
tooling for this, but be aware of how the tool implements logging. The
tool should have the capability to run as a Kubernetes DaemonSet and
also have a solution to run as a sidecar for applications that don’t send logs to STDOUT. Utilizing an existing tool can be advantageous because you will already have a lot of operational knowledge of the tool.


Some of the more popular tools with Kubernetes integration are:



	
Elastic Stack



	
Datadog



	
Sumo Logic



	
Sysdig



	
Cloud provider services (GCP Stackdriver, Azure Monitor for containers,
and Amazon CloudWatch)






When looking for a tool to centralize logs, hosted solutions can provide
a lot of value because they offload a lot of the operational cost. Hosting
your own logging solution seems great on day N, but as the environment
grows, it can be very time consuming to maintain the solution.

















Logging by Using an EFK Stack


For the purposes of this book, we use an Elasticsearch, Fluentd, and Kibana (EFK) stack to set up
monitoring for our cluster. Implementing an EFK stack can be a good way
to get started, but at some point you’ll probably ask yourself, “Is it
really worth managing my own logging platform?” Typically it’s not worth the effort because self-hosted logging solutions are great on day one, but they become overly complex by day 365. Self-hosted logging solutions become more operationally complex as your environment scales. There is no one correct answer, so evaluate whether your business requirements need you to host your own solution. There are also a number of hosted solutions based on the EFK stack, so you can always move
pretty easily if you choose not to host it yourself.


You will deploy the following for your monitoring stack:



	
Elasticsearch Operator



	
Fluentd (forwards logs from our Kubernetes environment into Elasticsearch)



	
Kibana (visualization tool to search, view, and interact with logs stored in Elasticsearch)






Deploy the manifest to your Kubernetes cluster:


kubectl create namespace logging


kubectl apply -f https://raw.githubusercontent.com/dstrebel/kbp/master/elasticsearch-operator.yaml -n logging


Deploy the Elasticsearch operator to aggregate all forwarded
logs:


kubectl apply -f https://raw.githubusercontent.com/dstrebel/kbp/master/efk.yaml -n logging


This deploys Fluentd and Kibana, which will allow us to forward logs
to Elasticsearch and visualize the logs using Kibana.


You should see the following pods deployed to your cluster:


kubectl get pods -n logging


efk-kibana-854786485-knhl5               1/1     Running   0          4m
elasticsearch-operator-5647dc6cb-tc2st   1/1     Running   0          5m
elasticsearch-operator-sysctl-ktvk9      1/1     Running   0          5m
elasticsearch-operator-sysctl-lf2zs      1/1     Running   0          5m
elasticsearch-operator-sysctl-r8qhb      1/1     Running   0          5m
es-client-efk-cluster-9f4cc859-sdrsl     1/1     Running   0          4m
es-data-efk-cluster-default-0            1/1     Running   0          4m
es-master-efk-cluster-default-0          1/1     Running   0          4m
fluent-bit-4kxdl                         1/1     Running   0          4m
fluent-bit-tmqjb                         1/1     Running   0          4m
fluent-bit-w6fs5                         1/1     Running   0          4m


After all pods are “Running,” let’s go ahead and connect to Kibana
through port forwarding to our localhost:


export POD_NAME=$(kubectl get pods --namespace logging -l "app=kibana,release=efk" -o jsonpath="{.items[0].metadata.name}")


kubectl port-forward $POD_NAME 5601:5601


Now point your web browser at http://localhost:5601 to open the Kibana
dashboard.


To interact with the logs forwarded from our Kubernetes cluster, you
first need to create an index.


The first time you start Kibana, you will need to navigate to the
Management tab, and create an index pattern for Kubernetes logs. The
system will guide you through the required steps.


After you create an index, you can search through logs using a Lucene query
syntax, such as the following:


log:(WARN|INFO|ERROR|FATAL)


This returns all logs containing the fields warn, info, error,
or fatal. You can see an example in Figure 3-4.



[image: Figure 4.3]
Figure 3-4. The Kibana dashboard




In Kibana, you can perform ad hoc queries on the logs, and you can build
out dashboards to give you an overview of the environment.


Go ahead and take some time to explore the different logs that you can visualize in Kibana.

















Alerting


Alerting is a double-edged sword, and you need to strike a balance on what
you alert on versus what should just be monitored. Alerting on too much
causes alert fatigue, and important events will be lost in all the
noise. An example would be generating an alert any time a pod fails. You might be
asking, “Why wouldn’t I want to monitor for a pod failure?” Well, the
beauty of Kubernetes is that it provides features to automatically check the
health of a container and restart the container automatically. You
really want to focus alerting on events that affect your Service-Level Objectives (SLOs). SLOs are specific measurable characteristics such as availability, throughput, frequency, and response time that you agree upon with the end user of your service. Setting SLOs sets expectations with your end users and provides clarity on how the system should behave. Without an SLO, users can form their opinion, which might be an unrealistic expectation of the service. Alerting in a system like Kubernetes needs an entirely new approach from what we are typically accustomed to and needs to focus on how the end user is experiencing the service. For example, if your SLO for a frontend service is a 20-ms response time and you are seeing higher
latency than average, you want to be alerted on the problem.


You need to decide what alerts are good and require intervention. In typical monitoring, you might be accustomed to alerting on high CPU usage, memory usage, or processes not responding. These might seem like good alerts, but probably don’t indicate an issue that someone needs to take immediate action on and requires notifying an on-call engineer. An alert to an on-call engineer should be an issue that needs immediate human attention and is affecting the UX of the application. If you have ever experienced a “That issue resolved itself” scenario, then that is a good indication that the alert did not need to contact an on-call engineer.


One way to handle alerts that don’t need immediate action is to focus on automating the remediation of the cause. For example, when a disk fills up, you could automate the deletion of logs to free up space on the disk. Also, utilizing Kubernetes liveness probes in your app deployment can help autoremediate issues with a process that is not responding in the application.


When building alerts, you also need to consider alert thresholds; if you set thresholds too short, then you can get a lot of false positives with your alerts. It’s generally recommended to set a threshold of at least five minutes to help eliminate false positives. Coming up with standard thresholds can help define a standard and avoid micromanaging many different thresholds. For example, you might want to follow a specific pattern of 5 minutes, 10 minutes, 30 minutes, 1 hour, and so on.


When building notifications for alerts you want to ensure that you provide relevant information in the notification, for example, providing a link to a “playbook” that gives troubleshooting or other helpful information on resolving the issue. You should also include information on the datacenter, region, app owner, and affected system in notifications. Providing all this information will allow engineers to quickly formalize a theory around the issue.


You also need to build notification channels to route alerts that are fired. When thinking about “Who do I notify when an alert is triggered?” you should ensure that notifications are not just sent to a distribution list or team emails. What tends to happen if alerts are sent to larger groups is that they end up getting filtered out because users see these as noise. You should route notifications to the user who is going to take responsibility for the issue.


With alerting, you’ll never get it perfect on day one, and we could argue it
might never be perfect. You just want to make sure that you incrementally
improve on alerting to preclude alert fatigue, which can cause many issues with staff burnout
and your systems.

Note

For further insight on how to approach alerting on and managing systems, read “My Philosophy on Alerting” by Rob Ewaschuk, which is based on Rob’s observations as a site reliability engineer (SRE) at Google.



















Best Practices for Monitoring, Logging, and Alerting


Following are the best practices that you should adopt regarding monitoring, logging, and alerting.










Monitoring



	
Monitor nodes and all Kubernetes components for utilization,
saturation, and error rates, and monitor applications for rate, errors, and duration.



	
Use black-box monitoring to monitor for symptoms and not predictive
health of a system.



	
Use white-box monitoring to inspect the system and its internals with
instrumentation.



	
Implement time-series-based metrics to gain high-precision metrics that also allow you to gain insight within the behavior of your application.



	
Utilize monitoring systems like Prometheus that provide key labeling
for high dimensionality; this will give a better signal to symptoms of an impacting issue.



	
Use average metrics to visualize subtotals and metrics based on factual
data. Utilize sum metrics to visualize the distribution across a specific metric.





















Logging



	
You should use logging in combination with metrics monitoring to get
the full picture of how your environment is operating.



	
Be cautious of storing logs for more than 30 to 45 days and, if needed, use
cheaper resources for long-term archiving.



	
Limit usage of log forwarders in a sidecar pattern, as they
will utilize a lot more resources. Opt for using a DaemonSet for the
log forwarder and sending logs to STDOUT.





















Alerting



	
Be cautious of alert fatigue because it can lead to bad behaviors in
people and processes.



	
Always look at incrementally improving upon alerting and accept that it
will not always be perfect.



	
Alert for symptoms that affect your SLO and customers and not for transient issues that don’t need immediate human attention.




























Summary


In this chapter we discussed the patterns, techniques, and tools that
can be used for monitoring our systems with metric and log collection.
The most important piece to take away from this chapter is that you need
to rethink how you perform monitoring and do it from the outset. Too many times
we see this implemented after the fact, and it can get you into a very bad
place in understanding your system. Monitoring is all about having
better insight into a system and being able to provide better
resiliency, which in turn provides a better end-user experience for your
application. Monitoring distributed applications and distributed
systems like Kubernetes requires a lot of work, so you must be ready
for it at the beginning of your journey.












Chapter 4. Configuration, Secrets, and RBAC



The composable nature of containers allows us as operators to introduce
configuration data into a container at runtime. This makes it possible for us to decouple an application’s function from the environment it
runs in. By means of the conventions allowed in the container runtime to
pass through either environment variables or mount external volumes into
a container at runtime, you can effectively change the configuration of
the application upon its instantiation. As a developer, it is important
to take into consideration the dynamic nature of this behavior and allow for the use of environment variables or the reading of configuration data from a specific path available to the application runtime user.


When moving sensitive data such as secrets into a native Kubernetes API
object, it is important to understand how Kubernetes secures access to
the API. The most commonly implemented security method in use in
Kubernetes is Role-Based Access Control (RBAC) to implement a
fine-grained permission structure around actions that can be taken
against the API by specific users or groups. This chapter covers
some of the best practices regarding RBAC and also provides a small primer.








Configuration Through ConfigMaps and Secrets


Kubernetes allows you to natively provide configuration information to our applications through ConfigMaps or secret resources. The main differentiator between the two is the way a pod stores the receiving information and how the data is stored in the etcd data store.










ConfigMaps


It is very common to have applications consume configuration information
through some type of mechanism such as command-line arguments,
environment variables, or files that are available to the system.
Containers allow the developer to decouple this configuration
information from the application, which allows for true application
portability. The ConfigMap API allows for the injection of supplied
configuration information. ConfigMaps are very adaptable to the
application’s requirements and can provide key/value pairs or complex
bulk data such as JSON, XML, or proprietary configuration data.


The ConfigMaps not only provide configuration information for pods,
but can also provide information to be consumed for more complex system
services such as controllers, CRDs, operators, and so on. As mentioned earlier,
the ConfigMap API is meant more for string data that is not
really sensitive data. If your application requires more sensitive data, the Secrets API is more appropriate.


For your application to use the ConfigMap data, it can be injected as
either a volume mounted into the pod or as environment variables.

















Secrets


Many of the attributes and reasons for which you would want to use a ConfigMap
apply to secrets. The main differences lie in the fundamental nature of
a Secret. Secret data should be stored and handled in a way that can be
easily hidden and possibly encrypted at rest if the environment is
configured as such. The Secret data is represented as base64-encoded
information, and it is critical to understand that this is not encrypted.
As soon as the secret is injected into the pod, the pod itself can see the
secret data in plain text.


Secret data is meant to be small amounts of data, limited by default in
Kubernetes to 1 MB in size, for the base64-encoded data, so ensure that the actual data is approximately 750 KB because of the overhead of the encoding. There are three types of secrets in
Kubernetes:


	generic

	
This is typically just regular key/value pairs that are created from a file, a directory, or from string literals using the --from-literal= parameter, as follows:


kubectl create secret generic mysecret --from-literal=key1=$3cr3t1 --from-literal=key2=@3cr3t2`



	docker-registry

	
This is used by the kubelet when passed in a pod template if there is an imagePullsecret to provide the credentials needed to authenticate to a private Docker registry:


kubectl create secret docker-registry registryKey --docker-server myreg.azurecr.io --docker-username myreg --docker-password $up3r$3cr3tP@ssw0rd --docker-email ignore@dummy.com



	tls

	
This creates a Transport Layer Security (TLS) secret from a valid public/private key pair. As long as the cert is in a valid PEM format, the key pair will be encoded as a secret and can be passed to the pod to use for SSL/TLS needs:


kubectl create secret tls www-tls --key=./path_to_key/wwwtls.key --cert=./path_to_crt/wwwtls.crt






Secrets are also mounted into tmpfs only on the nodes that have a pod
that requires the secret and are deleted when the pod that needs it is
gone. This prevents any secrets from being left behind on the disk of the node. Although this might seem secure, it is important to know that by default, secrets are stored in the etcd datastore of Kubernetes in plain text, and it is important that the system administrators or cloud service provider take efforts to ensure that the security of the etcd environment, including mTLS between the etcd nodes and enabling encryption at rest for the etcd data. More recent versions of Kubernetes use etcd3 and have the ability to enable etcd native encryption; however, this is a manual process that must be configured in the API server configuration by specifying a provider and the proper key media to properly encrypt secret data held in etcd. As of Kubernetes v1.10 (it has been promoted to beta in v1.12), we have the KMS provider, which promises to provide a more secure key process by using third-party KMS systems to hold the proper keys.
























Common Best Practices for the ConfigMap and Secrets APIs


The majority of issues that arise from the use of a ConfigMap or secret
are incorrect assumptions on how changes are handled when the data held
by the object is updated. By understanding the rules of the road and
adding a few tricks to make it easier to abide by those rules, you
can steer away from trouble:



	
To support dynamic changes to your application without having to redeploy new versions of the pods, mount your ConfigMaps/Secrets as a volume and configure your application with a file watcher to detect the changed file data and reconfigure itself as needed. The following code shows a Deployment that mounts a ConfigMap and a Secret file as a volume:






apiVersion: v1
kind: ConfigMap
metadata:
    name: nginx-http-config
    namespace: myapp-prod
data:
  config: |
    http {
      server {
        location / {
        root /data/html;
        }

        location /images/ {
          root /data;
        }
      }
    }


apiVersion: v1
kind: Secret
metadata:
  name: myapp-api-key
type: Opaque
data:
  myapikey: YWRtd5thSaW4=


apiVersion: apps/v1
kind: Deployment
metadata:
  name: mywebapp
  namespace: myapp-prod
spec:
  containers:
  - name: nginx
    image: nginx
    ports:
    - containerPort: 8080
    volumeMounts:
    - mountPath: /etc/nginx
      name: nginx-config
    - mountPath: /usr/var/nginx/html/keys
      name: api-key
  volumes:
    - name: nginx-config
      configMap:
        name: nginx-http-config
        items:
        - key: config
          path: nginx.conf
    - name: api-key
      secret:
        name: myapp-api-key
        secretname: myapikey

Note

There are a couple of things to consider when using volumeMounts. First, as soon as the ConfigMap/Secret is created, add it as a volume in your pod’s specification. Then mount that volume into the container’s filesystem. Each property name in the ConfigMap/Secret will become a new file in the mounted directory, and the contents of each file will be the value specified in the ConfigMap/Secret. Second, avoid mounting ConfigMaps/Secrets using the volumeMounts.subPath property. This will prevent the data from being dynamically updated in the volume if you update a ConfigMap/Secret with new data.





	
ConfigMap/Secrets must exist in the namespace for the pods that will consume them prior to the pod being deployed. The optional flag can be used to prevent the pods from not starting if the ConfigMap/Secret is not present.



	
Use an admission controller to ensure specific configuration data or to prevent deployments that do not have specific configuration values set. An example would be if you require all production Java workloads to have certain JVM properties set in production environments. There is an alpha API called PodPresets that will allow ConfigMaps and secrets to be applied to all pods based on an annotation, without needing to write a custom admission controller.



	
If you’re using Helm to release applications into your environment, you can use a life cycle hook to ensure the ConfigMap/Secret template is deployed before the Deployment is applied.



	
Some applications require their configuration to be applied as a single file such as a JSON or YAML file. ConfigMap/Secrets allows an entire block of raw data by using the | symbol, as demonstrated here:






apiVersion: v1
kind: ConfigMap
metadata:
  name: config-file
data:
  config: |
    {
      "iotDevice": {
        "name": "remoteValve",
        "username": "CC:22:3D:E3:CE:30",
        "port": 51826,
        "pin": "031-45-154"
      }
    }



	
If the application uses system environment variables to determine its
configuration, you can use the injection of the ConfigMap data to create an
environment variable mapping into the pod. There are two main ways to do
this: mounting every key/value pair in the ConfigMap as a series of
environment variables into the pod using envFrom and then using
configMapRef or secretRef, or assigning individual keys with their
respective values using the configMapKeyRef or secretKeyRef.



	
If you’re using the configMapKeyRef or secretKeyRef method, be aware that
if the actual key does not exist, this will prevent the pod from
starting.



	
If you’re loading all of the key/value pairs from the ConfigMap/Secret into
the pod using envFrom, any keys that are considered invalid environment
values will be skipped; however, the pod will be allowed to start. The
event for the pod will have an event with reason InvalidVariableNames
and the appropriate message about which key was skipped. The following code is an example of a Deployment with a ConfigMap and Secret reference as an environment variable:






apiVersion: v1
kind: ConfigMap
metadata:
  name: mysql-config
data:
  mysqldb: myappdb1
  user: mysqluser1


apiVersion: v1
kind: Secret
metadata:
  name: mysql-secret
type: Opaque
data:
  rootpassword: YWRtJasdhaW4=
  userpassword: MWYyZDigKJGUyfgKJBmU2N2Rm


apiVersion: apps/v1
kind: Deployment
metadata:
  name: myapp-db-deploy
spec:
  selector:
    matchLabels:
      app: myapp-db
  template:
    metadata:
      labels:
        app: myapp-db
    spec:
      containers:
      - name: myapp-db-instance
        image: mysql
        resources:
          limits:
            memory: "128Mi"
            cpu: "500m"
        ports:
        - containerPort: 3306
        env:
          - name: MYSQL_ROOT_PASSWORD
            valueFrom:
              secretKeyRef:
                name: mysql-secret
                key: rootpassword
          - name: MYSQL_PASSWORD
            valueFrom:
              secretKeyRef:
                name: mysql-secret
                key: userpassword
          - name: MYSQL_USER
            valueFrom:
              configMapKeyRef:
                name: mysql-config
                key: user
          - name: MYSQL_DB
            valueFrom:
              configMapKeyRef:
                name: mysql-config
                key: mysqldb



	
If there is a need to pass command-line arguments to your containers,
environment variable data can be sourced using $(ENV_KEY) interpolation
syntax:






[...]
spec:
  containers:
  - name: load-gen
    image: busybox
    command: ["/bin/sh"]
args: ["-c", "while true; do curl $(WEB_UI_URL); sleep 10;done"]
    ports:
    - containerPort: 8080
    env:
    - name: WEB_UI_URL
      valueFrom:
        configMapKeyRef:
          name: load-gen-config
          key: url



	
When consuming ConfigMap/Secret data as environment variables, it is
very important to understand that updates to the data in the
ConfigMap/Secret will not update in the pod and will require a pod
restart either through deleting the pods and letting the ReplicaSet
controller create a new pod, or triggering a Deployment update, which will
follow the proper application update strategy as declared in the
Deployment specification.



	
It is easier to assume that all changes to a ConfigMap/Secret require
an update to the entire deployment; this ensures that even if you’re using
environment variables or volumes, the code will take the new
configuration data. To make this easier, you can use a CI/CD pipeline to
update the name property of the ConfigMap/Secret and also update the
reference in the deployment, which will then trigger an update through
normal Kubernetes update strategies of your deployment. We will explore
this in the following example code. If you’re using Helm to release your application
code into Kubernetes, you can take advantage of an annotation in the
Deployment template to check the sha256 checksum of the
ConfigMap/Secret. This triggers Helm to update the Deployment using
the helm upgrade command when the data within a ConfigMap/Secret is
changed:






apiVersion: apps/v1
kind: Deployment
[...]
spec:
  template:
    metadata:
      annotations:
        checksum/config: {{ include (print $.Template.BasePath "/configmap.yaml") . | sha256sum }}
[...]












Best practices specific to secrets


Because of the nature of sensitive data of the Secrets API, there are
naturally more specific best practices, which are mainly around the
security of the data itself:



	
The original specification for the Secrets API outlined a pluggable
architecture to allow the actual storage of the secret to be
configurable based on requirements. Solutions such as HashiCorp Vault,
Aqua Security, Twistlock, AWS Secrets Manager, Google Cloud KMS, or Azure Key Vault allow the use of external storage systems for secret data using a higher level of encryption and auditability than what is offered natively in Kubernetes.



	
Assign an imagePullSecrets to a serviceaccount that the pod will use to
automatically mount the secret without having to declare it in the
pod.spec. You can patch the default service account for the namespace
of your application and add the imagePullSecrets to it directly. This automatically adds it to all pods in the namespace:






Create the docker-registry secret first
kubectl create secret docker-registry registryKey --docker-server
myreg.azurecr.io --docker-username myreg --docker-password $up3r$3cr3tP@ssw0rd
--docker-email ignore@dummy.com

patch the default serviceaccount for the namespace you wish to configure
kubectl patch serviceaccount default -p '{"imagePullSecrets": [{"name":
"registryKey"}]}'



	
Use CI/CD capabilities to get secrets from a secure vault or encrypted
store with a Hardware Security Module (HSM) during the release pipeline. This allows for separation of duties. Security management teams can create and encrypt the secrets, and developers just need to reference the names of the secret expected. This is also the preferred DevOps process to ensure a more dynamic application delivery process.


























RBAC


When working in large, distributed environments, it is very common that
some type of security mechanism is needed to
prevent unauthorized access to critical systems. There are numerous
strategies around how to limit access to resources in computer systems,
but the majority all go through the same phases. Using an analogy of a
common experience such as flying to a foreign country can help explain
the processes that happen in systems like Kubernetes. We can use the common travler’s experience with a passport, travel visa, and customs or border guards to show the process:


	
Passport (subject authentication). Usually you need to have a passport issued by some government agency that will offer some sort of verification as to who you are. This would be equivalent to a user account in Kubernetes. Kubernetes relies on an external authority to authenticate users; however, service accounts are a type of account that is managed directly by Kubernetes.



	
Visa or travel policy (authorization). Countries will have formal agreements to accept travelers holding passports from other countries through formal short-term agreements such as visas. The visas will also outline what the visitor may do and for how long they may stay in the visiting country, depending on the specific type of visa. This would be equivalent to authorization in Kubernetes. Kubernetes has different authorization methods, but the most used is RBAC. This allows very granular access to different API capabilities.



	
Border patrol or customs (admission control). When entering a foreign country, usually there is a body of authority that will check the requisite documents, including the passport and visa, and, in many cases, inspect what is being brought into the country to ensure it abides by that country’s laws. In Kubernetes this is equivalent to admission controllers. Admission controllers can allow, deny, or change the requests into the API based upon rules and policies that are defined. Kubernetes has many built-in admission controllers such as PodSecurity, ResourceQuota, and ServiceAccount controllers. Kubernetes also allows for dynamic controllers through the use of validating or mutating admission controllers.







The focus of this section is the least understood and the most
avoided of these three areas: RBAC. Before we outline some of the best
practices, we first must present a primer on Kubernetes RBAC.










RBAC Primer


The RBAC process in Kubernetes has three main components that need to be
defined: the subject, the rule, and the role binding.












Subjects


The first component is the subject, the item that is actually being checked for
access. The subject is usually a user, a service account, or a group. As
mentioned earlier, users as well as groups are handled outside of
Kubernetes by the authorization module used. We can categorize these as basic authentication, x.509 client certificates, or bearer
tokens. The most common implementations use either x.509 client
certificates or some type of bearer token using something like an OpenID
Connect system such as Azure Active Directory (Azure AD), Salesforce, or Google.

Note

Service accounts in Kubernetes are different than user accounts in that they are namespace bound, internally stored in Kubernetes; they are meant to represent processes, not people, and are managed by native Kubernetes controllers.



















Rules


Simply stated, this is the actual list of actions that can be performed
on a specific object (resource) or a group of objects in the API. Verbs
align to typical CRUD (Create, Read, Update, and Delete) type operations
but with some added capabilities in Kubernetes such as watch, list, and
exec. The objects align to the different API components and are grouped
together in categories. Pod objects, as an example, are part of the core
API and can be referenced with apiGroup: "" whereas deployments are under
the app API Group. This is the real power of the RBAC process and
probably what intimidates and confuses people when creating proper RBAC controls.

















Roles


Roles allow the definition of scope of the rules defined. Kubernetes has
two types of roles, role and clusterRole, the difference being that
role is specific to a namespace, and clusterRole is a cluster-wide
role across all namespaces. An example Role definition with namespace scope would be as follows:


kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  namespace: default
  name: pod-viewer
rules:
- apiGroups: [""] # "" indicates the core API group
  resources: ["pods"]
  verbs: ["get", "watch", "list"]

















RoleBindings


The RoleBinding allows a mapping of a subject like a user or group to a
specific role. Bindings also have two modes: roleBinding, which is
specific to a namespace, and clusterRoleBinding, which is across the
entire cluster. Here’s an example RoleBinding with namespace scope:


kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: noc-helpdesk-view
  namespace: default
subjects:
- kind: User
  name: helpdeskuser@example.com
  apiGroup: rbac.authorization.k8s.io
roleRef:
  kind: Role #this must be Role or ClusterRole
  name: pod-viewer # this must match the name of the Role or ClusterRole to bind to
  apiGroup: rbac.authorization.k8s.io






















RBAC Best Practices


RBAC is a critical component of running a secure, dependable, and stable Kubernetes environment. The concepts underlying RBAC can be complex; however, adhering to a few best practices can ease some of the major stumbling blocks:



	
Applications that are developed to run in Kubernetes rarely ever need
an RBAC role and role binding associated to it. Only if the application
code actually interacts directly with the Kubernetes API directly does
the application require RBAC configuration.



	
If the application does need to directly access the Kubernetes API to
perhaps change configuration depending on endpoints being added to a
service, or if it needs to list all of the pods in a specific namespace, the
best practice is to create a new service account that is then specified
in the pod specification. Then, create a role that has the least amount of
privileges needed to accomplish its goal.



	
Use an OpenID Connect service that enables identity management and, if
needed, two-factor authentication. This will allow for a higher level of
identity authentication. Map user groups to roles that have the least
amount of privileges needed to accomplish the job.



	
Along with the aforementioned practice, you should use Just in Time (JIT) access systems to allow site reliability engineers (SREs), operators, and those who might need to have escalated
privileges for a short period of time to accomplish a very specific task. Alternatively, these users should have different
identities that are more heavily audited for sign-on, and those accounts should
have more elevated privileges assigned by the user account or group
bound to a role.



	
Specific service accounts should be used for CI/CD tools that deploy
into your Kubernetes clusters. This ensures for auditability within the
cluster and an understanding of who might have deployed or deleted any objects in a
cluster.



	
If you’re using Helm to deploy applications, the default service account is Tiller, deployed to kube-system. It is better to deploy Tiller into each namespace with a service account specifically for Tiller that is scoped for that namespace. In the CI/CD tool that calls the Helm install/upgrade command, as a prestep, initialize the Helm client with the service account and the specific namespace for the deployment. The service account name can be the same for each namespace, but the namespace should be specific. It is important to call out that as of this publication, Helm v3 is in alpha state and one of its core principles is that Tiller is no longer needed to run in a cluster. An example Helm Init with a Service account and namespace would look like this:






kubectl create namespace myapp-prod

kubectl create serviceaccount tiller --namespace myapp-prod

cat  <<EOF | kubectl apply -f -
kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: tiller
  namespace: myapp-prod
rules:
- apiGroups: ["", "batch", "extensions", "apps"]
  resources: ["*"]
  verbs: ["*"]
EOF

cat <<EOF | kubectl apply -f -
kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: tiller-binding
  namespace: myapp-prod
subjects:
- kind: ServiceAccount
  name: tiller
  namespace: myapp-prod
roleRef:
  kind: Role
  name: tiller
  apiGroup: rbac.authorization.k8s.io
  EOF

helm init --service-account=tiller --tiller-namespace=myapp-prod

helm install ./myChart --name myApp --namespace myapp-prod --set global.namespace=myapp-prod

Note

Some public Helm charts do not have value entries for namespace
choices to deploy the application components. This might require
customization of the Helm chart directly or using an elevated Tiller
account that can deploy to any namespace and has rights to create
namespaces.





	
Limit any applications that require watch and list on the Secrets
API. This basically allows the application or the person who deployed
the pod to view the secrets in that namespace. If an application needs
to access the Secrets API for specific secrets, limit using get on any
specific secrets that the application needs to read outside of those
that it is directly assigned.




























Summary


Principles for developing applications for cloud native delivery is a
topic for another day, but it is universally accepted that strict
separation of configuration from code is a key principal for success. With native objects for nonsensitive data, the ConfigMap API, and for
sensitive data, the Secrets API, Kubernetes can now manage this process in a
declarative approach. As more and more critical data is represented and
stored natively in the Kubernetes API, it is critical to secure access
to those APIs through proper gated security processes such as RBAC and
integrated authentication systems.


As you’ll see throughout the rest of this book, these principles permeate
every aspect of the proper deployment of services into a Kubernetes
platform to build a stable, reliable, secure, and robust system.












Chapter 5. Continuous Integration, Testing, and Deployment



In this chapter, we look at the key concepts of how to integrate a continuous integration/continuous deployment (CI/CD) pipeline to deliver your applications to Kubernetes. Building a well-integrated pipeline will enable you to deliver applications to
production with confidence, so here we look at the methods, tools, and
processes to enable CI/CD in your environment. The goal of CI/CD is to have a
fully automated process, from a developer checking in code to rolling out
the new code to production. You want to avoid manually rolling out updates
to your apps deployed to Kubernetes because it can be very error prone.
Manually managing application updates in Kubernetes leads to
configuration drift and fragile deployment updates, and overall agility
delivering an application is lost.


We cover the following topics in this chapter:



	
Version control



	
CI



	
Testing



	
Tagging images



	
CD



	
Deployment strategies



	
Testing Deployments



	
Chaos testing






We also go through an example CI/CD pipeline, which consists of the
following tasks:



	
Pushing code changes to the Git repository



	
Running a build of the application code



	
Running test against the code



	
Building a container image on a successful test



	
Pushing the container image to a container registry



	
Deploying the application to Kubernetes



	
Running a test against a deployed application



	
Performing rolling upgrades on Deployments












Version Control


Every CI/CD pipeline starts with version control, which maintains a running
history of application and configuration code changes. Git has become
the industry standard as a source-control management platform, and every
Git repository will contain a master branch. A master branch contains your production code. You will have other branches for feature and development work that
eventually will also be merged to your master branch. There are many
ways to set up a branching strategy, and the setup will be very dependent
on the organization structure and separation of duties. We find that
including both application code and configuration code, such as
a Kubernetes manifest or Helm charts, helps promote good DevOps principles
of communication and collaboration. Having both application developers
and operation engineers collaborate in a single repository builds
confidence in a team to deliver an application to production.

















Continuous Integration


CI is the process of integrating code changes
continuously into a version-control repository. Instead of committing
large changes less often, you commit smaller changes more often. Each
time a code change is committed to the repository, a build is
kicked off. This allows you to have a quicker feedback loop into what might
have broken the application if problems indeed arise. At this point you might be asking, “Why do I
need to know about how the application is built, isn’t that the
application developer’s role?” Traditionally, this might have been the
case, but as companies move toward embracing a DevOps culture, the
operations team comes closer to the application code and software
development workflows.


There are many solutions that provide CI, with Jenkins being one of the more popular tools.

















Testing


The goal of running tests in the pipeline is to quickly provide a
feedback loop for code changes that break the build. The language that you’re using will determine the testing framework you
use. For example, Go applications can use go test for running a suite of
unit tests against your code base. Having an extensive test suite helps to avoid delivering bad code into your production environment. You’ll
want to ensure that if tests fail in the pipeline, the build fails
after the test suite runs. You don’t want to build the container image
and push it to a registry if you have failing tests against your code
base.


Again, you might be asking, “Isn’t creating tests a developer’s job?” As
you begin automating the delivery of infrastructure and applications to
production, you need to think about running automated tests against all
of the pieces of the code base. For example, in Chapter 2, we talked
about using Helm to package applications for Kubernetes. Helm includes a
tool called helm lint, which runs a series of tests against a chart
to examine any potential issues with the chart provided. There are many different tests that need to be run in an end-to-end pipeline. Some are the developer’s responsibility, like unit testing for the application, but others, like smoke testing, will be a joint effort. Testing the code base and its delivery to production is a team effort and needs to be implemented end to end.

















Container Builds


When building your images, you should optimize the size of the image.
Having a smaller image decreases the time it takes to pull and deploy the
image, and also increases the security of the image. There are multiple
ways of optimizing the image size, but some do have trade-offs. The
following strategies will help you build the smallest image possible for
your application:


	Multistage builds

	
These allow you to remove the dependencies not needed for
your applications to run. For example, with Golang, we don’t need all the build tools used to build the static binary, so multistage builds allow you in a single Dockerfile to run a build step with the final image containing only the static binary that’s needed to run the application.



	Distroless base images

	
These remove all the unneeded binaries and shells from
the image. This really reduces the size of the image and increases the
security. The trade-off with distroless images is you don’t have a shell,
so you can’t attach a debugger to the image. You might think this is great,
but it can be a pain to debug an application. Distroless images contain no
package manager, shell, or other typical OS packages, so you might not have
access to the debugging tools you are accustomed to with a typical OS.



	Optimized base images

	
These are images that focus on removing the cruft out
of the OS layer and provide a slimmed-down image. For example, Alpine
provides a base image that starts at just 10 MB, and it also allows you
to attach a local debugger for local development. Other distros also
typically offer an optimized base image, such as Debian’s Slim image.
This might be a good option for you because its optimized images give you capabilities you expect for development while also optimizing for image size and lower security exposure.






Optimizing your images is extremely important and often overlooked by
users. You might have reasons due to company standards for OSes that are approved for use in the enterprise, but push back on
these so that you can maximize the value of containers.


We have found that companies starting out with Kubernetes tend to be successful with using their current OS but then choose a more optimized image, like Debian Slim. After you mature in operationalizing and developing against a container environment, you’ll be comfortable with distroless images.

















Container Image Tagging


Another step in the CI pipeline is to build a Docker image so that you
have an image artifact to deploy to an environment. It’s important to
have an image tagging strategy so that you can easily identify the versioned
images you have deployed to your environments. One of the most important
things we can’t preach enough about is not to use “latest” as an image tag.
Using that as an image tag is not a version and will lead to not
having the ability to identify what code change belongs to the rolled-out image. Every image that is built in the CI pipeline should have a
unique tag for the built image.


There are multiple strategies we’ve found to be effective when
tagging images in the CI pipeline. The following strategies
allow you to easily identify the code changes and the build with which
they are associated:


	BuildID

	
When a CI build kicks off, it has a buildID associated with it. Using this part of the tag allows you to reference which build assembled the image.



	Build System-BuildID

	
This one is the same as BuildID but adds the Build System for
users who have multiple build systems.



	Git Hash

	
On new code commits, a Git hash is generated, and using the
hash for the tag allows you to easily reference which commit generated
the image.



	githash-buildID

	
This allows you to reference both the code commit
and the buildID that generated the image. The only caution here is that the
tag can be kind of long.





















Continuous Deployment


CD is the process by which changes that have passed
successfully through the CI pipeline are deployed to
production without human intervention. Containers provide a great
advantage for deploying changes into production. Container images become
an immutable object that can be promoted through dev and staging and into
production. For example, one of the major issues we’ve
always had has been maintaining consistent environments. Almost everyone has
experienced a Deployment that works fine in staging, but when it gets
promoted to production, it breaks. This is due to having configuration
drift, with libraries and versioning of components differing in each
environment. Kubernetes gives us a declarative way to describe our
Deployment objects that can be versioned and deployed in a consistent
manner.


One thing to keep in mind is that you need to have a solid CI
pipeline set up before focusing on CD. If you don’t have a robust set of tests to catch issues early in the pipeline, you’ll end up rolling bad code to all your environments.

















Deployment Strategies


Now that we learned the principles of CD, let’s take
a look at the different rollout strategies that you can use. Kubernetes
provides multiple strategies to roll out new versions of your
application. And even though it has a built-in mechanism to provide rolling
updates, you can also utilize some more advanced strategies. Here, we examine the following strategies to deliver updates to your application:



	
Rolling updates



	
Blue/green deployments



	
Canary deployments






Rolling updates are built into Kubernetes and allow you to trigger an
update to the currently running application without downtime. For
example, if you took your frontend app that is currently running
frontend:v1 and updated the Deployment to frontend:v2, Kubernetes
would update the replicas in a rolling fashion to frontend:v2. Figure 5-1 depicts a rolling update.



[image: Figure 6.1]
Figure 5-1. A Kubernetes rolling update




A Deployment object also lets you configure the maximum amount of replicas
to be updated and the maximum unavailable pods during the rollout. The following
manifest is an example of how you specify the rolling update strategy:


kind: Deployment
apiVersion: v1
metadata:
  name: frontend
spec:
  replicas: 3
  template:
    spec:
      containers:
      - name: frontend
        image: brendanburns/frontend:v1
  strategy:
    type: RollingUpdate
    rollingUpdate:
      maxSurge: 1 # Maximum amount of replicas to update at one time
      maxUnavailable: 1 # Maximum amount of replicas unavailable during rollout


You need to be cautious with rolling updates because using this strategy
can cause dropped connections. To deal with this issue, you can utilize
readiness probes and preStop life cycle hooks. The readiness probe
ensures that the new version deployed is ready to accept traffic, whereas
the preStop hook can ensure that connections are drained on the current
deployed application. The life cycle hook is called before the container
exits and is synchronous, so it must complete before the final
termination signal is given. The following example implements a readiness
probe and life cycle hook:


kind: Deployment
apiVersion: v1
metadata:
  name: frontend
spec:
  replicas: 3
  template:
    spec:
      containers:
      - name: frontend
        image: brendanburns/frontend:v1
        livenessProbe:
          # ...
        readinessProbe:
          httpGet:
            path: /readiness # probe endpoint
            port: 8888
        lifecycle:
          preStop:
            exec:
              command: ["/usr/sbin/nginx","-s","quit"]
  strategy:
    # ...


The preStop life cycle hook in this example will gracefully exit NGINX, whereas a SIGTERM conducts a nongraceful, quick exit.


Another concern with rolling updates is that you now have two versions of the application running at the same time during the rollover. Your database schema needs to support both versions of the application. You can also use a feature flag strategy in which your schema indicates the new columns created by the new app version. After the rolling update has completed, the old columns can be removed.


We have also defined a readiness and liveness probe in our Deployment manifest. A readiness probe will ensure that your application is ready to serve traffic before putting it behind the service as an endpoint. The liveness probe ensures that your application is healthy and running, and restarts the pod if it fails its liveness probe. Kubernetes can automatically restart a failed pod only if the pod exits on error. For example, the liveness probe can check its endpoint and restart it if we had a deadlock from which the pod did not exit.


Blue/green deployments allow you to release your application in a predictable
manner. With blue/green deployments, you control when the traffic is shifted
over to the new environment, so it gives you a lot of control over the
rollout of a new version of your application. With blue/green deployments, you
are required to have the capacity to deploy both the existing and new
environment at the same time. These types of deployments have a
lot of advantages, such as easily switching back to your previous version of the application. There are some things that you need to consider with this deployment strategy, however:



	
Database migrations can become difficult with this deployment option because you need to consider in-flight transactions and schema update
compatibility.



	
There is the risk of accidental deletion of both environments.



	
You need extra capacity for both environments.



	
There are coordination issues for hybrid deployments in which legacy apps can’t handle the
deployment.






Figure 5-2 depicts a blue/green deployment.



[image: Figure 6.2]
Figure 5-2. A blue/green deployment




Canary deployments are very similar to blue/green deployments, but they give you
much more control over shifting traffic to the new release. Most modern
ingress implementations will give you the ability to release a
percentage of traffic to a new release, but you can also implement a
service mesh technology, like Istio, Linkerd, or HashiCorp Consul, which give you a number of features that help implement this deployment strategy.


Canary deployments allow you to test new features for only a subset of users. For example, you might roll out a new version of an application and only want to test the deployment for 10% of your user base. This allows you to reduce the risk of a bad deployment or broken features to a much smaller subset of users. If there are no errors with the deployment or new features, you can begin shifting a greater percentage of traffic to the new version of the application. There are also some more advanced techniques that you can use with canary deployments in which you
release to only a specific region of users or just target only users with a specific profile. These types of releases are often referred to as A/B or dark releases because users are unaware they are testing new feature deployments.


With canary deployments, you have some of the same considerations that
you have with blue/green deployments, but there are some additional considerations as well. You must have:



	
The ability to shift traffic to a percentage of users



	
A firm knowledge of steady state to compare against a new release



	
Metrics to understand whether the new release is in a “good” or “bad”
state






Figure 5-3 provides an example of a canary deployment.



[image: Figure 6.3]
Figure 5-3. A canary deployment



Note

Canary releases also suffer from having multiple versions of the application running at the same time. Your database schema needs to support both versions of the application. When using these strategies, you’ll need to really focus on how to handle dependent services and having multiple versions running. This includes having strong API contracts and ensuring that your data services support the multiple versions you have deployed at the same time.



















Testing in Production


Testing in production helps you to build confidence in the resiliency,
scalability, and UX of your application. This comes with the caveat that testing in production doesn’t come without challenges and risk,
but it’s worth the effort to ensure reliability in your systems. There are
important aspects you need to address up front when embarking on the
implementation. You need to ensure that you have an in-depth observability
strategy in place, in which you have the ability to identify the effects of
testing in production. Without being able to observe metrics that
affect the end users’ experience of your applications, you won’t have a
clear indication of what to focus on when trying to improve the resiliency of your system. You
also need a high degree of automation in place to be able to
automatically recover from failures that you inject into your systems.


There are many tools that you’ll need to implement to reduce risk and
effectively test your systems when they’re in production. Some of the tools we
have already discussed in this chapter, but there are a few new
ones, like distributed tracing, instrumentation, chaos engineering, and
traffic shadowing. To recap, here are the tools we have already mentioned:



	
Canary deployments



	
A/B testing



	
Traffic shifting



	
Feature flags






Chaos engineering was developed by Netflix. It is the
practice of deploying experiments into live production systems to
discover weaknesses within those systems. Chaos engineering allows you to learn about the
behavior of your system by observing it during a controlled experiment.
Following are the steps that you want to implement before doing a “game-day” experiment:


	
Build a hypothesis and learn about your steady state.



	
Have a varying degree of real-world events that can affect the system.



	
Build a control group and experiment to compare to steady state.



	
Perform experiments to form the hypothesis.







It’s extremely important that when you’re running experiments, you minimize
the “blast radius” to ensure that the issues that might arise are minimal. You’ll
also want to ensure that when you’re building experiments, you focus on
automating them, given that running experiments can be labor intensive.


By this point, you might be asking, “Why wouldn’t I just test in
staging?” We find there are some inherent problems when testing in
staging, such as the following:



	
Nonidentical deployment of resources.



	
Configuration drift from production.



	
Traffic and user behavior tend to be generated synthetically.



	
The number of requests generated don’t mimic a real workload.



	
Lack of monitoring implemented in staging.



	
The data services deployed contain differing data and load than in
production.






We can’t stress this enough: ensure that you have solid confidence in
the monitoring you have in place for production, because this practice tends
to fail users who don’t have adequate observability of their production
systems. Also, starting with smaller experiments to first learn about
your experiments and their effects will help build confidence.

















Setting Up a Pipeline and Performing a Chaos Experiment


The first step in the process is to get a GitHub repository forked so that
you can have your own repository to use through the chapter. You will
need to use the GitHub interface to fork the repository.










Setting Up CI


Now that you have learned about CI, you will set up a
build of the code that we cloned previously.


For this example, we use the hosted drone.io. You’ll need to sign up for a free account. Log in with your GitHub credentials (this registers your repositories in Drone and allows you to synchronize the repositories). After you’re logged in to Drone, select Activate on your forked repository. The first thing that you need to do is add some secrets to
your settings so that you can push the app to your Docker Hub registry and also
deploy the app to your Kubernetes cluster.


Under your repository in Drone, click Settings and add the following
secrets (see Figure 5-4):



	
docker_username



	
docker_password



	
kubernetes_server



	
kubernetes_cert



	
kubernetes_token






The Docker username and password will be whatever you used to register
on Docker Hub. The following steps show you how to create a Kubernetes
service account and certificate and retrieve the token.


For the Kubernetes server, you will need a publicly available Kubernetes API endpoint.



[image: Figure 6.4]
Figure 5-4. Drone secrets configuration



Note

You will need cluster-admin privileges on your Kubernetes cluster to perform the steps in this section.




You can retrieve your API endpoint by using the following command:

kubectl cluster-info


You should see something like the following: Kubernetes master is running
at https://kbp.centralus.azmk8s.io:443. You’ll store this in the kubernetes_server secret.


Now let’s create a service account that Drone will use to connect to the
cluster. Use the following command to create the serviceaccount:

kubectl create serviceaccount drone


Now use the following command to create a clusterrolebinding for the
serviceaccount:

kubectl create clusterrolebinding drone-admin \
  --clusterrole=cluster-admin \
  --serviceaccount=default:drone


Next, retrieve your serviceaccount token:

TOKENNAME=`kubectl -n default get serviceaccount/drone -o jsonpath='{.secrets[0].name}'`
TOKEN=`kubectl -n default get secret $TOKENNAME -o jsonpath='{.data.token}' | base64 -d`
echo $TOKEN


You’ll want to store the output of the token in the kubernetes_token secret.


You will also need the user certificate to authenticate to the cluster, so use
the following command and paste the ca.crt for the kubernetes_cert secret:

kubectl get secret $TOKENNAME -o yaml | grep 'ca.crt:'


Now, build your app in a Drone pipeline and then push it to Docker Hub.


The first step is the build step, which will build your Node.js
frontend. Drone utilizes container images to run its steps, which gives
you a lot of flexibility in what you can do with it. For the build
step, use a Node.js image from Docker Hub:


pipeline:
  build:
    image: node
    commands:
      - cd frontend
      - npm i redis --save


When the build completes, you’ll want to test it, so we include a test step, which will run npm against the newly built app:


test:
    image: node
    commands:
      - cd frontend
      - npm i redis --save
      - npm test


Now that you have successfully built and tested your app, you next move on to a
publish step to create a Docker image of the app and push it to
Docker Hub.


In the .drone.yml file, make the following code change:

repo: <your-registry>/frontend


publish:
    image: plugins/docker
    dockerfile: ./frontend/Dockerfile
    context: ./frontend
    repo: dstrebel/frontend
    tags: [latest, v2]
    secrets: [ docker_username, docker_password ]


After the Docker build step finishes, it will push the image to your
Docker registry.

















Setting Up CD


For the deployment step in your pipeline, you will push your application
to your Kubernetes cluster. You will use the deployment manifest that is
under the frontend app folder in your repository:


kubectl:
    image: dstrebel/drone-kubectl-helm
    secrets: [ kubernetes_server, kubernetes_cert, kubernetes_token ]
    kubectl: "apply -f ./frontend/deployment.yaml"


After the pipeline finishes its deployment, you will see the pods
running in your cluster. Run the following command to confirm that the pods are running:

kubectl get pods


You can also add a test step that will retrieve the status of the
deployment by adding the following step in your Drone pipeline:

  test-deployment:
    image: dstrebel/drone-kubectl-helm
    secrets: [ kubernetes_server, kubernetes_cert, kubernetes_token ]
    kubectl: "get deployment frontend"

















Performing a Rolling Upgrade


Let’s demonstrate a rolling upgrade by changing a line in the
frontend code. In the server.js file, change the following line and then commit the change:

console.log('api server is running.');


You will see the deployment rolling out and rolling updates
happening to the existing pods. After the rolling update finishes, you’ll have the new version of the application deployed.

















A Simple Chaos Experiment


There are a variety of tools in the Kubernetes ecosystem that can help with
performing chaos experiments in your environment. They range from
sophisticated hosted  Chaos as a Service solutions to basic chaos experiment tools that kill pods in your environment. Following are some of the tools with which we’ve seen users have success:


	Gremlin

	
Hosted chaos service that provides advanced features for
running chaos experiments



	PowerfulSeal

	
Open source project that provides advanced chaos
scenarios



	Chaos Toolkit

	
Open source project with a mission to provide a
free, open, and community-driven toolkit and API to all the various forms
of chaos engineering tools



	KubeMonkey

	
Open source tool that provides basic resiliency testing
for pods in your cluster






Let’s set up a quick chaos experiment to test the resiliency of your
application by automatically terminating pods. For this experiment, we’ll use Chaos Toolkit:


pip install -U chaostoolkit


pip install chaostoolkit-kubernetes


export FRONTEND_URL="http://$(kubectl get svc frontend -o jsonpath="{.status.loadBalancer.ingress[*].ip}"):8080/api/"


chaos run experiment.json
























Best Practices for CI/CD


Your CI/CD pipeline won’t be perfect on day one, but consider some of the
following best practices to iteratively improve on the pipeline:



	
With CI, focus on automation and providing quick
builds. Optimizing the build speed will provide developers quick
feedback if their changes have broken the build.



	
Focus on providing reliable tests in your pipeline. This will give
developers rapid feedback on issues with their code. The faster the
feedback loop to developers, the more productive they’ll become in their
workflow.



	
When deciding on CI/CD tools, ensure that the tools allow you to define the
pipeline as code. This will allow you to version-control the pipeline
with your application code.



	
Ensure that you optimize your images so that you can reduce the size of
the image and also reduce the attack surface when running the image in
production. Multistage Docker builds allow you to remove packages not
needed for the application to run. For example, you might need Maven to
build the application, but you don’t need it for the actual running
image.



	
Avoid using “latest” as an image tag, and utilize a tag that can be
referenced back to the buildID or Git commit.



	
If you are new to CD, utilize Kubernetes rolling
upgrades to start out. They are easy to use and will get you
comfortable with deployment. As you become more comfortable and confident
with CD, look at utilizing blue/green and canary deployment
strategies.



	
With CD, ensure that you test how client connections
and database schema upgrades are handled in your application.



	
Testing in production will help you build reliability into your
application, and ensure that you have good monitoring in place. With testing
in production, also start at a small scale and limit the blast radius of
the experiment.





















Summary


In this chapter, we discussed the stages of building a CI/CD pipeline for
your applications, which let you reliably deliver software with
confidence. CI/CD pipelines help reduce risk and increase throughput of
delivering applications to Kubernetes. We also discussed the different
deployment strategies that can be utilized for delivering applications.












Chapter 6. Versioning, Releases, and Rollouts



One of the main complaints of traditional monolithic applications is
that over time they begin to grow too large and unwieldy to properly
upgrade, version, or modify at the speed the business requires. Many can
argue that this is one of the main critical factors that led to more Agile
development practices and the advent of microservice architectures.
Being able to quickly iterate on new code, solve new problems, or fix
hidden problems before they become major issues, as well as the promise of
zero-downtime upgrades, are all goals that development teams strive for
in this ever-changing internet economy world. Practically, these issues
can be solved with proper processes and procedures in place, no matter
the type of system, but this usually comes at a much higher cost of both
technology and human capital to maintain.


The adoption of containers as the runtime for application code allows
for the isolation and composability that was helpful in designing
systems that could get close, but still required a high level of human
automation or system management to maintain at a dependable level over
large system footprints. As the system grew, more brittleness was
introduced, and systems engineers began to build
complex automation processes to deliver on complex release, upgrade, and
failure detection mechanisms. Service orchestrators such as Apache
Mesos, HashiCorp Nomad, and even specialized container-based
orchestrators such as Kubernetes and Docker Swarm evolved this into more
primitive components to their runtime. Now, systems engineers can solve
more complex system problems as the table stakes have been elevated to
include the versioning, release, and deployment of applications into the
system.








Versioning


This section is not meant to be a primer on software versioning and the
history behind it; there are countless articles and computer science course books
on the subject. The main thing is to pick a pattern and stick with it. The
majority of software companies and developers have agreed that some form
of semantic versioning is the most useful, especially in a microservice
architecture in which a team that writes a certain microservice will depend
on the API compatibility of other microservices that make up the system.


For those new to semantic versioning, the basics are that it follows a three-part
version number in a pattern of major version, minor version, and patch,
usually expressed in a dot notation such as 1(major).2(minor).3(patch).
The patch signifies an incremental release that includes a bug fix or
very minor change that has no API changes. The minor version signifies
updates that might have new API changes but is backward compatible with the
previous version. This is a key attribute for developers working with
other microservices they might not be involved in developing. Knowing that
I have my service written to communicate with version 1.4.7 of another
microservice that has been recently upgraded to 1.4.8 should signify
that I might not need to change my code unless I want to take advantage of
any new API features. The major version is a breaking change increment
to the code. In most cases, the API is no longer compatible between major
versions of the same code. There are many slight modifications to this
process, including a “4” version to indicate the stage of the software in
its development life cycle, such as 1.4.7.0 for alpha code, and 1.4.7.3 for
release. The most important thing is that there is consistency across
the system.

















Releases


In truth, Kubernetes does not really have a release controller, so there
is no native concept of a release. This is usually added to a Deployment
metadata.labels specification and/or in the
pod.spec.template.metadata.label specification. When to include either
is very important, and based on how CD is used to update changes to
deployments, it can have varied effects. When Helm for Kubernetes was
introduced, one of its main concepts was the notion of a release to
differentiate the running instance of the same Helm chart in a cluster.
This concept is easily reproducible without Helm; however, Helm natively
keeps track of releases and their history, so many CD tools integrate
Helm into their pipelines to be the actual release service. Again, the key
here is consistency in how versioning is used and where it is surfaced
in the system state of the cluster.


Release names can be quite useful if there is institutional agreement as to
the definition of certain names. Often labels such as stable or
canary are used, which helps to also give some kind of operational
control when tools such as service meshes are added to make fine-grained
routing decisions. Large organizations that drive numerous changes for
different audiences will also adopt a ring architecture that can also be
denoted such as ring-0, ring-1, and so on.


This topic requires a little side trip into the specifics of labels in
the Kubernetes declarative model. Labels themselves are very much
free form and can be any key/value pair that follows the syntactical
rules of the API. The key is not really the content but how each
controller handles labels, changes to labels, and selector matching of
labels. Jobs, Deployments, ReplicaSets, and DaemonSets support selector-based matching of pods via labels through direct mapping or set-based
expressions. It is important to understand that label selectors are
immutable after they are created, which means if you add a new selector
and the pod’s labels have a corresponding match, a new ReplicaSet is
made, not an upgrade to an existing ReplicaSet. This becomes very
important to understand when dealing with rollouts, which we discuss next.

















Rollouts


Prior to the Deployment controller being introduced in Kubernetes, the
only mechanism that existed to control how applications were rolled out
by the Kubernetes controller process was using the command-line interface (CLI) command
kubectl rolling-update on the specific replicaController that was to
be updated. This was very difficult for declarative CD models because this
was not part of the state of the original manifest. One had to carefully
ensure that manifests were updated correctly, versioned properly so as to
not accidentally roll the system back, and archived when no longer
needed. The Deployment controller added the ability to automate this
update process using a specific strategy and then allowing the system to
read the declarative new state based on changes to the
spec.template of the deployment. This last fact is often misunderstood
by early users of Kubernetes and causes frustration when they change a
label in the Deployment metadata fields, reapply a manifest, and no
update has been triggered. The Deployment controller is able to
determine changes to the specification and will take action to update
the Deployment based on a strategy that is defined by the specification.
Kubernetes deployments support two strategies, rollingUpdate and
recreate, the former being the default.


If a rolling update is specified, the deployment will create a new
ReplicaSet to scale to the number of required replicas, and the old
ReplicaSet will scale down to zero based on specific values for
maxUnavailble and maxSurge. In essence, those two values will prevent
Kubernetes from removing older pods until a sufficient number of newer
pods have come online, and will not create new pods until a certain
number of old pods have been removed. The nice thing is that the
Deployment controller will keep a history of the updates, and through the
CLI, you can roll back deployments to previous versions.


The recreate strategy is a valid strategy for certain workloads that
can handle a complete outage of the pods in a ReplicaSet with little
to no degradation of service. In this strategy the Deployment controller
will create a new ReplicaSet with the new configuration and will
delete the prior ReplicaSet before bringing the new pods online.
Services that sit behind queue-based systems are an example of a service
that could handle this type of disruption, because messages will queue while
waiting for the new pods to come online, and message processing will
resume as soon as the new pods come online.

















Putting It All Together


Within a single service deployment, a few key areas are affected by
versioning, release, and rollout management. Let’s
examine an example deployment and then break down the specific areas of
interest as they relate to best practices:


# Web Deployment
apiVersion: apps/v1
kind: Deployment
metadata:
  name: gb-web-deploy
  labels:
    app: guest-book
    appver: 1.6.9
    environment: production
    release: guest-book-stable
    release number: 34e57f01
spec:
  strategy:
    type: rollingUpdate
    rollingUpdate:
      maxUnavailbale: 3
      maxSurge: 2
  selector:
    matchLabels:
      app: gb-web
      ver: 1.5.8
    matchExpressions:
      - {key: environment, operator: In, values: [production]}
  template:
    metadata:
      labels:
        app: gb-web
        ver: 1.5.8
        environment: production
    spec:
      containers:
      - name: gb-web-cont
        image: evillgenius/gb-web:v1.5.5
        env:
        - name: GB_DB_HOST
          value: gb-mysql
        - name: GB_DB_PASSWORD
          valueFrom:
            secretKeyRef:
              name: mysql-pass
              key: password
        resources:
          limits:
            memory: "128Mi"
            cpu: "500m"
        ports:
        - containerPort: 80
---
# DB Deployment
apiVersion: apps/v1
kind: Deployment
metadata:
  name: gb-mysql
  labels:
    app: guest-book
    appver: 1.6.9
    environment: production
    release: guest-book-stable
    release number: 34e57f01
spec:
  selector:
    matchLabels:
      app: gb-db
      tier: backend
  strategy:
    type: Recreate
  template:
    metadata:
      labels:
        app: gb-db
        tier: backend
        ver: 1.5.9
        environment: production
    spec:
      containers:
      - image: mysql:5.6
        name: mysql
        env:
        - name: MYSQL_PASSWORD
          valueFrom:
            secretKeyRef:
              name: mysql-pass
              key: password
        ports:
        - containerPort: 3306
          name: mysql
        volumeMounts:
        - name: mysql-persistent-storage
          mountPath: /var/lib/mysql
      volumes:
      - name: mysql-persistent-storage
        persistentVolumeClaim:
          claimName: mysql-pv-claim
---
# DB Backup Job
apiVersion: batch/v1
kind: Job
metadata:
  name: db-backup
  labels:
    app: guest-book
    appver: 1.6.9
    environment: production
    release: guest-book-stable
    release number: 34e57f01
  annotations:
    "helm.sh/hook": pre-upgrade
    "helm.sh/hook": pre-delete
    "helm.sh/hook": pre-rollback
    "helm.sh/hook-delete-policy": hook-succeeded
spec:
  template:
    metadata:
      labels:
        app: gb-db-backup
        tier: backend
        ver: 1.6.1
        environment: production
    spec:
      containers:
      - name: mysqldump
        image: evillgenius/mysqldump:v1
        env:
        - name: DB_NAME
          value: gbdb1
        - name: GB_DB_HOST
          value: gb-mysql
        - name: GB_DB_PASSWORD
          valueFrom:
            secretKeyRef:
              name: mysql-pass
              key: password
        volumeMounts:
          - mountPath: /mysqldump
            name: mysqldump
      volumes:
        - name: mysqldump
          hostPath:
            path: /home/bck/mysqldump
      restartPolicy: Never
  backoffLimit: 3


Upon first inspection, things might look a little off. How can a deployment have a version tag and the container image the deployment uses have a different version tag? What will happen if one changes and the other does not? What
does release mean in this example, and what effect on the
system will that have if it changes? If a certain label is changed, when
will it trigger an update to my deployment? We can find the answers to these questions by looking at some of the best practices for versioning, releases, and rollouts.










Best Practices for Versioning, Releases, and Rollouts


Effective CI/CD and the ability to offer reduced or zero downtime deployments are both dependent on using consistent practices for versioning and release management. The best practices noted below can help to define consistent parameters that can assist DevOps teams in delivering smooth software deployments:



	
Use semantic versioning for the application in its entirety that
differs from the version of the containers and the version of the pods
deployment that make up the entire application. This allows for
independent life cycles of the containers that make up the application
and the application as a whole. This can become quite confusing at first,
but if a principled hierarchical approach is taken to when one changes
the other, you can easily track it. In the previous example, the container
itself is currently on v1.5.5; however, the pod specification is a
1.5.8, which could mean that changes were made to the pod
specification, such as new ConfigMaps, additional secrets, or updated
replica values, but the specific container used has not changed its
version. The application itself, the entire guestbook application and
all of its services, is at 1.6.9, which could mean that operations made changes along the way that were beyond just this specific service,
such as other services that make up the entire application.



	
Use a release and release version/number label in your deployment
metadata to track releases from CI/CD pipelines. The release name and
release number should coordinate with the actual release in the CI/CD
tool records. This allows for traceability through the CI/CD process
into the cluster and allows for easier rollback identification. In the
previous example, the release number comes directly from the release ID of
the CD pipeline that created the manifest.



	
If Helm is being used to package services for deployment into Kubernetes, take special care to bundle together those services that need to be rolled back or upgraded together into the same Helm chart. Helm allows for easy
rollback of all components of the application to bring the state back to
what it was before the upgrade. Because Helm actually processes the templates and all of the Helm directives before passing a flattened YAML configuration, the use of life cycle hooks allows for proper ordering of the application of specific templates. Operators can use proper Helm life cycle hooks to
ensure that upgrades and rollback will happen correctly. The previous example for the Job specification uses Helm life cycle hooks to ensure
that the template runs a backup of the database before a
rollback, upgrade, or delete of the Helm release. It also ensures
that the Job is deleted after the job is run successfully, which, until
the TTL Controller comes out of alpha in Kubernetes, would require manual
cleanup.



	
Agree on a release nomenclature that makes sense for the operational
tempo of the organization. Simple stable, canary, and alpha states
are quite adequate for most situations.




























Summary


Kubernetes has allowed for more complex, Agile development processes to
be adopted within companies large and small. The ability to automate
much of the complex processes that would usually require large amounts
of human and technical capital has now been democratized to allow for
even startups to take advantage of this cloud pattern with relative ease. The
true declarative nature of Kubernetes really shines when planning the
proper use of labels and using native Kubernetes controller
capabilities. By properly identifying operational and development states
within the declarative properties of the applications deployed into
Kubernetes, organizations can tie in tooling and automation to more
easily manage the complex processes of upgrades, rollouts, and rollbacks
of capabilities.












Chapter 7. Worldwide Application Distribution and Staging



So far throughout this book, we have seen a number of different practices
for building, developing, and deploying applications, but there is a
whole different set of concerns when it comes to deploying and managing
an application with a worldwide footprint.


There are many different reasons why an application might need to scale to
a global deployment. The first and most obvious one is simply scale.
It might be that your application is so successful or mission critical
that it simply needs to be deployed around the world in order to provide
the capacity needed for its users. Examples of such applications include
a worldwide API gateway for a public cloud provider, a large-scale IoT
product with a worldwide footprint, a highly successful social network,
and more.


Although there are relatively few of us who will build out systems that
require worldwide scale, many more applications require a worldwide
footprint for latency. Even with containers and Kubernetes there is no
getting around the speed of light, and thus to minimize latency to our
applications, it is sometimes necessary to distribute our applications
around the world to minimize the distance to our users.


Finally, an even more common reason for global distribution is locality.
Either for reasons of bandwidth (e.g., a remote sensing platform) or data
privacy (geographic restrictions), it is sometimes necessary to deploy
an application in specific locations for the application to be possible
or successful.


In all of these cases, your application is no longer simply present in a
small handful of production clusters. Instead it is distributed across
tens to hundreds of different geographic locations, and the management
of these locations, as well as the demands of rolling out a globally
reliable service, is a significant challenge. This chapter covers
approaches and practices for doing this successfully.








Distributing Your Image


Before you can even consider running your application around the world,
you need to have that image available in clusters located around the globe.
The first thing to consider is whether your image registry has automatic
geo-replication. Many image registries provided by cloud providers will
automatically distribute your image around the world and resolve a
request for that image to the storage location nearest to the cluster
from which you are pulling the image. Many clouds enable you to decide
where you want to replicate the image; for example, you might know
of locations where you are not going to be present. An example of such a
registry is the Microsoft Azure container registry, but others
provide similar services. If you use a cloud-provided registry that
supports geo-replication, distributing your image around the world
is simple. You push the image into the registry, select the regions for
geo-distribution, and the registry takes care of the rest.


If you are not using a cloud registry, or your provider does not support
automatic geo-distribution of images, you will need to solve that
problem yourself. One option is to use a registry located in a
specific location. There are several concerns about such an approach.
Image pull latency often dictates the speed with which you can launch a
container in a cluster. This in turn can determine how quickly you can
respond to a machine failure, given that generally in the case of a machine
failure, you will need to pull the container image down to a new machine.


Another concern about a single registry is that it can be a single point
of failure. If the registry is located in a single region or a single
datacenter, it’s possible that the registry could go offline due to a
large-scale incident in that datacenter. If your registry goes offline,
your CI/CD pipeline will stop working, and you’ll be unable to deploy new
code. This obviously has a significant impact on both developer
productivity and application operations. Additionally, a single registry
can be much more expensive because you will be using significant
bandwidth each time you launch a new container, and even though container
images are generally fairly small, the bandwidth can add up. Despite
these negatives, a single registry solution can be the appropriate answer for
small-scale applications running in only a few global regions. It
certainly is simpler to set up than full-scale image replication.


If you cannot use cloud-provided geo-replication and you need to
replicate your image, you are on your own to craft a solution for image
replication. To implement such a service, you have two options. The first
is to use geographic names for each image registry (e.g., us.my-registry.io, eu.my-registry.io, etc.). The advantage of
this approach is that it is simple to set up and manage. Each registry
is entirely independent, and you can simply push to all registries at
the end of your CI/CD pipeline. The downside is that
each cluster will require a slightly different configuration to pull the
image from the nearest geographic location. However, given that you
likely will have geographic differences in your application
configurations anyway, this downside is relatively easy to manage and
likely already present in your environment.

















Parameterizing Your Deployment


When you have replicated your image everywhere, you need to parameterize
your deployments for different global locations. Whenever you are
deploying to a variety of different regions, there are bound to be
differences in the configuration of your application in the different
regions. For example, if you don’t have a geo-replicated registry, you
might need to tweak the image name for different regions, but even if you
have a geo-replicated image, it’s likely that different geographic
locations will present different load on your application, and thus the
size (e.g., the number of replicas) as well as other configuration can be
different between regions. Managing this complexity in a manner that
doesn’t incur undue toil is key to successfully managing a worldwide
application.


The first thing to consider is how to organize your different
configurations on disk. A common way to achieve this is by using a
different directory for each global region. Given these directories, it
might be tempting to simply copy the same configurations into each
directory, but doing this is guaranteed to lead to drift and changes
between configurations in which some regions are modified and other regions
are forgotten. Instead, using a template-based approach is the best
idea so that most of the configuration is retained in a single template that is
shared by all regions, and then parameters are applied to that template
to produce the region-specific templates. Helm is a
commonly used tool for this sort of templating (for details, see Chapter 2).

















Load-Balancing Traffic Around the World


Now that your application is running around the world, the next step is
to determine how to direct traffic to the application. In general, you
want to take advantage of geographic proximity to ensure low-latency
access to your service. But you also want to failover across geographic
regions in case of an outage or any other source of service failure.
Correctly setting up the balancing of traffic to your various regional
deployments is key to the establishment of both a performant and
reliable system.


Let’s begin with the assumption that you have a single hostname that you
want to serve as your service. For example, myapp.myco.com. One initial
decision that you need to make is whether you want to use the Domain Name System (DNS) protocol to
implement load balancing across your regional endpoints. If you use DNS
for load balancing, the IP address that is returned when a user makes a
DNS query to myapp.myco.com is based on both the location of the user
accessing your service as well as the current availability of your
service.

















Reliably Rolling Out Software Around the World


After you have templatized your application so that you have proper
configurations for each region, the next important problem is how to
deploy these configurations around the world. It might be tempting to
simultaneously deploy your application worldwide so that you can
efficiently and quickly iterate your application, but this, although Agile,
is an approach that can easily leave you with a global outage. Instead,
for most production applications, a more carefully staged approach to
rolling out your software around the world is more appropriate. When
combined with things like global load balancing, these approaches can
maintain high availability even in the face of major application
failures.


Overall, when approaching the problem of a global rollout, the goal is to
roll out software as quickly as possible, while simultaneously detecting
issues quickly—ideally before they affect any other users. Let’s
assume that by the time you are performing a global rollout, your
application has already passed basic functional and load testing. Before
a particular image (or images) is certified for a global rollout, it
should have gone through enough testing that you believe the
application is operating correctly. It iss important to note that this
does not mean that your application is operating correctly. Though
testing catches many problems, in the real world, application problems
are often first noticed when they are rolled out to production traffic.
This is because the true nature of production traffic is often difficult to
simulate with perfect fidelity. For example, you might test with only
English language inputs, whereas in the real world, you see input from a
variety of languages. Or your set of test inputs is not comprehensive
for the real-world data your application ingests. Of course, any time that
you do see a failure in production that wasn’t caught by testing, it is a
strong indicator that you need to extend and expand your testing. Nonetheless, it is still true that many problems are caught during a
production rollout.


With this in mind, each region that you roll out to is an opportunity to
discover a new problem. And, because the region is a production region,
it is also a potential outage to which you will need to react. These
factors combine to set the stage for how you should approach regional
rollouts.










Pre-Rollout Validation


Before you even consider rolling out a particular version of your software around the world, it’s critically important to validate that
software in some sort of synthetic testing environment. If you have your
CD pipeline set up correctly, all code prior to a
particular release build will have undergone some form of unit testing,
and possibly limited integration testing. However, even with this
testing in place, it’s important to consider two other sorts of tests
for a release before it begins its journey through the release pipeline.
The first is complete integration testing. This means that you assemble
the entirety of your stack into a full-scale deployment of your
application but without any real-world traffic. This complete stack
generally will include either a copy of your production data or
simulated data on the same size and scale as your true production data.
If in the real world, the data in your application is 500 GB, it’s critical that in preproduction testing your dataset is
roughly the same size (and possibly even literally the same dataset).


Generally speaking, this is the most difficult part of setting up a complete
integration test environment. Often, production data is really
present only in production, and generating a synthetic dataset of the same
size and scale is quite difficult. Because of this complexity, setting
up a realistic integration testing dataset is a great example of a task
that it pays to do early on in the development of an application. If you
set up a synthetic copy of your dataset early, when the dataset itself is
quite small, your integration test data grows gradually at the same
pace as your production data. This is generally significantly more
manageable than if you attempt to duplicate your production data when
you are already at scale.


Sadly, many people don’t realize that they need a
copy of their data until they are already at a large scale and the task
is difficult. In such cases it might be possible to deploy a
read/write-deflecting layer in front of your production data store.
Obviously, you don’t want your integration tests writing to production
data, but it is often possible to set up a proxy in front of your
production data store that reads from production but stores writes in a
side table that is also consulted on subsequent reads.


Regardless of how you manage to set up your integration testing
environment, the goal is the same: to validate that your application
behaves as expected when given a series of test inputs and interactions.
There are a variety of ways to define and execute these tests—from the
most manual, a worksheet of tests and human effort (not recommended because
it is fairly error prone), through tests that simulate browsers and user
interactions, like clicks and so forth. In the middle are tests that
probe RESTful APIs but don’t necessarily test the web UI built on top
of those APIs. Regardless of how you define your integration tests, the
goal should be the same: an automated test suite that validates the
correct behavior of your application in response to a complete set of
real-world inputs. For simple applications it may be possible to perform
this validation in premerge testing, but for most large-scale
real-world applications, a complete integration environment is required.


Integration testing will validate the correct operation of your
application, but you should also load-test the application. It is one thing
to demonstrate that the application behaves correctly, it is quite
another to demonstrate that it stands up to real-world load. In any
reasonably high-scale system, a significant regression in performance—for example, a 20% increase in request latency—has a significant impact
on the UX of the application and, in addition to
frustrating users, can cause an application to completely fail. Thus, it
is critical to ensure that such performance regressions do not happen in
production.


Like integration testing, identifying the correct way to load-test an
application can be a complex proposition; after all, it requires that
you generate a load similar to production traffic but in a synthetic and
reproduceable way. One of the easiest ways to do this is to simply
replay the logs of traffic from a real-world production system. Doing
this can be a great way to perform a load-test whose characteristics
match what your application will experience when deployed. However, using
replay isn’t always foolproof. For example, if your logs are old, and
your application or dataset has changed, it’s possible that the
performance on old, replayed logs will be different that the performance
on fresh traffic. Additionally, if you have real-world dependencies that
you haven’t mocked, it’s possible that the old traffic will be invalid when
sent over to the dependencies (e.g., the data might no longer exist).


Because of these challenges, many systems, even critical systems, are
developed for a long time without a load test. Like modeling your
production data, this is a clear example of something that is easier to maintain if you start earlier. If you build a load-test
when your application has only a handful of dependencies, and improve
and iterate the load-test as you adapt your application, you will have a
far easier time than if you attempt to retrofit load-testing onto an
existing large-scale application.


Assuming that you have crafted a load test, the next question is the
metrics to watch when load-testing your application. The obvious ones
are requests per second and request latency because those are clearly the
user-facing metrics.


When measuring latency, it’s important to realize
that this is actually a distribution, and you need to measure both the
mean latency as well as the outlier percentiles (like the 90th and 99th
percentile) since they represent the “worst” UX of your
application. Problems with very long latencies can be hidden if you just
look at the averages, but if 10% of your users are having a bad
time, it can have a significant impact on the success of your product.


In addition, it’s worth looking at the resource usage (CPU, memory,
network, disk) of the application under load test. Though these metrics
do not directly contribute to the UX, large changes in
resource usage for your application should be identified and understood
in preproduction testing. If your application is suddenly consuming
twice as much memory, it’s something you will want to investigate, even
if you pass your load test, because eventually such significant resource
growth will affect the quality and availability of your application.
Depending on the circumstances, you might continue bringing a release to
production, but at the same time, you need to understand why the
resource footprint of your application is changing.

















Canary Region


When your application appears to be operating
correctly, the first step should be a canary region. A canary region is
a deployment that receives real-world traffic from people and teams who
want to validate your release. These can be internal teams that depend
on your service, or they might be external customers who are using your
service. Canaries exist to give a team some early warning about changes
that you are about to roll out that might break them. No matter how good
your integration and load testing, it’s always possible that a bug will
slip through that isn’t covered by your tests, but is critical to some
user or customer. In such cases, it is much better to catch these issues
in a space where everyone using or deploying against the service
understands that there is a higher probability of failure. This is what
the canary region is.


Canaries must be treated as a production region in
terms of monitoring, scale, features, and so on. However, because it is the
first stop on the release process, it is also the location most likely
to see a broken release. This is OK; in fact it is precisely the point.
Your customers will knowingly use a canary for lower-risk use cases (e.g., development or internal users) so that they can get an early
indication of any breaking changes that you might be rolling out as part
of a release.


Because the goal of a canary is to get early feedback on a
release, it is a good idea to leave the release in the canary region for
a few days. This enables a broad collection of customers to access it before you move on to additional regions. The need for this
length of time is that sometimes a bug is probabilistic (e.g., 1% of
requests) or it manifests only in an edge case that takes some time
to present itself. It might not even be severe enough to trigger automated
alerts, but there might be a problem in business logic that is
visible only via customer interactions.

















Identifying Region Types


When you begin thinking about rolling out your software across the world,
it’s important to think about the different characteristics of your
different regions. After you begin rolling out software to production
regions, you need to run it through integration testing as well as initial
canary testing. This means that any issues you find will be issues that
did not manifest in either of these settings. Think about your different
regions. Do some get more traffic than others? Are some accessed in a
different way? An example of a difference might be that in the
developing world, traffic is more likely to come from mobile web
browsers. Thus, a region that is geographically close to more developing
countries might have significantly more mobile traffic than your test or
canary regions.


Another example might be input language. Regions in
non-English speaking areas of the world might send more Unicode characters
that could manifest bugs in string or character handling. If you are
building an API-driven service, some APIs might be more popular in some
regions versus others. All of these things are examples of differences that
might be present in your application and might be different than your canary
traffic. Each of these differences is a possible source of a production
incident. Build a table of different characteristics that you think are
important. Identifying these characteristics will help you plan your
global rollout.

















Constructing a Global Rollout


Having identified the characteristics of your regions, you want
to identify a plan for rolling out to all regions. Obviously, you
want to minimize the impact of a production outage, so a great first
region to start with is a region that looks mostly like your canary and
has light user traffic. Such a region is very unlikely to have problems,
but if they do occur, the impact is also smaller because the region
receives less traffic.


With a successful rollout to the first production region,
you need to decide how long to wait before moving on to the next region.
The reason for waiting is not to artificially delay your release; rather, it’s to wait long enough for a fire to send up smoke. This time-to-smoke period is a measure of generally how long it takes between a rollout
completing and your monitoring seeing some sign of a problem. Clearly if
a rollout contains a problem, the minute the rollout completes, the
problem is present in your infrastructure. But even though it is
present, it can take some time to manifest. For example, a memory leak
might take an hour or more before the impact of the leaked memory is
clearly discernible in monitoring or is affecting users. The time-to-smoke is the probability distribution that indicates how long you
should wait in order to have a strong probability that your release is
operating correctly. Generally speaking, a decent rule of thumb is
doubling the average time it takes for a problem to manifest.


If, over the past six months, each outage took an average of an hour to
show up, waiting two hours between regional rollouts gives you a
decent probability that your release is successful. If you want to
derive richer (and more meaningful) statistics based on the history of
your application, you can estimate this time-to-smoke even more
closely.


Having successfully rolled out to a canary-like, low-traffic
region, it’s time to roll out to a canary-like, high-traffic region.
This is a region where the input data looks like that in your canary,
but it receives a large volume of traffic. Because you successfully
rolled out to a similar looking region with lower traffic, at this point
the only thing you are testing is your application’s ability to scale.
If you safely perform this rollout, you can have strong confidence
in the quality of your release.


After you have rolled out to a high-traffic region receiving canary-like
traffic, you should follow the same pattern for other potential
differences in traffic. For example, you might roll out to a low-traffic
region in Asia or Europe next. At this point, it might be tempting to
accelerate your rollout, but it is critically important to roll
out only to a single region that represents any significant change in either
input or load to your release. After you are confident that you have
tested all of the potential variability in the production input to your
application, you then can start parallizing the release to speed it up
with strong confidence that it is operating correctly and your rollout
can complete successfully.
























When Something Goes Wrong


So far, we have seen the pieces that go into setting up a worldwide
rollout for your software system, and we have seen the ways that you can
structure this rollout to minimize the chances that something goes
wrong. But what do you do when something actually does go wrong? All
emergency responders know that in the heat and panic of a crisis,
your brain is significantly stressed and it is much more difficult to
remember even the simplest processes. Add to this pressure the
knowledge that when an outage happens, everyone in the company from the
CEO down is going to be feverishly waiting for the “all clear” signal,
and you can see how easy it is to make a mistake under this pressure.
Additionally, in such circumstances, a simple mistake, like forgetting a
particular step in a recovery process, can make a bad situation an order
of magnitude worse.


For all of these reasons, it is critical that you are
capable of responding quickly, calmly, and correctly when a problem
happens with a rollout. To ensure that everything necessary is done, and
done in the correct order, it pays to have a clear checklist of tasks
organized in the order in which they are to be executed as well as the
expected output for each step. Write down every step, no matter how
obvious it might seem. In the heat of the moment, even the most obvious
and easy steps can be the ones that are forgotten and accidentally skipped.


The way that other first responders ensure a correct response in a
high-stress situation is to practice that response without the stress of
the emergency. The same practice applies to all the activities that you might take in response to a problem with your rollout. You begin by identifying all of the steps needed to respond to an issue and perform a
rollback. Ideally, the first response is to “stop the bleeding,” to move
user traffic away from the impacted region(s) and into a region where
the rollout hasn’t happened and your system is operating correctly. This
is the first thing you should practice. Can you successfully direct
traffic away from a region? How long does it take?


The first time you attempt to move traffic using a DNS-based traffic load balancer, you will realize just how long and in how many ways our computers cache DNS entries. It can take nearly a day to fully drain traffic away from a region using a DNS-based traffic shaper. Regardless of how your first attempt to drain traffic goes, take notes. What worked well? What went poorly? Given this data, set a goal for how long a traffic drain should take in terms of time to drain a percentage of traffic, for example, being able to drain 99% of traffic in less than 10 minutes. Keep practicing until you can achieve that goal. You might need to make architectural changes to make this possible. You might need to add automation so that humans aren’t cutting and pasting commands. Regardless of necessary changes, practice will ensure that you are more capable at responding to an incident and that you will learn where your system design needs to be improved.


The same sort of practice applies to every action that you might take on
your system. Practice a full-scale data recovery. Practice a global
rollback of your system to a previous version. Set goals for the length
of time it should take. Note any places where you made mistakes, and
add validation and automation to eliminate the possibility of mistakes.
Achieving your incident reaction goals in practice gives you
confidence that you will be able to respond correctly in a real
incident. But just like every emergency responder continues to train and
learn, you too need to set up a regular cadence of practice to ensure
that everyone on a team stays well versed in the proper responses and
(perhaps more important) that your responses stay up to date as your
system changes.

















Worldwide Rollout Best Practices



	
Distribute each image around the world. A successful rollout depends on
the release bits (binaries, images, etc.) being nearby to where they will be
used. This also ensures reliability of the rollout in the presence of networking slowdowns or irregularities. Geographic distribution should be
a part of your automated release pipeline for guaranteed consistency.



	
Shift as much of your testing as possible to the left by having as much extensive
integration and replay testing of your application as possible. You want to start a rollout only with a release that you strongly believe to be correct.



	
Begin a release in a canary region, which is a preproduction environment
in which other teams or large customers can validate their use of your service
before you begin a larger-scale rollout.



	
Identify different characteristics of the regions where you are rolling out.
Each difference can be one that causes a failure and a full or partial outage. Try to roll out to low-risk regions first.



	
Document and practice your response to any problem or process (e.g., a rollback) that you might encounter. Trying to remember what to do in the
heat of the moment is a recipe for forgetting something and making a
bad problem worse.





















Summary


It might seem unlikely today, but most of us will end up running a
worldwide scale system sometime during our careers. This chapter
described how you can gradually build and iterate your system to be a
truly global design. It also discussed how you can set up your rollout
to ensure minimal downtime of the system while it is being updated.
Finally, we covered setting up and practicing the processes and procedures
necessary to react when (note that we didn’t say “if”) something goes
wrong.












Chapter 8. Resource Management



In this chapter, we focus on the best practices for managing and optimizing
Kubernetes resources. We discuss workload scheduling, cluster
management, pod resource management, namespace management, and scaling
applications. We also dive into some of the advanced scheduling
techniques that Kubernetes provides through affinity, anti-affinity, taints,
tolerations, and nodeSelectors.


We show you how to implement resource limits, resource
requests, pod Quality of Service, PodDisruptionBudgets, LimitRangers, and
anti-affinity policies.








Kubernetes Scheduler


The Kubernetes scheduler is one of the main components that is hosted in
the control plane. The scheduler allows Kubernetes to make placement
decisions for pods deployed to the cluster. It deals with
optimization of resources based on constraints of the cluster as well as user-specified constraints. It uses a scoring algorithm that is based on
predicates and priorities.










Predicates


The first function Kubernetes uses to make a scheduling decision is the
predicate function, which determines what nodes the pods can be scheduled on.
It implies a hard constraint, so it returns a value of true or false.
An example would be when a pod requests 4 GB of memory and a
node cannot satisfy this requirement. The node would return a false
value and would be removed from viable nodes for the pod to be scheduled
to. Another example would be if the node is set to unschedulable; it would then be removed from the scheduling decision.


The scheduler checks the predicates based on order of restrictiveness and
complexity. As of this writing, the following are the predicates that the
scheduler checks for:


    CheckNodeConditionPred,
    CheckNodeUnschedulablePred,
    GeneralPred,
    HostNamePred,
    PodFitsHostPortsPred,
    MatchNodeSelectorPred,
    PodFitsResourcesPred,
    NoDiskConflictPred,
    PodToleratesNodeTaintsPred,
    PodToleratesNodeNoExecuteTaintsPred,
    CheckNodeLabelPresencePred,
    CheckServiceAffinityPred,
    MaxEBSVolumeCountPred,
    MaxGCEPDVolumeCountPred,
    MaxCSIVolumeCountPred,
    MaxAzureDiskVolumeCountPred,
    MaxCinderVolumeCountPred,
    CheckVolumeBindingPred,
    NoVolumeZoneConflictPred,
    CheckNodeMemoryPressurePred,
    CheckNodePIDPressurePred,
    CheckNodeDiskPressurePred,
    MatchInterPodAffinityPred

















Priorities


Whereas predicates indicate a true or false value and dismiss a node for
scheduling, the priority value ranks all of the valid nodes based on
a relative value. The following priorities are scored for nodes:


    EqualPriority
    MostRequestedPriority
    RequestedToCapacityRatioPriority
    SelectorSpreadPriority
    ServiceSpreadingPriority
    InterPodAffinityPriority
    LeastRequestedPriority
    BalancedResourceAllocation
    NodePreferAvoidPodsPriority
    NodeAffinityPriority
    TaintTolerationPriority
    ImageLocalityPriority
    ResourceLimitsPriority


The scores will be added, and then a node is given its final score to
indicate its priority. For example, if a pod requires 600 millicores and
there are two nodes, one with 900 millicores available and one with 1,800
millicores, the node with 1,800 millicores available will have a
higher priority.


If nodes are returned with the same priority, the scheduler will use
a selectHost() function, which selects a node in a round-robin fashion.
























Advanced Scheduling Techniques


For most cases, Kubernetes does a good job of optimally scheduling pods
for you. It takes into account pods that are placed only on nodes that have
sufficient resources. It also tries to spread pods from the same ReplicaSet
across nodes to increase availability and will balance resource utilization. When this is
not good enough, Kubernetes gives you the flexibility to influence how
resources are scheduled. For example, you might want to schedule pods
across availability zones to mitigate a zonal failure causing downtime
to your application. You might also want to
colocate pods to a specific host for performance benefits.










Pod Affinity and Anti-Affinity


Pod affinity and anti-affinity let you set rules to place pods relative
to other pods. These rules allow you to modify the scheduling behavior
and override the scheduler’s placement decisions.


For example, an anti-affinity rule would allow you to spread pods from a
ReplicaSet across multiple datacenter zones. It does this by utilizing
keylabels set on the pods. Setting the key/value pairs instructs the
scheduler to schedule the pods on the same node (affinity) or prevent the
pods from scheduling on the same nodes (anti-affinity).


Following is an example of setting a pod anti-affinity rule:


apiVersion: apps/v1
kind: Deployment
metadata:
  name: nginx
spec:
  selector:
    matchLabels:
      app: frontend
  replicas: 4
  template:
    metadata:
      labels:
        app: frontend
    spec:
      affinity:
        podAntiAffinity:
          requiredDuringSchedulingIgnoredDuringExecution:
          - labelSelector:
              matchExpressions:
              - key: app
                operator: In
                values:
                - frontend
            topologyKey: "kubernetes.io/hostname"
      containers:
      - name: nginx
        image: nginx:alpine


This manifest of an NGINX deployment has four replicas and the selector
label app=frontend. The deployment has a PodAntiAffinity stanza
configured that will ensure that the scheduler does not colocate replicas on
a single node. This ensures that if a node fails, there are still
enough replicas of NGINX to serve data from its cache.

















nodeSelector


A nodeSelector is the easiest way to schedule pods to a particular node.
It uses label selectors with key/value pairs to make the
scheduling decision. For example, you might want to schedule pods to a
specific node that has specialized hardware, such as a GPU. You might ask,
“Can’t I do this with a node taint?” The answer is, yes, you can. The
difference is that you use a nodeSelector when you want to request a GPU-enabled node, whereas a taint reserves a node for only GPU workloads.
You can use both node taints and nodeSelectors together to reserve the
nodes for only GPU workloads, and use the nodeSelector to automatically
select a node with a GPU.


Following is an example of labeling a node and using a nodeSelector in the pod specification:


kubectl label node <node_name> disktype=ssd


Now, let’s create a pod specification with a nodeSelector key/value of disktype: ssd:


apiVersion: v1
kind: Pod
metadata:
  name: redis
  labels:
    env: prod
spec:
  containers:
  - name: frontend
    image: nginx:alpine
    imagePullPolicy: IfNotPresent
  nodeSelector:
    disktype: ssd


Using the nodeSelector schedules the pod to only nodes that have the
label disktype=ssd:

















Taints and Tolerations


Taints are used on nodes to repel pods from being scheduled on them. But isn’t that what anti-affinity is for?
Yes, but taints take a different approach than pod anti-affinity and serve a
different use case. For example, you might have pods that require a
specific performance profile, and you do not want to schedule any other
pods to the specific node. Taints work in conjunction with tolerations,
which allow you to override tainted nodes. The combination of the two
gives you fine-grained control over anti-affinity rules.


In general, you will use taints and tolerations for the following use cases:



	
Specialized node hardware



	
Dedicated node resources



	
Avoiding degraded nodes






There are multiple taint types that affect scheduling and running
containers:


	NoSchedule

	
A hard taint that prevents scheduling on the node



	PreferNoSchedule

	
Schedules only if pods cannot be scheduled on other nodes



	NoExecute

	
Evicts already-running pods on the node



	NodeCondition

	
Taints a node if it meets a specific condition






Figure 8-1 shows an example of a node that is tainted with
gpu=true:NoSchedule. Pod Spec 1 has a toleration key with
gpu, so it will be scheduled to the tainted node. Pod Spec 2
has a toleration key of no-gpu, so it will not be scheduled to the
node.



[image: Figure 9.1]
Figure 8-1. Kubernetes taints and tolerations




When a pod cannot be scheduled due to tainted nodes, you’ll see an error
message like the following:


Warning:  FailedScheduling  10s (x10 over 2m)  default-scheduler  0/2 nodes are available: 2 node(s) had taints that the pod did not tolerate.


Now that we’ve seen how we can manually add taints to affect scheduling,
there is also the powerful concept of taint-based eviction, which allows
the eviction of running pods. For example, if a node becomes unhealthy
due to a bad disk drive, the taint-based eviction can reschedule the pods
on the host to another healthy node in the cluster.
























Pod Resource Management


One of the most important aspects of managing applications in Kubernetes
is appropriately managing pod resources. Managing pod resources consists
of managing CPU and memory to optimize the overall utilization of your
Kubernetes cluster. You can manage these resources at the
container level and at the namespace level. There are other resources,
such as network and storage, but Kubernetes doesn’t yet have a way to
set requests and limits for those resources.


For the scheduler to optimize resources and make intelligent placement
decisions, it needs to understand the requirements of an application. As
an example, if a container (application) needs a minimum of 2 GB to
perform, we need to define this in our pod specification, so the scheduler
knows that the container requires 2 GB of memory on the host to which it schedules
the container.










Resource Request


A Kubernetes resource request defines that a container requires X amount
of CPU or memory to be scheduled. If you were to specify in the pod
specification that a container requires 8 GB for its resource request and all
your nodes have 7.5 GB of memory, the pod would not be scheduled. If
the pod is not able to be scheduled, it will go into a pending state
until the required resources are available.


So let’s take a look at how this works in our cluster.


To determine the available free resource in your cluster, use
kubectl top:


kubectl top nodes


The output should look like this (the memory size might be different for
your cluster):

NAME                       CPU(cores)   CPU%   MEMORY(bytes)   MEMORY%
aks-nodepool1-14849087-0   524m         27%    7500Mi          33%
aks-nodepool1-14849087-1   468m         24%    3505Mi          27%
aks-nodepool1-14849087-2   406m         21%    3051Mi          24%
aks-nodepool1-14849087-3   441m         22%    2812Mi          22%


As this example shows, the largest amount of memory available
to a host is 7,500 Mi, so let’s schedule a pod that requests
8,000 Mi of memory:


apiVersion: v1
kind: Pod
metadata:
  name: memory-request
spec:
  containers:
  - name: memory-request
    image: polinux/stress
    resources:
      requests:
        memory: "8000Mi"


Notice that the pod will stay pending, and if you look at the events on
the pods, you’ll see that no nodes are avalaible to schedule the pods:


kubectl describe pods memory-request


The output of the event should
look like this:

Events:
  Type     Reason            Age                From               Message
  Warning  FailedScheduling  27s (x2 over 27s)  default-scheduler  0/3 nodes are available: 3 Insufficient memory.

















Resource Limits and Pod Quality of Service


Kubernetes resource limits define the maximum CPU or memory that a pod is
given. When you specify limits for CPU and memory, each takes a different action when it reaches the specified limit. With CPU
limits, the container is throttled from using more than its specified
limit. With memory limits, the pod is restarted if it reaches its
limit. The pod might be restarted on the same host or a different host
within the cluster.


Specifying limits for containers is a good practice to ensure that
applications are allotted their fair share of resources within the cluster:


apiVersion: v1
kind: Pod
metadata:
  name: cpu-demo
  namespace: cpu-example
spec:
  containers:
  - name: frontend
    image: nginx:alpine
    resources:
      limits:
        cpu: "1"
      requests:
        cpu: "0.5"


apiVersion: v1
kind: Pod
metadata:
  name: qos-demo
  namespace: qos-example
spec:
  containers:
  - name: qos-demo-ctr
    image: nginx:alpine
    resources:
      limits:
        memory: "200Mi"
        cpu: "700m"
      requests:
        memory: "200Mi"
        cpu: "700m"


When a pod is created, it’s assigned one of the following Quality of Service (QoS) classes:



	
Guaranteed



	
Burstable



	
Best effort






The pod is assigned a QoS of  guaranteed when CPU and memory both have request and limits that match. A burstable QoS is when the limits are set higher than the request, meaning that the container is guaranteed its request, but it can also burst to the limit set for the container. A pod is assigned best effort when no request or limits are set for the containers in the pod.


Figure 8-2 depicts how QoS is assigned to pods.



[image: Figure 9.2]
Figure 8-2. Kubernetes QoS



Note

With guaranteed QoS, if you have multiple containers in your pod, you’ll need to have memory request and limits set for each container, and you’ll also need CPU request and limits set for each container. If the request and limits are not set for all containers, it will not be assigned guaranteed QoS.



















PodDisruptionBudgets


At some point in time, Kubernetes might need to evict pods from a host.
There are two types of evictions: voluntary and
involuntary disruptions. Involuntary disruptions can be caused by
hardware failure, network partitions, kernel panics, or a node being out
of resources. Voluntary evictions can be caused by performing
maintenance on the cluster, the Cluster Autoscaler deallocating nodes, or
updating pod templates. To minimize the impact to your application, you
can set a PodDisruptionBudget to ensure uptime of the application when
pods need to be evicted. A PodDisruptionBudget allows you to set a
policy on the minimum available and maximum unavailable pods
during voluntary eviction events. An example of a voluntary eviction would be when draining a node to perform maintenance on the node.


For example, you might specify that no more than 20% of pods belonging to
your application can be down at a given time. You could also specify
this policy in terms of X number of replicas that must always be available.












Minimum available


In the following example, we set a PodDisruptionBudget to handle a minimum
available to 5 for app: front-end.


apiVersion: policy/v1beta1
kind: PodDisruptionBudget
metadata:
  name: frontend-pdb
spec:
  minAvailable: 5
  selector:
    matchLabels:
      app: frontend


In this example, the PodDisruptionBudget specifies that for the frontend app
there must always be five replica pods available at any given time. In this
scenario, an eviction can evict as many pods as it wants, as long as five
are available.

















Maximum unavailable


In the next example, we set a PodDisruptionBudget to handle a maximum
unavailable to 10 replicas for the frontend app:


apiVersion: policy/v1beta1
kind: PodDisruptionBudget
metadata:
  name: frontend-pdb
spec:
  maxUnavailable: 20%
  selector:
    matchLabels:
      app: frontend


In this example, the PodDisruptionBudget specifies that no more than 20% of replica pods can be unavailable at any given
time. In this scenario, an eviction can evict a maximum of 20% of pods during a
voluntary disruption.


It’s essential that when designing your Kubernetes cluster you think
about the sizing of the cluster resources so that you can handle a number of
failed nodes. For example, if you have a four-node cluster and one node
fails, you will be losing a quarter of your cluster capacity.

Note

When specifying a pod disruption budget as a percentage, it might not correlate to a specific number of pods. For example, if your application has seven pods and you specify maxAvailable to 50%, it’s not clear whether that is three or four pods. In this case, Kubernetes rounds up to the closest integer, so the maxAvailable would be four pods.
























Managing Resources by Using Namespaces


Namespaces in Kubernetes give you a nice logical separation of
resources deployed to a cluster. This allows you to set resource quotas
per namespace, Role-Based Access Control (RBAC) per namespace, and also network policies per
namespace. It gives you soft multitenancy features, so you can separate
out workloads in a cluster without dedicating specific infrastructure to
a team or application. This allows you to get the most out of your
cluster resource while also maintaining a logical form of separation.


For example, you could create a namespace per team and give each team a
quota on the number of resources that it can utilize, such as CPU and
memory.


When designing how you want to configure a namespace, you should think about how you want to control access to a specific set of applications. If you have multiple teams that will be using a single cluster, it is typically best to allocate a namespace to each team. If the cluster is dedicated to only one team, it might make sense to allocate a namespace for each service deployed to the cluster. There’s no single solution to this; your team organization and responsibilities will drive the design.


After deploying a Kubernetes cluster, you’ll see the following namespaces
in your cluster:


	kube-system

	
    Kubernetes internal components are deployed here, such as
coredns, kube-proxy, and metrics-server.



	default

	
    This is the default namespace that is used when you don’t specify
a namespace in the resource object.



	kube-public

	
    Used for anonymous and unauthenticated content, and
reserved for system usage.






You’ll want to avoid using the default namespace because it can make it
really easy to make mistakes when managing resources within your
cluster.


When working with namespaces, you need to use the –namespace flag, or -n
for short, when working with kubectl:


kubectl create ns team-1


kubectl get pods --namespace team-1


You can also set your kubectl context to a specific namespace, which is
useful so that you don’t need to add the –namespace flag with every command.
You can set your namespace context by using the following command:


kubectl config set-context my-context --namespace=team-1

Tip

When dealing with multiple namespaces and clusters, it can be a pain to set different namespaces and cluster context. We’ve found that using kubens and kubectx can help make it easy to switch between these different namespaces and contexts.



















ResourceQuota


When multiple teams or applications share a single cluster, it’s important to set up ResourceQuotas on your namespaces. ResourceQuotas allow you to divvy up the cluster in logical units so that no single namespace can consume more than its share of resources in the cluster.
The following resources can have a quota set for them:



	
Compute resources



	
cpu: Sum of CPU requests cannot exceed this amount



	
limits.cpu: Sum of CPU limits cannot exceed this amount



	
memory: Sum of memory requests cannot exceed this amount











	
Storage resources



	
requests.storage: Sum of storage requests cannot exceed this value



	
persistentvolumeclaims: The total number of PersistentVolume claims
that can exist in the namespace



	
storageclass.request: Volume claims associated with the specified
storage-class cannot exceed this value



	
storageclass.pvc:  The total number of PersistentVolume claims that
can exist in the namespace







	
Object count quotas (only an example set)



	
count/pvc



	
count/services



	
count/deployments



	
count/replicasets










As you can see from this list, Kubernetes gives you fine-grained control over how you carve up resource quotas per namespace.
This allows you to more efficiently operate resource usage in a
multitenant cluster.


Let’s see how these quotas actually work by setting up a quota on a
namespace. Apply the following YAML file to the team-1 namespace:


apiVersion: v1
kind: ResourceQuota
metadata:
  name: mem-cpu-demo
  namespace: team-1
spec:
  hard:
    requests.cpu: "1"
    requests.memory: 1Gi
    limits.cpu: "2"
    limits.memory: 2Gi
    persistentvolumeclaims: "5"
    requests.storage: "10Gi


kubectl apply quota.yaml -n team-1


This example sets quotas for CPU, memory, and storage on the team-1
namespace.


Now let’s try to deploy an application to see how the resource quotas
affect the deployment:


kubectl run nginx-quotatest --image=nginx --restart=Never --replicas=1 --port=80 --requests='cpu=500m,memory=4Gi' --limits='cpu=500m,memory=4Gi' -n team-1


This deployment will fail with the following error due to the memory quota exceeding 2Gi of
memory:


Error from server (Forbidden): pods "nginx-quotatest" is forbidden: exceeded quota: mem-cpu-demo


As this example demonstrates, setting resource quotas can let
you deny deployment of resources based on policies you set for the
namespace.

















LimitRange


We’ve discussed setting request and limits at the container
level, but what happens if the user forgets to set these in the pod
specification? Kubernetes provides an admission controller that allows you to
automatically set these when there are none indicated in the specification.


First, create a namespace to work with quotas and LimitRanges:


kubectl create ns team-1


Apply a LimitRange to the namespace to apply defaultRequest
in limits:


apiVersion: v1
kind: LimitRange
metadata:
  name: team-1-limit-range
spec:
  limits:
  - default:
      memory: 512Mi
    defaultRequest:
      memory: 256Mi
    type: Container


Save this to limitranger.yaml and then run kubectl apply:


kubectl apply -f limitranger.yaml -n team-1


Verify that the LimitRange applies default limits and requests:

 kubectl run team-1-pod --image=nginx -n team-1


Next, let’s describe the pod to see what requests and limits were set on it:

kubectl describe pod team-1-pod -n team-1


You should see the following requests and limits set on the pod specification:

Limits:
      memory:  512Mi
    Requests:
      memory:  256Mi


It’s important to use LimitRange when using ResourceQuotas, because if
no request or limits are set in the specification, the deployment will be
rejected.

















Cluster Scaling


One of the first decisions you need to make when deploying a cluster
is the instance size you’ll want to use within your cluster. This
becomes more of an art than science, especially when you’re
mixing workloads in a single cluster. You’ll first want to identify what
a good starting point is for the cluster; aiming for a good
balance of CPU and memory is one option. After you’ve decided
on a sensible size for the cluster, you can use a couple of
Kubernetes core primitives to manage the scaling of your cluster.












Manual scaling


Kubernetes makes it easy to scale your cluster, especially if you’re
using tools like Kops or a managed Kubernetes offering. Scaling your
cluster manually is typically just choosing a new number of nodes, and
the service will add the new nodes to your cluster.


These tools also allow you to create node pools, which allows you to
add new instance types to an already running cluster. This becomes very
useful when running mixed workloads within a single cluster. For
example, one workload might be more CPU driven, whereas the other workloads
might be memory-driven applications. Node pools allow you to mix multiple
instance types within a single cluster.


But perhaps you don’t want to manually do this and want it to autoscale. There are things that you need to take into consideration with
cluster autoscaling, and we have found that most users are better off
starting with just manually scaling their nodes proactively when
resources are needed. If your workloads are highly variable, cluster
autoscaling can be very useful.

















Cluster autoscaling


Kubernetes provides a Cluster Autoscaler add-on that allows you to set
the minimum nodes available to a cluster and also the maximum number of nodes
to which your cluster can scale. The Cluster Autoscaler bases its scale
decision on when a pod goes pending. For example, if the Kubernetes
scheduler tries to schedule a pod with a memory request of 4,000 Mib and
the cluster has only 2,000 Mib available, the pod will go into a pending
state. After the pod is pending, the Cluster Autoscaler will add a node to
the cluster. As soon as the new node is added to the cluster, the pending pod
is scheduled to the node. The downside of the Cluster Autoscaler is
that a new node is added only before a pod goes pending, so your workload may end up waiting for a new node to come online when it is scheduled. As of Kubernetes v1.15, the Cluster Autoscaler doesn’t support scaling based on custom metrics.


The Cluster Autoscaler can also reduce the size of the cluster after
resources are no longer needed. When the resources are no longer needed,
it will drain the node and reschedule the pods to new nodes in the
cluster. You’ll want to use a PodDisruptionBudget to
ensure that you don’t negatively affect your application when it performs
its drain operation to remove the node from the cluster.






















Application Scaling


Kubernetes provides multiple ways to scale applications in your cluster.
You can scale an application by manually changing the number of replicas
within a deployment. You can also change the ReplicaSet or replication
controller, but we don’t recommend managing your applications through
those implementations. Manual scaling is perfectly fine for workloads
that are static or when you know the times that the workload spikes, but for
workloads that experience sudden spikes or workloads that are not static,
manual scaling is not ideal for the application. Happily, Kubernetes
also provides a Horizontal Pod Autoscaler (HPA) to automatically scale
workloads for you.


Let’s first take a look at how you can manually scale a deployment by
applying the following Deployment manifest:


apiVersion: extensions/v1beta1
kind: Deployment
metadata:
  name: frontend
spec:
  replicas: 3
  template:
    metadata:
      name: frontend
      labels:
        app: frontend
    spec:
      containers:
      - image: nginx:alpine
        name: frontend
        resources:
          requests:
            cpu: 100m


This example deploys three replicas of our frontend service. We then can scale this deployment by using the kubectl scale command:


kubectl scale deployment frontend --replicas 5


This results in five replicas of our frontend service. This is great,
but let’s look at how we can add some intelligence and automatically
scale the application based on metrics.

















Scaling with HPA


The Kubernetes HPA allows you to scale your
deployments based on CPU, memory, or custom metrics. It performs a watch
on the deployment and pulls metrics from the Kubernetes metrics-server.
It also allows you to set the minimum and maximum number of pods available.
For example, you can define an HPA policy that sets the minimum number
of pods to 3 and the maximum number of pods to 10, and it scales
when the deployment reaches 80% CPU usage. Setting the minimum and maximum is
critical because you don’t want the HPA to scale  the replicas to an
infinite amount due to an application bug or issue.


The HPA has the following default setting for sync metrics, upscaling, and
downscaling replicas:


	horizontal-pod-autoscaler-sync-period

	
    Default of 30 seconds for
syncing metrics



	horizontal-pod-autoscaler-upscale-delay

	
    Default of three minutes
between two upscale operations



	horizontal-pod-autoscaler-downscale-delay

	
    Default of five minutes
between two downscale operations






You can change the defaults by using their relative flags, but you need to be
careful when doing so. If your workload is extremely
variable, it’s worth playing around with the settings to optimize them for your specific
use case.


Let’s go ahead and set up an HPA policy for the frontend application that
you deployed in the previous exercise.


First, expose the deployment on port 80:


 kubectl expose deployment frontend --port 80


Next, set the autoscale policy:

kubectl autoscale deployment frontend --cpu-percent=50 --min=1 --max=10


This sets the policy to scale your app from a minimum of 1 replica to
a maximum of 10 replicas and will invoke the scale operation when the
CPU load reaches 50%.


Let’s generate some load so that we can see the deployment autoscale:

kubectl run -i --tty load-generator --image=busybox /bin/sh

Hit enter for command prompt
while true; do wget -q -O- http://frontend.default.svc.cluster.local; done

kubectl get hpa


You might need to wait a few minutes to see the replicas scale up
automatically.

Note

To learn more about the internal details of the autoscaling algorithm, check out the design proposal.



















HPA with Custom Metrics


In Chapter 4, we introduced the role that the metrics server plays in monitoring our systems in Kubernetes. With the Metrics Server API, we can also support scaling our applications with custom metrics. The Custom Metrics API and Metrics Aggregator allows third-party providers to plug in and extend the metrics, and HPA can then scale based on these external metrics. For example, instead of just basic CPU and memory metrics, you could scale based on a metric you’re collecting on an external storage queue. By utilizing custom metrics for autoscaling, you have the ability to scale application-specific metrics or external service metrics.

















Vertical Pod Autoscaler


The Vertical Pod Autoscaler (VPA) differs from the HPA in that it doesn’t scale replicas; instead, it automatically scales requests. Earlier
in the chapter, we talked about setting requests on our pods and how
that guarantees X amount of resources for a given container. The VPA frees you from manually adjusting these requests, and
automatically scales up and scales down pod requests
for you. For workloads that can’t scale out due to their architecture,
this works well for automatically scaling the resources. For example, a
MySQL database doesn’t scale the same way as a stateless web
frontend. With MySQL, you might want to set the Master nodes to
automatically scale up based on workload.


The VPA is more complex than the HPA, and it consists of three components:


	Recommender

	
    Monitors the current and past resource consumption, and
provides recommended values for the container’s CPU and memory requests



	Updater

	
    Checks which of the pods have the correct resources set, and if they don’t, kills them so that they can be re-created by their controllers with
the updated requests



	Admission Plugin

	
Sets the correct resource requests on new pods






As of Kubernetes v1.15, the VPA is not recommended
for production deployments.
























Resource Management Best Practices



	
Utilize pod anti-affinity to spread workloads across multiple
availability zones to ensure high availability for your application.



	
If you’re using specialized hardware, such as GPU-enabled nodes, ensure that only
workloads that need GPUs are scheduled to those nodes by utilizing
taints.



	
Use NodeCondition taints to proactively avoid failing or degraded
nodes.



	
Apply nodeSelectors to your pod specifications to schedule pods to specialized
hardware that you have deployed in the cluster.



	
Before going to production, experiment with different node sizes to
find a good mix of cost and performance for node types.



	
If you’re deploying a mix of workloads with different performance
characteristics, utilize node pools to have mixed node types in a single
cluster.



	
Ensure that you set memory and CPU limits for all pods deployed to your
cluster.



	
Utilize ResourceQuotas to ensure that multiple teams or applications are alotted
their fair share of resources in the cluster.



	
Implement LimitRange to set default limits and requests for pod specifications
that don’t set limits or requests.



	
Start with manual cluster scaling until you understand your workload
profiles on Kubernetes. You can use autoscaling, but it comes with additional
considerations around node spin-up time and cluster scale down.



	
Use the HPA for workloads that are variable and that
have unexpected spikes in their usage.





















Summary


In this chapter, we discussed how you can optimally manage
Kubernetes and application resources. Kubernetes provides many built-in features to manage resources that you can use to maintain a reliable, highly utilized, and efficient cluster. Cluster
and pod sizing can be difficult at first, but through monitoring your
applications in production you can discover ways to optimize
your resources.












Chapter 9. Networking, Network Security, and Service Mesh



Kubernetes is effectively a manager of distributed systems across a
cluster of connected systems. This immediately puts critical
importance on how the connected systems communicate with one another, and
networking is the key to this. Understanding how Kubernetes facilitates
communication among the distributed services it manages is
important for the effective application of interservice communication.


This chapter focuses on the principles that Kubernetes places on the
network and best practices around applying these concepts in different
situations. With any discussion of networking, security is usually
brought along for the ride. The traditional models of network security
boundaries being controlled at the network layer are not absent in this
new world of distributed systems in Kubernetes, but how they are
implemented and the capabilities offered change slightly. Kubernetes brings
along a native API for network security policies that will sound eerily
similar to firewall rules of old.


The last section of this chapter delves into the new and
scary world of service meshes. The term “scary” is used in jest, but it is quite the Wild West when it comes to service mesh technology in Kubernetes.








Kubernetes Network Principles


Understanding how Kubernetes uses the underlying network to facilitate
communication among services is critical to understanding how to
effectively plan application architectures. Usually, networking topics
start to give most people major headaches. We are going to keep this
rather simple because this is more of a best practice guidance than a lesson
on container networking. Luckily for us, Kubernetes has laid down some
rules of the road for networking that help to give us a start. The rules outline how communication is expected to behave between
different components. Let’s take a closer look at each of these rules:


	Container-to-container communication in the same pod

	
All containers in the same pod share the same network space. This effectively allows localhost communication between the containers. It also means that containers in the same pod need to expose different ports. This is done using the power of Linux namespaces and Docker networking to allow these containers to be on the same local network through the use of a paused container in every pod that does nothing but host the networking for the pod. Figure 9-1 shows how Container A can communicate directly with Container B using localhost and the port number that the container is listening on.



[image: kubp 0901]
Figure 9-1. Intrapod communication between containers





	Pod-to-pod communication

	
All pods need to communicate with one another without any network address translation (NAT). This means that the IP address that a pod is seen as by the receiving pod is the sender’s actual IP address. This is handled in different ways, depending on the network plug-in used, which we discuss in more detail later in the chapter. This rule is true between pods on the same node and pods that are on different nodes in the same cluster. This also extends to the node being able to communicate directly to the pod with no NAT involved. This allows host-based agents or system daemons to communicate to the pods as needed. Figure 9-2 is a representation of the communication processes between pods in the same node and pods in different nodes of the cluster.



[image: kubp 0902]
Figure 9-2. Pod to pod communication intra- and internode





	Service-to-pod communication

	
Services in Kubernetes represent a durable IP address and port that is found on each node that will forward all traffic to the endpoints that are mapped to the service. Over the different iterations of Kubernetes, the method in favor of enabling this has changed, but the two main methods are via the use of iptables or the newer IP Virtual Server (IPVS). Most implementations today use the iptables implementation to enable a pseudo-Layer 4 load balancer on each node. Figure 9-3 is a visual representation of how the service is tied to the pods via label selectors.



[image: kubp 0903]
Figure 9-3. Service to pod communication























Network Plug-ins


Early on, the Special Interest Group (SIG) guided the networking
standards to more of a pluggable architecture, which opened the door for
numerous third-party networking projects, which in many cases injected value-added capabilities into Kubernetes workloads. These network plug-ins come
in two flavors. The most basic is called Kubenet and is the default plug-in
provided by Kubernetes natively. The second type of plug-in follows the
Container Network Interface (CNI) specification, which is a generic plug-in
network solution for containers.










Kubenet


Kubenet is the most basic network plug-in that comes out of the box in
Kubernetes. It is the simplest of the plug-ins and provides a Linux
bridge, cbr0, that’s a virtual Ethernet pair for the pods connected to it. The pod
then gets an IP address from a Classless Inter-Domain Routing (CIDR) range that is distributed across the
nodes of the cluster. There is also an IP masquerade flag that should be
set to allow traffic destined to IPs outside the pod CIDR range to be masqueraded. This obeys the rules of pod-to-pod communication because
only traffic destined outside the pod CIDR undergoes network address translation (NAT). After the packet
leaves a node to go to another node, some kind of routing is put in
place to facilitate the process to forward the traffic to the correct
node.

















Kubenet Best Practices



	
Kubenet allows for a simplistic network stack and does not
consume precious IP addresses on already crowded networks. This is
especially true of cloud networks that are extended to on-premises datacenters.



	
Ensure that the pod CIDR range is large enough to handle the potential size
of the cluster and the pods in each cluster. The default pods per node
set in kubelet is 110, but you can adjust this.



	
Understand and plan accordingly for the route rules to properly allow
traffic to find pods in the proper nodes. In cloud providers, this is
usually automated, but on-premises or edge cases will require automation
and solid network management.





















The CNI Plug-in


The CNI plug-in has some basic requirements set aside by the
specification. These specifications dictate the interfaces and minimal
API actions that the CNI offers and how it will interface with the
container runtime that is used in the cluster. The network management
components are defined by the CNI, but they all must include some type of IP
address management and minimally allow for the addition and deletion of a
container to a network. The full original specification that was
originally derived from the rkt networking proposal is available.


The Core CNI project provides libraries that you can use to write
plug-ins that provide the basic requirements and that can call other plug-ins
that perform various functions. This adaptability led to numerous CNI
plug-ins that you can use in container networking from cloud providers
like the Microsoft Azure native CNI and the Amazon Web Services (AWS) VPC CNI plug-in, to traditional
network providers such as Nuage CNI, Juniper Networks Contrail/Tunsten Fabric,
and VMware NSX.

















CNI Best Practices


Networking is a critical component of a functioning Kubernetes environment. The interaction between the virtual components within Kubernetes and the physical network environment should be carefully designed to ensure dependable application communication:


	
Evaluate the feature set needed to accomplish the overall networking
goals of the infrastructure. Some CNI plug-ins provide native high
availability, multicloud connectivity, Kubernetes network policy
support, and various other features.



	
If you are running clusters via public cloud providers, verify that any
CNI plug-ins that are not native to the cloud provider’s Software-Defined Network (SDN) are actually
supported.



	
Verify that any network security tools, network observability, and
management tools are compatible with the CNI plug-in of choice, and if
not, research which tools can replace the existing ones. It is important
to not lose either observability or security capabilities because the needs
will be expanded when moving to a large-scale distributed system such as
Kubernetes. You can add tools like Weaveworks Weave Scope, Dynatrace, and Sysdig to any Kubernetes environment, and each offers its own benefits.
If you’re running in a cloud provider’s managed service, such as Azure AKS, Google
GCE, or AWS EKS, look for native tools like Azure Container Insights
and Network Watcher, Google Stackdriver, and AWS CloudWatch. Whatever tool you use, it should at least provide insight into the network stack and
the Four Golden signals, made popular by the amazing Google SRE team and
Rob Ewashuck: Latency, Traffic, Errors, and Saturation.



	
If you’re using CNIs that do not provide an overlay network separate from
the SDN network space, ensure that you have proper network address space to
handle node IPs, pod IPs, internal load balancers, and overhead for
cluster upgrade and scale out processes.





























Services in Kubernetes


When pods are deployed into a Kubernetes cluster, because of the basic
rules of Kubernetes networking and the network plug-in used to facilitate
these rules, pods can directly communicate only with other pods within the same
cluster. Some CNI plug-ins give the pods IPs on the same network space as
the nodes, so technically, after the IP of a pod is known, it can be accessed
directly from outside the cluster. This, however, is not an efficient way
to access services being served by a pod, because of the ephemeral nature
of pods in Kubernetes. Imagine that you have a function or system that needs
to access an API that is running in a pod in Kubernetes. For a while,
that might work with no issue, but at some point there might be a voluntary or
involuntary disruption that will cause that pod to disappear. Kubernetes
will potentially create a replacement pod with a new name and IP
address, so naturally there needs to be some mechanism to find the
replacement pod. This is where the service API comes to the rescue.


The service API allows for a durable IP and port to be assigned within
the Kubernetes cluster and automatically mapped to the proper pods as
endpoints to the service. This magic happens through the aforementioned iptables or IPVS on Linux nodes to create a mapping of the assigned
service IP and port to the endpoint’s or pod’s actual IPs. The controller
that manages this is called the kube-proxy service, which actually runs
on each node in the cluster. It is responsible for manipulating the
iptables rules on each node.


When a service object is defined, the type of service needs to be
defined. The service type will dictate whether the endpoints are exposed only
within the cluster or outside of the cluster. There are four basic service
types that we will discuss briefly in the following sections.










Service Type ClusterIP


ClusterIP is the default service type if one is not declared in the
specification. ClusterIP means that the service is assigned an IP from a
designated service CIDR range. This IP is as long lasting as the service
object, so it provides an IP and port and protocol mapping to backend
pods using the selector field; however, as we will see, there are cases
for which you can have no selector. The declaration of the service also
provides for a Domain Name System (DNS) name for the service. This facilitates service
discovery within the cluster and allows for workloads to easily
communicate to other services within the cluster by using DNS lookup
based on the service name. As an example, if you have the service
definition shown in the following example and need to access that service from another pod inside
the cluster via an HTTP call, the call can simply use
http://web1-svc if the client is in the same namespace as the service:


apiVersion: v1
kind: Service
metadata:
  name: web1-svc
spec:
  selector:
    app: web1
  ports:
  - port: 80
    targetPort: 8081


If it is required to find services in other namespaces, the DNS
pattern would be <service_name>.<namespace_name>.svc.cluster.local.


If no selector is given in a service definition, the endpoints can be
explicitly defined for the service by using an endpoint API definition.
This will basically add an IP and port as a specific endpoint to a
service instead of relying on the selector attribute to automatically
update the endpoints from the pods that are in scope by the selector
match. This can be useful in a few scenarios in which you have a specific
database that is not in a cluster that is to be used for testing but you will
change the service later to a Kubernetes-deployed database. This is sometimes called a headless
service because it is not managed by kube-proxy as other services are, but you can directly manage the
endpoints, as shown in Figure 9-4.



[image: kubp 0904]
Figure 9-4. ClusterIPPod and Service visualization



















Service Type NodePort


The NodePort service type assigns a high-level port on each node of the
cluster to the Service IP and port on each node. The high-level
NodePorts fall within the 30,000 through 32,767 ranges and can either be
statically assigned or explicitly defined in the service specification.
NodePorts are usually used for on-premises clusters or bespoke
solutions that do not offer automatic load-balancing configuration. To
directly access the service from outside the cluster, use NodeIP:NodePort, as depicted in Figure 9-5.



[image: kubp 0905]
Figure 9-5. NodePort–Pod, Service and Host network visualization



















Service Type ExternalName


The ExternalName service type is seldom used in practice, but it can be helpful for
passing cluster-durable DNS names to external DNS named services. A
common example is an external database service from a cloud provider that has a unique DNS provided by the cloud provider, such as
mymongodb.documents.azure.com. Technically, this can be added very
easily to a pod specification using an Environment variable, as discussed in
Chapter 6; however, it might be more advantageous to use a more generic
name in the cluster, such as prod-mongodb, which enables the change of the
actual database it points to by just changing the service specification
instead of having to recycle the pods because the Environment
variable has changed:


kind: Service
apiVersion: v1
metadata:
  name: prod-mongodb
  namespace: prod
spec:
  type: ExternalName
  externalName: mymongodb.documents.azure.com

















Service Type LoadBalancer


LoadBalancer is a very special service type because it enables automation with
cloud providers and other programmable cloud infrastructure services.
The LoadBalancer type is a single method to ensure the deployment of the
load-balancing mechanism that the infrastructure provider of the
Kubernetes cluster provides. This means that in most cases, LoadBalancer will work roughly the same way in AWS, Azure, GCE, OpenStack, and
others. In most cases, this entry will create a public-facing load-balanced service; however, each cloud provider has some specific
annotations that enable other features, such as internal-only load
balancers, AWS ELB configuration parameters, and so on. You can also define the actual load-balancer IP to use and the source ranges to allow within the service specification, as seen in the code sample that follows and the visual representation in Figure 9-6:


kind: Service
apiVersion: v1
metadata:
  name: web-svc
spec:
  type: LoadBalancer
  selector:
    app: web
  ports:
  - protocol: TCP
    port: 80
    targetPort: 8081
  loadBalancerIP: 13.12.21.31
  loadBalancerSourceRanges:
  - "142.43.0.0/16"



[image: kubp 0906]
Figure 9-6. LoadBalancer–Pod, Service, Node, and Cloud Provider network visualization



















Ingress and Ingress Controllers


Although not technically a service type in Kubernetes, the Ingress
specification is an important concept for ingress to workloads in
Kubernetes. Services, as defined by the Service API, allow for a basic
level of Layer 3/4 load balancing. The reality is that many of the
stateless services that are deployed in Kubernetes require a high level
of traffic management and usually require application-level control:
more specifically, HTTP protocol management.


The Ingress API is basically an HTTP-level router that allows for host-
and path-based rules to direct to specific backend services. Imagine
a website hosted on www.evillgenius.com and two different paths that
are hosted on that site, /registration and /labaccess, that are
served by two different services hosted in Kubernetes, reg-svc and
labaccess-svc. You can define an ingress rule to ensure that requests
to www.evillgenius/registration are forwarded to the reg-svc
service and the correct endpoint pods, and, similarly, that requests to
www.evillgenius.com/labaccess are forwarded to the correct endpoints of
the labaccess-svc service. The Ingress API also allows for host-based
routing to allow for different hosts on a single ingress. An additional
feature is the ability to declare a Kubernetes secret that holds the
certificate information for Transport Layer Security (TLS) termination on port 443. When a path is
not specified, there is usually a default backend that can be used to
give a better user experience than the standard 404 error.


The details around the specific TLS and default backend configuration
are actually handled by what is known as the Ingress controller. The Ingress
controller is decoupled from the Ingress API and allows for operators to
deploy an Ingress controller of choice, such as NGINX, Traefik, HAProxy,
and others. An Ingress controller, as the name suggests, is a
controller, just like any Kubernetes controller, but it’s not part of the
system and is instead a third-party controller that understands the Kubernetes
Ingress API for dynamic configuration. The most common implementation of
an Ingress controller is NGINX because it is partly maintained by the
Kubernetes project; however, there are numerous examples of both open
source and commercial Ingress controllers:


apiVersion: extensions/v1beta1
kind: Ingress
metadata:
  name: labs-ingress
  annotations:
    nginx.ingress.kubernetes.io/rewrite-target: /
spec:
  tls:
  - hosts:
    - www.evillgenius.com
    secretName: secret-tls
  rules:
  - host: www.evillgenius.com
    http:
      paths:
      - path: /registration
        backend:
          serviceName: reg-svc
          servicePort: 8088
      - path: /labaccess
        backend:
          serviceName: labaccess-svc
          servicePort: 8089

















Services and Ingress Controllers Best Practices


Creating a complex virtual network environment with interconnected applications requires careful planning. Effectively managing how the different services of the application communicate with one another and to the outside world requires constant attention as the application changes. These best practices will help make the management easier:



	
Limit the number of services that need to be accessed from outside the
cluster. Ideally, most services will be ClusterIP, and only external-facing services will be exposed externally to the cluster.



	
If the services that need to be exposed are primarily HTTP/HTTPS-based
services, it is best to use an Ingress API and Ingress controller to
route traffic to backing services with TLS termination. Depending on the
type of Ingress controller used, features such as rate limiting, header
rewrites, OAuth authentication, observability, and other
services can be made available without having to build them into the
applications themselves.



	
Choose an Ingress controller that has the needed functionality for secure ingress of your web-based workloads. Standardize on one and use it across the enterprise because many of the specific configuration annotations vary between implementations and prevent the deployment code from being portable across enterprise Kubernetes implementations.



	
Evaluate cloud service provider-specific Ingress controller options to move the infrastructure management and load of the ingress out of the cluster, but still allow for Kubernetes API configuration.



	
When serving mostly APIs externally, evaluate API-specific Ingress controllers, such as Kong or Ambassador, that have more fine-tuning for API-based workloads. Although NGINX, Traefik, and others might offer some API tuning, it will not be as fine-grained as specific API proxy systems.



	
When deploying Ingress controllers as pod-based workloads in Kubernetes, ensure that the deployments are designed for high availability and aggregate performance throughput. Use metrics observability to properly scale the ingress, but include enough cushion to prevent client disruptions while the workload scales.




























Network Security Policy


The NetworkPolicy API built into Kubernetes allows for network-level
ingress and egress access control defined with your workload. Network
policies allow you to control how groups of pods are allowed to
communicate with one another and with other endpoints. If you want to dig
deeper into the NetworkPolicy specification, it might sound confusing,
especially given that it is defined as a Kubernetes API, but it requires a
network plug-in that supports the NetworkPolicy API.


Network policies have a simple YAML structure that can look complicated, but if you think of it as a simple East-West traffic firewall, it might help you to understand it a little better. Each policy specification has podSelector, ingress, egress, and policyType fields. The only required
field is podSelector, which follows the same convention as any Kubernetes
selector with a matchLabels. You can create multiple NetworkPolicy
definitions that can target the same pods, and the effect is additive in
nature. Because NetworkPolicy objects are namespaced objects, if no
selector is given for a podSelector, all pods in the namespace fall
into the scope of the policy. If there are any ingress or egress rules
defined, this creates a whitelist of what is allowed to
or from the pod. There is an important distinction here: if a pod falls
into the scope of a policy because of a selector match, all traffic,
unless explicitly defined in an ingress or egress rule, is blocked. This
little, nuanced detail means that if a pod does not fall into any policy
because of a selector match, all ingress and egress is allowed to
the pod. This was done on purpose to allow for ease of deploying new
workloads into Kubernetes without any blockers.


The ingress and egress fields are basically a list of rules based on
source or destination and can be specific CIDR ranges,
podSelectors, or namespaceSelectors. If you leave the ingress field empty, it is like a deny-all inbound. Similarly, if you leave the egress empty, it is deny-all outbound. Port and protocol lists are also
supported to further tighten down the type of communications
allowed.


The policyTypes field specifies to which network policy rule types the
policy object is associated. If the field is not present, it will just
look at the ingress and egress lists fields. The difference again is
that you must explicitly call out egress in policyTypes and also
have an egress rule list for this policy to work. Ingress is assumed, and
defining it explicitly is not needed.


Let’s use a prototypical example of a three-tier application deployed to a
single namespace where the tiers are labeled as tier: "web",
tier: "db", and tier: "api". If you want to ensure that traffic is
limited to each tier properly, create a NetworkPolicy manifest
like this:


Default deny rule:


apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: default-deny-all
spec:
  podSelector: {}
  policyTypes:
  - Ingress


Web layer network policy:


apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: webaccess
spec:
  podSelector:
    matchLabels:
      tier: "web"
  policyTypes:
  - Ingress
  ingress:
  - {}


API layer network policy:


apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: allow-api-access
spec:
  podSelector:
    matchLabels:
      tier: "api"
  policyTypes:
  - Ingress
  ingress:
  - from:
    - podSelector:
        matchLabels:
          tier: "web"


Database layer network policy:


apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: allow-db-access
spec:
  podSelector:
    matchLabels:
      tier: "db"
  policyTypes:
  - Ingress
  ingress:
  - from:
    - podSelector:
        matchLabels:
          tier: "api"










Network Policy Best Practices


Securing network traffic in an enterprise system was once the domain of physical hardware devices with complex networking rule sets. Now, with Kubernetes network policy, a more application-centric approach can be taken to segment and control the traffic of the applications hosted in Kubernetes. Some common best practices apply no matter which policy plug-in used:



	
Start off slow and focus on traffic ingress to pods. Complicating
matters with ingress and egress rules can make network tracing
a nightmare. As soon as traffic is flowing as expected, you can begin to look at
egress rules to further control flow to sensitive workloads. The
specification also favors ingress because it defaults many options even if
nothing is entered into the ingress rules list.



	
Ensure that the network plug-in used either has some of its own interface
to the NetworkPolicy API or supports other well-known plug-ins. Example
plug-ins include Calico, Cilium, Kube-router, Romana, and Weave Net.



	
If the network team is used to having a “default-deny” policy
in place, create a network policy such as the following for each namespace in
the cluster that will contain workloads to be protected. This ensures
that even if another network policy is deleted, no pods are accidentally
“exposed”:






apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: default-deny-all
spec:
  podSelector: {}
  policyTypes:
  - Ingress


	
If there are pods that need to be accessed from the internet, use a label to explicitly apply a network policy that allows ingress. Be aware of the entire flow in case the actual IP that a packet is coming from is
 not the internet, but the internal IP of a load balancer,
firewall, or other network device. For example, to allow traffic from all
(including external) sources for pods having the allow-internet=true
label, do this:







apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: internet-access
spec:
  podSelector:
    matchLabels:
      allow-internet: "true"
  policyTypes:
  - Ingress
  ingress:
  - {}


	
Try to align application workloads to single namespaces for ease of
creating rules because the rules themselves are namespace specific. If cross-namespace communication is needed, try to be as explicit as possible and
perhaps use specific labels to identify the flow pattern:







apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: namespace-foo-2-namespace-bar
  namespace: bar
spec:
  podSelector:
    matchLabels:
      app: bar-app
  policyTypes:
  - Ingress
  ingress:
  - from:
    -  namespaceSelector:
        matchLabels:
          networking/namespace: foo
       podSelector:
        matchLabels:
          app: foo-app


	
Have a test bed namespace that has fewer restrictive policies, if any at
all, to allow time to investigate the correct traffic patterns needed.





























Service Meshes


It is easy to imagine a single cluster hosting hundreds of services that
load-balance across thousands of endpoints that communicate with one another,
access external resources, and potentially are being accessed from external
sources. This can be quite daunting when trying to manage, secure,
observe, and trace all of the connections between these services,
especially with the dynamic nature of the endpoints coming and going
from the overall system. The concept of a service mesh, which is not unique to
Kubernetes, allows for control over how these services are connected and
secured with a dedicated date plane and control plane. Service meshes
all have different capabilities, but usually they all offer some of the
following:



	
Load balancing of traffic with potentially fine-grained traffic-shaping policies that are distributed across the mesh.



	
Service discovery of services that are members of the mesh, which might include services within a cluster or in another cluster, or an outside system that is a member of the mesh.



	
Observability of the traffic and services, including tracing across the distributed services using tracing systems like Jaeger or Zipkin that follow the OpenTracing standards.



	
Security of the traffic in the mesh using mutual authentication. In some cases, not only pod-to-pod or East-West traffic is secured, but an Ingress controller is also provided that offers North-South security and control.



	
Resiliency, health, and failure-prevention capabilities that allow for patterns such as circuit breaker, retries, deadlines, and so on.






The key here is that all of these features are integrated into the
applications that take part in the mesh with little or no application
changes. How can all of these amazing features come for free? Sidecar
proxies are usually the way this is done. The majority of service meshes
available today inject a proxy that is part of the data plane into each
pod that is a member of the mesh. This allows for policies and security
to be synchronized across the mesh by the control-plane components. This
really hides the network details from the container that holds the
workload and leaves it to the proxy to handle the complexity of the
distributed network. To the application, it just talks via localhost to
its proxy. In many cases, the control plane and data plane might be
different technologies but complementary to each other.


In many cases, the first service mesh that comes to mind is Istio, a
project by Google, Lyft, and IBM that uses Envoy as its data-plane proxy
and uses proprietary control-plane components Mixer, Pilot, Galley, and
Citadel. There are other service meshes that offer varying levels of
capabilities, such as Linkerd2, which uses its own data-plane proxy
built using Rust. HashiCorp has recently added more Kubernetes-centric
service mesh capabilities to Consul, which allows you to choose
between Consul’s own proxy or Envoy, and offers commercial support for
its service mesh.


The topic of service meshes in Kubernetes is a fluid one—if not overly
emotional in many social media tech circles—so a detailed explanation
of each mesh has no value here. I would be remiss if I did not mention the promising efforts lead by Microsoft, Linkerd, HashiCorp, Solo.io, Kinvolk, and Weaveworks around the Service Mesh Interface (SMI). The SMI hopes to set a standard interface for basic feature sets that are expected of all service meshes. The specification as of this writing covers traffic policy such as identity and transport-level encryption, traffic telemetry that captures key metrics between services in the mesh, and traffic management to allow for traffic shifting and weighting between different services. This project hopes to take some of the variability out of the service meshes yet allow for service mesh vendors to extend and build value-added capabilities into their products to differentiate themselves from others. 










Service Mesh Best Practices


The service mesh community continues to grow every day, and as more and more enterprises help define their needs, the service mesh ecosystem will change dramatically. These best practices are, as of this writing, based on common necessities that service meshes try to solve today:



	
Rate the importance of the key features service meshes offer and
determine which current offerings provide the most important features with
the least amount of overhead. Overhead here is both human technical debt
and infrastructure resource debt. If all that is really required is
mutual TLS between certain pods, would it be easier to perhaps find a
CNI that offers that integrated into the plug-in?



	
Is the need for a cross-system mesh such as multicloud or hybrid
scenarios a key requirement? Not all service meshes offer this
capability, and if they do, it is a complicated process that often
introduces fragility into the environment.



	
Many of the service mesh offerings are open source community-based
projects, and if the team that will be managing the environment is new to
service meshes, commercially supported offerings might be a better option.
There are companies that are beginning to offer commercially supported and
managed service meshes based on Istio, which can be helpful because it is
almost universally agreed upon that Istio is a complicated system to
manage.




























Summary


In addition to application management, one of the most important things
that Kubernetes provides is the ability to link different pieces of your
application together. In this chapter, we looked at the details of how
Kubernetes works, including how pods get their IP addresses through CNI plug-ins, how those IPs are grouped together to form services, and how more application
or Layer 7 routing can be implemented via Ingress resources (which
in turn use services). You also saw how to limit traffic and secure your network
using networking policies, and, finally, how service mesh technologies are
transforming the ways in which people connect and monitor the connections
between their services. In addition to setting up your application to
run and be deployed reliably, setting up the networking for your application
is a crucial piece of using Kubernetes successfully. Understanding how
Kubernetes approaches networking and how that intersects optimally with
your application is a critical piece of its ultimate success.












Chapter 10. Pod and Container Security



When it comes to pod security via the Kubernetes API, you have two main
options at your disposal: PodSecurityPolicy and RuntimeClass.
In this chapter, we review the purpose and use of each API and
provide best practices for their use.








PodSecurityPolicy API

Note

The PodSecurityPolicy API is under active development. As of Kubernetes 1.15, this API was in beta. Please visit the upstream documentation for the latest updates on the feature state.




This cluster-wide resource creates a single place to define and manage
all of the security-sensitive fields found in pod specifications. Prior to
the creation of the PodSecurityPolicy resource, cluster administrators and/or
users would need to independently define individual SecurityContext
settings for their workloads or enable bespoke admission controllers on
the cluster to enforce some aspects of pod security.


Does all of this sound too easy? PodSecurityPolicy is surprisingly
difficult to implement effectively and will more often than not get
turned off or evaded in other ways. We do, however, strongly suggest
taking the time to fully understand PodSecurityPolicy because it’s one of
the single most effective means to reduce your attack surface area by
limiting what can run on your cluster and with what level of privilege.










Enabling PodSecurityPolicy


Along with the resource API, a corresponding admission controller must
be enabled to enforce the conditions defined in the PodSecurityPolicy
resource. This means that the enforcement of these policies happens at
the admission phase of the request flow. To learn more about how admission controllers work, refer to Chapter 17.


It’s worth mentioning that enabling PodSecurityPolicy is not widely
available among public cloud providers and cluster operations tools.
In the cases for which it is available, it’s generally shipped as an opt-in
feature.

Warning

Proceed with caution when enabling PodSecurityPolicy because it’s
potentially workload blocking if adequate preparation isn’t done at the outset.




There are two main components that you need to complete in order to
start using PodSecurityPolicy:


	
Ensure that the PodSecurityPolicy API is enabled (this should already be done if you’re on a currently supported version of Kubernetes).


You can confirm that this API is enabled by running kubectl get psp. As long as the response isn’t the server doesn't have a resource type "PodSecurityPolicies, you are OK to proceed.



	
Enable the PodSecurityPolicy admission controller via the api-server flag --enable-admission-plugins.






Warning

If you are enabling PodSecurityPolicy on
an existing cluster with running workloads, you must create all necessary policies,
service accounts, roles, and role bindings before enabling the admission
controller.




We also recommend the addition of the --use-service-account-credentials=true flag to
kube-controller-manager, which
will enable service accounts to be used for each individual controller
within kube-controller-manager. This allows for more granular policy
control even within the kube-system namespace. You can simply run the
following command to determine whether the flag has been set. It demonstrates that there is indeed a service account per controller:


$ kubectl get serviceaccount -n kube-system | grep '.*-controller'
attachdetach-controller              1         6d13h
certificate-controller               1         6d13h
clusterrole-aggregation-controller   1         6d13h
cronjob-controller                   1         6d13h
daemon-set-controller                1         6d13h
deployment-controller                1         6d13h
disruption-controller                1         6d13h
endpoint-controller                  1         6d13h
expand-controller                    1         6d13h
job-controller                       1         6d13h
namespace-controller                 1         6d13h
node-controller                      1         6d13h
pv-protection-controller             1         6d13h
pvc-protection-controller            1         6d13h
replicaset-controller                1         6d13h
replication-controller               1         6d13h
resourcequota-controller             1         6d13h
service-account-controller           1         6d13h
service-controller                   1         6d13h
statefulset-controller               1         6d13h
ttl-controller                       1         6d13h

Warning

It’s extremely important to remember that having no
PodSecurityPolicies defined will result in an implicit deny. This means
that without a policy match for the workload, the pod will not be
created.



















Anatomy of a PodSecurityPolicy


To best understand how PodSecurityPolicy enables you to
secure your pods, let’s work through an end-to-end example together.
This will help solidify the order of operations from policy creation
through use.


Before you continue, the following section requires that your cluster have
PodSecurityPolicy enabled in order for it to work. To see how to enable it, refer to the previous section.

Warning

You should not enable PodSecurityPolicy on a live cluster without considering the warnings provided in the
previous section. Proceed with caution.




Let’s first test the experience without making any changes or creating
any policies. The following is a test workload that simply runs the trusty pause
container in a Deployment (save this file as pause-deployment.yaml on
your local filesystem for use throughout this section):


apiVersion: apps/v1
kind: Deployment
metadata:
  name: pause-deployment
  namespace: default
  labels:
    app: pause
spec:
  replicas: 1
  selector:
    matchLabels:
      app: pause
  template:
    metadata:
      labels:
        app: pause
    spec:
      containers:
      - name: pause
        image: k8s.gcr.io/pause


By running the following command, you can verify that you have a Deployment
and a corresponding ReplicaSet but NO pod:


$ kubectl get deploy,rs,pods -l app=pause
NAME                                     READY   UP-TO-DATE   AVAILABLE   AGE
deployment.extensions/pause-delpoyment   0/1     0            0           41s

NAME                                                DESIRED   CURRENT   READY   AGE
replicaset.extensions/pause-delpoyment-67b77c4f69   1         0         0       41s


If you describe the ReplicaSet, you can confirm the cause from the event
log:


$ kubectl describe replicaset -l app=pause
Name:           pause-delpoyment-67b77c4f69
Namespace:      default
Selector:       app=pause,pod-template-hash=67b77c4f69
Labels:         app=pause
                pod-template-hash=67b77c4f69
Annotations:    deployment.kubernetes.io/desired-replicas: 1
                deployment.kubernetes.io/max-replicas: 2
                deployment.kubernetes.io/revision: 1
Controlled By:  Deployment/pause-delpoyment
Replicas:       0 current / 1 desired
Pods Status:    0 Running / 0 Waiting / 0 Succeeded / 0 Failed
Pod Template:
  Labels:  app=pause
           pod-template-hash=67b77c4f69
  Containers:
   pause:
    Image:        k8s.gcr.io/pause
    Port:         <none>
    Host Port:    <none>
    Environment:  <none>
    Mounts:       <none>
  Volumes:        <none>
Conditions:
  Type             Status  Reason
  ----             ------  ------
  ReplicaFailure   True    FailedCreate
Events:
  Type     Reason        Age                  From                   Message
  ----     ------        ----                 ----                   -------
  Warning  FailedCreate  45s (x15 over 2m7s)  replicaset-controller  Error creating: pods "pause-delpoyment-67b77c4f69-" is forbidden: unable to validate against any pod security policy: []


This is because there are either no pod security policies defined or the
service account is not allowed access to use the PodSecurityPolicy.
You might have also noticed that all of the system pods in the kube-system
namespace are probably still in RUNNING state. This is because these
requests have already passed the admission phase for the request. If
there were an event that restarted these pods, they would also suffer the
same fate as our test workload given that there are no
PodSecurityPolicy resources defined:

replicaset-controller  Error creating: pods "pause-delpoyment-67b77c4f69-" is forbidden: unable to validate against any pod security policy: []


Let’s delete the test workload deployment:


$ kubectl delete deploy -l app=pause
deployment.extensions "pause-delpoyment" deleted


Now, let’s go fix this by defining pod security policies. For a complete list of policy settings, refer to the Kubernetes documentation. The following
policies are basic variations of the examples provided in the Kubernetes documentation.


Call the first policy privileged, which we use to
demonstrate how to allow privileged workloads. You can apply the following resources by using
kubectl create -f <filename>:


apiVersion: policy/v1beta1
kind: PodSecurityPolicy
metadata:
  name: privileged
spec:
  privileged: true
  allowPrivilegeEscalation: true
  allowedCapabilities:
  - '*'
  volumes:
  - '*'
  hostNetwork: true
  hostPorts:
  - min: 0
    max: 65535
  hostIPC: true
  hostPID: true
  runAsUser:
    rule: 'RunAsAny'
  seLinux:
    rule: 'RunAsAny'
  supplementalGroups:
    rule: 'RunAsAny'
  fsGroup:
    rule: 'RunAsAny'


The next policy defines restricted access and will suffice for many
workloads apart from those responsible for running Kubernetes
cluster-wide services such as kube-proxy, located in the kube-system
namespace:


apiVersion: policy/v1beta1
kind: PodSecurityPolicy
metadata:
  name: restricted
spec:
  privileged: false
  allowPrivilegeEscalation: false
  requiredDropCapabilities:
    - ALL
  volumes:
    - 'configMap'
    - 'emptyDir'
    - 'projected'
    - 'secret'
    - 'downwardAPI'
    - 'persistentVolumeClaim'
  hostNetwork: false
  hostIPC: false
  hostPID: false
  runAsUser:
    rule: 'RunAsAny'
  seLinux:
    rule: 'RunAsAny'
  supplementalGroups:
    rule: 'MustRunAs'
    ranges:
      - min: 1
        max: 65535
  fsGroup:
    rule: 'MustRunAs'
    ranges:
      - min: 1
        max: 65535
  readOnlyRootFilesystem: false


You can confirm that the policies have been created by running the
following command:


$ kubectl get psp
NAME         PRIV    CAPS   SELINUX    RUNASUSER          FSGROUP     SUPGROUP    READONLYROOTFS   VOLUMES
privileged   true    *      RunAsAny   RunAsAny           RunAsAny    RunAsAny    false            *
restricted   false          RunAsAny   MustRunAsNonRoot   MustRunAs   MustRunAs   false            configMap,emptyDir,projected,secret,downwardAPI,persistentVolumeClaim


Now that we have defined these policies, we need to grant the service
accounts access to use these policies via Role-Based Access Control (RBAC).


First, create the following ClusterRole that allows access to use
the restricted PodSecurityPolicy that we created in the previous step:


kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: psp-restricted
rules:
- apiGroups:
  - extensions
  resources:
  - podsecuritypolicies
  resourceNames:
  - restricted
  verbs:
  - use


Now, create the following ClusterRole that allows access to use the
privileged PodSecurityPolicy we created in the previous step:


kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: psp-privileged
rules:
- apiGroups:
  - extensions
  resources:
  - podsecuritypolicies
  resourceNames:
  - privileged
  verbs:
  - use


We must now create a corresponding ClusterRoleBinding that allows the
system:serviceaccounts group access to psp-restricted
ClusterRole. This group includes all of the kube-controller-manager
controller service accounts:


kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: psp-restricted
subjects:
- kind: Group
  name: system:serviceaccounts
  namespace: kube-system
roleRef:
  kind: ClusterRole
  name: psp-restricted
  apiGroup: rbac.authorization.k8s.io


Go ahead and create the test workload again. You can see that the pod is now up
and running:


$ kubectl create -f pause-deployment.yaml
deployment.apps/pause-deployment created
$ kubectl get deploy,rs,pod
NAME                                     READY   UP-TO-DATE   AVAILABLE   AGE
deployment.extensions/pause-deployment   1/1     1            1           10s

NAME                                                DESIRED   CURRENT   READY   AGE
replicaset.extensions/pause-deployment-67b77c4f69   1         1         1       10s

NAME                                    READY   STATUS    RESTARTS   AGE
pod/pause-deployment-67b77c4f69-4gmdn   1/1     Running   0          9s


Update the test workload deployment to violate the restricted policy.
Adding privileged=true should do the trick. Save this manifest as
pause-privileged-deployment.yaml on your local filesystem and then apply it by using kubectl apply -f <filename>:


apiVersion: apps/v1
kind: Deployment
metadata:
  name: pause-privileged-deployment
  namespace: default
  labels:
    app: pause
spec:
  replicas: 1
  selector:
    matchLabels:
      app: pause
  template:
    metadata:
      labels:
        app: pause
    spec:
      containers:
      - name: pause
        image: k8s.gcr.io/pause
        securityContext:
          privileged: true


Again, you can see that both the Deployment and the ReplicaSet have been
created; however, the pod has not. You can find the details of why in the
event log of the ReplicaSet:


$ kubectl create -f pause-privileged-deployment.yaml
deployment.apps/pause-privileged-deployment created
$ kubectl get deploy,rs,pods -l app=pause
NAME                                                READY   UP-TO-DATE   AVAILABLE   AGE
deployment.extensions/pause-privileged-deployment   0/1     0            0           37s

NAME                                                           DESIRED   CURRENT   READY   AGE
replicaset.extensions/pause-privileged-deployment-6b7bcfb9b7   1         0         0       37s
$ kubectl describe replicaset -l app=pause
Name:           pause-privileged-deployment-6b7bcfb9b7
Namespace:      default
Selector:       app=pause,pod-template-hash=6b7bcfb9b7
Labels:         app=pause
                pod-template-hash=6b7bcfb9b7
Annotations:    deployment.kubernetes.io/desired-replicas: 1
                deployment.kubernetes.io/max-replicas: 2
                deployment.kubernetes.io/revision: 1
Controlled By:  Deployment/pause-privileged-deployment
Replicas:       0 current / 1 desired
Pods Status:    0 Running / 0 Waiting / 0 Succeeded / 0 Failed
Pod Template:
  Labels:  app=pause
           pod-template-hash=6b7bcfb9b7
  Containers:
   pause:
    Image:        k8s.gcr.io/pause
    Port:         <none>
    Host Port:    <none>
    Environment:  <none>
    Mounts:       <none>
  Volumes:        <none>
Conditions:
  Type             Status  Reason
  ----             ------  ------
  ReplicaFailure   True    FailedCreate
Events:
  Type     Reason        Age                   From                   Message
  ----     ------        ----                  ----                   -------
  Warning  FailedCreate  78s (x15 over 2m39s)  replicaset-controller  Error creating: pods "pause-privileged-deployment-6b7bcfb9b7-" is forbidden: unable to validate against any pod security policy: [spec.containers[0].securityContext.privileged: Invalid value: true: Privileged containers are not allowed]


The preceding example shows the exact reason why:
Privileged containers are not allowed. Let’s delete the test workload deployment.


$ kubectl delete deploy pause-privileged-deployment
deployment.extensions "pause-privileged-deployment" deleted


So far, we’ve dealt only with cluster-level bindings. How about we allow
the test workload access to the privileged policy using a service
account.


First, create a serviceaccount in the default namespace:


$ kubectl create serviceaccount pause-privileged
serviceaccount/pause-privileged created


Bind that serviceaccount to the permissive ClusterRole. Save this manifest as role-pause-privileged-psp-permissive.yaml on your local filesystem and then apply it by using kubectl apply
-f <filename>:


apiVersion: rbac.authorization.k8s.io/v1beta1
kind: RoleBinding
metadata:
  name: pause-privileged-psp-permissive
  namespace: default
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: psp-privileged
subjects:
- kind: ServiceAccount
  name: pause-privileged
  namespace: default


Finally, update the test workload to use the pause-privileged
service account. Then apply it to the cluster using kubectl apply:


apiVersion: apps/v1
kind: Deployment
metadata:
  name: pause-privileged-deployment
  namespace: default
  labels:
    app: pause
spec:
  replicas: 1
  selector:
    matchLabels:
      app: pause
  template:
    metadata:
      labels:
        app: pause
    spec:
      containers:
      - name: pause
        image: k8s.gcr.io/pause
        securityContext:
          privileged: true
       serviceAccountName: pause-privileged


You can see that the pod is now able to use the privileged policy:


$ kubectl create -f pause-privileged-deployment.yaml
deployment.apps/pause-privileged-deployment created
$ kubectl get deploy,rs,pod
NAME                                                READY   UP-TO-DATE   AVAILABLE   AGE
deployment.extensions/pause-privileged-deployment   1/1     1            1           14s

NAME                                                           DESIRED   CURRENT   READY   AGE
replicaset.extensions/pause-privileged-deployment-658dc5569f   1         1         1       14s

NAME                                               READY   STATUS    RESTARTS   AGE
pod/pause-privileged-deployment-658dc5569f-nslnw   1/1     Running   0          14s

Tip

You can see which PodSecurityPolicy was matched by using the
following command:


$ kubectl get pod -l app=pause -o yaml | grep psp
      kubernetes.io/psp: privileged



















PodSecurityPolicy Challenges


Now that you understand how to configure and use PodSecurityPolicy,
it’s worth noting that there are quite a few challenges with using it
in real-world environments. In this section, we describe things that
we have experienced that make it challenging.












Reasonable default policies


The real power of PodSecurityPolicy is to enable the cluster administrator and/or
user to ensure that their workloads meet a certain level of security. In
practice, you might often overlook just how many workloads run as root, use
hostPath volumes, or have other risky settings that force you to craft
policies with security holes just to get the workloads up and running.

















Lots of toil


Getting the policies just right is a large investment, especially where
there is a large set of workloads already running on Kubernetes without
PodSecurityPolicy enabled.

















Are your developers interested in learning PodSecurityPolicy?


Will your developers want to learn PodSecurityPolicy? What would be
the incentive for them to do so? Without a lot of up front
coordination and automation to make enabling PodSecurityPolicy a smooth transition,
it’s very likely that PodSecurityPolicy won’t be adopted at all.

















Debugging is cumbersome


It’s difficult to troubleshoot policy evaluation. For example, you might
want to understand why your workload matched or didn’t match a specific
policy. Tooling or logging to make that easy doesn’t exist at this
stage.

















Do you rely on artifacts outside your control?


Are you pulling images from Docker Hub or another public repository? Chances
are they will violate your policies in some shape or form and will be
out of your control to fix. Another common place is Helm charts: do they
ship with the appropriate policies in place?






















PodSecurityPolicy Best Practices


PodSecurityPolicy is complex and can be error prone. Refer to the following best practices before implementing PodSecurityPolicy on your clusters:



	
It all comes down to RBAC.
Whether you like it or not, PodSecurityPolicy is determined by RBAC.
It’s this relationship that actually exposes all of the shortcomings in your
current RBAC policy design. We cannot stress just how important it is to
automate your RBAC and PodSecurityPolicy creation and maintenance.
Specifically locking down access to service accounts is the key
to using policy.



	
Understand the policy scope. Determining how your policies will be
laid out on your cluster is very
important. Your policies can be cluster-wide, namespaced, or workload-specific in scope.
There will always be workloads on your cluster that are
part of the Kubernetes cluster operations that will need more permissive
security privileges, so make sure that you have appropriate RBAC in place to
stop unwanted workloads using your permissive policies.



	
Do you want to enable PodSecurityPolicy on an existing cluster? Use this handy
open source tool to generate policies based on your current resources. This is a great start.
From there, you can hone your policies.





















PodSecurityPolicy Next Steps


As demonstrated, PodSecurityPolicy is an extremely powerful API to
assist in keeping your cluster secure, but it demands a high tax for
use. With careful planning and a pragmatic approach, PodSecurityPolicy
can be successfully implemented on any cluster. At the very least, it
will keep your security team happy.
























Workload Isolation and RuntimeClass


Container runtimes are still largely considered an insecure workload isolation
boundary. There is no clear path to whether the most common runtimes of
today will ever be recognized as secure. The momentum and interest among those in the industry toward
Kubernetes has led to the development of different
container runtimes that offer varying levels of isolation. Some
are based on familiar and trusted technology stacks, whereas others are
a completely new attempt to tackle the problem. Open source projects
like Kata containers, gVisor, and Firecracker tout the promise of
stronger workload isolation. These specific projects are either based on
nested virtualization (running a super lightweight virtual machine within a virtual machine) or
system call filtering and servicing.


The introduction of these container runtimes that offer different workload
isolation allows users to choose many different runtimes based on their isolation
guarantees in the same cluster. For example, you could have trusted and
untrusted workloads running in the same cluster in different container runtimes.


RuntimeClass was introduced into Kubernetes as an API to allow container runtime
selection. It is used to represent one of the supported container
runtimes on the cluster when it has been configured by the cluster administrator.
As a Kubernetes user, you can define specific runtime classes for your
workloads by using the RuntimeClassName in the pod specification.
How this is implemented under the hood is that the RuntimeClass designates
a RuntimeHandler which is passed to the Container Runtime Interface (CRI)
to implement. Node labeling or node taints then can be used in
conjunction with nodeSelectors or tolerations to ensure that the workload
lands on a node capable of supporting the desired RuntimeClass. Figure 10-1 demonstrates how a kubelet uses RuntimeClass when launching pods.



[image: Figure 10.1]
Figure 10-1. RuntimeClass flow diagram



Note

The RuntimeClass API is under active development. For the latest updates on the feature state, visit the upstream documentation.












Using RuntimeClass


If a cluster administrator has set up different RuntimeClasses, you can use them simply by specifying
runtimeClassName in the pod specification; for example:


apiVersion: v1
kind: Pod
metadata:
  name: nginx
spec:
  runtimeClassName: firecracker

















Runtime Implementations


Following are some open source container runtime implementations that offer different levels of security
and isolation for your consideration. This list is intended as a guide and is by no means exhaustive:


	CRI containerd

	
An API facade for container runtimes with an emphasis on simplicity, robustness, and portability.



	cri-o

	
A purpose-built, lightweight Open Container Initiative (OCI)-based implementation of a container runtime for Kubernetes.



	Firecracker

	
Built on top of the Kernel-based Virtual Machine (KVM),  this virtualization technology allows you to launch microVMs in nonvirtualized environments very quickly using the security and isolation of traditional VMs.



	gVisor

	
An OCI-compatible sandbox runtime that runs containers with a new user-space kernel, which provides a low overhead, secure, isolated container runtime.



	Kata Containers

	
A community that’s building a secure container runtime that provides VM-like security and isolation by running lightweight VMs that feel and operate like containers.





















Workload Isolation and RuntimeClass Best Practices


The following best practices will help you to avoid common workload isolation and RuntimeClass pitfalls:



	
Implementing different workload isolation environments via RuntimeClass
will complicate your operational environment. This means that workloads might not be portable across different container runtimes given the nature of the
isolation they provide. Understanding the matrix of supported
features across different runtimes can be complicated to understand and
will lead to poor user experience. We recommend having separate clusters, each with a single runtime to
avoid confusion, if possible.



	
Workload isolation doesn’t mean secure multitenancy. Even though you might have
implemented a secure container runtime, this doesn’t mean that the Kubernetes cluster and APIs
have been secured in the same fashion. You must consider the total surface area of Kubernetes end to end.
Just because you have an isolated workload doesn’t mean that it cannot be modified by a bad actor via
the Kubernetes API.



	
Tooling across different runtimes is inconsistent. You might have users who rely on
container runtime tooling for debugging and introspection. Having different runtimes means that you
might no longer be able to run docker ps to list running containers. This leads to confusion
and complications when troubleshooting.




























Other Pod and Container Security Considerations


In addition to PodSecurityPolicy and workload isolation, here are some other tools you
may consider when determining how to handle pod and container security.










Admission Controllers


If you’re worried about diving into the deep end with
PodSecurityPolicy, here are some options that offer a fraction of the functionality but might offer a viable alternative. You can use admission controllers such as DenyExecOnPrivileged and
DenyEscalatingExec in conjunction with an admission webhook to add
SecurityContext workload settings to achieve a similar
outcome. For more information on admission control, refer to Chapter 17.

















Intrusion and Anomaly Detection Tooling


We’ve covered security policies and container runtimes, but what happens
when you want to introspect and enforce policy within the container
runtime? There are open source tools that can do this and more. They
operate by either listening and filtering Linux system calls or by
utilizing a Berkeley Packet Filter (BPF). One such tool is Falco. Falco is a Cloud Native Computing Foundation (CNCF)
project that simply installs as a Demonset and allows you to configure
and enforce policy during execution. Falco is just one approach. We
encourage you to take a look at the tooling in this space to see what works for you.
























Summary


In this chapter, we covered in depth both the PodSecurityPolicy and
the RuntimeClass APIs with which you can configure a granular level of
security for your workloads. We have also taken a look at some open source
ecosystem tooling that you can use to monitor and enforce policy within
the container runtime. We have provided a thorough overview for you
to make an informed decision about providing the level of security that
is best suited for your workload needs.












Chapter 11. Policy and Governance for Your Cluster



Have you ever wondered how you can ensure that all containers
running on a cluster come only from an approved container registry?
Or maybe you’ve been asked to ensure that services are never exposed
to the internet. These are precisely the problems that policy and governance
for your cluster set out to answer. As Kubernetes matures and becomes
adopted by more and more enterprises, the question of policy and
governance is becoming increasingly frequent. Although this area is still
relatively new and upcoming, in this chapter we share what you can
do to make sure that your cluster is in compliance with the defined policies of your enterprise.








Why Policy and Governance Are Important


Whether you operate in a highly regulated environment—for example,
health care or financial services—or you simply want to make sure that you
maintain a level of control over what’s running on your clusters, you’re
going to need a way to implement the stated policies of the enterprise. After
these policies are defined, you will need to determine how to implement
policy and maintain clusters that are compliant to these policies. These
policies might be in place to meet regulatory compliance or simply to
enforce best practices. Whatever the reason, you must be sure that you do
not sacrifice developer agility and self-service when implementing these
policies.

















How Is This Policy Different?


In Kubernetes, policy is everywhere. Whether it be network policy or pod
security policy, we’ve all come to understand what policy is and when to
use it. We trust that whatever is declared in Kubernetes resource
specifications is implemented as per the policy definition. Both network
policy and pod security policy are implemented at runtime. However, who
manages the content that is actually defined in these Kubernetes resource
specifications? That’s the job for policy and governance. Rather than
implementing policy at runtime, when we talk about policy in the context
of governance, what we mean is defining policy that controls the fields
and values in the Kubernetes resource specifications themselves. Only
Kubernetes resource specifications that are compliant against these
policies are allowed and committed to the cluster state.

















Cloud-Native Policy Engine


To be able to make decisions about what resources are
compliant, we need a policy engine that is flexible enough to meet a
variety of needs. The Open Policy Agent
(OPA) is an open source, flexible, lightweight policy engine that has
become increasingly popular in the cloud-native ecosystem. Having OPA in
the ecosystem has allowed many implementations of different Kubernetes
governance tools to appear. One such Kubernetes policy and governance
project the community is rallying around is called
Gatekeeper. For the
rest of this chapter, we use Gatekeeper as the canonical example to
illustrate how you might achieve policy and governance for your cluster.
Although there are other implementations of policy and governance tools in
the ecosystem, they all seek to provide the same user experience (UX) by
allowing only compliant Kubernetes resource specifications to be committed to
the cluster.

















Introducing Gatekeeper


Gatekeeper is an open source customizable Kubernetes admission webhook
for cluster policy and governance. Gatekeeper takes advantage of the OPA constraint framework to enforce custom resource definition (CRD)-based policies. Using CRDs
allows for an integrated Kubernetes experience that decouples policy
authoring from implementation. Policy templates are referred to as
constraint templates, which can be shared and reused across clusters.
Gatekeeper enables resource validation and audit functionality. One of
the great things about Gatekeeper is that it’s portable, which means that you
can implement it on any Kubernetes clusters, and if you are already using
OPA, you might be able to port that policy over to
Gatekeeper.

Note

Gatekeeper is still under active development and is subject to change. For the most recent updates on the project, visit the official upstream repository.












Example Policies


It’s important not to become too stuck in the weeds and actually consider
the problem that we are trying to solve. Let’s take a look at some
policies that solve some of the most common compliance issues for
context:



	
Services must not be exposed publicly on the internet.



	
Allow containers only from trusted container registries.



	
All containers must have resource limits.



	
Ingress hostnames must not overlap.



	
Ingresses must use only HTTPS.





















Gatekeeper Terminology


Gatekeeper has adopted much of the same terminology as OPA. It’s
important that we cover what that terminology is so that you can
understand how Gatekeeper operates. Gatekeeper uses the OPA constraint
framework. Here, we introduce three new terms:



	
Constraint



	
Rego



	
Constraint template
















Constraint


The best way to think about constraints is as restrictions that you
apply to specific fields and values of Kubernetes resource
specifications. This is really just a long way of saying policy. This
means that when constraints are defined, you are effectively stating
that you DO NOT want to allow this. The implications of this approach
mean that resources are implicitly allowed without a constraint that
issues a deny. This is important because instead of allowing the
Kubernetes resources specification fields and values you want, you are denying only the ones you do not want. This architectural decision suits
Kubernetes resource specifications nicely because they are ever changing.

















Rego


Rego is an OPA-native query language. Rego queries are assertions on the
data stored in OPA. Gatekeeper stores rego in the constraint template.

















Constraint template


You can think of this as a policy template. It’s portable and reusable.
Constraint templates consist of typed parameters and the target rego
that is parameterized for reuse.






















Defining Constraint Templates


Constraint templates are a
Custom Resource Definition (CRD) that provide a means of templating policy so that
it can be shared or reused. In addition, parameters for the policy can
be validated. Let’s take a look at a constraint template in the context of
the earlier examples. In the following example, we share a constraint
template that provides the policy “Only allow containers from
trusted container registries”:


apiVersion: templates.gatekeeper.sh/v1alpha1
kind: ConstraintTemplate
metadata:
  name: k8sallowedrepos
spec:
  crd:
    spec:
      names:
        kind: K8sAllowedRepos
        listKind: K8sAllowedReposList
        plural: k8sallowedrepos
        singular: k8sallowedrepos
      validation:
        # Schema for the `parameters` field
        openAPIV3Schema:
          properties:
            repos:
              type: array
              items:
                type: string
  targets:
    - target: admission.k8s.gatekeeper.sh
      rego: |
        package k8sallowedrepos

        deny[{"msg": msg}] {
          container := input.review.object.spec.containers[_]
          satisfied := [good | repo = input.constraint.spec.parameters.repos[_] ; good = startswith(container.image, repo)]
          not any(satisfied)
          msg := sprintf("container <%v> has an invalid image repo <%v>, allowed repos are %v", [container.name, container.image, input.constraint.spec.parameters.repos])
        }


The constraint template consists of three main components:


	Kubernetes-required CRD metadata

	
The name is the most important part. We reference this later.



	Schema for input parameters

	
Indicated by the validation field, this section defines the input parameters and their associated types. In this example, we have a single parameter called repo that is an array of strings.



	Policy definition

	
Indicated by the target field, this section contains templated rego (the language to define policy in OPA). Using a constraint template allows the templated rego to be reused and means that generic policy can be shared. If the rule matches, the constraint is violated.





















Defining Constraints


To use the previous constraint template, we must create a
constraint resource. The purpose of the constraint resource is to
provide the necessary parameters to the constraint template that we
created earlier. You can see that the kind of the resource defined in the following example
is K8sAllowedRepos, which maps to the constraint template defined in
the previous section:


apiVersion: constraints.gatekeeper.sh/v1alpha1
kind: K8sAllowedRepos
metadata:
  name: prod-repo-is-openpolicyagent
spec:
  match:
    kinds:
      - apiGroups: [""]
        kinds: ["Pod"]
    namespaces:
      - "production"
  parameters:
    repos:
      - "openpolicyagent"


The constraint consists of two main sections:


	Kubernetes metadata

	
Notice that this constraint is of kind K8sAllowedRepos, which matches the name of the constraint template.



	The spec

	
The match field defines the scope of intent for the policy. In this example, we are matching pods only in the production namespace.


The parameters define the intent for the policy. Notice that they match the type from the constraint template schema from the previous section. In this case, we allow only container images that start with openpolicyagent.






Constraints have the following operational characteristics:



	
Logically AND-ed together



	
When multiple policies validate the same field, if one violates then the whole request is rejected







	
Schema validation that allows early error detection



	
Selection criteria



	
Can use label selectors



	
Constrain only certain kinds



	
Constrain only in certain namespaces

























Data Replication


In some cases, you might want to compare the current resource against
other resources that are in the cluster, for example, in the case of
“Ingress hostnames must not overlap.” OPA needs to have all of the other
Ingress resources in its cache in order to evaluate the rule.
Gatekeeper uses a config resource to manage which data is cached in OPA
in order to perform evaluations such as the one previously mentioned. In
addition, config resources are also used in the audit functionality, which we explore a bit later on.


The following example config resource caches v1 service, pods, and
namespaces:


apiVersion: config.gatekeeper.sh/v1alpha1
kind: Config
metadata:
name: config
  namespace: gatekeeper-system
spec:
  sync:
    syncOnly:
    - kind: Service
      version: v1
    - kind: Pod
      version: v1
    - kind: Namespace
      version: v1

















UX


Gatekeeper enables real-time feedback to cluster users for resources
that violate defined policy. If we consider the example from the
previous sections, we allow containers only from repositories that start
with openpolicyagent.


Let’s try to create the following resource; it is not compliant given
the current policy:


apiVersion: v1
kind: Pod
metadata:
  name: opa
  namespace: production
spec:
  containers:
    - name: opa
      image: quay.io/opa:0.9.2


This gives you the violation message that’s defined in the constraint
template:


$ kubectl create -f bad_resources/opa_wrong_repo.yaml
Error from server (container <opa> has an invalid image repo <quay.io/opa:0.9.2>, allowed repos are ["openpolicyagent"]): error when creating "bad_resources/opa_wrong_repo.yaml": admission webhook "validation.gatekeeper.sh" denied the request: container <opa> has an invalid image repo <quay.io/opa:0.9.2>, allowed repos are ["openpolicyagent"]
























Audit


Thus far, we have discussed only how to define policy and have it
enforced as part of the request admission process. How do you handle a
cluster that already has resources deployed where you want to know what is
in compliance with the defined policy? That is exactly what audit sets
out to achieve. When using audit, Gatekeeper periodically evaluates
resources against the defined constraints. This helps with the detection
of misconfigured resources according to policy and allows for
remediation. The audit results are stored in the status field of the
constraint, making them easy to find by simply using kubectl. To use audit, the resources to be audited must be replicated. For more details, refer to “Data Replication”.


Let’s take a look at the constraint called prod-repo-is-openpolicyagent
that you defined in the previous section:


$ kubectl get k8sallowedrepos prod-repo-is-openpolicyagent -o yaml
apiVersion: constraints.gatekeeper.sh/v1alpha1
kind: K8sAllowedRepos
metadata:
  creationTimestamp: "2019-06-04T06:05:05Z"
  finalizers:
  - finalizers.gatekeeper.sh/constraint
  generation: 2820
  name: prod-repo-is-openpolicyagent
  resourceVersion: "4075433"
  selfLink: /apis/constraints.gatekeeper.sh/v1alpha1/k8sallowedrepos/prod-repo-is-openpolicyagent
  uid: b291e054-868e-11e9-868d-000d3afdb27e
spec:
  match:
    kinds:
    - apiGroups:
      - ""
      kinds:
      - Pod
    namespaces:
    - production
  parameters:
    repos:
    - openpolicyagent
status:
  auditTimestamp: "2019-06-05T05:51:16Z"
  enforced: true
  violations:
  - kind: Pod
    message: container <nginx> has an invalid image repo <nginx>, allowed repos are
      ["openpolicyagent"]
    name: nginx
    namespace: production


Upon inspection, you can see the last time the audit ran in the
auditTimestamp field. We also see all of the resources that violate this
constraint under the violations field.










Becoming Familiar with Gatekeeper


The Gatekeeper repository ships with fantastic demonstration content that walks
you through a detailed example of building policies to meet compliance
for a bank. We would strongly recommend walking through the demonstration for a
hands-on approach to how Gatekeeper operates. You can find the demonstration in this Git repository.

















Gatekeeper Next Steps


The Gatekeeper project is continuing to grow and is looking to solve
other problems in the areas of policy and governance, which includes
features like these:



	
Mutation (modifying resources based on policy; for example, add these labels)



	
External data sources (integration with Lightweight Directory Access Protocol [LDAP] or Active Directory for policy lookup)



	
Authorization (using Gatekeeper as a Kubernetes authorization module)



	
Dry run (allow users to test policy before making it active in a cluster)






If these sound like interesting problems that you might be willing to help solve,
the Gatekeeper community is always
looking for new users and contributors to help shape the future of the project.
If you would like to learn more, head over to the upstream repository on GitHub.
























Policy and Governance Best Practices


You should consider the following best practices when implementing policy and governance on your clusters:



	
If you want to enforce a specific field in a pod, you need to make a
determination of which Kubernetes resource specification you want to
inspect and enforce. Let’s consider the case of Deployments, for example.
Deployments manage ReplicaSets, which manage pods. We could enforce at
all three levels, but the best choice is the one that is the lowest
handoff point before the runtime, which in this case is the pod. This decision,
however, has implications. The user-friendly error message when we try to deploy a
noncompliant pod, as seen in “UX”, is not going to be displayed. This is because the
user is not creating the noncompliant resource, the ReplicaSet is. This
experience means that the user would need to determine that the resource
is not compliant by running a kubectl describe on the current
ReplicaSet associated with the Deployment. Although this might seem
cumbersome, this is consistent behavior with other Kubernetes features,
such as pod security policy.



	
Constraints can be applied to Kubernetes resources on the following
criteria: kinds, namespaces, and label selectors. We would strongly
recommend scoping the constraint to the resources to which you want it to
be applied as tightly as possible. This ensures consistent policy
behavior as the resources on the cluster grow, and means that resources
that don’t need to be evaluated aren’t being passed to OPA, which can result in
other inefficiencies.



	
Synchronizing and enforcing on potentially sensitive data such as Kubernetes
secrets is not recommended. Given that OPA will hold this in its cache
(if it is configured to replicate that data) and resources will be
passed to Gatekeeper, it leaves surface area for a potential attack
vector.



	
If you have many constraints defined, a deny of constraint means that
the entire request is denied. There is no way to make this function as a
logical OR.





















Summary


In this chapter, we covered why policy and governance are important
and walked through a project that’s built upon OPA, a cloud-native
ecosystem policy engine, to provide a Kubernetes-native approach to
policy and governance. You should now be prepared and confident the
next time the security teams asks, “Are our clusters in compliance with our
defined policy?”












Chapter 12. Managing Multiple Clusters



In this chapter, we discuss best practices for managing multiple
Kubernetes clusters. We dive into the details of the differences between
multicluster management and federation, tools to manage multiple
clusters, and operational patterns for managing multiple clusters.


You might wonder why you would need multiple Kubernetes
clusters; Kubernetes was built to consolidate many
workloads to a single cluster, correct? This is true, but there are scenarios
such as workloads across regions, concerns of blast radius, regulatory
compliance, and specialized workloads.


We discuss these scenarios and explore the tools and techniques for
managing multiple clusters in Kubernetes.








Why Multiple Clusters?


When adopting Kubernetes, you will likely have more than one cluster, and
you might even start with more than one cluster to break out production
from staging, user acceptance testing (UAT), or development. Kubernetes provides some
multitenancy features with namespaces, which are a logical way to break up
a cluster into smaller logical constructs. Namespaces allow you to
define Role-Based Access Control (RBAC), quotas, pod security policies, and
network policies to allow separation of workloads. This is a great way
to separate out multiple teams and projects, but there are other
concerns that might require you to build a multicluster architecture.
Following are concerns to think about when deciding to use multicluster
versus a single-cluster architecture:



	
Blast radius



	
Compliance



	
Security



	
Hard multitenancy



	
Regional-based workloads



	
Specialized workloads






When thinking through your architecture, blast radius should come front
and center. This is one of the main concerns that we see with users designing
for multicluster architectures. With microservice architectures we
employ circuit breakers, retries, bulkheads, and rate limiting to constrain the extent
of damage to our systems. You should design the same into your
infrastructure layer, and multiple clusters can help with preventing the
impact of cascading failures due to software issues. For example, if you
have one cluster that serves 500 applications and you have a
platform issue, it takes out 100% of the 500 applications. If you
had a platform layer issue with 5 clusters serving those 500
applications, you affect only 20% of the applications. The downside
to this is that now you need to manage five clusters, and your consolidation
ratios will not be as good with a single cluster. Dan Woods wrote a great article about an actual cascading failure in a production Kubernetes
environment. It is a great example of why you will
want to consider multicluster architectures for larger environments.


Compliance is another area of concern for multicluster design because
there are special considerations for Payment Card Industry (PCI), Health Insurance Portability and Accountability (HIPAA), and other workloads. It’s
not that Kubernetes doesn’t provide some multitenant features, but
these workloads might be easier to manage if they are segregated out from
general purpose workloads. These compliant workloads might have specific
requirements with respect to security hardening, nonshared components, or
dedicated workload requirements. It’s just much easier to separate these
workloads than have to treat the cluster in such a specialized
fashion.


Security in large Kubernetes clusters can become difficult to manage. As you start onboarding more and more teams to a Kubernetes cluster each team may have different security requirements and it can become very difficult to meet those needs in a large multi-tenant cluster. Even just managing RBAC, network policies, and pod security policies can become difficult at scale in a single cluster. A small change to a network policy can inadvertently open up security risk to other users of the cluster. With multiple clusters you can limit the security impact with a misconfiguration. If you decide that a larger Kubernetes cluster fits your requirements, then ensure that you have a very good operational process for making security changes and understand the blast radius of making a change to RBAC, network policy, and pod security policies.


Kubernetes doesn’t provide hard multitenancy because it shares the
same API boundary with all workloads running within the cluster. With
namespacing this gives us good soft multitenancy, but not enough to
protect against hostile workloads within the cluster. Hard multitenancy
is not a requirement for a lot of users; they trust the workloads that
will be running within the cluster. Hard multitenancy is typically a
requirement if you are a cloud provider, hosting Software as a Service (SaaS)-based software or
untrusted workloads with untrusted user control.


When running workloads that need to serve traffic from in-region
endpoints, your design will include multiple clusters that are based per
region. When you have a globally distributed application, it becomes a
requirement at that point to run multiple clusters. When you have
workloads that need to be regionally distributed, it’s a great use case
for cluster federation of multiple clusters, which we dig into
further later in this chapter.


Specialized workloads, such as high-performance computing (HPC), machine learning (ML), and grid computing, also need
to be addressed in the multicluster architecture. These types of
specialized workloads might require specific types of hardware, have
unique performance profiles, and have specialized users of the clusters.
We’ve seen this use case to be less prevalent in the design decision because
having multiple Kubernetes node pools can help address specialized
hardware and performance profiles. When you have the need for a very large
cluster for an HPC or machine learning workload, you should take into consideration
just dedicating clusters for these workloads.


With multicluster, you get isolation for “free,” but it also has design
concerns that you need to address at the outset.

















Multicluster Design Concerns


When choosing a multicluster design there are some challenges that you’ll
run into. Some of these challenges might deter you from attempting a
multicluster design given that the design might overcomplicate your
architecture. Some of the common challenges we find users running into
are:



	
Data replication



	
Service discovery



	
Network routing



	
Operational management



	
Continuous deployment






Data replication and consistency has always been the crux of deploying
workloads across geographical regions and multiple clusters. When
running these services, you need to decide what runs where and develop a
replication strategy. Most databases have built-in tools to
perform the replication, but you need to design the application to be
able to handle the replication strategy. For NoSQL-type database
services this can be easier because they can can handle scaling across
multiple instances, but you still need to ensure that your application can
handle eventual consistency across geographic regions or at least the
latency across regions. Some cloud services, such as Google Cloud Spanner
and Microsoft Azure CosmosDB, have built database services to help with the
complications of handling data across multiple geographic regions.


Each Kubernetes cluster deploys its own service discovery registry,
and registries are not synchronized across multiple clusters. This complicates
applications being able to easily identify and discover one another.
Tools such as HashiCorp’s Consul can transparently synchronize services
from multiple clusters and even services that reside outside of
Kubernetes. There are other tools like Istio, Linkerd, and Cillium that
are building on multiple cluster architectures to extend service
discovery between clusters.


Kubernetes makes networking from within the cluster very easy, as it’s a
flat network and avoids using network address translation (NAT). If you need
to route traffic in and out of the cluster, this becomes more
complicated. Ingress into the cluster is implemented as a 1:1 mapping of
ingress to the cluster because it doesn’t support multicluster topologies
with the Ingress resource. You’ll also need to consider the egress
traffic between clusters and how to route that traffic. When your
applications reside within a single cluster this is easy, but when introducing multicluster, you need to think about the latency of extra
hops for services that have application dependencies in another cluster.
For applications that have tightly coupled dependencies, you should
consider running these services within the same cluster to remove
latency and extra complexity.


One of the biggest overheads to managing multiclusters is the
operational management. Instead of one or a couple of clusters to
manage and keep consistent, you might now have many clusters to manage in
your environment. One of the most important aspects to managing multiclusters is ensuring that you have good automation practices in place because
this will help to reduce the operational burden. When automating your
clusters, you need to take into account the infrastructure deployment and
managing add-on features to your clusters. For managing the
infrastructure, using a tool like HashioCrp’s Terraform can help with
deploying and managing a consistent state across your fleet of clusters.


Using an Infrastructure as Code (IaC) tool like Terraform will give you the
benefit of providing a reproducible way to deploy your
clusters. On the other hand, you also need to be able to consistently
manage add-ons to the cluster, such as monitoring, logging, ingress,
security, and other tools. Security is also an important aspect of
operational management, and you must be able to maintain security policies,
RBAC, and network policies across clusters. Later
in this chapter, we dive deeper into the topic of maintaining
consistent clusters with automation.


With multiple clusters and Continuous Delivery (CD), you now need to deal
with multiple Kubernetes API endpoints versus a single API endpoint. This
can cause challenges in the distribution of applications. You can easily
manage multiple pipelines, but suppose that you have a hundred
different pipelines to manage, which can make application distribution
very difficult. With this in mind, you need to look at different approaches to
managing this situation. We take a look at solutions to help manage this
later in the chapter.

















Managing Multiple Cluster Deployments


One of the first steps that you want to take when managing multicluster
deployments is to use an IoC tool like Terraform
to set up deployments. Other deployment tools, such as kubespray, kops, or other cloud
provider–specific tools, are all valid choices but, most importantly, use a
tool that allows you to source control your cluster deployment for
repeatability.


Automation is key to successfully managing multiple clusters in your
environment. You might not have everything automated on day one, but you should
make it a priority to automate all aspects of your cluster deployments
and operations.


An interesting project in development is the Kubernetes Cluster API. The Cluster API is a Kubernetes project to bring declarative, Kubernetes-style APIs to cluster creation, configuration, and management. It provides optional, additive functionality on top of core Kubernetes. The Cluster API provides a cluster-level configuration declared through a common API, which will give you the ability to easily automate and build tooling around cluster automation. As of this writing, the project is still in development, so make sure to keep an eye out for it as it matures.










Deployment and Management Patterns


Kubernetes operators were introduced as an implementation of the Infrastructure as Software concept. Using them allows you to abstract the deployment of applications and services in a Kubernetes cluster. For example, suppose that you want to standardize on Prometheus for monitoring your Kubernetes clusters. You would need to create and manage various objects (deployment, service, ingress, etc.) for each cluster and team. You would also need to maintain the fundamental configurations of Prometheus, such as versions, persistence, retention policies, and replicas. As you can imagine, the maintenance of such a solution could be difficult across a large number of clusters and teams.


Instead of dealing with so many objects and configurations, you could install the prometheus-operator. This extends the Kubernetes API, exposing multiple new object kinds called Prometheus, ServiceMonitor, PrometheusRule, and AlertManager, which allow you to specify all of the details of a Prometheus deployment using just a few objects. You can use the kubectl tool to manage such objects, just as it manages any other Kubernetes API object.


Figure 12-1 shows the architecture of the prometheus-operator.



[image: Figure 13.1]
Figure 12-1. prometheus-operator architecture




Utilizing the Operator pattern for automating key operational tasks can
help improve your overall cluster management capabilities. The Operator
pattern was introduced by the CoreOS team in 2016 with the etcd operator
and prometheus-operator. The Operator pattern builds on two concepts:



	
Custom resource definitions



	
Custom controllers






Custom resource definitions (CRDs) are objects that allow you to extend the
Kubernetes API, based on your own API that you define.


Custom controllers are built on the core Kubernetes concepts of
resources and controllers. Custom controllers allow you to build your own logic by watching events from Kubernetes API objects such as namespaces, Deployments, pods, or your own CRD. With custom controllers, you can build your CRDs in a declarative way. If you consider how the Kubernetes Deployment controller works in a reconciliation loop to always maintain the state of the deployment object to maintain its declarative state, this brings the same advantages of controllers to your CRDs.


When utilizing the Operator pattern, you can build in automation to
operational tasks that need to be performed on operational tooling in
multiclusters. Let’s take the following Elasticsearch operator as an
example. As in Chapter 3, we utilized the Elasticsearch, Logstash, and Kibana (ELK)
stack to perform log aggregation of our cluster. The Elasticsearch
operator can perform the following operations:



	
Replicas for master, client, and data nodes



	
Zones for highly available deployments



	
Volume sizes for master and data nodes



	
Resizing of cluster



	
Snapshot for backups of the Elasticsearch cluster






As you can see, the operator provides automation for many tasks that you
would need to perform when managing Elasticsearch, such as automating
snapshots for backup and resizing the cluster. The beauty of this is that you
manage all of this through familiar Kubernetes objects.


Think about how you can take advantage of different operators like the
prometheus-operator in your environment and also how you can build your
own custom operator to offload common operational tasks.
























The GitOps Approach to Managing Clusters


GitOps was popularized by the folks at Weaveworks, and the idea and
fundamentals were based on their experience of running Kubernetes in
production. GitOps takes the concepts of the software
development life cycle and applies them to operations. With GitOps, your
Git repository becomes your source of truth, and your cluster is
synchronized to the configured Git repository. For example, if you
update a Kubernetes Deployment manifest, those configuration changes are
automatically reflected in the cluster state.


By using this method, you can make it easier to maintain multiclusters
that are consistent and avoid configuration drift across the fleet.
GitOps allows you to declaratively describe your clusters for
multiple environments and drives to maintain that state for the cluster.
The practice of GitOps can apply to both application delivery and
operations, but in this chapter, we focus on using it to manage
clusters and operational tooling.


Weaveworks Flux was one of the first tools to enable the GitOps approach, and it’s the tool we will use throughout the rest of the chapter. There are many
new tools that have been released into the cloud-native ecosystem that are
worth a look, such as Argo CD, from the folks at Intuit, which has also
been widely adopted for the GitOps approach.


Figure 12-2 presents a representation of a GitOps workflow.



[image: Figure 13.2]
Figure 12-2. GitOps workflow




So, let’s get Flux set up in your cluster and get a repository synchronized to
the cluster:


git clone https://github.com/weaveworks/flux
cd flux


You now need to make a change to the Deployment manifest to
configure it with your forked repo from Chapter 6. Modify
the following line in the Deployment file to match your forked GitHub repository:

vim deploy/flux-deployment.yaml


Modify the following line with your Git repository:

--git-url=git@github.com:weaveworks/flux-get-started  (ex. --git-url=git@github.com:your_repo/kbp )


Now, go ahead and deploy Flux to your cluster:


kubectl apply -f deploy


When Flux installs, it creates an SSH key so that it can authenticate with the
Git repository. Use the Flux command-line tool to retrieve the SSH
key so that you can configure access to your forked repository; first, you need to install
fluxctl.


For MacOS:


brew install fluxctl


For Linux Snap Packages:


snap install fluxctl


For all other packages, you can find the latest binaries here:


fluxctl identity


Open GitHub, navigate to your fork, go to Setting > “Deploy keys,”
click “Add deploy key,” give it a Title, select the “Allow write access” checkbox,
paste the Flux public key, and then click “Add key.” See the GitHub documentation for
more information on how to manage deploy keys.


Now, if you view the Flux logs, you should see that it is synchronizing
with your GitHub repository:


kubectl -n default logs deployment/flux -f


After you see that it’s synchronizing with your GitHub repository, you should see
that the Elasticsearch, Prometheus, Redis, and frontend pods are created:


kubectl get pods -w


With this example complete, you should be able to see how easy it is for you to synchronize your GitHub repository state with your Kubernetes cluster. This
makes managing the multiple operational tools in your cluster much
easier, because multiple clusters can synchronize with a single repository and
remove the situation of having snowflake clusters.

















Multicluster Management Tools


When working with multiple clusters, using Kubectl can immediately become confusing because you need to set different contexts to manage
the different clusters. Two tools that you will want to install right away
when dealing with multiple clusters are kubectx and kubens, which allow you to easily change between multiple contexts and namespaces.


When you need a full-fleged multicluster management tool, there are a
few within the Kubernetes ecosystem to look at for managing multiple
clusters. Following is a summary of some of the more popular tools:



	
Rancher centrally manages multiple Kubernetes clusters in a centrally
managed user interface (UI). It monitors, manages, backs up, and restores Kubernetes
clusters across on-premises, cloud, and hosted Kubernetes setups. It also has
tools for controlling applications deployed across multiple clusters and
provides operational tooling.



	
KQueen provides a multitenant self-service portal for Kubernetes cluster
provisioning and focuses on auditing, visibility, and security of multiple
Kubernetes clusters. KQueen is an open source project that was developed
by the folks at Mirantis.



	
Gardener takes a different approach to multicluster management in that it
utilizes Kubernetes primitives to provide Kubernetes as a Service to
your end users. It provides support for all major cloud vendors and was
developed by the folks at SAP. This solution is really geared toward
users who are building a Kubernetes as a Service offering.





















Kubernetes Federation


Kubernetes first introduced Federation v1 in Kubernetes 1.3, and it has
since been deprecated in lieu of Federation v2. Federation v1 set
out to help with the distribution of applications to multiple clusters.
Federation v1 was built utilizing the Kubernetes API and heavily
relied on Kubernetes annotations, which imposed some problems in its
design. The design was tightly coupled to the core Kubernetes API, which
made Federation v1 quite monolithic in nature. At the time, the design
decisions were probably not bad choices, but were built on the
primitives that were available. The introducton of Kubernetes CRDs allowed a different way of thinking about how Federation could be designed.


Federation v2 (now called KubeFed) requires Kubernetes 1.11+ and is
currently in alpha as of this writing. Federation v2 is built around
the concept of CRDs and custom controllers, which
allows you to extend Kubernetes with new APIs. Building around CRDs allows Federation to have new API types and not
be restricted just to previous v1 deployment objects.


KubeFed is not necessarily about multicluster management, but providing high availability (HA) deployments across multiple clusters. It allows you to combine multiple clusters into a single management endpoint for delivering applications on Kubernetes. For example, if you have a cluster that resides in multiple public cloud environments, you can combine these clusters into a single control plane to manage deployments to all clusters to increase the resiliency of your application.


As of this writing, the following Federated resources are supported:



	
Namespaces



	
ConfigMaps



	
Secrets



	
Ingress



	
Services



	
Deployments



	
ReplicaSets



	
Horizontal Pod Autoscalers



	
DaemonSets



	
Jobs






To understand how this all works, let’s first take a look at the architecture in Figure 12-3.



[image: KubeFed]
Figure 12-3. Kubernetes Federation architecture




It’s important to understand that with Federation, not everything is just copied down to all clusters. For example, with Deployments and ReplicaSets, you define the number of replicas, which are then spread out across the clusters. This is the default for Deployments, but you can change the configuration. On the other hand, if you create a namespace, that namespace is cluster scoped and created in each cluster. Secrets, ConfigMaps, and DaemonSets work the same way and are copied down to each cluster. The Ingress resource is also different from the aforementioned objects because it creates a global multicluster resource with a single entry point into a service. As you can see from how KubeFed works, the use cases Kubefed supports are multiregion, multicloud, and global application deployments to Kubernetes.


Following is an example of a federated Deployment:


apiVersion: types.kubefed.io/v1beta1
kind: FederatedDeployment
metadata:
  name: test-deployment
  namespace: test-namespace
spec:
  template:
    metadata:
      labels:
        app: nginx
    spec:
      replicas: 5
      selector:
        matchLabels:
          app: nginx
      template:
        metadata:
          labels:
            app: nginx
        spec:
          containers:
          - image: nginx
            name: nginx
  placement:
    clusters:
    - name: azure
    - name: google


This example creates a federated Deployment of an NGINX pod with five replicas, which are then spread across our clusters in Azure and another cluster in Google.


Setting up federated Kubernetes clusters is beyond the scope of this book, but you can learn more about the subject by referring to the KubeFed User Guide.


KubeFed is still in alpha, so keep an eye on it, but embrace the tools that you
already have or can implement now so that you can be successful with
Kubernetes HA and multicluster deployments.

















Managing Multiple Clusters Best Practices


Consider the following best practices when managing multiple Kubernetes clusters:



	
Limit the blast radius of your clusters to ensure cascading failures
don’t have a bigger impact on your applications.



	
If you have regulatory concerns such as PCI, HIPPA, or HiTrust, think about utilizing multiclusters to ease the complexity of mixing
these workloads with general workloads.



	
If hard multitenancy is a business requirement, workloads should be deployed to a dedicated cluster.



	
If multiple regions are needed for your applications, utilize a Global
Load Balancer to manage traffic between clusters.



	
You can break out specialized workloads such as HPC into their own
individual clusters to ensure that the specialized needs for the workloads
are met.



	
If you’re deploying workloads that will be spread across multiple regional
datacenters, first ensure that there is a data replication strategy for the
workload. Multiple clusters across regions can be easy, but replicating
data across regions can be complicated, so ensure that there is a sound
strategy to handle asynchronous and synchronous workloads.



	
Utilize Kubernetes operators like the prometheus-operator or Elasticsearch operator to handle automated operational tasks.



	
When designing your multicluster strategy, also consider how you will
do service discovery and networking between clusters. Service mesh tools
like HashiCorp’s Consul or Istio can help with networking across
clusters.



	
Be sure that your CD strategy can handle
multiple rollouts between regions or multiple clusters.



	
Investigate utilizing a GitOps approach to managing multiple cluster
operational components to ensure consistency between all clusters in
your fleet. The GitOps approach doesn’t always work for everyone’s
environment, but you should at least investigate it to ease the operational
burden of multicluster environments.





















Summary


In this chapter, we discussed different strategies for managing multiple Kubernetes
clusters. It’s important
to think about what your needs are at the outset and whether those needs match
a multicluster topology. The first scenario to think about is whether you truly need hard multitenancy because this will automatically require
a multicluster strategy. If you don’t, consider your compliance
needs and whether you have the operational capacity to consume the overhead
of multicluster architectures. Finally, if you’re going with more, smaller
clusters, ensure that you put automation around the delivery and management of
them to reduce the operational burden.












Chapter 13. Integrating External Services and Kubernetes



In many of the chapters in this book, we’ve discussed how to build,
deploy, and manage services in Kubernetes. However, the truth is that
systems don’t exist in a vaccum, and most of the services that we build
will need to interact with systems and services that exist outside of
the Kubernetes cluster in which they’re running. This might be because we
are building new services that are being accessed by legacy
infrastructure running in virtual or physical machines. Conversely, it
might be because the services that we are building might need to access
preexisting databases or other services that are likewise running on
physical infrastructure in an on-premises datacenter. Finally, you might
have multiple different Kubernetes clusters with services that you
need to interconnect. For all of these reasons, the ability to expose,
share, and build services that span the boundary of your Kubernetes
cluster is an important part of building real-world applications.








Importing Services into Kubernetes


The most common pattern for connecting Kubernetes with external services
consists of a Kubernetes service that is consuming a service that exists
outside of the Kubernetes cluster. Often, this is because Kubernetes is
being used for some new application development or interface for a
legacy resource like an on-premises database. This pattern often makes
the most sense for incremental development of cloud-native services.
Because the database layer contains significant mission-critical data,
it is a heavy lift to move it to the cloud, let alone containers. At the
same time, there is a great deal of value in providing a modern layer on
top of such a database (e.g., supplying a GraphQL interface) as
the foundation for building a new generation of applications. Likewise,
moving this layer to Kubernetes often makes a great deal of sense because
rapid development and reliable continuous deployment of this middleware
enables a great deal of agility with minimal risk. Of course, to achieve
this, you need to make the database accessible from within Kubernetes.


When we consider the task of making an external service accessible from
Kubernetes, the first challenge is simply to get the networking to work
correctly. The specific details of getting networking operational are very
specific to both the location of the database as well as the location of
the Kubernetes cluster; thus, they are beyond the scope of this book, but
generally, cloud-based Kubernetes providers enable the deployment of a
cluster into a user-provided virtual network (VNET), and those virtual
networks can then be peered up with an on-premises network for
connectivity.


After you’ve established network connectivity between pods in the Kubernetes cluster and the
on-premises resource, the next challenge is to make
the external service look and feel like a Kubernetes service. In
Kubernetes, service discovery occurs via Domain Name System (DNS) lookups and, thus, to make
our external database feel like it is a native part of Kubernetes, we
need to make the database discoverable in the same DNS.










Selector-Less Services for Stable IP Addresses


The first way to achieve this is with a selector-less Kubernetes
Service. When you create a Kubernetes Service without a selector, there
are no Pods that match the service; thus, there is no load balancing
performed. Instead, you can program this selector-less service to have
the specific IP address of the external resource that you want to add to the
Kubernetes cluster. That way, when a Kubernetes pod performs a lookup for
your-database, the built-in Kubernetes DNS server will translate that
to a service IP address of your external service. Here is an example of
a selector-less service for an external database:


apiVersion: v1
kind: Service
metadata:
  name: my-external-database
spec:
  ports:
  - protocol: TCP
    port: 3306
    targetPort: 3306


When the service exists, you need to update its endpoints to contain
the database IP address serving at 24.1.2.3:


apiVersion: v1
kind: Endpoints
metadata:
  # Important! This name has to match the Service.
  name: my-external-database
subsets:
  - addresses:
      - ip: 24.1.2.3
    ports:
      - port: 3306


Figure 13-1 depicts how this integrates together within Kubernetes.



[image: images/figure-14-1.png]
Figure 13-1. Service integration



















CNAME-Based Services for Stable DNS Names


The previous example assumed that the external resource that you were
trying to integrate with your Kubernetes cluster had a stable IP
address. Although this is often true of physical on-premises resources,
depending on the network toplogy, it might not always be true, and it is
significantly less likely to be true in a cloud environment where
virtual machine (VM) IP addresses are more dynamic. Alternatively, the
service might have multiple replicas sitting behind a single DNS-based
load balancer. In these situations, the external service that you are
trying to bridge into your cluster doesn’t have a stable IP address, but
it does have a stable DNS name.


In such a situation, you can define a CNAME-based Kubernetes Service.
If you’re not familiar with DNS records, a CNAME, or Canonical Name,
record is an indication that a particular DNS address should be
translated to a different Canonical DNS name. For example, a CNAME
record for foo.com that contains bar.com indicates that anyone
looking up foo.com should perform a recursive lookup for bar.com to
obtain the correct IP address. You can use Kubernetes Services to define
CNAME records in the Kubernetes DNS server. For example, if you have an
external database with a DNS name of database.myco.com, you might
create a CNAME Service that is named myco-database. Such a Service
looks like this:


kind: Service
apiVersion: v1
metadata:
  name: my-external-database
spec:
  type: ExternalName
  externalName: database.myco.com


With a Service defined in this way, any pod that does a lookup for
myco-database will be recursively resolved to database.myco.com. Of
course, to make this work, the DNS name of your external resource also
needs to be resolveable from the Kubernetes DNS servers. If the DNS name
is globally accessible (e.g., from a well-known DNS service provider),
this will simply automatically work. However, if the DNS of the external
service is located in a company-local DNS server (e.g., a DNS server that
services only internal traffic), the Kubernetes cluster might not know by default how to resolve queries to this corporate DNS server.


To set up the cluster’s DNS server to communicate with an alternate DNS resolver,
you need to adjust its configuration. You do this by updating a
Kubernetes ConfigMap with a configuration file for the DNS server. As of this writing, most clusters have moved over to the CoreDNS
server. This server is configured by writing a Corefile configuration
into a ConfigMap named coredns in the kube-system namespace. If you
are still using the kube-dns server, it is configured in a similar
manner but with a different ConfigMap.


CNAME records are a useful way to map external services with stable DNS
names to names that are discoverable within your cluster. At first it
might seem counterintuitive to remap a well-known DNS address to a
cluster-local DNS address, but the consistency of having all services
look and feel the same is usually worth the small amount of added
complexity. Additionally, because the CNAME service, like all Kubernetes services, is defined per
namespace, you can use namespaces to map the same service name
(e.g., database) to different external services (e.g., canary or
production), depending on the Kubernetes namespace.

















Active Controller-Based Approaches


In a limited set of circumstances, neither of the previous methods for
exposing external services within Kubernetes is feasible. Generally,
this is because there is neither a stable DNS address nor a single
stable IP address for the service that you want to expose within the
Kubernetes cluster. In such circumstances, exposing the external
service within the Kubernetes cluster is significantly more complicated,
but it isn’t impossible.


To achieve this, you need to have some understanding of how Kubernetes
Services work under the hood. Kubernetes Services are actually made up
of two different resources: the Service resource, with which you are doubtless
familiar, and the Endpoints resource that represents the IP
addresses that make up the service. In normal operation, the Kubernetes
controller manager populates the endpoints of a service based on the
selector in the service. However, if you create a selector-less service,
as in the first stable-IP approach, the Endpoints resource for the
service will not be populated, because there are no pods that are
selected. In this situation, you need to supply the control loop to
create and populate the correct Endpoints resource. You need to
dynamically query your infrastructure to obtain the IP addresses for the
service external to Kubernetes that you want to integrate, and then
populate your service’s endpoints with these IP addresses. After you do
this, the mechanisms of Kubernetes take over and program both the DNS
server and the kube-proxy correctly to load-balance traffic to your
external service. Figure 13-2 presents a complete picture of how this works in practice.



[image: images/figure-14-2.png]
Figure 13-2. An external service


























Exporting Services from Kubernetes


In the previous section, we explored how to import preexisting services
to Kubernetes, but you might also need to export services from Kubernetes
to the preexisting environments. This might occur because you have a
legacy internal application for customer management that needs access to
some new API that you are developing in a cloud-native infrastructure.
Alternately, you might be building new microservice-based APIs but you
need to interface with a preexisting traditional web application
firewall (WAF) because of internal policy or regulatory requirements.
Regardless of the reason, being able to expose services from a
Kubernetes cluster out to other internal applications is a critical
design requirement for many applications.


The core reason that this can be challenging is because in many Kubernetes
installations, the pod IP addresses are not routeable addresses from
outside of the cluster. Via tools like flannel, or other networking
providers, routing is established within a Kubernetes cluster to
facilitate communication between pods and also between nodes and pods,
but the same routing is not generally extended out to arbitrary machines
in the same network. Furthermore, in the case of cloud to on-premises
connectivity, the IP addresses of the pods are not always advertised
back across a VPN or network peering relationship into the on-premises
network. Consequently, setting up routing between a traditional
application and Kubernetes pods is the key task to enable the export of
Kubernetes-based services.










Exporting Services by Using Internal Load Balancers


The easiest way to export from Kubernetes is by using the built-in Service object. If you have had any previous experience with Kubernetes, you have no doubt seen how you can connect a cloud-based load balancer to bring external traffic to a collection of pods in the cluster. However, you might not have realized that most clouds also offer an internal load balancer. The internal load balancer provides the same capabilities to map a virtual IP address to a collection of pods, but that virtual IP address is drawn from an internal IP address space (e.g., 10.0.0.0/24) and thus is only routeable from within that virtual network. You activate an internal load balancer by adding a cloud-specific annotation to your Service load balancer. For example, in
Microsoft Azure, you add the service.beta.kubernetes.io/azure-load-balancer-internal: "true" annotation. On Amazon Web Services (AWS), the annotation is service.beta.kubernetes.io/aws-load-balancer-internal: 0.0.0.0/0. You place annotations in the metadata field in the Service resource as follows:

apiVersion: v1
kind: Service
metadata:
  name: my-service
  annotations:
    # Replace this as needed in other environments
    service.beta.kubernetes.io/azure-load-balancer-internal: "true"
...


When you export a Service via an internal load balancer, you receive a
stable, routeable IP address that is visible on the virtual network
outside of the cluster. You then can either use that IP address
directly or set up internal DNS resolution to provide discovery for
your exported service.

















Exporting Services on NodePorts


Unfortunately, in on-premises installations, cloud-based internal load
balancers are unavailable. In this context using a NodePort-based
service is often a good solution. A Service of type NodePort exports a
listener on every node in the cluster that forwards traffic from the
node’s IP address and selected port into the Service that you defined, as shown in Figure 13-3.



[image: images/figure-14-3.png]
Figure 13-3. A NodePort-based service




Here’s an example YAML file for a NodePort service:


apiVersion: v1
kind: Service
metadata:
  name: my-node-port-service
spec:
  type: NodePort
...


Following the creation of a Service of type NodePort, Kubernetes automatically
selects a port for the service; you can get that port from the Service
by looking at the spec.ports[*].nodePort field. If you want to choose
the port yourself, you can specify it when you create the service, but
the NodePort must be within the configured range for the cluster. The
default for this range are ports between 30000 and 30999.


Kubernetes’ work is done when the service is exposed on this port. To
export it to an existing application outside of the cluster, you (or your
network administrator) will need to make it discoverable.
Depending on the way your application is configured, you might be able to
give your application a list of ${node}:${port} pairs, and the
application will perform client-side load balancing. Alternatively, you might
need to configure a physical or virtual load balancer within your
network to direct traffic from a virtual IP address to this list of
${node}:${port} backends. The specific details for this configuration
will be different depending on your environment.

















Integrating External Machines and Kubernetes


If neither of the previous solutions work well for you—perhaps because
you want tighter integration for dynamic service discovery—the
final choice for exposing Kubernetes services to outside applications is
to directly integrate the machine(s) running the application into the
Kubernetes cluster’s service discovery and networking mechanisms. This
is significantly more invasive and complicated than either of the
previous approaches, and you should use it only when necessary for
your application (which should be infrequent). In some managed
Kubernetes environments, it might not even be possible.


When integrating an external machine into the cluster for networking,
you need to ensure that the pod network routing and DNS-based service
discovery both work correctly. The easiest way to do this is actually
to run the kubelet on the machine that you want to join to the cluster, but
disable scheduling in the cluster. Joining a kubelet node to a cluster
is beyond of the scope of this book, but there are numerous other books
or online resources that describe how to achieve this. When the node is
joined, you need to immediately mark it as unschedulable using the
kubectl cordon ... command to prevent any additional work being
scheduled on it. This cordoning will not prevent DaemonSets from landing
pods onto the node, and thus the pods for both the KubeProxy and network
routing will land on the machine and make Kubernetes-based services
discoverable from any application running on that machine.


The previous approach is quite invasive to the node because it requires
installing Docker or some other container runtime. Thus, it might not be
feasible in many environments. A lighter weight but more complex
approach is to just run the kube-proxy as a process on the machine and
adjust the machine’s DNS server. Assuming that you can set up pod
routing to work correctly, running the kube-proxy will set up machine-level networking so that Kubernetes Service virtual IP addresses will
be remapped to the pods that make up that Service. If you also change
the machine’s DNS to point to the Kubernetes cluster DNS server,
you will have effectively enabled Kubernetes discovery on a machine that
is not part of the Kubernetes cluster.


Both of these approaches are complicated and advanced, and you should not take them lightly. If you find yourself considering this level of
service discovery integration, ask yourself whether it is possibly easier to
actually bring the service you are connecting to the cluster into the
cluster itself.
























Sharing Services Between Kubernetes


The previous sections have described how to connect Kubernetes
applications to outside services and how to connect outside services to
Kubernetes applications, but another significant use case is connecting
services between Kubernetes clusters. This may be to achieve East-West
failover between different regional Kubernetes clusters, or it might be to
link together services run by different teams. The process of achieving
this interaction is actually a combination of the designs described in
the previous sections.


First, you need to expose the Service within the first Kubernetes
cluster to enable network traffic to flow. Let’s assume that you’re in a
cloud environment that supports internal load balancers, and that you
receive a virtual IP address for that internal load balancer of
10.1.10.1. Next, you need to integrate this virtual IP address into
the second Kubernetes cluster to enable service discovery. You achieve this in the same manner as importing an external application into
Kubernetes (first section). You create a selector-less Service and you
set its IP address to be 10.1.10.1. With these two steps you have
integrated service discovery and connectivity between services within
your two Kubernetes clusters.


These steps are fairly manual, and although this might be acceptable
for a small, static set of services, if you want to enable tighter or
automatic service integration between clusters, it makes sense to write a
cluster daemon that runs in both clusters to perform the integration.
This daemon would watch the first cluster for Services with a particular
annotation, say something like myco.com/exported-service; all Services
with this annotation would then be imported into the second cluster via
selector-less services. Likewise, the same daemon would garbage-collect
and delete any services that are exported into the second cluster but
are no longer present in the first. If you set up such daemons in each
of your regional clusters, you can enable dynamic, East-West connectivity
between all clusters in your environment.

















Third-Party Tools


Thus far, this chapter has described the various ways to import, export, and
connect services that span Kubernetes clusters and some outside
resource. If you have previous experience with service mesh
technologies, these concepts might seem quite familiar to you. Indeed,
there are a variety of third-party tools and projects that you can use
to interconnect services both with Kubernetes and with arbitrary
applications and machines. Generally, these tools can provide a lot of
functionality, but they are also significantly more complex
operationally than the approaches described just earlier. However, if you find
yourself building more and more networking interconnectivity, you should
explore the space of service meshes, which is rapidly iterating and
evolving. Nearly all of these third-party tools have an open source
component, but they also offer commercial support that can reduce the
operational overhead of running additional infrastructure.

















Connecting Cluster and External Services Best Practices



	
Establish network connectivity between the cluster and on-premises. Networking can be varied between different sites, clouds, and cluster configurations, but
first ensure that pods can talk to on-premises machines and vice versa.



	
To access services outside of the cluster, you can use selector-less services
and directly program in the IP address of the machine (e.g., the database) with which you want to communicate. If you don’t have fixed IP addressess, you can instead use CNAME
services to redirect to a DNS name. If you have neither a DNS name
nor fixed services, you might need to write a dynamic operator that periodically
synchronizes the external service IP addresses with the Kubernetes Service endpoints.



	
To export services from Kubernetes, use internal load balancers or NodePort
services. Internal load balancers are typically easier to use in public cloud
environments where they can be bound to the Kubernetes Service itself. When
such load balancers are unavailable, NodePort services can expose the service
on all of the machines in the cluster.



	
You can achieve connections between Kubernetes clusters through a combination
of these two approaches, exposing a service externally that is then consumed
as a selector-less service in the other Kubernetes cluster.





















Summary


In the real world, not every application is cloud native. Building
applications in the real world often involves connecting preexisting
systems with newer applications. This chapter described how you can
integrate Kubernetes with legacy applications and also how to integrate
different services running across multiple distinct Kubernetes clusters.
Unless you have the luxury of building something brand new, cloud-native
development will always require legacy integration. The techniques described in this chapter will help you achieve that.












Chapter 14. Running Machine Learning in Kubernetes



The age of microservices, distributed systems, and the cloud has
provided the perfect environmental conditions for the democratization of
machine learning models and tooling. Infrastructure at scale has now
become commoditized, and the tooling around the machine learning
ecosystem is maturing. It just so happens that Kubernetes is one of the
platforms that has become increasingly popular among data scientists
and the wider open source community as the perfect environment to
enable the machine learning workflow and life cycle. In this chapter, we
will cover why Kubernetes is a great place for machine learning and
provide best practices for both cluster administrators and data
scientists alike on how to get the most out of Kubernetes when running
machine learning workloads. Specifically, we focus on deep
learning rather than traditional machine learning because deep learning has
fast become the area of innovation on platforms like Kubernetes.








Why Is Kubernetes Great for Machine Learning?


Kubernetes has quickly become the home for rapid innovation in deep
learning. The confluence of tooling and libraries such as TensorFlow
make this technology more accessible to a large audience of data
scientists. What makes Kubernetes such a great place to run your deep
learning workloads? Let’s cover what Kubernetes provides:


	Ubiquitous

	
Kubernetes is everywhere. All of the major public clouds support it, and there are distributions for private clouds and infrastructure. Basing ecosystem tooling on a platform like Kubernetes allows users to run their deep learning workloads anywhere.



	Scalable

	
Deep learning workflows typically need access to large amounts of computing power in order to efficiently train machine learning models. Kubernetes ships with native autoscaling capabilities that make it easy for data scientists to achieve and fine-tune the level of scale they need to train their models.



	Extensible

	
Efficiently training a machine learning model typically requires access to specialized hardware. Kubernetes allows cluster administrators to quickly and easily expose new types of hardware to the scheduler without having to change the Kubernetes source code. It also allows custom resources and controllers to be seamlessly integrated into the Kubernetes API to support specialized workflows, such as hyperparameter tuning.



	Self-service

	
Data scientists can use Kubernetes to perform self-service machine learning workflows on demand, without needing specialized knowledge of Kubernetes itself.



	Portable

	
Machine learning models can be run anywhere, provided that the tooling is based on the Kubernetes API. This allows machine learning workloads to be portable across Kubernetes providers.





















Machine Learning Workflow


To effectively understand the needs of deep learning, you must
understand the complete workflow. Figure 14-1 represents a
simplified machine learning workflow.



[image: Figure 14.1]
Figure 14-1. Machine learning development workflow




Figure 14-1 illustrates that the machine learning development workflow has the following
phases:


	Dataset preparation

	
    This phase includes the storage, indexing,
cataloging, and metadata associated with the dataset that is used to
train the model. For the purposes of this book, we consider only the storage aspect. Datasets vary in size, from hundreds of
megabytes to hundreds of terabytes. The dataset needs to be provided to
the model in order for the model to be trained. You must consider
storage that provides the appropriate properties to meet these needs.
Typically, large-scale block and object stores are required and must be
accessible via Kubernetes native storage abstractions or directly
accessible APIs.



	Machine learning algorithm development

	
    This is the phase in which data
scientists write, share, and collaborate on machine learning algorithms.
Open source tools like JupyterHub are easy to install on Kubernetes because
they typically function like any other workload.



	Training

	
    This is the process by which the model will use the dataset to learn how to perform the tasks
for which it has been designed. The resulting artifact
of training process is usually a checkpoint of the trained model state. The training process is
the piece that takes advantage of all of the capabilities of Kubernetes at the
same time. Scheduling, access to specialized hardware, dataset volume
management, scaling, and networking will all be exercised in unison in
order to complete this task. We cover more of the specifics of the
training phase in the next section.



	Serving

	
    This is the process of making the trained model accessible to
service requests from clients so that it can make predictions based on the the data
supplied from the client. For example, if you have an image-recognition
model that’s been trained to detect dogs and cats, a client might
submit a picture of a dog, and the model should be able to determine whether it
is a dog, with a certain level of accuracy.





















Machine Learning for Kubernetes Cluster Admins


In this section, we discuss topics you will need to consider before
running machine learning workloads on your Kubernetes cluster. This section is
specifically targeted toward cluster administrators. The largest
challenge you will face as a cluster administrator responsible
for a team of data scientists is understanding the terminology. There
are myriad new terms that you must become familiar with over time,
but rest assured, you can do it. Let’s take a look at the main
problem areas you’ll need to address when preparing a cluster
for machine learning workloads.










Model Training on Kubernetes


Training machine learning models on Kubernetes requires conventional CPUs and graphics processing units (GPUs). Typically,
the more resources you apply, the faster the training will be completed.
In most cases, model training can be achieved on a single machine that has the required resources.
Many cloud providers offer multi-GPU virtual machine (VM) types, so
we recommend scaling VMs vertically to four to eight GPUs before looking
into distributed training. Data scientists use a technique known as hyperparameter tuning when training models. Hyperparameter tuning is the process of finding the optimal set of
hyperparameters for model training. A hyperparameter is
simply a parameter that has a set value before the training process begins. The technique involves running many of the same training jobs with a
different set of hyperparameters.












Training your first model on Kubernetes


In this example, you are going to use the MNIST dataset to train an image-classification model. The MNIST dataset is publicly available and commonly used for image classification.


To train the model, you are going to need GPUs. Let’s confirm that your Kubernetes
cluster has GPUs available. The following output shows that this Kubernetes cluster has four GPUs
available:


$ kubectl get nodes -o yaml | grep -i nvidia.com/gpu
      nvidia.com/gpu: "1"
      nvidia.com/gpu: "1"
      nvidia.com/gpu: "1"
      nvidia.com/gpu: "1"


To run your training, you are going to using the Job kind in Kubernetes, given that training
is a batch workload. You are going to run your training for 500 steps and use a single GPU. Create a file
called mnist-demo.yaml using the following manifest, and save it to your filesystem:


apiVersion: batch/v1
kind: Job
metadata:
  labels:
    app: mnist-demo
  name: mnist-demo
spec:
  template:
    metadata:
      labels:
        app: mnist-demo
    spec:
      containers:
      - name: mnist-demo
        image: lachlanevenson/tf-mnist:gpu
        args: ["--max_steps", "500"]
        imagePullPolicy: IfNotPresent
        resources:
          limits:
           nvidia.com/gpu: 1
      restartPolicy: OnFailure


Now, create this resource on your Kubernetes cluster:


$ kubectl create -f mnist-demo.yaml
job.batch/mnist-demo created


Check the status of the job you just created:


$ kubectl get jobs
NAME         COMPLETIONS   DURATION   AGE
mnist-demo   0/1           4s         4s


If you take a look at the pods, you should see the training job running:


$ kubectl get pods
NAME               READY   STATUS    RESTARTS   AGE
mnist-demo-hv9b2   1/1     Running   0          3s


Looking at the pod logs, you can see the training happening:


$ kubectl logs mnist-demo-hv9b2
2019-08-06 07:52:21.349999: I tensorflow/core/platform/cpu_feature_guard.cc:137] Your CPU supports instructions that this TensorFlow binary was not compiled to use: SSE4.1 SSE4.2 AVX AVX2 FMA
2019-08-06 07:52:21.475416: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1030] Found device 0 with properties:
name: Tesla K80 major: 3 minor: 7 memoryClockRate(GHz): 0.8235
pciBusID: d0c5:00:00.0
totalMemory: 11.92GiB freeMemory: 11.85GiB
2019-08-06 07:52:21.475459: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1120] Creating TensorFlow device (/device:GPU:0) -> (device: 0, name: Tesla K80, pci bus id: d0c5:00:00.0, compute capability: 3.7)
2019-08-06 07:52:26.134573: I tensorflow/stream_executor/dso_loader.cc:139] successfully opened CUDA library libcupti.so.8.0 locally
Successfully downloaded train-images-idx3-ubyte.gz 9912422 bytes.
Extracting /tmp/tensorflow/input_data/train-images-idx3-ubyte.gz
Successfully downloaded train-labels-idx1-ubyte.gz 28881 bytes.
Extracting /tmp/tensorflow/input_data/train-labels-idx1-ubyte.gz
Successfully downloaded t10k-images-idx3-ubyte.gz 1648877 bytes.
Extracting /tmp/tensorflow/input_data/t10k-images-idx3-ubyte.gz
Successfully downloaded t10k-labels-idx1-ubyte.gz 4542 bytes.
Extracting /tmp/tensorflow/input_data/t10k-labels-idx1-ubyte.gz
Accuracy at step 0: 0.1255
Accuracy at step 10: 0.6986
Accuracy at step 20: 0.8205
Accuracy at step 30: 0.8619
Accuracy at step 40: 0.8812
Accuracy at step 50: 0.892
Accuracy at step 60: 0.8913
Accuracy at step 70: 0.8988
Accuracy at step 80: 0.9002
Accuracy at step 90: 0.9097
Adding run metadata for 99
...


Finally, you can see that the training has completed by looking at the job status:


$ kubectl get jobs
NAME         COMPLETIONS   DURATION   AGE
mnist-demo   1/1           27s        112s


To clean up the training job, simply run the following command:


$ kubectl delete -f mnist-demo.yaml
job.batch "mnist-demo" deleted


Congratulations! You just ran your first model training job on Kubernetes.






















Distributed Training on Kubernetes


Distributed training is still in its infancy and is
difficult to optimize. Running a training job that requires
eight GPUs will almost always be faster to train on a single eight-GPU machine compared to
two machines each with four GPUs. The only time that you should resort to using distributed
training is when the model doesn’t fit on the biggest machine available.
If you are certain that you must run distributed training, it is important
to understand the architecture. Figure 14-2 depicts the distributed
TensorFlow architecture, and you can see how the model and the parameters
are distributed.



[image: Figure 14.2]
Figure 14-2. Distributed TensorFlow architecture



















Resource Constraints


Machine learning workloads demand very specific configurations across
all aspects of your cluster. The training phases are most certainly the
most resource intensive. It’s also important to note, as we mentioned a moment ago, that machine
learning algorithm training is almost always a batch-style workload. Specifically, it
will have a start time and a finish time. The finish time of a training
run depends on how quickly you can meet the resource requirements of the
model training. This means that scaling is almost certainly a quicker
way to finish training jobs faster, but scaling has its own set of
bottlenecks.

















Specialized Hardware


Training and serving a model is almost always more efficient on
specialized hardware. A typical example of such specialized hardware
would be commodity GPUs. Kubernetes allows you to access GPUs
via device plug-ins that make the GPU resource known to the Kubernetes
scheduler and therefore able to be scheduled. There is a device plug-in framework
that facilitates this capability, which means that vendors do not need
to modify the core Kubernetes code to implement their specific device.
These device plug-ins typically run as DaemonSets on each node, which are
processes that are responsible for advertising these specific resources
to the Kubernetes API. Let’s take a look at the
NVIDIA device plug-in for
Kubernetes, which enables access to NVIDIA GPUs. After they’re running, you can create a pod as follows, and Kubernetes will ensure that it is
scheduled to a node that has these resource available:


apiVersion: v1
kind: Pod
metadata:
  name: gpu-pod
spec:
  containers:
    - name: digits-container
      image: nvidia/digits:6.0
      resources:
        limits:
          nvidia.com/gpu: 2 # requesting 2 GPUs


Device plug-ins are not limited to GPUs; you can use them wherever specialized hardware is needed—for example, Field Programmable Gate Arrays (FPGAs) or InfiniBand.












Scheduling idiosyncrasies


It’s important to note that Kubernetes cannot make decisions about
resources that it does not have knowledge about. One of the things you
might notice is that the GPUs are not running at capacity when you are
training. You are therefore not achieving the level of
utilization that you would like to see. Let’s consider the previous example; it exposes only the number of GPU cores and omits the number of threads
that can be run per core. It also doesn’t expose which bus the GPU core
is on, so that jobs that need access to one another or to the same memory might
be colocated on the same Kubernetes nodes. These are all considerations
that might be addressed by device plug-ins in the future but might leave you
wondering why you cannot get 100% utilization on that beefy GPU you just
purchased. It’s also worth mentioning that you cannot request fractions of
GPUs (for example, 0.1), which means that even if the specific GPU supports running multiple
threads concurrently, you will not be able to utilize that capacity.






















Libraries, Drivers, and Kernel Modules


To access specialized hardware, you typically need purpose-built libraries, drivers,
and kernel modules. You will need to ensure that
these are mounted into the container runtime so that they are available
to the tooling running in the container. You might ask, “Why don’t I just
add these to the container image itself?” The answer is simple: the tools
need to match the version on the underlying host and must be configured
appropriately for that specific system. There are container runtimes
such as NVIDIA Docker that
remove the burden of having to map host volumes into each container. In
lieu of having a purpose-built container runtime, you might also be able to
build an admission webhook that provides the same functionality. It’s
also important to consider that you might need privileged containers to access some specialized hardware, which also affects the cluster security
profile. The installation of the associated libraries, drivers, and kernel
modules might also be facilitated by Kubernetes device plug-ins. Many device plug-ins
run checks on each machine to confirm that all installations have been completed before
they advertise the schedulable GPU resources to the Kubernetes scheduler.

















Storage


Storage is one of the most critical aspects of the machine learning
workflow. You need to consider storage because it directly affects
the following pieces of the machine learning workflow:



	
Dataset storage and distribution among worker nodes during training



	
Checkpoints and saving models
















Dataset storage and distribution among worker nodes during training


During training, the dataset must be retrievable by every worker node.
The storage needs are read-only, and, typically, the faster the disk, the
better. The type of disk that’s providing the storage is almost
completely dependent on the size of the dataset. Datasets of hundreds of
megabytes or gigabytes might be perfect for block storage, but datasets
that are several or hundreds of terabytes in size might be better suited
to object storage. Depending on the size and location of the disks that
hold the datasets, there might be a performance hit on your networking.

















Checkpoints and saving models


Checkpoints are created as a model is being trained, and saving models
allows you to use them for serving. In both cases, you need storage
attached to each of the worker nodes to store this data. The data is
typically stored under a single directory, and each worker node is
writing to a specific checkpoint or save file. Most tools expect the
checkpoint and save data to be in a single location and require
ReadWriteMany. ReadWriteMany simply means that the volume can be
mounted as read-write by many nodes. When using Kubernetes PersistentVolumes, you will need to determine the best storage platform for your
needs. The Kubernetes documentation keeps a
list
of volume plug-ins that support ReadWriteMany.






















Networking


The training phase of the machine learning workflow has a large impact
on the network (specifically, when running distributed training).
If we consider TensorFlow’s distributed architecture,
there are two discrete phases to consider that create a lot of network
traffic: variable distribution from each of the parameter servers to
each of the worker nodes, and also the application of gradients from each
worker node back to the parameter server (see Figure 14-2). The time it takes for this
exchange to happen directly affects the time it takes to train a model.
So, it’s a simple game of the faster, the better (within reason, of
course). With most public clouds and servers today supporting 1-Gbps, 10-Gbps, and
sometimes 40-Gbps network interface cards, generally network bandwidth is
only a concern at lower bandwidths. You might also consider InfiniBand if
you need high network bandwidth.


While raw network bandwidth is more often than not a limiting factor,
there are also instances for which getting the data onto the wire from the
kernel in the first place is the problem. There are open source projects
that take advantage of Remote Direct Memory Access (RDMA) to further accelerate
network traffic without the need to modify your worker nodes or
application code. RDMA allows computers in a network to exchange data in
main memory without using the processor, cache, or operating system of
either computer. You might consider the open source project Freeflow, which boasts of having high network performance for container network overlays.

















Specialized Protocols


There are other specialized protocols that you can consider when using
machine learning on Kubernetes. These protocols are often vendor
specific, but they all seek to address distributed training scaling
issues by removing areas of the architecture that quickly become
bottlenecks, for example, parameter servers. These protocols often allow
the direct exchange of information between GPUs on multiple nodes
without the need to involve the node CPU and OS. Here are a
couple that you might want to look into to more efficiently scale
your distributed training:



	
Message Passing Interface (MPI) is a standardized portable API for the transfer of data between distributed processes.



	
NVIDIA Collective Communications Library (NCCL) is a library of topology-aware multi-GPU communication primitives.




























Data Scientist Concerns


In the previous discussion, we shared considerations that you need to make in
order to be able to run machine learning workloads on your Kubernetes
cluster. But what about the data scientist? Here we cover
some popular tools that make it easy for data scientists to utilize
Kubernetes for machine learning without having to be a Kubernetes
expert.



	
Kubeflow is a machine learning toolkit for Kubernetes. It is native to Kubernetes and ships with several tools necessary to complete the machine learning workflow. Tools such as Jupyter Notebooks, pipelines, and Kubernetes-native controllers make it simple and easy for data scientists to get the most out of Kubernetes as a platform for machine learning.



	
Polyaxon is a tool for managing machine learning workflows that supports many popular libraries and runs on any Kubernetes cluster. Polyaxon has both commercial and open source offerings.



	
Pachyderm is an enterprise-ready data science platform that has a rich suite of tools for dataset preparation, life cycle, and versioning along with the ability to build machine learning pipelines. Pachyderm has a commercial offering that you can deploy to any Kubernetes cluster.





















Machine Leaning on Kubernetes Best Practices


To achieve optimal performance for your machine learning workloads, consider the following best practices:



	
Smart scheduling and autoscaling.
Given that most stages of the machine learning workflow are batch by
nature, we recommend that you utilize a Cluster Autoscaler. GPU-enabled
hardware is costly, and you certainly do not want to be paying for it
when it’s not in use. We recommend batching jobs to run at specific
times using either taints and tolerations or via a time-specific
Cluster Autoscaler. That way, the cluster can scale to the needs of the machine
learning workloads when needed, and not a moment sooner. Regarding taints and tolerations,
upstream convention is to taint the node with the extended resource as the key. For example,
a node with NVIDIA GPUs should be tainted as follows: Key: nvidia.com/gpu, Effect: NoSchedule.
Using this method means that you can also utilize the ExtendedResourceToleration admission controller, which will automatically add the appropriate tolerations for such taints
to pods requesting extended resources so that the users don’t need to manually add them.



	
The truth is that model training is a delicate balance.
Allowing things to move faster in one area often leads to bottlenecks
in others. It’s an endeavor of constant observation and tuning. As a
general rule of thumb, we recommend that you try to make the GPU become
the bottleneck because it is the most costly resource.
Keep your GPUs saturated. Be prepared to always be on the lookout
for bottlenecks, and set up your monitoring to track the GPU, CPU,
network, and storage utilization.



	
Mixed workload clusters. Clusters that are used to run the day-to-day business services might also
be used for the purposes of machine learning. Given the high performance
requirements of machine learning workloads, we recommend using a separate
node pool that’s tainted to accept only machine learning workloads.
This will help protect the rest of the cluster from any impact from the machine learning workloads running on the machine learning node pool. Furthermore, you should consider multiple GPU-enabled
node pools, each with different performance characteristics to suit the workload types.
We also recommend enabling node autoscaling on the
machine learning node pool(s). Use mixed mode clusters only after you have a
solid understanding of the performance impact that your machine learning
workloads have on your cluster.



	
Achieving linear scaling with distributed training. This is the holy grail of distributed model training. Most libraries
unfortunately don’t scale in a linear fashion when distributed. There is
lots of work being done to make scaling better, but it’s important to
understand the costs because this isn’t as simple as throwing more
hardware at the problem. In our experience, it’s almost always the model
itself and not the infrastructure supporting it that is the source of
the bottleneck. It is, however, important to review the utilization of the
GPU, CPU, network, and storage before pointing fingers at the model
itself. Open source tools such as
Horovod seek to improve distributed
training frameworks and provide better model scaling.





















Summary


We’ve covered a lot of ground in this chapter and have hopefully
provided valuable insight into why Kubernetes is a great platform for
machine learning, especially deep learning, and the considerations you
need to be aware of before deploying your first machine learning
workload. If you exercise the recommendations in this chapter, you will
be well equipped to build and maintain a Kubernetes cluster for these
specialized workloads.












Chapter 15. Building Higher-Level Application Patterns on Top of Kubernetes



Kubernetes is a complex system. Although it simplifies the deployment and
operations of distributed applications, it does little to make the
development of such systems easy. Indeed, in adding new concepts and
artifacts for the developer to interact with, it adds an additional
layer of complexity in the service of simplified operations.
Consequently, in many environments, it makes sense to develop higher-level abstractions in order to provide more developer-friendly primitives on top
of Kubernetes. Additionally, in many large companies, it makes sense to
standardize the way in which applications are configured and deployed so
that everyone adheres to the same operational best practices. This can
also be achieved by developing higher-level abstractions so that
developers automatically adhere to these principles. However, developing
these abstractions can hide important details from the
developer and might introduce a walled garden that limits or complicates the
development of certain applications or the integration of existing
solutions. Throughout the development of the cloud, the tension between the
flexibility of infrastructure and the power of the platform has been a
constant. Designing the proper higher-level abstractions enables us to
walk an ideal path through this divide.








Approaches to Developing Higher-Level Abstractions


When considering how to develop a higher-level primitive on top of
Kubernetes, there are two basic approaches. The first is to wrap up
Kubernetes as an implementation detail. With this approach, developers
who consume your platform should be largely unaware that they are
running on top of Kubernetes; instead, they should think of
themselves as consumers of the platform you supply, and thus
Kubernetes is an implementation detail.


The second option is to use the extensibility capabilities built into
Kubernetes itself. The Kubernetes Server API is quite flexible, and you
can dynamically add arbitrary new resources to the Kubernetes API
itself. With this approach, your new higher-level resources coexist
alongside the built-in Kubernetes objects, and the users use the built-in
tooling for interacting with all of the Kubernetes resources, both built-in ones
and extensions. This extension model results in an environment in which
Kubernetes is still front and center for your developers but with
additions that reduce complexity and make it easier to use.


Given the two approaches, how do you choose the one that is appropriate?
It really depends on the goals for the abstraction layer that you are
building. If you are constructing a fully isolated, integrated
environment in which you have strong confidence that users will not need to
“break glass” and escape, and where ease of use is an important
characteristic, the first option is a great choice. A good example
of such a use case would be building a machine learning pipeline. The
domain is relatively well understood. The data scientists who are your
users are likely not familiar with Kubernetes. Enabling these data
scientists to rapidly get their work done and focus on their domains
rather than distributed systems is the primary goal. Thus, building a
complete abstraction on top of Kubernetes makes the most sense.


On the other hand, when building a higher-level developer abstraction—for example, an easy way to deploy Java applications—it is a far
better choice to extend Kubernetes rather than wrap it. The reason for
this is two-fold. First, the domain of application development is
extraordinarily broad. It will be difficult for you to anticipate all of
the requirements and use cases for your developers, especially as the
applications and business iterate and change over time. The other reason
is to ensure that you can continue to take advantage of the Kubernetes
ecosystem of tools. There are countless cloud-native tools for
monitoring, continuous delivery, and more. Extending rather than
replacing the Kubernetes API ensures that you can continue to use these
tools and new ones as they are developed.

















Extending Kubernetes


Because every layer that you might build over Kubernetes is unique, it is
beyond the scope of this book to describe how you might build such a
layer. But the tools and techniques for extending Kubernetes are generic
to any construction you might do on top of Kubernetes, and, thus, we’ll
spend time covering them.










Extending Kubernetes Clusters


A complete how-to for extending a Kubernetes cluster is a large topic
and more completely covered in other books like Managing Kubernetes and Kubernetes: Up and Running (O’Reilly). Rather than going over the same material
here, this section focuses on providing an understanding of how to use
Kubernetes extensibility. Extending the Kubernetes cluster involves
understanding the touch points for resources in Kubernetes. There are
three related technical solutions. The first is the sidecar. Sidecar
containers (shown in Figure 15-1) have been popularized in the context of service meshes. They
are containers that run alongside a main application container to
provide additional capabilities that are decoupled from the main
application and often maintained by a separate team. For example, in
service meshes, a sidecar might provide transparent mutual Transport Layer Security (mTLS)
authentication to a containerized application.



[image: images/figure-16-1.png]
Figure 15-1. The sidecar design




You can use sidecars to add capabilities to your user-defined applications.


Of course, the entire goal of this effort was to make a developer’s life
easier, but if we require that they learn about and know how to use
sidecars, we’ve actually made the problem worse. Fortunately, there are
additional tools for extending Kubernetes that simplify things. In
particular, Kubernetes features admission controllers. Admission
controllers are interceptors that read Kubernetes API requests prior to
them being stored (or “admitted”) into the cluster’s backing store.
You can use these admission controllers to validate or modify API
objects. In the context of sidecars, you can use them to automatically
add sidecars to all pods created in the cluster so that developers do
not need to know about the sidecars in order to reap their benefits. Figure 15-2 illustrates how admission controllers interact with the Kubernetes API.



[image: images/figure-16-2.png]
Figure 15-2. Admission controllers




The utility of admission controllers isn’t limited to adding sidecars.
You can also use them to validate objects submitted by developers to
Kubernetes. For example, you could implement a linter for Kubernetes
that ensures developers submit pods and other resources that follow best
practices for using Kubernetes. A common mistake for
developers is to not reserve resources for their application. For those circumstances, an
admission controller-based linter could intercept such requests and
reject them. Of course, you should also leave an escape hatch (for
example, a special annotation) so that advanced users can opt out of the
lint rule, as appropriate. We discuss the importance of escape hatches
later on in the chapter.


So far, we’ve only covered ways to augment existing applications and to
ensure that developers follow best practices—we haven’t really
covered how to add higher-level abstractions. This is where custom
resource definitions (CRDs) come into play. CRDs are a way
to dynamically add new resources to an existing Kubernetes cluster. For
example, using CRDs, you could add a new ReplicatedService
resource to a Kubernetes cluster. When a developer creates an instance
of a ReplicatedService, it turns around to Kubernetes and creates
corresponding Deployment and Service resources. Thus, the ReplicatedService is a convenient developer abstraction for a common pattern.
CRDs are generally implemented by a control loop that is
deployed into the cluster itself to manage these new resource types.

















Extending the Kubernetes User Experience


Adding new resources to your cluster is a great way to provide new
capabilities, but to truly take advantage of them, it’s often useful to
extend the Kubernetes user experience (UX) as well. By default, the
Kubernetes tooling is unaware of custom resources and other extensions
and thus treats them in a very generic and not particularly
user-friendly manner. Extending the Kuberentes command line can provide
an enhanced user experience.


Generally, the tool used for accessing Kubernetes is the kubectl
command-line tool. Fortunately, it too has been built for extensibility.
kubectl plug-ins are binaries that have a name like kubectl-foo, where
foo is the name of the plug-in. When you invoke kubectl foo ...
on the command line, the invocation is in turn routed to an
invocation of the plug-in binary. Using kubectl plug-ins, you can define
new experiences that deeply understand the new resources that you have
added to your cluster. You are free to implement whatever kind of
experiences are suitable while at the same time taking advantage of the
familiarity of the kubectl tooling. This is especially valuable because
it means that you don’t need to teach developers about a new tool set. Likewise, you can gradually introduce Kubernetes-native concepts as the developers
advance their Kubernetes knowledge.
























Design Considerations When Building Platforms


Countless platforms have been built to enable developer productivity.
Given the opportunity to observe all of the places where these platforms
have succeeded and failed, you can develop a common set of patterns and
considerations so as to learn from the experience of others. Following
these design guidelines can help to ensure that the platform you build is a
successful one instead of a “legacy” dead end from which you must eventually
move away.










Support Exporting to a Container Image


When building a platform, many designs provide simplicity by enabling
the user to simply supply code (e.g., a function in Function as a
Service [FaaS]) or a native package (e.g., a JAR file in Java) instead of a
complete container image. This approach has a great deal of appeal
because it lets the user stay within the confines of their
well-understood tools and development experience. The platform handles
the containerization of the application for them.


The problem with this approach, however, comes when the developer
encounters the limitations of the programming environment that you
have given them. Perhaps it’s because they need a specific version
of a language runtime to work around a bug. Or it might be that they need
to package additional resources or executables that aren’t part of
the way you have structured the automatic containerazation of the
application.


No matter the reason, hitting this wall is an ugly moment
for the developer, because it is a moment when they suddenly must learn a great deal more about how to package their application, when all
they really wanted to do was to extend it slightly to fix a bug or
deliver a new feature.


However, it doesn’t need to be this way. If you support the exporting of
your platform’s programming environment into a generic container, the
developer using your platform doesn’t need to start from scratch and
learn everything there is to know about containers. Instead, they have a
complete, working container image that represents their current
application (e.g., the container image containing their function and the
node runtime). Given this starting point, they can then make the small
tweaks necessary to adapt the container image to their needs. This sort
of gradual degradation and incremental learning dramatically smoothes
out the path from higher-level platform down into lower-level
infrastructure and thus increases the general utility of the platform
because using it doesn’t introduce steep cliffs for developers.

















Support Existing Mechanisms for Service and Service Discovery


Another common story of platforms is that they evolve and interconnect
with other systems. Many developers might be very happy and productive in
your platform, but any real-world application will span both the
platform that you build and lower-level Kubernetes applications as well
as other platforms. Connections to legacy databases or open source
applications built for Kubernetes will always become a part of a
sufficiently large application.


Because of this need for interconnectivity, it’s critically important
that the core Kubernetes primitives for services and service discovery
are used and exposed by any platform that you construct. Don’t reinvent
the wheel in the interest of improved platform experience, because in
doing so you will be creating a walled garden incapable of interacting
with the broader world.


If you expose the applications defined in your platform as Kubernetes
Services, any application anywhere within your cluster will be able
to consume your applications regardless of whether they are running in
your higher-level platform. Likewise, if you use the Kubernetes
DNS servers for service discovery, you will be able to connect from your
higher-level application platform to other applications running in the
cluster, even if they are not defined in your higher-level platform. It
might be tempting to build something better or easier to use, but
interconnectivity across different platforms is the common design
pattern for any application of sufficient age and complexity. You will
always regret the decision to build a walled garden.
























Building Application Platforms Best Practices


Although Kubernetes provides powerful tools for operating software, it does considerably less to enable developers to build applications. Thus, it is often necessary to build platforms on top of Kubernetes to make developers more productive and/or Kubernetes easier. When building such platforms, you’ll benefit from keeping the following best practices in mind:



	
Use admission controllers to limit and modify API calls to the cluster. An
admission controller can validate (and reject invalid) Kubernetes resources.
A mutating admission controller can automatically modify API resources to
add new sidecars or other changes that users might not even need to know about.



	
Use kubectl plug-ins to extend the Kubernetes user experience by adding
new tools to the familiar existing command-line tool. In rare occasions, a
purpose-built tool might be more appropriate.



	
When building platforms on top of Kubernetes, think carefully about the users
of the platform and how their needs will evolve. Making things simple and easy
to use is clearly a good goal, but if this also leads to users that are trapped
and unable to be successful without rewriting everything outside of your
platform, it will ultimately be a frustrating (and unsuccessful) experience.





















Summary


Kubernetes is a fantastic tool for simplifying the deployment and
operation of software, but unfortunately, it is not always the most
developer-friendly or productive environment. Because of this, a
common task is to build a higher-level platform on top of Kubernetes in order to make it more approachable and usable
by the average developer. This chapter described several approaches for
designing such a higher-level system and provided a summary of the core
extensibility infrastructure that is available in Kubernetes. It
concluded with lessons and design principles drawn from our observation of other
platforms that have been built on top of Kubernetes, with the hope that
they can guide the design of your platform.












Chapter 16. Managing State and Stateful Applications



In the early days of container orchestration, the targeted workloads were
usually stateless applications that used external systems to store state
if necessary. The thought was that containers are very temporal, and
orchestration of the backing storage needed to keep state in a consistent
manner was difficult at best. Over time the need for container-based
workloads that kept state became a reality and, in select cases, might be
more performant. Kubernetes adapted over many iterations to not only
allow for storage volumes mounted into the pod, but those volumes
being managed by Kubernetes directly was an important component in
orchestration of storage with the workloads that require it.


If the ability to mount an external volume to the container was enough,
many more examples of stateful applications running at scale in
Kubernetes would exist. The reality is that volume mounting is the
easy component in the grand scheme of stateful applications. The
majority of applications that require state to be maintained after node
failure are complicated data-state engines such as relational database
systems, distributed key/value stores, and complicated document
management systems. This class of applications requires more coordination
between how members of the clustered application communicate with one another, how the members are identified, and the order in which members
either appear or disappear into the system.


This chapter focuses on best practices for managing state, from simple
patterns such as saving a file to a network share, to complex data
management systems like MongoDB, mySQL, or Kafka. There is a small
section on a new pattern for complex systems called Operators that
brings not only Kubernetes primitives, but allows for business or
application logic to be added as custom controllers that can help make
operating complex data management systems easier.








Volumes and Volume Mounts


Not every workload that requires a way to maintain state needs to be a
complex database or high throughput data queue service. Often,
applications that are being moved to containerized workloads expect
certain directories to exist and read and write pertinent information
to those directories. The ability to inject data into a volume that can
be read by containers in a pod is covered in Chapter 5; however, data mounted from ConfigMaps or secrets is usually
read-only, and this section focuses on giving containers volumes that can be
written to and will survive a container failure or, even better, a pod
failure.


Every major container runtime, such as Docker, rkt, CRI-O, and even
Singularity, allows for mounting volumes into a container that is mapped
to an external storage system. At its
simplest, external storage can be a memory location, a path on the container’s host, or an external filesystem such as NFS, Glusterfs, CIFS, or Ceph. Why would
this be needed, you might wonder? A useful example is
that of a legacy application that was written to log application-specific information to a local filesystem. There are many possible
solutions including, but not limited to, updating the application code to
log out to a stdout or stderr sidecar container that can stream log
data to an outside source via a shared pod volume or using a host-based
logging tool that can read a volume for both host logs and container
application logs. The last scenario can be attained by using a
volume mount in the container using a Kubernetes hostPath mount, as shown in the following:


apiVersion: apps/v1
kind: Deployment
metadata:
  name: nginx-webserver
spec:
  replicas: 3
  selector:
    matchLabels:
      app: nginx-webserver
  template:
    metadata:
      labels:
        app: nginx-webserver
    spec:
      containers:
      - name: nginx-webserver
        image: nginx:alpine
        ports:
        - containerPort: 80
        volumeMounts:
          - name: hostvol
            mountPath: /usr/share/nginx/html
      volumes:
        - name: hostvol
          hostPath:
            path: /home/webcontent










Volume Best Practices



	
Try to limit the use of volumes to pods requiring multiple
containers that need to share data, for example adapter or ambassador
type patterns. Use the emptyDir for those types of sharing patterns.



	
Use hostDir when access to the data is required by node-based agents
or services.



	
Try to identify any services that write their critical application
logs and events to local disk, and if possible change those to stdout
or stderr and let a true Kubernetes-aware log aggregation system
stream the logs instead of leveraging the volume map.




























Kubernetes Storage


The examples so far show basic volume mapping into a container in a pod,
which is just a basic container engine capability. The real key is
allowing Kubernetes to manage the storage backing the volume mounts.
This allows for more dynamic scenarios where pods can live and die as
needed, and the storage backing the pod will transition accordingly to
wherever the pod may live. Kubernetes manages storage for pods using two
distinct APIs, the PersistentVolume and PersistentVolumeClaim.










PersistentVolume


It is best to think of a PersistentVolume as a disk that will back any
volumes that are mounted to a pod. A PersistentVolume will have a
claim policy that will define the scope of life of the volume
independent of the life cycle of the pod that uses the volume. Kubernetes
can use either dynamic or statically defined volumes. To allow for
dynamically created volumes, there must be a StorageClass defined in
Kubernetes. PersistentVolumes can be created in the cluster of varying
types and classes, and only when a PersistentVolumeClaim matches
the PersistentVolume will it actually be assigned to a pod. The volume itself is
backed by a volume plug-in. There are numerous plug-ins supported directly
in Kubernetes, and each has different configuration parameters to adjust:


apiVersion: v1
kind: PersistentVolume
metadata:
name: pv001
labels:
  tier: "silver"
spec:
capacity:
  storage: 5Gi
accessModes:
- ReadWriteMany
persistentVolumeReclaimPolicy: Recycle
storageClassName: nfs
mountOptions:
  - hard
  - nfsvers=4.1
nfs:
  path: /tmp
  server: 172.17.0.2

















PersistentVolumeClaims


PersistentVolumeClaims are a way to give Kubernetes a resource
requirement definition for storage that a pod will use. Pods will
reference the claim, and then if a persistentVolume that matches the
claim request exists, it will allocate that volume to that specific pod.
At minimum, a storage request size and access mode must be defined, but a
specific StorageClass can also be defined. Selectors can also be used to
match certain PersistentVolumes that meet a certain criteria will be
allocated:


apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: my-pvc
spec:
  storageClass: nfs
    accessModes:
    - ReadWriteMany
  resources:
    requests:
      storage: 5Gi
  selector:
    matchLabels:
      tier: "silver"


The preceding claim will match the PersistentVolume created earlier because
the storage class name, the selector match, the size, and the access mode are
all equal.


Kubernetes will match up the PersistentVolume with the claim and bind
them together. Now to use the volume, the pod.spec should just
reference the claim by name, as follows:


apiVersion: apps/v1
kind: Deployment
metadata:
  name: nginx-webserver
spec:
  replicas: 3
  selector:
    matchLabels:
      app: nginx-webserver
  template:
    metadata:
      labels:
        app: nginx-webserver
    spec:
      containers:
      - name: nginx-webserver
        image: nginx:alpine
        ports:
        - containerPort: 80
        volumeMounts:
          - name: hostvol
            mountPath: /usr/share/nginx/html
      volumes:
        - name: hostvol
          persistentVolumeClaim:
            claimName: my-pvc

















Storage Classes


Instead of manually defining the PersistentVolumes ahead of time,
administrators might elect to create StorageClass objects, which define
the volume plug-in to use and any specific mount options and parameters
that all PersistentVolumes of that class will use. This then allows
the claim to be defined with the specific StorageClass to use, and
Kubernetes will dynamically create the PersistentVolume based on the
StorageClass parameters and options:


kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
name: nfs
provisioner: cluster.local/nfs-client-provisioner
parameters:
  archiveOnDelete: True


Kubernetes also allows operators to create a default storage class using
the DefaultStorageClass admission plug-in. If this has been enabled on
the API server, then a default StorageClass can be defined and any
PersistentVolumeClaims that do not explicitly define a StorageClass.
Some cloud providers will include a default storage class to map to the
cheapest storage allowed by their instances.












Container Storage Interface and FlexVolume


Often referred to as “Out-of-Tree” volume plug-ins, the Container
Storage Interface (CSI) and FlexVolume enable storage vendors to create
custom storage plug-ins without the need to wait for direct code
additions to the Kubernetes code base like most volume plug-ins today.


The CSI and FlexVolume plug-ins are deployed on Kubernetes clusters as
extensions by operators and can be updated by the storage vendors when
needed to expose new functionality.


The CSI states its objective on GitHub as:


To define an
industry standard Container Storage Interface that will enable
storage vendors (SP) to develop a plug-in once and have it work across a
number of container orchestration (CO) systems.




The FlexVolume interface has been the traditional method used to add
additional features for a storage provider. It does require specific
drivers to be installed on all of the nodes of the cluster that will use
it. This basically becomes an executable that is installed on the hosts
of the cluster. This last component is the main detractor to using
FlexVolumes, especially in managed service providers, because access to the nodes is frowned upon and the masters practically impossible. The CSI plug-in solves this by basically exposing the same functionality and being as easy to use as deploying a pod into the cluster.






















Kubernetes Storage Best Practices


Cloud native application design principles try to enforce stateless application design as much as possible; however, the growing footprint of container-based services has created the need for data storage persistence. These best practices around storage in Kubernetes in general will help to design an effective approach to providing the required storage implementations to the application design:



	
If possible, enable the DefaultStorageClass admission plug-in and
define a default storage class. Many times, Helm charts for applications
that require PersistentVolumes default to a default storage class
for the chart, which allows the application to be installed
without too much modification.



	
When designing the architecture of the cluster, either on-premises or
in a cloud provider, take into consideration zone and connectivity
between the compute and data layers using the proper labels for both
nodes and PersistentVolumes, and using affinity to keep the data and
workload as close as possible. The last thing you want is a pod on a
node in zone A trying to mount a volume that is attached to a node in
zone B.



	
Consider very carefully which workloads require state to be maintained
on disk. Can that be handled by an outside service like a database
system or, if running in a cloud provider, by a hosted service that is API
consistent with currently used APIs, say a mongoDB or mySQL as a service?



	
Determine how much effort would be involved in modifying the application code to be more stateless.



	
While Kubernetes will track and mount the volumes as workloads are
scheduled, it does not yet handle redundancy and backup of the data that
is stored in those volumes. The CSI specification has added an API for
vendors to plug in native snapshot technologies if the storage backend
can support it.



	
Verify the proper life cycle of the data that volumes will hold. By
default the reclaim policy is set to for dynamically provisioned persistentVolumes which will delete the volume from the backing storage provider when the pod is deleted. Sensitive data or data that can be used for forensic analysis should be set to reclaim.




























Stateful Applications


Contrary to popular belief, Kubernetes has supported stateful
applications since its infancy, from mySQL, Kafka, and Cassandra to
other technologies. Those pioneering days, however, were fraught with complexities and were usually only for small workloads with lots of work required to get things like scaling and durability to work.


To fully grasp the critical differences, you must understand how a
typical ReplicaSet schedules and manages pods, and how each could be
detrimental to traditional stateful applications:



	
Pods in a ReplicaSet are scaled out and assigned random names
when scheduled.



	
Pods in a ReplicaSet are scaled down in an arbitrary manner.



	
Pods in a ReplicaSet are never called directly through their name or
IP address but through their association with a Service.



	
Pods in a ReplicaSet can be restarted and moved to another node at
any time.



	
Pods in a ReplicaSet that have a PersistentVolume mapped are
linked only by the claim, but any new pod with a new name can take over the
claim if needed when rescheduled.






Those that have only cursory knowledge of cluster data management
systems can immediately begin to see issues with these characteristics of
ReplicaSet-based pods. Imagine a pod that has the current writable
copy of the database just all of a sudden getting deleted! Pure
pandemonium would ensue for sure.


Most neophytes to the Kubernetes world assume that StatefulSet
applications are automatically database applications and therefore
equate the two things. This could not be further from the truth in the
sense that Kubernetes has no sense of what type of application it is
deploying. It does not know that your database system requires leader
election processes, that it can or cannot handle data replication
between members of the set, or, for that matter, that it is a database
system at all. This is where StatefulSets come in to play.










StatefulSets


What StatefulSets do is make it easier to run applications
systems that expect more reliable node/pod behavior. If we look at the
list of typical pod characteristics in a ReplicaSet, StatefulSets offer
almost the complete opposite. The original spec back in Kubernetes
version 1.3 called PetSets was introduced to answer some of the
critical scheduling and management needs for stateful-type applications
such as complex data management systems:



	
Pods in a StatefulSet are scaled out and assigned sequential
names. As the set scales up, the pods get ordinal names, and by default a
new pod must be fully online (pass its liveness and/or readiness probes)
before the next pod is added.



	
Pods in a StatefulSet are scaled down in reverse sequence.



	
Pods in a StatefulSet can be addressed individually by name behind a
headless Service.



	
Pods in a StatefulSet that require a volume mount must use a
 defined PersistentVolume template. Volumes claimed by pods in a
StatefulSet are not deleted when the StatefulSet is deleted.






A StatefulSet specification looks very similar to a Deployment
except for the Service declaration and the PersistentVolume template.
The headless Service should be created first, which defines the Service
that the pods will be addressed with individually. The headless Service
is the same as a regular Service but does not do the normal load
balancing:


apiVersion: v1
kind: Service
metadata:
  name: mongo
  labels:
    name: mongo
spec:
  ports:
  - port: 27017
    targetPort: 27017
  clusterIP: None #This creates the headless Service
  selector:
    role: mongo


The StatefulSet definition will also look exactly like a Deployment
with a few changes:


apiVersion: apps/v1beta1
kind: StatefulSet
metadata:
  name: mongo
spec:
  serviceName: "mongo"
  replicas: 3
  template:
    metadata:
      labels:
        role: mongo
        environment: test
    spec:
      terminationGracePeriodSeconds: 10
      containers:
        - name: mongo
          image: mongo:3.4
          command:
            - mongod
            - "--replSet"
            - rs0
            - "--bind_ip"
            - 0.0.0.0
            - "--smallfiles"
            - "--noprealloc"
          ports:
            - containerPort: 27017
          volumeMounts:
            - name: mongo-persistent-storage
              mountPath: /data/db
        - name: mongo-sidecar
          image: cvallance/mongo-k8s-sidecar
          env:
            - name: MONGO_SIDECAR_POD_LABELS
              value: "role=mongo,environment=test"
  volumeClaimTemplates:
  - metadata:
      name: mongo-persistent-storage
      annotations:
        volume.beta.kubernetes.io/storage-class: "fast"
    spec:
      accessModes: [ "ReadWriteOnce" ]
      resources:
        requests:
          storage: 2Gi

















Operators


StatefulSets has definitely been a major factor in introducing complex
stateful data systems as feasible workloads in Kubernetes. The only real
issue is, as stated earlier, Kubernetes does not really understand the
workload that is running in the StatefulSet. All of the other complex
operations, like backups, failover, leader registration, new replica
registration, and upgrades, are all operations that need to happen quite
regularly and will require some careful consideration when running as
StatefulSets.


Early on in the growth of Kubernetes, CoreOS site reliability engineers (SREs) created a new class of cloud native software for Kubernetes called Operators. The original intent was to encapsulate the application domain-specific knowledge of running a specific application into a specific controller that extends Kubernetes. Imagine building up on the StatefulSet controller to be able to deploy, scale, upgrade, backup, and run general maintenance operations on Cassandra or Kafka. Some of the first Operators that were created were for etcd and Prometheus, which uses a time series database to keep metrics over time. The proper creation, backup, and restore configuration of Prometheus or etcd instances can be handled by an Operator and are basically new Kubernetes-managed objects just like a pod or Deployment.


Until recently, Operators have been one-off tools created by SREs or by software vendors for their specific application. In mid-2018, RedHat created the Operator Framework, which is a set of tools including an SDK life cycle manager and future modules that will enable features such as metering, marketplace, and registry type functions. Operators are not only for stateful applications, but because of their custom controller logic they are definitely more amenable to complex data services and stateful systems.


Operators are still an emerging technology in the Kubernetes space, but
they are slowly taking a foothold with many data management system vendors,
cloud providers, and SREs the world over who want
to include some of the operational knowledge they have in running complex
distributed systems in Kubernetes. Take a look at OperatorHub for an updated list of curated Operators.

















StatefulSet and Operator Best Practices


Large distributed applications that require state and possibly complicated management and configuration operations benefit from Kubernetes StatefulSets and Operators. Operators are still evolving, but they have the backing of the community at large, so these best practices are based on current capabilities at the time of publication:



	
The decision to use Statefulsets should be taken judiciously because
usually stateful applications require much deeper management that the
orchestrator cannot really manage well yet (read the “Operators” section for the possible future answer to this deficiency in Kubernetes).



	
The headless Service for the StatefulSet is not automatically created
and must be created at deployment time to properly address the pods as
individual nodes.



	
When an application requires ordinal naming and dependable
scaling, it does not always mean it requires the assignment of PersistentVolumes.



	
If a node in the cluster becomes unresponsive, any pods that are part
of a StatefulSet are not not automatically deleted; they instead will
enter a Terminating or Unkown state after a grace period. The only
way to clear this pod is to remove the node object from the cluster, the
kubelet beginning to work again and deleting the pod directly, or an
Operator force deleting the pod. The force delete should be the last
option and great care should be taken that the node that had the deleted
pod does not come back online, because there will now be two pods with the same
name in the cluster. You can use kubectl delete pod nginx-0 --grace-period=0 --force to force delete the pod.



	
Even after force deleting a pod, it might stay in an Unknown state, so
a patch to the API server will delete the entry and cause the StatefulSet
controller to create a new instance of the deleted pod:
kubectl patch pod nginx-0 -p '{"metadata":{"finalizers":null}}'.



	
If you’re running a complex data system with some type of leader election or
data replication confirmation processes, use preStop hook to properly
close any connections, force leader election, or verify data synchronization before
the pod is deleted using a graceful shutdown process.



	
When the application that requires stateful data is a complex data management system, it might be worth a look to determine whether an Operator exists to help manage the more complicated life cycle components of the application. If the application is built in-house, it might be worth investigating whether it would be useful to package the application as an Operator to add additional manageability to the application. Look at the CoreOS Operator SDK for an example.




























Summary


Most organizations look to containerize their stateless applications and
leave the stateful applications as is. As more and
more cloud native applications run in cloud provider Kubernetes
offerings, data gravity becomes an issue. Stateful applications require
much more due diligence, but the reality of running them in clusters has
been accelerated by the introduction of StatefulSets and Operators.
Mapping volumes into containers allow Operators to abstract the storage
subsystem specifics away from any application development. Managing
stateful applications such as database systems in Kubernetes is still a
complex distributed system and needs to be carefully orchestrated using the
native Kubernetes primitives of pods, ReplicaSets, Deployments, and
StatefulSets, but using Operators that have specific application
knowledge built into them as Kubernetes-native APIs may help to elevate
these systems into production-based clusters.












Chapter 17. Admission Control and Authorization



Controlling access to the Kubernetes API is key to ensuring that your cluster
is not only secured but also can be used as a means to impart policy
and governance for all users, workloads, and components of your
Kubernetes cluster. In this chapter, we share how you can use
admission controllers and authorization modules to enable specific
features and how you can customize them to suit your specific needs.


Figure 17-1 provides insight on how and where admission
control and authorization take place. It depicts the end-to-end request
flow through the Kubernetes API server until the object, if accepted, is
saved to storage.



[image: Figure 17.1]
Figure 17-1. An API request flow










Admission Control


Have you ever wondered how namespaces are automatically created when you
define a resource in a namespace that doesn’t already exist? Maybe
you’ve wondered how a default storage class is selected? These changes
are powered by a little-known feature called admission controllers. In
this section, we take a look at how you can use admission controllers to implement Kubernetes best practices on the server side on behalf of the
user and how we can utilize admission control to govern how a
Kubernetes cluster is used.










What Are They?


Admission controllers sit in the path of the Kubernetes API server request
flow and receive requests following the authentication and authorization
phases. They are used to either validate or mutate (or both) the request
object before saving it to storage. The difference between
validating and mutating admission controllers is that mutating can
modify the request object they admit, whereas validating cannot.

















Why Are They Important?


Given that admission controllers sit in the path of all API server requests, you can use them in a variety of different ways. Most commonly, admission
controller usage can be grouped into the following three groups:


	Policy and governance

	
Admission controllers allow policy to be
enforced in order to meet business requirements; for example:



	
Only internal cloud load balancers can be used when in the dev
namespace.



	
All containers in a pod must have resource limits.



	
Add predefined standard labels or annotations to all resources in
order to make them discoverable to existing tools.



	
All Ingress resources only use HTTPS. For more details on how to use admission webhooks in this context, see Chapter 11.







	Security

	
You can use admission controllers to enforce a consistent
security posture across your cluster. A canonical example is the
PodSecurityPolicy admission controller, which enables controls on
security-sensitive fields of the pod specification, for example, denying
privileged containers or usage of specific paths from the host
filesystem. You can enforce more granular or custom security rules using admission webhooks.



	Resource management

	
Admission controllers allow you to validate
in order to provide best practices for your cluster users, for example:



	
Ensure all ingress fully qualified domain names (FQDN) fall within a specific suffix.



	
Ensure ingress FQDNs don’t overlap.



	
All containers in a pod must have resource limits.

























Admission Controller Types


There are two classes of admission controllers: standard and dynamic.
Standard admission controllers are compiled into the API server and are
shipped as plug-ins with each Kubernetes release; they need to be
configured when the API server is started. Dynamic controllers, on the other hand, are
configurable at runtime and are developed outside the core Kubernetes
codebase. The only type of dynamic admission control is admission
webhooks, which receive admission requests via HTTP callbacks.


Kubernetes ships with more than 30 admission controllers, which are
enabled via the following flag on the Kubernetes API server:

--enable-admission-plugins


Many of the features that ship with Kubernetes depend on the enablement
of specific standard admission controllers and, as such, there is a
recommended set of defaults:

--enable-admission-plugins=NamespaceLifecycle,LimitRanger,ServiceAccount,DefaultStorageClass,DefaultTolerationSeconds,MutatingAdmissionWebhook,ValidatingAdmissionWebhook,Priority,ResourceQuota,PodSecurityPolicy


You can find the list of Kubernetes admission controllers and their functionality in the Kubernetes documentation.


You might have noticed the following from the list of recommended admission controllers to enable: “MutatingAdmissionWebhook,ValidatingAdmissionWebhook.” These standard admission
controllers don’t implement any admission logic themselves; rather, they
are used to configure a webhook endpoint running in-cluster to forward
the admission request object.

















Configuring Admission Webhooks


As previously mentioned, one of the main advantages of admission
webhooks is that they are dynamically configurable. It is important that
you understand how to effectively configure admission webhooks because there
are implications and trade-offs when it comes to consistency and
failure modes.


The snippet that follows is a ValidatingWebhookConfiguration resource
manifest. This manifest is used to define a validating admission
webhook. The snippet provides detailed descriptions on the function of
each field:


apiVersion: admissionregistration.k8s.io/v1beta1
  kind: ValidatingWebhookConfiguration
  metadata:
    name: ## Resource name
  webhooks:
  - name: ## Admission webhook name, which will be shown to the user when any admission reviews are denied
    clientConfig:
      service:
        namespace: ## The namespace where the admission webhook pod resides
        name: ## The service name that is used to connect to the admission
          webhook
       path: ## The webhook URL
      caBundle: ## The PEM encoded CA bundle which will be used to validate the webhook's server certificate
    rules: ## Describes what operations on what resources/subresources the API server must send to this webhook
    - operations:
      - ## The specific operation that triggers the API server to send to this webhook (e.g., create, update, delete, connect)
      apiGroups:
      - ""
      apiVersions:
      - "*"
      resources:
      - ## Specific resources by name (e.g., deployments, services, ingresses)
    failurePolicy: ## Defines how to handle access issues or unrecognized errors, and must be Ignore or Fail


For completeness, let’s take a look at a MutatingWebhookConfiguration
resource manifest. This manifest defines a mutating admission
webhook. The snippet provides detailed descriptions on the function of
each field:


apiVersion: admissionregistration.k8s.io/v1beta1
  kind: MutatingWebhookConfiguration
  metadata:
    name: ## Resource name
  webhooks:
  - name: ## Admission webhook name, which will be shown to the user when any admission reviews are denied
    clientConfig:
      service:
        namespace: ## The namespace where the admission webhook pod resides
        name: ## The service name that is used to connect to the admission webhook
       path: ## The webhook URL
      caBundle: ## The PEM encoded CA bundle which will be used to validate the webhook's server certificate
    rules: ## Describes what operations on what resources/subresources the API server must send to this webhook
    - operations:
      - ## The specific operation that triggers the API server to send to this webhook (e.g., create, update, delete, connect)
      apiGroups:
      - ""
      apiVersions:
      - "*"
      resources:
      - ## Specific resources by name (e.g., deployments, services, ingresses)
    failurePolicy: ## Defines how to handle access issues or unrecognized errors, and must be Ignore or Fail


You might have noticed that both resources are identical, with the
exception of the kind field. There is one difference on the backend,
however: MutatingWebhookConfiguration allows the admission webhook to
return a modified request object, whereas
ValidatingWebhookConfiguration does not. Even still, it is acceptable to define
a MutatingWebhookConfiguration and simply validate; there are security
considerations that come into play, and you should consider following the
least-privilege rule.

Note

It is also likely that you thought to yourself, “What happens if I
define a ValidatingWebhookConfiguration or
MutatingWebhookConfiguration with the resource field under the rule
object to be either ValidatingWebhookConfiguration or
MutatingWebhookConfiguration?” The good news is that
ValidatingAdmissionWebhooks and MutatingAdmissionWebhooks are never
called on admission requests for ValidatingWebhookConfiguration and
MutatingWebhookConfiguration objects. This is for good reason: you
don’t want to accidentally put the cluster in an unrecoverable state.



















Admission Control Best Practices


Now that we’ve covered the power of admission controllers, here are our
best practices to help you make the most of using them:



	
Admission plug-in ordering doesn’t matter. In earlier versions of
Kubernetes, the ordering of the admission plug-ins was specific to the
processing order; hence it mattered. In current supported Kubernetes
versions, the ordering of the admission plug-ins as specified as API server
flags via --enable-admission-plugins no longer matters. Ordering does,
however, play a small role when it comes to admission
webhooks, so it’s important to understand the request flow in this case.
Request admittance or rejection operates as a logical AND, meaning if
any of the admission webhooks reject a request, the entire request
is rejected and an error is sent back to the user. It’s also important
to note that mutating admission controllers are always run prior to
running validating admission controllers. If you think about it, this
makes good sense: you probably don’t want to validate objects that you
are going to subsequently modify. Figure 17-2 illustrates a request flow via admission webhooks.







[image: Figure 17.2]
Figure 17-2. An API request flow via admission webhooks





	
Don’t mutate the same fields. Configuring multiple mutating admission
webhooks also presents challenges. There is no way to order the request
flow through multiple mutating admission webhooks, so it’s important to
not have mutating admission controllers modify the same fields, because this can result in unexpected results. In the case where you have
multiple mutating admission webhooks, we generally recommend configuring
validating admission webhooks to confirm that the final resource manifest
is what you expect post-mutation because it’s guaranteed to be run
following mutating webhooks.



	
Fail open/fail closed. You
might recall seeing the failurePolicy field as part of both the mutating
and validating webhook configuration resources. This field defines how
the API server should proceed in the case where the admission webhooks
have access issues or encounter unrecognized errors. You can set this field to either Ignore or Fail. Ignore essentially fails to open, meaning that processing of the
request will continue, whereas Fail denies the entire request. This
might seem obvious, but the implications in both cases require
consideration. Ignoring a critical admission webhook could result in
policy that the business relies on not being applied to a resource
without the user knowing.


One potential solution to protect against this
would be to raise an alert when the API server logs that it cannot reach
a given admission webhook. Fail can be even more devastating by denying all requests if the
admission webhook is experiencing issues. To protect against
this you can scope the rules to ensure that only specific resource
requests are set to the admission webhook. As a tenet, you should never
have any rules that apply to all resources in the cluster.



	
If you have written your own admission webhook, it’s important to
remember that user/system requests can be directly affected by the time
it takes for your admission webhook to make a decision and respond. All
admission webhook calls are configured with a 30-second timeout, after which
time the failurePolicy takes effect. Even if it takes several seconds
for your admission webhook to make an admit/deny decision, it can severely
affect user experience when working with the cluster. Avoid having
complex logic or relying on external systems such as databases in order
to process the admit/deny logic.



	
Scoping admission webhooks. There is an optional field that allows
you to scope the namespaces in
which the admission webhooks operate on via the NamespaceSelector
field. This field defaults to empty, which matches everything, but can be
used to match namespace labels via the use of the matchLabels field.
We recommend that you always use this field because it allows for an explicit
opt-in per namespace.



	
The kube-system namespace is a reserved namespace that’s common across all
Kubernetes clusters. It’s where all system-level services operate. We
recommend never running admission webhooks against the resources in this
namespace specifically, and you can achieve this by using the
NamespaceSelector field and simply not matching the kube-system
namespace. You should also consider it on any system-level namespaces
that are required for cluster operation.



	
Lock down admission webhook configurations with RBAC.
Now that you know about all the fields in the admission webhook
configuration, you have probably thought of a really simple way to break
access to a cluster. It goes without saying that the creation of both a
MutatingWebhookConfiguration and ValidatingWebhookConfiguration is a
root-level operation on the cluster and must be locked down
appropriately using RBAC. Failure to do so can result in a broken
cluster or, even worse, an injection attack on your application
workloads.



	
Don’t send sensitive data. Admission webhooks are essentially black boxes that accept AdmissionRequests and output AdmissionResponses. How they store and
manipulate the request is opaque to the user. It’s important to think
about what request payloads you are sending to the admission webhook. In
the case of Kubernetes secrets or ConfigMaps, they might contain sensitive
information and require strong guarantees about how that information is
stored and shared. Sharing these resources with an admission webhook can leak
sensitive information, which is why you should scope your resource rules
to the minimum resource needed to validate and/or mutate.




























Authorization


We often think about authorization in the context of answering the
following question: “Is this user able to perform these actions on
these resources?” In Kubernetes, the authorization of each request is
performed after authentication but before admission. In this section, we explore how you can configure different authorization modules and
better understand how you can create the appropriate policy to serve the
needs of your cluster. Figure 17-3 illustrates where authorization
sits in the request flow.



[image: Figure 17.3]
Figure 17-3. API request flow via authorization modules












Authorization Modules


Authorization modules are responsible for either granting or denying
permission to access. They determine whether to grant access
based on policy that must be explicitly defined; otherwise all requests
will be implicitly denied.


As of version 1.15, Kubernetes ships with the following authorization modules out of the
box:


	Attribute-Based Access Control (ABAC)

	
Allows authorization policy to be configured via local files



	RBAC

	
Allows authorization policy to be configured via the Kubernetes API (refer to Chapter 4)



	Webhook

	
Allows the authorization of a request to be handled via a remote REST endpoint



	Node

	
Specialized authorization module that authorizes requests from kubelets






The modules are configured by the cluster administrator via the following
flag on the API server: --authorization-mode. Multiple modules can be
configured and are checked in order. Unlike admission controllers, if a
single authorization module admits the request, the request can
proceed. Only for the case in which all modules deny the request will an
error be returned to the user.












ABAC


Let’s take a look at a policy definition in the context of using the
ABAC authorization module. The following grants user Mary read-only
access to a pod in the kube-system namespace:


apiVersion: abac.authorization.kubernetes.io/v1beta1
kind: Policy
spec:
  user: mary
  resource: pods
  readonly: true
  namespace: kube-system


If Mary were to make the following request, it would be denied because Mary
doesn’t have access to get pods in the demo-app namespace:


apiVersion: authorization.k8s.io/v1beta1
kind: SubjectAccessReview
spec:
  resourceAttributes:
    verb: get
    resource: pods
    namespace: demo-app


This example introduced a new API group, authorization.k8s.io.
This set of APIs exposes API server authorization to external services
and has the following APIs, which are great for debugging:


	SelfSubjectAccessReview

	
Access review for the current user



	SubjectAccessReview

	
Like SelfSubjectAccessReview but for any user



	LocalSubjectAccessReview

	
Like SubjectAccessReview but namespace specific



	SelfSubjectRulesReview

	
Returns a list of actions a user can perform in a given namespace






The really cool part is that you can query these APIs by creating
resources as you typically would. Let’s actually take the previous example
and test this for ourselves using the SelfSubjectAccessReview. The status
field in the output indicates that this request is allowed:


$ cat << EOF | kubectl create -f - -o yaml
apiVersion: authorization.k8s.io/v1beta1
kind: SelfSubjectAccessReview
spec:
  resourceAttributes:
    verb: get
    resource: pods
    namespace: demo-app
EOF
apiVersion: authorization.k8s.io/v1beta1
kind: SelfSubjectAccessReview
metadata:
  creationTimestamp: null
spec:
  resourceAttributes:
    namespace: demo-app
    resource: pods
    verb: get
status:
  allowed: true


In fact, Kubernetes ships with tooling built into kubectl to make this
even easier. The kubectl auth can-i command operates by querying the
same API as the previous example:


$ kubectl auth can-i get pods --namespace demo-app
yes


With administrator credentials, you can also run the same command to check
actions as another user:


$ kubectl auth can-i get pods --namespace demo-app --as mary
yes

















RBAC


Kubernetes role-based access control is covered in depth in Chapter 4.

















Webhook


Using the webhook authorization module allows a cluster administrator to
configure an external REST endpoint to delegate the authorization
process to. This would run off cluster and be reachable via URL. The
configuration of the REST endpoint is found in a file on the
master filesystem and configured on the API server via
--authorization-webhook-config-file=SOME_FILENAME. After you’ve configured it,
the API server will send SubjectAccessReview objects as part of the
request body to the authorization webhook application, which processes and
returns the object with the status field complete.






















Authorization Best Practices


Consider the following best practices before making changes to the authorization modules configured on your cluster:



	
Given that the ABAC policies need to be placed on the filesystem of each
master node and kept synchronized, we generally recommend against using ABAC in
multimaster clusters. The same can be said for the webhook module because the
configuration is based on a file and a corresponding flag being present.
Furthermore, changes to these policies in the files require a restart of
the API server to take effect, which is effectively a control-plane
outage in a single master cluster or inconsistent configuration in a
multimaster cluster. Given these details, we recommend using only the
RBAC module for user authorization because the rules are configured
and stored in Kubernetes itself.



	
Webhook modules, although powerful, are potentially very dangerous. Given
that every request is subject to the authorization process, a failure of
a webhook service would be devastating for a cluster. Therefore, we
generally recommend not using external authorization modules unless you
completely vet and are comfortable with your cluster failure modes if the webhook service becomes unreachable or unavailable.




























Summary


In this chapter, we covered the foundational topics of admission and
authorization and covered best practices. Put these skills to use by
determining the best admission and authorization configuration that
allows you to customize the controls and policies needed for the life of
your cluster.












Chapter 18. Conclusion



The primary strength of Kubernetes is its modularity and generality. Nearly
every kind of application that you might want to deploy you can fit within
Kubernetes, and no matter what kind of adjustments or tuning you need to
make to your system, they’re generally possible.


Of course, this modularity and generality come at a cost, and that cost is
a reasonable amount of complexity. Understanding how the APIs and
components of Kubernetes work is critical to successfully unlocking the
power of Kubernetes to make your application development, management, and
deployment easier and more reliable.


Likewise, understanding how to link Kubernetes up with a wide variety
of external systems and practices as varied as an on-premises database
and a Continuous Delivery system is critical to efficiently making use
of Kubernetes in the real world.


Throughout this book we have worked to provide concrete real-world
experience on specific topics that you will likely encounter whether
you are a newcomer to Kubernetes or an experienced administrator.
Regardless of whether you are facing a new area in which you need to become
an expert, or you simply want a refresher about how others have addressed
a familiar problem, hopefully, the chapters in this book have enabled you
to learn from our experience. We also hope that in this learning, you gain
the skills and confidence to use Kubernetes to its fullest capabilities.
Thank you and we look forward to seeing you out in the real world!


Index
A
	A/B testing (see canary deployments)
	ABAC (Attribute-Based Access Control), ABAC, Authorization Best Practices
	access control	NetworkPolicy API and, Network Security Policy
	role-based (see RBAC)
	secrets and, Managing Authentication with Secrets


	admission controllers, Admission Controllers, Admission Control and Authorization-Admission Control Best Practices	best practices, Admission Control Best Practices-Admission Control Best Practices
	ConfigMap/Secrets and, Common Best Practices for the ConfigMap and Secrets APIs
	defined, What Are They?
	importance of, Why Are They Important?
	sidecars and, Extending Kubernetes Clusters
	types, Admission Controller Types
	webhook configuration, Configuring Admission Webhooks-Configuring Admission Webhooks


	affinity/anti-affinity, Pod Affinity and Anti-Affinity
	alert fatigue, Alerting
	alert thresholds, Alerting
	alerting	best practices, Alerting
	overview, Alerting


	Amazon EC2, Monitoring Tools
	Amazon Web Services (AWS), Exporting Services by Using Internal Load Balancers
	anomaly detection, Intrusion and Anomaly Detection Tooling
	application configuration, Configuring an Application with ConfigMaps
	application platforms	approaches to developing higher-level abstractions, Approaches to Developing Higher-Level Abstractions
	best practices for building, Building Application Platforms Best Practices
	building on top of Kubernetes, Building Higher-Level Application Patterns on Top of Kubernetes-Summary
	design considerations, Design Considerations When Building Platforms-Support Existing Mechanisms for Service and Service Discovery
	design considerations when building platforms, Design Considerations When Building Platforms-Support Existing Mechanisms for Service and Service Discovery
	extending Kubernetes, Extending Kubernetes-Extending the Kubernetes User Experience
	extending Kubernetes clusters, Extending Kubernetes Clusters-Extending Kubernetes Clusters
	extending Kubernetes UX, Extending the Kubernetes User Experience
	support for existing mechanisms for service/service discovery, Support Existing Mechanisms for Service and Service Discovery
	support for exporting to a container image, Support Exporting to a Container Image


	application scaling, Application Scaling
	Application Service, Managing Configuration Files
	Attribute-Based Access Control (ABAC), ABAC, Authorization Best Practices
	authentication, Secrets and, Managing Authentication with Secrets-Managing Authentication with Secrets
	authorization, Authorization-Authorization Best Practices	ABAC module, ABAC
	best practices, Authorization Best Practices
	modules, Authorization Modules-Webhook
	webhook module, Webhook


	autoscaling, for machine learning, Machine Leaning on Kubernetes Best Practices
	AWS (Amazon Web Services), Exporting Services by Using Internal Load Balancers
	AWS Container Insights, Monitoring Tools
	Azure, Exporting Services by Using Internal Load Balancers
	Azure Container Instances, Monitoring Tools
	Azure CosmosDB, Multicluster Design Concerns
	Azure Kubernetes Service, Monitoring Tools
	Azure Monitor, Monitoring Tools


B
	Berkeley Packet Filter (BPF), Intrusion and Anomaly Detection Tooling
	best effort QoS, Resource Limits and Pod Quality of Service
	black-box monitoring, Monitoring Techniques
	blast radius, Testing in Production, Why Multiple Clusters?
	blue/green deployments, Deployment Strategies
	BPF (Berkeley Packet Filter), Intrusion and Anomaly Detection Tooling
	bricking, Building a Development Cluster
	burstable QoS, Resource Limits and Pod Quality of Service


C
	cAdvisor, cAdvisor
	canary deployments, Deployment Strategies
	canary region, Canary Region
	Canonical Name (see CNAME-based Kubernetes Services)
	CD (see continuous delivery; continuous deployment; CI/CD pipeline)
	certificate-based authentication, Onboarding Users
	chaos engineering, Testing in Production
	chaos experiment, A Simple Chaos Experiment
	Chaos Toolkit, A Simple Chaos Experiment
	chart (Helm file collection), Parameterizing Your Application by Using Helm
	checkpoints, Checkpoints and saving models
	CI (see continuous integration)
	CI/CD pipeline, Continuous Integration, Testing, and Deployment-Summary	best practices for, Best Practices for CI/CD
	chaos experiment, A Simple Chaos Experiment
	container builds, Container Builds
	container image tagging, Container Image Tagging
	continuous deployment (CD), Continuous Deployment-Deployment Strategies
	deployment strategies, Deployment Strategies-Deployment Strategies
	rolling upgrade, Performing a Rolling Upgrade
	setting up CD, Setting Up CD
	setting up CI, Setting Up CI-Setting Up CI
	testing, Testing
	testing in production, Testing in Production-Testing in Production
	version control, Version Control


	Classless Inter-Domain Routing (CIDR), Kubenet
	Cloud Spanner, Multicluster Design Concerns
	CloudWatch Container Insights, Monitoring Tools
	Cluster API, Managing Multiple Cluster Deployments
	Cluster Autoscaler add-on, Cluster autoscaling
	cluster scaling, Cluster Scaling	autoscaling, Cluster autoscaling
	manual, Manual scaling


	cluster-level services, Cluster-Level Services
	ClusterIP service type, Service Type ClusterIP
	clusters	extending, Extending Kubernetes Clusters-Extending Kubernetes Clusters
	mixed workload, for machine learning, Machine Leaning on Kubernetes Best Practices
	multiple (see multiple clusters)
	shared vs. one per developer, Building a Development Cluster


	CNAME-based Kubernetes Services, CNAME-Based Services for Stable DNS Names
	CNI plug-in	about, The CNI Plug-in
	best practices, CNI Best Practices


	compliance, multicluster design and, Why Multiple Clusters?
	config resource, Data Replication
	ConfigMaps	best practices, Common Best Practices for the ConfigMap and Secrets APIs-Common Best Practices for the ConfigMap and Secrets APIs
	common best practices for ConfigMap and Secrets APIs, Common Best Practices for the ConfigMap and Secrets APIs-Common Best Practices for the ConfigMap and Secrets APIs
	configuration with, ConfigMaps
	configuring an application with, Configuring an Application with ConfigMaps
	DNS server and, CNAME-Based Services for Stable DNS Names


	configuration	common best practices for ConfigMap and Secrets APIs, Common Best Practices for the ConfigMap and Secrets APIs-Common Best Practices for the ConfigMap and Secrets APIs
	Secrets for, Secrets
	with ConfigMaps, Configuring an Application with ConfigMaps, ConfigMaps


	configuration drift, Continuous Deployment
	constraint resource, Defining Constraints
	constraint templates	defining, Introducing Gatekeeper, Defining Constraint Templates
	elements of, Constraint template


	constraints	best practices, Policy and Governance Best Practices
	defining, Defining Constraints
	Gatekeeper and, Constraint
	operational characteristics, Defining Constraints


	Consul, Service Meshes, Multicluster Design Concerns
	container	intrusion/anomaly detection tooling, Intrusion and Anomaly Detection Tooling
	workload isolation and RuntimeClass, Workload Isolation and RuntimeClass-Workload Isolation and RuntimeClass Best Practices


	Container Advisor (cAdvisor), cAdvisor
	container builds, Container Builds
	container image tagging, Container Image Tagging
	container images (see image management)
	Container Insights, Monitoring Tools
	Container Network Interface (CNI) (see CNI plug-in)
	Container Storage Interface (CSI), Container Storage Interface and FlexVolume
	continuous delivery (CD), Multicluster Design Concerns	(see also CI/CD pipeline)


	continuous deployment (CD), Continuous Deployment-Deployment Strategies	defined, Continuous Deployment
	deployment strategies, Deployment Strategies-Deployment Strategies
	setting up, Setting Up CD


	continuous integration (CI), Continuous Integration	(see also CI/CD pipeline)
	defined, Continuous Integration
	setting up, Setting Up CI-Setting Up CI


	control-plane components, Kubernetes Metrics Overview
	Core CNI project, The CNI Plug-in
	CoreDNS server, CNAME-Based Services for Stable DNS Names
	CSI (Container Storage Interface), Container Storage Interface and FlexVolume
	custom controllers, Deployment and Management Patterns
	Custom Metrics API, Metrics Server, HPA with Custom Metrics
	custom resource definitions (CRDs), Managing Namespaces, Introducing Gatekeeper	adding resources to existing cluster with, Extending Kubernetes Clusters
	constraint templates as, Defining Constraint Templates
	defined, Deployment and Management Patterns




D
	data replication	Gatekeeper and, Data Replication
	multicluster design and, Multicluster Design Concerns


	data scientists, machine learning and, Data Scientist Concerns
	database	deploying a simple stateful database, Deploying a Simple Stateful Database-Deploying a Simple Stateful Database
	making accessible from Kubernetes (see importing services into Kubernetes)


	Datadog, Monitoring Tools
	dataset storage, for machine learning, Dataset storage and distribution among worker nodes during training
	debugging, Enabling Testing and Debugging	(see also logging)


	declarative model, Managing Configuration Files, Releases
	DefaultStorageClass admission plug-in, Storage Classes
	dependencies, installation of, Initial Setup
	deployment	best policy/governance practices, Policy and Governance Best Practices
	sample code for, Putting It All Together-Putting It All Together
	stateful database, Deploying a Simple Stateful Database-Deploying a Simple Stateful Database
	strategies for CI/CD pipeline, Deployment Strategies-Deployment Strategies
	versioning, releases, and rollouts, Versioning, Releases, and Rollouts-Summary


	Deployment object, Enabling Active Development
	Deployment resource, Creating a Replicated Application
	developer workflows (see workflows)
	development cluster	building, Building a Development Cluster
	goals, Goals
	onboarding users, Onboarding Users-Onboarding Users
	setting up shared cluster for multiple developers, Setting Up a Shared Cluster for Multiple Developers-Cluster-Level Services


	development environment, Setting Up a Development Environment Best Practices
	disruption budgets, PodDisruptionBudgets
	distributed training, Distributed Training on Kubernetes, Machine Leaning on Kubernetes Best Practices
	DNS servers/resolvers, CNAME-Based Services for Stable DNS Names
	Docker image, Container Image Tagging
	docker-registry secrets, Secrets
	Domain Name System (DNS), Load-Balancing Traffic Around the World
	dot notation, Versioning
	drivers, machine learning, Libraries, Drivers, and Kernel Modules
	dynamic admission controllers, Admission Controller Types


E
	EFK (Elasticsearch, Fluentd, and Kibana) stack, Logging by Using an EFK Stack-Logging by Using an EFK Stack, Deployment and Management Patterns
	exporting services from Kubernetes, Exporting Services from Kubernetes-Integrating External Machines and Kubernetes	integrating external machines and Kubernetes, Integrating External Machines and Kubernetes
	internal load balancers for, Exporting Services by Using Internal Load Balancers
	NodePorts for, Exporting Services on NodePorts


	external identity systems, Onboarding Users
	external services	best practices for connecting cluster and external services, Connecting Cluster and External Services Best Practices
	exporting services from Kubernetes, Exporting Services from Kubernetes-Integrating External Machines and Kubernetes
	importing services into Kubernetes, Importing Services into Kubernetes-Active Controller-Based Approaches
	integrating with Kubernetes, Integrating External Services and Kubernetes-Summary
	sharing services between Kubernetes, Sharing Services Between Kubernetes
	third-party tools, Third-Party Tools


	ExternalName service type, Service Type ExternalName


F
	failurePolicy field, Admission Control Best Practices
	Falco, Intrusion and Anomaly Detection Tooling
	feature flag, Deployment Strategies
	Federation, Kubernetes Federation-Kubernetes Federation
	Federation v2 (KubeFed), Kubernetes Federation-Kubernetes Federation
	filesystem layout, Managing Configuration Files
	flaky tests, Goals
	flat networks, Multicluster Design Concerns
	FlexVolume, Container Storage Interface and FlexVolume
	Fluentd, Logging by Using an EFK Stack
	Flux, The GitOps Approach to Managing Clusters-The GitOps Approach to Managing Clusters
	Four Golden Signals, Monitoring Patterns, CNI Best Practices


G
	Gardener, Multicluster Management Tools
	Gatekeeper, Introducing Gatekeeper-Gatekeeper Next Steps	audit and, Audit
	constraint, Constraint
	constraint templates, Constraint template
	data replication, Data Replication
	defining constraint templates, Defining Constraint Templates
	defining constraints, Defining Constraints
	demonstration content, Becoming Familiar with Gatekeeper
	example policies, Example Policies
	next steps for, Gatekeeper Next Steps
	rego and, Rego
	terminology, Gatekeeper Terminology
	UX, UX


	GCP Stackdriver, Monitoring Tools
	generic secrets, Secrets
	Git, Managing Configuration Files
	GitOps, The GitOps Approach to Managing Clusters-The GitOps Approach to Managing Clusters
	GKE (Google Kubernetes Engine), Monitoring Tools
	global deployment, Worldwide Application Distribution and Staging-Summary	best practices, Worldwide Rollout Best Practices
	canary region, Canary Region
	constructing a global rollout, Constructing a Global Rollout
	distributing your image, Distributing Your Image
	identifying region types, Identifying Region Types
	load-balancing traffic, Load-Balancing Traffic Around the World
	parameterizing your deployment, Parameterizing Your Deployment
	pre-rollout validation, Pre-Rollout Validation-Pre-Rollout Validation
	reliably rolling out software, Reliably Rolling Out Software Around the World-Constructing a Global Rollout
	responding to problems, When Something Goes Wrong


	Google Cloud Spanner, Multicluster Design Concerns
	Google Four Golden Signals, Monitoring Patterns, CNI Best Practices
	Google Kubernetes Engine (GKE), Monitoring Tools
	Grafana, Monitoring Kubernetes Using Prometheus
	graphics processing units (GPUs), Model Training on Kubernetes-Training your first model on Kubernetes
	guaranteed QoS, Resource Limits and Pod Quality of Service


H
	hard multitenancy, Why Multiple Clusters?
	Hardware Security Module (HSM), Best practices specific to secrets
	headless service, Creating a TCP Load Balancer by Using Services, Service Type ClusterIP
	Heapster, Metrics Server
	Helm	life cycle hook with, Common Best Practices for the ConfigMap and Secrets APIs
	parameterizing an application with, Parameterizing Your Application by Using Helm-Parameterizing Your Application by Using Helm
	rollouts and, Best Practices for Versioning, Releases, and Rollouts
	testing with, Testing
	Tiller as default service account, RBAC Best Practices
	tracking releases with, Releases


	helm lint, Testing
	Horizontal Pod Autoscaler (HPA), Metrics Server, Application Scaling-HPA with Custom Metrics, Scaling with HPA
	HSM (Hardware Security Module), Best practices specific to secrets
	HTTP protocol management, Ingress and Ingress Controllers
	HTTP traffic, external Ingress for, Setting Up an External Ingress for HTTP Traffic
	hyperparameter tuning, Model Training on Kubernetes


I
	image management, Best Practices for Image Management
	importing services into Kubernetes, Importing Services into Kubernetes-Active Controller-Based Approaches	active controller-based approaches, Active Controller-Based Approaches
	CNAME-based services for stable DNS names, CNAME-Based Services for Stable DNS Names
	selector-less services for stable IP addresses, Selector-Less Services for Stable IP Addresses


	InfluxDB, Monitoring Tools
	Infrastructure as Code (IaC), Multicluster Design Concerns
	Infrastructure as Software, Deployment and Management Patterns
	Ingress	about, Ingress and Ingress Controllers
	best practices, Services and Ingress Controllers Best Practices
	routing traffic to a static file server with, Using Ingress to Route Traffic to a Static File Server-Using Ingress to Route Traffic to a Static File Server
	setting up for HTTP traffic, Setting Up an External Ingress for HTTP Traffic


	integration testing, Pre-Rollout Validation-Pre-Rollout Validation
	internal load balancers, exporting services using, Exporting Services by Using Internal Load Balancers
	intrusion detection, Intrusion and Anomaly Detection Tooling
	involuntary disruptions, PodDisruptionBudgets
	Istio, Service Meshes


J
	journal service (see setting up a basic service)
	JSON, YAML versus, Managing Configuration Files
	Just in Time (JIT) access systems, RBAC Best Practices


K
	kernel modules, Libraries, Drivers, and Kernel Modules
	Kibana, Logging by Using an EFK Stack
	KQueen, Multicluster Management Tools
	kube-proxy, Integrating External Machines and Kubernetes
	kube-state-metrics, kube-state-metrics
	kube-system namespace, Admission Control Best Practices
	kubectl	audit results and, Audit
	CRDs and, Managing Namespaces
	debugging tools, Enabling Testing and Debugging
	expanding UX with, Extending the Kubernetes User Experience
	namespace flag, Managing Resources by Using Namespaces


	kubectx, Multicluster Management Tools
	KubeFed (Federation v2), Kubernetes Federation-Kubernetes Federation
	Kubenet	about, Kubenet
	best practices, Kubenet Best Practices


	kubens, Multicluster Management Tools
	Kubernetes Federation, Kubernetes Federation-Kubernetes Federation
	Kubernetes scheduler, Kubernetes Scheduler-Taints and Tolerations	advanced scheduling techniques, Advanced Scheduling Techniques-Taints and Tolerations
	nodeSelector, nodeSelector
	pod affinity/anti-affinity, Pod Affinity and Anti-Affinity
	predicate function, Predicates
	priorities, Priorities
	taints, Taints and Tolerations-Taints and Tolerations
	tolerations, Taints and Tolerations


	Kubernetes Services	creating TCP load balancer with, Creating a TCP Load Balancer by Using Services
	elements of, Active Controller-Based Approaches


	Kubernetes Volumes (see Volumes)


L
	libraries, machine learning, Libraries, Drivers, and Kernel Modules
	Limit (resource request), Creating a Replicated Application
	LimitRange, LimitRange
	Linkerd2, Service Meshes
	linters, Extending Kubernetes Clusters
	liveness probes, Alerting
	load balancing, Load-Balancing Traffic Around the World
	LoadBalancer service type, Service Type LoadBalancer
	logging, Logging Overview-Logging	alerting and, Alerting
	best practices, Logging
	EFK stack for, Logging by Using an EFK Stack-Logging by Using an EFK Stack
	metrics collection versus log collection, Metrics Versus Logs
	overview, Logging Overview-Logging Overview
	tools for, Tools for Logging


	Logging as a Service (LaaS), Cluster-Level Services


M
	machine learning, Running Machine Learning in Kubernetes-Summary	advantages of Kubernetes for, Why Is Kubernetes Great for Machine Learning?
	best practices, Machine Leaning on Kubernetes Best Practices
	checkpoints and saving models, Checkpoints and saving models
	data scientist concerns, Data Scientist Concerns
	dataset storage/distribution among worker nodes during training, Dataset storage and distribution among worker nodes during training
	distributed training, Distributed Training on Kubernetes
	for Kubernetes cluster admins, Machine Learning for Kubernetes Cluster Admins-Specialized Protocols
	libraries, drivers, and kernel modules, Libraries, Drivers, and Kernel Modules
	model training, Model Training on Kubernetes-Libraries, Drivers, and Kernel Modules
	networking, Networking
	resource constraints, Resource Constraints
	scheduling idiosyncrasies, Scheduling idiosyncrasies
	specialized hardware, Specialized Hardware
	specialized protocols, Specialized Protocols
	storage, Storage
	workflow phases, Machine Learning Workflow


	master branch, Version Control
	Message Passing Interface (MPI), Specialized Protocols
	metrics	cAdvisor, cAdvisor
	choosing metrics to monitor, What Metrics Do I Monitor?
	kube-state-metrics, kube-state-metrics
	log collection versus metrics collection, Metrics Versus Logs
	metrics-server, Metrics Server
	overview, Kubernetes Metrics Overview-kube-state-metrics


	Metrics Aggregator, HPA with Custom Metrics
	Metrics API, Metrics Server
	Metrics Server API, HPA with Custom Metrics
	metrics-server, Metrics Server
	Microsoft Azure, Exporting Services by Using Internal Load Balancers
	Microsoft Azure CosmosDB, Multicluster Design Concerns
	Microsoft Azure Monitor, Monitoring Tools
	MNIST dataset, Training your first model on Kubernetes
	modules, authorization, Authorization Modules-Webhook
	monitoring, Monitoring and Logging in Kubernetes-Monitoring Kubernetes Using Prometheus	best practices, Monitoring
	choosing metrics to monitor, What Metrics Do I Monitor?
	cloud provider tools, Monitoring Tools
	Kubernetes metrics overview, Kubernetes Metrics Overview-kube-state-metrics
	metrics vs. logs, Metrics Versus Logs
	patterns, Monitoring Patterns
	Prometheus for, Monitoring Kubernetes Using Prometheus-Monitoring Kubernetes Using Prometheus
	techniques for, Monitoring Techniques
	tools for, Monitoring Tools-Monitoring Tools


	MPI (Message Passing Interface), Specialized Protocols
	multiple clusters, Managing Multiple Clusters-Summary	best practices for management of, Managing Multiple Clusters Best Practices
	deployment/management patterns, Deployment and Management Patterns
	design concerns, Multicluster Design Concerns
	GitOps approach to managing, The GitOps Approach to Managing Clusters-The GitOps Approach to Managing Clusters
	Kubernetes Federation, Kubernetes Federation-Kubernetes Federation
	managing, Managing Multiple Clusters-Summary
	managing deployments of, Managing Multiple Cluster Deployments-Deployment and Management Patterns
	reasons for having, Why Multiple Clusters?-Why Multiple Clusters?
	tools for managing, Multicluster Management Tools


	MutatingWebhookConfiguration, Configuring Admission Webhooks
	mutation, Admission Control Best Practices


N
	namespaces	aligning workloads to, Network Policy Best Practices
	as scopes for deployment of services, Setting Up a Shared Cluster for Multiple Developers
	creating/securing, Creating and Securing a Namespace-Creating and Securing a Namespace
	for resource management, Managing Resources by Using Namespaces
	managing, Managing Namespaces
	multitenancy and, Why Multiple Clusters?
	setting ResourceQuotas on, ResourceQuota-ResourceQuota


	naming, of images, Best Practices for Image Management
	NCCL (NVIDIA Collective Communications Library), Specialized Protocols
	Netflix, chaos engineering at, Testing in Production
	network address translation (NAT), Multicluster Design Concerns
	networking, Networking, Network Security, and Service Mesh-Network Policy Best Practices	Kubernetes network principles, Kubernetes Network Principles-Kubernetes Network Principles
	machine learning and, Networking
	plug-ins, Network Plug-ins-CNI Best Practices
	security policy, Network Security Policy-Network Policy Best Practices
	service API and, Services in Kubernetes-Services and Ingress Controllers Best Practices


	NetworkPolicy API, Network Security Policy-Network Policy Best Practices	about, Network Security Policy-Network Security Policy
	best practices, Network Policy Best Practices


	NGINX, Using Ingress to Route Traffic to a Static File Server, Pod Affinity and Anti-Affinity, Ingress and Ingress Controllers
	NodePorts, Service Type NodePort, Exporting Services on NodePorts
	nodeSelector, nodeSelector
	NoSQL databases, Multicluster Design Concerns
	NVIDIA Collective Communications Library (NCCL), Specialized Protocols
	NVIDIA device plug-in, Specialized Hardware


O
	onboarding, Goals, Onboarding Users-Onboarding Users
	Open Policy Agent (OPA), Cloud-Native Policy Engine	data replication and, Data Replication
	Gatekeeper and, Gatekeeper Terminology


	operational management, Multicluster Design Concerns
	Operator Framework, Operators
	Operators (cloud native software), Operators


P
	parameterizing	global deployments, Parameterizing Your Deployment
	of application with Helm, Parameterizing Your Application by Using Helm-Parameterizing Your Application by Using Helm


	passwords, Managing Authentication with Secrets-Managing Authentication with Secrets
	PersistentVolume, Deploying a Simple Stateful Database, PersistentVolume
	PersistentVolumeClaim, Deploying a Simple Stateful Database, PersistentVolumeClaims
	plug-ins	admission control best practices, Admission Control Best Practices
	CNI, The CNI Plug-in
	Kubenet, Kubenet-CNI Best Practices
	network, Network Plug-ins-CNI Best Practices


	PodDisruptionBudget, PodDisruptionBudgets
	pods	admission controllers, Admission Controllers
	affinity/anti-affinity, Pod Affinity and Anti-Affinity
	disruption budgets, PodDisruptionBudgets
	LimitRange, LimitRange
	resource limits and QoS, Resource Limits and Pod Quality of Service-Resource Limits and Pod Quality of Service
	resource management, Pod Resource Management-Vertical Pod Autoscaler
	resource request, Resource Request
	security, Pod and Container Security-PodSecurityPolicy Next Steps


	PodSecurityPolicy API, PodSecurityPolicy API-PodSecurityPolicy Next Steps, Why Are They Important?	best practices, PodSecurityPolicy Best Practices
	challenges in real-world environments, PodSecurityPolicy Challenges
	enabling, Enabling PodSecurityPolicy-Enabling PodSecurityPolicy
	example, Anatomy of a PodSecurityPolicy-Anatomy of a PodSecurityPolicy


	policy and governance, Policy and Governance for Your Cluster-Summary	admission controllers and, Why Are They Important?
	audit, Audit
	best practices, Policy and Governance Best Practices
	cloud-native policy engine, Cloud-Native Policy Engine
	Gatekeeper (see Gatekeeper)
	importance of, Why Policy and Governance Are Important
	Kubernetes context for, How Is This Policy Different?


	predicate function, Predicates
	preStop hook, Deployment Strategies, StatefulSet and Operator Best Practices
	priority value, Priorities
	Prometheus, Monitoring Tools	monitoring multiple clusters with, Deployment and Management Patterns-Deployment and Management Patterns
	monitoring with, Monitoring Kubernetes Using Prometheus-Monitoring Kubernetes Using Prometheus


	prometheus-operator, Deployment and Management Patterns-Deployment and Management Patterns


Q
	Quality of Service (QoS), resource limits and, Resource Limits and Pod Quality of Service-Resource Limits and Pod Quality of Service


R
	Rancher, Multicluster Management Tools
	RBAC (role-based access control), RBAC-RBAC Best Practices	best practices, RBAC Best Practices-RBAC Best Practices
	locking down admission webhook configurations, Admission Control Best Practices
	main components, RBAC Primer
	PodSecurityPolicy API and, Anatomy of a PodSecurityPolicy, PodSecurityPolicy Best Practices
	RoleBinding, RoleBindings
	roles, Roles
	rules, Rules
	subjects, Subjects


	RDMA (Remote Direct Memory Access), Networking
	readiness probe, Deployment Strategies
	recreate strategy, Rollouts
	RED (rate, errors, duration) monitoring pattern, Monitoring Patterns
	Redis, Managing Authentication with Secrets-Managing Authentication with Secrets
	rego	defined, Rego
	policy definition and, Defining Constraint Templates


	releases, Releases, Best Practices for Versioning, Releases, and Rollouts
	Remote Direct Memory Access (RDMA), Networking
	ReplicaSet, Creating a Replicated Application, Rollouts, Stateful Applications
	Request (resource request), Creating a Replicated Application
	resource management, Resource Management-Summary	admission controllers and, Why Are They Important?
	advanced scheduling techniques, Advanced Scheduling Techniques-Taints and Tolerations
	application scaling, Application Scaling
	best practices, Resource Management Best Practices
	cluster scaling, Cluster Scaling
	HPA with custom metrics, Scaling with HPA
	Kubernetes scheduler, Kubernetes Scheduler-Taints and Tolerations
	LimitRange, LimitRange
	namespaces for, Managing Resources by Using Namespaces
	pod disruption budgets, PodDisruptionBudgets
	pods, Pod Resource Management-Vertical Pod Autoscaler
	resource limits and pod QoS, Resource Limits and Pod Quality of Service-Resource Limits and Pod Quality of Service
	resource request, Resource Request
	setting ResourceQuotas on namespaces, ResourceQuota-ResourceQuota
	Vertical Pod Autoscaler, Vertical Pod Autoscaler


	Resource Metrics API, Metrics Server
	resource request, Resource Request
	ResourceQuotas, Creating and Securing a Namespace, ResourceQuota-ResourceQuota
	role-based access control (see RBAC)
	RoleBinding, Creating and Securing a Namespace, RoleBindings
	rolling updates, Deployment Strategies-Deployment Strategies
	rolling upgrade, Performing a Rolling Upgrade
	rollingUpdate, Rollouts
	rollouts, Rollouts	best practices for, Best Practices for Versioning, Releases, and Rollouts
	strategies for CI/CD pipeline, Deployment Strategies-Deployment Strategies
	worldwide, Reliably Rolling Out Software Around the World-Constructing a Global Rollout


	rules, in RBAC, Rules
	RuntimeClass	about, Workload Isolation and RuntimeClass-Runtime Implementations
	best practices, Workload Isolation and RuntimeClass Best Practices
	implementations, Runtime Implementations
	using, Using RuntimeClass
	workload isolation and, Workload Isolation and RuntimeClass-Workload Isolation and RuntimeClass Best Practices




S
	scaling	application (see application scaling)
	application scaling, Application Scaling
	clusters (see cluster scaling)
	HPA with custom metrics, Scaling with HPA
	VPA, Vertical Pod Autoscaler


	scheduler (see Kubernetes scheduler)
	scoping, admission webhook, Admission Control Best Practices
	secret password, Managing Authentication with Secrets
	Secrets	best practices specific to, Best practices specific to secrets
	common best practices for ConfigMap and Secrets APIs, Common Best Practices for the ConfigMap and Secrets APIs-Common Best Practices for the ConfigMap and Secrets APIs
	configuration with, Secrets
	managing authentication with, Managing Authentication with Secrets-Managing Authentication with Secrets


	security, RBAC	(see also admission controllers; authorization)
	admission controllers, Admission Controllers
	admission controllers and, Why Are They Important?
	admission webhook best practices, Admission Control Best Practices
	intrusion/anomaly detection tooling, Intrusion and Anomaly Detection Tooling
	multicluster design and, Why Multiple Clusters?
	NetworkPolicy API, Network Security Policy-Network Policy Best Practices
	pods, Pod and Container Security-PodSecurityPolicy Next Steps
	PodSecurityPolicy API, PodSecurityPolicy API-PodSecurityPolicy Next Steps
	RBAC, RBAC-RBAC Best Practices


	selector-less Kubernetes Services, Selector-Less Services for Stable IP Addresses
	semantic versioning, Versioning, Best Practices for Versioning, Releases, and Rollouts
	service API, Services in Kubernetes-Services and Ingress Controllers Best Practices	best practices, Services and Ingress Controllers Best Practices
	ClusterIP service type, Service Type ClusterIP
	ExternalName service type, Service Type ExternalName
	Ingress/Ingress controllers, Ingress and Ingress Controllers
	LoadBalancer service type, Service Type LoadBalancer
	NodePort service type, Service Type NodePort


	service discovery, Multicluster Design Concerns
	service mesh, Service Meshes-Service Mesh Best Practices	about, Service Meshes-Service Meshes
	best practices, Service Mesh Best Practices


	Service Mesh Interface (SMI), Service Meshes
	service type	ClusterIP, Service Type ClusterIP
	ExternalName, Service Type ExternalName
	LoadBalancer, Service Type LoadBalancer
	NodePort, Service Type NodePort


	Service-Level Objectives (SLOs), Alerting
	services, Creating a TCP Load Balancer by Using Services	(see also Kubernetes Services)
	cluster-level, Cluster-Level Services
	creating TCP load balancer with, Creating a TCP Load Balancer by Using Services
	deployment best practices, Deploying Services Best Practices
	external (see external services)
	setting up basic (see setting up a basic service)


	setting up a basic service, Setting Up a Basic Service-Summary	application overview, Application Overview
	configuring an application with ConfigMaps, Configuring an Application with ConfigMaps
	creating a replicated application, Creating a Replicated Application-Creating a Replicated Application
	creating a replicated service using deployments, Creating a Replicated Service Using Deployments-Creating a Replicated Application
	creating a TCP load balancer by using Services, Creating a TCP Load Balancer by Using Services
	deploying a simple stateful database, Deploying a Simple Stateful Database-Deploying a Simple Stateful Database
	deploying services best practices, Deploying Services Best Practices
	image management best practices, Best Practices for Image Management
	managing authentication with Secrets, Managing Authentication with Secrets-Managing Authentication with Secrets
	managing configuration files, Managing Configuration Files
	parameterizing application with Helm, Parameterizing Your Application by Using Helm-Parameterizing Your Application by Using Helm
	setting up external Ingress for HTTP traffic, Setting Up an External Ingress for HTTP Traffic
	using Ingress to route traffic to a static file server, Using Ingress to Route Traffic to a Static File Server-Using Ingress to Route Traffic to a Static File Server


	shared cluster	cluster-level services, Cluster-Level Services
	creating/securing namespace, Creating and Securing a Namespace-Creating and Securing a Namespace
	managing namespaces, Managing Namespaces
	onboarding users, Onboarding Users-Onboarding Users
	setting up for multiple developers, Setting Up a Shared Cluster for Multiple Developers-Cluster-Level Services


	sidecar containers, Extending Kubernetes Clusters
	sidecar pattern, Logging Overview
	Sidecar proxies, Service Meshes
	SLOs (Service-Level Objectives), Alerting
	smart scheduling, Machine Leaning on Kubernetes Best Practices
	SMI (Service Mesh Interface), Service Meshes
	soft multitenancy, Why Multiple Clusters?
	Software as a Service (SaaS)	hard multitenancy and, Why Multiple Clusters?
	state management and, Deploying a Simple Stateful Database


	Stackdriver Kubernetes Engine Monitoring, Monitoring Tools
	standard admission controllers, Admission Controller Types
	state	Kubernetes storage, Kubernetes Storage-Kubernetes Storage Best Practices	(see also storage)


	managing, Managing State and Stateful Applications-Summary
	volumes and volume mounts, Volumes and Volume Mounts


	stateful applications, Stateful Applications-Summary	Operators, Operators
	StatefulSets, StatefulSets


	stateful database, Deploying a Simple Stateful Database-Deploying a Simple Stateful Database
	StatefulSets	about, StatefulSets
	best practices, StatefulSet and Operator Best Practices


	static file server, Using Ingress to Route Traffic to a Static File Server-Using Ingress to Route Traffic to a Static File Server
	storage	best practices, Kubernetes Storage Best Practices
	for machine learning, Storage
	PersistentVolume, Deploying a Simple Stateful Database, PersistentVolume
	PersistentVolumeClaim, Deploying a Simple Stateful Database, PersistentVolumeClaims
	PersistentVolumeClaims, PersistentVolumeClaims
	state and, Kubernetes Storage-Kubernetes Storage Best Practices
	StorageClass objects, Storage Classes


	subjects, in RBAC, Subjects
	supply-chain attacks, Best Practices for Image Management
	Sysdig Monitor, Monitoring Tools


T
	taint-based eviction, Taints and Tolerations
	taints, Taints and Tolerations-Taints and Tolerations, Machine Leaning on Kubernetes Best Practices
	TCP (Transmission Control Protocol), Setting Up an External Ingress for HTTP Traffic, Creating a TCP Load Balancer by Using Services
	TCP load balancer, Creating a TCP Load Balancer by Using Services
	templating system, Parameterizing Your Application by Using Helm
	Terraform, Multicluster Design Concerns
	test flakiness, Goals
	testing, Goals	chaos experiment for, A Simple Chaos Experiment
	CI/CD pipeline, Testing
	developer workflows and, Enabling Testing and Debugging
	in production, Testing in Production-Testing in Production
	pre-global rollout validation, Pre-Rollout Validation-Pre-Rollout Validation


	Tiller, RBAC Best Practices
	time to live (TTL), Managing Namespaces
	tls secret, Secrets
	tolerations, Taints and Tolerations, Machine Leaning on Kubernetes Best Practices
	traffic shifting (see blue/green deployments)
	Transmission Control Protocol (TCP), Setting Up an External Ingress for HTTP Traffic, Creating a TCP Load Balancer by Using Services
	Transport Layer Security (TLS) secret, Secrets
	Transport Layer Security (TLS) termination, Ingress and Ingress Controllers
	troubleshooting, When Something Goes Wrong
	TTL (time to live), Managing Namespaces


U
	USE (utilization, saturation, errors) monitoring pattern, Monitoring Patterns
	UX (user experience)	extending/enhancing, Extending the Kubernetes User Experience
	Gatekeeper and, UX




V
	ValidatingWebhookConfiguration, Configuring Admission Webhooks
	validation, pre-global rollout, Pre-Rollout Validation-Pre-Rollout Validation
	versioning, Versioning	best practices for, Best Practices for Versioning, Releases, and Rollouts
	ConfigMap and, Configuring an Application with ConfigMaps
	for CI/CD pipeline, Version Control


	Vertical Pod Autoscaler (VPA), Metrics Server, Vertical Pod Autoscaler
	Visual Studio (VS) Code, Enabling Testing and Debugging
	volumeMounts, Common Best Practices for the ConfigMap and Secrets APIs, Volumes and Volume Mounts
	Volumes, Managing Authentication with Secrets, Volumes and Volume Mounts	best practices, Volume Best Practices
	defined, Managing Authentication with Secrets
	FlexVolume, Container Storage Interface and FlexVolume
	PersistentVolume, Deploying a Simple Stateful Database, PersistentVolume
	PersistentVolumeClaim, Deploying a Simple Stateful Database, PersistentVolumeClaims


	voluntary evictions, PodDisruptionBudgets
	VPA (Vertical Pod Autoscaler), Metrics Server, Vertical Pod Autoscaler
	VS (Visual Studio) Code, Enabling Testing and Debugging


W
	Weaveworks Flux, The GitOps Approach to Managing Clusters-The GitOps Approach to Managing Clusters
	web application firewall (WAF), Exporting Services from Kubernetes
	webhook authorization module, Webhook
	webhook configuration, Configuring Admission Webhooks-Configuring Admission Webhooks
	white-box monitoring, Monitoring Techniques
	worker-node components, Kubernetes Metrics Overview
	workflows, Developer Workflows-Summary	building a development cluster, Building a Development Cluster
	development environment best practices, Setting Up a Development Environment Best Practices
	enabling active development, Enabling Active Development
	enabling developer workflows, Enabling Developer Workflows
	enabling testing/debugging, Enabling Testing and Debugging
	goals for building out development clusters, Goals
	initial setup, Initial Setup
	setting up shared cluster for multiple developers, Setting Up a Shared Cluster for Multiple Developers-Cluster-Level Services


	workload isolation, Workload Isolation and RuntimeClass Best Practices	(see also PodSecurityPolicy API; RuntimeClass)


	worldwide application distribution/staging (see global deployment)


Y
	YAML, JSON versus, Managing Configuration Files





  About the Authors

  Brendan Burns is a distinguished engineer at Microsoft Azure and cofounder of the Kubernetes open source project. He’s been building cloud applications for more than a decade.

  
  Eddie Villalba is a software engineer with Microsoft’s Commercial Software Engineering division, focusing on open source cloud and Kubernetes. He’s helped many real-world users adopt Kubernetes for their applications.

  
  Dave Strebel is a global cloud native architect at Microsoft Azure focusing on open source cloud and Kubernetes. He’s deeply involved in the Kubernetes open source project, helping with the Kubernetes release team and leading SIG-Azure.

  
  Lachlan Evenson is a principal program manager on the container compute team at Microsoft Azure. He’s helped numerous people onboard to Kubernetes through both hands-on teaching and conference talks.



  Colophon


The animal on the cover of Kubernetes Best Practices is an Old World mallard duck (Anas platyrhynchos), a kind of dabbling duck that feeds on the surface of water rather than diving for food. Species of Anas are typically separated by their ranges and behavioral cues; however, mallards frequently interbreed with other species, which has introduced some fully fertile hybrids.


Mallard ducklings are precocial and capable of swimming as soon as they hatch. Juveniles begin flying between three and four months of age. They reach full maturity at 14 months and have an average life expectancy of 3 years.


The mallard is a medium-sized duck that is just slightly heavier than most dabbling ducks. Adults average 23 inches long with a wingspan of 36 inches, and weigh 2.5 pounds. Ducklings have yellow and black plumage. At around six months of age, males and females can be distinguished visually as their coloring changes. Males have green head feathers, a white collar, purple-brown breast, gray-brown wings, and a yellowish-orange bill. Females are mottled brown, which is the color of most female dabbling ducks.


Mallards have a wide range of habitats across both northern and southern hemispheres. They are found in fresh- and salt-water wetlands, from lakes to rivers to seashores. Northern mallards are migratory, and winter father south. The mallard diet is highly variable, and includes plants, seeds, roots, gastropods, invertebrates, and crustaceans.
 

Brood parasites will target mallard nests. These are species of other birds who may lay their eggs in the mallard nest. If the eggs resemble those of the mallard, the mallard will accept them and raise the hatchlings with their own.
 

Mallards must contend with a wide variety of predators, most notably foxes and birds of prey such as falcons and eagles. They have also been preyed upon by catfish and pike. Crows, swans, and geese have all been known to attack the ducks over territorial disputes. Unihemispheric sleep (or sleeping with one eye open), which allows one hemisphere of the brain to sleep while the other is awake, was first noted in mallards. It is common among aquatic birds as a predation-avoidance behavior.
 

Many of the animals on O’Reilly covers are endangered; all of them are important to the world.
 

The cover illustration is by Jose Marzan, based on a black and white engraving from The Animal World. The cover fonts are Gilroy Semibold and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.




OEBPS/assets/kubp_0905.png
NodePort

Cluster

Selector:
app: webl

ServiceA |,

Client calls Service
by DNS name

10.244012 |-

POHN...

PodA(172.22.0.12:80)
PodB(172.22.1.32:80)
PodC(172.22.2.45:80)

A 4

Endpoint

ServiceA 10.244.0.12

Label:
app: web1

PodA 172.22.0.12:80

Client Pod

! Node?2 IP:
1192.168.0.7

Label:
app: web1

PodC 172.22.2.45:80

~ External Client






OEBPS/assets/kubp_0302.png
O Enable query history

Expre ess Shift+Enter fc

Execute -insert metric at cursor - v

Graph | Console

Element

o data






OEBPS/assets/kubp_1201.png
Code
Commit

Pull
Request

Github
Repo

Trigger
Build

Cl
Build

Push
Image

Docker
Registry

Synchronize

A 4

Kubernetes
Cluster






OEBPS/assets/kubp_1703.png
API Request

API Server

Authentication
Authorization

Mutating

v

Admission

Schema
| validation

|| Validating

\ 4

Admission

etcd

A

A

Admission | | Admission
review | | response

A 4

” Webhook

Admission | | Admission
review | | response

A 4
” Webhook






OEBPS/assets/kubp_1701.png
API Request

»

API Server

Authentication
Authorization

Mutating Schema
| Admission [ | Validation

|| Validating

\ 4

Admission

etcd

A

A

Admission | | Admission

review | | response
A 4

” Webhook

Admission | | Admission
review | | response

A 4
H Webhook






OEBPS/assets/kubp_1502.png
| p———— |

2

Admission
Controllers

Validate and/or Mutate

\ 4

API Server






OEBPS/assets/kubp_1001.png
Kubelet

CRI

v

containerd or cri-o

RuntimeClass
4 v v
runc kata-runtime runsc
b4 !
Pod Pod Pod Pod
QEMUVM QEMUVM | |gVisor Sandboxed

Container






OEBPS/assets/kubp_1301.png
Cluster Find Service 'my-external-database’

>l

my-external-database

DNS Server Service
Find Endpoints
Look up 'my-external-database’ my-external-database
A 4
Pod P IP Address 24.1.2.3 my-external-database
™ Endpoints
Connectto24.1.2.3

External
Database






OEBPS/assets/kubp_0903.png
Node0192.168.0.5

Pod

Container A
Port 443

Docker

1270.0.:80

Container B
Port 80

Docker

Pod IP: 172.22.0.12

Label:
app: web-secure

Node1192.168.0.6

Pod

Container A
Port 443

Docker

1270.0.:80

Container B
Port 80

Docker

Pod IP: 172.22.0.12

Service

DNS: ServiceName
IP:10.244.0.12:443

A

Label:
app: web-secure

Selector:
matchLabel:
app: web-secure






OEBPS/assets/kubp_0501.png
Rolling update started

Frontend:v1
Deployment v1
Service _
"FFontend:;Z\\
Deploymenth—h\ Pods /:

Rolling update completed

Seaa="~

Terminated

Service

Deploymentv2

Frontend:v2
Pods






OEBPS/assets/kubp_0503.png
Existing Version

Service/Ingress »| ReplicaSet |—py Frontend:vi
. Pods _-
Canary
Service/Ingress > i +“Frontend:vi
/Ing 50% ReplicaSet > OREVt )
| Traffic ~.lo 2o -
|
' ’f‘--~\\
U i “Frontend:v2 »
0% Tafhe » ReplicaSet —h\ Pods /,

- e - ™





OEBPS/assets/kubp_1402.png
(

Master

—

Parameter Parameter
Server 1 ServerN
Worker Worker Worker Worker
CPU | CPU CPU | GPU GPU | GPU GPU | GPU






OEBPS/assets/kubp_0101.png
Ingress HTTP Balancer

| API Server Service | | Static File Server Service |

Pod

I Static File Pod

Redis Write Servicel | Redis Read Servicel

»

Redis Pod





OEBPS/assets/cover.png
OREILLY"

Kubernetes
Best Practices

Blueprints for Building Successful Applications
on Kubernetes

Brendan Burns, Eddie Villalbag,
Dave Strebel & Lachlan Evenson






OEBPS/assets/kubp_0801.png
Pod Spec1

tolerations:

- key: "gpu”
operator: "Equal”
value: "true”

affect: "NoSchedule”

Scheduled

Pod Spec2

tolerations:

- key: "not-gpu”
operator: "Equal”
value: "true”

affect: "NoSchedule”

Not Scheduled

Kubernetes Node

Taints:
gpu=true:noSchedule






OEBPS/toc01.html
		Preface








		Who Should Read This Book















		Why We Wrote This Book















		Navigating This Book















		Conventions Used in This Book















		Using Code Examples















		O’Reilly Online Learning















		How to Contact Us















		Acknowledgments













		1. Setting Up a Basic Service










		Application Overview















		Managing Configuration Files















		Creating a Replicated Service Using Deployments











		Best Practices for Image Management















		Creating a Replicated Application

























		Setting Up an External Ingress for HTTP Traffic















		Configuring an Application with ConfigMaps















		Managing Authentication with Secrets















		Deploying a Simple Stateful Database















		Creating a TCP Load Balancer by Using Services















		Using Ingress to Route Traffic to a Static File Server















		Parameterizing Your Application by Using Helm















		Deploying Services Best Practices















		Summary













		2. Developer Workflows










		Goals















		Building a Development Cluster















		Setting Up a Shared Cluster for Multiple Developers











		Onboarding Users















		Creating and Securing a Namespace















		Managing Namespaces















		Cluster-Level Services

























		Enabling Developer Workflows















		Initial Setup















		Enabling Active Development















		Enabling Testing and Debugging















		Setting Up a Development Environment Best Practices















		Summary













		3. Monitoring and Logging in Kubernetes










		Metrics Versus Logs















		Monitoring Techniques















		Monitoring Patterns















		Kubernetes Metrics Overview













		cAdvisor















		Metrics Server















		kube-state-metrics

























		What Metrics Do I Monitor?















		Monitoring Tools















		Monitoring Kubernetes Using Prometheus















		Logging Overview















		Tools for Logging















		Logging by Using an EFK Stack















		Alerting















		Best Practices for Monitoring, Logging, and Alerting











		Monitoring















		Logging















		Alerting

























		Summary













		4. Configuration, Secrets, and RBAC












		Configuration Through ConfigMaps and Secrets











		ConfigMaps















		Secrets

























		Common Best Practices for the ConfigMap and Secrets APIs















		RBAC














		RBAC Primer















		RBAC Best Practices

























		Summary













		5. Continuous Integration, Testing, and Deployment


















		Version Control















		Continuous Integration















		Testing















		Container Builds















		Container Image Tagging















		Continuous Deployment















		Deployment Strategies















		Testing in Production















		Setting Up a Pipeline and Performing a Chaos Experiment











		Setting Up CI















		Setting Up CD















		Performing a Rolling Upgrade















		A Simple Chaos Experiment

























		Best Practices for CI/CD















		Summary













		6. Versioning, Releases, and Rollouts












		Versioning















		Releases















		Rollouts















		Putting It All Together















		Best Practices for Versioning, Releases, and Rollouts

























		Summary













		7. Worldwide Application Distribution and Staging


















		Distributing Your Image















		Parameterizing Your Deployment















		Load-Balancing Traffic Around the World















		Reliably Rolling Out Software Around the World















		Pre-Rollout Validation















		Canary Region















		Identifying Region Types















		Constructing a Global Rollout

























		When Something Goes Wrong















		Worldwide Rollout Best Practices















		Summary













		8. Resource Management












		Kubernetes Scheduler











		Predicates















		Priorities

























		Advanced Scheduling Techniques











		Pod Affinity and Anti-Affinity















		nodeSelector















		Taints and Tolerations

























		Pod Resource Management













		Resource Request















		Resource Limits and Pod Quality of Service















		PodDisruptionBudgets















		Managing Resources by Using Namespaces















		ResourceQuota















		LimitRange















		Cluster Scaling















		Application Scaling















		Scaling with HPA















		HPA with Custom Metrics















		Vertical Pod Autoscaler

























		Resource Management Best Practices















		Summary













		9. Networking, Network Security, and Service Mesh














		Kubernetes Network Principles















		Network Plug-ins











		Kubenet















		Kubenet Best Practices















		The CNI Plug-in















		CNI Best Practices

























		Services in Kubernetes















		Service Type ClusterIP















		Service Type NodePort















		Service Type ExternalName















		Service Type LoadBalancer















		Ingress and Ingress Controllers















		Services and Ingress Controllers Best Practices

























		Network Security Policy



































		Network Policy Best Practices

























		Service Meshes



















		Service Mesh Best Practices

























		Summary













		10. Pod and Container Security










		PodSecurityPolicy API














		Enabling PodSecurityPolicy















		Anatomy of a PodSecurityPolicy















		PodSecurityPolicy Challenges















		PodSecurityPolicy Best Practices















		PodSecurityPolicy Next Steps

























		Workload Isolation and RuntimeClass


















		Using RuntimeClass















		Runtime Implementations















		Workload Isolation and RuntimeClass Best Practices

























		Other Pod and Container Security Considerations











		Admission Controllers















		Intrusion and Anomaly Detection Tooling

























		Summary













		11. Policy and Governance for Your Cluster










		Why Policy and Governance Are Important















		How Is This Policy Different?















		Cloud-Native Policy Engine















		Introducing Gatekeeper












		Example Policies















		Gatekeeper Terminology















		Defining Constraint Templates















		Defining Constraints















		Data Replication















		UX

























		Audit

















		Becoming Familiar with Gatekeeper















		Gatekeeper Next Steps

























		Policy and Governance Best Practices















		Summary













		12. Managing Multiple Clusters














		Why Multiple Clusters?















		Multicluster Design Concerns















		Managing Multiple Cluster Deployments















		Deployment and Management Patterns

























		The GitOps Approach to Managing Clusters















		Multicluster Management Tools















		Kubernetes Federation















		Managing Multiple Clusters Best Practices















		Summary













		13. Integrating External Services and Kubernetes










		Importing Services into Kubernetes















		Selector-Less Services for Stable IP Addresses















		CNAME-Based Services for Stable DNS Names















		Active Controller-Based Approaches

























		Exporting Services from Kubernetes













		Exporting Services by Using Internal Load Balancers















		Exporting Services on NodePorts















		Integrating External Machines and Kubernetes

























		Sharing Services Between Kubernetes















		Third-Party Tools















		Connecting Cluster and External Services Best Practices















		Summary













		14. Running Machine Learning in Kubernetes










		Why Is Kubernetes Great for Machine Learning?















		Machine Learning Workflow















		Machine Learning for Kubernetes Cluster Admins











		Model Training on Kubernetes















		Distributed Training on Kubernetes















		Resource Constraints















		Specialized Hardware















		Libraries, Drivers, and Kernel Modules















		Storage















		Networking















		Specialized Protocols

























		Data Scientist Concerns















		Machine Leaning on Kubernetes Best Practices















		Summary













		15. Building Higher-Level Application Patterns on Top of Kubernetes










		Approaches to Developing Higher-Level Abstractions















		Extending Kubernetes











		Extending Kubernetes Clusters















		Extending the Kubernetes User Experience

























		Design Considerations When Building Platforms











		Support Exporting to a Container Image















		Support Existing Mechanisms for Service and Service Discovery

























		Building Application Platforms Best Practices















		Summary













		16. Managing State and Stateful Applications














		Volumes and Volume Mounts















		Volume Best Practices

























		Kubernetes Storage











		PersistentVolume















		PersistentVolumeClaims















		Storage Classes















		Kubernetes Storage Best Practices

























		Stateful Applications



















		StatefulSets















		Operators















		StatefulSet and Operator Best Practices

























		Summary













		17. Admission Control and Authorization














		Admission Control











		What Are They?















		Why Are They Important?















		Admission Controller Types















		Configuring Admission Webhooks















		Admission Control Best Practices

























		Authorization













		Authorization Modules















		Authorization Best Practices

























		Summary













		18. Conclusion

		Index





OEBPS/assets/kubp_0304.png
178 hits.

New Save Open Share CAuto-refresh < O Last1Sminutes >

([ 1og: Erro

e - |

Add a fter +
kubernetes*

Selected fields

2 source

Available fields

© @umestamp

€

€ index

* score

€ ype

& Kubernetes container_name.
€ ubernetes docker 1d

€ Kubernetes host

€ Kubernetes labels ks app

& Kubernetes labels pod-templ.
€ Kubernetes namespace._name
€ ubernetes pod_id

€ kubernetes pod_name

count

Time

April 6th 2010, 10:41:44.462

#pril 6th 2019,

#pril 6th 2019,

#pril 6th 2019,

Aprl 6th 2019, 10:26:49.116 - April 6th 2019, 10:41:49.116 —  Auto B

I RNy

@timestamp per 30 seconds

source.

ERROR: logging before flag.Parse: E0406 15:41:44.462593 1 nanny_lib.go:110] deployments.extensions “heapster” is forbidden: User
cannot update deployments. exts in the namespace "kube-systen® @timestamp: April 6t

h 2019, 10:41:44.462 stream: stderr time: April 6th 2019, 10:41:44.462 kubernetes.pod_name: heapster-5d6fobadse-srtjh
kubernetes. nanespace name: kube-systen Kubernetes.pod id: 0693f4e2-5872-11e9-830f-0a58ac1f1646 Kubernetes. labels.kgs-app: heapster
kubernetes. labels. pod-template-hash: 1829564927 kubernetes.host: aks-nodepool1-36621540-0  Kubernetes.container name: heapster-nann

Tog: ERROR: logging before f\aq Parse: 10406 15:41:44.456870 1 nanny_lib.go:108] Resources are not within the expected limits, updati

ng the deploynent. Actual: s:80m : :14680
0640 scale:o} s:10mi scale:-3} s:80m Form
atDecinalst} menory:{i:{value:146800640 scale:0} s:10m0 11} Expected: {

e:0 scale:0} d: s i scale:0) d: st inaryST}] Requests:

ERROR: logging before lag.Parse: E0406 15:41:34.258557 1 nanny_Lib.go:110] deploynents. extensions “heapster” is forbidden: User
cannot update deployments. exts in the namespace "kube-systen® @timestamp: April 6t

h 2019, 10:41:34.258 stream: stderr time: April 6th 2019, 10:41:34.258 kubernetes.pod_name: heapster-5dsfobadsc-srtjh

kubernetes. nanespace name: kube-systen kubernetes.pod_id: 0698fde2-5872-11e9-880f -0a58ac111646 kubernetes. labels.k8s-app: heapster

kubernetes. labels. pod-template-hash: 1820564027 Kubernetes.host: aks-nodepool1-36621540-0  kubernetes.container name: heapster-nann

Tog: ERROR: logging before ﬂaq Parse: 10406 15:41:34.171681 1 nanny_ib.go:108] Resources are not within the expected liits, updati
ng the deploynent. Actual: : 180 scale:-3) d: s:80m i :14680
0640 scale:0) silaomi ) 146800640 scale:0) B






OEBPS/assets/kubp_1401.png
Dataset
Preparation

Model
Development

Training

Serving






OEBPS/assets/kubp_1202.png
Kubernetes Federation

(T Tttt b
Cluster Azure | 1 namespace: appl !
[} [}
| |
: Secret Configmap Pods Deployment :
Cluster Google | 1 1
[} [}
v v
namespace: appl namespace: app1
Deployment Secret Deployment Secret
A 4 A 4
Pods Configmap Pods Configmap
Azure Google






OEBPS/assets/kubp_0303.png
L

n o+

£

88 Kubemetes / USE Method / Cluster -

w ¢ 2 B8 O Oudits Remhemyis Q T

~opu
- Eree——
~ Mamory
— Mamory S Sop )






OEBPS/assets/kubp_0802.png
Guranteed Burstable Best Effort

Limit
Limit 200m
Jotm No Limits
or
Request
Request 150m gt
100m






OEBPS/assets/kubp_1501.png
Pod

Main App SideCar
Container Container

A






OEBPS/assets/kubp_05in01.png
Secrets

docker_password
docker_username
kubernetes_cert
kubernetes_server
kubernetes_token

Secret Name

Secret Value

Allow Pull Requests

ADD A SECRET

DELETE

DELETE

DELETE

DELETE

DELETE





OEBPS/assets/kubp_1302.png
Kubernetes
DNS Server APl Server
%
2
2
%,
<

External Service
Controller

External
Resources





OEBPS/UbuntuMono-BoldItalic.otf


OEBPS/UbuntuMono-Italic.otf


OEBPS/UbuntuMono-Regular.otf


OEBPS/css_assets/titlepage_footer_ebook.png
Beijing + Boston + Farnham - Sebastopol + Tokyo





OEBPS/assets/kubp_0904.png
Selector:
app: webl
Client calls Service
ServiceA |, by DNS name
10.244.012 |=
ServiceA 10.244.0.12
PodA(172.22.0.12:80)
PodB(172.22.1.32:80)
Pod(C(172.22.2.45:80) +
PoaN".
Endpoint
D!
PodA PodB PodC
Label: Label: Label:
app: webl app: webl app: web1

Client Pod






OEBPS/DejaVuSans-Bold.otf


OEBPS/DejaVuSerif.otf


OEBPS/UbuntuMono-Bold.otf


OEBPS/assets/kubp_0301.png
Kubernetes Clusters

Kubernetes Clusters

Kubernetes Clusters

Pull

Prometheus Server

Push

AlertManager

A 4

Slack Pager Duty






OEBPS/assets/kubp_0906.png
NodePort

Cluster
Selector:
app: webl
CIigntcaIIsService
ServiceA y DNS name .
10244012 [* Client Pod
ServiceA 10.244.0.12
PodA(172.22.0.12:80)
PodB(172.22.1.32:80)
Pod(C(172.22.2.45:80) v
POHN...
Endpoint
| { P A Lo } i
[} ] ] [} ]
i PodA 5] PodB i PodC .
[} | | [} |
] ] ] 1 |
[} ] ] [} ]
] Label: [ Label: [ Label: !
' app:web1 || | app:webl || | app: webl ||
[} | | 1 ]
[} ] ] 1 ]
'PodA172.22.01280| ! !PodB17222132:80| !\ ‘PodC172.22.2.4580( !
| o L |
] ] ] 1 ]
! NodeO IP: I I Nodel IP: ! 1 Node2 IP: !
1192.168.0.5 1 1192168.0.6 v 1192168.0.7 |
A
Cloud Provider External Client

Load Balancer Client -> 192.168.0.30:80






OEBPS/assets/kubp_0901.png
Pod

Container A
Port80

Docker

1270.0.:80

Container B
Port80

Docker

Pod IP:172.22.0.12






OEBPS/assets/kubp_1303.png
External Load
Balancer
A 4 A 4 \ 4
Port 30919 Port 30919 Port 30919
Node Machine Node Machine Node Machine

\ >/

Service Pod Service Pod






OEBPS/assets/kubp_0902.png
Node0 192.168.0.5 Node1192.168.0.6
Pod
Container A
Port 443
Docker
127.0.01:80
Pod
Container B
Port 80 Container A
i Port 443
ocker
Docker
Pod IP:172.22.0.12 127001:80
Pod
Container B
Container A Ferdl
Port 443 Dodker
Docker Pod IP:172.22.0.12
127.0.01:80
Container B
Port 80
Docker
Pod IP:172.22.0.12






OEBPS/assets/kubp_1702.png
API Request

»

API Server

Authentication
Authorization

Mutating ~

Schema

Admission Validation

Validating

\ 4

Admission

etcd

Admission | | Admission

review | | response
A 4

” Webhook

Admission | | Admission
review | | response

A 4
” Webhook






OEBPS/assets/kubp_12in01.png
--------------------------
Service2 |

deploy

& manage

Prometheus





OEBPS/assets/kubp_0502.png
Existing Version

- ~

Service/Ingress »{ Deployment vi |—py Frontend:vi
. Pods _-
Blue/Green
Service/Ingress »! Deployment vi f—py Frontend:vi-
<. Pods _-
i
: /"--~\\
tmmmmmm e »{Deployment v2|—y Frontend:v2y
<. Pods _-

- e - ™





